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Summary

Zusammenfassung

Diese Arbeit behandelt zentrale Themen der Mathematiklehrerbildung. Bere-

its 1986 und 1987 beschrieb Lee S. Shulman in seinen viel zitierten Artikeln

eine mögliche Gliederung des professionellen Wissens einer Lehrkraft. Neben

anderen Kategorien hat sich hier vor allem die Unterteilung in Fachwissen,

fachdidaktisches Wissen und allgemein pädagogisches Wissen durchgesetzt.

Shulman selbst beschreibt die Fachdidaktik als Übergang zwischen der Fach-

wissenschaft und der Pädagogik mit besondere Relevanz für die Lehrperson.

Viele Themen der Lehrerbildung sind in diesem Spannungsfeld zu finden. In

der vorliegenden Arbeit wird vor allem die Fachwissenschaft und die Fach-

didaktik, inklusive deren Übergang, bzw. Trennung, genauer untersucht. In

drei Studien werden hierbei unterschiedliche, in diesem Rahmen relevante

Themen behandelt. Zum einen wird eine Unterscheidung von Fachwissen

und fachdidaktischem Wissen, sowie die innere Struktur der Fachdidaktik in

einer sehr fachnahen Auslegung diskutiert (siehe Kapitel 1). Kapitel 2 behan-

delt darauf aufbauend verschiedene Voraussetzungen für den Erwerb dieser

Wissensformen. Mögliche Gruppenunterschiede, zum Beispiel bezüglich des

Studiengangs, werden in die Analysen mit einbezogen. Aufgrund der bekannt

wichtigen Rolle des Fachwissens der Lehrkraft für gelungenen Unterricht,

widmet sich Kapitel 3 dem Erfolg der Studierenden in der Analysis 1 Vor-

lesung. Diese Vorlesung stellt als verpflichtende Veranstaltung im ersten

Semester, unabhängig des Studiengangs, den Einstieg ins Studium dar. Der

Erfolg in der Veranstaltung (gemessen an Abbruchraten) wird durch ver-

schiedene statistische Methoden, unter anderem Überlebenszeitanalysen, un-

tersucht. In diesem Rahmen spielen Prädiktionsmodelle, wie sie zum Beispiel

im Bereich des Maschinelle Lernens eingesetzt werden, eine zentrale Rolle.

Um eine Datengrundlage zu schaffen wurde hierfür an der Universität

Tübingen ein Projekt durchgeführt, in dessen Rahmen auch Kompetenztests

für die Wissensformen entwickelt wurden. Die Ergebnisse werden gegliedert

in verschiedene Themenbereiche. Der Zusammenhang zwischen Fachwissen
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und fachdidaktischen Wissen konnte in mehreren Analysen bestätigt wer-

den. Dabei kann davon ausgegangen werden, dass fundiertes Fachwissen

als notwendige, aber nicht hinreichende Bedingung für fachdidaktisches Wis-

sen gesehen werden kann. Trotz dieses Zusammenhangs war eine Trennung

der Wissensformen bereits in der Anfangsphase der universitären Ausbil-

dung möglich. Dies deutet darauf hin, dass die Fachdidaktik, zusätzlich

zur Fachwissenschaft, ein mathematisches Verständnis darstellt, welches sich

bereits zu Beginn, und im speziellen vor der lehrerspezifischen Ausbildung,

nachweisen lässt. Die Ähnlichkeit der Voraussetzungen für den Erwerb der

Wissensformen deutet erneut auf einen starken Zusammenhang hin. Aus-

schlaggebend hierfür sind vor allem Leistungsmaße aus der Schulzeit und

das Geschlecht, wohingegen der Studiengang für keine der beiden Testleis-

tungen (Fachwissen und Fachdidaktik) relevant war. Für die Testleistung

im Bereich der Fachwissenschaft spielte außerdem die Schulform eine Rolle.

Studierende, die ihr Abitur an einem allgemein bildenden Gymnasium er-

langten, zeigten hier bessere Testleistungen. Im Gegensatz zu den vorherigen

Analysen wurde in Kapitel 3 nicht direkt das mathematische Wissen über

einen Kompetenztest gemessen. Stattdessen wurden Leistungsmaße aus der

Analysis 1 Veranstaltung verwendet, um so den Erfolg in einer Veranstal-

tung zu untersuchen, die relevant für den Erwerb des mathematischen Wis-

sen und den Einstieg in das Mathematikstudium im Allgemeinen ist. In den

Ergebnissen lässt sich die bereits erwähnte Abhängigkeit zu den Leistungs-

maßen der Schule (Abiturnote und Note in der Mathematik Abiturprüfung)

wiederfinden. Für die Prädiktionsmodelle musste die Note in der Mathematik

Abiturprüfung teilweise durch zusätzliche Leistungstests abgesichert werden.

Auch hier war die Schulform relevant für den Erfolg im ersten Semester,

aber im Gegensatz zu den vorherigen Analysen trat auch der Studiengang

als Prädiktor auf. Die Prädiktionsmodelle zeigen Vorhersagegenauigkeiten

auf Testdaten von 75%. Zu beachten ist hierbei, dass keine Kennzahlen der

Studierenden nach Beginn der Vorlesung in die Modelle mit aufgenommen

wurden. Das bedeutet im Besonderen, dass Variablen bezüglich des Ver-

haltens während des Semesters, wie Zeitaufwand, Anwesenheit und Gewis-

senhaftigkeit, für die Erfolgs-, bzw. Abbruchvorhersage nicht berücksichtig
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wurden. Dies deutet auf eine hohe Relevanz der Eingangsvoraussetzungen

hin, welche unabhängig von jeweiligem Verhalten während des Semesters,

gute Prädiktoren für den Erfolg zu sein scheinen.



Introduction

When defining a knowledge base for teachers’ professional competence a wide

range of aspects can be considered. Among other categories Shulman (1986,

1987) named the content knowledge (CK), pedagogical content knowledge

(PCK) and general pedagogical knowledge (GPK), which were adopted and

accepted in several frameworks and literature (e.g., Baumert & Kunter, 2006;

Blömeke, 2005b). More specific for math teachers the categories mathematics

content knowledge (MCK) and mathematics pedagogical content knowledge

(MPCK) were established (see Schoenfeld & Kilpatrick, 2008). Here I sum-

marize math teachers’ professional competence using those categories, with

more details in the respective chapters. In math teacher education the cat-

egories can be linked to different phases. The initial phase is dominated by

and centered on teachers’ MCK in math lectures. During the education the

focus shifts towards GPK, for example general teaching related contents and

classroom management. This shift can be illustrated as it occurs throughout

the phases within MPCK, as a blending of MCK and GPK (Shulman, 1987).

Using the division of professional competence in stable and situation-specific

teacher cognition (Blömeke, Busse, Kaiser, König, & Suhl, 2016), I illustrate

the shift in teacher education comparable to a transition from the former to

the latter. MCK and MPCK are assigned to stable cognition. MCK is seen

as a prerequisite for MPCK, and MPCK itself as a different kind of mathe-

matical understanding (e.g. Baumert & Kunter, 2011; Shulman, 1986). Due

to this relationship the initial phase is not only dominated by MCK but also

by the content related part of MPCK.

Within this content related framework students face a problem named

‘double discontinuity’ by Klein (1908) which concerns both, MCK and MPCK.

13
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This refers to potential problems teacher candidates experience on how math-

ematical contents are taught in school to how they are taught at university

and then transferring their knowledge back to school again as a teacher. For

students, there is a gap between those two approaches to mathematics, and

they gradually come to believe that they are not going to need the contents

they studied at university for their future work as teachers. The first dis-

continuity concerns the transition from school to university. Most of the

students will experience a completely different approach to mathematics at

the university, from the one they were familiar with at school. At the begin-

ning of their training at the university students face problems, which seem

completely different to what they studied at school. For example, in school

the focus lies on solving practical mathematical problems with the neces-

sary techniques, whereas at the university students learn about the abstract

framework behind those solutions. Students end up thinking that the topics

they studied at school are not relevant any more. Albeit its relevance, this

thesis will not concentrate on this part of the problem, but rather concentrate

on teacher education at the university and therefore the second part of this

discontinuity (see e.g Winsløw & Grønbæk, 2014). It concerns the problem

of how math teacher candidates can benefit from the academic approach to

mathematics at the university and use it to teach in a way which is suitable

for school students. If this second part of the discontinuity problem is not

resolved, novice teachers will not be able to benefit from the expertise they

developed at the university, but rather resort to their own schooling.

This thesis examines the initial phase of math teacher education at univer-

sity and thus concerns further investigations of MCK and MPCK. Therefore I

use results of former studies, like the general importance of MCK for success-

ful teaching demonstrated by Ball, Lubienski, and Mewborn (2001). Krauss,

Neubrand, Blum, and Baumert (2008) reported results about the strong re-

lation of MCK and MPCK, and in Kunter and Baumert (2011) this relation

is further specified as MCK being a necessary but insufficient requirement for

MPCK. Those results are rather general and participants range from teacher

candidates of different school types or different phases of teacher education

to teachers in service. Interesting and new ideas were introduced by the
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mathematical content knowledge for teaching (Ball, Thames, & Phelps, 2008;

Hill, Ball, & Schilling, 2008; Hill, Rowan, & Ball, 2005; Hill, Schilling, & Ball,

2004). Ball et al. (2008) described the idea of a special kind of mathematical

understanding needed for teaching. I explain and refer to this framework and

the included ideas throughout the thesis. A broad overview of the research in

the field of MPCK can be found in Depaepe, Verschaffel, and Kelchtermans

(2013).

This study concentrates on the education of math teacher candidates for

the academic track and solely on the initial phase of university. This allows

more specific investigations on MCK and MPCK. This framework is relevant

for math departments at universities, where in the initial phase the MCK

and in most cases the MPCK training is located.

Within this framework the present studies cover three topics which are

relevant for teacher education at university. First, I investigate the structure

of MPCK as well as its relation to MCK. For the education it is relevant

to know if – even in this subject matter dominated phase – facets within

MPCK can be identified and thus be trained. Additionally, a statistical

separation of a content related MPCK and MCK is relevant for the estimation

of the importance of additional MPCK lectures and seminars already at the

beginning of education. Those considerations can be summarized in the

research question: Is it possible to identify facets of MPCK during the initial

phase of university, which is dominated by subject matter, and is it possible

to statistically separate these facets from MCK? This topic is covered in

chapter 1.

Second, for the planning of lectures the knowledge about the prerequi-

sites students bring from school in both, MCK and MPCK, is worth knowing.

Differences between teacher candidates and Bachelor of Science students are

in this framework particularly interesting. As already mentioned, skills in

MCK and MPCK are important for successful teaching, thus I further in-

vestigate the question about the existence of a relation between those two

facets of knowledge and, if there is one, how strong it is for novice teachers

at university. Because of an expected relationship, I investigate the prereq-

uisites students bring to university for the acquisition of MCK and MPCK
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in chapter 2.

Third, because of the importance of MCK for teaching (e.g. Ball et al.,

2001; Krauss et al., 2008), I analyze the success of teacher candidates in a

first semester mathematical lecture, compared to Bachelor of Science stu-

dents. Those issues include the question, if there are differences in the pre-

requisites of students at the beginning of university, with special interest on

the group of teacher candidates. Motivation for this topic gives the supposed

negative selection of teacher candidates, which are assumed to be weaker

students than their colleagues (Blömeke, 2005a). Results are compared with

more general findings about differences of prerequisites at the beginning of

university (Klusmann, Trautwein, Lüdtke, Kunter, & Baumert, 2009). Be-

side prerequisites high dropout rates in math study programs are investigated

(Heublein, 2014), by identifying variables and characteristics, which are most

important for accurate dropout predictions. Results can be useful for univer-

sities to identify risk groups which might need more assistance or to employ

admission restrictions. Because of the importance of MCK a focus lies on the

question, if teacher candidates can be identified as a risk group in the sub-

ject matter education. An extensive analysis of those questions and student

dropouts in general is provided in chapter 3.

Structure of the thesis

In the following section the Maths Teacher Education Study (MatTES) is

briefly introduced. This project was created to form the database for the

subsequent chapters. More details on the project and the parts that are used

in the study are given in the respective chapters. In chapter 1, the study for

the first topic – the structure of MPCK – is presented. The chapter repre-

sents a stand-alone study and has been submitted to an international journal

(Kilian, Glaesser, Loose & Kelava, submitted manuscript, 2017). Chapter 2

concerns prerequisites for the acquisition of MCK and MPCK. The contents

of this chapter are submitted in German to a scientific journal (Glaesser,

Kilian et al., submitted manuscript, 2018). Chapter 3 presents extensive

investigations about students’ prerequisites and dropout rates, as well as
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variable selections for dropout predictions.

All chapters are stand-alone studies and can be read independently. The-

oretical background information, used methods and samples as well as de-

tailed discussions are provided within the chapters. In the final conclusion

the results of all three chapters are summarized and discussed.

The Maths Teacher Education Study – MatTES

The subsequent studies in this thesis rely on a database gathered at the Uni-

versity of Tübingen. For this purpose the project Maths Teacher Education

Study (MatTES) was created, which was conducted the first time in the

winter semester 2014/15.

The goal of the project is to monitor math students in the initial phase of

university, with focus on competence modeling and dropout rates, especially

in math teacher education. The concentration is on the analysis lectures and

cohorts are followed from the Analysis 1 lecture in the first semester until

the Analysis 4 lecture in the fourth semester. Beside the linear algebra, the

mandatory analysis lectures play a crucial role at the beginning of mathe-

matics studies and thus qualified as framework for the research questions.

Additional data for validation and comparisons is collected in seminars con-

cerning MPCK. The participation in these seminars is mandatory for teacher

candidates.
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October 2014 April 2015 October 2015 April 2016 October 2016 April 2017
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1

Figure 1: Overview of the MatTES dataset used in the following chapters.
Cohort 1 started with the Analysis 1 lecture in winter semester 2014/15 and
finished with Analysis 4 in summer semester 2016. The subsequent cohorts
two and three started in winter semester 2015/16 and in winter semester
2016/17 respectively. In winter semester 14/15 and summer semester 2015
PCK 1 lectures and in February 2016 a PCK 2 seminar were included.

Instruments and participants

The schedules in the analysis lectures are similar for all cohorts. Additionally

to attending the lecture the students participate in tutorial groups, were

weekly exercise sheets are discussed. Those exercise sheets have to be solved

as homework and are graded. Achievements on those exercises and in the

tutorial groups are necessary to gain the admission for the final exam.

In every lecture students complete a questionnaire within the first two

weeks. Beside general background information, the questionnaires include

tests for both MCK and MPCK. These tests were constantly developed and

improved throughout the project. Figure 1 shows an overview of the dataset

until the end of winter semester 2016/17. Suitable parts for the respective

research questions were drawn from this dataset.

In addition to the tests on MPCK and MCK, the dataset consists of

general information on students characteristics like age and sex, performance

measures from school like the grade point average (GPA), the math grade
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in the final exam at school and general information like the school type

and the federal state of the school. This information form the prerequisites

students bring to university. Information about performance and behavior

at the university is collected as described before with student’s approval.

This includes information about the performance on the weekly exercises,

attendance in the weekly tutorial groups and results of final exams and tests.
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Chapter 1

Structure of pedagogical

content knowledge in maths

teacher education – Initial

results of the Maths Teacher

Education Study (MatTES)

In this chapter I discuss the first topic mentioned above. Thereby I focus

on content knowledge (CK) and pedagogical content knowledge (PCK) at

the beginning of teacher education at university. A key challenge in maths

education research is the identification of CK and PCK described by Shulman

in 1986. In this chapter, I present a content-related, theoretical framework

for mathematical pedagogical content knowledge at the beginning of teacher

education. In the present study I use a group of German pre-service teachers

– as part of the MatTES dataset (see figure 1) – to investigate both of these

dimensions and a further differentiation of pedagogical content knowledge.

The empirical results of a bifactor model support a the existence of those

different facets. The model is used to illustrate the within-structure of PCK.

The model’s validity is discussed referring to different types of students and

to relevant validity coefficients of scales of other studies. Implications for the

25
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Figure 1.1: Integration of the study structure of pedagogical content knowl-
edge in maths teacher education in the design of the Maths Teacher Education
Study (MatTES). Highlighted lectures and seminars are part of the analysis.

theoretical foundation of the organization of teacher training are discussed.

This chapter represents investigations in this framework and therefore

represents a study on its own, meaning that all abbreviations and the theo-

retical foundations and integrations are provided. This means that the most

important background information is repeated or more specific details are

given to provide the isolated readability of this chapter.

The chapter is submitted, with slight changes, to an international journal

(Kilian, Glaesser, Loose & Kelava, submitted manuscript, 2017). Authors of

the submitted article are: Pascal Kilian; Judtith Glaesser, Frank Loose and

Augustin Kelava (in that order). The chapter and the article are written on

my responsibility.

1.1 Introduction

In maths teacher education students face a problem termed ‘double disconti-

nuity‘ by Klein (1908). This refers to potential problems experienced at the

transition from the way mathematical contents are taught in school to how

they are taught at university and vice versa. In this study, the focus is on the

second part of this discontinuity (see e.g. Winsløw & Grønbæk, 2014) which
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concerns the problem of how maths teacher candidates can benefit from the

academic approach to mathematics.

Another perspective on this problem is addressed as the ‘expert blind spot

hypothesis’ in Nathan and Petrosino (2003). This hypothesis deals with the

problem that advanced knowledge in a content area can lead to notions about

learning that are in conflict with students’ actual developmental process.

Thus this hypothesis describes the gap of mathematical approaches between

school and university as described by the double discontinuity problem. Even

though novice teachers in maths do not satisfy the definition of experts in

the content area, the high level mathematics lectures attended by them at

university tend to build this expertise.

This study addresses this problem by investigating the structure of peda-

gogical content knowledge as something which might be suitable for supple-

menting the content knowledge education at university. I also examine the

lack of differentiation first within the spectrum of pedagogical content knowl-

edge and second within the specific part of the spectrum that can bridge the

gap mentioned above.

With this goal I don’t see pedagogical content knowledge as only focus-

ing on how to teach mathematics but also as supporting an understanding of

mathematical contents that benefits from the high level taught at university

and enables novice teachers to bridge the gap between it and the mathemati-

cal approach used in school. This potential role it may play is not frequently

considered, even though it is not a new notion.

Shulman (1986) explored the question of how college students transform

their expertise in the subject matter into a form that is suitable for teaching in

school. He suggested a general knowledge base for teachers (Shulman, 1987).

Within this, the distinction between general pedagogical knowledge (GPK),

content knowledge (CK) and pedagogical content knowledge (PCK) has be-

come accepted in the literature (e.g., Baumert & Kunter, 2006; Blömeke,

2005). The latter is of particular interest because “it represents the blend-

ing of content and pedagogy into an understanding of how particular topics,

problems, or issues are organized, represented, and adapted to the diverse

interests and abilities of learners, and presented for instruction” (Shulman,
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1987, p. 8). One of the aspects covered by PCK is to comprise the ability of

transferring abstract expertise to the sort of knowledge which is relevant for

teaching. According to Shulman (1987), PCK may be seen as the connection

between content and pedagogy or as the bridge between content knowledge

and the practice of teaching. With this point of view, PCK covers a range

of areas from content-related elements of teacher knowledge (referred to as

the content-related part of PCK) to those elements relating to students and

classroom which may be understood as the pedagogical end of the spectrum.

Despite its popularity, the wide range of the term – as used by Shulman –

lacks definition and empirical investigation (Ball, Thames, & Phelps, 2008).

The broad spectrum of PCK indicates a multidimensional construct and it

therefore seems appropriate to use a model that takes this dimensionality

into account.

The lack of theoretical and empirical grounding of Shulman’s conceptual-

ization of PCK is also mentioned by Depaepe, Verschaffel, and Kelchtermans

(2013) in their systematic review of research on PCK. Another point of crit-

icism refers to Shulman’s static view on teachers’ PCK instead of a dynamic

view, which treats PCK as inseparable to the act from teaching within a

particular context (Depaepe et al., 2013). I share this criticism and support

the opinion that PCK in its use is inseparable from teaching situations and a

dissociation from other aspects of teachers’ knowledge (for example CK) may

seem artificial. Nevertheless, like Ball et al. (2008), I think the static point

of view is important to identify and isolate different aspects of knowledge.

Investigations in this field are necessary to improve and organize teachers’

education. Therefore my investigations on aspects and facets of teachers’

knowledge are rather static as well.

Lack of differentiation within PCK

This study only focuses on those content-related parts of PCK which may

be suitable for contributing to alleviating the second part of the double dis-

continuity problem. With regard to teachers’ knowledge, the importance of

subject-matter knowledge itself (e.g. Ball, Lubienski, & Mewborn, 2001) as
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well as its importance as a prerequisite for PCK (e.g. Kunter & Baumert,

2011) has been noted by various authors. Even though content-related facets

are not sufficient to describe the complex structure of teachers’ skills and

knowledge, those facets are important for subject-matter education at the

beginning of university. The concentration on its content-related tasks is a

new approach of investigating PCK, as this aspect formed only a small part

of the investigation of a general picture in earlier studies (e.g. N. Buchholtz,

Kaiser, & Stancel-Piatak, 2011), or it was assigned to CK (e.g. Ball et al.,

2008). The structure and the internal differentiation of this aspect of PCK

in particular has hardly been studied.

During the last decades, several studies on the relation of CK and PCK

were conducted to provide some of the empirical evidence which was consid-

ered to be lacking by Baumert and Kunter (2006). Those studies measure CK

and PCK separately or their relation to each other among other aspects of the

broad professional competence of teachers of mathematics (e.g. COACTIV

(Kunter et al., 2011), TEDS-M (Blömeke, Hsieh, Kaiser, & Schmidt, 2014),

MT21 (Blömeke, 2011; Blömeke, Kaiser, & Lehmann, 2008) and Blömeke,

Busse, Kaiser, König, and Suhl (2016); Krauss, Brunner, et al. (2008)). They

are concerned with teachers in service (Löwen, Baumert, Kunter, Krauss,

& Brunner, 2011) or students at the end of education (Blömeke & Kaiser,

2014) and focused on contents for lower grades (e.g. Blömeke & Kaiser, 2014;

C. Buchholtz et al., 2011; N. Buchholtz et al., 2012).

In those studies, the relationship between CK and PCK was measured

using only a single scale for PCK. Facets within PCK were merely formulated

for the construction of the test, but have not been empirically verified (e.g.

N. Buchholtz et al., 2011). The question about the dimensionality of PCK

remains open, but this point is of special interest at the beginning of teacher

education because it may be important to know which parts develop together

and should be taught together.

Besides other reconceptualizations of teachers’ PCK (e.g. Cochran, DeRuiter,

& King, 1993; Grossman, 1990; Marks, 1990), Ball et al. (2008) introduced

the notion of mathematical content knowledge for teaching (MKT) (see also

e.g. Hill, Ball, & Schilling, 2008), which covers both CK and PCK. Ball de-
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fines MKT as “the mathematical knowledge needed to carry out the work of

teaching mathematics” (Ball et al., 2008, p. 395). The framework of MKT

reveals interesting insights in teachers’ knowledge and is discussed later.

Studies exist with in-service teachers or with student teachers who are

close to the end of their studies which aimed to provide a comprehensive pic-

ture of teachers’ PCK, albeit one which represents PCK as only one construct.

However, it may be more appropriate to conceive of PCK as comprising sev-

eral facets. In the interest of a possible contribution to the improvement of

teacher education, it is worth going back one step in order to investigate the

structure of PCK at an early stage of teacher training and its development.

The question then arises which, specific facets of PCK may already be present

at a stage at which the students are still in the process of developing their

mathematical foundations. Because those facets might be able to support an

understanding of the academic approach to mathematics that will help the

students in terms of the transition concerning the mathematical content, the

focus has to be on subdivisions of PCK, its different aspects and its relation

to CK as they study it in the content-related maths lectures.

1.1.1 Structure of this chapter

First, the next section gives a brief overview of the theoretical frameworks

of other studies. Most of those frameworks are intended to provide a general

picture of teachers’ professional competences.

Secondly, this study, the Maths Teacher Education Study (MatTES) and

its framework is introduced. I discuss parallels of MatTES with former stud-

ies as well as differences between them. Thirdly, I formulate the research

questions. The methods and results sections follow, and I close with a dis-

cussion of the findings.
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1.1.2 Theoretical framework of former studies

Concepts concerning teachers’ professional knowledge

The general framework in the Teacher Education and Development Studies

(e.g. TEDS-M, TEDS-shortM and TEDS-LT) splits the professional com-

petence of a teacher into two aspects (e.g. Blömeke et al., 2011; Blömeke,

Kaiser, & Lehmann, 2010; N. Buchholtz et al., 2012; Döhrmann, Kaiser, &

Blömeke, 2012), an affective-motivational aspect and a cognitive aspect –

the professional knowledge. A similar approach was used by the COAC-

TIV group (Professional Competence of Teachers, Cognitively Activating In-

struction, and Development of Students’ Mathematical Literacy (e.g. Krauss,

Neubrand, Blum, & Baumert, 2008; Kunter et al., 2011)). Their aim was to

investigate the concepts of professional knowledge and competence of teach-

ers both theoretically and empirically, by bringing together the approaches

by different researchers (e.g. Shulman, 1986, 1987; Weinert, 2001) in one

model that summarizes several findings and then adapted them specifically

for teachers of mathematics (Baumert & Kunter, 2011). Note that both

studies divide professional competence into aspects of competence, including

the professional knowledge (Baumert & Kunter, 2011), which is called cog-

nitive abilities in Döhrmann et al. (2012). Those aspects were divided into

different areas of knowledge. The focus in this chapter lies on the profes-

sional knowledge of a teacher (cognitive abilities) in the context of education

students. With (Ball et al., 2008; Hill et al., 2008; Hill, Rowan, & Ball, 2005;

Hill, Schilling, & Ball, 2004), a further development of Shulman’s concep-

tualization of PCK is introduced. In contrast to Shulman’s notion of PCK,

MKT does not arise from purely theoretical considerations, but “resulted

from an attempt to refine and empirically validate PCK” (Depaepe et al.,

2013, p. 13). Additionally, CK and PCK are not seen as distinct categories,

but as part of an overlying category of knowledge, the MKT.

