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Summary

The main focus of this PhD thesis is on phenomenology of high energy particle and
nuclear physics. We have performed several theoretical and phenomenological calcula-
tions aiming at a better description of collisions at hadron colliders such as the LHC or
RHIC. In addition, several studies were performed relevant for lepton hadron scattering
experiments carried out at JLab, HERMES, COMPASS or a future EIC.

One of the main goals of this PhD thesis are calculations of QCD threshold resumma-
tion. Threshold logarithms typically arise when the initial partons have just enough
energy to produce the observed final state. In this case, the phase space available
for gluon bremsstrahlung vanishes, resulting in large logarithmic corrections. This is
a natural feature of QCD in higher order perturbation theory, that large corrections
emerge in the edges of phase space. We obtain this behavior of QCD in all calculations
discussed in this PhD thesis. If we try to get sensible answers from QCD in this area
of phase space, we have to take these large logarithms into account to all orders. This
procedure is known as ”threshold resummation”.

We investigated resummation effects beyond next-to-leading logarithmic (NLL) accu-
racy for di-hadron production in hadronic collisions H1H2 → h1h2X at high invari-
ant mass of the produced hadron pair. Since all particles in the underlying partonic
reactions are color charged, the color structure of this process is highly non-trivial.
Therefore, resummation beyond leading logarithmic accuracy may only be achieved by
taking into account the color structure of the partonic process. We determined the
relevant soft and hard matrices in space of color exchange operators, that appear in
calculations beyond NLL accuracy. Besides these analytical calculations, we perform
phenomenological studies for the di-hadron production process. We found significant
improvements compared to previous studies in terms of cross section scale uncertainties.

In a related work we derived analytical approximate next-to-next-to-leading order (NN-
LO) results for single-inclusive jet production in hadronic collisions. Our formalism is
based on threshold resummation and makes use of the fact that threshold resummation
determines certain classes of threshold logarithms. Starting at NLL, we included for
the first time the three leading classes of logarithms at partonic threshold. In addi-
tion, compared to previous results we also included the full dependence of the jet size
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Summary

parameter R. Our results adapted also the full kinematic of jet transverse momentum
pT and rapidity η, which makes them of great phenomenological interest, for example
in jet physics at hadron colliders such as the LHC, Tevatron or RHIC. Fits of par-
ton distribution functions rely on jet data. Particularly the gluon PDF at large-x is
constrained by high pT -jets. Our approximate results are important for NNLO-PDF
fits in the central rapidity and high transverse momentum region. Another important
application could be the search for new physics at the LHC, where large pT -jets are an
important observable.

A very interesting field in QCD is the spin structure of the nucleon. The longitudinal
spin distribution can be explored with the double spin asymmetry ALL produced from
longitudinally polarized hadron beams, for example at RHIC. In this thesis, we used the
same methods as in the paragraph above to derive approximate NNLO results for single
inclusive jet production in longitudinally polarized hadron beams. We found significant
contributions, from formally subleading terms at partonic threshold. We could also
perform phenomenological studies and compare them to jet production ALL data from
RHIC, which is a first step towards new accuracies in spin physics.

Besides the resummation studies in hadronic scattering we worked on fixed order calcu-
lations in lepton nucleon scattering processes. Particularly, we investigated the single-
inclusive production of hadrons and jets in lepton nucleon scattering lN → hX and
lN → jetX at next-to leading order (NLO). In contrast to the common DIS process the
final state lepton remains unobserved. The treatment of the collinear divergencies from
the photon propagator needs special attention in this calculation. It could either be
absorbed by a photon in lepton distribution or completely avoided by a massive lepton.
We could show, that in contrast to claims in the literature the almost real photon part is
not the dominating contribution at NLO. The analytic results for single jet production
were carried out in the ”Narrow Jet Approximation” and adopt the right dependence
on the jet size parameter R up to R ∼ 0.7. Besides theoretical calculations, we do
phenomenological applications of our work. Therefore, we performed numerical studies
of the cross sections for present-day fixed target experiments and for a possible future
electron-ion-collider (EIC).

Our unpolarized lN → hX NLO calculation is motivated by the fact, that this process
attracted much theoretical and experimental interest for a transversely polarized hadron
or nucleon in the initial state. In the case of polarized scattering azimuthal asymmetries
were observed in experiments at JLAB and HERMES. A common approach to describe
these single transverse spin asymmetries (SSA), is the so called twist-3 quark-gluon
correlation function approach. So far, however, phenomenological applications for this
process only have been limited to zeroth order of QCD perturbation theory. In general,
for single spin asymmetries, QCD corrections to leading order are only available for
more inclusive processes. The experimental data for lN↑ → hX is not well described
by the existing leading order studies and justifies the aim to develop a framework to go
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beyond LO. Transverse spin dependent cross sections receive several contributions, the
evaluation of them is highly challenging. In the present PhD thesis we focus on the so
called soft-gluon-pole contribution, where the imaginary phase from the partonic hard
scattering is provided from a configuration when the attached twist-3 gluon becomes
soft. We developed a theoretical framework to calculate next-to-leading order QCD
corrections for the soft gluon pole contribution to single-transverse spin asymmetry in
lN↑ → hX. Exploring the contributions beyond leading order is crucial to determine
the origin of the large asymmetries. The calculation we perform is an important step to
understand how the theory of perturbative QCD is applicable to twist-3 cross sections.

In addition to the calculations concerning the transverse structure of the nucleons spin,
also the longitudinal spin structure is a topic of this thesis. Therefore, we performed
a study for the longitudinal double spin asymmetry in the process ~l ~N → hX at NLO
level.
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Zusammenfassung

Der Schwerpunkt der vorliegenden Doktorarbeit liegt in der Phänomenologie der hoch-
energie Kern- und Teilchenphysik. Mittels theoretischen Studien wurden Prozesse un-
tersucht, die ein besseres Verständnis der Physik an Hadronbeschleunigern, wie den
LHC oder RHIC liefern. Zusätzlich wurden Hadron-Lepton-Prozesse untersucht, die
für Experimente wie am JLab oder bei HERMES, COMPASS und einem zukünftigen
EIC relevant sind.

Einer der Schwerpunkte dieser Doktorarbeit liegt auf QCD threshold re-summations-
Rechnungen. Die sogenannten threshold Logarithmen nehmen große Werte an, wenn
die einlaufenden Partonen ihre gesamte Energie benötigen um den beobachteten Endzu-
stand zu produzieren. In diesem Fall verringert sich der Phasenraum für Gluonen-
Bremsstrahlung, was zu den großen Logarithmen führt. Dies ist ein immer wiederkehren-
des Muster in der störungstheoretischen QCD in höheren Ordnungen, sodass sich in
extremen Regionen des Phasenraums große Korrekturen ergeben. Um sinnvolle Ergeb-
nisse in diesem Teil des Phasenraums zu bekommen, sollte man diese Logarithmen
zu allen Ordnungen in der störungtheoretischen Reihe aufsummieren. Diese Prozedur
nennt man ”Threshold Resummation”.

Wir untersuchten die Resummation solcher Logarithmen jenseits der nächst-führenden
logarithmischen Ordnung (NLL) für die Dihadron-Produktion in hadronischen Kollisio-
nen H1H2 → h1h2X, wobei die invariante Paarmasse des produzierten Hadron-Paars
relativ hoch ist. Da alle Teilchen in der partonischen Reaktion farbgeladen sind, ist
die Farbstruktur solcher Prozesse sehr komplex und muss in Betracht gezogen wer-
den, wenn man Genauigkeiten jenseits der führenden logarithmischen Ordnung erre-
ichen möchte. Wir bestimmen die relevanten ”weichen” und ”harten” Matrizen im
Raum der Farbaustauschoperatoren, welche jenseits der nächstführenden Ordnung auf-
tauchen. Neben analytischen Rechnungen, haben wir phänomenologische Studien im
Dihadron-Prozess durchgeführt. Dabei konnten signifikante Verbesserungen der Skale-
nungenauigkeit erzielt werden.

In einer weiteren Arbeit haben wir die ”single-inclusive” Jet-Produktion in hadronis-
chen Kollisionen näherungsweise zur nächst-zu-nächst-zu führenden Ordnung (NNLO)
analytisch berechnet. Unser Formalismus basiert darauf, dass die Resummation von
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threshold-Logarithmen eben diese zu allen Ordnungen vorhersagt. Ausgehend von NLL
konnten wir erstmalig die ersten drei Klassen an führenden Logarithmen bestimmen und
die volle Abhängigkeit des Jet-Parameters R mit einbeziehen. Desweiteren konnten wir
sowohl die volle Abhängigkeit des Jets vom transversal Impulses pT als auch dessen
Abhängigkeit von der Rapitität η miteinbeziehen. Dies ist der Grund dafür, dass un-
sere Rechnung große Aufmerksamkeit auf sich zieht.

Ein sehr interessantes Forschungsfeld in der QCD ist die Spinstruktur des Nukleons. Die
longitudinale Spin Verteilung kann anhand longitudinal polarisierter Hadron-Kollisionen
untersucht werden. Die doppelte longitudinale Spin Asymmetrie ALL für die ”single-
inclusive” Jet Produktion kann beispielsweise am RHIC gemessen werden. In der vor-
liegenden Doktorarbeit haben wir die selben Methoden wie im Absatz zuvor beschriebe-
nen unpolarisierten Prozess benutzt, um näherungsweise NNLO-Ergebnisse für den po-
larisierten Prozess zu berechnen. Wir konnten formell an der partonischen Schwelle
unterdrückte Beiträge identifizieren, welche dennoch einen signifikanten Beitrag zum
Wirkungsquerschnitt liefern. Desweiteren wurden phänomenologische Studien durchge-
führt und mit den aktuellen ALL Jet-Daten von RHIC verglichen, dies bedeutet einen
ersten Schritt zu neuen Genauigkeiten in der Spin-Physik.

Neben den Studien welche auf Resummation in hadronischen Kollisionen beruhen, wur-
den Berechnungen zur festen störungstheoretischen Ordnung durchgeführt. Im Detail
haben wir ”single-inclusive” Hadron- und Jet-Produktion in Lepton-Hadron-Streuung
in nächst-zu führender Ordnung (NLO) berechnet. Im Gegensatz zum herkömmlichen
DIS-Prozess wird das Lepton im Endzustand nicht beobachtet. Die kollineare Divergenz
welche durch den Photon-Propagator hervorgerufen wird benötigt besondere Aufmerk-
samkeit. Die Divergenz kann entweder in eine Photon in Lepton Verteilung absorbiert
oder durch ein massives Lepton komplett vermieden werden. Wir konnten zeigen, dass
im Gegensatz zur bisherigen Literatur der Wirkungsquerschnitt nicht durch beinahe
reelle Photonen dominiert wird. Die analytischen Ergebnisse der Jet-Produktion wur-
den in der sogenannten ”Narrow Jet Approximation” durchgeführt und nehmen die
annähernd korrekte Abhängigkeit des Jet-Parameters R bis zu R ∼ 0.7 an. Desweit-
eren wurden phänomenologische Studien für aktuelle und zukünftige Experimente, wie
den Electron-Ion-Collider (EIC) durchgeführt.

Die unpolarisierte lN → hX NLO Rechnung wurde dadurch motiviert, dass der Prozess,
bei dem das einlaufende Hadron oder Nukleon transversal polarisiert ist, viel Aufmerk-
samkeit, im Experiment als auch in der Theorie auf sich zog. Im transversal polarisierten
Streuprozess bei Experimenten am JLab und HERMES wurden azimuthale Asym-
metrien beobachtet. Ein Zugang um diese einfach transversalen Spin Asymmetrien
(SSA) zu beschreiben bietet der sogenannte Twist-3 Quark-Gluon Korrelationsfunktion-
sansatz. Bisher gelang es nur diesen Prozess zur führenden Ordnung zu berechnen. Im
Allgemeinen wurden SSA-Observablen nur in stärker inklusiven Prozessen jenseits der
führenden Ordnung bestimmt. Die experimentellen Daten für den Prozess lN↑ → hX
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werden durch die existierenden LO Ergebnissen nur sehr schlecht beschrieben. Eines der
Ziele der vorliegenden Doktorarbeit war es Methoden zu entwickeln um diesen Prozess
zur nächst führenden Ordnung zu berechnen. Der polarisierte Wirkungsquerschnitt
besteht aus einigen Beiträgen, wobei deren Berechnung außerordentlich schwierig ist.
In der vorliegenden Arbeit beschäftigen wir uns mit dem sogenannten Soft-Gluon-
Pol-Beitrag, welcher von Konfigurationen hervorgerufen wird, indem das zusätzliche
Twist-3 Gluon weich wird. Wir entwickelten Methoden um NLO Korrekturen für den
Soft-Gluon-Pol-Beitrag im Prozess lN↑ → hX zu berechnen. Um die Herkunft der
Asymmetrien zu bestimmen, ist es unumgehbar den Prozess jenseits der führenden
Ordnung zu verstehen. Deswegen ist unsere Rechnung ein wichtiger Schritt um die
störungstheoretische QCD auf komplizierte Twist-3-Prozesse anzuwenden.

Zusätzlich zu der Rechnung welche sich mit der transversalen Spin-Struktur des Nuk-
leons beschäftigt, haben wir den Prozess für ein longitudinal polarisiertes Nukleon
berechnet. Wir haben dafür die doppelte longitudinale Spin Asymmetrie in NLO für
den Prozess ~l ~N → hX bestimmt.
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Chapter 1.

Introduction

The theory of strong interactions - quantum chromodynamics (QCD) - was developed
more than four decades ago [8, 9]. Since that time, it continues its triumph by explaining
the nature of hadrons and thus the building blocks of nature. But, unlike the quantized
theory of electro-magnetic fields, - quantum electrodynamics (QED) -, many phenomena
are not accessible by direct weak coupling perturbation theory. On the other hand,
through its complexity QCD offers a very rich phenomenology, that is in many cases
very tough to describe theoretically to high accuracies. Therefore, QCD is even more
than 40 years after its invention in the spotlight of ongoing research.

The experimental progress that has been achieved, produces an ever growing need
for theoretical predictions to very high accuracies. The most precise predictions from
QCD are achieved by utilizing the ansatz of perturbation theory. The spectrum where
perturbative QCD (pQCD) is faced with experimental setups is enormously large. From
the search of new physics at the LHC on the TeV scale, down to scattering experiments
aiming to a better understanding of the nucleons spin structure on the lower and mid
GeV scale, for example at HERA, RHIC and COMPASS. The theoretical success relies
on a few enormously prosperous concepts established in QCD. The most fundamental
one, that justifies in general the pQCD ansatz, is asymptotic freedom, a key feature of
QCD. It states that the effective coupling of QCD goes to zero at zero distance, i.e. at
high energies [10, 11]. Therefore, scattering processes of strongly interacting particles at
high energies, can be described by using the methods of Feynman perturbation Theory.

But, unlike in QED we cannot get high precision predictions from pure Feynman pertur-
bation Theory. The reason is another key feature of QCD, confinement. It states, that
there are no free color charged particles, i.e they are bound in colorless hadrons. There-
fore, all physical processes do not only involve the strongly interacting color charged
particles, but also colorless hadrons far away from the hard scattering point. The pro-
ton for example, has a mass around ∼ 938 MeV, that must include the binding energy
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Chapter 1. Introduction

of the internal quarks and gluons. Therefore, the binding energy for a single quark or
gluon inside a proton is relatively small. Small in a sense, that at these energy scales
the coupling is far to big to exploit perturbative QCD. This leads unavoidable to a two
scale problem in QCD. We have on the one hand the hadronic energy scale and on the
other hand the scale of the hard scattering process in the perturbative regime. Now we
are facing the problem, that we can solve the hard scattering part by using perturbative
methods, but we are not able to describe the external hadrons with this theory. The
factorization theorem of QCD helps to get along with exactly this problem.

Factorization is the central theorem in perturbative QCD. The theorem states that one
can factor the hard scattering part from the non perturbative hadronic part of the cross
section. We will explain the basic properties of the factorization theorem in section 1.3
in this thesis. Since factorization was introduced into the theory, the parton structure
of hadrons is determined by high energy scattering experiments, i.e. one can extract the
parton distribution functions (PDF) from experimental data. The PDFs are universal
functions, in a sense that they are independent of the actual hard process. In fact, these
properties of the theory allow us to face pQCD to experimental data.

This thesis is structured as follows. In the subsequent sections of this introductory
chapter we outline the basic concepts of perturbative QCD. We give a general overview
on QCD, concerning its Lagrangian and renormalization. We thematize the running of
the QCD gauge coupling and discuss the perturbative treatment of a hard scattering
process. Further, we show how to define infrared safe observables, which is crucial to
obtain well defined answers from QCD. We give an introduction to the factorization
theorem and hence the evolution property of parton distribution functions. In the end
we complete this chapter with a brief introduction to threshold resummation.

The subsequent chapters are structured mainly along the papers listed on page xi.

In chapter 2 we present a NLO calculation in single hadron and jet production in a
lepton nucleon induced process. This chapter is based on publications [3, 6] and is the
basis for chapters 3 and 4, where we perform NLO calculations to the single transverse
and the double longitudinal spin asymmetries [4, 5].

In the second part of this thesis, we investigate the resummation of threshold logarithms
in pp induced processes. In chapter 5 we perform a calculation beyond next-to-leading
logarithm accuracy for di-hadron production [2]. Based on this chapter, we present ap-
proximate next-to-next-to leading order results for single jet production in unpolarized-
and longitudinally polarized pp scattering in chapters 6 and 7 based on publication [1].
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1.1. Quantum Chromo Dynamics

1.1. Quantum Chromo Dynamics

1.1.1. QCD Lagrangian

In a quantum field theory the behavior of a set of particles should follow from the La-
grangian density. In the case of QCD the Lagrangian density connects quarks with mass
m represented by spin one half matter fields Ψkjf , with the massless spin one gluon field
Aaµ. The quark fields are specified by the Dirac index k, a color index j and the flavor
index f . The color index has three values, which has been shown experimentally. As far
is known, the flavor index has six values ”up”, ”down”, ”strange”, ”charm”, ”bottom”
and ”top”. The gluon field has a color index a taking on eight values representing the
eight generating matrices of SU(3). On the gluon field, the index µ is a Lorentz vector
index. In the following discussion we assume the sum on flavor, color and Dirac indices
on quark fields as implicit. Then we can express the classical Lagrangian density as

Lclass. = Ψ̄(i /D −m)Ψ− 1

4
GaµνG

µν
a , (1.1)

where the covariant derivative is given by

DµΨ = (∂µ + igT aAaµ)Ψ . (1.2)

Here, T a are the generating matrices of the SU(3) colour gauge group and the factor g
is the coupling strength in QCD. Gµνa is the gluon field strength tensor which is given
by

Gµνa = ∂µA
a
ν − ∂νAaµ − gfabcAbµAaν ; . (1.3)

In contrast to QED which is an abelian gauge theory we have an additional term in
equation (1.3) proportional to fabc, the structure constant of the SU(3) gauge group.
The structure constant is defined by the commutator [Ta, Tb] = ifabcTc. Consider-
ing these definitions, we see that the classical Lagrangian density in equation (1.1) is
invariant under local (i.e. space time dependent) SU(3) gauge transformations:

Ψkjf (x)→
[
e−igωb(x)T b

]
ji

Ψkif (x)

Abµ(x)T b → 1

ig
e−igωb(x)T b Dµ e

igωb(x)Tβ (1.4)

A novel way to quantize the theory is the path integral formalism [12]. Here, the
Feynman rules for perturbation theory are derived from a functional integral by using
the Faddeev - Popov method for gauge fixing [13]. For covariant gauge fixing we include
the term

Lgf = − 1

2ξ
(∂ ·Aa)2 , (1.5)
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Chapter 1. Introduction

into the Lagrangian. The parameter ξ is the gauge parameter that cancels in a physical
observable. The most common choices are Feynman ξ → 1 and Landau gauge ξ → 0.
If we fix the gauge like in equation (1.5), we must take special care of unphysical
polarizations of the gluon propagator. To fix that issue, we include an anti-commuting
complex scalar Faddeev-Popov ”ghost” field η into the Lagrangian [13]. This ”gauge
compensating” contribution is given by

Lgc = ∂µη̄a ∂
µηa + g ∂µη̄c fabc A

b
µηa . (1.6)

Therefore, we can rewrite the Lagrangian as

L = Lclass. + Lgf + Lgc

= Ψ̄(i /D −m)Ψ− 1

4
GaµνG

µν
a −

1

2ξ
(∂ ·Aa)2 + ∂µη̄a ∂

µηa

+ g ∂µη̄c fabc A
b
µηa , (1.7)

from where we can derive Feynman rules for Green functions. So far, in equation (1.7)
all quantities are bare functions and parameters.

Another common gauge in particle physics is the axial gauge which is non-covariant.
In that gauge, we implement the condition n ·Aa = 0 into the Lagrangian by using the
gauge fixing term

Lgf = − 1

2ξ
(n ·Aa)2 . (1.8)

In axial gauge are no gauge compensating ghost fields required. But, the gluon propaga-
tor gets more complicated instead. We can choose the gauge four vector nµ differently.
Where n2 = 0 is called ”light like”, n2 > 0 ”temporal” and n2 < 0 ”purely axial” gauge.

1.1.2. Renormalization

As most relativistic field theories QCD is ultra-violet (UV) divergent. It is important to
mention, that these divergences are property of the exact theory [14] and appear when
the continuum limit is taken. In perturbation theory these divergences are caused
by large loop momenta and can be removed order by order by a modification of the
bare parameters in the Lagrangian density L. Before we renormalize the theory we
have to make the UV divergences manifest, in a sense, that we have to define the
theory with a regulator, that takes care of the UV divergences. The most common
regulators are dimensional regularization and non zero lattice spacing. In context of
analytical perturbative calculations dimensional regularization is of special interest,
where a generalization of space time to non integer values regulates the divergent part.
In 4− 2ε space time dimensions UV divergences from loop amplitudes appear as poles
in ε when ε→ 0.
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1.1. Quantum Chromo Dynamics

When we renormalize the theory to obtain finite Green functions, we use the freedom
to change the normalization of the parameters m and g and the normalization of the
fields, i.e.

Ψ→ Z
1/2
2 Ψ

Aaµ → Z
1/2
3 Aaµ

η → Zgη (1.9)

If we implement renormalization into the theory we can use a counterterm approach.
That means by introducing (1.9) into (1.7) we can split the Lagrangian into three parts

L = Lfree + Lint. + Lc.t. (1.10)

The free Lagrangian Lfree contains the kinetic terms of the theory. It is the origin of
the free propagators.

Lfree = Ψ̄(i /D −m)Ψ− 1

4

(
∂µA

a
ν − ∂νAaµ

)2 − 1

2ξ
(∂ ·Aa)2 + ∂µη̄a ∂

µηa (1.11)

In contrast to equation (1.7) m is now the finite renormalized mass. The interaction
Lagrangian Lint. contains terms that describe the interaction between the different fields
and in case of the gluonic part self interactions.

Lint. = −gµεΨ̄T a /AaΨ + gµεfabcA
bµAcν∂µA

a
ν −

g2µ2ε

4
(fabcA

b
µA

c
ν)2

+ gµεfabc∂µη̄
cAbµη

a (1.12)

Where µ is the unit mass, it ensures that the renormalized coupling g remains dimen-
sionless for all values for ε in dimensional regularization. The appearance of the unit
mass is an artifact of the regularization scheme. The counter term Lagrangian is the
remaining part of equation (1.7) after using the replacements (1.9). In perturbative
QCD this part of the Lagrangian is treated as part of the interaction and gives rise
to an additional set of vertices and propagators. They have the same structure as the
vertices emerging from equation (1.7) but with different coefficients. In a perturbative
calculation these coefficient are adjusted in a way that the UV divergences are canceled
order by order in the perturbative expansion.

1.1.3. Renormalization group and asymptotic freedom

If we compute a physical observable the appearance of an arbitrary mass scale µ intro-
duced in the previous section seems to reduce the predictive power of the theory. But
in reality, the freedom of choosing µ is used to optimize the accuracy of any fixed order
calculation. It exploits the fact, that the full theory must be invariant under changing
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Chapter 1. Introduction

the renormalization prescription. Therefore, the full theory is also invariant under vari-
ation of µ and its dependent renormalized parameters. This is called renormalization
group invariance.

Let S(αs,m/Q,Q
2/µ2) be an arbitrary physical observable that depends on a large

energy scale Q, the renormalized coupling αs, renormalized mass m and on the renor-
malization scale itself. Here we define in analogy to Quantum Electro Dynamics (QED)
αs = g2/4π. Then, the renormalization group invariance states

µ2 d

dµ2
S(αs,m/Q,Q

2/µ2) = 0 , (1.13)

using the chain rule we obtain
[
µ2 ∂

∂µ2
+ β(αs)

∂

∂αs
− γm(αs)m

∂

∂m

]
S(αs,m/Q,Q

2/µ2) = 0 . (1.14)

The introduced functions β and γm are defined by [15]

β(αs) = µ2 ∂

∂µ2
αs ,

γm(g,m) =
−µ2

m

∂

∂µ2
m , (1.15)

where β is the so called QCD beta function and γm the anomalous dimension. They
are both perturbative and can be expanded as

β(αs) = −α2
s (b1 + b2αs + b3α

2
s +O(α3

s)); , (1.16)

γm(αs) = αs
(
c1 + c2αs +O(α2

s)
)
. (1.17)

As a consequence of the RG equation (1.14), the masses of the quarks and the coupling
have not fixed values at all energy scales. This becomes clear by looking at equation
(1.14), to solve it we have to introduce a running coupling αs(µ

2) and a running mass
m(µ). This running of αs(µ

2) is in the end the justification for perturbation theory at
high energies using αs as the expansion parameter.

We now investigate the running of αs in more detail. In this discussion we neglect
the quark masses as it is often done in the perturbative regime of the theory. This is
justified by the fact that for any observable the anomalous dimension leads to a change
of mass with Q with a power of log(Q) which is accompanied by an inverse power of Q
from the expansion. Therefore, the logarithm never overcomes the Q for large Q and
justifies the ansatz to neglect quark masses at high energies.

To investigate the behavior of αs at high energies, we take the zero mass limit of our
observable S.

S(αs, 0, Q
2/µ2) ≡ S̃(αs, Q

2/µ2) (1.18)
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1.1. Quantum Chromo Dynamics

This simplifies equation (1.14) to

[
µ2 ∂

∂µ2
+ β(αs)

∂

∂αs

]
S̃(αs, Q

2/µ2) = 0 . (1.19)

We can rewrite this equation in a simpler form

[
− ∂

∂t
+ β(αs)

∂

∂αs

]
S̃(αs, e

t) = 0 , (1.20)

where we introduced a new variable t = log(Q2/µ2). Equation (1.20) is a first order
partial differential equation that we can solve by introducing an implicit definition for
the strong coupling

t =

∫ αs(Q2)

αs(µ2)

dχ

β(χ)
. (1.21)

Using this definition, by differentiation we get

∂αs(Q
2)

∂t
= β(αs(Q

2)) , (1.22)

∂αs(Q
2)

∂αs(µ2)
=
β(αs(Q

2))

β(αs(µ2))
. (1.23)

It follows that S̃(αs(Q
2), 1) is a solution of equation (1.20). Therefore, all the scale

dependence in our physical observable S̃ enters through the running coupling constant
αs(Q

2). The scale dependence of the coupling constant is determined by the renormal-
ization group equation for αs (1.22).

Q2 ∂αs
∂Q2

= β(αs) (1.24)

We now investigate the behaviour of αs in more detail. To do so, we need the coefficients
of the QCD β-function equation (1.16) [16, 17]

b0 =
1

12π
(11CA − 2Nf ) , (1.25a)

b1 =
1

24π2
(17C2

A − 5CANf − 3CFNf ) , (1.25b)

b2 =
1

64π3

(
2857

54
C3
A −

1415

54
C2
ANf −

205

18
CACFNf (1.25c)

+
78

54
CAN

2
f +

11

9
CFN

2
f

)
,

where Nf is the number of active flavors The coefficients of the QCD β-function can be
extracted order by order from the loop corrections to the bare vertices. The sign of the
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Chapter 1. Introduction

β-function determines the behavior of the coupling as a function of the energy scale.
In other words, a negative β-function implies that the coupling decreases for higher
energy scales. We conclude that QCD is asymptotically free for b0 > 0 ⇔ Nf ≤ 16.
At leading order (LO) in perturbation theory we can solve equation (1.16) exactly

αs(Q
2) =

αs(µ
2)

1 + b0αs(µ2) log (Q2/µ2)
(1.26)

This relation between αs(µ
2) and αs(Q

2) is valid if both energy scales are in the per-
turbative region. Since one of the main topic of this thesis is resummation, we have a
closer look at equation (1.26). We can expand it as

αs(Q
2) =

∞∑

i=0

αs(µ
2)i+1

(
−b0 log

(
Q2/µ2

))i
. (1.27)

This is a first example of a resummation of logarithms of a certain type. Here we sum
logarithms of the type αs(µ

2)i+1
(
−b0 log

(
Q2/µ2

))i
to all orders in the strong coupling.

Although we have only the one loop result (b0) in our calculation, RG invariance allows
us to make all order predictions for this kind of logarithms. This approach is very similar
to other resummation techniques, where we exploit RG invariance of the theory to sum
up classes of logarithms and it is examplarely how this could increase the accuracy of
a calculation.

In the main body of this thesis we need the strong coupling at NNLO accuracy. For
completeness we give the result

αs(Q
2) =

αs(µ
2)

X

[
1− b1

b0
αs(µ

2)
logX

X

+ αs(µ
2)2

(
b2
b0

1−X
X2

+
b21
b20

log2X − logX +X − 1

X2

)]
, (1.28)

where

X = 1 + b0αs(µ
2) log(Q2/µ2) . (1.29)

With equation (1.26) at LO and (1.28) at NNLO it is possible to compute αs at a scale
Q in case that it is known at some reference scale µ. Therefore, perturbative QCD
predicts only the variation of αs the non perturbative initial αs at a certain scale is
taken from global fits to experimental data [18]. In figure (1.1) the QCD prediction and
experimental data from various experiments spanning a large range of the evaluation
scale Q for αs are shown. In the high energy regime, i.e. large Q, the strong coupling
becomes small and we conclude that perturbative QCD is an useful tool to solve the
theory in that particular region. On the other hand, figure (1.1) shows that the strong
coupling has a steep rise towards smaller energies. In that regime, the quarks and
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Figure 1.1.: Scale dependence of αs as a function of Q. The data shown here is used to
evaluate the strong coupling at the Z-boson mass. Figure taken from [19].

gluons interact strongly with each other. This is the regions where the quarks and
gluons are confined to colorless hadrons. This steep unbound rise of αs(µ

2) towards
small scales gives rise to so called Landau poles in the numerical treatment of threshold
resummation that is a main topic of this thesis. We will keep that in mind when we
come to threshold resummation.

1.2. Infrared safety

To illustrate the fundamental concept of infrared safety, we examine in this section
the simplest measurable observable which can be computed in pure perturbative QCD:
The total cross section for the e+e− → hadrons annihilation process at high energies.
Although this paragraph is included for pedagogical reasons, i.e. to scrutinize the
appearing divergences and how to handle them, this process was very important in the
history of particle physics. We start with the inclusive cross section, in a sense that we
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Chapter 1. Introduction

e+

e−

Figure 1.2.: Amplitude for e+e− → hadrons

do not extract any information of our hadronic final state and we do not include any
non perturbative dynamics in the present calculation.

1.2.1. e+e− total cross section

We consider the process e+e− → hadrons to lowest order in electromagnetism α2.
The present calculation shows the derivation of the first order correction in the strong
coupling αs for this process. To justify this perturbative ansatz, the energy transfer
in the s-channel diagram figure (1.2) Q2 = q2 = (l1 + l2)2 must be in the perturbative
regime. l1 and l2 denotes the electron and positron momenta. At lowest order in terms
of the electromagnetic coupling hadronic and the leptonic parts in the cross section
factorize

σ =
8π2α2

Q6
LµνW

µν , (1.30)

where the most general tensor structure for unpolarized lepton beams is given by

Lµν = lµ1 l
ν
2 + lν1 l

µ
2 − gµν l1 · l2 . (1.31)

The hadronic tensor must satisfy the ward identity qµW
µν = 0 that determines its tensor

structure. This tensor structure is accompanied by a scalar function R, dependent on
the center of mass energy Q2. Thus we have

Wµν =
(
−gµνq2 + qµqν

) 1

6π
R(Q2) . (1.32)

As mentioned above, for sufficient large Q2 we can address the perturbative expansion
to R(Q2). In other words, with pQCD we can resolve the small distance dynamics of
the order ∝ 1/Q in the gray blob in figure (1.2). We have to keep that always in mind
when we apply pQCD to get physical answers. Surely, in higher orders the gray blob
can include long distance physics, that can not be handled by the pQCD ansatz. But,
we ignore that for the moment and assume all vertices dominantly in the perturbative
region. In fact, this is a valid assumption for this process.

The leading order (LO) contribution to the inclusive cross section has only one contri-
bution shown in figure (1.3). Calculating the trace we end up with

R0 = Nc

∑

f

e2
f , (1.33)
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Figure 1.3.: LO contribution to the hadronic tensor

k1

k2

k3

k1

k2

k3

Figure 1.4.: NLO real emission contribution to the hadronic tensor.

where Nc = 3 is the number of quark colors. The leading order cross section is then
given by,

σ =
4πα

3Q2
Nc

∑

f

ef . (1.34)

The next-to-leading order (NLO) cross section receives contributions from virtual gluon
figure (1.5) and real gluon corrections figure (1.4).We start with the computation of the
real gluon emission part.

NLO real gluon

The real NLO correction to the hadronic tensor shown in figure (1.4) provides an ad-
ditional gluon in the final state. Therefore we have to integrate over all additional
phase space configuration for the additional gluon. Performing this phase space inte-
gration provides several divergences that we have to handle in a well defined way. The
differential three particle phase space for this process is evaluated as [20],

dΦ3 =
1

(2π)2

Q2

32
dα d cosβ dγ dx1 dx2 , (1.35)

where α,β and γ are the Euler angles and xi = 2Eki/Q. By using standard Feynman
rules the partonic function can be evaluated and integrated over phases pace. Finally,
after integrating over all Euler angles we end up with

σ(1) = σ(0)

∫
dx1 dx2 CF

αs
2π

x2
1 + x2

2

(1− x1)(1− x2)
, (1.36)
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where the integration region is given by the constrains 0 ≤ x1, x2 ≤ 1 and x1 + x2 ≥
1. From these constraint one can easily see that equation (1.36) has singularities at
different phase space regions. The singularities arise for configurations where the gluon
is either collinear to the quark x1 = 1 or antiquark x2 = 1, or when it became soft
x1 = x2 = 1. These singularities in equation (1.36) are not physical. They appear as a
remnant of our treatment of QCD as a perturbative series and the assumption that our
final state partons are massless and ”on-shell”. Here we have to distinguish clearly from
the UV-singularities, which are a property of the fundamental quantum field theory,
whereas the IR-singularities are artificial singularities, coming from the treatment of
external particles. For a well defined (-or infrared save) observable these divergencies
cancel, if we include the complete perturbative order. In the case of e+e− annihilation
they must completely cancel among real and virtual NLO corrections. To make this
divergence manifest, we have to regulate the integral in a way, that we can observe
a temporarily finite result. There are several regulators given in the literature, that
follow different strategies. A very sophisticated and widespread ansatz in high energy
physics is the dimensional regularization approach. In dimensional regularization the IR
divergences are regulated by assuming non integer values for the space time dimension,
i.e. d > 4. The deviation from d = 4 is expressed as d = 4 − 2ε and affects both the
Dirac traces and the phase space integral. The epsilon dependent real NLO correction
is given by

σ
(1)
real = σ(0) (1− ε)2

(3− 2ε)Γ[2(1− ε)]

∫
dx1 dx2 CF

2αs
π

× x2
1 + x2

2 − ε(2− x1 − x2)

(1− x1)(1+ε)(1− x2)(1+ε)
, (1.37)

where ε < 0 provides a finite result for the integral.

σ
(1)
real = σ(0) (1− ε)2

(3− 2ε)Γ[2(1− ε)]CF
2αs
π

[
2

ε2
+

2

ε
+

19

2
+O(ε)

]
(1.38)

Equation (1.38) shows that dimensional regularization converts the soft and collinear
gluon configurations of equation (1.4) into poles around ε → 0. In this quantifiable
representation we can compare the appearing poles in the real part to its counterpart
coming from virtual gluon exchange.

NLO virtual gluon

The virtual correction has three contributions shown in figure 1.5. These diagrams have
to be integrated over all virtual gluon momenta k and interfere them with the leading
order diagram of figure 1.3. The virtual part has another hidden divergency coming
from infinite virtual gluon momenta k. These UV divergencies are present in each of the
diagrams shown in figure 1.5 and are regulated by dimensional regularization similar
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k1

k2

k

k1

k2

k1

k2

Figure 1.5.: NLO virtual contribution to the hadronic tensor.

to the IR part but with d < 4. Since, there is no QCD vertex in the leading order
of our process, the three contributing diagrams shown in figure 1.5 must be UV-finite.
Therefore, the UV-divergencies we find in each of the diagrams must cancel in their
sum. After the UV poles are canceled we can switch to d > 4 to regulate the IR part
of the diagrams. We end up with

σ
(1)
virtual = σ(0) (1− ε)2

(3− 2ε)Γ[2(1− ε)]CF
2αs
π

[
− 2

ε2
− 2

ε
− 8 +O(ε)

]
. (1.39)

Final result

Now after calculating all contributions that appear at NLO we confirm that the pole
structure in the real (1.38) and in the virtual (1.39) cancel each other. We remain with
a final result where the physical limit ε→ 0 is well defined. We end up with the result
up to NLO

R(Q2) = R0

(
1 +

3αs
4π

CF

)
(1.40)

We can conclude that the total inclusive cross section is actual infrared safe observ-
able. This also generalizes to all order in pQCD as was shown by Kinoshita, Lee and
Nauenberg [21, 22]. In fact the total inclusive cross section is the easiest definition of
an infrared safe cross section.

1.2.2. Infrared safety for complicated final states

In the previous section we conclude that for the total inclusive cross section all diver-
gencies in e+e− → hadrons coming from soft or collinear parton configurations cancel.
Therefore, we have shown that this particular cross section at NLO is infrared save. In
fact, there are other methods to show this behavior of the cross section, i.e. one can
show from unitarity that the long time evolution of a hadronic final state cancels out in
this cross section. Therefore, the total cross section is independent of long time physics
and thus infrared save. Admittedly, in order to learn more about the dynamics in a
scattering process, we have to extract more information from the final state. Because
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Chapter 1. Introduction

of this the problem of infrared safety gets more delicate and attracts more attention.
The main problem is that a detector is a long distance away from the interaction and
implicates long time physics living on small energy scales. Unfortunately, this is the
region where QCD perturbation theory is out of control. We see that an infrared save
observable in high energy scattering processes must be insensitive to these kind of inter-
actions. Otherwise, it is impossible to extract reliable predictions from a QCD process.

To understand the fundamental concept of infrared safety we construct a physical ob-
servable from the cross section

dσ[n]

dΩ2

n∏
i=3
i≤n

dEi dΩi

, (1.41)

representing a n-hadron final state. Here we follow closely [23, 24]. If we measure a
physical quantity I we can specify it through symmetric functions Sn describing the
observable for the n particle final state.

I =
∑

n=2

1

n!

∫
dΩ2

n∏

j=3
j≤n

dEj dΩj
dσ[n]

dΩ2

n∏
i=3
i≤n

dEi dΩi

Sn(pµ1 , ..., p
µ
n) (1.42)

In order for the observable to be infrared save, we need

Sn−1(pµ1 , ..., (1− λ)pµn, λp
µ
n) = Sn−1(pµ1 , ..., p

µ
n) , (1.43)

where 0 ≤ λ ≤ 1. Equation (1.43) implicates an infrared save observable should not
depend whether a particle splits into two collinear particles or not. It also shows no
sensitivity weather a particle splits into a particle carrying approximately all momenta
in the initial particles direction and an approximately zero momentum particle in any
direction. Of course the cross section is also insensitive to a recombination process of
particles having the momentum configurations described above.

One way to construct an infrared save observable, i.e. eliminate the sensitivity to
the long distance physics, is to introduce a function that takes care of the long time
evolution. Consider the cross section

dσ(e+e− → hadron +X)

dEhadron
. (1.44)

It can be written as a convolution between a hard scattering function describing the
process e+e− → quark+X or e+e− → gluon+X and a fragmentation function quark→
hadron +X or gluon→ hadron +X. The functions describing the long time evolution
of our final state are in the non perturbative region and hence not accessible by the
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1.3. Factorization and Evolution

pQCD ansatz. Nowadays, these functions are obtained by fitting to experimental data.
However, these functions are universal in a sense that they are the same for all processes.
This factorization of the final state long time evolution is similar to factorization in the
initial state. We will discuss the initial state factorization in the next section.

1.3. Factorization and Evolution

So far we considered only simple initial states, i.e. electron positron annihilation,
whereas in the main body of this thesis we mostly consider hadronic initial states.
Therefore, we need a systematic treatment of scattering processes, that are given
by a hadronic initial state. As an example we examine the most simple process in
hadron hadron scattering, the Drell-Yan process, i.e. lepton anti-lepton pair produc-
tion. Hadrons are extended objects made up of constituents, the partons, that are
bound by field interactions. We know that these partons are quarks and gluons de-
scribed by QCD in the non perturbative regime. This is exactly the difficulty here.
Therefore, a high energy hadron scattering process is always a two scale problem, the
perturbative scale occurring in the inner hard scattering part and the non-perturbative
scale describing the hadron itself. Exactly this interplay of these two scales is the topic
of this section.

1.3.1. The Drell-Yan process

We start with the description of the Drell-Yan process and its kinematics. The Drell-
Yan process is lepton pair production with two initial state hadrons A and B. We
have

HA +HB → l + l̄ +X (1.45)

whereX denotes a possible additional unobserved final sate. We consider the differential
cross section

dσ

dQ2dη
(1.46)

where Q2 is the square of the lepton pair mass and η its rapidity defined by

η =
1

2
ln

(
q · PA
q · PB

)
. (1.47)

PA and PB are the momenta of the incoming hadrons and q of the virtual photon that
produce the lepton pair. We can describe the cross section up to corrections suppressed
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2

Figure 1.6.: Leading order contribution to the partonic function Gab.

by ∝ 1/Q2 as [25]

dσ

dQ2dη
=
∑

a,b

1∫

xA

dξA

1∫

xB

dξBfa/A(ξA, µ) Hab

(
xA
ξA
,
xB
ξB
, Q,

Q

µ
, αs(µ

2)

)
fb/B(ξB, µ) .

(1.48)

The sum runs over all parton types a, b and

xA = eη
√
Q2

s
, xB = e−η

√
Q2

s
. (1.49)

Hab represents the hard scattering that is dominated by ultraviolet contributions. This
hard function is given by the partonic cross section which is computable in QCD per-
turbation theory. The function f , representing the parton distribution inside the in-
coming hadron, includes phenomena living on the hadronic mass scale. Therefore, it is
not accessible by the perturbative ansatz 1. This parton distribution function (PDF)
fa/A(ξA, µ) gives the longitudinal distribution of finding a parton a inside hadron A
with longitudinal or collinear momentum fraction ξA and evaluated by a mass scale µ.
We will show later how this factorization mass scale is inserted in the function f by di-
mensional transmutation. The cross section formula (1.48) is a Drell-Yan generalization
of Feynman’s parton model [28] including higher order effects in the strong coupling.

The hard scattering part

Factorization ensures that the hard scattering part is insensitive to the species of the
mother hadron. Therefore, the simplest choice for the external hadron in equation
(1.48) is an incoming parton. We assume the partons a and b to have a vanishing
transverse momentum and zero mass. The appearing mass singularities are regulated
by dimensional regularization in 4− 2ε dimensions. We call this cross section Gab

dσ(ab→ ll̄X)

dQ2dη
= Gab

(
xA, xB, Q,

Q

µ
, αs, ε

)
. (1.50)

1A theoretical approach to calculate PDFs from first principles are lattice calculations, where recent
developments allow to include factorization properties within this formalism [26, 27].
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1.3. Factorization and Evolution

+

2

Figure 1.7.: Real next-to leading order correction to the partonic function Gab.

2 Re

Figure 1.8.: One loop next-to leading order correction to the partonic function Gab.

The factorization formula (1.48) applied to initial state partons turns into

Gab

(
xA, xB, Q,

Q

µ
, αs, ε

)
= (1.51)

1∫

xA

dξA

1∫

xB

dξB f̃c/a(ξA, ε) Hcd

(
xA
ξA
,
xB
ξB
, Q,

Q

µ
, αs, ε

)
f̃d/b(ξB, ε) ,

where now the entirely perturbative function f̃c/a(ξA, ε) represent a distribution for a
parton c in parton a with momentum fraction ξA. We see that both equations (1.48)
and (1.51) depend on an arbitrary mass scale µ. This scale is introduced in dimen-
sional regularization to keep the mass dimension at integer values by replacing the four
dimensional integrals appearing in Hab by

∫
d4k →

(
µ2

4π
eγE
)ε ∫

d4−2εk . (1.52)

Obviously, this replacement leaves the mass dimensionality independent from ε. The
divergencies that are regularized by dimensional regularization are reflected by poles for
ε→ 0 and can be subtracted. For a well presented summary see [29]. In principle these
subtraction can differ in finite pieces, where the minimal subtraction (MS) scheme does
not subtract any finite contributions. Here, by using the factor (eγE/(4π))ε we subtract
ε-poles accompanied by this combination, which is well known as the (MS) scheme, γE
is the Euler constant.

Owed to the fact that we assume partons as the initial state particles in Gab at high
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energy scales this function is perturbative and has the expansion

Gab = G
(0)
ab +

αs
π
G

(1)
ab +O(α2

s) . (1.53)

Similarly to Gab the function Hab of equation (1.48) has an expansion in the strong
coupling

Hab = H
(0)
ab +

αs
π
H

(1)
ab +O(α2

s) . (1.54)

It is clear that both one loop corrections G
(1)
ab and H

(1)
ab have ultraviolet divergencies

coming from large momenta in virtual graphs, appearing as 1/ε poles. Those UV-poles
can be subtracted using the standard (MS) scheme. We mention, that similarly to the
virtual graphs in e+e− scattering in the previous section, the sum of all virtual graphs
is UV finite. After this rearrangement of the UV-poles, 1/ε infrared-poles still remain
in G. These IR poles are a remainder from the fact that we assume the incoming
partons as on-shell massless particles. The object of the factorization theorem is to
quantify these poles and give descriptions how to shift them into the definition of
the PDF. To do so, we have to find a relation between H and G order by order in
perturbation theory. Considering that, we have to specify the functions f̃a/b. Due to
the factorization theorem these functions absorb the sensitivity to small momenta in
Gab. After UV renormalization in the (MS) scheme we have

f̃a/b(ξ, ε) = δabδ(1− ξ)−
1

2ε

αs
π
P

(0)
a/b(ξ) +O(α2

s) (1.55)

where P
(0)
a/b is the Altarelli-Parisi splitting kernel [30]. The first term reflects that in

the leading order process is no additional splitting. The second order term includes the
IR-divergent part that turns up as a 1/ε here. We motivate equation (1.55) in the next
section by a calculation using the operator definition for f̃ .

Using equation (1.55) in equation (1.51) and perform an one loop expansion we obtain

G
(0)
ab

(
xA, xB, Q,

Q

µ
, αs, ε

)
+
αs
π
G

(1)
ab

(
xA, xB, Q,

Q

µ
, αs, ε

)
(1.56)

= H
(0)
ab

(
xA
ξA
,
xB
ξB
, Q,

Q

µ
, ε

)
+
αs
π
H

(1)
ab

(
xA
ξA
,
xB
ξB
, Q,

Q

µ
, ε

)

− 1

2ε

αs
π

∑

c

1∫

xA

dξAP
(0)
c/a(ξA)H

(0)
cb

(
xA
ξA
, xB, Q,

Q

µ
, ε

)

− 1

2ε

αs
π

∑

d

1∫

xB

dξBP
(0)
d/b(ξB)H

(0)
ad

(
xA,

xB
ξB
, Q,

Q

µ
, ε

)

+O(α2
s) . (1.57)

18



1.3. Factorization and Evolution

At lowest order we get

G
(0)
ab

(
xA, xB, Q,

Q

µ
, αs, ε

)
= H

(0)
ab

(
xA
ξA
,
xB
ξB
, Q,

Q

µ
, ε

)
, (1.58)

and at one loop order

H
(1)
ab

(
xA, xB, Q,

Q

µ
, αs, ε

)
= G

(1)
ab

(
xA
ξA
,
xB
ξB
, Q,

Q

µ
, ε

)

+
1

2ε

∑

c

1∫

xA

dξAP
(0)
c/a(ξA)G

(0)
cb

(
xA
ξA
, xB, Q,

Q

µ
, ε

)

+
1

2ε

∑

d

1∫

xB

dξBP
(0)
d/b(ξB)G

(0)
ad

(
xA,

xB
ξB
, Q,

Q

µ
, ε

)
. (1.59)

The equations above shows how we can calculate the hard scattering part in the fac-
torized cross section formula (1.48). The procedure is to calculate the partonic cross
section equation (1.51) assuming on-shell massless partons and subtract the divergent
1/ε terms from equation (1.59). The result is then finite for ε→ 0. Now that we know
how to calculate the hard scattering part in the factorized cross section, we have to give
a clear definition of the parton distribution function that take care of the long distance
physics.

