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1 Abstract

More than 30 functional types of retinal ganglion cells (RGCs) compute in parallel distinct
features of the visual world and send this information to the brain. Little is known, however,
about which RGC types project to the dorsolateral geniculate nucleus (dLGN) of the
thalamus, and how the different RGC channels recombine there. Interest in these questions
has been fuelled by recent estimates of retinogeniculate convergence obtained by

anatomical work, which far exceeded those obtained in electrophysiological recordings.

To get insights into the nature of retinal input to the dLGN, we conditionally expressed the
genetically encoded Ca*" indicator GCaMP6f in dLGN-projecting (dLGN-p) RGCs, followed
by in vitro retinal two-photon Ca** imaging of light-evoked responses. Visual stimuli matched
those in a previously published survey of mouse functional RGC types (Baden et al., 2016).
We then assigned each dLGN-p RGC to the best-matching RGC type with the best-matching
response properties. We found that most functional RGC types seem to innervate dLGN,
with certain types, such as ON- and OFF alpha cells or OFF supressed cells, showing clear

overrepresentations.

In a separate set of experiments, we characterized the responses of dLGN neurons to the
same visual stimuli using in-vivo extracellular multi-electrode recordings in the dLGN of
awake, head-fixed mice. We quantitatively assessed the degree of diversity in the dLGN
responses by using sparse non-negative matrix factorization (NNMF), which decomposed

the dLGN population response into a rich and highly diverse set of components.

Finally, we linked the functionally characterized population of dLGN-projecting RGCs and
geniculate neurons, via computational modelling to provide a quantitative account of the
transformations in visual representation between RGCs and dLGN neurons. We found that
responses of dLGN neurons could be best predicted as a sparse linear combination of

responses from 3-7 different RGC types.

In conclusion, this study provides fundamental insights into how the representation of visual
information changes along the first stages of the retino-geniculo-cortical pathway, suggesting
that the precortical basis of vision displays an unexpectedly rich functional diversity of retino-
geniculate projections and thalamic features that can be modelled by a sparse feed-forward

model.






2 Introduction

2.1 The functional role of a visual system

Vision is the most fundamental of our senses and plays a crucial role in the survival of many
animals. The visual system extracts and interprets relevant features from the environment to
build an internal representation of the outside world. For example, an eagle has the ability to
recognize small animals, like mice, in their natural environment and distinguish them from
their surroundings from far above in the sky. This is only possible, because the eagle’s visual
system features a high spatial resolution and the ability to interpret small objects as its prey.
In contrast, a mouse does not need high resolution to identify the eagle as its predator, but
instead its visual system appears to provide mechanisms for detecting fast, approaching

objects from above (Minch et al., 2009).

The only visual input available to the brain is provided by the eyes. There, the information
from our surroundings is projected through the optics of the eyeball onto a light-sensitive
neural tissue, called the retina (Masland, 2012). The machinery of the retina decomposes
visual information into multiple parallel processing channels, thereby providing a compact
and efficient input to higher visual centres. Understanding how visual information is encoded
by the outputs of these channels will thus provide a complete representation of visual
information available to the brain. (Fig. 1) (Azeredo da Silveira & Roska, 2011; Euler et al.,
2014; Huberman & Niell, 2011).
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Figure 1 | Retina as a model system for parallel processing of sensory information. a. An inverted
image of the outside world is projected onto a light-sensitive neural tissue, the retina, located in the back of
the eyeball. b. The retina is a layered structure consisting of five neural cell types. The rod and cone
photoreceptors transduce light into electrical signals and distribute these at the first synaptic layer, the
outer plexiform layer (OPL) onto the dendrites of =214 types of bipolar cell. Bipolar cells decompose the
photoreceptor signal into multiple parallel information channels and relay it into the inner plexiform layer
(IPL), where the bipolar cell axon terminals synapse onto amacrine cells and retinal ganglion cells (RGCs).
RGCs are the output neurons of the retina. They encode different aspects of visual information in parallel
and relay it as spike trains through the optic nerve to higher visual areas in the brain. Along this excitatory
feed-forward pathway, the visual signal is modulated by inhibitory interneurons, the horizontal and
amacrine cells, in OPL and IPL, respectively. c¢. The retina extracts different visual features, such as
luminance, contrast, edges, motion, or chromatic information from the light pattern projected into the eye.
These specific features are encoded by RGCs and send to the brain in parallel. Abbreviations: ONL, outer
nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer. The photo was taken from free image
gallery pixabay: https://pixabay.com/en/eagle-bird-bird-of-prey-expensive-1753002/; Panel (b) modified with
permission from Euler et al., (2014).



2.2 The retinal circuitry

The mammalian retina is a highly sophisticated light-sensitive neural network that transforms
visual information into a rich array of electrical signals. This process is performed by five
cardinal cell classes, which are organized in a layered structure, with each layer containing
either cell bodies (nuclear layers) or synaptic neuropil (plexiform layers) (reviewed in
Wassle, 2004). Photoreceptors, bipolar cells (BCs) and retinal ganglion cells (RGCs) are
glutamatergic neurons and form the excitatory pathway of the retina. Horizontal cells and
amacrine cells (ACs) belong to the group of (mostly) inhibitory interneurons. They
extensively modulate the excitatory pathway and thus shape visual information mainly by

lateral inhibition in the outer and inner retina, respectively (Fig. 1b).

2.2.1 Signal transduction in the retina

In the outer retina, photoreceptors - rods and cones - absorb photons in their outer
segments, and by using opsin transduction cascades (reviewed in Korenbrot, 2012), they
transform the spatio-temporal light pattern projected on the retina into graded electrical
signals that provide the basis for downstream visual processing. Photoreceptors
continuously release glutamate as their neurotransmitter in the dark, thereby exciting bipolar
cells that express ionotropic glutamate receptors (so-called OFF bipolar cells). Upon light
stimulation, photoreceptors reduce their glutamate release, which leads to the excitation of
bipolar cells expressing metabotropic, sign-inverting glutamate receptors (so-called ON
bipolar cells) (reviewed in Demb & Singer, 2015). Glutamate released by photoreceptors is
further modulated via feedback and feed-forward inhibition from horizontal cells, for example,
to adjust the photoreceptor's output gain depending on the illumination level (Xin &
Bloomfield, 1999). Already at the level of the BCs, the photoreceptor input is distributed into
multiple parallel channels, which transmit the signal from the outer to the inner retina (Euler
et al., 2014; Franke et al., 2017; Wassle, 2004). In the inner plexiform layer (IPL), bipolar
cells relay visual information onto a complex network of RGC and amacrine cell dendrites.
Similar to horizontal cells, amacrine cells modulate the response of bipolar cells at the level
of their synaptic terminals (Eggers & Lukasiewicz, 2010; Zhang et al., 1997), and ganglion
cells via lateral inhibition, thereby adjusting diverse spatio-temporal properties of the visual
signal (Eggers & Lukasiewicz, 2011). There are approximately 30-40 different types of
amacrine cells in the retina, which vary widely in morphology and function (MacNeil &
Masland, 1998; Strettoi & Masland, 1996). Most of the amacrine cells are inhibitory and
release GABA or glycine as their neurotransmitter. However, many amacrine cell types co-

release neuromodulators such as acetylcholine or dopamine (Demb & Singer, 2015).



Ganglion cells are the only output neurons of the retina. They encode diverse visual features
(Baden et al., 2016; Gollisch & Meister, 2010) and transmit the information through the optic

nerve to more than 50 retino-recipient areas in the brain (Martersteck et al., 2017).

2.2.2 Building blocks of the excitatory pathway

Photoreceptors

Photoreceptors can be divided into two sub-classes. Rods are highly sensitive to light and
operate under low-light levels (scotopic conditions), whereas cones absorb photons only at
brighter light levels (photopic conditions), when rod photoreceptors are thought to be already
saturated. Under mesopic light conditions, both sub-classes of photoreceptors contribute to
vision (reviewed in Purves et al., 2001). In the following, the focus will be on the cone

pathways in the retina.

Cone photoreceptors can be divided into different types based on their spectral sensitivity,
thereby providing the basis for parallel chromatic pathways in the retina. The spectral
sensitivity of cone photoreceptors varies across species and is adapted to their respective
environment (Peichl, 2005). For instance, humans and old-world primates have three cone
types expressing specific opsins with sensitivities in the short (S, “blue”), medium (M,
“green”), and long (L, “red”) wavelength range with maximal absorptions at approximately
425 nm, 530 nm, and 560 nm, respectively (Riggs, 1967). In comparison, most non-primate
mammals contain two cone types: S- and M-cones. Mice express S- and M-opsins with their

maximal absorption at approximately 360 nm and 510 nm, respectively (Haverkamp, 2005).

In addition to different spectral sensitivities, different types of cone photoreceptors were
shown to have distinct functional properties. The distribution of chromatic and achromatic
features differs in natural scenes above and below the horizon. Therefore, it was proposed
that in the mouse, the asymmetric retinal arrangement of S- and M-cones (Réhlich et al.,
1994; Szél et al., 1992) is used to sample light in the sky and on the ground differentially.
This idea was tested by Baden et al., (2013), who showed that in the mouse functional S-
cones mainly encode the visual scenes above the horizon and prefer dark over bright stimuli,
which is in agreement with the predominance of dark contrasts in the sky, but not on the
ground. In contrast, functional M-cones encode both bright and dark stimuli similarly well and

encode the visual scenes mainly below the horizon.

Bipolar cells

Bipolar cells form the first stage of parallel processing channels in the retina. They integrate
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Figure 2 | Bipolar cell types of the mouse retina. a. Same as in Fig. 1b. b. Top: The mouse retina
contains 14 anatomically defined types of bipolar cell, which can be distinguished based on shape and
stratification depth of their axon terminals. Bottom: Different bipolar cell types can be separated into ON vs.
OFF and transient vs. sustained types, according to their light responses, which vary depending on the
stratification level. Moreover, some bipolar cell types can be further differentiated on the basis of their input
from rod or cone photoreceptors, or from short or medium wavelength-sensitive cone photoreceptors.
Figure modified with permission from Euler et al., (2014).

visual information across multiple photoreceptor inputs along their dendrites and relay the
signal to the IPL, where most of the computations underlying the extraction of visual features
take place (Fig. 2) (Euler et al., 2014).

In the mouse, a set of 14 types of bipolar cell has recently been anatomically described by
serial-sectioning electron microscopy (Fig. 2b, top) (Greene et al., 2016; Helmstaedter et al.,
2013; Kim et al., 2014). Different types of bipolar cell can be identified based on the shape
and IPL stratification level of their axon terminals (Euler et al., 2014). In mammals, the IPL is
traditionally subdivided into five strata of equal thickness (Kolb, 1979); these strata can be
grouped into an OFF and an ON sublamina, comprised of IPL strata 1-2 and 3-5,
respectively. Following this division, bipolar cells responding to light decrements (OFF BCs)
stratify in the OFF part of the IPL, whereas bipolar cells depolarizing to light increments (ON
BCs) stratify in the ON part of the IPL (Euler et al., 1996). In addition, the stratification level
of the bipolar cells reflects their temporal properties, with sustained bipolar cells typically
stratifying at the borders of the IPL, and transient and spiking bipolar cells ramifying closer to
its centre (Fig. 2b) (Awatramani, 2000; Roska & Werblin, 2001).

Furthermore, bipolar cells can be differentiated on the basis of their input. The classical view

is that 13 out of the 14 types of bipolar cell receive their glutamatergic input mainly from



cone photoreceptors, whereas a single type of rod bipolar cell samples rod inputs (Euler et
al., 2014). Recently, it has been shown that different bipolar cell types can also receive
mixed input, as several cone bipolar cell types form additional connections to rods (Fyk-
Kolodziej et al., 2003; Hack et al., 1999) and rod bipolar cells receive input from both rod and
cone photoreceptors (Behrens et al., 2016; Pang et al., 2010). Furthermore, some bipolar
cell types receive selective input from short or medium wavelength-sensitive cones, thereby

providing the basis for spectrally distinct channels (Puller & Haverkamp, 2011).

Different bipolar cell types split the photoreceptor signal into separate parallel channels and
relay this information to the IPL, where excitatory and inhibitory inputs, originating from
bipolar and amacrine cells, respectively, converge onto RGC dendrites. By integrating
multiple excitatory and inhibitory inputs, RGCs inherit a highly specific combination of
functional properties (Sanes & Masland, 2015). Some of the functional RGC properties, such
as polarity, transience or chromaticity can be predicted by their stratification level in the IPL,
since they receive their excitatory glutamatergic input from different bipolar cell types, whose
axon terminals ramify in different strata of the IPL (Awatramani, 2000; Breuninger et al.,
2011; Franke et al., 2017).

Retinal ganglion cells

Retinal ganglion cells are the output neurons of the retina and represent parallel feature
channels that provide the only available source of visual information to the brain (reviewed in
Sanes & Masland, 2015). These feature channels are formed by different bipolar and
ganglion cell types, where each type of ganglion cell is believed to exhibit a unique
physiological function. Understanding the retinal signal processing thus requires the

knowledge of how different RGCs types encode visual information (Fig 3).

The modern anatomical taxonomy of RGC dendritic morphologies was established in early
studies using Golgi, Nissl, and neurofibrillar stains (Stone, 1984), and was based on different
morphometric parameters, including dendritic morphology, size of the cell body and the
dendritic tree, and the stratification depth of the axon terminals in the IPL. The classification
of RGCs advanced rapidly with the introduction of methods for intracellular dye filling, initially
achieved through sharp electrodes in fixed or living tissue (e.g. Buhl & Peichl, 1986; Pu &
Amthor, 1990). The breakthrough came with the arrival of modern molecular techniques
using large-scale chemical mutagenesis or targeted genetic manipulation (McGavern &
Kang, 2011; Salinas et al., 2010), in particular, transgenic mouse strains, in which marker

proteins are expressed under the control of cell-type-specific promoters, have been used
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Figure 3 | Anatomical and functional classification of mouse retinal ganglion cell types. a. Same as

in Fig. 1b. b. Representative morphologies and IPL stratification depths of genetically labelled ganglion
cells in the retinas of transgenic mouse lines. The respective transgenic mouse line is listed above each
cell type. c. Functional classification of RGC types by Baden et al., (2016). (c;) Whole-mount view of a Ca**
indicator-stained mouse retina, with different functional cell types colour-coded in the central patch. (c,)
RGC responses to different visual stimuli sorted by functional RGC clusters from exemplary cells in (c4);
warm colours indicate an increase, cold colours a decrease in activity; block height represents number of
cells in the respective cluster. c;. Distribution (c3) and morphology with a top (c4) and a side (cs) view of the
two example RGCs highlighted in (c,). Abbreviations: DS, direction-selective; t-OFF, OFF-transient; s-OFF,
OFF-sustained. Scale bars: ¢, 50um. Panel (a) modified with permission from Euler et al., (2014). Panel (b)
modified from Dhande et al., (2015). Panel (c) modified from Baden et al., (2016) and http://www.eye-

tuebingen.de/eulerlab/projects/the-retinal-code/.

with great success to systematically characterize retinal cell types (Fig. 3b) (reviewed in
Dhande et al., 2015).