Areas of maths teachers’ professional knowledge

In Blömeke et al. (2016), statistical investigations resulted in a model that

differentiates between stable and situation-specific teacher cognition. In my
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view, this differentiation may be used to describe different phases of teacher

education. In the early stages – in parallel with the subject-matter training

at university – the students primarily acquire stable forms of cognition. Sit-

uation specific cognition is more closely related to practice and pre-service

in school. The main frameworks of the TEDS and COACTIV groups follow

Shulman’s suggestion, with professional knowledge separated into CK, PCK

and GPK (Blömeke et al., 2016; Bromme, 1992; Shulman, 1987).

In the Teacher Education and Development Study in Mathematics (TEDS-

M: Blömeke et al., 2014; Blömeke et al., 2010), which builds on results of

TIMSS (Mullis et al., 2007), different components of teacher education were

considered. Only one of them deals with mathematics and teaching knowl-

edge (e.g. Tatto et al., 2008).

For the component that includes content-specific knowledge, the frame-

work of Schoenfeld and Kilpatrick (2008) was used. This framework was

inspired again by the concepts of Shulman (1987) and distinguishes between

mathematics content knowledge (MCK) and mathematics pedagogical con-

tent knowledge (MPCK). Scales for those two parts were developed using

item response theory.

Without doubt, CK and PCK are commonly regarded as the main parts

of professional knowledge and it is generally agreed on that both include

more than the knowledge of contents taught in school. This can also be

found in MKT, which consists of facets assigned to either Shulman’s CK or

PCK (note that the category curriculum knowledge is provisionally assigned

to PCK, whereas in Shulman (1987) this builds a distinct category). As my

focus is on maths specific CK and PCK, I use the abbreviations MCK and

MPCK. Again, the aim of this study is to investigate the inner structure of

the construct of MPCK.

Facets of MCK and MPCK

In TEDS-M, a differentiation within each of MCK and MPCK was only

undertaken for the purposes of item construction (Blömeke & Kaiser, 2014,

p. 26). MPCK is subdivided into two facets, with one part focusing on
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curricular knowledge and planning for mathematics teaching, and another

interactive part entitled ‘enacting mathematics for teaching and learning’

(Döhrmann et al., 2012; Tatto et al., 2008). But the subdivisions were then

not modelled in the analysis.

The Teacher Education and Development study: Learning to Teach,

TEDS-LT (Blömeke et al., 2011) – a national extension of TEDS-M – used a

different subdivision of MPCK than in the other TEDS programmes. A dis-

tinction is made whether the items related to the underlying subject such as

mathematics (subject matter didactics) or to educational science/psychology

(education didactics). The short version TEDS-shortM (N. Buchholtz et al.,

2012) also uses this approach. But again, all those subdivisions were only in-

troduced during test construction. In the analysis, MPCK is represented by

one overall scale since the analysis did not differentiate between the specific

aspects.

MPCK in COACTIV consists of three facets. First the importance and

the potential of mathematical tasks (knowledge of mathematical tasks), sec-

ond, the awareness of students’ misconceptions and comprehension difficul-

ties (knowledge of students’ mathematical thinking) and third, knowledge of

mathematics-specific instructional strategies, which includes the ability to

give alternative forms of explanation and appropriate methods (Baumert &

Kunter, 2011). Diagnostics of students’ knowledge is included in the sec-

ond facet. Note that the latter two components were derived directly from

Shulman (1986).

For the empirical examination of the dimensionality of the construct,

the authors used confirmatory factor analysis (Krauss et al., 2011; Krauss,

Brunner, et al., 2008). In this model, MPCK was measured via sum score

indicators of the three facets. However, relying on sum scores is not suffi-

cient to detect the inner structure of MPCK (Little, Cunningham, Shahar,

& Widaman, 2002). It only serves as a way of measuring a general score for

MPCK.

In these studies, MPCK is broken down into different areas that have to

be included in the analysis of a general factor. An analysis of the constructs

within MPCK was not intended.
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In MKT the focus is not directly on the distinction of different facets

within MCK and MPCK, but on identifying facets within the general cat-

egory of MKT. Those facets are then assigned to the categories of MCK

and MPCK, for comparison. In their framework Ball et al. (2008) describe

four categories and provisionally add Shulman’s curricular knowledge (on

the side of MPCK) and a category called horizon knowledge (on the side of

MCK/subject matter knowledge). Both of theses added categories are not

part of their investigation. The four main categories are (a) common con-

tent knowledge (CCK) and (b) specialized content knowledge (SCK), which

are related to teachers’ MCK, and (c) knowledge of content and students

(KCS) and (d) knowledge of content and teaching (KCT), which are related

to teachers’ MPCK. Ball et al. (2008) define CCK “as the mathematical

knowledge and skill used in settings other than teaching. . . . In short, they

must be able to do the work that they assign their students” (p. 399). This

mathematical knowledge is not unique to teaching, therefore the name com-

mon knowledge, but it is clarified that CCK can nevertheless be advanced

mathematical knowledge not everyone has. SCK represents the new idea

within the MKT framework. It describes a special kind of mathematical

knowledge unique to teachers. The two main categories within MPCK par-

allel Shulman’s key-components of MPCK (Shulman, 1986), knowledge of

instructional strategies and representations (cf. KCT) and knowledge of stu-

dents’ (mis)conceptions (cf. KCS). A helpful example of the facet interaction

is given in Ball et al. (2008) (p. 401) for CCK, SCK and KCS. CCK is needed

to recognize a wrong answer, with SCK the nature of an error is recognized,

the knowledge about common errors and most likely made errors by students

is an example of KCS. In the description of SCK it is noticeable that it might

also be seen as the mathematical foundation of the two MPCK facets KCS

and KCT. A related criticism refers to the theoretical distinguishability of

especially SCK and PCK (Petrou & Goulding, 2011). It is questionable if

SCK, as the defined in Ball et al. (2008) (p. 400), is separable from PCK.
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1.1.3 Theoretical framework of the present study

As part of MatTES, this study intends to investigate the inner structure of

MPCK and how it can support teacher education in Germany. This approach

differs from that taken in other studies in that it does not intend to measure

correlations of MPCK and MCK in general. Instead, the aim of the study

is to investigate dimensions within MPCK and to compare mean scores of

different groups differentiated by experience and degree programme, with the

aim of validating the test.

The study design of MatTES is different from those of the studies men-

tioned above, because it is focused on two particular aspects. The first is a

concentration on the education of teachers for the academic track (upper sec-

ondary education). Pre-service teachers preparing to teach at the academic

track are educated separately from those who will teach at other types of

school (non-academic track). The type of content studied by the former is

far closer to academic mathematics. At most German universities, teacher

trainees attend the same subject matter lectures as their fellow students who

major in mathematics.

The second aspect concerns the stage of the training. In Germany, teach-

ers’ pre-service education takes place in two phases. The first phase is the

university-based phase. It involves formal education in MCK, MPCK and

GPK as well as internships in school in two subjects. The second phase is

the practical induction phase. Here, the students spend most of the week

at regular schools where they observe classroom interactions and gradually

take on responsibility for lessons. The rest of the week is spent at teacher

education institutes where educational studies and subject-related pedagogy

are taught.

MatTES investigates students at the beginning of the first phase. It is

therefore not necessary for the test to be suitable for students at later stages

of their training and for teachers in service, which means that more accurate

testing of specific facets is possible. Figure 1.2 presents the area of application

of MatTES as well as the blending of MPCK from a teacher/content-related

part at the beginning of the training with a pedagogical or student/classroom
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related part at the end of the training. Figure 1.2 does not include any facets

within MPCK, but illustrates how MPCK can parallel the shift of focus in

teachers’ education. This shift applies also for the inner facets introduced

later in this chapter.
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Figure 1.2: Development and blending of the key aspects of mathematical
pedagogical content knowledge (MPCK) – from teacher to student related
contents – shown next to the timeline of teacher education at university and
MatTES’ area of application. CK = content knowledge, GPK = general
pedagogical knowledge

In the context of MatTES, a definition of MPCK is used which describes

the content-related approach to the topic. In this phase a static point of view

on the topic (cf. Ball et al., 2008; Shulman, 1986, 1987) is accurate, because

the focus lies on factual knowledge gained at lectures and seminars, thus the

static point of view is appropriate for the planning of lectures. The dynamic

point of view relates to a comprehensive picture of MPCK, including the

student and classroom related aspects (see figure 1.2). Here, MPCK is seen

as the special kind of subject matter understanding that is necessary to be

able to teach mathematics in school (e.g. Baumert & Kunter, 2011). For this

kind of understanding, subject matter knowledge is a prerequisite but goes
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beyond it. MPCK as a different kind of CK, rather than an independent

discipline was, reported in Shulman (1986). The notion of a special kind of

CK necessary for teachers is well explained as SCK in the MKT framework

(Ball et al., 2008). I support this description but assign this notion to the

teacher and content related part within MPCK.

In the framework of TEDS-LT, this definition may be compared to the

mathematical perspective of MPCK (N. Buchholtz et al., 2011, p. 103, 104).

In MatTES, this perspective is not only seen as one part of MPCK, but as

the most important aspect at the beginning of training, and for this reason

it is the focus of the investigation.

A deep understanding of the mathematical background of the topics

taught in school is necessary for teachers, but in addition to that – within

MPCK – teachers have to be able to provide different approaches to the topics

they teach and understand how students approach maths and what difficul-

ties might appear when introducing mathematical ideas. This includes the

ability to assign appropriate tasks to the students (see tasks in Baumert &

Kunter, 2011), as well as knowledge about students’ mathematical thinking

(e.g. Baumert & Kunter, 2011; Blömeke et al., 2010). Another special kind

of subject matter knowledge within MPCK is the ability to reduce mathe-

matical concepts in a suitable form for school, without changing the original

meaning or losing the accuracy required (didactical reduction).

With regard to MCK, this study agrees with the four stages of mathemat-

ical understanding in Baumert and Kunter (2011). A profound understand-

ing of the mathematical background of the subject matter taught in school

is seen as a prerequisite for MPCK within MCK. In this study I refer to this

stage as school-relevant mathematical content knowledge (schoolMCK).

This kind of MCK is separate from the highest stage in Baumert and

Kunter (2011) (academic knowledge), which is the knowledge taught in sub-

ject matter lectures at the university (especially when the lectures are de-

signed for both teacher candidates and students of mathematics as a major

subject). This is referred to as academic mathematical content knowledge

(academicMCK).

I introduce this differentiation not as different facets of MCK, but as a
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different level of abstraction. At most German universities, the subject mat-

ter education for teachers and B.Sc. students is the same at the beginning

of their studies. Thus, the subject matter lectures are on a high academical

level, which, for example, demands abstract reasoning. This level of abstrac-

tion might not be necessary for teachers’ MCK. Another reason for the use

of different terms is the tasks used to measure MCK. While in the lectures

students have to proof their understanding on an abstract level (measured

in the exams), in this test the abstraction level was reduced to a teaching

level. For simplification, readers are welcome to think of schoolMCK as the

CK described in Shulman (1986, 1987) or the CCK in Ball et al. (2008).

Facets within MPCK

In this chapter, MPCK is seen as coming into play in the content-related

interaction between the school teacher and his or her students. Therefore, I

expect to see two facets of MPCK, which relate to the two directions of this

interaction. One facet concerns the direction from the teacher to the students

and will be called instruction. The other direction concerns the knowledge

of cognitive processes of understanding and will be referred to as diagnos-

tic competence. Those facets are based on the original key components –

knowledge of instructional strategies and representations (instruction) and

knowledge of students’ (mis)conceptions (cf. diagnostic competence) – in

Shulman (1986). They can be compared to KCT (cf. instruction) and KCS

(diagnostic competence) in the MKT framework. In the MKT framework, I

see the components described in SCK as the mathematical foundation of their

MPCK facets KCT and KCS. The facets described here include a content-

related part and thus include those notions. Figure 1.3 shows the form of

this suggested interaction.

The facet of instruction refers to the teacher’s ability to prepare content

and to provide the students with this content. This process includes the inte-

gration of the school content in an academic context as well as the extraction

and presentation of subject matter (see tasks in Baumert and Kunter (2011))

in a form that is suitable for a specific group of students (depending on the
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Figure 1.3: Cycle of teacher-student interaction

grade and the previous knowledge of those specific students). Instruction

includes knowledge about typical misunderstandings and how they can be

avoided by teaching the contents in a particular way or how misunderstand-

ings can be resolved if they arise. Note that I include misunderstandings

here, which occur, for example in KCS or Shulman’s knowledge of students’

(mis)conceptions. I include this notion here, because it is important to un-

derstand where problems might occur, for the selection of strategies. In this

facets, I also include content-related parts that are described within SCK in

the MKT framework. For example, the mathematical knowledge required for

the task of “finding an example to make a specific mathematical point” and

“modifying tasks to be either easier or harder” (Ball et al., 2008, p. 400)

can be seen as the mathematical foundation or the content-related part of

the instruction facet and thus is included in my framework. Regarding other

studies, this facet can be compared to the facets knowledge of mathematical

tasks and knowledge of mathematics-specific instructional strategies in the

COACTIV framework (Baumert & Kunter, 2011), Shulman’s knowledge of

instructional strategies and representations and KCT in the MKT framework

Ball et al. (2008).

The process which is concerned with the facet diagnostic competence in-

cludes the identification of underlying sources of mistakes and the evaluation

of individual states of knowledge from the responses of the students. The
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task of identifying the underlying nature of mistakes is described as a com-

ponent of SCK by Ball et al. (2008). Again, I include this content-related

part in the facet within MPCK. In this context, a response can be any kind

of feedback the teacher receives from his or her students, for example in oral

discussions in the classroom or through test results. In that sense, diagnostic

competence can be seen as part of the more general diagnostic competence

(described for example in Ohle and McElvany (2015)). Close to Shulman’s

PCK, the general diagnostic competence can be defined as the ability of judg-

ing students’ performance level correctly as well as the correct estimation of

the difficulty of tasks and materials (see e.g. McElvany et al. (2012)). In-

cluded in that general framework, diagnostic competence qualifies as the part

that is concerned solely with the judgement of students’ responses to specific

contents and tasks. Diagnostic competence is often seen as an important

component of teachers’ competencies alongside PCK. However, due to the

closeness of my notion of diagnostic competence to specific contents it is seen

as part of PCK. This facet can be compared to Shulman’s knowledge of stu-

dents’ (mis)conceptions, KCS (Ball et al., 2008) and knowledge of students’

mathematical thinking in COACTIV (Baumert & Kunter, 2011). Figure 1.4

provides a summary of the two facets.

Even though those two facets may be regarded as different aspects of

teachers’ knowledge, they are not completely separate. The facets are con-

nected through the teacher’s process of reflection on his or her own actions

(Figure 1.3). For example, the evaluation of the state of knowledge in the

facet of diagnostic competence may affect the preparation of contents within

the facet of instruction. In my framework the reflection does not refer to

another facet within MPCK. In order to provide results for the organization

of teachers’ education I use a static view, but when referring to the practice

of teaching, a dynamic interaction of different facets of knowledge is more

likely. Therefore the term reflection is introduced in figure 1.3 to avoid the

notion of distinct facets of knowledge in practice.

In developing the facets of instruction and diagnostic competence, I drew

on the TEDS-M framework (Blömeke et al., 2010), the COACTIV framework

(Krauss, Neubrand, et al., 2008; Kunter et al., 2011), the MKT (Ball et al.,
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Figure 1.4: Two facets of MPCK

2008; Hill et al., 2008, 2005, 2004) and Shulman. However, compared to the

first two studies, my focus is tighter due to the concentration on a particular

group of trainee teachers and the differentiation within MPCK. Those facets

were tested theoretically in discussions with experts, both on MCK (math

lecturers at university) and MPCK (lecturers at teacher education institutes).

After the theoretical model validation the facets were tested empirically.

Research Question and Hypothesis

This study investigates MPCK’s inner structure and its relation to MCK

within trainee teachers who are at the beginning of their university studies.

The focus in this phase of teacher education is on subject matter education.

In Germany, MPCK lectures – if they are attended at all during this phase

– frequently do not match the subject matter contents. As subject matter is

often seen as a prerequisite (e.g. Kunter et al., 2011) for MPCK, the ques-

tion arises whether it is possible to identify facets of MPCK, which exist in

addition to MCK, during this phase dominated by subject matter. In order

to answer this question I test two models. Model 1 (see Figure 1.6) describes

the MPCK facets in addition to the prerequisite of a general MCK facet

(here schoolMCK). Model 2 (see Figure 1.7) suggests that schoolMCK alone

explains the outcomes of the test.

In this context, these facets may be seen as a specific kind of mathematical

understanding that “goes beyond knowledge of subject matter per se to the

dimension of subject matter knowledge for teaching” (Shulman, 1986, p. 9).
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Ball et al. (2008) mention the importance of evidence for a possible mul-

tidimensionality of mathematical knowledge for the organization of teachers’

education. “Professional education could be organized to help teachers learn

the range of knowledge and skill they need in focused ways” (p. 399). In

their paper, they refer to SCK as a dimension of subject matter knowledge

beside MPCK. I include this notion in the facets of MPCK, thus identifying

my facets in a content-related or subject matter dominated phase can trans-

late to identifying SCK in this phase. This study is deliberately scheduled at

the beginning of teachers’ education in order to identify the multidimension-

ality of mathematical knowledge (for teaching) in this phase. If the facets

can be identified, teachers’ education can be improved, regarding the tasks

of MPCK lectures and seminars. While student and classroom related top-

ics within MPCK might play a minor role in this phase, the content-related

parts of the facets should be supported parallel to the mathematical lectures

for the acquisition of MCK.

A summary of the tasks of MPCK lectures in the first phase of maths

teacher education is shown in Figure 1.5. One task is to help students reduce

the academic math contents they learn in the lectures to form the schoolMCK

facet. This means that an MPCK lecture should support students’ transfor-

mation of abstract knowledge into knowledge which is useful for teaching

in school. The second task is to produce the mathematical understanding

necessary for the facets instruction and diagnostic competence. This under-

standing involves knowledge on misunderstandings and learning processes.

These facets are not only part of the substance of MPCK and can there-

fore be drawn on in test construction, but they are actually seen as separate

constructs within MPCK in this study.

Hypothesis: Facets of MPCK explain outcomes in addition to MCK in a

content-related MPCK test. This means that model 1 suggested here (see

Figure 1.6) fits the data and the facets explain variance even for controlled

schoolMCK, and model fit improves compared to a one-dimensional model

(see Figure 1.7) with schoolMCK as single latent variable.
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Figure 1.5: Tasks of MPCK (mathematics pedagogical content knowledge)
lectures at the early stage in university as support of the subject matter
education. MPCK as competence in school composed of the two facets in-
struction and diagnostic competence, schoolMCK (teachers’ school-relevant
mathematical content knowledge) as underlying requirement.

1.2 Methods

1.2.1 Study design and sample

The study was conducted within the project MatTES, which started at the

end of 2014 at the University of Tübingen. For the research question it was

necessary to analyze students with different levels of experience in MCK. I

focused solely on MCK in the field of calculus (analysis). A broad calculus

training is covered by the lectures Analysis 1 through to Analysis 4, usu-

ally attended in the first semester through to the fourth semester. A rough

classification would be: One-dimensional integral and differential calculus in

Analysis 1, multidimensional differential calculus in Analysis 2, multidimen-

sional integral calculus in Analysis 3 and complex analysis (in one variable)

in Analysis 4.

In the maths major course (B.Sc.), it is compulsory to attend all anal-

ysis lectures. The state examination students – preservice teachers – (state

examination is the German graduate degree for teachers) have to attend

Analysis 1, 2 and 4, Analysis 3 is not compulsory for this group of students.

For the teacher candidates, two courses in maths specific didactics are

required (Didactics 1 and Didactics 2). Students starting in winter semester
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Figure 1.6: Model with schoolMCK (school relevant mathematics content
knowledge) and two facets of MPCK (mathematics pedagogical content
knowledge) (model 1)
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Figure 1.7: One-dimensional model with schoolMCK (school relevant math-
ematics content knowledge) as single latent variable (model 2)
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2014/15 were free to choose at which point during their studies they attended

a programme of didactics lectures. Students starting in winter semester

2015/16 were scheduled to take didactics in their second year (third semester),

at which point they had already acquired some basic knowledge of academic

maths. Therefore, the participants of the Analysis 2 lecture course had not

yet attended a didactics lecture course at the start of our study. At the end

of winter semester 2015/16, the Didactics 2 course was taught as a one-week

intensive seminar.

The empirical study was conducted drawing on participants of two lecture

courses and one seminar course. For the main sample, I analyzed students

of the two lecture courses Analysis 2 and Analysis 4 (compulsory for teacher

candidates) in the summer semester of 2016. These lectures are attended

both by students taking either maths or physics as their major subject (in

the following we will refer to those two groups together as “B.Sc.”) and by

teacher candidates (referred to as “Teacher”). Nevertheless this is a homo-

geneous sample regarding the study programmes because their maths com-

ponents do not differ at this stage and it is a homogeneous sample within

the preservice teachers because until this stage the students mostly focus on

the maths education with hardly any additional education in didactics. In

addition, students attending the seminar for maths specific didactics (Didac-

tics 2) were included (referred to as “Tsem”). The participants were teacher

candidates in the fourth semester and above. Some of them had already

completed an internship at school.1 The sample contained 256 students, 112

of which were recruited from the Analysis 2 lecture and 116 from Analy-

sis 4. The sample from Didactics 2 contained 28 students. In addition to

the programmes of study described here (Teacher and B.Sc.), a few students

from other programmes attended these lectures which is why the numbers

for Teacher and B.Sc. do not add up to the total. Table 3.3 shows descrip-

tive statistics for the samples as well as numbers of teachers in the groups.

Covariates like age and school grades were self-reported via a questionnaire.

1Even though this does not seem homogeneous all the analysis was executed and the
structure was tested without the inclusion of the seminar resulting in no significant differ-
ences.
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Table 1.1: Descriptive data for the samples and subsamples

event ”Analysis 2” ”Analysis 4” ”Didactics 2” total
subsample total Teacher B.Sc. total Teacher B.Sc. Tsem sample

(n=112) (n=63) (n=31) (n=116) (n=50) (n=59) (n=28) (n=256)
M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)

Agea 21.37 (4.65) 20.90 (1.64) 22.32 (8.0) 22.29 (2.34) 22.90 (1.92) 21.86 (2.59) 24.12 (1.35) 22.12 (3.53)
(n=100) (n=63) (n=31) (n=111) (n=50) (n=58) (n=28) (n=239)

High school GPAb 1.82 (0.55) 1.86 (0.55) 1.73 (0.56) 1.87 (0.56) 1.81 (0.56) 1.92 (0.56) 1.89 (0.54) 1.85 (0.55)
(n=98) (n=63) (n=29) (n=112) (n=50) (n=58) (n=28) (n=238)

High school maths scorec 12.34 (2.41) 12.19 (2.35) 12.90 (2.21) 12.64 (2.53) 12.53 (2.02) 12.91 (2.44) 12.20 (2.06) 12.47 (2.43)
(n=97) (n=62) (n=29) (n=108) (n=49) (n=55) (n=25) (n=230)

% % % % % % % %
Gender (male) 48 38.1 64.52 59.29 36 76.27 32.14 51.15

(n=100) (n=63) (n=31) (n=113) (n=50) (n=59) (n=28) (n=241)

Note. a rescaled measure (2016− (year of birth)). b German grade point average (GPA),
scores range from 1 to 6 with 1 as the best score. c maths score of the final secondary
school examination. Scores range from 1 to 15 with 15 as the maximum score.

1.2.2 Instrument

The competence test employed here was developed for trainee teachers at the

beginning of their second year at university and above. Basic knowledge of

university maths is required. The test is intended to measure knowledge in

MPCK that is close to purely mathematical understanding. It is not intended

to measure general MPCK skills in teaching and classroom management be-

cause these skills are expected to be developed during later stages of teacher

education. Because of this and the general area of application of MatTES it

was necessary to develop a new instrument. I considered employing instru-

ments which had been validated in other studies (e.g., TEDS-M, TEDS-sM).

However, these would not have been suitable for my purposes because the

target populations differ. The participants’ state of knowledge precluded the

use of technical terms in the field of MPCK. Nevertheless, the development

of the items was drew on those existing instruments and the best subset was

selected.

Different experts were involved in the development of the test. On the

mathematics side, the group consisted of lecturers involved in the Analysis

lectures. For the MPCK content, the research group worked together with

colleagues at the teacher education institute Tübingen, which is responsible

for the second phase of maths teacher education and which provides the

MPCK lectures and seminars at the university.

In the interest of economy, a fairly short test was constructed containing
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19 items, all of which are in multiple-choice format. More items – including

existing items – were tested during the development phase. Due to lim-

ited testing time the resulting instrument contains a selection of the best

items. The study was conducted in close connection with the Analysis lec-

tures, therefore the mathematical background for the items is the content

of the Analysis introduction lecture programme, taken in the first semester.

Example tasks are presented in the appendix A.

Instruction sub-scale

The instruction sub-scale of the test consists of 5 items, which were also

identified empirically. In this facet, the test-takers were asked to consider

representations of mathematical theories that are suitable for students in

school. Reduction of abstract theories as well as knowledge about the learn-

ing process and the individual knowledge state of the students are important.

In developing the instrument to measure this kind of knowledge I asked ques-

tions, for example, about suitable representations of mathematical theories

in school.

Diagnostic competence sub-scale

The 5 diagnostic competence items cover the classification of students’ re-

sponses into taught contents, identification of possible sources of errors, and

interpretation of learning processes. These items, again, were also identified

empirically. For instance, wrong student responses are presented, and the

task is to identify the type or source of the underlying error or misunder-

standing. This sub-scale describes a mental representation of dysfunctional

cognition which then serves as a starting point for further instruction. For

example, test-takers are asked to identify the error, underlying a wrong stu-

dent response by deciding which of the tasks presented requires the same

mathematical understanding as the original one. For this task, the same

mistake that led to the original wrong response may occur again and it can

be used for practice.
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schoolMCK sub-scale

9 items were developed specifically to measure schoolMCK. These cover con-

tent knowledge within the field of analysis in a form that is relevant in school.