We want to mention that the factorized cross section given in equation (1.48) is an
approximation. In a sense that only one particle per initial state parton is involved and
we do not allow any further interactions between the hard scattering part and the non
perturbative hadronic part. Nevertheless, such interactions are conceivable, where the
hard scattering part further interacts with the soft part of the cross section. It comes
out that such contributions, often called higher twist contributions, are suppressed
by powers of 1/Q2. Therefore, equation (1.48) receives O(1/Q2) corrections that are
suppressed in the discussed cross section. In chapter 4 we are faced with a physical
quantity, - a single transverse spin asymmetry -, where the leading twist contribution
cancels out. Therefore, to describe this asymmetry we have to take these higher twist
contributions into account.

1.3.2. Parton distribution functions and evolution

The parton distribution functions are an essential component of the factorization for-
mula equation (1.48). They take care of all the long distance physics that live below
the perturbative scale. Despite a clear definition in terms of operators the theoretical
access to the distribution of partons in a hadron is very limited. The problem relies
in the fact, that we can not use standard pQCD techniques to give a prediction for
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Figure 1.9.: One loop correction to the quark distribution eq. (1.60) in light cone gauge
G = 1.

the PDFs by only using the QCD Lagrangian as an input. Considerable efforts have
been achieved by performing lattice calculations [26, 27]. To this day, high precision
predictions for collider or fixed target experiments are performed with PDFs extracted
from experimental data [31–33].

We follow in our formal definition of the parton distribution functions the one given in
[29, 34]. If we describe a hadron with momentum P which has a large component P+,
i.e. P− = P⊥ = 0, in arbitrary gauge the quark distribution with momentum ξP in
hadron A carrying momenta P is given by

fq/A(ξ) =
1

4π

∫
dx− e−iξP+x− 〈P |Ψ(x−)γ+GΨ(0) |P 〉 . (1.60)

The operator G ensures gauge invariance and is given by path ordered exponentiated
gluon fields

G = P exp

[
ig

∫ x−

0
dy−A+

c (y−)Tc

]
(1.61)

where P is the path ordering operator. Consequently, in light cone gauge, i.e. A+
c = 0,

the operator G is equal unity. Besides the distribution of quarks in a hadron we need
the definition of the gluon distribution

fg/A(ξ) =
1

4π

∫
dx− e−iξP+x− 〈P |F+ ν

a (x−)GabF+
b ν(0) |P 〉 , (1.62)

where Fµνa is the gluon field strength tensor and the operator Gab is given by equation
(1.61) by using the octet representation for the generating matrices.

The operator products in (1.60) and (1.62) require renormalization as they are UV
divergent. Obviously this renormalization procedure inserts a mass scale µ into the
PDF, from which we can derive a renormalization group equation for the distributions

20



1.3. Factorization and Evolution

that leads to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations

d

dµ
fa/A(ξ, µ) =

∑

b

1∫

ξ

dζ

ζ
Pa/b(ζ, αs(µ

2)) fb/A(ξ/ζ, µ) . (1.63)

Pa/b is the splitting-kernel that can be calculated in perturbative QCD from the parton
in parton distribution. The splitting function represents that a parton b splits in a
parton a carrying momentum fraction ζ. The splitting function has the perturbative
expansion

Pa/b(ζ, αs(µ
2)) =

αs(µ
2)

π
P

(0)
a/b(ζ) +

(
αs(µ

2)

π

)2

P
(1)
a/b(ζ) +O(α3

s) (1.64)

The splitting functions are calculated up to three loop order for the spin averaged [35]
and the helicity dependent case [36]. It is convenient to rewrite the evolution equation
in three pieces. The quark singlet (qs) and non-singlet (qns) part as well as the gluon
contribution (g). With

qs =
∑

q

(q + q̄), and qns = q − q̄ , (1.65)

where the sum runs over all quark flavors. We rewrite equation (1.63) as

∂qns

∂ lnµ2
=
αs(µ

2)

π
P (0)
qq ⊗ qns ,

∂qns

∂ lnµ2

(
qs

g

)
=
αs(µ

2)

π

(
P

(0)
qq 2NfP

(0)
qg

P
(0)
gq P

(0)
gg

)
⊗
(
qs

g

)
, (1.66)

where the ⊗ indicates appropriate convolution as in equation (1.63). As indicated
in equation (1.55) one method to extract the LO splitting kernel is to calculate the
renormalized parton in parton distribution f̃a/b at one loop and extract the IR-pole

contribution. For example to extract the splitting kernel P
(0)
qq we have to calculate the

one-loop contribution to f̃q/q shown in figure (1.9). To do so we can use the operator
definition of equation (1.60) in light cone gauge with the hadronic- replaced by a quark-
state

fq/q(ξ) =
1

4π

∫
dx− e−iξp+x− 〈q(p)|Ψ(x−)γ+Ψ(0) |q(p)〉 . (1.67)

To understand the pole structure we do not have to go through the complete calcula-
tion. At one loop order one has simple diagrams shown in figure (1.9) that contain IR
divergencies that arise because we assume on-shell massless partons as well as UV di-
vergencies coming from large momenta in the operator product. The overall transverse
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integral is zero for the diagrams, this is due to the fact that the integrals cancels out
among the UV and the IR singular parts, i.e.

(
µ2

4π
eγE
)ε ∫

d2−2εk⊥
(2π)2−2ε

1

k2
⊥

=
1

4π

(
1

εUV
− 1

εIR

)
. (1.68)

Using that we get after a lengthy calculation

f̃q/q(ξ, ε) = δaaδ(1− ξ) +

(
1

εUV
− 1

εIR

)
αs
2π
P (0)
qq (ξ) + c.t. , (1.69)

where c.t. includes the appropriate MS counter terms to cancel the UV pole. From
that we get the LO qq splitting kernel

P (0)
qq (ξ) = CF

(
1 + ξ2

(1− ξ)+
+

3

2
δ(1− ξ)

)
. (1.70)

For completeness we give the other LO splitting kernels that can be obtained by similar
calculations

P (0)
qg (ξ) =

1

2

(
ξ2 + (1− ξ)2

)
,

P (0)
gq (ξ) = CF

(
1 + (1− ξ)2

ξ

)
, (1.71)

P (0)
gg (ξ) = 2CA

(
1− ξ
ξ

+ ξ(1− ξ) +
ξ

(1− ξ)+

)

+

(
11

6
CA −

1

3
Nf

)
δ(1− ξ) .

With the knowledge of these splittig kernels we can evolve the PDF from one scale to
another without any further non perturbative input. The procedure is non trivial and
requires Mellin-space techniques as shown in [37]. Evidently, this scale evolution is a
milestone in pQCD and increase the predictive power of the theory enormously.

1.4. Resummation

In this section we introduce the basic concepts of resummation using the Drell-Yan
process as an example. In the following parts, we show briefly how resummation follows
from strong factorization properties.

1.4.1. Resummation for Drell-Yan process

In the previous section we have discussed cross sections evaluated at fixed perturbative
order in terms of the strong coupling αs. We have seen that QCD offers a rich phe-
nomenology when we take higher orders into account. In this section we will discuss
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kinematical regions where such fixed order calculation gives a rather distorted image of
the actual physics. To illustrate that, we exploit the Drell-Yan process, which we al-
ready discussed in the previous section. In this section we calculate the slightly simpler
case where the cross section does not depend on the lepton pair rapidity. The cross
section is given by

dσ

dQ2
=
∑

a,b

1∫

Q2/S

dξA

1∫

Q2/(SξA)

dξB fa/A(ξA, µ) Hab

(
z, αs, Q

2/µ2
)
fb/B(ξB, µ) . (1.72)

The hard scattering function Hab is dependent on the invariant pair mass of the observed
final state Q2, an arbitrary scale µ2, the strong coupling αs and a variable z = Q2/ŝ
where ŝ is the partonic center of mass energy ŝ = ξAξBS. As we discussed the hard
scattering function is a perturbative function an can be expanded as

Hab = σ0ωab
(
z,Q2/µ2, αs

)
= σ0

(
ωLO(z)δab +

αs
π
ωNLO
ab (z,Q2/µ2) +O

(
α2
s

))
(1.73)

where we can use the methods discussed in the previous paragraphs to explicitly calcu-
late the αs-correction. In equation (1.73) we define the dimensionless hard scattering

coefficients ωLO and ωNLO and σ0 = 4πα2

9ŝQ2 . In the subsequent discussion, we neglect
contributions arising at αs-level, which are not given by a qq̄ initial state. Fortunately,
they play a subleading role in our kinematical region of interest. With the factor σ0

the leading order is given by

ωLO = δ(1− z), (1.74)

thus the NLO correction in the qq̄ channel is given by [38]

ωNLO
qq̄ = CF

[
2(1 + z2)

(
ln(1− z)

1− z

)

+

− 1 + z2

1− z ln z +
1

2

(
2

3
π2 − 8

)
δ(1− z)

+ Pqq(z) ln
Q2

µ2

]
,

where the subscript + indicates the ”plus”-distribution defined by

∫ 1

0
dz h(z) (g(z))+ =

∫ 1

0
(h(z)− h(1)) g(z) . (1.75)

On closer examination of the αs correction, we found terms that might be very impor-
tant in the z → 1 regime. We call the z → 1 limit the ”partonic threshold”, since it
defines a threshold where all the energy from the incoming qq̄-pair is used to produce
the two lepton final state. Therefore, the phase space for hard gluon emission into the
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Table 1.1.: Threshold logarithms grouped into fixed order rows and resummation tow-
ers.

Fixed Order =⇒

⇐
=

R
es

u
m

m
at

io
n LO 1

NLO αsL
2 αsL αs

NNLO α2
sL

4 α2
sL

3 α2
sL

2 α2
sL α2

s

... ... ... ...

NkLO αksL
2k

︸ ︷︷ ︸
LL

αksL
2k−1 αksL

2k−2

︸ ︷︷ ︸
NLL

αksL
2k−3 αksL

2k−4

︸ ︷︷ ︸
NNLL

final state vanishes and only soft gluons are radiated at the partonic threshold. The
logarithmic plus distributions

(
ln(1− z)

1− z

)

+

(1.76)

are a remainder from the IR-divergencies from such soft gluon diagrams. The ε-pole
itself cancels among the virtual correction, whereas the distribution is still present in
the cross section and gives a very large contribution in the threshold regime. It can
be shown that these logarithms do appear at all orders of QCD perturbation theory.
Thus, at perturbative order k we have terms of the form

αks

(
lnm(1− z)

1− z

)

+

, with m ≤ 2k . (1.77)

Therefore, in order to obtain a meaningful result in the threshold regime, the threshold
logarithms should be taken into account to all orders. The technique which exactly
performs this all order treatment is called ”treshold-resummation”. We mention, that
the effects from the threshold logarithms are even more enhanced by the shape of the
PDFs. Due to the fact that the PDF are becoming extremely small towards small
momentum fractions, the large momentum fraction and thus large z contributions are
enhanced by the parton distributions.

The resummation of threshold logarithms may be achieved in Mellin transform space.
The N -th Mellin moment of a function f is defined as

fN =

∫ 1

0
dx xN−1f(x) . (1.78)
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If we take the Mellin moments with respect to the variable τ = Q2/S of the Drell-
Yan cross section, the convolution structure factorizes into the moments of the parton
distributions and the partonic cross section,

∫ 1

0
dττN−1 1

σ0

dσ

dQ2
=
∑

a,b

fNa/A(µ) ωNab(Q
2/µ2, αs) f

N
b/B(µ) (1.79)

where the N-moments of the hard scattering function and the parton distributions are
given by

fNa/A(µ) =

∫ 1

0
dξA ξ

N−1
A fa/A(ξA, µ) , (1.80a)

fNb/B(µ) =

∫ 1

0
dξB ξN−1

B fb/B(ξB, µ) , (1.80b)

ωNab(Q
2/µ2, αs) =

∫ 1

0
dzzN−1ωab(z,Q

2/µ2, αs) . (1.80c)

The threshold limit z → 1 corresponds to N → ∞ in Mellin space. All contributions
to the cross section that are smooth at z = 1, contribute to the moments only by
corrections that vanish as powers of N for N →∞. Therefore, they play a minor role
in our discussion. On the other hand, singular distributions at the partonic threshold
give rise to logarithmic N -dependence

∫ 1

0
dz zN−1

(
lnm(1− z)

1− z

)

+

=
(−1)m+1

m+ 1
lnm+1N + ... . (1.81)

When the singular terms at threshold are transformed to Mellin space, we find a double
logarithmic structure, i.e. each power in αs is accompanied by two powers of lnN in
Mellin space. In figure 1.1 the all-order structure of threshold logarithms in Mellin space
is shown, where L ≡ lnN . In a leading logarithmic approximation (LL) only the most
dominant class of logarithms is taken into account. This corresponds to the sum over
the first column in figure 1.1. At the level of next-to leading logarithmic (NLL) accuracy
the first three classes and at the level of next-to-next-to leading logarithmic accuracy
(NNLL) the first five classes of logarithmic contributions are taken into account.

The resummation formalism for this process has been shown in detail at LL and NLL
level in [39, 40] whereas results at NNLL accuracy are given in [41]. In this thesis
we will get back how these results can be derived. For the moment we just state the
results, in order to explore the basic properties of the resummed cross section. The all
order structure of threshold logarithms is organized by treating them as exponentials,
schematically given by

ωresum.
ab (N,Q2/µ2, αs) = exp

{
lnNh(1)(αs lnN) + h(2)(αs lnN) + αsh

(3)(αs lnL)
}
C(αs)

(1.82)
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where C collects all the far off shell dynamics. It is perturbative in αs and in the case
of Drell-Yan where the LO process is a color singlet, it is a scalar function that can
for example be analytically matched to the fixed order calculation. The LL double
logarithmic structure ∼ αks ln2kN from the first tower in figure 1.1 arises solely from
the exponent lnNh(1). The NLL structure arises if we additionally include h(2) and
hence we get the NNLL structure by including the exponent αsh

(3).

In our case the resummed cross section can be written as [41]

ωresum.
qq̄ (N,Q2, Q2/µ2, αs) = Cqq̄(αs, Q

2/µ2)∆DY
qq̄ (αs, Q

2, Q2/µ2) (1.83)

where the function ∆DY takes care of the soft gluon emission contributions. We have
to distinguish between two types of soft gluon radiation, soft collinear gluons or soft
gluons radiated in a wide angle to the initial state partons.

∆DY
qq̄ (αs, Q

2, Q2/µ2) = 2 ln ∆N
q (Q2, µ2) + ln ∆int.

DY(Q2) (1.84)

The soft gluons that are emitted collinear to an initial state parton can be factored
from the far off-shell process and can be resummed into the universal exponent

ln ∆N
q (Q2, µ2) =

∫ 1

0
dx

xN−1 − 1

1− x

∫ (1−x)2Q2

µ2

dµ′

µ′2
A(αs(µ

′2)) . (1.85)

The wide angle soft gluon emissions, are resummed in the a process dependent exponent
given by

ln ∆int.
DY(Q2) =

∫ 1

0
dx

xN−1 − 1

1− x DDY(αs((1− x)2Q2)) . (1.86)

The integrands in equations (1.85) and (1.86) are perturbative and given by,

Aq(αs) =
αs
π
A(1)
q +

(αs
π

)2
A(2)
q +

(αs
π

)3
A(3)
q +O(α4

s) , (1.87a)

DDY(αs) =
(αs
π

)2
D

(2)
DY +O(α3

s) , (1.87b)

where the constants A(i) are the coefficients of the 1/(1−z)+ terms of the i-loop splitting
functions P i−1

qq (x). Thus we have

A(1)
q = CF , A

(2)
1 =

1

2
CF

[
CA

(
67

18
− π2

6

)
− 5

9
Nf

]
, (1.88)

A(3)
q =

1

4
CF

[
C2
A

(
245

24
− 67

9
ζ(2) +

11

6
ζ(3) +

11

5
ζ(2)2

)

− 1

27
N2
f + CFNf

(
−55

24
+ 2ζ(3)

)

+CANf

(
−209

108
+

10

9
ζ(2)− 7

3
ζ(3)

)]
,

D
(2)
DY = CF

[
CA

(
−1616

27
+ 56ζ(2) +

176

3
ζ(3)

)
+Nf

(
224

27
− 32

3
ζ(2)

)]
,
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The next step is to calculate the exponential function ∆DY
qq̄ to the desired logarithmic

order. To do so we need the definition of the strong coupling given in equation (1.28).
The mass scale that arises from the RGE for the strong coupling is not necessarily the
same mass scale as we have in equation (1.85). Therefore, we distinguish between the
two scales and call the renormalization mass scale in equation (1.28) µR. The exponent
is pleasantly organized to NLL accuracy as

ln ∆DY
qq̄ = 2 lnNh(1)(λ) + 2h(2)(λ) +O(NNLL) , (1.89)

with the variable

λ = αsb0 lnN , (1.90)

where b0 is the first coefficient of the QCD beta-function given in equation (1.25a).
Thus we have

h(1)(λ) =
A

(1)
q

2πb0λ
(2λ+ (1− 2λ) ln(1− 2λ)) , (1.91a)

h(2) (λ) = − A
(2)
q

2π2b20
[2λ+ ln(1− 2λ)] (1.91b)

+
A

(1)
q b1

2πb30

[
2λ+ ln(1− 2λ) +

1

2
ln2(1− 2λ)

]

−A
(1)
q

2πb0
[2λ+ ln(1− 2λ)] ln

µ2
R

Q2
+
A

(1)
q

πb0
λ ln

µ2

Q2
,

where we can conclude that the process dependent piece at first arises at NNLL level.
We will come back to this in chapter 5. We want to mention that the resummed cross
section is divergent for λ = 1

2 as one can see in equation (1.91). This is the so called
Landau singularity at

NL = exp

(
1

2αsb0

)
, (1.92)

which is caused by the unbound rise of αs(µ
2
R) towards small evaluation scales µR. This

Landau singularity needs special care when we perform the inverse Mellin transforma-
tions, to ensure numerical convergence. The resummed cross section in equation (1.83)
is given in Mellin space and needs an appropriate transformation to the physical space.
In threshold resummation related calculations, this is usually performed numerically
since the PDFs are not analytically known functions. The inverse Mellin transfor-
mation of the resummed cross section is given by a contour integral in the complex
N -plane

dσresum.

dQ2
= σ0

∫

cN

dN

2πi
fNa/A(µ) ωNab(Q

2/µ2, αs) f
N
b/B(µ) , (1.93)
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CN
Re(N)

Im(N)

Figure 1.10.: Integration contour CN in the complex N -plane. The crosses denote poles
in the N -plane, where the rightmost blue cross is the Landau pole, whereas
the red ones denote the poles emerging from the N -moments of the PDFs.

where cN is an appropriate contour shown in figure 1.10. In this figure also the poles
emerging from the moments of the PDFs (red crosses) and the Landau pole (blue
cross) are shown. The contour is chosen following reference [42] to run between the
rightmost pole from the moments of the PDFs and the Landau pole. This ensures
numerical convergence, in a sense that one can show that a perturbative expansion
of the resummed formula is free of factorially growing terms [42]. This special choice
of the contour is called ”Minimal-Prescription” and is used among all our threshold
resummation studies.

Finally, we match the resummed result to a full fixed order calculation. Since, sub-
leading terms at threshold, i.e. non singular terms for z → 1 are not included in our
resummed cross section so far. The most accurate results are expected by taking them
both into account. This is done numerically by adding both the NkLL and the NkLO,
or the highest available fixed order result instead, i.e.

dσmatch =


dσresum.

NkLL − dσresum.
NkLL

∣∣∣∣∣
O(αks )


+ dσfull

NkLO , (1.94)

where the subtraction of the term dσresum.
NkLL

∣∣∣
O(αks )

avoids double counting.

1.4.2. Resummation from factorization properties

A very sophisticated access to the all order structure of threshold logarithms is to
exploit strong factorization properties of the cross section near the partonic threshold
[39]. This is illustrated in figure 1.11 where the dominant momentum regions are shown.
The far off-shell photon, is linked to the incoming partons through the hard-scattering
amplitude H and the complex conjugate amplitude H∗. The hard-scattering functions
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γ∗H H∗

J (b)

J (a)

S

Figure 1.11.: Factorization for Drell-Yan cross section near partonic threshold.

contain the far off-shell, i.e. order Q2 and higher, dynamics of the cross section. The
hard functions are coupled to the incoming jets J (a) and J (b), which represent on-shell
particles with momenta of the order Q. We assume that in the threshold-limit all on-
shell partons with finite energy are included in these jet functions. In addition, the
jet functions include all collinear radiation with respect to the incoming partons. The
phase space which is left for on-shell radiation, is then limited to soft gluon emission.
This is included in the function S which couples to the jet functions J (a) and J (b).

The dominant momentum regions in the threshold limit may be isolated quantitatively
by introducing an appropriate weight. We assume the weight to be dimensionless and
infrared safe. As was shown in [43], not every infrared safe weight leads to exponenti-
ation of the cross section. In addition, the weight of particles within the jets and soft
function must be independent and additive in the threshold limit. Thus we define the
weights,

w = wa + wb + ws = 1−Q2/S (1.95)

with corrections that vanish as O(w2) [44]. The general refactorized cross section is
given by [44]

σ0ωab = H(pi/µ, ζi)

∫
dwa
wa

dwb
wb

dws
ws

J (a)(pa · ζa, wa(Q/µ)) J (b)(pb · ζb, wb(Q/µ))

× S(ws(Q/µ), ζi) δ(w − wa − wb − ws) (1.96)

where i = a, b. The vectors ζi are gauge fixing vectors using ζi ·A = 0.
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The convolution (1.96) factorizes into products by taking the moments

σ0

∫ ∞

0
dwe−Nwωab =H(pi/µ, ζi) S̃(Q/µN, ζi)

× J̃a(pa · ζa/µ,Q/µN) J̃b(pb · ζa/µ,Q/µN) (1.97)

Each of the individual functions H, J (i) and S require renormalization. Therefore, we
introduce a set of anomalous dimensions, which determines the scale dependence of the
quantities above, i.e.

µ
d

dµ
lnH = −γH(αs) , (1.98a)

µ
d

dµ
ln J (i) = −γJ(i)(αs) , (1.98b)

µ
d

dµ
lnS = −γS(αs) . (1.98c)

The demand that the cross section is independent of the renormalization scale µ leads
to

γH + γS + γJ(a) + +γJ(b) = 0 . (1.99)

Therefore, the renormalization dependence of the individual functions must cancel in
their product.

Solving equations (1.98) and imposing RGE invariance equation (1.99) we find an ex-
ponentiated structure for the jet functions J (i) [39, 44]. Furthermore, we recover the
logarithmic all order structure given in equation (1.83). We mention, that the structure
for QCD hard scattering, where all particles in the hard scattering are color charged,
is highly more complex. In that case, soft gluon radiation non-collinear to the external
partons is sensitive to their color state. Because of that, the factorization of the soft
and hard functions is more complex and they will be linked by their color structure.
Therefore, the functions H and S become matrices in space of color exchange operators.
We will come back to this in chapter 5, where we use this method to resum threshold
logarithms in the dihadron production process in pp scattering.

1.5. Conclusions and outlook

We showed in this chapter the problems and features that arise, if we try to face the
theory of QCD with physical processes. We showed that QCD is a phenomenologically
rich theory, starting from its Lagrangian. We outlined that QCD is an UV-divergent
theory and needs consequently renormalization. This need for renormalization, brings
in a key feature of the theory, which justifies most of our calculations: Asymptotic

30



1.5. Conclusions and outlook

Freedom. Therefore, if our physical process takes place at sufficiently high energies, the
concept perturbation theory is legitimized.

We learned that most physical processes, involve parts where we can apply QCD per-
turbation theory and parts, which involve dynamics below an energy threshold where
a perturbative expansion is useless. These non-perturbative parts of our calculation
describe hadrons, that bound quarks and gluons into a confined colorless object. We
introduced the concept of factorization that exactly decompose the cross section in the
different regions, and allows us to obtain sensible answers from the theory. This is
of course true as long as our physical observable fulfills the concept of infrared safety.
The factorization formula, which itself is an approximation and which receives power
suppressed corrections, decompose the cross section in the hard partonic part and the
non-perturbative part described by parton distribution functions. These parton distri-
bution functions are itself dependent on an energy scale where the process takes place.
This scale dependence is described by the scale evolution, that gives QCD its great
predictive power.

The subsequent chapters of this thesis, are all based on these fundamental concept
of QCD perturbation theory and apply these concepts to nowadays research projects.
So far, we discussed how we can handle hadronic initial states, such as present in the
Drell-Yan cross section. But, also hadronic final states are interesting observables in
nowadays high energy experiments. We introduce the concept of final state factorization
in the next chapter, where we present a NLO calculation of single inclusive hadron
production in lepton nucleon scattering. This study is motivated by the fact, that this
process is indeed very interesting in the large field of spin physics. Since, in spin physics
asymmetries are the physical quantity we want to look at, an accurate understanding of
the unpolarized as well as the polarized cross sections is necessary. The polarized cross
section is the topic of chapter 3 and 4 where we investigate the longitudinal double spin
asymmetry respectively the single transverse spin asymmetry.

The chapters 5, 6 and 7 take a close look on threshold resummation effects in hadronic
scattering. In these processes, all particles in the hard part of the cross section are
color charged, which makes the determination of the all order structure of the threshold
logarithms extremely challenging. In chapter 5 we present our beyond NLL calculation
for dihadron production. And in chapters 6 and 7 we use the resummation formalism
to determine approximate NNLO results for single jet production. We perform this
calculation for unpolarized as well as longitudinally polarized initial states.
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Chapter 2.

Single-Inclusive Production of
Hadrons and Jets in
Lepton-Nucleon Scattering at
NLO

We present next-to-leading order (NLO) perturbative-QCD calculations of the cross
sections for `N → hX and `N → jetX. The main feature of these processes is that the
scattered lepton is not observed, so that the hard scale that makes them perturbative is
set by the transverse momentum of the hadron or jet. Kinematically, the two processes
thus become direct analogs of single-inclusive production in hadronic collisions which,
as has been pointed out in the literature, makes them promising tools for exploring
transverse spin phenomena in QCD when the incident nucleon is transversely polarized.
We find that the NLO corrections are sizable for the spin-averaged cross section. We
also investigate in how far the scattering is dominated by the exchange of almost real
(Weizsäcker-Williams) photons. We present numerical estimates of the cross sections
for present-day fixed target experiments and for a possible future electron ion collider.
This chapter is based on publications [3, 6].

2.1. Introduction

There has been growing interest recently, both experimentally [45–48] and theoreti-
cally [49–55], in the processes `N → hX and `N → jetX, the single inclusive produc-
tion of a hadron or jet at large transverse momentum in lepton-nucleon scattering. In
contrast to the far more customary process `N → `′hX [56], for `N → hX the scat-
tered lepton in the final state is not observed, so that the process is truly one-hadron
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(or one-jet) inclusive. The reason for the interest in `N → hX comes from the study
of single transverse-spin phenomena in hadronic scattering processes. It is well known
that large single-spin asymmetries have been observed [57] for the process pp↑ → hX,
where p↑ denotes a transversely polarized proton. To explain the large size of the asym-
metries, and their persistence all the way from fixed-target to collider energies, has
posed a major challenge to theory. Although a lot has been learned, it is fair to say
that a fully satisfactory understanding has yet to be obtained. Measurements of cor-
responding asymmetries in the kinematically equivalent, but much simpler, processes
`N↑ → hX, `N↑ → jetX have the promise to shed new light on the mechanisms for
single-spin asymmetries in QCD. First fairly precise experimental data for `N↑ → hX
have recently been released by the HERMES [46, 47] and Jefferson Lab Hall A [48]
collaborations.

We note that at first sight one might consider the related process `N↑ → `′X (which
is just the standard inclusive deep-inelastic (DIS) process) to be equally suited for
transverse-spin studies in lepton scattering. However, the analysis of the corresponding
single-spin asymmetry is considerably more complex because higher order QED effects
are required for the asymmetry to be non-vanishing [58–62]. In the same spirit as `N↑ →
hX, also the processes ~̀N↑ → hX [63] with longitudinal polarization of the lepton and
`N → Λ↑X [64] with a transversely polarized Λ hyperon have been considered in the
literature recently.

The proven method for analyzing single-inclusive processes such as pp→ hX or `N →
hX at large transverse momentum rests on QCD perturbation theory and collinear
factorization. For single-transverse-spin observables, this involves a twist-3 formalism
in terms of three-parton correlation functions of the nucleon or the fragmentation pro-
cess [65–76]. Interestingly, the recent study [76] suggests that the twist-3 fragmentation
effects could be the dominant source of the observed large transverse-spin asymmetries
in pp↑ → hX. An alternative approach for describing the single-spin asymmetry in
inclusive hadron production in pp↑ → hX was devised in the context of a “general-
ized” parton model in which the dependence of parton distributions and fragmentation
functions on transverse momentum is kept [77–80]. Although no such factorization
in transverse momentum is known to be valid for a single-inclusive cross section, the
approach has enjoyed considerable phenomenological success.

Both the collinear twist-3 approach and the generalized parton model have been used
to obtain predictions for the spin asymmetry in `N↑ → hX. In Ref. [52] a leading order
(LO) twist-3 analysis has been presented in terms of parton correlation functions that
were previously extracted from data for pp↑ → hX. The results obtained in this way
fail to describe the HERMES data [46, 47] for the spin asymmetries in `N↑ → hX.
A comparison of perturbative calculations to the corresponding JLab data [48] is not
possible as the data are for hadrons with transverse momenta below 1 GeV. The LO
generalized parton model approach, on the other hand, appears to give results quite
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consistent with the HERMES data [53–55].

In our view it is premature to draw any conclusions from these findings at LO. Given
the kinematics (and the precision) of the present data, one may expect higher-order
QCD corrections to the cross sections and the asymmetry to be important [52] for
a meaningful comparison of data and theory. At least next-to-leading order (NLO)
corrections should be included. We stress that the twist-3 formalism, although so
far only developed to LO, offers a well-defined framework for a perturbative study of
the transverse-spin asymmetry in `N↑ → hX. This is in contrast to the generalized
parton model, for which there is likely no systematic way of going to higher orders
in perturbation theory. That said, NLO calculations within the twist-3 formalism are
technically very challenging, and only a few NLO calculations have been performed for
the simpler Drell-Yan [81] and semi-inclusive deep-inelastic scattering (DIS) cases [82,
83].

In this chapter, we take a first step toward an NLO calculation of the transverse-spin
asymmetry for `N↑ → hX by computing the NLO corrections to the spin-averaged cross
section for the process, which constitutes the denominator of the spin asymmetry. We
present analytical results for the NLO partonic cross sections. To our knowledge, despite
the vast amount of work performed for lepton proton scattering in the literature (see,
for example [84–101]), this calculation has not been presented so far. We also present
similar NLO calculations for the process `N → jetX. We note that the process `N →
jetX has also been extensively studied in terms of the concept of “1-jettiness” [102,
103]. Here one additionally writes the cross section differential in a variable τ1 that
characterizes the hadronic final state that is not associated with the produced jet or
the nucleon beam remnant. In Ref. [103] the full NLO corrections for the 1-jettiness
were computed, where a fully numerical approach was adopted. In principle, it should
be possible to recover our NLO results by performing a (numerical) integration over τ1

of the results of [103].

Because of the propagator of the exchanged photon, the cross section for `N↑ → hX
will contain contributions for which the photon is almost on-shell. This is not yet the
case at LO where the high transverse momentum of the produced hadron requires the
photon to be highly virtual. Starting from NLO, however, it may happen that the
incoming lepton radiates the photon almost collinearly. This may then be followed by a
2→ 2 scattering process of the photon with a parton in the nucleon, which is perfectly
capable of producing the hadron at high Ph⊥. In processes where the scattered lepton is
observed, such as `N → `′hX, one can in fact select such contributions by requiring the
scattered lepton to have a low scattering angle. The incoming lepton then effectively
acts merely as a source of quasi-real photons, and the process may be very accurately
described in terms of a (perturbative) distribution function for photons in leptons known
as the Weizsäcker-Williams (WW) distribution [56, 104–107]. This approach has been
widely used with much success in the HERA physics program [56].
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N(P )

l(l)

h(Ph)

X

Figure 2.1.: Lepton nucleon scattering with an observed hadron h(Ph) in the final state.
The red and green blobs denote parton distribution and fragmentation
functions. The blue blob stands for a hard process initiated by a lepton-
quark or lepton-gluon initial state. Note: The unobserved final state X
includes the final state lepton.

In the context of our NLO calculation for `N → hX it is therefore interesting to in-
vestigate whether also in this case the contributions by almost real photons dominate
and the NLO corrections may be well approximated by a Weizsäcker-Williams type
distribution. Since it is much easier to compute the latter contribution than the full
NLO correction, this would mean that one could also obtain approximate NLO results
for the transversely polarized cross section within the twist-3 framework by simply con-
sidering real photons. Given the complexity of a full NLO calculation for the twist-3
case, this would be a tremendous advantage. We note that the contributions to the
spin-dependent cross sections for `N → jetX for real photons were discussed in [51],
including the twist-3 contributions for the single-transverse spin case. Actual LO cal-
culations for the twist-2 longitudinal spin-dependent cross section were presented in
Ref. [108–110] for quasi-real photons. We will closely examine the contributions by
quasi-real photons also in this chapter. Their relevance will of course also depend on
the lepton species that is used, because the lepton mass leads to a lower limit on the
virtuality of the photon.

This chapter is structured as follows. In Sec. 2.2 we present our NLO calculations for the
partonic cross sections for `N↑ → hX and `N → jetX. We also discuss in some detail
the Weizsäcker-Williams contribution and how the calculation can be done keeping a
finite lepton mass. Section 2.3 presents numerical predictions for the NLO cross section
to be expected at various fixed-target experiments and at a future Electron Ion Collider
(EIC). Finally, we summarize our results in Sec. 2.4.

2.2. NLO calculation

2.2.1. General framework

In this section we present our derivation of the analytical NLO results for the processes
`N → hX and `N → jetX. The transverse momentum of the produced hadron or
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jet sets a hard scale, so that perturbative methods may be used for treating the cross
sections. We first consider `(l) + N(P ) → h(Ph) + X (figure 2.1) cross sections and
parton distribution/fragmentation functions. The momenta of the incoming parton,
kµ, and of the fragmenting parton, pµ, which appear in the calculation of the partonic
cross sections, are approximated as kµ ' xPµ and pµ ' Pµh /z, respectively. It is then
convenient to work with the partonic Mandelstam variables

s = (k + l)2 = xS, t = (k − p)2 =
x

z
T, u = (l − p)2 =

U

z
. (2.1)

The general form of the factorized cross section for the inclusive hadron production
process then is

Eh
d3σ`N→hX

d3Ph
=

1

S

∑

i,f

∫ 1

0

dx

x

∫ 1

0

dz

z2
f i/N (x, µF )

×Dh/f (z, µF ) σ̂i→f (s, t, u, µF , µR) , (2.2)

where f i/N (x, µF ) is the parton distribution function (PDF) for the incoming parton i
in the nucleon N and Dh/f (z, µF ) the corresponding fragmentation function (FF) for
parton f fragmenting into hadron h, both evaluated at a factorization scale µF . We
choose the factorization scales to be the same for the initial and the final state, and also
equal to the renormalization scale. In equation (2.2), σ̂i→f is the partonic cross section
for the lepton-parton scattering process, `+ i→ f + x, with x an unobserved partonic
final state including the unobserved lepton. The sum in equation (2.2) runs over the
different species of partons, quarks, gluons and antiquarks. We note that the expression
in equation (2.2) holds up to corrections that are suppressed by inverse powers of the
produced hadron’s transverse momentum Ph⊥.

The partonic cross sections σ̂i→f in equation (2.2) can be calculated in QCD perturba-
tion theory. One may write their expansion in the strong coupling as

σ̂i→f = σ̂i→fLO +
αs
π
σ̂i→fNLO +O(α2

s) . (2.3)

At lowest order (LO) only the tree-level process `q → q` shown in Fig. 2.2 contributes.
The calculation of its cross section is straightforward. One finds

σ̂q→qLO = 2α2
eme

2
q

s2 + u2

t2
δ(s+ t+ u) , (2.4)

where αem is the fine structure constant and eq is the quark’s fractional charge.

At NLO, O(αsα
2
em), both virtual (Fig. 2.3) and real-emission diagrams (Figs. 2.4 and

2.5) contribute. We will address these in turn in the following subsections. One can see
from Figs. 2.4 and 2.5 that beyond LO there are also new contributions where a gluon
fragments or where an initial gluon enters the hard scattering process.
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k p

l

Figure 2.2.: LO diagram for lepton-quark scattering.

As is well known, all types of NLO contributions develop singularities at intermediate
stages of the calculations, which we make manifest by using dimensional regularization
with D = 4−2ε space-time dimensions. The subsequent treatment of the singularities is
standard in pQCD calculations. The only non-standard feature arises for the incoming
lepton. If we assume for the moment that we have an incoming quark instead of
a lepton in the diagrams in Figs. 2.4 and an exchanged gluon instead of a photon,
then the diagram would make an NLO contribution to, say, pp → hX. Being treated
as massless, the initial quark would produce a singularity when it radiates the gluon
collinearly. As is well understood, this singularity may be absorbed (“factorized”) into
the proton’s quark PDF, exactly in the same way as for the incoming quark at the
bottom of the diagram. In case of an incoming lepton, on the other hand, the lepton’s
mass ensures that no collinear singularity arises when the lepton radiates a collinear
photon that subsequently participates in the hard scattering. In fact, keeping the lepton
mass m`, the cross section will develop a logarithmic term of the form αem log(Λ/m`),
where Λ represents a hard scale of the problem, and in the limit m` → 0 this logarithm
precisely produces the required collinear singularity. In principle we should therefore
perform the NLO calculation keeping the lepton mass finite. This is technically very
cumbersome, and in fact not needed. We can adopt two different, and equivalent,
approaches instead: In the first approach we neglect the lepton’s mass and regularize
the ensuing collinear pole in dimensional regularization. The pole is then subtracted
(for example, in the MS scheme) and absorbed into a “parton” distribution function for
photons in a lepton. This distribution may be evaluated perturbatively in first-order
QED, giving rise essentially to the well-known “Weizsäcker-Williams” distribution. This
approach may in principle be extended to higher order in QED. In the second approach,
we calculate the cross section for a massive lepton, keeping however only the leading

+ +

Figure 2.3.: Virtual diagrams at NLO. Self energy diagrams (right and middle graph)
contribute in Feynman gauge.
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+

2

Figure 2.4.: NLO real-emission diagrams.q → q and q → g channels.

+

2

Figure 2.5.: NLO real-emission diagrams. g → q channel.

terms in m` which are of the form αem[log(Λ/m`) + constant]. This is justified by the
fact that all terms beyond this approximation are suppressed as powers of m` over
the hard scale and hence numerically tiny. We note that although the logarithm can
become large (as m` is small compared to typical QCD hard scales), the smallness of αem

will usually make the term α log(Λ/m`) small enough to be regarded as a perturbative
correction.

We will present our main calculation for the case of massless leptons and comment on
the use of a finite lepton mass in the calculation later.

It is convenient to rewrite the x- and z-integrals in equation (2.2) in terms of new
variables v = 1 + t/s and w = −u/(s+ t). Using (3.1), we have

x =
1− v
vw

U

T
, z =

−T
(1− v)S

, (2.5)

and equation (2.2) becomes

Eh
d3σ`N→hX

d3Ph
=

(−U
S2

)∑

i,f

∫ 1+T
S

U
T+U

dv

v(1− v)

∫ 1

1−v
v

U
T

dw

w2

×f
i/N (x, µF )

x

Dh/f (z, µF )

z2
σ̂i→f (v, w, µF , µR) . (2.6)

For ease of notation, we have kept the symbol σ̂i→f also for the cross section when
expressed in terms of the new variables. We note that the invariant mass of the un-
observed recoiling partonic final state is given by s+ t+ u = sv(1− w). The function
δ(s+ t+ u) ∝ δ(1− w) in the LO cross section (2.4) expresses the fact that at LO the
recoil consists of a single parton.
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2.2.2. Virtual contributions at NLO

At the NLO level, the virtual contributions shown in Fig. 2.3 contribute through their
interference with the Born diagram. The virtual contributions thus have Born kine-
matics and are proportional to δ(1 − w). Since we are only interested in QCD virtual
corrections, only the quark line is affected, and we may adopt the result directly from
the corresponding calculation in Ref. [38] for the basic photon-quark scattering diagrams
in DIS. This gives

σ̂q→qNLO,vir =
CFαs(µ)

2π

Γ(1− ε)2Γ(1 + ε)

Γ(1− 2ε)

×
(

4πµ2

−t

)ε(
− 2

ε2
− 3

ε
− 8

)
σ̂q→qLO,ε , (2.7)

where

σ̂q→qLO,ε = 2α2
eme

2
q

1

sv

(
1 + v2

(1− v)2
− ε
)
δ(1− w) . (2.8)

is the Born cross section computed in 4 − 2ε dimensions. Furthermore, CF = (N2
c −

1)/2Nc, with Nc the number of colors.

2.2.3. Real-emission corrections at NLO

The real diagrams have 2 → 3 topology. To obtain the desired contribution to an
inclusive-parton cross section we need to integrate over the phase space of the lepton
and the “unobserved” parton in the final state. This can be done in 4− 2ε dimensions
using the standard techniques available in the literature [111–113]. See Appendix C
and D for further details.

After phase space integration, the result for the real-emission contribution for the q → q
channel takes the form

σ̂q→qNLO,real = σ̂q→qA (v, w, ε) +
σ̂q→qB (v, w, ε)

(1− w)1+2ε
, (2.9)

where both functions σ̂q→qA and σ̂q→qB carry a 1/ε-pole, but are well-behaved in the limit
w → 1. Obviously, the second term in (2.9) requires special care in this limit since the
denominator would lead to a non-integrable behavior for ε = 0. We deal with this limit
by means of the expansion

(1− w)−1−2ε = − 1

2ε
δ(1− w) +

1

(1− w)+
− 2ε

(
ln(1− w)

1− w

)

+

+O(ε2) , (2.10)
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2.2. NLO calculation

where the plus distribution is defined in the usual way by

∫ 1

0
dw f(w) [g(w)]+ =

∫ 1

0
dw [f(w)− f(1)] g(w) . (2.11)

This expansion makes the singularities in 1/ε explicit. When combined with the pole
terms in σ̂q→qB , the term ∝ δ(1− w) in (2.10) leads to a double pole term that cancels
against the double pole in the virtual correction in equation (2.7). This well-known
behavior reflects the cancelation of infrared singularities in partonic observables. The
channels q → g and g → q are infrared finite at NLO.

2.2.4. Collinear subtraction for parton distribution functions and
fragmentation functions

After the cancelation of infrared singularities between real and virtual contribution,
the partonic cross sections still exhibit single poles that reflect collinear singularities
arising when an “observed” parton (either the incoming one, or the one that fragments)
becomes collinear with the unobserved parton. Figure 2.6 shows an initial state collinear
singularity. The singularity has the form ∝ 1

εPqqσ̂ql→ql where Pqq is the first order
Altarelli-Parisi splitting function (equation (2.13a)) and σ̂ql→q is the tree level cross
section in d-dimensions which remains, if we remove the gluon and set the external
momenta of the incoming quark to y k.

The factorization theorem states that these poles may be absorbed into the parton
distribution functions or into the fragmentation functions. This procedure may be for-
mulated in terms of renormalized parton densities and fragmentation functions (see,
e.g., Ref. [114]). In fact, naive definitions of “bare” parton densities and fragmentation
functions contain ultraviolet singularities that can be dealt with as well by using di-
mensional regularization. At NLO, the corresponding ultraviolet 1/ε-poles that appear
can be removed in the MS scheme by introducing “renormalized” functions in the form

→

(1− y)kk

y k

Figure 2.6.: Representative collinear singularity for an initial state quark in the q → q
channel.
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f
q/N
bare(x, µF ) = f q/Nren (x, µF ) +

αs(µF )

2π

Sε
ε

(
Pqq ⊗ f q/Nren

)
(x, µF )

+
αs(µF )

2π

Sε
ε

(
Pqg ⊗ fg/Nren

)
(x, µF ) +O(α2

s) , (2.12a)

D
h/q
bare(z, µF ) = Dh/q

ren (z, µF ) +
αs(µF )

2π

Sε
ε

(
Pqq ⊗Dh/q

ren

)
(z, µF )

+
αs(µF )

2π

Sε
ε

(
Pgq ⊗Dg/N

ren

)
(z, µF ) +O(α2

s) , (2.12b)

where we have the usual splitting functions

Pqq(y) = CF

[
1 + y2

(1− y)+
+

3

2
δ(1− y)

]
, (2.13a)

Pqg(y) = TR
[
y2 + (1− y)2

]
, (2.13b)

Pgq(y) = CF
1 + (1− y)2

y
, (2.13c)

(with TR = 1/2), and where the ”⊗”-symbol indicates the convolution

(P ⊗ f)(x) ≡
∫ 1

x

dy

y
P (y) f

(
x

y

)
. (2.14)

The constant Sε ≡ (4π)ε/Γ(1 − ε) in (2.12a) and (2.12b) corresponds to the usual
MS scheme. Inserting the bare distributions into the LO expression for the hadronic
cross section, we obtain additional O(αsα

2
em) contributions. These precisely cancel the

collinear poles associated with the observed partons in the NLO partonic cross sections,
for all three channels. We can express this contribution explicitly for the initial state
collinear singularity in the q → q channel (figure (2.6)) as [113, 115]

αs
π

∫ 1

0
dy

(
−1

ε
+ γE − ln 4π

)
Pqq(y)

(
s

µ2
F

)ε
σ̃ql→q(ys, yt, u, ε)

×δ(y(s+ t) + u) . (2.15)

Note: The tilde on the σ denotes that the delta function, that fixes the invariant pair
mass at zero in leading order is not part of σ̃.

Even after this procedure, one type of collinear singularity remains. It is generated by
a momentum configuration where the exchanged photon is collinear to the incoming
lepton. As discussed at the beginning of this section, the presence of this singularity is
an artifact of neglecting the lepton’s mass. In the following two subsections we discuss
our treatment of this issue.
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2.2. NLO calculation

N(P )

l(l)

h(Ph)

X

Figure 2.7.: General Weizsäcker-Williams contribution at NLO. The quasi-real photon
entering the hard scattering part is treated as a parton in the lepton.

2.2.5. Weizsäcker-Williams contribution

One approach for dealing with the collinear lepton singularity is to introduce bare and
renormalized QED parton distributions for the lepton, much in analogy with the pro-
cedure that we discussed in the previous section for the nucleon’s parton distributions.
The only differences are that for leptons the partons are the lepton itself and the pho-
ton, and that we can safely compute their distributions in QED perturbation theory.
To lowest order in QED, we have just f `/`(y) = δ(1 − y), corresponding to the Born
contribution in Fig. 2.2. The hard process involving an incoming lepton will always
require two electromagnetic interactions and hence be of order α2

em, as seen explicitly
in equation (2.4). This is different for a hard process with an incoming photon such as
γq → qg, which is of order αemαs. This implies that at NLO in QCD (at order α2

emαs)
there will be contributions generated by the photon acting as a parton of the lepton
and participating in the hard process. A generic picture for such types of contributions,
known as Weizsäcker-Williams contributions, is shown in Fig. 2.7. In essence, the lep-
ton merely serves as a source of real photons for the contributions shown in the figure.
Like its nucleon counterpart, the corresponding photon-in-lepton distribution fγ/`(y)
will require renormalization. Following (2.12a) we may write

f
γ/`
bare(y, µ0) = fγ/`ren (y, µ0) +

αem

2π

Sε
ε

(
Pγ` ⊗ f `/`ren

)
(y, µ0) + . . . (2.16)

where Pγ` = Pgq/CF and the ellipses denote a term involving a photon-to-photon
splitting that makes contributions beyond the order in αem we consider here. Within

the same reasoning, we can set f
`/`
ren(y) = δ(1− y) in (2.16).

