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» All men dream, but not equally.

Those who dream by night in the dusty recesses of their minds,
wake up in the day to find it was vanity:

but the dreamers of the day are dangerous men,

for they may act their dreams with open eyes, to make it possible.

T. E. Lawrence
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Abstract

Conditional automation is the next step towards the fully automated vehicle. Under
prespecified conditions an automated driving function can take-over the driving task
and the responsibility for the vehicle, thus enabling the driver to perform secondary
tasks. However, performing secondary tasks and the resulting reduced attention towards
the road may lead to critical situations in take-over situations. In such situations, the
automated driving function reaches its limits, forcing the driver to take-over responsibility
and the control of the vehicle again. Thus, the driver represents the fallback level for
the conditionally automated system. At this point the question arises as to how it can
be ensured that the driver can take-over adequately and timely without restricting the
automated driving system or the new freedom of the driver.

To answer this question, this work proposes a novel prototype for an advanced driver
assistance system which is able to automatically classify the driver’s take-over readi-
ness for keeping the driver in-the-loop”. The results show the feasibility of such a
classification of the take-over readiness even in the highly dynamic vehicle environment
using a machine learning approach. It was verified that far more than half of the drivers
performing a low-quality take-over would have been warned shortly before the actual
take-over, whereas nearly 90% of the drivers performing a high-quality take-over would
not have been interrupted by the driver assistance system during a driving simulator study.

The classification of the take-over readiness of the driver is performed by means of ma-
chine learning algorithms. The underlying features for this classification are mainly based
on the head and eye movement behavior of the driver. It is shown how the secondary
tasks currently being performed as well as the glances on the road can be derived from
these measured signals. Therefore, novel, online-capable approaches for driver-activity
recognition and Eyes-on-Road detection are introduced, evaluated, and compared to each
other based on both data of a simulator and real-driving study. These novel approaches are
able to deal with multiple challenges of current state-of-the-art methods such as: i) only a
coarse separation of driver activities possible, ii) necessity for costly and time-consuming
calibrations, and iii) no adaption to conditionally automated driving scenarios.
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Zusammenfassung

Das hochautomatisierte Fahren bildet den nédchsten Schritt in der Evolution der Fahrer-
assistenzsysteme hin zu vollautomatisierten Fahrzeugen. Unter definierten Bedingungen
kann dabei der Fahrer die Fahraufgabe inklusive der Verantwortung iiber das Fahrzeug
einer automatisierten Fahrfunktion iibergeben und erhilt die Moglichkeit sich anderen
Titigkeiten zu widmen. Um dennoch sicherzustellen, dass der Fahrer bei Bedarf schnellst-
moglich die Kontrolle iiber das Fahrzeug wieder iibernehmen kann, stellt sich die Frage,
wie die fehlende Aufmerksamkeit gegeniiber dem Straenverkehr kompensiert werden
kann ohne dabei die hochautomatisierte Fahrfunktion oder die neu gewonnenen Freiheiten
des Fahrers zu beschrinken.

Um diese Frage zu beantworten wird in der vorliegenden Arbeit ein erstes prototypisches
Fahrerassistenzsystem vorgestellt, welches es ermdglicht, die Ubernahmebereitschaft
des Fahrers automatisiert zu klassifizieren und abhingig davon den Fahrer "in-the-
loop" zu halten. Die Ergebnisse zeigen, dass eine automatisierte Klassifikation iiber
maschinelle Lernverfahren selbst in der hochdynamischen Fahrzeugumgebung hervor-
ragende Erkennungsraten ermoglicht. In einer der durchgefiihrten Fahrsimulatorstudien
konnte nachgewiesen werden, dass weit mehr als die Hilfte der Probanden mit einer
geringen Ubernahmequalitiit kurz vor der eigentlichen Ubernahmesituation gewarnt und
nahezu 90% der Probanden mit einer hohen Ubernahmequalitit in ihrer Nebentitigkeit
nicht gestort worden wiren.

Diese automatisierte Klassifizierung beruht auf Merkmalen, die iiber Fahrerbeobachtung
mittels Innenraumkamera gewonnen werden. Fiir die Extraktion dieser Merkmale werden
Verfahren zur Fahreraktivititserkennung und zur Detektion von Blicken auf die Strafe
benotigt, welche aktuell noch mit gewissen Schwachstellen zu kimpfen haben wie:

i) Nur eine grobe Unterscheidung von Titigkeiten moglich, ii) Notwendigkeit von kosten-
und zeitintensiven Kalibrationsschritten, iii) fehlende Anpassung an hochautomatisierte
Fahrszenarien. Aus diesen Griinden wurden neue Verfahren zur Fahreraktivitdtserkennung
und zur Detektion von Blicken auf die Strale in dieser Arbeit entwickelt, implementiert
und evaluiert. Dabei bildet die Anwendbarkeit der Verfahren unter realistischen Bedin-
gungen im Fahrzeug einen zentralen Aspekt. Zur Evaluation der einzelnen Teilsysteme
und des iibergeordneten Fahrerassistenzsystems wurden umfangreiche Versuche in einem
Fahrsimulator sowie in realen Messfahrzeugen mit Referenz- sowie seriennaher Messtech-
nik durchgefiihrt.

vii



viii



Contents

Notation and Abbreviations xiii
1 Introduction 1
1.1 Scope and Contribution of this Thesis . . . . . ... .. ... ... ... 3

1.2 Organization of this Thesis . . . . . . ... ... .. ... ........ 3

2 Fundamentals 5
2.1 Levelsof Automation . . . . . . .. ... ... ... ... 5
2.2 The Human Eye and its Movements . . . . .. ... .. ... ...... 8
2.2.1 Structure of the HumanEye . . . ... ... .. ... ...... 8

2.2.2 Movements of the HumanEye . . . . . . ... ... ....... 9

2.3 Measurement Methods . . . . . ... ... L oL oo 10
2.3.1 Head-Tracking . . . .. ... ... ... ... ... ....... 10

232 laserBird . . . . ... . 12

233 Eye-Tracking . . . . . . . ... ... 14

234 Dikablis . . . ... 15

2.3.5 RemoteDriverCamera . . . . . . ... ... .. ... ...... 16

24 EXPeriments . . . . . . . v v vt e e e e e e e e e e e 18
2.4.1 The Mercedes-Benz Moving Base Simulator . . . . . ... ... 18

2472 Testing Vehicle . . . .. ... ... ... ... ... ..... 18

243 Pre-Study NEBAF . . ... ... ... .. ... .. 20

244 Experiment Ko-HAF . . ... ... ... .. ..... . ..... 20

2.4.5 Conditionally Automated Real Driving Study . . . . . ... ... 22

2.5 Fusion of Head- and Eye-Tracking Devices . . . . ... ... ... ... 24
2.5.1 Calibration Process . . . . . ... ... ... ... .. ... ... 26

2.5.2 Signal Pre-Processing . . . ... ... ... ... . ..., . 26

2.5.3 Removal of Torsions of the Eye Camera . . . . . ... ... ... 28

2.5.4 Estimation of the Driver’s Head Pose . . . . .. ... ... ... 29

2.5.5 Estimation of the Driver’s Gaze Direction . . . . . . . ... ... 32

Eye Movement Classification in the Context of Conditionally Automated Driv-

ing 35
3.1 Methods for Eye Movement Classification . . . . .. ... ........ 35
3.1.1 PreviousWork . . .. ... . 36
3.1.2 Necessity of Adaptive Methods . . . . . .. .. ... ...... 39
3.2 MERCY-Moving Estimation Classification . . .. ... ... ... ... 40
3.2.1 Analyzing the Bayesian Mixture Model Approach . . . . .. .. 40

ix



Contents

322 AnalyzingMERCY . . . ... ... ... ... . ......... 41

3.2.3 Comparative Evaluation . . .. .. ... ... .......... 44

3.3 Eye Movement Behavior in Conditionally Automated Driving Scenarios . 48

34 Applying MERCY online in the Vehicle . . . . ... ... ... ... .. 52

35 Summary ... 55

4 Eyes-on-Road - Definition and Application 57

4.1 Visual Attention and Eyes-on-Road Gazes . . . . . ... ... ...... 57

4.2 Eyes-on-Road Detection - State-of-the-Art . . . . . ... ... ...... 60

4.3 EoR and Control Gaze Detection based on Clustering . . . . . ... ... 62

43.1 Approach . . ... .. . .. ... 62

432 Evaluation . .. .. .. ... ... ... 64

4.4 Fallback Strategy for Detecting EoR Gazes . . .. ... ... ...... 65

441 Approach . . . . . . ... 65

4472 Evaluation . . ... ... . ... ... e 68

4.5 Detecting Eyes-on-Road online in the Vehicle . . . . .. ... ... ... 70

4.5.1 Modifications . . . . . . . ... 70

4.5.2 Evaluation of the online Approach . . . . . .. ... ... .... 74

4.6 SUMMATY . . . . o vt e e e e e e e e e e e e e 78

5 Automated Driver-Activity Recognition 79

5.1 Existing Methods for Driver-Activity Recognition . . . . . .. ... ... 79
5.2 CIDAR - Chronologically Independent Features for Driver-Activity

Recognition . . . . . . . . . ... 81

5.2.1 Architecture of CIDAR . . . . . . . ... ... ... ..., . 81

5.2.2  Feature Extraction . . . . ... ... ... . ... . ..... 83

5.2.3 Evaluation of Static and Dynamic Feature Sets . . . . .. .. .. 86

5.3 Scanpath-Based Driver-Activity Recognition . . . . ... ... ... .. 89

5.3.1 SAXPatterns . . . . . . ... 91

5.3.2 Removal of Repetitive Symbols . . . .. ... ... ... ... .. 92

533 SubsMatch . . ... .. ... ... .. 92

5.3.4 PFeature Selection and Classification . . . . ... ... ...... 94

5.4 Evaluationand Comparison . . . . . . .. .. ... ... .. 94

5.4.1 Handheld vs. Hands-freedevice . . . . .. ... ... ...... 95

5.4.2 Classification of Secondary Tasks . . . . ... ... ....... 96

54.3 PFeature Analysis . . . . . .. .. ... 99

5.5 Driver-Activity Recognition online in the Vehicle . . . . . ... ... .. 103

5.5.1 Estimating Quantiles in Online Scenarios . . . . .. ... .. .. 103

5.5.2 Modifying SubsMatch for In-Vehicle Applications . . . . . . .. 108

5.5.3 Modifying the Classification Step . . . . . . .. ... ... ... 110

5.54 Evaluation . . ... ... .. ... 113

5.6 Summary . ... e e 118

6 An Automated Classification of Take-Over Readiness 121



Contents

6.1 Take-Over Readiness - Influences and Automated Detection Approaches . 121

6.1.1 What influences the Take-Over Readiness of a Driver? . . . . . . 121

6.1.2  Automated Detection of the Take-Over Readiness . . . . . . . . . 122

6.2 Prototypeofanovel ADAS . . . . . . ... L 124
6.2.1 Determining the Complexity of a Traffic Situation . . ... . .. 125

6.2.2 Measures of the Take-Over Quality . . . .. ... ... ..... 128

6.3 Evaluation of the Advanced Driver Assistance System . . . . . . ... .. 131
6.3.1 Analysis of Classifiers and Features . . . . . . ... ... .... 131

6.3.2 TypeofIntervention . ... ... ... ... .. ......... 133

6.3.3 Behaviorofthe ADAS . . . ... ... ... ... ... 134

6.4 Summary . . .. ... 136

7 Summary and Future Work 137
List of Figures 139
List of Tables 145
Bibliography 147

Xi






Notation and Abbreviations

Notations
X scalar value
X column vector
X Matrix
[x] Interval variable

Mathematical Functions

l...| Cardinality in case of a set or the absolute value in case of a number
[]..-] Norm representing the Euclidean distance

arccos Inverse function of the cosine
arcsin Inverse function of the sine
arctan Inverse function of the tangent
atan2 Inverse function of the tangent with two input parameters
cos Function of the cosine
sin Function of the sine
log, Binary logarithm
max Maximum operator
E[..] Expectation value
I1G(...) Function of the information gain
SU(...) Function of the symmetrical uncertainty correlation
Y Sum operator
N(...) Gaussian distribution
o(...) Big O notation
Symbols
b, Origin of the laserBird coordinate system with regard to the vehicle
coordinate system, R3*!
Ib 505 Head position vector in millimeter, R3x1
b pos, Head position in x direction given in millimeter
1D pos, Head position in y direction given in millimeter

Lbpos, Head position in z direction given in millimeter
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1 Introduction

Worldwide nearly 91 million vehicles, including automobiles and commercial vehicles,
were produced in 2015, an increase of about 1.1% compared to [1]. Furthermore, the total
number of vehicles used worldwide in 2014 exceeded 1.2 billion units, corresponding to
an increase of 38% compared to the number in 2005 [2]. This steady growth of vehicles
on the roads, especially in developing countries such as China or India, comes with many
problems such as traffic jams, a significant increase in carbon emission, and an increasing
number of accidents. At the same time, Figure 1.1 shows that the trend of a decreasing
number of accidents in developed countries such as Germany, seems to be diminishing or
even starting to reverse itself [3]. One of the reasons for this behavior is that the current
active and passive advanced driver assistant systems (ADAS) are beginning to reach their
limits in terms of accident avoidance and mitigation. As a result, many researchers around
the world are searching for new solutions to challenges posed by the rising number of
vehicles.
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Figure 1.1: Total number of road fatalities and causalities in Germany over the last 24 years.



1 Introduction

Currently, the greatest hope for confronting all the mentioned challenges and reaching the
goal of accident-free driving is being placed in the concept of automated driving. The
most common causes of accidents or traffic jams are still mistakes made by human drivers
[4]. By taking the driver out-of-the-loop, i.e. by transferring the control of the vehicle to
an automated driving function, mistakes by the driver can be prevented. As a consequence,
the driver’s comfort and safety will be enhanced, especially for long-term road trips in
monotonic environments. The next step towards the fully automated vehicle is the level
of conditional automation, where the automated driving function will take over the lateral
and longitudinal driving task as well as the responsibility for the vehicle for a limited
amount of time. Moreover, the driver will no longer be required to monitor the road or the
automated driving function, which is still necessary for today’s ADAS. Instead, the driver
will be able to perform secondary tasks, such as reading news, watching a movie, or just
relaxing in the driver seat. Which secondary tasks will be legalized in such automated
vehicles, however, is still an open topic. If the system reaches its limitations, e.g. no more
lane markings are visible, it will warn the driver to take over the driving task again after a
specified time interval.

At this point the question arises as to how much take-over time is adequate. To answer
this question, many aspects need to be considered. First of all, the maximum available
take-over time is limited by the visual range of the applied sensors. The lower their range,
the shorter the take-over time at sustained speeds. The range of the sensors depends
on many factors, such as the geometry of the road or the weather conditions. As a
consequence, there will most likely not be one fixed take-over time, but rather a time
interval from the minimum to the maximum take-over time. Multiple studies are currently
being conducted by different research institutes and automobile companies to determine
appropriate take-over times and to ensure the safe transition from automated driving to
the human driver [5], [6], [7]. However, the take-over quality of the driver is subject
to considerable inter- and intra-individual variations. It was shown that it is influenced,
among other things, by the complexity of the traffic situation [8], the performed secondary
task [9], [10], or the gaze behavior of the driver [11]. That is why it may not be possible
to select a single take-over time adequate for all situations and each driver. To increase the
take-over time for such systems, better sensors or lower velocities need to be considered,
and that is usually an expensive and inacceptable option.

Instead of adapting the requirements for using such a conditionally automated function,
e.g. by decreasing the allowed velocity or by prohibiting some secondary tasks, systems for
driver monitoring could be used to automatically detect drivers unable to take-over in time.
To do so, the previously mentioned impact factors such as the gaze behavior of the driver
or the performed secondary task need to be recognized online in the vehicle and applied for
a take-over classification. If such an ADAS predicts a low take-over readiness of the driver
during a conditionally automated drive, further measures need to be performed to ensure a
safe and comfortable transition. For example, the driver may be asked to perform gazes at
the road for reorientation and getting the driver back into the loop. If the driver ignores this
warning, the amount of allowed secondary tasks could be reduced to tasks which are less
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distracting. On the other hand, if the driver follows the guideline or if the ADAS predicts
a high take-over readiness, no further measures need to be taken. Additionally, the number
of secondary tasks could even be expanded temporarily. Such an expansion of the allowed
secondary tasks would be a relevant reason to buy a vehicle with conditionally automated
driving functions. Vehicle manufacturers will therefore most likely compete in the future
to enable as many secondary tasks as possible.

1.1 Scope and Contribution of this Thesis

The main contribution of this work is the first approach to a novel ADAS for assessing the
driver’s take-over readiness in conditionally automated driving scenarios. The automated
classification is based primarily on features extracted from the visual search behavior based
on an in-vehicle driver monitoring system. Moreover, the work highlights the necessity of
automated approaches for detecting gazes at the road and driver-activity recognition for
the feature extraction, since current state-of-the-art methods face multiple challenges such
as: i) only a coarse separation of driver activities possible, ii) necessity for costly and time-
consuming calibrations, and iii) no adaption to conditionally automated driving scenarios.
Hence, novel approaches for detecting gazes at the road and recognizing the driver’s activ-
ity will be developed, implemented, and evaluated in this work. Further, this work focuses
on analyzing the application of these approaches under realistic conditions in the vehicle.
Thus, the evaluation of the driver assistance system and its various subsystems is based on
the data recorded during thorough driving simulator and real driving studies with reference
as well as close-to-production measurement systems. Since a robust detection of basic eye
movements is crucial for some of the proposed methods for driver-activity recognition and
Eyes-on-Road detection, a novel eye movement classification method especially designed
for the automated environment is introduced. This is a particularly challenging task for
conditionally automated driving scenarios due to the highly dynamic environment, inter-
and intra-individual differences, varying lighting conditions, and other issues. Moreover,
the task-individual and highly varying eye movement behavior is proofed in conditionally
automated driving scenarios by means of the introduced classification method for basic eye
movements. All these components are incorporated into the final ADAS validated at the
end of the work.

1.2 Organization of this Thesis

The introduction and motivation in Chapter 1 is followed by some necessary basic knowl-
edge about the different levels of automation, the structure of the human eye, and head-
as well as eye-tracking approaches in Chapter 2. Furthermore, all of the conducted driv-
ing studies as well as an approach for generating a gaze direction based on intrusive eye-
and head-tracking systems are described at the end of this chapter. In Chapter 3, a novel
eye movement classification method especially designed for the automated environment
is introduced. This approach is applied to proof the task-individual and highly varying
eye movement behavior in conditionally automated driving scenarios. The findings were
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published on the symposium on Eye Tracking Research and Applications [12]. Chapter 4
covers approaches for detecting Eyes-on-Road and possible fallback strategies in case of
missing or poor gaze estimation which are contained in the published patent [13] and a pa-
per of the IEEE Intelligent Vehicle Symposium [14]. Chapter 5 is devoted to driver-activity
recognition including two novel approaches proposed in the paper for the IEEE Conference
on Intelligent Transportation Systems [15], on the 15th International Stuttgarter Sympo-
sium [16] and as contribution to the IEEE Transactions on Intelligent Transportation Sys-
tems Journal [17]. The chapter concludes with the description of the necessary adjustments
for transferring approaches for driver-activity recognition to an online-setting. Finally, the
results of the previous chapters are combined in Chapter 6 for a proof of concept of the
proposed ADAS. This prototype is validated based on take-over situations of a driving
simulator study which were originally published as contribution in the IEEE Transactions
on Intelligent Transportation Systems Journal [18]. The work concludes with Chapter 7
where the results are summarized and potential for future developments is outlined.



2 Fundamentals

2.1 Levels of Automation

A common mistake in public discourse on automated driving is that the terms automated,
autonomous, highly automated, and fully automated are erroneously used as synonyms.
However, it is necessary to differentiate between these terms and the different levels of
automation. There are various taxonomies of the automation levels concerning on-road
vehicles, e.g. the categorization of the BASt! in [19] or of the NHTSA?Z in [20]. However,
this work applies the taxonomy defined in [21] by the SAE?, since it is the most common
one used in the automotive industry. The different levels of automation are distinguished
by reference to the driving tasks taken over by the automated driving function and the
behavior of the vehicle in traffic situations for which this function was not designed. The
automation levels and a short explanation are given in Table 2.1.

The number of vehicles without any supporting driver assistance systems usually de-
creases annually. In general, off-the-shelf vehicles are equipped with cruise control or
even adaptive cruise control (ACC) systems to take over the longitudinal control of the
vehicle. Vehicles with partially automated driving functions, usually distributed under
other names, have been available for series vehicles for many years. For example, in 2013
Mercedes-Benz introduced Distronic Plus with Steering Assist, an ADAS for lateral and
longitudinal control of the vehicle [22]. Today, similar systems are available for vehicles
of many other automobile manufacturers, e.g. [23], [24]. An increased risk is given by
vehicles with partially automated driving functions without obvious prompts for drivers
not paying attention to the traffic environment or to the automated driving function, e.g.
not keeping their hands on the wheel. While traditional automotive companies as Daimler
AG or Audi AG realize a strict hands-off detection which warns the driver and finally
turns off the automated driving function for inattentive drivers in a minimum amount of
time, startup companies such as Tesla Motors perform warnings less frequently. Due
to the combination of fewer warnings and automated driving functions with increased
performance and availability, the impression is created that the vehicle is already driving
in a conditionally automated setting. This may lead to fatal consequences [25].

At the moment, there are no conditionally automated driving functions available for series
vehicles. Table 2.1 indicates the major challenge of the development of current assistance
systems by means of the double dividing line, namely the development step from the
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partial to the conditional automation level. Up through the degree of partial automation,
the driver holds the responsibility for the vehicle at all times; the automated driving
function takes over the responsibility in the event of conditionally automated driving
scenarios in specified traffic scenarios. This would be the first time that an automated
driving function takes over the responsibility for the vehicle. Hence, the driver is able to
perform secondary tasks while driving. However, which secondary tasks will be legalized
in the future has not yet been decided. Note that conditionally automated driving functions
will experience situations which they can no longer handle, e.g. if no more lane markings
are visible. In such situations, the driver needs to take-over the control and responsibility
of the vehicle again. These situations are called take-over situations. Since drivers have
only a limited amount of time to take over the control of the vehicle, they are rushed and
experience a stress situation.

Take-over situations reflect the paradox of automation described by Bainbridge in [26]. Al-
though automation is designed for supporting the human operator and facilitating the actual
task, especially for monotonous and long-term tasks, the human operator is assigned to the
novel role as a monitor, which is even less suited to humans than the original tasks. Many
examples of catastrophic failures can be provided by civil aviation as listed in [27], where
the role of a pilot is already defined as a monitor and fallback level. Such failures can also
be assumed to occur for conditionally automated driving scenarios on the road and, there-
fore, must be taken into account in designing future automated driving functions. Based on
the level of conditional automation, higher levels of automation will emerge, guaranteeing
an increased performance and system availability in a rising number of traffic situations.
This development will finally culminate in the fully automated vehicle, which transports
the passengers to a defined destination without any need of intervention by the human
driver. The term autonomous usually describes systems equal to the level of full automa-
tion, but without any passengers at all. This would be of interest for use-cases such as
robot taxis or autonomous parking garages. The following work focuses on systems at the
level of conditionally automated driving, especially on the system degradation occurring at
levels with no automation in take-over situations.
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2 Fundamentals

2.2 The Human Eye and its Movements

The human eye is the main sensory organ and can be seen as extended components of the
human brain. Hence, the eyes are often used for inference to cognitive processes or to pre-
dict the subject’s mental state, e.g. being drowsy or attentive. In this study, eye movements
of drivers engaged in different secondary tasks are used to derive features for recognizing
the currently performed activity. Therefore, the eye movements need to be recorded, de-
tected, and classified by means of appropriate measurement systems and algorithms. In
this section, the structure of the human eye as well as the basic eye movements will be
introduced to support the understanding of the later presented measurement systems and
algorithms. Since the human eye is such a sophisticated and well-studied organ, there is
an extensive amount of literature available, describing each aspect of the eye in detail. A
coarse overview over the parts of the human eye relevant for the later algorithms and sys-
tems will be included here. For those interested in a more detailed description of this topic,
please refer to [28] and [29].

2.2.1 Structure of the Human Eye

The eye is a nearly spherical organ with a radius of about 1.2 cm, except for the small bulge
at the front, and is protected by the orbit and the upper and lower eyelid. A profile of an
eye is shown in Figure 2.1, including the labeled relevant parts for this section. The visi-
ble, frontal part of the human eye includes the iris, the pupil, the sclera, the limbus and the
cornea. The cornea forms the translucent layer at the frontal part of the eye and is respon-
sible for a large portion of the light refraction. Behind the cornea, the pupil can be seen
as a dark, circular opening surrounded by the dyed iris. The pupil enables light to enter
the inner of the eye and, therefore, appears dark. Depending on the lighting conditions,
the size of the pupil can be adapted by means of the musculature of the iris to control the
amount of light entering the eye. The limbus represents the border between the iris and
the surrounding white sclera, which is a further protection of the eye. Directly behind the
pupil is a biconvex lens. The lens focuses all the light entering the pupil into a collimated
ray on the retina located at the back of the eye. Since the retina is a light-sensitive layer
on account of its photoreceptor cells, an image in the form of electrical impulses is sent
over the optic nerve to the brain. There are two light-sensitive photoreceptor cells, namely
the rods and cones. While rod cells are responsible for night vision, cone cells enable the
human eyes to perceive colors. Depending on the literature, the total number of cone and
rod cells varies between 90 million and 120 million rod cells and between 4.5 million and
6 million cone cells [30] [31]. However, the ratio of 1/20 between the two types of pho-
toreceptor cells remains the same for both reported numbers. These cells, provided with
nourishment by the vascular choroid layer, are not uniformly distributed over the retina.
Most of the cone cells are located at the fovea centralis, generating the area of sharpest
vision. The fovea centralis is subject to significant individual differences and may differ
up to 5° from the optical axis* [32]. Rod cells on the other hand, are not found at the fovea

4Optical axis describes the line passing through the center of the cornea, lens, and imaginary pivot of the
eye.
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centralis, but at the outer edges of the retina. Hence, rod cells are responsible for the pe-
ripheral vision. Another interesting location concerning the photoreceptor cells is the blind
spot. At this point, neither rod nor cone cells exist and, therefore, no visual information
can be perceived. The blind spot is located on the optic disc area where the optic nerve,
also called Carnial nerve II, exits the eye. The visual information is transported via the
optic nerve to the corresponding areas of the brain for processing visual information.

The human eye is able to rotate about all three-dimensional axes by means of the ex-

Sclera
Choroid

Retina

Iris
Fovea centralis
Optic disc area (blind spot)

Pupil

Cornea

Lens

Optic nerve
(Carnial nerve Il)

Figure 2.1: Anatomy of the human eye adapted from [33].

traocular muscles attached on the upper (M. rectus superior, M. obliquus superior), lower
(M. rectus inferior, M. obliquus inferior), and the lateral (M. rectus lateralis, M. rectus
medialis) side of the eyeball.

2.2.2 Movements of the Human Eye

According to Leigh and Zee [34], there are six basic eye movements in daily life, namely
saccades, fixations, smooth pursuits, vergence, vestibulo-ocular reflex, and optokinetic re-
flex. For the majority of our awake-time, our eyes remain motionless in a temporal po-
sition and perform fixations, i.e. focusing on a given visual target for perceiving visual
information. In fact, the eye performs tiny movements even during fixations, so called
micro-saccades, helping the eye to gather enough stimuli for the photoreceptor cells to
keep the image sharp. It is usually assumed that the subject is paying visual attention to the
focused target, although some rare phenomena such as Looked-but-failed-to-see may result
in the missing perception of crucial information occurring in the field of view. According
to [35], the average duration of a fixation is about 200 ms to 300 ms. However, Schweigert
found that the duration decreases to 80ms - 100ms for fixations performed when driving
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manually [36]. In case of shorter fixations, no visual information can be perceived.

By means of rapid eye movements called saccades, the eyes change from one visual tar-
get to another. During a saccade no visual information can be gathered and that is why
saccades are often performed simultaneously with necessary eye blinks. This is an evo-
lutionary mechanism, since the human eye has only a small area of £1° of highly sharp
vision, called the foveal area, corresponding to the image on the fovea centralis. To scan
wide areas as fast as possible, the eye reaches velocities of up to 1000 °/s during saccades.
Saccades are characterized by their amplitude, direction, and duration. If the eye fixates a
moving object, e.g. focusing on the ball while watching a tennis match, it performs partic-
ularly smooth movements. Hence, these basic eye movements are called smooth pursuits.
The velocity of smooth pursuits ranges between 15°/s and up to 60 °/s at maximum [35],
[37]. This velocity profile enables the eye to maintain a sharp image of the moving object.
Vergence describes an eye movement type in which the eyes rotate simultaneously in an
opposite direction about a vertical axis. By means of this eye movement type, diplopia’
can be prevented. The vestibulo-ocular reflex is a compensational eye movement in case
of gaze shifts with subsequent head movements. For example, consider a driver checking
the right exterior mirror before changing lanes. Since the visual angle is so large that span-
ning this distance solely with the eyes feels uncomfortable or is not even enough to see the
right mirror, the head starts moving to the right until an adequate position is reached. In
this case, the eye reaches the visual target first. To already perceive information while the
head is still moving, the eyes need to move for the same amount in the opposite direction.
The last eye movement is the optokinetic reflex, which is a combination of a saccade and a
smooth pursuit. This eye movement type can be monitored when the eyes follow a moving
object, i.e. performing a smooth pursuit while the head remains motionless, e.g. when
sitting in a train and observing an object through the window. As soon as the object moves
out of the field of view, the eye jumps back to the starting position of the smooth pursuit,
i.e. the eye performs a saccade. This study analyzes some of these basic eye movements,
namely saccades and fixations, to detect and classify the secondary task and the gazes on
the road performed by the driver during conditionally automated driving scenarios.

2.3 Measurement Methods

2.3.1 Head-Tracking

Head-tracking is used to determine the subject’s head movements including the position
and rotation angles and is being considered for numerous applications such as future
user-interfaces for disabled persons or applications in the gaming or military sector.
Head-tracking sensors comprise intrusive as well as non-intrusive measurement variants.
Intrusive methods include accelerometers, gyroscopes, or laser-based approaches (see
2.3.2). Non-intrusive methods with practical relevance can be limited to optical tracking
approaches with one or multiple cameras. Since an intrusive system is described in detail
in Section 2.3.2, this section focuses on optical head-tracking applied by remote camera

SPerceiving the same object at two different locations.
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systems as described in Section 2.3.5.

The first step of an optical head-tracking system always contains the detection of the
driver’s head and face. This is usually done by applying the Viola-Jones algorithm [38],
which is able to detect objects, such as faces, in grey-scaled images by means of rectan-
gular Haar features. In case of a stereo camera system, the information about the disparity
may also be used to locate the driver’s body and to remove the background of the image
followed by the separation of the head and torso [39]. This separation can be performed
by means of a statistical model which parameters can be trained by Bayesian or maxi-
mum likelihood estimators. If the driver’s face is detected, it is used as the initial state for
the actual model. According to [40], there are three major categories of models used for
detecting facial landmarks such as the corners of the eyes or mouth, and estimating the
head pose: the Template-based Models, Active Shape Model, and the Active Appearances
Models.

Template-based Models

In general, template-based methods in computer vision try to correlate desired aspects
with different areas of the recorded image and determine the maximum correlation be-
tween these aspects and areas. For head pose estimators, template-based models compare
facial features of an unseen image with the facial features of labelled images of an a priori
acquired training set, called templates, and searches for the best fitting one. The search and
fitting process can be performed efficiently and with similar performance to known Active
Appearance models [41], due to the combination of texture and shape models by the nearest
neighbour algorithm. Clearly, an increasing training set and number of templates improves
the estimation. However, recording and labeling of such images is a time-consuming task.
Instead, head morphing approaches are used to generate artificially a hugh number of im-
ages with the corresponding Ground Truth of the head pose. Nevertheless, to handle the
enormous variations of subjects and head poses, such methods suffer from CPU-intensive
algorithms and a high memory consumption. Note that similar methods exist for eye-
tracking approaches (see 2.3.3) which show the same disadvantages as the methods for
head pose estimation and, additionally, cannot reach an accuracy of better than 5°.

Active Shape Models

To detect particular non-rigid objects, e.g., in biomedical images or in recorded human
faces, Cootes et al. [42] introduced the active shape models. Based on a training dataset of
preferably many varying faces, common feature points are determined to establish an initial
shape model, called Point Distribution Model. This statistical model describes the allowed
variations of the shape model of the particular object class. The structure of the object is
described by a defined number of connected points and can be adapted to the object shape
by means of iterative algorithms. The larger the number of points and enclosed areas, the
more accurate the shape model. In comparison to Active Contour Models proposed by
Kass et al. [43], Active Shape Models proved to be robust with regard to object location

11
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tasks due to the constraining to maintain a similar shape as the training set. However, these
models may not converge to appropriate solutions and are not able to cover variations not
part of the training set.