This dimension is seen as a prerequisite for teaching mathematics and for the

MPCK facets. The overall rationale behind these items is, that we wished

to capture the way participants coped with the problem of balancing the re-

duction of mathematical contents to a form suitable for teaching in schools,

without losing accuracy. This can be addressed for instance by rating un-

conventional student solutions. For these tasks, the test-takers have to be

confident enough in their mathematical knowledge to identify correct an-

swers, even if these are written in unconventional language or hidden in

unconventional thoughts. They also have to be able to isolate main ideas of

mathematical theories and objects to discuss them with the students, without

going into detail of the underlying academic theory.

Validation items

A collection of TEDS-sM items (N. Buchholtz et al., 2012) was used as com-

parison items. Due to time restrictions, it was not possible to use the full

TEDS-sM scale. Nine items within three different tasks were chosen, all from

the cognitive dimension evaluate and create. The tasks are DS29 and DBJ4

from the topic of subject matter didactics and SUG2 from education didac-

tics. This choice was made in order to achieve a good fit with the topics

of our lectures. Minor language changes had to be made to ensure that all

technical terms were known to our students. Technical terms from the field

of didactics in particular are unfamiliar to the students at this early stage of

their training.

1.2.3 Procedure

The students voluntarily filled in a questionnaire in the second week of the

summer semester 2016. The survey was conducted in the tutorials accom-

panying the lectures which are attended by about 15 to 20 students each.
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The questionnaire contained the test and questions relating to background

information. The test time was around 35 min altogether.

1.2.4 Scaling and data analysis

In the analysis, I used structural equation modeling (SEM) (see e.g. Bollen,

1989), to fit latent models. First, the bifactor model 1 (see e.g. Reise, 2012)

(see Figure 1.6), then the alternative model 2 (see Figure 1.7) was fitted. The

analyses were conducted using the R-package lavaan (R Core Team, 2015;

Rosseel, 2012).

Assessment of model fit

I tested the fit of the bifactor model 1 and compared it to the unidimensional

model 2 to investigate the hypothesis that the two facets of MPCK can ex-

plain additional variance in the data. I used the Tucker-Lewis index (TLI),

the comparative fit index (CFI) and the root mean square error of approxi-

mation (RMSEA) to evaluate goodness of fit (see e.g. Marsh, Hau, & Wen,

2004). Values of TLI and CFI greater than .90 and .95 are usually taken

to indicate acceptable and excellent fits to the data, respectively. RMSEA

values smaller than .60 would show a reasonable fit. In addition, we report

the χ2 test statistic, the ratio of the χ2 deviance and the degrees of freedom.

χ2/df estimates < 2 are regarded as very good fit.

To compare the nested models, I followed the suggestions of Chen (2007)

that a model should be favoured, if incremental fit indices, such as the CFI,

increases by more than .015, compared to the more parsimonious model. In

addition, I executed a χ2- difference test. Although measurement invariance

(Meredith, 1993) should be ensured to conduct comparisons between the sub-

groups (semesters), this was not possible with the present data due to the

small numbers of participants in the subgroups.

Comparison of means

Means on the latent variables were calculated for different majors, different

cohorts and gender. I expected to see no differences for gender and no dif-
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ferences between the subgroups of the second semester cohort. At this stage,

none of the students had attended didactic lectures and the teacher candi-

dates have not yet had any practical experience. Differences may be expected

to occur within the fourth semester cohort. Here, the teacher candidates at-

tending the Analysis 4 lecture may have attended a basic didactics course.

The students taking the didactics seminar are more experienced in didac-

tics as some of them have already completed the practical phase at school.

Therefore, I expect to see differences between B.Sc. students with majors in

maths or physics and teacher candidates who are either taking Analysis 4 or

the didactics seminar.

Validity coefficients

The predicted values for the latent variables are also used to compute corre-

lations with other scales and school grades. For the scaling of the TEDS-sM

benchmark items a one-dimensional model was fitted using lavaan (Rosseel,

2012) and the person parameters were predicted.

1.3 Results

In this section I present the results for our two models. Model 1 (Figure 1.6) is

a bifactor model (see e.g. Reise, 2012). The alternative model 2 (Figure 1.7)

is a unidimensional g-factor model. I calculated these models to examine

whether the instruction and diagnostic competence sub-scales explain ad-

ditional variance in the data compared to the g-factor model. Therefore,

results of the comparison are also presented. As measure for the reliability of

the factors schoolMCK, instruction and diagnostic competence, Cronbach’s

a was used. The values (.8, .72, and .7) were good.

1.3.1 Comparison of two alternative models

The bifactor model 1 (see Figure 1.6) has a good fit to the data, with respect

to the relative fit indices (CFI = .935, TLI = .921), absolute fit indices

(RMSEA = .023) as well as χ2/df = 1.133. Table 1.2 presents fit results for
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both models. The fit of the alternative model 2 (see Figure 1.7) is inferior

to that of model 1 (see Table 1.2). The relative fit indices (CFI = .799,

TLI = .771) show a substantively worse fit. Absolute fit indices for model 2

(RMSEA = .039) and χ2/df = 1.39 also indicate that model 1 has a better

fit. The CFI difference is ∆CFI = 0.136 (Robust) which favors model 1 as

it is greater than .015 (Chen, 2007). The results of the scaled χ2 Differences

Test (see Rosseel, 2012; Satorra, 2000) are presented in Table 1.3. The test

is highly significant for model 1.

Table 1.2: Model fit statistics for both models

fit indices χ2 tests

Model CFI TLI RMSEA χ2 df χ2/df

bifactor model 1 .935 .921 .023 158.55 140 1.133

g-factor model 2 .799 .771 .039 207.766 150 1.39
Note. CFI=comparative fit index, TLI=Tucker-Lewis index, RMSEA=root mean square

error of approximation

The wording of some items was similar which may have led to a lack of

independence between them. For this reason, in both models two residual

covariances within the diagnostic competence facet had to be calculated.

Each residual covariance occurs between two items within one task.

Table 1.3: Scaled χ2 Differences Test

df χ2 ∆χ2 ∆df Pr(> χ2)

model 1 140 132.29

model 2 150 191.81 44.6 7.9908 4.344·10−07

1.3.2 Comparison of means

Comparisons of latent dimension means for different subgroups were tested.

The results are presented in Table 1.4 including Cohen’s d for the effect size

(Cohen, 1988) and results of one-tailed t-tests.2 As expected, I found no

2Possible gender differences were examined, but none of the results were significant.
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significant differences between different majors in the second semester. It is

worth noting in particular that there were no differences between teacher can-

didates and students with maths as their major subject at this early stage in

their performance on the subject matter part, the schoolMCK sub-scale. On

the other hand, for the fourth semester students, significant differences were

found between the students with maths or physics as their major subjects

and the more experienced teacher candidates of the didactics seminar. The

teacher candidates performed significantly worse in the area of school-relevant

content knowledge (t-value=2.0, df =52.76, d=0.46), but significantly better

in the instruction sub-scale (t-value=-2.59, df =75.28, d=0.52). On the in-

struction sub-scale, the teacher candidates in the didactics seminar also out-

performed the less experienced teacher candidates in the Analysis 4 lecture

(t-value=-1.83, df =72.86, d=0.40).
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Table 1.4: Comparison of means table with t statistics

second semester

Teacher (n=63) B.Sc. (n=31)

M (SD) M (SD) t-value (df ) p-value d

sMCK -0.05 (0.66) 0.03 (0.48) -0.71 (79.4) 0.24 0.13

I -0.05 (0.55) -0.11 (0.58) 0.50 (56.63) 0.31 -0.11

D -0.13 (0.63) -0.18 (0.61) 0.34 (60.80) 0.37 -0.08

fourth semester

Teacher (n=50) B.Sc. (n=59)

M (SD) M (SD) t-value (df ) p-value d

sMCK -0.09 (0.81) 0.03 (0.71) -0.81 (98.51) 0.21 1.16

I -0.03 (0.56) -0.10 (0.57) 0.66 (104.78) 0.25 -0.12

D -0.02 (0.55) -0.06 (0.55) 0.41 (104.28) 0.34 -0.07

B.Sc. (n=59) Tsem (n=28)

M (SD) M (SD) t-value (df ) p-value d

sMCK 0.03 (0.71) -0.30 (0.72) 2.0 (52.76) 0.025 -0.46

I -0.10 (0.57) 0.17 (0.38) -2.59 (75.28) 0.01 0.52

D -0.06 (0.55) 0.04 (0.65) -0.72 (46.13) 0.24 0.17

Teacher (A4) (n=50) Tsem (n=28)

M (SD) M (SD) t-value (df ) p-value d

sMCK -0.09 (0.81) -0.30 (0.72) 1.18 (61.89) 0.12 -0.27

I -0.03 (0.56) 0.17 (0.38) -1.83 (72.86) 0.04 0.40

D -0.02 (0.55) 0.04 (0.65) -0.60 (48.6) 0.35 0.10

Note. sMCK=schoolMCK, I=instruction, D=diagnostic competence, Teacher=teacher

candidates, B.Sc.=major in maths or physics, Tsem=participants of the didactics seminar

Significant differences are highlighted in bold. Differences occur within the fourth semester

groups. At this stage the curricula start to differ (some teacher candidates attended

lectures in MPCK).

1.3.3 Validity coefficients

Correlation coefficients were calculated between the latent variables of model 1

(sMCKscore, Iscore, Dscore), the scaled TEDS-shortM items (TEDSscore)

and the individual’s GPA (German grade point average) and maths score

(of the final secondary school examination). The results are presented in

Table 1.5. The similarity of the coefficients of sMCKscore (.36 for the maths

score and .35 for the GPA) and TEDSscore (.27 for the maths score and
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Table 1.5: Table of correlations

TEDSscore sMCKscore Iscore Dscore maths score GPAa

TEDSscore 1.00
sMCKscore 0.37** 1.00
Iscore -0.06 0.18** 1.00
Dscore 0.15* 0.12 -0.10 1.00
maths score 0.27** 0.36** 0.03 0.05 1.00
GPAa 0.26** 0.35** 0.03 0.04 0.63** 1.00

Note. a inverted, * p<.05 (two tailed), **p<.01 (two-tailed)

.26 for the GPA) with the school variables and their own correlation of .37

indicate the measurement of similar constructs.

1.4 Discussion

In MatTES, MPCK was conceptualized with two inner facets – instruction

and diagnostic competence – which characterize teachers’ interactions with

students. The starting point was a content-dominated approach to MPCK

at the beginning of teacher education. At this stage of teacher education

the emphasis is on the development of MCK. For this reason, such a content-

related approach is more appropriate than more general conceptualizations of

MPCK, which might also include general pedagogical aspects. The approach

employed here classifies MPCK as a kind of mathematical understanding

that a teacher needs for interacting with students and it is seen as something

different from the mathematical understanding that students gain when at-

tending lectures in pure mathematics at university. This approach can be

compared to the notion of SCK (e.g. Ball et al., 2008), which refers to a math-

ematical understanding unique for a teacher. It involves an understanding

that provides the ability to transfer abstract knowledge in a form suitable

for teaching in school.

Validity

The validity of the instrument was ensured in various ways. First, experts

from the teacher education institute in Tübingen and lecturers involved in
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the Analysis lectures worked together during test construction to ensure con-

tent validity. Secondly, the test results show substantial correlations with the

validity items employed in TEDS-sM (N. Buchholtz et al., 2012) and with

school grades such as GPA and the final high school maths score. Note that

low correlations of Dscore and Iscore (diagnostic competence and instruc-

tion) with other scales are due to the fact that I controlled for schoolMCK

and those scores can be seen as any effect remaining after controlling for

schoolMCK. Thirdly, the mean differences on the scales conform to expec-

tations based on students’ study programmes. At the very beginning of the

training there are no differences in competencies. Later in the training, differ-

ences in performance on the schoolMCK scale were found between students

depending on their programme of study – students who major in mathemat-

ics or physics perform better than teacher candidates of the didactics seminar

– and in the instruction scale – the more experienced teacher candidates who

attended the didactics seminar perform better than students attending the

Analysis lecture.

Model results

The identification of MPCK facets beside strictly mathematical knowledge

within this content-related point of view was carried out by comparing two

models – a bifactor model (model 1) (Reise, 2012) with the MPCK facets

added to a general dimension of school-relevant mathematical content knowl-

edge (schoolMCK) and a unidimensional model (model 2) without the ad-

ditional MPCK facets (see Figure 1.6 and Figure 1.7). The results of the

model fit analysis favored the bifactor model (model 1), which supports the

existence of two MPCK facets in addition to the general schoolMCK facet.

The latter is seen as a prerequisite for MPCK. Although the identification of

MPCK beside MCK had already been analyzed in previous studies (see e.g.

N. Buchholtz et al., 2011), the results are remarkable because the identifi-

cation of the different MPCK facets and MCK was undertaken in a highly

content-related framework. Within this framework the different constructs

can be seen as different kinds of mathematical understanding. Compared
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to these former studies (see e.g. Blömeke et al., 2011; Blömeke et al., 2010;

Kunter et al., 2011) my results show not only a general separation of MPCK

and MCK for mathematics teachers, but also a separation of MPCK and

MCK as kinds of mathematical understanding and the different development

of these facets in the initial stages of the training depending on the study

programme. By separation, in this context, I don’t mean a theoretical sepa-

ration, in the sense of independent dimension, but a statistical identification

of distinct facets. This shows that MPCK and MCK can be identified sep-

arately in the sense of Shulman’s PCK as “subject matter knowledge for

teaching” (Shulman, 1986, p. 9). This goes beyond the separation of MCK

and a comprehensive MPCK dimension – including not only content-related

parts but also the general pedagogical point of view – at a later point in the

training as employed by the TEDS-group (e.g. Blömeke et al., 2011; Blömeke

et al., 2010; N. Buchholtz et al., 2012) and COACTIV (Krauss, Neubrand, et

al., 2008; Kunter et al., 2011). In their context a separation seems more ob-

vious because they include aspects of MPCK which differ greatly from MCK.

In my context the identification of those facets can rather be compared to

the identification or statistical separation of SCK and MCK (in the MKT

framework (e.g Ball et al., 2008).

For the investigations in this content-related context, I deliberately sched-

uled the study at this early stage of the training for two reasons. The first

is that at that stage, the focus is on developing subject matter knowledge.

The second is that study programmes for all students in mathematics are

similar at that stage, and in particular there are no lectures and seminars in

the MPCK context. The identification of the facets here can then be seen as

evidence for the importance of supplemental lectures addressing this kind of

mathematical understanding already at this early stage.

Means and development

The results show no differences between teacher candidates and other stu-

dents at the beginning of the training. Neither in the MCK nor in the

MPCK facets did major differences arise. This was expected due to the ho-
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mogeneous sample and to their having an identical curriculum in the second

semester. In the fourth semester, the curricula of the teacher candidates

and the other students are different. While students who major in maths

concentrate mostly on mathematical lectures, the teacher candidates attend

additional lectures and seminars and some of the teachers’ sample in the

fourth semester had already completed the practical phase in school. The

results reflect this specialization in differences of the latent variable means.

The more experienced teacher candidates of the didactics seminar outper-

formed teacher candidates and the other students in the Analysis 4 lecture

on the instruction scale. This could have been caused by the experience

those students gained in the practical phase at school, the expert monitor-

ing included in this practical phase, as well as by the didactic seminars and

lectures. By contrast, the students of the didactics seminar did less well on

the MCK facet – schoolMCK – than the students in Analysis who major in

mathematics or physics. This is not surprising in view of the differing curric-

ula in later phases of the training. These results indicate a differentiation of

competence during the training from a common starting point. Depending

on the study programme, the development of competence differs. While the

programmes of the major in mathematics and physics focus on the subject

matter, the focus in the study programmes for teacher candidates shifts to a

parallel development of knowledge in both MCK and MPCK.

The results may be seen as evidence that it is possible to separate different

kinds of mathematical understanding – referred to as MPCK and MCK – as

early as the beginning of the training. This result also supports the notion of

a mathematical knowledge and skill unique to teaching (described as SCK by

Ball et al. (2008)) which should be supported parallel to the subject matter

education. Even though I include this knowledge in MPCK facets, the result

could be translated to SCK in the MKT framework, were it is located on

the side of MCK. Furthermore, MPCK can be separated into facets at that

stage, which is interesting from a theoretical point of view with respect to the

emergence and structure of competencies. This is important because it can

help in the planning of lectures and seminars at that phase. In addition to

MCK, MPCK is important for teachers and according to the results of this
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chapter – from a content-related point of view – it starts to develop together

with MCK from the beginning of the training. The separation, however,

shows that it is not one simple unidimensional construct and thus should be

supported in addition to the mathematics lectures early in the training.

Limitations and outlook

The study and the formulation of the problem arise from, and are based on,

teacher education in Germany. Thus, the generalization to other countries

might be limited. The version of the test applied here was a very first step in

measuring MPCK from a content-related point of view. Now that the results

have confirmed the desired possibility of separating mathematical knowledge

in that framework, the test has to be expanded. In addition, testing time

was limited in the study, so the test was rather short. In the test presented

here, only multiple choice items were used. It would be desirable to include

open response items for the MPCK facets. The intention is to develop a

more detailed version of the instrument with the support of a broad group of

experts. For further (content) validity examinations the improved test will

be conducted with students of alternative study programmes, like chemistry.

As a benchmark examination, the improved instrument will then be applied

to a) students in the second phase of teacher education and b) teachers in

service. Additionally, for the quantification of criterion validity, it should be

examined how school students’ competencies are affected by teachers’ scores

on the facets diagnostic competence and instruction competence. This could

not be examined in this first study, but will be part of further investigations.
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Chapter 2

Content knowledge and

pedagogical content knowledge

of trainee teachers for the

academic track

The second topic of this thesis concerns prerequisites of students for the ac-

quisition of mathematics content knowledge (MCK) and mathematics ped-

agogical content knowledge (MPCK) as well as further investigations about

the relationship of those facets of knowledge. Thus, this chapter investigates

determinants for knowledge. I show students’ existing MCK and MPCK

when they first enter university and the relationship between the two types

of knowledge. Drawing on background information collected in addition to

the tests, I show to what extend the knowledge states in MCK and MPCK can

be explained by students’ characteristics. Skills in the field of MCK show

stronger dependence on covariates like performance measures from school

than those of MPCK. The choice of the study program itself – teacher candi-

date (Bachelor of Education) or Bachelor of Science – and an affinity to teach,

for which the choice of study program may be an indicator, does not lead to

better performances on the MPCK test. See figure 2.1 for the integration of

this chapter in the MatTES framework.

65



66 CHAPTER 2. TEACHERS’ MCK AND MPCK

October 2014 April 2015 October 2015 April 2016 October 2016 April 2017

co
h
o
rt

1

Analysis 1 Analysis 2 Analysis 3 Analysis 4

co
h
or

t
2

Analysis 1 Analysis 2 Analysis 3

co
h
or

t
3

Analysis 1

PCK 1 PCK 1
PCK 2
seminar

3

Figure 2.1: Integration of the study content knowledge and pedagogical con-
tent knowledge of trainee teachers for the academic track in the design of
the Maths Teacher Education Study (MatTES). Highlighted lectures and
seminars are part of the analysis.

Like the previous chapter, this chapter can be read in isolation and rep-

resents a stand-alone study. The theoretical background as well as sample

and method information is provided.

Because of the relevance for German teacher education, the contents of

this chapter have been submitted in German to a scientific journal (Glaesser,

Kilian et al., submitted manuscript, 2018). Authors of the submitted article

are: Judith Glaesser, Pascal Kilian, Christoff Hische, Jonathan Walz, Frank

Loose and Augustin Kelava (in that oder). Christoff Hische and Jonathan

Walz assisted in data collection. Frank Loose and Augustin Kelava had

advisory functions and Judith Glaesser is the lead author of the submitted

German article. The chapter was written on my responsibility.

2.1 Introduction

At present, skills and knowledge – in Germany frequently referred to as com-

petencies – form a central topic in the area of eduction. Amongst other

things, this raises questions about which skills teacher trainees already have

at the outset of their studies and which ones should and could be taught at
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university. The focus of this chapter is again on content knowledge (CK) as

well as on pedagogical content knowledge (PCK) with the goal of investigat-

ing the structure of knowledge on a conceptual and empirical level. For this

purpose the knowledge of teacher trainees at the University of Tübingen was

tested. Additionally covariates of the students were collected. The results of

MatTES revealed a relation of CK and PCK. However the study also showed

that it is possible to distinguish the two types of knowledge (see chapter 1).

I showed that within PCK a further differentiation into different facets can

be made.

The following chapter is structured as follows. First other studies and

their theoretical competence models are presented. Second, the instruments

and the sample is described. Followed by, third, the results and fourth, the

discussion including implications for teachers education.

2.1.1 Theoretical background

Shulman (1986, 1987) suggested a possible differentiation of teachers’ profes-

sional competence. According to him, professional knowledge includes CK

and PCK beside the general pedagogical knowledge. Classroom manage-

ment and organization are part of general pedagogical knowledge (Baumert

& Kunter, 2011; König et al., 2017; Voss, Kunina-Habenicht, Hoehne, &

Kunter, 2015). Despite the importance of those skills they will not be part

of this study. The focus of this chapter is on CK and PCK. Those play a ma-

jor role in literature, even though studies differ with regard to which other,

additional competences and knowledge facets within teachers’ professional

competence they include in their investigations.

CK includes knowledge about contents and deep understanding of the

subject matter. The acquisition of this knowledge is independent of the study

program. In particular, it is not a type of knowledge confined to teachers. In

contrast to CK, PCK is the specific knowledge needed by teachers to com-

municate subject matter to their students in school. In math this includes

knowledge about the representation and explanation of mathematical con-

tents as well as the knowledge about students’ misunderstandings and how
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to avoid or adjust those.

Three big studies refer explicitly to Shulman and apply some version of

his model. I refer to the studies of the Michigan-group including Deborah

L. Ball (e.g. Ball, Lubienski, & Mewborn, 2001; Hill, Ball, & Schilling, 2008;

Hill, Schilling, & Ball, 2004), the COACTIV study (Krauss et al., 2011)

and TEDS-M (Teacher Education and Development Study in Mathematics

– Blömeke, Kaiser, & Lehmann, 2010; Döhrmann, Kaiser, & Blömeke, 2012;

Döhrmann, Kaiser, & Blömeke, 2010). Those studies introduce theoretical

models which are then empirically tested. The authors of those study agree

on several points. Throughout the studies the classification in CK and PCK is

seen as reasonable and PCK as distinguishable from CK and from the general

pedagogical knowledge albeit with overlap especially between CK and PCK.

There is also a broad consensus that CK can be seen as a requirement for

PCK to a certain degree.

Differences in the studies can be found concerning the operationalization

of knowledge, further differentiations and the inclusion of further aspects of

teachers’ professional knowledge (e.g. motivation and beliefs). However, the

authors note the conceptual similarity of their studies (Blömeke et al., 2010;

Krauss et al., 2011).

2.1.2 Relationship of CK and PCK

The Michigan studies (e.g. Ball et al., 2001; Hill et al., 2008, 2004) showed

a substantial overlap of CK and PCK. In constructing the items, it was as-

sumed that two distinct dimensions exist (each including sub-dimensions)

and the applied items cover all the postulated facets. Empirically the as-

sumption of distinguishable dimensions was basically justified even though

in the factor analysis some PCK items loaded on a factor which comprises

CK items. Another factor analysis which allowed for simultaneous loading

on multiple factors resulted in a large number of items loading on both the

CK and the PCK factor. The authors concluded that both CK and PCK

could be drawn on to answer those items (see Hill et al., 2008, p. 385).

The overlap between CK and PCK was also found in the TEDS stud-
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ies (e.g. Döhrmann et al., 2012). The authors point out the challenges for

measurement and empirical separation of CK and PCK implied by this over-

lap: “It is impossible to construct disjoint subdomains, because the solution

of an item in the domain MPCK [mathematics pedagogical content knowl-

edge] generally requires MCK [mathematics content knowledge]” (Döhrmann

et al., 2012, p. 336). In the following I also use the more mathematical

specific terms of mathematics content knowledge (MCK) and mathematics

pedagogical content knowledge (MPCK) instead of CK and PCK. Those em-

pirical challenges are expected because the possible overlap is inherent in the

theoretical conceptualization which assumes the common existence of both

aspects of knowledge, and teachers resort to them when teaching. It is as-

sumed that those dimensions are not independent. Profound MCK is rather

seen as a (necessary but insufficient) requirement for MPCK, also referred to

by Döhrmann et al. (2012) in their discussion of example items. The same

conclusion was found by Baumert and Kunter (2006): Content knowledge

seems to be a necessary but insufficient requirement for high-quality teach-

ing and for students’ progress. Content knowledge is the foundation on which

didactic flexibility may emerge (original citation: “Fachwissen scheint eine

notwendige, aber nicht hinreichende Bedingung für qualitätsvollen Unter-

richt und Lernfortschritte der Schülerinnen und Schüler zu sein. Fachwissen

ist die Grundlage, auf der fachdidaktische Beweglichkeit entstehen kann.”

[translated] (Baumert & Kunter, 2006, p. 496)). In order to act successfully

from a didactic point of view, the teacher ideally has a big repertory of MCK

which surpasses clearly, both in broadness and depth, the competences that

should be acquired by the students (Krauss, Neubrand, et al., 2008). Pro-

found MCK should ensure that the form of reasoning and the establishment

of connections, which are involved in setting conceptual knowledge on a se-

cure base, can be carried out in such a way that it can be deployed in the

subject specific process of creating knowledge, here in mathematics (original

citation: “ Argumentationsweisen und das Herstellen von Zusammenhängen,

mithin das Sichern von begrifflichem Wissen, derart erfolgen kann, dass es

an die typischen Wissensbildungsprozesse des Faches, hier der Mathematik,

anschließen kann” [translated] (Krauss, Neubrand, et al., 2008, p 238)). The
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importance of MCK for MPCK appears in another result: Teacher educa-

tion for the academic track includes more MCK but less MPCK in contrast

to teacher education for other school types. Nevertheless teachers teach-

ing on the academic track not only show better performances on MCK but

also in MPCK compared to their colleagues of other school types. (Krauss,

Neubrand, et al., 2008). A broad repertory of MCK facilitates the application

of different approaches and representations, adjusted for students’ needs, to

enable a better and deeper understanding (Ball et al., 2001).

2.1.3 Structure and dimensions of MPCK

The Michigan studies (e.g. Ball et al., 2001; Hill et al., 2008, 2004) distinguish

three facets of knowledge within MPCK: the knowledge of content and stu-

dents (KCS), the knowledge of content and teaching (KCT) and the knowl-

edge of curriculum. In COACTIV, the facets knowledge of mathematics-

specific instructional strategies, knowledge of students’ mathematical think-

ing and knowledge of mathematical tasks are examined as part of MPCK.