The bare photon-in-lepton distribution f
γ/`
bare in equation (2.16) can be defined anal-

ogously to the gluon distribution in a nucleon in terms of the matrix element (see
also [51])

Ωµν(y) ≡ nρnσ
∫ ∞

−∞

dλ

2πy
eiλy 〈`|F σνem(0)U [0;λn]F ρµem(λn)|`〉,

=
−gµν⊥

2(1− ε) f
γ/`
bare(y, µ0) . (2.17)
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Chapter 2. Single-Inclusive Production of Hadrons and Jets

In this definition n is a light-cone vector conjugate to the lepton momentum l, with
n2 = 0 and l · n = 1. Furthermore, Fµνem = ∂µAν − ∂νAµ is the electromagnetic field-
strength tensor, and we have inserted a (straight) Wilson line U [0;λn] that ensures the
electromagnetic gauge invariance of the matrix element. The transverse projector in
(2.17) is given as gµν⊥ = gµν − lµnν − lνnµ.

Since the matrix element in (2.17) contains electromagnetic fields and elementary lep-
tons in the in- and out-states we can compute it to LO in QED. In this calculation we
keep a non-vanishing lepton mass m` in order to obtain an infrared-finite result. To
order O(αem) we find,

f
γ/`
bare(y, µ0) =

αem

2π
Pγ`(y) Sε

[
1

ε
+ ln

(
µ2

0

y2m2
`

)
− 1

]
+O(α2

em) , (2.18)

where, as before, Sε ≡ (4π)ε/Γ(1 − ε). In close analogy to parton distributions of the
nucleon we can perform an MS-renormalization of the distribution and obtain,

fγ/`ren (y, µ0) = f
γ/`
bare(y, µ0)− αem

2π
Pγ`(y)

Sε
ε

+O(α2
em)

=
αem

2π
Pγ`(y)

[
ln

(
µ2

0

y2m2
`

)
− 1

]
+O(α2

em) . (2.19)

This renormalized distribution is closely related to the ‘classic’ Weizsäcker-Williams
distribution [104–107]. The logarithm in (2.19) may be derived from an integration
over the photon’s virtuality −q2 (where q is the photon momentum). For the standard
Weizsäcker-Williams distribution one performs this integration from the lower kinematic
limit m2

`y
2/(1−y) to an upper limit Q2

max fixed by the experimental condition imposed
on the scattered lepton. This gives rise to a term αem

2π Pγ`(y) ln(Q2
max(1− y)/(y2m2

` )) in
the photon spectrum, which can be recovered by an appropriate choice of the scale µ
in (2.19).

For the contribution related to f
γ/`
ren the photon virtuality is then neglected everywhere

else in the hard scattering. One thus considers scattering diagrams with a real incoming
photon. We thus write the generic factorized cross section for the contribution as

Eh
d3σ`N→hXWW

d3Ph
=

1

S

∑

i,f

∫ 1

0

dx

x

∫ 1

0

dz

z2

∫ 1

0
dy δ

(
y +

t

s+ u

)

×f i/N (x, µF ) Dh/f (z, µF ) fγ/`ren (y, µ0) σ̂γi→f , (2.20)

with the cross sections σ̂γi→f describing the scattering γi→ fx of the photon off parton
i in the nucleon (to be given below). At O(αs) we encounter three channels with an
incoming photon: γq → q(g), γq → g(q), and γg → q(q̄) (the partons in parentheses
are not observed). The relevant diagrams are as those shown in Figs. 2.4 and 2.5,
but with the lepton lines removed and the virtual photon replaced by a real photon.
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2.2. NLO calculation

Being 2→ 2 diagrams, their calculation is straightforward. Inserting now the bare WW
distribution we generate precisely the pole terms required to cancel the lepton collinear
divergences discussed at the end of Sec. 2.2.4. This happens in the same way for all
partonic channels. We note that the dependence on the scale µ associated with the
lepton also disappears. This has to be the case, since for a finite lepton mass there
would never be any lepton collinear divergences in the first place.

2.2.6. Calculation with m` 6= 0

As we noted earlier, the presence of collinear singularities associated with lepton-photon
splitting is really an artifact of neglecting the lepton’s mass. In principle we should
therefore perform a full calculation in which the lepton’s mass is kept finite. This is
trivial for the virtual diagrams, since the QCD corrections do not affect the lepton
line. However, inclusion of a lepton mass considerably complicates the phase space
integrations for the real diagram. Nevertheless, it is possible to compute the relevant
integrals using the results given in Ref. [112]. One may then expand the result in
powers of the lepton mass and neglect terms suppressed by powers of O(m`). In this
way, the “would-be” collinear singularity is regularized by the lepton mass and shows
up as a term ∼ ln(m2

` ). Terms independent of m` are also kept. All other parts of the
calculation proceed as before, and the partonic cross section thus has the structure

σ̂i→fNLO(v, w,m`, µF , µ0) = σ̂i→flog (v, w, µ0) ln(m2
`/s)+

σ̂i→f0 (v, w, µF ) +O(m2
` ln(m2

` )). (2.21)

for each channel.

We have checked explicitly for all three channels that our two approaches for treating
the initial lepton are equivalent: The full result obtained using the WW contribution in
the previous subsection agrees with that for m` 6= 0, as long as we only keep the leading
terms as discussed in equation (2.21). The equivalence of the two approaches serves as
an important check of our calculation and also explicitly demonstrates the universality
of the WW-distribution.

2.2.7. Final results for single-inclusive hadron production

We now present our final results for the full partonic cross sections in analytic form.
Combining the cross section (2.6) for massless leptons with the Weizsäcker-Williams
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contribution (2.20), we may write the full NLO cross section as

Eh
d3σ`N→hX

d3Ph
=

(−U
S2

)∑

i,f

∫ 1+T
S

U
T+U

dv

v(1− v)

∫ 1

1−v
v

U
T

dw

w2

f i/N (x, µF )

x

×D
h/f (z, µF )

z2

[
σ̂i→fLO (v) +

αs(µ)

π
σ̂i→fNLO(v, w, µ)

+fγ/`ren

(
1−v

1−vw , µ
) αs(µ)

π
σ̂γi→fLO (v, w)

]
. (2.22)

The LO contribution, present only for the channel q → q with an incoming quark that
also fragments, was already given in (2.4). For the NLO term in this channel we find

σ̂q→qNLO(v, w, µ) =
α2

eme
2
qCF

svw

[
Aq→q0 δ(1− w) +Aq→q1

(
ln(1− w)

1− w

)

+

+
1

(1− w)+

{
Bq→q

1 ln

(
1− v

v(1− v(1− w))

)

+Bq→q
2 ln(1− v(1− w)) +Bq→q

3 ln

(
sv2

µ2

)}

+Cq→q1 ln(v(1− w)) + Cq→q2 ln

(
(1− v)w

1− vw

)

+Cq→q3 ln

(
1− v

(1− vw)(1− v(1− w))

)

+Cq→q4 ln

(
s

µ2

)
+ Cq→q5

]
, (2.23)

where the coefficients Aq→qi , Bq→q
i , Cq→qi are functions of v and w and may be found

in the Appendix A. The channels q → g and g → q have simpler expressions:

σ̂q→gNLO(v, w, µ) =
α2

eme
2
qCF

svw

[
Cq→g1 ln(1− v(1− w))

+Cq→g2 ln

(
1− v

(1− vw)(1− v(1− w))

)

+Cq→g3 ln

(
v(1− w)s

µ2

)
+ Cq→g4

]
, (2.24)

46



2.2. NLO calculation

Figure 2.8.: Cross section for `p → π+X at HERMES, as function of xF for 1 GeV <
Ph⊥ < 2.2 GeV. The dashes line gives the LO prediction and the solid
line the NLO one. The dotted and dot-dashed lines show the approxima-
tion (2.28) of the NLO cross section, using µ0 = Ph⊥ and µ0 =

√
S/2,

respectively.

σ̂g→qNLO(v, w, µ) =
α2

eme
2
qTR

svw

[
Cg→q1 ln

(
(1− v)w

1− vw

)

+Cg→q2 ln

(
v(1− w)s

µ2

)
+ Cg→q3

]
. (2.25)

The coefficients Cq→gi and Cg→qi are again given in the Appendix A.

We finally list the partonic cross sections for the Weizsäcker-Williams contributions:

σ̂γq→qLO (v, w) =
CFαeme

2
q

2s(1− v)

1 + v2w2

vw
,

σ̂γq→gLO (v, w) =
CFαeme

2
q

2s(1− v)

1 + (1− vw)2

1− vw ,

σ̂γg→qLO (v, w) =
TRαeme

2
q

2s(1− v)

v2w2 + (1− vw)2

vw(1− vw)
. (2.26)
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Figure 2.9.: Cross section for `p→ π+X at HERMES as function of Ph⊥ for 0.3 < xF <
0.55. The dashes line gives the LO prediction and the solid line the NLO
one. The dotted and dot-dashed lines show the approximation (2.28) of the
NLO cross section, using µ0 = Ph⊥ and µ0 =

√
S/2, respectively.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

-0.3 -0.2 -0.1  0  0.1  0.2  0.3

K-
Fa

ct
or

xF

HERMES √}S = 7.25 GeV, 1 GeV <Ph⊥< 2.2 GeV

LO
NLO

LO + WW (µ0=Ph⊥)
LO + WW (µ0=√}S /2);

Figure 2.10.: K-factor (at a scale µ = Ph⊥) for the HERMES experiment plotted vs.
the Feynman variable xF and a binned transverse momentum Ph⊥.
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2.2.8. Single-inclusive jet production

Having computed the inclusive hadron production cross section at NLO the extension
to single inclusive jet production is straightforward. The cross section for `N → jetX
may be written as

EJ
d3σ`N→jetX

d3PJ
=

1

S

∑

i

∫ 1

−U
S+T

dw

w
f i/N

(
x = −U

w(S+T ) , µ
)

×σ̂i→jet

(
v = 1 +

T

S
,w, µ;R

)
, (2.27)

where EJ and ~PJ are the energy and three-momentum of the jet and the hadronic
Mandelstam variables are defined as before, now in terms of the jet momentum. The
form of this expression follows from (2.6) by setting the fragmentation functions to
δ(1 − z). Of course, beyond LO, the partonic cross sections σ̂i→jet for jet production
differ from the ones for single-inclusive hadron production. This is evident from the
fact that the latter are computed as “inclusive-parton” cross sections σ̂i→f which, as we
saw in subsection 2.2.4, require collinear subtraction. This is in contrast to a jet cross
section which is by itself infrared-safe, as far as the final state is concerned. Instead,
it depends on the algorithm adopted to define the jet, as we have indicated by the
dependence on a generic jet (size) parameter R in (3.16).

As was discussed in Refs. [116–118], even at NLO one may still go rather straight-
forwardly from the single-inclusive parton cross sections σ̂i→f to the σ̂i→jet, for any
infrared-safe jet algorithm. The key is to properly account for the fact that at NLO
two partons can fall into the same jet, so that the jet needs to be constructed from
both. In fact, assuming the jet to be relatively narrow, one can determine the relation
between σ̂i→f and σ̂i→jet analytically [116]. This “Narrow Jet Approximation (NJA)”
formally corresponds to the limit R → 0 but turns out to be accurate even at values
R ∼ 0.4 − 0.7 relevant for experiment. We follow this approach in this work. In the
NJA, the structure of the NLO jet cross section is of the form A log(R)+B; corrections
to this are of O(R2) and are neglected. We note that to the order α2

emαs we consider in
this chapter, the Weizsäcker-Williams terms only contribute to the R-independent piece
B. This is because for almost real exchanged photons it is at this order not possible to
have two coalescing partons in the final state.

2.3. Numerical results

We now present phenomenological results for the NLO single-inclusive pion production
cross section in lepton-proton scattering. As mentioned before, data on the transverse
single-spin asymmetry for this reaction have been released by HERMES [46] and the
Jefferson Lab Hall A Collaboration [48]. Unfortunately, corresponding cross sections
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were not presented, and we will therefore provide predictions for these. Furthermore,
we will also present predictions for COMPASS at CERN, for a future Electron-Ion-
Collider (EIC), and for experiments at Jefferson Lab after the CEBAF upgrade to 12
GeV beam energy. Finally, at the end of this section we show some phenomenological
results for the inclusive production of jets at the EIC.

As we saw in the previous subsections (see equation (2.22)), our NLO result can be
formulated in such a way that it contains contributions involving the photon-in-lepton

distribution f
γ/`
ren and LO photon-parton cross sections. These represent the contribu-

tions by quasi-real photons to the cross section. An interesting question is whether this
part of the cross section dominates the NLO corrections, at least for a suitable choice
of the scale µ in (2.19). We recall that the logarithm in (2.19) may be obtained by an
integration over the photon’s virtuality where only the 1/q2 propagator is kept for the
photon, while q2 is neglected everywhere else in the hard scattering. We now consider
the cross section

Eh
d3σ`N→hX

d3Ph
=

(−U
S2

)∑

i,f

∫ 1+T
S

U
T+U

dv

v(1− v)

∫ 1

1−v
v

U
T

dw

w2

×f
i/N (x, µF )

x

Dh/f (z, µF )

z2

×
[
σ̂i→fLO (v) + fγ/`ren

(
1−v

1−vw , µ0

) αs(µ)

π
σ̂γi→fLO (v, w)

]
,

(2.28)

which essentially corresponds to the full NLO one in (2.22), but with the terms σ̂i→fNLO

dropped. In other words, we use the LO term and add the Weizsäcker-Williams con-
tribution. For the latter, we choose the upper limit on

√
−q2 in the photon spectrum

as a large scale in the problem, µ0 ∼ Ph⊥ or even µ0 ∼
√
S/2. This constitutes an

attempt to obtain an approximation to the full NLO correction by assuming that the
1/q2-behavior of the hard cross sections is valid over most of the kinematical regime.
In our studies we examine in this way the importance of the Weizsäcker-Williams con-
tribution. As discussed in the Introduction, if the contribution plays a dominant role
for the NLO corrections, this opens the door to approximate NLO calculations also for
the spin-dependent case.

For all our calculations we use the CTEQ6.6M [31] set of parton distribution functions
and the fragmentation functions of [119].
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Figure 2.11.: Same as Figs. 2.8, but for ` 3He scattering at beam energy 12 GeV after the
CEBAF upgrade at Jefferson Lab. We have used a fixed Ph⊥ = 1.5 GeV.

Figure 2.12.: Same as Fig 2.9, but for ` 3He scattering at beam energy 12 GeV after the
CEBAF upgrade at Jefferson Lab. We have integrated over −0.4 ≤ xF ≤
0.4.
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Figure 2.13.: K-factor (at a scale µ = Ph⊥) for the 12 GeV upgrade at Jefferson Lab
plotted vs. xF and a fixed transverse momentum Ph⊥

HERMES

Figures 2.8, 2.9 and 2.10 present our results for π+-production at HERMES at
√
S =

7.25 GeV. We fix the renormalization and factorization scales at µ = Ph⊥. Fig In order
to match the conventions used in pp↑ → hX, HERMES presents the spin asymmetry re-
sults in terms of the hadron’s transverse momentum Ph⊥ and Feynman’s xF = 2P zh/

√
S,

where P zh is the z-component of the hadron momentum in the center-of-mass frame of
the collision, and where positive xF is counted in the direction of the lepton beam. We
have

d2σep→πX

dxF dPh⊥
=

2πPh⊥√
x2
F + x2

T

Eh
d3σep→πX

d3Ph
, (2.29)

where xT = 2Ph⊥/
√
S. The hadronic Mandelstam variables read

T = −S
2

(√
x2
F + x2

T + xF

)
,

U = −S
2

(√
x2
F + x2

T − xF
)
. (2.30)

Figure 2.8 shows the cross section as a function of xF , integrated over 1 GeV < Ph⊥ <
2.2 GeV. This is the only Ph⊥ bin used in Ref. [46] with Ph⊥ > 1 GeV. In Fig. 2.9
we examine the Ph⊥ dependence of the cross section for 0.3 < xF < 0.55. In both
cases we find large NLO corrections; the NLO cross section is almost twice as large as
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the LO one. As discussed above, we also examine in how far the Weizsäcker-Williams
contribution drives the NLO corrections, using equation (2.28) with µ0 = Ph⊥ (dotted)
and µ0 =

√
S/2 (dot-dashed). As one can see from the figures, the Weizsäcker-Williams

contribution does lead to an increase over LO, but provides only about 50% to 70%
of the NLO correction. This is likely to be attributed to the fact that the overall
c.m.s. energy is rather low. The result with µ0 =

√
S/2 provides a slightly better

description of the full NLO, although the differences are minor. We note that the WW
approximation appears to work better for smaller transverse hadron momenta Ph⊥ and
for larger xF . The latter feature perhaps is at first sight surprising since positive xF
of the hadron imply on average backward scattering of the lepton, whereas the WW
approximation should work better if the lepton is scattered in the forward direction.
One can roughly understand this “shift” of the WW approximation towards positive
xF from the fact that |T | � |U | for xF → 1 in equation (2.30). Since the dominant
real-photon process γq → q(g) in (2.26) has a 1/su-behavior in contrast to the 1/t2-
behaviour of the LO process, the WW approximation favors the region xF > 0. The
full NLO partonic cross section inherits the 1/t2-behaviour of the LO one, so that
the Weizsäcker-Williams contribution can approximate it well only for xF > 0. This
behaviour is well confirmed by consulting figure 2.10, where the K-factors are shown.
The K-factors are a measurement of the size of the higher order correction. They are
defined by

Ki =
σi
σLO

, (2.31)

where the subscript i indicates the different higher order correction.

Scattering with the 12 GeV beam at the Jefferson Lab

Our NLO predictions for the cross section for ` 3He → π+X in 12 GeV scattering at
the Jefferson Lab are shown in Figures 2.11, 2.12 and 2.13. For the xF distribution on
the left we have assumed a fixed transverse momentum Ph⊥ = 1.5 GeV. On the right
we show the Ph⊥ dependence of the cross section in the region −0.4 < xF < 0.4. Again,
the renormalization scale is fixed to the transverse hadron momentum, µ = Ph⊥. Note
that the rather modest c.m.s. energy available limits the possible size of Ph⊥ severely.
For collisions using the present 6 GeV beam only transverse momenta outside the hard-
scattering regime are possible, which is the reason why we cannot present any results
for this case.

We again observe in Figures 2.11, 2.12 and 2.13 that the NLO corrections are very large
with a NLO K-factor larger than 2.5. The Weizsäcker-Williams contribution is clearly
insufficient to match the NLO result here.
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Chapter 2. Single-Inclusive Production of Hadrons and Jets

Figure 2.14.: Cross section for µp→ π0X at COMPASS as function of Ph⊥ for −0.1 ≤
η ≤ 2.38. As before, the solid lines give the NLO results and the dashed
lines the LO ones. We also present the LO and NLO results for the scale
µ = 2Ph⊥.

Figure 2.15.: Cross section for µp→ π0X at COMPASS, as function of hadron pseudo-
rapidity for fixed Ph⊥ = 2 GeV. As before, the solid lines give the NLO
results and the dashed lines the LO ones. The dotted and dot-dashed lines
show the approximation (2.28) of the NLO cross section, using µ0 = Ph⊥
and µ0 =

√
S/2, respectively.

54



2.3. Numerical results

COMPASS

The results of our NLO analysis for COMPASS kinematics are shown in Figs. 2.15 and
2.14. COMPASS uses a muon beam with energy 160 GeV, resulting in

√
S = 17.4 GeV.

Following the choice made by COMPASS, we use here the c.m.s. pseudorapidity η of the
produced hadron rather than its Feynman-xF . Pseudorapidity is counted as positive in
the forward direction of the incident muon. We have

d2σµp→π
0X

dη dPh⊥
= 2πPh⊥Eh

d3σµp→π
0X

d3Ph⊥
, (2.32)

where the hadronic Mandelstam variables read

T = −Ph⊥
√
Se+η ,

U = −Ph⊥
√
Se−η . (2.33)

The COMPASS spectrometer roughly covers the region −0.1 < η < 2.38. From the
η dependence shown in Fig. 2.15 for a fixed transverse momentum Ph⊥ = 2 GeV we
observe that the NLO corrections are significant but not as large as for HERMES
and JLab. They amount to an increase over LO of roughly 30–40%. Strikingly, the
Weizsäcker-Williams contribution is very small here, even for the choice µ0 =

√
S/2.

This may be understood from the fact that the muon mass is about 200 times larger
than the electron mass, resulting in a much smaller logarithm in the expression (2.19)
for the photon spectrum, which then is largely cancelled by the non-logarithmic term.

For the Ph⊥ spectrum shown in Figure 2.14 we also show the results for a different
choice of the factorization and renormalization scales, µ = 2Ph⊥. As one can see, the
scale dependence decreases somewhat when going from LO to NLO but remains fairly
sizable.

Electron-Ion Collider

We finally also discuss the cross section for single-inclusive pion production in electron-
proton collisions at a proposed future EIC [120] with

√
S = 100 GeV. Thanks to the

higher energy of an EIC it will become possible to probe much larger transverse hadron
momenta, where pQCD is expected to work better. Fig. 2.17 shows the η dependence
of the cross section for a fixed transverse momentum Ph⊥ = 10 GeV. Again we count
positive η in the forward direction of the incoming lepton. The Ph⊥ dependence of the
cross section is shown in Fig. 2.16, integrated over |η| ≤ 2. The renormalization scale
has again been fixed to the transverse hadron momentum, µ = Ph⊥. As for COMPASS
we found that the scale dependence slighty decreases for EIC kinematics when going
from LO to NLO but remains relatively large.

We again find sizable NLO corrections. Overall, the Weizsäcker-Williams approximation
works much better here than in the fixed-target regime. It describes the NLO cross
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Chapter 2. Single-Inclusive Production of Hadrons and Jets

Figure 2.16.: Cross section for ep → π+X at an EIC with
√
S = 100 GeV as function

of Ph⊥ integrated over |η| ≤ 2. The lines are as in the previous figures.

Figure 2.17.: Cross section for ep → π+X at an EIC with
√
S = 100 GeV as function

of η at fixed pT = Ph⊥ = 2 GeV. The lines are as in the previous figures.
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2.3. Numerical results

Figure 2.18.: Cross section for single-inclusive jet production at the EIC as function
of PJ⊥, integrated over |ηJ| ≤ 2. We have used the NJA [116, 117] and
the anti-kt jet algorithm [121]. The solid lines show NLO prediction for
two different values of the jet size parameter, R = 0.7 and R = 0.2,
respectively. The dashed lines present the LO results, and the dotted
ones the result for the approximation (2.28) of the NLO cross section,
using µ0 = PJ⊥.

section especially well when the hadron is produced in the electron forward direction.
At mid-rapidity and negative rapidity the approximation tends to fall short of the full
NLO result. From Fig. 2.16 we observe that that the Weizsäcker-Williams also works
better for smaller Ph⊥.

Jet production at an EIC

Given the high energy of an EIC, also jet observables will be of much interest there [51].
For example, combined analysis of data for the transverse-spin asymmetries for ep↑ →
hX and ep↑ → jetX from a future EIC should allow for a clean separation of twist-
3 parton correlations in the nucleon and in fragmentation. We therefore close this
section by presenting predictions for the cross section for single-inclusive jet production,
ep→ jetX. Here we use the NJA formalism outlined in Sec. 2.2.8 to convert the single-
hadron cross section into a jet one. We adopt the anti-kt jet algorithm of [121]. In
Fig. 2.19 we present the dependence of the cross section on the jet pseudo-rapidity
ηJ for a fixed transverse jet momentum of PJ⊥ = 10 GeV. We find once again that
NLO contributions are large. We also observe that, compared to the case of hadron
production considered in Fig. 2.17, the NLO cross section is much more peaked in the
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Chapter 2. Single-Inclusive Production of Hadrons and Jets

Figure 2.19.: Cross section for single-inclusive jet production at the EIC as a function
of pseudorapidity ηJ at a fixed transverse jet momentum PJ⊥ = 10 GeV.
We have used the NJA [116, 117] and the anti-kt jet algorithm [121].
The solid lines show NLO prediction for two different values of the jet
size parameter, R = 0.7 and R = 0.2, respectively. The dashed lines
present the LO results, and the dotted and dashed dotted the result for
the approximation (2.28) of the NLO cross section, using µ0 = PJ⊥ and
also µ0 =

√
S/2.
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forward electron region. The reason is that at large positive pseudo-rapidity |T | � |U |
in equation (2.33). Since the minimal value for the incoming parton’s momentum
fraction is xmin = −U/(S + T ) in (3.16) rather small values of x are probed at large
pseudo-rapidity where in turn the nucleon’s parton distributions are large. On the
other hand the fragmentation process suppresses the forward and backward regions
in hadron production due to the large z-values probed, whereas in jet production the
forward electron region is enhanced due to the absence of fragmentation.

In the figures 2.19 and 2.18, we show results for two different jet size parameters,
R = 0.7 and R = 0.2. Dependence on R first occurs at NLO. As discussed at the end of
Sec. 2.2.8, the first-order Weizsäcker-Williams contribution does not depend on R. It
hence cannot give an accurate approximation of NLO in general. As the figure shows,
the WW result happens to be rather close to the result for R = 0.7; this agreement,
however, is essentially fortuitous.

2.4. Conclusions and outlook

We have performed next-to-leading order calculations of the partonic cross sections for
the processes `N → hX and `N → jetX, for which the scattered lepton in the final
state is not detected. We have derived our results for a finite lepton mass, neglecting
terms that are suppressed as powers of the mass over a hard scale. The results have
been obtained in two ways. We have first set the mass to zero. We have regularized the
ensuing collinear singularity in dimensional regularization and then subtracted it by
introducing a Weizsäcker-Williams type photon distribution in the lepton. The latter
can be computed in QED perturbation theory and effectively reinstates the leading
lepton mass dependence, which is logarithmic plus constant. In the second approach,
we have kept the lepton mass in the calculation directly, expanding all phase space
integrals in such a way that the leading mass dependence is obtained. Both approaches
give the same result.

We have presented phenomenological NLO predictions for various experimental setups,
from fixed-target experiments (HERMES, JLab, COMPASS) to collider experiments
at an EIC. We have found that the NLO corrections are large. We note that in the
fixed target regime the bulk of the corrections comes from the plus distribution terms
in equation (2.23), especially at negative xF or rapidity. As is well known, the distribu-
tions are associated with the emission of soft gluons. Since they recur with increasing
power at every higher order of perturbation theory, it may be worthwhile for future
work to address their resummation to all orders, similarly to what was done for the
photoproduction case `N → `′hX in [122].

The rather large size of the corrections that we find suggests that also the cross section
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with transverse polarization of the initial nucleon may be subject to large NLO cor-
rections. This would likely have ramifications for analyses of spin asymmetry data for
`N↑ → hX in terms of twist-3 parton correlation functions. As full NLO calculations
for transverse single-spin observables are difficult, we have also investigated in how far
it is possible to match our full NLO result for the spin-averaged cross section by adding
just the Weizsäcker-Williams contribution to the LO one. We have found that this sim-
plified approach does not appear to work well quantitatively. In other words, the NLO
corrections do not appear to be dominated by quasi-real photons. Nonetheless, in order
to obtain a first estimate of higher-order effects for the transverse-spin asymmetry, it
may be worthwhile to use the Weizsäcker-Williams contribution for the case of trans-
versely polarized nucleons, which is much simpler to do than the full NLO calculation
and was already discussed in Ref. [51].

We again emphasize that our results suggest that contributions by quasi-real photons to
the cross sections for the single-inclusive processes `N → hX and `N → jetX are not
the dominant contributions, at least for large transverse hadron momenta Ph⊥ > 1 GeV.
In other words, an experimental setup where the final state lepton is not observed in
lepton-nucleon collisions does not automatically imply that one measures an (approx-
imated) quasi-real photoproduction process. However, although quasi-real photons do
not dominate, they typically do play a non-negligible role for the NLO corrections. As is
well known, high-energy real photons may also exhibit their own partonic structure, in
which case they are referred to as “resolved” photons (see Ref. [56]). The corresponding
resolved-photon contributions are formally of the same order as the Weizsäcker-Williams
contribution we have considered here. They are typically suppressed in the fixed-target
regime. It may be interesting to address this contribution in future work, also in order
to study its impact on the transverse single-spin asymmetries. The concept of “virtual
photon structure” may also prove useful in this context (see, for example, Ref. [123]).

60



Chapter 3.

Double-Longitudinal Spin
Asymmetry in Single-Inclusive
Lepton Scattering at NLO

We calculate the double-spin asymmetries ALL for the processes `N → hX and `N →
jetX at next-to-leading order accuracy in perturbative QCD. We compare our theo-
retical results for ALL to data from the SLAC E155 experiment, finding only partially
satisfactory agreement. We conclude that measurements of ALL and the relevant polar-
ized and unpolarized cross sections should be performed at the present-day fixed-target
lepton scattering experiments, as well as at a future electron ion collider, in order to
verify our understanding of this process. We present predictions of the longitudinal
double-spin asymmetry for these experiments. This chapter is based on publication [4].

3.1. Introduction

The single-inclusive production of hadrons (or jets) with large transverse momenta in
lepton-nucleon collisions, `N → hX, has attracted much interest in recent years from
both the experimental [45–48, 124] and the theoretical sides [3, 6, 49, 51–55, 63, 64,
102, 103, 125, 126]. The main reason for this interest is that `N → hX may prove
to be particularly useful for obtaining a better understanding of transverse (nucleon)
spin effects. As is well known, measurements for the related purely hadronic process
pp → hX have revealed large transverse single-spin asymmetries AN [57], and the
understanding of these large effects remains to pose a major challenge to theory. Since
the process `N → hX is generally simpler to analyze theoretically, it is hoped that its
transverse single-spin asymmetry will help us to identify the origins of the large effects
observed in hadronic scattering.
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The basis for the theoretical description of single-inclusive processes is collinear factor-
ization in perturbative QCD (pQCD). In many instances, next-to-leading order (NLO)
corrections, or even corrections beyond NLO, are found to be sizable for single-inclusive
scattering [115, 127, 128]. Therefore, in order to be able to reliably confront data and
theory for the single-transverse spin asymmetry for `N → hX, it is crucial to have the
NLO corrections for the cross sections entering the asymmetry. The recent study [52] of
AN in `p→ hX at leading order (LO) suggests the presence of sizable NLO corrections:
comparing to recent HERMES data [46] it was found that the LO theoretical prediction
lies significantly higher than the data.

To compute the NLO corrections for the single-transverse spin asymmetry is a very
complex task, however. The asymmetry is power-suppressed in QCD and involves
twist-3 three-parton correlations. Higher-order calculations for higher-twist single-spin
observables are notoriously difficult in pQCD and still relatively scarce [81]. As a first
step towards an NLO calculation for the spin asymmetries in `p → hX (or `p →
jetX), we have recently computed the NLO results for the respective spin-averaged
cross sections [3, 6] that constitute the denominator of the asymmetries. Indeed, large
NLO corrections were found for the various kinematic regimes of interest. We note that
very recently even the next-to-next-to leading order calculation for the spin-averaged
cross section for `p→ jetX was presented [126].

Unfortunately, so far no experimental data on the unpolarized cross sections exist that
would allow for a comparison between theory and data. On the other hand, some
data from SLAC [45] and HERMES [124] are available on the double-longitudinal spin
asymmetry ALL, measured by scattering a longitudinally polarized lepton off a longi-
tudinally polarized target. This asymmetry is of leading power in QCD and can hence
be analyzed with standard techniques in pQCD. Therefore, prior to studying the more
complex case of AN, we investigate ALL at NLO in this chapter.

For the single-inclusive processes `p → hX and `p → jetX the scattered lepton is not
explicitly detected. As a result, there are contributions to the cross sections for which
the incident lepton emits an almost real photon, followed by a hard photoproduction
scattering process. Such contributions are formally NLO, but they are enhanced by the
photon propagator. In Refs. [108] and [90] (at NLO, including resolved-photon contri-
butions) the asymmetry ALL for `p → hX was investigated under the approximation
that the scattering is entirely dominated by the exchange of such quasi-real photons.
However, as we found in [3], for the spin-averaged cross section this assumption is valid
only in very limited kinematical regions. In general, a full NLO calculation is needed,
for which the quasi-real photon contribution is just one among several. In this chapter
we investigate in how far the assumption of dominant exchange of quasi-real photons
is justified for the double-longitudinally polarized cross section and for ALL. In this
context we also present new comparisons to the E155 data [45], on the basis of a full
NLO calculation.

62



3.2. NLO calculation

This chapter is structured as follows. In Sec. 3.2 we present our NLO calculations for
the longitudinally polarized cross sections for `N → hX and `N → jetX. Section 3.3
presents a comparison to the E155 data. Section 3.4 presents numerical predictions
for the NLO double-spin asymmetry ALL to be expected at various other fixed-target
experiments and at a future Electron Ion Collider (EIC). Finally, we summarize our
results in Sec. 3.5.

3.2. NLO calculation

3.2.1. Single-inclusive hadron production

In this section we briefly present our derivation of the analytical NLO results for the
processes `N → hX and `N → jetX with longitudinally polarized initial particles.
We will closely follow the previous chapter 2 in which we computed the corresponding
unpolarized NLO cross sections. We will be brief and highlight only the differences
arising for longitudinal polarization. We refer the reader to Ref. [3] for details concerning
the calculation.

The transverse momentum of the produced hadron sets a hard scale, so that per-
turbative methods may be used for treating the cross sections. We first consider
`(l) + N(P ) → h(Ph) + X, where we have introduced our notation for the four-
momenta. We define the Mandelstam variables as S = (P + l)2, T = (P − Ph)2

and U = (l − Ph)2. Furthermore, we denote the energy of the detected hadron by Eh
and its three-momentum by ~Ph. The momenta of the incoming parton, kµ, and of the
fragmenting parton, pµ, which appear in the calculation of the partonic cross sections,
are approximated as kµ ' xPµ and pµ ' Pµh /z, respectively. It is then convenient to
work with the partonic Mandelstam variables

s = (k + l)2 ≈ xS, t = (k − p)2 ≈ x

z
T, u = (l − p)2 ≈ U

z
. (3.1)

We will consider the following difference of cross sections:

∆σ ≡ 1

2

[
Eh

d3σ`N→hX(SL = +1, λe = +1)

d3Ph

− Eh
d3σ`N→hX(SL = +1, λe = −1)

d3Ph

]
. (3.2)

In this expression SL and λ` denote the helicities of the nucleon and the lepton, re-
spectively. This choice of difference between polarized cross sections corresponds to the
numerator of the longitudinal double-spin asymmetry A‖ that was measured by the
E155 experiment [45].
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The general form of the factorized polarized cross section for inclusive hadron produc-
tion process is then

∆σ =
1

S

∑

i,f

∫ 1

0

dx

x

∫ 1

0

dz

z2
∆f i/N (x, µ)Dh/f (z, µ) ∆σ̂i→f (s, t, u, µ) , (3.3)

where ∆f i/N (x, µ) is the helicity parton distribution function for the incoming parton
i in the nucleon N and Dh/f (z, µ) the fragmentation function for parton f fragmenting
into hadron h, both evaluated at a factorization scale µ. As in Ref. [3] we choose the
factorization scales to be the same for the initial and the final state, and also equal to
the renormalization scale. In equation (3.3), ∆σ̂i→f is the longitudinally polarized cross
section for the lepton-parton scattering process ` + i → f + x, with x an unobserved
final state. The difference is defined in analogy with that in equation (3.2) The sum in
equation (3.3) runs over the different species of partons, quarks, gluons and antiquarks.
We note that the expression in equation (3.3) holds up to corrections that are suppressed
by inverse powers of the produced hadron’s transverse momentum Ph⊥.

It is convenient to rewrite the x- and z-integrals in equation (3.3) in terms of new
variables v ≡ 1 + t/s and w ≡ −u/(s+ t). Using (3.1), we have

x =
1− v
vw

U

T
, z =

−T
(1− v)S

, (3.4)

and equation (3.3) becomes

∆σ =

(−U
S2

)∑

i,f

∫ 1+T
S

U
T+U

dv

v(1− v)

∫ 1

1−v
v

U
T

dw

w2

×∆f i/N (x, µ)

x

Dh/f (z, µ)

z2
∆σ̂i→f (v, w, µ) , (3.5)

where x = 1−v
vw

U
T , z = −T

(1−v)S . For ease of notation, we have kept the symbol ∆σ̂i→f also
for the polarized cross section when expressed in terms of the new variables. We note
that the invariant mass of the unobserved recoiling final state is given by s + t + u =
sv(1− w).

The partonic polarized cross sections ∆σ̂i→f in equation (3.5) can be calculated in QCD
perturbation theory. One may write their expansions in the strong coupling αs as

∆σ̂i→f = ∆σ̂i→fLO +
αs
π

∆σ̂i→fNLO +O(α2
s) . (3.6)

As explained in detail in Ref. [3], there are contributions to the NLO cross section for
which the photon exchanged between lepton and quark is almost real. These contribu-
tions are typically sizable. In fact they diverge when the mass of the lepton tends to
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zero. Expanding the partonic cross section in the (small) lepton mass m`, one finds the
structure

∆σ̂i→fNLO(v, w,m`, µ) = ∆σ̂i→flog (v, w) log(m`/µ) + ∆σ̂i→f0 (v, w, µ/s)

+O(m2
` log(m`)), (3.7)

which exhibits the “mass singularity” as m` → 0. The scale µ is arbitrary and cancels
between the first two pieces. The logarithmic part in (3.7) in a sense opens up new
partonic channels at NLO, since it arises from configurations where the lepton radiates
the photon collinearly, which subsequently participates as an initial particle in a pho-
toproduction scattering process. Dropping all terms that vanish for m` = 0 we arrive
at the following form of the NLO cross section:

∆σ =

(−U
S2

)∑

i,f

∫ 1+T
S

U
T+U

dv

v(1− v)

∫ 1

1−v
v

U
T

dw

w2

×∆f i/N (x, µ)

x

Dh/f (z, µ)

z2

[
∆σ̂i→fLO (v) +

αs(µ)

π
∆σ̂i→fNLO(v, w, µ)

+∆fγ/`
(

1−v
1−vw , µ

) αs(µ)

π
∆σ̂γi→fLO (v, w)

]
, (3.8)

where

∆fγ/`(y, µ) ≡ αem

2π
∆Pγ`(y) log

(
µ2

y2m2
`

)
+O(α2

em) , (3.9)

is the polarized “photon-in-lepton” distribution, with αem the fine structure constant.
It can be calculated perturbatively as discussed in Ref. [3] and involves the polarized

lepton-photon splitting function ∆Pγ/`(y) = 2−y. The ∆σ̂γi→fLO are the spin-dependent
lowest-order scattering cross sections for γ + i → f + x, computed with real incoming
photons. They will be given below. We stress again that equation (3.8) is exact up to
terms that vanish as m` → 0. The same result may be obtained in a calculation that
treats the lepton as massless from the beginning. The ensuing collinear divergence may
then be absorbed into a “bare” photon-in-lepton distribution and is canceled in this
way [3].

For the LO partonic cross section in (3.8), present only for the channel q → q with an
incoming quark that also fragments, one finds

∆σ̂q→qLO = 2α2
eme

2
q

1

sv

1− v2

(1− v)2
δ(1− w) , (3.10)

where eq is the quark’s fractional charge.
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The NLO terms may be computed using the techniques discussed in [3]. The only new
technical aspect concerns the use of the Dirac matrix γ5 and the Levi-Civita tensor εµνρσ

in dimensional regularization, which appear in the projections onto helicity states for
the incoming particles. We use the ’t Hooft-Veltman-Breitenlohner-Maison (HVBM)
scheme [129, 130] throughout our calculation. For details of the application of these
scheme in NLO calculations of single-inclusive cross sections we refer the reader to [131].
As is well-known, the HVBM scheme produces spurious terms that violate helicity
conservation at the quark-gluon vertex [132]. This feature manifests itself in a spin-
dependent splitting function ∆Pqq(y) in d = 4 − 2ε dimensions that differs from the
spin-averaged one, ∆Pqq(y) = Pqq(y) + ε 4CF (1− y). This may be corrected by a finite
subtraction in the process of factorization of collinear singularities. This is the standard
choice made in the literature and is also in accordance with all modern sets of NLO
helicity parton distribution functions.

For the NLO term in thte q → q channel we find

∆σ̂q→qNLO(v, w, µ) =
α2

eme
2
qCF

svw

[
∆Aq→q0 δ(1− w)

+ ∆Aq→q1

(
log(1− w)

1− w

)

+

+
1

(1− w)+

{
∆Bq→q

1 log

(
1− v

v(1− v(1− w))

)

+ ∆Bq→q
2 log(1− v(1− w)) + ∆Bq→q

3 log

(
sv2

µ2

)}

+ ∆Cq→q1 log(v(1− w)) + ∆Cq→q2 log

(
(1− v)w

1− vw

)

+ ∆Cq→q3 log

(
1− v

(1− vw)(1− v(1− w))

)

+ ∆Cq→q4 log (1− v(1− w))

+ ∆Cq→q5 log

(
s

µ2

)
+ ∆Cq→q6

]
, (3.11)

where CF = 4/3.The coefficients ∆Aq→qi , ∆Bq→q
i , ∆Cq→qi are functions of v and w and

may be found in the Appendix. Equation (3.11) contains the usual plus distributions
defined as

∫ 1

0
dw f(w) [g(w)]+ =

∫ 1

0
dw [f(w)− f(1)] g(w) . (3.12)
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For the channels q → g and g → q we find the simpler expressions

∆σ̂q→gNLO(v, w, µ) =
α2

eme
2
qCF

svw

[
∆Cq→g1 log(1− v(1− w))

+ ∆Cq→g2 log

(
1− v

(1− vw)(1− v(1− w))

)

+ ∆Cq→g3 log

(
v(1− w)s

µ2

)
+ ∆Cq→g4

]
, (3.13)

and

∆σ̂g→qNLO(v, w, µ) =
α2

eme
2
qTR

svw

[
∆Cg→q1 log

(
(1− v)w

1− vw

)

+ ∆Cg→q2 log

(
v(1− w)s

µ2

)
+ ∆Cg→q3

]
, (3.14)

where TR = 1/2. The coefficients ∆Cq→gi and ∆Cg→qi are again given in the Appendix.
We finally list the spin-dependent partonic cross sections for the photon-initiated chan-
nels:

∆σ̂γq→qLO (v, w) =
2π CFαeme

2
q

s(1− v)

1− v2w2

vw
,

∆σ̂γq→gLO (v, w) =
2π CFαeme

2
q

s(1− v)

vw(2− vw)

1− vw ,

∆σ̂γg→qLO (v, w) = −
2π TRαeme

2
q

s(1− v)

v2w2 + (1− vw)2

vw(1− vw)
. (3.15)

3.2.2. Single-inclusive jet production

Having computed the NLO polarized cross section for inclusive hadron production the
extension to single inclusive jet production is relatively straightforward, using the tech-
niques of Refs. [116–118]. The spin-dependent cross section for `N → jetX may be
written as

∆σ`N→jetX =
1

S

∑

i

∫ 1

−U
S+T

dw

w
∆f i/N

(
x = −U

w(S+T ) , µ
)

×
[
∆σ̂i→jet

incl. parton

(
v = 1 +

T

S
,w, µ

)

+ ∆σ̂i→jet
R

(
v = 1 +

T

S
,w, µ;R

)]
. (3.16)
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As indicated, the partonic cross section is the sum of two contributions. The first
contains inclusive-parton cross sections ∆σ̂i→jet

incl. parton. This part of the cross section is
obtained from (3.8) by setting the fragmentation functions to δ(1 − z). Explicitly, we
have

∆σ̂i→jet
incl. parton (v, w, µ) =

∑

f

[
∆σ̂i→fLO (v) +

αs(µ)

π
∆σ̂i→fNLO(v, w, µ)

+ ∆fγ/`
(

1−v
1−vw , µ

) αs(µ)

π
∆σ̂γi→fLO (v, w)

]
, (3.17)

where v = 1 + T/S. The inclusive-parton cross section has been integrated over the
full phase space of the unobserved final-state particles, keeping the momentum of the
observed particle fixed. This is not appropriate for an NLO jet cross section for which
two final-state particles may jointly form the jet. As shown in Refs. [116–118], one
can correct for this by introducing a subtraction piece. This piece is represented by
the term involving ∆σ̂i→jet

R in equation (3.16). As discussed further in [116–118] one

may determine the ∆σ̂i→jet
R analytically if one assumes that the jet size parameter R

is relatively small. Without going into further detail we just quote the final results
relevant for the spin-dependent cross section for `N → jetX:

∆σ̂q→jet
R (v, w, µ;R) =− αs(µ)

π

CFα
2
eme

2
q

svw
∆Hq→q(v, w)

×
[
Ajet

0 (v;R) δ(1− w) +Ajet
1 (v, w)

(
log(1− w)

1− w

)

+

+Bjet
1 (v, w;R)

1

(1− w)+
+ C jet

1 (v, w;R)

]
+O(α2

s),

∆σ̂g→jet
R (v, w, µ;R) =O(α2

s). (3.18)

The coefficients Ajet
0 , Ajet

1 , Bjet
1 , C jet

1 are given in the Appendix. They show that the

NLO jet cross section has the formA log(R)+B+O(R2). The coefficient Ajet
0 depends on

the jet algorithm used to define the jet parameter R. The result given in the Appendix
refers to the anti-kT algorithm [121]. The hard-scattering function in (3.18) is related
to the Born cross section in equation (3.10):

∆Hq→q(v, w) =
1− v′2

(1− v′)2

∣∣∣∣∣
v′=vw/(1−v(1−w))

. (3.19)

We note that for the unpolarized cross section the same coefficients Ajet
0 , Ajet

1 , Bjet
1 , C jet

1

appear, with however the hard part

∆Hq→q(v, w)→ Hq→q =
1 + v′2

(1− v′)2

∣∣∣∣∣
v′=vw/(1−v(1−w))

. (3.20)

68



3.3. Phenomenological results

 10

 100

 1000

 10000

 21  22  23  24  25  26  27  28  29  30

d
σ
/d

P
h
/d
θ
 [

p
b
/G

e
V

]

Ph[GeV]

E155 Θ=2.75°
LO

NLO
pure WW

(a)

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 21  22  23  24  25  26  27  28  29  30

A
LL

Ph [GeV]

E155 Θ=2.75°
LO

 NLO
E155-DATA;

(b)

 1

 10

 100

 1000

 10000

 100000

 12  14  16  18  20  22  24

d
σ
/d

P
h
/d
θ
 [

p
b
/G

e
V

]

Ph[GeV]

E155 Θ=5.5°
LO

NLO
pure WW

(c)

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 12  14  16  18  20  22  24

A
LL

Ph [GeV]

E155 Θ=5.5°
LO

 NLO
E155-DATA;

(d)

Figure 3.1.: Unpolarized cross sections ((a) and (c)) and longitudinal double-spin asym-
metries ALL for ep→ π+X, at scattering angle θ = 2.75◦ (upper panel) and
θ = 5.5◦ (lower panel), respectively. We show LO and NLO results. The
data are from E155 3.3. The blue line shows the pure Weizsäcker-Williams
contributions by quasi-real photons. The bands in (a) and (c) represent
the scale variation 1 GeV < µ < 2PH⊥.

3.3. Phenomenological results

In this section we present numerical estimates for the longitudinal double-spin asym-
metry ALL for the kinematical setup of the SLAC E155 experiment [45]. Although
HERMES also reports a measurement of ALL [124] in ep→ hX, we cannot compare to
their data. The reason is that the HERMES data are not fully single-inclusive but were
taken with the requirement that the scattered electron not be seen within the detector
acceptance. This is different from a fully single-inclusive measurement for which the
electron may be in any region of phase space. Also, hadron transverse momenta are
typically very low for the HERMES data.

E155 used an electron beam with energy E = 48.35 GeV scattering off proton or
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deuteron targets. The experiment measured the double-longitudinal spin asymmetry

A`N→hXLL (S, T, U) ≡ ∆σ`N→hXNLO (S, T, U)

σ`N→hXNLO (S, T, U)
. (3.21)

at two scattering angles, θ = 2.75◦ and θ = 5.5◦, defined in the laboratory (target
rest) frame, defined relative to the direction of the incident lepton beam. Hadrons with
momenta 10 GeV ≤ |~Ph| ≤ 29 GeV were accepted, again defined in the laboratory frame.
The asymmetry A`N→hXLL was measured as a function of |~Ph|. Data were presented for
identified pions and also for unidentified charged hadrons.