Active Appearance Models

In addition to the above mentioned points, Active Shape Models show one major point of
criticism: They do not incorporate any information about the texture of the object. This
would further improve the robustness of the models. Hence, Cootes et al. introduced Active
Appearance Models in [44], an extended version of the Active Shape Models. These mod-
els consider the gray-level information of the enclosed areas of the objects. The correlation
between errors of the texture models and the model parameters are learned to decrease the
processing time of the matching by means of an iterative matching algorithm. Cootes et al.
showed that this enhancement of the Active Shape Models converge rapidly and reliably
given an appropriate start point. Nowadays, Active Appearance Models are the method of
choice with regard to head pose estimation applications.

2.3.2 laserBird

For highly accurate detection of the head position and rotation, this study used the laser
scanner laserBird developed by Ascension® [45]. The laserBird consists of a scanner and
a head-mounted sensor as shown in Figure 2.2. The scanner itself emits the fan-like laser
beams with a wavelength of 785 nm detected by the three sensors of the head-mounted
part, called the bird. Measuring the laser beams with the three photodiodes enables the
calculation of the stretched plane and of the corresponding center of mass and, therefore,
the calculation of the position and rotation of the bird. The laserBird measures with a
sampling rate of 240 Hz and writes this data on a RS232 interface. The accuracy of the
head position and rotation is 0.7 mm in x-, y-, and z-direction and 0.5° about each axis
in the three dimensional space according to the supplier. However, these accuracies are
only valid as long as the detectors of the bird do not exceed an orientation range of +85°
with respect to the scanner and the bird is in a given region, the Performance Motion Box,
defined by the interval distances

[pmb,] = [+43,+99] [cm] 2.1)
[pmb,] = [-23,+23] [cm] (2.2)
[pmb_] = [=30,+30] [cm] 2.3)

between the head-mounted part and the scanner. To use the /aserBird inside of a vehicle,
the scanner has to be mounted above the front passenger seat so the head can be seen
without any blockage. The mounting position of the scanner, which at the same time is
the origin of the laserBird coordinate system, was measured in a Mercedes-Benz E-class
(W212) with high accuracy at the start-up factory of the Daimler AG in Sindelfingen and

6http: //www.ascension-tech.com/
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laser scanner

head-mounted sensor

Figure 2.2: On the left side, the two main components of the laserBird, the head-mounted sensor
and the laser scanner, are shown. On the right side, the mounting position of the laserBird inside
the vehicle is shown.

is given by the vector Ib;,;;. This mounting position of the scanner assures that the head of
the driver is within the defined Performance Motion Box. The 3-dimensional head position

lbposx,in
Ib0s,in = lbposyv,-,, [inches] 2.4)
lbposz,in
with
Vt € {x,3,2} : Ibpos,in € [6”,72"] CR (2.5)

is measured in inches and the head rotation

¢lb,deg
lbroudeg = 61b7deg [°] (26)
Vib,deg
with
Db deg € [—1800, 1800] CR 2.7
Orbdes € [~85°,85°] CR 2.8)
Vibdeg € [~85°,85°] CR 2.9)
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is given as a 3-dimensional vector in degrees. To unify the subsequent calculations and
units, each position value is transformed from inches into millimeters by

lbpoSX lbposx,in
s = | 1bpos, | == | bposyin | -25.4 [mm] (2.10)
lbposz lbposz,in

and each rotation value from degrees to radians by

Oy Dir,deg T
Ib,; = Glb == elb,deg : @ [rad]. (2.1
Yip Vib.deg

2.3.3 Eye-Tracking

Eye-tracking describes a set of methods for determining eye movements and sometimes the
subject’s gaze direction. There are various methods available for this purpose such as the
Electrooculogram (EOG) [46], search coil contact lenses [47] or video-oculography (VOG)
[48]. In the following, the video-based approach will be described in detail since it will be
used for recording the driver’s eye movements in this study. An eye tracker usually consists
of one or more lighting sources, typically infrared (IR) or near-infrared (NIR) light, and
a camera which is focused on the eyes of the subject. The location and method-specific
features of the frontal eye and of the reflections of the infrared illumination are extracted
of the recorded image by means of computer vision algorithms. Based on geometrical
correlation of the features, the gaze direction can be calculated. Basically, there are two
types of tracking approaches for VOG. If the limbus and the center of the iris are tracked
for further calculations, it is referred to as limbus-tracking. However, for most subjects
this approach suffers from a coverage of the vertical edges of the iris, which makes this
an unsuitable method for measuring vertical eye movements. Instead, the transition from
the pupil to the iris is usually used to track the center of the pupil. This approach is
called pupil-tracking. Depending on the illumination setup, the pupils appear bright or
dark in the recorded image. If the illumination source is located near to the optical axis
of the camera, the pupils seem to light up due to the reflected light of the retina. This
bright pupil approach performs well independent of the iris color of the subject, but is not
suitable for outdoor scenarios with varying lighting conditions. For a more stable tracking
performance in outdoor applications, the dark pupil approach is applied. Therefore, the
illumination source is positioned away from the optical axis of the camera, so that no light
will be reflected of the retina into the direction of the camera.

The most common approach to determine the gaze direction is called the pupil-corneal
reflection approach [48]. It is assumed that one camera and two illumination sources are
available. Besides the center of the pupil, the center of the reflections on the cornea of
the illumination sources are identified on the recorded image. These reflections are often
called glints. A vector between the glints and the pupil center is constructed to determine
the gaze direction. However, the glints, the pupil center, and the gaze direction are given in
image coordinates. To transform these points into world coordinates, a geometric model of
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the eye is constructed. The parameters of the model have to be estimated by means of an
individual calibration including fixations on usually nine calibration points. To reduce the
number of calibration points to only one point, multiple cameras and illumination sources
have to be applied simultaneously [49]. To completely avoid any individual calibration, a
universal geometric model of the eye has to be applied. However, such universal models
cannot compensate for the individual variance of the location of the fovea centralis. Hence,
the accuracy of this approach is limited to the individual variance of the fovea centralis of
5°. On the other hand, an estimation of the gaze direction for just one illumination source
is only possible for a completely stationary head.

2.3.4 Dikablis

In this work, two different versions of the head-mounted eye-tracking system Dikablis,
manufactured by Ergoneers’, were applied: Dikablis Essential Glasses [50] and Dikablis
Professional Glasses [51]. The Dikablis Essential Glasses system represents the basic
and simpler version of the two eye-tracking systems mentioned above. It consists of a
spectacle frame with a mounted 384 x 288 pixel camera for recording the eye movements
with a sample rate of 25 Hz (see Figure 2.3(a)). An illumination source with a wavelength
of 875 nm is mounted beside the eye camera. The camera needs to be adjusted to the
subject’s face and eye structure by means of the flexible swan-neck mounting before
starting the eye-tracking. Further, a field camera with a resolution of 768x576 pixel is
mounted between the eyes so that the current scene experienced by the driver can be
monitored. Both camera images can be merged by means of a four point calibration to
get an overlayed image of the scene and the corresponding gaze direction. The essential
version of the Dikablis glasses is robust and easy to put on, even when mounting it on
the head of another person. Compared to most other head-mounted eye-tracking systems
it has the great benefit that it can be worn by subjects with their glasses on. This is an
important requirement since a non-negligible share of the later test subjects drive while
wearing glasses. Furthermore, it can be applied in driving scenarios without limiting the
field of view of the driver since the eye camera can be positioned below the recorded eye.
It can be worn simultaneously with the laserBird head sensor without any constraints.

The professional version of the Dikablis eye-tracking system differs from the essential
version primarily in the quality of the recorded camera images. Dikablis Professional
Glasses is a dual camera system consisting of two 384 x 288 px cameras for recording the
eyes with an increased sampling rate of 60 Hz (see Figure 2.3(b)). Further, the resolution of
the field camera is increased to 1920x1080 px compared to the Dikablis Essential Glasses,
resulting in an HD-ready image of the surroundings. However, these improvements of the
sample rate and the camera resolution come with a decreased stability of the eye tracker
and a swan-neck mounting which is harder to adjust to the different subjects. Especially
the combination of the Dikablis Professional Glasses and the laserBird head tracker is
uncomfortable to wear or not applicable at all for some subjects. Hence, there is the need

Thttp://www.ergoneers.com/
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(b) Dikablis Professional Glasses [51]

Figure 2.3: Both head-mounted eye trackers used in the later described experiments.

for a construction which enables the simultaneous usage of the laserBird and Dikablis
Professional Glasses.

2.3.5 Remote Driver Camera

VOG and optical head-tracking come with the benefit of being non-intrusive. That means
that they are suited for applications in vehicles since the driver’s field of view is not reduced
and the driver does not notice the eye- and head-tracking at all. However, applying head-
and eye-tracking in series vehicles presents many challenges to the hard- and software. De-
pending on the weather and geographical location, the hardware has to withstand extreme
temperatures and still maintain its functionality and performance. For example, component
temperatures of 80° in the instrument cluster are common if the vehicle is parked in direct
sunlight during summer times. In addition, high temperatures generate thermal-dependent
noise, which is particularly critical for eye-tracking applications. Often extremely chal-
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lenging for the soft- and hardware are the varying lighting conditions in the vehicle envi-
ronment. The lighting conditions contain (sun-)light from every possible direction on the
driver’s face or directly on the imager of the camera. Hence, reflections on glasses, contact
lenses, or other vehicle components may have a negative impact on the performance of the
algorithms. Furthermore, since sunlight also contains light of the wavelength which is used
by the IR illumination sources of the eye-tracker, the corneal reflection can no longer be
detected robustly. Besides the lighting conditions, accessories represent another common
challenge in this field of study. Sunglasses may have a low infrared permeability which at
some level will prevent any eye-tracking approaches. Glasses, especially with high diopter
or varifocal lenses, influence the refraction of the infrared rays of the eye-tracking and need
to be taken into account by the applied models [52]. All the mentioned optical aids as well
as most other accessories such as hats, scarfs, or disposable respirators cover parts of the
driver’s face and often some of the used facial features. Despite these driver-independent
topics, there are many challenges concerning the inter-individual variations. The camera
system has to consider all kinds of face and eye structures such as European (Caucasian),
Asian, or African face and eye structures. Varying seating positions, mounting tolerances
of the camera system, blocked camera view by the steering wheel or the driver’s hands,
and limited mounting space in the vehicle further increase the list of topics to be concerned
with. In general, the distance between camera systems in series vehicles and the driver’s
eye are significantly larger compared to head-mounted camera systems such as the Dik-
ablis eye-tracker. For purposes of comparison, images of the driver’s eye are given for
both types of camera systems in Figure 2.4. Hence, the algorithms of the driver camera
have to estimate the gaze direction based on images with a significantly lower resolution
of the driver’s eye. As a result, the accuracy of the detection of the center of the pupil
and the corneal reflections decreases deteriorating the overall gaze direction. In summary,
remote driver camera systems in series vehicles face many challenges which usually lead
to less accurate and unstable gaze estimations. A question that needs to be answered in this
study is: Is the gaze estimation of a first generation of camera systems for series vehicles
sufficient to be applied for classifying the driver’s take-over readiness?

Figure 2.4: On the left side, a high resolution image of the head-mounted eye tracker Dikablis
Professional is shown. On the right side is a low-resolution image of a near-to-production remote
driver camera. The glint is visible in both images.
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2.4 Experiments

Different experiments have been conducted to evaluate the approaches proposed in this
work. Since this work focuses on systems for an automated classification of the driver’s
take-over readiness in conditionally automated driving scenarios, two aspects are of par-
ticular interest for these experiments: i) driving in a conditionally automated setting and
ii) creating take-over situations. Especially critical take-over situations can only be con-
sidered with justifiable expenditure by using a driving simulator. However, to provide
investigations of the different algorithms for Eyes-on-Road detection and driver-activity
recognition in the context of real-world driving data and close-to-production camera sys-
tems, a real driving study on a test track was performed as well. In this section, the applied
simulator and the setup of the testing vehicle are described. Further, the procedure and
scope of the driving simulator studies along with the real-world driving study will be pre-
sented.

2.4.1 The Mercedes-Benz Moving Base Simulator

One of the most sophisticated driving simulators in the world is in operation in the Driv-
ing Simulator Center of the Daimler AG in Sindelfingen, Germany [53]. This simulator is
realized as a hexapod platform as shown in Figure 2.5(a) capable of performing accelera-
tions in every possible direction. To realize high lateral or longitudinal accelerations, the
hexapod is mounted on a 12 m carriage while the experimental vehicle can be positioned
parallel or orthogonally to the carriage. This vehicle is located inside the dome on top of
the hexapod and can be exchanged through an extra gate of the dome. That means that
different vehicle models can be used for different experiments. The inside of the dome is
shown in Figure 2.5(b). A 360° view as well as the presented content of the exterior and in-
terior mirrors are simulated by means of the visual software Pixel Transit [54]. In addition
to the realistic accelerations and vehicle environment, real engine and wind sounds can be
simulated over the speakers in the vehicle cabin. The interior of the vehicle is equipped
with multiple RGB cameras at different angles to monitor and record the driver’s face, the
footwell, the area of the steering wheel, and the center console.

2.4.2 Testing Vehicle

A Mercedes-Benz S-class (V222) with the Intelligent Drive extra equipment was selected
as the test vehicle for the real-world driving study. This equipment includes the Distronic
Plus with Steering Assist system mentioned in Section 2.1 which represents a partially
automated driving function. However, this functionality was modified by deactivating the
hands-off detection of the series vehicle system such that no warnings occurred and the
driver was able to drive freechand. A tablet device with a 9.7” display was mounted at
the center console to enable the driver to perform secondary tasks. Further, the vehicle
was equipped with a near-to-production camera system prototype provided by FOVIO. As
shown in Figure 2.6, the stereo camera system was mounted on the steering column tube

18



2.4 Experiments

(a) Hexapod on carriage (b) Vehicle inside of the dome

Figure 2.5: Mercedes-Benz Moving Base Simulator: external and inner view

in front of the driver. The illuminators are each mounted beside to the CMOS® camera
sensors. The resolution of each camera is 1.3 MP (1280 x 1024) with a sample frequency
of 60 Hz. The camera system was connected to the vehicle’s private CAN bus and provided
among other things the driver’s gaze direction and head pose, the eyelid opening signal,
and corresponding quality signals. Additional information cannot be published due to a
non-disclosure agreement.

(a) Driver seat of the testing vehicle (b) Fovio camera system

Figure 2.6: On the left, an overview of the inside of the testing vehicle is shown. On the right, the
mounting position of the camera system is shown.

A MicroAutoBox’ (MABX) is connected to the CAN bus of the vehicle and enables the
testing vehicle to execute compiled Simulink models in real-time on an IBM PPC 750GL,
900MHz processor. Further, a FleetPC-7 Car-PC with an Intel Core i7 2710QE was con-

8 Complementary metal-oxide-semiconductor
9Realtime hardware system for functional prototyping produced by dSpace GmbH.
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nected with the MABX enabling the development of Simulink models in MATLAB 2012
directly in the vehicle and guaranteed synchronicity of the Dikablis and /aserBird signals
transmitted to the CAN bus. The variables of the running Simulink model on the MABX
can be visualized on graphical user interfaces (GUI) of the software ControlDesk 5.1'°.
All CAN bus signals were recorded by means of ControlDesk 5.1 with a sampling rate of
50 Hz.

2.4.3 Pre-Study NEBAF

As a pre-study, 85 experiments were conducted in a detailed Mercedes-Benz E-class
(W212) mounted in the moving base simulator described in Section 2.4.1. In line with
internal terminology, the study will be referred to as NEBAF'!. For this study, a 35 minute-
long route on a German highway with two to three lanes was simulated. At the beginning
of each experiment, the subjects drove manually followed by a conditionally automated
driving section without secondary tasks to introduce the subjects to the simulator. Both
introductory route sections were about one minute long. After this introductory drive, the
subjects were asked to perform secondary tasks on a touch screen mounted in front of the
center console in the cabin. In total, there were four different secondary tasks to perform
by means of the touch screen: reading news, watching a short video, writing an e-mail, and
listening to music. After finishing a given task, the subjects had to independently select the
next task manually over the GUI provided on the touch screen. Furthermore, eleven of the
total 85 subjects were part of a control group, which means that they did not perform any
secondary tasks on the touch screen. The eye movements of the subjects were recorded by
means of the Dikablis Essential Glasses 2.3.4 while the head movements were measured
by means of the laserBird laser scanner 2.3.2. The recorded data was used for investigating
the eye movement behavior during conditionally automated driving scenarios in Section 3,
where details on the distribution of the subjects are mentioned.

2.4.4 Experiment Ko-HAF

The main driving simulator study was conducted in the Mercedes-Benz moving base driv-
ing simulator described in Section 2.4.1. Since this study was combined with a driving
simulator study of the Ko-HAF!? project, the study will be referred to as KoHAF. In
total, 112 subjects drove in a detailed Mercedes-Benz E-class (W212) equipped with a
conditionally automated driving function. The interior of the vehicle was equipped with
three cameras monitoring the footwell, the driver’s face, and the steering wheel and cen-
ter console region as shown in Figure 2.7. To display the current state of the automated
driving function, a 6” monitor was mounted to the left of the steering wheel. The four
possible states of the automated driving function include: Automated function available,
Automated function not available, Automated function active, and Take-Over. While ac-
tivated, the automated driving function takes over the lateral and longitudinal control as

10Software of the dSpace GmbH for the development and evaluation of control devices.
IINEBAF=Nebentitigkeiten beim hochautomatisierten Fahren
12Ko-HAF=Kooperatives hochautomatisertes Fahren
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Figure 2.7: Test subject watching a video on the tablet while being monitored by the three installed
cameras.

well as the responsibility for the vehicle. The usage and behavior of the automated driving
function were explained thoroughly to each subject before the experiment. The simulated
route represented a German highway with three lanes and no speed limits. However, the
automated driving function was implemented so that the constant speed was 130 Km/h. To
acclimate the drivers, they were told to first drive manually for about four minutes, then
follow a conditionally automated route section without any secondary tasks for about three
minutes. After this introduction, the tablet was activated and the subject was asked to per-
form secondary tasks.

The tablet was either mounted at the center console to represent an integrated system or
was freely moveable. Each subject was shown how to use the tablet before the actual
experiment and was thus able to independently access each subsequent task. Possible
secondary tasks were reading news or watching a video. Moreover, there were route
sections where the subject did not perform any tasks at all. The secondary task was defined
as idle for these sections. In addition, there was a control group performing no secondary
tasks for the complete experiment. During the experiment, the subjects experienced
three different take-over situations due to missing lane marks with a take-over time of
3.5 seconds. The take-over was indicated by an acoustic and visual warning. The first
take-over occurred on a straight after five minutes of automated driving and did not require
any specific actions from the driver. This simple take-over situation was also used to let
the driver experience his or her first take-over situation. This situation will be referred
to by the term Straight. The second and third take-over situations were both generated
after about eight minutes of automated driving and were permuted over the different
subjects. One of these situations took place in a left curve while at the same moment a
7 m/s cross-wind from the left was simulated for seven seconds. This situation required
the driver to hold the vehicle inside the lane by a lateral intervention. The other take-over
was simulated on a straight with high traffic density on the adjacent left lane. Moreover,
one vehicle cut in 20 m in front of the subject vehicle in the far right lane and decelerated
from 126 Km/h to about 80 Km/h. In this situation, the driver had to recognize the braking
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maneuver of the leading vehicle as well as the blocked adjacent lane and had to brake
appropriately. These situations will be referred to by the terms Braking and Cross-wind.
Note that no artificial distraction was performed before the take-over situations to provide
a natural behavior of the drivers, e.g., allowing interruptions of the secondary task at any
given moment.

Eye movements were recorded by means of the Dikablis professional eye tracker as de-
scribed in Section 2.3.4 whereas the in Section 2.3.2 described /aserBird measured head
position and rotation. Both sensors sent their signals to an installed PC, which transmitted
these signals on the CAN bus of the vehicle and guaranteed sensor synchronicity. All CAN
bus signals were recorded with a sampling rate of 100 Hz. The gaze direction was estimated
by incorporating the head pose of the laser scanner and the head-mounted eye-tracking. To
ensure a smooth experimental process, both the eye tracker and the head-mounted sensor
of the laser scanner were attached to a helmet. To incorporate the head- and eye-tracking
to generate a gaze direction, a calibration process was conducted at the beginning of each
experiment. This calibration process and the procedure to fuse the head- and eye-tracking
signals to a gaze direction will be described more detailed in Section 2.5.

2.4.5 Conditionally Automated Real Driving Study

To gather real-world driving data of realistic driver behavior in conditionally automated
scenarios with a close-to-production driver camera, a driving study by means of the test-
ing vehicle described in Section 2.4.2 was conducted. The study took place on the test
track of the Daimler AG in Sindelfingen, Germany shown in Figure 2.8. The test track
contains two straights of about 1000 m connected by two steep turns. Distronic Plus with
Steering Assist was tested countless times on the straights before the experiment to ensure
the correct and faultless behavior of the system. As a result, it was possible to simulate
conditionally automated driving on both straights. However, the two steep turns prevented
the use of the Distronic Plus with Steering Assist, thus manual driving becomes necessary.
In the following, the acronym DTR+Q will refer to the Distronic Plus with Steering Assist.
According to the procedure of the study, two subjects were necessary for each experiment.

Length of the straights: ca. 1000 m
Track width: 2 lanes of 3.5m

®

Figure 2.8: Layout of the test track of the Daimler AG in Sindelfingen, Germany. Route sections
highlighted in blue allowed simulating conditionally automated driving. Route sections highlighted
in red require manual driving.

N

One subject was driving a leading series vehicle supported by an ACC. The subject was
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told to set the ACC to a velocity of 30 Km/h and 50 Km/h on the eastbound and west-
bound straight, respectively. In addition, the driver varied the velocity on the eastbound
straight four-times at self-chosen route sections. In detail, the driver was told to set the
ACC velocity to 40 Km/h and reduce it to 30Km/h again as soon as a velocity of 39 Km/h
on the digital speedometer was displayed at these four route sections. This driving profile
was used to simulate stop-and-go traffic and provoke gazes at the road. For demonstra-
tion purposes, this procedure was performed in an introductory lap with both drivers in the
vehicle. Note that both subjects were instructed at the beginning of the experiment with
this procedure to prevent different levels of preknowledge. The subject of the leading ve-
hicle drove according to these instructions until the instructor stopped the experiment via
walkie-talkie.

The second subject drove the testing vehicle and followed the leading vehicle at all times.
At the beginning of both straights, DTR+Q was activated to simulate a conditionally au-
tomated drive. In addition, the driver had to perform specific tasks such as reading a text,
watching a video, or being idle. Tasks were performed on the tablet mounted at the center
console or on a handheld device with a 7” display. The exact procedure was as follows:

Lap | Route section | Task

1 eastbound activate DTR+Q
reading a text on the hands-free device
westbound | follow manually without DTR+Q
2 eastbound activate DTR+Q
watching a video on the hands-free device
westbound | activate DTR+Q
no specific task to perform (idle)
3 eastbound activate DTR+Q
reading a text on the handheld device
westbound activate DTR+Q
looking successively into the areas. ..
* windshield/on the road
* left exterior mirror
* right exterior mirror
* interior mirror
* mounted tablet
4 eastbound activate DTR+Q
watching a video on the handheld device
westbound activate DTR+Q
no specific task to perform (idle)

Table 2.2: The procedure for the subject driving the testing vehicle is summarized.

The duration of the eastbound and westbound route section was about 102 s and 70s. The
listed instructions were given to the driver by the instructor while a rater labelled online
the performed secondary tasks and the driver’s gazes at the road. Instructor and rater
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were riding along on the back seat of the testing vehicle. Further, the instructor asked the
subject to resume the control of the vehicle at the end of the straight during the curves.
The tasks were permuted over the different subjects, i.e. depending on the subject the tasks
reading and watching a video were first performed on the handheld or hands-free device,
respectively. After one iteration of the experiment, the subjects changed the vehicles and
the experiment was conducted a second time. Due to safety regulations of the test vehicle
and track, only experienced drivers participated in the study who are familiar with the test
track and its rules. In total, ten male subjects'®> with normal or corrected visual acuity
participated in the driving study. However, only nine of the originally ten drivers can be
used for the later evaluations based on these data sets since the near-to-production camera
system was only sporadically able to detect the eyes of one driver and, therefore, only an
extremely fragmentary signal of the gaze direction is available.

2.5 Fusion of Head- and Eye-Tracking Devices

Some of the later approaches require the driver’s gaze direction as input to determine the
secondary task or the gazes at the road. For simplicity, this study assumes a mid-eye model
which is defined by a head model with one eye located between the two real eyes at the
nose bridge of the subject. Hence, an averaged gaze direction originating at the mid-eye
is used for calculations instead of two separated gaze directions for each eye. In case of
the real driving study described in Subsection 2.4.5, the mounted Fovio camera already
provides a gaze direction represented by the normalized 3-dimensional vector

Xgaze
anzeﬁart = | Ygaze with Xgazes Ygazes2gaze € [_17 1} cR (2.12)
Zgaze

in the Cartesian coordinate system originating at the position of the camera as shown in
Figure 2.9(a). The transformation of the Cartesian gaze vector into a gaze vector of a
spherical coordinate system is given by the equations

0= arccos( Sgaze > [rad)] (2.13)
Ve + e+ Face
Y = arctan (ygaze) [rad)] (2.14)
Xgaze
_|Y
D= [ 9] (2.15)

where the angle y will be the yaw angle and the angle 6 will be the pitch angle of the
subject’s gaze. The laserBird head tracker and Dikablis eye tracker which were applied
in the conducted KoHAF experiment do not provide any gaze direction but usually highly

13mean age of 38 years (range 27-52, SD=9)
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(a) Cartesian world coordinate system of the
Fovio camera. The positive direction of the hor-
izontal X axis is to the right from a driver’s view
into the camera, the positive direction of the
vertical Y axis is up from a driver’s view into

2.5 Fusion of Head- and Eye-Tracking Devices
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(b) 2-dimensional pixel coordinate system of
the Dikablis eye camera with a resolution of
(352 x 288). Note that the positive direction of
the Y axis is down from a driver’s view into the
camera.

the camera, and the positive direction of the Z
axis is towards the driver.

Figure 2.9: Visualization of the Fovio camera’s coordinate system and of the Dikablis eye camera’s
pixel coordinate system.

accurate signals. The Dikablis camera system generates 2-dimensional pixel coordinates

®px = (ZZ) , eyey € [0,352] C N; eye, € [0,288] C N (2.16)
y
describing the location of the center of the driver’s pupil mapped on the eye camera’s
coordinate system shown in Figure 2.9(b). To transform these pixel coordinates into angles
representing the rotation of the driver’s eyes, a function

[ &ex Weye | _

f: (eyey> — <9eye> =P, (2.17)
is required. In this section, all necessary steps to estimate such a function f and the gaze
direction will be discussed. First, the calibration routine at the beginning of the experiments
is discussed in Subsection 2.5.1 which generates the necessary data samples for estimating
the function f. However, the eye tracker suffers from shortcomings of the provided pupil
detection algorithm, occurring signal noise, and torsions of the eye camera. Hence, these
disturbances will be corrected in Subsection 2.5.2 and 2.5.3 before the actual head pose
and finally the driver’s gaze can be estimated in Subsection 2.5.4 and 2.5.5.

25



2 Fundamentals

2.5.1 Calibration Process

A calibration routine was performed at the beginning of each experiment of the KoHAF
study. For this calibration, the subject was seated on the driver’s seat of the driving sim-
ulator’s vehicle and was asked to check and if necessary adjust the seat and each mirror
according to individual body size. Afterwards, the subject was asked to put on the helmet
with the attached head sensor of the laserBird and the Dikablis Professional glasses. For
the sake of efficiency, the different steps of the calibration process had been explained to
each subject and they were enabled to put on the helmet for testing purpose in the prelim-
inary discussion of this experiment. Simultaneously, this procedure was monitored by the
examiner who afterwards started the recording of all Dikablis, laserBird, and vehicle-based
signals. The calibration serves to determine individual differences between different sub-
jects, e.g., variations of the location of the eye camera or the laserBird’s head sensor, and
to collect data samples for the later mapping process. For the calibration, the subject had
to focus a given target inside or outside the vehicle. At the same time, the subject rotated
their head randomly, e.g., they shook their head, nodded, or combined these movements at
various angles for about 12s. The general idea shown in Figure 2.10 is that the eyes will
rotate in the opposite direction of the head rotation assuming the subject keeps focusing on
the target. Moreover, the pupil’s rotation equals the angle between mid-eye and reference
point after subtracting the head pose. Hence, this calibration is based on the vestibulo-
ocular reflex described in Subsection 2.2.2. This procedure was repeated for each target.
In total, there were three different targets

Vrett, Viet2, Viets € R3X1 [mm] (2.18)

as shown in Figure 2.11. The target Vies; was projected on the screen of the driving sim-
ulator directly in front of the driver at a distance of about 3.5 m. The second target Viep
was visualized in the center of the left mirror while the last target V,.r3 was at the upper
left corner of the center display. The locations of the targets were known precisely as 3-
dimensional computer-aided design (CAD) coordinates or were manually measured with
respect to the vehicle coordinate system. During the performance of the head movements,
the driver pressed a button on the steering wheel so that the calibration intervals could later
be assigned to the correct signal parts. Note that there was no additional calibration of the
exact location of the laserBird’s head sensor, since that is an extremely time-consuming
and complicated step. Hence, the vector

b, € R**! [mm] (2.19)

describing the offset from the head sensor to the mid-eye was estimated based on the data
of some measurements performed before the KoHAF study.

2.5.2 Signal Pre-Processing

In a first step, the signals provided by the Dikablis software have to be rearranged since
a timestamp provided by Dikablis reveals that the samples were not transmitted to the
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Figure 2.10: Calibration procedure by means of random head movements. As long as the driver’s

eyes stay focused on the corresponding target, the eyes rotate the same distance as the head but in
the opposite direction. Here, the subject shook their head to the left and right.

Figure 2.11: Locations of the targets of the three calibration steps.

CAN bus in their order of recording. This error is most likely caused by non-synchronized

threads'# of the pupil detection algorithm which experience individual delays. However,
the correct order can be restored by means of the timestamp.

The applied pupil detection algorithm is a major factor influencing the amount of false

measurements. Depending on the orientation of the camera, the lighting conditions, the

14Simultaneous program sections
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individual eye structure, parts of the eye or face structure could be falsely detected as
pupil. This error generates high-frequency noise in the position signals eye, and eyey, but
also in other signals describing the structure of the detected pupil, e.g., the width or height
of the pupil. Moreover, the Dikablis software provides a validation signal highlighting
samples where the pupil detection was successful. Note that a successful pupil detection
only indicates that an area was found that is similar to the sought pupil. However, no
warranty is given that this area is truly the eye’s pupil. To handle these false detections, a
filter is applied to delete all samples outside of the band defined by the twofold standard
deviation in relation to the median of the horizontal and vertical pupil position as well as
the pupil height and width. Moreover, the signals are made plausible by deleting signal
steps which indicate an eye velocity of more than a pre-defined threshold. The threshold
is an experience value of 2000 px/s which was chosen explicitly for the data set of the
KoHAF study. Afterwards an erosion with a temporal window of 40ms is performed
to delete short signal parts in which less than five sequential, valid pupil detections had
been performed. Finally, the signal gaps resulting from the previously described filtering
steps will be refilled via a Nearest Neighbor Interpolation’>. Thus, correctly detected
saccades will be restored while the deleted outlier will be interpolated. As a last step, the
interpolated signal is smoothed by an averaging filter with a window size of 100 ms.

2.5.3 Removal of Torsions of the Eye Camera

The Dikablis eye camera has to be adjusted individually to each subject’s head and face
structure. This can lead to unwanted torsions of the camera about the optical axis result-
ing in the rotation of the horizontal and vertical axis as shown in the upper part of Figure
2.12. To estimate and remove such rotations, the maximum variance of the recorded 2-
dimensional eye-tracking data is searched for. This approach is based on the assumption
that the variance of the horizontal axis is the greatest in the eye-tracking data. If the camera
was rotated during recording, the x and y axis are oblique-angled. To determine a possi-
ble rotation of the camera an orthogonal transformation is sought which maximizes the
variance of the two factors eye, and eye,. For this purpose, an approach for Factor Analy-
sis'® called Varimax is applied which rotates the orthogonal basis of the given coordinate
system until the maximum variance of the squared loadings is reached. Mathematically
formulated, the function

Y (@ -3 (2.20)

needs to be maximized where qi ; represents the squared loading of the j-th variable on the
[-th factor and qjl represents the mean of the squared loadings. To solve this equation, a
Principal Component Analysis'” can be applied. As shown in Figure 2.12, the torsion of

15 Approximation of a missing point depending on the closest sample points around this value.

16Collection of statistical methods to infer from observed variables to unobserved factors.

17Statistical method to transform possible correlated variables on less, more significant estimated linear
combinations which are called principal components.
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the eye camera can be eliminated and the data is transformed onto the original coordinate
system.
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Figure 2.12: Example of a recording including camera torsion. The torsion can be eliminated using
Varimax.

2.5.4 Estimation of the Driver’s Head Pose

All output signals provided by the laserBird refer to its own coordinate system originating
at Ib;,;; with a positive x axis pointing to the driver’s seat, a positive y axis pointing to the
front of the vehicle, and a positive z axis pointing downwards. In contrast to the laserBird
coordinate system, the vehicle coordinate system has its origin at the center of the front
axle where the positive direction of the x axis points to the back of the vehicle, the positive
direction of the y axis points to the right side of the vehicle, and the positive direction of the
z axis points upwards. However, the laserBird coordinate system differs from the vehicle
coordinate system not only in terms of the origin and direction of the axis but also with
regard to the terminology of the corresponding rotations. Both coordinate systems and the
corresponding terminology are shown in Figure 2.13.