The first physiological classifications of RGCs were based on single cells studies, with
recordings made in-vivo either intraocularly directly from their cell bodies (Barlow et al.,
1964) or intra-cranially from their axons in the optic tract (Enroth-Cugell & Robson, 1966).
These early studies functionally grouped the RGCs into broad categories, based on their
cardinal response properties (ON vs. OFF, transient vs. sustained) (Dowling & Werblin,
1969; Lettvin et al.,, 1959). With the development of optical and electrophysiological
population recordings, such as Ca?" imaging (Briggman & Euler, 2011) or microelectrode
arrays (Farrow & Masland, 2011), functional classifications shifted from single-cell to
population-based approaches, and greatly increased the rate at which in particular relatively
rare RGC types were functionally classified (Amthor & Oyster, 1995). The most complete

survey of RGCs in the mouse retina so far identified a minimum of 32 functional RGC types,



by combining the advantages of two-photon Ca?* imaging and unsupervised clustering of
more than 11,000 cells (Fig. 3c) (Baden et al., 2016).

10



2.3 The retinogeniculate pathway

The main central target areas for RGCs are the superior colliculus and the dorsal lateral
geniculate nucleus (dLGN). Both structures receive highly correlated and retinotopically
organized input from different RGC types (reviewed in Dhande et al., 2015) The dLGN as a
part of the retino-geniculo-cortical pathway, represents the main station on the route for
visual information to reach the primary visual cortex for visual perception (Huberman & Niell,
2011). While it has long been known that this pathway is not homogenous but consists of
parallel channels each carrying specific information (e.g. Cruz-Martin et al., 2014), it is still
debated which RGC types project to the dLGN and how their functional output is

transformed at the level of the dLGN.

The retinal afferents provide the primary excitatory drive for the dLGN neurons and comprise
about 10% of the total number of synapses in dLGN, with roughly 90% arising from a variety
of other sources including visual cortex (V1), superior colliculus (SC) or the thalamic reticular
nucleus (TRN) (Bickford et al., 2015; Guillery & Sherman, 2002). Studies using in vitro slice
recordings to estimate retinal convergence have shown that during early postnatal age,
dLGN neurons receive relatively weak synaptic input from several RGCs. During the first few
weeks of postnatal life, they then undergo a substantial anatomical refinement followed by a
sensory-dependent plasticity, where significant axon pruning occurs (Guido, 2008; Hong et
al., 2014). Even though precise connectivity between RGCs and dLGN neurons is thought to
be essential for the transmission of visual information, it is still not well understood, and the
degree and nature of retinal convergence onto dLGN neurons has been a topic of intense

investigations.

2.3.1 The classical model systems

Retino-geniculate information transmission has been studied extensively in cats and
monkeys, where the vast majority of dLGN neurons seems to be driven by only few (1-3)
dominant RGCs, thereby acting as relays for retinally defined visual channels (Cleland et al.,
1971; Usrey et al., 1999). This dominant input can evoke such strong excitatory postsynaptic
potentials (EPSPs) — so-called “S-potentials” (for synaptic) - that they can be picked up by
extracellular recordings during single neuron activity in dLGN. Consistent with a low degree
of convergence, a dLGN neuron’s “S-potentials” and its spiking output have closely matching
receptive fields (RFs) in terms of location, center-surround organization and size (Hubel &
Wiesel, 1961; Kaplan et al., 1987; Sincich et al., 2007). Next to the dominant inputs, electron

microscopy (Hamos et al., 1987) and in vivo electrophysiological studies (Cleland et al.,
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1971; Mastronarde, 1987, 1992; Usrey et al., 1999) have shown that cat dLGN cells can

receive additional weaker input from multiple RGCs.

Besides the number of RGC inputs converging on single dLGN neurons, it has been another
long-standing question whether converging RGC inputs to dLGN neurons arise from the
same RGC type. In the cat, probability of monosynaptic connections between individual
RGCs and dLGN neurons, as well as their strength have been found to increase with RF
similarity (Usrey et al., 1999), but connectivity between dissimilar retinal and geniculate RFs
has been observed as well (Usrey et al., 1999). In cats and monkeys, the increase in
connection probability between RGCs and dLGN neurons with similar RFs might not be
surprising, given the pronounced stream specificity and strict spatial layering of LGN relay
cells. Hence, despite the fact that in monkeys, a heterogeneous set of at least 13 types of
dLGN-projecting RGC has been identified (Dacey et al., 2003), this highly organized
functional mapping at the level of dLGN makes opportunities for mixing of inputs from
several RGC types, at least within the classical pathways, rare (Chen et al., 2016; Nassi &
Callaway, 2009; Sur et al., 1987).

2.3.2 Anatomical connectivity in the mouse model system

Recent anatomical studies in the mouse started to challenge the retino-geniculate
connectivity, where a detailed and complex picture emerges. Rabies virus tracing of mono-
transsynaptic inputs received by individual neurons in dLGN has revealed that mouse dLGN
neurons can be divided in two groups based on the pattern of their retinal inputs (Rompani et
al., 2017): while some dLGN cells received inputs from mostly a single RGC type (“relay
input mode”), others showed a high degree of convergence, with inputs being composed of
up to 91 RGCs of different types (‘combination input mode”). A high degree of
retinogeniculate convergence and mixing of inputs is further supported by recent
ultrastructural studies of retinal afferents and their thalamic relay cell targets (Hammer et al.,
2015; Morgan et al., 2016).
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2.4 Organization of the mouse dLGN

The mouse dLGN is located in the dorsal-lateral part of the thalamus (reviewed in
Kerschensteiner & Guido, 2017; Litvina & Chen, 2017a; Monavarfeshani et al., 2017). In
contrast to the iconic six-layered primate dLGN, mouse dLGN lacks the overall
cytoarchitectural lamination (Reese, 1988). Instead, it can be organized based on (i) eye-
specific and (ii) cell-type-specific segregation of RGC axons, and (iii) regional distribution of

neuronal cell types.

2.4.1 Eye-specific segregation of RGC axons in dLGN

Anterograde tracing studies have revealed that the retinal projections from each eye are
segregated into non-overlapping eye-specific domains within the mouse dLGN (Jaubert-
Miazza et al., 2005; Muir-Robinson et al., 2002). In adult mice, axons from the contralateral
eye extend across 85-90% of total dLGN area, whereas the input from the ipsilateral eye
covers 10-12% of the dLGN (Guido, 2008). The small size of the ipsilateral domain and the
comparatively large dendritic arbour of dLGN neurons suggest that visual information from
both eyes is combined. Evidence for such binocular integration in the dLGN comes from a
recent single-cell trans-synaptic tracing study, showing that a subset of dLGN neurons
indeed receive converging input from both eyes (Rompani et al., 2017). However, it is still
not clear to what extent and which stimulus conditions can drive the binocular responses
(Howarth et al., 2014; Zhao et al., 2013b; Ziburkus & Guido, 2006).

2.4.2 Cell-type-specific segregation of RGC axons in dLGN

Morphological and functional classifications (Baden et al., 2016; Helmstaedter et al., 2013;
Sanes & Masland, 2015; Sumbul et al., 2014), supported by an increasing number of
transgenic mouse lines labelling individual RGC types (Huberman et al., 2008; Kay et al.,
2011; Kim et al., 2010; Rivlin-Etzion et al., 2011), revealed a rich diversity among RGCs
comprising more than 30 distinct cell types in the mouse retina. As confirmed by retrograde
labelling (Ellis et al., 2016), dLGN receives input from a heterogeneous set of RGC types,
indicating that a large number of parallel information channels feeds the dLGN. To what
extent the incoming information remains separate, or how it can be combined by dLGN

neurons depends in part on the cell-type-specific segregation of RGC axons in dLGN.
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Figure 4 | Organization of the mouse dLGN.
Eye Domains Shell Core

a. Eye-specific segregation of RGC axon

terminals from contralateral (green) or
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Ipsilateral eye (red). b. Functional separation
of the dLGN into shell and core. The shell
receives convergent input from direction-
selective (DS) RGCs and from the SC. The
core is innervated, for instance, by alpha

[

RGCs and melanopsin-expressing RGCs. c.
ON-OFF DS
Projection patters of different functional RGC

Qo
™

types. Abbreviations: ONs, ON-sustained;
OFFs, OFF-sustained; OFFt, OFF-transient;
SbC, suppressed-by-contrast. Figure adapted
with  permission from Kerschensteiner &
Guido, (2017).

In the mouse, experiments with genetically labelled axons of functionally defined RGC types
confirmed that the mouse dLGN contains at least two spatially distinct and retinotopically
organized functional regions (Dhande et al., 2015; Huberman & Dhande, 2014; Martersteck
et al., 2017). The superficial layers of the dLGN, also called the shell, are innervated by
axons from various direction-selective RGCs, with each subtype tuned to one of the four
cardinal directions (Huberman et al., 2009; Kay et al., 2011; Kim et al., 2008, 2010; Rivlin-
Etzion et al., 2011). In contrast, neurons in the deeper layers of the dLGN, also called the
core, are not directionally tuned and receive input, for instance, from alpha (Huberman et al.,
2008) and melanopsin-expressing RGCs (ipRGCs) (Brown et al., 2010; Ecker et al., 2010).
These results are also supported by physiological (Piscopo et al., 2013) and imaging studies
(Marshel et al., 2012), confirming, that direction- and orientation-selective dLGN neurons are
enriched in regions that match the termination zone of direction selective ganglion cells
(DSRGC) from the retina.

2.4.3 Neuronal cell types of dLGN

Recent studies using single-cell intracellular fills performed during in vitro recordings to study
the postsynaptic organization of dLGN neurons, demonstrated that the mouse dLGN
contains at least four distinct neuronal cell types (Krahe et al., 2011; Seabrook et al., 2013).
Morphologically, these neurons resemble the X (bi-conical), Y (symmetrical), and W
(hemispheric) neurons described in the dLGN of a cat (Krahe et al., 2011; Sherman, 1985),
as well as the local inhibitory neurons. Furthermore, each cell type exhibits strong regional

preference within the dLGN (Krahe et al., 2011). X cells reside in the monocularly innervated
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ventral part of dLGN. Y cells are more evenly dispersed and show a strong preference of the
binocular region of dLGN. W cells are found predominantly in the shell, which receives
retinal input from DSRGCs (Cruz-Martin et al., 2014). Finally, inhibitory interneurons are
dispersed throughout the entire dLGN. Interestingly, the X and Y versus W type show a
strong distribution bias for the core and the shell region of dLGN, respectively (Krahe et al.,
2011).

2.4.4 Functional properties of dLGN neurons

In terms of physiology, mouse dLGN neurons have complex and diverse visual response
properties. Similar to results in primates (De Monasterio & Gouras, 1975), the majority of
mouse dLGN neurons exhibit circularly symmetric RFs and perform linear spatial summation
(Denman & Contreras, 2016; Grubb, 2003). In addition, also contains neurons with more
complex and diverse response properties: Orientation-selective (OS) and direction-selective
(DS) cells tuned to objects that move or are oriented along one of four cardinal axes
(Marshel et al., 2012; Piscopo et al., 2013; Zhao et al., 2013a), as well as a significant
number of “suppressed-by-contrast” cells signalling uniformity of the visual field (Piscopo et
al., 2013). Finally, a heterogeneous population of cells with long latencies and responses to
both the on- and offset of light has been reported (Piscopo et al., 2013). It is currently
unknown whether these response properties are inherited from the innervating retinal
afferents or emerge de-novo in the dLGN by a combination of converging retinal inputs and

dLGN-intrinsic computations.
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2.5 Implications for dedicated visual circuits in dLGN

Parallel processing of sensory information is a commonly used strategy in the mammalian
brain (Gasser & Erlanger, 1929; Nassi & Callaway, 2009). It is generally accepted that in
mammals, processing of visual information is carried out along dedicated parallel pathways,
where different types of visual information remain segregated to be combined later in cortex
for different visual processing tasks. However, whether the mouse visual system uses similar

processing strategies is still not well understood (Denman & Contreras, 2016).

Evidence for such parallel processing pathways has been shown in the mouse retina and
V1. Recent study has estimated that the mouse retina harbours substantially more than 30
functional output channels (Baden et al., 2016), whereas Gao et al. (2010) suggested that
mouse V1 contains distinct neuronal sub-population with highly correlated response
properties, thereby supporting the idea of parallel processing strategies. Despite little
physiological evidence for parallel information channels in the mouse dLGN, the functional
subdivision into shell and core (discussed in 1.4.2.; Dhande et al., 2015; Dhande &
Huberman, 2014; Martersteck et al., 2017) and multiple morphological populations preferring
one of the two functional regions (discussed in 1.4.3; Krahe et al., 2011), indicate a

possibility of parallel organization.