In order to compute A`N→hXLL at NLO we use equation (3.8) for the spin-dependent cross
section, accompanied by the results in equation (25) of Ref. [3] for the spin-averaged
one. In the target rest frame, neglecting the mass of the produced hadron, we have

S = (P + l)2 = 2ME +M2 ,

T = (P − Ph)2 = M2 − 2M |~Ph| ,
U = (l − Ph)2 = −2E|~Ph|(1− cos θ) , (3.22)

where M is the proton mass. We note that we find a rather strong decrease of our
results (at the level of about 10%) if we drop the M2 terms in (3.22). This is to be
understood from the relatively modest beam energy and the forward kinematics. In
principle we should include the full set of target mass corrections which, however, is
beyond the scope of this article.

We note that the transverse hadron momentum is given in the rest-frame variables
by |~Ph⊥| = |~Ph| sin(θ). Since the transverse momentum sets the hard scale for the
process we demand for our calculations that |~Ph⊥| ≥ 1 GeV. For the scattering angle
θ = 2.75◦ this corresponds to a lower bound |~Ph| ≥ 20.9 GeV whereas for θ = 5.5◦ we
have |~Ph| ≥ 10.5 GeV. Conversely, for θ = 2.75◦ the data extend to |~Ph| = 29 GeV,
corresponding to transverse momenta |~Ph⊥| ≤ 1.4 GeV. For θ = 5.5◦ the maximal
hadron momentum in E155 is about |~Ph| = 24 GeV, yielding |~Ph⊥| ≤ 2.3 GeV.

Throughout our calculations we use the NLO unpolarized parton distributions of [32],
referred to as MSTW2008. For the helicity parton distributions we use the latest NLO
set of [133] (DeFlorian2014). When dealing with deuteron targets we neglect nuclear
binding effects and simply use D = (p + n)/2 along with the the isospin relations
fu/n = fd/p etc. for the up and down distributions in neutrons. Finally, for the pion
fragmentation functions we choose the latest set of [119] (DSS14). This reference does
not provide fragmentation functions for unidentified charged hadrons. For the latter
we therefore use the earlier DSS sets [134].

The experiment E155 has released data for the channels ep → π±X, ep → h±X,
eD → π±X and eD → h±X. In the following we will briefly discuss each of these.
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Figure 3.2.: Same as Figs. 3.1a - 3.1d, but for ep → π−X. Again, the upper panel
corresponds to θ = 2.75◦ and the lower panel to θ = 5.5◦
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Figure 3.3.: Longitudinal double-spin asymmetries ALL for eD → π+X (a),(b) and
eD → π−X (c),(d) for the scattering angles θ = 2.75◦ (a),(c) and θ = 5.5◦

(b),(d).
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3.3.1. ep→ π+X

Figure 3.1a shows the unpolarized cross section for ep → π+X as a function of |~Ph⊥|
at a scattering angle of θ = 2.75◦. We plot

dσ`N→hX

d|~Ph| dθ
= 2π|~Ph| sin(θ)

(
Eh

dσ`N→hX

d3 ~Ph

)
, (3.23)

at LO (lower solid line and band) and NLO (upper). The solid lines represent the cross
sections computed at scale µ = |~Ph⊥| = |~Ph| sin θ, while the bands are generated from
the scale variation 1 GeV < µ < 2Ph⊥. The upper end of the band corresponds to the
lowest scale. We find that the NLO corrections are large, with K ≡ σNLO/σLO-factors
of about 2-3 at E155 for this scattering angle. The blue line in Fig. 3.1a represents
the contribution to the cross section by quasi-real photons, obtained in the unpolarized
case as (cf. equation (3.8) and see also equation (25) of Ref. [3]):

σ =

(−U
S2

)∑

i,f

∫ 1+T
S

U
T+U

dv

v(1− v)

∫ 1

1−v
v

U
T

dw

w2

f i/N (x, µ)

x

× Dh/f (z, µ)

z2
fγ/`

(
1−v

1−vw , µ
) αs(µ)

π
σ̂γi→fLO (v, w) . (3.24)

We refer to this contribution in the plots as “pure WW” contribution. We again adopt
the scale µ = |~Ph⊥|. As one can see, the real-photon contribution dominates the cross
section only at the lower values of |~Ph|. Beyond |~Ph| ≈ 30 GeV. This finding is at
variance with the general assumption made in [45, 90, 108] that the bulk of inclusive-
hadron events is produced by real photons. We note that for scattering angle θ = 2.75◦

real photons do dominate in the region where most of the data were taken.

This becomes different for scattering angle θ = 5.5◦; see Fig. 3.2c. Here the contribution
by quasi-real photons does not really dominate anywhere in the regime of interest. We
conclude that our full NLO calculation is required here for a meaningful comparison to
the data. We note that the K-factors are slightly smaller at this scattering angle.

Turning to the corresponding spin asymmetries shown in Figs. 3.1b, 3.1d we find that
the NLO corrections do not influence the asymmetries as much as the cross sections.
Instead, a significant part of NLO corrections seems to cancel in the asymmetry. On
the other hand, there is a clear trend for the asymmetry to decrease when going from
LO to NLO. This helps to bring the theoretical results closer to the data. Still, even at
NLO our results for the spin asymmetry are much higher than the data for θ = 2.75◦.
For the angle θ = 5.5◦ we find a slightly better agreement, mostly because the data
have larger error bars here. We note that for the kinematics that are relevant here the
involved parton distributions and fragmentation functions are rather well constrained.
It is conceivable that the disagreement we observe for the spin asymmetries indicates
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Figure 3.4.: Same as Figs. 3.3a - 3.3d, but for production of unidentified positive (a),(b)
and negative (c),(d) hadrons off a proton target.
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Figure 3.5.: Same as Figs. 3.3a - 3.3d, but for unidentified positive (a), (b) and negative
(c), (d) hadrons produced off a deuteron target.

that perturbative-QCD methods are not yet applicable at such relatively low |~Ph⊥|.
Higher-twist corrections might account for the difference, in particular for the data at
θ = 2.75◦.

3.3.2. ep→ π−X

In Figs. 3.2a – 3.2d we present our results for π− production off a proton target. The
plots of the unpolarized cross sections in Figs. 3.2a, 3.2c qualitatively resemble those for
π+-production, that is, we observe large K-factors and dominance of the real-photon
contribution at the smaller π− momenta for θ = 2.75◦. Also, as for π+-production
the contributions by real photons do not dominate for θ = 5.5◦. Since we find the
same qualitative features of the cross section also for all other channels, eD → π±X,
ep → h±X and eD → h±X, we refrain from showing plots for their unpolarized cross
sections.

In Figs. 3.2b, 3.2d we compare our results for the asymmetries to the E155 data and find
a better agreement with the data than for π+-production. Again we observe that the
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Figure 3.6.: Longitudinal double-spin asymmetries ALL for ep → π+X at HERMES,
(a) as function of xF for 1 GeV < Ph⊥ < 2.2 GeV, and (b) as function of
Ph⊥ for 0.3 < xF < 0.55. The red line gives the LO prediction and the
black line the NLO one.

NLO corrections are not as large for the asymmetries as they are for the cross sections.
As before they tend to push the theory curves closer to the data. The spin asymmetries
computed for the “pure WW” contributions by real photons agree with the data even
better, in particular for θ = 5.5◦. It was already observed in Refs. [90, 108] that the
asymmetry data are well described by the real-photon contributions. However, in the
light of the fact that real photons do not produce the bulk of the cross section at this
angle, we have to consider this agreement as coincidental.

3.3.3. eD → π−X

Figures 3.3a – 3.3d present numerical results for the asymmetries ALL for pion pro-
duction off a deuteron target. We observe an overall better agreement with the E155
data than for scattering off protons, especially for π+-production. Again, the NLO
corrections tend to improve the agreement, although by and large, the NLO results are
somewhat higher than the data.

3.3.4. ep→ h±X

We finally discuss the spin asymmetries for unidentified charged hadrons. Our results
for production off a proton target are shown in Figs. 3.4a – 3.4d. We find that the NLO
results are much higher than the E155 data for both scattering angles θ = 2.75◦ and
θ = 5.5◦, irrespective of the charge of the produced hadrons.
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Figure 3.7.: Same as Figs. 3.6a, 3.6b, but for ` 3He scattering at beam energy 12 GeV
after the CEBAF upgrade at Jefferson Lab. On the left we have chosen a
fixed Ph⊥ = 1.5 GeV, while for the Ph⊥ dependence on the right we have
integrated over −0.4 ≤ xF ≤ 0.4.

3.3.5. eD → h±X

The corresponding results for unidentified hadrons produced off a deuteron target are
shown in Figs. 3.5a – 3.5d. Compared to the case of a proton target the theoretical
curves are now overall much closer to the E155 data. This finding is in line with what
we observed for pion production above.

3.4. Predictions

In view of the unclear situation concerning the comparison of NLO theory and E155
data we argue that it would be important to have independent data on the unpolar-
ized cross section and the longitudinal double-spin asymmetry. We now present some
phenomenological predictions for ALL at NLO in single-inclusive pion production for
HERMES, JLab12, COMPASS and the future EIC. For the latter, we also investigate
the spin asymmetry in jet production. In the previous chapter 2 we have already pre-
sented results for the corresponding spin-averaged cross sections, and we compute the
spin asymmetry for the same kinematics considered there. We always show LO and
full NLO results, using the scale µ = |~Ph⊥|. One of the findings of [3] (and of the
comparison to the E155 data above) is that the real-photon contribution typically does
not provide a faithful description of the full NLO corrections. In the following we hence
refrain from showing results for the “pure WW” contribution.

In Figs. 3.6a, 3.6b we show the asymmetries in ep → π+X at
√
S = 7.25 GeV, as

relevant for HERMES. The left figure shows the dependence of ALL on the Feynman
variable xF , averaging the cross sections over 1 GeV < Ph⊥ < 2.2 GeV. Similar to
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Figure 3.8.: Longitudinal double-spin asymmetry ALL for µp → π0X at COMPASS,
(a) as function of pion pseudorapidity for fixed Ph⊥ = 2 GeV, and (b) as
function of Ph⊥ for −0.1 ≤ η ≤ 2.38. As before, the black line give the
NLO result and the red line the LO one.

what we found for E155 the NLO corrections to the asymmetry are not large, despite
large K-factors for the spin-averaged cross section (cf. Ref. [3]). We observe that the
asymmetries grow toward larger Feynman-xF where the NLO corrections become larger.
Figure 3.6b shows the Ph⊥-dependence of ALL, with xF averaged over 0.3 < xF < 0.55.
Clearly, a very large spin asymmetry is expected for these kinematics.

Figures 3.7a, 3.7b show results for the spin asymmetry in ` 3He scattering at beam
energy of 12 GeV, corresponding to measurements possible with the CEBAF upgrade
at Jefferson Lab. For the calculations of the unpolarized cross section we neglect nuclear
effects for Helium and just set 3He= (2p + n)/3 along with the usual isospin relations
for the parton distributions. The situation is different for the helicity distributions.
To a good approximation the two spins of the protons in a polarized 3He nucleus are
antiparallel. Effectively, the nucleus can be considered a polarized neutron target, with
∆f q/

3He = ∆f q/n. Again, we then use isospin symmetry to obtain the neutron’s helicity
distributions. As seen from Figs. 3.7a, 3.7b, the resulting asymmetry is negative and
much smaller in size than the one for a proton target found for HERMES kinematics.
The NLO corrections affect the asymmetry only little. We stress that for the very
modest beam energy at JLab12 the use of perturbative methods for analyzing the
process `N → hX is questionable.

The COMPASS experiment employs a 160 GeV muon beam on a fixed target, resulting
in a much larger center-of-mass energy of

√
S = 17.4 GeV. As a result, a wider Ph⊥-

range can be probed. As we found in Ref. [3], this yields a more controlled perturbative
framework, with the NLO corrections to the spin-averaged cross section amounting to
only about 30 − 40%. Predictions for ALL in µp → π0X at COMPASS are shown
in Figs. 3.8a, 3.8b. On the left we plot the asymmetry as a function of pion’s c.m.s.
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pseudorapidity η, at a fixed transverse momentum Ph⊥ = 2 GeV. On the right, we
show the Ph⊥-dependence of ALL, averaging over −0.1 ≤ η ≤ 2.38. We find that the
asymmetry is again reduced by the NLO corrections. Despite the relatively large energy
ALL is expected to be sizable.

Excellent opportunities for studies of single-inclusive hadron production would be pro-
vided by a future EIC [120]. Thanks to the high ep c.m.s. energy of an EIC,

√
S =

100 GeV, it will become possible to probe much larger transverse hadron momenta
where pQCD is expected to work better. We have presented numerical results in Ref. [3]
(see Fig. 8a of this reference) for the η-dependence of the unpolarized cross section
for ep → π+X at the EIC, at a relatively large fixed transverse hadron momentum
Ph⊥ = 10 GeV. Our results indicated a milder modification of the LO result by NLO
corrections for such a large transverse hadron momentum, with a K-factor of about
1.5. In particular, the NLO corrections are dominated by real photon contributions for
positive pseudorapidities η > 1. We find for the η-dependence of the asymmetry ALL
at Ph⊥ = 10 GeV that the effect of the NLO corrections is rather small.

Interestingly, NLO corrections to the asymmetry ALL become quite important for a
smaller fixed transverse hadron momentum Ph⊥ = 3 GeV. In this case the event rate
is about 200 times larger compared to the one at a large transverse momentum Ph⊥ =
10 GeV. In Fig. 2.17 we plot the asymmetry ALL for ep → π+X at the EIC as a
function of the pion’s c.m.s. pseudorapidity η, at a fixed pion transverse momentum
Ph⊥ = 3 GeV. At midrapidity (where the event rate is largest) the asymmetry is about
2%. The asymmetry is considerably affected by NLO-corrections for pseudorapidities
η > 0.5. In this region we observe a 60% reduction of the asymmetry when going from
LO to NLO. This effect is generated by large K-factors of the unpolarized NLO cross
section, caused by dominant real photon contributions. The unpolarized cross section
receives positive enhancements from all partonic channels. On the other hand, the spin-
dependent cross section obtains a relatively large negative contribution from the gluon-
induced subprocess which partly compensates the large positive enhancements from the
quark induced channels. Overall, this leads to an NLO correction that is smaller for
the spin-dependent cross section than for the spin-averaged one, and consequently to
a large NLO effect on the asymmetry. This sensitivity to gluon-induced processes at
NLO indicates an opportunity to constrain the gluon’s helicity distribution ∆g at the
EIC.

The Ph⊥-dependence of the spin asymmetry at the EIC is shown in Fig. 3.9b. As
expected, the asymmetry becomes smaller at lower pion transverse momenta and the
NLO correction lowers the asymmetry somewhat.

Given the high energy of an EIC, also jet observables will become available. Therefore,
we also present predictions for the double-longitudinal spin asymmetry ALL in ep →
jetX, using the NLO calculations described in Sec. 3.2.2. We adopt the anti-kt jet
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Figure 3.9.: Longitudinal double-spin asymmetry ALL for ep → π+X at an EIC with√
S = 100 GeV, (a) as function of c.m.s. pseudorapidity η at fixed Ph⊥ =

3 GeV, (b) as function of Ph⊥, integrated over |η| ≤ 2. The lines are as in
the previous figures.
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Figure 3.10.: Longitudinal double-spin asymmetry for single-inclusive jet production at
the EIC, (a) ass function of jet pseudorapidity η at a fixed transverse jet
momentum PJ⊥ = 10 GeV, and (b) as function of PJ⊥, integrated over
|η| ≤ 2. We have used the anti-kt jet algorithm [121]. The dashed and
dotted lines show NLO prediction for two different values of the jet size
parameter, R = 0.7 and R = 0.2, respectively.
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algorithm of [121]. Figure 3.10a shows the dependence ofALL on the jet’s pseudorapidity
η at fixed jet transverse momentum Pj⊥ = 10 GeV. We plot the NLO asymmetry
for two jet sizes, R = 0.2 and R = 0.7. For negative jet-pseudorapidities the NLO
corrections seem to increase the asymmetry with respect to the LO result, while they
decrease for positive pseudorapidities. The PJ⊥-dependence of the asymmetry is shown
in Fig. 3.10b. It turns out to remain largely unaffected by the NLO corrections.

3.5. Conclusions

We have performed next-to-leading order calculations of the spin-dependent partonic
cross sections for the processes `N → hX and `N → jetX for longitudinal polarization
of the initial particles. Based on these results we have computed the double-longitudinal
spin asymmetry ALL to NLO accuracy. We have found that the NLO corrections tend
to reduce the size of the spin asymmetry.

We have presented detailed comparisons of our ALL to the data by the SLAC E155
experiment which has measured the asymmetry for ep and eD scattering, in each case
both for charged pions and for unidentified charged hadrons h±. Data were recorded
separately for two scattering angles, θ = 2.75◦ and θ = 5.5◦. No consistent picture
emerges from the comparisons. By and large, the theoretical asymmetry lies higher than
the data. For scattering off a deuteron target there is typically at least a qualitative
agreement between the NLO calculation and the data. A notable exception is the
asymmetry for eD → h+X. For scattering off a proton target, some of the asymmetries
are very badly described, with the theoretical results being much higher than the data.
This is the case especially for the asymmetries for ep → π+X at the lower scattering
angle and for ep→ h+X for both angles. Here

It is difficult to draw clear-cut conclusions from these findings. It is possible that
non-perturbative power-suppressed contributions are still relevant in kinematic regimes
relevant for E155, which would invalidate the use of QCD perturbation theory. Assum-
ing that this is not the case, one question concerns the role of QCD corrections beyond
NLO. As we have seen, the asymmetries decrease when going from LO to NLO so that
it is conceivable that this trend will continue when even higher orders are taken into
account. While a NNLO calculation of the spin-averaged cross section has now been
carried out for `N → jetX [126], no such calculation exists presently for `N → hX
or for the double-spin asymmetry. On the other hand, it may well be that the bulk
of the beyond-NLO corrections can be estimated using QCD threshold resummation
techniques. A related study has recently been performed for the process `N → `′hX in
photoproduction (that is, with an observed final-state lepton) [128], and it was indeed
found that the higher-order corrections further suppress the asymmetry. However, this
suppression will likely not be significant enough to bridge the partly large differences
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between data and theory we find.

Arguably the physically most interesting explanation for the observed discrepancies
would resort to changes in the helicity parton distributions. In this context it is in-
teresting to note that recent data for the spin asymmetry ALL in photoproduction via
µN → µ′hX published by COMPASS [135] also show a trend that the deuteron asym-
metry is better described by theory than the proton one. On the other hand, given that
the up and down helicity distributions which are mostly relevant here are rather well
constrained, and that the NLO proton asymmetries for E155 kinematics would need to
decrease very strongly (see for example Figs. 3.4a and 3.4b), it appears unlikely that
the discrepancies are due to the helicity parton distributions alone. Clearly, further
studies are needed here.

We hope that other experiments can obtain new data for ALL in single-inclusive lepton
scattering. We thus have presented predictions for the spin asymmetry for HERMES,
JLab12, COMPASS and the electron ion collider. We expect that latter to provide par-
ticularly valuable information. Data, if available with sufficient precision and large lever
arm in kinematics, might help to clarify whether the process can be reliably described by
perturbative QCD. As discussed in the Introduction, this would in turn have important
ramifications also for our understanding of single-transverse spin asymmetries, since a
proper understanding of the simpler leading-twist observables in these single-inclusive
processes is required before one can reliably address the more complicated transverse
spin effects.
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Chapter 4.

Single Hadron Production in
Transversely Polarized Nucleon
Lepton Scattering

4.1. Introduction

Single transverse spin asymmetries (SSA) in high energy reactions have attracted much
theoretical and experimental interest over the last 3 decades. Large asymmetries have
been observed in hadron-hadron and hadron-lepton interactions when one hadron is
transversely polarized [46, 47, 124, 136–144].

The present calculation establishes a theoretical framework to calculate the single spin
asymmetry for the process lh↑ → hX beyond leading order. The process is schematically
shown in figure 4.1. The asymmetry is given by the numbers of final state hadrons with
large transverse momentum Ph⊥ produced either on left or the right side of the blue
plane in figure 4.1, spanned by the momentum and spin direction of the initial state
polarized hadron. The resulting ”left-right” asymmetry can also be achieved by flipping
the spin of the initial state polarized hadron. This leads to the definition

AN (ph) ≡ σ(ph, ~sT )− σ(ph,−~sT )

σ(ph, ~sT ) + σ(ph,−~sT )
=

∆σ(ph, ~sT )

σ(ph)
, (4.1)

where ~sT is the transverse spin vector and ph the four momentum of the final state
hadron.

The theoretical description of these asymmetries is challenging, since the leading collinear
contribution vanishes. Therefore, the dependence on a single transverse spin is power-
suppressed. Over the last years, a lot of theoretical progress has been achieved to un-
derstand the underlying mechanism leading to large asymmetries. These developments
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follow two different approaches. The first one is the transverse momentum dependent
(TMD) approach, where the parton distribution or fragmentation functions depend on
an intrinsic partonic transverse momentum. The second approach is the so called twist-
3 quark-gluon correlation function approach established in the early 90’s [65, 66], which
is suited if the observed final state has a large transverse momentum. We have focused
on the latter, for the process lh↑ → hX, where the transverse momentum and rapidity
of the final state hadron is observed.

In the history of particle physics, QCD has been successful in predicting spin-averaged
cross sections at large momentum transfers. Therefore, scattering experiments with
high-Ph⊥ final states can be interpreted very well by utilizing the pQCD ansatz, as de-
scribed copiously in this thesis. However, extension of the pQCD formalism to polarized
scattering, has not been completely straightforward. In the late 70’s, significant single
transverse-spin asymmetries have been observed in Λ and pion production processes
[145, 146]. Unfortunately, at that time it was shown that pQCD predicts a vanishing
single transverse-spin asymmetry towards high Ph⊥ [147]. This puzzle could be solved
by Efremov and Teryaev in the mid 80’s. They pointed out that in pQCD a non vanish-
ing single transverse-spin asymmetry can be obtained, if one goes beyond the leading
power [148–150]. Finally, in the early 90’s Qiu and Sterman could consistently evalu-
ate single transverse-spin asymmetries in terms generalized factorization theorems in
pQCD [65, 66, 151]. The asymmetries are presented as a convolution using a twist-3
quark-gluon correlation function for the polarized hadron, and a short-distance partonic
function calculable in perturbative QCD. The twist-3 quark-gluon correlation function
reflects further interactions of quarks with the color field of the hadron. In [152] an
important subtle has been pointed out, which finally justifies the assumptions for the
hadronic twist-3 matrix element made in [65].

Single transverse-spin asymmetries described as a twist-3 effect, are remarkably complex
and due to the large number of contributions very costly to calculate. It comes out, that
the relevant twist-3 matrix elements are pure imaginary. Therefore, we need imaginary
phase arising from the hard scattering process to obtain a real contribution. As was
shown in [149], imaginary contributions in the hard scattering part arise whenever an
internal line of the hard scattering functions goes on-shell. Such contributions are called
pole contributions and we may use the distribution identity

1

x± iε
= PV

1

x
∓ iπδ(x) . (4.2)

The delta distribution usually makes the the external partons, coming from the polar-
ized hadron kinematically dependent. It was shown in [65, 66] that these contributions,
grow near the edge of phase space, i.e. the gluon wich couples to the polarized hadron
becomes soft. This observation was the breakthrough for the twist-3 approach to ex-
plain single transverse-spin asymmetries, since it shows that the theoretical predicted
asymmetry is of comparable size with the experimental data.
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H↑
~s

l

h
ph⊥

Ψ

Figure 4.1.: Schematic SSA interaction. The blue plane is spanned by the beam direc-
tion and the hadron spin direction. The green one is given by the beam
direction and the final state hadron direction.

Since that time, a lot of improvement for theoretical calculations using the twist-3
approach has been achieved. More pole contributions have been discovered, where other
kinematical limits of the external particles are reached and of course the framework has
been applied to various processes.

So far, however, phenomenological applications for the process lh↑ → hX have been
limited to zeroth order of QCD perturbation theory [52]. In general, for single spin
asymmetries, QCD corrections to leading order are only available for more inclusive
processes, like the transverse momentum weighted Drell-Yan cross Section [81] or semi-
inclusive deep inelastic scattering [153, 154].

In the present chapter we investigate the NLO correction for the process lh↑ → hX.
At NLO level various pole contributions arise from internal propagators in the hard
scattering function. We focus on a contribution where the additional gluon from the
polarized hadron becomes soft, which is the only pole contribution appearing already
at LO.

Our aim for this project was to derive the leading-logarithmic contributions at NLO
level, i.e. the prefactor of the logarithmic plus distribution. Utilizing some well estab-
lished concepts of LO twist-3 calculations and prove their validity at NLO level, we
were able to achieve our initial aspiration. Furthermore, we could calculate most of the
real correction completely and we derived the complete ε-pole structure. This is a huge
achievement for twist-3 calculations. In further work, we will derive the virtual NLO
contribution, to complete our calculation. In this thesis we present our real correction
result.

This chapter is organized as follows. In section 4.2 we introduce our notation and re-
formulate the unpolarized LO cross section, using a different notation as we used in
chapter 2. In section 4.3, we perform the necessary collinear expansion of the hard
scattering part and express the relevant twist-3 cross section in terms of gauge in-
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H(0)

Figure 4.2.: Generic contribution to the single inclusive production of a hadron in lepton
nucleon scattering. The upper blob represents the initial state nucleon and
the middle blob the hard scattering process. The lower blob shows the
fragmentation of a final state parton into a hadron.

variant quark-gluon correlation functions. In section 4.4, we recall the transverse spin
dependent LO cross section, which was already discussed in [52]. The real correction
at the soft gluon point is presented in section 4.5. In section 4.6 we present the twist 3
collinear subtraction terms and analyze the pole structure of the cross section. Finally,
we present some of our analytical results in section 4.7.

4.2. Unpolarized leading order cross section

We consider the cross section h(p) + l(l) → π(Ph = zcpc) + X where the transverse
momentum of the final state hadron Ph⊥ sets a hard scale, so that perturbative methods
may be used to treat the cross section. X is the unobserved final state including the
final state lepton. The Lorentz invariant cross section for this process can be written
as

Eh
d3σtw2

d3Ph
=

1

S

∑

ac

∫
dz

z2

dx

x
fa(x)Dc(z)H

(0)
a,c (4.3)

where H
(0)
a,c is the partonic hard scattering function. In equation (4.3) fa(x) is the

parton distribution function (PDF) for the incoming parton a in the initial state nucleon
and Dc(z) the corresponding fragmentation function for parton c fragmenting into the
observed hadron. We found it useful for reasons that will become clear in the next
section, that we seperate the projectors onto the non-perturbative hadronic initial state
matrix element from the hard scattering function

H(0)
a,c =

1

2

1

Nc
Tr

[
H(0)
a,c(xp, l, pc)

1

2
x/p

]
(4.4)
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where the trace is in Dirac and color space for the quark line. The trace over the lepton
part is included in H.

The function H(0) is perturbative and can be expanded in terms of αs

H(0)
a,c = H(0)

LOδac +
αs
π
H(0)

NLO,a,c +O(α2
s) . (4.5)

The leading order expression is given by

H
(0)
LO,a,c =

1

2Nc
Tr

[
H(0)

LO

1

2
x/p

]
δac = 2αeme

2
a

s2 + t2

u2
δ(s+ t+ u)δac , (4.6)

where αem is the fine structure constant and ea is the quark’s fractional charge. In
equation (4.6) we used the partonic Mandelstam variables defined by

s = (xp+ l)2 , (4.7a)

t = (xp− pc)2 , (4.7b)

u = (l − pc)2 . (4.7c)

We want to mention that the notation in this chapter differs from chapter 2 in this
thesis. But, if we compare (4.6) with equation (2.4) we conclude, that the results
remain the same.

4.3. Collinear expansion and parton correlations

In this section, we present the framework of the twist-3 calculation to calculate the
SSA in the process lh↑ → hX. To extract the relevant twist-3 contribution to the
cross section, we have to analyze the two contributions shown in figures 4.2 and 4.3. In
these diagrams the partons from the polarized nucleon represented by the upper blob
M(i) are emitted into the hard scattering part H(i). The superscripts on H and M
denote the number of coherent gluons emitted from the polarized nucleon. The hard
scattering process, that involves the partons coming from M and the incoming lepton,
produce a hard final state parton with momentum pc, which finally fragments into the
observed hadron with momentum Ph. This fragmentation is denoted by the lowest blob.
Therefore, the contribution to the twist-3 cross section can be written as

σ ∼
∑

c=q,g

∫
dz

z2
Dc(z) wc(xp, l, pc = Ph/z) , (4.8)

where we have factored the twist-2 fragmentation function away from the polarized
hadronic- and the hard part, which is included in the function wc. For simplicity, we do
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Figure 4.3.: Generic twist-3 contribution to the single inclusive production of a hadron
in lepton nucleon scattering. The upper blob represents the initial state
transversely polarized nucleon and the middle blob the hard scattering
process. The additional gluon connecting the middle and lower blob, is
responsible for the twist-3 effect induced by the polarized hadron. The
lower blob shows the unpolarized fragmentation of a final state parton.

not explicitly write down the dependence on the parton type in the further discussion.
In addition, we omit the dependence from D and w on factorization and renormalization
scales, which are present in a NLO calculation. We will keep that in mind, when we
get back to the NLO cross section in the next paragraph. Then w is given by

w(xp, l, pc) =

∫
d4k

(2π)4
Tr
[
M(0)(k)H(0)(k, l, pc)

]

+

∫
d4k1

(2π)4

d4k2

(2π)4
Tr
[
M(1),σ(k)H(1)

σ (k1, k2, l, pc)
]
, (4.9)

where the trace is taken in Dirac and color space for the partonic part of H and the
appropriate projectors coming from M. Note, there is a second trace completely con-
tained in H coming from the leptonic part of the scattering diagrams. The appropriate
spin dependent nucleon matrix elements are given by [152]

M(0)
ij (k) =

∫
d4ξeikξ 〈pS⊥|Ψi(0)Ψj(ξ) |pS⊥〉 (4.10a)

M(1),σ
ij (k1, k2) =

∫
d4ξ

∫
d4η eik1ξei(k2−k1)η 〈pS⊥|Ψi(0)gAσ(η)Ψj(ξ) |pS⊥〉 (4.10b)

where Ψ represents quark fields, p the momentum of the incoming nucleon and the
vector nµ can be regarded as light like with n · p = 1. The ε-tensor has the convention
ε0123 = 1, the spin vector satisfies S2

⊥ = −1, S⊥ · p = S⊥ · n = 0 and Aσ represents the
additional coherent gluon field connecting the hard and soft part in figure 4.3. In order
to extract the twist-3 contribution from equation (4.9) we expand the hard parts H(0)

and H(1) with respect to the incoming parton momenta k, respectively k1 and k2, in
the limit that they are collinear to the polarized hadron. This is the collinear expansion
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[65–67, 155], which is always applied in the collinear factorization ansatz. Therefore,
we have for the first term in equation (4.9)

H(0)(k, l, pc) = H(0)(xp, l, pc) +
∂H(0)(k, l, pc)

∂kα

∣∣∣∣∣
k=xp

ωαβ k
β +O((k⊥)2) , (4.11)

with n · k = x and ωαβ = gαβ − pαnβ. The terms O((k⊥)2) are twist-4 or higher
and therefore irrelevant for our analysis. Using this expansion and performing the
integration over k− and k⊥ component, we can rewrite the first part of equation (4.9)
as

∫
d4k

(2π)4
Tr
[
M(0)(k)H(0)(k, l, pc)

]

=

∫
dxTr


M (0)(x)H(0)(xp, l, pc) + iωασM

(0),σ
∂ (x)

∂H(0)(k, l, pc)

∂kα

∣∣∣∣∣
k=xp


 (4.12)

where we used ωασ k
σ → ωασ ∂

σ. The remaining derivative in the second term has
been shifted on the quark field by partial integration denoted by the subscript ∂ on M .
Then the light cone parton correlators read

M
(0)
ij (x) =

∫
dκ

2π
eiκx 〈pS⊥|Ψi(0)Ψj(κn) |pS⊥〉 (4.13a)

M
(0),σ
∂,ij (x) =

∫
dκ

2π
eiκx 〈pS⊥|Ψi(0)∂σΨj(κn) |pS⊥〉 . (4.13b)

The light cone matrix elements representing the transversely polarized hadron can be
decomposed into its Dirac matrix structures. Obviously, only chiral even contributions
will survive in the Dirac trace structure. Therefore, up to twist-4 or higher and chiral-
odd contributions the matrix element is given by

M
(0)
ij (x) = (γ5/S⊥)ijgT (x) , (4.14)

with gT (x) the chiral-even twist-3 quark distribution defined in [156]. Considering these
matrix elements, we see immediately that the first term in equation (4.9) will not con-
tribute in a leading order analysis for H(0) [155]. This is due to the fact that H(0)

is manifestly real in the born approximation. Considering equations (4.12) and (4.13)

we conclude that M (0)(x) and iωαβM
(0),β
∂ (x) produce an overall i in the cross section

formula. Therefore, equation (4.12) will not contribute to the cross section unless H(0)

provides an imaginary phase. As was shown in [155] this is not the case for the LO
approximation. We want to stress, that in a NLO analysis the function H(0) may obtain
imaginary parts. This is evoked by internal propagators that reach their on-shell limit
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in the edges of phase space in the real correction or by loop integration in case of virtual
corrections. Consequently, we expect a contribution from gT (x) at this order. We will
leave that for future research.

To investigate the second term in equation (4.9) we start with the collinear expansion
of the hard scattering part H(1), similarly to the first term in (4.9). We are considering
now the middle blob of figure 4.3, where the momentum flow is clearly more com-
plex compared to diagram 4.2. This is due to the additional coherent gluon carrying
momentum k2 − k1 which is an additional degree of freedom. We define

H(1)(k1, k2, l, pc) ≡ H(1)
β (k1, k2, l, pc)p

β , (4.15)

where its collinear expansion is given by

H(1)(k1, k2, l, pc) = H(1)(x1p, x2p, l, pc) +
∑

i=1,2

∂H(1)(k1, k2, l, pc)

∂kαi

∣∣∣∣∣
ki=xip

ωασk
σ
i .

(4.16)

In the following discussion, we refer to the replacement k1 → xip always as the collinear
limit. We can insert the collinear expansion equation (4.16) into the second part of
equation (4.9). We obtain

∫
d4k1

(2π)4

d4k2

(2π)4
Tr
[
M(1),σ(k)H(1)

σ (k1, k2, l, pc)
]

(4.17)

=

∫
dx1

∫
dx2 Tr

[
M (1)
σ (x1, x2)nσH(1)(x1p, x2p, l, pc)

]

+

∫
dx1

∫
dx2 Tr

[
ωασM

(1),σ(x1, x2)H(1)
α (x1p, x2p, l, pc)

]

+

∫
dx1

∫
dx2

∑

j=1,2

Tr


iωασM

(1),σ
∂j

(x1, x2)
∂H(1)(k1, k2, l, pc)

∂kαj

∣∣∣∣∣
ki=xip


 .

We shift the derivative on the light cone correlation functions by partial integration
with respect to x1 and x2, where xi = n · ki. Then the correlation functions are given
by,

M (1),σ(x1, x2) =

∫
dκ

2π

∫
dλ

2π
eiκx1eiλ(x2−x1) 〈pS⊥|Ψ(0)gAσ(λn)Ψ(κn) |pS⊥〉 (4.18a)

M
(1),σ
∂1 (x1, x2) =

∫
dκ

2π

∫
dλ

2π
eiκx1eiλ(x2−x1) (4.18b)

×〈pS⊥|Ψ(0)gAβ(λn)nβ∂
σ(λn)Ψ(κn) |pS⊥〉

M
(1),σ
∂2 (x1, x2) =

∫
dκ

2π

∫
dλ

2π
eiκx1eiλ(x2−x1) (4.18c)

×〈pS⊥|Ψ(0)g
[
∂σAβ(λn)nβ +Aβ(λn)nβ∂

σ
]

Ψ(κn) |pS⊥〉 .
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4.3. Collinear expansion and parton correlations

where it is important to note that M (1),⊥ is power suppressed by a factor 1/p+ compared
to M (1),+ and gives therefore negligible subleading contributions to the twist-3 cross

section. For the following discussion it is useful to further rewrite the correlators M
(1),σ
∂1

and M
(1),σ
∂2 as

M
(1),σ
∂1 (x1, x2)−M (1),σ

∂2 (x1, x2) = −M (1),σ
F (x1, x2)− M̃ (1),σ(x1, x2) , (4.19)

We introduced two new matrix elements M
(1),σ
F (x1, x2) and M̃ (1),σ(x1, x2), where we

can use equations (4.19) and (4.18) to arrange them as

M
(1),σ
F (x1, x2) =

∫
dκ

2π

∫
dλ

2π
eiκx1eiλ(x2−x1) (4.20a)

×〈pS⊥|Ψ(0)g
[
∂σAβ(λn)− ∂βAσ(λn)

]
nβΨ(κn) |pS⊥〉 ,

M̃ (1),σ(x1, x2) =

∫
dκ

2π

∫
dλ

2π
eiκx1eiλ(x2−x1) (4.20b)

×〈pS⊥|Ψ(0)g∂σAβ(λn)nβΨ(κn) |pS⊥〉
= i(x1 − x2)M (1),σ(x1, x2) ,

where the quantity in the first line can be identified as the F-type correlation function
given in equation (4.26a) and [65, 155, 157]. It was discussed in [155] that the two terms
in (4.20a) contribute at the same order with respect to the power of the large scale p+.

If we insert these correlation functions into equation (4.17), we see immediately that
the first term vanishes for the same reason as the first term in (4.9). The remaining
terms can be rearranged as

w(xp, l, pc)

=

∫
dx1

∫
dx2 Tr


iωαβM

(1),β
F (x1, x2)

∂H(1)(k1, k2, l, pc)

∂kα2

∣∣∣∣∣
ki=xip




+

∫
dx1

∫
dx2 Tr

[
ωαβM

(1),β(x1, x2)

×
{

(x2 − x1)
∂H(1)(k1, k2, l, pc)

∂kα2

∣∣∣∣∣
ki=xip

+H(1)
α (x1p, x2p, l, pc)

}]

+

∫
dx1

∫
dx2 Tr

[
ωαβM

(1),β
∂1 (x1, x2)

×
{
∂H(1)(k1, k2, l, pc)

∂kα1
+
∂H(1)(k1, k2, l, pc)

∂kα2

}∣∣∣∣∣
ki=xip

]
. (4.21)
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As discussed in [155] the hard function H(1)
α (k1, k2, l, pc) fulfills the Ward identity for

the coherent gluon

(k2 − k1)αH(1)
α (k1, k2, l, pc) = 0 (4.22)

This is indeed a most useful equality and is used copiously along our calculation. By
using the identity above and equation (4.15) we conclude that

{
∂H(1)(k1, k2, l, pc)

∂kα1
+
∂H(1)(k1, k2, l, pc)

∂kα2

}∣∣∣∣∣
ki=xip

= 0 (4.23)

and

(x2 − x1)
∂H(1)(k1, k2, l, pc)

∂kα2

∣∣∣∣∣
ki=xip

+H(1)
α (x1p, x2p, l, pc) = 0 . (4.24)

Therefore, the contribution to the twist-3 cross section arises solely from the first term
in equation (4.21). Finally, we have

w(xp, l, pc) =

∫
dx1

∫
dx2 Tr


iωαβM

(1),β
F (x1, x2)

∂H(1)(k1, k2, l, pc)

∂kα2

∣∣∣∣∣
ki=xip


 . (4.25)

The name F -type correlation function, which we have defined in equations (4.20a) and
(4.19), originates from the fact that in this definition the field strength tensor Fµνnν
is inserted in the hadronic matrix element to generate the coherent gluon. The non-
Abelian part of the field strength, will not contribute to our order. In the literature,
two choices have been made to achieve gauge invariant twist-3 quark-gluon matrix
elements. The matrix elements are eventually expressed in terms of either the the gluon
field strength tensor Fµνnν , or the transverse components of the covariant derivative,
Dµ = ∂µ− igAµ, with µ =⊥. We refer to them as F -type correlation function or D-type
correlation function respectively.

We can expand the F -type and D-type correlation functions as [155, 157]

M
(1),σ
F,ij (x1, x2) =

MN

4
(/p)ijε

σpnS⊥GF (x1, x2) + i
MN

4
(γ5/p)ijS

σ
⊥G̃F (x1, x2) (4.26a)

M
(1),σ
D,ij (x1, x2) =

MN

4
(/p)ijε

σpnS⊥GD(x1, x2) + i
MN

4
(γ5/p)ijS

σ
⊥G̃D(x1, x2) (4.26b)

up to twist-4 corrections. We introduce here the nucleon mass MN to keep the non-
perturbative Qiu-Sterman function [65–67] GF (x1, x2) dimensionless. The nucleon mass
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4.3. Collinear expansion and parton correlations

seems appropriate here, since it represents a natural scale for chiral-symmetry breaking
[155, 157]. The non perturbative functions satisfy the properties

GF (x1, x2) = GF (x2, x1) , (4.27a)

G̃F (x1, x2) = −G̃F (x2, x1) , (4.27b)

GD(x1, x2) = −GD(x2, x1) , (4.27c)

G̃D(x1, x2) = G̃D(x2, x1) . (4.27d)

The set of four functions, to define the non perturbative input in the twist-3 matrix
elements is overcomplete. It is possible to use the QCD equations of motion to relate
the functions

GD(x1, x2) = PV
1

x1 − x2
GF (x1, x2) , (4.27ea)

G̃D(x1, x2) = δ(x1 − x2)g̃(x1) + PV
1

x1 − x2
G̃F (x1, x2) , (4.27eb)

where PV denotes the principle value. The function g̃(x1) can be expressed in terms
of the quark helicity distribution and the F -type functions [157]. In the following

discussion we use the F -type functions
{
GF (x1, x2), G̃F (x1, x2)

}
as a complete set of

twist-3 correlation functions. The choice seems convenient, since the F -type functions
are less singular then the D-type ones.

In equation (4.21) the first term contributes to the cross section only. In completion
with equation (4.26a) we conclude, that in order to give a real contribution to the cross
section the quantity ∂H(1)/∂kα2 |c.l. must provide an imaginary part. In our calculation
we focus on the so called pole contribution, where the imaginary part is provided from
an internal propagator of H(1) which is on its mass shell. In the subsequent sections, we
will elaborate that H(1) contains several propagators that can reach their on shell limit.
We arrange them into four classes that belong to the following reduced propagators

1

x1 − x2 + iε
= PV

1

x1 − x2
− iπδ(x1 − x2) , (4.6a)

1

xi + iε
= PV

1

xi
− iπδ(xi) , (4.6b)

1

xi − a+ iε
= PV

1

xi − a
− iπδ(xi − a) , (4.6c)

1

f(q) + iε
= PV

1

f(q)
− iπδ(f(q)) , (4.6d)

where PV denotes the ”principle value”. Equation (4.6a) produces a pole called soft-
gluon pole (SGP), equation (4.6b) produces a soft-fermion pole (SFP) and equation
(4.6c) a hard pole (HP). The pole in equation (4.6d) is a different pole, since it pro-
vides no restrictions on the collinear momentum fractions x1 and x2. The origin relies
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Chapter 4. SSA in Single inclusive Hadron Producction

in certain NLO corrections, coming from configurations where one of the unobserved
particles is collinear to another external particle. Therefore, internal propagators of
H(1) can reach their on shell limit, coming from these collinear configurations. We call
them collinear poles (CP).

4.4. Leading order pole contribution

The pole contribution for the process h↑l→ hX at LO arises solely from the soft-gluon
pole. The contributing diagrams are shown in figure 4.4, where the red bar denotes the
internal propagator that is responsible for the imaginary part. This propagator is is the
only propagator in the leading order approximation that can reach its on shell limit.
The requirement for a large ph⊥ for the final state hadron keeps the photon propagator
off-shell at leading order. The quark propagator in the left diagram in figure 4.4 is given
by

1

/pc − (/k2 − /k1) + iε
→ (−iπ)

2p · pc
δ(x1 − x2) (4.7)

where we take take the on-shell and collinear limit and use (4.2) to extract the imaginary
phase from the propagator.

So far, we omitted the color index from the coherent gluon on M (1) and H(1). Including
that, the F-type correlation function at the soft gluon point, i.e. neglecting the second
term of equation (4.26a), reads

Mσ,g
F,ij(x1, x2) =

MN

4

2

N2
c − 1

(/pT
g)ijε

σpnS⊥GF (x1, x2) + . . . . (4.8)

where ij are now associated with both color and Dirac indices. We regard p and n as
light like vectors with p− = p⊥ = 0, n+ = n⊥ = 0 and p · n = 1.

The hard part for LO SSA is derived by performing the collinear expansion of the
diagrams in figure 4.4. We call the sum of these diagrams H(1)σ,g(k1, k2, l, pc), where σ
and g are Lorentz and color indices of the additional twist-3 gluon. In the expressions
for the leading order twist-2 cross section we explicitly write down the dependence on
the parton species. In leading order the initial and the final state quark must be the
same, even at twist-3 level. Therefore, we omit them in the following discussion. We
can express the spin dependent cross section by using equations (4.8),(4.9),(4.22) and
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4.4. Leading order pole contribution

k1

pc

(k2 − k1)
k2

l

k1

pc

(k2 − k1)
k2

l

Figure 4.4.: LO contributions to SSA in the ql → ql channel, where the final state
lepton is unobserved. The red lines denote the quark propagators causing
the SGP by reaching their on shell limits.

(4.21) as

Eh
d3σtw3

d3Ph
=

1

S

∑

ac

∫
dz dx1 dx2

z2
Dc(z)

× Tr

[
iωασ

∂H(1),g
LO (k1, k2, l, pc)pβ

∂kα2⊥

∣∣∣∣∣
c.l.

Mσ,g
F (x1, x2)

]
, (4.9)

where c.l. denotes the collinear limit given by k1,2 → x1,2p. The coherent soft gluon
leaves the inner Dirac structure of the far off shell interaction unspoiled. Therefore, it
is not necessary to carry out the derivative with respect to k2⊥ on the twist-3 function.
It has been shown [158, 159] that it turns into a derivative on the twist-2 function with
respect to the momentum of the final state quark, which is plainly less exhausting to
carry out. Then we have,

∂H(1),g
LO (k1, k2, l, pc)pσ

∂kα2⊥

∣∣∣∣∣
c.l.

=
1

x1 − x2 + iε

d

dpαc

(
H(0)

LO(x1p, l, pc)
∣∣∣
/pc→T

g/pc

)
(4.10)

where we can chose α =⊥ because of the presence of the ε-tensor εαpns⊥ in the cross
section. The equation above has been named in the literature as the ”Master Formula”
[158, 159] and considerably simplifies the calculation. The replacement /pc → T g/pc is
necessary due to the color structure of the coherent gluon. Equation (4.10) includes the
remnant of the internal propagator of H(1) that produces the pole and the imaginary
phase see equation (4.6a).

When we carry out the derivative in equation (4.10) we have to bear in mind that
pc is an on shell momentum that forces pc to fulfill p2

c = 0. Therefore, we choose the
plus component to be the dependent variable, i.e.

p2
c = 0 ↔ pc =

(
p+
c =

~p2
⊥

2p−c
, p−, ~p⊥

)
. (4.11)
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The differential operator with respect to pc is then given by,

d

dpαc
=

∂

∂pαc
− pcαp

λ

p · pc
∂

∂pλc
. (4.12)

We rewrite the partonic part of the cross section in terms of the variables w = −u
s+t and

v = 1 + t
s in analogy to the unpolarized process see chapter 2. The differentiation on

pc can then be rewritten as

d

dpαc
=

2

sv

(
1

v − 1
pcα + lα

)
∂

∂w
. (4.13)

By using equations (4.8, 4.9, 4.10, 4.13) we obtain the twist-3 cross section,

Eh
d3σtw3

d3Ph
=
πMN

S
εαpnS⊥

∑

ac

∫
dz

z2
Dc(z)

∫
dx

x
GF (x, x)

× 2

sv

(
1

v − 1
pcα + lα

)
∂H
′(0)
LO (s, v, w)

∂w
(4.14)

where H
′(0)
LO can be calculated using the same methods as in the unpolarized case in

equation (4.4). The prime on the function H
′(0)
LO indicates that the result must be

modified by the color structure arising from the coherent gluon. The hard function is
given by

H
′(0)
LO (s, v, w) = Tr

[
x/pT g

(N2
c − 1)

H(0)
LO(xp, l, pc)

∣∣∣
/pc→T

g/pc

]
(4.15)

where the function H(0)
LO is the same as defined in equation (4.5) for the twist-2 case.