Those facets were found in a confirmatory factor analysis (Krauss et al., 2011;

Krauss, Brunner, et al., 2008). TEDS-M on the other hand assumes two di-

mensions for the structure of MPCK: curricular knowledge and planning for

mathematics teaching and another interactive part entitled ’enacting math-

ematics for teaching and learning’ (Döhrmann et al., 2012; Döhrmann et al.,

2010; Tatto et al., 2008). For test construction within this study I devel-

oped a competence model which relies on the models summarized here. For

the heuristic model I distinguished the two facets instruction and diagnostic

competence.The model is summarized in figure 2.2.

Teaching relies on an interaction of both facets: Teachers prepare con-

tents, present them and reflect in discussions in class how students process

the contents and where problems may arise. Support in form of further in-

struction or alternative representations can be given if necessary as follow up.

At the core of teaching there are teachers’ reflection on their own actions and

on potential modifications. This interaction can be represented as a circle,

shown in figure 2.3.
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Grafiken

Ich habe mal ein paar Grafiken zusammengebaut. Du kannst ja mal durch-
schauen und mir sagen was du davon hältst.

Intro

MPCK

instruction
• Preparation of contents

• Suitable responses to questions on
school contents and beyond.

• Motivating and reasonable selection of
examples

• Selection of teaching resources to avoid
or resolve misunderstandings

diagnostic competence

• Identification of misunderstandings in
the evaluation of responses

• Development of questions which are
suitable for eliciting students’ true
understanding of the subject matter

• Identification of the true state of
knowledge

Fig. x: Two facets of MPCK

Am Ende der Intro werden unser Facetten beschrieben. Ich habe mal ver-
sucht die Abhängigkeiten in einer Grafik darzustellen. Hierbei versuche ich zwei
Aspekte zu trennen. Ersten die Ausbildung an der Uni und zweitens die in un-
serem Kontext nötigen Kompetenzen als Mathematiklehrer in der Schule. Mit
unserem Kontext meine ich wieder die fachliche Orientierung zu Beginn des
Studiums (deswegen MPCK auch als MCK Unterstützung).
Zusammenhangsmodell

competencies at school University – lectures and seminars

schoolMCK

Instruction Diagnose

academicMCK

MPCK
(as aca-

demicMCK
supplement)

reduction

Modell 1

schoolMCK

Instruction�1 Diagnose �2

1

1

Figure 2.2: Two facets of MPCK

Modell 2

schoolMCK

items

Verbindungen

Students

Teacher

reflection
diagnostic

competence
instruction

3

Figure 2.3: Cycle of teacher-student interaction

2.1.4 Research question

Theories and results so far demonstrate the importance of both MCK and

MPCK for teaching. In addition, in this chapter I consider the question

whether, and if so how strongly the facets are related for students in the ini-

tial phase at university. Because of the fact that a relationship between the

two types of knowledge may be expected, I am interested in the prerequisites

teacher candidates have at the outset of their university course for the ac-

quisition of those facets. Potential important factors for the performance on

the MCK and MPCK tests developed by the project team are the GPA (final

grade point average from school), the math grade in the final exam in school,

sex, the school type in which the final exam was taken (general-education
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Gymnasium or other) as well as the study program (here the teacher can-

didates studying for a Bachelor of Education (B.Ed.) degree and the other

Bachelor of Science (B.Sc.) students). Those variables were chosen on the

basis of the following considerations. MCK is already taught in school, thus

an influence of school performance measures is expected, especially in math-

ematics. This is not directly the case for MPCK but because of the fact that,

as mentioned, a relationship with MCK may be expected, it is plausible to

expect a connection between good performances in school and good perfor-

mances in MPCK. In the framework of this study there is no expectation on

the potential effect of students’s sex and of school type, but the analysis of

those variables is interesting nevertheless. Girls and women are a minority in

the STEM fields (science, technology, engineering and mathematics)1 so an

empirical examination of differences in sex could be informative. Note that

in this study female students are a minority in the B.Sc. study programs

but this does not apply for the B.Ed. study program in mathematics. It

could be informative, both for individuals as well as policy-makers, to inves-

tigate a potential influence of the school type. Both groups should be able

to rely on sound empirical results concerning the characteristics of different

school types. Because the special interest of this study is teacher candidates’

acquisition of competences I investigate the influence of the study program

even though in the initial phase at university, during which this study is

conducted, the schedules of the study programs do not differ. In particular,

this means that teacher candidates did not attend lectures for MPCK at this

time. Therefor, a difference in performance in the MPCK domain is not to

be expected based on degree program. Nonetheless, it is conceivable that

the choice of the B.Ed. itself – and an affinity to teach for which the choice

of study program may be an indicator – does lead to a better performance

in the MPCK test. In the next section I introduce the sample, the variables

and the tests employed.

1Comparable with the MINT disciplines (mathematics, informatics, science and tech-
nology) in Germany
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2.2 Methods

2.2.1 Study design and sample

The database for this study consists of three cohorts who had commenced

their studies in winter semester 2014/15 (in the following referred to as co-

hort 1), winter semester 2015/16 (cohort 2) and winter semester 2016/17 (co-

hort 3). Because the tests employed here are under continuous development

as part of the project I was not able to use all cohorts for all investigations.

The MCK test was carried out in cohort 2 and cohort 3 (in their respective

first semester 2015/16 and 2016/17). The MPCK test was carried out in

cohort 1 and cohort 2 in the summer semester 2016. Therefore, cohort 2 ap-

pears in all the analyses, but because the MPCK test was carried out in their

second semester the sample is much smaller at that time, due to dropouts

during and after the first semester. This leads to different samples sizes for

the MCK and the MPCK test (see table 2.1). I refer to the subsample within

cohort 2 which attended in both test as cohort 2*. All of the cohorts include

both B.Sc. and B.Ed. students and their participation in the study was

requested when they attended the analysis lectures. The participation was

voluntary and anonymous.

2.2.2 Background variables (dependent variables)

Table 2.1 summarizes the distribution of the background factors in all the

cohorts.

Columns one and two – cohort 1 and cohort 2* – describe students in-

cluded in the MPCK analysis, columns three and four, those included in

the MCK analysis. It can be seen that the cohorts used within each set of

analyses do not differ substantially, but there are differences between the

combined groups (cohort 1 + 2* and cohort 2 + 3). School performances of

cohort 1 + 2* are better on average than those of cohort 2 + 3. The reason

for this relates to the point in time at which the tests were carried out. Co-

hort 2 + 3 includes all students at the beginning of a mathematical study

program at university whereas cohorts 1 + 2* were more highly selected, for
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example due to voluntary and involuntary dropouts. Due to the relationship

between performance measures and dropouts (see chapter 3) students who

had shown higher performance in school remain in the cohorts in the second

semester.

Table 2.1: Background variables of the cohorts

MPCK MCK

cohort cohort 1 cohort 2*a cohort 2 cohort 3

lecture Analysis 4 Analysis 2 Analysis 1 Analysis 1

sex male 46 (54.1%) 47 (48.0%) 123 (57.7%) 106 (58.6%)

female 39 (45.9% 51 (52.0%) 90 (42.3%) 75 (41.4%)

school type general ed. 74 (87.1%) 88 (89.8%) 164 (77.0%) 150 (82.9%)

other 11 (12.9%) 10 (10.2%) 49 (23.0%) 31 (17.1%)

study program teacher 42 (49.4%) 66 (67.3%) 105 (49.3%) 76 (42.0%)

other 43 (50.5%) 32 (32.7%) 108 (50.7%) 105 (58.0%)

GPA mean 1.8 1.8 2.0 2.1

min 1.0 1.0 1.0 1.0

max 3.5 3.4 3.6 3.4

math grade mean 12.8 12.3 11.6 11.5

min 4 5 3 1

max 15 15 15 15

N 85 98 213 181
Note. a Subgroup of cohort 2 which participated in the MPCK test

school type = general-education Gymnasium or not; GPA = grade point average in

the final exam in school. Scores range from 1 to 6 with 1 as the best score; math

grade = math grade in the final exam in school. Scores range from 1 to 15 with 15 as the

maximum score

2.2.3 MCK and MPCK tests (independent variables)

I developed test for MCK and MPCK. In the following part I describe those

tests and their development.
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MCK test

For the MCK test I used a combination of TIMSS items (Baumert et al.,

1999)2 and items I had developed myself. The latter were developed in close

cooperation with experts and lecturers involved in the Analysis 1 lecture. The

test consisted of 13 dichotomous items, i.e. the maximum total sum score was

13 points (M = 6.9, SD = 2.3). Since students attending the analysis lectures

were the participants of this study, most of the items can be found in that

field. Compared to the TIMSS items my own items require a higher level of

abstraction compared to school contents and are closer to the contents of the

Analysis 1 lecture. Since the TIMSS items had been developed for a broader

sample of students in school, my participants of students in a mathematical

study program performed rather well. The TIMSS items and the items I

had developed myself showed a correlation of r = 0.28. In appendix A.2 an

example of a task developed by me is given.

MPCK test

The test for MPCK consists of items from TEDS-sM (Buchholtz et al., 2012)3

and of items developed by myself. Again, experts in both MCK and MPCK

were involved in the development. This collaboration contributed to content

validity. In test construction I attached great importance to obtaining a test

suited to the students’ presumed state of knowledge. This involved, amongst

other things, to refrain from the use of (at this point unknown) technical

terms in both MCK and MPCK. For validity examination, the correlation of

r = 0.32 between the TEDS-sM items and the MatTES items was calculated.

This correlation points to similar underlying concepts but also suggests that

my test items cover additional facets. Therefore, an extension of TEDS-sM

seems justified. The highest possible test score on the MPCK test is 32

(M = 25.0, SD = 3.7). An example of a MatTES task developed by me can

be found in appendix A.1.

2I used the tasks K5, K6, K4, L6 and L5 because of their fit to the contents of the
Analysis 1 lecture

3I used the tasks SUG2 2, SUG2 3, SUG2 4, DS29 1, DS29 2, DS29 3, DBJ4 1, DBJ4 2
and DBJ4 4
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2.3 Results

2.3.1 Relationship of MCK and MPCK

To examine how closely the dimensions of MCK and MPCK are related I

calculated the correlation of the respective test performances. Note that in

the previous chapter 1 (and in Kilian, Glaesser, Loose & Kelava (submitted

manuscript, 2017)) I already showed that the dimensions can be separated

empirically. Because only the participants of cohort 2 participated in both

tests, only those students were involved in this calculation. The correlation

was r = 0.25 (n = 94, p<0.01). This shows the expected relationship of

MCK and MPCK. On the other hand the correlation is not so high as to

support a claim of there being no difference between the dimensions. There-

fore, it seems to be appropriate to separate the dimensions analytically and

empirically.

2.3.2 Conditional factors for MCK and MPCK

In this part I investigated which background variables underpin good per-

formances on the tests. For this purpose I carried out two linear regression

analyses with the respective test performance as dependent variable and the

background variables as independent variables. In table 2.2 I present the

results for the MCK test. A few students participated twice in the MCK test

because they repeated the Analysis 1 lecture for various reasons. If this was

the case, I drew on the results from the first time the person had participated.

Sex was coded with 1 = female and 2 = male thus the positive coefficient

indicates a better performance of the male students. A positive effect can

also be seen for students who did their final exam in a general-education

Gymnasium. As expected the test performance increases with better GPAs

and math grades. The study program showed no significant coefficient.

I used the same independent variables for the analysis of the MPCK test.

Additionally I was able to examine a potential effect of experience, because in

cohort 1 the test was carried out in the fourth semester, whereas in cohort 2,

the test was carried out in their second semester. This potential effect would
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Table 2.2: Results of the linear regression for the MCK test

Estimate Std. Error std. Estimate t value Pr(> |t|)
(Intercept) 4.186 0.947 4.421 0.000

sex 0.538 0.224 0.113 2.396 0.017
school type 0.953 0.250 0.164 3.807 0.000

GPA -0.894 0.228 -0.232 -3.924 0.000
math grade 0.266 0.048 0.319 5.592 0.000

study program -0.271 0.211 -0.058 -1.279 0.202
Note. bold: p < .5
N = 394 (cohort 2: n = 213, cohort 3: n= 181); adj. R2: 0.290
school type = general-education Gymnasium or not; GPA = grade point average in
the final exam in school. Scores range from 1 to 6 with 1 as the best score; math
grade = math grade in the final exam in school. Scores range from 1 to 15 with 15 as the
maximum score; study program = B.Ed. (teacher candidate) or B.Sc.

be the result of having experienced more teaching of math content knowledge

because no lectures or seminars in the field of MPCK (for teacher candidates)

were provided in this time period. Math content experience was coded in the

regression model via the cohort membership (cohort 1 = 1), thus a positive

effect means better test performances for more experienced students. In

table 2.3 results of the regression analysis for the MPCK test are presented.

The sample size of cohort 2* differs from that reported for the MCK test

(cohort 2). As mentioned before this is due to dropouts during and after the

first semester. The MPCK test was carried out with the remaining students

in cohort 2.

The analysis of the MPCK test showed similar relations as in the MCK

test with the exception of the school type. The type of the school, where the

final exam had been taken, did not have any relationship with the MPCK

test performance. Sex was only just statistically significant but again with

male students showing the better performance.

The cohort membership – which is a proxy for experience – had an effect

which was only just statistically significant. Students in their fourth semester

(second year of study) performed better than their colleagues in the second

semester. This is remarkable in the framework of the MPCK investigation

because the only additional experience gained during this part of the course
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Table 2.3: Results of the linear regression for the MPCK test

Estimate Std. Error std. Estimate t value Pr(> |t|)
(Intercept) 20.230 2.709 7.468 0.000

sex 1.125 0.533 0.153 2.110 0.036
school type 1.050 0.795 0.091 1.321 0.188

GPA -1.501 0.631 -0.228 -2.379 0.018
math grade 0.337 0.148 0.219 2.271 0.024

study program 0.192 0.535 0.026 0.358 0.720
cohort 1 1.149 0.500 0.156 2.298 0.023

Note. bold: p < .5
N = 183 (cohort 1: n = 85, cohort 2*: n= 98); adj. R2: 0.202
school type = general-education Gymnasium or not; GPA = grade point average in
the final exam in school. Scores range from 1 to 6 with 1 as the best score; math
grade = math grade in the final exam in school. Scores range from 1 to 15 with 15 as the
maximum score; study program = B.Ed. (teacher candidate) or B.Sc.; cohort 1 = test in
the fourth semester, compared to cohort 2 with the test in the second semester

of study were the mathematical lectures. No lectures or seminars in the

field of MPCK were provided and thus attended. This result points to the

relevance of MCK as a requirement for MPCK.4

Here too, the study program showed no significant effect on the test

performance. On the one hand, this is not surprising because as mentioned

before at the time of the study the teacher candidates had not attended any

MPCK lectures, on the other hand, this shows that the decision to become a

teacher and any affinity to teaching indicated by this decision does not lead

to a better performance in MPCK.

The samples for the analysis in MCK and MPCK differed in composition

(i.e. cohort membership) as well as in sample size. For this reason, any

conclusion drawn on the basis of their comparison should be viewed with

caution. Nevertheless I will undertake such a comparison to examine the

two facets of competence and knowledge. The coefficient R2 was higher in

the analysis of MCK than in the analysis of MPCK. This suggests that the

variables employed in the analyses are more strongly related to MCK test

4The analysis was repeated without the cohort membership to use the same set of
variables as in the MCK linear regression. For that model I achieved R2 = 0.183. There
was no change in direction and significance of the other effects.
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performance than MPCK test performance. Two of those variables – GPA

and math grade – can be assumed to be indicators of conventional content

knowledge and cognitive abilities. Those in turn are more closely related to

the competences and skills measured by the MCK test than to those measured

by the MPCK test. The latter represents competences and skills which are

demanded by the teacher in everyday school life. Thus performance on this

test depends less strong on school math skills and general cognitive abilities

than performance on the MCK test.

2.4 Discussion

As noted in the introduction, both based on theoretical considerations and

previous empirical studies, it seems reasonable to assume that MCK and

MPCK occur together and that sound MCK is a prerequisite for MPCK.

This could be confirmed: the correlation between the two test performances

points to a relationship. At the same time, the correlation of r = 0.25 is low

enough to indicate different and distinguishable dimensions.

Accordingly, conditional factors for the performance in those dimensions

were evaluated separately for both test performances. Again there are paral-

lels: for both dimensions the variables sex (with better performance on the

part of male students) and performance measures from school – the GPA and

the math grade (with better grades in school leading to better performance) –

showed statistically significant effects. Furthermore, for MCK, having taken

the final exam at a general education Gymnasium was a factor associated

with higher test performance. This was not the case for the MPCK per-

formance. The study program showed no effect on test performance which

means that no differences with regard to test performance were found be-

tween teacher candidates (B.Ed.) and their colleagues (B.Sc.). Using the

cohort membership, for MPCK it was possible to measure the effect of ex-

perience in terms of the duration of the mathematical education (this means

having been taught MCK but not MPCK). This analysis showed a positive

effect of mathematical experience on both test performances. I discuss those

results in relation to two aspects. The results are important, firstly, for the
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question concerning the relationship between MCK and MPCK and, sec-

ondly, they concern various individual conditions for the acquisition of MCK

and MPCK.

2.4.1 Relationship of MCK and MPCK

Both the correlation of the dimensions as well as the similarity of the impor-

tance of the factors point to the existence of the relationship which had been

expected on the basis of theory. Even though knowledge from school – oper-

ationalized by GPA and math grade – does not include MPCK components,

better performance in school is not only associated with better performance

on the MCK test but also with better performance on the MPCK test. Math-

ematical skills appear to be helpful in completing tasks relating to MPCK. In

addition to the math grade, students’ GPA showed a positive effect. This can

be interpreted as pointing to the importance of general cognitive abilities.

Another indicator for the importance of subject matter education offers

the effect of cohort membership on MPCK test performance. No MPCK

education had been received at the time of the study but the participants

in cohort 1 were more advanced by one year in their mathematical educa-

tion compared to the participants of cohort 2 and performed better on the

MPCK test. This leads to the assumption that the subject matter contents

were helpful for solving questions in the MPCK field. These results have im-

plications for teacher education: the importance of sound MCK for MPCK

was confirmed. This stresses once again the importance of subject matter ed-

ucation for teacher candidates and contradicts the idea of a simplified study

program for the Bachelor of Education students compared to their Bachelor

of Science colleagues.

2.4.2 Preconditions for the acquisition of MCK and

MPCK

The importance of cognitive abilities for good MCK and MPCK performance

has been mentioned above. Thus in this part I focus on the remaining vari-
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ables sex, school type and the study program.

The data does not allow for explanations of the effect of students’ sex.

Similar results were found in Blömeke (2013): performance by novice En-

glisch and German teachers were independent of the participants’ sex, whereas

on mathematical tests there was a relationship with male participants per-

forming better, as in the present study. Reasons underlying this relationship

are thought to be socio-cultural conditions, in other words less support, lower

expectations and fewer formal and informal opportunities to learn mathemat-

ical contents for females (Blömeke, 2013).

Likewise, it is not possible to draw any firm conclusions concerning the

reasons underlying the effects of school type which were shown in the present

study. It is conceivable that participants who did not take their final exam

in a general education Gymnasium did not attend the academic track (Gym-

nasium) at all until upper secondary school. Less demanding mathematical

requirements and depth compared to the academic track may have led to

deficiencies which may not have become apparent in the final math grades

or the GPA but in the general mathematical skills. This assumption should

be examined with appropriate data.

The non-existent effect of the study program (B.Ed. compared to B.Sc.)

is interesting because it might have been assumed that the choice of the study

program B.Ed. is linked to an affinity for teaching and thus for pedagogical

contents. Nevertheless the teacher candidates showed no better performances

on the MPCK test than their B.Sc. colleagues which also means that the

B.Sc. students have the same conditions required for becoming a teacher, at

least according to the background information included in this study. Given

the shortage of teachers in STEM subjects, this result could be important

since it means that B.SC. students may be open to suggestions to switch

to the B.Ed. study program once they realize that they have the necessary

characteristics.
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2.4.3 Outlook

The results reported here were obtained during the early stages of the re-

search project. A range of questions follows which are to be addressed in

subsequent stages. Firstly, the tests are continuously revised and the sam-

ples expanded. This involves further examination of the structure especially

of MPCK (first results are reported in chapter 1 or in Kilian et al. (submitted

manuscript, 2017)). Secondly, the question of whether the effects reported

here are still in evidence during later stages of the program of study will

have to be examined. If this were not to be the case, this could indicate

that the university can contribute to narrowing the gap between students.

If it did turn out to be the case, various conclusions can be drawn. First,

this could serve to underscore the importance of improving of teaching at

university to support weaker students. Second, school performance measures

could be considered as criteria for admission restrictions for mathematical

study programs (for more information on this topic see chapter 3). Finally

an expansion to the second phase of teacher education is planned to exam-

ine the competences and skills examined here and how they are applied in

practice.



References

Ball, D. L., Lubienski, S., & Mewborn, D. (2001). Research on teaching

mathematics: The unsolved problem of teachers’ mathematical knowl-

edge. In V. Richardson (Ed.), Handbook of research on teaching (Vol. 4,

pp. 433 – 456). New York, NY: Macmillan.

Baumert, J., et al. (Eds.). (1999). Testaufgaben zu TIMSS/III:

Mathematisch-naturwissenschaftliche Grundbildung und voruniver-
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Chapter 3

Identification of risk factors

and prediction accuracies for

math students’ success in a first

semester math lecture

In this chapter I focus solely on the acquisition of MCK in the sense of a

successful start of studies. The importance of MCK for teaching (e.g. Ball,

Lubienski, & Mewborn, 2001; Krauss, Neubrand, Blum, & Baumert, 2008)

and as a prerequisite for MPCK (Baumert & Kunter, 2011) has been shown

in former studies. Instead of examining students’ mathematical performance

and knowledge directly, in this chapter I investigate the success and possible

dropout of students in a first semester mathematical lecture. I chose the

mandatory Analysis 1 lecture as reference point for the start of studies. This

study connects a number of prerequisites of students at the start of studies

and their relation to success or dropout. The frame of reference within the

MatTES project is shown in figure 3.1.

As teachers’ MCK is so important, dropout rates in these courses can

provide valuable information. Those lectures are responsible for the acquisi-

tion of this knowledge and thus can serve for investigations about the role of

different prerequisites. Investigations about risk groups concerning success
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Figure 3.1: Integration of the study identification of risk factors and predic-
tion accuracies for math student’s success in a first semester math lecture in
the design of the Maths Teacher Education Study (MatTES). Highlighted
lectures and seminars are part of the analysis.

can reveal important information about the group of teacher candidates. As

well as previous chapters, this chapter can be read as a separate chapter

(without the context of the whole paper).

3.1 Introduction

High dropout rates in mathematics and general in the STEM fields (science,

technology, engineering and mathematics) – more precisely in Germany the so

called MINT disciplines (mathematics, informatics, science and technology)

– are not a new phenomenon. According to Heublein (2014), in Germany

39% of the students in MINT disciplines drop out of the Bachelor program.

Compared to the german general average of 33% this is a rather high dropout

rate. In mathematics the dropout rate is even higher with 47%. These

numbers solely include real drop outs, university transitions or changes in

study program are not included. Those rates are not to be confused with

shrinkage rates, which refer only to the dropout within one discipline at one

university and can be defined for study programs but not on an individual

level. Therefore the shrinkage rate at universities is even higher. In contrast
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to the MINT dropout rates during the bachelor, the 5% dropout rate during

the master is much lower (Heublein, 2014). This focuses the investigation on

the initial phase of the studies.

The investigation of these unusually high dropout rates in MINT disci-

plines becomes even more interesting and relevant knowing that those stu-

dents show high cognitive prerequisites (Nagy, 2007). Nagy showed high

correlations of cognitive abilities with realistic and investigative vocational

interests (based on the vocational interest model of Holland (1997)) where

those disciplines are classified.

3.1.1 Structure of this chapter

First, in the following section I briefly discuss different frameworks and results

of former studies and summarize the current state of research. Secondly,

I introduce studies more specific to the topic of this chapter, followed by

thirdly, the design of the present study and the research questions. The

methods and results sections follow, and I close with a discussion of our

findings.

3.1.2 Current state of dropout research

The investigation of dropouts can draw on a high quantity of studies and

literature. In terms of dropout related factors a big variety of variables have

been investigated. Variables have been identified on individual, institutional,

environmental-related and system-related levels. Following Bean (2005) and

Burrus et al. (2013) variables can be classified in (a) institutional environ-

ment factors, (b) student demographic characteristics, (c) commitment, (d)

academic preparation and success factors, (e) psychosocial and study skills

factors, (f) integration and fit, (g) student finances and (h) external pull fac-

tors.

In the following I summarize a few results of former studies. I focus on factors

within (b) student demographic characteristics and (d) academic preparation

and success factors, as these reflect the design of this study best. Exam-

ples for student demographic characteristics are, among others, the student’s
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age, sex, race and ethnicity. Feldman (1993) reveals a non linear connec-

tion between age and student dropout – younger and older students showed

higher dropout probabilities. Hagedorn, Maxwell, and Hampton (2001) show

a slightly negative effect of age on students’ retention. For student’s sex no

simple linear effects have been described, but interactions with other vari-

ables have been shown (e.g. with the existence of children in Leppel (2002)).

Academic abilities like school performance measures and general performance

measures are examples of the (d) academic preparation and success factors.

Standardized tests show the expected high correlation with student’s reten-

tion at university (e.g. Bean, 2005).

In summary, it can be said that a wide range of variables show a corre-

lation with student dropout, indicating a complex relationship wherein the

effect might rely on combinations of variables. This gives motivation to ex-

pand the approaches from linear models to models which take this complexity

into account, for example in prediction models.

The dropout literature relies mostly on two frameworks for understanding

students’ dropout decisions. First there is Tinto’s theory of student departure

(Tinto, 1975, 1987). A central point of his theory is the students’ integration

and interaction with the faculty, staff and peers in both academic and social

settings (Burrus et al., 2013; Tinto, 1993). The model has been validated

and generally adjudged to be a useful framework (e.g. Terenzini & Pascarella,

1980). The second framework is the model of student attrition by Bean

(1980, 1983, 2005). This framework implies more external factors, e.g. the

expenditure of time, financial resources or the students’ responsibility for

their families. In both models the intention to drop out is explained by

the variables: contentment with the study program, the pursuit of the final

degree and the power of endurance.