Recent genetic—anatomical tracing studies revealed that within the core X and Y cells project
to layer IV of V1, whereas W cells in the shell project to layer | (Bickford et al., 2015; Cruz-
Martin et al., 2014; Krahe et al., 2011). Moreover, all dLGN neurons, irrespective of their
location, receive cortical input on their distal dendrites, but differ in innervations of their
proximal dendrites (Bickford et al., 2015). The proximal dendrites of X and Y cells receive
afferent input from non-direction-selective RGCs (Ecker et al., 2010; Huberman et al., 2008;
Kay et al., 2011; Kim et al., 2010). In contrast, the proximal dendrites of W cells, located
within the dLGN shell, combine input from both direction-selective RGCs (Cruz-Martin et al.,
2014; Huberman et al., 2009; Kay et al., 2011; Kim et al., 2008; Rivlin-Etzion et al., 2011;
Rousso et al., 2016) and the SC (Bickford et al., 2015). As suggested by Bickford et al.
(2015), the integration of these two inputs may explain the emergence of direction-selectivity
in geniculate shell neurons. Taken together, these results imply that visual information may

be processed by separate visual streams along the retino-geniculo-cortical pathway.
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—RLP

Figure 5 | Distinct functional circuits in the dLGN core and shell. X and Y cells in the core receive
feedback from layer VI of V1 (grey, RS) on their distal dendrites and input from non-DSRGCs (green, RLP)
on their proximal dendrites, and project predominantly to layer IV of V1. In contrast, W cells in the shell
receive feedback from layer VI as well, but their proximal dendrites are innervated by convergent input from
DS RGCs (blue, RLP), as well as from the SC (red, RM). Furthermore, in contrast to the core neurons, W
cells in the shell project to superficial layer | of V1. Figure adapted with permission from Bickford et al.,
(2015).
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2.6 The purpose of this study

In this study, we investigated the transformation of the visual signal along the
retinogeniculate pathway. We sought to (i) functionally characterize the population of dLGN-
projecting RGCs and (ii) dLGN neurons, and to link the results via (iii) computational

modeling to determine how the visual representation in the dLGN arises from retinal inputs.

(i) It has been shown that the mouse retina harbours more 30 different functional RGC
types (Baden et al.,, 2016). How many of these types are a part of the
retinogeniculate pathway is a matter of current debate. To answer this question, we

selectively labeled and physiologically characterized dLGN-projecting RGCs.

(i) Recent studies in a mouse provide evidence for complex and diverse visual
representations in the dLGN, going beyond the classical cat X/Y/W channels
(reviewed in Kerschensteiner & Guido, 2017). We recorded the responses of dLGN
neurons and quantitatively assessed the degree of diversity by decomposing the

dLGN population response into a rich and highly diverse set of components.

(iii) To address the dichotomy between functional and structural characterizations of
retinogeniculate convergence (Chen & Regehr, 2000; Rompani et al., 2017), we
investigated how the representation of visual information by neuronal populations

changes between the retina and the dLGN.

In conclusion, this study provides fundamental insights into how the representation of visual
information changes along the first stages of the mouse early visual system and represents
a first step towards the development of a functional model of visual processing in the

mammalian brain.

19



20



3 Materials & Methods

All procedures complied with the European Communities Council Directive 2010/63/EC and
the German Law for Protection of Animals, and were approved by local authorities, following

appropriate ethics review.

3.1 Functional characterization of dLGN-projecting RGCs

3.1.1 Animals and virus injection

For all experiments, we used 8 to 12 week-old animals (either sex) of the Ai95D reporter line
(B6; 129S-Gt(ROSA)26Sor™1(CAC-CCaMPeIHze) j- JAX 024105). Ai95D features a floxed-STOP
cassette preventing transcription of the genetically-encoded Ca** indicator GCaMP6f (Chen
et al., 2013). Stereotaxic injection of a Cre-encoding Herpes-Simplex-Virus 1 (hEFla-cre,
MIT Vector Core, Cambridge, USA) into the dLGN resulted in retrograde Cre-recombinase
expression in dLGN-projecting (dLGN-p) RGCs, where Cre-recombinase, in turn, removed
the LoxP sites and activated GCaMP6f expression (Bouabe & Okkenhaug, 2013).

The surgical procedures have been described previously (Erisken et al., 2014; Vaiceliunaite
et al.,, 2013). Here, in brief: Mice were fixed in a stereotactic frame (Neurostar, Tubingen,
DE) and anesthetized using an isoflurane-mixture (4.0% induction, 1.2% maintenance)
throughout the entire surgery. At the beginning of the surgical procedure, atropine (Atropine
sulphate, 0.3 mg/kg, sc, Braun, Melsungen, DE) and analgesics (Buprenorphine, 0.1 mg/kg,
sc, Bayer, Leverkusen, DE) were administered, and the eyes were protected continuously
with an eye ointment (Bepanthen, Bayer, Leverkusen, DE). The animal’s temperature was
kept constant at 37°C via a closed loop temperature control system for small rodents (HD,

Hugo Sachs Elektronik-Harvard Apparatus GmbH, March-Hugstetten, DE).

After a midline scalp incision, a small hole was made with a dental drill (Sinco, Jengen, DE)
over the LGN located in the left hemisphere, 2.5 mm posterior to the bregma and 2.3 mm
lateral from the midline. The virus was loaded in a sharp micropipette (GB150F-8P, Science
Products, inner tip diameter 20-25 ym, Hofheim, DE) connected through a 10 yl Hamilton
syringe (Hamilton Robotics, Reno, USA) to an Aladdin syringe pump (AL-1000, WPI
Germany, Berlin, DE). A volume of 20-40 nl of virus was injected at a depth of 2.7 mm. The
pipette was left in place for an additional 5 min to allow for viral diffusion. Antibiotics (Baytril,
5 mg/kg, sc, Bayer, Leverkusen, DE) and a longer lasting analgesic (Carprofen, 5 mg/kg, sc,

Rimadyl, Zoetis, Berlin, DE) were administered continuously for 3 days post-surgery. Two-
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photon Ca®" imaging was carried out 3 weeks after viral injection.

3.1.2 Perfusion and retinal tissue preparation

Animals were housed under a standard 12 h day/night rhythm. Before perfusion and two-
photon imaging, animals were dark-adapted for 21 h, and then deeply anaesthetized with
sodium pentobarbital (Narcoren, 400 mg/kg, injected intraperitoneally, Béhringer Ingelheim,
Ingelheim, DE). When the animal reached the asphyxia stage and complete paralysis, the
eyes were enucleated, and the mouse was transcardially perfused with 0.2 M sodium
phosphate buffered saline (PBS), followed by 4% paraformaldehyde (PFA) solution in PBS.
The brains were post-fixed in PFA for 24 hours at 4° and then stored in PBS.

The eyes were dissected in carboxygenated (95% O, 5% CO,) extracellular solution
containing (in mM): 125 NaCl, 2.5 KCI, 2 CaCl,, 1 MgCl,, 1.25 NaH,PO4, 26 NaHCO3, 20
glucose, and 0.5 L-glutamine (pH 7.4). The retina was extracted from the eyecup and flat-
mounted onto a ceramic filter (Anodisc #13, 0.2 pm pore size, GE Healthcare,
Buckinghamshire, UK) with the ganglion cell layer (GCL) facing up and transferred to the
recording chamber of the microscope, where it was continuously perfused with
carboxygenated solution at ~36 °C. In all experiments, ~0.1 yM Sulforhodamine-101
(SR101, Sigma, Steinheim, DE) was added to the extracellular solution to reveal blood
vessels and any damaged cells in the red fluorescence channel of the microscope (Euler et

al., 2009). All procedures were carried out under dim red (> 650 nm) illumination.

3.1.3 Histological reconstruction of injection sites

To verify the injection site within the dLGN, we used histological reconstructions. Brains
were sliced for coronal sections (50 um) using a vibratome (Microm HM 650 V, Thermo
Fisher Scientific, Waltham, Massachusetts, USA) and mounted on glass slides with DAPI-
containing mounting medium (Vectashield DAPI, Vector Laboratories Ltd, Peterborough,
UK), which labels the cell nuclei, and cover-slipped. Brain slices were inspected using a
Zeiss Imager.Z1m epi-fluorescent microscope (Zeiss, Oberkochen, DE) for the baseline
fluorescence of the GCaMP6f.

3.1.4 Two-photon Ca** imaging and light stimulation

We used a MOM-type two-photon microscope (designed by W. Denk, MPI, Martinsried;
purchased from Sutter Instruments/Science Products, Hofheim, Germany). Design and
procedures were described previously (Baden et al., 2016; Euler et al., 2009). In brief, the

system was equipped with a mode-locked Ti:Sapphire laser (MaiTai-HP DeepSee, Newport
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Spectra-Physics, Darmstadt, Germany) tuned to 927 nm, two fluorescence detection
channels for GCaMP6f (HQ 510/84, AHF/Chroma Tubingen, Germany) and SR101 (HQ
630/60, AHF), and a water immersion objective (W Plan-Apochromat 20x/1.0 DIC M27,
Zeiss, Oberkochen, Germany). For image acquisition, we used custom-made software
(ScanM, by M. Miller, MPI, Martinsried, and T. Euler) running under IGOR Pro 6.37 for
Windows (Wavemetrics, Lake Oswego, OR, USA), taking 64 x 64 pixel image sequences
(7.8 frames per s) for activity scans or 512 x 512 pixel images for high-resolution

morphology scans.

For light stimulation, we focused a DLP beamer (K11, Acer) through the objective. The
beamer was fitted with band-pass-filtered light-emitting diodes (LEDs) (“green”, 578 BP 10;
and “blue”, HC 405 BP 10, AHF/Chroma) to match the spectral sensitivity of mouse M- and
S-opsins (Baden et al., 2013; Peichl, 2005). LEDs were synchronized with the microscope’s
scan retrace. Stimulator intensity (as photoisomerisation rate, 10° P*/s/cone) was calibrated
as described previously (Euler et al., 2009) to range from 0.6 and 0.7 (black image) to 18.8
and 20.3 for M- and S-opsins, respectively. An additional, steady illumination component of
~10* P*/s/cone was present during the recordings because of two-photon excitation of
photopigments (for detailed discussion, see Euler et al., 2008, Baden et al., 2013). For all
experiments, the tissue was kept at a constant mean stimulator intensity level for at least 15

s after the laser scanning started and before light stimuli were presented.

Four types of light stimuli were used (Fig. 8d, top) (Baden et al., 2016): (/) a full-field
(800 x 600 pm) “chirp” stimuli consisting of a bright step and two sinusoidal intensity
modulations, one with increasing frequency (0.5-8 Hz) and one with increasing contrast; (ii) a
0.3 x 1 mm bright bar moving at 1 mm s™" in eight directions; (iii) alternating blue and green
3-s flashes; and (iv) binary dense noise (20 x 15 matrix with 40 uym pixel-side length; each
pixel displayed an independent, balanced random sequence at 5 Hz for 5 minutes) for
space-time receptive field mapping. All stimuli, except (iii), were achromatic, with matched

photo-isomerisation rates for mouse M- and S-opsins.

3.1.5 Data analysis

The data analysis was performed using IGOR Pro (Wavemetrics, Lake Oswego, OR, USA),
MATLAB (The Mathworks, Natick, Massachusetts, USA) and iPython / Jupyter Notebooks
(distribution by Anaconda Inc., Austin, TX).
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3.1.6 Pre-processing

Regions of interest (ROlIs) were manually drawn around the GCaMP6f-expressing somata in
the recording fields. The Ca?* traces for each ROl were extracted (as AF/F) using the image
analysis toolbox SARFIA for IGOR Pro (Dorostkar et al., 2010). A stimulus time marker
embedded in the recorded data served to align the Ca®* traces relative to the visual stimulus
with a temporal precision of 2 ms. For this, the timing for each ROl was corrected for sub-
frame time-offsets related to the scanning. The Ca** traces were up-sampled to 500 Hz, then
de-trended using a high-pass filtering above ~0.1 Hz, and resampled to 7.8 Hz. For all
stimuli except the dense noise (for RF mapping), the baseline was subtracted (median of
first eight samples), median activity r(t) across stimulus repetitions computed (typically
three to five repetitions) and normalized such that max,(|r(t)|) = 1. HDF5 files containing
the pre-processed Ca?* traces for each ROl were further analysed using Python and Jupyter

notebooks.

3.1.7 Receptive field mapping

The linear RFs of the neurons were mapped by computing the ca* transient-triggered
average. To this end, the temporal derivative of the Ca?* response was resampled at 10-
times the stimulus frequency and the Matlab’s findpeaks function was used to detect the
times t; at which Ca*" transients occurred. The minimum peak height was set to 1 s.d.,

where the s.d. was robustly estimated using:

median(|7(t)|)
0.6745

o=

We then computed the Ca®* transient-triggered average stimulus, weighting each sample by

the steepness of the transient:

M

Floy,m) =7 ) Sy, b+ )

i=1

Here, S(x,y,t) is the stimulus, T is the time lag (ranging from approximately —320 to 1,380
ms) and M is the number of Ca®* events. We smoothed this raw RF estimate using a 5 x 5

pixel Gaussian window for each time lag separately. We used singular value decomposition

(SVD) to extract temporal and spatial RF kernels.
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To extract the RF’s position and scale, we fitted it with a 2D Gaussian function using
Matlab’s Isqcurvefit. The time course of the receptive field F;.(t) was estimated by the
average of the eight pixels closest to the fitted RF centre (according to the Mahalanobis
distance) weighted by a Gaussian profile. RF quality (Qizr) was measured as one minus the

fraction of variance explained by the Gaussian fit Fmap.

Var [Fmap - Fmap]

'R = Var [Fmap]

3.1.8 Direction and orientation selectivity

To extract time course and directional tuning of the Ca?* response to the moving bar
stimulus, we performed a singular value decomposition (SVD) on the T by D normalized

mean response matrix M (times samples by number of directions; T = 32; D = 8):

[U,S,V] = svd(M)

This procedure decomposes the response into a temporal component in the first column of
U and a direction dependent component or tuning curve in the first column of V, such that

the response matrix can be approximated as an outer product of the two:

M =~ S,,U V]
An advantage of this procedure is that it does not require manual selection of time bins for
computing direction tuning, but extracts the direction-tuning curve given the varying temporal
dynamics of different neurons.

To measure direction selectivity (DS) and its significance, we projected the tuning curve V4

on a complex exponential ¢, = exp(ia;), where a, is the direction of the ki, condition:
K=¢"V,

This is mathematically equivalent to computing the vector sum in the 2D plane or computing

the power in the first Fourier component. We computed a DS index as the resulting vector

length:

DSi = |K|
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correcting for the direction spacing. We additionally assessed the statistical significance of
direction tuning using a permutation test (Ecker et al., 2014). To this end, we created
surrogate trials (= stimulus repetitions) by shuffling the trial labels to destroy any relationship
between condition and response, then computed the tuning curve for each surrogate trial
and projected it on the complex exponential ¢. Carrying out the procedure 1,000 times
generated a null distribution for K, assuming no direction tuning. We used the percentile of

the true K as the P value for direction tuning (Baden et al., 2016).

Orientation selectivity (OS) was assessed in an analogous way. However, we used the

complex exponential ¢, = exp(2iay), corresponding to the second Fourier component.