Therefore, we can rewrite

H
′(0)
LO = CLOσ̃

tw2
LO (s, v)δ(1− w) , (4.16)

where σ̃LO(s, v) is obtained by calculating the twist-2 2→2 Feynman diagrams for the
process ql→ ql and absorb the color algebra into the twist-3 leading order color factor
CLO = 1.

σ̃tw2
LO (s, v) = 2α2

eme
2
a

1

sv

1 + v2

(1− v)2
(4.17)

We can further simplify equation (4.14) by using partial integration and the scale-
invariance property σ̃tw2

LO
1, and rewrite the integrals in terms of v and w using

x =
1− v
vw

U

T
and z =

−T
(1− v)S

. (4.18)

1The scale invariance property from σLO in terms of the standard partonic Mandelstam variables is
given by σ̃tw2

LO (s, t, u) = σ̃tw2
LO (λs, λt, λu).
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Thus, we have

Eh
d3σtw3

d3Ph
= CLO

−πMN

T
εαpnS⊥

∑

c

vmax∫

vmin

dv

1∫

wmin

dw

w
Dc(z)

2

sv

(
1

v − 1
pcα + lα

)
(4.19)

×
{
GF (x, x)− xdGF (x, x)

dx

}
σ̃LO(s, v)δ(1− w) ,

where the boundaries of integration are given by vmin = U/(T +U), vmax = 1 + T
S and

wmin = (1−v)U
vT . Therefore, the twist-3 leading order partonic cross section is given by

σ̃tw3
LO (s, v) = 2α2

eme
2
a

−1

s2v2

1 + v2

(1− v)2
(4.20)

Finally we make the observation, that the interplay of the master formula (4.10) and the
scale invariance property of the partonic twist-2 cross section, considerably simplifies the
twist-3 cross section. This is a very helpful tool and we use exactly the same mechanisms
for parts of the NLO calculation. The presented LO calculation in this chapter is in
accordance with the LO calculation in [52] for this process. We mention that the results
in [52] are in a frame where l and p are collinear. In our calculation we keep it more
general, where l and p are not necessarily collinear to each other. Therefore, we have
the term proportional lα present in the cross section formula. Due to the antisymmetry
property of the ε-tensor, the term would cancel if we choose lα = xpα.

4.5. Real contribution at next-to leading order

The next-to leading order correction in αs at twist-3 level is similar to twist-2 calcu-
lations, in a sense that the correction includes virtual and real contributions. In this
section we calculate the real correction cross section, i.e. the 2 → 3 processes. We fo-
cus on contributions, where the Qiu-Sterman function is evaluated at equal arguments.
Therefore, we have to evaluate H(1) at the soft gluon point, where we identify two pole
contributions that provide an imaginary phase fixing x1 = x2. On the one hand we
have the obvious proper SGP contributions coming from propagators given in equation
(4.6a), we refer to them as ”pure”-SGP. On the other hand we have further contribu-
tions coming from hard poles, where the parameter a defined in equation (4.6c) is a
function of the additional unobserved particle at NLO. Integrating over the phase space
of the unobserved final state, we reach kinematical regions where these hard poles turn
into soft poles.

To illustrate the two pole contributions, we show one of the twist-3 NLO diagrams in
figure 4.5, where both contributions are present. The two propagators which may reach
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k1

pc

q

(k2 − k1)

l

Figure 4.5.: Exemplary diagram for a 2→ 3 NLO twist-3 contribution. The red and the
blue bars on the quark line indicate the the propagators, that may reach
their on-shell limit. The blue bar marks the quark line carrying momentum
pc − (k2 − k1), which is responsible for the pure SGP. The red bar denotes
the quark line with momentum pc − (k2 − k1) + q, which may reach the
on-shell limit at the soft gluon point in certain edges of phase space.

their on-shell limit are marked by a red and a blue bar. The red bar is the origin of
the pure SGP contribution, where we can use equation (4.7) to extract the imaginary
phase. The blue bar in figure 4.5 denotes the propagator of the form

1

/k1 − /k2 + /pc + /q + iε
→ (−iπ)

2p · (pc + q)
δ

(
x1 − x2 +

pc · q
p · (pc + q)

)
(/k1 − /k2 + /pc + /q) ,

(4.21)

where we can expect contributions at the soft gluon point, for final state parton con-
figurations where pc · q = 0.

In the subsequent sections we work out the cross section for the two pole contribution
at the soft gluon point. As a forerunner we start to evaluate the 2→ 3 twist-2 function.
Because similar to the LO case, we can use the twist-2 cross section to simplify the
twist-3 result.

4.5.1. Unpolarized real NLO correction

We start with the unpolarized 2→ 3 cross section since we reduce parts of the twist-3
cross section to the twist-2 part, similar to LO. Despite the fact that this cross section
has already discussed at NLO level in chapter 2, we rewrite the cross section in a
slightly different notation since this is useful for our twist-3 calculation. For the real
NLO twist-2 part we have to consider diagrams given on the left side of Fig. 4.6. The
”blob” denotes the vertex function F that includes all the far of shell dynamics of the
scattering amplitude. It is given by the two tree level five point amplitudes on the right
side of Fig. 4.6. The bars on the end of the quark and gluon legs denote amputated
parton lines, in a sense that the vertex function F not includes external factors like the
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F F̄
q

pc

l l

xp xp

xp

l

pc
q

F (xp, l, pc, q) =

xp

l

pc
q+

Figure 4.6.: Left: NLO Twist-2 2→3 scattering process.
Right: Definition of the quark-lepton-gluon vertex function. The bars at
the end identify amputated lines.

projection on the hadronic functions or the gluon polarization tensor, whereas for the
lepton line the on-shell spinors are included. To clarify our notation it is important to
know that we have two Dirac traces in the hard part of our calculation, coming from
the lepton and quark lines in figure 4.6. Whenever an expression contains ...F̄ ....F....
we assume the lepton trace to be implicit in this combination, whereas the quark trace
is not contained. Therefore we can write the cross section as

Eh
d2σtw2

d3ph
=

1

S

∑

ac

∫
dz

z2
Dc(z, µ)

∫
dx

x
fa(x, µ)

1

2Nc
Tr

[
1

2
x/pH̃(0)

NLO,ac(xp, l, pc, µ)

]

(4.22)

where the trace indicates Dirac trace for the quark line as well as the color trace. Ac-
cording to that, the Dirac objects inside the trace belong always to the quark line. The
sum runs over all parton flavors, we suppress these two indices in parts of the following
discussion. At NLO level the parton distribution and the fragmentation function are
dependent on an artificial mass scale µ, representing the factorization scale. The tilde
on the hard function indicates the phase space integration for the additional unobserved
gluon with momentum q. At NLO level, several divergencies will appear when we inte-
grate the partonic function over phase space. To regulate them, we work in n = 4− 2ε
dimensions. Thus we have,

H̃(0)
NLO(xp, l, pc, µ) = µ2ε

∫
d(n−1)q

(2π)n−12q0
F̄µ(xp, l, pc, q)/pcd

µν(q, r)F ν(xp, l, pc, q)

×δ((xp+ l − pc − q)2)

= µ2ε

∫
d(n−1)q

(2π)n−12q0
H(0)

NLO(xp, l, pc, q) (4.23)
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F F̄
q

pc

l l

k1 k2

k2 − k1

F F̄
q

pc

l l

k1 k2

k2 − k1

Figure 4.7.: Real emission diagrams for coherent gluon attaches the observed final state
quark. The red bars denote the propagators that cause the SGP.

where dµν(q, r) denotes the polarization sum for the cut gluon line with momentum q
and gauge vector r,

dµν(q, r) = −gµν +
qµrν + qνrµ

q.r
. (4.24)

We can indeed conclude that inserting equation (4.23) into equation (4.22) reproduces
the real NLO contribution of chapter 2. Therefore, equation (4.22) is just a different
notation that is useful by reformulating the twist-3 cross section in the next section.

4.5.2. Pure soft gluon pole contribution

The pure SGP contribution arise from on-shell propagators, that fix x1 = x2 indepen-
dently from the phase space integration. It comes out, that the pure SGP contribution
has two sub categories of diagrams. On the one hand diagrams where the coherent gluon
is attached to the observed final state, and on the other hand where it is attached to
the unobserved final state. We want to mention that the argument given in [67], that
diagrams where the coherent gluon attaches an unobserved final state vanish among
mirror diagrams, does not apply at NLO level. The reason for this cancellation is that
the structure of the propagator that provides the imaginary phase is the same as the
”on-shell” condition for the unobserved final state in the mirror-diagram and vice versa.
After summing over the two mirror-diagrams they cancel among each other. Since this
structure is violated at NLO, these diagrams give contributions to the cross section.

The twist-3 cross section for a generic initial state pole contribution at NLO can be
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4.5. Real contribution at next-to leading order

written as [159, 160]

Eh
d3σtw3

NLO

d3Ph
=

1

S

∑

ac

∫
dz dx1 dx2

z2
Dc(z, µ)

×Tr

[
iωαβ

∂H̃(1)g
NLO(k1, k2, l, pc, µ)

∂kα2⊥

∣∣∣∣∣
c.l.

Mβ,g
F (x1, x2, µ)

]
. (4.25)

where it is important to mention, that the trace will produce ε dependent terms. The
tilde on the hard function denotes the phase space integration for the additional final
state particle coming from the αs correction. Thus, we have

H̃(1)g
NLO(k1, k2, l, pc, µ) = µ2ε

∫
d(n−1)q

(2π)n−12q0
H(1)g

NLO(k1, k2, l, pc, q) . (4.26)

The function H(1)
NLO has two contributions

H(1)
NLO = H(1,U)

NLO +H(1,O)
NLO , (4.27)

where the U labels contributions where the coherent gluon attaches the unobserved
final state and O for the observed final state. We neglect here the color index since
the next step in the following section is essentially remodeling of the Dirac structure.
For the LO contribution we exploit the master formula to calculate the cross section
in an efficient way. For the pure SGP part of the NLO calculation we use the same
strategy. Of course, before we can use the master formula, we have to prove its validity
in a 2→ 3 process.

Coherent gluon on observed quark

In the following discussion we suppres spinor and color indices. The function H(1,O)
NLO

receives contributions from diagrams where the twist-3 gluon attaches on the right and
on the left side of the cut, see Fig. (4.7). We have to sum over both contributions

H(1,O)
NLO (k1, k2, l, pc, q) = H(1,O)

L (k1, k2, l, pc, q) +H(1,O)
R (k1, k2, l, pc, q) . (4.28)

They are given by

H(1,O)
L (k1, k2, l, pc, q) =

[
F̄µ(k2, l, pc, q) d

µν(q, r)L(k1, k2) (4.29a)

× Fν(k1, l, k1 − k2 + pc, q)] δ((k2 + l − pc − q)2)

H(1,O)
R (k1, k2, l, pc, q) =

[
F̄µ(k2, l, k2 − k1 + pc, q)R(k1, k2) dµν(q, r) (4.29b)

× Fν(k1, l, pc, q)] δ((k1 + l − pc − q)2)
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The functions F are the same as defined in figure (4.6) with different arguments, and
dµν(q, r) is the polarization sum for the cut gluon line defined in equation (4.24). The
functions R and L represent factors associated with the attached twist-3 gluon. They
include the propagator which produces the SGP, the projector onto the fragmentation
function and the vertex of the gluon attachment contracted with pσ.

L(k1, k2) = /pc/p
−1

/k1 − /k2 + /pc + iε
(4.30a)

R(k1, k2) =
−1

/k2 − /k1 + /pc − iε
/p/pc (4.30b)

We now perform the differentiation on equations (4.29a) and (4.29b) with respect to k2,
which is crucial to observe the twist-3 contribution. By doing that, ∂/∂kα2 hits either

L or R, or other factors in H(1)g
R,L . We thus needs

L(k1, k2)|c.l. = L(x1p, x2p) = /pc
−1

x1 − x2 + iε
(4.31a)

R(k1, k2)|c.l. = R(x1p, x2p) = /pc
1

x1 − x2 + iε
(4.31b)

∂L

∂kα2

∣∣∣∣
c.l.

=
1

2p · pc /
p
c/pγα

1

x1 − x2 + iε
− pcα
p · pc /

p
c

(
1

x1 − x2 + iε

)2

(4.32a)

∂R

∂kα2

∣∣∣∣
c.l.

=
1

2p · pc
1

x1 − x2 + iε
γα/p/pc +

pcα
p · pc

(
1

x1 − x2 + iε

)2

/pc (4.32b)

By carrying out the derivative
∂H(1)g

NLO
∂kα2

∣∣∣∣
c.l.

we obtain three different types of pole terms.

(I) double pole terms coming from equations (4.32a) and (4.32b), (II) single pole terms
coming from equations (4.32a) and (4.32b) or (III) single pole terms appearing when

the derivative hits other terms in H(1)g
NLO. The double pole term (I) reads:

∂H(1,O)
NLO

∂kα2

∣∣∣∣∣

(I)

c.l.

=

(
pcα
p · pc

)(
1

x1 − x2 + iε

)2
[
−
[
F̄µ(x2p, l, pc, q) d

µν(q, r) /pc

×Fν(x1p, l, (x1 − x2)p+ pc, q)
]
δ((x2p+ l − pc − q)2)

+
[
F̄µ(x2p, l, (x2 − x1)p+ pc, q) /pc d

µν(q, r)Fν(x1p, l, pc, q)
]

×δ((x1p+ l − pc − q)2)

]
(4.33)
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4.5. Real contribution at next-to leading order

The function which multiplies the pole in equation (4.33) can be expanded with respect
to x2 around x1 up to O(x2 − x1). Afterwards, we multiply the O(x2 − x1) expansion
to the double pole term, then we are left with a double and a single pole term. The
double pole terms cancel among mirror diagrams. After the double poles are canceled,
we can transform the derivative with respect to x2 from the taylor-expansion into a
derivative with respect to pc. We end up with,

∂H(1,O)
NLO

∂kα2

∣∣∣∣∣

(I)

c.l.

=

(
pcα
p · pc

)(
1

x1 − x2 + iε

)[
pµ

∂

∂pµc

{[
F̄µ(x1p, l, pc, q)

× dµν(q, r) /pc Fν(x1p, l, pc, q)
]
δ((x1p+ l − pc − q)2)

}]
. (4.34)

We must choose the gauge vector r independent of pc. This is important, otherwise
we would get further contributions when the derivative hits the polarization sum. The
single pole terms for ∂L

∂kα2
and ∂R

∂kα2
are

∂H(1,O)
NLO

∂kα2

∣∣∣∣∣

(II)

c.l.

=

(
1

2p · pc

)(
1

x1 − x2 + iε

)
δ((x1p+ l − pc − q)2)

×
[
F̄µ(x1p, l, pc, q) d

µν(q, r) (2p · pcγα − 2pc,α/p)Fν(x1p, l, pc, q)
]
. (4.35)

We collect the single pole terms of type (III) and get

∂H(1,O)
NLO

∂kα2

∣∣∣∣∣

(III)

c.l.

=

(
1

x1 − x2 + iε

)
δ((x1p+ l − pc − q)2) (4.36)

{
∂

∂pαc

[
F̄µ(x1p, l, pc, q) d

µν(q, r) /pc Fν(x1p, l, pc, q)
]

−
[
F̄µ(x1p, l, pc, q) d

µν(q, r) γα Fν(x1p, l, pc, q)
]}

.
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xp

l

j1 = pc

j2 = xp+ l − pc − q
j3 = q

Figure 4.8.: Momentum labeling for a generic 2→ 3 process.

Finally, after we calculate all necessary derivative terms and take the collinear limit we
can add terms of types (I) + (II) + (III) and get

∂H(1,O)
NLO (k1, k2, l, pc, q)

∂kα2

∣∣∣∣∣

(I)+(II)+(III)

c.l.

=

(
1

x1 − x2 + iε

)(
∂

∂pαc
− pcαp

λ

p · pc
∂

∂pλc

)

×
[
F̄ (x1p, l, pc, q)d(q, r) /pc F (x1p, l, pc, q)(x1/p+ /l − /pc − /q)

]

×δ((x1p+ l − pc − q)2) . (4.37)

Comparing this result with equation (4.23) leads immediately to

∂H(1,O)
NLO (k1, k2, l, pc, q)

∂kα2

∣∣∣∣∣

(I)+(II)+(III)

c.l.

=
1

x1 − x2 + iε

(
∂

∂pαc
− pcαp

λ

p · pc
∂

∂pλc

)
H(0)

NLO(x1p, l, pc, q)
∣∣∣
/pc→T

g/pc

(4.38)

where the replacement /pc → T g/pc includes the color structure of the coherent gluon.
With the help of equation (4.38) we can relate the SGP twist-3 real emission contri-
butions to the corresponding twist-2 partonic function. Therefore, equation (4.38) is
the ”master formula” for 2→ 3 processes, where the coherent gluon is attached to the
observed final state. We can use this formula to rewrite equation (4.25) as

Eh
d3σtw3

d3Ph
=
πMN

S
εαpnS⊥

∑

ac

∫
dz

z2
Dc(z, µ)

∫
dx

x
GF (x, x, µ)

×µ2ε

∫
d(n−1)q

(2π)n−12q0

(
∂

∂pαc
− pcαp

λ

p · pc
∂

∂pλc

)
H
′(0)
NLO(x1p, l, pc, q) (4.39)

with

H
′(0)
NLO(x1p, l, pc, q, ε) = Tr

[
x/pT g

(N2
c − 1)

H(0)
NLO(xp, l, pc)

∣∣∣
/pc→T

g/pc

]
. (4.40)

We can further rewrite the partonic function by introducing a set of Mandelstam
variables s = (xp + l)2, sik = (ji + jk)

2, ti = (xp − ji)2 and ui = (l − ji)2, where the
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4.5. Real contribution at next-to leading order

momentum labeling is shown in figure 4.8. The function H(0)
NLO can be expressed in

terms of these kinematical quantities. Obviously, the set of 10 Mandelstam variables
is over-determined. Therefore, we can use momentum conservation to eliminate the
momentum j2, i.e. s12, t2, u2 and s23. Then the partonic function reads

H
′(0)
NLO = CO σ̂

tw−2
2→3 (s, s13, t1, t3, u1, u3, ε)δ(s+ s13 + t1 + t3 + u1 + u3) , (4.41)

where σ̂tw−2
2→3 is the twist-2 partonic 2→ 3 cross section without colour factors that are

included in CO. For this process CO = −1/(2Nc). When we use the master formula
which we have proven to be valid at NLO level, we have to carry out the differentiation

on the twist-2 partonic function H(0)
NLO with respect to pc. For our subsequent analysis

it is important that p has only plus component, i.e. p = (p+, 0,~0). Therefore, we can
rewrite the differential operator as

d

dpαc
H
′(0)
NLO =

(
ds13

dpαc

∂

∂s13
+

du1

dpαc

∂

∂u1

)
H
′(0)
NLO (4.42)

=

(
2

[
− t3
t1
pcα + qα

]
∂

∂s13
− 2

[
s

t1
pcα + lα

]
∂

∂u1

)
H
′(0)
NLO ,

where α =⊥. The derivative in equation (4.42) hits either σ̂2→3 or the delta function
of equation (4.41). When the derivatives hits the delta function we convert them by
partial integration with respect to x to a derivative term on the Qiu-Sterman function.
Inserting equation (4.42) into equation (4.39) and performing partial integration we
obtain the following result

Eh
d3σtw3

O

d3Ph
= CO

πMN

S

∑

ac

∫
dz

z2
Dc(z, µ)

∫
dx

x
µ2ε

∫
d(n−1)q

(2π)n−12q0

1

t2

×
[(
−2

t3
t1
εpcpnS⊥ + 2εqpnS⊥

){
σ̂

(
GF (x, x, µ)− xdGF (x, x, µ)

dx

)

+

(
σ̂ + u1

∂σ̂

∂u1
+ u3

∂σ̂

∂u3
− (u3 + u1)

∂σ̂

∂s13

)
GF (x, x, µ)

}

+

(
−2

s

t1
εpcpnS⊥ − 2εlpnS⊥

){
σ̂

(
GF (x, x, µ)− xdGF (x, x, µ)

dx

)

+

(
σ̂ + s13

∂σ̂

∂s13
+ u3

∂σ̂

∂u3
− (u3 + s13)

∂σ̂

∂u1

)
GF (x, x, µ)

}]

×δ(s+ s13 + t1 + t3 + u1 + u3) (4.43)

where σ̂ ≡ σ̂tw2
2→3(s, s13, t1, t3, u1, u3, ε). To obtain formula (4.43) we use the fact that

the mass dimension of σ̂2→3 is −2. Therefore, we have the relation

σ̂tw2
2→3(λs, λs13, λt1, λt3, λu1, λu3) =

σ̂tw2
2→3(s, s13, t1, t3, u1, u3)

λ
, (4.44)
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from this follows

−σ̂tw2
2→3 =s

∂σ̂tw2
2→3

∂s
+ t1

∂σ̂tw2
2→3

∂t1
+ t3

∂σ̂tw2
2→3

∂t3
+ u1

∂σ̂tw2
2→3

∂u1
+ u3

∂σ̂tw2
2→3

∂u3
+ s13

∂σ̂tw2
2→3

∂s13
. (4.45)

For the actual calculation, q integration for terms that multiply the tensor structure
εqpnS⊥ is very inconvenient. Therefore, we decompose this part of the integral as

εαpnS⊥
∫

d3q

(2π)32q0
qα . . . = εαpnS⊥ (Apαc +Blα + Cxpα) . (4.46)

The justification of this ansatz relies in the fact that the final result should only de-
pend on the external momenta of our physical process. Since the C term vanishes in
conjunction with the ε-tensor, we can project on the A and B terms in our expansion
and conclude that εqpnS⊥ can be replaced by

εqpnS⊥ → −1

2t1u1
(−u1t3 + ss13 − t1u3)εpcpnS⊥ +

−1

2su1
(−u1t3 − ss13 + t1u3)εlpnS⊥ .

(4.47)

Then the cross section formula (4.43) is given by

Eh
d3σtw3

O

d3Ph
= CO

πMN

S

∑

ac

∫
dz

z2
Dc(z, µ)

∫
dx

x

(
2
s

t1
εpcpnS⊥ + 2εlpnS⊥

)

µ2ε

∫
d(n−1)q

(2π)n−12q0

−1

t2

[
1

su1
(−u1t3 − ss13 + t1u3)

×
{
σ̂

(
GF (x, x, µ)− xdGF (x, x, µ)

dx

)

+

(
σ̂ + u1

∂σ̂

∂u1
+ u3

∂σ̂

∂u3
− (u3 + u1)

∂σ̂

∂s13

)
GF (x, x, µ)

}

−2

{
σ̂

(
GF (x, x, µ)− xdGF (x, x, µ)

dx

)

+

(
σ̂ + s13

∂σ̂

∂s13
+ u3

∂σ̂

∂u3
− (u3 + s13)

∂σ̂

∂u1

)
GF (x, x, µ)

}]

×δ(s+ s13 + t1 + t3 + u1 + u3) . (4.48)

For the phase space integration over q we use the results given in Appendix C and D
applying the same methods we already used in chapter (2).

Coherent gluon on unobserved final state gluon

As we mentioned before, non-vanishing contributions from coherent gluon attachments
on unobserved final state are present at NLO. Those contributions are shown in figure
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F F̄
pc

q

l l

k1 k2

k2 − k1

F F̄
pc

q

l l

k1 k2

k2 − k1

Figure 4.9.: Real emission diagrams for a coherent gluon attaching the unobserved final
state gluon. The red bars denote the propagators which cause the SGP.

(4.9). Using the same methods as for the configuration where the coherent gluon at-
taches the observed final state, we can prove the master formula ansatz to be correct
and obtain

∂H(1,U)
NLO (k1, k2, l, pc, q)

∂kα2

∣∣∣∣∣
c.l.

=
1

x1 − x2 + iε

(
∂

∂qα
− pcαp

λ

p · q
∂

∂qλ

)

× H(0)
NLO(x1p, l, pc, q)

∣∣∣
δdd′→ifdgd′

, (4.49)

as the master formula for adding a coherent gluon to the final state unobserved gluon.
The replacement δdd′ → ifdgd′ is necessary due to the color structure of the coherent
gluon in our cross section. We like to emphasize that the replacement differs compared
to equation (4.38), since the coherent gluon is attached to a final state gluon. Therefore,
we could give a more general definition of the master formula which is valid also for
different partonic channels

∂H(1,O,U)
NLO (k1, k2, l, pc, q)

∂kα2

∣∣∣∣∣
c.l.

=
1

x1 − x2 + iε

(
∂

∂jαi
− pcαp

λ

p · ji
∂

∂jλi

)

× H(0)
NLO(x1p, l, j1, j2)

∣∣∣
c.r.

, (4.50)

where c.r. is the color replacement dependent on whether the coherent gluon is attached
to a quark or a gluon. We have δdd′ → ifdgd′ when the twist-3 gluon is attached to a
final state gluon and /ji → T g/ji for a final state quark.

From equation (4.49) we can proceed with the same methods as in the previous section
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and obtain the cross section formula

Eh
d3σtw3

U

d3Ph
= CU

πMN

S

∑

ac

∫
dz

z2
Dc(z, µ)

∫
dx

x

(
2
s

t1
εpcpnS⊥ + 2εlpnS⊥

)

×µ2ε

∫
d(n−1)q

(2π)n−12q0

−1

u1t2t3

[

(u1t3 + ss13 − t1u3)×
{
t1
s
σ̂

(
GF (x, x, µ)− xdGF (x, x, µ)

dx

)

+

(
σ̂ + u1

∂σ̂

∂u1
+ u3

∂σ̂

∂u3
− (u3 + u1)

∂σ̂

∂s13

)
GF (x, x, µ)

}

+ (−u1t3 + ss13 − t1u3)×
{
σ̂

(
GF (x, x, µ)− xdGF (x, x, µ)

dx

)

+

(
σ̂ + s13

∂σ̂

∂s13
+ u1

∂σ̂

∂u1
− (u1 + s13)

∂σ̂

∂u3

)
GF (x, x, µ)

}]

×δ(s+ s13 + t1 + t3 + u1 + u3) , (4.51)

where the color factor is given by CU = NC/2.

Pure soft gluon pole results

We can evaluate the cross section formulas (4.48) and (4.51) by using standard methods
for phase space integration given in Appendix C and D. We discuss in this section
the results in the quark fragmentation channel. The final result for the pure SGP
contribution is given by

Eh
d3σtw3

SGP

d3Ph
= Eh

d3σtw3
U

d3Ph
+ Eh

d3σtw3
O

d3Ph
. (4.52)

The pure SGP part is the only part in the real correction, where contributions ∝(
GF (x, x, µ)− xdGF (x,x,µ)

dx

)
appear. Beneath this combination of derivative and non-

derivative Qiu-Sterman functions, we have pure non derivative terms in equations (4.48)
and (4.51). Therefore, we can cast the pure SGP contribution into the form

Eh
d3σtw3

SGP

d3Ph
=
−πMN

T
εαpnS⊥

∑

c

vmax∫

vmin

dv

1∫

wmin

dw

w
Dc(z, µ)

(
2

v − 1
pcα + 2lα

)
(4.53)

×
{(

GF (x, x, µ)− xdGF (x, x, µ)

dx

)
A(s, v, w, µ, ε) +GF (x, x, µ)B(s, v, w, µ, ε)

}
.
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The function B(s, v, w, µ, ε) has divergent terms of the form

B(s, v, w, µ, ε) ∝ h(s, v, w)

(1− w)(2+ε)
(4.54)

with h(s, v, 1) 6= 0. Since these badly divergent terms do not vanish among pure SGP
contributions, this is a clear indicator that there are additional parts in our cross section
we have not included so far. Fortunately, the HP diagrams that we discuss in the next
section, provide exactly the same singularities that cancel among those found in the
pure SGP part. Therefore, we postpone the discussion of the pure SGP non-derivative
part and hark back to them when we calculate the HP contribution.

The A term in equation (4.53) can be cast into the form

A(s, v, w, µ, ε)

=α2
eme

2
a

αs
π

(
4πµ

s

)2ε
[
A1

{
δ(1− w)

ε2
+ 4

(
ln(1− w)

1− w

)

+

}
+A3δ(1− w) +A4

(
1

1− w

)

+

+
1

ε

{
A21δ(1− w)− 2A1

(
1

1− w

)

+

+A22

}
+A6

]
(4.55)

where the coefficient functions Ai depend on the variables w, v and s. The function
A6 contains all the regular parts that are non singular at the upper boundary of the w
integral.

The derivative part of the pure SGP contribution has singularities from collinear and
soft configurations in the hard scattering function. Due to the fact that we use di-
mensional regularization, this is reflected in contributions ∝ 1

ε2
and ∝ 1

ε . We mention
that our calculation assumes a massless lepton, and we regulate the singularity from
collinear lepton-photon contributions in dimensional regularization as well.

The double pole ∝ 1
ε2

appears in the observed and the unobserved part coming from
soft final state gluon configurations. It is given by,

A1 = (CO + CU )
−2

s2v2

v2 + 1

(1− v)2
(4.56)

where we obtain that similar to twist-2 NLO the prefactor of 1
ε2

and
(

ln(1−w)
1−w

)
+

is Born

like. It is important to mention that the 1
ε2

must cancel against virtual corrections,
which must have the same color factor as the real part CO + CU = CF .

4.5.3. Hard pole contribution

As discussed in the literature [155] hard-pole contributions are pole contributions arising
from internal propagators of H(1) that makes x1 and x2 kinematics dependent. In our
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k1

pc

q

(k2 − k1)
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q

(k2 − k1)

l

Figure 4.10.: Hard Pole diagrams that lead to a vanishing coherent gluon momentum in
kinematical edges of the phase space. The red bar indicates the propaga-
tors that produces the necessary imaginary part by reaching their on-shell
limit.

calculation, a spectrum of such hard poles are present. If we look at the possible
”on-shell” propagators in H(1), we find among other hard poles propagators

1

/k1 − /k2 + /pc + /q + iε
(4.57)

which give rise to the delta function (−iπ)δ
(

(x2 − x1) + pc·q
p·(pc+q)

)
in the collinear limit.

Therefore, we get a contribution from hard poles at NLO with equal arguments in the
Qiu-Sterman function from phase space configurations where pc · q → 0. Since this is a
hard pole contribution, we can not proceed by using the master formula equation (4.50)
as in the previous section. We exploit here a more formal argument to carry out the
k2 derivative in a novel way, i.e. by using the Ward identity. This method has been
already used in LO processes, where HP configuration are present [155]. After we work
through all HP contributions, we identify 12 diagrams which involve poles of the form
mentioned above. We show them basically in figure 4.10. Those diagrams interfere
with the quark-lepton-gluon vertex function F̄ (k1, l, pc, q) shown in figure 4.6, which
give six different contribution. Including their mirror diagrams, we end up with 12 HP
diagrams that contribute at the soft gluon point. We call the sum of the three types
of diagrams shown in figure 4.10, DHP,g,h

µ,β (k1, k2, l, pc, q) where µ indicates the Lorentz
index for the final state gluon and β for the coherent gluon and g and h denote their
color index. We suppress open Dirac indices here. It was shown in [155] that the sum
of the diagrams of figure 4.10 fulfills the Ward identity, i.e.

(k1 − k2)βDHP,g
µ,β (k1, k2, l, pc, q) = 0 . (4.58)

We call the sum of the 12 twist-3 HP diagrams before phase space integration H(1),HP
β .

To obtain the physical cross section we have to do the same expansion as we perform
in the SGP case in equation (4.16). Again the zeroth order cancels out, and we are left
with the first term in equation (4.21). Therefore, we have to calculate the derivative
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4.5. Real contribution at next-to leading order

term ∂H(1),HP(k1,k2,l,pc)
∂kα2

∣∣∣
ki=xip

. We can express

H(1),HP
β,g (k1, k2, l, pc, q) = F̄ hν (k1, l, pc, q)/pcd

µν(q, r)DHP,g,h
µ,β (k1, k2, l, pc, q)

×δ((k2 + l − pc − q)2) + mirr. (4.59)

where +mirr. indicates that we need to include not only the contributions in figure 4.10

but also their mirror diagrams. In this framework, H(1),HP
β,g also satisfies

(k1 − k2)βH(1),HP
β,g (k1, k2, l, pc, q) = 0 , (4.60)

which is a very important feature that simplifies the ∂kα2 derivative enormously. If we
carry out the derivative with respect to k2 on equation (4.60), we see immediately

(x2 − x1)
∂H(1),HP

α,g (k1, k2, l, pc)p
α

∂kβ2

∣∣∣∣∣
ki=xip

−H(1),HP
β,g (x1p, x2p, l, pc, q) = 0 . (4.61)

Thus we have,

∂H(1),HP
α (k1, k2, l, pc)p

α

∂kβ2

∣∣∣∣∣
ki=xip

=
1

x2 − x1
H(1),HP
β (x1p, x2p, l, pc, q) . (4.62)

The identity above simplifies our calculation of the hard pole diagrams considerably. To
carry out the derivative on H(1),HP with respect to k2 we just leave the Lorentz index
present from the coherent gluon uncontracted and divide the result by (x2 − x1). Due
to the constraints from the pole condition the quantity (x2 − x1) is just a combination
of kinematical variables. To calculate H(1),HP explicitly we use standard Feynman rules
and replace the on-shell propagator in figure 4.10 by

1

/k1 − /k2 + /pc + /q + iε
→ (−iπ)

(/k1 − /k2 + /pc + /q)

2p · (pc + q)
δ

(
(x2 − x1) +

pc · q
p · (pc + q)

)
. (4.63)

The delta distribution eliminates one of the x1 or x2 integration in equation (4.21).
Therefore, we can rewrite the first and solely remaining term in (4.21) as

Eh
d3σtw3

HP

d3Ph

=
πMN

S

∑

ac

∫
dz

z2

∫
dx

x
Dc(z, µ)

(
2
s

t1
εpcpnS⊥ + 2εlpnS⊥

)

×µ2ε

∫
d(n−1)q

(2π)n−12q0
GF (x, x(1− x̃), µ)MHP (t3, s13, u2) δ((k2 + l − pc − q)2) ,

(4.64)
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where x̃ = − s13
t1+t3

and we use that GF (x1, x2) = GF (x2, x1). MHP (t3, s13, u2) is the
partonic hard pole function and is defined by

MHP (t3, s13, u2)

(
2
s

t1
pα + 2lα

)
δ((k2 + l − pc − q)2)

=
p · (pc + q)

pc · q
Tr

[
iωαβ

x/pT g

(N2
c − 1)

H(1),HP
β,g (x1p, x2p, l, pc, q)

]
. (4.65)

For simplicity, we denote only t3, s13, u2 as the arguments of the partonic function.
Surely, there are other Mandelstam variables present in MHP , but after extensive
partional fractioning, the angular dependent variables in the denominator reduce to
these three. Therefore, the function MHP has singularities if one of the variables
t3, s13, u2 → 0. The structure of the last line in equation (4.64) is the matter of interest
for our following discussion and we rename it as HP . Despite the fact, the arguments
of the Qiu-Sterman function are non diagonal, we could reach kinematical points in
the phase space integration, i.e. s13 → 0, where we evaluate GF at equal arguments.
This is of course highly non trivial since MHP is soft and collinear divergent in this
point. This is due to the fact, that the HP cross section in equation (4.62) has the
extra factor 1/(x2 − x1) which gives an additional singularity at the soft gluon point,

on top of which is present in H(1),HP
β anyway. Parts of this extra divergence cancels

the unpleasant singularities in the SGP contribution equation (4.54). For simplicity
we absorb the delta distribution in the last line of equation (4.64) which leads to the
standard three particle phase space and we can rewrite the HP contribution as

HP =

∫
dPS3 GF (x, x(1− x̃), µ)MHP (t3, s13, u2) . (4.66)

To extract the soft-gluon point contribution from this expression we start with the
Taylor-expansion for the Qiu-Sterman function GF (x, x(1−x̃)) with respect to x̃ around
x̃ = 0, i.ie

GF (x, x(1− x̃), µ)

= GF (x, x, µ)− x̃x
2

d

dx
GF (x, x, µ) +

∞∑

k=2

(−x̃)k

k!

(
xk

dkGF (x, y, µ)

dyk

)∣∣∣∣
y=x

(4.67)

We label the terms

HP1 =

∫
dPS3 GF (x, x, µ)MHP (t3, s13, u2) (4.68a)

HP2 =

∫
dPS3

(
−x̃x

2

d

dx
GF (x, x, µ)

)
MHP (t3, s13, u2) (4.68b)

HP3 =

∫
dPS3

( ∞∑

k=2

(−x̃)k

k!

(
xk

dkGF (x, y, µ)

dyk

)∣∣∣∣
y=x

)
MHP (t3, s13, u2) , (4.68c)
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so that

HP = HP1 +HP2 +HP3 . (4.69)

HP1 is highly soft and collinear divergent. To obtain the contribution to the cross
section, we reinsert HP1 in equation (4.64),

Eh
d3σtw3

HP1

d3Ph
=
πMN

S

∑

ac

∫
dz

z2

∫
dx

x
Dc(z, µ)

(
2
s

t1
εpcpnS⊥ + 2εlpnS⊥

)

×µ2ε

∫
d(n−1)q

(2π)n−12q0
GF (x, x, µ)MHP (t3, s13, u2) δ((k2 + l − pc − q)2)

=
−πMN

T
εαpnS⊥

∑

c

vmax∫

vmin

dv

1∫

wmin

dw

w
Dc(z, µ)

(
2

v − 1
pcα + 2lα

)

×GF (x, x, µ)C(s, v, w, µ, ε) . (4.70)

MHP (t3, s13, u2) has terms ∼ 1/(t23s13), 1/(t3s
2
13), s23/(t

2
3s

2
13), that lead to manifest

divergent terms

C(s, v, w, µ, ε) ∼ h(s, v, w)

(1− w)(2+ε)
. (4.71)

But fortunately, these divergent terms are exactly the same as we found in the pure
SGP contribution and cancel in the sum with the B term defined in equation (4.53).
Thus the combination

1∫

wmin

dw (B(s, v, w, µ, ε) + C(s, v, w, µ, ε)) , (4.72)

is well behaved at the upper boundary of the w integration. This is indeed a clear
sign that the NLO result at the soft-gluon point is not given solely by the pure SGP
part. At NLO we have soft collinear pole contributions that cancel among the two pole
contributions at the soft gluon point.

HP2 is a derivative term on the Qiu-Sterman function. In contrast to HP1, the extra
factor x̃ makes all the problematic terms in MHP (t3, s13, u2) well behaved, in a sense
that they can be integrated using standard methods, described in appendix C and D.

There is one exception concerning the phase space integration for HP1 and HP2. In
the inner Dirac structure of H(1),HP terms proportional to ∼ (x2 − x1)/p are present
which produce an extra factor 1/(t1 + t3), which is new compared to standard twist-2
single inclusive calculations. We can calculate those integrals by using the methods of
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appendix C in [112], the integrals are given in group 2 and 3. We need one new integral,
which is given in appendix E in this thesis.

Now, we come to the third contribution of the Taylor-expansion in equation (4.67).
The extraction of the GF (x, x) part of HP3 is quite more challenging than for the other
two contributions of HP . We start with the observation that the only term from the
Taylor-expansion that is affected by the phase space integral is x̃. Thus we can write

HP3 =
∞∑

k=2

(−1)k

k!

(
xk

dkGF (x, y)

dyk

)∣∣∣∣
y=x

∫
dPS3 x̃

kMHP (t3, s13, u2)

=
∞∑

k=0

(−1)k

(k + 2)!

(
xk+2 dk+2GF (x, y)

dyk+2

)∣∣∣∣
y=x

∫
dPS3 x̃

k+2MHP (t3, s13, u2) . (4.73)

Unfortunately, the term x̃k+2M is not integrable by using the standard methods for
single inclusive phase space integration. Therefore, we are not able to obtain the finite
part from HP3 so far and we leave that for future research. On the other hand, we
developed a framework, where we can obtain the collinear 1/ε pole structure from HP3.
This is very important, since the knowledge of the pole structure is the first step towards
a deep insight how the interplay of the different NLO contributions work. To do so, we
have to identify the collinear regions of x̃k+2M. We want to remind the reader that
MHP (t3, s13, u2) has the following denominator structure

MHP (t3, s13, u2)|poles =

{
1

s13
;

1

s2
13

;
1

t3
;

1

t23
;

1

u2
;

1

u2
2

}
, (4.74)

where only denominators are listed that eventually produce a collinear pole. We see
immediately, that the factor x̃k+2 makes the x̃k+2M finite for s13 → 0. This is due to
the fact that x̃k+2 ∼ sk+2

13 and k ≥ 0. Concerning that we identify two collinear regions
in HP3, these are u2 → 0 and t3 → 0. Therefore, we can decompose

x̃2M =M1 +M2 +M3 , (4.75)

whereM1 is singular as u2 → 0,M2 is singular as t2 → 0, andM3 is completely finite.

We first consider the phase space integration for x̃kM1 or more precisely the extraction
of its 1/ε pole part. We arranged the terms in a way that x̃kM1 is divergent for u2 → 0.
For the angular integration we work in the rest frame of the two unobserved final states,
but we are free to choose which of the three observed momenta defines the direction
of the z-axis (see appendix D). Here we choose that the initial state lepton defines the
z-axis, i.e. we use ”set 1”. In that frame, u2 has its simplest structure

u2 = u0
2(1− cos θ1) , (4.76)
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where we conclude that the collinear limit is defined by θ1 → 0. In this frame, our
integrand has terms ∼ 1/u2 and ∼ 1/u2

2. Therefore, we can further decompose x̃kM1

in these two contributions,

x̃kM1 =
N 1

1 (v, w, θ1, θ2)

su0
2(1− cos θ1)

+
N 2

1 (v, w, θ1, θ2)

(u0
2(1− cos θ1))2

(4.77)

where the functions N i
1(s, v, w, θ1, θ2) are dependent on the kinematical variables s, v,

w and the two spherical angles between the two unobserved final states θ1 and θ2. It
turned out, that if we Taylor expand N1

2 around cos θ1 = 1 that the zeroth order cancels,
i.e.

N 2
1 (v, w, θ1, θ2) = (1− cos θ1)Ñ 2

1 (v, w, cos θ2) +O((1− cos θ1)2) , (4.78)

whereas the expansion for N1
1 starts at zeroth order

N 1
1 (s, v, w, θ1, θ2) = Ñ 1

1 (v, w, cos θ2) +O((1− cos θ1)) . (4.79)

We can combine these terms and end up with

x̃kM1 =
1

1− cos θ1

(
Ñ 2

1 (v, w, cos θ2)

(u0
2)2

+
Ñ 1

1 (v, w, cos θ2)

su0
2

)

+O((1− cos θ1)0) (4.80)

where O((1 − cos θ1)0) indicates that there are finite terms we have not included so
far. It is important to mention that equation (4.80) is independent of k since x̃ → 1
for cos θ1 → 1 . Since, the expansion for N1

2 starts with a term ∼ (1 − cos θ1) there
is no term 1/(1 − cos θ1)2 left. In other words, in our leading collinear term we have
θ1-dependence only through 1/(1− cos θ1) as an overall factor. For the θ2 dependence
we obtain two different terms in our leading collinear expansion. We have on the one
hand terms that are independent of θ2 on the other hand terms that are proportional
cos2 θ2. Therefore, we need two angular integrals here

I1
col. =

π∫

0

dθ1

π∫

0

dθ2 sin1−2ε θ1 sin−2ε θ2
1

(1− cos θ1)
=
−π
ε

+O(ε0) ,

I2
col. =

π∫

0

dθ1

π∫

0

dθ2 sin1−2ε θ1 sin−2ε θ2
cos2 θ2

(1− cos θ1)
=
−π
2ε

+O(ε0) . (4.81)

By using the two integrals we find:

∫
dPS3 x̃

kM1 =
1

ε
f(s, v, w) +O(ε0) (4.82)
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where f(s, v, w) is a simple rational function. The finite terms, that are O(ε0) are
again not included in our calculation. To complete the calculation for M1 we must
insert f(s, v, w) into equation (4.73) and convert the infinite series back into normal
expression in terms of GF . Inserting equation (4.82) into (4.73) we get

∞∑

k=0

(−1)k

(k + 2)!

(
xk+2 dk+2GF (x, y)

dyk+2

)∣∣∣∣
y=x

f(s, v, w)

ε

=
∞∑

k=2

(−1)k

k!

(
xk

dkGF (x, y)

dyk

)∣∣∣∣
y=x

f(s, v, w)

ε

=

(
GF (x, 0) +

x

2

d

dx
GF (x, x)−GF (x, x)

)
f(s, v, w)

ε
, (4.83)

with

f(s, v, w) = α2
eme

2
a

αs
π

(
vwCF −

NC

2

)
(v2(2w2 − 2w + 1)− 2vw + 1)

s2(v − 1)2v2w2(vw − 1)
. (4.84)

in the q-fragmentation channel. Equation (4.83) shows that a soft-fermion-pole arises,
which is a very interesting result from our calculation. These poles should cancel among
SFP contribution where the pole is manifest in the whole NLO phase space.

Next, we consider x̃kM2 and extract its pole part. In that case, the divergence appear
if t3 → 0. We choose here the parton momentum coming from the polarized hadron to
define the z-direction, i.e. ”set 1”. In that frame with t3 = t03(1 + cos θ1), the collinear
limit is defined by θ1 → π. We can perform the same expansion as in the u2 → 0 case.
We find that the leading collinear term is again proportional to ∼ 1/(1+cos θ1) and also
has no soft piece. But, in contrast to the u2 → 0 case, the result is k dependent. The
reason for this behavior is that from the collinear limit t3 → 0 follows that x̃→ 1− w.
We find for the pole part

∫
dPS3 x̃

kM2 =
1

ε

(
(1− w)k+1g1(v, w) + (k + 1)(1− w)kg2(v, w)

)

+O(ε0) (4.85)

where g1 and g2 are simple rational functions given in the q fragmentation channel as

g1(v, w, s) = α2
eme

2
a

αs
π
NC

v2 + 1

2s2(v − 1)2v3w2
, (4.86a)

g2(v, w, s) = α2
eme

2
a

αs
π
NC

(
v2 + 1

)
(w + 1)

2s2(v − 1)2v3w
. (4.86b)

The next step is to insert this result into equation (4.73) and rewrite the sum into
combinations of Qiu-Sterman functions. This is surely more challenging as in the u2 → 0
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case, since our result is k dependent. We start with the g1 part

∞∑

k=0

(−1)k

(k + 2)!

(
xk+2 dk+2GF (x, y)

dyk+2

)∣∣∣∣
y=x

(1− w)k+1 g1(v, w, s)

ε

=
1

ε

g1(v, w, s)

1− w
∞∑

k=2

(−1)k

k!

(
xk

dkGF (x, y)

dyk

)∣∣∣∣
y=x

(1− w)k

=
1

ε

g1(v, w, s)

1− w

[
GF (x, xw)−GF (x, x)

1− w +
x

2

d

dx
GF (x, x)

]
(4.87)

Likewise we can rewrite the g2 part,

∞∑

k=0

(−1)k

(k + 2)!

(
xk+2 dk+2GF (x, y)

dyk+2

)∣∣∣∣
y=x

(k + 1)(1− w)k
g2(v, w, s)

ε

= −1

ε
g2(v, w, s)

∂

∂w

[ ∞∑

k=0

(−1)k

(k + 2)!

(
xk+2 dk+2GF (x, y)

dyk+2

)∣∣∣∣
y=x

(1− w)k+1

]

= −1

ε
g2(v, w, s)

∂

∂w

[
GF (x, xw)−GF (x, x)

1− w +
x

2

d

dx
GF (x, x)

]

= −1

ε
g2(v, w, s)

∂

∂w

[
GF (x, xw)−GF (x, x)

1− w

]
(4.88)

where it is important that ∂/∂w is a partial derivative. Therefore, it acts only on the
explicit dependence on w and because of this, the derivative term in the third line
cancels out. We can merge our results in equations (4.83),(4.87) and (4.88) in equation
(4.68c) and we end up with

HP3 =
1

ε
f(s, v, w)

[
GF (x, 0) +

x

2

d

dx
GF (x, x)−GF (x, x)

]

+
1

ε

g1(v, w, s)

1− w

[
GF (x, xw)−GF (x, x)

1− w +
x

2

d

dx
GF (x, x)

]

− 1

ε
g2(v, w, s)

∂

∂w

[
GF (x, xw)−GF (x, x)

1− w

]
. (4.89)

Now, we are able to extract the whole ε-pole structure from the HP contribution and
even a new pole structure arises, which we identify as a SFP. This is indeed very
interesting since it demonstrates that one should also include SFP contributions because
they are connected by their pole structure.