More recent approaches focus more on individual characteristics of the

students. Schiefele, Streblow, and Brinkmann (2007) for example, show that

differences between students who dropout and persistent students are mostly

found in motivation, social competence, perceived teaching quality, the self-

evaluated knowledge state and the use of learning strategies.
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3.1.3 Prerequisites of math students and prediction of

the success in the first semester mathematical

lecture Analysis 1

Several studies, especially for mathematics, have been conducted with focus

on the transition from school to university including individual prerequisites.

Those studies include investigations about the social and institutional context

of math (Gueudet, 2008), reasons for problems at the transition to univer-

sity (Heublein, Hutzsch, Schreiber, Sommer, & Besuch, 2009), investigations

about the differences between math in school and at universities from the

lecturers point of view (Grünwald, Kossow, Sauerbier, & Klymchuk, 2004).

Specific for teacher candidates, the positive correlation between the growth

in competence of students and their previous knowledge, the GPA and the

interest in the teacher study program (Eilerts, 2009). Parts of the risk fac-

tors of those studies can be summarized as student’s prerequisites prior to

university. Below I discuss some of those prerequisites with special regards

to teacher candidates.

Prerequisites

Regarding the choice of the study program, it seems to be a public opinion

that there is a negative selection within the mathematics students towards

the teacher candidates. It is assumed that weaker students choose the teacher

program Bachelor of Education (hereafter referred to as B.Ed.) instead of

the pure math program Bachelor of Science (referred to as B.Sc.). External

reasons like occupational safety and longer vacation periods are named moti-

vations for this choice. These reasons might be more important than the mo-

tivation of becoming a teacher itself (Blömeke, 2005; Klusmann, Trautwein,

Lüdtke, Kunter, & Baumert, 2009).

However, a negative selection was not found by Klusmann et al. (2009),

comparing school grades, cognitive abilities and results of a standardized

math test (Third International Mathematics and Science Study (TIMSS, e.g.

Baumert et al., 1999)), between teacher candidates for the academic track

(B.Ed.) and non teacher candidates at university (B.Sc.). Those results refer
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only to measurements at the end of school and give no information about

the success at the university. In their study Klusmann et al. (2009) used

data of the study Transformation des Sekundarschulsystems und akademische

Karrieren (TOSCA; Köller, Watermann, Trautwein, & Lüdtke, 2004), which

does not differ between B.Ed. and B.Sc. students. Besides sex, the analysis

was controlled for the field of the study subject (inclusion of at least one

subject within the field of science or not). Therefore the dataset is not

differential enough for statements within the subject of mathematics. Even

though the initial prerequisites might be the same, both study programs

start to differ vastly already in the first semester. Teacher candidates have

to face the double pressure of two majors, differences in success and dropout

rates during the semester might occur. Due to the importance of content

knowledge for teaching and its relation to pedagogical content knowledge

(e.g. Kunter et al., 2011) it is a critical question if the teacher candidates fall

behind their colleagues in terms of success and dropout rates already in the

first semester.

3.1.4 The Present Research

In this study I analyze the success in the first semester lecture Analysis 1. I

compare the prerequisites of students in different study programs, attending

this lecture and connect it to the above mentioned studies (e.g. Klusmann et

al., 2009). These prerequisites are then used to predict dropouts in this time

period. For a more detailed definition of the term dropout in this study I

refer to the methods section below.

As seen in former studies and frameworks (e.g. Bean, 1980, 1983, 2005;

Burrus et al., 2013; Schiefele et al., 2007; Tinto, 1975, 1987, 1993), a broad

variety of possible dropout predictors or risk factors can be tested. Even

though the different models show overlaps in the sets of risk factors, some

are contradictory. This shows the multilateral structure of student dropout

and the complex relation of different risk factors. In this study I use a very

small set of possible predictors by only including, (a) data collected at the

beginning of the semester (excluding for example performance measures dur-
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ing the semester or different state variables), and (b) variables which can

be collected with little cost at the beginning of the lecture. This variable

set includes for example personal data like age and sex, as well as perfor-

mance measures from school and an initial math test. The reasons for this

choice are (a) to find risk factors in students’ prerequisites excluding the

student’s behavior during the lecture (e.g. the expenditure of time) and (b)

to enable universities to use the results of this study with little cost. Pos-

sible actions could be entrance qualifications and the identification of risk

groups early in the program to provide support courses and interventions.

The standard method to identify significant risk variables, for a binary vari-

able like student dropout, is the logistic regression. As the logistic regression

only works on linear relations, we will use prediction models that are able

to take complex interactions into account. This approach aims to be more

practical compared to the theoretical approaches discussed above. As shown,

risk factors for student dropout can be found in students’ personality, school

backgrounds, social and academic integration and many more. Although

those broad theoretical approaches are important for the understanding of

dropout risk factors, they are not of practical use for universities (in most

cases simply because of the inaccessibility of the wide range of variables). In

order to enable universities to quickly identify risk groups the focus of this

study is the prediction of student dropout using only a few, leviable variables,

in sophisticated models.

Research questions

The research questions of this study can be summarized in four parts. First

I investigate the question regarding differences in the prerequisites of the

students at the beginning of university, with special interest in teacher can-

didates (B.Ed.). The second questions concerns the identification and selec-

tion of variables – within the initially chosen set – which are most important

for accurate dropout predictions. Important variables are either those with

significant coefficients or those, selected by method specific variable selection

algorithms. Third, in the prediction context, I identify an upper bound of
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prediction accuracy that can be achieved using only students’ characteris-

tics at the beginning of the lecture (again, no behavior measures during the

lecture are included). The fourth research question concerns the interpreta-

tion and application of the prediction results. I investigate if the prediction

results allow the identification of rules which assign students to risk groups

depending on their prerequisites in terms of the used features.

3.2 Methods

3.2.1 Study design and sample

In this study I examine the Analysis 1 lecture of cohort 1 and cohort 2 of

the MatTES dataset. In cohort 1 the study was conducted in the winter

semester 2014/15 at the University of Tübingen. The Analysis 1 lecture for

the second cohort took place in the winter semester 2015/16 (see figure 3.1).

Due to the curriculum, it is mandatory to participate in the Analysis 1

course in the first semester, for both B.Sc. and state examination (teacher

training, B.Ed.) students. In Tübingen, the physics (B.Sc.) students par-

ticipate in this course in the first semester as well. The schedule of the

Analysis 1 lecture is comparable for both cohorts. Additionally to attending

the lectures, students are divided into small tutorial groups.

Within the tutorial groups, students have to submit homework every

week. The homework addresses problem sets introduced in the lecture and is

discussed and graded in the tutorials after submission. In order to obtain the

admission to the final exam, achievements in the context of those tutorials

and on the problem sets is relevant. For cohort 1 and cohort 2 achievement

goals differed. In cohort 1, the required achievement was to score 50% of

the total available points on all the problem sets. For the achievement goal

in cohort 2 a combination of a minimum total point score on the problem

sets and the results of two tests during the semester were necessary. Those

requirements were defined by the lecturers of the respective lectures.

In the analysis I combine both cohorts to reduce the dependence on lec-

turers and lecture schedules and gain more general results. I refer to the
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combined data set as ‘dataC’.

Exclusions

Several participant in the cohorts are excluded from the analysis. First,

students which already gained the admission for the final exam in Analysis 1

in a previous semester but did not take part or pass the exam are allowed

to participate in the exams without achieving the admission again. Those

students are excluded because the research questions refer to students, which

participate in the whole program of the lecture. Note that as a results of

this exclusion we can say that there are no students in the cohorts which

actively participated in a former Analysis 1 lecture, even though it might

not be their first mathematical semester. Second, in the analysis I only

consider students, which major in mathematics (B.Sc), physics (B.Sc) or

are teacher training students (B.Ed). This excludes a few students which

participate voluntarly. Third, students are excluded if information on either

their questionnaire, or the lecture is missing. About 95% of the students filled

in the initial questionnaire. In order to be able to access students’ lecture

data an additional permission was needed. 95% of the students granted this

permission.

3.2.2 Instrument

The dataset contains the results of every student on every problem set, which

allows to follow the students development during the first semester. Addi-

tionally I can see the exact week of the dropout, if students quit. The open

response problems were graded by the instructors of the tutorials. A high

value is set on grading the items equally for all examinees. Additionally the

results of the final exams are analyzed. Those results indicate success or fail-

ure of the Analysis 1 lecture. For further information about the preconditions

of students, like personal data (age, gender, school grades, study path,...) a

questionnaire was used in the second week of the semester.

Additionally to the covariates, the students finished five items of the

Third International Mathematics and Science Study (TIMSS, Baumert et al.
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(1999); Mullis et al. (2007)) in the questionnaire. The international scale of

TIMSS is set to a mean of 500 with the standard deviation of 100 (Adams,

Wu, & Macaskill, 1997). Because I only use a set of five items1, which are

suitable for the contents of the Analysis 1 lecture, I built sum scores of the

correct answered items.

Possible predictors

With the study design, including the questionnaire, I take into account the

following variables as students’ attributes for the predictions. Different per-

formance measures from school (‘GPA’, math grade in the final exam (‘math

grade’), average math grade in the last two years of school (‘math av.’))

and results of the TIMSS items (‘timss’). The participants ‘age’ and ‘sex’.

The federal state (‘state’), ‘school type’ and ‘year’ in which the university-

entrance diploma was received. The variable ‘school type’ indicates if the

the university-entrance diploma was received at a general-education Gym-

nasium (academic track). If the participants are teacher candidates (B.Ed.)

or not (‘tea’). If a prep course for math prior to the Analysis 1 lecture was

attended (‘prep’) and if the respective semester was the first semester of a

mathematical study program (‘first’). The variable ‘first’ includes students

which already attended other lectures than the Analysis 1 or already at-

tended the Analysis 1 lecture but did not achieve exam admission and thus

can not be recognized as former Analysis 1 participants.

The dependent variable ‘pass’ indicates the success in the Analysis 1 lecture.

For a successful participation in the Analysis 1 the participants have to pass

the final exam. The possible predictor variables are summarized in table 3.1.

1K4, K5, K6, L5, L6 of TIMSS/III
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Table 3.1: Independent and dependent variables including description and
scale

variable description scale

GPA grade point average of school 1-6 with 1 as the best score

math grad math grade of the final exam in school 1-15 with 15 as the best

score

timss sum score of the five TIMSS items 1-5

age the participants age

sex the participants gender m: male or f: female

school type school type in which the the university-

entrance diploma was received

1: general-education Gym-

nasium, 0: other

year year in which the the university-entrance

diploma was received

math av. average math grade in the last two years of

school

1-15 with 15 as the best

score

state federal state in which the the university-

entrance diploma was received

1: Baden-Württemberg, 0.

other

prep attendance of a mathematical prep course 1: yes, 0: no

tea teacher candidate 1: yes, 0: no (B.Sc mathe-

matics or physics)

first first semester of a mathematical study pro-

gram

1: yes, 0: no

pass success in Analysis 1 1: pass, 0: fail

Redundant variables

I remove redundant variables with an absolute correlation of 0.75 or higher.

According to the correlation matrix in table 3.2 one of the redundant vari-

ables ’year’ or ’age’ should be removed. Because of the better interpretability

of the participant’s age I remove the variable ‘year’. Even though the abso-

lute correlation value of ‘math av.’ with ‘GPA’ and ‘math grade’ is below 0.75

(0.71 and 0.74 respectively), I remove ‘math av.’ because of the high num-

ber of missing values. In table 3.3 the descriptive analysis of the remaining

variables is outlined are reported for the different data sets.
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Table 3.2: Variable correlation matrix of the combined dataset dataC

GPA school type math grade timss age sex year math av. state prep tea first
GPA 1.00

school type -0.17 1.00
math grade -0.67 0.21 1.00

timss -0.32 0.26 0.39 1.00
age 0.13 -0.21 -0.13 -0.22 1.00
sex 0.19 -0.08 -0.09 0.17 0.04 1.00

year -0.09 0.07 0.07 0.16 -0.94 -0.02 1.00
math av. -0.71 0.16 0.74 0.36 -0.06 -0.14 -0.00 1.00

state 0.13 0.02 -0.06 0.03 -0.03 -0.09 0.02 -0.03 1.00
prep -0.06 -0.02 0.06 0.19 0.02 0.20 -0.03 0.09 -0.01 1.00

tea -0.03 0.07 -0.10 -0.20 0.03 -0.35 -0.01 0.01 0.09 -0.30 1.00
first 0.06 -0.05 -0.01 0.06 -0.06 0.17 0.10 -0.06 -0.00 0.10 -0.28 1.00

Note. GPA: Grade point average; school type: general-education Gymnasium or not;
math grade: math grade of the final exam in school; timss: sum scores of the TIMSS
items; year: Year in which the final exam in school was done; math av.: Average math
score of the last two years at school; state: school in Baden-Württemberg or not; prep:
mathematical prep course or not; tea: B.Ed or not; first: first semester or not

3.2.3 Definition of dropout

In this study I use a very simple definition of dropouts. Students drop out if

they fail the Analysis 1 lecture. The participants pass the Analysis 1 lecture

if they qualify to take part at the final exam and pass the test. If they

don’t pass the final exam, they have one more chance in an repeat exam,

which is similar to the original test. The admission to the exam depends, for

example, on the grades on the homework students have to hand in weekly on

the tutorials. Thus there are several ways to drop out. First, the students

can choose to voluntary quit during the semester. Secondly, they might not

obtain the admission for the final exam, or thirdly, they don’t pass both the

final exam and the repeat exam. In this study I don’t differentiate between

the different ways to drop out. I only consider the dichotomous variable pass

or not pass.

3.2.4 General analysis

In this part I discuss general methods and procedures which occur in all the

following models and algorithms. More details for the specific algorithms

are discussed in the follow section. As explained bevor, the data set can

be divided in cohort 1 (Analysis 1 lecture of the winter semester 2014/15),
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Table 3.3: Descriptive data for cohort 1, cohort 2 and the combined data set
dataC

cohort 1 cohort 2 dataC
M (SD) M (SD) M (SD)

GPA 2.09 (0.63) 1.95 (0.60) 2.02 (0.62)
math grade 11.56 (2.91) 11.94 (2.51) 11.76 (2.72)
timss 2.37 (1,23) 2.30 (1.19) 2.33 (1.21)
age 20.26 (2.47) 20.59 (5.53) 20.43 (4.27)

% (n) % (n) % (n)
sex (male) 58.72 (101) 56.14 (96) 57.43 (197 )
school type 76.74 (132) 78.95 (135) 77.84 (267)
state 86.05 (148) 87.72 (150) 86.88 (298)
prep 37.21 (64) 33.33 (57) 35.28 (121)
tea 43.60 (75) 51.46 (88) 47.52 (163)
first 67.44 (116) 77.19 (132) 72.30 (248)
pass 43.60 (75) 43.27 (74) 43.44 (149)
N 172 171 343

Note. GPA: Grade point average; math grade: math grade of the final exam in school;
timss: sum scores of the TIMSS items; school type: general-education Gymnasium or not;
state: school in Baden-Württemberg or not; prep: mathematical prep course or not; tea:
B.Ed or not; first: first semester or not

cohort 2 (Analysis 1 lecture of the winter semester 2015/16) and the combined

data set dataC. Due to the desired independence of lecturers and specific

lecture schedules (e.g. the required achievements during the semester to

achieve the admission for the final exam) the main data set is dataC. In

order to report realistic measures for the prediction quality I divide the data

set in a test set and a training set by randomly assigning 20% of the data

to the test set. This procedure is performed with cohort 1 and cohort 2.

Then the training sets and test sets are combined respectively to receive the

training set and test set for dataC. Thereby I obtain the possibility to report

measures on the test set (e.g. generalization error) of dataC separated in

data derived from cohort 1 and cohort 2. The test set remains untouched

and unseen until the evaluation of the specific algorithm. Table 3.4 illustrates

the data splits.
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Table 3.4: Configuration of the used data sets of cohort 1, cohort 2 and their
combination dataC

cohort 1 cohort 2 dataC
analysis 1 (2014/15) X X
analysis 1 (2015/16) X X
N (train) 138 137 275
N (test) 34 34 68

Differences in the prerequisites for teacher candidates

I compare the variable means and frequencies of the B.Ed. students with

those of the B.Sc. students. Differences are testet with t-tests and χ2-test.

Procedure for the prediction models

In the prediction models I train classifiers to predict the target2 ‘pass’. These

are binary classifiers with the positive class referring to passing the Analysis 1

lecture and the negative class referring to dropout. The general procedure

for the predictor models is as follows: I train the model using the training set

of dataC. If hyperparameters need to be tuned I use cross-validation within

the training set. For the model selection I use different prediction measures

using the training set. In a second step, after the model selection, I report

the prediction measures on the test set for model evaluation. For all methods

I start with the biggest model using all available attributes as features.

pass ∼ GPA + school type + math grade + timss + age

+first + sex + state + prep + tea

For feature selection I train the model with this selection, evaluate the pre-

diction measures and check if the evaluation – the quality of the prediction –

decreases for the smaller model. I apply this procedure to the dataset dataC

and use the resulting selection for the rest of the analysis. The detailed fea-

ture selection procedure is discussed in the respective sections of the different

2In machine learning literature the dependent variable is often referred to as target
(variable).
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methods and algorithms.

Model evaluation – prediction measures

For the evaluation of the model I use different measures. I report the accuracy

on the training set, the leave-one-out cross-classification/validation (loo.cv),

and the precision, recall and F1-score values. In the end I report the same

measures, except for the loo.cv, on the separated test set.

While the accuracy measures the percentage of correctly classified out-

comes, the precision gives true positives as a percentage of predicted positives

and recall gives true positives as a percentage of actual positive outcomes.

The F1-score combines those measure to

F1 = 2 · precision · recall

precision + recall

For extremely skewed data the accuracy measure could be misleading3 whereas

the F1-score can deal with skewed data. Even though the used data set is

not extremely skewed, I report the F1-score to control for possible effects.

Apart from that, the F1-score will play a minor role in the discussion.

The theoretically expected relation of the accuracy measures would be

from high to low: the accuracy on the training set (as the parameters are

trained for that set), the loo.cv accuracy (as it is measured on unseen data

but within the dataset that was used for hyperparameter tuning) and then

the accuracy on the test set (which is never seen before by the algorithm).

Note that due to the relatively small size of the test set, I also consider the

loo.cv as measure for the generalization error or accuracy. This error is know

to be an unbiased estimator for the generalization performance of a classifier

trained on m-1 examples (e.g. Evgeniou, Pontil, & Elisseeff, 2004; Rako-

tomamonjy, 2003). In Addition to the accuracy measures I report Cohen’s

Kappa as measure for the inter-rater agreement of the predictions and the

true outcomes (Cohen, 1960) for both the training set and the test set. For

3e.g. an algorithm which simply assigns the positive class for every example would
have the accuracy of 98% on an extremely skewed data set where only 2% of the training
examples are in the negative class
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the interpretation of Cohen’s Kappa I use the suggestion of Landis and Koch

(1977). They define the strength of agreement for kappa values of 0.00−0.20

as slight, 0.21−0.40 as fair, 0.41−0.60 as moderate 0.61−0.80 as substantial

and 0.81− 1.00 as almost perfect.

Bounds for prediction accuracies

To gain a better sense of prediction accuracies I discuss some bounds in this

section. As a lower bound of the expected prediction accuracy I could use

a model that performs 50% guesses for every example. This method would

result in an accuracy of .5 or 50%. But I use the accuracy of a baseline model

which predicts a dropout for every example. With the ‘pass’ percentage of

43.44% (see table 3.3) in dataC the results of this model will have an accuracy

of .57 or 56.56%. Therefor I can achieve an accuracy of 56.56% with a model

that uses no information of the training data and thus builds the lower bound

for the accuracies of our models.

The upper bound can not be specified exactly but I discuss some ideas. As

features I only use attributes of the students bevor they came to university.

Therefore this approach uses no information on the behavior of the students

during the semester. But the active participation in lectures and tutorials as

well as the general effort of the students is seen to be crucial for the success

in math. Therefore the expected accuracies of our models are far less than

100%. Even with a sufficient amount of data, including data referring to the

behavior during the semester, I would not expect to come close to 100%,

because the final exam itself implies uncertainty of success. In conclusion I

expect the accuracies to be better than 57% in order to have a valid predictor,

but I do not expect the accuracies to exceed 80% (as an educated guess),

due to the uncertainty of the behavior during the semester and in the test

situation.

3.2.5 Analysis for the different methods

In this part I introduce the methods for the different algorithms and models.

I use (i) the basic logistic regression, (ii) logistic regression with elastic-net
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regularization, (iii) the Support Vector Machine and (iv) tree based methods

for feature selection and prediction. Survival analysis methods are applied

solely for group difference and the effects of different features. Survival anal-

ysis methods (e.g. the Cox regression) predict the specific time of dropouts

and therefore are not in the same accuracy frame as the other methods.

Thus those methods are not used for prediction. Note that group differences

and effects of features are also considered in the prediction models by the

independent variables.

Logistic regression

Using logistic regressionI first include all features and report prediction mea-

sures. Then I repeat this approach only using features with either significant

coefficients or at least features with almost significant coefficients. An anal-

ysis of deviance table is used to compare the respective model with all the

features and with only the selected features. The prediction measures include

results on the training set, as well as results on the test set. The test results

are further differentiated in test examples from cohort 1 and cohort 2.

Logistic regression - elastic net regularization

The objective function for parameter estimation for penalized logistic regres-

sion uses the negative binomial log-likelihood

min
(θ0,θ[−0])∈Rn+1

− 1

m
[ log-likelihood ] + λ

[
(1− α)||θ||22 + α||θ||1

]
where alpha controls for the tradeoff between L2/ridge-regularization (α =

0) and L1/lasso-regularization (α = 1) (Friedman, Hastie, & Tibshirani,

2010). The intercept θ0 of the parameter vector (θ0, θ
[−0]) = θ ∈ Rn+1 is not

regularized.

I apply this method for different values of alpha (α ∈ {0, 0.3, 0.6, 1}) and use

the misclassification error as criterion for cross-validation to set the value

for the regularization parameter λ. Due to the relatively small dataset I use

leave-one-out cross validation (m-fold cross validation with the number of
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training examples m). Because of the properties of the L1-norm the lasso

performs a kind of continuous subset or feature selection (Hastie, Tibshirani,

& Friedman, 2009). In the pure L2 scenario (α = 0) this feature selection

part is lost. In that case I use the selected features of the basic logistic

regression as comparison.

Survival analysis

In the survival analysis events are examined. The event in this analysis is

a dropout. The ‘time’ variable – necessary in the survival analysis – refers

to the time during the semester in weeks. A dropout at week x is defined

as follows: to gain admission to the final exam the students have to gather

points on the problem sets. If the admission to the final exam is not granted,

the following week of the last submitted problem set is defined as the dropout

time. If the admission is granted but the exam is failed, the last week of the

semester indicates the dropout time.

I use the log rank test to evaluate whether the Kaplan-Meier survival

curves for different groups are statistically equivalent (Kleinbaum & Klein,

2012). Additionally I use χ2 tests of independence between features and the

event (Terry M. Therneau & Patricia M. Grambsch, 2000; Therneau, 2015).

The log rank test is based on the χ2-test, comparing observed and expected

cell counts through the categories of the outcome, here pass or dropout. In

contrast to the χ2 test of independence, which only includes total numbers at

the end of the semester, the log-rank test includes the dropout times in the

expected cell count. In both cases the null-hypothesis refers to independence,

meaning that non significant results point to non significant influence of the

feature on the occurrence of the event. Note that due to small cell sizes some

features had to be grouped.

To obtain further measures of the influence of the features, I apply a Cox

regression (Cox, 1972). In the Cox regression the Hazard function

h(t) =
number of persons with event in the interval beginning at t

(number of surviving persons at t) · (width of the interval)
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is used in the Cox model

h(t) = h0(t) · exp

(
n∑
i=1

βixi

)
= h0(t) ·

n∏
i=1

exp(βixi),

with the baseline-hazard h0(t). I use

lnh(t) = lnh0(t) +
n∑
i=1

βixi

with two groups A and B and the assumption for the hazard ratio:

HR =
hA(t)

hB(t)
= constant

Again, because of the prediction of dropouts as events in the survival analysis,

the interpretation of the resulting coefficients has to be adapted. Negative

coefficients point to a lower probability of the occurrence of the events, which

means a higher probability of surviving in the survival analysis context or

of success in the framework of this study. For example a coefficient of −0.5

for a grouping variable would refer to a Hazard-ratio of exp(−0.5) = 0.61

which means the risk for the occurrence of the event is 39% lower for group

1 (compared to group 0).

Support Vector Machine (SVM)

In this section I use different SVMs to predict the outcome for the two Anal-

ysis 1 lectures. For the analysis I use the R package e1071 (Meyer, Dimitri-

adou, Hornik, Weingessel, & Leisch, 2017; R Core Team, 2015). I calculate

both, a SVM with linear kernel and a SVM with radial basis function kernel

(RBF kernel). In both cases I use 10-fold cross-validation on the training set

for hyperparameter tuning. First I perform hyperparameter tuning using all

the features. Then the resulting hyperparameters are used for the feature

selection algorithms. With the resulting best feature subset, hyperparameter

tuning is repeated and results are reported.

In the following I introduce the basic ideas of SVMs. Due to the math-
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ematical complexity of the topic, only an overview is given. More details

can be found in Hastie et al. (2009), for example. The goal of the SVM is

to find the separating hyperplane with the biggest possible margin between

the training points of the two classes. If the data is linearly separable, the

support vector criterion for m training examples is usually written as

min
β,β0
||β||

s.t. yi(x
T
i β + β0) ≥ 1, ∀i ∈ {1, ...,m}

with the separating hyperplane {x : f(x) = xTβ + β0 = 0}, using the

parameter vector β ∈ Rn and the intercept parameter β0 ∈ R, the fea-

ture vectors xi ∈ Rn and the prediction outcome yi (here yi ∈ {−1, 1}).
G(x) = sign xTβ + β0 is used as classification rule.