3.1.9 Other response measures

Response quality index. To measure how well a cell responded to a stimulus (local and

full-field chirp, flashes), we computed the signal-to-noise ratio

 Var[o)l,
RE = WarlCly),

where C is the T by R response matrix (time samples by stimulus repetitions), while <>, and
Var[], denote the mean and variance across the indicated dimension, respectively (Baden et
al., 2016). For further analysis, we used only cells that responded well to the chirp and/or to

the moving bar stimulus (Qicpirp > 0.45 or Qips > 0.6; cf. Fig. 7c in Baden et al., 2016). Of
the original n = 581 ROIs, n = 251 ROIs passed this criterion.

Full-field index. The full-field index was measured as

_ QIDS - Qlchirp
QIDS + Qlchirp

FF,

comparing the response quality to a local stimulus (moving bar) and a global stimulus

(chirp).

ON-OFF index. ON-OFF preference was computed as
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_ (ron)t — (Torr)e
(ron)e + (Torr):

00;

where 15y and 1o are defined as the activity during the response to the leading edge of
the moving bar (the first 400 ms of the ON response) and the trailing edge of the moving bar
(the first 400 ms of the OFF response).

Colour selectivity index. Colour selectivity was measured for the ON response using

max(rOZN,green) — max (rgN,blue)

maX(TOZN,green) + max (rOZN,blue)

GBON =

and for the OFF response using an analogous definition. Here, 1oy green @nd 7oy piye are the

responses in a time window of 1,280 ms after onset of the green and blue stimulus,

respectively.

3.1.10 Signal deconvolution

Comparing neural activity measured with different methods (i.e. spikes vs. Ca®* signals;
different Ca?" indicators) is a non-trivial task. To assign dLGN-p RGCs to previously
characterized RGC types, we needed account for the fact that the different Ca?* indicators
used (OGB-1 vs. GCaMP6f) have different kinetics (Chen et al., 2013). We decided to
convert both signals to a “common currency”, be deconvolving both signal types using Ca
kernels calculated for each indicator separately using Ca®* recordings of multiple ROls (nogs-
1 = 327; nacamrsr = 19) to the white noise stimulus, and averaging thresholded Ca?* peak
events (>80% of the maximum normalized activity). Since the rise of the fluorescence is fast
compared to the decay and similar for OGB-1 and GCaMP6f, we cut the Ca*" kernels to

include only the falling phase; its area under the curve (AUC) was normalized to 1. (Fig. 6).

3.1.11 Assigning dLGN-projecting RGCs to previously characterized RGC
types

In the functional classification survey, Baden and colleagues (2016) identified 49 functional
RGC clusters (RGC-all cluster). All clusters were sorted based on their functional similarity
and merged in the absence of evidence to count them as separate cell types, resulting into
32 functionally unique groups. Each group thus represents an RGC type based on functional
properties and additional domain knowledge, including morphology, genetic and

immunohistochemical labels.

27



Q
(o
(2]

1. 0GB-1 i .
0.8 n = 327 cells GCaMP6f
T---Z3 _ ZZZ:ZZ:ZZ_ Z:ZZ__ 0.3 -80% (.3 OGB-1
w 06 4 P - 70% '
= o
L 04 Il Ul b |.l |\”.. "' u ggéﬂ 4 |
g o2 w3 0 40% 0.2+ I
H— [T -1 I
g 4% _ 1
5 g9 n =19 cells I
< S35 034 0.1 I
S £ |
5 5 . !
(=
o =
0 |
0 l
T T 1 T T T T T 1
1.0 1 2 1 0 1 2
d Time (s) Time (s)

1.5 4

1.0 4 ’l

0.5 1 A/ ’ﬂy" r‘llﬁ "’ A\’ " il ,‘

0 WA N L N\ 7 YA\ ’b, YAV ‘\‘ \

_2'2- ! \ “’“‘ ‘\'1\/’ '~' \ Y\ y\», ’,I""A ' \"\’ \\’v/ \A'\A
ke

A\
Y W A
-1.0 1 original trace
— GCaMP6f kernel deconvolved, unnormalized

Normalized AF/F

-154 o4

Figure 6 | Deconvolution. a, Raw traces to binary white noise stimulus with various Ca®* event thresholds
(top: OGB-1; bottom: GCaMP6f). b, Extracted mean Ca®* indicator kernels for OGB-1 (top) and GCaMP6f
(bottom) for the thresholds shown in a. ¢, Superposition of OGB-1 and GCaMP6f kernels. d, Example of
mean normalized GCaMP6f trace (in black), and deconvolution with the GCaMP6f kernel (in orange).

The pre-processed ROI traces of dLGN-p RGCs (n = 251) were assigned to functional RGC
population clusters (Baden et al., 2016), by identifying for each dLGN-p cell the cluster with
the best matching response properties. After deconvolution with the respective Ca** kernel
(see above), we calculated the Pearson product-moment correlation coefficients between a
dLGN-p cell's mean trace (over trials) and all cluster mean traces (over all cells in a RGC-all
cluster) for the chirp and the moving bar stimuli. To combine the information about stimulus-
specific correlations and stimulus-specific cell response quality, we generated an overall
match index (MI) of each dLGN-p cell to all RGC-all clusters:

Qichirp lear

MI = — — * Pchi *Pp
Qlchirp + lear ¢ lTp QlCthp + lear “

Finally, each dLGN-p cell was assigned to the cluster with which it had the highest MlI. In
addition, we used soma area and DSI to pre-constrain the cluster assignment of DS cells (p
< 0.05) and cells with large somata (area > population mean + 1 SD) to the subset of DS cell
and alpha RGC clusters.
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3.1.12 Statistical significance of RGC clusters

We used a permutation test to assess the statistical significance of deviations of relative
cluster proportions in the dLGN-p RGCs subpopulation compared to the total RGC
population. To this end, we created an artificial distribution of cells-per-cluster percentages
that would be expected if the cluster proportions of dLGN-p RGCs were the same as those
of the RGC population. To generate the artificial distribution, we allocated surrogate cells to
the different clusters, where each cluster was assigned with a probability according to the
proportion of cells in the total RGC population. We averaged across 1000 resampling
repetitions per cluster, and thus obtained a distribution of cell-per-cluster percentages for
every cluster bin in the RGC population. We then compared the distribution to the sample
percentages in the dLGN-p RGC subpopulation as the percentile scores in the respective
cluster distribution. 0™ percentile scores for clusters that contained no cells in the dLGN-p
RGC subpopulation were set to percentile score = 1/(# resampling repetitions), thus
obtaining a percentile-value minimum of 0.1. After correcting percentile scores for false
discovery rate (FDR, Benjamini-Hochberg), percentile scores were considered significant if
the percentile score was < 0.5" or 2 99.5" percentile, i.e. a two-tailed test for alpha = 0.01.
For the logs-ratio (% dLGN-p RGCs/ % RGC population), we avoided ‘—inf values for
clusters that did not receive cells in the dLGN-p RGC subpopulation via additive smoothing,
i.e. by adding k=1 cell to each cluster cell count n per default and normalizing the cluster cell

counts by n+k.

3.1.13 Linear feed-forward model

For modelling dLGN responses as a linear combination of weighted RGCs (Fig. 18c), we
used the RGC cluster means (Baden et al., 2016) of those clusters that were assigned more
than one GCaMP®6f cell. The dLGN dataset was down-sampled and convolved with an
artificial OGB-1 kernel to allow for a direct comparison of the dLGN traces with the dLGN-p
RGC Ca®* responses. The weights were computed, using a linear-regression algorithm
(/sqlin, MATLAB) with a non-negativity constraint, thus allowing only positive combinations of
the weights. The model adds the mean response from RGC clusters multiplied by their
weights to predict the response of dLGN neurons (Fig. 18c). The model performance was
cross-validated using repeated random sub-sampling technique with 1,000 repetitions. The
trials were randomly shuffled and divided into a training set (50% trials) and a validation set
(50% trials). Both sets contained unique trials with no duplicates. The training set was used
to compute the weights and the performance of the model was evaluated on the validation

set. The performance of the model represents the mean value across the repeats.
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3.2 Functional characterization of dLGN responses

3.2.1 Animals and surgical procedures

For all experiments, we used 8- to 12-week-old wild type mice (C57BL/6J) of either sex. For

the initial surgery procedures see section 3.1.1.

After a midline scalp incision and skin removal, a drop of H,O, (3 %) was applied on the
surface of the skull for the removal of tissue residues. A custom lightweight aluminium head
post was placed on the posterior skull using OptiBond FL primer and adhesive (Kerr dental,
Rastatt, DE) and Tetric EvoFlow dental cement (lvoclar Vivadent, Ellwangen, DE). Miniature
ground and reference screws (00-96 X 1/16 stainless steel screws, Bilaney, USA) soldered
to custom-made connector pins were placed bilaterally over the cerebellum. A well of dental
cement was formed to hold the silicone elastomer sealant Kwik-Cast (WPl Germany, Berlin,
DE) covering the skull. Antibiotics (Baytril, 5 mg/kg, sc, Bayer, Leverkusen, DE) and a longer
lasting analgesic (Carprofen, 5 mg/kg, sc, Rimadyl, Zoetis, Berlin, DE) continued to be

administered for 3 days post-surgery.

After recovery, animals were familiarized with a simulation of the experimental procedures in
multiple training sessions until they were deemed comfortable with the conditions. Before
experiments, a craniotomy (ca. 1 mm?) was performed over dLGN (2.3 mm lateral to the
midline and 2.5 mm posterior to bregma), which was re-sealed with Kwik-Cast (WPI
Germany, Berlin, DE). Experiments started one day after craniotomy and were continued on

consecutive days as long as electrophysiological signals remained of high quality.

3.2.2 In-vivo multisite extracellular recordings

Our experimental configuration for in-vivo recordings was based on Dombeck et al. (2007).
The mouse was head-fixed and could run freely on an air-suspended styrofoam ball while
stimuli were presented on a gamma-corrected LCD screen (Samsung SyncMaster 2233).
Extracellular neural signals were recorded 2.5 mm posterior from bregma and 2.3 mm lateral
from midline through a small craniotomy window over dLGN with 32-channel edge silicon
probes (Neuronexus, A1x32Edge-5mm-20-177- A32, Ann Arbor, USA). Neurons were
verified as belonging to the dLGN based on the characteristic RF progression from top to
bottom along the electrode shank (Fig. 13c), the preference for high temporal frequencies,
and a high prevalence of F1 responses to drifting gratings (Grubb, 2003; Piscopo et al.,

2013). Ball movements were registered at 90 Hz by two optical mice connected to a micro-
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controller (Arduino Duemilanove). Eye movements were monitored under infrared light

illumination (Guppy AVT camera, frame rate 50 Hz, Allied Vision, Exton, USA).

3.2.3 Visual Stimulation

We used custom software (EXPO, https://sites.google.com/a/nyu.edu/expo/ home) to
present visual stimuli on a gamma-calibrated liquid crystal display (LCD) monitor (Samsung
SyncMaster 2233RZ; mean luminance 50 cd/m?, 60 Hz) at 25 cm distance to the animal’s

right eye. Four types of light stimuli were presented:

Contrast stimulus. To measure contrast response function, we presented drifting sinusoidal
gratings at a single orientation and 12 different randomly interleaved contrasts were

presented for duration of 2 sec with a pause of 0.5 sec between trials.

Full-field chirp stimulus. The stimulus was designed analogously to the one used for the
visual stimulation of the RGCs. In brief, the chirp stimulus consists of a bright step and two
sinusoidal intensity modulations, one with increasing frequency (0.5-8 Hz) and one with

increasing contrast.

Spatial-temporal-frequency-orientation (STFO) stimulus. To capture preferred tuning
properties of a large number of neurons simultaneously, we designed a stimulus sequence
consisting of drifting sinusoidal gratings with 8 orientations, 6 temporal (TF) (0.5, 1, 2, 4, 8,
16 cycles/sec) and 2 spatial frequencies (SF) (0.5, 0.15 cycles/deg). The ftrials were
randomly interleaved and presented for 1 sec with a 0.1 sec pause between ftrials. The

stimulus was shown at 100% contrast with the background at mean luminance.

Sparse noise stimulus. For receptive field mapping, white or black square stimuli (5 deg
square) were presented at various positions on a grey background of mean luminance (50
cd/m?). The squares were presented for 200 ms each at every position on a 12 x 12 square

grid of 60 degrees.

Spontaneous activity “stimulus”: For measurements of spontaneous activity, we recorded

neural responses during the presentation of a mean luminance grey screen.
All light stimuli were presented in a full-field mode and, except of the chirp stimulus, a blank

screen condition (mean luminance) was included in all stimuli to estimate the spontaneous

firing rate.
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3.2.4 Data analysis

Data analysis was performed using Matlab (The Mathworks, Natick, Massachusetts, USA).
Data were organized in a custom written schema using the relational database framework
"DataJdoint" (Yatsenko et al., 2015, Matlab version: https: //github.com/datajoint/datajoint-

matlab).

3.2.5 Unit extraction and spike sorting

Wideband extracellular signals were digitized at 30 kHz (Blackrock microsystems, Blackrock
Microsystems Europe GmbH, Hannover DE) and analysed using the NDManager software
suite (Hazan et al., 2006). The LFP was computed by down-sampling the signal to 1250 Hz.
To isolate individual neurons from linear arrays, we grouped neighbouring channels into 5
equally sized “virtual octrodes” (8 channels per group with 2 channel overlap for 32 channel
probes). Using an automatic spike detection threshold (Quiroga et al., 2004) multiplied by a
factor of 1.5, spikes were extracted from the high-pass filtered continuous signal for each
group separately. The first 3 principal components of each channel were used for semi-
automatic isolation of single neurons with KlustakKwik (Henze et al., 2000). Clusters were
manually refined with Klusters (Hazan et al., 2006). We assigned each unit to the contact
with the largest waveform. Units were given a subjective quality score by the manual sorter,
the firing rate, the cleanness of the refractory period, and the stability over time. To avoid
duplication of neurons extracted from linear probe recordings, we computed cross-
correlation histograms (CCHs, 1 ms bins) between pairs of neurons from neighbouring
groups. Pairs for which the CCH’s zero-bin was 3 times larger than the mean of non-zero-
bins were considered to be in conflict. For each conflicting pair, the cell with the best score
was kept. Conflicts across pairs were resolved by collecting all possible sets of cells and by

keeping the set with the best total score.

3.2.6 Receptive field mapping

Receptive fields were mapped by reverse correlating unit activity to the sparse noise
stimulus and fitting the centre of a two-dimensional ellipse / 2D-Gaussian for both ON- and
OFF-fields (Liu et al., 2010):

xIZ ylz
exp (=52~ 32

floy) = 2mab

where A is the maximum amplitude, a and b are half-axes of the ellipse, and x’ and y’ are

transformations of the stimulus coordinates x and y, taking into account the angle 8 and the
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coordinates of the centre (xc, yc) of the ellipse. For each contact, we computed a single RF
centre by averaging coordinates of the best-fit ON and OFF subfield (explained variance
>70%).

3.2.7 Contrast response function

Contrast responses were fitted with a hyperbolic ratio function (Albrecht & Hamilton, 1982):

n
N Tmax * C
¢ 0 (c5p +c™)

The function has four parameters: Baseline response 1y, responsiveness 7;,,,, Semi-

saturation contrast c5,, and exponent n.

3.2.8 Tuning

Orientation tuning curves were fitted with a sum of two Gaussians with peaks 6,,,.r and

7] — 1t of different amplitudes A; and A, but equal width 0, with a constant baseline rp

pref
(Katzner et al., 2011). SF and TF tuning curves were taken at the preferred direction for
each neuron and orientation and direction-tuning curves were taken at the optimal SF and

TF for each neuron.
Direction selectivity. Direction selectivity index (DSI) was calculated as the ratio of

Ds] = 1pref ~ Topp
Toref T Topp

where 1,,.. Was the response at the preferred direction and 1,,, was the response at the

opposite direction. We additionally assessed the statistical significance of direction tuning

using a permutation test (section 3.1.8) (Ecker et al., 2014).
Orientation selectivity. Orientation selectivity index (OSI) was computed as:

Toref — Tortho
Tpref + Tortho

where 13,7 is the response to the preferred orientation and 74,4y, is the response to the

orthogonal orientation (CM & MP, 2008).
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3.2.9 Other response measurements

Response quality index. Qirr was computed analogous to the description in section 3.1.9.

Chirp quality index. To determine whether a neuron was visually driven by the full-field
chirp, we separated the stimulus into two segments (e.g., separated a 32-s stimulus into two
16-s segments), and computed the average between-trial correlations (CCs) (responses
binned at the stimulus frame rate) within segment and between segments. Only those cells
that had significantly higher within-segment CCs (Qicnirp, P < 0.01, Wilcoxon rank sum test)

and firing rate > 1 spike/s were considered to be visually responsive.

STFO correlation value. To assure neuronal response stability and to determine, whether
there are neurons, which did not respond to the full-field chirp stimulus, we played the STFO
stimulus directly before and after the chirp stimulus, and performed linear regression
analysis (Fig. 14). To determine how well the model predicts the data, we computed a

correlation value R:

L0 =9’
=)

where y represents observed values, ¥ represents the predicted values of y and y is the

mean of y.

For further analysis, we used only cells that responded well to the chirp stimulus (Qizr =

0.05 and Qicpirp < 0.001) or had a high STFO correlation value (R > 0.65, Fig. 15b).

3.2.10 Non-negative matrix factorization

NNMF is a matrix decomposition approach, which decomposes a non-negative matrix into
two low-rank non-negative matrices, representing, for example, visual components and their
weights (Nikolaus & Paper, 2007). We applied sparse non-negative matrix factorization with
the non-negative least square optimization (Kim & Park, 2007), as implemented in the NMF
MATLAB Toolbox by (Li & Ngom, 2013; https://sites.google.com/site/nmftool/), to extract
visual response components from the dLGN responses to the chirp stimulus. Given a

positive matrix A of size N x M and a desired number of features (K), the NMF algorithm
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iteratively computes an approximation A ~ WH, where W and H are non-negative matrices
with respective sizes N x K and K x M. The optimal number of components for the NNMF
algorithm was selected based on the method proposed by (Frigyesi & Hoéglund, 2008). We
performed NNMF for increasing K and computed residual error (RE) of A for each K and

compared it to RE of A,erm. Aperm denotes the matrix A with rows permuted or every

column. Because of the random initialization of the NNMF algorithm, the factorization was

repeated 50 times for each K.

RE=|A—W = H|
RE = |Aperm - VVperm - Hperml

When comparing RE in function of K, the RE decreases exponentially with increasing K for
the original dataset, but only linearly for the randomized dataset. The slope represents a
measure of how much information is lost as K decreases. Therefore, the slope of the RE of
A, which is larger than A,em, allows us to determine the smallest K, where the information is
still above noise level. To ensure robustness of the NNMF algorithm, the factorizations were
repeated 100 times using the previously determined K and evaluated according to their RE.

The W/H-pair with the smallest RE was selected for further analysis.

3.2.11 Correlating dLGN response components with RGC clusters

The dLGN response components were down-sampled to match the RGC cluster sampling
rate used for recording the responses in the RGC clusters (Baden et al., 2016) and
convolved with an artificial OGB-1 kernel. The convolved dLGN response components were
then correlated with dLGN-p RGC clusters. The best matching cluster corresponded to the

cluster with highest correlation value.

3.2.12 Dendrogram

The components were organized into a hierarchical cluster tree by a single linkage algorithm
using Euclidean distances and the Ward’s minimum variance method (Ward Jr., 1963). The
results were plotted using the dendrogram function and the leaf order was optimized using

the Matlab function optimalleaforder.

3.2.13 Locomotion and speed Tuning

The ball movements were recorded by two optical mice, which were placed at the sides of
the spherical treadmill. We computed locomotion as the Euclidean norm of three

perpendicular components of the ball velocity (Dombeck et al., 2007). To determine
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modulations of tuning properties by locomotion, we recorded spontaneous activity during
grey screen presentation. For further analysis, we included only neurons that passed our
chirp quality criteria, had an average firing rate > 0.3 spike/s for the spontaneous condition
and a STFO correlation values > 0.65. Neuronal speed tunings were determined as
previously described in (Saleem et al., 2013). In brief, speed traces were smoothed with a
Gaussian filter (o0 = 150 ms), re-sampled at 60 Hz, and binned such that each bin contained
equal amounts of time (> 30 s). Unsmoothed neural responses were binned at 60 Hz.
Neurons were considered speed modulated if the variance of mean responses across bins
was greater than 99.9% of the variance of shuffled responses (p < 0.001). To characterize
the run speed responses, we fitted the mean responses to speed s (s > 1 cm/s) by the

following function:

( - smax)z

V() = Ymarexp (~ 5

where s is speed (s > 1cm/s), and o is 0. for s < Spax and o, for s > spax. Responses were
classified as monotonically increasing, monotonically decreasing or band-pass tuned,
depending on the best fit that resulted due to different constraints on snax (Saleem et al.,
2013).

3.2.14 Histological reconstruction of recording sites

To verify recording sites from dLGN, we used histological reconstructions. Before recording
from the dLGN, electrodes were coated with a red-shifted fluorescent liphophilic tracer (DiD;
Thermo Fisher Scientific, Waltham, Massachusetts, USA). After the last recording session,
mice were transcardially perfused and the brain fixed in a 4% paraformaldehyde phosphate
buffered saline (PBS) solution for 24 hours and then stored in PBS. Brains were sliced for
coronal sections (50 pym) using a vibratome (Microm HM 650 V, Thermo Fisher Scientific,
Waltham, Massachusetts, USA) and mounted on glass slides with Vectashield DAPI
(Vectashield DAPI, Vector Laboratories Ltd, Peterborough, UK), and coverslipped. Slices
were inspected for DAPI and DiD presence using a Zeiss Imager.Z1m fluorescent

microscope (Zeiss, Oberkochen, DE).
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4 Results

4.1 Functional characterization of dLGN-projecting RGCs via

retrograde viral tracing
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Figure 7 | Overview of analysis steps for the functional characterization of dLGN-projecting RGCs.
a. Heat maps of Ca?* RGC-all cluster responses to the chirp and the bar stimulus (n = 49 RGC clusters,
Baden et al., 2016). Each line represents responses of a single cell with activity colour-coded such that
warmer colours represent increased activity, and the cluster height indicates the number of included cells.
b. Top: Heat maps of GCaMP6f dLGN-p RGC responses to the chirp and the bar stimulus. Bottom:
Distribution of Qi values; only cells with Qi > 0.45 for the chirp and with Qi > 0.6 for the bar stimulus were
considered for further processing. c. Heat maps of sorted GCaMP6f dLGN-p RGC responses (n = 251) and
discarded cells that did not pass the quality criteria (n = 330). d. Heat maps of GCaMP6f dLGN-p RGCs,

assigned to RGC population cluster.
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To identify dLGN-projecting (ALGN-p) RGCs, we injected a Cre-encoding retrograde Herpes-
Simplex-Virus 1 (LT HSV-hEF1a-cre; Neve, 2012) into the dLGN of a transgenic reporter
mouse line with a floxed genetically encoded Ca?* indicator (GCaMP6f) (Chen et al., 2013;
Madisen et al., 2015). After transducing the axon terminals in the dLGN (Antinone & Smith,
2010; McGavern & Kang, 2011), the virus is retrogradely transported to the cell nuclei,
where it triggers the expression of Cre-recombinase and, subsequently, the Cre-dependent
expression of GCaMP6f. Since the virus does not spread trans-synaptically, it only labels
cells with afferents in the dLGN. This enabled us to label only the subset of dLGN-p RGCs in
the retina (Fig. 8a).

We histologically confirmed the target location of the virus injection and that it did not diffuse
beyond the dLGN. As expected from earlier studies, we found retrogradely labelled neurons
in other dLGN-p structures besides the retina, including the superior colliculus (Fig. 8b,
centre), the thalamic reticular nucleus and the deep layers of primary visual cortex (Fig. 8b,
bottom) (Guillery & Sherman, 2002; Harting et al., 1991).

We then used two-photon Ca®* imaging to measure the light-evoked responses of the dLGN-
p RGCs (Fig. 7b). On average, the virus labelled nine RGCs per 110 x 110 ym recording
field (n = 68) (Fig. 8c, top). We probed the response properties of the LGN-p RGCs across
the whole retina with a standardized stimulus set used in the previous RGC classification
study (Baden et al., 2016). The Ca®"-responses (Fig. 8c, bottom) of the labelled RGCs were
analysed using manually drawn regions of interest (ROIs) (n = 581) in the recording fields. In
addition to the classical ON/OFF-response types and the direction selective RGCs (Ellis et
al., 2016; Rivlin-Etzion et al., 2011), we found cells among the dLGN-p RGCs that, for
example, responded differently to local and full-field stimuli, showed preference to higher or

lower frequency stimulation or were suppressed by frequency and contrast (Fig. 8d).
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Figure 8 | Functional characterization of dLGN-projecting RGCs. a, Schematic of the experimental
approach and recording position for field in (c). b, Injection of a Cre-encoding retrograde Herpes-Simplex-
Virus-1 (LT HSV-hEFla-cre, Neve & Lim, 2001)) into the dLGN (green, GCaMP6f; grey DAPI). Injection site
(top) and areas with retrogradely labelled cell bodies (below), and outlines of the dorsolateral geniculate
complex (dLGN), superior colliculus (SC), reticular nucleus of the thalamus (TRN) and primary visual cortex
(V1) outlined. ¢, Whole-mounted retina of a floxed GCaMP6f mouse transfected with LT HSV-hEFla-cre
and recorded with a two-photon microscope in the ganglion cell layer. Top: Scan field (110 x 110 ym).
Bottom: Regions of interest (ROIs) marking cells. d, Ca®* responses (AF/F) from 9 exemplary ROls colour-
coded in (c) and evoked by three visual stimuli: Full-field chirp, bright bars moving in eight directions, and
full-field alternating green/blue. Single trials in grey, averages of n = 5 (chirp), 7 (green/blue) or 24 (moving
bars) trials in black. Traces are scaled to the maximal value of AF/F for each stimulus separately. e, f,
spatial RFs (e) and polar plots indicating direction and orientation selectivity (f; vector sum in red) for the
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same 9 cells as in (d). dLGN, dorsal part of the lateral geniculate nucleus; SC, superior colliculus; TRN,
reticular nucleus of the thalamus; V1 primary visual cortex; HPF, hippocampus; VLGN, ventral part of the
lateral geniculate complex; VPM, ventral posteromedial nucleus of the thalamus. Scale bars: b, 200 ym; c,
15 um; d, 2 s; e, 200 pm.
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4.2 dLGN-p RGCs represent the majority of functional RGC groups

We next asked, which of the previously characterized functional mouse RGC types (Baden
et al., 2016) projected to the dLGN. To this end, we used the functional RGC-all clusters
obtained from the mouse retina (Baden et al., 2016), and sought to identify, for each
retrogradely labelled dLGN-p RGC, the RGC-all cluster with the best matching response
properties (Fig. 7a). To account for differences in the Ca®* indicator OGB-1 used by Baden
et al. (2016) and GCaMP6f used in the current study, we first de-convolved the Ca®* signals,
using the respective Ca** kernels for the two indicators (Fig. 6). We then correlated, for both
the “chirp stimulus” and a moving bar stimulus, the trial-averaged responses of each dLGN-p
RGC to the mean response of each RGC-all cluster, and combined the correlation
coefficients weighted by a stimulus-specific response quality index (Ql) into a “match index”.
Intuitively, this match index reflected mainly the correlation for the moving bar stimulus, if the
cell responded poorly to the chirp stimulus, and the average correlation, if the cell responded

well to both stimuli.

Next, we assigned each dLGN-p RGC to the RGC-all cluster with the highest match index
(Fig. 7d). For both individual example cells (Fig. 9a) and across the population of dLGN-p
RGCs, the assignment yielded good correlation values (median Ml = 0.62 for all individual
dLGN-p RGCs). Accordingly, population mean responses of dLGN-p RGCs assigned to the
same cluster matched the population mean responses of their respective RGC-all cluster
(Fig. 9b; median correlation between cluster means of dLGN-p RGC clusters and their
corresponding RGC population clusters of 0.43 (chirp stimulus) and 0.89 (bar stimulus)))

(see Fig. 11 and Fig 12 for all ALGN-p RGC clusters and their distribution, respectively).

Next, we determined which RGC types were over- or underrepresented in the dLGN-p RGC
population in comparison to the entire RGC population. Following Baden et al. (2016), we
grouped the 49 RGC-all clusters into 32 groups, where clusters were merged together,
based on functional similarity and available domain knowledge, including morphology,

genetic and immunohistochemical labels. Each group thus can be viewed as a unique RGC
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Figure 9 | Cluster assignments. a, Responses of selected RGC-all clusters (mean and SD; colour) with

mean responses of assigned example dLGN-p RGCs (black) to chirp (left) and bar stimulus (right).