To avoid switching between these coordinate systems, the calculated head position and
rotation shall be transferred to the vehicle coordinate system. First, the axis of the laserBird
coordinate system will be adapted to the axis of the vehicle and the mounting position of
the laser scanner will be added to the origin of the vehicle coordinate system by

b s,
b, = | —bpos, | +1bi  [mm]. 2.21)
—1b oy,
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Figure 2.13: Vehicle and laserBird coordinate system including the rotation directions.

Originally, the laserBird rotated its signals about the x axis, then about the y axis, and
finally about the z axis. For simplicity, this rotation order will be referred to as XY Z. Since
the laserBird coordinate system was adapted to the vehicle coordinate system by inter-
changing and inverting the axis, the rotation order changed to Y XZ with reverse rotation
direction compared to the vehicle coordinate system. In the following, the rotation vector
1b,,; shall be adapted to the vehicle coordinate system and its corresponding rotation order.
Therefore, the three Euler!8 angles19 of Ib,,, defined in (2.11) shall be named according to

* ¢y rotation angle about the x axis (roll)
* 0y, rotation angle about the y axis (pitch)

* yy: rotation angle about the z axis (yaw)

181 eonhard Euler, * 15. April 1707 in Basel, Switzerland, + 18. September 1783 in St. Petersburg, math-
ematician and physicist who belongs to the pioneers in the field of analysis and number theory and provided
significant contributions in mechanics, algebra, and graph theory.

19Three parameters to describe the orientation in a rigid, three-dimensional space.
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2.5 Fusion of Head- and Eye-Tracking Devices

and the basic rotation matrices shall be defined as

1 0 0
Rx(¢lb) =10 COS(¢]b) —sin((blb) (2.22)
0 sin(g) cos(¢u)

cos(B) 0 sin(6y)
R,(61) = o 1 0 (2.23)
—sin(6) 0 cos(6y)

cos(yp) —sin(yy,) O
R.(ypp) = | sin(yp) cos(yp) 0. (2.24)
0 0 1

The combined rotation matrix R, with the order ZYX is given by

Roy (01, 0, Win) = Ri(di) - Ry (01) - R (). (2.25)

Note that these 3-dimensional rotations are not commutative, i.e. the order of the matrix
multiplication is essential. In a first step, the rotation angles have to be interchanged ac-
cording to the permutation of the axis of the coordinate system. This can be accomplished
through the matrix multiplication

0 -1 0
b,=(-1 0 0 |-Ib, (2.26)
0 0 -1

which interchanges the roll and pitch angle and inverts all three angles. The three Euler
angles given in the vehicle coordinate system can then be determined via the equations

Pven = atan2(sin(@yp ), cos(yp) - cos(0p)) (2.27)
0,en, = — arcsin(—(cos(@yp) - sin(6y))) (2.28)

Wyen = atan2(cos(6yp) - sin(yyp) + sin(¢@yp ) - sin(6yp) - cos(yyp),

2.29
cos(6yp) - cos(yyp) — sin(@yp) - sin(6yp) - sin(yyp)) ( )

where atan?2 is the arctangent with two input arguments.

Since it is assumed that the head pose has its origin at the nose bridge between the subject’s
eyes, the distance lb,,,;. between the laserBird head sensor and the nose bridge needs to be
added to the head position b/

pos

Ibyigin = Ibpose + lb’pos [mm]. (2.30)
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As described in Subsection 2.5.1, the vector Ib,,,s Was estimated based on data from a pre-
study. Measuring Ib,,,s. exactly would have been too time-consuming during the experi-
ment. However, since the head sensor was attached to a helmet the individual differences
of the mounting position of the sensor can be seen as restricted. Note that lb,,, has to be
rotated by Ry (i, 01, W) to match the head rotation in the vehicle coordinate system.
The direction of the head pose can be defined by rotating a normalized vector along the
neutral x axis by means of the combined rotation matrix

1 1

0
0 | - Reyy(dup, O, Wip) - [ O] - (2.31)

Ibg, =1 0
0 —1 0

0
1
0
The laserBird head sensor was rotated along the y axis for mounting it on the helmet.
Thus, the head direction is rotated in the original state by the left matrix multiplication of

equation (2.31). The final head pose can be visualized as a vector with the origin at Ib,;e;,
and the direction 1bg;,

q)lb = lborigin +k- lbdir (2-32)

with k > 0.

2.5.5 Estimation of the Driver’s Gaze Direction

If it is assumed that the eyeball approximates a sphere with a punctate location of the
pupil center on its surface, ® represents the amount of angles which can be reached by the
movement of the eye. These angles are mapped on the 2-dimensional coordinate system
of the Dikablis eye camera and need to be transformed back over the function f(®,y.)
to the spherical angles of the eyeball. For this purpose, the described calibration step
was performed to gather eye- and head-tracking data of many different angles of the pupil
center. The eye-tracking data is given as the coordinates eye, and eye,. Further, the rotation
of the pupil can be deduced by

drefx = (vrefx - lborigin)v X e {17273} (233)

q>eye.,cart = drefx - (le (234)

and then transformed to spherical yaw ., and pitch angle 6,,. by equation (2.14) and
(2.13). These pairs of camera coordinates and eye pupil rotations (®px,®,y.) are applied

to estimate f. The function is approximated by half of a sinusoidal curve generated by the
inverse trigonometric function arcsine over

arcsin | —&%
\/1-epe? (2.35)

arcsin(ege, )
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2.5 Fusion of Head- and Eye-Tracking Devices

with eye, and efe, as camera coordinates scaled to the interval [—1, 1]. In Figure 2.14, it can
be seen that by applying the arcsine it is possible to reflect the characteristic of eye cameras
to resolve smaller angles on a wider range of pixel coordinates whereas the resolution of
large pupil angles decreases. Figure 2.15 visualizes an exemplary 3-dimensional plain

Pupil location .

Projection plain

Eyeball

Resolution head tracker

Figure 2.14: Functional illustration of the mapping process for different horizontal pupil angles on
the corresponding eye camera coordinates. In this topview, the sinusoidal curvature of function f
can be seen.

representing function f(®pg) for one test subject. The 99%- and 1%-quantiles of @y,
and ®pg were chosen as grid points for the arcsine which increases the robustness of the
approach against outliers, e.g., due to temporal loss of focus. However, as it can be seen
in Figure 2.15, the resolution of the pitch angle only covers a range from [—20°,20°]. The
reason for that is the individual rotation range during the calibration process. As described
in Subsection 2.5.1, the subjects were asked to perform random head rotations of different
pitch and yaw angle size. However, most subjects focused on varying the size of the yaw
angle while the pitch angle only covered a small angle range. In addition, there were some
subjects who performed only small head movements for both angles. Such performances
result in less or even no data for large head and pupil rotations. Consequently, function f
cannot be estimated over the same angle range for all subjects and has to be extrapolated
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in these cases.

Weye

f((DDK)_)Weye

Figure 2.15: Example of an estimated function f(®pg) plotted as 3-dimensional plain. The upper
plots visualize the raw data recorded during the calibration phase. The lower plots visualize the
final transformation function after applying all the mentioned steps in Section 2.5.

After estimating the function f for calculating the angles of the pupil based on the recorded
coordinates of the eye camera, the final gaze ®.,,; can be calculated by

by + dKky;,

o i tdks 2.36
gaze,cart ||lbdir + dkdir“ ( )

where dkg; represents the direction of the eye gaze without head pose calculated over the
equation

Sin(eeye) : Cos(‘l/eye)
dkgir = | sin(Weye) - sin(Beye) | - (2.37)
08 (BOeye)

The corresponding gaze angles as spherical coordinates can be calculated by equation
(2.13) and (2.14).
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3 Eye Movement Classification in the
Context of Conditionally Automated
Driving

In the context of automated driving, especially while the driver is performing various
secondary tasks, the eye movement behavior is assumed to vary significantly due to
task- and inter-individual differences. However, up until now there is no verification of
this assumption. Such variations would entail particular challenges for the automated
eye movement classification methods and, therefore, imply the development of adapted
approaches for the automated driving context. In this chapter, a method is presented
that explicitely addresses variations in the eye movement behavior due to task- and
inter-individual differences such as during conditionally automated driving scenarios.

In a first step, state-of-the-art automated eye movement classification is summarized and
discussed with regard to its adaptability to changes in the eye movement behavior in Sec-
tion 3.1. The work indicates that current classification methods are not able to adapt suf-
ficiently to changes in eye movement behavior in automated driving scenarios. Thus, a
novel algorithm named MERCY is introduced and evaluated in Section 3.2. Besides the
application as an eye movement classification algorithm, MERCY can be applied to ana-
lyze the variations in eye movement behavior in general. A thorough examination of eye
movement behavior for conditionally automated driving scenarios is performed in Section
3.3 based on the data of the pre-study NEBAF described in Section 2.4.3. The chapter con-
cludes with the description and application of MERCY in the testing vehicle introduced in
Section 2.4.2. The results from the author’s publication [12] provide the essential content
of this chapter.

3.1 Methods for Eye Movement Classification

Various methods for classifying the eye movements relevant for this work, namely sac-
cades and fixations, can be found in the literature. However, only a few of these algorithms
were especially designed with a driving context and none of them were applied and re-
ported in a conditionally automated setting. Furthermore, there are multiple approaches
for categorizing these methods with regard to different aspects such as the type of applied
thresholds. The following subsections provide an overview of these methods and introduce
the existing taxonomies, leading to the unresolved question of the adequate choice of the
classification threshold.
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3.1.1 Previous Work

An overview of different approaches for eye movement classification is shown in Table
3.1, including, among others, two taxonomies introduced by Salvucci and Goldberg in
[55] and by Kasneci et al. in [56]. Salvucci and Goldberg introduced a novel taxonomy to
realize a first categorization of automated classification methods consisting of a minimal
set of three spatial criteria, namely velocity-, dispersion-, and area-based criteria, and two
temporal criteria, namely duration sensitive and locally adaptive criteria [55]. The locally
adaptive criterion refers to the analysis of temporally adjacent data points, while duration
sensitivity implies the incorporation of the duration of the respective eye movement.
Further, the particular advantages and disadvantages of the chosen categories were
evaluated in [55] by means of five representative algorithms. The categories were named
after the spatial criteria and included velocity-based, dispersion-based, and area-based
methods. Dispersion-based methods are based on the fact that data points of fixations
tend to build clusters, while larger outliers usually belong to saccades. Such methods
tend to provide adequate results, but need to be adjusted carefully to the respective
task. A typical algorithm of this category is I-DT" originally introduced by Widdel in
[57] and analyzed in [55], which incorporates the dispersion threshold with a duration
threshold. A more sophisticated method is given by I-MST? introduced by Goldberg and
Schryver [58], which detects saccades based on the branching depths of a constructed
MST. Velocity-based algorithms separate saccades and fixations by analyzing the velocity
of the sequential data points. High velocities imply the affiliation of these data points to
saccades while low velocities indicate fixations. Approaches based on the velocity profile
are fast, online-and real-time capable, and easy to implement, but often struggle with
noise due to their fixed threshold. I-VT3 is named as a representative algorithm in [55]
requiring the specification of only one fixed parameter defining the velocity threshold. An
adaptive option for a velocity-based algorithm is given by I-HMM?* proposed by Salvucci
and Anderson [59]. This method is based on a probabilistic finite state machine with one
state for the velocity distribution of the saccades and one for the velocity distribution
of the fixations. The last category of algorithms, namely area-based methods, define
static areas of interest to separate the current focus of the test subject. The separation
of saccades and fixations inside these areas is usually based on duration thresholds. It is
obvious that methods such as I-AOI° introduced by Salvucci and Goldberg [55] are not
suited for dynamic situations with varying Aol.

Despite this first taxonomy, algorithms for eye movement classification can be divided into
threshold-based and probabilistic methods according to Kasneci et al. [56]. Threshold-
based methods typically use fixed thresholds, adapted to the respective use case, while
probabilistic methods are capable of adapting their thresholds to varying applications and

DT = Dispersion-Threshold Identification
2I-MST = Minimum Spanning Tree Identification
3-VT = Velocity-Threshold Identification
4I-HMM = Hidden Markov Model Identification
SI-AOI = Area-of-Interest Identification
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3.1 Methods for Eye Movement Classification

changing conditions. An adaptive method called I-KF?® is explained in detail by Sauter et
al. in [60] and by Komogortsev and Khan in [61]. The trajectories of the eye movements
are predicted by this algorithm using a mathematical model of the human eye. As shown
in Table 3.1, only some of these algorithms were applied in driving scenarios. Due to the
highly dynamic traffic environments, the inter-individual differences of drivers and camera
settings, and the space of movements inside the vehicle, eye movement classification in
driving scenarios represents a particularly challenging task. To address this challenge, Tafaj
et al. [62] proposed a Bayesian mixture model, in short BMM, to learn the thresholds of
the algorithm in an online fashion and compared it to the adaptive state of the art algorithm
I-HMM in a following study [56], revealing a superior classification performance of the
BMM over the I-HMM. The BMM considers the Euclidean distances of sequential data
points for its classification and is based on the assumption that these distances, describing
either a fixation or a saccade, are Gaussian distributed. The parameters of the applied
Gaussian Mixture Model (GMM) will be updated with every new classified distance in an
online-fashion. Note that if a constant sample time is considered, the distances can be seen
as velocities. This approach was expanded to additionally detect smooth pursuits in traffic
scenarios [63]. The last approach listed in Table 3.1, called MERCY, is also an extension
of the Bayesian mixture model approach and will be introduced in Section 3.2.

SI-.KF = Kalman-Filter Identification
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3.1 Methods for Eye Movement Classification

3.1.2 Necessity of Adaptive Methods

As described in the previous subsection, algorithms for eye movement classification can be
separated into threshold-based and probabilistic methods depending on the method used
for calculating the necessary parameters of the algorithm. However, which one of these
two approaches is the one to favor, or if adaptive methods are necessary at all, are still
unresolved topics.

Salvucci and Goldberg [55] suggested that fixed thresholds are usually sufficient for the
classification since the velocity profiles are assumed to be physiologically stable. However,
determination of the fixed threshold depends on the respective task. As an example, the
trajectories of self-paced saccades with a fixed velocity threshold of 15°s~! were examined
by Erkelens and Vogels [64], while Sen and Megaw used a threshold value of 20°s~! to
detect effects on saccades while working on visual display units [65]. A summary of further
settings for this threshold is given by Roétting in [66]. On the other hand, Kasneci et al.
[56] suggested a preference for probabilistic methods in non-automated driving scenarios,
since driving scenarios can doubtlessly be considered as far more dynamic environments
than lab environments. Therefore, empirically adjusted thresholds are not applicable to
these highly dynamic scenarios and the strongly physically- and physiologically-dependent
viewing behavior. However, no further references or details on this statement were given.
Besides the literature on automated eye movement classification, there are several studies,
typically in the field of psychology, examining the individual viewing behavior during
specific tasks. For example, Castelhano and Henderson found inter-individual differences
in the saccadic amplitudes during the scanning process of images, while the intra-individual
saccadic amplitudes were stable [67]. Moreover, there are a considerable amount of eye
movement studies in reading describing differences in the viewing behavior among various
types of readers. A comprehensive overview on the above work is given in [68]. All
these findings indicate that there are significant individual differences in the eye movement
parameters among individuals performing the same task, while the existence of various
threshold settings for different tasks suggests a non-negligible task-individual difference.
The scenario of conditionally automated driving exposes further challenges to the eye
movement classification algorithms because both task- and inter-individual differences oc-
cur at the same time. There are plenty of possible secondary tasks which can be performed
in conditionally automated driving scenarios and between which the driver can switch fre-
quently. Examples for possible secondary tasks are reading news, writing emails, watching
a movie, or just relaxing and observing the environment. Even the level of automation can
change between conditionally automated and non-automated route sections, so that the
driver needs to take-over or hand-over the control of the vehicle.

In summary, all these varying task-individual conditions can influence the driver’s eye
movement behavior. Further, inter-individual differences need to be considered due to the
possibility of multiple various drivers per vehicle and drive. Since the eye movement be-
havior of various drivers can react individually for the different conditions, the task- and
inter-individual differences intensify each other. Hence, it can be assumed that condi-
tionally automated driving leads to high variations in drivers’ eye movements and makes
adaptive methods necessary.
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3.2 MERCY-Moving Estimation Classification

As described in the previous section, different adaptive methods for the automated eye
movement classification exist which have even been applied to non-automated driving sce-
narios. In the following, an adaptive state-of-the-art algorithm for recognizing eye move-
ments, namely the BMM, shall be described and analyzed in detail. Especially the adapt-
ability to variations of the used data set and other disadvantages concerning the application
in a vehicle are examined. Since it is shown that the BMM is not sufficient for use in
conditionally automated driving scenarios, an extended version of this algorithm will be
introduced and compared to the original one. As shown at the end of this chapter, the
adapted algorithm will enable the investigation of the varying eye movement behavior in
conditionally automated driving scenarios.

3.2.1 Analyzing the Bayesian Mixture Model Approach

Based on the same assumption as in [62] that the underlying process generating the veloci-
ties of fixations and saccades can be described by a GMM, the probability density function
p(||vi|]) of the model is given by

pr(vill) = = N(lvill, g, Br) (3.1)
ps(Ivill) = =N (|vill, s, Bs) (3.2)
pUvill) = prUill) + ps(lvill) (3.3)

where v; is the measured velocity between the two sequential data points with the index
i — 1 and i, the parameters i and f describe the mean and the variance of the Gaussian
distribution, 7 describes the mixture parameter, and the indices f and s denote the com-
ponents of the fixations or the saccades. The norm ||.|| represents the Euclidean distance.
The classification process can be seen as the determination of the intersection 6 of the two
probability density functions p; and p, and consequently boils down to the estimation of
the means, variances, and mixture components denoted by the parameter set

Or = { W, Br,m} where ke {f,s}. (3.4)

This intersection point § represents the adaptive classification threshold used for detecting
saccades and fixations. Therefore, the terms intersection point and threshold are used
interchangeably for the parameter 6 in the following. An artificially generated example of
a GMM is shown for illustration in Figure 3.1.

To determine the parameter sets ®  and Oy, Tafaj et al. [62] used Variational Message Pass-
ing (VMP) as implemented by Infer. NET” [69]. Since VMP is an advanced approximation
technique for applying variational inference to Bayesian Networks, the time required as
well as the complexity for implementing such a framework enable running it online on

Thttp://research.microsoft.com/en-us/um/canbridge/projects/infernet/
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3.2 MERCY-Moving Estimation Classification

! 8:ps(8) = ps(6)
)

Figure 3.1: The three probability density functions py (grey), p, (red), and p (dotted black).

common rapid control prototyping (RCP)® and hardware in the loop (HiL)? tools in the
vehicle are still enormous. Moreover, the VMP algorithm is realized as an iterative method
converging in terms of a lower bound [69]. For this iterative approach, it cannot be de-
termined a priori how many iterations need to be performed, which can be problematic in
terms of real-time applications.

3.2.2 Analyzing MERCY

This subsection introduces MERCY, a novel approach for an improved estimation of the
parameters of GMMs and suitable for implementation on common RCP and HiL tools
in the vehicle. The architecture of this approach is illustrated in Figure 3.2 and can be
separated into three iterative steps: estimation, updating, and classification. These steps
are performed in each iteration, requiring the parameter sets ®; and ©; of the previous
round and the current measured velocity.

Classification

Classification is performed in the same way as in the BMM algorithm by comparing the
current velocity ||v;|| to the intersection point 8. If the velocity is smaller than the intersec-
tion point, i.e. it lies on the left side of the intersection, it will be marked as a fixation or
otherwise as a saccade. After the classification, the algorithm is able to update one of the
two distributions depending on the belonging of the current velocity.

8Tterative method for designing and testing control strategies.
9Test bench including the embedded system and the replication of a realistic environment for generating
the input of the system.
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Classification
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Figure 3.2: Architecture of the novel algorithm MERCY.

Estimation

The main idea behind MERCY is estimating the parameter sets ® and ®; by means of
sample mean and sample variance. These estimations of the means, variances, and mix-
ture components can easily be reformulated into a recursive form. Further, to prevent the
estimation from converging and that new data samples will be considered with decreasing
weight, the recursive formulas can be provided with a weighting factor @ which can be
interpreted as the size of a moving window. Choosing a small @ leads to an extremely dy-
namic behavior of the estimation, but increases the influence of outliners on the estimation.
On the other hand, choosing a large ® results in idle behavior which adapts slowly to the
changing conditions. Given the simplifying assumption that the velocities vy, vy, ... are re-
alizations of the random variable Z generated by an independent and identically distributed
process, the recursive equation for the weighted sample mean is defined as
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O Ui, + Vin+1

= 3.5
uLLkn-H w_|_1 ( )
and the recursive equation of the weighted sample variance is defined as
o—1 — E[Vyi1])?
ﬁk’H—] — ( )ﬁkn + (Vn+1 [ n+1]) (36)

()

with E[V,;] representing the expectation of the set of the last n+ 1 sequential velocities
given by V,, ;1. Similar to the previous chapter, the index k = { f, s} denotes the components
of the fixations or the saccades whereas the second index n describes the sample point. The
expectation value E[V,,;] in equation (3.6) can be replaced by the sample mean of equation
(3.5)to

(@=1)B, + (Vns1 — Mg, ,,)?

B kn1 — .
o]

Note that the estimation of the variance depends on the estimation of the mean of the same

round. The estimation of the mixture components 7y and 7,, which describe the ratio

between the number of data samples classified as fixations and saccades, is realized by

means of a weighted counter given by

(3.7)

om, +1
Ty = ————. (3.8)
o+1
In comparison to the estimation of the sample mean and sample variance, both parameters

7, can be updated in every round of the algorithm independent of the classification result.

Updating

As shown in Figure 3.2, there are two pairs of parameter sets ®; and ®;. While the
parameter set @ describes the actual parameters used for the classification, ® depicts the
currently estimated parameters of the GMM with regard to the new data samples. If these
parameter sets diverge by more than a pre-defined threshold /, the currently estimated
parameters ©; will be used as new parameter set @ for the classification in the next
round. As long as the threshold is set to / = 0, the actual model parameters will be updated
with every new data sample, which is generally the proper approach. Nevertheless,
this separation into two parameter sets was considered as a possible additional analysis
of the task- and inter-individual differences. Since the whole algorithm has a constant
complexity O(1), this method is suitable for most real-time applications.

The reliability of MERCY depends mainly on the choice of the initial parameters of the
GMM. Hence, these initial parameters should at least be in the same range as the aver-
age parameters over as many drivers and situations as possible. Therefore, random seg-
ments of a pre-defined size were extracted from randomly chosen simulator drives of the
Pre-Study NEBAF described in Subsection 2.4.3 and used as input for the Expectation
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Maximization algorithm'?. The estimated parameters by means of the Expectation Maxi-
mization algorithm were averaged, resulting in the initial values Oy ;,;; = {0.55,1.13,0.90}
and Oy iy = {30.09,3792.20,0.10} applied for some of the later evaluations. Weighting
factor @ = 10 was used throughout this study so that the algorithm could react to current
changes in the eye movement behavior within a short period of time and, at the same time,
not generate high-frequency oscillations. Moreover, the threshold / was set to [ = 0 so that
the parameters were updated in every iteration.

3.2.3 Comparative Evaluation

At first, artificially generated data is used to evaluate the ability of the BMM to adapt its
parameters to frequently changing eye movement behavior. The reason for this approach
is to provide a Ground Truth of the GMM and its parameter sets, which facilitates a
simulation of the frequent changes of the underlying process and the evaluation in total.
The MATLAB class gmdistribution'! was used to create the GMM because it can generate
random numbers of the specified mixture model. In total, 25000 random data samples
were generated with different pre-defined parameter sets for a first evaluation. After 5000
samples, the GMM’s parameter set was changed for the first time and another 5000 data
samples were generated. In Figure 3.3, this procedure was repeated four times, before
5000 random data samples were generated by a step-by-step changing model, resulting
in a continuously decreasing threshold at the end of the figure. Table 3.2 specifies which
parameters were used and varied for the different intervals, each containing the 5000
samples. The BMM was trained with the first 1000 data samples before starting the
online adaption, which explains the gap at the beginning of the BMM plot in Figure 3.3.
The initial parameters as well as the variations of these values in Table 3.2 were chosen
to provide a meaningful GMM according to preliminary studies while still providing
distinctly separable data for a moderate classification task.

As shown in Figure 3.3, the BMM based on the velocity distributions adapts poorly to
the frequently changing GMM. Among other things, it shows the Ground Truth threshold
of the artificial GMM and the threshold of the estimated GMM of the BMM. After the
training phase, the estimated threshold of the BMM differs from the actual threshold,
but is slowly approaching it. The reason for this slow behavior is that the generated data
samples are weighted lower the later they are given to the algorithm. Hence, shortly after
the training phase, new data samples already have little to no effect on the parameters of
the BMM. Consequently, for significantly emerging differences such as at sample 15,000
in the fourth interval, the BMM is overwhelmed by the adaption process. In subsequent
sections it will be shown that the individual differences due to performing different tasks
are significantly larger than for the artificially generated data at this point. Hence, an even
worse estimation of the mixture model in case of conditionally automated driving data is

10The Expectation Maximization algorithm is an iterative method for estimating the most probable param-
eters of a statistical model.
Unttp://de.mathworks.com/help/stats/index.html
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Parameter set of the x-th interval

interval 1 2 3 4 5
1 1 1 11 Ll-ig
1 200 220 210 207 207
B 0.1 0.1 014 033 033
B> 400 400 400 404 404—ik%
m 08 05 06 07 0.7
o) 02 05 04 03 0.3

Table 3.2: Parameter sets of the different 5000 samples large intervals shown in Figure 3.3. The
varied values between two sequential steps are highlighted by a blue background. The parameter i
in the last column represents the i-th iteration, since these values were varied for every iteration.

expected.

MERCY is applied to the same artificial data samples as the BMM and the estimation is
plotted as a light gray line in Figure 3.3. Although the initialization values were chosen
with an offset of 0.5 in the means and variances, resulting in a starting position of the
estimated intersection point at 4 px/s, the algorithm adapts as fast as the BMM to the
artificial model. However, MERCY is more accurate than the BMM up to iteration
15,000. In contrast to the BMM, MERCY is still able to detect and adapt to the changing
distribution in the fourth interval, but the error between the actual threshold and the
estimation increases slightly, due to the lack of a sufficient number of data samples.
The performance of MERCY exceeds the performance of the BMM for larger steps
in threshold 8, and MERCY adapts appropriately even in the fifth interval with the
continuously decreasing intersection.

A large-scale data set of half a million data samples, generated by randomly changing pa-
rameters of the artificial GMM was created in the same way as in the exemplary plot of
Figure 3.3. The parameters were varied randomly every 10,000 samples so that every pa-
rameter, e.g. the mean Ly, was set to a value of the interval defined by the initial value
and the radius, e.g. [y — Us/2, lr + ty/2]. Furthermore, every 50,000 samples, MERCY
was reset to the initial values and the parameter of the BMM were determined by an addi-
tional training phase. To compare the performance of both algorithms, the absolute error
between the actual intersection point and the estimated points was calculated. The result
is shown as a stacked bar diagram in Figure 3.4. For the plot, the intervals of the training
phases of the BMM and all absolute errors smaller than 0.1 px/s were not considered. In
addition, one round of 50,000 samples was discarded because the BMM was not able to
calculate a meaningful initialization of the model in the training phase. The calculated error
was separated into three different error classes, dividing them into small errors < 1.2 px/s,
medium size errors between 1.2 px/s < x < 2.4 px/s, and the class of the large errors with
2.4 px/s < x. The stacked bar of MERCY shows no errors for the large errors class, since
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Figure 3.3: The three plots show the artificially generated threshold (black solid line), the estimated
threshold by the BMM (dotted gray line), and MERCY (solid light gray line).

there are too few to be visible in the plot. There are 25,000 errors smaller than 0.1 px/s
resulting in a decreased bar height compared to the bar of the BMM. The right bar can be
coarsely divided into one quarter of medium size errors and three quarters of small size
errors. In contrast, the bar of the BMM can be divided into three nearly equal stacks of the
different error classes. As suggested by the example in Figure 3.3, MERCY adapts consid-
erably better to the given data samples than the BMM, providing fewer and smaller errors
in terms of the intersection point. All errors of every parameter of ® and O, affect the
estimation of the intersection point, which therefore can be seen as the worst-case scenario
for the estimation.

However, a thorough comparison of MERCY with the original BMM approach and other
off-the-shelf algorithms has to contain an evaluation of the detection performance based
on real-world data sets. Hence, an evaluation of MERCY in comparison to the BMM and
the dispersion-based algorithm /-DT was performed regarding their capability to distin-
guish between fixation and saccade points. In total, eight data sets of six different subjects
participating in the Pre-Study NEBAF and performing the secondary tasks described in
Subsection 2.4.3 were used. These data sets consisting of 6623 fixation points and 1384
saccade points were manually labelled by two raters. The duration and dispersion thresh-
olds of the I-DT were set to the fixed values of 100ms and 15 px in terms of the unit of the
eye camera. For each subject, the BMM was trained with 1000 unlabelled data samples
before the actual evaluation. The initial values of MERCY were set to the estimated values
Oy inir = {0.55,1.13,0.90} and Oy ;,,;; = {30.09,3792.20,0.10} with a weighting factor of
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Figure 3.4: Two stacked bars illustrate the absolute error between each algorithm and the actual
intersection point of the artificial GMM. The three stacks per bar represent three classes of error
sizes.

Algorithms | Recall | Precision | F1 score

I-DT 0.73 0.66 0.69
BMM 0.86 0.67 0.75
MERCY 0.91 0.75 0.82

Table 3.3: Summary of the classification results of the algorithms I-DT, BMM, and MERCY based
on labelled real-world data sets.

® = 10 and a threshold / = 0 proposed in Subsection 3.2.2.

As shown in Table 3.3, MERCY achieved the best results in classifying the data points to
the correct eye movement type for all three metrics: recall'?, precision'3, and F1 score'* of
the applied algorithms. The BMM showed a high recall value, since it is sensitive to even
small point-to-point velocities. However, this sensitivity leads to an increased false nega-
tive rate and, therefore, to the low precision on the labelled data set. The threshold-based
algorithm /-DT showed the lowest results for all three metrics, indicating the disadvantage
of the fixed threshold versus the adaptive ones.

12Recall = TP/(TP+EN)
3precision = TP/(TP+FP)
14F] score = 2TP/(2TP+FP+FN)
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3 Eye Movement Classification in the Context of Conditionally Automated Driving

In summary, despite the simple implementation, the introduced approach provides an im-
proved adaptability for the classification of eye movements during frequently changing
viewing behavior and is suited for real-time applications due to the complexity on the order
of O(1). Further, MERCY outperformed the BMM and the I-DT in classifying saccades
and fixations based on labelled real-world data sets.

3.3 Eye Movement Behavior in Conditionally Automated Driving
Scenarios

In the following evaluation only 74'5 of the initial 85 experiments of the Pre-Study
NEBAF described in Subsection 2.4.3 could be used due to missing signals from the eye
tracker for six subjects and erroneous simulations such as traffic freezes for five subjects.
In total, the eye movement data set included 35.5 hours of recorded eye tracking data
separated into 1.5 hours of manual and 34 hours of conditionally automated driving.
First, accumulated eye movement behavior of the experimental versus the control group
was investigated for significant differences. For this purpose, MERCY was applied to
the eye-tracking data of each driver, since the adaptability of this method proved to
be convenient for describing mixture models and their variations. Again, the initial
values were set to Oy ;i = {0.55,1.13,0.90} and O, ,; = {30.09,3792.20,0.10} with a
weighting factor of @ = 10 and a threshold / = 0.

First evidence of an existing difference in the eye movement behavior between condition-
ally automated driving scenarios with and without performing secondary tasks is provided
simply by looking at two examples of the curve shape of the intersection § in Figure 3.5.
While the blue solid plot, representing the intersection point of one of the idle drivers,
appears to be stable and shows only high-frequency noise, the red dashed plot of one
of the drivers performing the secondary tasks shows huge drifts throughout the whole
experiment. These drifts could be the result of the task-individual eye movement behavior,
which would be a strong evidence for the authors’ hypothesis that frequent changes in the
performing task lead to a significantly varying eye movement behavior. In addition, the
huge differences of up to 90 px/s in the amplitudes as well as the steep gradients of the
shown drifts require an even higher adaptability of eye movement classification algorithms
than the artificially generated data in Subsection 3.2.3. The vertical offset of the two
curves can be attributed to inter-individual differences due to variations of the individual
viewing behavior or the settings of the measuring system, e.g. decreased distance of the
camera to the eye.

To analyze the intersection behavior over all subjects, Figure 3.6 shows the boxplots of
0, averaged over the whole test duration of every subject. For the plot, possible outliers
were removed by considering only the inner 95% of the data samples. Applying the one-

1541 males/33 females, mean age of 39 years (range 20-60, SD=10)
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Figure 3.5: Exemplary plots for the behavior of the intersection point of a driver of the experimental
and control group.

sample Kolmogorov'®-Smirnov!” test to the estimated data of the intersection point, it was
indicated that the data is not normally distributed. The difference of the eye movement
behavior between the experimental group and the control group can be seen straightaway
in Figure 3.6, since there is no overlapping of the interquartile ranges, including median,
first and third quartile, of the two boxplots. This first impression is underpinned by the
Wilcoxon'® rank-sum test and the Hedges’!® ¢ measure, implying that the difference is
significant (p = 0.002, z = 2.99 ) and of practical relevance (g = 0.711). Despite the
increased value in the location parameters, the left boxplot shows an increased interquartile
and whisker range. These findings illustrate the significant difference in the estimated
intersection point between both groups and therefore suggest that the variations in eye
movement behavior are considerably greater for drivers performing secondary tasks than

16 Andrei Nikolajewitsch Kolmogorow, *25. April 1903 in Tambow, Russland, +20. October 1987 in
Moscow, mathematician who made significant contributions to probability theory, topology, and to other sci-
entifical areas.

17Nikolai Wassiljewitsch Smirnow, * 17.0ctober 1900 in Moscow, +2.June 1966 in Moscow, statistician
who researched nonparametric statistics.

8Frank Wilcoxon, *2. September 1892 in County Cork, Ireland, +18. November 1965 in Tallahassee,
Florida, was an american chemical scientist and statistician.

19Larry Hedges, Professor for Statistics, Education, and Social Policy at the Institute for Policy Research,
Northwestern University.
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for drivers without any tasks.
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Figure 3.6: Boxplots of the averaged estimated intersection point 6 of MERCY while performing
secondary tasks versus being idle. The boxplots show the inner 95% of the data, excluding in this
way the lowest and the largest 2.5% of the data due to outliers.

To identify the parameters of the estimated GMM, which vary the most during the con-
ditionally automated driving scenario and which differ between the idle and busy driver,
Table 3.4 compares the means, medians, minimums, maximums, and variances of the pa-
rameter sets ® and O of the experimental and control group.

mean | med var min max

ur | 073 | 0.69 0.08 | 0.26 1.96
Us | 55.42 | 52.35 | 337.87 | 21.71 | 89.04
~ B 2.26 1.96 2.51 055 | 9.73
= Bs | 3604 | 3733 | 241763 | 1763 | 3999
Ty 0.91 0.92 0.001 0.73 | 0.98
T 0.09 | 0.08 0.001 0.02 | 0.27
mean | med var min max

uy | 053 | 0.50 0.03 | 0.23 1.46
us | 50.35 | 46.41 262.7 | 21.47 | 80.60
o By 1.32 1.15 0.65| 049 | 6.00
= Bs | 3622 | 3761 | 179901 | 1825 | 3999
Ty 0.91 0.92 0.001 0.71 0.97
T 0.09 | 0.08 0.001 0.03 | 0.29

Table 3.4: Statistical values of the estimated GMM divided into mean, median (med), variance
(var), minimum (min), and maximum (max).

It can be seen that parameters lr, Ty and 7, for both groups of subjects have such low
variances that these parameters probably do not require learning and adapting to them at
all. Especially the a priori probabilities 77y and 7y imply a constant ratio of 1/9 between
saccades and fixations over the whole experiment and all statistical measures are nearly
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3.3 Eye Movement Behavior in Conditionally Automated Driving Scenarios

identical for both groups. The average velocity of fixations iy is not exactly zero as ex-
pected, due to measurement inaccuracies or smaller eye movements such as the nystag-

us?’. Nevertheless, as long as such "disturbances" are kept as small as possible, there
will be no significant variation in this parameter. The size of the relative variances as well
as the ranges from the minimum to the maximum value of the remaining parameters L, B,
and f; indicate that these values vary the most overall the measured data. Note that due to
the flat and wide distribution of the saccades, the influence of u; on the intersection point
and hence on the classification is low. In summary, for the given assumption of a GMM
describing the process of generating saccades and fixations, it would be sufficient to learn
only parameters f3; and B, describing the variance of the distribution of the saccades or the
fixations, since the remaining parameters of the mixture model can be considered as con-
stant or their influence on the classification performance is vanishingly low. If the values of
Table 3.4 are compared between the control and experimental group, an increased variance
is observed for secondary tasks performed for the intersection point. This finding confirms
the hypothesis suggesting high variations in eye movement behavior due to task-individual
differences as analogous to the evaluation of the estimated parameter 6 above.
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Figure 3.7: Quantitative comparison of the behavior of the estimated intersection point during the
different secondary tasks and while driving manually over all subjects.

To explain which secondary tasks cause the variation in the eye movement behavior during
conditionally automated driving, Figure 3.7 shows a boxplot of the estimated intersection
point of all performed secondary tasks and of the manual driving sections. The interquar-
tile range of the boxplots of the tasks video, mail, and read are similar to the range of the
idle task, but with an increased average of the estimated intersection point. These small
variances probably result from the fact that all three tasks were performed on the touch
screen built in the cabin. Thus, most eye movements were performed in a narrow field of
view. Obviously, this cannot be the sole explanation of the increased variations in the eye
movement behavior during the performing of the secondary tasks. In contrast, the music
task reveals a larger variation of the eye tracking data than the idle task in Figure 3.6, al-
though a similar viewing behavior of both tasks is expected. A possible explanation for

20Rhythmic, oscillating, and involuntary movements of the eyeball [70].
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this larger variation could be the gazes of the driver on the touch screen, since the display
was not turned off during the music task and, therefore, could still attract the attention of
the driver. Another explanation could be the more active scanning by the driver of the
environment between the usual tasks performed on the touch screen which force the driver
to focus their attention on the display and not to observe the environment at length. An
interesting point to mention is the high variation of the intersection point of the manual
driving scenarios. This result indicates that for non-automated driving scenarios on a typi-
cal german highway, significant variations in the viewing behavior occur which need to be
taken into account for a robust eye movement classification.

In summary, the tasks can be separated into two groups regarding their variation of inter-
section &: one group comprising the music and manual driving tasks and showing large
variations, and a second group containing the remaining tasks read, video, and mail and
depicting small variations. Since these two groups alternate frequently in conditionally au-
tomated driving scenarios, the eye movement behavior switches between tasks with small
and larger variations, leading to the higher variation of the viewing behavior while per-
forming secondary tasks compared to when idle. Hence, the provided evaluation proves
the necessity for adaptive thresholds for algorithms for eye movement classification in con-
ditionally automated scenarios.

3.4 Applying MERCY online in the Vehicle

As mentioned in the previous sections, MERCY is suited for real-time and hardware-
in-the-loop tools applied in testing vehicles. Especially the application of the moving
estimation based on the recursive formula in (3.5), (3.6), (3.8) enables short runtimes
and a low memory consumption. Furthermore, only the results of the previous iteration
are applied, rendering large memory buffers unnecessary. For demonstration purposes,
MERCY was implemented as described in Section 3.2 in Simulink and compiled to run
on the MABX of the testing vehicle described in Subsection 2.4.2. Further, a GUI was
designed for visualizing the classification output as well as the raw eye-tracking input of
MERCY to highlight the benefit of an adaptive threshold.

Figure 3.8 shows the GUI during an on-going measurement. The coordinate system on
the left of the GUI visualizes the raw eye-tracking data in original pixel coordinates of
the camera. Therefore, the coordinate system has a resolution of 384 x 288 pixels. The
classification result is shown by the binary blue signal in the upper right corner, where
the value is set to one if a saccade is detected. In addition, a light is shown with the
corresponding name of the detected eye movement pattern at the bottom of the GUI. The
light is switched to red for saccades and to green for fixations. Below the classification
area, the Euclidean distance of sequential data points is shown as a red signal. Further,
the discrete values of the classification signal (blue signal) and the signal describing the
Euclidean distance (red signal) are displayed in the lower right area. As shown in the
subsequent Figures 3.9 and 3.10, the color of the signals is adjustable by the user. The
signals are shown for a window of ten seconds before vanishing. Saccades with such

52



3.4 Applying MERCY online in the Vehicle

"= ControlDesk NG Project: Aufmerksamkeit_NG Experiment: Aufmerksamkeit_NG - [DK_DGMM'] o &P

)]
= BB

bl 1b falpos B 2bfikchy Blabhm B 4abfi b Skoof suge koord A 6VSC N 70K 1B cal

Clagsification

Evye Pattem

_(_ . Fxation

Figure 3.8: Four saccades were performed in the test vehicle and visualized on the described GUI.
The endpoints of the saccades are consecutively numbered from 1) to 4): 1) Saccade from the center
console to the interior mirror, 2) to the windshield, 3) to the left exterior mirror and 4) to the right
exterior mirror.

large amplitudes as the performed saccades in Figure 3.8 to the interior mirror, to the
windshield, and to the left and right exterior mirrors shown in Figure 3.8, are easily
detected by MERCY online and are highlighted by numbers.

However, these large saccades can also be easily detected by means of algorithms based
on fixed thresholds. To illustrate the benefit of MERCY online, two additional typical
eye movement behaviors for conditionally automated driving scenarios were performed.
In Figure 3.9, the test subject was reading a short message of three lines on the central
display of the vehicle. On the area of the pixel coordinate system, the typical serrated
eye movement pattern for reading sequences is plotted. It can be seen that the Euclidean
distances are quite small, even the slightly larger saccades to the left at the end of the line.
Algorithms with fixed thresholds experience difficulties with such small saccades since
these eye movements can only be detected for small thresholds, making them vulnerable
to measurement noise. The benefit of adaptive approaches lies in the ability to decrease
the threshold only during periods where small saccades are performed and increase the
threshold again afterwards. In the example shown in Figure 3.9, the test subject was
reading a text for about ten seconds before this screenshot was taken. Due to the small
amplitudes of the performed eye movements, the Euclidean distance only shows small
peaks. Thus, the saccades at the end of the lines are classified correctly due to the adaption
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Figure 3.9: For this figure, the test subject was recorded during a reading sequence of ten seconds.
In this time, the algorithm adapted to the corresponding eye movement pattern, including small
saccades. The three saccades at the end of the line were detected correctly and are highlighted in
the GUIL.

of the mixture model and the shift of the intersection point to smaller values. Obviously,
this adaption is only possible if the mixture model obtains an adequate interval for the
adaption process.

Although these saccades with small amplitudes are detected by MERCY online in the ve-
hicle, the classification algorithm is robust against variations due to eye movement patterns
with similar amplitudes. For example, Figure 3.10 shows the eye-tracking data and the out-
put of MERCY for smooth pursuits. The test subject was focusing on an object which was
continuously moved from the left to the right in front of the standing vehicle. Although
the distances reach similar values as the eye movements in Figure 3.9, no saccades are
detected even after several minutes of performing smooth pursuits. In contrast to the ex-
ample of Figure 3.9, smooth pursuits usually do not create sequential Euclidean distances
with increased amplitudes which are classified as saccades and, therefore, the threshold of
the GMM does not decrease even for longer intervals of performing smooth pursuits. Eye
movement classification algorithms with a small fixed threshold, such as the I-DT, would
usually falsely classify saccades due to the large eye movements. In summary, MERCY
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Figure 3.10: Multiple smooth pursuits were recorded where the test subject was focusing on an
object moving five times from the left to the right. For this measurement, no saccades were falsely
detected by MERCY.

could be easily implemented on the hardware of the testing vehicle and its general viability
was successfully validated through online vehicle test cases.

3.5 Summary

In this chapter, a new method named MERCY for eye movement classification was intro-
duced. MERCY can be seen as an extension of the Bayesian Mixture Model approach
proposed by Tafaj et al. in [62] which was already applied in dynamic driving scenar-
ios. However, for implementations on common RCP and HiL tools in the vehicle and for
applications in conditionally automated driving scenarios, the Bayesian Mixture Model is
too sophisticated and lacks the adaptability to the individual gaze behavior. In contrast, it
was shown that MERCY exceeds state-of-the-art approaches including the Bayesian Mix-
ture Model for eye movement classification in both classification performance and general
adaptability based on half a million randomly generated data samples and a thorough con-
ditionally automated driving study. Despite excellent classification performance, MERCY
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is based on simple mathematics and therefore is easy to implement. For demonstration
purposes and to verify MERCY online in the vehicle, it was implemented in Simulink
including a graphical user interface and transferred to a testing vehicle. Due to the high
adaptability of MERCY, the task-individual difference was shown to be significant be-
tween the viewing behavior of subjects performing secondary tasks and idle subjects, both
driving in a conditionally automated setting. The findings suggest that the eye movement
behavior during changing tasks varies constantly and therefore the threshold for the clas-
sification between saccades and fixations is varies, too. This indicates the necessity for
adaptive thresholds for this task, which until now was an unresolved topic in the field of
eye movement classification.

Since MERCY uses sample mean and variance estimators, a reliable estimation of the
variance first requires a good estimation of the sample mean. That means that in case of
sudden changes in eye movement behavior, the variance is estimated insufficiently as long
as the mean has not approximated the actual mean, causing an overshoot of the intersection
parameter. The error of the estimation of the sample mean impacts the estimation of the
variance quadratically. A possible solution could be a correction function depending on the
gradient of the sample mean. Moreover, MERCY is updates only the parameter set ® ¢ or
O; of the estimated GMM of the current classification result. In case of a large overlap of
the two Gaussian distributions, e.g. due to poor initialization values, the incorrect param-
eters are often updated. Since the total error of the falsely classified data samples can be
estimated, this error should be considered in the estimation of the parameters of the model
in terms of error minimization. In this way, both parameter sets ® and ©, can be updated
in every iteration.

In the following chapters, MERCY will be applied as the subsystem for some of the pro-
posed algorithms for Eyes-on-Road detection and driver-activity recognition.
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While driving in an automated setting, drivers have the opportunity to take their eyes off
the road, e.g. to perform secondary tasks, since there is no need for a detailed monitoring
of the traffic environment. To determine whether the driver is focusing on the road, various
systems were introduced in the literature and are even available in series vehicles. These
systems and algorithms are subsumed by the Eyes-on-Road concept. When performing
secondary tasks in conditionally automated driving scenarios, many drivers tend to gaze
towards the street, the instrument cluster, or the vehicle’s mirrors. These gazes allow a
reorientation of the driver in terms of the current traffic situation and, therefore, have an
impact on the take-over quality in take-over situations. Especially the detection of these
typically short Eyes-on-Road gazes is challenging in real-world traffic environments due to
various lighting conditions or not visible eyes due to large head angles. These challenges
cannot be solved solely by improved hardware and computer vision algorithms at the mo-
ment. Hence, in this chapter novel algorithms based on given eye- and/or head-tracking
signals will be introduced to improve the Eyes-on-Road detection. After a phenomenolog-
ical description of Eyes-on-Road gazes and a summary of existing methods for Eyes-on-
Road Detection in the first two Sections 4.1 and 4.2 of this chapter, it will be shown in
Section 4.3 that a relative gaze direction can enable a highly accurate Eyes-on-Road de-
tection without any kind of calibration. For the case of missing eye gaze signals, e.g. due
to large head angles or camera systems without eye-tracking, an architecture for detecting
Eyes-on-Road gazes solely on the head movements is introduced in Section 4.4. As in
the previous chapter, all algorithms will be analyzed with regard to their applicability in
a real-world testing vehicle with a close-to-production camera system at the end of this
chapter.

4.1 Visual Attention and Eyes-on-Road Gazes

The majority of sensory perception in daily life, in detail about 80%, is received over
the visual sensory channel, which corresponds to a transmission rate of about 6.5 MB/s
[71]. It is hardly surprising that according to Sivak this statement can be transferred to
driving situations [72]. Hence, visual distraction of the driver is considered to be one of
the most critical conditions and frequent reasons for near- and actual crashes in the traffic
environment [73]. Multiple studies were conducted to examine the correlation between
visual distraction and driving performance, e.g. Wierwille and Tijerina in [74] or Jamson
and Merat in [75]. Common reasons for visual distraction in non-automated vehicles are
secondary tasks or stimuli from the environment. For example, Greenberg et al. [76]
performed a thorough investigation of the impact of various versions of using a mobile
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phone while driving, such as hands-free and hand-held phone dialing. The study showed
that the rate of missed events in front of the vehicle is similar for hands-free and hand-held
devices due to the increased visual demand of the secondary tasks. In another study,
Wallace [77] showed that stimuli from outside of the vehicle can be a dangerous threat to
the safety of the driver and other traffic participants. Especially advertisements and signs
at junctions or on long monotonous roads may distract the driver significantly.

At this point the question arises, how visual distraction or attention can be assessed in the
traffic environment. By fixating any location with the fovea centralis of the eyes, drivers
may focus their visual attention to the chosen target. However, it should be noted that the
eyes are not able to process all the information inside the visual field of view at once. In-
stead, different properties of the same target, such as the color or shape, can be observed
sequentially [78]. By performing eye movements, such as saccades, the visual focus can
be shifted to other targets. Hence, the gaze behavior, in detail the location and the dura-
tion of a fixation as well as the performed movements of the fovea, can be associated with
visual attention or visual distraction, respectively. Many studies have already proven this
close relation between gaze behavior and visual attention, e.g. refer to Frischen [79] for
an overview of this topic in daily life social interactions or Chapman and Underwood [80]
with regard to the traffic environment. Besides the fovea centralis, studies show that the
driver’s peripheral vision may also provide essential information concerning visual atten-
tion. For example, Summala et al. [81] showed that experienced drivers are able to keep
the lane just by depending on their peripheral vision. Further, on an empty highway in the
dark, peripheral vision is sufficient to perceive differences in light intensity indicating ap-
proaching traffic. However, since this study focuses on drives in daylight and it is assumed
that none of the test subjects has experience applying peripheral vision in conditionally au-
tomated driving scenarios, the influence of peripheral vision on the driver’s visual attention
will be neglected.

Note that the driver’s gaze behavior and visual attention are subject to individual and
situational differences. For example, Konstantopoulos et al [82] compared the visual
search strategies of drivers’ with different levels of driving experience and showed the
modification of the gaze behavior of the drivers according to visibility conditions. These
results show that both external factors such as visibility conditions and internal factors
such as driving experience influence the gaze behavior and, therefore, the visual attention
of the driver and need to be taken into account. Typical gaze parameters used for detecting
visual inattention in the driving environment are the number or frequency of off-road gazes
and the mean and maximum duration of the off-road gazes [83], [84], [85]. An important
step for clarifying the use of the off-road gazes was introduced by Peng et al. in [83]. An
initial separation of drivers into two classes based on gaze behavior, namely low-risk and
high-risk, was possible based on the maximum duration of their off-road gazes.

In conditionally automated driving scenarios, the driver is no longer responsible for the
driving task and, therefore, may look away from the road the entire time. Nevertheless,
the gaze behavior still contains crucial information about the visual attention of the driver,
since interesting phenomena may occur when the driver performs visual secondary tasks.

58



4.1 Visual Attention and Eyes-on-Road Gazes

In such situations, most drivers tend to gaze towards the road and the mirrors for a few
seconds before continuing with the interrupted task as illustrated in Figure 4.1. These will
be subsequently be referred to as Eyes-on-Road gazes or just EoR gazes. The reasons
for these EoR gazes are not sufficiently investigated. One possible explanation for this
behavior could be other traffic participants attracting the attention of the driver or fading
attention towards the secondary task. However, it can also be assumed that drivers who are
used to driving manually perform gazes towards the driving task to reorientate themselves.
This assumption is further underpinned by the results of Zeeb et al. in [11]. In a large-
scale driving simulator study of 107 participants, the drivers experienced multiple take-
over situations while driving in a conditionally automated scenario. Zeeb et al. categorized
these drivers into three groups similarly to [83] and analyzed among other things the impact
of the EoR gazes on take-over performance. It could be shown that drivers who tend
to perform many and longer EoR gazes are able to take-over in an appropriate way and
usually in a shorter time interval than drivers who are focused solely on their secondary
task. Based on these findings, parameters of the EoR gazes will be used as input for the
later classification of the take-over readiness.

(b) EoR gaze

Figure 4.1: The driver performs an EoR gaze by interrupting the secondary task and looking up at
the road ahead before continuing with the task. In both images, two black-white markers mounted
beside the steering wheel can be seen which may be used for detecting gazes in the corresponding
areas.
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In summary, the driver’s visual perception provides the most crucial information for driv-
ing scenarios, presaging the severe consequences of visual distraction. The visual attention
or distraction can be assessed over the driver’s eye movement behavior and gaze direction
which are subject to inter- and intra-individual differences. These findings apply for both
non-automated and conditionally automated driving scenarios. As previous studies show,
EoR gazes seem to be a promising indicator for visual attention, situation awareness, and
maybe also for the driver’s take-over readiness in conditionally automated driving scenar-
i0s.

4.2 Eyes-on-Road Detection - State-of-the-Art

Ensuring that the driver is focused on the road and not distracted from the driving task
is the main goal of various systems for Eyes-on-Road (EoR) detection known from
literature [86] and implementations of series vehicles [87]. All studies mentioned in
Section 4.1 performed a manual EoR detection or used an offline method with special
markers positioned in the scene (e.g. quadratic black-white markers beside the steering
wheel as seen in Figure 4.1). Automated EoR systems usually combine an absolute gaze
direction! with Aols of known vehicle coordinates. If the estimated gaze hits the defined
Aol, e.g. the windshield, it is concluded that the driver’s visual attention is directed at
this area. This method is often described as the geometric method since it makes use of a
3-D model of the vehicle. However, an accurate absolute gaze direction usually requires
an end-of-line calibration of the camera in the vehicle, an expensive and time-consuming
step. Moreover, a re-calibration becomes necessary after a certain amount of time. This
effect is described, for example, in an extensive field study by Kircher et al. [88]. To
avoid calibration while still applying the described approach, Vicente et al. proposed a
vision-based system relying on robust facial feature tracking, head pose estimation, and
a model-based gaze estimation [89]. As mentioned in Section 2.3.3, such model-based
eye-tracking approaches cannot exceed an accuracy of 5° due to individual differences of
the fovea centralis. Thus, this approach will most likely show limitations for small and
densely packed Aols. Note that the results shown in [89] were achieved in a stationary
vehicle.

Besides the challenge of a calibration-free system, a high detection rate of EoR gazes for
the classification of take-over readiness is a difficult task on account of several factors.
Estimated gaze direction is inaccurate due to varying lighting conditions, face and eye
structures of different ethnic groups, or optical aids. To compensate for poor gaze estima-
tion, Tawari et al. introduced a novel framework to estimate a coarse but more robust gaze
direction of the driver [86]. The authors argue that such a coarse gaze direction is sufficient
for an EoR system. The authors focused on increasing robustness of the EoR detection by
incorporating head pose, eyelid, and iris features over a Support Vector Machine (SVM) to
a gaze-surrogate estimation and showed a significant improvement over the detection rate
using only a head pose based on the data of a field study. In literature, such approaches are

! Absolute gaze direction refers to a gaze direction with regard to a world or vehicle coordinate system.

60



4.2 Eyes-on-Road Detection - State-of-the-Art

described as learning-based methods. However, learning-based methods are limited to a
maximum accuracy of 5° similar to the model-based approach above. Vasli et al. extended
the approach proposed in [86] by incorporating a multi-plane geometric model of the gaze
zones resulting in a hybrid EoR detection method [90].

In addition to the above mentioned challenges, the driver’s eyes may not be visible to the
camera system, e.g., due to large head rotations. Moreover, a first generation of driver
camera systems may not include eye-tracking functionalities. These scenarios require a
fallback strategy to compensate for missing gaze direction. The typical fallback strategy
for EoR in case of missing eye gaze signals is to use an estimated head pose. Smith et
al. [91] presented a system for determining the drowsiness level and visual attention
of the driver based on eye features and a gaze direction computed by means of a mono
camera. The actual classification of the visual attention level was done by means of three
finite state machines. If drivers rotate their head up, down, to the left, or to the right or
have their eyes closed for more than a defined number of frames, a low visual attention
is classified. Trefflich [92] classified a driver as attentive if the vector describing the
driver’s head pose intersects with a defined Aol on the windshield for at least 0.5 ms. This
region on the windshield moves dynamically inside a larger static Aol and may change
its size with regard to the current traffic situation. That way the Aol may increase its
size towards the corresponding side when driving in a curve. If the head direction of
the driver is outside of the defined Aol for more than 1.5 s, the driver will be classified
as distracted. However, the absolute head pose may also be insufficient for the EoR
detection in some cases since EoR gazes are usually divided into two components: eye
movement and head movement. Head movement is often small and may result in an ab-
solute head pose not necessarily facing the actual Aol when eye gaze direction is neglected.

There are already systems on the market which try to detect the driver’s visual attention.
In 2009, Lexus introduced the Advanced Pre-Crash Safety System using a driver camera
to detect the facial direction of the driver [87]. If a driver is not looking at the road for
longer than a certain threshold, an audiovisual warning is given, followed by cautionary
braking. The in-vehicle camera system contained a CCD? imager with six near-infrared
LEDs mounted on the top of the steering wheel column. The algorithm of this system actu-
ally extracts facial features of the driver’s face and estimates the corresponding center line
of the face. If the driver is not facing towards the road, the system will detect an unsym-
metrical face in the recorded image. In case of drivers wearing glasses, features extracted
from the edges of the glasses are used instead of the features of the eyes and eyebrows.
Although it is an interesting approach, the described system does not calculate an accurate
head direction or even a gaze direction for the EoR detection and is therefore prone to
errors and false detections. For example, the Advanced Pre-Crash Safety System tends to
unnecessary warnings in curvy road sections, since drivers usually focus on the apex of a
curve while driving. Although these drivers focus on the road, the system detects a facial
direction which is not pointing straight ahead and, therefore, is interpreted as "Driver is

2charge coupled device
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distracted" by the system.

4.3 EoR and Control Gaze Detection based on Clustering

Geometric EoR methods represent the typical approach to detect gazes into defined Aols,
e.g. the windshield, as explained in the previous section. However, they require a calibra-
tion of the eye tracker with regard to the vehicle coordinate system, which is an expen-
sive and time-consuming production-step. Furthermore, some tasks may be performed on
handheld devices in a conditionally automated setting, thus rendering Aols based on fixed
coordinates useless. None of the approaches known from literature apply to this use-case.
In this work, dynamic clusters will be learned and used to describe the Aols by means of a
distribution of a relative gaze direction® of the driver, so that the disadvantages mentioned
above can be avoided.

4.3.1 Approach

A cluster is represented as a multivariate normal distribution N'(, X) of the gaze direction
® which is given by the vector containing the pitch angle 6 and the yaw angle y of the
gaze direction. The parameters of the distributions are learned in different phases of a drive
while the subject is focusing on the corresponding Aol. To explain the basic approach,
four exemplary Aol clusters shall be distinguished: windshield, handheld, hands-free, and
unknown. The cluster windshield

P (@) ~ N (u), 20 @.1)

comprises all gazes towards the windshield, the instrument cluster display, and exterior and
interior mirrors, which are mainly performed during the manual driving phases or during
automated driving scenarios without secondary task. While driving manually and focusing
on the cluster windshield, the mean vector ) and the covariance matrix £ of this
cluster will be updated for each sample i. The cluster handheld

P (@) ~ N (p ) EHh)) 4.2)

contains the gazes performed during secondary tasks running on a handheld device,
whereas the gazes performed during secondary tasks on an integrated, hands-free system
are assigned to the cluster hands-free

p"(@) ~ N (u), £0), (4.3)

The mean vectors p") and p ") and the covariance matrices 2f) and £ of the clusters
hands-free and handheld are learned during automated driving phases while gazes into the
corresponding Aol are detected. For all remaining gazes which cannot be assigned to one

3Relative gaze direction refers to a calibration-free gaze direction with regard to a camera coordinate
system.
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of the two clusters with an acceptable probability, the cluster unknown
P (@) ~ N (p W), (4.4)

is generated. The parameters u(”) and £ of the last cluster unknown are updated for each
sample regardless of the level of automation, because it represents the minimum probability
for the assignment of a sample point to one of the defined clusters. These mentioned Aols
are pooled in the set

x = {w,hh,hf, u}. 4.5)

For the estimation of these mean vectors and variance matrices, a sample estimator can be
applied, as defined in
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The choice of the weighting factor @ in (4.6) and in (4.8) is crucial for the performance
of the detection of the Aol. In case of a low weighting, even short glances away from
the actual Aol, e.g. when performing control gazes towards the street for re-orientation,
will instantly lead to large values in the covariance matrix and shifts of the mean value
of the distribution of the tablet cluster. On the other hand, large weighting factors will
reduce the adaptability of the distributions to long-term changes of the position of the
handheld device. A weighting factor @ = 10 proved to be an effective choice. Note that the
choice of @ depends significantly on the corresponding data set. Furthermore, the sample
estimators need appropriate initial values to converge quickly. These initial values were
calculated for each subject separately based on the data of the remaining subjects. The
updated parameters are reset to the initial values for each interruption due to an occurring
take-over situation for the cluster hands-free, since an altered position of a handheld device
can be assumed after each interruption. The current sample of the gaze direction is assigned
to the cluster with the highest probability

P (@) = max(p” (®;), p" (@:), " (@1), p"(P1)) (4.9)
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1 if puax (@) = p*(P:)

AOI(@,‘) _ 2 lf pmax(Qi) = phh'(q)i) (4.10)
3 if pmax(q)i) = th (q)z)
4 else

The signal Aol(®;) contains high frequency parts representing the EoR gazes of the driver.
To extract these gazes, a lowpass-filter is applied to the clusters p™), p"") p(Af) "and p®)
which are then used to calculate Aol},,, by means of (4.9) and (4.10). The generated signal
Aoly,,, no longer contains any EoR gazes. Instead, these gazes can be explicitly extracted
through the following equation

1 if Aol(®;) =1 & Aol (D) =2
EoR(®;) =1 ifAol(®;) =1 & Aoljp,(D;) =3
0 else

4.11)

where an EoR gaze is detected whenever the lowpass-filtered signal Aol},,, suggests that
the driver is focusing on a handheld (Aol},,, = 2) or hand-free device (Aol},,, = 2) while
the raw signal Ao/ indicates a gaze on the road.

4.3.2 Evaluation

To evaluate the proposed clustering approach, the performed EoR gazes of each experiment
of the KoHAF study were video-labelled by two raters. In detail, the start and ending
points of all EoR gazes in the one minute-long interval before each take-over situation
was labelled. The start and ending point of an EoR gaze was defined as the first and last
sample of either the head or the eye movement of the performed gaze shift. In total, the
81 test subjects performed 1199 EoR gazes. In Figure 4.2, the 2 x 2 confusion matrix
with the classes EoR gaze and no EoR gaze is shown. The class no EoR gaze refers to
the intervals between two sequential EoR gazes where no gazes at the road are performed.
As can be seen, 445 EoR gazes have been correctly classified while there are 312 false
detections and 754 missed gazes. This results in a low recall and precision value of 37%
and 59%, respectively. However, the reason for this poor performance with an accuracy
of only 55.5% is not due to an erroneous behavior of the proposed clustering approach.
As described in Subsection 2.5.5, only a few data samples were available for larger head
rotations after the calibration step preventing a reasonable estimation of function f for
large gaze shifts, e.g., EoR gazes. Hence, a further evaluation of the clustering-based EoR
approach based on this data is meaningless. Instead, the approach will be evaluated in
Subsection 4.5.2 based on the data of the real-driving study. At this point, the need for a
fallback strategy to detect EoR gazes for the classification of the take-over readiness based
on the KoHAF study becomes obvious.
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Predicted Value

EoR gaze no EoR gaze

Actual Value
EoR gaze

no EoR gaze

Figure 4.2: Confusion matrix of the EoR detection based on the clustering approach. The actual
EoR gazes were video-labelled for the 60 s interval before each take-over situation of the KoHAF
study.

4.4 Fallback Strategy for Detecting EoR Gazes

As shown in the previous subsection, the estimated gaze direction of most subjects of the
KoHAF study is useless for the detection of EoR gazes. Although this was not intended,
this result shows the susceptibility of the estimated gaze for applications in the vehicle
and further highlights the necessity for a fallback strategy to detect EoR gazes in case
of a missing or deteriorated gaze direction. The subsequently proposed fallback strategy
follows the author’s published patent [13] and the detection of intended head movements
described in the paper [14].

4.4.1 Approach

The fallback strategy is derived from a method for detecting steering events [93] and makes
use of the proposed eye movement classification MERCY introduced in Chapter 3. In Fig-
ure 4.3, a typical signal shape of an EoR gaze can be seen. The corresponding head rotation
of the EoR gaze usually forms a peak with three phases: start of the head movement, sta-
tionary or static phase, and end of the head movement. This shape and movement behavior
resembles recorded eye blinks as reported by Ebrahim et al. [94]. The detection is per-
formed on the Euclidean distance of the pitch and yaw angle of the head rotation

DPeycl = ‘ |lllveh + eveh ’ ‘ . (412)
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The head movement velocity is given by the derivation of ¢,,.; calculated by means of the
Savitzky*-Golay” filter

ng
&= Z Crhisn ng=np = {J (4.13)

n=-—njy,

with the coefficients ¢, for the first derivative, m = 11 sampling points, and £ as first
degree polynomial for the i-th data point. The Savitzky-Golay filter can be seen as a
digital convolution filter which is continuously fitting polynomials of a specified degree
to adjacent samples of a given signal. Moreover, the filter can be used to estimate the
differentiation of the input signal if the correct coefficients are used [95].