With simple geometric considerations we can see that this fulfills the

biggest possible margin notion. For example, if only considering the yi = 1

case, the constraint can be rewritten to (1, xi)
T (β0, β) ≥ 1 with (1, xi), (β0, β) ∈

Rn+1. The inner product (1, xi)
T (β0, β) can be written as (1, xi)

T (β0, β) =

pi · ||(β0, β)|| with the length of the projection pi of the feature vector (1, xi)

onto (β0, β). Due to (β0, β)Tx = 0 for all x on the hyperplane (meaning for

all x with f(x) = xTβ + β0 = 0), pi gives the orthogonal distance of the

feature vector (1, xi) to the hyperplane. With this context, the minimization

of ||β|| by simultaneously fulfilling the constraint results in maximizing the

the distances to the hyperplane, thus maximizing the margin.

In the more common case of non perfectly linear separable data (in the

features space) one still tries to maximize the margin, but has to allow some

points in feature space to be on the wrong side. In this case the stack variables

ξ = (ξ1, ..., ξm) are defined and the criterion is rewritten to

min ||β||

s.t. yi(x
T
i β + β0) ≥ 1− ξi,∀i ∈ {1, ...,m}

ξi ≥ 0
∑
i

ξi ≤ constant
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This is quadratic with linear inequality constraints and thus results in a

convex optimization problem which can equally written as

min
β,β0

1

2
||β||2 + C

m∑
i=1

ξi

s.t. ξi ≥ 0, yi(x
T
i β + β0) ≥ 1− ξi, ∀i

where the cost parameter C is introduced (which replaces the constant in

the upper formulation). In the notion of Lagrange multipliers this can be

written as the Lagrange function

L =
1

2
||β||2 + C

m∑
i=1

ξi −
m∑
i=1

αi
[
yi(x

T
i β + β0)− (1− ξi)

]
−

m∑
i=1

µiξi

with the Langrange multipliers αi for the inequality constraints and µi for

the equality constraints. L will be minimized with respect to β, β0 and ξi.

In the following I will use the dual Lagrange objective function

Ldual =
m∑
i=1

αi−
1

2

m∑
i=1

m∑
j=1

αiαjyiyjx
T
i xj =

m∑
i=1

αi−
1

2

m∑
i=1

m∑
j=1

αiαjyiyj < xi, xj >

which now will be maximized subject to 0 ≤ αi ≤ C and
∑m

i=1 αiyi = 0.

Note that this representation only uses the inner product < xi, xj > of the

feature vectors instead of the single feature vectors xi, which is an important

property for kernel methods. For better readability I substitute some of those

terms. I introduce the kernel function K(xi, xj) (a positive (semi-) definite

function) instead of < xi, xj >, Qij = yiyjK(xi, xj) and the unity vector e.

With the notion of the minimization of a cost function, I also use J = −Jdual
to obtain

min
α
J = min

α

1

2
αTQα− eTα

s.t. 0 ≤ αk ≤ C and yTα = 0

As mentioned earlier I use a linear kernel and the radial basic kernel which

concerns the introduced kernel function. So far the support vector classifier
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finds linear boundaries in the feature space. For more flexibility the feature

space can be enlarged by basic expansions (e.g. polynomials), which lead

to general linear boundaries in the enlarged feature space and translate to

nonlinear boundaries in the original feature space. In order to do so we can

define basic functions hj(x) (j = 1, ...M) and use the exact same procedure

as described earlier with the substitution of the original features xi to h(xi) =

(h1(xi), ..., hM(xi)) for all i = 1, ...,m. The SVM extends this idea by allowing

arbitrary large dimensions for the enlarged feature space. As seen earlier the

algorithm can be written entirely in terms of the kernen function K, meaning

that only the kernel function K(xi, xj) =< h(xi), h(xj) > has to be specified

instead of the transformations h(xi).

SVM - linear kernel and SVM-RFE

In the linear case I use the kernel K(xi, xj) = xTi xj (which can be referred

to as no kernel). The only hyperparameter is the cost parameter C. I apply

cross-validation for a range of C = 0.1, 0.2, ..., 0.9, 1, 2, 3, ..., 100.

For feature selection I implement the recursive feature elimination algo-

rithm SVM-RFE, described in Guyon, Weston, Barnhill, and Vapnik (2002),

in combination with the e1071 package. In each iteration this algorithm

ranks the features according to their influence on the weights and eliminates

the last ranked feature until no feature is left. Then each subset is trained

on the training set and evaluated using the loo.cv.

SVM - RBF kernel and feature selection for kernel methods

In the case of the RBF kernel I use

K(xi, xj) = exp

(
−||xi − xj||

2

2σ2

)
= exp

(
−γ||xi − xj||2

)
,

which means the cost parameter C and the shape parameter γ of the kernel

have to be specified. In order to find the best hyperparameters I follow Meyer

et al. (2017) and perform a 10-fold cross-validation using a grid search for the

ranges γ = 10−10, 10−9, ..., 102 and C = 0.1, 0.2, ..., 0.9, 1, 2, 3, ..., 100, instead



3.2. METHODS 109

of first choosing a range for C and then choose γ for a preselected range of

the C parameters (Chang & Lin, 2011).

To use SVM-RFE in the non-linear case, the approach can be generalized

following Guyon et al. (2002). It is suggested (Kohavi & John, 1997) to

use the change in the objective function, the cost function J , when one

feature is removed as a ranking criterion. The authors of the Optimal Brain

Damage algorithm (OBD algorithm, LeCun, Denker, & Solla, 1990), which

approximated DJ(i) by expanding J in Taylor series to second order, suggest

to use DJ(i) instead of the magnitude of the weights. The first order of the

Taylor series can be neglected at the optimum and one gets

DJ(i) =
1

2

∂2J

∂β2
i

(Dβi)
2,

with the weight of the ith feature βi. For the linear SVMs this is equivalent

to using (βi)
2 as ranking criterion (Guyon et al., 2002). This method can be

extended to the non-linear case and to all kernel methods. One can assume

no change in the value of the α’s (the Lagrange multipliers for the inequality

constraints), which makes the computations cheaper.

In the case of SVMs we obtain the cost function

J =
1

2
αTQα− eTα

s.t. 0 ≤ αk ≤ C and yTα = 0

where e is the unity vector, C is the upper bound, Qij = yiyjK(xi, xj) is a

matrix and K is a kernel function. Recall, here I use the RBF kernel

K(xi, xj) = exp

(
−||xi − xj||

2

2σ2

)
= exp

(
−γ||xi − xj||2

)
with the shape parameter of the Gaussian kernel σ, or the kernel parameter γ

like in e1071. In the linear SVM we had K(xi, xj) = xTi xj and αTQα = ‖ω‖2,
hence DJ(i) = 1

2
(ωi)

2.

I compute the change in cost function, caused by removing input i, by

leaving the α’s unchanged and re-compute the matrix Q. That means com-
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puting K(x
(−i)
h , x

(−i)
k ) to get Q(−i), where x(−i) means that component i has

been removed. As ranking coefficient we get:

|DJ(i)| =
∣∣∣∣12αTQα− 1

2
αTQ(−i)α

∣∣∣∣
Then I remove the input corresponding to the smallest difference |DJ(i)|.
I iterate this procedure to carry out the RFE. If F denotes the set of all

available features, we end up with subsets

F1 ⊂ F2 ⊂ ... ⊂ Fn−1 ⊂ F

where Fi consists of i features. Like in the linear kernel case, for every subset

Fi I train the algorithm and evaluate it with the loo.cv.

Tree based models

In this section I apply tree based models. I briefly review the basic con-

cepts of those models and refer to Hastie et al. (2009) for a detailed, gen-

eral introduction and to Hothorn, Hornik, and Zeileis (2006) and Hothorn,

Buehlmann, Dudoit, Molinaro, and Van Der Laan (2006) for an introduction

of the here used conditional inference trees and forests. Tree based methods

in general – for example a single decision tree – partition the feature space

into rectangles and fit simple models on each of them. In recursive binary

partitioning the feature space is first split into two regions, where the feature

and the split-point are selected by some fit measure. Then, the resulting re-

gions could be split again using the same procedure. This is repeated until a

stopping rule is applied. This results in the partitioning of the feature space

into terminal nodes (the final branches after the respective last split). Each

training example – for example participants in the Analysis 1 lecture – can

be assigned (via the location of their feature vector in feature space) to one

of the terminal nodes, where the simple classification or regression rule for

this subsample is applied. The idea of ensemble tree methods – here random

forests – is to overcome high variance in the single decision trees by growing

a lot of trees and by averaging (in regression) or voting (in classification) to
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gain the overall output. In order to obtain a variety of different single trees,

the random forest approach uses randomly selected feature subsets in each

split as a basis for the splitting criteria.

I first evaluate a single tree. To avoid the well known problems of over-

fitting and selection bias towards features with many possible splits, as de-

scribed in ‘CART’ (Breiman, Friedman, Olshen, & Stone, 1984) and ‘C4.5’

(Quinlan, 1993), I use a conditional inference tree implemented in the R

package party (Hothorn, Hornik, & Zeileis, 2006; R Core Team, 2015). Sec-

ondly, I apply the random forest implementation based on the conditional

inference trees (Hothorn, Buehlmann, et al., 2006; Strobl, Boulesteix, Kneib,

Augustin, & Zeileis, 2008; Strobl, Boulesteix, Zeileis, & Hothorn, 2007). A

cross-validation approach is used to set the value for the number of features

randomly selected in each split (mtry). I use the leave-one-out error to de-

termine the best performance. For the other hyperparameters I use the sug-

gested parameters, set as default in the party package (Hothorn, Buehlmann,

et al., 2006; Strobl et al., 2008, 2007).

Conditional inference tree The feature selection in a single decision tree

is included in the general concept as the features selected for the splits in the

feature space partitioning. I report the selected features of the conditional

inference tree which are used for the splits under the default hyperparameters.

Conditional forest For feature or variable importance in the conditional

forests I use the conditional importance based on the permutation-importance

measure, as described in (Strobl, Hothorn, & Zeileis, 2009). Due to cor-

relating features I use the conditional importance instead of the original

permutation-importance measure. Different random seeds are checked to

ensure stability at least in the top ranked features. I use this ranking to

measure accuracies on smaller subsets of the features.
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3.2.6 Comparison of the predictors and risk groups

In the last step of the analysis I select the best predictors of each method,

summarize their results and use them combined as ensemble predictor. For

that purpose, I use the predictions of the single predictors and combine them

via a majority vote for the class assignment.

I use this ensemble predictor for the identification of risk groups.

With the predictions the data is separated naturally into three groups.

The first group consists of to the true positive predictions, including feature

vectors of students for which the success is predicted and matches the true

outcome. The second group contains the true negative predictions, including

students which failed the Analysis 1 lecture and for which the failure was

predicted. At last, the third group refers to students with feature vectors

that were predicted wrong. Depending on the application, either group two

or both group two and three can be defined as the risk group. In this study I

define group two – the true negative prediction – as the risk group. Reasons

for this choice are given by the general design of the prediction task. I

don’t include important information about students’ behavior and situation

during the semester, but only use information prior to university, thus wrong

predictions can be partly associated with the information not included in

this study. Therefore group three – the wrong predictions – refer to the

uncertainty during the semester. In that context and at this point I can

define the risk group as those students that are predicted to fail the lectures

by the prediction model with high certainty.

I summarize descriptive measures for the three groups in the results. In

order to correctly interpret the the results, it is important to define char-

acteristics of the risk group. This can be done by partitioning the feature

space and identifying the partitions, which can then be assigned to the risk

group. Since this is exactly what the decision tree method does, I apply

the already introduced conditional inference tree. For that purpose, I only

include features that have been selected as most predictive by the different

methods.
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3.3 Results

In this part I first report results of the group comparison between B.Ed. and

B.Sc. students. Secondly, I report the results of the different methods and

thirdly, I discuss the results in total and compare the different methods I

apply.

3.3.1 Prerequisites of teachers

Differences in prerequisites of teachers are shown in table 3.5.

Table 3.5: Group differences between B.Ed. students (teachers) and B.Sc.
students.

B.Ed (teacher) B.Sc

M (SD) M (SD) t df Pr(> |t|)
GPA1 2.02 (0.60) 2.02 (0.63) 0.04 341 0.97

math grade1 11.43 (2.63) 12.06 (2.77) 2.14 341 0.03

timss1 2.07 (1.19) 2.57 (1.18) 3.85 341 0.00

age 20.49 (2.91) 20.37 (2.21) -0.27 341 0.79

% (n) % (n) χ2 df Pr(> χ2)

sex:male 41.72 (68) 71.67 (129) 30.17 1 0.00

school type:1 81.60 (133) 74.44 (134) 2.14 1 0.14

prep:1 20.25 (33) 48.89 (88) 29.50 1 0.00

first:1 57.67 (94) 85.56 (154) 31.84 1 0.00

pass 46.01 (75) 41.11 (74) 0.65 1 0.42

N 163 180
Note. bold: p < .5;

GPA = grade point average in the final exam in school; math grade = math rad in the final

exam in school; timss = sum score of the TIMSS items; age = participant’s age; sex = par-

ticipant’s sex; school type = general-education Gymnasium or not; prep = math prep

course prior to university or not; first = first mathematical semester or not; pass = suc-

cessful participation in the respective Analysis 1 lecture
1due to the sex distribution we repeated the analysis controlling for sex with no changes

for the significant statements
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The non significant differences in the GPA confirm the results of Klus-

mann et al. (2009), but we see differences in the selected TIMSS items and

the math grade. Those results don’t necessarily contradict the results of

Klusmann et al. (2009), since my results solely concern the students of math-

ematics. There are also significant differences in prep and first. 49% of the

B.Sc. students attended a mathematical prep course compared to only 20%

of the teacher candidates, while at the same time significantly more B.Sc.

students are in their first mathematical semester.

3.3.2 Logistic Regression

Results of the logistic regression can be found in table 3.6 for all features.

Table 3.6: Logistic regression with dataC and all features (dataC complete).

Estimate Std. Error exp(Estimate) z value Pr(>|z|)
(Intercept) -2.2441 1.8873 0.1060 -1.19 0.2344

GPA -1.0341 0.3534 0.3555 -2.93 0.0034

school type1 0.7268 0.4026 2.0684 1.81 0.0710

math grade 0.1809 0.0798 1.1983 2.27 0.0234

timss 0.4639 0.1455 1.5903 3.19 0.0014

age -0.0007 0.0501 0.9993 -0.01 0.9895

first1 -0.7766 0.3506 0.4500 -2.21 0.0268

sex -0.0936 0.3255 0.9107 -0.29 0.7738

state1 0.2666 0.4535 1.3055 0.59 0.5567

prep1 0.5001 0.3315 1.6488 1.51 0.1315

tea1 0.6614 0.3412 1.9374 1.94 0.0526
Note. bold: p < .5;

GPA = grade point average in the final exam in school; school type = general-education

Gymnasium or not; math grade = math grade in the final exam in school; times = sum

score of the times items; age = participant’s age; first = first mathematical semester

or not; sex = participant’s sex; state = federal state of Baden-Württemberg or not;

prep = math prep course prior to university or not; tea = teacher candidate or not

In addition to the features with significant coefficients – GPA, math grade,

timss and first – I select the features school type and tea for the next model,
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as their respective p-values (0.07 and 0.05) are close to being significant.

In table 3.7 the results of the logistic regression for the selected features

is presented. Note that in both analysis the GPA is coded from 1 to 6 with

1 being the best grade. This means that a better GPA by one grade results

in 65% (or 63% for the model with the selected features) better odds for the

success in the lecture. We can see that the same features remain significant.

Table 3.7: Logistic regression with dataC and selected features (dataC se-
lect).

Estimate Std. Error exp(Estimate) z value Pr(>|z|)
(Intercept) -2.0194 1.5004 0.1327 -1.35 0.1783

GPA -0.9832 0.3379 0.3741 -2.91 0.0036
school type1 0.7018 0.3894 2.0174 1.80 0.0715

math grade 0.1798 0.0789 1.1970 2.28 0.0227
timss 0.5005 0.1395 1.6496 3.59 0.0003
first1 -0.7516 0.3402 0.4716 -2.21 0.0272

tea1 0.5843 0.3248 1.7938 1.80 0.0720
Note. bold: p < .5
GPA = grade point average in the final exam in school; school type = general-education
Gymnasium or not; math grade = math grade in the final exam in school; times = sum
score of the times items; first = first mathematical semester or not; tea = teacher
candidate or not

The analysis of deviance for these two models (table 3.8) shows no sig-

nificant difference, meaning we can use the sparse model.

Table 3.8: Analysis of deviance for the two feature sets complete and selected.

Resid. Df Resid. Dev Df Deviance Pr(> χ2)
complete feature set 264 284.49
selected feature set 268 287.18 -4 -2.70 0.6097

I use both models to predict the target variable ‘pass’ on the training

set and on the test set. The different prediction measures for these models

are reported in table 3.9. Prediction measures on the test sets are further

differentiated in test examples of cohort 1 and cohort 2. In both cases the

loo.cv is around 0.75 with a slightly higher value for the smaller model with

0.76, however the difference might be to small to allow a interpretation. The

generalization on the test sets also shows only slight differences, probably
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with small advantages for the complete model. Both models show a rather

high variance (overfitting) with a decline of accuracy from about 0.75 to

0.68. Note the differences in the divided test measures. We can see that

cohort 2 might be more structured resulting in a lower generalization error.

The overfitting problem can also be seen in the κ-values, which drop from

moderate agreement on the training sets (0.51 and 0.52) to fair agreement

(0.37 and 0.34) on the test set.

Table 3.9: Prediction measures on the training set and on the test set for the
two logistic regression models. Test set measures are further differentiated
in cohort 1 and cohort 2.

dataC complete cohort 1 cohort 2 dataC select cohort 1 cohort 2
acc.train 0.76 0.77

kappa.train 0.51 0.52
loo.cv 0.75 0.76

P.train 0.73 0.74
R.train 0.71 0.71

F1.train 0.72 0.72
acc.test 0.69 0.62 0.76 0.68 0.62 0.74

P.test 0.66 0.53 0.79 0.63 0.53 0.73
R.test 0.63 0.57 0.69 0.63 0.57 0.69

F1.test 0.64 0.55 0.73 0.63 0.55 0.71
kappa.test 0.37 0.22 0.52 0.34 0.22 0.47

Note. acc = accuracy; kappa = inter-rater agreement (Cohen’s kappa); loo.cv = leave-
one-out accuracy; P = precision; R = recall; F1 = F1 score

3.3.3 Logistic Regression - elastic net

For the logistic regression with elastic net regularization I use, as mentioned

already, one model with pure lasso / L1 (α = 1) regularization, two mixed

models with α = 0.6 and α = 0.3 and one model with pure ridge / L2

(α = 0) regularization. For the case of α = 0, one more model is included

using the selected features of the basic logistic regression, because we can not

profit from the feature selection property of the L1-regularization. Prediction

results are presented in table 3.10, including result on the test set divided in

the two cohorts and the used feature subsets. The respective selected subsets

are presented in table 3.11 for different values of α.
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Table 3.10: Prediction measures of the elastic net for dataC using different
values of the tradeoff parameter α. Test set measures are further differenti-
ated in cohort 1 and cohort 2.

pure L1 pure L2

α = 1 α = 0.6 α = 0.3 α = 0 α = 0

λ = 0.089 λ = 0.135 λ = 0.107 λ = 0.306 λ = 0.369

acc.train 0.76 0.75 0.75 0.77 0.75

kappa.train 0.49 0.48 0.48 0.53 0.49

loo.cv 0.73 0.74 0.73 0.74 0.74

P.train 0.77 0.76 0.72 0.76 0.74

R.train 0.62 0.61 0.66 0.69 0.66

F1.train 0.69 0.68 0.69 0.72 0.70

acc.test 0.69 0.71 0.74 0.72 0.71

P.test 0.66 0.68 0.69 0.69 0.68

R.test 0.63 0.63 0.73 0.67 0.63

F1.test 0.64 0.66 0.71 0.68 0.66

kappa.test 0.37 0.40 0.47 0.43 0.40

cohort 1

acc.test 0.59 0.62 0.71 0.65 0.68

P.test 0.50 0.55 0.62 0.57 0.62

R.test 0.43 0.43 0.71 0.57 0.57

F1.test 0.46 0.48 0.67 0.57 0.59

kappa.test 0.13 0.18 0.41 0.27 0.32

cohort 2

acc.test 0.79 0.79 0.76 0.79 0.74

P.test 0.76 0.76 0.75 0.80 0.73

R.test 0.81 0.81 0.75 0.75 0.69

F1.test 0.79 0.79 0.75 0.77 0.71

kappa.test 0.59 0.59 0.53 0.59 0.47

Note. acc = accuracy; kappa = inter-rater agreement (Cohen’s kappa); loo.cv = leave-

one-out accuracy; P = precision; R = recall; F1 = F1 score; λ = regularization parameter

All models show comparable and rather good results on the training sets

with accuracies between 0.75 and 0.77 and moderate agreement with the true

output (κ-value). The loo.cv as well does not clearly prefer one of the models.

Differences occur for the generalization on the test set, which was expected as

we use different regularizations to prevent overfitting in all the models. The
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best results are shown by the model with α = 0.3 on all prediction measures.

Note that, except for the pure L1 model (α = 1), all inter-rater measures are

in, or very close to the moderate agreement on the test set. For the division

of the test results into the two cohorts, again the α = 0.3 model shows the

best results, meaning that even the cohort two, which seems to be harder to

predict, is predicted with an accuracy of 0.71.

Table 3.11: Respective feature selection of the elastic net for dataC using
different values of the tradeoff parameter α.

pure L1 pure L2

α = 1 α = 0.6 α = 0.3 α = 0 α = 0

*

GPA X X X X X

school type . . X X X

math grade X X X X X

timss X X X X X

age . . . X .

first . . X X X

sex . . . X .

state . . . X .

prep . . . X .

tea . . X X X
Note. * feature subset pre-design with results of the basic logistic regression

GPA = grade point average in the final exam in school; school type = general-education

Gymnasium or not; math grade = math grade in the final exam in school; timss = sum

score of the TIMSS items; age = participant’s age; first = first mathematical semester

or not; sex = participant’s sex; state = federal state of Baden-Württemberg or not;

prep = math prep course prior to university or not; tea = teacher candidate or not

The feature selection in models with α > 0 is done by the algorithm as a

property of the L1-norm. The more weight is on the L1-norm, compared to

the L2-norm (regulated by α), the more features are removed. Note that for

the best model with α = 0.3 exactly the same features are selected as in the

approach with the basic logistic regression. But here, the models with this
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feature selection shows better generalization results than the basic logistic

regression, because in both cases (α = 0.3 and α = 0) regularization is used.

3.3.4 Survival Analysis

The data used for the survival analysis (received from dataC) is represented

as the survival in table 3.12.

Table 3.12: Survival table of dataC

time n.risk n.event survival std.err lower 95% CI upper 95% CI

0 343 2 0.99 0.00 0.99 1.00

2 341 5 0.98 0.01 0.96 0.99

3 336 6 0.96 0.01 0.94 0.98

4 330 10 0.93 0.01 0.91 0.96

5 320 8 0.91 0.02 0.88 0.94

6 312 9 0.88 0.02 0.85 0.92

7 303 2 0.88 0.02 0.84 0.91

8 301 14 0.84 0.02 0.80 0.88

9 287 6 0.82 0.02 0.78 0.86

10 281 14 0.78 0.02 0.74 0.82

11 267 6 0.76 0.02 0.72 0.81

12 261 12 0.73 0.02 0.68 0.77

13 249 16 0.68 0.03 0.63 0.73

14 233 4 0.67 0.03 0.62 0.72

15 229 3 0.66 0.03 0.61 0.71

17 226 14 0.62 0.03 0.57 0.67

18 212 13 0.58 0.03 0.53 0.63

19 199 50 0.43 0.03 0.38 0.49

Note. time in weeks during the semester; n.risk = number of participants still in the

lecture at that time; n.event = number of dropouts at that time; survival = percentage of

participants still in the lecture

In this table ‘time’ refers to the weeks during the semester, ‘n.risk’ is the

number of students in each week, which still participate in the lecture. The

variable ‘n.event’ gives the number of events in this week. In the context of

this study, this means the number of dropouts in this weeks. The percentage

of participants still in the lecture is given by ‘survival’. Note that, due to

the study design there is no censored data within the time interval of the

semester. That means, the only participants with censored data are those

with no event – no dropout – in the time interval, in this context those
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participants which pass the lecture. For the survival analysis the variables

‘time’ and ‘event’ are analyzed.

The independence of the different features of the target variable ‘pass’ or

the time of the dropout is tested with the χ2 test of independence and the

log rank test. The results of the tests are shown in table 3.13.

Table 3.13: Results for independence tests of the variables and the event (χ2)
and group differences in the survival analysis (log rank)

log rank test χ2 test
χ2 df p χ2 df p

cohort 3.8 1 .051 0 1 1
sex 3.4 1 .066 1.79 1 .180
tea 1.3 1 .247 0.69 1 .421
state 0 1 .890 0.00 1 .988
prep 4.3 1 .039 2.5 1 .114
age1 1 3 .81 0.61 3 0.90
school type 24.7 1 .000 18.76 1 .000
first 10.1 1 .002 8.87 1 .003
timss 37 5 .000 34.19 5 .000
GPA2 101 26 .000 55.42 4 .000
math grade3 69.5 11 .000 69.20 6 .000

Note. bold: p < .5; 1 only age 18-21; 2 combined grades for χ2: 1-1.4, 1.5-1.9, 2-2.4,
2.5-2.9, 3-3.6; 3 combined points for χ2: <10, 11, 12, 13, 14, 15
cohort = cohort 1 or cohort 2; sex = participant’s sex; tea = teacher candidate or not;
state = federal state of Baden-Württemberg or not; prep = math prep course prior to
university or not; age = participant’s age; school type = general-education Gymnasium
or not; first = first mathematical semester or not; timss = sum score of the TIMSS items;
GPA = grade point average in the final exam in school; math grade = math grade in the
final exam in school

In both tests the features ‘school type’, ‘first’, ‘timss’, ‘GPA’ and ‘math

grades’ show significant dependence with the target variable ‘pass’. The

feature ‘prep’ shows a significant difference in the Kaplan-Meier survival

curves (for ‘prep’=0 and ‘prep’=1), but no significant dependence to the

target variable ‘pass’ using the χ2 test. This could mean that the dropout

times differ for those groups, but not the total number of dropouts at the

end of the time interval of the semester.