Numbers indicate correlation coefficients. b, Same, for all assigned dLGN-p RGCs (grey, responses of

single dLGN-p RGCs; black, mean). ¢, Left: Distribution of cells per RGC-all group from (Baden et al.,

2016) vs. cells per dLGN-p group; insets illustrate subdivision of selected groups into contributing clusters.

d, Comparison between RGC fractions for dALGN-p RCG groups and RGC-all groups as log2-ratio (fold

change). Significance (p < 0.01) is indicated by coloured bars and asterisk.
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type (Fig. 9c). We then compared the fraction of cells in each RGC group in the two data
sets and found that almost 75% of RGC-all groups had been assigned dLGN-p RGCs (24/32

groups with n > 1 cells).

Using a permutation test, we found that specific RGC groups were systematically over- or
underrepresented in the dLGN-p population compared to the overall RGC population. The
overrepresentation was most striking for the “OFF-suppressed 2” cells (Fig. 9c,d: group 32)
and three types of alpha cell (Fig. 9¢,d), including OFF alpha sust. (group 5 / clusters 6, 7,
8), OFF alpha trans. (group 8 /clusters 11, 12) and ON alpha (group 24 / cluster 34).
Underrepresentation (including absence of some groups), in turn, was strongest for the
(ON)-OFF “JAM-B” (group 6 / cluster 9), ON-OFF local-edge “W3” (group 10 / cluster 14),
ON-OFF DS 2 (group 13/ cluster 19) and (ON-)OFF local OS (group 14 / cluster 20).

These results seem to be in agreement with the current literature (for more details, see
Table 1); in particular, the ON-alpha cells project to dLGN (Ecker et al., 2010; Schmidt et al.,
2014), whereas W3 RGCs (Kim et al., 2010) and especially the sustained ON DS RGCs
(Dhande et al., 2013; Yonehara et al., 2008, 2009) avoid the dLGN. Surprisingly, among the
dLGN-p RGCs, we did not find any JAM-B cells (OFF DS RGCs; Kim et al., 2008), although
they have been described as projecting to the dLGN.

Our sample of dLGN-p RGCs contained cells beyond the dataset obtained by Baden et al.,
(2016). We found cells, which were neither modulated by the chirp nor the bar stimulus, but
featured a small and clear RF (Fig. 12). The cell’s small soma size and functional signature
shows similarities to an RGC mentioned by Baden et al. (2016). This cell is Pv-positive,
lacks responses to both full-field chirp and moving bar stimuli; the latter is the reason why it

was excluded from Baden and coworker’s unsupervised clustering analysis.
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Figure 10 | Some RGCs excluded from further analysis in Baden et al. (2016) form a type of dLGN-
projecting cell. a. Position of the recording fields with the two example cells. b. Outlined are two example
cells in a whole-mounted retina of a floxed GCaMP6f mouse, which was transfected with LT HSV-hEFla-
cre, and recorded with a two-photon microscope in the ganglion cell layer. The numbers correspond to the
respective recording field, shown in a. c. Ca®* responses (AF/F) of the cells in (b) to three visual stimuli:
Full-field chirp, bright bars moving in eight angular directions, and full-field alternating green/blue stimulus.
Single trials in grey, averages of n = 5 (chirp), 7 (green/blue) or 24 (moving bars) trials in black. Traces are
scaled to the maximal value of AF/F for each stimulus separately. d, e. spatial RFs (d) and polar plots
indicating direction and orientation selectivity (e; vector sum in red) for the cells in (b).
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Figure 11 | dLGN-p RGC cluster assignments. All dLGN-p RGC cluster responses (grey: individual
RGCs; black: cluster mean), along with assigned RGC-all cluster response mean (colour) and SD (coloured

area). RGC-all clusters that were not assigned any dLGN-p RGCs are greyed out.
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Figure 12 | Distribution of dLGN-p RGC cluster. Percentage of cells per RGC cluster for dLGN-p RGCs

(dark colours) and all RGCs obtained from Baden et al., (2016) (saturated colours).
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transgenic

dLGN . . . .
name . . line or group cluster function reference
projections
marker
JAM-B, OFF | yes JAM-B- 6 9 DS, upward (Kim et al., 2008, 2010)
DS CreER
ON-OFF DS | yes FSTL4- 12,13 | 17,18, DS, down-, (Kay et al., 2011; Kim et
1,2 CreER 19 upward al., 2010)
ON-OFF DS | yes Drd4-GFP | 12,13 17,18, DS, backward | (Huberman et al., 2009;
1,2 19 Kay et al., 2011)
ON-OFF DS | yes TRHR- 12,13 | 17,18, DS, backward | (Rivlin-Etzion et al., 2011)
1,2 GFP 19
OFF-alpha yes CB2-GFP | 5,8 6,7,8, centre- (Huberman et al., 2008)
11,12 surround
ON-alpha yes Opn4-Cre |24 34 centre- (Ecker et al., 2010;
surround, Estevez et al., 2012;
ipRGC Schmidt et al., 2014)
F-RGC yes Foxp2 (Rousso et al., 2016)
W3 no TYW3 10 14 feature (Kim et al., 2010; Zhang
detector etal., 2012)
OFF Alpha no TYW7 5 6,7,8 centre- (Kim et al., 2010)
sust. surround
ON DS sust. | no Hoxd10- 25 35 DS, forward (Dhande et al., 2013)
1 GFP
ON DS sust. | no Hoxd10- 26,29 | 36,40 DS, down-, (Dhande et al., 2013;
2 GFP, upward Yonehara et al., 2008,
Spig1- 2009)
GFP
ON DS sust. | no Hoxd10- 26,29 | 36,40 DS, down-, (Dhande et al., 2013;
3 GFP, upward Yonehara et al., 2008,
Spig1- 2009)
GFP
ON-OFF DS | no Hoxd10- 12,13 | 17,18, DS, forward (Dhande et al., 2013)
1,2 GFP 19

Table 1. Table showing putative correspondences between dLGN-p RGCs and previously characterized

RGC types from recent surveys of mouse retinal ganglion cells. *cluster and group indices refer the

functional classification by Baden et al. (2016)

49




50



4.3 dLGN neurons encode diverse visual features

Having found most functional RGC groups providing input to mouse dLGN, we next
wondered how this diversity is reflected in the dLGN population response. We performed
extracellular single-unit recordings of geniculate neurons in head-fixed mice (Fig. 13a, 15a).
We verified the recording sites to be in the dLGN by histological reconstruction of the
electrode tract (Fig. 13b) and the characteristic progression of retinotopy along the electrode
channels (Fig. 13c) (Piscopo et al., 2013). We presented the same chirp stimulus as in the
retina experiments. To assess the stability of the dLGN recordings and the consistency of
our spike sorting, we flanked the chirp stimulus by presentations of drifting gratings with
varying orientation, temporal and spatial frequency in a subset of the experiments (for 443 of
815 units, Fig. 14).

Responses of dLGN neurons to the chirp stimulus were surprisingly diverse: The cells not
only displayed the “standard” transient and sustained ON/OFF responses, or were
suppressed by contrast, but also differed in their temporal frequency or contrast preferences
(Fig. 13d) as well as their response kinetics. Some of the cells even displayed slow ramping
responses (Fig. 13d4, ds). To ensure that this response diversity did not result from poor unit
isolation during spike sorting, we considered only units with a firing rate > 1 spike/s that, in
addition, were stable across time, had a clean refractory period, and a distinct extracellular

spike waveform (Fig. 13e, f).

Besides this rich representation of luminance steps, temporal frequency chirps and changes
in contrast in the overall LGN population, 82/443 (18.5%) dLGN neurons only displayed
weakly modulated responses to the chirp stimulus (Fig. 14b,,bs) despite having robust and
consistent responses to the drifting gratings presented before and afterwards (Fig. 14). This
combination of response patterns is consistent with these dLGN neurons preferring local
variations in luminance instead of full-field uniform patterns, as has been suggested for
several RGC groups (Baden et al.,, 2016). Together, our analysis of dLGN responses
indicate that the response diversity observed at the level of dLGN-p RGCs can also be

encountered at the level of the visual sensory thalamus.
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Figure 13 | Functional characterization of dLGN neurons. a, Schematic of the recording setup for
extracellular dLGN recordings. b, Reconstruction of the electrode track in dLGN (coronal section; dLGN is
marked by white outline, Blue: DAPI, Red: DiD coating the electrode). ¢, Schematic of recording site with
RFs mapped for several electrode channels (dorsal to ventral), showing the retinotopic progression in
elevation typical of mouse dLGN. d-f, Spike raster plots (top) and spike density function (bottom) of 7
example dLGN neurons in response to the chirp stimulus (d), their autocorrelograms (f), and spike
waveforms in selected 5 channels of the 32-channel probe (f). V1, primary visual cortex; HPF,
hippocampus; dLGN, dorsal part of the lateral geniculate nucleus; vLGN, ventral part of the lateral
geniculate nucleus; MGC, medial geniculate complex. Scale bars: b, 200 um; ¢, 10 deg; d, 5 s; e, 10 ms; f,
0.5s.
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Figure 14 | dLGN responses to drifting gratings. (a-c). Responses of three example dLGN cells to
drifting gratings. a. Mean firing rates and fitted tuning curves (red) for orientation, spatial frequency, and
temporal frequency. b. Responses to the chirp stimulus. ¢. Scatter plot of average firing rates across all
conditions of the drifting grating stimuli presented before and after the chirp stimulus, used to determine the
stability of the recorded cells. R>0.65 indicates that a dLGN responded well to both STFO stimuli, thus
stayed stable over time. Abbreviations: OSI, orientation selectivity index; DSI, direction selectivity index;

TF, temporal frequency; SF, spatial frequency; TFp, preferred temporal frequency
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4.4 Decomposing dLGN responses into diverse functional

components
a b
dLGN data Quality Index Wilcoxon rank Cluster quality
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Figure 15 | Overview of analysis steps for the decomposition of dLGN responses into unique
functional components. a. Heat maps of dLGN responses to the chirp stimulus. Each line represents a
single cell response with activity colour-coded such that warmer colours illustrate increased activity. b. Heat
maps of sorted dLGN responses (n = 815) and discarded “units” that did not pass the quality criteria (top,
bottom; see methods) (n = 2191). c¢. Schematics of the low-rank non-negative matrix factorization, which

was applied on data from (b).
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To more quantitatively assess the degree of diversity present in dLGN neurons, we used
sparse non-negative matrix factorization (NNMF) to decompose the population response to
the chirp stimulus into “response components”, which, weighted appropriately and summed,
can be used to represent the responses of individual neurons (Fig. 15¢c, Fig. 16a) (Nikolaus
& Paper, 2007). Comparing the residual error of the NNMF of the actual data to that of
randomly permuted data (Frigyesi & Héglund, 2008), we found that 25 components optimally
reconstructed the population responses (Fig. 16b). Consistent with the ability of the NNMF to
extract visual response components resembling true parts-based representations, some of
the NNMF components resembled the responses of individual RGC groups (Fig. 17).
Generally, the NNMF components contained a rich set of sustained or transient ON and OFF
representations with diverse preferences for different temporal frequencies and contrasts
(Fig. 16¢c). Zooming into the components during the frequency part of the chirp stimulus
illustrates that NNMF components, like dLGN neurons, differ not only overall temporal

frequency preference but also in the phase of their responses (Fig. 16d)

We next investigated how many components were needed to reconstruct the responses of
single dLGN neurons. We found that the number of components with weights > 0 varied
widely across dLGN neurons between 2 and 24 (Fig. 16e). In general, a single dLGN neuron
could be reconstructed using an average of 16 elementary response components with
weights > 0. We illustrate the results of our decomposition approach with NNMF in three
example dLGN neurons. Reconstructions of dLGN neurons with a smaller number of
components were composed of a few dominant and several auxiliary components (Fig. 16f,
top), whereas more complex reconstructions contained a combination of components with

high and low weights (Fig. 16f, middle, bottom).
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Figure 16 | Decomposition of the dLGN population response. a, Schematic of the low-rank non-
negative matrix factorization. b, Estimating the number of components based on an optimal ratio between
noise reduction and information preservation. ¢, dLGN response components as computed by the NNMF
algorithm (centre) and organized according to a hierarchical cluster tree with an optimized leaf order (left).
Right: Percentage of neurons containing the respective response component. d, Four example
components during the frequency part of the chirp stimulus at an expanded temporal scale. e, Left:
Normalized component weights, sorted for each neuron in decreasing order. Right: Distribution of the
number of weights. The mean is indicated by the red triangle. f, Top: Examples of dLGN cell responses
(black) and their NNMF reconstruction (blue). Bottom: Weights used for reconstruction as a function of

component id (left) and sorted in descending order (right).
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Figure 17 | Correlating dLGN response components with RGC population clusters. a. Correlation
matrix was computed by correlating dLGN response components, which were convolved with an artificial
calcium kernel, with RGC population clusters. b. dLGN components with their best correlated RGC
population cluster. The number above the bar indicates the respective RGC population cluster. c¢. Example
dLGN response components with their best matching RGC population cluster response.
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4.5 dLGN responses can be modelled as a sparse linear

combination of inputs from RGC types
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Figure 18 | Overview of analysis steps for the modelling of dLGN responses as a sparse linear
combination of RGC inputs. a. Left: Heat maps of Ca®* RGC-all cluster responses to the chirp and the
bar stimulus (n = 49 RGC cluster, Baden et al., 2016). Each line represents responses of a single cell with
activity colour-coded such that warmer colours represent increased activity, and the cluster height indicates
the number of included cells. Middle: Heat maps of GCaMP6f dLGN-p RGCs, assigned to RGC-all cluster.
Right: Distribution of dALGN-p RGCs, based on the GCaMP6f cell assignment to RGC-all clusters. RGC-all
groups are color-coded. b. Right: Heat maps of sorted dLGN responses (n = 815) and discarded cells that
did not pass quality criteria (n = 2191). Left: Heat map of dLGN responses, which were down-sampled and
convolved with a mean OGB-1 indicator kernel to match the RGC properties. c. Left: lllustration of the
linear model. The model uses a linear combination of weighted mean RGC-all cluster responses, based on
the GCaMP6f distribution, to predict the response of a dLGN neuron. Right: Exemplary dLGN response

and its linear prediction. Model weights are color-coded by RGC-all clusters.
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Next, we combined the dLGN-p RGC dataset and the dLGN dataset to study how the dLGN
responses are computed from the retinal output channels (Fig. 18). We first accounted for
the differences in recording method (Ca?* imaging vs. extracellularly recorded spikes) by
convolving the dLGN spiking responses with a Ca** indicator kernel. We then used a linear
model constraint to have non-negative weights to predict dLGN responses as a sum of
weighted RGC inputs (Fig. 5a, supp. Fig. 1j). For prediction, we used RGC-all cluster means
(Baden et al., 2016), which were assigned at least one dLGN-p cell. Prediction quality was
determined on 50% of trials not used for fitting the weights, using repeated random sub-
sampling validation with 1000 repetitions. The reported weights represent mean values

across the repeats.

This simple linear excitatory feed-forward model successfully reconstructed different
response types of dLGN neurons, including transient ON, sustained ON and OFF, and
suppressed cells (Fig. 19b,c; median correlation: 0.64, median RMSE: 0.17). We illustrate
the results of our modelling in five example dLGN neurons. In three dLGN neurons, the
responses were predicted using only a few non-zero weights, containing either a
combination of one dominant and few weak weights (Fig. 19d,) or a combination of several
dominant and few weak weights (Fig. 19d,3), reminiscent of anatomical findings (Rompani et
al., 2017). Two out of five neurons could be modelled by a higher (>10) variety of possible
RGC-all cluster combinations (Fig. 19d,5), however, with only a few dominant and many
weak weights. Across the population the responses of dLGN neurons (n = 814) could be
predicted by the weighted input of 3-7 RGCs (Fig. 19b3), with an average input of ~5 RGC
types (mean = 5.35, median = 5.19). Together, these results indicate that the responses of
many dLGN neurons, at least on a temporal scale of calcium transients, can be explained by

excitatory feed-forward processing.

Finally, we explored in the model which dLGN-p RGC clusters were used for prediction. We
found that the maijority (33/49) of previously identified dLGN-p RGC cluster were used in the
functional modelling of dLGN responses (Fig. 5g). While some clusters contributed to the
functional response of dLGN neurons more frequently than others, six of these clusters
contributed to the response of more than 50% of dLGN cells, and showed in addition the
highest mean weight across modelled dLGN cells. Interestingly, three out of these six dLGN-
p RGC clusters were the cell types that were significantly overrepresented in the dLGN-p
RGCs (see Fig. 9), although information about the relative frequency of the projections was
not used for inference in the model. Our modelling approach thus suggests that these cell
types have a significant functional role in the processing of visual information along the

retinogeniculate pathway.
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Figure 19 | Functional modelling of retinogeniculate convergence. a. lllustration of the linear model.
The model predicts a Ca®-kernel convolved response of a dLGN neuron as a linear combination of
weighted RGC-all cluster inputs. b. Correlation (b4) and root mean square error (b,) (RMSE) between the
convolved responses of dLGN neurons and their linear predictions. c. Left: Example responses of
convolved dLGN neurons (black) and predictions by the linear model (blue). d. Fitted weights as a function
of RGC-all cluster number. e. Number of RGC-all cluster inputs converging onto one dLGN neuron, as
predicted by the linear model. f. Top: Mean weight distribution of RGC-all cluster across dLGN neurons.
Bottom: Percentage of cells, for which the RGC-all cluster were used to model the prediction, e.g. cluster
48 was applied in the modelling of approx. 85% of all dLGN neurons. RGC-all clusters not projecting to

dLGN are greyed-out.
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5 Discussion

We functionally characterized the population of dLGN-projecting RGCs and geniculate
neurons, and provide a quantitative account of the functional connectivity between RGC
types and dLGN neurons. We present three main findings. First, combining a retrograde viral
transfection approach and two-photon Ca?* imaging of RGC responses to obtain functional
properties of RGCs, we show that dLGN-p RGCs include the majority of previously
functionally identified RGC types. Second, decomposing dLGN responses into their
elementary response components revealed a rich functional diversity of geniculate visual
representations, reminiscent to that of RGCs Third, we demonstrate that the responses of
individual dLGN cells can be modelled as weighted linear combinations of responses of
mostly 3-7 RGC types. Assuming that each type can mediate its input via several individual
RGCs (Rompani et al., 2017), these estimates of functional connectivity are greater than
most previous findings in mice, cats, and monkey (Chen & Regehr, 2000; Litvina & Chen,
2017b; Sincich et al., 2007; Usrey et al., 1999), and resonate well with recent anatomical

estimates based mono-transsynaptic rabies virus tracing (Rompani et al., 2017).

5.1 Functional classification of dLGN-projecting RGCs

Retrograde viral tracing with HSV-cre, combined with two-photon Ca®* imaging, provides an
ideal method for measuring functional properties of dALGN-p RGCs. The advantage of HSV is
the strictly synaptic uptake mechanism of the HSV (Antinone & Smith, 2010; McGavern &
Kang, 2011), preventing infection of axons passing nearby and not synapsing within the
dLGN, as it is known to occur for commonly used retrograde tracers, such as DiO/Dil,
horseradish peroxidase, fluorophore-conjugated latex microspheres or cholera toxin (Ellis et
al., 2016). In addition, our observation that GCaMP6f expression in the retina was limited to
spatially confined regions is consistent with the interpretation that HSV infected neurons
were restricted to the retinotopically corresponding region in dLGN instead of labelling RGC
axons of passage, which would likely result in a large spread of RGC receptive field

locations.

Earlier studies reported various numbers of dLGN-p RGCs across different species: In
primates ~90% of RGCs project to the dLGN (Perry & Cowey, 1984), whereas in cats ~75%
of RGCs (llling & Wassle, 1981) and in the rat less than 50% of RGCs form retinogeniculate
connections (Dreher et al., 1985; Linden & Perry, 1983; Martin, 1986). Matching our
functional RGC responses to the previously defined functional RGC types (RGC-all groups)
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allowed us to assess the total fraction of dLGN-p RGCs in a mouse. We estimated that
~60% of all RGCs project to the dLGN, which is in a very close proximity to the results
obtained from rat tracing studies. Unsurprisingly, our results suggest a similar distribution of

dLGN-p RGCs in a rat and a mouse.

Baden and colleagues (2016) provided in their study putative correspondences between
some of their functional RGC groups and RGC types from recent surveys of mouse RGCs
(Dhande et al., 2013; Huberman et al., 2009; Rivlin-Etzion et al., 2011; Simbdl et al., 2014;
Volgyi et al.,, 2009), based on functional properties and additional domain knowledge,
including morphology, genetic and immunohistochemical labels. Based on these
correspondences, we were able to link some of our functionally identified dLGN-p RGC
types to previous data on dLGN projections of different RGC types (for details, see supp.
Table 1). Our results are consistent with earlier studies showing that the ON-alpha cells form
synaptic connections with neurons in the dLGN (Ecker et al., 2010; Schmidt et al., 2014),
while W3 RGCs (Kim et al., 2010) and the sustained ON DS RGCs (Dhande et al., 2013;
Yonehara et al., 2008, 2009) avoid the dLGN. Surprisingly, among our sample of dLGN-p
RGCs, we did not find any JAM-B cells (OFF DS RGC; Kim et al., 2008), although they are
known to project to dLGN. This may either be due to our relatively small dLGN-p RGC
dataset, or, more likely, a misidentification of JAM-B cells in Baden et al. 2016, which were
included in a putative “mixed” cluster, because the JAM-B (G6) was predicted to stratify

mainly below the ChAT band, while the cell is known to stratify above it (Kim et al., 2008).

In comparison to the overall RGC distribution in the mouse retina, several of the dLGN-p
RGC types showed a profound overrepresentation, in particular, three of the alpha RGC
types (Krieger et al., 2017; Van Wyk et al., 2009) and the OFF suppressed cells (Tien et al.,
2015). Alpha RGCs have been described in all mammalian species studied so far (reviewed
in Berson, 2008; Krieger et al., 2017). They share certain physiological properties, such as a
high sensitivity to changes in their RF, short response latency and fast conducting axons and
are thereby among the first retinal output channels, signalling “new stimuli” to the dLGN
(Krieger et al., 2017; Pang et al., 2003; Van Wyk et al., 2009). Hence, alpha RGCs may
encode fast changes in the visual signal such as the high frequency component of the chirp
stimulus and feed this information to dLGN. We indeed observed three such response
components in the dLGN, based on our NNMF approach, which suggests that alpha RGCs
best suitable candidates to encode this type of information and provide it to dLGN. OFF
suppressed RGCs, also referred to as Suppressed-by-Contrast (SbC-) RGCs, exhibit a high
baseline firing rate which is suppressed by light stimulation and are also thought to be

conserved across mammals (e.g. de Monasterio, 1978; Rodieck, 1967; Sivyer, Taylor, &
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Vaney, 2010; Tien, Pearson, Heller, Demas, & Kerschensteiner, 2015). SbC-like responses
have also been recorded along all stations of the mouse retino-geniculo-cortical pathway
(Niell & Stryker, 2010; Piscopo et al., 2013; Tien et al., 2015), suggesting a dedicated early
visual pathway. It has been proposed that SbC-RGCs signal uniformity of the visual field
(Levick, 1967; Masland & Martin, 2007; Sivyer et al., 2010), control contrast gain (Troy et al.,
1989), or signal self-generated visual stimuli, contributing to central processing of blinks and
saccades (Tien et al., 2015). The higher abundance of these cell types could be explained
by unequal labelling of different RGC types by the HSV. However, we know of no evidence

that could either confirm or dispute the idea that HSV has higher affinity for certain cell types.

During the classification of dLGN-p RGCs, we discovered cells (Fig. 10), which were not
included in the Baden et al. (2016) dataset. With a soma size of < 15 ym, small and crisp RF
but otherwise no functional signature, they seem strikingly similar to the Pv-positive RGCs
that lacked responses to both full-field chirp and moving bar stimuli, and therefore, was not
used in their unsupervised clustering analysis. Recently, four “new” dLGN-p RGC types have
been described; these RGCs can be selectively identified by their expression of transcription
factor Foxp2 (Rousso et al., 2016). One of these types, the so-called F-mini cells, have small
somata and small RFs, reminiscent of the aforementioned small cells in our dLGN-p RGC
sample. In contrast to the functional properties of these cells under our stimulus conditions,
Rousso et al. (2016) described F-mini cells as direction-selective; this apparent mismatch,
however, may be due to differences in stimulus size and velocity used in the two studies.
Taken together, it is well possible that the F-mini RGCs correspond to the small cells in our
dataset. To establish this connection, however, would require further recordings with stimuli

similar to those used by Rousso et al. (2016).

Our results represent a conservative minimum of unique functional dLGN-p RGC types
found in the mouse retina, because some of the RGC types can probably not be resolved
with our standardized but with only 4 stimuli rather limited stimulus set. This stimulus set was
used in the functional classification survey of RGCs in Baden et al. (2016). Therefore, cell
types that were not modulated or could not be resolved by the stimuli in , were also not
included in our survey of dLGN-p RGCs. For instance, ipRGCs were largely discarded from
the clustering analysis used by Baden and colleagues (2016), because they either did not
respond well to the stimulus set and thus failed the quality criterion, or were sorted into
different RGC groups and thus did not comprise a dedicated ipRGC channel (Baden et al.,
2016). Furthermore, at least one PV-positive small-field RGC type was not included,
because of its unresponsiveness to the chirp and the bar stimulus (for details, see paragraph

above).
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5.2 Components of the dLGN population response

Consistent with its rich retinal input, we found that the dLGN population response can be
captured by 25 different components. The high number of components is in contrast to the
classical notion of three parallel retino-geniculate pathways (reviewed in Kerschensteiner &
Guido, 2017), and points towards a larger diversity of visual features encoded by dLGN
neurons than commonly appreciated. This interpretation is supported by recent studies
reporting “non-classical”’ responses in rodent dLGN (Cruz-Martin et al., 2014; Howarth et al.,
2014; Marshel et al., 2012; Piscopo et al., 2013; Scholl et al., 2012; Zhao et al., 2013a),
rabbit dLGN (Hei et al., 2014) and the koniocellular layers of primate dLGN (SK et al., 2013;
White et al., 2001; Zeater et al., 2015), such as direction and orientation selectivity, and
binocularity. While our factorization approach reveals an elaborate visual representation at
the level of dLGN, whether and how many distinct functional types of dLGN neurons exist is
an open question. A previous clustering study of dLGN responses to a large stimulus set
estimated the number of functional clusters to be six (Piscopo et al., 2013). While the
identified clusters undoubtedly have correlated response profiles, it is unclear to which

degree their borders are strictly demarcated or instead the clusters rather form a continuum.
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5.3 Functional connectivity of dLGN projections

In previous work, the question of retinogeniculate connectivity has been addressed from two
different angles: while most studies have focused on the absolute number and weight of
functional RGC inputs impinging on single dLGN neurons, some studies also assessed

convergence of retinogeniculate inputs in terms of response type.

Focusing on RGC counts, there seems to be a prominent discrepancy of estimates between
earlier mostly physiological work and recent anatomical studies. Indeed, a huge body of both
in-vitro and in-vivo literature has concluded that dLGN neurons typically receive 1-3
dominant RGC inputs, with the possibility of additional, weaker ones (Chen & Regehr, 2000;
Cleland et al., 1971; Jaubert-Miazza et al., 2005; Litvina & Chen, 2017b; Mastronarde, 1992;
Reid & Usrey, 2004; Usrey et al., 1999; Weyand, 2016; Ziburkus & Guido, 2006). However,
in some of the in-vivo studies the total number of RGC inputs might have been
underestimated due to technical limitations (Sincich et al., 2007). In more details: In studies
using single electrode to simultaneously record functional S-potentials and dLGN spikes, it
has been difficult to determine the number of RGCs driving a dLGN cell (Bishop et al., 1962;
Kaplan & Shapley, 1984; Mastronarde, 1987), because, the EPSP often merged with the
dLGN spike, making it appear that many dLGN spikes had no associated EPSP. In the case
of dual-electrode recordings where monosynaptically connected RGCs and dLGN cells were
recorded simultaneously, it has been shown that dLGN neurons are usually driven by more
than one RGC (Cleland et al., 1971; Mastronarde, 1987; Usrey et al., 1999). However, it is
an open question whether these studies were able to differentiate between the input of a
single RGC type and the input of a highly synchronous signal of many RGCs of the same
type. Based on this assumption, it is indeed possible that number of converging RGCs is

higher then previously reported.

Our number of modelled RGC input types is in line with estimates by a recent study using
mono-transsynaptic rabies virus tracing (Rompani et al., 2017). This elegant tracing study
provides evidence that at least a subset of dLGN neurons receive converging inputs from up
to 91 different RGCs distributed across up to 9 types. The large discrepancy between
anatomical estimates of convergence and functional connectivity might be related to the fact
that, first, anatomical studies (Hammer et al., 2015; Morgan et al., 2016) usually provide
RGC counts converging onto one dLGN relay cell, without specifying how the inputs are
distributed among different RGC types. It is indeed possible, as showed by Rompani et al.

(2017), that only few RGC types provide multiple inputs onto a single dLGN neuron. The
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notion that each dLGN cell receives a weighted input from only a few RGC types is in
agreement with results from functional studies investigating retinogeniculate connectivity.
Second, the number of RGC counts in the anatomical studies (Hammer et al., 2015; Morgan
et al., 2016; Rompani et al., 2017) might represent an overestimate. These studies were
performed in young animals from postnatal day P21 to P42' where experience-dependent
synapse remodelling and late axon pruning still take place (Hong et al., 2014). Many of the

structurally identified connections can thus be the remnants of the RGC axon arbours.

Recently, it has been suggested that the underlying mechanism for the functional
remodelling at the retinogeniculate synapse is more dynamic than previously appreciated.
Hong et al. (2014) visualized axon arbours of a single dLGN-p RGC type (BD-RGC; Kim,
Zhang, Meister, & Sanes, 2010) during different stages in development, and showed that not
axon pruning but bouton clustering underlies the development of functional specificity at the
retinogeniculate synapse during experience-dependent plasticity. During this period the RGC
axon arbours may allow rapid reestablishment of previously eliminated connections.
Plasticity dependent changes have also been demonstrated in the adult dLGN in a study,
where silencing the ON-centre RGC inputs caused rapid emergence of OFF-centre
responses from ON-centre neurons (Moore et al., 2011). This form of plasticity was
previously associated with cortex, whereas subcortical structures were believed to lose their
capacity for change after a critical period was reached during the development (Calford et
al., 2000; Fox et al., 2002; Gilbert et al., 2009). In the study by Moore and colleagues (2011),
the authors hypothesized that dLGN cells form functionally weak or silent synapses (Atwood
& Wojtowicz, 1999) with multiple axons from different RGC types and that rapid
strengthening of these synapses could serve as a substrate for adult plasticity in the
retinogeniculate pathway. Evidence for this mechanism comes also from other studies,
mentioning weakly connected RGCs and dLGN neurons with mismatched ON/OFF or X/Y
signatures (Hamos et al., 1987; Mastronarde, 1992; Usrey et al., 1999). Taken together,
these findings suggest an intriguing mechanism, which could indeed account for the
multitude of RGCs converging onto a dLGN neuron in all aforementioned anatomical studies
(Hammer et al., 2015; Morgan et al., 2016; Rompani et al., 2017)

While our results are in line with previous estimates of functional connectivity, our

computational modelling approach has several limitations. First, due to the difference in

' The youngest animals used in our study were at least 8 weeks old (> P56), and thereby at the end of the

experience-dependent phase (till P60).
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recording methods, we can only predict low pass-filtered dLGN signals. This might results
into a loss of fast transient components from the electrophysiological signal, and our data
are thus bound to the kinetics of the calcium indicator (Chen et al., 2013). Second, our
simple linear feed-forward model does not consider the potential effects caused by local
inhibitory interneurons and cortico-thalamic feedback. Thereby our model might ignore
important spatio-temporal transformations between RGC input and dLGN, which are
modulated by cortico-geniculate feedback from V1 (reviewed in Briggs & Usrey, 2008).
Despite the lack of this component and considering the simple modelling approach, we can
explain the dLGN responses — at least to the given stimulus set — surprisingly well. Our
results show that weighted linear combination of 3-7 different RGC types is sufficient to

predict most dLGN responses.

69



70



5.4 Towards the development of a functional model of visual

processing

However, to fully understand how the retinal code is interpreted and transformed along the
retino-geniculo-cortical pathway, we would have to integrate the effects of cortico-geniculate
feedback as a component into our model. Cortico-geniculate feedback provides the
predominant synaptic input to dLGN, comprising approximately 30% of all synapses (Erisir et
al., 1997). It is mediated by reciprocal projections from pyramidal cells in cortical layer 6 of
V1 (Briggs & Usrey, 2011), whose axons form excitatory synaptic connections with dLGN
neurons, as well as with inhibitory neurons of the thalamic reticular nucleus (TRN) and
inhibitory interneurons residing in the dLGN (Jurgens et al., 2012; Sillito et al., 2006). By
exciting GABAergic neurons in the TRN, feedback can also indirectly inhibit neurons as well
as inhibitory interneurons in the dLGN (Sillito et al., 2006). Thus, the balance between this
disynaptic inhibition and monosynaptic excitation determines the sign of the cortico-
geniculate modulation. How and to what degree the representation of visual information is
transformed by feedback in the dLGN is still a matter of current investigations, as studies of
feedback-related effects have produced inconsistent results. It has been suggested that
feedback can enhance contrast gain (Przybyszewski et al.,, 2000), influence the
responsiveness to high-velocity stimuli (Gulyas et al., 1990), or even modify spatial
summation properties of dLGN cells (Andolina et al., 2013). In mice, the effects of cortico-
geniculate feedback have been studied using transgenic animals, where the genetically
specified population of neurons in L6 of V1 has been optogenetically manipulated. Olsen et
al. (2012) showed that dLGN neurons increased their firing rates upon silencing of feedback
connections, whereas Denman and Contreras (2015) reported a mix of inhibitory and
excitatory effects with no evidence for sharpening of tuning properties or improved temporal
fidelity.

Here, our study provides the ideal basis for investigating how cortico-geniculate feedback
contributes to the transformation of visual information between RGCs and dLGN neurons.
Our approach could easily be combined with the expression of light-gated neuronal silences
in L6 of V1 for specific and reversible inactivation of cortico-geniculate feedback (similar to
Olsen et al.,, 2012). An example of such silencers could be the novel light-gated chloride
channels (e.g. SwiChR++), which showed improved efficiency for optical inhibition of
neurons (Berndt et al., 2016). To provide a quantitative assessment of the effects of cortico-
geniculate feedback on dLGN neurons, we could present the same stimuli used in this study

in conditions with and without cortico-geniculate feedback, and compare the responses of
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individual neurons. With the data we could extend our simple feed-forward model and thus
provide the first important step towards the development of a functional model of visual

processing in the mammalian brain.
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The functional diversity of retinal ganglion cells in the mouse
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Abstract

In the vertebrate visual system, all output of the retina is carried by retinal ganglion cells.
Each type encodes distinct visual features in parallel for transmission to the brain. How
many such “output channels” exist and what each encodes is an area of intense debate. In
mouse, anatomical estimates range between 15-20 channels, and only a handful are
functionally understood. Combining two-photon calcium imaging to obtain dense retinal
recordings and unsupervised clustering of the resulting sample of >11,000 cells, we here
show that the mouse retina harbours substantially more than 30 functional output channels.
These include all known and several new ganglion cell types, as verified by genetic and
anatomical criteria. Therefore, information channels from the mouse’s eye to the mouse’s
brain are considerably more diverse than shown thus far by anatomical studies, suggesting

an encoding strategy resembling that used in state-of-the-art artificial vision systems.
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TB, PB, MB and TE designed the study; KF performed imaging experiments with help by TB;
KF and MRR performed electrophysiological experiments with help by TB; TB, PB, KF and

MRR performed pre-processing; PB developed the clustering framework with help of MB; TB
and PB analysed the data with input from TE; TB, PB and TE wrote the manuscript.
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8.1.2 Appendix 2

Subcortical Source and Modulation of the Narrowband Gamma Oscillation in Mouse

Visual Cortex

Aman B. Saleem, Anthony D. Lien, Michael Krumin, Bilal Haider, Miroslav Roman Rosén,

Asli Ayaz, Kimberly Reinhold, Laura Busse, Matteo Carandini and Kenneth D. Harris (2017),
Neuron 93: 315-322, DOI https://doi.org/10.1016/j.neuron.2016.12.028

Abstract

Primary visual cortex exhibits two types of gamma rhythm: broadband activity in the 30-90
Hz range and a narrowband oscillation seen in mice at frequencies close to 60 Hz. We
investigated the sources of the narrowband gamma oscillation, the factors modulating its
strength, and its relationship to broad- band gamma activity. Narrowband and broadband
gamma power were uncorrelated. Increasing visual contrast had opposite effects on the two
rhythms: it increased broadband activity, but suppressed the narrowband oscillation. The
narrowband oscillation was strongest in layer 4 and was mediated primarily by excitatory
currents entrained by the synchronous, rhythmic firing of neurons in the lateral geniculate
nucleus (LGN). The power and peak frequency of the narrowband gamma oscillation
increased with light intensity. Silencing the cortex optogenetically did not abolish the
narrowband oscillation in either LGN firing or cortical excitatory currents, suggesting that this

oscillation reflects unidirectional flow of signals from thalamus to cortex.

Contributions

Conceptualization, ABS., MK, MC, and KDH; Methodology, ABS, ADL, BH, MRR, AA, KR,
and LB (specific experimental contributions are listed in Table S1); Formal Analysis, ABS;

Writing - Original Draft, ABS, MC, and KDH; Writing - Review & Editing, all authors. MC and

KDH are co-senior authors.
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8.1.3 Appendix 3

Benchmarking Spike Rate Inference in Population Calcium Imaging

Lucas Theis*, Philipp Berens*, Emmanouil Froudarakis, Jacob Reimer, Miroslav Roman

Rosén, Tom Baden, Thomas Euler, Andreas S. Tolias and Matthias Bethge (2016). Neuron
90: 471-482, DOI https://doi.org/10.1016/j.neuron.2016.04.014

*equal contributions

Abstract

A fundamental challenge in calcium imaging has been to infer spike rates of neurons from
the measured noisy fluorescence traces. We systematically evaluate different spike
inference algorithms on a large benchmark dataset (>100,000 spikes) recorded from varying
neural tissue (V1 and retina) using different calcium indicators (OGB-1 and GCaMP®6). In
addition, we introduce a new algorithm based on supervised learning in flexible probabilistic
models and find that it performs better than other published techniques. Importantly, it
outperforms other algorithms even when applied to entirely new datasets for which no
simultaneously recorded data is available. Future data acquired in new experimental
conditions can be used to further improve the spike prediction accuracy and generalization
performance of the model. Finally, we show that comparing algorithms on artificial data is not
informative about performance on real data, suggesting that benchmarking different methods
with real-world datasets may greatly facilitate future algorithmic developments in

neuroscience.
Contributions
PB, MB, and LT designed the project. LT analysed the data with input from PB; EF, JR, and

AST acquired V1 data. MRR, TB, and TE acquired retinal data. PB wrote the paper with

input from all authors. PB and MB supervised the project.
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8.1.4 Appendix 4

Community-based benchmarking of spike inference from two-photon imaging data

Philipp Berens, Jeremy Freeman, Thomas Deneux, Nicolay Chenkov, Thomas McColgan,
Artur Speiser, Jakob H. Macke, Srinivas C. Turaga, Patrick Mineault, Peter Rupprecht,
Stephan Gerhard, Rainer W. Friedrich, Johannes Friedrich, Liam Paninski, Marius
Pachitariu, Kenneth D. Harris, Ben Bolte, Timothy A. Machado, Dario Ringach, Jacob
Reimer, Emmanoulis Froudarakis, Thomas Euler, Miroslav Roman Rosén, Andreas S.
Tolias, & Matthias Bethge.

Under revision at PLoS Biology, preprint available under DOI https://doi.org/10.1101/177956

Abstract

In recent years, two-photon calcium imaging has become a standard tool to probe the
function of neural circuits and to study computations in neuronal populations. However, the
acquired signal is only an indirect measurement of neural activity due to the comparatively
slow dynamics of fluorescent calcium indicators. Different algorithms for estimating spike
trains from noisy calcium measurements have been proposed in the past, but it is an open
question how far performance can be improved. Here, we report the results of the
spikefinder challenge, launched to catalyse the development of new spike inference
algorithms through crowd-sourcing. We present ten of the submitted algorithms which show
improved performance compared to previously evaluated methods. Interestingly, the top-
performing algorithms are based on a wide range of principles from deep neural networks to
generative models, yet provide highly correlated estimates of the neural activity. The
competition shows that benchmark challenges can drive algorithmic developments in

neuroscience.
Contributions
PB, AST and MB designed the challenge; JF provided web framework; PB and JF ran the
challenge; TD, NC, TM, AS, JHM, ST, PM, PR, SG, RF, JF, LP, MP, KDH, TM, DR

submitted algorithms; JR, EF, TE, MRR, AST provided data; PB analysed the results with

input from MB; LT pre-processed data; PB wrote the paper with input from all authors.
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8.1.5 Appendix 5

Sparse linear recombination using most retinal output channels yields highly diverse

visual representations in mouse dLGN

Miroslav Roman Rosén, Yannik Bauer, Philipp Berens #, Thomas Euler #, Laura Busse #

# shared corresponding authors

This manuscript is in preparation; it covers most of the content of this thesis.

Abstract

In the mouse, the parallel output of more than 30 functional types of retinal ganglion cells
(RGCs) serves as the basis for all further visual processing. Little is known about how the
representation of visual information changes between the retina and the dorsolateral
geniculate nucleus (dLGN) of the thalamus. Here, we functionally characterized responses
of retrogradely labelled dLGN-projecting RGCs and dLGN neurons to a common set of
visual stimuli, and used a linear model to assess functional connectivity between RGC types
and dLGN neurons. We found that the majority of previously identified functional RGC types
innervate the dLGN. Receiving such rich retinal input, the dLGN population response
maintained a high degree of the functional diversity. Computational modelling revealed that
the responses of dLGN neurons can be predicted as a linear combination of inputs from 1-7
RGC types. We conclude that a sparse recombination using most retinal output channels

yields highly diverse visual representations in mouse dLGN.

Contributions

TE, LB and MRR designed the study; MRR and YB carried out imaging experiments with
help by TE; MRR carried out electrophysiological experiments with help by LB; MRR
performed pre-processing and analysed electrophysiological data with input from LB. YB
analysed imaging data with input from PB; MRR established the model with input from YB,

PB; MRR wrote the original manuscript; Review & Editing, all authors
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