In an initial step, the proposed approach detects movements of the head based on a specified
minimum angle €., inir and velocity €, inir as shown in the upper plot of Figure 4.3. Note
that these minimum thresholds are empirical values and must be selected depending on
the accuracy of the applied measurement system and with respect to the quality of the
recorded data. For the setup used in this work, these values were set to 4° and 6°/s. The
first sample at which the velocity exceeds the threshold €,,; ;,;; will define the starting point
of the EoR gaze. The starting phase ends as soon as the velocity drops below &, jn;; again.
At this point, the static phase starts and it is assumed that the driver is focusing on the road.
The EoR gaze is completed by a head movement back to the original position, i.e. to the
secondary task, defined as the ending phase. This phase is given by the interval during
which the velocity is below the threshold —&,,; jn;;. This step provides a first estimation of
which signal events correspond to intended, actual head movements rather than just being
artifacts or noise.

In the subsequent step, the detected events are made plausible by means of minimum
angle €4, 75, minimum velocity €, 75, and minimum duration thresholds &, and &gyqsic
as well as by the rotational direction. The thresholds for the head angle and velocity are
adapted online over the corresponding 75%-quantile calculated over all detected events
of the previous step as suggested by Galley et al. [93]. The calculated head amplitude
and velocity have both to exceed these thresholds or the event is discarded. The minimum
duration of the static phase during the EoR gazes was set to &4 = 200 ms according
to an analysis of recorded EoR gazes. Similarly, the idle period after each detection &5
is analyzed and events occurring in this specified interval are ignored. The algorithm
assumes a resting phase of at least 200 ms. Events below these duration thresholds &g 4ic
and &, usually refer to head gestures such as shaking, e.g., when negating a question.
The last plausibility check involves the direction of the head rotation. Only movements
upwards, to the left, or combinations of those are considered as possible EoR gazes. This
step is performed on the original yaw ., and pitch angle 6,.,. This is an additional

4 Abraham Savitzky, *29. May 1919 in New York City, USA, +05. February 1999 in Naples, Florida, was
an american analytical chemist.

SMarcel Jules Edouard Golay, * 03.Mai 1902 in Neuchtel, Switzerland, +27. April 1989 in Lausanne,
swiss mathematician, physicist, and information theorist.
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Figure 4.3: Visualization of the necessary steps of the fallback strategy. In the upper plot, the typical
phases of the head rotation during an EoR gaze are shown, including the initial thresholds used for
detecting possible EoR gazes. The start- and endpoints of each phase are defined by the velocity
threshold &, ;5. For example, at point b) the velocity exceeds the threshold which corresponds to
the beginning of the start phase of the possible EoR gaze marked with a). Similar, at point c) the
velocity falls below the threshold corresponding to the end of the start phase marked with d). The
same procedure is repeated with the negative thresholds for the beginning ) and endpoint f) of the
ending phase. In the lower plot, the idle periods during and after each possible EoR gaze used as a
condition in the plausibility check are highlighted.

condition for further reducing false detections since movements in the opposite direction
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usually do not correspond to EoR gazes.

The described approach provides a fallback strategy in case of no gaze direction is avail-
able. However, if some form of eye-tracking is also possible, independent of the available
quality, MERCY is applied to classify occurring saccades online. Similar to the approach
described above, the detected saccades are made plausible using an amplitude threshold
adapted online over the 80%-quantile of all classified saccades and the direction of the
saccade. Saccades with a large amplitude in the direction of the windshield, i.e. upwards
and/or to the left are considered as possible EoR gaze. However, this additional analy-
sis of the eye movements is only performed if the eye tracker assures the validity of the
current data sample. The head-based approach may influence the detection based on the
eye-tracking data by reducing the amplitude threshold from 80% to the 75%-quantile if a
head movement which detected simultaneously is discarded due to a low amplitude.

Note that this fallback strategy can only be performed with appropriate accuracy if there is
some information given concerning the automation level or regarding the driver’s current
focus. For example, if the driver is currently focusing on a display located at the center
console this head pose can be used as an initial state for the approach. That means that
in this situation the fallback strategy may begin to analyze the head movements according
to the above described approach. Without such information to determine a starting point,
a gaze into the left exterior mirror may be recognized as EoR gaze although the driver is
focusing on the road all the time. Such information could be provided by the vehicle’s
CAN signals describing keystrokes on the multimedia unit which typically correlate to
fixations on the corresponding buttons.

4.4.2 Evaluation

Similar to the evaluation of the clustering approach in Subsection 4.3.2, which performed
quite poorly when detecting the EoR gazes of the KoHAF study, the proposed fallback
strategy was completely implemented in Simulink and applied to the same data. Again, the
detected EoR gazes were compared to the video-labelled EoR gazes for the 60 s intervals
before each take-over situation while the class no EoR gaze represents the intervals between
two sequential EoR gazes, i.e. the gaze-free periods.

In Figure 4.4, the corresponding confusion matrix of the fallback strategy based only on
the head movements can be seen. In total, 863 of the 1199 EoR gazes have been detected
resulting in a recall value of 72%. Hence, the number of correctly detected EoR gazes
could be nearly doubled compared to the 445 EoR gazes correctly classified by means of
the clustering approach. At the same time, the false detections decreased from 312 to 178
falsely detected EoR gazes, resulting in a precision value of 82.9%. Moreover, the fallback
strategy shows an accuracy of 78.5% which corresponds to an increase of 23% compared
to the clustering approach. However, it is necessary to mention that the number of true
positives cannot be increased much further since most of the remaining 336 EoR gazes
were performed without any detectable head movements. Hence, these EoR gazes may
only be recognized using eye-tracking data.
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Figure 4.4: Confusion matrix of the EoR detection based on the fallback strategy considering only
head movements. The actual EoR gazes were video-labelled for the 60 s interval before each take-
over situation of the KoHAF study.

This is why the following evaluation applied the second variant of the fallback strategy
based on the detected head and eye movements. As shown in Figure 4.5, considering
large saccades classified by MERCY enables an even higher recall of 83% compared to the
approach solely based on head movements. However, the analyzed eye-tracking data is of
low quality and therefore involves the risk of additional false detections. This is the reason
why the precision value decreases to 76% and the number of false detections again rises to
26%, equal to the original value of the applied clustering approach. The overall accuracy
of the fallback strategy considering the eye movements equals 78.4%.

In summary, both variants of the fallback strategy perform significantly better than the
clustering approach, which suffers from the low quality of the estimated gaze. Hence, the
benefit of a fallback strategy to detect EoR gazes in case of a missing or deteriorated gaze
direction could be highlighted. There is no difference in the overall performance of the two
variants with regard to the accuracy values. However, the variant which considers only the
head rotation is obviously limited by the number of EoR gazes which contain a detectable
movement of the head. That means that further significant improvements of the detection
rate of the EoR gazes might be unlikely. Hence, a recall of about 80% can be seen as
general limitation of EoR detection systems based solely on head movements. At least
rudimentary eye-tracking data is necessary to enable a further improvement of the recall as
shown with the second variant of the fallback strategy. However, this recall improvement
comes with a decrease in precision and an increase of the number of false detections due
to the deteriorated quality of the estimated gaze.
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Figure 4.5: Confusion matrix of the EoR detection based on the fallback strategy considering head
and eye movements. The actual EoR gazes were video-labelled for the 60 s interval before each
take-over situation of the KoHAF study.

4.5 Detecting Eyes-on-Road online in the Vehicle

As mentioned above, the fallback strategy was completely implemented in Simulink and
could be applied directly online in the vehicle over the dSpace ControlDesk. On the other
hand, the EoR detection based on clustering was initially developed in an offline MATLAB
environment. Hence, some parts of the approach mentioned in Section 4.3 need to be
slightly reconsidered for an online approach in the vehicle. Moreover, this approach could
not be evaluated fairly based on the data of the KoHAF study due to the poor estimated
gaze. Therefore, the classification performance of this approach is evaluated on the data
of the real-driving study described in Subsection 2.4.5. In this study, a near-to-production
driver camera was applied to estimate the driver’s gaze resulting in data quality which can
be expected in later series vehicles.

4.5.1 Modifications

For the offline evaluation in Subsection 4.3.2, it was only necessary to introduce four clus-
ters representing the four Aols windshield, handheld, hands-free, and unknown. However,
one aspect to investigate was how well the clustering approach is able to handle multiple as
well as smaller Aols which are typical for the vehicle environment. As a consequence, the
original Aol windshield was separated into the Aols windshield, left mirror, right mirror,
and interior mirror. Further, the Aol unknown was replaced by a fixed, scalar threshold.
This has a practical reason since the cluster unknown, in particular the variance of this clus-
ter, tend to spread in case of the real-driving study as well as for pre-studies over a large
area. As a result, the actual probability for this cluster decreased so significantly that it was
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usually never classified even in areas between Aols. Figure 4.6 shows all of the analyzed
clusters visualized in a vehicle interior and summarized by the set

X € {w,hh,hf im,Im,rm}. (4.14)

Figure 4.6: Exemplary visualization of all analyzed clusters in the vehicle interior. The clusters
are: windshield (blue, dotted area), interior mirror (beige, checkered area), left mirror (green, diag-
onally dashed area), right mirror (red, diagonally dashed), hands-free device (purple area without a
pattern), handheld device (yellow, vertical dashed area).

Moreover, the offline evaluation calculated the initial values u(()x ) and 2‘.(()% ) for the mean and
covariance of the clusters over the MATLAB class gmdistribution for each subject individ-
ually. In more detail, the KoHAF study can be separated into four route sections, namely:
the introductory section, the conditionally automated section between the introductory sec-
tion and the first take-over situation, and the conditionally automated sections between the
first and second as well as between the second and third take-over situation. For these
four sections, four different pairs of initial values were used for each cluster by calculating
the mean and the covariance over the complete corresponding route section. Obviously,
this is an inadequate approach for online scenarios. Hence, for the online approach a priori
learned initial parameters derived from three subjects® for each cluster were used. The sub-
jects were recorded while they were looking into the different clusters for several seconds.
Based on these data sets, the initial mean and covariance values were estimated and used
for the online approach. For applications in series vehicles, this number of used subjects

These subjects did not participate in the real-driving study.
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to generate the initial values should be increased further to obtain a preferably widespread
driver pool in terms of body height, seating position, and gaze behavior.

An additional topic when considering the adaption of the cluster-based approach to online
scenarios is the overlapping of clusters. Since the clusters are updated continuously after
the initialization and there is no resetting of the mean and covariance values during a drive,
the chance of overlapping clusters increases significantly compared to the offline evalua-
tion. For example, if a driver would move the handheld device in front of the integrated
hands-free system while driving in a conditionally automated scenario, the mean value of
the handheld cluster would approximate the mean of the hands-free cluster. As a conse-
quence, all subsequent gazes would probably be assigned to the handheld cluster even if
the driver interacts with the integrated device. To prevent overlapping, the online variant
integrates boundaries for each cluster except for the cluster handheld. These boundaries
limit the range of motion of the mean values of the corresponding cluster. The upper and
lower boundaries are defined with respect to the initial mean values and a tolerance value

& by

10°
b —pl g und pW =pl¥ g E= < 10° > € R2. (4.15)
By means of these boundaries b(f) and b(,x) the mean and covariance is limited during the
updating step over

U, () (4.16)

o, else

where /fLSIX) describes the estimated value of the mean of this current iteration n. This
tolerance value seemed to be an appropriate choice based on earlier experiments. For future
work, instead of determining one common tolerance value for all clusters experimentally
there should be an individual tolerance value for each cluster considering the extreme cases
of the widespread driver pool used to learn the initial values. The cluster handheld is not
limited in its range of motion but is considered with lowest priority. That means that
in case of the overlapping scenario described above, the cluster handheld might have an
overlapping area with the cluster hands-free but it would be never classified as currently
focused cluster due to the lower priority. Thus, the other Aols represent a software solution

of the boundaries of the cluster handheld without restricting its range of motion.

As a final modification of the EoR approach based on clustering, a priori probabilities
were applied as mixture factors of the mixture distribution of the clusters. Similar to the
mixture model described in equation (3.1) and (3.2), mixture factors 7% were defined for
each cluster representing a weighting factor for each distribution based on latest obtained
information. These mixture factors must fulfill the condition

Y aW =1 4.17)
X
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at all times. Following this condition, an uniform distribution was chosen for néx )
1
st = o €]0,1] (4.18)

as initial values weighting each cluster equally. As explained in Subsection 2.2.2, a fixation
represents a static eye movement focusing the fovea centralis on a temporal target, e.g.,
one of the introduced clusters. Further as shown in Section 3.3, about 90% of eye-tracking
data recorded during conditionally automated driving scenarios consists of such fixation
points and only 10% of saccades. As a consequence, it can be assumed that the eyes
remain focused on the same visual target for both the current sample point and for the next
sample. Hence, the a priori values were increased for the time the driver is focusing on the
corresponding Aol by means of a sample estimator

(x) n2-7r,$7‘)+n 1

T[n+1 :ww, (D:; (419)
In accordance with condition (4.17), the a priori values of the remaining clusters need to
be decreased proportionately for

&, = %) — ¥ (4.20)

which equals the increase of the a priori of the currently focused Aol between the latest
sample points. To prevent the violation of the boundaries of the remaining a priori values
given by |0, 1], this difference &, has to be separated among the remaining Aols according
to the proportion of their a priori values in equation (4.17). The corresponding difference
is given by

(x) Ty~ &
Ay = 4.21)
1— ﬂ?r(lX)
with
K € {w,hh,hf,im,Im,rm} and K #X. (4.22)

However, this approach may result in impractically low a priori values for sequences during
which the driver keeps focusing the same Aol. To prevent the decrease in the a priori values
of the currently not-fixated Aols from being to extreme, each a priori value is scaled to the
range |1,2] by adding +1. Hence, the a priori value represents an amplification with a
minimum greater than one. In Figure 4.7, the behavior of the a priori values is shown for
gazes according to the sequence of Aols given by

w—=Ilm—w—>m—w—>im—w—hf—>w—>hh—w (4.23)

where each Aol was focused for about three seconds. In the upper plot, the sequence
described in equation (4.23) can be seen clearly by reference to the probability density
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functions of the various clusters. In the synchronous plot below, the a priori signals are
visualized. The a priori value of the windshield cluster shows a sawtooth-shaped signal
since it was fixated after each cluster. Moreover, the exponential approximation of each
value to the minimum and maximum can be seen.
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— windshield

a priori values

—— left mirror
2002 - ——right mirror
‘® interior mirror
c —— hands-free device|
g oot handheld device
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Figure 4.7: Both plots are generated for the gaze sequence given in equation (4.23). The upper plot
shows the probability density of the different clusters while the lower plot visualizes the behavior
of the a priori values. The signals are colored according to their corresponding cluster.

4.5.2 Evaluation of the online Approach

After adapting the clustering-based approach according to the modifications summarized
in the previous Subsection, an evaluation is performed based on the data recorded during
the real-driving study described in Subsection 2.4.5. In a first step, the detection accuracy
of the approach with regard to the introduced Aols will be evaluated. For this purpose,
the instructed gazes at the different Aols performed by the driver in the westbound route
section of the third lap were used. In this lap, each driver was instructed to look in the
Aols windshield, left mirror, right mirror, interior mirror, and hands-free device for about
five seconds. Note that there was always a short break between two sequential instructions
during which the driver usually focused on the windshield. These intervals between two
sequential Aols were not used for the evaluation. For ground truth, one of the instructors
sitting on the backseat of the vehicle labelled the gazes online during the experiment by
means of manual triggers. The first and last two seconds of each fixation at an Aol were
discarded to guarantee synchronicity between the actual gaze start and ending and the
manually set triggers.

The confusion matrix in Figure 4.8 visualizes the final results with regard to the approach
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introduced in Subsection 4.3.1 and modified for applications in vehicles in Subsection
4.5.1. As can be seen, the approach reaches perfect accuracy. Each instructed gaze of
the nine drivers was correctly assigned to the corresponding Aol for the complete fixation
interval. This result highlights different aspects of the approach and the experimental set-
ting. Obviously, the approach is able to detect distinct gazes in each of the discussed Aol
robustly. Note that these gazes were performed about eight minutes after the beginning of
the first lap which also represents the interval during which the clustering-based approach
adapts the clusters to the individual driver. Moreover, the results show that the accuracy and
robustness of the applied near-to-production driver camera is sufficient for the detection of
various Aols during conditionally automated drives during realistic lighting conditions. In
addition, even the gazes in the right mirror were detected correctly. This is a remarkable re-
sult for the implemented camera system as well as for the clustering-based approach since
the horizontal gaze angle to this Aol is large and requires significant head rotations.

windshield 100% 0%

left mirror

right mirror

True class

interior mirror

hands-free 0% 100%

R . . .
< o & & & g

N @ (@Q

Predicted class

Figure 4.8: Confusion matrix of the cluster detection based on the instructed driver gazes of the
real driving study.

In a second step, the detection of the drivers’ EoR gazes were evaluated. This evaluation

was based on the EoR gazes performed by all drivers during each eastbound route section.
During these sections, the driver performed secondary tasks which were interrupted by
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uninstructed EoR gazes. Although the used data set was not extensive, many different types
of gaze behaviors could be observed. As expected, the number of performed EoR gazes
varied significantly between the different subjects. In total, 403 EoR gazes were performed
for a cumulated driving time of about 62 minutes. While some drivers performed up to 100
gazes during the seven minutes of conditionally automated driving time with secondary
tasks, there was one driver who interrupted the performed secondary tasks for only four
gazes. Moreover, drivers could be observed performing short or long EoR gazes using
only their eyes or a head- and eye-coordination for gaze shifts. In addition, different head
positions during the performance of the secondary tasks could be observed influencing
calculated gaze direction. As Ground Truth, the EoR gazes were labelled online by one
of the instructors inside the vehicle and verified offline afterwards by means of a recorded
video stream.

EoR gaze

True Class

no EoR gaze 95%

(383)
EoR gaze no EoR gaze
Predicted Class

Figure 4.9: Percentage and absolute number of correctly and falsely detected EoR gazes by means
of the clustering approach.

The confusion matrix of Figure 4.9 shows the performance of the EoR detection based
on all gazes independent of the drivers. In total, 98% of the actual 403 EoR gazes could
be detected correctly. Further, the detection approach shows a false positive rate of 5%,
which equals 20 falsely detected gazes. This result highlights the feasibility of robust
EoR detection based on near-to-production camera systems in realistic driving scenarios.
Besides a few artifacts and incorrect estimations of the gaze directions, the false positive
rate of 5% can be accounted for by the defined assumption of the a priori values. As
mentioned in Subsection 4.5.1, the application of the a priori values defined by (4.19)
is based on the assumption that the probability is increasing for the Aol which was
fixated for the previous sample. This assumption is valid and reasonable for the overall
detection performance as described in the previous subsection and optimizes the detection
of Aols. However, a priori values may have a negative impact during gaze shifts since
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they increase the weighting of the previous Aol compared to the destination of the gaze
shift. As a consequence, if the driver does not exactly focus at the center of the cluster
of the subsequent Aol, such estimated gaze points could be assigned to the previous
cluster with the increased weighting. This is especially critical for densely packed or large
Aols. Moreover, recorded gaze points during the actual gaze shifts will be assigned to
the previous cluster at the beginning of the gaze shift although they should be assigned to
none defined Aol, representing the former cluster unknown.

For the last step of the evaluation, the detection algorithm is applied to separate secondary
tasks performed on a handheld or hands-free device. The confusion matrix in Figure 4.10
again shows an outstanding detection performance. While all samples belonging to the
hands-free Aol are classified correctly, 10% of the samples recorded during the usage of
the handheld device were assigned to the false class. The reason for this result is the low
priority of the handheld cluster during overlapping scenarios. One of the subjects was
holding the handheld device in front of the hands-free cluster which caused the assignment
of the data samples to the overlapped hands-free cluster instead of the correct handheld
cluster. If this subject is excluded from the evaluation, a perfect confusion matrix with
100% accuracy is reached. Obviously, overlapping scenarios are an open topic concerning
the detection of Aols in the vehicle, in particular for dynamic cluster such as the handheld
cluster. Although first studies are found in literature with regard to the topic of detecting
the 3D gaze position [96], the robust and accurate detection of the vergence of the driver’s
eyes over near-to-production camera systems in the vehicle will remain a challenging task
during the next decade. Nevertheless, the overall accuracy of the Aol and EoR detection
is outstanding and close to the optimal result. However, the presented driving study has
limitations in terms of the number of participated subjects and their variations regarding
ethnicity, gender, and optical aids since only trained drivers were allowed to participate in
this study.
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Figure 4.10: Classification performance of the clustering-based approach for separating the usage
of handheld and hands-free devices based on the real driving study.

4.6 Summary

In this chapter, methods for detecting eyes on road were investigated in detail. At first,
the concept of EoR gazes was introduced, it is a common phenomenon in conditionally
automated driving scenarios. Following that, it was shown that there is already an exten-
sive amount of literature and approaches available. However, none of them fulfills all the
requirements for a calibration-free system for series vehicles able to detect driver gazes in
dynamic Aol. Moreover, a robust fallback strategy in case of missing or invalid gaze data
is required. As a consequence, the chapter proposes a novel approach for detecting eyes
on road based on Gaussian mixture models. This model generates clusters representing
the different Aols such as the exterior mirrors or handheld devices. These clusters can be
individually adapted to the different drivers and situations. Further, the chapter shows the
approach modifications necessary to transfer it to the online scenario. Using the data of a
real driving study with a near-to-production camera system, the outstanding performance
of the approach was verified. Of course this approach might fail in the event of a distorted
gaze estimation as shown in Subsection 4.3.2. As a consequence, a novel fallback strat-
egy was proposed especially designed for detecting EoR gazes in conditionally automated
driving scenarios. This fallback strategy analyzes the head movement behavior instead
of focusing on an absolute head pose. Based on the data of an extensive driving simula-
tor study, the benefit of this fallback strategy was presented. Nevertheless, this approach
has a natural limitation since only about 80% of all EoR gazes include head movements.
The proposed approaches will be used to extract features for a classification of the driver’s
take-over readiness in Chapter 6.
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The most significant difference between non automated and conditionally automated driv-
ing is the transfer of responsibility. While the driver is currently responsible for the vehicle
at all times, an automated driving function takes over this responsibility in a conditionally
automated setting. As a consequence, this new level of automation involves great benefits
in terms of comfort and enables the driver to use the driving time more efficiently by al-
lowing the performance of secondary tasks. However, many studies indicate a correlation
between secondary tasks and a low take-over quality [8], [9], [97]. Hence, the classifica-
tion of the take-over readiness proposed in this study considers the driver’s activity as one
source of information for determining if the driver is able to take-over appropriately. In
order to extract relevant features of secondary tasks for this classification, automated and
online-capable methods for driver-activity recognition (DAR) during conditionally auto-
mated drives need to be developed and evaluated. In the following chapter, the state-of-
the-art for driver activity recognition is summarized before two different novel approaches
are introduced in Section 5.2 and Section 5.3. These approaches will be evaluated and
compared to each other based on the data of the KoHAF experiment in Section 5.4. Fi-
nally, in Section 5.5, the superior approach will be implemented and tested in the vehicle
environment based on the data from the real driving study.

5.1 Existing Methods for Driver-Activity Recognition

Detecting the driver’s secondary task is one of the various applications of human activity
recognition (HAR). Other applications of HAR involve smart security surveillance [98],
health monitoring [99], and efficient human-machine interfaces [100]. Many of these ap-
proaches for HAR are based on computer vision methods, i.e. using remote camera sys-
tems. A comprehensive review of HAR based on computer vision is given by Turaga et al.
in [101]. Moreover, there are some studies regarding the application of in-vehicle camera
systems to recognize of different types of activities inside the vehicle. Typically, the mo-
tion patterns of different body parts, e.g., motion of the hands, legs, the torso, the head, and
the posture of the body are taken into account to infer driver activity. The detected activity
does not have to be a concrete specified interaction with the vehicle or its surroundings,
such as shifting into another gear, but it can describe an Aol the driver is currently paying
attention to. These Aols summarize all activities performed in the specified region. In this
way, Ohn-Bar et al. proposed a framework capable of distinguishing between activities
performed inside of three Aols, namely the gear region, the instrument cluster, and the
wheel region. To reliably distinguish between the mentioned Aols, the authors combined
hand activity recognition [102] with the estimated gaze direction. Another more general
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approach for using semantic driver activity analysis that could easily be extended to mul-
tiple sensor types was introduced by Park and Trivedi in [103]. The distinguished results
indicate that activities in adjacent Aols will often be confused and, therefore, depend on
features of motion patterns of various body parts to improve the classification accuracy.

While approaches based on computer vision usually still have limitations in terms of dis-
tinguishing activities inside the same or adjacent Aol and with similar motion patterns,
wearable sensors are able to provide highly accurate data for basic research due to their
intrusiveness. At the same time, intrusiveness represents the major drawback of wearable
sensors, since it usually precludes application in series vehicles and influences the natural
driving behavior. Lara and Labrador [104] provided a comprehensive overview of wear-
able sensors and their applicability for various topics. A large number of studies discuss
activity recognition based on accelerometer data [105], [106]. In [107], Sathyanarayana et
al. tried to detect distracted driving behavior by using accelerometers on the driver’s legs
and head. It was noted that the distracted activity of using a mobile phone can be detected
reliably with the intrusive head sensor. However, this sensor type is better suited to physical
activities such as jogging or climbing stairs, than to the primarily cognitive tasks which are
of interest for automated driving. Because human eyes have the potential to reveal various
driver states such as drowsiness [108] and inattention [109], eye movement analysis has
been the focus of much research in different fields of study. Eye movements were first con-
sidered as a possible information source for activity recognition by Bulling et al. [110]. To
classify different office activities, such as browsing the web or reading a text, the authors
recorded eye movements by means of EOG, detected basic eye patterns, namely saccades,
fixations and blinks, and extracted multiple features based on these patterns [110]. The
authors reported that eye movement analysis is suitable for activity recognition. Based on
these findings, Banerjee et al. [111] analyzed time, frequency, and time-frequency corre-
lated eye signal features to recognize eight different tasks. By combining all eye features
from the time, frequency, and time-frequency domains, the highest classification result of
90.39% was obtained. However, note that these results were achieved on an EOG data
set recorded by means of a high sampling rate of 250 Hz and a subject-dependent training
set. Besides the above work based on EOG, the increasing signal quality of eye-tracking
systems facilitates the recording of eye movements. Head-mounted eye trackers enabled
a new approach combining eye movement analysis and visual features due to the avail-
able eye and field camera [112]. Using the Google Glass platform as a sensor to measure
eye blinks and head motion patterns, Ishimaru et al. verified in [113] that these standard
sensors in combination with just four features yield the potential for human activity recog-
nition. Besides the typical visual-based tasks, such as watching a movie and reading, the
analyzed activities in [113] also contained a demanding cognitive activity, namely solving
mathematical problems, and a physical activity, namely sawing. According to the authors,
the cognitive task was hard to classify due to its dual character: writing the answer and
looking at the assignment sheet.
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Figure 5.1: Overview of the applied architecture.

5.2 CIDAR - Chronologically Independent Features for
Driver-Activity Recognition

The framework of the first approach to detect the driver’s activities proposed in this work is
shown in Figure 5.1. This architecture can be divided into two paths which are merged at
the final classification step: the eye-tracking path for extracting features of the eye move-
ments, which is derived from the framework introduced by Bulling et al. [110], and a novel
head-tracking path for extracting features of the driver’s head movements. Subsequently,
the modifications of the original eye-tracking path as well as the novel head-tracking path
will be described in detail. This section is based mainly on the author’s publications [15]
and [16].

5.2.1 Architecture of CIDAR

Starting with the eye-tracking path, shaded in light gray in Figure 5.1, head-mounted or
remote camera systems are used to record the eye movements instead of an EOG system
as applied in [110]. Due to the often significant lower frequency and the typical challenges
concerning video-based eye trackers, e.g., changing illumination conditions, individual
shape of the pupil, disturbing accessories, etc., a lower signal quality is expected. More-
over, test subjects are not forced to perform secondary tasks continuously as described in
the original study. Instead, the drivers are enabled to interrupt or even change the task at
will. As shown in Chapter 3, such behavior influences the eye movement behavior and has
to be taken into account for the eye movement classification step. Hence, the proposed ap-
proach MERCY, described in Section 3.2, was applied to distinguish between saccades and
fixations in this architecture. Due to the permanent online adaption of the two Gaussian
distributions of the mixture model, the algorithm is able to adapt to the highly intra- and
inter-individual eye patterns. Besides saccades and fixations, the DAR is based on detected
eye blinks. In the case of a camera signal, eye blinks are usually not explicitly detected but
modeled from the data [48]. The actual blink detection of this approach consists of two
steps. In the first step, signal parts with a low signal quality are deleted. Therefore, a mov-
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ing temporal window 5 s wide is shifted over the whole signal while calculating the amount
of invalid values. Depending on the applied eye tracker, invalid samples might be recog-
nized by means of a validity signal or specified signal values of the actual eye-tracking
signal. If the percentage of invalid data is greater than 30%, this signal portion will not be
considered for the next analysis step. The idea behind this is to reduce the amount of false
detections in areas where the signal quality is inacceptable. In a second step, all remaining
sequences in which the eye tracker was not able to detect the pupil, will be labelled as an
eye blink of a certain duration #;;;, if the following threshold criteria are fulfilled:

[thimin — tol| < tpink < |[thmax —tol|. 5.1)

The threshold values from (5.1) were set to th,,;, = 0.1sec and th,,,, = 0.4sec according
to [114] and represent the average minimum and maximum duration of an eye blink. The
tolerance variable results from the circumstance that the duration of the examined events
of invalid values typically does not correspond to the average eye blink duration. The
reason for the lack of correspondence is that the eye-tracking system is still able to detect
the pupil while the eyelid is already moving downwards in the closing phase or moving
upwards in the opening phase and the pupil is still visible. Therefore, the tolerance value
has to be chosen according to the sampling rate f of the eye tracker and is set to ol = }

The combined eye movement encoding and wordbook analysis presented in Figure 5.1
perform a mapping of each saccade to a symbol depending on the amplitude and direction
of the saccade. A moving window of a specified size m,,,,4 is shifted over the sequence of
characters and all existing combinations of characters, called words, are detected and saved
in the wordbook Wb, as in [110]. In the next step, the features used for the classification are
extracted. In total, 145 features based on the detected saccades, fixations, blinks, and word-
books have been analyzed and will be described in more detail in Subsection 5.2.2). Due to
the high number of features and therefore increased risk of an overfitting of the classifier,
a feature selection is performed to reduce the number of the features. This selection step is
performed by means of the Fast Correlation-Based Filter (FCBF) algorithm introduced by
Yu and Liu in [115]. FCBF chooses a subset of features according to the redundancy and
relevance analysis based on the measure of correlation symmetrical uncertainty, given by

SUX,Y)=2- (&) (5.2)

where the function /G represents the information gain defined as
IG(X|Y)=H(X)—H(X|Y) (5.3)

and with H representing the entropy, X representing one of the extracted features, and Y
representing the observed class, i.e., the actual secondary task. The entropy of the feature
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X is calculated by means of the formula
H(X) = = Y Plxi) -loga (P(x) ). (5.4)

H(X|Y) describes the entropy of the feature X after observing the corresponding class Y
and is defined by

H(X|Y) = = L P()) Y P(xilyj) -loga (Pailyy) ). (5.5)

Class Y has a higher correlation to feature X than to feature Z if the condition
IG(X|Y) > IG(Z]Y) (5.6)

is satisfied. Usually, a normalization of the information gain /G in Equation (5.2) is per-
formed to handle different occurrences of classes and features in the data. This method
comes with the benefit of not being forced to choose the size of the subset a priori. Instead,
a relevance threshold y can be defined to decide if the correlation of any feature and a given
class is high enough. For the later evaluations, ¥ was set to y = 0.1.

The head-tracking path, shaded in dark gray in Figure 5.1, is based on the measured head
position and head rotation. The calibration step is used to determine the driver’s head ori-
entation when looking straight ahead at the road. This is necessary for the later calculation
of the head features and for comparability among different test subjects. Note that this
calibration step depends only on the applied measurement system and does not conflict
with the online-capability of the overall approach. As for the eye-tracking path, the feature
extraction step will be skipped here and explained in detail in Subsection 5.2.2.

Finally, the selected eye and head features are merged and used for the training and testing
of the classification model. An SVM was employed as classifier, since this type of classifier
tends to be robust with regard to the overfitting difficulty due to the use of the regularization
principle [116]. Furthermore, a Radial Basis Function (RBF) kernel is applied, because of
earlier promising classification results of the combination SVM and RBF kernel [110],
[111].

5.2.2 Feature Extraction

The two feature extraction steps of the head- and eye-tracking paths in Figure 5.1 are
the main component of the proposed method for DAR and have a significant impact on
the classification performance. Hence, in addition to the feature set containing features
reported in literature, a set containing novel features especially designed for the automated
driving context will be introduced in this subsection. These different sets of features will
then be compared to each other based on the data of the pre-study NEBAF (see Subsection
2.4.3) to determine the most promising features in subsection 5.2.3.

In total, 92 eye-based features all taken from literature represent the feature set ’static”.
More specifically, 90 features are selected as suggested by Bulling et al. in [110]. These
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Figure 5.2: Exemplary scatter plot of the EoR gazes. Every point resembles a detected saccade
with the horizontal/vertical amount of the amplitude on the x-/y-axis. The scale is in pixels (px), in
accordance with the units of the Dikablis eye camera.

features, containing mean, variance, rate, and maximum values, can be separated into four
groups: 62 features related to saccades, 5 features derived from fixations, 3 features related
to blinks, and 20 wordbook features. The two remaining eye features of this feature set
describe the x- and y-coordinate of the centroid of a blink frequency histogram with the
actual blink frequency shown on the x-axis and the number of occurrences of the particular
frequency shown on the y-axis. This feature was described by Ishimaru et al. in [113] and
suggested calculating the blink frequency by shifting a temporal window of specified size
over the detected blinks.

These features were already successfully applied for HAR in static lab environments,
which explains the label of this feature set. However, a conditionally automated driving
scenario can be seen as far more dynamic and distracting than a lab environment. The
proof for this assumption of increased dynamic with regard to the eye movement behavior
was provided in Chapter 3. Thus, the subjects are expected to diverge, which usually
inflicts additional noise and artifacts. However, this altered behavior might contain addi-
tional information extractable as novel features. One example for such a phenomenon are
the EoR gazes described in Chapter 4 and occurring during secondary tasks when driving
in a conditionally automated setting. In Figure 5.2, the recorded gaze behavior of a 5 min
interval of such a scenario is plotted. It shows the saccades towards the road (upper-left
cluster) and the saccades towards the secondary task (lower-right cluster), exemplarily
performed on the area of the center console. In principal, such behavior complicates the
goal of detecting the driver activity, since the driver often interrupts the current secondary
task leading to eye and head movements that are not related to this task. At the same time
however, the number of EoR gazes could correlate with the interruptibility of the task. For
example, watching a video does not necessarily require the driver to focus on the screen,
resulting in high interruptibility. In contrast, reading a text occupies the visual attention
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Figure 5.3: Tree structure of the novel head and eye features introduced in this work. mAbs=mean
of absolute values, var=variance, hor=horizontal, ver=vertical, S=small, L=large, pc=percentage,
gX=quadrant number X, ratX=ratio of words of the size X, dur=duration, B=blink, cent=centroid.

and is usually only interrupted at the end of a sentence or paragraph.

Therefore, this work now examines novel eye and head features introduced to address the
behavior of drivers. The set of these 53 features in total will be referred to as the feature
set dynamic”. All these new introduced features are shown in the tree structure in Figure
5.3 along with the appropriate notation. The notation follows the taxonomy introduced by
Bulling et al. in [110]. Every leaf node corresponds to an actual feature, while the parent
nodes show the dependencies to the different head and eye patterns. Figure 5.3 a) outlines
20 features derived from the head-tracking signal. The mean and variance features are
calculated for every position and rotation in the 3-dimensional space. To gain insight into
where and for how long the driver’s head was directed, the field of view is divided into eight
quadrants as shown in Figure 5.4. The inner four quadrants result from the circumstance
that the gaze and head direction straight ahead cannot be seen as an exact point but only as
a narrow field of view. The size of the inner quadrants was set to 10° in the x- and 5° in the
y-direction based on a previous analysis.

Figure 5.3 b) lists the 32 novel eye-based features, where 20 of these features are based on
the distribution of driver’s saccades in the four outer quadrants Q1 to Q4 and the remaining
twelve features can be seen as an addition to the previously mentioned 92 features. How-
ever, in contrast to the features known from literature, the absolute value of the amplitude
is used, denoted by mAbs, before calculating the mean value. Without using the absolute
values, opposite saccade clusters as shown in Figure 5.2, would abrogate one another and
information would be lost. The two wordbook features, namely W-ratl and W-rat2, pursue
the idea of improving the classification of secondary tasks involving reading by calculating
the ratio between the number of glances to the right and glances to the left. In the case
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Figure 5.4: Schematic segmentation of the driver’s field of view in eight quadrants.

of reading, this ratio should tend towards the glances to the right, since reading typically
consist of many small glances in direction of reading. Therefore, all words mapped from
saccades with any positive or negative horizontal amount of the amplitude are counted as
glances to the right or left, respectively. This feature was calculated for wordbook sizes
I =1 and / = 2. The remaining features, namely mean, variance, and percentage of the
saccades contained in the different quadrants, reflect the distribution of the performed sac-
cades among Q1 to Q4. Hence, these features determine whether clusters of the EoR gazes
exist. The size of the inner quadrants was set to 75 px in the x- and 25 px in the y-direction
based on a previous analysis of scatter plots similar to Figure 5.2.

5.2.3 Evaluation of Static and Dynamic Feature Sets

For the evaluation, only data from 73! of the former 85 test subjects of the NEBAF study
described in Subsection 2.4.3 could be used due to missing signals from the head- and/or
eye-tracking system or erroneous simulations such as traffic freezes for eleven subjects
of the experimental group. This is a single subject less than for the evaluation described
in Section 3.3 due to one subject with missing head-tracking signals. A One-Against-All
Multi-Class SVM classification coupled with a leave-on-out cross-validation method was
conducted, i.e. the model was trained with the data samples of 72 test subjects, tested
with the samples of the left test subject and this procedure was repeated for every possible
combination. This approach was chosen in order to provide as many training samples
as possible to cover as many different driver behaviors as possible. Furthermore, this
approach ensured that the evaluation was subject-independent, i.e. the model was never
trained with any driver data samples used for the testing phase. Since the number of
performed secondary tasks varied among the test subjects and the required duration time
of some tasks was driver dependent, e.g. because of the reading rate, the number of data
samples is not equal for the different tasks. Consequently, training the model with an
unbalanced data set was prevented by taking the same number of randomly chosen data
samples, more precisely the minimum number of samples among all secondary tasks, of
every task.

141 males/32 females, mean age of 39 years (range 20-60, SD=10)
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Figure 5.5: Classification results using only the feature set “static” (left) and both feature sets
"static" and "dynamic" including the two novel head features (right).

The first step was to apply only the features of the static set in order to determine how
these features perform in the context of automated driving. The features were calculated
for non-overlapping 90s windows. On average, one hour of recorded data per secondary
task was used to train the model. The confusion matrix of the classification result is shown
on the left side of Figure 5.5. Obviously, the features used are sufficient to distinguish
between the different visual tasks and the idle task in the simulated driving scenario.
However, with a recall of 0.57% and a precision of 0.5%, the model performs significantly
worse than in the known lab environments for which the above features were originally
designed. The two histograms on the left part of Figure 5.6 show the features selected by
the FCBF. In the upper histogram, the seven most-selected features are seen in the order
of the number of selections shaded in gray. Each of these features was selected for at
least 75% of the subjects. The cumulative histogram below shows the number of selected
features. The average of 26 selected features among the leave-one-out cross-validation is
marked with a dotted vertical line.

To improve this classification result, the next step focused on improving the detection of
the idle task based on the 20 novel head features as introduced in Section 5.2.2. Three
binary classification runs, namely idle task versus video, reading, or writing task, were
performed, analyzing the potential of the head features to separate the idle task from
the three other visual tasks. In all three cases, the two most relevant and most often
selected features were RP-g4dur and RP-qldur. The duration for which the head direction
stays in one of the two outer quadrants on the right appears to be enough for a reliably
classification. All the other features were irrelevant. With respect to these findings, the
same three classification runs were repeated using only the RP-g4dur and RP-qldur
feature. The recall of 0.93% and an average precision value of 0.9% over the three
classification results confirmed the identification of two features which can discriminate
the idle task from the remaining secondary tasks.
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Figure 5.6: Histograms of the selected features for the analysis of the eye features of feature set
“static” (left) and for the combination of the feature set "static" with the feature set “dynamic”
(right). The upper histograms show the features arranged according to how often they were selected
by the FCBF algorithm. The features with the gray shaded bars were selected for more than 75%
of the subjects. The lower histograms show the total number of selected features over all subjects,
where the dotted line represents the average value.

The final analysis combined the feature sets static” and “dynamic” with the two a priori
extracted head features. In comparison to the first confusion matrix, a significantly im-
proved classification result was obtained as shown in the confusion matrix on the right side
of Figure 5.5. Both recall and precision improved by 20% compared to the classification
with just the 92 eye features, recall to 0.76% and precision to 0.7%. The best classification
is reached by the idle task with a true positive value of 94% while the worst classification
result of the mail task can be detected in 65% of cases. The difficulty in detecting the
mail task lies in the dual character of the task: it combines segments where the driver is
reading and, while writing and focusing on the keypad, segments with unstructured eye
movements similar to the video sequences. The high classification rate of the reading task
did not increase further since the new features seem to hold no additional information for
detecting this task. Furthermore, the upper histogram of Figure 5.6 shows that for the
combination of all eye features, a smaller number of features emerges which is used for
more than 75% of the subjects. The two best features for this analysis are S-Q4meanVer
and S-Q2varHor, both extracted from the two quadrants directly related to the clusters of
saccades emerging from the EoR gaze behavior of the driver. From the histogram below, it
can be deduced that the total number of selected features per subject decreases on average
by 7 features down to 19 features. Hence, these features seem to contain most relevant in-
formation, able of greatly improving the classification result even with a decreased number
of features. As presented in Table 5.1, the novel features resulted in a marked improvement
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Static feature set Static & Dynamic feature sets
Task | ACC | Precision | Recall ACC | Precision | Recall
idle 0.47 0.55 0.85 0.94
video 0.72 0.45 0.87 0.72
reading 0.6 0.71 0.72 0.74
mail 0.2 0.58 0.35 0.65
(0] 0.53 0.5 0.57 0.77 0.7 0.76

Table 5.1: Summary of the classification results with regard to the applied feature sets. The lowest
row contains the averaged results of the different measures.

of the mean classification accuracy2 (ACC) from 53% to 77%. For later evaluations, the
combination of both feature sets will be applied and this approach will be referred to as
CIDAR (Chronologically Independent features for Driver-Activity Recognition).

5.3 Scanpath-Based Driver-Activity Recognition

Although the approach described in the previous section showed promising results by
incorporating head and eye features and adapting them to automated driving scenarios, it
has one major drawback. All features, except for the wordbook features, are calculated
by means of a moving time window without capturing any temporal relationship, which
means that they cannot contain any information about the chronological order of the
patterns detected inside this window. This results in a loss of information, which has a
severe negative impact especially when the window size is decreased. Moreover, since this
approach is based on raw features which are not further pre-processed, they may include
unnecessary or even erroneous information, which could deteriorate the classification
performance.

One possible way of considering the chronological order of eye gaze patterns, can be re-
alized by analyzing the visual scanpath of the driver. The assumption for this approach is
that similar scanpaths describe the same cognitive activities across multiple subjects. For
example, while reading a text from the left to the right, many small saccades to the right are
performed before the end of the line is reached and a large saccade to the left is performed
to switch to the next line (cf. Figure 5.7 (a) and (c)). This typical pattern is repeated over
and over again, which makes it a sufficient indicator for this task. It can be assumed that
other secondary tasks also contain such typical patterns. This section is mainly based on
the author’s journal paper [17].

2Accuracy = (TP+TN)/(TP+FP+FN+TN)
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Figure 5.7: Overview of the scanpath-based approach showing the main steps of the algorithm: (a)
Recording of the scanpath, (b) Clustering of the Aol, (c) Creating strings over a SAX pattern, (d)
Removal of repetitions, (e) Creating tables with frequencies of words according to SubsMatch, (f)
selecting the most relevant words and using them for classification.
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The method for scanpath comparison as shown in Figure 5.7 is applied to the data of a mov-
ing time window similarly to the CIDAR approach. These data sets of the moving window
will be referred to as sequences with a specified size my,, and step size n,.,. The data itself
represents the relative gaze direction @ described by the yaw y and pitch angle 6 of the
gaze vector originating at the bridge of the driver’s nose. For all samples of each sequence,
the algorithm determines the superior Aol which the driver is looking at, e.g. a handheld
device or the area of the windshield. This is done by means of the clustering-based ap-
proach described in Section 4.3. By shifting a temporal moving window over this signal
describing the Aol and performing a majority decision based on the detected Aols within
this window, the approach is able to distinguish between tasks performed on a handheld or
hands-free device. Moreover, a driver who is monitoring the Aol describing the windshield
during automated driving is classified as idle. Data sets classified as idle phases will not
be forwarded to the subsequent steps. In subsequent steps, a more subtle detection of the
current activity is performed based on a framework for scanpath comparison and a trained
SVM.

5.3.1 SAX Patterns

Symbolic aggregate approximation, or simply SAX, is a common method in the field of
data mining for mapping time series of arbitrary length on sequences of symbols of a
defined alphabet Xs4x [117]. For example, in Figure 5.7(c) Xsax represents a set of four
symbols {A,B,C,D}. In the present approach, the mapping is based on the gaze angles
v and 0 and additionally on patterns, which will be called SAX patterns in the following.
Depending on these patterns and the corresponding quantization, different aspects of the
gaze behavior will be highlighted, while others will be ignored. This is an especially useful
feature for the novel DAR approach, since distinctive eye movement patterns for different
secondary tasks can be assumed. Before applying the patterns, ® is high-pass filtered by
the mean of the corresponding cluster so that 6 and y are centered around zero. This
high-pass filter allows inter-individual differences to be ignored, e.g., different positions
of the tablet or the head direction. In a subsequent step, the difference signal of this high-
pass filtered signal is calculated and used as input for the SAX patterns. The vertical SAX
pattern was selected as a promising SAX pattern for detecting reading subjects(cf. Figure
5.7(c)). The vertical SAX pattern separates the measured samples in |Xg4x| horizontal
areas, e.g., in Figure 5.7(c), the vertical SAX pattern consists of |Es4x| = 4 areas. The
width of these areas is determined over quantiles such that they contain the same number
of measured samples. This approach was proposed as part of the SubsMatch algorithm
by Kiibler et al. in [118] to eliminate spatial offsets, e.g., due to different distances to the
scene. Since only the yaw angle y is considered for the quantization, only horizontal gaze
shifts are encoded by this pattern. In the following, the vertical SAX pattern is used in
each application of the scanpath-based approach, including the subsequent evaluation. The
result of this step is a string of symbols representing the transformed scanpath.
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5.3.2 Removal of Repetitive Symbols

In case of only minor or a lack of changes in the gaze direction, data samples are mapped
by these patterns on the same symbol for a certain amount of time. Hence, it is necessary
to define how to handle many repetitive symbols, especially for high sampling rates. In ad-
dition, some SAX patterns increase the probability of repetitions. For example, the vertical
SAX pattern ignores vertical eye gazes. Thus, even if huge vertical gaze shifts occur, they
will not result in a shift of the currently mapped symbol. The length / describes the number
of sample points mapped on the same symbol. Depending on the secondary task, which
shall be recognized, the duration can contain crucial information for the later classification
or may simply complicate the extraction of the important aspects. Therefore, this approach
contains a trade-off between considering and ignoring the length of the repetitive symbols
by implementing the function defined in (5.7).

ifl <I<p
if pr <I<ps
if pp <I<p;3
else

m(l) = J1eN (5.7)

AW =

By applying the function defined in (5.7), the maximum number of repetitive symbols
is reduced to four. Following this approach, the memory consumption of long segments
mapped on the same symbol can be significantly reduced and limited, but there is still a
coarse distinction of different fixation durations. The values p; with i = {1,2,3} are deter-
mined by means of the (1 — 16!~%)-th quantile of the length of all segments generated by
the vertical SAX pattern of the corresponding subject over all Aols with at least one repet-
itive symbol. That means that the number of symbols which need to be removed increases
exponentially with the length / of the repetitive segments. In line with the assumption that
the entropy decreases for longer repetitive segments, these segments are weighted lower
by the function defined in (5.7). This approach was chosen to enable a distinction of seg-
ments with usually more than ten repetitive symbols since it is assumed that these segments
contain more relevant information than the segments with less repetitive symbols.

5.3.3 SubsMatch

SubsMatch is a framework for comparing scanpaths, which are represented as strings,
in dynamic, interactive scenarios [118], [52]. For this purpose, SubsMatch shifts a
moving window over the corresponding string generating overlapping substrings, called
words. These are the same words used for the wordbooks described in Subsection
5.2.1. Afterwards, the frequencies of all existing words of a pre-defined size within each
sequence are determined. Each word and the corresponding frequency of occurrence for a
given sequence with the length my,, is stored in a normalized hash table. To determine the
distance of two sequences, the cumulative, absolute difference between the frequencies
of all corresponding words of both hash tables is calculated. Thus, two sequences with
almost equal frequencies of the same words are considered as similar. Moreover, the
order between words has no impact on the comparison, since there is no weighting of the
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frequencies of one sequence. Instead, the relevant information on the chronological order
of the gaze behavior is contained within the words. Thus, the size of the words m,,,,; has
to be chosen large enough to cover the relevant gaze behavior of a scanpath. At the same
time, it should be noted that the size of the words m,,,, is a critical factor with regard to
the memory consumption and run-time of the approach. The number of possible words of
the hash table is given by |Xgax|™ and, therefore, increases exponentially with the size
of the words.

To visualize the similarity between hash tables for one and multiple subjects, two dis-
tance matrices were calculated with an alphabet size of |Egax| = 9 symbols, a word size
of my,rq = 4 symbols, a sequence length of my, = 60s, and a step-size of the sequences
of ngy = 1s and plotted in Figure 5.8. In Figure 5.8(a), the distance matrix of one subject
with three tasks, namely test subject is reading, watching a video, or is being idle, is shown.
On the x-axis, a fixed number of tables of each task is used for the calculation of the dis-
tances to the same tables plotted on the y-axis. For each calculated distance of two tables,
a small box is plotted in an appropriate gray scale. The darker the box the more similar
the corresponding tables. Figure 5.8(b) was constructed in the same way. However, for the
second distance matrix the tables were randomly drawn out of 42 different subjects. Since
the same tables were used on the x- and y-axis for both figures, the dark main diagonal,
referring to the high similarity of the corresponding tables, is easy to recognize in both
plots. It can be seen that for one subject the tables of each task form a distinctive cluster in
the matrix. This indicates that the detected words and, therefore, the viewing patterns are
largely similar within the data for one task from one subject. These clusters are no longer
recognizable in the lower distance matrix, indicating the inter-individual differences of the
viewing patterns. However, the following subsection shows the clusters can be recovered
by reducing the dimension of the tables.

read video

idle read video

idle

video  read idle

video  read idle

(a) Distance matrix of one subject with visible clusters. (b) Distance matrix of 42 subjects without visible
clusters.

Figure 5.8: Distance matrices of the hash tables from example tasks. The gray scale of the small

rectangles corresponds with the distance of the corresponding tables of the x- and y- axis. The
darker the box the more similar the tables.
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5.3.4 Feature Selection and Classification

The tables calculated by means of the SubsMatch algorithm may have a high dimension,
depending on the possible number of words given by |Xgax|. For such high dimension-
ality, the probability of overfitting increases, since a tremendous amount of data is neces-
sary for training the classifier. Hence, the size of the tables needs to be reduced. First,
all words which never occurred in the tables as well as words with a similar frequency for
different secondary tasks are deleted. Second, a feature selection is performed by means
of the FCBF (see Subsection 5.2.1) on the remaining words. For that, all frequencies are
scaled logarithmically to prevent numerical issues due to the minor frequencies.

read ___video

idle

video read idle

Figure 5.9: Distance matrix of 42 subjects after recovering the clusters using feature selection.

Figure 5.9 shows the same distance matrix as in Figure 5.8(b) but after the performed fea-
ture selection. It can be seen that the cluster for the task read is recognizable again. Finally,
the selected patterns are applied by the classifier to decide which class has to be assigned.
In case of various secondary tasks, a cascade of multiple classifiers can be constructed
each separating two types of classes. For each step of the classification cascade, a SVM
classifier can be trained, or features derived from the Aol cluster can be used directly. For
the present work, however, one SVM and the clustering-based approach are sufficient since
only three tasks are analyzed. For the SVM a Radial Basis Function kernel was chosen to
increase comparability with the approach in Section 5.2.

5.4 Evaluation and Comparison

For the evaluation and comparison of the two approaches described in Sections 5.2 and
5.3, data from 82° of the former planned 112 subjects of the KoHAF-study could be
applied. For 16 subjects the eye-tracking software froze or could not track the pupil
sufficiently, so that the data of these experiments cannot be applied to the two approaches.

346 males/36 females, mean age of 38 years (range 20-58, SD=11)
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In addition, the simulation software of the driving simulator broke down, resulting in the
cancelation of ten experiments. Furthermore, the eye tracker suffered mechanical damage
after the 56-th subject: The swan-neck mounting of the right eye camera broke while
adjusting the camera to the face of the test subject. Hence, only the data of the left eye is
used in the following evaluation. The remaining four subjects could not participate, since
they did not arrive in time for their scheduled slot. Out of the total number of subjects, 14
subjects belonged to a control group who only performed the task idle. These subjects are
excluded from the classification of the classes handheld versus hands-free.

The secondary tasks of each subject were separated into sequences of size my,,. For the
evaluation, my., was varied from 5s to 90s with a constant step-size of ng, = 2. The
smaller the sequence size, the less information is available for the DAR. Only sequences
which can be unambiguously assigned to a single secondary task were used for the eval-
uation. The ground truth was given by the software running on the supplied tablet, which
indicated the currently assigned secondary task and currently opened submenu of the user
interface. Note that the subjects were not instructed on how to perform the corresponding
tasks in order not to influence their natural behavior. Hence, the subjects sometimes inter-
rupted the secondary task by observing the road or by relaxing for a short moment. Since
at the beginning of each task the subjects needed to navigate to the corresponding submenu
of the user interface, the first ten seconds of each secondary task were not evaluated. For
all evaluations, a leave-one-out cross-validation was performed with a subject-independent
testing dataset. That means the SVM was tested with datasets of an unknown subject. A
balanced training dataset was generated for each evaluation, so that the training of the clas-
sifier would not "prefer" one of the classes. In total, the analyzed simulator data contains
about 9 hours of the secondary task read, about 7 hours of the secondary task video, and
about 3 hours of sequences with idle drivers. Furthermore, considering a step-size of 2s
for the calculation of the overlapping sequences by means of a shifting window, about 22
hours of the class read, about 17 hours of the class video, and about 6.5 hours of sequences
of the class idle are used for the leave-one-out cross-validation. For each class except
for the class idle, about 50% of data is performed on a handheld and hands-free device,
respectively.

For the sake of simplicity, the terms Scan and CIDAR will refer to the proposed scanpath-
based approach and approach with chronologically independent features, respectively. For
CIDAR, all parameters were chosen as described in Section 5.2 and both feature sets
“static” and “dynamic” as well as the two best performing head features RP-qldur and
RP-g4dur. With regard to the selection of the DAR approach parameters based on the
driver’s scanpath, the size of the words was set to m,,,,y = 4 with an alphabet size of
|Esax| = 9, resulting in 6561 possible words.

5.4.1 Handheld vs. Hands-free device

Using CIDAR, a SVM was trained to separate tasks performed on a handheld or hands-
free device. Moreover, the clustering approach of Scan was applied for the same task.
In Figure 5.10, the F1 score (dashed blue line), representing the harmonic mean of the
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recall and precision of the binary classification, as well as the accuracy (solid green line)
of the leave-one-out cross validation over the different sequence sizes was plotted for both
methods. As can be seen, both statistic measures provide similar values for all sequence
sizes for both approaches. This indicates that the classification is not performed in favor
of one of the two tasks handheld or hands-free. The F1 score and the accuracy of the
classification performance of CIDAR (lines with circular markers) never fall below the
73% mark in Figure 5.10, but show variations for the different sequence sizes. Note that
the actual variation of the plot only comprises a range of 7%, i.e. the variations of the
measures are quite small. These variations and possible outliers can be ascribed to the
directly applied raw features, which are not pre-processed or further abstracted to remove
unwanted or erroneous information. CIDAR seems to be a reasonable choice for detecting
drivers using handheld or hands-free devices even in case of little information, as long as
fluctuations of the performance are tolerable.

In contrast, the clustering approach of Scan (lines with square markers) shows a smooth
course for both measures with little to no variations at all between adjacent sequence sizes.
This continuous behavior of the classification performance can be ascribed to the use of
the continuous gaze direction, which is further pre-processed by performing the majority
decision within the moving window. Moreover, Scan is more accurate and has a higher
F1 score than the corresponding CIDAR results for each sequence size. In particular, both
of these criteria increase by 8% in case of a sequence size of five seconds and even for
a sequence size of 30s. While CIDAR has its peak in the classification performance,
Scan still outperforms CIDAR by about 5%. In summary, both approaches are capable of
separating tasks performed on handheld or hands-free devices for online- as well as offline-
settings. However, Scan should be favored due to the increased classification performance.

5.4.2 Classification of Secondary Tasks

In Figure 5.11, CIDAR and Scan are compared with regard to their classification perfor-
mance for the three secondary tasks idle, reading, and video. On the one hand, the accuracy
and F1 score of CIDAR again vary significantly over the different sequence sizes due to
the use of the raw and unfiltered features. However, a tendency towards smaller values can
be observed for decreasing sequence sizes for both statistics of this approach. That is why
the accuracy and F1 score are only about 65% for a sequence size of 5s. For larger se-
quences, especially for 90 s, the approach achieves the highest results. On the other hand,
the plots of the accuracy and F1 score of Scan show very similar values and little variation
between adjacent sequence sizes similar to the results of Figure 5.10. Moreover, they show
continuously decreasing values for smaller sequences. For the shortest sequence sizes, this
approach still shows an accuracy and F1 score of about 77%. Both statistics peak at 84%
for 50 s sequences, but decrease again for larger sequences.

Table 5.2 summarizes the recall for each classified secondary task of both approaches,
while on the other hand Table 5.3 shows the corresponding precision values. The blue-
shaded table cells mark the best classification results with regard to the corresponding
statistic and highlight once more for which sequence size the approaches perform best.
CIDAR shows a high recall for the idle task for all sequence sizes, while at the same time
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Figure 5.10: The figure shows the accuracy and F1 score for each examined sequence size of the
classification task handheld vs. hands-free performed by CIDAR and Scan.
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Figure 5.11: Accuracy and F1 score of CIDAR and Scan for each examined sequence size for the
classification of the three secondary tasks read, video, and idle.

only the precision for a sequence size of 90s is at an adequate level of 85%. On the other
hand, it can be seen that Scan achieves the same high recall and precision, in detail 91%
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Recall of both Approaches
Size H CIDAR H Scanpath-based

Idle | Read | Video || Idle | Read | Video
5s | 093 | 0.62 | 0.54 091 | 0.72 | 0.68
10s || 0.92 | 0.63 | 048 091 | 0.73 | 0.73
20s || 0.91 | 0.62 | 0.60 091 | 0.76 | 0.75
30s || 0.82 | 0.73 | 0.69 091 | 0.78 | 0.76
40s || 092 | 0.76 | 0.70 091 | 0.79 | 0.78
50s || 0.88 | 0.70 | 0.69 091 | 0.81 | 0.79
60s || 0.89 | 0.61 | 0.61 091 | 0.80 | 0.78
70s || 0.89 | 0.75 | 0.74 091 | 0.77 | 0.74
80s || 0.88 | 0.73 | 0.65 091 | 0.78 | 0.76
90s || 0.90 | 0.80 | 0.74 091 | 0.75 | 0.79

Table 5.2: Recall values for each classified task and both approaches calculated for each examined
sequence size. The highest values for each task and approach are highlighted in blue.

and 97% for each sequence size. Regarding the recall of the tasks read and video, CIDAR
only exceeds Scan in case of the reading task for a sequence size of 90s. This remains
valid for the precision of the task video, where Scan outperforms CIDAR, except for the
largest sequence size. However, the precision of the task read obtained with Scan remains
lower than CIDAR.

All these measures indicate that CIDAR delivers reasonable results only for the largest
analyzed sequence size of 90s. Especially the precision of the task idle decreases signifi-
cantly for all other sequence sizes, which explains the high recall values for this task even
for short sequences. Furthermore, this approach never exceeded an accuracy and F1 score
of 80% in the described evaluation, which should be possible at least for larger sequences.
Based on these findings, the approach is only suited to offline applications and reveals the
necessity for an improved, online-capable method. In contrast to this method, Scan shows
the benefit of considering the temporal order as well as the use of pre-processed and ab-
stracted features. Similar to the evaluation described in section 5.4.1, the pre-processed
features reduce the variations and generate a more continuous behavior of the classifica-
tion performance. This is done by means of the SAX patterns, which extract only the
required information and therefore result in similar pattern sequences for multiple subjects
as well. Hence, the algorithm is able to maintain a high classification performance even
for short sequence sizes. The classification performance of Scan peaks for a relatively long
sequence, but also generates good results for the shortest sequence. That makes this al-
gorithm suitable for both online- and offline-settings. Another reason for the significant
improvement is given by the applied clustering-based EoR detection. Scan classifies se-
quences where the subject was gazing into an Aol windshield as a data set of the class idle.
Since the detection of gazes into the Aol windshield is highly accurate and robust, except
for the actual detection of short EoR gazes (see evaluation in 4.3.2), and no overlapping

98



5.4 Evaluation and Comparison

Precision of both Approaches
Size || CIDAR | Scanpath-based

Idle | Read | Video || Idle | Read | Video
5s 11049 | 075 | 0.62 || 097 | 0.68 | 0.68
10s || 048 | 0.73 | 0.59 || 0.97 | 0.72 | 0.69
20s || 0.52 | 0.80 | 0.60 || 097 | 0.75 | 0.72
30s || 055 | 0.86 | 0.69 || 097 | 0.76 | 0.73
40s || 0.57 | 0.90 | 0.73 097 ] 0.79 | 0.74
50s || 0.28 | 0.88 | 0.71 0.97 | 0.80 0.75
60s || 0.52 | 0.80 | 0.59 || 0.97 | 0.79 0.75
70s || 0.63 | 091 | 0.69 || 097 | 0.74 | 0.72
80s || 059 | 0.85 | 0.66 || 097 | 0.77 | 0.73
90s || 0.85 | 0.85 | 0.75 097 | 0.78 | 0.72

Table 5.3: Precision values for each classified task and both approaches calculated for each exam-
ined sequence size. The highest values for each task and approach are highlighted in blue.

with other Aols occurred in the data, it achieves a remarkable accuracy reflected in the con-
stant high recall and precision of the idle task for all sequence sizes. If the two approaches
are compared quantitatively to each other regarding their optimum results for an offline-
and online-application, i.e. comparing the results of Scan in case of 50s and 5s with the
results of CIDAR for 90s and 5, the huge benefit of Scan becomes obvious. While for an
offline-application the improvement by Scan with regard to the absolute statistics averaged
over the three secondary tasks is quite low (@recall 1 2%, precision T 2%, Saccuracy T
2%, f1score T 2%), the algorithm shows its impressive benefit in case of an online-setting
(@recall T 7%, precision 1 15%, Daccuracy 1 12%, f1score 1T 11%). Referring to the
accuracy of CIDAR for a 5 s sequence, this is a relative increase of about 19%.

5.4.3 Feature Analysis

To analyze the features selected by the FCBF for the final classification of both approaches,
the number of features used for the different sequence sizes is plotted in Figure 5.12 and
Figure 5.13. For each sequence size, these figures show a bar including the different
numbers of selected features over the cross-validation and highlight the median with
a star-shaped marker. In Figure 5.12, it is shown that for CIDAR, smaller numbers of
selected features no longer appear for sequence lengths from 5s to 20, i.e. the minimum
of the first three bars increases. Similarly, there is a slight increase of the median for the
three smallest sequence sizes, though it is not significant. This observations indicate that
in case of reduced sequence sizes, the smaller numbers of selected features no longer
occur and usually more features are necessary to maintain the performance. The number
of chosen features for sequence sizes larger than 40 s corresponds to the reported results
for the NEBAF data set in Subsection 5.2.3. The bar of the sequence size of 30 s shows a
median value of 56 features and ranges from 42 to 62 features. Compared to the values of
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the remaining bars, this is a significant increase of the median, minimum, and maximum
of the plotted bar and shows the possibility of outliers. For Scan, the number of selected
features which correspond to a word of m,,,,; = 4 symbols is plotted in Figure 5.13. The
median of the number of selected features remains inside the narrow band between 51
and 56 features for all sequence sizes larger than 10s. Moreover, each of these larger bars
as well as the bar for the shortest sequence size, shows a similar range of the number of
selected features, while the median of the 5 s sequence decreases. These findings indicate
that most of the possible 6561 words are discarded for the actual classification and that the
number of features is kept relatively stable. However, outliers, e.g. for a sequence size of
10, can occur and result in the selection of far more features than usual. Nevertheless,
this significant change in the number of features has no obvious impact on the continuous
behavior of the classification performance (cf. Figure 5.11). In summary, CIDAR selects
on average about half as many features as Scan for the DAR. Further, note that Scan
provides up to 6561 features to the feature selection step whereas CIDAR only provides
125 eye and two head features. Although most of Scan’s features are discarded, this large
number of words seems to be more suited for covering the individual requirements of the
DAR. The number of selected features of both approaches ranges within a comparably
constant interval for different sequence sizes but is at the same time prone to outliers. An
interesting difference between these two approaches is the behavior for varying sequence
sizes. While for CIDAR the number of features seems to increase for shorter sequences,
Scan shows the lowest median of selected features for the shortest sequence of 5s. This
means that for CIDAR, more features are assumed as relevant for a decreased classification
performance whereas for Scan, as expected, more features become useless. This indicates
that some of CIDAR'’s features contain deceptive information which does not correlate
with the secondary task.

For a more detailed view on the applied features, Figure 5.14 and Figure 5.15 show the
top ten features for a 5s sequence size. The ranking was calculated by summarizing the
occurrences of each feature weighted by the respective feature rank over all test subjects
of the performed leave-one-out cross-validation. Figure 5.14 shows that for CIDAR more
than half of the plotted features were selected by the FCBF for at least 50% of the subjects.
This demonstrates that these features truly contain patterns and information suitable for the
classification task over multiple subjects. Moreover, these features usually show a narrow
range and a high rank (low value on the y-axis) as median rank, except for the feature R-
meanZ. For the head features RP-g4dur and R-meanZ, the actual overvalue can be easily
seen and interpreted. For example, the top ranked feature RP-g4dur, chosen for each test
subject as most relevant feature, describes the duration the head pose remained in the fourth
quadrant of the field of view, which corresponds to the area of the mounted display for the
hands-free variant. Again, these results correspond to the results in Subsection 5.2.3, since
the feature RP-g4dur was also reported to be the most meaningful head feature in the
classification task.

Figure 5.15 shows the same analysis for Scan. Note that Scan uses features on a meta
level. In other words, the algorithm defines the features during runtime and according to
the individual Aols and the calculated quantiles of the areas of the SAX pattern. Due to
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Figure 5.12: Number of selected features for each sequence size over all test subjects for CIDAR.
Each bar visualizes the range given by the minimum and maximum number of selected features.
The median of the selected number of features is given by the star-shaped marker
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Figure 5.13: Number of selected features for each sequence size over all subjects for Scan. Each
bar visualizes the range given by the minimum and maximum number of selected features. The
median of the selected number of features is given by the star-shaped marker.

this individual distribution of the gazes, the feature A-B-C-D of subject A usually refers
to different areas of the SAX pattern than for subject B. However, the spatial order of the
areas of one SAX pattern remains the same even for multiple subjects. Since only the
vertical SAX pattern with the alphabet X54x = {A,B,C,D,E,F,G,H,I} was used in this
evaluation, the leftmost area of this pattern was assigned to symbol A, the adjacent right

101



5 Automated Driver-Activity Recognition

62
304 [C"Jrange of ranks
§ % median
0)25_
—
S
620—
Ko} 29
£
515_
= 41
2
210-
[
& ¥ | 39 * 14 | X
5 64 40 <
K 27 7
oo Ed
1= T T T T T T T
{
b‘bé \2\0‘ Q\O& ’b@/ \2\0& QQK (2 \2\& ,8@’ \,\\
S @ & @0 & SRR ) N
T S E @ & P
e g P - @ S X "
%,o o Q}Q‘?‘ % @ ,@‘4’
%’é@ ° N

Features

Figure 5.14: The selected features of the FCBF for a 5s sequence are plotted according to their
overall ranking from left to right along the x-axis for CIDAR. Along the y-axis, the rank of the
features is plotted, with a lower value representing a higher ranking. The value on the top of each
bar gives the total number of times the feature was selected for the leave-one-out cross-validation.
The range of the bar is given by the minimum and maximum rank of the corresponding feature,
while the star-shaped marker shows the median rank.

area received symbol B, and this continues up to the rightmost area with symbol /. The
features listed in Figure 5.15 contain relevant information about the desired patterns that
are typical for the corresponding secondary tasks. For example, the top ranked feature
B — E — G — A was selected for nearly all 82 subjects as the most relevant of all features.
This feature obviously correlates with the expected scanpath while reading, i.e. small
steps from the left to the right areas of the SAX pattern with a big step back to the left
side of the pattern. Moreover, four of the shown features, including some features with a
similar reading pattern, were selected for over 50% of the subjects. This statistic further
underpins the assumption that the selected feature really contain relevant information for
the later classification, instead of just being randomly selected. Features shown in Figure
5.15, which do not resemble typical reading patterns, could be the result of scanpaths
usually performed during the secondary task video. To confirm this hypothesis, additional
studies need to be conducted. In summary, the top-ranked features of both approaches
were chosen for most of the subjects of the cross-validation, thus indicating the relevance
of these features. However, it appears that CIDAR contains few features with highest
relevance (ranked for most subjects as extremely relevant) whereas Scan makes use of even
fewer highly relevant but more somewhat relevant (ranked by some subjects as relevant)
features. This explanation corresponds with the findings regarding the number of selected
features.
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Figure 5.15: The selected features by the FCBF for a 5s sequence are plotted according to their
overall ranking from left to right along the x-axis for Scan. The rank of the features is plotted along
the y-axis, with a lower value representing a higher ranking. The value at the top of each bar gives
the total number of times the feature was selected for the leave-one-out cross-validation. The range
of the bar is given by the minimum and maximum rank of the corresponding feature, while the
star-shaped marker shows the median rank.

5.5 Driver-Activity Recognition online in the Vehicle

The scanpath-based DAR was selected for transfer to the testing vehicle because it exceeds
the algorithm based on chronologically independent features in terms of classification per-
formance even for smaller sequence sizes. This section describes how this approach is
actually implemented to run online and autarkic in a vehicle without any manual input.
Especially the calculation of the quantiles for the SAX patterns, the memory- and runtime-
critical behavior of the SubsMatch approach, and the final classification step have to be
investigated with regard to their applicability to online scenarios. Similar to the EoR de-
tection of the previous Chapter 4, the performance of the modified approach for DAR
is evaluated applying a near-to-production driver camera and realistic conditionally auto-
mated driving scenarios to show the applicability and the degree of mature in Subsection
554.

5.5.1 Estimating Quantiles in Online Scenarios

The vertical SAX pattern is used for the evaluation performed in Section 5.4. This pat-
tern determines the size of the different areas used for mapping the gaze direction on the
symbols of the defined alphabet by calculating equally sized quantiles. The quantiles can
be easily calculated offline since the complete recorded scanpath of each subject is avail-
able. However, this approach is not suitable for online scenarios providing only parts of the
recorded gaze direction at a time. Moreover, online applications have to deal with limited
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memory capacity preventing the storing of large amounts of data sets. Hence, an approach
is needed to replace the exact calculation of the quantiles by a sufficient estimation.

As presented in Subsection 4.4.1, quantiles can be estimated online following the ap-
proach of Galley et al. [93]. This approach uses a sample mean for estimating the moving
average over a defined window size. The moving average represents the estimation
for the median, i.e. the 50% quantile. Hence, a first estimation of the median requires
at least enough samples to fill the defined window. As soon as a first estimation of
the 50% quantile is available, each of the following samples is compared to this value
before it is used to update the median. If the current sample exceeds the 50% quantile,
this value is also used to estimate the 75% quantile by applying another sample mean
estimator. Similar, the 25% quantile is estimated based on each value deceeding the
median. Thus, this approach estimates the different quantiles by calculating a moving
average of the remaining samples. For example, Figure 5.16 visualizes a tree-structure
including the different layers generated by performing three bisections. The variables q,SQ)
in Figure 5.16 describe the estimation of the Q-th quantile. The bisection method can be
repeated as often as desired. However, the more quantiles are estimated the fewer sam-
ples are used for the calculation of each value, which might result in unreliable estimations.

A(50%
=

~(25% ~(75%
P 7

false true false true

v y v v
6}(12.5%) c}<37'5%) 5(62.5%) ~(87.5%)

n n n n

Figure 5.16: Tree-structure of the approach for estimating quantiles of the yaw angle of the driver’s
gaze in an online-fashion based on bisection.

For the modification of the approach to online scenarios, eight rather than the original
nine quantiles of the offline variant were used due to the symmetrical bisection method.
Hence, the alphabet size equals |Es4x| = 8 symbols. In a first step, the original estimation
approach as described by Galley et al. in [93] was applied to samples of a gaze direction
recorded for research purpose. As shown in Figure 5.17, the original approach performs
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adequately for samples of a gaze direction including only small gaze shifts and an almost
static moving average, e.g., reading scenarios. In that case, the distribution of the quantiles
is almost equal and corresponds to the actual quantiles calculated offline.

8 T T T T T T
— 12.5% quantile
6 - — 25% quantile
— 37.5% quantile
— 50% quantile
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75% quantile
87.5% quantile

]
—
|

S JH%LL_

\
N f
4+ :X — ﬁ j‘)% i

-80 10 20 30 40 50 60 70 80 90

time [s]

Figure 5.17: For static scanpaths, e.g., without large gaze shifts, the estimation approach proposed
by Galley et al. in [93] sufficiently calculates the searched quantiles. All quantiles are equally
adapted to the gaze estimation after a short period of time.

However, conditionally automated driving scenarios usually include large gaze shifts to dif-
ferent Aols and clusters with a dynamic moving average, e.g., for handheld devices. Such
phenomena in combination with multiple bisections might cause permutation between ad-
jacent quantiles. Figure 5.18 visualizes an example in which the 25% and 12.5% quantiles
falsely exceed the 37.5% quantile after a certain time interval. For the example in Figure
5.18, the difference between the initial quantiles and the actual signal of the horizontal gaze
direction is quite high. The reason for such behavior could be focus on a different Aol at
the beginning of a secondary task. Note that the estimation of the moving average for the
estimation of the different quantiles might be slow depending on the chosen window size.
Hence, the algorithm needs some time until it adapts to the gaze direction. Furthermore,
not all quantiles are calculated simultaneously. As shown in Figure 5.16, the calculation
of a quantile of the lower layers depends on the calculation of the quantiles of the higher
levels. As a result, the 50%, 75%, and 87.5% quantiles are learned at the beginning of
Figure 5.18 whereas the 62.5% quantile is not updated until the value of the 75% quantile
is adapted to the large initial difference. Only then is the horizontal gaze estimation below
this quantile and the 62.5% quantile is updated. This asynchronous procedure leads to the
false permutation of the quantiles and results in the scenario where the 37.5% quantile is
not adapted at all.

To accommodate this behavior, the quantiles are limited by the surrounding quantiles so
that no permutation is possible. The modified behavior of the estimation for the same
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Figure 5.18: The approach for estimating the quantiles are applied to a dynamic scenario in which
the initial quantiles show a large offset to the horizontal gaze direction. This could be the result of
a large gaze shift while reading on a handheld device. The adaption of the quantiles is slow and an
incorrect permutation between the 12.5%, 25%, and the 37.5% quantiles occurs.

example with the large initial difference is shown in Figure 5.19. By limiting the quantiles
over the adjacent quantiles, the quantiles are estimated in a given order. At first, the 87.5%
is estimated resulting in the adaption of the gray curve in Figure 5.19. After that, the
75% quantile is updated, followed by the 62.5% quantile and so on. The cascading of
the calculation prevents the permutation of the quantiles. However, this algorithm further
increases the duration of the adaption process since the quantiles are no longer calculated
simultaneously. Hence, this algorithm prevents the permutation of the quantiles but shows
an even slower adaption process than the previous variant. In summary, the approach is
suited only for long scanpaths without any significant differences of the average gaze
estimation.

To handle dynamic scenarios and to increase the adaption process, the described concept
of estimating the quantiles is modified by a priori estimated, static quantiles. In a first step,
the 50% quantile is estimated by a sample mean estimator equal to the variants described
above. In contrast, all the remaining quantiles are defined by the distance

Aﬁer). - qgg). _ qgjjj% with Q€ {12.5%,25%,37.5%,62.5%,75%,87.5%}  (5.8)

which represents a constant value. The parameters qgle) and qS?) represent averaged ref-
erence values and are learned a priori based on a given data set with multiple drivers
which were recorded while driving manually and performing secondary tasks in the ve-

hicle. While analyzing these quantiles, it was found that the distance between adjacent
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Figure 5.19: The modified approach for estimating the quantiles is applied to a dynamic scenario
in which the initial quantiles show a large offset to the horizontal gaze direction. This could be the
result of a large gaze shift while reading on a handheld device. By means of the limitation of the
quantiles, no incorrect permutation occurs. However, the speed of the adaption process is reduced
significantly.

quantiles shows only small inter-individual variations. Instead, significant variations occur
only for the absolute positioning of the quantiles due to different head poses, seating po-

Q)

sitions, body size, or varying Aols. The constant distance Aot is applied to generate the

estimations of the quantiles of the current driver over

32 = 17" — a2, (5.9)
According to this approach, only the 50% quantile has to be estimated for the current
driver while the remaining quantiles are defined by their static distance by equation (5.9).
Figure 5.20 shows how this approach performs for the driving sequence presented in the
previous examples. Since only the 50% quantile is estimated, no false permutations of the
quantiles occur and the adaption process is significantly faster. Although the difference
between the initial starting position of the quantiles and the actual gaze estimation is as
large as in the previous plots, the duration of the adaption process is less than ten seconds.
For smaller differences, which are far more common during dynamic driving scenarios,
the adaption would be even faster. Moreover, the a priori calculated distances between
adjacent quantiles separate the gaze estimation in reasonable areas for the SAX pattern.
In summary, the last described variation to estimate the quantiles for the generation of the
SAX patterns is the most promising approach with regard to an online application and will
be included in our online model of the scanpath-based approach.
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Figure 5.20: A variant of the approach for estimating the quantiles is applied on the same dynamic

scenario as for the previous figures and variants. Due to the a priori learned distances AieQ; of

adjacent quantiles, only the 50% quantile is estimated to adapt the quantiles to the absolute position
of the scanpath. Hence, the speed of the adaption process can be improved significantly.

5.5.2 Modifying SubsMatch for In-Vehicle Applications

To extract information on the recorded gaze direction, the SubsMatch approach described
in Subsection 5.3.3 is implemented in the vehicle. In a first step, this approach uses
the estimation of the quantiles introduced in the previous Subsection 5.5.1 to generate
the vertical SAX pattern. This pattern was also chosen for the offline evaluation in
Section 5.4. To further maintain comparability between the off- and online variants of
the DAR approach, the alphabet size |Esax| should be similar. However, the estimation
of the quantiles is based on the bisection method and, therefore, the alphabet size |Xgax|
has to be an even number. Hence, the alphabet size of the online variant for the DAR
was set to |XZgax| = 8. Based on the applied SAX pattern, a scanpath of a defined
sequence size is mapped on a string consisting of the defined symbols of the alphabet.
The smaller the sequence size my.,, the faster the recognition of the driver activity. In
a second step, words are calculated by shifting a moving window over the generated
string of the sequence. The size of the words and the step size of the sequences are set
to myyorq = 4 symbols and ng, = 1's equal to the offline variant. Hence, the size of the
hash table, i.e. the number of existing words, equals |Egax|™¢ = 4096. For each oc-
curring word, the corresponding value is searched in the table and the frequency is updated.

If a sequence size of m,,, = 5 is assumed for a sampling rate of 50 Hz, the sequence
size equals 250 samples. In general, this is a relative short sequence which exacerbates
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the detection of the driver’s secondary task based on the recorded gaze behavior even for
a human observer. Although a short time period, the number of comparisons becomes
unacceptably high for the worst-case scenarios. The number of comparisons is given by

Mse m,,
(["J —Mhyora + 1) - <|ZSAX| ) (5.10)
Nseq

which excludes the fragmentary windows at the end of the sequence. In the worst-case
scenario, an algorithm which simply compares each word of a sequence with the complete
hash table would perform 1011712 comparisons for each step of the sequence. Such a
huge number of comparisons would preclude an online-capable implementation of the
scanpath-based approach since all these comparisons would have to be performed during
each 0.02 s time sample.

To decrease the number of comparisons to an appropriate level, the total number of unique
words in the hash table is reduced. This reduction is based on an analysis of hash tables
extracted from exemplary data sets. All words which occurred less than a pre-defined
number of times in these reference hash tables represent irrelevant features which do not
contain any relevant information and, therefore, have to be removed. In a subsequent step,
words with significantly higher frequency than the average frequency of the hash table are
discarded. These are words which consist mainly of repetitions of symbols such as AAAA
or BBBB. However, these words correlate with the fixation duration instead of with the
performed secondary task. Moreover, their high frequency reduces the overall frequencies
of the remaining words. Depending on the size of alphabet Xg4x and the sampling rate,
the length of repeated symbols is influenced. For the offline variant of the scanpath-based
approach, the number of repetitions was reduced based on equation (5.7) of Subsection
5.3.2. However, the correct calculation of the necessary quantiles for equation (5.7) is not
suited to online applications as discussed above. This is why the words which completely
consist of repetitions are discarded a priori. Finally, the remaining words are used as input
for the FCBF algorithm resulting in a hash table for the later classification with only 28
unique words.

Besides the quantitative conditions of the hash table, the search strategy to locate the
correct words and update the corresponding frequencies in the hash table should be
optimized. For the above calculation of the worst-case scenario, a simple linear approach
with a complexity of O(n) was applied where the hash table is searched for each word of
a sequence whenever a new symbol arrives. That means that for the worst-case scenario
the complete hash table has to be searched since the wanted word is at the bottom of the
table. Note that the location of each occurring word of the sequence has to be searched in
the table. Moreover, the moving window to determine the occurring words within a given
sequence cannot simply be shifted over this sequence as for the offline variant. The reason
for that is the continuous flow of input values and the necessity for defined values for each
connection of the Simulink model. In detail, the offline variant of the scanpath-based
DAR knows all values of the recorded data set a priori and, thus, is able to filter all invalid
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sample points and replace them through interpolation. In addition, the moving window
which determines the sequences of the size mm]4 can be filled completely at the beginning
of the evaluation as long as the number of available data points is larger than m,, i.e. the
first sequence is filled with 250 valid symbols right from the beginning of the algorithm.
On the other hand, the online Simulink model receives one input value, i.e. the next
estimated point of the driver’s gaze, per sample and then validates this data point. That
means that for at least the first 250 samples no complete sequence of size my, is available.
Further, if a value is invalid, e.g., because the camera was not able to detect the driver’s
eyes, the model still has to occupy each connection between function blocks of the model
with a concrete value, since this value cannot simply be discarded. For that case, a default
error value which would be integrated in the hash table could be sent instead, deteriorating
the classification.

To solve the described problems, the hash table is initially filled with defined words, e.g.,
AAAA, which will be removed by the feature selection described above before the classifi-
cation step. Hence, for at least my,,, frames the classification is based on incorrect values
and cannot be trusted. Since for online applications only a limited amount of memory
is available, the sequences are dynamically stored in ring buffers. For the ring buffer, a
pointer is defined referencing to the currently changed symbol. If the input of the model
is a valid data point, both the corresponding symbol and the location which the pointer is
referencing are updated. In the example of Figure 5.21, this updated symbol is the colored
symbol ”F” referenced by the pointer. In the trivial approach described above, the new up-
dated symbol "F” requires an update of the complete hash table by determining each word
of the sequence and their corresponding position in the table. However, in Figure 5.21 it is
shown that the updated symbol only affects the words including this symbol based on the
word size m,,,rq. In this example, the word size was set to m,,,y = 4, which means that
only four words of the complete sequence are influenced by the updated symbol. Thus, the
number of words which has to be updated for each step is reduced to m,,,,; and becomes
constant with O(1). Furthermore, the pointer enables the model to ignore invalid values.
In case of an invalid value, the complete sequence including the pointer of the sample step
n—1 is copied to the sample step n. As a result, the sequence of symbols, the hash table,
and the output of the model remain unchanged because the pointer is still referencing the
correct symbol.

Based on the reduction of the hash table size and the reference mechanism of the pointer,
the worst-case scenario is reduced to 224 <2mP4rsons 'y hich equals a reduction of about 98%

frame
compared to the previous mentioned worst case.

5.5.3 Modifying the Classification Step

The process of classification of the four classes non-automated driving, being idle,
reading, and watching a video is shown in Figure 5.22. Based on the binary trigger AF” it
can be determined in a first step if the subject is driving manually. Such a trigger signal has

“In the following the sequence size is exemplarily set to Mgeq = 250 frames.
3 Automated Function
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sequence of the size my,,

AAAA || 0.0000 L J
0.0000 EFGBCDEFGBCDE... - -
AABC || 0.0000 :
|| 0.0000 Pointer :
BCDE |[ 0.2000 :
DEFG
0.0000
CDEF || 0.1000
EFGB
0.0000
DEFG || 0.1000 FEGBC
0.0000
EFGB || 0.2000
0.0000
FGBC || 0.2000
0.0000
GBCD || 0.2000
0.0000
HHHH || 0.0000

Figure 5.21: Visualization of the search and update strategy of the hash-table based on a pointer
referencing the latest sample point. Only the symbols within the window range m,,,,; have to be
updated.

to be available in future vehicles with automated driving functions due to legal regulations
and enables a classification accuracy of 100% between driving in a non- or automated
scenario. The online model of the scanpath-based DAR is provided with input data
only if the driver activated the automated driving function. As described in the previous
subsection, invalid data samples cause the model to ignore the input and to keep the hash
table and output constant. The model of the scanpath-based approach is combined with
the model for detecting EoR gazes introduced in Section 4.5. Each time, an EoR gaze is
performed the model is stopped in a similar way as for invalid data samples. For valid
input samples, the model updates the hash table as described above. For each sample,
the updated hash table is compared to a reference table learned a priori with data sets of
multiple subjects reading long texts or watching videos. The comparison of step n is done
by calculating the Euclidean distance d,, between the current and learned hash table. A
difference signal d is plotted in Figure 5.23 for a complete test drive of the study described
in Subsection 2.4.5. As can be seen, the distance value decreases quickly to values smaller
than 0.4 and increases again when the driver resumes the driving task or is simply idle.
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False True

Non-automated )
False valid True

sample *‘

Invalid sample
False True

Idle

—

Reading Video

Figure 5.22: Classification process visualized as a cascading decision tree. The variable AF repre-
sents a binary trigger describing whether the vehicle is driving in an automated mode. Only valid
samples are checked for the performance of a secondary task and assigned to the reading or video
class.

For the secondary tasks reading and video, no difference can be recognized in the distance
d. Hence, this approach is only suited for separating idle drivers from drivers performing
any kind of task. Note that the threshold 0.4 represents half of the maximum Euclidean
distance and is an experimental value which generates convenient results. Further tuning
of this parameter will most likely not yield a significant improvement in the approach.

To separate reading drivers from drivers watching a video, an SVM was applied in the
offline variant presented in Section 5.3. Since the model is implemented in Simulink,
there was no toolbox for simulating an SVM in the block diagram environment available.
However, Simulink provides an alternative with the Neural Network Toolbox enabling the
training and application of artificial neural network (ANN) classifiers®. Compared to ker-
nelized SVMs which are non-parametric models, the number of parameters for the ANN
is fixed (parametric model). As a consequence, the number of parameters of an SVM, i.e.
the support vectors, may increase for large amounts of training sets while the number of
parameters of the ANN remains constant. The parameters which have to be selected for
the ANN of the Simulink toolbox are the number of input neurons (equals the size of the
hash table), the number of output neurons (number of secondary tasks), and the number
of hidden layers. As a rule of thumb, the number of hidden layers should lie between the
number of input and output neurons. The values of the output neurons after the processing
of the ANN are scalars of the interval [0,1]. Since one output neuron describes the sec-
ondary task reading and the other neuron describes the task video, a simple comparison is
finally used after the ANN to determine the estimated secondary task.

The documentation can be found on https://de.mathworks.com/help/nnet/index.html.
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Figure 5.23: The distance signal between the online updated hash table and the a priori learned
reference table is plotted over a complete test drive. The dashed lines visualize the shift between
the different tasks during the test drive labelled with the corresponding task name.

5.5.4 Evaluation

Following the modification of the scanpath-based approach in the previous Subsections
5.5.1,5.5.2, and 5.5.3 an evaluation of the online variant is performed based on the data of
the real-driving study presented in Subsection 2.4.5. In this study, the subjects performed
secondary tasks including reading, watching a video, and being idle while driving in a
conditionally automated setting. Moreover, the tasks reading and video were performed
on a handheld and hands-free device. In addition, there were route sections forcing the
driver to take-over the control of the vehicle. The start and end points of each task were
manually labelled by an instructor sitting on the backseat of the vehicle. These labelled
areas are used as ground truth data for the verification. As for the application of the ANN,
the number of hidden layers was optimized over the data set and resulted in the value of
15 hidden layers. For the following results, the sequence size was set to my,, = 155.

Figure 5.24 shows the confusion matrix of the classification of the secondary tasks. For the
sake of completeness, the recognition of manual driving phases is included. As discussed
before, the separation in manual and automated driving phases is based on a binary signal
provided by the automated driving function and, therefore, provides a perfect classification
accuracy. Moreover, the class idle is also nearly at its optimum with a true positive rate
of 95%. This high true positive rate is achieved by combining the online cluster detection
method of Section 4.5 and the classification based on the Euclidean distance between the
current hash table of the subject and the reference hash table learned a priori. Each time
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Reading
%
=< Video
@)
=
= Non-automated
driving
Idle

Predicted Class

Figure 5.24: A 4 x 4 confusion matrix based on the classification of the online scanpath-based
DAR. The approach was applied on the complete data set of the real driving study.

a driver is detected as not focusing on the Aol of the handheld or hands-free device, the
model deduces that the driver is not performing any secondary task. In addition, if the
driver is focusing on the handheld or hands-free Aol, the Euclidean distance is analyzed.
If the distance value exceeds the specified limit of 0.4, an idle driver is classified. This
approach falsely recognizes a driver engaged in one of the secondary tasks for only 5%
of the samples. However, the most challenging part of the DAR is shown in the upper
left corner of the confusion matrix. While 75% of the reading scenarios are correctly
recognized, the classification accuracy of the video task is down to guessing probability.

Following this first evaluation, the scanpaths for both tasks read and video were compared
in greater detail. It was found that there are significant differences between drivers
performing many EoR gazes and drivers performing none or just a few EoR gazes. Figure
5.25 shows an example for each type of driver with regard to the frequency of EoR gazes.
As can be seen on the upper plot, the scanpath shows the typical sawtooth pattern for
reading sequences. On the plot below, another scanpath of a reading sequence is plotted.
Here, the driver performed many EoR gazes, highlighted in red. These EoR gazes act
as noise disturbing the pattern recognition. That means that the more EoR gazes are
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performed, the less visible the patterns and the less data is available for the DAR. In
addition, there is another effect reducing the classification performance, in particular of
the video task.

Although data recorded during EoR gazes is discarded and not applied for the classification
of the secondary task, the EoR gazes influence the scanpath patterns significantly. More
precisely, the recorded samples during the gaze shift of each EoR gaze describe a scanpath
similar to the sawtooth pattern when reading a text. These gaze shifts before and after
each EoR gaze are not counted to the EoR gaze and, therefore, are applied to the DAR. As
a consequence, the more EoR gazes are performed, the more sawtooth similar scanpaths
appear during the video task, reducing the classification accuracy between the tasks read
and video. To prove this assumption, the EoR gazes are discarded along with 10 frames
prior to and after each EoR gaze and the confusion matrix is recalculated in Figure 5.26.
As it can be seen, the true positive rate for both tasks is increased and at about 75% is now
on a similar level as the classification performance of the offline variant in Subsection 5.4.2.

As mentioned at the beginning of this subsection, the sequence size was set to mg, =
15s. In general this means that the model needs 15s of recorded data before a robust
classification can be performed. In Figure 5.27, the sequence size my,, was decreased and
the true positive rate of each secondary task as well as the common accuracy is plotted. As
expected, the accuracy and true positive rate decreases with the smaller sequences. For a
sequence size of 10, the overall accuracy decreases only by about 2% to 73% indicating
the applicability of even smaller sequences.
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Figure 5.25: Two plots of a reading sequence of two different subjects. The subject recorded on the
upper plot performs no EoR gaze resulting in the distinct reading pattern. The subject recorded on
the lower plot performs many EoR gazes (highlighted with red) which exacerbates the DAR.

However, an additional reduction of the 5s sequence leads to a significant misbalance
between the two classes. While the true positive rate of the reading class increases to about
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85%, the video class is reduced to 52%. This is usually a sign for a higher weighting of
the reading class by the ANN assigning most of the samples to the class with the higher
weighting.

Reading  74% AN/ IV 0%

Video SRV 75% G 0%

True Class

Non-ayfomatcd NN 1007 2

Idle

Predicted Class

Figure 5.26: The same 4x4 confusion matrix as in Figure 5.24 after the elimination of the EoR
gazes.

In summary, the scanpath-based DAR was successfully adapted to an online application in
the vehicle reaching a similar classification performance as the online variant. The EoR
gazes, especially the corresponding gaze shifts, have to be taken into account for an ade-
quate result. Finally, it should be noted that the classification performance for sequences
shorter than 10 s do not appear to contain enough relevant information to separate detailed
secondary tasks robustly. This result is in alignment with the evaluations of Section 5.4.
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Figure 5.27: Bar diagram of the true positive rate of the classes read and video and their common
accuracy. The statics are calculated for 5s to 15s sequences to determine the smallest sequence
with reasonable performance.

5.6 Summary

In this chapter, methods for driver-activity recognition were described. After summarizing
the current state-of-the-art, two approaches were proposed for further investigation. The
first approach is based on chronologically independent eye and head features derived from
saccades, fixations, eye blinks, and the head pose. Further, features especially designed
for conditionally automated driving scenarios were introduced which are based on occur-
ring gaze behaviors such as the EoR gazes. These eye features directly linked with the
mentioned gaze behavior and two head features reflecting the head direction of the driver
were of particular benefit and enabled a significant improvement of the classification of
secondary task such as reading or watching a video. The second approach is based on the
driver’s scanpath and therefore incorporates the chronological order of the eye movements.
The scanpath-based approach uses SAX-patterns to highlight specified gaze patterns be-
fore extracting small subsets of the scanpath called words. Finally, the frequencies of these
words are compared in a classification step. A comparative evaluation of both approaches
revealed the superior performance of the scanpath-based approach even for online scenar-
ios. Due to the abstracted features incorporating the temporal order of the gaze patterns
for classification, the scanpath-based approach increased the accuracy of the classification
performance by about 19% compared to the first approach in online settings. As a conse-
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quence, the scanpath-based approach was modified for the application in a testing vehicle
and evaluated with data from a real driving study. It was shown that the approach classifies
the secondary task robustly even in the light of realistic online scenarios.

Future work with both approaches involves the detection of additional secondary tasks
including the interaction with other passengers. Moreover, both approaches could further
benefit from including other sensing modalities, e.g. hand gestures and manual interactions
with integrated devices [32], to enable a more accurate and robust classification even in
case of additional tasks. Further improvements of the classifiers by means of more data
sets could be enabled by randomized features [33] while keeping the computational costs
tolerable. Especially for the scanpath-based approach, different SAX patterns should be
investigated which may outperform the vertical SAX pattern of this study.

The scanpath-based method for driver-activity recognition will be used to extract features
for a classification of the driver’s take-over readiness in Chapter 6.
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6 An Automated Classification of Take-Over
Readiness

In the previous chapters, approaches for recognizing the performed secondary task and
methods for detecting EoR gazes were introduced and investigated for application in
conditionally automated vehicles. These previous chapters can be seen as preparation
for the following analysis of an approach which classifies the take-over readiness of the
driver during conditionally automated driving scenarios based on features provided by
these introduced approaches. The goal of this chapter is to create a first prototype of
an ADAS able to estimate the take-over readiness of the driver. However, training a
classifier capable of differentiating between high- and low-quality take-over situations
with adequate performance requires features derived from not only driver monitoring but
also from the present traffic situation. Moreover, formal specification of what is meant by
high and low quality regarding take-over situations is required.

To provide an overview of the relevant impact factors regarding take-over readiness and to
outline the lag of appropriate automated methods to estimate the driver’s take-over readi-
ness, Section 6.1 summarizes the state-of-the-art concerning these topics. Section 6.2 in-
troduces the architecture of the planned ADAS and describes how to obtain the missing
aspects: the measures for assessing the take-over quality in Subsection 6.2.2 and the fea-
tures based on the complexity of the current traffic situation in Subsection 6.2.1. Finally,
the choice of the classifier as well as the evaluation of the classifier and the proposed novel
ADAS are discussed in Section 6.3. The results of this chapter are based mainly on the
author’s journal publication [18].

6.1 Take-Over Readiness - Influences and Automated Detection
Approaches

6.1.1 What influences the Take-Over Readiness of a Driver?

Many recent studies have investigated the most significant factors influencing the driver’s
take-over readiness during conditionally automated driving scenarios. In [8], Radlmayr
et al. conducted a driving simulator study to evaluate the impact of the traffic situation
and non-driving related tasks on take-over situations. Their results showed that take-over
quality and traffic situation difficulty correlate. The number of collisions increased sig-
nificantly for situations with prevalent high traffic density, and was boosted further by the
performance of non-driving related tasks. Note that the performed tasks were of artificial
nature, e.g. the visual surrogate reference task [119].
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More realistic secondary tasks were performed in another driving simulator study by Zeeb
et al. [9]. The authors examined the impact of various secondary tasks on the take-over
quality, including tasks such as writing an email, reading news, watching a video, and lis-
tening to music. The reported data implied that watching a video or reading a news article
deteriorates the take-over quality while response times (such as the time to get the hands
back on the wheel) show little to no impact. The authors stated that motor processes are
performed reflexively and that the take-over quality is primarily influenced by the driver’s
cognitive comprehension of the situation. In a follow-up study [97], Zeeb et al. focused
on secondary tasks with a varying level of manual or cognitive workload. They reported
that engagement with a handheld device significantly delayed the response times of the
driver and deteriorated the overall take-over quality. Variations in the cognitive task load
of the non-driving related tasks showed a similar effect but not for each type of take-over
scenario.

Besides the influence of secondary tasks, Zeeb et al. [11] also analyzed the impact of Eyes-
on-Road gazes on the number of collisions in take-over situations. More specifically, the
authors identified three groups of drivers based on the parameters frequency and duration
of the glances: low-, medium-, and high-risk. The authors found a significant difference
between the identified three groups in terms of number of collisions in a demanding take-
over scenario [11]. The drivers in the high-risk group noticed the simulated crash in their
lane and the necessity to act immediately. However, since their gaze was neither on the road
nor on the surrounding traffic environment, these drivers overlooked the oncoming vehicles
on the adjacent left lane and collided. In contrast, drivers of the group low- or medium-risk
performed the correct braking maneuver far more often. In a study by Feldhiitter et al.
[120], the authors identified the automated drive duration as an influencing factor on gaze
behavior. For uninterrupted durations of more than 20 minutes, the driver began to let their
gaze wander to compensate for the monotony. However, neither the gaze behavior nor the
actual duration had an impact on the take-over quality in that study.

6.1.2 Automated Detection of the Take-Over Readiness

There is hardly any literature available describing systems for automatically classifying the
take-over readiness of a human operator working with automated systems. In general, to
compensate for the shortcomings in take-over situations, the literature investigated primary
design concepts for the human-machine interfaces [121]. Clear instructions and optical
and visual support should ensure that the correct mental model is provided. In a work by
Gold et al. [122] the authors analyzed the benefit of gradual automated driving function
degradation if the take-over situation permits it. This approach further facilitates the take-
over by reducing the driver’s number of tasks. The only known method of the literature
covering the topic of an automated classification of the take-over readiness was introduced
by Nilsson et al. [123]. The authors suggested defining a safe transition from an automated
to a manual driving level based on the driver controllability set (DCS). The DCS is defined
as a subset of the vehicle’s state space and is individually learned during manual driving
phases. Simply put, it represents the individual driver’s capabilities. As long as the vehicle
state is within the DCS during transitions, the driver’s skills are sufficient to perform a safe
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Figure 6.1: The figure taken from [124] shows the three handover levels of the Omron’s driver
concentration sensing technology with the corresponding take-over time and example conditions.

take-over. However, a safe transition cannot be guaranteed if the vehicle state leaves the
DCS. The proposed approach was evaluated based on real driving data during activated
adaptive cruise control (ACC). Since the boundaries of the DCS are updated online during
“normal” manual driving scenarios, the system is constructed conservatively. That means
that there may be many false alarms for situations where the driver could still be in control.
In addition, it is questionable if the driver’s capability during manual driving is without
limitations compared to the driver’s capability during take-over situations. For example,
drivers usually keep their eyes on the road while driving manually, which is not a necessary
requirement in conditionally automated driving scenarios. To which extent this reduced
situation awareness influences the driver’s control in similar situations is still unknown
and not covered by the proposed model in [123]. A similar approach to the one proposed
in this work was introduced by OMRON Corporation in 2016 and described as driver
concentration sensing technology [124]. OMRON developed an onboard sensor to monitor
the driver’s various motions and conditions. Depending on the detected conditions the
system classifies whether the driver is able to take over safely in an approximated, coarse
time interval (cfg. Figure 6.1). However, the shown test cases and evaluations of this
prototype were based solely on artificial situations, i.e. the test subjects were sitting in a lab
environment or fixed driving simulator and pretended to fall asleep, to use a smartphone,
to drop objects, etc. Their gestures were performed in an exaggerated manner. Further,
there was no individual separation within the various use-cases, e.g., a take-over time of
approximately 4 s was assumed for each driver taking their eyes off the road, independent
of the preceding driving behavior. No information was provided on whether the two use-
cases Using a smartphone and Reading were even distinguishable.
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6.2 Prototype of a novel ADAS

The overall architecture of the ADAS proposed in this work is shown in Figure 6.2. The
goal of this approach is to control the driver’s attention to the road and to enable additional
secondary tasks as long as the driver follows the instructions of the ADAS. All features are
continuously extracted from three sources: the secondary task, EoR gazes, and the traffic
situation. The driver’s responsiveness is classified based on these features for each time
step. Moreover, the architecture is modular, i.e. the applied eye- and head-tracking sys-
tems and the methods for calculating the features are interchangeable if the same features
and signals can be provided. The classifier itself has to be trained in advance to account
for aspects such as individual gaze and take-over behavior using a preferably widespread
training set of take-over situations. The prototype is configured so that for a classified high
take-over readiness no further measures are required since it is assumed that the driver is
aware of the current traffic situation and able to take over adequately. As a consequence,
the driver is not disturbed by any warning and the system will still enable the driver to
perform the whole set of secondary tasks. However, if a low take-over readiness is clas-
sified the driver will be asked to perform gazes towards the road for reorientation. If the
driver ignores this warning, the set of possible secondary tasks could be reduced to the less
demanding ones.

Conditional

Automation

Traffic
Situation

O

/ \\

Please remember
Eyes-On-Road

Low Take-Over
Readiness

Figure 6.2: Overall architecture of the proposed ADAS prototype.

In total, four features are extracted from both information sources “secondary task” and
“EoR gazes” describing the current activity and situation awareness of the driver. These
features derived from secondary tasks and EoR gazes can be extracted by means of the
methods introduced in Chapter 4 and Chapter 5. Table 6.1 summarizes the applied features
including a short explanation and the possible values. As it can be seen, there is one
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Feature ‘ ‘ Description Values
Level of complexity 0= easy
Situation Complexity of the traffic situation 1 = medium
2 = high
Last Gaze H Time since last EoR gaze ‘ Time in seconds
Number Gazes H Number of EoR gazes ‘ eN
Task performed 0=idle
2nd Task by the driver 1 =video
2 =read

Manual Demand Type of manual demand | 0 = Handheld
1 = Handsfree

Table 6.1: Extracted features for the classification of the driver’s take-over readiness.

feature which is not based on driver monitoring. Instead, feature ~’Situation Complexity” is
derived from the traffic situation and describes the current level of complexity of the traffic
situation. In the following subsection, the generation of this feature is explained in detail.

6.2.1 Determining the Complexity of a Traffic Situation

An important aspect for determining the take-over readiness is the complexity of the
present traffic situation. More specifically, the following question needs to be answered:
How complex would be a take-over situation occurring in the very moment? If the
situation is not demanding at all, e.g., a take-over situation on a straight highway without
any traffic, no critical situation will occur even in the case of a slow-acting or an idle
driver. In such scenarios, the automated driving function would slowly bring the vehicle
to a standstill. On the other hand, such a driver behavior may lead to critical situations
in case of more complex situations, e.g., another vehicle cuts in on the ego-vehicle right
after the take-over time. Thus, depending on the actual traffic situation during a take-over,
the behavior of the driver has to be judged differently. This impact of the current traffic
situation on a take-over situation was investigated and proofed by Radlmayr et al. [8] in a
conditionally automated driving simulator study with four take-over situations. Especially
a high traffic density showed a severe negative impact on the take-over performance.
Therefore, the complexity of the current traffic situation will be considered for the
proposed classification of the take-over readiness as additional feature for the classifier.

There are various aspects influencing traffic situations which exacerbates a direct compari-
son of these situations. Hence, many studies focus on separating traffic situations by means
of classification schemes. Such schemes are suitable tools for categorizing the complexity
of the analyzed traffic situation. One of the first thorough investigations concerning this
topic was done by von Benda et al. [125]. In this work, a classification scheme by means of
a multi-dimensional scaling was proposed. It was based on the situation assessment of the
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driver, i.e. which aspects are considered to be relevant by the driver and which attributes
are the most salient ones. For the classification scheme, an empirically established level of
hazard for every traffic situation as well as further situation conditions, such as the traffic
density, the horizontal and vertical course of the road, the weather conditions, etc. were
used to represent the various dimensions of the approach. Hence, a structural represen-
tation and separation of the respective traffic situation was possible. However, due to the
multiplicative relation between the dimensions, more than three million different traffic
situations can be described which reduces the comparability and generalizability.

To enable the application of the above described classification scheme from [125] in
the field, Fastenmeier et al. [126] reduced the dimensionality by discarding some of
the considered aspects. Furthermore, the authors focused on assigning a corresponding
workload to the situations by means of the questionnaire proposed in [127], grouping
traffic situations by complexity: low, medium, or high. The result of this work would
be best described as formulary. Traffic situations, described by aspects such as weather
and visibility conditions, number of lanes, type of the road (highway, urban, rural) or
the speed limit, are listed with corresponding workload indices. Based on this index, the
traffic situation can be categorized in one of the three mentioned complexity groups. This
classification scheme, introduced by von Benda and simplified by Fastenmeier et al. seems
to be a convenient approach to assign suitable levels of complexity to the traffic situations
occurring in our study.

For this work, the scheme has to be adapted to the conditionally automated driving sim-
ulator study. As a consequence, many of the aspects can be ignored, such as pedestrian
crossings or junctions since the study was performed on a high-way. Moreover, some
aspects could be assumed to be constant such as the number of lanes. In Table 6.2, the
remaining aspects of the scheme are summarized and aligned with their possible values. In
total, four aspects of the classification scheme are considered: the curvature of the road,
the traffic density, special weather conditions, and perils. Fastenmeier et al. [126] distin-
guished between straight, sharp left/right and wide left/right curves as possible states with
regard to the aspect curvature of the road. The original aspect traffic density could assume
the four states low, normal, dense, and traffic jam. The state traffic jam was deleted since
it is irrelevant for our study. The aspect special weather conditions usually summarizes
particular visibility conditions, such as rainfall at night. However, in our study this aspect
only describes the presence of strong crosswind. The last aspect perils is applied in case of
the occurring braking maneuver of a leading vehicle during one of the take-over situations.
Following the taxonomy of the situation complexity in [126], traffic situations on a straight
or curvy highway are considered as not critical and easy to handle for the driver. Similar
conclusions can be drawn for situations with a high traffic density. Although Fastenmeier
et al. point out that increasing traffic density has a systematic negative impact on all traf-
fic situations, it is not a sufficient condition for labeling the corresponding situation as
complex. Hence, the occurrence of each of these criteria by its own will indicate a traffic
situation with a low complexity. However, if both criteria are present at the same time, the
complexity is increased to a medium-high level. For the whole course of the driving simu-
lator study, only two traffic situations are classified as highly complex, namely the two last
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Aspect H States
Curvature of the Road 0 = straight
= wide curve

2 = sharp curve

Traffic Density 0=Ilow
1 = normal
2 = dense

Special Weather Conditions || 0 = no special conditions
1 = crosswind

Perils 0 = no peril
1 = occuring peril

Table 6.2: The table summarizes the remaining aspects of the original study by Fastenmeier et al.
[126] applied in this work. The right column describes the corresponding set of possible states of
each aspect.

take-over situations Cross-Wind and Braking described in Subsection 2.4.4. In accordance
with the approach in [126], the complexities of these take-over situations were determined
via the questionnaire proposed in [127] and completed by three raters. For the take-over
situation Cross-Wind, the vehicle is passing through a sharp left curve on the rightmost
lane while there is upcoming traffic on the adjacent left lane. At the same time, the vehicle
is drifting to the right breakdown lane due to a strong crosswind from the left. Especially
the aspect of the special weather condition increases the challenge concerning the vehicle
guidance to keep the vehicle in the lane to prevent any collision. The second take-over
situation Braking is characterized by a high traffic density so that no lane change to the left
is possible. Furthermore, at the beginning of the take-over situation a vehicle is going into
the rightmost lane in front of the subject’s vehicle and decelerates significantly. Compared
to the take-over situation with cross-wind, where the vehicle guidance by the driver was
the challenging part, this situation is particular demanding in terms of the visual perception
(noticing as early as possible the strong braking vehicle) and decision making processes of
the driver (braking since the lane is blocked). These two aspects, namely the demanding
visual perception and the decision making processes, are typical signs for highly complex
traffic situations according to Fastenmeier et al. [126].

Since the actual ground truth of any simulated aspect is known in a driving simulator study,
an automated realization of the classification scheme is easily implemented as a lookup ta-
ble. The feature of the situational complexity with the possible states low, middle, and
high was calculated for the complete route. Since the subjects drove solely on a highway
without any ramps or intersections, the complexity was classified as low for most of the
time. The complexity level increased to medium only in sharper curves during high traffic
density. Situations with a high complexity occurred only for the latter two take-over situa-
tions due to the strong cross-wind and the hazardous maneuver of the other vehicle cutting
in. The situational complexity represents the last feature with regard to the classification
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of the driver’s take-over readiness.

6.2.2 Measures of the Take-Over Quality

By means of the methods for EoR detection in Chapter 4, DAR in Chapter 5, and the ap-
proach described in the previous subsection, all features required for the classification of
the driver’s take-over readiness can be extracted of the data of the KoHAF study. These
features in combination with the two class labels high take-over quality and low take-over
quality enable the training of the classifier. Of course, data of both well-performed and
inadequate interventions in take-over situations are required to train and evaluate the clas-
sifier. However, high or low take-over quality must be formally defined. For this purpose,
objective driving parameters were selected to provide a measure for the take-over qual-
ity. Depending on the take-over situation, different parameters need to be considered. For
example, for the Cross-wind take-over situation relevant parameters would consider the
lateral steering behavior of the driving whereas for the Braking situation parameters con-
cerning the longitudinal behavior of the vehicle would be appropriate. Since there are al-
ready suitable parameters discussed in literature, this study follows the parameter proposal
of Zeeb et al. [97]. In addition to these parameters, the parameter Performed lane change
for the situation Straight is included. The take-over situations and corresponding parame-
ters are listed in Table 6.3. All parameters of the situation Cross-wind were calculated for
a seven seconds interval after the take-over request during which the cross-wind occurred.
For the situation Braking, all parameters are analyzed during a six seconds interval after
the take-over request during which the leading vehicle decelerated.

To interpret the parameters with regard to the quality of a take-over maneuver, there must
be a defined range specifying a high or low take-over quality for each parameter. The
control group, whose members did not perform any secondary tasks and instead observed
the traffic environment, was used for this purpose. The take-over quality was validated by
three raters for all subjects of the control group to ensure the usage of only high-quality
take-over interventions. The ratings indicated that all but one subject who ignored the in-
structions performed a high-quality take-over. For all but one parameter, the mean u. and
standard deviation o, of all the subjects in the control group were calculated (see Table
6.3). Afterwards, the upper and/or the lower threshold to the corresponding driving param-
eter was calculated over u, +20,. Although minor deviations against normal distribution
were observed for some of the parameters, a normal distribution can be assumed for each
parameter. As a consequence, 95.45% of the data of the control group are contained in
the range U, +20,. If the value of a parameter lies within this calculated range, the pa-
rameter indicates a high take-over quality. If the value exceeds the calculated range, a low
take-over quality is considered for this parameter. Hence, a normalization of each param-
eter is performed to enable the comparison between the three situations. For parameter
Performed lane change of situation Straight, a lane change was always considered as low-
quality take-over. However, one parameter is not significant by itself. For example, some
drivers started to brake right after the take-over request resulting in a small time to first
braking which usually indicates a high-quality take-over. However, some of these drivers
braked not enough so that the distance to the leading vehicle became quite small indicating
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a low-quality take-over. Hence, a low or high take-over quality is only assigned to the
take-over situation by means of a majority decision. In case of the situations Braking and
Cross-wind, at least two of the three parameters have to indicate low or high take-over for a
low or high take-over quality to be assigned to the overall situation. In case of the situation
Straight, at least one of the two parameters has to be outside the range for the take-over
situation to be labelled as low take-over quality.
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6.3 Evaluation of the Advanced Driver Assistance System

The last step for creating the ADAS shown in Figure 6.2 is the choice and training of the
classifier discussed in Subsection 6.3.1. It is crucial to outline the challenges for this clas-
sifier which significantly impact the choice of the approach. Moreover, the classification
performance of the introduced features has to be analyzed in detail to show their potential
for classifying the driver’s take-over readiness. However, Subsection 6.3.2 shows that not
only the applied features but also the type of the intervention during the take-over situa-
tion influence the classification. The final Subsection 6.3.3 of this evaluation focus on the
prototype of the ADAS described in Section 6.2.

For the following evaluations of the classifier and its characteristics, Ground Truth data was
applied in Section 6.3.1 and Section 6.3.2. However, features derived from the measure-
ment data of the simulator study were applied to test the prototype of the ADAS in Section
6.3.3. The following results were calculated by means of a Leave-N-out cross validation
with N = 5 to increase the number of combinations compared to a validation with N = 1.
Hence, five subjects were removed from the training set and used for the evaluation. Each
of the 81 subjects! including the control group with 14 subjects experienced three take-over
situations, resulting in a total of 243 situations. The number of iterations was limited to
5000 since the evaluation over all combinations of (851) is extremely time-consuming and
the result converges already for smaller numbers. Following the approach in Section 6.2.2,
60 take-over situations were assigned a low take-over quality whereas 183 situations were
assigned a high take-over quality. In detail, for the simple take-over situation Straight,
only one subject showed a low-quality take-over. For the situation Cross-wind, 37 subjects
performed a low-quality take-over whereas for the situation Braking 22 drivers showed
an inappropriate intervention. Moreover, during 25 situations performed by 19 different
drivers of the experimental group, a gaze at the road was performed shortly before the
take-over occurred. To prevent a higher weighting of the class representing situations with
high take-over quality, random high-quality take-over situations were discarded to obtain
the number of data sets similar to that of low take-over quality situations. The recording of
realistic take-over situations is an expensive task in terms of time and money, and balanc-
ing further reduces the already low amount of training data. Thus, the applied training set
is balanced and subject-independent, but contains relatively few take-over situations.

6.3.1 Analysis of Classifiers and Features

One possible method to deal with this challenging machine learning task is to select an
appropriate classifier and a small number of significant features. Various classification
methods are applied to the task of determining the take-over readiness: SVM with
a linear and RBF kernel with regularization factor C = 1, linear discriminant, Naive
Bayes, and the k-nearest neighbors algorithm (KNN). These algorithms were selected for
their reported adequate classification performance with limited training data in previous
studies [128]. Only the five features described in Section 6.2 were applied as input. In
addition, the combination of these classifiers with a preceding feature selection by means

145 males/36 females, mean age of 38 years (range 20-58, SD=11)
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Method H FCBF ‘ Accuracy | F1 score | & Time

KNN X 0.70 0.69 53ms

RBF SVM v 0.76 0.75 5 ms
Linear SVM v 0.79 0.77 4.6ms
Naive Bayes X 0.68 0.75 4.4ms
Linear Discriminant X 0.74 0.72 1 ms

Table 6.4: Performance of various classifiers in determining the take-over readiness for the Leave-
5-out cross validation.

of the FCBF was investigated to further reduce the number of features. The evaluation
is based on the Ground Truth data obtained by video; the EoR gazes and secondary
tasks for the 60 s-interval before each take-over are labelled by three raters. Since the
feature of the situational complexity is based solely on the simulated data, the automated
realization of the classification scheme described in Subsection 6.2.1 always provides
Ground Truth data. Table 6.4 shows the accuracy and F1 score of these methods and
highlights the highest measures. A checkmark indicates that the result was improved by
applying the FCBF. The averaged computation time for one iteration of the Leave-5-out
cross validation was calculated on an Intel Xeon(R) with 2.4 GHz. According to Table
6.4, a preceding feature selection improves only the SVM performance. These results
confirm the evaluation of Forman and Cohen [128] indicating an excellent classification
performance of the linear SVM. However, the performance of the SVM with RBF kernel
and the linear discriminant is decreased only slightly by about 3% and about 5% for the
accuracy and F1 score, respectively, compared to the linear SVM. Furthermore, if the
computation time is considered as a relevant design criterion for the ADAS, the linear
discriminant has to be taken into account, since its execution time is about five times
shorter than for SVM approaches. The SVM with a linear kernel was applied to obtain all
the following results.

In Figure 6.3, the accuracy and the F1 score of the take-over classification for all feature
combinations based on the Ground Truth data are shown. The first three combinations only
contain one type of features. As it can be seen, an accuracy of 71% and an F1 score of 0.6
can be reached using only the situation complexity. This provides a slightly more accurate
classification than the DAR features. However, the features of DAR increase the F1 score
by 0.06. Compared to these two combinations, EoR features show a significantly lower
performance for both measures and indicate to be not appropriable as single features. The
fourth combination includes the features of the EoR gazes and the DAR and shows a signif-
icantly increased F1 score of 78% while the accuracy decreases slightly by 1%. For all of
the following combinations, the curve of the accuracy increases steadily to 79% whereas
the F1 score remains almost stable for the third and fourth combination. Figure 6.3 in-
dicates that a robust prediction of the driver’s take-over readiness can be based solely on
neither the current traffic situation nor on driver-related features. It is shown that using only
the driver-independent feature of the situation complexity, the F1 score has an extremely
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Figure 6.3: Accuracy and F1 score for different combinations of the features extracted from the
DAR, EoR detection and situational complexity (SC).

low value whereas the accuracy exceeds 70%. This usually indicates a single-sided weight-
ing of the classifier leading to a high recall of one class and to many false alarms for the
other class. In this study, most of the take-overs in situation Straight are high-quality re-
sulting in the single-sided weighting of this class and the high accuracy. When considering
only driver-dependent features denoted with EoR+DAR, this single-sided weighting can be
avoided. However, the continuously increasing F1 score and accuracy curve illustrate the
obvious improvement of the classification for combinations of both traffic situation as well
as driver-dependent features. Finally, the constant level of the F1 score and the simulta-
neous rise of the accuracy of only 3% between the combinations SC+EoR and SC+DAR
indicate that the features of both driver-dependent information resources are of similar
significance for the classifier.

6.3.2 Type of Intervention

To investigate the performance of the classifier with regard to the intervention type in the
corresponding take-over situation, i.e. longitudinal or lateral intervention, Figure 6.4 shows
the accuracy and F1 score of the classification based on the data for the situations Straight
and Braking or Straight and Cross-wind. Again, the Ground Truth data is used for this
evaluation. Clearly, the intervention type for the corresponding take-over situation has a
significant impact on the classifier. Both the accuracy and F1 score are increased by ca.
12% and reach a value of about 87% in the situations with lateral intervention. The data
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Figure 6.4: Classification accuracy and F1 score for the take-over situations Braking and Cross-
wind.

indicates that distracted drivers were still able to manage the braking situation whereas the
cross-wind situation on average posed a more challenging task. This phenomenon can be
explained by considering the behavior of a distracted driver in take-over situations. Drivers
tend to brake precautionarily in case of sudden emergency situations, especially when they
are distracted. In the situation with the necessary lateral intervention, this behavior is of
little or no actual use since the vehicle keeps drifting out of the lane. However, for the
situation with the longitudinal intervention, braking is the correct behavior and therefore
even extremely distracted drivers sometimes performed a reasonable take-over, resulting
in the lower classification performance. This observation is in agreement with the findings
by Zeeb et al. in [97].

6.3.3 Behavior of the ADAS

All results shown up to this point are based on the labelled Ground Truth data of the EoR
gazes and DAR. However for the implementation of the proposed ADAS, automated meth-
ods for DAR and EoR detection are necessary. In the following, the algorithms described
in Sections 4.4 and 5.3 are applied to generate the input for the classification of the take-
over readiness with the linear SVM by detecting the EoR gazes and recognizing the current
secondary task. As a consequence, the accuracy of the classifier is reduced by 9% to 70%
and the F1 score decreases by 7% to 70%. While state-of-the-art methods for EoR detec-
tion usually provide a high accuracy of over 90%, current methods for DAR range from
accuracies of 70% to 85%. However, the poor recorded gaze direction means the fallback
strategy described in Section 4.4 had to be applied. Hence, the classification of the ADAS
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Take-Over Quality Algorithm issued | Algorithm did not

a warning issue a warning
Low Take-Over Quality 38(63%) 22 (37%)
High Take-Over Quality 24(13%) 159 (87%)

Table 6.5: Behavior of the ADAS for the 60 s-intervals before each take-over situation.

was based on EoR features suffering from the reduced accuracy of the fallback strategy
and DAR. As a result, the accuracy and F1 score of the classification decrease. Never-
theless, given the above mentioned conditions this is still a reasonable classification result
especially with regard to the potential improvement by means of replacing the substandard
gaze direction.

For each subject, a subject-independent classifier was learned and combined with the auto-
mated DAR, EoR detection, and classification of the situational complexity to the ADAS
proposed in the previous sections. For the evaluation of this system, the driving simula-
tor study was resimulated for the 60 s intervals before each take-over situation and used
as input for the ADAS. Only in these situations can an evaluation of the correctness of
a prompted warning be performed due to the occurring take-over. The driver’s take-over
readiness was classified for each sampling point of the 100 Hz signals in these intervals. If
a low take-over quality was classified continuously for more than 2 s, the ADAS issued a
warning. The threshold of 2 s was selected in reference to the design guidelines established
by the NHTSA for in-vehicle electronic devices in [129]. Table 6.5 contains the absolute
and relative number of drivers who received at least one warning in the 60 s interval before
the take-over occurred; 63% of the drivers experiencing a low take-over situation would
have received at least one warning during the 60 s interval prior to the take-over. On aver-
age, the warnings occurred 10 s before the take-over was prompted by the system. Since
these drivers would have been warned shortly before the actual take-over, the ADAS holds
the potential to prevent more than half of the critical situations. For the remaining 22 sit-
uations with a low take-over quality, the algorithm did not warn the driver preemptively.
The ADAS was parameterized to minimize false alarms. With regard to the situations with
a high take-over quality, 87% of the drivers would not have been interrupted by a warning
whereas the false alarms occurred in the remaining 13% of the situations. This is an essen-
tial characteristic of an ADAS since the acceptance of such a system would significantly
decrease if there were frequent false alarms. Moreover, the interval between two warnings
averages 120s and increases to 144 s if the ADAS is applied to the complete condition-
ally automated driving sections of each experiment which do not include further take-over
situations. These intervals approximate the reported interval lengths of drowsiness detec-
tion systems in conditionally automated vehicles, although even longer intervals would be
preferable [14].
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6.4 Summary

In this chapter, the first known ADAS for an automated classification of the driver’s take-
over readiness in conditionally automated scenarios was introduced. To highlight the ne-
cessity for such systems, it was shown that there is scant literature available describing
automated systems for the automated detection of the driver’s take-over readiness. The
proposed system incorporates the automated methods for Eyes-on-Road detection and
driver-activity recognition of the previous Chapter 4 and Chapter 5 with an approach for
determining the situational complexity. Based on the extracted features and a formal defi-
nition of the take-over quality, different classifier were trained and compared to each other
with regard to their computational time and overall classification performance. The results
highlight the preferred combination of a linear SVM with a feature selection step. More-
over, the different types of features were analyzed to prove that both driver-dependent and
situation-dependent features are necessary to enable a high classification accuracy and are
of similar significance for the classifier. Further, the analysis verified that the intervention
type significantly impacts the classification performance. For take-over situations with
longitudinal interventions, the accuracy of the classifier decreases since even inattentive
drivers tend to brake precautionarily in case of sudden emergency situations, which by
chance is the correct action to perform in this situation. Finally, the benefit of the ADAS is
underscored by results showing that for 63% of the situations with a low take-over quality,
the driver would have been warned shortly before the situation occurred. Moreover, nearly
90% of the drivers performing an adequate take-over would not have been interrupted by
the system.

These evaluations were performed based on the thorough conditionally automated driving
simulator study described in Subsection 2.4.4. Note that the evaluation of the system based
on real-world driving scenarios is a challenging task since take-over situations may evolve
to safety-critical situations. As a result, real-driving studies must contain only simple take-
over situations or be conducted on test tracks which reduces the comparability to public
roads. Another point to mention is that the proposed ADAS is a preemptive system, i.e.,
the system recognizes drivers with a low take-over readiness in relation to the complexity
of the current traffic situation. However, no part of the ADAS is able to foresee an upcom-
ing take-over situation. In fact, this is an extremely challenging task for automated systems
and depends largely on the vehicle’s sensors. Take-over situations due to reaching the end
of a proper road, e.g., leaving the highway or entering a construction site, could be deter-
mined via accurate and up-to-date maps provided over vehicle communications. In case of
sudden events such as an accident ahead of the vehicle, the take-over is triggered as soon as
the sensors detect the event. Hence, an occurrence probability for take-over situations can
hardly be incorporated into the ADAS. As a result, most of the prompted warnings will not
be followed by an actual take-over situation. To some extent the assessment of the com-
plexity of the traffic situation compensates for this weakness since the take-over situations
in the conducted simulator study do not occur suddenly but rather develop gradually, e.g.,
the traffic density increases steadily before the situation Braking.
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In conditionally automated driving scenarios, take-over situations may occur which force
the driver to reassume the control over and responsibility for the vehicle. The quality of
such take-over situations is significantly influenced by various factors such as the traffic
situation, the driver’s gazes at the road, and the secondary task performed during the
conditionally automated drive. Hence, the question arises how the take-over readiness
of a driver could be individually recognized by an automated approach in the vehicle.
Therefore, this work introduced the first approach enabling the classification of the driver’s
take-over readiness in conditionally automated driving scenarios. This approach is based
on features extracted from the mentioned influence factors: traffic situation, secondary
task, and the gazes at the road. Especially the recognition of the driver’s activity and the
detection of gazes at the road were at the focus of this work and can be realized by means
of a driver monitoring approach with a driver camera. Both aspects require methods
which can be applied online in a vehicle and reach sufficient accuracy even in the light
of near-to-production camera systems. The results of this work show that a combination
of features based on the traffic situation and driver monitoring performs best reaching an
overall accuracy of 79%. However, the evaluation indicates that the type of intervention
has a significant influence on the classification which is in accordance with the findings
presented in the literature.

An ADAS based on such a classifier is not only able to determine the driver’s take-over
readiness, which could then be used by further applications to support the driver during
the take-over. It can also be seen as an enabler for additional secondary tasks, since
a driver with a low take-over readiness can be detected and could be kept in the loop
through requested gazes at the road. Following this concept, a first prototype of such an
ADAS was introduced and applied as a resimulation on the data of a driving simulator
study. In case of the take-over situations with a low take-over quality, more than half
of the drivers (63%) would have been prompted to perform gazes at the road due to the
prototypical ADAS. On average, these prompts would have been triggered 10 s before the
actual take-over, which might have enabled these drivers to perform it adequately. At the
same time, 87% of the drivers performing a high-quality take-over would not have been
interrupted by any warning indicating the low false detection rate.

For extracting features with regard to the driver’s activity, methods for driver-activity
recognition are necessary. However, known methods cannot distinguish between detailed
secondary tasks such as reading or watching a video or are those applicable only in static
lab environments. As a consequence, different methods for driver-activity recognition
adapted to the conditionally automated driving environment were developed in this
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work. The most promising approach based on the driver’s scanpath showed outstanding
evaluation results for data of a driving simulator as well as for a real-driving study. Hence,
the application of such methods in series vehicles will become possible in the near future.

Various approaches for extracting features with regard to the driver’s gazes at the road
have already been published in literature. Nevertheless, all of these approaches suffer
from various shortcomings such as: required calibration steps, inability to detect moveable
areas-of-interest, or absolute head pose as the fallback strategy in case of a deteriorated or
missing gaze signal. To resolve these shortcomings, a novel approach based on dynamic
clusters in space representing areas-of-interest was proposed. The clusters are represented
by a mixture distribution and can be updated individually and in an online-fashion.
Further, a fallback strategy able to detect gazes at the road by analyzing the driver’s head
movements was introduced. The cluster based approach showed nearly perfect detection
performance in the real-driving study with a near-to-production driver camera.

Some of the methods introduced in this work for driver-activity recognition and detecting
gazes at the road benefit from robust and accurate eye movement classification methods.
Although this topic received much attention in the last decades, the science community is
still divided on the use of threshold-based or probabilistic methods. Several studies claim
that a fixed threshold is sufficient for the separation of fixations and saccades while others
support methods able to adapt to varying conditions. However, no evaluation has yet been
provided proving the actual existence of varying eye movement behavior, for example, in
traffic situations. In this work, a thorough conditionally automated driving simulator study
was evaluated with regard to the occurring variations during different secondary tasks.
It was shown that the eye movement behavior does in fact vary significantly between
these tasks and especially between idle and busy drivers. Moreover, current methods
for eye movement classification adapt insufficiently to these variations. This motivated
the creation of a novel approach called MERCY for eye movement classification with
increased adaptability.

Hopefully, this work highlights the usefulness and maturity level of these approaches, es-
pecially of Eyes-on-Road systems with regard to an application in series vehicles, and
will inspire further studies in the field of automated classification of the driver’s take-over
readiness and driver-activity recognition. The fact remains that although the technology is
available, there are still far too few assistance systems on the market which focus on reduc-
ing the number of accidents due to a visual distracted drivers. By replacing the driver with
an automated driving function in conditionally automated scenarios, such accidents could
be prevented. However, it is still an open question if the driver might be overwhelmed
in some of the take-over situations. Hence, some vehicle manufacturer already plan on
skipping the introduction of conditionally automated driving functions on account of the
discussed take-over scenarios. At this point, automated systems for classifying the driver’s
take-over readiness could close the gap and enable the first conditionally automated driving
function within the next few years.
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