The results of the Cox regression are shown in table 3.14. Again, ‘GPA’,

‘math grade’, ‘timss’ and ‘first’ show significant coefficients. As in the in-
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dependence tests the ‘school type’ determines the dropout. Like already

mentioned, I did not use the Cox regression as a predictor because here the

survival probability at a time point is the dependent variable in contrast to

‘pass’ in the other algorithms.

Table 3.14: Results of the Cox regression with all features.

coef exp(coef) se(coef) z p
GPA 0.35 1.43 0.16 2.28 0.02

school type1 -0.43 0.65 0.17 -2.60 0.01
math grade -0.09 0.91 0.03 -2.61 0.01

timss -0.16 0.85 0.07 -2.19 0.03
age 0.01 1.01 0.02 0.58 0.56

first1 0.56 1.75 0.19 3.02 0.00
sex 0.09 1.09 0.16 0.55 0.58

state1 -0.02 0.98 0.21 -0.09 0.93
prep1 -0.31 0.73 0.17 -1.85 0.06

tea1 -0.16 0.85 0.17 -0.95 0.34
Note. bold: p < .5
GPA = grade point average in the final exam in school; school type = general-education
Gymnasium or not; math grade = math grade in the final exam in school; timss = sum
score of the TIMSS items; age = participant’s age; first = first mathematical semester
or not; sex = participant’s sex; state = federal state of Baden-Württemberg or not;
prep = math prep course prior to university or not; tea = teacher candidate or not

3.3.5 SVM with linear kernel

For the feature selection in the linear SVM I apply the RFE algorithm de-

scribed on page 106. Table 3.15 shows the resulting feature ranking and the

selected subset.

Each feature subset is tested using the leave-one-out classification on the

training set. Note that the ranking only marks the feature that is removed

for the next subset. This evaluation is done within each subset. Rankings

within the selected subsets are meaningless, except for the last ranked feature,

which is chosen to be removed in the next step. This means in the best

selected subset the feature ‘school type’ is marked as the least important

feature. There is no ranking within this subset for the remaining features.

In addition to the ‘school type’ the best subset consists of the ‘math grade’,
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Table 3.15: Linear SVM-RFE: Ranking and selected subsets for dataC.

ranking and best set C loo.cv loo.cv complete
math grade GPA timss tea first school type prep sex state age 0.1 0.7782 0.76

Note. bold and framed = best feature subset selected by the linear SVM-RFE algorithm;
C = cost/regularization hyperparameter; loo.cv = leave-one-out classification on the best
selected set; loo.cv complete = leave-one-out classification on all features
GPA = grade point average in the final exam in school; school type = general-education
Gymnasium or not; math grade = math grade in the final exam in school; timss = sum
score of the TIMSS items; age = participant’s age; first = first mathematical semester
or not; sex = participant’s sex; state = federal state of Baden-Württemberg or not;
prep = math prep course prior to university or not; tea = teacher candidate or not

‘GPA’, ‘timss’, ‘tea’ and ‘first’. As a comparison the loo.cv for the complete

model (which has not been selected) is reported as well.

I use the linear SVM with the selected feature subset and the complete

feature set to predict the target ‘pass’. Prediction measures are summarized

in table 3.16. The measures indicate that the smaller model achieves almost

the same results as the complete model and thus can be used here. Both

models show moderate inter-rater agreement (κ = 0.44) on the test set. The

loo.cv of cause is higher for the smaller model due to the results of the RFE

algorithm.

3.3.6 SVM with RBF kernel

For the feature selection for the SVM with RBF kernel the adjusted RFE

algorithm, described on page 106 is used. Results are shown in table 3.17.

The same statements about the feature ranking described in the previ-

ous section hold here. The hyperparamters C and γ are tuned using cross-

validation on the training set and are then used throughout the selection

algorithm. The selected best feature subset is identical to the one in the

linear case. Included in the selected feature subset are the ‘math grade’,

‘GPA’, ‘timss’, ‘first’, ‘tea’, and ‘school type’ resulting in a loo.cv value of

0.77 compared to a loo.cv value of 0.76 for the complete model.

Again I use both models, taking the complete feature set and the selected

subset into account as predictors. The results are reported in table 3.18.

The generalized results of the smaller model are slightly better than of the



3.3. RESULTS 123

Table 3.16: Evaluation of the linear SVM model trained on dataC with
the selected features and on dataC with the complete feature set. Test set
measures for the selected feature set are further differentiated in cohort 1
and cohort 2.

dataC cohort 1 cohort 2 dataC complete
(C = 0.2) (C=0.1)

acc.train 0.77 0.77
kappa.train 0.53 0.54

loo.cv 0.78 0.76
precision.train 0.73 0.73

recall.train 0.74 0.76
F1.train 0.74 0.75
acc.test 0.72 0.68 0.76 0.72

kappa.test 0.44 0.35 0.53 0.44
precision.test 0.67 0.59 0.75 0.66

recall.test 0.73 0.71 0.75 0.77
F1.test 0.70 0.65 0.75 0.71

Note. acc = accuracy; kappa = inter-rater agreement (Cohen’s kappa); loo.cv = leave-
one-out accuracy; P = precision; R = recall; F1 = F1 score; C = cost/regularization
hyperparameter

Table 3.17: Generalized SVM-RFE for RBF kernels: Ranking and selected
subsets for dataC

ranking and best set C γ loo.cv loo.cv complete
math grade GPA timss first tea school type age sex prep state 28 0.001 0.7709 0.7564

Note. bold and framed = best feature subset selected by the generalized SVM-RFE
algorithm; C = cost/regularization hyperparameter; γ = RBF kernel hyperparamter;
loo.cv = leave-one-out classification on the best selected set; loo.cv complete = leave-one-
out classification on all features
GPA = grade point average in the final exam in school; school type = general-education
Gymnasium or not; math grade = math grade in the final exam in school; timss = sum
score of the TIMSS items; age = participant’s age; first = first mathematical semester
or not; sex = participant’s sex; state = federal state of Baden-Württemberg or not;
prep = math prep course prior to university or not; tea = teacher candidate or not

complete model, with both models showing moderate inter-rater agreement

(0.50 and 0.47 respectively). The models show slightly more overfitting than

the logistic regression model with elastic net regularization, but result in

comparable results of accuracies around 0.75. As expected, the SVM with
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Table 3.18: Evaluation of the SVM models with RBF kernel trained on dataC
with the selected feature set and the complete feature set. Test set measures
for the selected feature set are further differentiated in cohort 1 and cohort 2.

dataC cohort 1 cohort 2 dataC complete
(C=28, γ=0.001) (C=28, γ=0.001)

acc.train 0.78 0.78
kappa.train 0.56 0.56

loo.cv 0.77 0.76
precision.train 0.74 0.73

recall.train 0.76 0.78
F1.train 0.75 0.76
acc.test 0.75 0.71 0.79 0.74

kappa.test 0.50 0.41 0.59 0.47
precision.test 0.70 0.63 0.76 0.68

recall.test 0.77 0.71 0.81 0.77
F1.test 0.73 0.67 0.89 0.72

Note. acc = accuracy; kappa = inter-rater agreement (Cohen’s kappa); loo.cv = leave-
one-out accuracy; P = precision; R = recall; F1 = F1 score; C = cost/regularization
hyperparameter; γ = RBF kernel/shape hyperparameter

the RBF kernel outperforms the linear SVM.

3.3.7 Conditional inference tree

The selected features by the conditional inference tree are shown in table 3.19.

Table 3.19: Selected features of the conditional inference tree on dataC.
Those features are used for splits in the decision tree.

math grade GPA timss school type first age prep state tea sex
dataC X X X X

Note. math grade = math grade in the final exam in school; GPA = grade point av-
erage in the final exam in school; timss = sum score of the TIMSS items; school
type = general-education Gymnasium or not; first = first mathematical semester or
not; age = participant’s age; prep = math prep course prior to university or not;
state = federal state of Baden-Württemberg or not; tea = teacher candidate or not;
sex = participant’s sex

The algorithm uses the often selected features ‘math grade’, ‘GPA’ ,

‘timss’ and ‘tea’ to do the splits. The specific splits are shown in figure 3.2.
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Figure 3.2: Conditional inference tree with the selected features and splits
Note. The figure shows the split-points within the features used for splits. In the terminal
nodes 4-6, 8, 9 the frequencies of the target variable ’pass’ is shown.
GPA = grade point average in the final exam in school; tea = teacher candidate or not;
timss = sum score of the TIMSS items; math grade = math grade in the final exam in
school

The first split is done in node 1 for a GPA ≤ 1.8 (better GPA than 1.8),

these participants are further divided in node 2 by their major (teacher or no

teacher candidate). For the teacher candidates no further split is done and the

success in the lecture is predicted. Students majoring in physics (B.Sc.) and

math (B.Sc.), are clustered by the feature ‘math grade’ in node 3. Students

with math grades of 12 points or lower form the failure class, students with

higher math grads higher than 12 points the success class. Students with

a GPA > 1.8 are sectioned once more in node 7 depending on wheater or

not more than one TIMSS item was correctly answered. Note that even

though node 7 executes a further split, when used as a predictor the decision
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tree predicts a failure for all participants in the two terminal nodes 8 and 9,

because of pass frequencies lower than 0.5.

The prediction measures for the conditional inference tree are presented in

table 3.20. The predictor shows overfitting, resulting in a total test accuracy

of 0.68 and only a fair inter-rater agreement (κ = 0.31).

Table 3.20: Evaluation of the conditional inference tree as predictor. Test
set measures are further differentiated in cohort 1 and cohort 2.

dataC cohort 1 cohort 2
acc.train 0.74

kappa.train 0.47
loo.cv 0.69

precision.train 0.73
recall.train 0.66

F1.train 0.69
acc.test 0.68 0.62 0.74

kappa.test 0.31 0.22 0.47
precision.test 0.64 0.53 0.71

recall.test 0.50 0.57 0.75
F1.test 0.56 0.55 0.73

Note. acc = accuracy; kappa = inter-rater agreement (Cohen’s kappa); loo.cv = leave-
one-out accuracy; P = precision; R = recall; F1 = F1 score

3.3.8 Conditional forests

The value of the number of features randomly selected in each split (mtry)

is set via cross-validation to mtry= 2 (default value is mtry= 5). Feature

selection depends on variable importance. Here I can see a slight dependence

on the random seed. Those dependencies only occur within the second and

third to last ranked features ‘state’ and ‘prep’. Conditional variable impor-

tance is calculated three times with different random seeds. In table 3.21 the

sorted, absolute values of the means are reported.

Even though there is no clear cut in feature importance, consistent to the

other methods I select the ranked features ‘school type’ to ‘math grade’ and

compare the model with these features to the complete model. I choose this
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Table 3.21: Sorted list of the conditional variable importance for the condi-
tional forest and the feature selection used in further analysis.

sex prep state age school type tea first timss GPA math grade
0.00032 0.00083 0.00091 0.00127 0.00265 0.00418 0.00434 0.00733 0.01254 0.01802

Note. Absolute values of the means of three tested random seeds; bold and framed = se-
lected subset for further investigations (dataC select)
GPA = grade point average in the final exam in school; school type = general-education
Gymnasium or not; math grade = math grade in the final exam in school; timss = sum
score of the TIMSS items; age = participant’s age; first = first mathematical semester
or not; sex = participant’s sex; state = federal state of Baden-Württemberg or not;
prep = math prep course prior to university or not; tea = teacher candidate or not

cut to compare the results with the SVM, where the same subset has been

selected.

The prediction measures can be found in table 3.22. Even though the

complete model shows better results on the training set, the results on the

test set are slightly better for the smaller model.

Table 3.22: Accuracy measures of the random forest for all features (com-
plete) und the selected most important features. Test measures for the com-
plete model are further divided in the two cohorts.

dataC complete cohort 1 cohort 2 dataC select
acc.train 0.80 0.76

kappa.train 0.60 0.51
loo.cv 0.74 0.71

precision.train 0.78 0.73
recall.train 0.76 0.70

F1.train 0.77 0.72
acc.test 0.69 0.65 0.74 0.71

kappa.test 0.38 0.29 0.47 0.40
precision.test 0.65 0.56 0.73 0.67

recall.test 0.67 0.64 0.69 0.67
F1.test 0.66 0.6 0.71 0.67

Note. dataC select includes the features: ’school type’, ’tea’, ’first’, ’timss’, ’GPA’ and
’math grade’
acc = accuracy; kappa = inter-rater agreement (Cohen’s kappa); loo.cv = leave-one-out
accuracy; P = precision; R = recall; F1 = F1 score
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3.3.9 Comparison and ensemble of the best predictors

For each method I select the best model. For some methods with only slight

differences on the prediction measures, I choose the smaller model. For the

logistic regression I choose the model with the smaller subset selection. From

the logistic regressions with elastic net regularization we choose the model

with α = 0.3. In both SVM algorithms – linear and RBF kernel –, as well as

for the random forest method, I select the smaller model. Additionally the

conditional inference tree is included. A summary of the prediction measures

is reported in table 3.23.

Table 3.23: Summary of the prediction measures of the best predictors.

logistic
regression

log. reg.
with el. net

linear SVM SVM with
RBF kernel

tree forest

acc.train 0.77 0.75 0.77 0.78 0.74 0.76
kappa.train 0.52 0.48 0.53 0.56 0.47 0.51

loo.cv 0.76 0.73 0.78 0.77 0.69 0.71
P.train 0.74 0.72 0.73 0.74 0.73 0.73
R.train 0.71 0.66 0.74 0.76 0.66 0.70

F1.train 0.72 0.69 0.74 0.75 0.69 0.72
acc.test 0.68 0.74 0.72 0.75 0.68 0.71

kappa.test 0.34 0.47 0.44 0.50 0.31 0.40
P.test 0.63 0.69 0.67 0.70 0.64 0.67
R.test 0.63 0.73 0.73 0.77 0.50 0.67

F1.test 0.63 0.71 0.70 0.73 0.56 0.67

Note. logistic regression = basic logistic regression (selected subsets); log. with el.
net = logistic regression with elastic net regularization (α = 0.3); linear SVM = SVM
with linear kernel (selected features; C=0.2); SVM with RBF kernel (selected features;
C= 28, γ=0.001 ); tree = conditional inference tree; forest = random forest based on
conditional inference trees (selected features)
acc = accuracy; kappa = inter-rater agreement (Cohen’s kappa); loo.cv = leave-one-out
accuracy; P = precision; R = recall; F1 = F1 score

Further information (like hyperparameters) about the single predictors

can be found in the specific sections. Both SVM algorithms, the logistic

regression with elastic net regularization and the random forest achieve test

accuracies higher than 0.70 and moderate inter-rater agreement. The two

outstanding algorithms are the logistic regression with elastic net regular-

ization (α = 0.3) and the SVM with RBF kernel. Both achieve the highest

test accuracy (0.74 and 0.75 respectively) as well as the highest inter-rater

agreement kappa.test (0.47 and 0.50 respectively).
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To compare the predicted outcomes of the different models I calculate

the inter-rater agreement between the models. Tables for those κ-values are

presented in table 3.24 for Cohen’s Kappa on the training set and in table 3.25

on the test set.

Table 3.24: Table of inter-rater agreement (κ) for the different best predictors
on the training set

log.train elnet.3.train svm.lin.train svm.train tree.train forest.train
log.train 1

elnet.3.train 0.88 1
svm.lin.train 0.92 0.90 1

svm.train 0.91 0.90 0.98 1
tree.train 0.64 0.70 0.64 0.66 1

forest.train 0.78 0.84 0.85 0.86 0.70 1

Note. log = basic logistic regression (selected subsets); elnet.3 = logistic regression
with elastic net regularization (α = 0.3); svm.lin = SVM with linear kernel (selected
features; C=0.2); svm = SVM with RBF kernel (selected features; C= 28, γ=0.001 );
tree = conditional inference tree; forest = random forest based on conditional inference
trees (selected features)

On both, the training set and the test set, the different algorithms show

at least substantial and often almost perfect inter-rater agreement.

Table 3.25: Table of inter-rater agreement (κ) for the different best predictors
on the test set

log.test elnet.3.test svm.lin.test svm.test tree.test forest.test
log.test 1

elnet.3.test 0.82 1
svm.lin.test 0.85 0.97 1

svm.test 0.79 0.97 0.94 1
tree.test 0.70 0.76 0.74 0.79 1

forest.test 0.68 0.85 0.82 0.88 0.91 1
Note. log = basic logistic regression (selected subsets); elnet.3 = logistic regression
with elastic net regularization (α = 0.3); svm.lin = SVM with linear kernel (selected
features; C=0.2); svm = SVM with RBF kernel (selected features; C= 28, γ=0.001 );
tree = conditional inference tree; forest = random forest based on conditional inference
trees (selected features)

The best feature subsets for the methods are summarized in table 3.26.

Except for the single conditional inference tree, all of the most successful

algorithms selected the same feature subset. This is remarkable, because
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Table 3.26: Selected features for the different methods.

logistic
regression

log. reg.
with el. net

linear SVM SVM with
RBF kernel

tree forest

GPA X X X X X X
school type X X X X . X
math grade X X X X X X

timss X X X X X X
age . . . . . .

first X X X X . X
sex . . . . . .

state . . . . . .
prep . . . . . .

tea X X X X X X

Note. GPA = grade point average in the final exam in school; school type = general-
education Gymnasium or not; math grade = math grade in the final exam in school;
timss = sum score of the TIMSS items; age = participant’s age; first = first mathematical
semester or not; sex = participant’s sex; state = federal state of Baden-Württemberg or
not; prep = math prep course prior to university or not; tea = teacher candidate or not
logistic regression = basic logistic regression; log. with el. net = logistic regression with
elastic net regularization (α = 0.3); linear SVM = SVM with linear kernel (C=0.2); SVM
with RBF kernel (C= 28, γ=0.001 ); tree = conditional inference tree; forest = random
forest based on conditional inference trees

the feature selection is done for each algorithm separately and with algo-

rithm specific, appropriate methods. In addition to the performance mea-

sures (‘GPA’, ‘math grade’ and ‘timss’), the school type (‘school type’), first

mathematical semester or not (‘first’) and the major (‘tea’) is selected. For

the predictions, the major (‘tea’) is selected as feature, even though this is

the only selected variable that shows no significant result, neither in the co-

efficients of the logistic regressions and the Cox regression, nor in the χ2 and

log rank tests in the survival analysis.

As a final result, I use all the predictors of table 3.23 to build an ensemble

predictor. In the ensemble a majority vote is used to gain the overall predic-

tion. In table 3.27 the prediction measures for this ensemble are reported.

The ensemble predictor does not outperform the best single predictors.

This is no surprise, due to the high inter-rater agreements shown in table 3.24

and table 3.25. It more or less adopts the prediction measures of the SVM

with RBF kernel and the logistic regression with elastic net regularization

(α = 0.3).
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Table 3.27: Prediction measures of the ensemble of the best predictors. The
ensemble consists of the predictors summarized in table 3.23. Prediction by
majority vote of the single predictors.

ensemble
acc.train 0.79

kappa.train 0.56
P.train 0.75
R.train 0.76

F1.train 0.76
acc.test 0.75

kappa.test 0.50
P.test 0.70
R.test 0.77

F1.test 0.73
Note. acc = accuracy; kappa = inter-rater agreement (Cohen’s kappa); loo.cv = leave-
one-out accuracy; P = precision; R = recall; F1 = F1 score

3.3.10 Identification and description of the risk group

For the identification of the different prediction groups (true positive predic-

tions, true negative predictions and wrong predictions), I use the ensemble

predictor to gain predictions for the complete dataset dataC. This dataset

contains the training set and the test set, which results in accuracy measures

different those reported in table 3.27 (closer to the training measures due

to the distribution in the train-test split). The prediction measures for the

combined data set (train set and test set) are reported in table 3.28.

In table 3.29 descriptive measures of the three groups are given. The

performance measures from school – GPA and math grade –, as well as the

test performance on the TIMSS items show the relation of performance and

success. The group of the true predictions shows the best grades and test

performances, whereas the risk group of the true negative predictions shows

the weakest performance. The uncertainty group of the wrong predictions

shows intermediate performance between the other two groups. With regard

to the ranges of the performance measures, we can see that for students with

a GPA worse than 2.4 and a math grade worse than 9 points the success is not
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Table 3.28: Prediction measures of the ensemble predictor. The predictor
was learned on the training set of dataC (for results see table 3.27). The
here reported measures are on the complete dataset.

complete dataC
acc 0.78

kappa 0.55
P 0.74
R 0.77

F1 0.75
Note. acc = accuracy; kappa = inter-rater agreement (Cohen’s kappa); loo.cv = leave-
one-out accuracy; P = precision; R = recall; F1 = F1 score

once correctly predicted. For students with a GPA better than 1.3 no correct

failure prediction occurs. The ranges of the wrong predictions are rather

wide. This could stress that importance of the behavior during the semester,

as fortunate prerequisites don’t necessarily lead to success and unfortunate

prerequisites don’t necessarily lead to failure. The descriptive measures in

table 3.29 only give general information on the groups but no indication on

the structure or interaction of the features, which lead to different group

assignments.

Table 3.29: Descriptive measures of the groups with correct positive pre-
diction, correct negative prediction and wrong predictions on the complete
dataset dataC. The predictions are executed with the ensemble predictor.

pred. pass=1 wrong pred. pred. pass=0
M (SD) range M (SD) range M (SD) range

GPA 1.54 (0.35) 1.0-2.4 1.97 (0.58) 1.0-3.5 2.41 (0.52) 1.3-3.6
math grade 13.75 (1.30) 9-15 12.42 (2.47) 4-15 9.95 (2.43) 4-15

timss 2.98 (1.00) 0-5 2.57 (1.18) 0-5 1.73 (1.07) 0-4
% % %

school type1 92.98 84.21 63.40
first1 64.04 63.16 83.01

tea 53.51 35.53 49.02
Note. GPA = grade point average in the final exam in school; school type = general-
education Gymnasium or not; math grade = math grade in the final exam in school;
timss = sum score of the TIMSS items; age = participant’s age; first = first mathematical
semester or not; tea = teacher candidate or not
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For different applications I partition the feature space using a conditional

inference tree and assign terminal nodes to the risk group. Results of the

decision tree are shown in figure 3.3.
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Figure 3.3: Conditional inference tree for the group membership of correct
positive prediction, correct negative prediction and wrong predictions an the
complete dataset dataC.
Note. The figure shows the split-points within the features used for splits. In the terminal
nodes 4, 5, 7, 8, 11, 12, 14, and 15 the frequencies of the group membership is shown,
with group 0 being the true negative predictions, group 1 the true positive predictions and
group 2 the wrong predictions. The risk group is defined as the true negative predictions.
the terminal nodes 4, 5, 8 and 14 are assigned to this group. Predicted outcomes of the
ensemble predictor for the complete dataset dataC are used.
GPA = grade point average in the final exam in school; school type = general-education
Gymnasium or not; timss = sum score of the TIMSS items; math grade = math grade in
the final exam in school; first = first mathematical semester or not

The figure shows eight terminal nodes. i assign nodes 4, 5, 8 and 14 to the

risk groups, because in this nodes the frequency of true negative predictions is

outstandingly high compared to the rest. The ensemble predictor is especially

confident about the failure of the students in node 4 and node 5. In the

following I describe the paths that lead to those terminal nodes. The first

split is done at a math grade under and above of 12 points. For students

in their first mathematical semester, with a math grade in the final exam
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in school below or equal to 12 points, the ensemble is confident about the

failure in Analysis 1 (regardless of the test performance on the TIMSS items).

This path leads to the terminal nodes 4 and 5. For students not in their first

mathematical semester a further split is executed at a GPA of 2.1, with GPAs

worse than 2.1 leading to terminal node 8, which also is assigned to the risk

group.

Students with math grades better than 12 points, are also allocated by

their GPA. For students with a GPA worse than 1.6 the math performance

is re-assessed with the TIMSS items. Students with 2 correct answers or

less are assigned to terminal node 14 and thus to the risk group. Another

interesting result shown in figure 3.3 is the relevance of the school type.

According to the results, the success in the Analysis 1 lecture for students

with good school grades (more than 12 points in the final math exam and a

GPA better than 1.6) highly depends on the school type. If the grades are

achieved at a general-education Gymnasium, the prediction of success is very

confident. For other school types the frequency of positive predictions is still

the highest, but by far not as confident. This shows that in this analysis the

value of school grades highly depends on the school type.

In summary there are three paths that leading to the risk group, which

suggest three especially unfortunate prerequisite constellations. We will sum-

marize these constellations in three risk levels, with the highest risk in risk

level one. Students assigned to risk level one have 12 points or below in

the final math exam and a GPA higher than 2.1. Risk level two is defined

by math grades of 12 points or below and a GPA better than 2.1. Those

students might have problems completing the Analysis 1 lectures in the first

semester. The risk level three contains students with good math grades

(above 12 points) but GPAs not better than 1.6. As already mentioned, the

math performance is re-assessed with TIMSS items for this group – 2 or less

correctly answered items lead to as risk. The risk levels are summarized in

table 3.30.
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Table 3.30: Description of three risk levels with especially unfortunate pre-
requisites.

risk level one risk level two risk level three
math grade ≤12 points ≤12 points > 12 points

GPA1 >2.1 ≤ 2.1 > 1.6
timss ≤ 2

description highest risk level with
the most confident failure
prediction

high risk level if the
Analysis 1 lecture is at-
tended in the first math-
ematical semester

moderate risk level

Note. 1 the range for the GPA is 1-6 with 1 indicating the best performance
GPA = grade point average in the final exam in school; math grade = math grade in the
final exam in school; timss = sum score of the TIMSS items

3.4 Discussion

With regard to the three research questions the discussion is structured as

follows. First, I review the results of students* different prerequisites prior

to university. I primarily focus on the teacher candidates and their possible

differences to the other math students. Secondly, I summarize the most

predictive features found by the different methods and thirdly, I discuss the

prediction accuracies achieved only using our small set of variables and the

risk groups.

3.4.1 Differences in prerequisites of teacher candidates

I compared the prerequisites of B.Ed. students with those of B.Sc. students.