We want to mention, that the partonic functions for the 2 → 3 process, HP and SGP
contributions, are cross checked by a calculation using a different ansatz as we showed
above. We used for the cross check formula (20) in [161], which is also called ”master
formula”, but it should not be mixed up with our equation (4.50). The two calculations
lead to the exact same result.
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4.6. Evolution equation and collinear subtraction

4.6.1. Evolution equation for the Qiu-Sterman function

To obtain the factorization contribution we have to include beneath the twist-2 evolu-
tion of the fragmentation function, the twist-3 evolution of the Qiu-Sterman function.
The evolution kernel for the quark-gluon-quark correlator is highly non trivial. Over the
last decade a lot of progress has been made to determine this function using different
formulations [83, 162–164]. A complete picture is given in [165–167]. The result pre-
sented in [167] includes a ”new”-HP contribution, coming from gluon-quark-quark or
quark-quark-gluon correlations. So far, we have not included them into our 2→ 3 cal-
culation and therefore we neglect them. For the non-derivative part of the Qiu-Sterman
function the evolution kernel is given by

∂

∂ lnµ2
GF (x, x, µ2) =

αs
2π

1∫

x

dz

z

{[
Pqq

(x
z

)
− CAδ

(
1− x

z

) ]
GF (z, z, µ2)

+
CA
2

[
1 + x

z

1− x
z

(
GF (z, x, µ2)−GF (z, z, µ2)

)
+
x

z
GF (z, z, µ2)

]}

(4.90)

where Pqq is the usual quark to quark splitting function given in equation (1.70). In the
literature, evolution kernels have been discussed for non-derivative Qiu-Sterman contri-
butions [83, 162–167]. However, we need the evolution equation for the LO combination
GF (x, x)− x d/dxGF (x, x). To obtain the derivative part of the evolution equation we
take the derivative with respect to x of equation (4.90). We find,

∂

∂ lnµ2

(
GF (x, x, µ2)− x d

dx
GF (x, x, µ2)

)
=

αs
2π

{ 1∫

x

dz

z

[[
Pqq

(x
z

)
− CA

2
δ
(

1− x

z

) ](
GF (z, z, µ2)− x d

dx
GF (z, z, µ2)

)

+
CA
2

(
1−

(
1 +

x

z

)
x

d

dx

)((
GF (z, x, µ2)−GF (z, z, µ2)

)

1− x
z

)]}
. (4.91)

Finally, by including the twist-2 kernels given in chapter 2 all evolution kernels are
available to obtain the correct collinear subtraction term.

4.6.2. Collinear subtraction

In the the 2→ 3 process, we have certain collinear contributions that produce 1
ε -poles,

which must be subtracted into the bare distributions G
(0)
F , D(0) and the bare photon in
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lepton distribution f
(0)
γ` . We refer to chapter 2 where this subtraction method, and the

photon in lepton distribution is explained in detail. The subtraction terms defined in
equation 2.12b and 2.16 has the same structure in the twist-3 case. We mention that
the splitting kernels are convoluted with the leading order partonic functions q` → q`
and γq → γq, which have to be replaced by the twist-3 ones.

To subtract the initial state photon-lepton collinear singularity, we use the Weizsäcker-
Williams contribution defined in equations 2.18 and 2.19. The singularity appears in
our cross section, because we assume the lepton to be massless. Therefore, as discussed
in in chapter 2 and [3], we could either assume a massive lepton throughout the whole
calculation, or we assume a massles lepton and absorb the appearing pole it into the
bare Weizsäcker-Williams distribution given in equation (2.18). Both strategies, lead to
the same result. Therefore, we perform a massless calculation, since this is convenient
for phase space integration. However, the factorization contribution is then depended
on the lepton mass. We found that the ε-pole from the photon-lepton singularity turns
into

1

ε
→ − ln

(
µ2

m2
`

)
, (4.92)

with m` the lepton mass.

Pole contributions where the initial state quark radiates a collinear final state gluon

are absorbed into the combination G
(0)
F (x, x, µ) − d

dxG
(0)
F (x, x, µ) of bare Qiu-Sterman

functions as follows

GF (x, x, µ)− d

dx
GF (x, x, µ) = G

(0)
F (x, x, µ)− d

dx
G

(0)
F (x, x, µ) (4.93)

+
1

ε

αs
2π

{ 1∫

x

dz

z

[[
Pqq

(x
z

)
− CA

2
δ
(

1− x

z

) ](
GF (z, z, µ2)− x d

dx
GF (z, z, µ2)

)

+
CA
2

(
1−

(
1 +

x

z

)
x

d

dx

)((
GF (z, x, µ2)−GF (z, z, µ2)

)

1− x
z

)]}
.

The Qiu-Sterman function in the last line has the explicit dependence on x in its
argument, which is different to twist-2 factorization terms. In initial state factorization
the term x/z becomes w. The differential in the last term in equation (4.93) reproduces
exactly the pole-term coming from the g2 contribution in equation (4.88).

Finally, we have determined the complete ε-pole structure in the 2→ 3 process at the
soft twist-3 gluon point and the appropriate collinear subtraction term. We can add all
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ε-poles from equations (4.53) and (4.64) and find the remaining poles

Eh
d3σtw3

pole

d3Ph
=
−πMN

T
εαpnS⊥

∑

c

vmax∫

vmin

dv

1∫

wmin

dw

w
Dc(z, µ)

(
2

v − 1
pcα + 2lα

)
(4.94)

×
{(

GF (x, x, µ)− xdGF (x, x, µ)

dx

)
P1(s, v, w, µ, ε) +GF (x, x, µ)P2(s, v, w, µ, ε)

}
.

with

P1(s, v, w, µ, ε) (4.95a)

= α2
eme

2
a

αs
π

(
4πµ

s

)2ε
[
CF

{
1

ε2

−2

s2v2

v2 + 1

(1− v)2
+

1

ε

(2 ln(1− v)− 3)
(
v2 + 1

)

s2(v − 1)2v2

}

× δ(1− w)

]
,

P1(s, v, w, µ, ε) (4.95b)

= α2
eme

2
a

αs
π

(
4πµ

s

)2ε
[
CF

1

ε

−2

s2v2

(
v2 + 1

)

(v − 1)2
−NC

1

ε

(v + 1)

s2v(v − 1)2

]
δ(1− w) .

The ε-poles which are present in (4.94) must cancel among the poles in the virtual
correction to secure factorization.

4.7. Real correction results

So far, we derived the complete pure SGP correction and parts of the HP contribution,
as well as the complete ε-pole structure from these contributions. Therefore, we could
achieve several important results for the real part of the NLO calculation:

• The complete real correction to the derivative part on the Qiu-Sterman function.

• The complete ε-pole structure at the soft gluon point

• The complete distribution part from the HP contribution at the soft gluon point.

• Most of the non-singular parts of the HP contribution.

The regular part in the HP contribution which we did not obtained so far, arises solely
in the HP3 contribution. The HP1 and HP2 contributions are derived completely.
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4.7. Real correction results

However, the results are lengthy and therefore we can not show them completely. In the
subsequent section, we highlight some results from our calculation. A very interesting
observation can be made concerning the logarithmic plus distributions. They have the
structure

Eh
d3σtw3

log

d3Ph
=
−πMN

T
εαpnS⊥

∑

c

vmax∫

vmin

dv

1∫

wmin

dw

w
Dc(z, µ)

(
2

v − 1
pcα + 2lα

)

×
(
GF (x, x, µ)− xdGF (x, x, µ)

dx

)
σtw3

LO

αs
π

4CF

(
ln(1− w)

1− w

)

+

(4.96)

where σtw3
LO is the twist 3 leading order partonic cross section defined in equation (4.20).

The Leading logarithmic threshold correction, is evoked by soft collinear gluon radiation
to the initial and final state quark. Since soft gluon emission is spin-independent, the
relative correction remains the same.

In our calculation we obtain also full control over 1
(1−w)+

-terms. They are given by

Eh
d3σtw3

plus

d3Ph
=
−πMN

T
εαpnS⊥

∑

c

vmax∫

vmin

dv

1∫

wmin

dw

w
Dc(z, µ)

(
2

v − 1
pcα + 2lα

)

×
{(

GF (x, x, µ)− xdGF (x, x, µ)

dx

)
E1(s, v, w, µ) +GF (x, x, µ)E2(s, v, w, µ)

}

(4.97)

with

E1(s, v, w, µ) =α2
eme

2
a

αs
π

{
CF

(
−4
(
1 + v2

)

s2(1− v)2v2
ln

(
sv(1− v)

µ2

)
− 4

s2v2

)

−NC

(
1 + v2

)

s2(1− v)2v2

}(
1

1− w

)

+

. (4.98a)

E1(s, v, w, µ) =α2
eme

2
a

αs
π

{
CF
−2
(
1 + v2

)

s2v2
−NC

1 + v2

2s2(1− v)2v2

}(
1

1− w

)

+

. (4.98b)

where the relative prefactor compared to LO for the term ∼ ln
(
sv(1−v)
µ2

)
in E1 is again

the same as in the unpolarized case. This is due to the fact, that these contributions
are a remnant of collinear quark gluon configurations of the external particles. Due to
the Dirac structure of the cross section, such contributions may factored away from the
inner born structure of the partonic scattering.
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4.8. Conclusions

In this chapter we derived the real NLO correction for the process h↑l → πX. Within
the twist-3 collinear factorization formalism we first studied the pole contribution which
arises when the coherent gluon becomes soft. We found a remarkably complex structure
of the NLO contributions. We found on the one hand real corrections, that produce a
pure SGP and on the other hand we found real corrections that produce SGP contri-
butions in certain regions of phase space of the unobserved final state particles.

In our calculation we have obtained full control over terms ∼
(

ln(1−w)
1−w

)
+

and ∼
(

1
1−w

)
+

. We could show, that the relative prefactor compared to LO for the loga-

rithmic plus distribution is the same as in the unpolarized case. This is indeed a very
interesting result and supports the fact that soft gluon emission is spin independent.

We could derive the complete collinear pole structure from the two real SGP contribu-
tions and we showed that the pole structure we found in the evolution kernel cancels
most of them. The remaining poles are accompanied by the delta distribution δ(1−w)
which may cancel among the virtual NLO correction. So far, we have not included
the virtual contribution and we leave that for future research. We could show that the
highly non-trivial ε-pole structure can not be isolated concerning the poles that fix the
arguments of the Qiu-Sterman function. Therefore, we will derive beneath the SGP all
HP and SFP contributions in future work. This is crucial for a deep understanding of
the twist-3 cross section at NLO.
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Chapter 5.

Toward NNLL Threshold
Resummation for Hadron Pair
Production in Hadronic
Collisions

We investigate QCD threshold resummation effects beyond the next-to-leading loga-
rithmic (NLL) order for the process H1H2 → h1h2X at high invariant mass of the
produced hadron pair. We take into account the color structure of the underlying par-
tonic hard-scattering cross sections and determine the relevant hard and soft matrices
in color space that contribute to the resummed cross section at next-to-next-to-leading
logarithmic (NNLL) accuracy. We present numerical results for fixed-target and col-
lider regimes. We find a significant improvement compared to previous results at NLL
accuracy. In particular, the scale dependence of the resummed cross section is greatly
reduced. Use of the most recent set of fragmentation functions also helps in improving
the comparison with the experimental data. Our calculation provides a step towards a
systematic NNLL extension of threshold resummation also for other hadronic processes,
in particular for jet production. This chapter is based on publications [2, 7]

5.1. Introduction

The resummation of threshold logarithms in partonic hard-scattering cross sections con-
tributing to hadronic scattering has received an ever-growing attention in recent years.
On the one hand, resummation is phenomenologically relevant in many kinematical sit-
uations, ranging from fixed-target energies all the way to the LHC. At the same time,
it offers insights into the structure of perturbative corrections at higher orders, which
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Chapter 5. NNLL Threshold Resummation for Hadron Pair Production

among other things may provide benchmarks for explicit full fixed-order calculations in
QCD.

Threshold logarithms typically arise when the initial partons have just enough energy
to produce the observed final state. In this case, the phase space available for gluon
bremsstrahlung vanishes, resulting in large logarithmic corrections. Taking the hadron-
pair production cross section to be discussed in this chapter as an example, the partonic
threshold is reached when ŝ = m̂2, that is, τ̂ ≡ m̂2/ŝ = 1, where

√
ŝ is the partonic

center-of-mass system (c.m.s.) energy and m̂ the pair mass of two outgoing produced
partons that eventually fragment into the observed hadron pair. The leading large
contributions near threshold arise as αks

[
ln2k−1(1− τ̂)/(1− τ̂)

]
+

at the kth order in
perturbation theory, where αs is the strong coupling and the “plus” distribution will
be defined below. There is a double-logarithmic structure, with two powers of the
logarithm arising for every new order in the coupling. Subleading terms have fewer
logarithms, so that the threshold logarithms in the perturbative series take the general
form

∞∑

k=0

2k∑

`=1

αks Ak,`
(

ln2k−`(1− τ̂)

1− τ̂

)

+

, (5.1)

with perturbative coefficients Ak,`. One often refers to the all-order set of logarithms
with a fixed ` as the `th tower of logarithms. As has been established in the lit-
erature [39, 40, 168–170], threshold logarithms exponentiate after taking an integral
transform conjugate to the relevant kinematical variable (τ̂ in the above example).
Under this transform the threshold logarithms translate into logarithms of the trans-
form variable N . The exponent may itself be written as a perturbative series and is
only single-logarithmic in the transform variable. Ignoring for the moment the color
structure of the underlying partonic cross section, the structure of the resummed cross
section becomes in transform space

(
1 + αsC

(1) + α2
sC

(2) + . . .
)

exp

[ ∞∑

k=1

k+1∑

`=1

Bk,`αks ln`(N)

]
, (5.2)

again with coefficients Bk,` and with “matching coefficients” C(k) that ensure that at
every fixed order the resummed cross section agrees with the exact fixed-order one, up
to corrections suppressed at threshold. They contain the full virtual corrections at order
αks , corresponding to contributions ∝ δ(1 − τ̂) in the partonic cross section, and may
be compared by comparison to a full fixed-order calculation performed near threshold.
Thanks to the exponentiated single-logarithmic structure of the exponent, knowledge
of the two leading towers αks lnk+1(N) and αks lnk(N), along with the coefficient C(1), is
sufficient to predict the three leading towers in the perturbative series (5.1) for the cross
section in τ̂ -space. This is termed “next-to-leading logarithmic” (NLL) resummation.
At full next-to-next-to-leading logarithmic (NNLL) accuracy, one needs three towers in
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the exponent and the two-loop coefficient C(2), already providing control of five towers
in the partonic cross section.

While NLL resummation was the state of the art for many years, much progress has
been made recently on extending the framework to NNLL accuracy, or even beyond.
The most advanced results have been obtained for color-singlet processes such as Higgs
production, where NNLL [171–173] and, most recently, even studies up to the N3LL
level [174, 175] have been obtained, in which seven towers of logarithms are fully taken
into account to all orders. This became possible when all threshold distributions at
three-loop order were computed [176]. For processes that are not characterized by a
color-singlet lowest-order (LO) hard scattering reaction, progress beyond NLL has also
been made. For such processes, the resummation framework becomes more complex
because the interference between soft emissions by the various external partons in the
hard scattering process becomes sensitive to the color structure of the hard scattering
itself. This requires a color basis for the partonic scattering process which, as will
be reviewed below, leads to a matrix structure of the soft emission [40, 170, 177–
179]. This ultimately turns the exponential in (5.2) into a sum of exponentials, each
with its own set of matching coefficients C(k). An extensive list of color-non-singlet
reactions of this type along with corresponding references to NLL studies may be found
in [180]. Resummation studies beyond NLL have been presented in the context of top
quark (pair) production [181–195], for single-inclusive hadron production [180], and
for squark and gluino production [196–198]. At present, full NNLL resummation in
the sense described above is not yet possible for most processes, since the required
two-loop matching coefficients are usually not yet available (see, however, the recent
calculation [199] for massless scattering). Nonetheless, with knowledge of the one-loop
matching coefficients an improvement of the resummation framework becomes possible
already, providing control of four (instead of five at full NNLL) towers in the partonic
cross sections. A prerequisite for this is that the appropriate color structure be taken
into account for all ingredients in the resummed expression.

In this chapter, we will develop such a partial NNLL resummation for the process of
di-hadron production in hadronic collisions, collecting all necessary ingredients. Pre-
viously, Ref. [200] presented a NLL study for this process which forms the basis for
this chapter. Kinematically, hadron pair production shares many features with the
much simpler color-singlet Drell-Yan process, if one confronts the produced partonic
pair mass m̂ with the invariant mass of the lepton pair. The interesting aspect of di-
hadron production is that it possesses all the color complexity of the underlying 2→ 2
QCD hard scattering. As such, the process becomes an ideal test for the study of
QCD resummation beyond NLL and can serve as a template for reactions of more sig-
nificant phenomenological interest, especially single or two-jet production in hadronic
collisions. That said, di-hadron production is phenomenologically relevant in its own
right as experimental data as a function of the pair’s mass are available from various
fixed-target experiments [201–204], as well as from the ISR [205]. In addition, di-hadron
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cross sections are also accessible at the Relativistic Heavy Ion Collider (RHIC).

This chapter is structured as follows. In Sec. 5.2 we recall the basic formulas for
the di-hadron cross section as a function of pair mass at fixed order in perturbation
theory, and display the role of the threshold region. In order for this thesis to be self-
contained, we recall a number of results from [200]. Section 5.3 presents details of the
NNLL threshold resummation for the cross section. In particular, we derive the various
hard and soft matrices in color space that are needed for the analysis. Here, we make
use of one-loop results available in the literature [206–208] and compare to related
work [209]. In Sec. 5.4 we give phenomenological results, comparing the threshold
resummed calculations at NLL and NNLL to some of the available experimental data.
Finally, we summarize our results in Sec. 5.5.

5.2. Hadron pair production near partonic threshold

5.2.1. Perturbative cross section

As in [200], we consider the process H1(Pa)+H2(Pb)→ h1(Pc)+h2(Pd)+X at measured
pair invariant mass squared,

M2 ≡ (Pc + Pd)
2 , (5.3)

and at c.m.s. rapidities η1, η2 of the two produced hadrons. It is convenient to introduce

∆η =
1

2
(η1 − η2) ,

η̄ =
1

2
(η1 + η2) . (5.4)

For sufficiently large M2, the cross section for the process can be written in the factor-
ized form

M4 dσH1H2→h1h2X

dM2d∆ηdη̄
=
∑

abcd

∫ 1

0
dxadxbdzcdzd f

H1
a (xa, µF )fH2

b (xb, µF )

× zcDh1
c (zc, µF )zdD

h2
d (zd, µF )ωab→cd

(
τ̂ ,∆η, η̂, αs(µR),

µR
m̂
,
µF
m̂

)
, (5.5)

where η̂ is the average rapidity in the partonic c.m.s., which is related to η̄ by

η̂ = η̄ − 1

2
ln

(
xa
xb

)
. (5.6)

The quantity ∆η is a difference of rapidities and hence boost invariant. The average
and relative rapidities for the hadrons and their parent partons are the same, since all

particles are taken to be massless. The functions f
H1,2

a,b in equation (5.5) are the parton
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distribution functions for partons a, b in hadrons H1,2 and D
h1,2

c,d the fragmentation
functions for partons c, d fragmenting into the observed hadrons h1,2. The distribution
functions are evaluated at a factorization scale µF that we choose to be the same for
the initial and the final state. µR denotes the renormalization scale, which may differ
from µF . The partonic momenta are given in terms of the hadronic ones by pa = xaPa,
pb = xbPb, pc = Pc/zc, pd = Pd/zd. We introduce

S = (Pa + Pb)
2 ,

τ ≡ M2

S
,

ŝ ≡ (xaPa + xbPa)
2 = xaxbS ,

m̂2 ≡
(
Pc
zc

+
Pd
zd

)2

=
M2

zczd
,

τ̂ ≡ m̂2

ŝ
=

M2

xaxbzczdS
=

τ

xaxbzczd
. (5.7)

The ωab→cd in equation (5.5) are the hard-scattering functions for the contributing
partonic processes ab → cdX ′, where X ′ denotes some additional unobserved partonic
final state. Since the cross section in equation (5.5) has been written in a dimensionless
form, the ωab→cd can be chosen to be functions of m̂2/ŝ = τ̂ and the ratios of m̂ to
the factorization and renormalization scales, as well as the rapidities and the strong
coupling. They may be computed in QCD perturbation

ωab→cd =
(αs
π

)2
[
ωLO
ab→cd +

αs
π
ωNLO
ab→cd +

(αs
π

)2
ωNNLO
ab→cd + . . .

]
. (5.8)

Here we have separated the overall power of O(α2
s), which arises because the leading

order partonic hard-scattering processes are the ordinary 2→ 2 QCD scatterings.

5.2.2. Threshold limit

The limit τ̂ → 1 corresponds to the partonic threshold, where the hard-scattering uses
all available energy to produce the pair. This is kinematically similar to the Drell-Yan
process, if one thinks of the hadron pair replaced by a lepton pair. The presence of
fragmentation of course complicates the analysis somewhat, because only a fraction zczd
of m̂2 is used for the invariant mass of the observed hadron pair. As shown in [200], it
is useful to introduce the variable

τ ′ ≡ m̂2

S
=

M2

zczdS
, (5.9)

which may be viewed as the “τ -variable” at the level of produced partons when frag-
mentation has not yet been taken into account, akin to the variable τ = Q2/S in
Drell-Yan.
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At LO, one has τ̂ = 1 and also η̂ = 0. One can therefore write the LO term as

ωLO
ab→cd (τ̂ ,∆η, η̂) = δ (1− τ̂) δ (η̂) ω

(0)
ab→cd(∆η) , (5.10)

where ω
(0)
ab→cd is a function of ∆η only. According to (5.6), the second delta-function

implies that η̄ = 1
2 ln(xa/xb). At next-to-leading order (NLO), or overall O(α3

s), one
can have τ̂ 6= 1 and η̂ 6= 0. In general, as discussed in [200], near partonic threshold the
kinematics becomes “LO like”. One has:

ωab→cd

(
τ̂ ,∆η, η̂, αs(µR),

µR
m̂
,
µF
m̂

)
= δ (η̂) ωsing

ab→cd

(
τ̂ ,∆η, αs(µR),

µR
m̂
,
µF
m̂

)

+ ωreg
ab→cd

(
τ̂ ,∆η, η̂, αs(µR),

µR
m̂
,
µF
m̂

)
, (5.11)

where all singular behavior near threshold is contained in the functions ωsing
ab→cd. Thresh-

old resummation addresses this singular part to all orders in the strong coupling. All
remaining contributions, which are subleading near threshold, are collected in the “reg-
ular” functions ωreg

ab→cd. Specifically, for the NLO corrections, one finds the following
structure:

ωNLO
ab→cd

(
τ̂ ,∆η, η̂,

µR
m̂
,
µF
m̂

)
= δ (η̂)

[
ω

(1,0)
ab→cd

(
∆η,

µR
m̂
,
µF
m̂

)
δ(1− τ̂)

+ ω
(1,1)
ab→cd

(
∆η,

µF
m̂

) ( 1

1− τ̂

)

+

+ ω
(1,2)
ab→cd(∆η)

(
log(1− τ̂)

1− τ̂

)

+

]

+ ωreg,NLO
ab→cd

(
τ̂ ,∆η, η̂,

µR
m̂
,
µF
m̂

)
, (5.12)

where the singular part near threshold is represented by the functions ω
(1,0)
ab→cd, ω

(1,1)
ab→cd, ω

(1,2)
ab→cd,

which are again functions of only ∆η, up to scale dependence. The “plus”-distributions
are defined by

∫ 1

x0

f(x) (g(x))+ dx ≡
∫ 1

x0

(f(x)− f(1)) g(x)dx− f(1)

∫ x0

0
g(x)dx . (5.13)

The functions ω
(1,0)
ab→cd, ω

(1,1)
ab→cd, ω

(1,2)
ab→cd were derived in [200] from an explicit NLO cal-

culation near threshold. We will use these results below as an useful check on the
resummed formula and on the matching coefficients.

5.2.3. Mellin and Fourier transforms

In order to prepare the resummation of threshold logarithms, we take integral trans-
forms of the cross section. Following [200], we first write the hadronic cross section in
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equation (5.5) as

M4 dσH1H2→h1h2X

dM2d∆ηdη̄
=
∑

cd

∫ 1

0
dzc dzd zcD

h1
c (zc, µF ) zdD

h2
d (zd, µF )

×ΩH1H2→cd

(
τ ′,∆η, η̄, αs(µR),

µR
m̂
,
µF
m̂

)
, (5.14)

where τ ′ = m̂2/S = τ̂xaxb and

ΩH1H2→cd

(
τ ′,∆η, η̄, αs(µR),

µR
m̂
,
µF
m̂

)
≡
∑

ab

∫ 1

0
dxa dxb (5.15)

×fH1
a (xa, µF ) fH2

b (xb, µF )ωab→cd

(
τ̂ ,∆η, η̂, αs(µR),

µR
m̂
,
µF
m̂

)
.

Taking Mellin moments of this function with respect to τ ′ and a Fourier transform in
η̄, we obtain

∫ ∞

−∞
dη̄ eiνη̄

∫ 1

0
dτ ′

(
τ ′
)N−1

ΩH1H2→cd

(
τ ′,∆η, η̄, αs(µR),

µR
m̂
,
µF
m̂

)

=
∑

ab

f̃H1
a (N + 1 + iν/2, µF )f̃H2

b (N + 1− iν/2, µF )

ω̃ab→cd

(
N, ν,∆η, αs(µR),

µR
m̂
,
µF
m̂

)
, (5.16)

where f̃Ha (N,µF ) ≡
∫ 1

0 x
N−1fHa (x, µF )dx, and

ω̃ab→cd

(
N, ν,∆η, αs(µR),

µR
m̂
,
µF
m̂

)

≡
∫ ∞

−∞
dη̂ eiνη̂

∫ 1

0
dτ̂ τ̂N−1 ωab→cd

(
τ̂ ,∆η, η̂, αs(µR),

µR
m̂
,
µF
m̂

)
. (5.17)

Near threshold, keeping only the singular terms in (5.11), the right-hand-side of this
reduces to

∫ 1

0
dτ̂ τ̂N−1 ωsing

ab→cd

(
τ̂ ,∆η, αs(µR),

µR
m̂
,
µF
m̂

)

≡ ω̃resum
ab→cd

(
N,∆η, αs(µR),

µR
m̂
,
µF
m̂

)
. (5.18)

We have labeled the new function on the right by the superscript “resum” as it is
this quantity that contains all threshold logarithms and that threshold resummation
addresses. As discussed in [200], it is important here that we consider fixed m̂ and fixed
renormalization/factorization scales, which is achieved by isolating the fragmentation
functions as in equation (5.14). Note that ω̃resum

ab→cd depends on the Mellin variable N
only. All dependence on the Fourier variable ν resides in the moments of the parton
distribution functions.
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5.3. Threshold resummation for hadron-pair production

In this section we present the framework for threshold resummation for di-hadron pro-
duction at NNLL. We start by giving the main result and discussing its structure.
Subsequently, we will describe the various new ingredients in more detail.

5.3.1. Resummation formula at next-to-next-to-leading logarithm

For di-hadron production near threshold, all gluon radiation is soft. Since all four
external partons in the hard scattering are “observed” in the sense that they are ei-
ther incoming or fragmenting partons, each of them makes the same type of (double-
logarithmic) contribution to the resummed cross section in moment space, given by a
“jet” function ∆N

i (i = a, b, c, d) that takes into account soft and collinear gluon radi-
ation off an external parton [200, 210, 211]. In addition, large-angle soft emission is
sensitive to the color state of the hard scattering, giving rise to a trace structure in
color space [40, 177, 178]. The resummed partonic cross section in moment space then
takes the following form [40, 170, 177–179, 200]:

ω̃resum
ab→cd

(
N,∆η, αs(µR),

µR
m̂
,
µF
m̂

)

= ∆N+1
a

(
αs(µR),

µR
m̂
,
µF
m̂

)
∆N+1
b

(
αs(µR),

µR
m̂
,
µF
m̂

)

×∆N+2
c

(
αs(µR),

µR
m̂
,
µF
m̂

)
∆N+2
d

(
αs(µR),

µR
m̂
,
µF
m̂

)

×Tr
{
H (∆η, αs(µR)) S†N

(
∆η, αs(µR),

µR
m̂

)

S
(
αs(m̂/N̄),∆η

)
SN
(

∆η, αs(µR),
µR
m̂

)}
ab→cd

×ξR
(
αs(µR),

µR
m̂

)
ξabcdF

(
αs(µR),

µF
m̂

)
. (5.19)

This form is valid to all logarithmic order, up to corrections that are suppressed by
powers of 1/N , or 1− τ̂ . The additional functions ξR,F do not contain threshold loga-
rithms but are N -independent. They serve to improve the dependence of the resummed
cross section on the scales µR and µF . We will now discuss the various functions in
equation (7.10) and their NNLL expansions.

Jet functions

The radiative functions ∆N
i are familiar from threshold resummation for the Drell-Yan

process. They exponentiate logarithms that arise due to soft-collinear gluon emission
by the initial and final-state partons. In the MS scheme, they are given by [39, 41, 171,
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212]

∆N
i

(
αs(µR),

µR
m̂
,
µF
m̂

)
= Ri(αs(µR)) exp

{
(5.20)

∫ 1

0
dz

zN−1 − 1

1− z

[∫ (1−z)2m̂2

µ2
F

dµ2

µ2
Ai(αs(µ)) +Di(αs((1− z)m̂))

]}
.

The functions Ai and Di may be calculated perturbatively as series in αs,

Ai(αs) =
αs
π
A

(1)
i +

(αs
π

)2
A

(2)
i +

(αs
π

)3
A

(3)
i +O(α4

s)

Di(αs) =
(αs
π

)2
D

(2)
i +O(α3

s) , (5.21)

where, up to NNLL, one needs the coefficients [213–220]

A
(1)
i = Ci , A

(2)
i =

1

2
Ci

[
CA

(
67

18
− π2

6

)
− 5

9
Nf

]
, (5.22)

A
(3)
i =

1

4
Ci

[
C2
A

(
245

24
− 67

9
ζ(2) +

11

6
ζ(3) +

11

5
ζ(2)2

)

− 1

27
N2
f + CFNf

(
−55

24
+ 2ζ(3)

)

+CANf

(
−209

108
+

10

9
ζ(2)− 7

3
ζ(3)

)]
,

D
(2)
i = Ci

[
CA

(
−101

27
+

11

3
ζ(2) +

7

2
ζ(3)

)
+Nf

(
14

27
− 2

3
ζ(2)

)]
,

with Nf the number of flavors and

Cq = CF =
N2
c − 1

2Nc
=

4

3
, Cg = CA = Nc = 3 . (5.23)

The Di term in the radiative factor ∆N
i first appears at NNLL accuracy [39, 41, 171,

212]. It takes into account logarithms that arise from soft gluons that are emitted at
large angles. Incoming and outgoing external lines of a given parton type carry the
same Di term, as discussed in the Appendix.

Finally, the coefficient Ri in equation (5.20) ensures that our soft functions for this
process are defined relative to that for the Drell-Yan process; again see the Appendix
for details. To the order we consider, we have

Ri(αs) = 1− 3αs
4π

A
(1)
i ζ(2) +O(α2

s) . (5.24)
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Evaluating the integrals in equation (5.20), one obtains an explicit expression for the
NNLL expansion of the function ∆N

i :

∆N
i

(
αs(µR),

µR
m̂
,
µF
m̂

)
= R̃i(αs(µR)) exp

{
h

(1)
i (λ) ln N̄ + h

(2)
i

(
λ,
µR
m̂
,
µF
m̂

)

+ αs(µR)h
(3)
i

(
λ,
µR
m̂
,
µF
m̂

)}
. (5.25)

Here R̃i is a combination of Ri in equation (5.24) and a π2-term arising in the NNLL
expansion [171]:

R̃i(αs) = 1 +
αs
4π

A
(1)
i ζ(2) +O(α2

s) . (5.26)

In (5.25) we have furthermore defined λ = b0αs(µR) ln(NeγE ) with γE the Euler con-

stant. In the following we denote NeγE ≡ N̄ . The functions h
(1)
i , h

(2)
i , h

(3)
i read

h
(1)
i (λ) =

A
(1)
i

2πb0λ
(2λ+ (1− 2λ) ln(1− 2λ)) , (5.27a)

h
(2)
i

(
λ,
µR
m̂
,
µF
m̂

)
= − A

(2)
i

2π2b20
[2λ+ ln(1− 2λ)] (5.27b)

+
A

(1)
q b1

2πb30

[
2λ+ ln(1− 2λ) +

1

2
ln2(1− 2λ)

]

−A
(1)
i

2πb0
[2λ+ ln(1− 2λ)] ln

µ2
R

m̂2
+
A

(1)
i

πb0
λ ln

µ2
F

m̂2
,

and [41, 212]

h
(3)
i

(
λ,
µR
m̂
,
µF
m̂

)

=
2A

(1)
i

π
ζ(2)

λ

1− 2λ
− A

(2)
i b1

2π2b30

1

1− 2λ

[
2λ+ ln(1− 2λ) + 2λ2

]

+
A

(1)
i b21

2πb40(1− 2λ)

[
2λ2 + 2λ ln(1− 2λ) +

1

2
ln2(1− 2λ)

]

+
A

(1)
i b2

2πb30

[
2λ+ ln(1− 2λ) +

2λ2

1− 2λ

]
+
A

(3)
i

π3b20

λ2

1− 2λ

+
A

(2)
i

π2b0
λ ln

µ2
F

m̂2
− A

(1)
i

2π
λ ln2 µ

2
F

m̂2
+
A

(1)
i

π
λ ln

µ2
R

m̂2
ln
µ2
F

m̂2

− 1

1− 2λ

(A(1)
i b1

2πb20
[2λ+ ln(1− 2λ)]− 2A

(2)
i

π2b0
λ2
)

ln
µ2
R

m̂2

+
A

(1)
i

π

λ2

1− 2λ
ln2 µ

2
R

m̂2
− D

(2)
i

2π2b0

λ

1− 2λ
. (5.28)

Here b0, b1, b2 are the first three coefficients of the QCD beta function which are given
by equation (1.25) and [16, 17].
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Color trace contribution

Next we discuss the trace Tr{HS†NSSN} in color space in equation (7.10). We note
that this is the only contribution to the resummed cross section that depends on the
difference of the rapidities ∆η. Each of the factors Hab→cd, SN,ab→cd, Sab→cd is a
matrix in the space of color exchange operators [40, 177, 178]. The Hab→cd are the
hard-scattering functions. They are perturbative and have the expansions

Hab→cd (∆η, αs) =
(αs
π

)2 [
H

(0)
ab→cd (∆η) +

αs
π
H

(1)
ab→cd (∆η) +O(α2

s)
]
. (5.29)

The LO (i.e. O(α2
s)) contributions H

(0)
ab→cd may be found in [40, 177–179]. For resum-

mation beyond NLL accuracy, one needs all entries of the NLO hard-scattering matrices

H
(1)
ab→cd. These matrices may be extracted from a color decomposed one-loop calcula-

tion [200, 209]. We will outline the derivation of the first-order corrections H
(1)
ab→cd in

Section 5.3.2. We note that they depend in principle also on the renormalization scale

µR, in the form of a term ∝ ln(µR/m̂)H
(0)
ab→cd. This dependence, however, has been

absorbed into the contribution involving the function ξR in (7.10); see below.

The Sab→cd are known as soft functions. In general, they depend on the rapidity
difference ∆η and on the strong coupling whose argument is to be set to m̂/N̄ [40,
177, 178, 188]. This dependence on m̂/N̄ and hence on N occurs first at NNLL. The
soft functions have the expansion

Sab→cd
(
αs(m̂/N̄),∆η

)
= S

(0)
ab→cd +

αs(m̂/N̄)

π
S

(1)
ab→cd (∆η) +O(α2

s) . (5.30)

Relating the coupling at scale m̂/N̄ to that at scale µR, one can construct the explicit
N -dependence of the soft matrix at NLO. To the accuracy of resummation that we are
considering in this work, it is sufficient to use

αs(m̂/N̄) =
αs(µR)

1− 2λ
. (5.31)

The LO expressions S
(0)
ab→cd, which are independent of ∆η, may also be found in [40,

177–179]. Like the hard-scattering matrices H
(1)
ab→cd, at NNLL accuracy, we need the

explicit expressions for the full NLO soft-matrices S
(1)
ab→cd. These may be extracted by

performing a color-decomposed calculation of the 2 → 3 contributions to the partonic
cross sections in the eikonal approximation, as will be described in Section 5.3.3.

The resummation of wide-angle soft gluons is contained in Sab→cd. The two exponentials
S†N and SN that enclose the soft function Sab→cd within the trace structure appear
when solving the renormalization group equation for the soft function [40, 177–179].
The exponentials are given in terms of soft anomalous dimensions Γab→cd:

SN,ab→cd
(

∆η, αs(µR),
µR
m̂

)
= P exp

[
1

2

∫ m̂2/N̄2

m̂2

dµ2

µ2
Γab→cd (∆η, αs(µ))

]
, (5.32)
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where P denotes path ordering. The soft anomalous dimension matrices start at O(αs),

Γab→cd (αs,∆η) =
αs
π

Γ
(1)
ab→cd (∆η) +

(αs
π

)2
Γ

(2)
ab→cd(∆η) +O(α3

s) . (5.33)

Their first-order terms are presented in [40, 177–179, 221]. We will discuss the Γab→cd
matrices in more detail in Section 5.3.3. For NNLL resummation, we also need to take

into account the second-order contributions Γ
(2)
ab→cd which were derived in [222–225] and

are determined by the one-loop terms:

Γ
(2)
ab→cd(∆η) =

K

2
Γ

(1)
ab→cd(∆η) , (5.34)

where K = CA(67/18 − π2/6) − 5Nf/9. We also give here our result for the NNLL
expansion of the integral in equation (5.32):

lnSN,ab→cd
(

∆η, αs,
µR
m̂

)
(5.35)

= Γ
(1)
ab→cd (∆η)

[
ln(1− 2λ)

2πb0
+
αs
π

1

2b20π(1− 2λ)

×
(
b1π(2λ+ ln(1− 2λ))− b0λ

(
K + 2πb0 ln

µ2
R

m̂2

))]
.

We note that in our phenomenological applications we follow [200] and perform the
exponentiation of the matrices numerically by iterating the exponential series to an
adequately high order.

In order to clarify the roles of the various matrices appearing in the color trace, it is
instructive to analyze the structure of the resummed cross section (7.10) in Mellin space
after expansion to NLO:

ω̃resum
ab→cd

(
N,∆η, αs(µR),

µR
m̂
,
µF
m̂

)

=

(
αs(µR)

π

)2 [
Tr{H(0)S(0)}ab→cd

{
1 + 2b0αs(µR) ln

µ2
R

m̂2

+
αs(µR)

π

∑

i=a,b,c,d

(
A

(1)
i ln2 N̄ +

1

4
A

(1)
i ζ(2)

+
(
A

(1)
i ln N̄ +

1

2
B

(1)
i

)
ln
µ2
F

m̂2

)}

+
αs(µR)

π
Tr
{
−
[
H(0)(Γ(1))†S(0) +H(0)S(0)Γ(1)

]
ln N̄

+H(1)S(0) +H(0)S(1)
}
ab→cd

]
+O(α4

s) (5.36)
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Here the term ∝ ζ(2) arises from the coefficient R̃i in (5.26). We have anticipated the
contributions by the functions ξR and ξF in (7.10) that will be specified in the next
subsection. ξR yields the term involving the renormalization scale, and ξF contributes

the ones ∝ B(1)
i , with

B(1)
q = −3

2
CF , B(1)

g = −2πb0 . (5.37)

The term Tr{H(0)S(0)}ab→cd in (5.36) is proportional to the LO function ω
(0)
ab→cd(∆η)

introduced in equation (5.10). In [200] (as in many previous studies of threshold resum-
mation for hadronic hard-scattering), the combination Tr[H(1)S(0) + H(0)S(1)], which
carries no dependence on N , was extracted as a whole by matching the expression in
equation (5.36) to the NLO calculation at threshold. Of course, this is not sufficient for
determining the full first-order matrices H(1) and S(1). However, it is a valid approach
at NLL accuracy, where the three most dominant towers of logarithms are taken into
account. For a given fixed-order expansion to O(αks), the following terms are under
control:

αks

{
ln2k N̄ , ln2k−1 N̄ , ln2k−2 N̄

}
. (5.38)

It is straightforward to see that the hard and soft matrices will contribute to the third
tower of threshold logarithms always in the combination Tr{H(1)S(0) +H(0)S(1)}ab→cd
in the following way:

(αs
π

)k ∑
iA

(1)
i

(k − 1)!
Tr
{
H(1)S(0) +H(0)S(1)

}
ab→cd

ln2k−2 N̄ . (5.39)

Hence, to NLL, it is sufficient to know the combined expression of H(1) and S(1) instead
of having to compute the full matrices separately. It is then legitimate to that order to
approximate the trace term in the resummed formula by

Tr
{
HS†NSSN

}
ab→cd,NLL

=
(

1 +
αs
π
C

(1),NLL
ab→cd

)
Tr
{
H(0)S†NS(0)SN

}
ab→cd

, (5.40)

where

C
(1),NLL
ab→cd (∆η) ≡

Tr
{
H(1)S(0) +H(0)S(1)

}
ab→cd

Tr
{
H(0)S(0)

}
ab→cd

. (5.41)

This was the approach adopted in [200] and also, for example, in studies on single-
inclusive hadron [226] or jet production [1, 227].

On the other hand, in order to control the fourth tower of logarithms, αks ln2k−3 N̄ ,
one needs to know H(1) and S(1) explicitly as they also appear separately in various
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combinations with the anomalous dimension matrices. Computation of the full matrices
is therefore a necessary ingredient for NNLL resummation. Clearly, having the matrices
at hand, one can compute also the known combination Tr{H(1)S(0) + H(0)S(1)}ab→cd,
which provides an important cross-check on them. We stress further that, in order to
fully take into account also the fifth tower αks ln2k−4 N̄ at NNLL, one would need to
know the full matrices H(2) and S(2) and perform a matching to NNLO. Although H(2)

became available very recently [199], this is beyond the scope of the present work.

We finally note that a new feature which first appears at NNLL is that the hard-
scattering matrix H obtains an imaginary part. This is because H is constructed from
virtual corrections to partonic 2 → 2 scattering, which contain logarithms of ratios of
space- and timelike invariants. We write

H = HR + iHI (5.42)

with HR and HI real. It turns out that HR is a symmetric matrix, whereas HI is
antisymmetric; see Section 5.3.2. Hence, the hard-scattering matrix H as a whole is
hermitian, as it should be. The imaginary part HI contributes to the resummed cross
section due to the fact that the remaining terms inside the color trace in the resummed
cross section (7.10), M ≡ eΓ†SeΓ, also develop an imaginary part since the anomalous
dimension matrices are complex-valued [40, 177, 178]. M is also hermitian as the soft
matrix S is symmetric, and therefore we may also decompose M = MR+ iMI with MR

symmetric and MI antisymmetric. The trace Tr {HM} is then real, as it must be, but
both the real and imaginary parts of H,M contribute:

Tr {HM} = Tr {HRMR} − Tr {HIMI} . (5.43)

Note that the contribution by the imaginary part of H drops out from Tr[H(1)S(0) +
H(0)S(1)], so that it is not present at NLL. Performing an analytical fixed-order expan-
sion of our NNLL resummed result, we find that the imaginary parts of H and M first
start to play a role at N3LO, where they contribute to the fifth tower, α3

s ln2 N̄ . We
note, however, that the imaginary parts of Γab→cd also contribute to the real part of
M , since M = eΓ†SeΓ. It turns out that they already appear in the f ourth tower of
logarithms. In this way we see that the imaginary parts of the various contributions
are important ingredients of the NNLL resummed cross section.

Functions ξR and ξF

The N -independent function ξabcdF in equation (7.10) addresses the factorization scale
dependence of the cross section [40, 177–179, 228]:

ln ξabcdF

(
αs(µR),

µF
m̂

)
= −1

2

∑

i=a,b,c,d

∫ m̂2

µ2
F

dµ2

µ2

αs(µ)

π
B

(1)
i , (5.44)
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where we are summing over all four external partons. The coefficients B
(1)
i , which

have been given in equation (5.37), correspond to the δ-function contributions to the
corresponding LO diagonal parton-to-parton splitting functions and thus depend on
whether the considered parton i is a quark or a gluon. As follows from [229], the function
ξabcdF takes into account all N -independent pieces corresponding to the evolution of
parton distributions and fragmentation functions between scales µF and m̂. Again

its first-order contribution would explicitly appear in H
(1)
ab→cd, from where it has been

absorbed. It is straightforward to expand (5.44) to the desired NNLL accuracy.

ξR governs the renormalization scale dependence of the resummed cross section. This
function was also introduced in [179]. ξR essentially serves to set the scale in the strong
coupling constant in the overall factor α2

s (see equation (5.8)) of the cross section to m̂:

ln ξR

(
αs(µR),

µR
m̂

)
= 2

∫ m̂2

µ2
R

dµ2

µ2
β(αs(µ)) . (5.45)

Evaluating the integral while keeping only the first two terms in the QCD β-function,

β(αs) ≡
1

αs

dαs
d log(µ2)

= −b0αs − b1α2
s +O(α3

s) , (5.46)

and expanding the result up to second order in αs, we find

ln ξR

(
αs,

µR
m̂

)
= 2b0αs ln

µ2
R

m̂2
+ α2

s

(
2b1 ln

µ2
R

m̂2
+ b20 ln2 µ

2
R

m̂2

)
. (5.47)

Here b0, b1 are as given in (1.25). The first term on the right reproduces the explicit
µR-dependence of the first-order hard-scattering function that we have chosen to pull

out of H
(1)
ab→cd. The additional terms generated by this expression produce higher-

order scale-dependent contributions that will occur in the perturbative series. When
combined with resummation at NNLL level, they necessarily help to stabilize the cross
section with respect to changes in µR, as we shall discuss in more detail now.

Following [230] and suppressing all arguments except for the renormalization scale, we
write the perturbative expansion of a generic partonic cross section ω as

ω =

∞∑

k=0

αk+2
s (µR)ω(k)(µR) . (5.48)

The LO coefficient ω(0) is independent of µR; all higher-order terms depend on µR
through the logarithm L ≡ ln(µ2

R/m̂
2). Truncating the series at some fixed k = n,

the uncertainty introduced by the renormalization scale dependence is of the order of
O(αs(µR)n+3). In the following we consider as an example the renormalization scale
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dependence after truncation to next-to-next-to-leading order (NNLO), which is given
by

ω|NNLO = α2
s(µR)ω(0) + α3

s(µR)ω(1)(µR) + α4
s(µR)ω(2)(µR)

= α2
s(µR)ω(0) + α3

s(µR)
(
ω′ (1) + 2b0 Lω

(0)
)

+α4
s(µR)

(
ω′ (2) + 3b0 Lω

′ (1) + (3b20 L
2 + 2b1 L)ω(0)

)
, (5.49)

where the coefficients ω′ (k) denote the terms in ω(k) that do not carry any dependence
on µR. As is well-known, the µR-dependence of the NNLO cross section is entirely
determined by the NLO terms in the perturbative expansion.

We may now compare the general expression in equation (5.49) to an NNLO expan-
sion of the resummed cross section ω̃resum at either NLL or NNLL. First of all, we find
that the NLO scale dependence and the contribution (3b20 L

2 + 2b1 L)ω(0) at NNLO
are entirely reproduced by the exponential ξR in equations (5.45) and (5.47). The in-
teresting term at NNLO is now the term 3b0 Lω

′ (1) in the last line. Out of the five
towers of threshold logarithms that appear at NNLO, the renormalization scale depen-
dence resides only in the lowest three. Indeed, as can be seen from the explicit NLO
expansion given in equation (5.36), the coefficient ω′ (1) contains terms proportional to
ln2 N̄ , ln N̄ , 1 which, at NNLO, correspond to the 3rd, 4th and 5th towers. If we now
compare to the NNLO expansion of the NLL-resummed cross section, we find that only
the scale dependence of the 3rd tower is correctly reproduced. For the 4th and 5th tower,
that are not fully taken into account at NLL, we find a factor of 2b0 L instead of 3b0 L
multiplying the corresponding part of the coefficient ω′ (1). If instead resummation is
performed at NNLL, the scale dependence in the 4th tower is correctly reproduced as
well, whereas in the 5th tower the incorrect factor 2b0 L remains. (In addition, of course,
the scale-independent coefficient ω′ (2) also changes). As it turns out, going from NLL
to NNLL leads to a dramatic reduction of the renormalization scale uncertainty of the
resummed cross section, as will be seen in our numerical studies in Sec. 5.4.

5.3.2. Hard-scattering function

In this Section we present our derivation of the matrices H
(1)
ab→cd. We note that these

were also determined in [209]; the results of our independent computation are in agree-
ment with that reference. As the resulting expressions become rather lengthy in general,
we present explicit results only for the simplest partonic channel, qq′ → qq′. For ease
of notation, we will usually drop the ubiquitous subscript “qq′ → qq′ ” of the matrices.
We also refer the reader to Ref. [179], where many details of the relevant color bases
have been collected. In fact, for each partonic channel we adopt the corresponding color
basis from that reference. We note that our choice differs from the one in [209], where
an overcomplete basis was chosen for the gg → gg channel.
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5.3. Threshold resummation for hadron-pair production

Color basis and lowest-order contribution

We consider the partonic process

q(p1, a)q′(p2, b)→ q(p3, c)q
′(p4, d) , (5.50)

where the pi are the momenta of the incoming and outgoing quarks, and the indices
a, b, c, d denote their color. Given the fact that the leading-order process has only a
t-channel contribution, it is convenient to choose the t-channel octet-singlet color basis
which leads to a simple form for the lowest-order hard-scattering matrix H(0). The
contributing color tensors in this basis are given by (1=octet, 2=singlet)

C1 ≡ T gcaT gdb =
1

2

(
δad δbc −

1

Nc
δac δbd

)
,

C2 ≡ δacδbd , (5.51)

where T g is the generator in the fundamental representation and the indices a, b, c, d will
be kept implicit throughout most of our discussion. The soft and hard functions become
matrices in this basis, whose entries are determined as the coefficients multiplying the
respective tensor structures. The elements of the leading-order contribution to the soft
function S(0) in equation (5.30) are given by (I, J = 1, 2)

(S(0))JI ≡ Tr[C†JCI ] ≡
Nc∑

a,b,c,d=1

C∗JCI . (5.52)

In our basis one finds

S(0) =

(
N2
c−1
4 0

0 N2
c

)
. (5.53)

We next color-decompose the Born amplitude for the process as

M (0) =
∑

I

h
(0)
I CI . (5.54)

Squaring the amplitude and summing (averaging) over external colors and helicities,
we find

1

4N2
c

Nc∑

a,b,c,d=1

|M (0)|2 =
1

4N2
c

Nc∑

a,b,c,d=1

∑

IJ

h
(0)
I h

(0)∗
J C∗JCI (5.55)

=
1

4N2
c

∑

IJ

h
(0)
I h

(0)∗
J S

(0)
JI ≡ Tr[H(0)S(0)] ,

where

(H(0))IJ ≡
1

4N2
c

h
(0)
I h

(0)∗
J . (5.56)
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While the matrix H(0) follows from a simple direct calculation, we extract it from the
results of [206], since we can then follow the same strategy for the one-loop results given
there. The color-decomposed tree-level four-point helicity amplitudes for qq′ → qq′ are
given in [206] as

Aλλ′tree =

(
δad δbc −

1

Nc
δac δbd

)
aλλ

′
4;0

≡ C1 ×
(

2aλλ
′

4;0

)
+ C2 × 0 , (5.57)

where λλ′ denotes the helicity configuration of the initial partons. For a given pair

of helicity settings we have h
(0)
I=1 = 2a4;0, h

(0)
I=2 = 0. The squares of the two helicity

amplitudes are

|a−−4;0 |2 =
s2

t2
,

|a−+
4;0 |2 =

u2

t2
, (5.58)

with the Mandelstam variables

s = (p1 + p2)2 = m̂2 ,

t = (p1 − p3)2 = −m̂2 e−∆η

e∆η + e−∆η
,

u = (p1 − p4)2 = −m̂2 e∆η

e∆η + e−∆η
. (5.59)

Averaging over external colors and helicities appropriately, following equation (5.55),
we obtain the lowest-order hard-scattering matrix as

H(0) =

(
2
N2
c

s2+u2

t2
0

0 0

)
≡
(
h0 0

0 0

)
, (5.60)

in agreement with [179]. As expected, its only entry is in the “octet-octet” corner,
thanks to our choice of color basis.

Hard part at one loop

The hard-scattering matrix Hab→cd is a perturbative function that contains all con-
tributions associated with momenta of the order of the hard scale m̂. Since in the
threshold regime there is no phase space for hard on-shell radiation, only purely virtual
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5.3. Threshold resummation for hadron-pair production

contributions contribute to Hab→cd. Writing the virtual one-loop amplitude as (again
we suppress the indices for the external particles)

M (1),virt =
∑

I

h̃
(1)
I CI , (5.61)

and considering the interference with the Born amplitude, the elements of the first-order

contribution H
(1)
ab→cd are obtained from the finite part of

(H̃(1))IJ ≡
1

4N2
c

(
h̃

(1)
I h

(0)∗
J + h

(0)
I h̃

(1)∗
J

)
. (5.62)

Most of the one-loop amplitudes that we need are given in [206]. For the gluonic channel
gg → gg, we additionally use the results of [207, 208]. For the process qq′ → qq′, the
one-loop four-point helicity amplitudes are given in [206] as

Aλλ′1loop =

(
δad δbc −

1

Nc
δac δbd

)
aλλ

′
4;1 + δad δbc a

λλ′
4;2

= C1 × 2
(
aλλ

′
4;1 + aλλ

′
4;2

)
+ C2 ×

1

Nc
aλλ

′
4;2 . (5.63)

From this we can determine the h̃
(1)
I . Keeping in mind that we have pulled out an overall

factor αs/π in our definition of the hard-scattering matrix H(1), cf. equation (5.29), we

have h̃
(1)
I=1 = 2(aλλ

′
4;1 + aλλ

′
4;2 ) and h̃

(1)
I=2 = aλλ

′
4;2 /Nc. As shown in [206], the aλλ

′
4;1 , aλλ

′
4;2 are

proportional to the tree-level aλλ
′

4;0 in (5.57) for each helicity configuration:

aλλ
′

4;1 = CΓ F
λλ′
4;1 a

λλ′
4;0 ,

aλλ
′

4;2 = CΓ F
λλ′
4;2 a

λλ′
4;0 , (5.64)

where in our normalization

CΓ =
eγEε

4

Γ2(1− ε) Γ(1 + ε)

Γ(1− 2ε)
. (5.65)

Here dimensional regularization with D = 4 − 2ε dimensions is used. The F λλ
′

4;1 , F λλ
′

4;2

are functions of the Mandelstam variables. Using the shorthand notation

L(t) = log
−t
s
, L(u) = log

−u
s
, L(s) = −iπ , (5.66)
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we have from [206]:

F−−4;1 = Nc

[
− 2

ε2
− 3

ε
+ 2

L(s)

ε
+ L2(t)− 2

3
L(t) (1 + 3L(s)) +

13

9
+ π2

]

+Nf

[
2

3
L(t)− 10

9

]
− 1

Nc

[
− 2

ε2
− 3

ε
− 2

ε
(L(s)− L(t)− L(u))

−8− L2(t) +
u2 − s2

2s2

(
(L(t)− L(u))2 + π2

)

+2L(t)(1 + L(s)− L(u))− 1

s
(uL(t) + tL(u))

]
+ 4πb0 log

(
µ2
R

m̂2

)
,

F−+
4;1 = Nc

[
− 2

ε2
− 3

ε
+ 2

L(s)

ε
+ L2(t)− 2

3
L(t) (1 + 3L(s)) +

13

9
+ π2

]

+Nf

[
2

3
L(t)− 10

9

]
− 1

Nc

[
− 2

ε
− 3

ε
− 2

ε
(L(s)− L(t)− L(u))

−8− L2(t) + L(t)(3 + 2L(s)− 2L(u))

]

+

(
Nc +

1

Nc

)[
s2 − u2

2u2
(L2(t)− 2L(s)L(t)) +

t

u
(L(t)− L(s))

]

+4πb0 log

(
µ2
R

m̂2

)
,

F−−4;2 = 2CF

[
2

ε
(L(u)− L(s)) +

u2 − s2

2s2

(
L2(t) + L2(u) + π2

)

+
t

s
(L(t)− L(u)) + 2L(s)L(t)− u2 + s2

s2
L(t)L(u)

]
,

F−+
4;2 = 2CF

[
2

ε
(L(u)− L(s))− s2 − u2

2u2
L2(t)− t

u
(L(t)− L(s))

−2L(t)L(u) +
s2 + u2

u2
L(t)L(s)

]
.

(5.67)

Note that the loop corrections have imaginary parts arising from the analytic continu-
ation of Mandelstam variables into the physical region s > 0; t, u < 0. They appear in
the finite part as well as in the pole contributions.
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From this we can construct the matrix H̃(1) defined in equation (5.62) as

H̃(1) =
CΓ

4N2
c



H̃

(1)
11 H̃

(1)
12

H̃
(1)
21 H̃

(1)
22


 , (5.68)

with

H̃
(1)
11 = 16

(
Re
(
F−−4;2 + F−−4;1

) s2

t2
+Re

(
F−+

4;2 + F−+
4;1

) u2

t2

)
, (5.69a)

H̃
(1)
12 =

4

Nc

(
F−−4;2

∗ s2

t2
+ F−+

4;2
∗u2

t2

)
, (5.69b)

H̃
(1)
21 =

4

Nc

(
F−−4;2

s2

t2
+ F−+

4;2

u2

t2

)
, (5.69c)

H̃
(1)
22 = 0 . (5.69d)

The full expression for this matrix is rather lengthy. It has the following explicit struc-
ture:

H̃(1) =
1

2

[(
−4CF

ε2
− 6CF

ε

)
H(0) − L(s)

ε

CF
Nc

(
0 −1
1 0

)

−2

ε
L(t)

h0

Nc

(
1 0
0 0

)
+

1

ε
L(u)

h0

Nc

(
2(N2

c − 2) CF
CF 0

)

+4πb0 log

(
µ2
R

m̂2

)
H(0)

]
+ H(1) , (5.70)

where h0 and H(0) have been given in (5.60). Following [231], we have identified the
finite part in the last line with the first-order correction to the hard-scattering matrix.
This finite part is a function of the Mandelstam variables only. As one can see, the
explicit dependence on the renormalization scale µR has been separated from H(1). It
is proportional to H(0) and therefore fully taken into account by the exponential ξR in
equation (5.45), as discussed in Sec. 5.3.1.

To present our final results for H(1), we adopt the notation of Ref. [209], where the
matrix was derived in the context of the soft-collinear effective theory. We find full
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agreement with the result in their equation (39):

(
H(1)

)
11

= Re
{

1

2N2
c

[s2 + u2

t2
(
−4CFL(t)2 + 2X1(s, t, u)L(t) + 2Y

)

+
s2

t2
(CA − 4CF )Z(s, t, u)− u2

t2
(2CA − 4CF )Z(u, t, s)

]}
,

(
H(1)

)
21

=
1

2N2
c

[s2 + u2

t2
X2(s, t, u)L(t)− s2

t2
CF
2CA

Z(s, t, u)

+
u2

t2
CF
2CA

Z(u, t, s)
]
,

(
H(1)

)
12

=
(
H(1)

)∗
21
,

(
H(1)

)
22

= 0 , (5.71)

with [209]

X1(s, t, u) = 6CF − 4πb0 + 8CF [L(s)− L(u)]

−2CA[2L(s)− L(t)− L(u)] ,

X2(s, t, u) =
2CF
CA

[L(s)− L(u)] ,

Y = CA

(
10

3
+ π2

)
+ CF

(
π2

3
− 16

)
+

5

3
4πb0 ,

Z(s, t, u) =
t

s

(
t+ 2u

s
[L(u)− L(t)]2 + 2[L(u)− L(t)] + π2 t+ 2u

s

)
. (5.72)

There are several ways of checking the validity of the results. The simplest one is to
compute

Tr
[
H̃(1) S(0)

]
, (5.73)

which should reproduce the known one-loop virtual correction to qq′ → qq′ scattering
given in [206]. This indeed turns out to be the case. Since S(0) is diagonal in our basis,
this provides a check on the diagonal elements of H(1).

We also note that the pole terms of the NLO virtual amplitudes M (1),virt in (5.61),
including their imaginary parts, have been predicted in [231, 232] to be given by

h̃
(1)
I |pole

terms
=

1

2

[
−CF

(
2

ε2
+

3

ε

)
1 +

1

ε
Γ

(1)
qq′→qq′

]

IJ

h
(0)
J , (5.74)

where 1 denotes the 2×2 unit matrix and Γ
(1)
qq′→qq′ is the soft anomalous dimension ma-

trix introduced in (5.32) which possesses imaginary parts (the explicit result for Γ
(1)
qq′→qq′
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is given in equation (5.85) below). We have verified that this correctly reproduces the

pole terms in the h̃
(1)
I .

In the way described in this subsection we have determined the one-loop hard-scattering
matrix for each partonic channel contributing to di-hadron production. As one can see
in equations (5.70),(5.71), for qq′ → qq′ the final expression always contains the squares
of the tree-level helicity amplitudes a4;0. This becomes different for partonic channels
involving both external quarks and gluons.

5.3.3. Soft function

We now turn to the computation of the first-order correction S
(1)
ab→cd to the soft function

in equation (5.30). Again we present explicit results only for the qq′ channel, although
we have of course considered all partonic channels. In fact, in the course of the study of

qq′ scattering we find a general construction rule for the soft matrix S
(1)
ab→cd that turns

out to be applicable to all partonic channels.

Color structure of diagrams in the eikonal approximation

In order to to compute the soft matrix at NLO for qq′ scattering, we need to consider
the process q(p1)+q′(p2)→ q(p3)+q′(p4)+g(k), where g denotes a radiated gluon with
soft momentum k. The diagrams are treated in the eikonal approximation, decomposed
according to our color basis. They are shown in Fig. 5.1. The blobs on either side of
the cut denote a Born hard part that can be a color-octet or a singlet. There are
six diagrams labeled “34” or “12” for example, depending on the external legs between
which the additional gluon is exchanged. Eventually, all contributions must be summed.
Using the notation of the previous subsection, each of the diagrams in Fig. 5.1 has the
structure

∑

IJ

h
(0)
I h

(0)∗
J (Rij)JI Iij , (5.75)

where ij labels the diagram, Iij is an integral over the eikonal factor corresponding to
the diagram that we will specify below, and the (Rij)JI form a 2×2 matrix with entries
labeled by JI =octet-octet, singlet-octet, etc. For example, for the “octet-octet” entry
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of R34 we have

(R34)J=octet
I=octet

=
∑

a,b,c,d,c′,d′
g,g1,g2

T g2

bd′T
g2

ac′ T
g
d′dT

g
c′c T

g1

db T
g1
ca

=
∑

g,g1,g2

Tr[T g2T gT g1 ] Tr[T g2T gT g1 ]

= −N
2
c − 1

4Nc
= −CF

2
. (5.76)

Here g corresponds to the color of the gluon exchanged between the external legs,
while g1 and g2 are those for the gluons in the amplitudes on the two sides of the cut.
Computing in this way the matrices Rij for all diagrams, we find:

R12 = R34 =
CF
2

(
−1 Nc

Nc 0

)
,

R13 = R24 =
CF
2

(
−1

2 0

0 2N2
c

)
,

R14 = R23 =
CF
2

(
1
2(N2

c − 2) Nc

Nc 0

)
. (5.77)

For the sum of all diagrams we thus have

∑

ij

Rij Iij =
CF
2

(
(RJ)11 (RJ)12

(RJ)21 (RJ)22

)
, (5.78)

with

(RJ)11 =
1

2
(I13 + I24)− I12 − I34 −

N2
c − 2

2
(I14 + I23) (5.79a)

(RJ)12 = Nc(I12 + I34 − I14 − I23) (5.79b)

(RJ)21 = (RJ)12 (5.79c)

(RJ)22 = −2N2
c (I13 + I24) (5.79d)

We note that the eikonal factor for the interference between initial- and final-state
emission has an extra minus sign which we included here.

Integrals Iij

Next, we need to specify and compute the Iij . They are essentially given by eikonal
factors integrated over the gluon phase space. They are normalized relative to the
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Figure 5.1.: Diagrams relevant for the calculation of the NLO soft matrix S(1). The
blobs represent a Born amplitude and the letters are color indices.
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Born cross section. Adopting the three-particle phase space in D = 4− 2ε dimensions
from [200] (see also [188]), one has

Iij = −αs
π

s

4π
eεγE

Γ(1− ε)
Γ(1− 2ε)

∫ 1

0
dτ̂ τ̂−ε(1− τ̂)1−2ε

∫
dΩ

pi · pj
(pi · k)(pj · k)

, (5.80)

where

∫
dΩ =

∫ π

0
dψ sin1−2ε ψ

∫ π

0
dθ sin−2ε θ . (5.81)

We work in the c.m.s. of the incoming partons; ψ and θ are the gluon’s polar and
azimuthal angles relative to the plane defined by the directions of incoming and outgoing
hard partons. The relevant angular integrals are well-known [111]:

∫
dΩ

1

(1− cosψ)j(1− cosψ cosχ− sinψ cos θ sinχ)k

= 2π
Γ(1− 2ε)

Γ(1− ε)2
2−j−k B(1− ε− j, 1− ε− k) 2F1

(
j, k, 1− ε, cos2 χ

2

)
, (5.82)

with the Hypergeometric function 2F1. Performing the integrations over dΩ, but leaving
the integration over τ̂ (or, equivalently, gluon energy) aside for the moment, we find
near threshold

dI12

dτ̂
=
dI34

dτ̂
= −αs

π

[(
1

ε2
− π2

4

)
δ(1− τ̂)− 2

ε

1

(1− τ̂)+

+4

(
ln(1− τ̂)

1− τ̂

)

+

]
,

dI13

dτ̂
=
dI24

dτ̂
= −αs

π

[(
1

ε2
− π2

4
− 1

ε
ln

(
− t
s

)
− Li2

(
−u
t

))
δ(1− τ̂)

+2

(
−1

ε
+ ln

(
− t
s

))
1

(1− τ̂)+
+ 4

(
ln(1− τ̂)

1− τ̂

)

+

]
,

dI23

dτ̂
=
dI14

dτ̂
=
dI13

dτ̂

∣∣∣
t↔u

, (5.83)

where Li2 denotes the Dilogarithm function.
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Extraction of S(1)

Combining equations (5.78) and (5.83), we obtain

∑

ij

Rij
dIij
dτ̂

= CF
αs
π

[{
δ(1− τ̂)

(
1

2ε2
− π2

8

)
− 1

ε

1

(1− τ̂)+

+ 2

(
ln(1− τ̂)

1− τ̂

)

+

}

×
(
N2
c − 1 0

0 4N2
c

)
+

{
δ(1− τ̂)

1

2ε
− 1

(1− τ̂)+

}

×
(

ln
(
− t
s

)
+ (2−N2

c ) ln
(
−u
s

)
−2Nc ln

(
−u
s

)

−2Nc ln
(
−u
s

)
−4N2

c ln
(
− t
s

)
)

+ δ(1− τ̂)
1

2

(
Li2
(
−u
t

)
+ (2−N2

c ) Li2
(
− t
u

)
−2Nc Li2

(
− t
u

)

−2Nc Li2
(
− t
u

)
−4N2

c Li2
(
−u
t

)
)]

. (5.84)

In the first term we recognize the lowest-order soft matrix of equation (5.53). The matrix
in the second term has a direct relation to the one-loop soft anomalous dimension matrix

Γ
(1)
qq′→qq′ introduced in (5.32),(5.33), which in our color basis is given by [179]

Γ
(1)
qq′→qq′ =

(
1
Nc

(2S − T − U) + 2CFU 2(U − S)

CF
Nc

(U − S) 2CFT

)
, (5.85)

with

S = 0, T = ln

(−t
s

)
+ iπ, U = ln

(−u
s

)
+ iπ . (5.86)

An equally possible choice is S = −iπ, T = ln
(−t
s

)
, U = ln

(−u
s

)
, which matches the

logarithms in equation (5.66). One easily checks that Γ
(1)
qq′→qq′ differs for the two choices

only by a term proportional to the unit matrix which commutes with all other matrices
and hence cancels in the final result. This holds true for all partonic channels. Note
that even for the resummed cross section only the combination eΓ†SeΓ contributes. One
easily checks that the matrix in the second line of the right-hand-side of (5.84) is given
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by −[(Γ(1))†S(0) + S(0)Γ(1)]/CF . Hence, we have after some reordering of terms:

∑

ij

Rij
dIij
dτ̂

=
αs
π

[
δ(1− τ̂)

{
2CF
ε2

S(0) − 1

2ε

[
(Γ(1))†S(0) + S(0)Γ(1)

]}

− 4CF
ε

1

(1− τ̂)+

S(0) + 8CF

(
ln(1− τ̂)

1− τ̂

)

+

S(0)

+
1

(1− τ̂)+

[
(Γ(1))†S(0) + S(0)Γ(1)

]

+
CF
2
δ(1− τ̂)

{(
Li2
(
−u
t

)
+ (2−N2

c ) Li2
(
− t
u

)
−2Nc Li2

(
− t
u

)

−2Nc Li2
(
− t
u

)
−4N2

c Li2
(
−u
t

)
)

−π2S(0)

}]
. (5.87)

Each of the terms in this equation has a transparent interpretation. The pole terms
∝ δ(1 − τ̂) in the first line will be canceled by corresponding terms in the virtual
correction; see equation (5.74). The single pole term ∝ 1/(1− τ̂)+ will be canceled by
collinear factorization in the eikonal approximation, as described in the Appendix. The
next two terms precisely match the threshold logarithms at NLO, as becomes evident by
going to Mellin-moment space and comparing to (5.36). The remaining term involves
the one-loop soft matrix we are interested in. More precisely, since S(1) appears in
the Mellin-space expression for the resummed cross section, and since the moments of
(ln(1− τ̂)/(1− τ̂))+ are given by 1

2(ln2 N̄+π2/6) (up to corrections suppressed as 1/N),
all terms ∝ π2 match when comparing to (5.36), and we are just left with

S(1) =
CF
2

(
Li2
(
−u
t

)
+ (2−N2

c ) Li2
(
− t
u

)
−2Nc Li2

(
− t
u

)

−2Nc Li2
(
− t
u

)
−4N2

c Li2
(
−u
t

)
)
. (5.88)

This is our final result for the one-loop soft matrix for this process. A powerful check
on the result comes from comparison with the full cross section at NLO: Inserting
our S(1) along with H(1) from equation (5.71) into (5.36), we verify that the resulting
expression correctly reproduces all threshold logarithms and all constant terms in the
NLO partonic cross section.

As it turns out, we can give a very simple rule for obtaining S(1) directly from S(0) and
the anomalous dimension matrix Γ(1). This becomes already evident from comparison
of the two matrices in the second and third lines of (5.84): They have identical structure,
except that each logarithm has to be replaced by a dilogarithm with suitably modified
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argument,

ln

(
− t
s

)
→ Li2

(
−u
t

)
,

ln
(
−u
s

)
→ Li2

(
− t
u

)
. (5.89)

The deeper reason for this is of course that already in the integrals (5.83) the loga-
rithm and the dilogarithm always appear in the same ratio in the term ∝ δ(1 − τ̂).
Since we know how the matrix in the second line of (5.84) is expressed in terms
of S(0) and Γ(1), we also know how to construct S(1): Compute the combination
−1/2

(
(Γ(1))†S(0) + S(0)Γ(1)

)
and substitute each logarithm according to (5.89). As

the integrals Iij are the same no matter which process we are considering, this simple

construction rule works for all partonic channels. All necessary ingredients, the Γ
(1)
ab→cd

and the S
(0)
ab→cd, may be found in the Appendix of Ref. [179]; we therefore do not present

the explicit expressions for the resulting S
(1)
ab→cd for all the other channels, which become

rather lengthy. It is likely that the simple rule we find is a special property of the pair
mass kinematics we are considering here.

5.3.4. Inverse Mellin and Fourier transforms and matching procedure

In order to produce phenomenological results for the resummed case, we need to per-
form inverse Mellin transform and Fourier transforms. The Mellin inverse requires a
prescription for dealing with the singularity in the perturbative strong coupling con-
stant in the NNLL expansions of the resummed exponents. As in [200] we will use
the Minimal Prescription developed in [42], which relies on use of the NNLL expanded
forms given in Sec. 5.3.1 and on choosing a Mellin contour in complex-N space that
lies to the left of the poles at λ = 1/2 and λ = 1 in the Mellin integrand. The function
ΩH1H2→cd in (5.15) is obtained as [200]

Ωresum
H1H2→cd

(
τ ′,∆η, η̄, αs(µR),

µR
m̂
,
µF
m̂

)

=
1

2π

∫ ∞

−∞
dν e−iνη̄

∫ CMP+i∞

CMP−i∞

dN

2πi

(
τ ′
)−N

×
∑

ab

f̃H1
a (N + 1 + iν/2, µF )f̃H2

b (N + 1− iν/2, µF )

×ω̃resum
ab→cd

(
N, ν,∆η, αs(µR),

µR
m̂
,
µF
m̂

)
, (5.90)

a with a suitable Mellin contour consistent with the minmal prescription. As shown
in [200], it is straightforward to perform the convolution of the inverted resummed
Ωresum
H1H2→cd with the fragmentation functions, as given by (5.14).
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Chapter 5. NNLL Threshold Resummation for Hadron Pair Production

As in [200], we match the resummed cross section to the full NLO one, by expanding the
resummed cross section to O(α3

s), subtracting the expanded result from the resummed
one, and adding the full NLO cross section:

dσmatch =

(
dσresum − dσresum

∣∣∣
O(α3

s)

)
+ dσNLO . (5.91)

For the NLO cross section we use the results of [233]. In this way, NLO is taken into
account in full, and the soft-gluon contributions beyond NLO are resummed in the way
described above. Of course, for a full NNLL resummed cross section one would prefer
to match to an NNLO calculation, which however is not available for this observable
yet.

5.4. Phenomenological results

We now examine the numerical effects of our approximate NNLL resummation in com-
parison to the NLL and NLO results shown in [200]. Since the NNLL effects are gen-
erally rather similar for the experimental situations considered in [200], we show only
two representative examples here. We will also make predictions for the di-hadron cross
section at RHIC, where one would expect the effects of resummation to be smaller.

Our examples from [200] concern the NA24 [201] and the CCOR [205] pp → π0π0

scattering experiments. The fixed-target experiment NA24 recorded data at a beam
energy of Ep = 300 GeV, while CCOR operated at the ISR collider at

√
S = 62.4 GeV.

Both experiments employed the cuts ppair
T < 1 GeV, |Y | < 0.35, and | cos θ∗| < 0.4. Here,

ppair
T and Y are the transverse momentum and rapidity of the pion pair, respectively,

which are given in terms of the individual pion transverse momenta pT,i and of ∆η, η̄
in (5.4) by

ppair
T = |pT,1 − pT,2| ,

Y = η̄ − 1

2
ln

(
pT,1 e−∆η + pT,2 e∆η

pT,1 e∆η + pT,2 e−∆η

)
, (5.92)

where LO kinematics have been assumed as appropriate in the threshold regime. Fur-
thermore, cos θ∗ is the cosine of the scattering angle in the partonic c.m.s. and is for
LO kinematics given by

cos θ∗ =
1

2

(
pT,1

pT,2 + pT,1 cosh(2∆η)
+

pT,2
pT,1 + pT,2 cosh(2∆η)

)
sinh(2∆η) . (5.93)

For details on the kinematical variables, see [200]. Thanks to our way of organizing
the threshold resummed cross section, inclusion of cuts on any of these variables is
straightforward.

152



5.4. Phenomenological results

In all our calculations, we use the CTEQ6M5 set of parton distribution functions [31],
along with its associated value of the strong coupling constant. As compared to our
results in [200], we update to the latest “de Florian-Sassot-Stratmann” (DSS) set of
fragmentation functions [119]. We note that one might object that the use of NLO
parton distribution functions and fragmentation functions is not completely justified
for obtaining NNLL resummed predictions. However, since fragmentation functions
evolved at NNLO are not yet available in any case, we have decided to stick to NLO
functions throughout. As in [200], we choose the renormalization and factorization
scales to be equal, µR = µF ≡ µ, and we give them the values M and 2M , in order to
investigate the scale dependence of the results.

Figure 5.2 shows the comparison to the NA24 [201] data. As known from [200], the full
NLO cross section and the first-order expansion of the resummed expression, that is,
the last two terms in equation (5.91), agree to a remarkable degree. Their difference
actually never exceeds 1% for the kinematics relevant for NA24. We recall these results
by the dashed lines and the crosses in the figure. They provide confidence that the soft-
gluon terms constitute the dominant part of the cross section, so that their resummation
is sensible. The dot-dashed lines in the figure present the NLL results, computed by
dropping all NNLL terms and matching to NLO via equations (5.40),(5.41), as in [200].
As found there, resummation leads to a significant enhancement of the theoretical
prediction and provides a much better description of the NA24 data [201] than for the
NLO calculation. Finally, the two solid lines show our NNLL resummed results. The
key observations are that the two NNLL results for scales 2M and M are very close
together and both roughly fall within the “band” spanned by the two NLL results for
the two scales. One also notices that the NNLL curves have a slope somewhat less steep
than the NLL ones. Given the relatively large uncertainties of the data, it is fair to say
that the main effects are already taken into account at NLL. However, the precision of
the NNLL calculation, in particular the strong reduction of the scale dependence, still
provides a significant theoretical and phenomenological improvement.

In order to assess the improvement in scale dependence in a more detailed way, we show
in Fig. 5.3 results for the predicted cross section as a function of µ/M (where again
µR = µF ≡ µ), using a fixed pair invariant mass M = 5.125 GeV, which corresponds to
the left-most point in Fig. 5.2. The dot-dashed line corresponds to the variation of the
NLL resummed cross section, where for ξR in equation (5.47) we include only the first
term in the exponent, i.e. 2b0αs ln(µ2

R/m̂
2). This is the only term justified for a cross

section resummed to this accuracy. We note that keeping this term in the exponent
or expanding the exponential to first order (as done in [200]) makes only a modest
numerical difference. At NNLL, we include the full exponent ξR in equation (5.47),
keeping in mind the discussion following equation (5.49). Our result for the scale
variation of the NNLL resummed cross section is shown as a solid line in Fig. 5.3. One
observes a very strong improvement when going from NLL to NNLL, with the NNLL
resummed cross section rather flat even out to scales as large as µ = 10M .
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Chapter 5. NNLL Threshold Resummation for Hadron Pair Production

Figure 5.2.: Comparison of NLO (dashed), NLL resummed (dot-dashed) and NNLL re-
summed (solid) calculations of the cross section for pp → π0π0X to the
NA24 data [201], for two different choices of the renormalization and fac-
torization scales, µR = µF = M (upper lines) and µR = µF = 2M (lower
lines). The crosses display the NLO O(αs) expansion of the resummed
cross section.
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5.4. Phenomenological results

Figure 5.3.: Comparison of the scale dependence of the NLL resummed (dot-dashed)
and the NNLL resummed (solid) cross sections for NA24 kinematics. We
choose a pion pair invariant mass of M = 5.125 GeV and show the variation
of the cross sections as a function of µ/M , where µR = µF = µ.

155



Chapter 5. NNLL Threshold Resummation for Hadron Pair Production

Figure 5.4.: Same as Fig. 5.2, but for pp collisions at
√
S = 62.4 GeV. The data are

from CCOR [205].

Figure 5.4 shows the comparison of our results to the CCOR data [205]. The main
features of the results are very similar to those in Fig. 5.2. Again the scale dependence
is strongly reduced at NNLL. As a side remark we note that the new fragmentation
functions of [119] also help to achieve a much better description of the data than we
found in our previous study [200].

Finally, we consider di-hadron production in pp collisions at RHIC with a c.m.s. energy
of
√
S = 200 GeV. For simplicity, we use the same cuts as for the NA24 experiment. In

Fig. 5.5, we show our results for an invariant mass range of M = 10− 75 GeV. We find
that at this energy the full NLO (dashed) and the NLO expansion of the resummed
result (crosses) do not match quite as well as observed for fixed target scattering in
Fig. 5.2, although the agreement is usually at the 10% level or better. Threshold
resummation again yields a sizable enhancement over NLO, but the effects are somewhat

156



5.5. Conclusions

Figure 5.5.: Di-hadron production at RHIC at a center-of-mass energy of
√
S =

200 GeV. The full NLO result (dashed) is shown in comparison to the
NLO expansion of the resummed result (crosses). The solid line shows the
NNLL resummed cross section. As before, we use the scales µR = µF = M
and µR = µF = 2M .

smaller than in the fixed-target regime, since at RHIC’s higher energy one is typically
further away from threshold. Also here, the NNLL-resummed result is nearly within
the NLL scale uncertainty band and shows a reduced scale dependence.

5.5. Conclusions

We have extended the threshold resummation framework for di-hadron production in
hadronic collisions, H1H2 → h1h2X, beyond the next-to-leading logarithmic level. To
achieve this, we have determined the first-order corrections to the hard-scattering func-
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Chapter 5. NNLL Threshold Resummation for Hadron Pair Production

tion H and the soft function S, which both are matrices in color space. With these,
it becomes possible to resum four towers of threshold logarithms in the perturbative
series. In our numerical studies, we have found that the NNLL resummed results fall
within the scale uncertainty band of the NLL resummed calculation. They also show a
much reduced scale dependence.

There are important further applications of our work. Of particular interest are di-jet,
single-inclusive jet and single-inclusive hadron cross sections, all of which have much
phenomenological relevance at present-day collider experiments. Given the promising
results we have obtained for di-hadron production, we may expect that a similar resum-
mation at NNLL for these reactions would also improve the theoretical QCD prediction.
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Chapter 6.

Approximate NNLO Corrections
to Hadronic Jet Production

We determine dominant next-to-next-to-leading order QCD corrections to single-inclusive
jet production at the LHC and Tevatron, using the established threshold resummation
framework. In contrast to previous literature on this topic, our study incorporates all
of the following features: (1) It properly accounts for the way a jet is defined in experi-
ment and treated in available full next-to-leading order calculations, (2) It includes the
three leading classes of logarithmic terms in the perturbative expansion, and (3) It is
adapted to the full kinematics in jet transverse momentum and rapidity relevant for ex-
periments. A recent full next-to-next-to-leading order calculation in the purely gluonic
channel allows us to assess the region where our approximate corrections provide an
accurate description. We expect our results to be important on the way to precision jet
phenomenology at the LHC and as benchmark for further full next-to-next-to-leading
order calculations. This chapter is based on publication [1].

6.1. Introduction.

The production of high-transverse-momentum hadron jets plays a fundamental role at
the LHC [234] and at Tevatron [235]. Jets are produced very copiously, making them
precision probes of the physics of the Standard Model and beyond. Theoretical calcula-
tions whose precision matches that achievable in experiment are of critical importance.
The efforts made in this context have spanned more than three decades now, culmi-
nating so far with the recent calculation of the next-to-next-to-leading order (NNLO)
perturbative corrections to jet production in the “gluon-only” channel [236, 237].

As complete NNLO calculations of jet production are probably still a few years away,
it is useful to determine approximate NNLO results, at least in certain kinematical
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Chapter 6. Approximate NNLO corrections to hadronic jet production

regimes. This is possible thanks to the fact that the perturbative series for the partonic
cross sections contains classes of logarithmic terms that often dominate. Resummation
techniques in QCD [238] allow to determine the all-order structure of these logarithmic
terms, and one therefore also obtains the logarithms present at NNLO. Knowledge
of approximate NNLO expressions is very useful, since it potentially offers an avenue
toward more precise phenomenology than available on the basis of the presently known
full next-to-leading order (NLO) corrections. It also serves as benchmark for future full
NNLO calculations.

The logarithms just mentioned arise near a threshold from which the production of
a jet becomes possible in a partonic collision. They are hence known as “threshold
logarithms”. The threshold is set by a vanishing invariant mass

√
s4 of the partonic

system that recoils against the observed jet. At the kth order of perturbation theory,
one finds threshold corrections to the Born cross section of the form αks [logm(z)/z]+,
with 0 ≤ m ≤ 2k−1, where z = s4/s with

√
s the center-of-mass energy of the incoming

partons. The systematic resummation of these logarithms to all orders in the strong
coupling αs was derived for the case of jet production in [238], where explicit next-to-
leading logarithmic (NLL) results were given that in principle allow to resum the three
“towers” of logarithms with m = 2k − 1, 2k − 2, 2k − 3.

An important “subtlety” was pointed out in [238] concerning the threshold logarithms in
jet production: the structure of the logarithmic corrections depends on whether or not
the jet is assumed to be massless at partonic threshold, even at the leading-logarithmic
(LL) level. If the jet is taken to be massless at threshold, an approach for which we will
use the term “scheme (1)” in the following, leading-logarithmic corrections arise in the
resummed perturbative function describing the jet. If, on the other hand, the jet is per-
mitted to have a non-vanishing invariant mass at threshold (“scheme (2)”), the leading
logarithms cancel, leaving behind a non-leading logarithm whose coefficient depends
on jet “size” parameter R introduced by the jet algorithm. The difference between
the two schemes may be understood from the fact that fewer final states contribute in
scheme (1) than in scheme (2) [238].

Approximate NNLO corrections for jet production have been derived in [239–241],
adopting scheme (1). As one can see in the very recent study [240], the NLO terms
predicted for scheme (1) fail to match a full NLO calculation [242] even in a regime
where threshold logs are known to dominate. This becomes particularly evident from
the fact that the threshold terms for scheme (1) do not carry any dependence on the jet
parameter R, whereas the full NLO results do. These features observed in [240] are in
fact not surprising: explicit analytical NLO calculations [116, 117] have shown that jets
produced close to partonic threshold do span a range of jet masses. Indeed, for any jet
algorithm the jet produced in the perturbative calculation can evidently contain two or
more partons and hence have a non-vanishing invariant mass. This is even the case at
exact threshold z = 0, when for example only a single parton recoils against the entire
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Pa

Pb

R

Jet

X

Figure 6.1.: Schematic visualization of the hh → JetX cross section. The red blobs
represents the PDFs of the incoming hadrons with momenta Pa and Pb.
The blue blob represents the partonic hard scattering part.

jet. The maximally allowed jet mass at threshold will depend on the parameter R used
in the jet algorithm.

Thus, the assumption of massless jets at threshold that was made in previous stud-
ies [239–241] does not appear to be appropriate. Instead, the resummation ought to be
carried out within scheme (2). A resummed study in this scheme was in fact performed
in [227], where however only the rapidity-integrated cross section was considered, for
which the resummation simplifies considerably. Integration over all rapidity is not
quite adequate for comparisons with experimental data. In this chapter we present new
predictions for the NNLO threshold terms, using scheme (2) and keeping full depen-
dence on rapidity in the calculation. We will also go beyond the previous studies [239,
240] by determining all three most leading logarithmic contributions ∝ (log3(z)/z)+,
(log2(z)/z)+, (log(z)/z)+ at NNLO. The last of these is new; it may be obtained by
matching the resummation framework to a full NLO calculation. For the latter we
choose that of [116, 117], which provides analytical results for the partonic cross sec-
tions. The calculation was performed assuming that the produced jet is rather narrow
(“narrow-jet approximation” (NJA)). It has been shown that this approximation is
extremely accurate even at relatively large jet sizes of R ∼ 0.7.

6.2. Theoretical framework

The factorized cross section for the single-inclusive production of a jet with transverse
momentum pT and pseudorapidity η may be written as

p2
Td2σ

dp2
Tdη

=
∑

ab

∫ V (1−W )

0
dz

∫ 1− 1−V
1−z

VW
1−z

dv xafa(xa, µf )

×xbfb(xb, µf )
dσ̂ab
dvdz

(v, z, pT , µr, µf , R), (6.1)
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Figure 6.2.: Differential cross section for jet production in pp-collisions at the LHC at√
S = 8 TeV, using the anti-kt algorithm with R = 0.7.

where V = 1 − xT e−η/2, VW = xT eη/2, with xT = 2pT /
√
S and the hadronic center-

of-mass energy
√
S. The sum runs over all partonic collisions producing the jet; dσ̂ab

denote the corresponding partonic hard-scattering cross sections and fa, fb the parton
distribution functions at momentum fractions xa = VW/v(1 − z), xb = (1 − V )/(1 −
v)(1 − z). The partonic cross sections are computed in QCD perturbation theory. As
indicated, besides depending on pT and the usual renormalization and factorization
scales µr, µf , they are functions of the partonic kinematic variables, which we have
chosen as

v =
u

t+ u
, z =

s4

s
, (6.2)

where s = xaxbS is the partonic center-of-mass energy squared, t = (pa−pJ)2, u = (pb−
pJ)2 (with pa,b and pJ the four-momenta of the initial partons and the jet, respectively),
and s4 is the invariant mass squared of the “unobserved” partonic system recoiling
against the jet. We stress that the dσ̂ab also depend on the algorithm adopted to define
the jet, as indicated by the generic jet parameter R in equation (6.1). We always assume
the jet to be defined by the anti-kt algorithm [121].

The perturbative series for each of the partonic scattering cross sections may be cast
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Figure 6.3.: Left: K-factors for jet production in pp-collisions at the LHC at
√
S =

8 TeV for R = 0.2, 0.4, 0.7, using the anti-kt algorithm. Right: Same for pp̄
collisions at the Tevatron at

√
S = 1.96 TeV.
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into the form

sdσ̂ab
dvdz

=
(αs
π

)2
[
ω

(0)
ab +

αs
π
ω

(1)
ab +

(αs
π

)2
ω

(2)
ab +O(α3

s)

]
, (6.3)

where αs ≡ αs(µ) is the strong coupling constant, and where each of the ω
(k)
ab is a

function of v, z and, for k > 0, of R and pT /µ (we choose from now on µr = µf ≡ µ).
At lowest order we have

ω
(0)
ab (v, z) ≡ ω̃(0)

ab (v)δ(z), (6.4)

since the recoiling system is a single massless parton. Hence z = 0 sets a threshold for
the process to take place, since the transverse momentum of the observed jet always
needs to be balanced. At higher orders in perturbation theory, the hard scattering
functions contain logarithmic distributions in z, with increasing powers of logarithms
as the perturbative order increases. More precisely, one has near the threshold at z = 0:

αksω
(k)
ab ∼ αks

(
logm(z)

z

)

+

, with 0 ≤ m ≤ 2k − 1. (6.5)

Here
∫ 1

0 dzg(z)[f(z)]+ ≡
∫ 1

0 dz(g(z)− g(0))f(z). As one can see, two additional powers
of the logarithm arise for every order of perturbation theory. Due to the integration
against the parton distribution functions, which are steeply falling functions of momen-
tum fraction, the threshold region z → 0 typically makes significant contributions to
the hadronic cross section. This is particularly the case when the kinematic boundary
of the hadronic reaction is approached, that is, when xT cosh η → 1.

As is well known, the large logarithmic corrections arising in the threshold region are
associated with the emission of soft or collinear gluons. It is therefore possible to
systematically determine the structure of the corrections to all orders and to resum
the “towers” of logarithms with m = 2k − 1, 2k − 2, . . .. This may be used to derive
approximate beyond-NLO corrections for hadronic jet production, by expanding the
resummed result appropriately to the desired order [227, 239, 240]. To achieve the
all-order resummation, one considers Mellin moments in (1 − z) of the partonic cross
section:

Ωab(v,N) ≡
∫ 1

0
dz(1− z)N−1 sdσ̂ab

dvdz
. (6.6)

In moment space, the resummed hard-scattering function Ωres
ab can at large N be written

as [180, 238]

Ωres
ab (v,N) =

∑

c,d

∆a(Na) ∆b(Nb) J
(jet)
c (N,R) J

(recoil)
d (N)

×∆
(int)
ab→cd(N, v) ∆(ng)

c (N), (6.7)

164



6.2. Theoretical framework

where Na = vN , Nb = (1− v)N and the sum runs over the two final-state partons c, d
in an underlying ab→ cd subprocess. Here it is assumed that parton c produces the jet
(in a way that we shall clarify below), while the recoiling parton d remains unobserved.
Each of the terms is also a function of αs(µ) and log(µ2/s), which we have not written

explicitly. Each of the functions ∆a,∆b, J
(jet)
c , J

(recoil)
d is an exponential. ∆a,∆b resum

threshold logarithms arising from soft/collinear radiation off the incoming hard partons.
Their expressions are very well known and may be found in the form we need them in,
for example, [180]. Likewise, also the expression for gluon radiation off the “unobserved”

recoiling parton d is standard and may be found there. ∆a,∆b and J
(recoil)
d contain all

the leading logarithmic pieces ∝ (log3(z)/z)+, (log2(z)/z)+ in ω
(2)
ab .

A crucial point of our study concerns the function J
(jet)
c used for the actual jet. As was

shown in [238], this function takes different forms depending on whether one assumes
the jet to become itself massless at threshold or not. These two forms differ even at
leading logarithmic level. For scheme (2) introduced earlier, we have to next-to-leading
logarithmic accuracy [238]:

log J (jet)
c =

∫ s/N̄2

s

dq2

q2
αs
(
q2
)(
−Cc

2π
log

(
p2
TR

2

s

))
, (6.8)

where N̄ ≡ NeγE with the Euler constant γE , and where Cc denotes the color charge

of parton c, Cq = CF for a quark and Cg = CA for a gluon. As expected, J
(jet)
c is a

function of R in this scheme.

The function ∆
(int)
ab→cd(N, v) is obtained as a trace in color space over hard, soft, and

anomalous dimension matrices [238]. All details have been given in [239] and need not
be repeated here. The function contributes at NLL level and is the only function in the
resummed expression that carries explicit dependence on v.

Finally, ∆
(ng)
c (N) in (7.10) contains the contributions from non-global logarithms.

These were shown [243, 244] to arise when an observable is sensitive to radiation in
only a part of phase space, as is the case for a jet defined by some jet “size” parameter
R. Their resummation is highly non-trivial. Non-global logarithms for jet production

first enter as a term ∝ [log(z)/z]+ in ω
(2)
ab . As discussed in [245], the non-global terms

arise independently from the boundary of each individual (narrow) “observed” jet.

The appropriate second-order coefficient for our case of a single-inclusive jet cross sec-
tion may therefore be directly obtained from [243, 245], adjusting the argument of the
logarithm properly. We note that these considerations– and in fact the general structure
of our resummed cross section– apply to the anti-kt algorithm [245]. We finally also
mention that the non-global component makes a rather small contribution (a few per
cent) to our numerical NNLO results presented below. All in all, after performing the
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Mellin-inverse to z-space, the two-loop expansion of the product ∆
(int)
ab→cd(N, v) ∆

(ng)
c (N)

in equation (7.10) takes the form

(αs
π

)2
[
ω̃

(0)
ab (v)

(
δ(z) +

1

2

(αs
π

)2
C(ng)
c

(
log(z)

z

)

+

)

+
αs
π

(
Tab→cd(v)δ(z) + G(1)

ab→cd(v)

(
1

z

)

+

)

+
(αs
π

)2
G(2)
ab→cd(v)

(
log(z)

z

)

+

]
, (6.9)

with C(ng)
c = −CACcπ2/3 for the coefficient of the non-global term. The coefficients

G(1)
ab→cd(v) are predicted by the resummation formalism. The coefficients Tab→cd(v)

may be derived by comparison to the explicit NLO results of [117] in the narrow-
jet approximation. Along with the known resummation coefficients, knowledge of the

Tab→cd(v) is sufficient for determining G(2)
ab→cd(v) [200, 246]. In this way, combining

with the contributions from ∆a,∆b, J
(jet)
c , J

(recoil)
d , we obtain full control over the terms

∝ (log3(z)/z)+, (log2(z)/z)+, (log(z)/z)+ in ω
(2)
ab .

6.3. Phenomenological results and discussion.

— Figure 6.2 shows results for the differential single-inclusive jet cross section at the
LHC, at lowest order as well as for the NLO and NNLO threshold terms. Here we use
the CTEQ6.6 [cteq66] parton distribution functions and scale µ = pT . The left part of
Figure 6.3 displays the corresponding “K-factors”, defined as ratios of higher-order cross
sections over the leading-order one, while the right part of the figure is for pp̄ collisions
at Tevatron at

√
S = 1.96 TeV. Results are presented for various jet parameters R.

The dotted lines show the NLO results of [117] which were obtained in the NJA for
the anti-kt algorithm. We note that these agree with the NLO ones by the “FastJet”
code [242] (as shown in [240]) to better than 3%, even at R = 0.7. The dashed lines
present the results for the NLO expansion of the threshold terms. It is evident that
the latter provide a very faithful description of the full NLO results for much of the pT
ranges relevant at LHC and Tevatron. This holds true for each value of R, thanks to
the fact that the threshold logarithms carry R-dependence in our approach, in contrast
to that in [239, 240]. Finally, the solid lines display the approximate NNLO results.
These show a striking further increase of the jet cross sections as compared to NLO,
particularly so at high pT where the threshold terms are expected to dominate.

Given the large size of the NNLO corrections observed in Fig. 6.3, it is of course crucial
to verify that the predicted enhancements are realistic. Fortunately, recently a full
NNLO calculation for jet production in the “gluon-only” channel was presented [236,
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Figure 6.4.: K-factors for jet production in pp-collisions at the LHC at
√
S = 8 TeV in

the “gluon-only” channel. The anti-kt algorithm with R = 0.7 was used and
the NNLO parton distributions of [32]. The histograms show the results of
the recent full NNLO calculation [237] and its NLO counterpart, while the
lines display the NLO and NNLO threshold terms.
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237], corresponding to gg scattering and to setting the number of flavors Nf = 0 in the
partonic matrix elements. It is straightforward to compute our threshold terms in this
limit. The comparison is shown in Fig. 6.4. One can see that the large enhancement at
high pT predicted by the NNLO threshold terms is very nicely consistent with the full
result. Judging from the comparison, the NNLO threshold terms become accurate at
about pT = 400 GeV for the chosen rapidity interval. Additional comparisons with the
results of [237] show that this value is representative of rapidity intervals that contain
the dominant region η ≈ 0. One also finds that at very forward rapidities, η ∼ 4, our
results indicate substantial NNLO K-factors of order 5 or so at pT ∼ 40 GeV. This again
appears to be consistent with the results shown in [237]. In this regime, the coefficients
of the threshold logarithms become large, due to “small-x” t-channel gluon exchange
contributions. It will be important for future work to address this region in more detail
in order to derive reliable predictions for the forward jet cross section at the LHC.
Such contributions may also be responsible in part for the rise of the K-factor toward
lower pT . This rise is more pronounced for the NNLO threshold terms, implying that
subleading contributions become relevant here. Whether these are related to subleading
logarithmic terms, or to terms that vanish at partonic threshold z = 0, will need to be
studied in more detail. In order to shed light on terms of the latter type, the dashed
line in Fig. 6.4 shows the NNLO threshold result found when using a different angular
variable, v′ ≡ 1 + t/s = z + v(1 − z), in equation (6.1). Clearly, v′ = v + O(z). The
difference between the two NNLO threshold results indicates a typical uncertainty of
the prediction obtained from threshold resummation.
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Chapter 7.

Approximate NNLO Corrections
to Longitudinally Polarized
Hadronic Jet Production

7.1. Introduction

The production of high pT single inclusive jets in longitudinally polarized proton beams
opens various possibilities to answer interesting questions in spin physics and opens up
an unique possibility to explore the spin structure of the nucleon [247]. Since the first
successful runs of the Relativistic Heavy Ion Collider at the Brookhaven National Lab-
oratories (BNL-RHIC) many interesting experimental results [248–251] were published.
Also on the theory side significant progress has been achieved over the last decade. For
reliable QCD predictions analytical calculations up to next-to-leading-order (NLO) are
crucial and became available for different jet clustering algorithms [116, 252].

A main goal for the RHIC spin program was to access the gluon helicity distribu-
tion of the proton ∆g(x). It is a fundamental quantity that characterizes the inner spin
structure of the nucleon. Its integral over all momentum fractions ∆G =

∫ 1
0 dx ∆g(x)

may be interpreted as the gluon spin contribution to the proton spin. Therefore, ∆G
contributes to the proton helicity sum rule

1

2
=

1

2
∆Σ + ∆G+ Lq + Lg , (7.1)

where Lq and Lg are the quark and gluon orbital angular momentum contributions and
∆Σ the quark and antiquark spin contributions. In particular, the quark and gluon
helicity distributions are accessible in highly inelastic processes with polarized nucleons
involved. Since the late 80’s several experiments on polarized deep inelastic scattering
showed that the quark contributions to the nucleons spin is relatively little ∆Σ ∼ 0.25
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Chapter 7. Approximate NNLO longitudinally polarized jet production

[247, 253]. Unfortunately, the sensitivity to ∆g is very poor to lepton induced processes.
Therefore, it was not possible to give good estimations for the gluon polarization from
lepton hadron scattering experiments. A better probe for ∆g are processes where all
initial state particles in the hard part are color charged. That results in more gluon
induced processes and therefore to a better sensitivity to their polarization. Besides
the inclusive pion production data from BNL-RHIC [254–256] jet data [250, 251] are
the important input for helicity dependent global PDF fits [133, 253, 257]. Recent
DSSV analysis [133], including the 2009 RHIC jet data [250] lead to a non vanishing
gluon polarization ∆g of the nucleon. The analysis imply a polarization of gluons in
the intermediate momentum scales accessible at RHIC. So far, the NLO predictions
[116, 252] for inclusive single jet production, seem to be in good accordance with the
experimental results for the asymmetry.

To this day, pQCD calculations for high pT jet production in longitudinally polarized
pp scattering are limited to NLO. For the unpolarized process approximate NNLO
results are available [1, 239–241] and in the gluon only channel even the full NNLO
result exists [236, 237]. Recently, an unpolarized full NNLO calculation for the leading
color contribution has been published [258]. The approximate results mentioned above
rely on the fact that the QCD perturbation series contains classes of logarithms, that
dominate in certain regions of the phase space. Well known resummation techniques in
QCD allow to determine the all order structure of these logarithms. Therefore, we can
predict the dominant logarithms at threshold that arise at NNLO level. The logarithms
arise near a partonic threshold where all the available energy is inside the observed jet
and the recoiling one. In particular, the threshold is set for a vanishing invariant mass
of the recoiling unobserved partonic system s4 → 0. At kth order in perturbation series
logarithms of the form αks [logm(z)/z]+ arise, where z = s4/s with

√
s the initial state

partonic center of mass energy and 0 ≤ m ≤ 2k − 1.

By using the resummed result to next-to-leading logarithm (NLL) it is possible to
predict logarithms with, m = 2k − 1, 2k − 2, 2k − 3. However, a resummed study in
unpolarized scattering is only available for the rapidity integrated cross section [227].
For rapidity dependent cross sections, the resummation formalism complicates consid-
erably. Therefore, studies that are differential in the rapidity of the observed jet are
limited to fixed order expansions. In particular, we mention [1] (and chapter (6) in
this thesis) where the observed jet produce beneath the rapidity, the correct jet size
parameter R dependency. In this chapter we will derive approximate NNLO result for
~p~p → jetX following closely the strategy of [1]. We determine the three leading loga-
rithmic contributions ∝ (log3(z)/z)+,(log2(z)/z)+, (log(z)/z)+ at NNLO and predict
the spin asymmetry. The last contribution is possible to obtain, by matching analyti-
cally to existing NLO results [252]. Our results are obtained in the so called narrow jet
approximation [116, 117], where only small jet size parameters R are considered. It has
been showed, that this approximations hold up to relatively large jet size parameters
R ∼ 0.7.
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7.2. Theoretical framework

The factorized cross section for high transverse momentum pT single inclusive jet pro-
duction with pseudorapidity η is given by

d2∆σ

dpTdη
=

1

2

[
dσ++

dpT dη
− dσ+−

dpT dη

]

=
2

pT

∑

ab

∫ V (1−W )

0
dz

∫ 1− 1−V
1−z

VW
1−z

dv xa∆fa(xa, µf )xb∆fb(xb, µf )

×d∆σ̂ab
dvdz

(v, z, pT , µr, µf , R), (7.2)

where V = 1 − xT e−η/2, VW = xT eη/2, with xT = 2pT /
√
S and the hadronic center-

of-mass energy
√
S. The superscripts in the first equality denotes the helicities of the

colliding polarized protons and ∆fa,b denotes the polarized parton distribution functions
evaluated at factorization scale µf and momentum fractions xa = VW/v(1 − z) and
xb = (1 − V )/(1 − v)(1 − z). The sum in the second equality is over all contributing
partonic processes a+ b→ jet +X with their helicity dependent partonic cross section

d∆σ̂ab
dvdz

=
1

2

[
dσ̂++

dv dz
− dσ̂+−

dv dz

]
, (7.3)

where the superscripts refer now to the partonic helicities. The polarized partonic cross
sections are functions of the renormalization and factorization scales as well as the
transverse momentum of the jet and two kinematical variables

v =
u

t+ u
, z =

s4

s
, (7.4)

where s = xaxbS is the partonic center-of-mass energy squared, t = (pa − pJ)2,
u = (pb − pJ)2 and s4 is the invariant mass squared of the “unobserved” partonic
system recoiling against the jet. pa,b and pJ are the four momenta of the initial state
partons a, b or the jet respectively. We mention, as indicated in (7.2) the partonic func-
tion is also dependent on the ”jet size parameter” R, which is a measurement of the
”size” of the jet which is defined by the jet algorithm. We mention that for our study
we define the observed jet in the anti-kt algorithm [121].

The partonic hard scattering may be calculated order by order in terms of the strong
coupling αs in QCD perturbation theory

sd∆σ̂ab
dv dz

=
(αs
π

)2
[
∆ω

(0)
ab +

αs
π

∆ω
(1)
ab +

(αs
π

)2
∆ω

(2)
ab +O(α3

s)

]
, (7.5)
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where ∆ω
(k)
ab ≡ ∆ω

(k)
ab (s, v, z, pT /µ,R). We choose the renormalization scale and the

factorization scale at equal values µ ≡ µR = µf .

At leading order in perturbation theory the unobserved final state consists of only
one massles parton. Therefore, we have

∆ω
(0)
ab (v, z) ≡ ∆ω̃

(0)
ab (v)δ(z). (7.6)

It is important to mention, that z = 0 sets a threshold for the process to take place. The
threshold phase space area is the origin of large logarithmic enhancements in our cross
section. They arise as a finite remnant of the pole cancellation from soft or collinear
parton configurations and are the dominant contributions in the threshold region. More
precisely, the threshold terms have the following form

αks∆ω
(k)
ab ∼ αks

(
logm(z)

z

)

+

, with 0 ≤ m ≤ 2k − 1, (7.7)

where we define the plus distribution as

∫ 1

0
dzg(z)[f(z)]+ ≡

∫ 1

0
dz(g(z)− g(0))f(z) . (7.8)

As we mention before, the origin of these logarithmic enhancements rely in soft and/or
collinear gluon emission diagrams. Resummation techniques [39, 40] predict the struc-
ture of these logarithms to all order in QCD perturbation theory. The knowledge of
”towers” of logarithms with m = 2k − 1, 2k − 2, . . . allows us to determine the domi-
nant threshold contributions at NNLO by expanding the resummed result to order α3

s.
There are various studies for unpolarized scattering that follow this strategy to deter-
mine NNLO corrections [1, 227, 239, 240].

Threshold resummation is achieved by transforming the hard scattering part by the
mellin transformation in terms of the threshold variable z into its N -moments

∆Ωab(v,N) ≡
∫ 1

0
dz(1− z)N−1 sd∆σ̂ab

dvdz
. (7.9)

Threshold resummation in longitudinally polarized scattering, follows closely the strat-
egy for the spin averaged case [1]. This is due to the fact that soft gluon emission is
spin independent [259]. Therefore, we can write the resummed cross section as
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∆Ωres
ab (v,N, αs(µ

2), µ2/s) =

∑

c,d

Da(Na, αs(µ
2), µ2/s)Db(Nb, αs(µ

2), µ2/s) J (jet)
c (N,R, αs(µ

2), µ2/s)

×J (recoil)
d (N,αs(µ

2), µ2/s)∆D(int)
ab→cd(N, v)D(ng)

c (N), (7.10)

where Na = vN , Nb = (1− v)N and the sum runs over the two final-state partons c, d
in an underlying ab→ cd subprocess where the observed jet is formed by parton c. The

functions Da, Db, J (recoil)
d and J

(jet)
c are exponentials well known from the spin averaged

case [1]. ∆a,∆b resum threshold logarithms arising from soft/collinear radiation off the
incoming hard partons. Their expressions are very well known and may be found in the
form we need them in, for example, [180]. Likewise, also the expression for gluon radia-
tion off the “unobserved” recoiling parton d is standard and may be found there. ∆a,∆b

and J
(recoil)
d contain all the leading logarithmic pieces ∝ (log3(z)/z)+, (log2(z)/z)+ in

ω
(2)
ab .

As was pointed out in [1] it is important to assume a massive jet at partonic threshold.
For NLL accuracy we have for the observed jet

log J (jet)
c =

∫ s/N̄2

s

dq2

q2
αs
(
q2
)(
−Cc

2π
log

(
p2
TR

2

s

))
, (7.11)

where N̄ ≡ NeγE with the Euler constant γE , and where Cc denotes the color charge
of parton c, Cq = CF for a quark and Cg = CA for a gluon. The assumption that the

jet is massive at threshold, is responsible for the R dependence in J
(jet)
c .

The function D
(int)
ab→cd(N, v) is obtained as a trace in color space over hard, soft, and

anomalous dimension matrices [238].

D
(int)
ab→cd(N, v) = Tr

[
∆H(αs(µ

2), v) P exp

{∫ pT /N

pT

dµ′

µ′
Γ†(αs(µ

′), v)

}

S(αs(p
2
T /N

2), v) P exp

{∫ pT /N

pT

dµ′

µ′
Γ(αs(µ

′), v)

}]
(7.12)

where the helicity dependence inD
(int)
ab→cd(N, v) is given by the hard matrix ∆H(αs(µ

2), v)
that contains all the contributions associated with momenta of the order of the hard
scale pT . At NLL the hard matrices are needed to zeroth order in QCD perturbation
theory and are given in [259]. The evolution between the hard scale of ∆H and the
scale of the soft matrix S(αs(p

2
T /N

2), v) is given by the soft anomalous dimension ma-
trix Γ(αs(µ

′)) which is obtained by vertex corrections to eikonal diagrams. Therefore,
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it is spin independent like the soft matrix itself.

Finally, ∆
(ng)
c (N) in (7.10) contains the contributions from non-global logarithms.

These were shown [243, 244] to arise when an observable is sensitive to radiation in
only a part of phase space, as is the case for a jet defined by some jet “size” parameter
R. Since they arise at the boundaries of our final state jet definition, these logarithms
are independent of the initial state partons spin. Their resummation is highly non-
trivial. Non-global logarithms for jet production first enter as a term ∝ [log(z)/z]+

in ∆ω
(2)
ab . As discussed in [245], the non-global terms arise independently from the

boundary of each individual (narrow) “observed” jet. The appropriate second-order
coefficient for our case of a single-inclusive jet cross section may therefore be directly
obtained from [243, 245], adjusting the argument of the logarithm properly. We note
that these considerations– and in fact the general structure of our resummed cross
section– apply to the anti-kt algorithm [245]. We finally also mention that the non-
global component makes a rather small contribution (a few percent) to our numerical
NNLO results presented below. All in all, after performing the Mellin-inverse to z-

space, the two-loop expansion of the product ∆
(int)
ab→cd(N, v) ∆

(ng)
c (N) in equation (7.10)

takes the form
(αs
π

)2
[
∆ω̃

(0)
ab (v)

(
δ(z) +

1

2

(αs
π

)2
C(ng)
c

(
log(z)

z

)

+

)

+
αs
π

(
∆Tab→cd(v)δ(z) + ∆G(1)

ab→cd(v)

(
1

z

)

+

)

+
(αs
π

)2
∆G(2)

ab→cd(v)

(
log(z)

z

)

+

]
, (7.13)

with C(ng)
c = −CACcπ2/3 for the coefficient of the non-global term. The coefficients

∆G(1)
ab→cd(v) are predicted by the resummation formalism. The coefficients ∆Tab→cd(v)

may be derived by comparison to the explicit NLO results of [252] in the narrow-
jet approximation. Along with the known resummation coefficients, knowledge of the

∆Tab→cd(v) is sufficient for determining ∆G(2)
ab→cd(v) [200, 246]. In this way, combining

with the contributions from Da, Db, J (recoil)
d and J

(jet)
c , we obtain full control over the

terms ∝ (log3(z)/z)+, (log2(z)/z)+, (log(z)/z)+ in ∆ω
(2)
ab .

7.3. Phenomenological results and discussion

Figure (7.1) shows results for the differential polarized single jet inclusive cross sections
at different perturbative orders. The dotted blue line is the full nlo prediction [117]
within the small cone approximation compared to the threshold predictions for NLO
(green dash dotted)- and NNLO (red dashed) lines. Here we use the DSSV-14 helicity
dependent parton distribution from [133].
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Figure 7.1.: Differential cross section for jet production in longitudinally polarized pp
collisions at RHIC with center of mass energy

√
S = 200 GeV using the

anti-kt algorithm with R = 0.4 .
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Figure 7.2.: K-factors at mid rapidity |η| < 0.5 for jet production in longitudinally po-
larized pp collisions at RHIC at

√
S = 200 GeV using the anti-kt algorithm

with R = 0.4 .

Figure (7.2) displays K-factors, defined as the higher-order cross sections normal-
ized by the leading-order one at RHIC. Results are presented for various cross sections
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taking different parts of the perturbative order into account. The blue dotted line shows
the full NLO result within the small cone approximation of [117]. This ”full” result sets
a benchmark for our approximate NLO results where we can verify the quality of our
calculation. First we compare the ”normal” threshold expansion (green dashed dot-
ted line) with the full result. Here, ”normal” means an one loop expansion of equation
(7.10). Unfortunately, the threshold expansion for polarized scattering fits much poorer
to the full result than in the unpolarized case (compare to figure (6.3)). For reliable
QCD predictions at threshold it is not sufficient taking only the NLL-threshold logs into
account. We can clearly identify terms ∝ log(z) as an important contribution to the
NLO cross section in this area of phase space. Unlike in unpolarized scattering these
subleading terms are important at surprisingly large pT , where they should be supressed
by ∼ 1/N . This behavior is supported by the fact that in some quark induced channels
the polarized partonic function has sign changes. The magenta dashed dotted line, in-
cludes besides the threshold NLO prediction, the subleading log(z) contributions. This
can be achieved by adding the terms ∼ log(z) from the fixed order calculation [117], to
the one loop expansion of the resummed result. We will call this prediction threshold
NLO(2). We observe a very nice behavior of the NLO(2) calculation in a sence that we
describe fairly well the full NLO result.

The full all order description of these subleading terms is highly non-trivial and we
leave that for future research. In the present work, we achieve a proper treatment
of these terms at least at NLO level, by matching numerically our threshold NNLO
prediction (red dashed line) to the full NLO result

∆dσ
∣∣∣
NNLO

match.
= ∆dσ

∣∣∣
NNLO

thresh.
−∆dσ

∣∣∣
NLO

thresh.
+ ∆dσ

∣∣∣
NLO

full
. (7.14)

We present our final polarized matched threshold NNLO result as the red solid line. It
shows a striking further increase of the jet cross sections as compared to NLO, partic-
ularly so at high pT where the threshold terms are expected to dominate.

Figure (7.3) shows a comparison of the RHIC 2009 run STAR data with our cal-
culation. We show the high pT and central rapidity region where our approximate
results give credible predictions for the double spin asymmetry

ALL =
∆dσ/dpT
dσ/dpT

. (7.15)

The denominator is calculated by using the results of [1] in conjunction with the MSTW
unpolarized parton distributions of [32], where we also adopt the strong coupling for
all our results including the polarized predictions. The matched NNLO result gives
a further reduction of the double spin asymmetry compared to NLO. The difference
between NLO and threshold NNLO increases for increasing pT . In this large pT region
the subleading log(z) contributions vanish and the asymmetry is mainly dominated
by threshold logarithms. If we compare to the high pT tail of the STAR data, it is
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Figure 7.3.: ALL at mid rapidity |η| < 0.5 for jet production in longitudinally polarized
pp collisions at RHIC at

√
S = 200 GeV using the anti-kt algorithm with

R = 0.4. The 2009 STAR data is taken from [251].

still in a very well accordance with our new NNLO prediction. We mention that in
further studies an implementation of log(z) terms at NNLO level is inevitable to get
more precise results that can be the next step in terms of accuracy in the protons spin
puzzle. The main goal of the present study is to determine a first approximation of the
next order. An interesting result is that in the very high pT region where our results
should match very closely to the full result, the contribution to the asymmetry from
NNLO seems of the order of NLO and even above. Therefore, data at larger pT would
be very interesting to compare with our results. In this threshold region NNLO or
a proper all order treatment of the threshold logarithms seems to be unavoidable for
reliable pQCD predictions. We mention that there is an other contribution that can
effect this phase space area we have not include so far. An inclusion of the resummation
of logarithms getting large with small R give rise to an additional maybe important
contribution [260].

7.4. Conclusions

We have presented approximate higher order predictions for single-inclusive jet produc-
tion in polarized hadronic scattering. Our results are a first step towards new accuracies
in spin physics. We showed that formal subleading terms give significant contributions
to the NLO cross section, even at relatively large pT . By matching to the full NLO
result, we can determine the general behavior and effects of the NNLO correction at
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large pt.

In future studies, we are going to investigate the all order treatment of terms of the type
log(z) and how they can be determined at NNLO accuracy. As we have shown, these
formally subleading terms give relevant contributions to the spin dependent analysis.
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Appendix A.

NLO Coefficients for lN → hx

Here we present the NLO coefficients defined in equations (2.23), (2.24), (2.25) for the
different channels:

q → q channel:

Aq→q0 =
1 + v2

(1− v)2

(
(3 + 2 ln(v)) ln

(
s(1− v)

µ2

)
+ ln2(v)− 8

)
,

Aq→q1 = 8w
1 + v2

(1− v)2
,

Bq→q
1 = 4w

1− v(1− w) + v2(1− w(1− w))

(1− v)2
,

Bq→q
2 =

2w

(1− v)2(1− v(1− w))
×

[ (
1− 2v(1− w) + v2(1− 2w + 2w2)

)
×

(
2− 2v(1− w) + v2(1− w)2

) ]
,

Bq→q
3 = 4w

1 + v2

(1− v)2
. (A.1)

Cq→q1 =
1

(1− v)2(1− vw)(1− v(1− w))

[
2− w − 2v(1 + 4w)

+v2(2 + 9w − 10w2 + w3)− 2v3(1− w + w2 − 4w3)

+v4w(2− 2w − 7w2 + 8w3)

179
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−2v5w2(1− 3w + 4w2 − 2w3)
]
,

Cq→q2 =
2(1 + v2(1 + 2w2))

(1− v)2
,

Cq→q3 =
−2vw(3− 2v(1− w) + v2(1− 2w + 2w2))

(1− v)2
,

Cq→q4 =
1

(1− v)2(1− vw)(1− v(1− w))

[
2− w − 2v(1 + 2w)

+v2(2 + 5w − 6w2 + w3)− 2v3(1− w + w2 − 2w3)

+v4w(2− 2w − 3w2 + 4w3)

−2v5w2(1− 3w + 4w2 − 2w3)
]
,

Cq→q5 =
1

(1− v)2(1− vw)(1− v(1− w))

[
2− w − 2v(2− w)

+v2(4− w − 2w2 + w3)− 2v3 + v4w(2− w2)

−2v5w2(1− 2w + 2w2 − w3)
]
. (A.2)

q → g channel:

Cq→g1 =
2vw(1 + v2(1− w)2)

(1− v)2(1− v(1− w))2

×(1− 2v(1− w) + v2(1− 2w(1− w))),

Cq→g2 =
vw(6− 4vw + 2v2(1− 2w(1− w)))

(1− v)2
,

Cq→g3 =
vw

(1− v)2(1− vw)2(1− v(1− w))2

[
3− 2v(3 + w)

+v2(6 + 4w − w2)− 2v3(3− 3w + 5w2 − 2w3)

+v4(3− 4w + 5w2 − 2w3)

−2v5w(2− 6w + 9w2 − 7w3 + 2w4)

+2v6(1− w)2w2(1− 2w + 2w2)
]
,

Cq→g4 =
vw

(1− v)2(1− vw)2(1− v(1− w))2

[
2− 2v(5− 3w)

+v2(16− 3w − 11w2)− v3(10 + 15w − 27w2 + 2w3)

+v4(2 + 17w − 23w2 + 7w3 − 3w4)

−v5w(5− 5w − w2 + 3w3 − 2w4)
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+2v6(1− w)2w2(1− w + w2)
]
. (A.3)

g → q channel:

Cg→q1 =
2(1 + v(4vw2 − 2w(1 + v) + v))

(1− v)2
,

Cg→q2 =
1

(1− v)2(1− vw)2

[
2(1− w + w2)

−2vw(3− 2w + 2w2)

+v2(2− 4w + 11w2 − 2w3 + 2w4)

−4v3w(1− 2w + 3w2) + 3v4w2(1− 2w + 2w2)
]
,

Cg→q3 =
1

(1− v)2(1− vw)2

[
1 + 4w − 6w2

−2v(1 + 3w + w2 − 6w3)+

v2(1 + 9w + 4w2 − 8w3 − 6w4)

−v3w(3 + 9w − 4w2 − 6w3)

+v4w2(1 + 4w − 4w2)
]
. (A.4)
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Appendix B.

NLO Coefficients for
Longitudinally Polarized ~l ~N → hX

Here we present the NLO coefficients defined in equations (3.11), (3.13), (3.14) for the
different channels:

q → q channel:

∆Aq→q0 =
1 + v

1− v

(
(3 + 2 ln(v)) ln

(
s(1− v)

µ2

)
+ ln2(v)− 8

)
,

∆Aq→q1 = 8w
1− v(1− 2w)

1− v ,

∆Bq→q
1 = 4w

1 + vw

1− v ,

∆Bq→q
2 = 4w

1− v(1− 2w)

1− v ,

∆Bq→q
3 = 4w

1− v(1− 2w)

1− v ,

∆Cq→q1 =
1

(1− v)(1− v(1− w))

[
2− w + vw(9− w)

−v2(2 + 2w − 3w2)− 2v3w(1− 3w + 2w2)
]
,

∆Cq→q2 =
2(1 + v)

1− v ,

∆Cq→q3 =
−2vw(1− v(1− 2w))

1− v ,

183



Appendix B. NLO Coefficients for Longitudinally Polarized ~l ~N → hX

∆Cq→q4 =
2v2w(1− w)(1− v(1− 2w))

(1− v)(1− v(1− w))
,

∆Cq→q5 =
1

(1− v)(1− v(1− w))

[
2− w + vw(5− w)

−v2(2− 2w + w2)− 2v3w(1− 3w + 2w2)
]
,

∆Cq→q6 =
(1− v)(1− w)(1 + vw)

1− v(1− w)
. (B.1)

q → g channel:

∆Cq→g1 =
2vw(1− v(1− 2w))(1 + v2(1− w)2)

(1− v)(1− v(1− w))2
,

∆Cq→g2 =
−2vw(1 + v(1− 2w))

1− v ,

∆Cq→g3 =
vw

(1− v)(1− vw)2(1− v(1− w))2

[
1− v(1− 2w)

+v2(1− 2w − 3w2)− v3(1− 7w2 + 4w3)

+2v4w(2− 7w + 7w2 − 2w3)

− 2v5w2(1− w)2(1− 2w)
]
,

∆Cq→g4 =
vw

(1− v)(1− vw)2(1− v(1− w))2

[
2− 4v

+v2(4− 13w + 12w2)− v3(2− 14w + 13w2)

−v4w(3− 4w + 3w2 − 2w3) + v5w2(1− w)2
]
. (B.2)

g → q channel:

∆Cg→q1 =
−2(1 + v(1− 2w))

1− v ,

∆Cg→q2 =
−1

(1− v)(1− vw)2

[
2− 2w + 2v(1− 4w + 2w2)

−v2w(4− 11w + 2w2) + 3v3w2(1− 2w)
]
,
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∆Cg→q3 =
1

(1− v)(1− vw)2

[
2(1− w) + 2v(2− 5w + 2w2)

−v2w(7− 12w + 2w2) + v3w2(7− 8w)
]
. (B.3)

R-dependent coefficients for jet production:

Ajet
0 =

(
3

2
+ 2 ln(v)

)
ln

(
v(1− v)s

µ2
R2

)
+ 2 ln2(v)− 13

2
+

2

3
π2,

Ajet
1 = 4w,

Bjet
1 = 2w ln

(
wv3(1− v)s

µ2
R2

)
,

C jet
1 =

vw

1− v(1− w)
×

[
1 + v(1− w)

1− v(1− w)
ln

(
w(1− w)2v3(1− v)s

µ2
R2

)
+ 1

]
. (B.4)

The explicit form of the coefficient Ajet
0 depends on the jet algorithm. The coefficient

Ajet
0 in (B.4) is given for an anti-kT algorithm [117].
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Appendix C.

3-Particle Phase Space for Single
Inclusive Kinematics

We adapt the notation from [261] for the 2→ 3 process

p1 + p2 → p3 + p4 + k (C.1)

where p1 is the momentum of the observed particle. The three particle phase space is
given by

(PS)3 =

∫
dnp3

(2π)n−1

∫
dnp4

(2π)n−1

∫
dnk

(2π)n−1
(2π)nδn(p1 + p2 − p3 − p4 − k)

×δ(p2
3) δ(p2

4) δ(k2) (C.2)

We decompose the phase space integral in two Lorentz invariant parts

(PS)3 =

∫
1

(2π)5−4ε
ds2 dnp3 dnp4k δ(p

2
3)δ(p2

4k − s2)δn(p1 + p2 − p3 − p4k)

×dnk dnp4 δ(k
2)δ(p2

4)δn(p4k − p4 − k) . (C.3)

The advantage of the decomposition above relies in the fact that we can evaluate the
first and the second line independently in any frame. We start with the second line.

∫
dnk dnp4 δ(k

2)δ(p2
4)δn(p4k − p4 − k)

=

∫
dnk δ(k2)δ((p4k − k)2)

=

∫
dEk d2k|| d

n−3k⊥δ(E
2
k − k2

‖ − k2
⊥)δ((p4k − k)2) (C.4)
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where in the first line we use the momentum conservation delta function and in the
second line we decompose the unobserved momentum k into its longitudinal and per-
pendicular components. The simple structure of the delta function δ((p4k − k)2) is the
reason why we decompose the phase space like in equation (C.3). Therefore, in equa-
tion (C.3) we are free to choose the rest frame of k and p4. Then, the delta function is
independent of the angles θ1 and θ2.

We can further decompose

dn−3k⊥ = dk2
⊥ (k2

⊥)(n−5
2

) dΩn−3 . (C.5)

We can integrate over dΩn−3 in a trivial way by using

∫
dΩn =

πn/2

Γ(n2 )
, (C.6)

then equation (C.4) can be written as

∫
dEk d2k‖ dn−3k⊥δ(E

2
k − k2

|| − k2
⊥)δ((p4k − k)2)

=

∫
dEk d2k|| δ((p4k − k)2)(E2

K −K2
||)

(n−5
2

) π
(n−3)/2

Γ(n−3
2 )

(C.7)

By using

k|| = Ek(cos θ1, sin θ1 cos θ2), (C.8)

we can rewrite

k2
|| = E2

k(1− sin2 θ1 sin2 θ2) ,

d2k|| = E2
k sin θ1 sin θ2 dθ1 dθ2 , (C.9)

inserting in equation (C.7) we end up with

∫
dnk dnp4 δ(k

2)δ(p2
4)δn(p4k − p4 − k)

=
π(n−3)/2

Γ(n−3
2 )

∫
dEk

1

2
√
s2
δ

(
p2

4k

2
√
s2
− Ek

)
E

(n−3)
k

×
∫

dθ1dθ2 sinn−3 θ1 sinn−4 θ2

=
π(n−3)/2

Γ(n−3
2 )

1

2
√
s2

(
p2

4k

2
√
s2

)(n−3) ∫
dθ1dθ2 sinn−3 θ1 sinn−4 θ2 (C.10)
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We now evaluate the firts line of (B.2)
∫

1

(2π)5−4ε
ds2 dnp3 dnp4k δ(p

2
3)δ(p2

4k − s2)δn(p1 + p2 − p3 − p4k)

=
1

(2π)5−4ε

∫
ds2 dnp3 δ(p

2
3)δ((p1 + p2 − p3)2 − s2)

=
1

(2π)5−4ε

∫
ds2

dn−1p3

2Ep1
δ(s+ t+ u− s2)

=
1

(2π)5−4ε

∫
ds2 dp3,|| dp

2
3,⊥ dΩn−2 (p2

3,⊥)(n−4)/2 1

2Ep1
δ(s+ t+ u− s2)

=
1

(2π)5−4ε

π(n−2)/2

Γ(n−2
2 )

∫
ds2 dp3,|| dp

2
3,⊥ (p2

3,⊥)(n−4)/2 1

2Ep1
δ(s+ t+ u− s2) (C.11)

We can write p3,|| and p3,⊥ as

p3,|| =
t− u
2
√
s

=

√
s

2
(−1 + v + vw)

p2
3,⊥ =

tu

s
= s(1− v)vw

Ep3 = − t+ u

2
√
s

=

√
s

2
(1− v + vw) (C.12)

We find the Jacobian
∂(p3,||,p

2
3,⊥)

∂(v,w) = Ep3vs. Then we have for the first line in equation

(B.2)
∫

1

(2π)5−4ε
ds2 dnp3 dnp4k δ(p

2
3)δ(p2

4k − s2)δn(p1 + p2 − p3 − p4k)

=
1

(2π)5−4ε

π(n−2)/2

Γ(n−2
2 )

∫
ds2 dw dv

sv

2
(s(1− v)vw)(n−4)/2 δ(sv(1− w)− s2) . (C.13)

Merge line one and line two from equation (C.3) we get

(PS)3 =
1

(2π)5−4ε

π(n−2)/2

Γ(n−2
2 )

∫
ds2 dw dv

sv

2
(s(1− v)vw)(n−4)/2

×δ(sv(1− w)− s2)

×π
(n−3)/2

Γ(n−3
2 )

1

2
√
s2

(√
s2

2

)(n−3) ∫
dθ1dθ2 sinn−3 θ1 sinn−4 θ2

=
s

28π4Γ(1− 2ε)

(
4π

s

)2ε ∫
dv dw v((1− v)(1− w)w)−εv−2ε

×
∫

dθ1dθ2 sin1−2ε θ1 sin−2ε θ2 (C.14)

This result is in agreement with the results given in [115, 261].
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Appendix D.

Angular Integration

For single inclusive phase space integration we have the angular integral (see Appendix
C)

∫
dθ1dθ2 sin1−2ε θ1 sin−2ε θ2M (D.1)

where θ1 and θ2 are the angles between the two unobserved final states and M the
partonic matrix element which depends on these angles. We label the momenta of the
partonic process in n = 4− 2ε dimensions as

p1 + p2 → k1 + k2 + k3 , (D.2)

where k1 is the observed particle. The 2→ 3 Mandelstam variables read

ti = (p1 − ki)2 ,

ui = (p2 − ki)2 ,

sij = (ki + kj) ,
2

s = (p1 + p2)2 . (D.3)

We work in the rest frame of the two unobserved particles. Thus we have,

k2 = k0
2(1, ...., sin θ1 cos θ2, cos θ1)

k3 = k0
3(1, ....,− sin θ1 cos θ2,− cos θ1) (D.4)

with k0
2 = k0

3 =
√
s23

2 . Since we already chose which momenta defines the rest frame we
are still free to chose which momentum defines the z-axis. Therefore, three choices are
useful where either p1, p2 or k1 is in the direction of the z-axis.
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Set 1: p1 in z-direction

p1 = p0
1(1, 0, ..., 0, 1)

p2 = p0
2(1, 0, ...,− sinψ′′, cosψ′′)

k1 = k0
1(1, 0, ...,− sinψ, cosψ) (D.5)

that leads to the following Mandelstam variables

s12 = s0
12(1 + sinψ sin θ1 cos θ2 − cosψ cos θ1)

s13 = s0
13(1− sinψ sin θ1 cos θ2 + cosψ cos θ1)

t2 = t02(1− cos θ1)

t3 = t03(1 + cos θ1)

u2 = u0
2(1 + sinψ′′ sin θ1 cos θ2 − cosψ′′ cos θ1)

u3 = u0
3(1− sinψ′′ sin θ1 cos θ2 + cosψ′′ cos θ1) . (D.6)

Set 2: p2 in z-direction

p1 = p0
1(1, 0, ..., sinψ′′, cosψ′′)

p2 = p0
2(1, 0, ..., 0, 1)

k1 = k0
1(1, 0, ..., sinψ′, cosψ′) (D.7)

that leads to the following Mandelstam variables

s12 = s0
12(1− sinψ′ sin θ1 cos θ2 − cosψ′ cos θ1)

s13 = s0
13(1 + sinψ′ sin θ1 cos θ2 + cosψ′ cos θ1)

t2 = t02(1− sinψ′′ sin θ1 cos θ2 − cosψ′′ cos θ1)

t3 = t03(1 + sinψ′′ sin θ1 cos θ2 + cosψ′′ cos θ1)

u2 = u0
2(1− cos θ1)

u3 = u0
3(1 + cos θ1) . (D.8)

Set 3: k1 in z-direction

p1 = p0
1(1, 0, ..., sinψ, cosψ)

p2 = p0
2(1, 0, ...,− sinψ′, cosψ′)

k1 = k0
1(1, 0, ..., 0, 1) (D.9)
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that leads to the following Mandelstam variables

s12 = s0
12(1− cos θ1)

s13 = s0
13(1 + cos θ1)

t2 = t02(1− sinψ sin θ1 cos θ2 − cosψ cos θ1)

t3 = t03(1 + sinψ sin θ1 cos θ2 + cosψ cos θ1)

u2 = u0
2(1 + sinψ′ sin θ1 cos θ2 − cosψ′ cos θ1)

u3 = u0
3(1− sinψ′ sin θ1 cos θ2 + cosψ′ cos θ1) . (D.10)

We used

s0
12 = s0

13 ≡
s(1− v + vw)

2
, t02 = t03 ≡ −

sv

2
, u0

2 = u0
3 ≡ −

s(1− vw)

2
, (D.11)

and

cosψ = 1− 2(1− v)(1− w)

1− v + vw

cosψ′ = 1− 2v2w(1− w)

(1− vw)(1− v + vw)

cosψ′′ = 1− 2(1− w)

1− vw (D.12)

More details and derivation can be found in [131, 261, 262]. It turns out that by using
relations among Mandelstam variables, that M can be simplified in a such way that
each term contains at highest two Mandelstam variables which are dependent on the
angles θ1 and θ2. Therefore, we can choose one of the sets introduced in this appendix
for each of these terms and we always end up with an angular integral of the form

Ωij ≡
π∫

0

dθ1

π∫

0

dθ2
sin1−2ε θ1 sin−2ε θ2

(1− cos θ1)i(1− cos θ1 cosχ− sin θ1 cos θ2 sinχ)j
(D.13)

where χ is one of the anngles ψ, ψ′ and ψ′′. This integral has a general result [112, 131,
261]

Ωij = 2π
Γ(1− 2ε)

Γ(1− ε)2
2−i−j B (1− ε− i, 1− ε− j) 2F1(i, j, 1− ε, cos2 χ

2
) . (D.14)

Note Ωij is symmetric under the interchange of i and j and B is the beta function and

2F1 is the hypergeometric function.
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Appendix E.

New Integral for Twist-3
Calculation

Using the notation given in appendix C ”group 2” in [112], we need one additional
integral given by:

Ī
(3,1)
n=4−2ε

=
π

a3(A+B)

[(
B2(A+B)2 − (A− 5B)(A+B)

C2

2
+

3

2
C4

)

×
(
−1

ε
+ log

(
(A+B)2

A2 −B2 − C2

))
1

(A+B)4

−(A+B)3(A+ 5B) + 2(A+B)(A+ 11B)C2 + 16C4

4(A+B)4

]
(E.1)
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Appendix F.

The Normalization of the Soft
Function

The soft matrix SLI in the resumed cross section in moment space, equation (7.10),
is computed as described in Ref. [177, 178]. Its all-orders form is most conveniently
exhibited in moment space, as the ratio of the moments of a fully eikonal cross section
σ̂ab→cdLI and four factorized jets, two to absorb the factorizing collinear singularities of
the incoming parton lines, and two to absorb the collinear singularities of outgoing lines:

(
Sab→cd

(
αs(m̂/N̄),∆η

) )
LI

=
σ̂ab→cdLI

(
m̂

NµR
,∆η, αs(µR), ε

)

∏
i=a,b j̃

(i)
in

(
m̂

NµR
, αs(µR), ε

)∏
j=c,d j̃

(j)
out

(
m̂

NµR
, αs(µR), ε

) . (F.1)

As described in Refs. [40, 177, 178], these “in” and “out” jets, j̃in and j̃out, respectively
are defined to match the collinear singularities and radiation phase space in the partonic
threshold limit.

The explicit calculation of (Sab→cd)LI at one loop as given here is equivalent to the
procedure described in Sec. 5.3.3. The functions on the right of (F.1), as defined in
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detail below, are normalized and expanded according to

σ̂ab→cdLI

(
m̂

NµR
,∆η, αs(µR), ε

)
= (S

(0)
ab→cd)LI +

αs(µR)

π
σ̂
ab→cd (1)
LI

+ O(αs(µR)2) ,

j̃
(i)
in

(
m̂

NµR
, αs(µR), ε

)
= 1 +

αs(µR)

π
j̃

(i,1)
in + O(αs(µR)2) ,

j̃
(j)
out

(
m̂

NµR
, αs(µR), ε

)
= 1 +

αs(µR)

π
j̃

(j,1)
out + O(αs(µR)2) , (F.2)

where S(0) is the tree-level soft matrix, defined as in equation (5.52). The first-order
expansion of the soft matrix is thus,

(
S

(1)
ab→cd

)
LI

= σ̂
ab→cd (1)
LI − (S

(0)
ab→cd)LI


 ∑

i=a,b

j̃
(i,1)
in +

∑

j=c,d

j̃
(j,1)
out


 . (F.3)

At any loop order, the collinear singularities of the eikonal cross section σ̂LI match
those of properly-defined incoming and outgoing jet functions. At one loop, this will
result in a finite soft function by simple cancellation in equation (F.3), as seen in Sec.
5.3.3. That is, division by the regularized jet functions plays the role of the collinear
factorization of the soft function. It also provides finite, factorizing corrections to
the soft function, which depend on the definitions of the jets functions. Here we use
jet functions defined directly from the eikonal resummations of Drell-Yan and double
inclusive cross sections [188]. The choices, defined below, match collinear singularities of
the eikonal cross section, and have the advantage of being Lorentz and gauge invariant.
They differ from those made in Refs. [40, 177, 178] by finite terms, but the collinear
structure is identical. When restricted to the amplitude level, this is the same formalism
that was implemented in Refs. [222–225, 231].

To make the connection to the calculation of the soft function in chapter 5 explicit, we
recall that eikonal diagrams are generated by path-ordered exponentials with constant
velocities β, which we represent as

Φ
(f)
β (λ2, λ1;x) = P exp

(
−ig

∫ λ2

λ1

dη β·A(f)(ηβ + x)

)
, (F.4)

where superscript f represents the color representation of the parton to which this
“Wilson line” corresponds. In terms of these path-ordered exponentials, we define
products corresponding to scattering, pair annihilation and pair creation. For the case
of 2→ 2 scattering, the ends of two incoming and two outgoing Wilson lines are coupled
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locally by a constant color tensor CI ,

w
(ab→cd)
I (x){j} =

∑

{i}

Φ
(d)
βd

(∞, 0;x)jd,id Φ
(c)
βc

(∞, 0;x)jc,ic

×
(
C(ab→cd)
I

)
idic,ibia

Φ
(a)
βa

(0,−∞;x)ia,jaΦ
(b)
βb

(0,−∞;x)ib,jb . (F.5)

For pair annihilation, two lines in conjugate representations that come from the infinite
past are joined by a color singlet tensor, that is, a simple Kronecker delta,

w
(aā)
0 (x){j} =

∑

{i}

(δ)ia,iā Φ
(ā)
βā

(0,−∞;x)iā,jāΦ
(a)
βa

(0,−∞;x)ia,ja , (F.6)

and similarly for pair creation, using color-conjugate lines that emerge from a point,
and extend into the infinite future,

ŵ
(aā)
0 (x){j} =

∑

{i}

Φ
(ā)
βā

(∞, 0;x)iā,jāΦ
(a)
βa

(∞, 0;x)ia,ja (δ)ia,iā . (F.7)

In terms of these operators, the eikonal cross section is defined by

σ̂ab→cdLI

(
m̂

NµR
,∆η, αs(µR), ε

)

=

∫ 1

0
dτ τN−1

∫
dy0

2π
eiτm̂y

0

× Tr{j} 〈0| T̄
(
w

(ab→cd)
L

†
(

(y0,~0)
)
{j}

)
T
(
w

(ab→cd)
I (0){j}

)
|0〉

=

∫ 1

0
dτ τN−1

∑

ξ

δ(τm̂− p0
ξ)

× Tr{j} 〈0| T̄
(
w

(ab→cd)
L

† (0){j}

)
|ξ〉 〈ξ|T

(
w

(ab→cd)
I (0){j}

)
|0〉 ,

(F.8)

where T represents time ordering, T̄ anti-time ordering, and p0
ξ is the energy of state

|ξ〉. The in jet is defined in terms of its square in moment space as

(
j̃

(a)
in

(
m̂

NµR
, αs(µR), ε

))2

=

∫ 1

0
dτ τN−1

∑

ξ

δ(τm̂− p0
ξ) (F.9)

× Tr{j} 〈0| T̄
(
w

(aā)
0
† (0){j}

)
|ξ〉 〈ξ|T

(
w

(aā)
0 (0){j}

)
|0〉 .

With this choice,
(
j̃

(a)
in

)2
is exactly the eikonal Drell-Yan cross section. It was computed

to two loops in Ref. [263]. The out jet is defined by the same integrals but with the
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Appendix F. The Normalization of the Soft Function

pair of incoming Wilson lines of the operator w0(x) replaced by the outgoing pair in
ŵ0(x), corresponding to double inclusive annihilation [211]:

(
j̃

(c)
out

(
m̂

NµR
, αs(µR), ε

))2

=

∫ 1

0
dτ τN−1

∑

ξ

δ(τm̂− p0
ξ)

× Tr{j} 〈0| T̄
(
ŵ

(cc̄)
0
† (0){j}

)
|ξ〉 〈ξ|T

(
ŵ

(cc̄)
0 (0){j}

)
|0〉 .

(F.10)

It is easy to confirm explicitly in Ref. [263] that the calculation of this quantity depends
only on the inner products βa · βā so that the full two-loop calculation and renormal-
ization of this operator is the same for outgoing as for incoming eikonal jets.

The resummation of logarithms of N in this cross section leads precisely to the functions
ln ∆N

i in equation (5.25), which summarize factoring NNLL dependence on the moment
variable N , as confirmed recently in Ref. [264]. We note, however, that in the NNLL
exponentiation as implemented into the expression for the functions ∆N

i in equation
(5.20), the Drell-Yan soft function is treated as an overall prefactor evaluated at the
hard scale m̂, rather than at m̂/N . Logarithms at NNLL that are associated with this
shift are already incorporated into the exponent by use of the relation [264]

S(αs(m̂/N)) = S(αs(m̂)) exp

[
−
∫ m̂

m̂/N

dµ

µ

∂ lnS(αs(µ))

∂µ

]
. (F.11)

To match logarithms associated with these factors consistently we include in our def-

inition of ∆N
i in equation (5.20) an extra factor of Ri = 1 − (3αs/4π)A

(1)
i ζ(2), equa-

tion (5.24), to account for our definitions of the in- and out-jet functions in terms of
Drell-Yan and double inclusive cross sections. The combined factors for all four jet
functions match the π2 contribution in (5.87), which in turn arises from the explicit π2

terms in the integrals dIij/dτ̂ in (5.83).
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221



Acknowledgements

sphere. Special thanks to the current and former members of our research group which
are Daniele Anderle, Ingrid Estiry, Felix Hekhorn, Ilkka Helenius, Tom Kaufmann, Dr.
Valery Lyubovitskij, Pit Burgbacher, Julius Steiglechner, Rouven Veigel, Marina Walt
and Sabine Werner. I am also grateful to the theoretical physics group in Niigata/Japan
for the hospitality during my stay.

I would like to thank Lukas Salfelder for the time we had between Stuttgart and Tübin-
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