Because of the different distribution of students’ sex in those groups, with

more female students in the B.Ed. program (about 58%) than in the B.Sc.

program (about 28%), I repeated the analysis for the performance measures

‘GPA’, ‘math grade’ and ‘timss’ and controlled for sex. The results for the

group differences did not change, so those results are not reported. For the

GPA, I can reproduce the result of Klusmann et al. (2009), showing no dif-

ferences for the two groups. Thus a negative selection concerning the general

performance in school is not existent in the data. Other than their results,

there are differences in the math specific performance measures ‘math grade’
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and ‘timss’, where the B.Sc. students performed better. This might be due to

different sample differences used in this study and in Klusmann et al. (2009).

I compare teacher candidates in math with B.Sc. students in math and

physics, whereas Klusmann et al. (2009) uses the TOSCA data set (Köller et

al., 2004), where B.Sc. students with scientific subjects, also outside of the

math and physics field are included as well. This means that the different

results might occur because of a substantial positive selection in my B.Sc.

group. The group differences regarding participation in a mathematical prep

course prior to university, with only 20% of the B.Ed. students compared

to 50% of the B.Sc. students, need further investigation. The University of

Tübingen offers mathematical prep courses for physics and computer science,

but no course particular for math students. Even though those courses are

open to math students as well, they might be more present in the physics

study recommendations, thus the physics students within the B.Sc. group

might cause this difference. In the framework of this study the difference of

the variable ‘first’ needs to be discussed. Only 58% of the B.Ed. students

were in their first mathematical semester, compared to 86% of the B.Sc. stu-

dents. The data doesn’t contain the information, if the students who are not

in their first mathematical semester, already participated in an Analysis 1

lecture before, or if they for example attended lectures in linear algebra first.

Due to our exclusions we can eliminate partly successful participations in

former Analysis 1 lectures. It is a possible scenario for B.Ed. students not

to start with the analysis and linear algebra lectures simultaneously, which

would be the common way especially for the B.Sc. students. This has an

influence on the dropouts in this data as seen in the importance of the feature

‘first’ in the predictions and feature selections. This might be due to general

experience gained at university, even though the lecture itself is attended for

the first time. For that reason it was important to include the feature ‘first’

to capture this effect when evaluating the group of teacher candidates.
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3.4.2 Identification of the most predictive features

For the identification of the most predictive features method specific al-

gorithms are used. Even though different feature subsets are selected (for

example due to the amount of regularization being used in the logistic re-

gression with elastic net regularization), the best predictors show the same

subset. The methods of logistic regression (significant coefficients), the linear

SVM (recursive feature elimination – RFE), the random forest (conditional

variable importance) as well as the two overall best predictors, the logistic

regression with elastic net regularization (α = 0.3 – selection due to the

property of the included L1 regularization) and the SVM with RBF kernel

(generalized RFE), use the features grade point average of the final exam in

school (‘GPA’), the information if the school type where the final exam is

done was a general-education Gymnasium (‘school type’), the math grade in

the final exam in school (‘math grade’), the sum score of the TIMSS items

(‘timss’), the information if the students were in their first mathematical

semester (‘first’) and if the students are in the B.Ed. (teacher candidates) or

in the B.Sc. study program (‘tea’).

As expected the math specific performance measures and the general

school performance measure show positive effects on the success in the Anal-

ysis 1 lecture (see e.g. Bean, 2005). As mentioned earlier there is a positive ef-

fect concerning students’ number of mathematical semester. Students which

are not in their first mathematical semester show higher success probabili-

ties than students in their first semester. This effect was expected because

even though the students might not have participated in a former Analysis 1

lecture they don’t have to deal with general problems at the beginning of

university and might be more experienced in handling the requirements of a

math lecture. Even though in the basic logistic regression being a teacher

candidate shows only just no significant coefficient for the dependent variable

indicating the success in Analysis 1, in prediction, all methods selected ‘tea’

as a predictive feature. Over all, we see slight indication of a positive effect

of ‘tea’ on the success. For example, the single decision tree selects ‘tea’ as

one of the splitting features with a positive effect. This might be due to
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the high frequency of students not in their first semester within the teacher

candidates. Since the feature ‘first’ is not selected by the tree, its positive

effect might occur within the feature ‘tea’.

Students who graduated at a general-education Gymnasium are more

likely to pass the Analysis 1 lecture. This influence of the school type can only

be discussed speculative because the data doesn’t reveal further information.

In some of the alternative school types the students attend a lower level school

first and then transfer to a school were the admission to a university can be

achieved. Those differences, for example in the math knowledge, might not

be seen in the restricted framework of the final exams in school, but seems

to have an influence on success probabilities at the university.

3.4.3 The gained prediction accuracy

Except for the basic logistic regression and the single conditional inference

tree, the best predictors of the respective methods all achieve accuracies on

the test set above 70%. The F1-scores are in a good range between 0.6 and

0.73 for all predictors (except for the single tree) and show no substantial

tradeoff between recall and precision, indicating, as expected, no serious effect

of the slightly skewed data.

The overall best predictors are the elastic net – logistic regression with

the elastic net regularization and a tradeoff parameter between L1 and L2

regularization of α = 0.3 – (test accuracy of 74%), the SVM with RBF

kernel (test accuracy of 75%) and the ensemble predictor which consists of

all the best predictors (test accuracy of 75%). All predictors achieve lower

accuracies on cohort 1, but the named best predictors are with accuracies

of 71%, for both the SVM and the elastic net, still in a good range. Note

that those accuracies are achieved by only using the most predictive features

reported in the previous section. The inter-rater agreement values (Cohen’s

κ) between the predicted outcomes on the test set and the true outcomes are

with 0.47 for the elastic net and 0.50 for the SVM in the moderate range (see

Landis & Koch, 1977).

As a result I summarize that with appropriate methods the success in
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the Analysis 1 lecture can be correctly predicted for 75% of the students,

only with the knowledge of their GPA, their math grade in the final exam in

school, the test result of the TIMSS items, the school type and their number

of semesters and study program. Note that this is the accuracy on the test

set meaning after possible generalization errors.

3.4.4 Risk groups

The results of this study can help universities to identify risk groups in math

study programs. Here we see that unfortunate performance measures from

school lead to the expected risk of a failure in Analysis 1. The results not un-

derline the results of previous studies (see e.g. Bean, 2005), but furthermore

give thresholds for the math grade of 12 points and a school GPA of 2.1.

We also see that a good mathematical performance in school (> 12 points)

needs to be confirmed by additional mathematical performance tests, like

the TIMSS items (at least as long as the GPA is not in the excellent range,

here > 1.6).

3.4.5 Conclusion

I conclude, that teacher candidates start with adverse prerequisites con-

cerning math specific performance measures. However, there are no sig-

nificant differences to B.Sc. students in terms of success in the Analysis 1

lecture. Success in the Analysis 1 depends on the number of the mathemat-

ical semesters with a positive effect of not being in the first semester. The

distribution of this variable within the teacher candidates might contribute

to a slight overall positive effect of being a teacher candidate. The analysis

of the risk groups as well indicates the disagreement with the public opinion

of teacher candidates being the worse students, described in Blömeke (2005).

The study program itself does not occur as indicator for a risk group. But

one should mention that a threshold for the math grade in school can be

set at 12 points (see previous section). The B.Ed. students however show

significantly worse math grades compared to their B.Sc. colleagues (11.43

and 12.06 respectively) with the mean lying slightly under the threshold. An
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assumable negative effect on the success however did not occur in our analy-

sis and even though the teacher candidates show worse prerequisites in math

performance the school grades are still in the good range. As a conclusion I

say that at least in our dataset the teacher candidates show no substantially

unfortunate prerequisites for the success in the Analysis 1 lecture.

With regard to the variable clusters of Bean (2005) and Burrus et al.

(2013) the analysis showed not effects in the field of students demographic

characteristics, age and sex, but the a high relevance of the academic prepa-

ration and success factors. The indication of risk groups highly depends on

performance measures from school, or at least on their underlying concepts

of knowledge. We saw that the school grades in some cases have to be con-

firmed by additional tests or the knowledge about the school types where

the grades were achieved. The identification of the risk group indicators

and the classification of the risk levels can be extremely helpful for univer-

sities in the discussion about admission restrictions. Table 3.30 shows the

highest risk for students with below average school grades (math grades of

≤ 12 points and GPAs higher than 2.1). Especially the math grade seems

to be a good indicator for students in risk groups. Other applications than

admission restrictions can be the development of interventions and general

support courses. Even though, the results might not give suggestions for spe-

cific variables which could be improved by interventions, it helps to identify

risk groups for which interventions or support courses should be developed.

For this task figure 3.3 can be used.

This analysis relies on results of the ensemble predictor, which shows

a test accuracy of 75%. This accuracy is only achieved using a small set

of features, consisting of information prior to the lecture. Considering no

information about students’ behavior during the semester is included, this

is a rather high value. Note that the accuracy refers to predictions on the

test set, consisting of students the algorithm has never seen bevor. The

remaining 25% of the students show wide ranges of variable values. Again,

this stresses the importance of the behavior during the semester. On one

hand, even students with very unfortunate prerequisites can succeed in the

lecture and, on the other hand, very fortunate prerequisites don’t guarantee
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the success. With the high accuracy of 75% a general structure seems to be

found, resulting, for example, in the identification of risk groups.

3.5 Limitations and outlook

In this study, data of two consecutive Analysis 1 lectures at the University

of Tübingen was used. Even though, instead of sampling, all students of the

lecture were included (with a return rate around 92%), the data might only

be representative for this university. Especially concerning the federal state,

where 87% of the participants graduated at a school in Baden Württemberg,

the data might not be representative for Germany. With the combination

of two lectures I tried to address the possible dependence on lecturers and

specific schedules. For further improvement the inclusion of more lectures,

in particular lectures at different universities, would be appropriate. Con-

cerning the used variables, one should consider aspects concerning students’

personality and motivation.

As next steps the inclusion of behavioral information during the semester

is planned, including a wider range of students’ characteristics. For a better

generalization more universities in Baden Württemberg will be included.
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Studiengängen: Ergebnisse einer bundesweiten Befragung von Exma-

trikulierten des Studienjahres 2007/08. Hannover: HIS Hochschul-

Informations-System.

Holland, J. L. (1997). Making vocational choices: A theory of vocational per-

sonalities and work environments (3rd ed.). Odessa, FL: Psychological

Assessment Resources.

Hothorn, T., Buehlmann, P., Dudoit, S., Molinaro, A., & Van Der Laan, M.

(2006). Survival ensembles. Biostatistics , 7 (3), 355–373.

Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased recursive partition-

ing: A conditional inference framework. Journal of Computational and

Graphical Statistics , 15 (3), 651–674.

Kleinbaum, D. G., & Klein, M. (2012). Survival analysis: A self-learning

text (3rd ed.). New York, NY: Springer.
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Köller, O., Watermann, R., Trautwein, U., & Lüdtke, O. (Eds.). (2004).
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Chapter 4

Discussion

In this thesis three main aspects of math teacher education are covered. The

inner structure of MPCK and a potential separation to MCK is investigated

in chapter 1. Building on these results, in chapter 2 this relationship is am-

plified and prerequisites students enter university with for the acquisition of

MCK and MPCK are explored. Because of the high relevance of MCK, both

for teaching and as requirement for MPCK, in chapter 3 I examined the suc-

cess, in terms of dropout rates, of students in a first semester mathematical

lecture with emphasis on influencing factors and risk groups. An important

question of this chapter is, if teacher candidates show disadvantageous pre-

requisites for the success in the math lecture and thus build a risk group.

While chapter 1 and chapter 2 rely directly on the performance on MCK and

MPCK tests, chapter 3 does not focus on the competence itself, but on the

successful participation in a lecture for the acquisition of those competences,

or at least MCK.

The validity of the performance tests was ensured in several steps. Both

tests were developed in close collaboration with experts in the specific field

to assure content validity. The correlation to validity items employed in

TEDS-sM (Buchholtz et al., 2012) and TIMSS (Baumert et al., 1999) was

substantial indicating convergent validity. Additionally, correlations to school

grades, such as the GPA and the final high school math score, as well as mean

differences on the scales met expectations.
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Inner facets of MPCK

In chapter 1 I focus on the structure of MCK and MPCK, in particular on the

structure within the latter. Model results favored a model that distinguishes

two separate facets within MPCK (see figure 1.6). This model supports the

existence of the independent MPCK facets instruction and diagnostic compe-

tence in addition to the general MCK facet. Here again the framework is the

subject matter dominated, initial phase of the study program. Even without

a special education in MPCK, those facets were able to explain variance in

a content-related MPCK test, additionally to a general mathematical un-

derstanding. The statistical separation of inner MPCK facets has not been

done before and thus is remarkable, especially in this content-related context.

The results not only show independent inner facets of MPCK, but also the

separability of those facets from MCK.

The separation of the inner facets of MPCK is interesting from a theo-

retical point of view, with respect to the emergence and structure of com-

petencies. This knowledge can be applied in the planning of lectures and

seminars.

Relation of MCK and MPCK

As mentioned before, in addition to inner facets of MPCK, the separability

of MCK and MPCK is shown in chapter 1. Although the separation of

MCK and MPCK has already been analyzed in previous studies (see e.g.

Buchholtz, Kaiser, & Stancel-Piatak, 2011), the results of this study are

remarkable, because the separation of MPCK and MCK was undertaken

with a highly content-related point of view on MPCK. This shows, that

there might be a generic separation of MPCK and MCK in the sense of

Shulman’s PCK as “subject matter knowledge for teaching” (Shulman, 1986,

p. 9). As discussed in chapter 1, this goes beyond the separation of MCK

and a comprehensive MPCK dimension – including not only content-related

parts, but also the general pedagogical point of view – at a later point in the

training as employed by the TEDS-group (e.g. Blömeke et al., 2011; Blömeke,
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Kaiser, & Lehmann, 2010; Buchholtz et al., 2012) and COACTIV (Krauss,

Neubrand, Blum, & Baumert, 2008; Kunter et al., 2011). A separation in

their broader context seems more obvious, because they included aspects

of MPCK, which differ greatly from MCK. To show this generic separation

in the content-related context, the study was deliberately scheduled at this

early stage of the training. The results point to the mindset of different kinds

of mathematical understanding – referred to as MPCK and MCK – at the

beginning of the training.

Even though MCK and MPCK can be statistically separated, results

show the expected substantial relation in terms of significant correlations

(see chapter 2). However, the correlation was low enough for the assumption

of two different and separable dimensions. The overlap of the facets can also

be seen in the similarity of the effect of covariates as conditional factors for

MCK and MPCK.

In addition to MCK, MPCK is important for teachers and according to

the results of chapter 1, it starts to develop together with MCK from the

beginning of the training. The separation, however, shows that it is not one

simple unidimensional construct and thus MPCK should be more stressed in

addition to the mathematics lectures (MCK) early in the training (chapter 1).

Prerequisites for the acquisition of MCK and

MPCK

Students’ prerequisites for the acquisition of MCK and MPCK are examined

in chapter 2. Additional statements about the prerequisites for the acquisi-

tion of MCK, in terms of conditional factors for the success in a MCK lecture,

are discussed in chapter 3.

While a dependence of students’ sex on the MCK test results was found

(chapter 2), students’ sex seems to be unrelated to the success in the math-

ematical lecture (chapter 3). For both, the MCK test and the success in the

mathematical lecture, the school performance measures showed significant

coefficients.



152 CHAPTER 4. DISCUSSION

In both studies the school type also showed significant coefficients. In con-

trast to the MCK, the MPCK performance was unrelated to the school type,

whereas students’ sex, GPA and math grade showed the same dependence

(with male students and better school performances being favored).

Better performance in school not only leads to better performance in

MCK, but also in MPCK (even though it is not part of school education).

This supports the importance of mathematical performance as requirement

for MPCK (chapter 2). The effect of the experience of students leads in the

same direction. Mathematically more experienced students did not only show

better results on the MCK test, but also on the MPCK test, even though

no particular MPCK lectures or seminars were attended. Once more, this

might be a sign of the role of MCK as a prerequisite for MPCK.

For both tests the study program showed no significant effect, meaning no

differences between teacher candidates and their colleagues at the beginning

of the training were detected. This is interesting, because the choice of

the study program Bachelor of Education, and a thereby probably involved

affinity to teach, does not seem to have an effect on the performance on the

MPCK test.

According to group differences prior to university (see chapter 3), teacher

candidates show no difference in their GPAs compared to their colleagues.

This does not apply for the mathematical performance measures, math grade

in school and the results of the TIMSS items. Those measures show signif-

icant differences between B.Ed. and B.Sc. students, with B.Sc. students

showing the better performance. Note, that the TIMSS items were part of

the MCK test. TIMSS items form the part of the MCK test, which mea-

sures mathematical knowledge from school, whereas the remaining part of

the MCK test measures mathematical abilities related to upcoming contents

at university. Differences were only seen concerning mathematical school

performances.
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Acquisition of MCK in a first semester math-

ematical lecture

In chapter 3 I analyze the success in a first semester mathematical lecture,

depending on numerous prerequisites. I use two cohorts of the Analysis 1

lecture, which is the typical entry lecture for both B.Ed. and B.Sc. students

at the University of Tübingen. For the dropout prediction students’ GPA,

math grade, performances on the TIMSS items as well as the study program,

the school type and the variable ‘first’ – indicating whether the students are in

their first mathematical semester or not – were the most predictive features.

Note that the importance of the GPA, school type and the math grade are

in accordance with the results of chapter 2 addressing prerequisites for the

acquisition of MCK. All of the used features represent student attributes prior

to the lecture. A prediction accuracy of 75% was reached, which is remarkable

no information about students’ behavior during the semester was included.

This illustrates the dependence of success in this lecture on prerequisites and

allows definite statements on the identification of risk groups at the beginning

of studies already. The analysis of those risk groups provides interesting

insights, for university scholars as well as the department of education. The

analysis does not only rely on linear models like the logistic regression, but

includes more complex relations of the independent variables with success

and between the variables. Students with a math grade lower or equal to

12 points in the final exam in high school and a GPA higher (worse) than

2.1 show the highest risk level with the most confident failure prediction.

This again shows the dependence of school performance measures not only

on MCK (see chapter 2), but also on the success in the lecture. This expected

dependence was mentioned before (see e.g. Bean, 2005) but without precise

thresholds.

Another interesting result concerns students with a good mathematical

performance in school (math grade). In order to be predictive for the suc-

cess, the mathematical school performance needs further confirmation with

the TIMSS items (at least as long as the GPA is not in the excellent range

≤ 1.6). This result questions the validity of the math grade as a measure
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for mathematical knowledge. Additionally the predictive character of school

performance measures depends on the school type, meaning that the explana-

tory power of math grade and GPA vary between school types.

The selection of the study program as a predictive feature needs further

investigation. The effect of the study program B.Ed. is rather positive. This

might be due to the high frequency of students not in their first semester

within the teacher candidates. The analysis of the risk groups, survival

models and the basic logistic regression did not reveal an effect of the study

program.

Conclusion

The importance of both MCK and MPCK for teaching math has been re-

ported several times before (see e.g. Ball, Lubienski, & Mewborn, 2001; Shul-

man, 1987). In this thesis the dependence of those facets of knowledge was

confirmed. Despite the dependence of the facets, I also showed their distin-

guishability in a highly subject matter dominated phase of teacher eduction.

Those findings recommend the promotion of MPCK already in an early phase

of studies and parallel or supporting to the MCK lectures. MPCK as an-

other kind of mathematical understanding is a content-related mindset that

is often not considered.

A broad differentiation of contents within MPCK has been suggested be-

fore (see e.g. Blömeke & Kaiser, 2014; Döhrmann, Kaiser, & Blömeke, 2012;

Krauss et al., 2011; Krauss, Brunner, et al., 2008; Tatto et al., 2008). I

summarized those suggestions with a content-related point of view and in-

troduced two knowledge facets within MPCK (instruction and diagnostic

competence). I was able to verify those facets empirically and their identifi-

cation in addition to the general MCK (chapter 1).

On MCK, I saw advantages of the B.Sc. students, compared to the B.Ed.

students, in terms of mathematical school performance prerequisites (chap-

ter 3). The performance on (only) the TIMSS items showed the same results,

whereas the performance on the complete MCK test (as well as the GPA)

revealed no difference between the two groups (chapter 2). I conclude that
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there are differences in the previous mathematical school knowledge, which

do not seem to persist for a mathematical knowledge on a higher abstraction

level, but still based on school contents. This result was confirmed in the

analysis of dropout rates in chapter 3.

In summary the teacher candidates do not form a risk group in math

education.
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Appendix A

Example tasks for the

performance tests

A.1 Example Tasks for the pedagogical con-

tent knowledge

Example tasks for the MPCK performance test used in chapter 1 and chap-

ter 2. On example for each of the three facets school-relevant mathemati-

cal content knowledge (schoolMCK), diagnostic competence and instruction

competence. The test was applied in German, thus we provide the original

version in German and a translated version in English.

A.1.1 School-relevant mathematical content knowledge

Original version in German:

In einer Klausur wird Schülern (für feste a, b ∈ R) der Ausdruck∫ b

a

f(x)dx

gezeigt. Die Frage ist, was dieser aussagt?

161
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Entscheiden Sie welche Antwort korrekt ist.

Kreuzen Sie ein Kästchen pro Zeile an

Der Ausdruck steht... Ja Nein

A) ...immer für eine Stammfunktion von f , die an einer

Stelle ausgewertet wurde.

� �

B) ...für den Flächeninhalt zwischen dem Graphen von f

und der x-Achse, falls f(x) > 0,∀x ∈ [a, b].

� �

C) ...für eine Funktion F , für die gilt: F ′ = f . � �

English version:

In an exam the term ∫ b

a

f(x)dx

is shown to the students (for fixed a, b ∈ R. The question is what it means.

Decide which answer is correct

Mark one box per row

The term indicates... Yes No

A) ...always an antiderivative of f evaluated at one point. � �

B) ...the area between the graph of f and the x-axis, if

f(x) > 0,∀x ∈ [a, b].

� �

C) ...a function F with F ′ = f . � �
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A.1.2 Diagnostic competence facet

Original version in German:

Ein Schüler soll das Fassungsvermögen (in Litern) des Tanks eines Autos

berechnen. In der Aufgabe ist ein Verbrauch von 7, 6 Litern pro 100 km und

eine maximale Reichweite von 530 km angegeben.

In der 7. Klasse hat Peter die folgende, falsche Antwort gegeben:

Nach 100 km hat das Auto 7, 6 Liter verbraucht. Damit kann das Auto mit

einem Liter 13, 16 km weit fahren. Für die angegebenen 530 km muss der

Tank daher 13, 16 · 530 = 6974, 8 Liter fassen.

Bei welchen der folgenden Aufgaben A,B und C besteht die Möglichkeit, dass

Peters Fehler wiederum zu einer falschen Lösung führt?

Kreuzen Sie ein Kästchen pro Zeile an

Ja Nein

A) Kürzen Sie den Bruch 3x2

2x+8x3
vollständig. � �

B) Wie viel sind 13 % von 120e? � �

C) Geben Sie alle x ∈ R an, die die Gleichung 5, 6x−12 = 0

lösen.

� �

English version:

A student is asked to calculate the capacity of a car’s tank (in liter). A fuel

consumption of 7.6 liters per 100 km and a maximum range of 530 km are

given in the task.

In seventh grade Peter gave the following, wrong answer:

After 100 km the car has used 7.6 liters. Therefor the car can go 13.16 km

on one liter. Thus for the 530 km given in the task, the capacity of the tank

hast to be 13.16 · 530 = 6974.8 liters.
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For which ones of the following tasks is it possible that Peter’s mistake

would also lead to a wrong answer?

Mark one bos per row

Yes No

A) Reduce the fraction 3x2

2x+8x3
completely. � �

B) How much is 13 % of 120e? � �

C) Give all x ∈ R which solve the equation 5, 6x− 12 = 0. � �

A.1.3 Instruction facet

Original version in German:

Sie werden in der Schule darauf angesprochen, warum Sie immer die reellen

Zahlen R verwenden, wenn irrationale Zahlen meist keine direkte Rolle spie-

len und deshalb die rationalen Zahlen Q doch reichen würden.

Welche Erklärungen wären angemessen?

Kreuzen Sie ein Kästchen pro Zeile an

Ja Nein

A) Das macht rein pädagogisch Sinn! Es wurde

nachgewiesen, dass es Schülern leichter fällt bestimmte

Rechnungen in der Dezimalschreibweise durchzuführen,

im Gegensatz zu komplizierten Bruchdarstellungen.

� �

B) In der Schule werden oft Längen, Flächeninhalte und

Volumina gemessen. Das setzt einen Zahlenbereich vo-

raus, der in eineindeutiger Beziehung zu den Punkten

auf einer Geraden steht. Das leisten die reellen Zahlen

im Gegensatz zu den rationalen Zahlen.

� �
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English version:

The question arises why real numbers R are always used in school even

though irrational numbers hardly ever occur, which means that using rational

numbers Q should be enough.

Which explanation would be appropriate?

Mark one box per row

Yes No

A) This makes sense from a pedagogical point of view! It

has been shown that certain calculations are easier for

students in decimal notation compared to complicated

fractions.

� �

C) In school lengths, areas and volumes are frequently mea-

sured. This requires a number range which is in a biu-

nique relation to the points on a line. This is provided

by real numbers rather than by rational numbers..

� �
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A.2 Example task for the content knowledge

Example task for the MCK performance test used in chapter 2. Additionally

to the applied German version we provide a version in English.

Original version in German:

Funktionen sind Ihnen zum Beispiel in der Form f(x) = x2 bekannt. Welche

Vorstellung haben Sie von einer Funktion?

Kreuzen Sie ein Kästchen pro Zeile an

wahr falsch

A) Eine Funktion f ist eine Zuordnung zwischen zwei Men-

gen A und B, die jedem Element a aus A genau ein

Element b aus B zuordnet.

� �

B) Eine Funktion ist ein formaler Ausdruck in einer Unbes-

timmten x, deren Definitionsbereich noch bestimmt wer-

den muss.

� �

C) Haben zwei Funktionen den gleichen Graphen, so sind

sie gleich.

� �

English version:

You know functions for example in the form f(x) = x2. Which conception

of functions do you have?

Mark one box per row

true wrong

A) A function f refers to an assignment between two sets

A and B, which assigns to each element a in A exactly

one element b in B.

� �

B) A function is a formal expression of one variable x which

domain has to be identified.

� �

C) Two functions with the same graph are equal. � �


