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Abstract 

Introduction: Alpha/Theta neurofeedback treatment (A/T NFT) has been administered 

to adults with anxiety disorders since the late 1960s, yet the efficacy of this treatment remains 

unclear. The present, single-blind study, for the first time, uses an active placebo NFT control 

group to test the A/T NFT protocol for trait anxiety on prodromal and clinical adult female 

participants. The effects this treatment has on activation and arousal states, self-perceived 

anxiety levels, neural oscillations, and other parameters were assessed. 

Methods: Twenty-seven women ranging in age from 19 through 69 who had scored 

higher than the 66th percentile in the STAI trait anxiety sub-scale (75% of whom had previously 

been diagnosed with an anxiety disorder) were randomly assigned to either the experimental 

(EG) or the control group (CG). The EG (n = 14) received ten sessions of A/T NFT in which 

alpha and theta EEG amplitudes were uptrained at Pz. The CG (n = 13) received ten sessions of 

active placebo NFT at Pz. During successive sessions beta- (15–19 Hz) and high beta amplitudes 

(20- 24 Hz) were uptrained or downtrained. Growth curve modeling (GCM) and traditional 2x5 

repeated measures ANOVA were performed on the NFT sessions data to model individual and 

average group learning curves. Cognitive variables, such as treatment outcome expectancy, 

personal attribution styles, use, types, and efficacy of cognitive strategies in NFT, and 

correlations between NFT learning performance, time of day the NFT sessions were held, and a 

participant’s best or worst time to learn, were also investigated.  

 Results: The analysis of individual learning curves, GCM, and ANOVA all confirmed 

that the majority of participants of the EG up-regulated absolute and relative A+T amplitudes 

within a NFT session, but so did the participants of the CG. However, a non-significant trend for 

the EG to have steeper learning curves was observed. Participants of both the EG and the CG felt 

significantly more deactivated by the end of a NFT session and reduced their self-perceived 
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anxiety on all anxiety measures (STAI, BAI, GAD-7) by the end of the NFT trial. Although a 

trend could be observed that the EG reduced anxiety scores more than the CG, these differences 

did not rise to statistical significance. Lastly, no significant changes in the pre-post trial QEEG 

were found, although a trend of higher combined relative A+T power at the end of the trial was 

observed in the EG. In the EG the use of mental strategies was correlated with lower T/A ratio 

difference scores between the beginning and the end of the NFT trial but not with increased 

relative and absolute T+A amplitudes. The Time-of-day participants prefer or avoid learning did 

not correlate significantly with alpha or theta NFT amplitudes, i.e., NFT sessions being held 

during sub-optimal times of day were not associated with poorer learning performance.  

Conclusions: For both EG and CG absolute and relative T+A amplitudes increased 

within sessions and absolute and relative alpha increased across sessions although the CG 

protocol had not included an uptraining of alpha or theta amplitudes, nor low beta amplitudes 

(below 15 Hz) which may have represented upper alpha peak frequency in some of the younger 

participants. Thus, upregulation of beta and upper beta in NFT may be associated with alpha 

frequency uptraining due to functional coupling of alpha and beta EEG frequencies or it may be 

due to placebo and other non-specific effects such as EEG frequency drifts, alpha’s idling mode 

and inhibitory role during task performance, or perhaps simply that some frequency bands 

(alpha) are more susceptible to change and easier to train.  Especially the inhibition of flanking 

bands in the NFT protocol, i.e., beta bands in A+T training, to prevent frequency drifts, will be 

necessary along with detailed GCM modeling of all frequency bands to see if and how the bands 

change over time and how those processes relate to NFT learning curves. 

Keywords: neurofeedback, EEG biofeedback, quantitative EEG, trait / state anxiety, 

anxiety disorders, active placebo control, alpha/theta protocol, growth curve modeling. 
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Zusammenfassung 

Einleitung: Alpha/Theta-Neurofeedback-Behandlung (A/T-NFT) wird seit Ende der 

1960er Jahre zur Behandlung Angststörungen bei Erwachsenen verwendet, doch es ist nicht klar, 

ob diese Therapie wirksam ist. In der vorliegenden Single-Blind-Studie wird zum ersten Mal 

eine aktive Plazebo-Kontrollgruppe verwendet, um das A/T-NFT-Protokoll an Frauen mit pro-

dromalen und klinischen Trait-Angst zu testen. Die Auswirkungen dieser Behandlung auf 

Aktivierung, das empfundene Angstniveau, neuronale Oszillationen und andere Faktoren wurden 

erhoben. 

Methoden: Siebenundzwanzig Frauen im Alter von 19 bis 69, die höher als 66 Prozent 

im STAI-Trait-Angst-Test abgeschnitten hatten (75% waren zuvor mit einer Angststörung 

diagnostiziert worden), wurden zufällig auf Experimental- (EG) oder Kontrollgruppe (KG) 

verteilt. Die EG (n = 14) erhielt zehn Sitzungen A/T NFT, in denen Alpha- und Theta-Ampli-

tuden an der Pz-Elektrode verstärkt wurden. Die KG (n = 13) bekam zehn Sitzungen aktives 

Placebo-Training an der Pz-Elektrode, in denen in aufeinanderfolgenden NFT-Sitzungen jeweils 

Beta- (15–19 Hz) und High-Beta-Amplituden (20- 24 Hz) verstärkt oder vermindert wurden. 

Wachstumskurvenmodellierung (WKM) und traditionelle 2x5 ANOVA mit wiederholter 

Messung wurden mit den Daten der NFT-Sitzungen durchgeführt, um individuelle und durch-

schnittliche Gruppenlernkurven zu modellieren. Kognitive Variablen wie Behandlungerwartung, 

persönliche Attributionsstile, Verwendung, Typen und Wirksamkeit kognitiver Strategien in der 

NFT und Korrelationen zwischen der NFT-Lernleistung, Tageszeit der NFT-Sitzungen und 

bester oder schlechtester Lernzeit der Probandinnen wurden auch untersucht. 

Ergebnisse: Die Analysen der individuellen Lernkurven, WKM und ANOVA 

bestätigten, dass nicht nur die Mehrheit der Teilnehmerinnen der EG gelernt hatten, die abso-

luten und relativen A + T-Amplituden innerhalb einer NFT-Sitzung hochzuregulieren, sondern 
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auch die Probandinnen der KG. Jedoch hatte die EG nicht-signifikante tendenziell steilere Lern-

kurven. Die Teilnehmerinnen, sowohl der EG als auch der CG, fühlten sich am Ende einer NFT-

Sitzung signifikant mehr deaktiviert und hatten am Ende der Studie signifikant verringerte 

Angstwerte in allen Angstfragebögen (STAI, BAI, GAD-7). Obwohl die EG Angstwerte ten-

denziell stärker reduzierten als die CG, waren diese Unterschiede nicht statistisch signifikant. 

Auch wurden keine signifikanten Veränderungen im EEG zwischen Anfang und Ende der Studie 

gefunden, obwohl ein Trend zu höherer kombinierter relativer A+T-Amplituden am Ende der 

Studie in der EG beobachtet wurde. In der EG waren die Verwendung mentaler Strategien mit 

niedrigeren T/A-Differenzwerten zwischen Anfang und Ende der NFT-Studie korreliert, jedoch 

nicht mit erhöhten relativen und absoluten T+A-Amplituden. Außerdem waren die Tageszeiten, 

die Probandinnen zum Lernen bevorzugen oder vermeiden, nicht signifikant mit Alpha- oder 

Theta-NFT-Amplituden assoziiert, d.h. NFT-Sitzungen, die während suboptimaler Tageszeiten 

stattfanden, waren nicht mit einer schlechteren Lernleistung verbunden. 

Schlussfolgerungen: Sowohl für die EG, als auch für die KG, stiegen die absoluten und 

relativen T+A-Amplituden innerhalb der Sitzungen an und das absolute und relative Alpha nahm 

über die Sitzungen hinweg zu, obwohl das KG-Protokoll keine Verstärkung der Alpha- und 

Theta-Amplituden beinhaltete. Auch wurden Low-Beta-Amplituden (unter 15 Hz) nicht ver-

stärkt, die bei den jüngeren Teilnehmerinnen die obere Alpha-Peak-Frequenz repräsentiert haben 

könnte. Daher kann die Hochregulation von Beta- und High-Beta-Amplituden in NFT mit einer 

Alpha-Frequenzhochregulierung aufgrund funktioneller Kopplung von Alpha- und Betafre-

quenzen assoziiert sein oder aber die Folge eines Plazebo- und anderen unspezifischen Effekten, 

wie z.B. EEG-Frequenzdrift, Alpha-Leerlaufmodus, Alphas hemmende Rolle während Auf-

gabenbewältigungen, oder vielleicht einfach, dass einige Frequenzbänder (Alpha) anfälliger für 

Veränderungen und einfacher zu trainieren sind. Besonders die Hemmung flankierender 
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Frequenzbänder im NFT-Protokoll, d.h. Betabänder im A+T-Training, um Frequenzdrift zu 

verhindern, werden zusammen mit detaillierten WKM-Modellen aller Frequenzbänder benötigt, 

um herauszufinden, ob und wie diese sich mit voranschreitenden Sitzungen verändern und wie 

diese Prozesse mit NFT Lernkurven zusammenhängen. 

Schlüsselwörter: Neurofeedback, EEG-Biofeedback, quantitatives EEG, Trait / State 

Angst, Angststörungen, aktive Placebo-Kontrolle, Alpha/Theta-Protokoll, Wachstumskurven-

modellierung. 
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1. Introduction 

Anxiety disorders (AD) rank as the most common of mental health disorders in the 

United States, have a high prevalence globally, and are one of the leading causes of disability in 

western countries (Craske et al., 2017; Wittchen et al., 2010).  They tend to be under-recognized, 

particularly in primary care settings, and under-treated (Sartorius, Üstün, Lecrubier, & Wittchen, 

1996; Vermani, Marcus, & Katzman, 2011). In the European Study of the Epidemiology of 

Mental Disorders (ESEMed; Alonso et al., 2004) only 21% of those interviewed who had an 

anxiety disorder sought medical help for their disorder. Anxiety disorders are often chronic, in 

part due to dysregulated neurocircuits of stress response (Teicher, Samson, Anderson, & Ohashi, 

2016), fear avoidance, lack of affordable access to treatment, and / or associated stigma 

(Andrade et al., 2014). Other psychiatric disorders, such as depression, substance use disorder, 

and schizophrenia often include a significant anxiety component or are comorbid with AD. 

Furthermore, between 50-67% of patients with AD show a clinically significant improvement 

after the most commonly used treatments of Cognitive Behavioral Therapy (CBT) and / or 

medication (SSRIs) are applied (Taylor, Abromowitz, & McKay, 2012). Hence, it is important to 

find efficacious, non-invasive, evidence-based treatments (EBTs) with little or no side effects to 

lower anxiety levels for clinical and sub-clinical populations, especially for women, who are 

twice as likely to experience an anxiety disorder in their lifetime (Bandelow & Michaelis, 2015).  

Extraordinary advances in the field of neuroscience in the past ten years have led to a 

shift toward a new paradigm. No longer are mental disorders seen only as disorders of abnormal 

neurotransmitters, genetic vulnerabilities, defense mechanisms, and learned cognitive and 

behavioral responses. Rather, medical and psychological mechanisms are unified in a model of 

the nervous system as a neuronal network organized into nodes, hubs, and networks that can be 

partially mapped onto anatomical and functional parts of the brain, or what Kirk (2015) calls a 
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paradigm shift from a neurochemical to a neuroelectrical model. Neurofeedback treatment (NFT) 

is uniquely suited within this new model to potentially effect long-term changes in neurocircuits 

of the brain. 

NFT has been used since the late 1960s for a variety of conditions, including anxiety 

disorders. The efficacy of NFT for some conditions, such as Attention-Deficit / Hyperactivity 

Disorder (ADHD), has been well-researched (Arns, de Ridder, Strehl, Breteler, & Coenen, 2009; 

Cortese, et al., 2016; Monastra, Lynn, & Linden, 2005). However, not only have there been only 

few well-designed research studies on the efficacy of NFT for anxiety conditions, the results of 

these studies have been mixed, and the U.S. National Institutes of Health’s National Center for 

Complementary and Integrative Health (NCCIH) at this time does not endorse NFT as an 

efficacious treatment for anxiety problems. A real need exists for rigorously controlled clinical 

trials with clinical samples for the NFT treatment of AD. This dissertation is an attempt to bridge 

that gap. 

1. 1  Trait Anxiety and Anxiety Disorders  

1.1.1  Definition of trait anxiety and anxiety disorders.   

Anxiety per se is a normal and evolutionarily adaptive emotion that all humans 

experience from time to time in response to dangerous events. It alerts a person to a perceived, 

ambiguous threat via diffuse nervousness and unease which prepare the individual for a 

potentially adverse future situation. It is accompanied by autonomic nervous system arousal, 

variously presenting as perspiration, tachycardia, syncope, tremors, upset stomach, and 

restlessness (Nebel-Schwalm & Davis, 2013; Saddock, Saddock, & Ruiz, 2015). However, if 

anxiety persists over an extended period—over six months—according to the DSM-5, it is 

disproportionate to the threat presented and is perceived as “excessive and unreasonable” (ICD-

10) by the individual and a diagnosis of AD is likely. 
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The concepts of state and trait anxiety developed by Spielberger in 1961 were updated in 

2015. A personality trait is defined as a “disposition to behave consistently in a particular way” 

across situations and time (Feist & Feist, 2008). Since the mid-1990s a broad consensus exists 

that personality can be hypothesized as a hierarchical framework of personality traits. The “Big 

Five” traits of neuroticism, extraversion, conscientiousness, agreeableness, and openness are 

higher order traits and a larger number of lower order traits (Digman, 1997) include trait anxiety. 

Individuals with lower order traits such as trait anxiety, rumination, self-criticism, and negative 

evaluation, are particularly vulnerable to certain anxiety and depressive disorders (Mahaffey, 

Watson, Clark, & Kotov, 2016). 

Spielberger defines trait anxiety (T-Anxiety) and its relationship to state anxiety (S-

Anxiety) as: 

“… relatively stable individual differences in anxiety-proneness, that is, to differences 

between people in the tendency to perceive stressful situation [sic] as dangerous or 

threatening and to respond to such situations with elevations in the intensity of their state 

anxiety (S-Anxiety) reactions. T-Anxiety may also reflect individual differences in the 

frequency and intensity with which anxiety have been manifested in the past, and in the 

probability that S-Anxiety will be experienced in the future. The stronger the anxiety 

trait, the more probable that the individual will experience more intense elevations in S-

Anxiety in a threatening situation” (Spielberger, 2015, p. 5). 

However, the concept of trait anxiety is often imprecisely defined and operationalized in 

clinical psychology and neuroscience research, especially in relation to trait fear, which is often 

used interchangeably with trait anxiety. Sylvers, Lilienfeld, and LaPrairie (2011) characterize 

trait anxiety as the disposition to react with “persistent hyper-vigilance and prolonged hyper-

arousal” (p.128), apprehension, and rumination to ambiguous situations. The threat potential of a 
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situation tends to be overestimated due in large part to a hypersensitive appraisal circuit. In 

contrast, trait fear is characterized by avoidance responses such as flight, fight or freeze. Craske 

et al. (2009) delineate the difference between anxiety and fear, aligning themselves with 

Barlow’s (2004) definition by which fear is defined as an alarm response to a real or perceived 

concrete threat whereas anxiety “is a future-oriented mood state associated with preparation for 

possible, upcoming negative events” (Craske, p. 1067). However, they do admit that there exists 

an overlap of symptoms between anxiety and fear.  

Clinically, anxiety disorders are most commonly categorized according to the American 

Psychiatric Association’s Diagnostic and Statistical Manual of Mental Disorders (DSM-5, 2013) 

as mental disorders in which fear and anxiety deemed as persistent and out of proportion to the 

norm are caused by a variety of different situations or objects, depending on the type of anxiety 

disorder a person has. As anxiety is very likely to be comorbid, a person often has several 

anxiety disorders that developed during childhood, and if not treated early, remain throughout 

adulthood. The DSM-5 clearly distinguishes between fear and anxiety:  

“Fear is the emotional response to real or perceived imminent threat, whereas anxiety is 

anticipation of future threat.  Obviously, these two states overlap, but they also differ, 

with fear more often associated with surges of autonomic arousal necessary for fight or 

flight, thoughts of immediate danger, and escape behaviors, and anxiety more often 

associated with muscle tension and vigilance in preparation for future danger and 

cautious or avoidant behaviors” (DSM-5, American Psychiatric Association, 2013,         

p. 189). 

If the attribution of excessively anxious or fearful thinking and behaviors are 

consequences of medication or other substances, or could be better explained by another 

disorder, such as Alzheimer Disease, AD will not be diagnosed. The DSM-5 (2013) defines the 
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following disorders under the category of anxiety disorders: separation anxiety disorder, 

selective mutism, special phobia, social anxiety disorder (SAD), panic disorder (PD), 

agoraphobia, generalized anxiety disorder (GAD), substance / medication-induced anxiety 

disorder, anxiety disorder due to another medical condition, other specified anxiety disorder, 

and unspecified anxiety disorder.  In contrast to the fourth edition of the DSM (DSM-IV-TR, 

2000), in use for clinical research and practice up to late 2013, the DSM-5 no longer classifies 

obsessive compulsive disorder (OCD), post-traumatic stress disorder (PTSD), or acute stress 

disorders as AD, but rather newly created categories of obsessive-compulsive and related 

disorders and trauma- and stressor-related disorders, respectively. Furthermore, separation 

anxiety disorder and selective mutism are moved from the category of disorders usually first 

diagnosed in infancy, childhood, or adolescence to the category of anxiety disorders in the DSM-

5. Due to this recent DSM re-classification some of the conditions for which NFT was studied as 

potential evidence-based treatment (EBT) are no longer classified as AD. Nevertheless, these are 

evaluated in the literature review of this dissertation because there is a large anxiety component 

present, especially in PTSD and OCD, that is extremely relevant in addressing the potential 

efficacy of NFT treatment to alleviate the anxiety-related symptoms of these disorders. 

As 75% of participants in this clinical trial had a self-reported medical diagnosis of AD, 

(the majority of whom had a GAD diagnosis, followed by anxiety disorder diagnosed but not 

specified / remembered, SAD, and specific phobia), the cardinal DSM-5 (2013) diagnostic 

distinguishing characteristics for AD of adulthood are briefly described below. All AD include 

the presence of persistent symptoms for six months or more (but one month for PD) and cause 

the individual “clinically significant distress or impairment” (pp.189). The criterion that the AD 

cannot be explained better by another medical condition must also be present: 

1. GAD: Excessive anxiety and worry in multiple areas (such as work, school and social 
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environment) that are difficult to control and at least three out of six symptoms that are 

present most days: restlessness, easily fatigued, difficulty concentrating or mind going 

blank, irritability, muscle tension, and sleep disturbance; 

2. SAD (formerly social phobia): anxiety and / or avoidance of social situations, especially 

those that involve judgment and scrutiny by others, such as speaking and performing; fear 

of embarrassing oneself, being humiliated or rejected; 

3. Specific phobias: excessive fear or anxiety and avoidance of specific objects or situations, 

such as specific animals, natural environment, blood-injection-injury-related, or 

situational; 

4. Agoraphobia: excessive anxiety and / or avoidance of places or situations in which 

“escape might be difficult, or help might not be available in the event of …. 

incapacitating or embarrassing symptoms” (p. 218), such as panic or falling; or 

5. PD: recurring unexpected panic attacks, i.e., “an abrupt surge of intense fear or intense 

discomfort” (pp. 208) which reach their peak within minutes and involve at least four of 

the following 13 symptoms: heart palpitations, perspiration, trembling or shaking, 

sensations of shortness of breath, feeling of choking, chest pain, nausea or abdominal 

distress, feeling dizzy, chills or heat sensations, paresthesias, derealization, and 

depersonalization. 

Trait anxiety is a construct stemming from the fields of personality and differential 

psychology whereas the constructs of anxiety disorders are classifications from the fields of 

psychiatry and clinical psychology. Consequently, different frameworks and interests inform the 

constructs of trait anxiety and anxiety disorders and while there is a significant correlation 

between high trait anxiety and an anxiety disorder they are not synonymous. However, for the 

purposes of this study, trait anxiety as a selection criterion is the more useful concept for the 
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following reasons: 

1. The number of individuals with moderate to high trait anxiety is likely much higher than 

those diagnosed with an anxiety disorder. This includes possible participants who have a 

less severe form of anxiety symptoms, such as people with a prodromal anxiety disorder 

as well as those who have an anxious personality trait and are less likely to have 

comorbid non-AD-related mental disorders, which is an exclusionary criterion for this 

study; 

2. Having moderate to high trait anxiety is not as stigmatizing for people to admit than an 

actual mental disorder diagnosis. Consequently, people might be less hesitant to 

volunteer for a NFT trial; and 

3. Using a DSM-IV-TR or DSM-5 definition of anxiety disorder, would likely require a 

further breakdown for which of the five major anxiety disorders NFT will be evaluated in 

the clinical trial, to avoid having confounding variables of different, dissimilar anxiety 

disorders in the study. One could include the difference in anxiety disorder in the 

statistical analysis as a variable. In order for the statistical analysis to be meaningful, all 

three groups would have to include a much larger number of participants and preferably a 

similar number of participants with each anxiety disorder, which would be beyond the 

scope of this study. 

1.1.2  Epidemiology of anxiety disorders. 

It is estimated that the lifetime prevalence of anxiety disorders in the United States is 

33.7% and in Europe 14.5% according to the latest available large-scale studies, the National 

Comorbidity Survey in the U.S. (NCS-R; Kessler et al., 2005) and the European Study of the 

Epidemiology of Mental Disorders (ESEMed; Alonso et al., 2004), respectively. The Mental 

Health Surveillance Study of the Substance Abuse and Mental Health Services Administration 
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(SAMHSA, U.S.) found the annual prevalence for that anxiety disorder in 5.7% of the U.S. 

population (Karg et al., 2015), which makes it the third largest mental disorder following 

substance use disorder (7.8%) and mood disorders (7.4%). However, looking at the rates for 

adults ranging in age from 18 to 64, the annual prevalence is much higher at 24.9% in the NCS-R 

study since children are often not diagnosed with most AD, except separation anxiety disorder 

and selective mutism, until early adolescence and AD decrease in older age. With the exclusion 

of PTSD and OCD from the AD classification in the DSM-5 these percentages will go down in 

future studies. 

In the latest available large epidemiological studies, ESEMed (Alonso et al., 2004) and 

NCS-R (Kessler et al, 2005) the lifetime prevalence female to male ratio is 1.5 and 1.8, 

respectively, for all anxiety disorders and are the highest ratio for specific phobias. Specific 

phobias are 1.8 and 2.1 times more likely in females than in males.  

 
Figure 1.1: Demographics of life time prevalence of AD by age group. 

SOURCE: https://www.nimh.nih.gov/health/statistics/any-anxiety-disorder.shtml 

 According to Bandelow and Michaelis (2015), who compared data from the latest and 

largest epidemiological studies (NCS, NCS-R, ESEMed, and ECA), the median onset for an 

anxiety disorder is age 11, but is vastly dependent on the kind of anxiety disorder: Separation 

anxiety and specific phobias are on average diagnosed at age 7 and social anxiety disorder 

(SAD) at age 13. The median onset of the other DSM-5 categories for anxiety disorders that 
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begin in adulthood, are agoraphobia at age 20, panic disorder (PD) at age 24, and Generalized 

Anxiety Disorder (GAD) at age 31.  

Furthermore, moderate to large cross-cultural differences in prevalence rates of anxiety 

disorders were found by Wittchen and Jacobi (2005) who compared 27 studies from 16 European 

countries with highly heterogeneous rates. For instance, annual prevalence of GAD ranged 

between 0.2% and 4.3%, depending on the country and could only be partially explained by 

different sample collections and methodology. 

Moreover, there is a high comorbidity among different AD and between AD and other 

mental disorders, particularly between SAD and agoraphobia (r = 0.68), PD and agoraphobia (r = 

0.64), GAD and SAD (r = .55), and GAD and major depression (r = 0.62), GAD and dysthymia 

(r = .55) (Bandelow & Michaels, 2015a).  Kessler et al. (2005) found that 27% of the 

respondents from the NCS-R had three or more of the DSM-IV-TR classified mental disorders. 

Data from large epidemiological studies and long-term longitudinal studies indicate that AD “are 

quite persistent throughout the life course ... and [the persistence] is usually due to a recurrent-

intermittent course that often features waxing and waning of episodes of different comorbid 

anxiety disorders” (Kessler, Ruscio, Shear, & Wittchen, 2009, pp. 25-26).  

1.1.3  Etiology. 

Neurofeedback is based on the principles of learning theory (see section 1.2.1). 

Consequently, it is important to look at a comprehensive learning theory model that can be used 

in the explanation of the etiology of AD. To date, Mineka and Zinbarg (2006) have proposed the 

most elaborate learning theory model for anxiety disorders. They postulate a five-domains model 

with two domains of vulnerability—one that is genetic or temperament-based and the other one 

based on previous learning experiences (such as a person’s history with mastery and control over 

one’s circumstances)—as well as three contextual domains: (1) direct or vicarious conditioning, 
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(2) properties of the unconditioned stimulus (US), and (3) perceptions of the predictability and 

controllability of a learning situation. In this study, the personality trait of perceived control over 

anxiety-related events is measured with the Rotter (1966) Locus of Control scale (LOC) and the 

Stanford Expectancy of Treatment Scale (SETS). One strength of Mineka and Zinbarg’s theory 

is that it incorporates post-conditioning factors that influence learning, such as re-evaluation of 

the US and possible inflation of the US, as well as the presence of excitatory or inhibitory 

conditioned stimuli. For instance, they describe the occurrence of an inflation effect that can 

occur when a person initially experiences a minor trauma that does not cause a phobia (e.g., 

being bitten by a dog), yet later a more severe trauma (e.g., traumatic car accident) which does 

not necessarily relate to the previous minor trauma may lead to a dog phobia (Mineka & Zinbarg, 

2006). 

Barlow’s triple vulnerability model (Barlow, 2000) is a more general model of the 

etiology of mental disorders that combines factors from the bio-psycho-social sphere, including 

genetics and physiological, personality, developmental, and cognitive psychology. It consists of 

three major vulnerabilities that contribute in varying degrees to the etiology of AD:  

(1) a general biological vulnerability that includes a genetically-based disposition (high in 

personality trait of neuroticism) and reactivity to negative emotions; 

(2) a general psychological vulnerability shaped by early childhood adverse events and 

parenting styles, such as overprotective parents, for some anxiety disorders, and may lead to 

constantly elevated arousal of the sympathetic nervous system (SNS) and an experience of 

life events as unpredictable and uncontrollable; and 

(3) a disorder-specific psychological vulnerability linked to learning experiences, especially of 

parents and caretakers modeling anxious or fearful behavior incommensurate with the actual 
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danger of the situation or object and for the child receiving disproportionate attention to 

experienced somatic sensations.   

As this study is concerned primarily with the EEG-based NFT to improve trait anxiety or 

clinical anxiety symptoms, I will focus my review of current research on those findings that 

relate directly to brain structure and functionality, namely, neural circuits, neuroendocrinology, 

structural and functional abnormality of specific brain structures, and autonomic nervous system 

(ANS)-regulated physiological processes influenced by A/T NFT. These outcomes may be used 

in the discussion section to further elucidate this study’s findings. 

The AD, a heterogeneous group of disorders, have shown distinct neural circuits in recent 

studies, dependent on whether the disorder is more fear- or anxiety-based. Duval, Javanbakht, 

and Liberzon (2015) thoroughly review recent randomized controlled trials (RCTs). They 

classify PD, SAD, and phobias as primarily fear-based disorders, and GAD and PTSD as 

primarily anxiety-based (see section 1.1.1). Lueken et al. (2016) analyzed 60 out of 4,787 

reviewed RCTs, 27 of which included genetic markers, 17 neuroimaging, and 16 markers 

associated with autonomic functioning. This review was to identify biomarkers that could predict 

risk for anxiety disorder and differential clinical treatment outcome for AD. Both meta-analyses 

took publication bias into consideration when analyzing the effect size for biomarkers across 

studies. In both, fear- and anxiety-based circuits, the thalamus receives and integrates input from 

the primary sensory cortices and sends output to the amygdala, the anterior cingulate cortex 

(ACC), and the hippocampus. Most functional imaging studies show that, in general, amygdala, 

hippocampus, and dorsal anterior cingulate cortex (dACC) appear to be hyper-activated, whereas 

the sub-genual and rostral ACC (sg and rACC) and the mPFC are hypo-activated in most AD. 

Connectivity across neurocircuits, between the regions responsible for emotion processing, such 

as the amygdala and insula, and regions of emotion modulation, such as the mPFC and the rostral 
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ACC (rACC), appear to be decreased. Hypo-activation of the sgACC and rACC and the mPFC 

may be translated as a possible failure to adequately inhibit the threat response in AD (Duval et 

al., 2015). The evidence on this concept is mixed at best. A hyper-activated hypothalamic-

pituitary adrenal axis (HPA) can be observed in AD in most studies, but particularly in PTSD, 

which leads to a reduced plasma concentration of cortisol among other effects coupled with the 

pituitary gland being hypersensitive to glucocorticoids, such as cortisol.  

Williams (2016) proposed an interesting taxonomy regarding anxiety and depressive 

disorders after evaluating a multitude of experimental studies on neural circuit dysfunctions and 

progress in the Human Connectome Project (http://www.humanconnectomeproject.org/). She 

then related the circuit dysfunctions with typical symptoms for anxiety (and depressive) 

disorders and suggested specific types of therapeutic interventions depending on which brain 

circuits are most affected, an individualized precision-psychiatry. For instance, she suggests that 

anxious avoidance was associated primarily with circuit abnormalities of the salience network 

(SN), specifically with the hypoconnectivity between left and right anterior insula and the 

sublenticular extended amygdala, and the hyperactivation of the amPFC. These SN network 

abnormalities according to recent research reviewed by Williams respond particularly well to 

Deep Brain Stimulation and Selective Serotonin Reuptake Inhibitors (SSRIs). Hyperactivation of 

the default mode network (DMN) associated with rumination common in GAD and depressive 

disorders on the other hand, may respond better to transcranial magnetic stimulation, 

mindfulness and self-context therapies. This dissertation proposes that NFT may be another 

treatment alternative used to target and normalize the afore-mentioned areas in the SN and 

DMN.  
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The review of possible physiological markers that might predict AD proved especially 

interesting; the autonomic regulation of the heart rate by the vagus nerve and its variability 

(HRV), beat to beat changes in the heart rhythm, has been extensively researched and led to the 

Polyvagal Theory by Porges (1995, 2009) and the neurovisceral model of cardiac and emotion 

regulation by Friedman (2007). Porges postulated that a cardiopulmonary oscillator is controlled 

by the dorsal motor nucleus of the vagus nerve in the medulla oblongata and and proposed “a 

neural process that evaluates risk and modulates vagal output via higher brain structures” 

(Porges, 2007, p. 6); primary emotions directly interact with autonomic functions when the 

physiological state is fed back to brain structures via afferent nerves in reaction to environmental 

stimuli. A reduced HRV and higher heart rate were associated with less flexibility and 

adaptability to environmental stimuli (Lyonfields, Borkovec, & Thayer, 1995). Lueken et al. 

(2017), for instance, analyzed several RCTs and found that patients with AD who had high heart 

rates and low HRV, had better treatment outcomes after CBT psychotherapy compared to 

psychopharmaceutical treatment or placebo. 

Lastly, there is accumulating evidence that the number and intensity of adverse childhood 

events (ACEs), as well as the time of the exposure to ACEs during sensitive periods of brain 

development in areas associated with the anxiety and fear circuits can predict the development, 

severity, and treatment response to various pharmacological, psychotherapeutic, and other 

adjunctive therapies, such as NFT, EMNDR (Teicher et al., 2016; Fonzo et al., 2016; Hein & 

Monk, 2017). Hence, ACEs should be assessed, for instance, with the Maltreatment and Abuse 

Chronology of Exposure (MACE) scale (Teicher & Parigger, 2015) as potential mediators of 

therapy outcomes in research and prior to treatment planning. 

1.1.4  Treatment.  

The most researched and empirically supported psychotherapy treatment (EBT) for AD is 
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cognitive-behavioral therapy (CBT), compared to psychodynamic, client-centered, or acceptance 

and commitment therapy. CBT includes a multitude of different techniques that are used 

according to the symptomatology of the AD (Bandelow et al., 2015b; Craske, et al. 2015; 

Schneider, Arch, & Wolitzky-Taylor, 2015). For example, systematically and repeatedly 

exposing a client to a phobic stimulus is a particularly fruitful technique for fear-based AD, such 

as phobias or PD (i.e., graduated exposure or other repeated techniques to produce habituation). 

Cognitive restructuring techniques are especially useful for anxiety-based AD, such as GAD and 

SAD. Self-monitoring physical manifestations of feelings, thoughts and behaviors and exercises 

targeting the ANS, such as breathing and relaxation, are useful for most AD. A/T NFT targets 

the ANS indirectly via increasing alpha and theta oscillations in the brain at Pz, and inhibition of 

high beta oscillations potentially leads to relaxed calmness, which would make a potentially 

excellent adjunctive therapy with CBT. 

 However, a meta-analysis by Hofmann, Asnaani, Vonk, Sawyer, and Fang (2012) 

revealed that even CBT, in comparison to other psychotherapy techniques, whether placebo or 

control, was only approximately 50% successful for most investigated AD. A thorough meta-

analysis of 234 RCTs on the efficacy of diverse medication treatments, psychotherapy, and 

combined treatments for anxiety was conducted by Bandelow et al. (2015) and revealed a more 

differentiated picture. In general, most psychological interventions (CBT, mindfulness therapies, 

psychodynamic, internet-based therapies, group CBT, and relaxation types), all the tested 

medication classes (SSRIs, SNRIs, benzodiazepines, tricyclic depressants), as well as the 

combination of pharmacological and psychotherapeutic interventions were associated with 

significant improvement of anxiety, in comparison to psychological placebos and waitlist. But 

SNRIs, SSRIs, benzodiazepines, and combined CBT / medications treatments were associated 

with the highest effect sizes. However, long-term data of treatment effectiveness were not 
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available for most studies which poses a serious limitation because AD have high reoccurrence 

rates, especially the AD associated with the fear-circuit, where extinguished responses can be 

reversed by excessive stress or traumatic events (see section 1.1.3). 

1.2  Neurofeedback   

1.2.1  Basis for EEG-based NFT: EEG, brain oscillations, and associated states. 

Different distinct rhythms of brain oscillations can be found and attributed to different 

mental states (Hermann, Strueber, Helfrich, & Engel, 2016). The following major frequency 

bands have been identified and are distinguished by their sinusoidal rhythms (oscillation 

frequency) in cycles per second (Hz). The frequency bands have slightly different ranges 

depending on the author. The ranges used in this study are congruent with the ones Collura 

(2013) uses in his Brainmaster Avatar and MiniQ software systems since those systems were 

used in this study for EEG and NFT recording:  

 delta waves (0.5-4 Hz),  

 theta waves (4-8 Hz),  

 alpha waves (8-12 Hz),  

 beta waves (12-30 Hz); which are commonly divided into two or three subdivisions: 

o beta 1 [13-20 Hz] and beta 2 [21-30 Hz], (Kropotov, 2016),  

o low beta [12-16 Hz], beta [16- 20 Hz], and high beta [20 – 30 Hz)], (Collura, 

2013) which will be used in this study. 

 gamma waves (30-100 Hz). 

Delta waves are the dominant wave form during NREM sleep (deep sleep), whereas a 

mix of theta and delta waves may be observed during drowsiness and early NREM sleep. Delta 

waves may also play a role as inhibiting oscillations during attention tasks, as attention is shifted 
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to one stimulus while other stimuli are inhibited (Hermann et al., 2016). Furthermore, dominant 

delta oscillations and, especially slow wave activity around 1 Hz are associated with memory 

consolidation and may “represent the cyclical variations in the excitability of the neuronal pool 

represented by multiple unit activity and the network state and might amplify (in case of high-

excitability phase) or suppress (in case of low-excitability phase) the input signals” (Cheron et 

al., 2016, p. 6).  

 

Figure 1.2: Raw signal processing into wavebands by frequency (Hz) and the associated power of the wavebands (µV²) 

over 5 seconds of time. (Adapted by B. Viereck from Park, Fairweather, and Donaldson, 2015). 

Theta waves, prominent during memory functions of the hippocampus, regulate activity in 

other structures of the brain with inhibitory processes (Hermann et al., 2016) and are also 

associated with the recall of pleasant memories in the frontal midline area (Sammler et al., 2007, 

as cited in Cheron, 2016). According to Horschig et al. (2014) predominant theta oscillations may 

indicate internal orientation, and encoding, and retrieval of memory in the temporal lobes; it is 

also related to increased drowsiness before stage 1 NREM sleep. According to Arns et al. (2015) 

two forms of theta need to be distinguished: phasic frontal midline (fm) theta, likely to stem from 

the r-ACC areas, and a “tonic drowsiness theta” (p. 1191), which originates in a large variety of 

cortical areas. Enriquez-Geppert et al. (2014) elaborates that functionally fm-theta is associated 

with mental tasks responsible for communication of large functional brain networks whereas tonic 
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theta is not task-related but rather related to general drowsiness before stage 1 NREM sleep. 

Dominant alpha waves are associated with relaxed wakefulness and with the idling mode 

of the default mode network (see section 1.1.3). Klimesch, Sauseng, and Hanslmayer (1999) 

describe that alpha rhythm hinders simultaneous processes that are unnecessary for a present task 

via increasing the signal-to-noise ratio. Klimesch et al. (2012) posits that increased alpha-band 

amplitudes represent event-related synchronization (ERS) associated with inhibition of areas not 

relevant to the task at hand, while decreased alpha-band amplitudes represent event-related 

desynchronization (ERD) associated with release from inhibition toward a focused attention to 

the task. In other words, areas of the brain that are activated in a task experience higher beta 

amplitudes and desynchronized alpha oscillations. Moreover, Cheron et al. (2016) report that 

alpha rhythm of spindle-shaped episodes around 10 Hz is the predominant spontaneous brain 

rhythm for a relaxed individual in an eyes-closed state, whereas a relaxed eyes-open state is 

associated with faster alpha oscillations of smaller amplitudes.  

Beta waves, especially high beta waves, are dominant during concentrated cognitive or 

motor task performance and outward focus. Enhanced high beta waves can also be found during 

rumination in individuals with AD and depressive disorders. 

Gamma oscillations have been observed as a dominant frequency during meditation in a 

famous study of Tibetan monks (Lutz, Greischar, Rawlings, & Davidson (2004); and these are 

especially pronounced during concentrated information-processing (Hermann et al., 2016), 

especially tying together information from different areas of the brain (Horschig, 2014). 

  Furthermore, several local cortical oscillations are not considered frequency bands of 

their own; for instance, the mu rhythm, also called wicket or comb rhythm (8-13 Hz), is only 

generated over the sensorimotor cortex and is related to voluntary motor activity. Sensory motor 

rhythm (SMR, 12-15 Hz) is most pronounced over the sensorimotor cortex during quiet alert 
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wakefulness and during light NREM sleep, and synchronized when motor behavior is inhibited 

(Sterman, 1981).  Slow cortical potentials (SCP; < 1 Hz) are event-related changes in direct 

electrical current, from negative to positive polarization and can be observed in anticipation of a 

mental or motor task (Walter, Cooper, Aldridge, McCallum, & Winter, 1964).  

Lastly, it is important to point out the complexity of interactions in the various EEG 

oscillation parameters (amplitude, frequency, phase, and coherence) involved in cognition and 

mental processes. Particularly, neuronal oscillators must be taken into consideration; these are 

systems of neurons which generate spontaneous rhythmic brain wave patterns that are stable 

against minor disturbances (Cheron et al., 2016) and consist not only of one waveband. 

Furthermore, Hermann et al. (2016) emphasize that there is no 1:1 congruence between a specific 

kind of waveband and the various cognitive processes of the brain: 

“It is more likely that EEG oscillations contribute to different cognitive functions 

depending on where in the brain and with what parameters (amplitude, frequency, phase, 

coherence) they occur. Four important assumptions support this notion: 

1. Different brain regions may perform different but specific functions … . 

2. EEG oscillations of slow frequency may represent the cooperative activity of large-

scale neuronal networks in the brain whereas high-frequency oscillations may 

predominantly reflect the activity of local neuronal populations … . 

3. Coherent EEG oscillations in two distant brain regions may reflect the functional 

cooperation of these two regions … . 

4. Combining assumptions 2 and 3, it has been suggested that cooperation between 

nearby cortical regions may be reflected by coherent high-frequency oscillations, 

whereas cooperation by distant brain regions may require coherent low-frequency 

oscillations” (Hermann et al., 2016, pp. 12-13). 
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1.2.2  Neurofeedback definition and general principles. 

In Neurofeedback treatment (NFT) individuals are fed back measures of brain activity —

such as neuroelectrical activity (EEG), oxygenation levels (rt-fMRI; NIRS), or low energy 

electromagnetic pulses (LENS)—to learn how to modulate brain activity. Principles of classical 

and instrumental conditioning are used for the person to up- or down-regulate their own non-

perceivable brain oscillation amplitudes or other functional patterns of the brain via auditory and 

/ or visual feedback. The premise of the use of this behavioral technique for psychological and 

certain neurological disorders is that brain oscillations in certain areas of the brain—or in certain 

structural or functional networks of the brain (see section 1.1.3) for anxiety disorders —are 

abnormal or dysregulated and that normalizing brain waves patterns in these areas will lead to an 

improvement in the symptoms of the disorder (Berger & Davelaar, 2017; Budzynski, Budzynski, 

& Abarbanel, 2009; Chow, Javan, Ros, & Frewen, 2017; Murphy & Bassett, 2017; Schabus et 

al., 2017; Thibault, Lifshitz, & Raz, 2016). Several general neurocircuits for anxiety and fear 

have been identified (see section 1.1.3 and Ledoux, 2011), but the search for general EEG 

endophenotypes of brain structure and activity distinguishing mental disorders has been less 

fruitful (Gunkelman, 2008; Johnstone, Gunkelman, & Lunt, 2005; Murphy & Bassett, 2017; 

Olbrich, van Dinteren, & Arns, 2015). As this study uses EEG-based NFT, also called EEG-

biofeedback, the review of physiological and technical principles is limited to EEG-NFT.  

In EEG-based NFT the individual’s electrophysiological brain oscillations are recorded 

via EEG, amplified, and processed so that the brain activity bands of interest can be continuously 

fed back to the person in real time. While the individual tries to influence the amplitude or 

desired brain oscillations ratio, a feedback signal will be given. The goal for the individual is to 

learn to up- or down-regulate the oscillation parameters continuously with the help of feedback 

and positive reinforcement (rewards).   
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The NFT research to modulate electrical brain activity via EEG goes back to the 1930s 

but has been more systematically studied since 1941 (Arns et al., 2017) when Jasper and Shagass 

used classical conditioning with an auditory stimulus to change occipital alpha rhythm.  It was 

not until the 1960s, when Kamiya trained people to control their EEG alpha frequency (1966) 

and Wyrwicka and Sterman (Wyrwicka & Sterman, 1968; Sterman, 1970) were able to train cats 

to increase their SMR oscillations, that clinically applied research in this area began. There is 

evidence and meta-analyses of RCTs for the efficacy of NFT for some disorders, such as ADHD 

(Arns et al., 2009; Sonuga-Barke et al., 2013; Micoulaud-Franchi et al., 2014; Cortese et al., 

2016); epilepsy (Tan et al., 2009); some evidence for Autism Spectrum Disorder (Holtmann, 

Steiner, Hohmann, et al., 2011; Kouijzer, van Schie, de Moor, et al., 2010; Pineda, Brang, Hecht, 

et al., 2008); and depression (Johnston, Linden, Healy, et al., 2010; Young, Misaki, Harmer, et 

al., 2017). The evidence for the efficacy of NFT for AD or high trait anxiety in general is sparse 

and is reviewed next. 

1.2.3  Mechanisms of neurofeedback learning. 

To both create an effective, efficient NFT protocol, and predict who may or may not 

respond to NFT, it is vital to understand what mechanisms are responsible for successful learning 

of brain regulation patterns. Until the early 1990s mechanisms of NFT were almost exclusively 

explained by classical conditioning (Pavlov,1960; Watson, 1920), and more importantly, by 

operant conditioning, which relied on the research of Thorndike (1911) and Skinner (1948, 

1992). During operant conditioning, the individual learns to associate an immediate consequence 

of an action (here: NFT feedback signal) with a behavior (here: regulated brain activity) and this 

behavior becomes more likely if it is perceived as rewarding (positive reinforcement) and less 

likely if the the action does not reach the predefined goal (threshold). The closer the temporal 

proximity of the feedback signal after the successful regulation of brain activity, the stronger the 
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association learning will be. The individual learns to regulate specific brain activity, the fastest if 

every correct response is reinforced.  

Transfer trials are sometimes integrated into NFTs to generalize newly learned brain 

regulation from experimental (or therapy setting) to other contexts so that a reduction in anxiety 

symptoms can be achieved in everyday life.  During transfer trials feedback is not given; only at 

the end of a trial is feedback given at to whether the regulation of brain activity was successful.  

In relation to the conditioning of EEG parameters, Jasper & Shagass’ (1941) study is vital. The 

authors demonstrated that an unconditioned visual stimulus of a light signal (unconditioned 

stimulus) in a dark room leads to a suppression of occipital alpha rhythm (unconditioned 

reaction) during the eyes-open condition. They then paired the light signal with a sound stimulus 

and thus classically conditioned that the quasi-reflexive reaction of alpha-blocking would take 

place (conditioned reaction) when participants heard the sound (conditioned stimulus).   

 The other two prominent models or mechanisms of NFT learning are the dual process 

theory (LaCroix, 1981; Smith & DeCoster, 2000) and skill learning (Yin, Mulcare, Hilario, et al., 

2009). The dual-process theory divides mental activity into automatic unconscious (capacity-free 

processes; type I) and more controlled conscious processes (capacity-limited processes; type II). 

Wood (2014) states that 

 “… type I processes are usually unconscious and difficult to control by self-instruction. 

Type II processes reflect the activity of a supervisory attention system, specialized in 

monitoring and regulating the activity in other cognitive systems …, [and] are usually in 

the center of our focus of attention … are regulated mainly by self-instruction and are 

fundamental for executive functions and metacognitive abilities ... both automatic and 

controlled processes have control of behavior as well as of different aspects of cognition 

… but both learn from and react to different aspects of the task at hand. Automatic 
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systems learn only through cumulative reward while controlled systems are more 

flexible, context-oriented and learn fast from instructions” (Wood, 2014, p. 2). 

By contrast, the skill learning model involves two distinct phases of learning. During the 

early phase, changes in performance are rapid, whereas in the late phase learning is marked by 

the consolidation of the skill and a more gradual improvement of the skill until the skill is 

learned and changes are minute. Structural and functional changes in the dorsomedial striatum 

can be observed in the initial phase of learning while changes in the dorsolateral striatum were 

found during the late phase of skill acquisition (Sitaram, Ros, Stoeckel, et al., 2017). 

1.2.4  EEG-based neurofeedback protocols. 

A number of different NFT protocols are available. They may be differentiated by what 

brain frequency bands (gamma, beta, alpha, theta, delta), specialty frequencies (SMR, SCP, mu, 

or infraslow), or brain frequency ratios (e.g., alpha/theta, theta/beta) are being trained and how 

many and which electrode locations on the scalp are used to measure the electrophysiological 

activity. The most common protocols will be briefly described. To treat AD, or anxiety in 

general, alpha, alpha/theta, alpha symmetry, and QEEG-based individualized NFT have 

primarily been used.  

In alpha and alpha/theta protocols alpha power, alpha and theta power, or theta/alpha 

ratio are up-regulated to counter hyperarousal, associated with PTSD, PD, and phobias. These 

protocols may also enhance creativity (Niv, 2013).  

Alpha asymmetry protocols (ALAY), introduced by Baehr, Rosenfeld, and Baehr in 

1997, focus on increasing alpha power symmetry between the left and right PFC as alpha 

asymmetry in the PFC correlates highly with approach / withdrawal motivation and internalizing 

negative emotions of AD and depression (Mennella, 2017). 

Beta / SMR NFT uptrains beta and SMR power are associated with alertness, active 
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concentration, sustained attention, and semantic processing. SMR training is linked to heightened 

thalamic inhibition and as such is especially efficacious for individuals with ADHD and epilepsy 

(Niv, 2013). Beta and Beta / SMR protocols are also combined with Theta down-training in 

order to increase attention. 

In slow cortical potential (SCP) protocols individuals are trained to regulate their 

negative and positive SCP shifts. Originally developed for patients with epilepsy to decrease the 

probability of seizures (Rockstroh et al., 1993; Kotchoubey et al., 1999 and 2001) they are now 

effectively used to treat individuals with ADHD as well (Strehl et al., 2017). 

The individualized QEEG-based NFT compares a client’s average resting EEG 

oscillations for all 19-24 electrode sites to measurements of the same sites from a normative 

EEG database (from the Applied Neuroscience Institute or from New York University). The 

databases include EEGs of 600-3000 “normal” individuals and are stored by sex and age group. 

The client’s EEG parameters, such as individual waveband powers for each electrode location, 

connectivity, and coherence between different electrodes, are compared with the normed results 

according to the client’s sex and age range. The NFT protocol is individualized to normalize the 

client’s wavebands, connectivity, or coherence that are at least three standard deviations from the 

norm (z-scores). The validity and reliability of the databases have been called into question 

because the EEGs collected in the database are not a representative sample of the U. S. popu-

lation and the ideal of the “QEEG normalized brain” has not yet been adequately addressed.  

A fairly new protocol is the infra-slow frequency protocol that uses 0.01-1 Hz oscillations 

to “re-normalize the functional connectivity of our resting state networks” (Othmer et al., 2013, 

p. 246) and is a promising treatment for PTSD and performance optimization (Smith, Collura, 

Ferrera, et al., 2014). Randomized controlled studies have yet to be published.  
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1.2.5  Neurofeedback treatments for anxiety. 

As detailed more fully in the next section, a comprehensive review of the relevant 

literature found that very few randomized single- or double-blind studies have been conducted. 

Moreover, most used sample sizes of ten participants or less per experimental or control group 

and results have been mixed. Orne and Paskewitz (1974) and Watson and Herder (1980) found 

no significant effects for anxiety symptom reduction and Egner, Strawson, and Gruzelier (2002) 

did not find a significant difference in subjective activation level between alpha/theta NFT and 

the sham group. On the other hand, a number of studies, such as Hardt and Kamiya (1978), 

Plotkin and Rice (1981), Sargunaraj, Kumaraiah, Mishra, and Kumar (1987), Rice, Blanchard, 

and Purcell (1993), Vanathy, Sharma, and Kumar (1998), Sarkar, Rathee, and Neera (1999), 

Eismont, Lutsyuk, and Pavlenko (2011), and Gruzelier, Thompson, Redding, Brandt and Steffert 

(2013) did find a significant anxiety symptom reduction through NFT.  

Most of the reviewed NFT studies used an Alpha/Theta (or alpha) NFT protocol, during 

which increasing alpha and theta amplitudes or increasing the theta/alpha ratio or alpha 

amplitudes at parietal electrode locations (Pz), at occipital locations (O1 and O2, or Oz), and 

central locations (Cz) were most often used. 

  1.2.5.1  Critical literature review of neurofeedback for anxiety disorders.  

  Since the late 1960s NFT has been used to treat adult individuals with AD; yet, most 

studies were conducted between the mid-1970s and mid-2000s. To investigate the quality of the 

experimental design and statistical analysis of NFT for AD, an exhaustive literature search of peer-

reviewed articles on MEDLINE (1850-2017), PsycINFO (1894-2017), PsycARTICLES, Google 

Scholar (up to October 2017), as well as hand searches through the “Journal of Biofeedback and 

Self-Regulation” (from 1976- 2004) and its successor “Applied Psychophysiology and 

Biofeedback” (2005-2015) were performed.  
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In most NFT studies an alpha and theta up-training protocol was used (Peniston and 

Saxby, 1995; Dadashi et al., 2015; Glueck & Strobel, 1975; Sadjadi & Hashemian, 2014; Cheon 

Koo, & Choi, 2015; Green, 1974; Peniston & Kulkosky, 1991) alpha, theta and beta up-training 

or a theta/alpha ratio uptraining (Eismont et al., 2011; Egner et al., 2002; Raymond et al., 2005; 

Egner & Gruzelier, 2003; Gruzelier et al., 2009, 2013, 2014 a and b). Almost equally frequently 

an alpha uptraining protocol was used (Bhat, 2012; Agnihotri, Sandhu, & Paul, 2007; Rice et al., 

1993; Sarkar & Rathee, 1999; Vanathy et al., 1998; Plotkin & Rice, 1981; Hardt & Kamiya, 

1978; Walker, 2009; Garrett & Silver, 1976; Dekker, Van den Berg, Denissen, Sitskoorn, & Van 

Boxtel, 2014). Some researchers preferred a theta uptraining protocol to reduce anxiety 

(Sittenfeld et al., 1976; Vernon et al., 2002) and two studies downtrained alpha (Kluetsch et al., 

2013, Orne and Paskewitz, 1974), (See Table 1.1). 

In the past 50 years only six studies were conducted with a clinical population and 

control group (i.e., not with healthy volunteers): Dadashi et al. (2015), Sadjadi and Hashemian 

(2014), Vanathy et al. (1998), Rice et al. (1993), Peniston and Kulkosky (1991), Glueck and 

Strobel (1975); out of those six studies only Vanathy et al. (1998) used a pre- and post EEG to 

measure if significant changes in brain oscillations could be found. While all authors except 

Dadashi et al. (2015) used an active control group, only Vanathy et al. (1998) and Rice et al. 

(1993) used a NFT-based active placebo group. The following three studies with control groups 

were conducted with healthy adults regarding reduction of anxiety: Garrett and Silver (1974), 

Plotkin and Rice (1981), and Kluetsch et al. (2013). Kluetsch’s study was a one session proof of 

principle studies, and Garrett and Silver (1974), and Plotkin and Rice (1981) did not use pre- 

post trial EEG measurements. 

The results vary widely (see above), depending on what parameters were used to measure 

changes in anxiety symptoms. Some studies exclusively used subjective self-report measures for 
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general anxiety symptoms, such as the Spielberger State Trait Anxiety Inventory (STAI), the 

Beck Anxiety Inventory (BAI), and the Hamilton Anxiety Rating List (HARS), or specialized 

questionnaires for specific anxiety disorders, such as the Social Phobia Scale (SPS). These will 

not be reviewed here due to poor operationalization. However, most studies used multiple 

instruments to assess changes in anxiety. These included the aforementioned self-report 

inventories and self-report relaxation measures (e.g., Thayer’s Activation-Deactivation Adjective 

Checklist [AD-ACL]), physiological measures such as heart rate, galvanic skin response, pre- 

and post-trial QEEG results, NFT EEG T/A ratio, absolute or relative theta, alpha, and /or T+A 

amplitude changes between the beginning and at the end of the NFT trial — sometimes for 1-3 

additional measurements in the middle of the study. Nevertheless, none of the reviewed studies 

used a general linear mixed effects Growth Curve Model (GCM) – a type of advanced regression 

model that calculates a regression for each participant (random effect) and uses all NFT data 

points within and across NFT sessions to compare how the EEG parameters change for each 

participant within each session and across sessions and comparing them to experimental and 

control groups.  A few studies that were administered in a hospital setting also included a report 

measure filled out by the clinicians or family members – pre- and post-trial, and during follow-

up – for example in Glueck and Strobel, 1975 and Saxby and Peniston, 1995. 
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Figure 1.3 a: RCTs: Research design, sample, and results of NFT for anxiety-related disorders. Light green high light= studies with clinical 

population. Bue print = significant results of self –report anxiety measures; red print= significant results in EEG-based NFT measures; green print = 

significant results in de/activation scales. 
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Figure 1.3 b: Studies with CG but no randomization: Research design, sample, and results of NFT for anxiety-related disorders. Light green 

high light= studies with clinical population. Bue print = significant results of self –report anxiety measures; red print= significant results in EEG-

based NFT measures. 

 

 

 
Table 1.3 c: Studies without control and no randomization: Research design, sample, and results of NFT for anxiety-related disorders.    
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Differences in the significant versus non-significant results in these studies are partially 

due to different participant populations. Many studies with non-significant results had used 

healthy college students only (Hardt & Kamiya, 1978; Orne & Paskewitz, 1974; Egner et al., 

2002). As these participants had no AD, a reduction of already normal anxiety symptoms would 

have been less likely than in a clinical population. Furthermore, differences in the measures 

administered pre- and post-NFT might be responsible for differing results. Most studies 

administered only one to several self-report anxiety scales which were more or less reliable, such 

as the STAI, Taylor’s Manifest Anxiety Scale, Welsh Anxiety Scale, and the GAD-7; whereas 

some used exclusively clinical observer measures, such as the Hamilton Anxiety Rating List, and 

less objective unstructured and semi-structured clinical interviews. Moreover, different feedback 

and reward criteria, NFT electrode locations, and most importantly studies differed regarding the 

use of CG – from no use of CG, wait-list CG, other treatment CG, to pseudo-NFT were used. 

Studies that did not use a CG or had a wait-list CG had been very likely to show significant effects. 

Many studies did not have any kind of control group (Baehr & Rosenfeld, 2001; Gurnee, 

2003; Kluetsch et al., 2013; Mills & Solyom, 1974; Saxby & Peniston, 1995), and quite a few 

that did not have a NFT control group did have a wait-list or a relaxation group, or a group with 

another treatment modality such as medication (e.g., Bhat, 2012; Dadashi, Birashk, Taremian, et 

al., 2015; Peniston & Kulkosky, 1989; Sarkar, Rathee, & Neera, 1999). Other studies had not 

been controlled for combination of NFT with other treatments, such as psychotherapy, 

medications, meditation, and breathing and hand warming exercises (e.g., Bhat, 2010; Glueck & 

Stroebel, 1975; Green, 1974; Peniston and Kulkosky, 1991; Saxby and Peniston, 1995); and 

some studies with a control group did not have a randomization procedure (Cheon, Koo, Seo, et 

al., 2015; Green, 1976; Gurnee, 2003; Sargunaraj, Kumaraiah, Mishra, et al., 1987; Saxby & 

Peniston, 1995). Only two studies had a single- or double-blind research design (Dekker et al., 
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2014; Egner & Gruzelier, 2003, respectively). Other studies were an accumulation of a limited 

number of case studies with individualized NFT treatment (e.g., Hammond, 2003; Moradi et al., 

2011; Singer, 2004). 

 Furthermore, studies had a limited amount of treatment sessions – one to six sessions – 

(for instance, Chisholm, DeGood, & Hartz, 1977; Egner et al., 2002; Hardt & Kamiya, 1978; 

Kirschbaum & Gistl, 1973; Orne & Paskewitz, 1974;) or were one session proof-of-principle 

studies (Kluetsch et al., 2013; Peeters, Bodar, Ronner, van Os, & Lousberg, 2014).  

Participant characteristics such as age, education, ethnicity / race range, and socio- 

economic status were homogeneous; many studies had 18- to 25-year old Caucasian under-

graduate students as participants, such as Chisholm et al. (1977), Egner et al. (2002), Gruzelier, 

Thompson, Redding, et al. (2013) Gruzelier et al. (2014), and Kirschbaum & Gistl, 1973. 

Furthermore, while generalizations were made about mechanisms of anxiety reduction for people 

with anxiety disorders, all study subjects were healthy individuals without anxiety diagnoses 

(e.g., Kirschbaum & Gistl, 1973; Eismont, Lutsyuk, & Pavlenko, 2011; Orne & Paskewitz, 1974; 

Peeters et al., 2014; and Raymond, Varney, Parkinson, & Gruzelier, 2005). Other mental 

disorders or chronic diseases that might have influenced the NFT results were not addressed, 

assessed, or used as an exclusion criterion. 

Problems with the statistical analysis of the study data were prevalent. The sample size 

for many studies of less than 10 for control or experimental groups, respectively, can lead to 

large confidence intervals. Consequently, incorrect inferences of a population from the sample 

may occur which would seriously impede the statistical power of the study (e.g., Eismont et al., 

2011; Egner, Strawson, & Gruzelier, 2002; Raymond et al., 2005; Gruzelier, Hirst, Holmes, & 

Leach, 2014; Sargunaraj et al., 1987; Vanathy et al., 1998). Also, traditional averaging of 

multiple NFT sessions data leads to excessive loss of information, especially in the studies where 
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only pre-and post- of NFT data, such as alpha and theta amplitudes, were analyzed (e.g., 

Dadashi, Birashk, Taremian, et al., 2015; Plotkin & Rice, 1981; Vanathy et al., 1998). Moreover, 

many studies did not address and appropriately factor out the experimenter effect on the results 

of the study, such as the studies of Sadjadi & Hashemian (2014) and Sargunaraj et al. (1987).   

1.3  Considerations Regarding the Study Planning  

1.3.1  Neurofeedback protocol. 

After reviewing the studies, especially those whose results showed a significant decrease 

in anxiety symptoms in self-report measure and a significant change in EEG- and NFT-related 

parameters (see sections 1.2.5.1 and 1.2.4), the NFT protocol that was most efficacious for AD 

and trait anxiety was the alpha/theta protocol.  

Unfortunately, many of the reviewed studies, especially studies before 2010, failed to 

divulge details of electrode placements, as well as details about how reward criteria were 

operationalized. For studies that did provide electrode placement locations, Pz or Cz were the 

most common placements for electrodes. However, the rationale for why an electrode location 

was chosen often remained unclear in all of the reviewed studies, except for Gruzelier et al. 

(2009). The Pz electrode placement corresponds most closely to Brodmann area 7. 

Neuroanatomically, this area corresponds to the caudal superior parietal lobule Gruzelier and 

colleagues (2009) describe that the A/T training at the Pz location is connected with enhanced 

hippocampal activity involving the following mechanisms:  

“The ascending mescencephalic-cortical arousal system, and limbic circuits subserving 

cognitive as well as affective/motivational functions, and including coupling between 

frontal and posterior cortices, exemplifying a role for theta and alpha waves in mediating 

the interaction between distal and widely distributed connections. It is theorized that the 

long-distance connections, afforded by slow rhythms in the brain during a state of deep 
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relaxation facilitates associative connections in memory and subsequent retrieval in 

performance” (p. 108). 

Hippocampal activity is integrally involved in memory consolidation and retrieval, 

(Sauseng, Klimisch, Schabus, et al., 2005; Reiner, Rozengurt, & Barnea, 2014), including 

memory with associated emotions. Furthermore, Angel, Oviedo, Paloutzian, Runehov, & Seitz 

(2017) describe that, among other functions, the central parietal area below Pz seems to be 

involved in self-related functions 

“in mismatch between actual and predicted feedback of actions, (ii) in the parietofrontal 

network active in conscious access and exocognitation, (iii) in the autobiographical self, 

underpinned by PMC, as well as (iv) in the default network (and its probable self-related 

function)” (p. 258). 

Consequently, Pz-LE appeared to be a beneficial location for the active NFT electrode, 

particularly in combination with an A/T NFT protocol for subjects with high anxiety; it might 

potentially produce enhanced memory consolidation and retrieval and activation of self-related 

functions that can be used to achieve a relaxed calmness, and down-regulation of the HPA axis, 

and in combination with CBT or other psychotherapy methods retrieve and restructure 

maladaptive thought patterns, and effectively encode more adaptive ones (Sections 1.1.1 and 

1.1.4). 

Regarding visual and auditory feedback conditions for alpha and A/T NFT, Vernon et al. 

(2005) concluded that the most common ways to create an alpha or A/T feedback protocol by 

utilizing alpha (and theta) amplitude, percent, or T/A ratio measurements, mostly via auto-

thresholding, i.e., as long as the alpha measurements (or T/A ratio) was above a threshold for 60-

80% (depending on the study) for a pre-defined time segment an auditory, visual, or combined 

visual and auditory feedback was given.  However, many A/T studies did not report if manual or 
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automatic thresholding was used in their study protocol (Agnihotri, et al., 2007; Bhat et al., 2012; 

Eismont et al., 2011; Faridnia et al., 2012), some used automatic thresholding (Lu et al., 2017; 

Peeters et al., 2014) while the group at the Gruzelier lab used manual thresholding (Egner et al., 

2002 and 2003; Gruzelier et al., 2013; Raymond et al., 2005). In the area of NFT research several 

research groups had used autothresholding as well, such as Gevensleben et al. (2012), van 

Dongen-Boomsma et al. (2013), and Schoenenberg et al. (2017) mainly to minimize variability 

of reinforcement protocol by more or less accurate timing to manually change the threshold by 

the individual experimenters (reliability) and to maximize the replicability of the study. 

However, a distinct disadvantage of any automatic thresholding protocol is that while it 

reinforces any upregulation of alpha and theta from the baseline it may also lead to positive 

punishment — “the addition of a stimulus to decrease the probability that a behavior will recur” 

(Grison, Heatherton, & Gazzaniga, 2017; p. 214) — in other words, in cases where alpha and 

theta oscillations are up from the past minute measurements but still below the baseline a 

feedback signal may actually decrease alpha and theta oscillations even more. This study used 

alpha and theta amplitude changes from baseline and 65% thresholding for the reward criteria 

was used.  

The session lengths in reviewed NFT studies targeting AD in adults showed average 

sessions of 30 minutes in length, divided into 2 -10 training segments (Ghaziri et al., 2013; 

Hammond, 2003; Vanathi, Sharma, & Kumar, 1998). After reviewing NFT studies Vernon 

(2009) comes to the conclusion that a temporary change in EEG wave bands can be successfully 

achieved by a 20 to 30-minute session of NFT but that those changes are likely transient unless 

more sessions solidify the learning. 

Vernon (2009) adds that evidence regarding the spacing of NFT sessions—from a high 

frequency of sessions within a short amount of time, over double-sessions within the same day, 
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to spaced-out sessions over the course of days or weeks— is mixed. In the area of A/T NFT 2-3 

sessions per week seemed be most successful (Agnihotri et al., 2007; Egner et al. 2003; Gruzelier 

et al., 2009). 

The number of NFT sessions among all NFT for trait anxiety or AD varied widely, from 

one session for proof of principle studies (Kluetsch et al., 2013; Peeters et al., 2014) to 40 

sessions (Deng et al., 2014). Most studies with significant results used between 5 and 12 session 

protocols and 2-3 sessions per week within a + / – two-hour timeframe of sessions (Agnihotri et 

al., 2007; Egner et al., 2003; Gruzelier et al., 2009; Hardt & Kamiya, 1978; Rice et al., 1993; 

Watson & Herder, 1980) and had a combined audiovisual feedback signal with eyes-open 

condition. Hence, ten NFT sessions with a combined audiovisual feedback signal, each with 

three training segments of eight minutes each and with two short, 1-2 minute breaks (30 minutes 

total), and 2-3 NFT sessions per week were scheduled within the same time of day (+ / – 1.5 

hours) were deemed adequate to reach significant results in this study. 

1.3.2 Control for non-specific effects. 

To differentiate if effects of the NFT were specific to the experimental condition or 

resulted from the non-specific general environment of the study and participants’ expectations, it 

is vital to create an active CG that mimics the experience of the EG as closely as possible. 

According to Geuter, Koban, and Wager (2017), a placebo is “a sham medical or therapeutic 

treatment that appears similar to an actual treatment and evokes expectations of benefit” (p. 168). 

Consequently, any effects that an individual who receives a placebo treatment in a RCT trial 

shows can only be due to an individual’s “beliefs and expectations, perceptions of the social and 

physical environment, and generalization from past experiences” (p. 168). In addition, Finniss, 

Kaptchuk, Miller, and Benedetti (2010) emphasize that the placebo effect is attributable to the 

“overall therapeutic context" (p. 2) which includes the patient-treatment provider relationship. 
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Placebo effects are powerful effects responsible for between 66% - 80% of a treatment 

effect (Roberts, Kewman, Mercier, et al., 1993; Wager & Atlas, 2015), but vary depending on 

disorders and outcome treatment measures. For instance, a meta-analysis of 114 medical and 

psychotherapeutical studies by Hrøbjartsson and Gøtzsche, (2001, as quoted in Stewart-Williams 

& Podd, 2004) showed that not only were placebo effects less widespread and smaller than 

previously reported but were found only in studies that used subjective self-reports and 

continuous assessment of improvement. 

Learning theory and cognitive expectancy theory explain the two major mechanisms 

involved with placebo effects. Geuter and colleagues (2017) use learning theory to define the 

placebo effect as “a form of classical conditioning, which can influence pain, hormone release, 

and other behaviors …a treatment’s reinforcement history… Pairing treatment cues (e.g., an 

intravenous injection) with a real drug induces associations between the cues and drug effects 

that can be elicited by the cues alone” (p. 171). Moreover, they describe how cognitive 

expectancy influences perception, which in turn leads to a placebo effect. 

Consequently, to test if effects of the treatment are specific to the active experimental 

treatment in this study (A/T NFT), the reduction in subjective measures (i.e., self-reported 

anxiety scores and AD-ACL scores) and objective measures (i.e., EEG-based learning curves 

and pre-and post-trial QEEGs), would have to be significantly higher for the EG than for the 

placebo CG. The experimental design called for a control condition that was as closely related as 

possible to the experimental condition in, invested time, mode of application, treatment 

expectancy, and learning activity, i.e., actual NFT learning, because the non-specific factors in 

this placebo NFT would be equal to the unspecific factors in the experimental A/T condition and 

ensure at least a single-blind study, in which the participants do not know throughout the trial if 

they are in the experimental or the placebo NFT condition.  



36 

Arns and colleagues (2013) define three types of CG conditions: semi-active, active, and 

placebo control conditions. Active CGs compare two different active conditions regarding the 

study’s parameter of interest. For instance, infraslow frequency training and anxiolytic 

medication could be used as active CGs for a study concerned with the reduction of anxiety 

symptoms. However, a control for unspecific effects is not possible when comparing such 

dissimilar treatment modalities. In a semi-active CG, non-specific treatment effects, such as time, 

type of energy spent, and amount of interaction with the study personnel, are very similar to the 

NFT EG. But instead of training brain waves via feedback, participants train muscle activity via 

EMG biofeedback, or interact with a computer. A placebo CG is identical to the EG in number 

of sessions, set-up, and reward signals, except that the placebo CG brain oscillations (or other 

parameters) that are trained are not related to the brain oscillations of interest for the study. It is 

believed that this CG design will ensure blinding of the CG participant and therefore adequately 

control non-specific treatment expectancy effects.  

There are different approaches to create a successful placebo-controlled CG. Arns and 

colleagues (2013) state that “some recent neurofeedback studies (mainly pilot and feasibility 

studies) have employed a placebo-controlled design and failed to provide clear evidence for the 

superiority of ‘real’ neurofeedback compared to sham-neurofeedback” (p. 4). The studies which 

Arns and colleagues quote to back up their claim used NFT protocols that randomly gave 

children feedback independent of the child’s brain oscillations (Arnold, Lofthouse, Hersch, et al., 

2013), gave feedback based either on a simulated EEG and not the individual’s EEG recording 

(Lansbergen et al., 2011), or based on a pre-recorded EEG of one of the authors (Perreau-Linck, 

Lessard, Levesque, & Beauregard, 2010); one study failed to mention what kind of CG protocol 

was used (Dongen-Boomsma et al., 2013). A variation of the Perreau-Linck protocol, for 

instance, matches each EG member with a CG group member and plays the NFT feedback from 
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an individual in the EG group to the CG group member. However, these fake NFT CGs are 

problematic because self-regulation learning does not occur during the NFT sessions. This will 

lead to motivational problems and frustration quickly, especially after no changes can be 

observed by the participant over the course of several sessions. In the case of inactive electrodes 

being attached to subjects’ scalp, participants will likely learn very quickly that no matter what 

they do it will not cause any artifacts in the EEG, which would be especially suspicious after 

they had the experience of being instructed to sit still during the pre-trial EEG for good signal 

receptivity and that eye blink, teeth clenching, slight movements in the chair, or even greasy hair, 

or scalp perspiration cause observable changes in the EEG. The realization that one is part of the 

placebo group will have consequences, such as frustration and anger, learned helplessness, 

negative treatment expectations, worsening of symptoms (nocebo effect) and potentially 

dropping out of the study, as well as a skewing of any study results in regard to group 

comparison for non-specific effects (Benedetti, Lopiano, & Colloca, 2007). This would be 

especially detrimental when working with a clinical population. 

Doppelmayr and Weber (2011) found a novel approach to set up a placebo NFT training 

in their SMR and Theta / Beta NFT study alternately using the same inhibit bands of the EG but 

up-and down-training of specific and differing beta frequency bins, hence allowing the 

participants of the CG to learn how to actively regulate frequencies that did not interfere with the 

training frequencies of the EG and alternating up-and down-regulating randomly changing 

frequency bins each session—a condition they named randomized broadband feedback—that 

minimized the probability of learning and NFT training effects to occur in the CG.  

Another important aspect of any RCT research study is to use at least a single-blinded 

protocol, ideally a triple-blinded protocol in which not only the participant does not know if s/he 

is part of the control or experimental group (single-blind design) but the clinician and personnel 
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involved with participant contact (double-blind design) and the person analyzing the data (triple-

blind design) are not aware of the assignment to which treatment or protocol. A triple-blind 

design is impossible for a study like this one, whereby all functions—from randomization to 

performing NFT sessions to the analysis of the data—are conducted by the same person. Triple-

and even double-blind studies require a multi-person team with separate and specialized roles, 

such as one person who randomizes participants not involved with the NFT or the data analysis 

of study data. Consequently, this study could only be a single-blinded study in which the 

participants were not informed if they were in the EG or CG until the end of the study.  

Participant response to the NFT may certainly be influenced by the expectation of 

treatment outcome. This might be particularly true for treatments involving technology that is 

perceived as cutting edge.  The Stanford Expectations of Treatment Scale (SETS; Younger, 

Gandhi, Hubbard, & Mackey, 2012) measures participant outcome expectancy in clinical trials, 

thereby allowing the researcher to factor out individual differences in this measure. Related to 

this issue is a person’s belief as to how much they can influence the outcome of events. One 

locus of control scale used in a few NFT studies, such as in Kotchoubey et al. (2001), is 

Levenson’s Locus of Control Scale (1981). However, most NFT studies including the current 

one utilized Rotter’s (1966) Locus of Control scale (LOC). It can be used to measure this 

construct in which individuals with internal LOC attribute results of their own actions to internal 

sources, whereas individuals with an external LOC link results of their own actions to external 

sources, such as luck, chance, or unpredicTable circumstances.  

As humans are social beings who develop relationships over the ten NFT sessions, and 

react to subtle emotional cues, interactions with the NFT technicians will certainly have an 

effect, especially on anxious participants’ general levels of comfortability, trust, motivation, and 

level of focus on the NFT treatment. A standard protocol of procedures and scripts on how to 
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explain possible questions, as well as recording any unusual circumstances during each 

individual NFT session is prudent (see Appendix D: Neurofeedback Session Checklist). The data 

may be statistically analyzed to exclude the non-specific effect of varying experimenter 

personalities, varying degrees of professionalism, and potential experimenter bias. 

Lastly, it is important to randomize the sample to ensure that EG and CG have 

participants that are as similar as possible and evenly distributed, regarding sex, age, education, 

SES, and in the characteristics to be analyzed in the study (here: trait anxiety scores and AD 

diagnosis). In this study the term active placebo will be used to classify the CG based on the 

understanding of Rief, Hofmann, and Nesturioc (2008). These authors described in the context of 

acupuncture research where, like in the EG, acupuncture needles in the sham CG were placed. 

However, the locations of the needles in the sham group were not placed along the course of the 

meridian, as in the EG. Rief et al. (2008) explain that the CG in the aforementioned acupuncture 

study “is not an example of a pure placebo condition, but an example of an active placebo 

condition, because the placebo conditions induced the same side effects and the same 

expectations than the verum group”. (p. 5) Similarily, the present study uses exactly the same 

procedures for EG and CG — an active NFT training protocol at Pz with the same two auditory 

and visual feedback signals for the same amount of time. The only difference in the EG and CG 

protocols is that in the EG alpha and theta amplitudes are uptrained in all ten NFT sessions 

whereas in the CG two wavebands, beta and high beta, are successively up- and downtrained 

each session. Thus, while learning beta and upper beta regulation within one NFT session can 

take place in the next NFT the opposite learning takes place via downregulating beta and upper 

beta.
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2.  Objectives and Hypotheses 

Due to rapid advances in neurotechnology and neuroscience new mechanisms underlying 

AD have been discovered (see section 1.1.3). Of particular interest is the way the neuronal 

system transmits, prioritizes, analyzes electrophysiological signals, and organizes information in 

nodes, hubs, and networks that can in turn be mapped onto anatomical and functional parts of the 

brain. Because NFT may cause long-term changes in neurocircuits of the brain via LTP and LTD 

(see section 1.1.3) it is uniquely suited to become an EBT method for individuals with high trait 

anxiety or AD. However, there is a paucity of placebo-condition-controlled trials for clinical 

populations of various ages regarding NFT in general, and for AD in particular. Furthermore, 

statistical analysis methods of most clinical trials in the field of NFT are fraught with insufficient 

statistical analysis methods that do not take individual NFT learning curves within and between 

sessions into account and measure NFT outcome by session means between two to five time 

points, thereby reducing the wealth of data.  

2.1  Study Objectives  

The primary objective of this study was to create a rigorous, placebo-controlled, clinical 

trial with a (sub)clinical sample of women for the NFT treatment of AD to investigate if A/T 

NFT at Pz is an efficacious method for anxiety symptom reduction. A secondary objective of this 

study was to search for and implement better statistical analyses methods for NFT trials in 

general and to investigate cognitive variables involved in NFT, yet often not assessed, such as 

treatment outcome expectancy, personal attribution styles, the use, types, and efficaciousness of 

cognitive strategies in NFT. 
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2.2  Hypotheses  

2.2.1  Primary hypotheses. 

Hypothesis 1 (H 1a and b): A ten-session NFT protocol of up-training alpha (8-11 Hz) 

and theta (5-7.5 Hz) frequency bands at Pz will significantly elevate mean absolute and relative 

theta and alpha amplitudes and absolute and relative theta + alpha (T+A) amplitudes within (H 

1a) and across (H 1b) NFT sessions. NFT. These measures will not change significantly in the 

placebo group. 

Hypothesis 2 (H 2): A ten-session NFT protocol of up-training alpha (8-11 Hz) and theta (5-7.5 

Hz) frequency bands at Pz will significantly lower the subjective experience of trait anxiety. 

These measures will not change significantly in the placebo group. 

 2.2.2  Secondary hypotheses (Treatment effect hypotheses). 

Hypotheses 3 (H 3a and 3b): The treatment group will feel significantly more deactivated 

(as assessed by Thayer’s AD-ACL check list) within a NFT session (H 3a) and will subjectively 

become significantly more deactivated across NFT sessions (H 3b) while the placebo group will 

not. 

Hypothesis 4 (H 4): The treatment group will show significant increase in absolute and 

relative theta and alpha amplitudes and absolute and relative theta + alpha (T+A) amplitudes 

across sessions which will correlate with higher deactivation and lower activation scores of the 

AD-ACL, while the placebo group will not. 

Hypothesis 5 (H 5): The treatment group will show a significant increase in absolute and 

relative theta and alpha amplitudes and absolute and relative theta + alpha (T+A) amplitudes 

across sessions which will correlate with a decrease in trait anxiety as measured by the STAI-T 

inventory. 
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Hypothesis 6 (H 6): The treatment group will have a significant increase in absolute and 

relative theta and alpha amplitudes and absolute and relative theta + alpha (T+A) amplitudes on 

the mini-QEEG in the Pz region while the placebo control group will not. 

Hypothesis 7 (H 7):  Self-perceived successful cognitive strategies to modulate brain 

waves will be significantly correlated with learning as specified by the A/T NFT protocol. 

 2.2.3  Control for treatment expectations and self-efficacy. 

Hypothesis 8 (H 8): No significant differences between the treatment and the placebo 

group in treatment expectations / self-efficacy as measured by the Stanford Expectations of 

Treatment Scale (SETS) and the Rotter Locus of Control Scale (LOC) will be observed in the 

study. There will not be significant differences between the treatment and the placebo group’s 

pre-and post-treatment satisfaction as measured by the SETS modified outcome scale. 

Hypothesis 9 (H 9): Participants’ NFT learning will be significantly correlated with each 

participant’s self-identified time-of day best, worst or neutral period for learning. 
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3.  Methods 

3.1  Procedure 

To determine the number of required participants for this study with the adequate power to detect 

moderate effects between EG and CG a power analysis was performed. The overall design of the 

study called for a mixed ANOVA where treatment condition (A/T vs. B u/d control) serves as 

the between-subjects, and pre/post levels of anxiety, as the within-subjects factor. Treatment 

effectiveness (across both groups) would be reflected in a significant within-subjects effect and 

the efficacy of NFT specifically would be reflected in an interaction whereby significantly more 

improvement (i.e., lowered trait anxiety) would be found in the A/T NFT in contrast to the B u/d 

control condition. A power analysis using G*Power, version 3.1 for Mac (Faul, Erdfelder, Lang, 

& Buchner, 2007; http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3) using the 

partial eta squared from prior A/T NFT studies with significant results revealed that in a 

respeated measures 2x2 ANOVA a total of 27 participants (N = 27) was required to detect 

moderate sized (f  = .25) interaction effects and within-subject’s effects with adequate power 

(.80), and was subsequently recruited for this study. 

This study was designed to have an experimental and an active placebo group. While I 

would have gladly offered the placebo group participants the experimental treatment after the 

end of the trial this was not done due to time and budget constraints. This study was completely 

self-financed, apart from the office space, NFT, and EEG equipment which Dr. John Saksa 

graciously supplied me with for free. Furthermore, La Vaque and Rossiter (2001) reported that 

most participants who initially were in the CG were not interested in receiving the active NFT 

after the end of the trial. 

 

http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/
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3.1.1  Recruitment of participants. 

The participants were recruited from the greater Hartford, CT area through the 

publication of the study protocol in ClinicalTrial.gov, the National Institutes of Health online 

trial database (Appendix C). Participants were further recruited via word of mouth and repeated 

articles in 16 local online publications of The PatchUSA (patch.com) for 16 towns within a 20-

mile driving radius to the site of this study, as well as in U-Notes, the University of Hartford’s 

daily publication for faculty, staff, students, and alumni. Flyers were posted on approved bulletin 

boards at two universities’ student psychological counseling centers, in a local public library, on 

event boards, at a psychotherapy practice, a local coffee house, and two grocery stores with 

communal gathering areas.  A list with venues, locations and exact dates may be found in 

Appendix B. The information flyer and online news articles were checked and edited by the 

Word for Windows reading level analysis until the document was congruent with the 8th grade 

reading level required by the University of Hartford’s Institutional Review Board, the Human 

Subjects Committee. To recruit people via word of mouth a response template was used to 

standardize the way information was given. 

Potential participants were asked to read and sign a pre-screening consent form informing 

them of the study, including a description of the procedures, risks and inconveniences, benefits, 

confidentiality, voluntary participation, and potential questions. They were then given the link to 

fill out the encrypted surveymonkey screening questionnaire (Appendix C). Interested individuals 

were given further information about the study: one general interest article from the Scientific 

American magazine (Kraft, 2006) and one scientific review article from the Journal of 

Neurotherapy (Hammond, 2011) were emailed to them. 

Participants of the study received $5 cash at the beginning of each of the ten NFT 
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sessions to offset the costs of travel. In addition, they received a $100 gift card of their 

choice from a local grocery store, restaurant, or any one of various online stores, for their time 

and expense once they completed all ten NFT sessions, QEEG, and other post-trial 

questionnaires.  

3.1.2  Screening criteria. 

Participants were included in the study if they scored in the moderate to severe anxiety 

range on the State-Trait Anxiety Inventory (STAI-T; Spielberger, Gorsuch, Lushene, Vagg, & 

Jacobs, 2015), the Beck Anxiety Inventory (BAI), and the GAD-7. Furthermore, their scores on 

the Beck Depression Inventory (BDI-II, Beck, Steer, & Brown, 1996) and the PHQ-9 had to 

indicate either no or mild depression, and they could not have self-reported severe psychiatric or 

neurological disorders (such as schizophrenia, major depression, substance use disorder, 

Parkinson’s disease, epilepsy, or ALS) as assessed by the Demographic and Medical Screening 

Questionnaire (Appendix C). They may or may not have been diagnosed with an anxiety 

disorder. 

The cut-off score for trait anxiety of above the 66th percentile of the respective 

normative group was defined as moderate to high trait anxiety and was used to determine if 

the subject should be included in the study. For the general population of females ages 19-39, 

scores of > 39, ages 40-49 scores of > 37, and ages 50-69, scores of > 43 were considered 

accepTable. Traditionally-aged female undergraduate students with a total score of > 43 were 

included. For the BAI and the GAD-7 the cut-off scores were >15 and >11, respectively, 

which corresponded with a score of at least moderate anxiety. 

To avoid the confounding factor of the frequently observed comorbid condition of 

depression with anxiety, the BDI-II and the PHQ-9, two reliable depression inventories, were 
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administered to exclude potential participants whose scores indicated a moderate, moderately 

severe, or severe depression. Participants with scores of > 19 on the BDI-II and scores of > 9 for 

the PHQ-9 were screened out. 

The use of prescription medications is ubiquitous in the United States; the most recent 

U.S. Center of Disease Control and Prevention (www.cdc.gov/nchs/data/hus/hus15.pdf#079) 

Study (2015) reports that 65% of U.S. adults have taken prescription medication within the past 

30 days. Moore and Mattison (2017) write that in the 2013 Medical Expenditure Panel Survey 

17% of U.S. adults report that they currently take psychotropic medications, with higher 

percentages for women and Caucasians. For this reason, the customary exclusionary criterion of 

prescription drugs was not enforced in this study, but a less restrictive parameter was used: 

prescription medication use had to remain the same for the duration of the study so that 

difference scores for NFT between sessions and pre- and post-treatment scores on the QEEG and 

the psychometric measures could be calculated without confounding variable.  However, illicit 

drug and excessive alcohol consumption remained exclusionary criterion for this study. 

The initial screening was done through the online platform surveymonkey after 

converting the demographic and medical questionnaire, the GAD-7, and the STAI into online 

format for potential participants to take whenever they wanted. The two depression measures 

were taken in the presence of the experimenter and with Dr. John Saksa, an APA-licensed 

clinical psychologist, in case of any adverse reactions to questions in the depression inventories, 

such as expressing a desire to commit suicide. 

3.1.3  Participants. 

All subjects provided both written consent before taking part in the screening and a more 

detailed written consent form before participating in the experiment (Appendix B). In the consent 

http://www.cdc.gov/nchs/data/hus/hus15.pdf#079
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form the study procedures, risks and inconveniences, benefits, economic considerations, 

confidentiality, and voluntary participation were described.  Any identifiable information about 

participants, collected in this study remained confidential and was not stored with personal 

identifiers, but rather with the subject number. The master list connecting subject number with 

name was stored a a paper copy in the primary investigator’s office in a locked cabinet. 

This study was conducted in accordance with Title 45 of the United States Code of 

Federal Regulation (CFR 46) and the Declaration of Helsinki. It was approved by the Human 

Subjects Committee (IRB) of the University of Hartford, CT, USA (study number PRO 

15070009).   

3.1.4  Randomization. 

The study participants were randomly assigned to one of two groups: either the 

experimental group of alpha/theta frequency band uptraining (A/T; n = 15) or the control group 

of alternating beta/high beta up- and down-training (B u/d; n = 13) without stratification. The 

randomization was created in Matlab 9.0 (MathWorks, R 2016a). Seven random four-integer 

zero-one vectors, defined as 2 zeros and 2 ones in random order were created and matched in 

numerical order with participant numbers 001 to 028. Participants matched with the number zero 

were assigned to the control group; participants matched with the number one were assigned to 

the experimental group (see Appendix E 1).  

3.1.5  Trial schedule and progression. 

After filling out the study consent form participants were scheduled to come in for their 

initial appointment. At the end of the appointment the schedule for the remaining nine 

appointments was set up for two to three appointments per week with one day between two 

consecutive NFT sessions at approximately the same time of day (+/– 1.5 hours).  Appointments 
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were available between 7:00 a.m. and 8:00 p.m., Mondays through Fridays, between 7:00 a.m. 

and 4:00 p.m., on Saturdays and in rare cases on Sundays. All participants worked or studied 

full-time or worked part-time, and only one NFT amplifier and computer with NFT software was 

available. Consequently, it was not always possible to accommodate two to three appointments 

at the same time per week if participants cancelled appointments after the initial schedule was set 

up and during the Thanksgiving holidays. In some cases, participants came in only once a week 

or on rare occasions not at all during one week then resumed their regular schedule; participants 

008, 017, 021, and 022 all did not attend any NFT sessions for one week. The mean total days of 

participation was 32.2 days with a mean participation of 5.6 weeks per participant and a median 

of 2 sessions of NFT per week. 

 

Table 3.1: NFT sessions per week, number of days and weeks of total NFT. 

A Neurofeedback Session Checklist (Appendix C) was developed for this study to keep 
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the preparation for and process of each NFT session as standardized as possible, as well as to 

record date, time and name of the NFT technician who administered the respective session, 

observations and potential interferences for each NFT session. The information from all 

individual Checklists was entered into a master spread sheet (Appendix E). The principal 

investigator administered 68% percent of the NFT sessions, including all but two of the initial 

sessions (session 1 with pre-treatment QEEGs) and all last sessions (session 10 with post-

treatment QEEGs). The remaining 32% of sessions were administered by two trained graduate 

assistants, for 14% and 18% of the sessions, respectively. 

Forty-six individuals, 38 women and 8 men filled out the initial study consent form and 

the initial screening questionnaires: Demographic and Medical Questionnaire, STAI, and an 

abbreviated version of the PHQ-9 on surveymonkey, an online survey tool. The PHQ-9 

depression screening was administered to screen out individuals that had high depression scores 

on a short depression measure before they came in for an appointment to take the BDI-II and 

additional tests. While three men qualified for the study, two decided not to participate after the 

screening. By the time the first 17 participants had been recruited and started the trial only one 

male was included. It was decided to continue recruiting women only for the remaining ten 

participants, allow the only male to finish the trial but replace his data with data from a 28th 

female participant. Participants were randomly assigned to either the experimental (1) or control 

group (0) by random 0-1 vector creation in Matlab (Appendix E). All fourteen participants from 

the EG finished the trial and two participants from the CG dropped out, one after three sessions 

of NFT and one after five sessions of NFT. 

All trial procedures were the same for participants from the EG and CG, except that the 

EG received an A/T protocol for all ten NFT sessions, whereas the CG received alternating beta 
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up- and down-training (see 3.4.2). 

Pre-Screening: 
Total time:  

30 minutes 

Fill out Screening Questionnaire (demographic, medical, STAI, and 

abbreviated PHQ-9) on surveymonkey. 

20 minutes 

IF qualified, THEN fill out BDI-II and PHQ-9 in person. 10 minutes 

IF BDI-II scores were below cut-off, THEN invite to participate in study.    

                                                        ↓ 
 Assign participant a three-digit number (001-028) and randomly assign her to 

either A/T or control NFT group. 

 

Session 1: 
Total time:  

90 minutes 

Welcome, explain procedures, and answer broad questions. 10 minutes* 

Fill out the following questionnaires on surveymonkey: 

1. Pre-treatment Stanford Expectations of Treatment Scale (SETS), 

2. Pre-treatment BAI, 

3. Pre-treatment GAD-7. 

10 minutes* 

Pre-treatment mini-QEEG: 5x4 channels for 2 minutes each. 30 minutes* 

1. Fill out pre-session AD-ACL Questionnaire on surveymonkey, 

2. A/T or control NFT on Pz for 3 x 8 minutes with two 30-60 second 

breaks in between sets, 

3. Fill out post-session AD-ACL Questionnaire on surveymonkey. 

40 minutes* 

 

Sessions 2-9: 
Total time:  
8 x 40 minutes = 

320 minutes 

1. Fill out pre-session AD-ACL Questionnaire, 

2. A/T or control NFT on Pz for 3 x 8 minutes with two 30-60 second, 

breaks in between sets, 

3. Fill out post-session AD-ACL Questionnaire. 

40 minutes* 

Session 10: 
Total time:  

100 minutes 

1. Fill out pres-session AD-ACL Questionnaire, 

2. A/T OR control NFT on Pz for 3 x 8 minutes with two 30-60 second 

breaks in between sets, 

3. Fill out post-session AD-ACL Questionnaire. 

40 minutes* 

Post-treatment mini-QEEG: 5x4 channels for 2 minutes each. 30 minutes* 

Fill out the following questionnaires on surveymonkey (in stacked order): 

 post-treatment STAI,  

 Post-treatment BAI, 

 Post treatment GAD-7, 

 Post-Treatment SETS, 

 NFT Strategies and Feedback Questionnaire, 

 Rotter LOC Questionnaire. 

25 minutes 

Debriefing   5 minutes 

Total Time investment per participant for clinical trial: 

510 minutes = 8 .5 hours = 1 x 90 minutes + 8 x 40 minutes + 1 x 100 minutes. 

*All times were tested on three healthy adult volunteers before the start of the study and averaged. 

Figure 3.1: Overview of all assessment and treatment sessions of the study. 
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Figure 3.2: Flow chart of trial progression. 

3.2  Psychometric Assessments   

3.2.1  Demographic and medical questionnaire.  

The Demographic and Medical Questionnaire was partially adapted and translated from 

Mayer (2013, 2016) but also incorporated items from other standard biomedical and 

demographic questionnaires. 

3.2.2  Patient Health Questionnaire Depression Scale (PHQ-9). 

The PHQ-9 Depression Scale (Spitzer, Williams, Kroenke, et al., 1992) is a valid and 

reliable brief instrument to detect severity of depression. The scale was tested by Kroenke et al. 

(2001) on a sample of 3,000 primary care patients and possesses high internal reliability (Cronbach’s 

α = .89), and very good criterion validity (88% sensitivity and specificity, respectively) when 

comparing depression diagnoses of 580 adults with scores of the PHQ-9 scale. The scale consists of 
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nine items with four-point Likert–type questions: (0) not at all, (1) several days, (2) more than 

half the days, (3) nearly every day. The total scores for the items range from 0 to 27 with higher 

scores indicating a higher depression severity: Scores of 1-4 (no depression), 5-9 (mild 

depression), 10-14 (moderate depression), 15-19 (moderately severe depression), and 20-27 

(severe depression). 

3.2.3  Beck’s Depression Inventory (BDI-II). 

The BDI-II (Beck et al., 1997) contains 21 Likert scale self-report items to assess 

depression and its severity during the current week. As with the PHQ-9, the scale ranges from 

almost never to almost always, with higher scores indicating more severe depressive symptoms: 

minimal depression (0-13 points); mild depression (14-19); moderate depression (20-28); and 

severe depression (29-63). According to Beck (2015) the BDI-II has a high internal reliability; it 

was tested on a sample of 500 psychiatric outpatients and sample of 120 college students with 

Cronbach α of .92 and .93, respectively. The convergent and discriminant validity of the BDI-II 

was assessed by correlating it with other depression and anxiety scales and showed a high 

correlation (r =.71) with the Revised Hamilton Psychiatric Rating Scale for Depression (HRSD-

R). 

3.2.4  Beck’s Anxiety Inventory (BAI). 

The BAI is a “measure of dispositional anxiety not contaminated by dispositional 

depression” (Kohn et al., 2008, p. 499).  This self-report questionnaire contains 21 Likert-scale 

questions representing symptoms frequently associated with anxiety, such as being able to relax, 

being terrified, and fear of losing control. For each symptom, the respondent decides how much 

it has bothered him or her within the last week on a 4-point rating scale: Not at all; Mildly, it did 

not bother me much; Moderately, it was very unpleasant, but I could stand it; and Severely, I 
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could barely stand it. The scores are added up from zero points for Not at all to three points for 

severly with higher scores indicating more sever anxiety: minimal anxiety (scores of 0-7), mild 

anxiety (scores of 8-15), moderate anxiety (scores of 16-25), and severe anxiety  

(scores of 26-63). 

3.2.5   Spielberger’s State Trait Anxiety Inventory (STAI). 

The State-Trait Anxiety Inventory (2015) consists of two scales of 20 self-rated Likert–

type items each, for assessing trait (STAI-T) and state anxiety (STAI-S).  Each item is rated 

between one and four in intensity.  STAI-S items include: I am tense; I am worried; I feel calm; 

and I feel secure. Participants choose the number that best describes the intensity of their 

feelings: not at all (1), somewhat (2), moderately so (3), or very much so (4).  STAI-T include: I 

worry too much over something that really doesn’t matter; I am content; and I am a steady 

person and subjects choose how they generally feel by rating the frequency of their feelings of 

anxiety: almost never (1), sometimes (2), often (3), or almost always (4). 

The scales are normed for the general and student populations by biological sex and age 

range. For this study, cut-off scores for inclusion in the study were scores of > 66.9th 

percentile or trait anxiety for the respective normed group —which equals moderate to high 

trait anxiety. For the general population of females age 19-39, scores of 40 or higher were 

considered, for females, ages 40-49 a score of 38 or higher was sufficient, and for females 

ages 50-69 a score of 44 or higher was considered accepTable. Average-aged female 

undergraduate students with a total score of 44 or higher were included. 

3.2.6   Generalized Anxiety Disorder questionnaire (GAD-7).  

The GAD-7 is a seven item self-report scale that was developed and validated on a 

sample of 2,740 primary care patients by Spitzer, Williams, Kroenke, et al. in 1992 to screen for 

GAD (89% sensitivity), but according to its manual has good sensitivity to diagnose PD, SAD, and 
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PTSD (82% sensitivity). The four-point Likert–type response scale has the following anchors: (0) 

not at all, (1) several days, (2) more than half the days, (3) nearly every day and total scores 

range from 0 to 21, with the following anxiety severities: No anxiety (scores of 0-5), mild anxiety 

(6-10), moderate anxiety (11-15), and severe anxiety (16-21). When screening for anxiety 

disorders, a recommended cut-off point for further evaluation is a score of 10 or greater (Löwe, 

Decker, Müller et al., 2008). 

3.2.7  Stanford Expectation of Treatment Scale (SETS).  

The Stanford Expectation of Treatment Scale (SETS) was developed by Younger, 

Gandhi, Hubbard, and Mackey in 2012 as a measurement instrument for clinical trials to quantify 

participants’ positive or negative treatment outcome expectancies, which are influenced by the 

participants preconceived opinions, information from the experimenters, mass media coverage, 

etc. The SETS is a six-item scale with a seven-point Likert–type response with the following 

anchors (1) strongly disagree, (2) moderately disagree, (3) slightly disagree, (4) neither agree 

nor disagree, (5) slightly agree, (6) moderately agree, and (7) strongly agree. Items 1, 3, and 

5 are averaged for positive expectancy, and items 2, 4, and 6 for negative expectancy. 

3.2.8  Thayer’s Activation Deactivation Checklist (AD-ACL). 

The Activation Deactivation Checklist (AD-ACL) was devised by Thayer (1986, 1989) 

and is a valid and reliable 20-item Likert–type scale that uses adjectives to describe feelings or 

mood and activated or deactivated state (energy) levels. Each item is rated on a four-point scale 

ranging from zero to three: Definitely do not feel (0), cannot decide (1), feel slightly (2), and 

definitely feel (3).  The twenty adjectives are divided into four sub-scales: (1) energy (General 

Activation) represented by the adjectives: active, energetic, vigorous, lively, full of pep; (2) 

tiredness (Deactivation-Sleep) depicted by the adjectives sleepy, tired, drowsy, wide-awake, 
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wakeful; (3) tension (High Activation) represented by the adjectives jittery, intense, fearful, 

clutched-up, tense); and (4) calmness (General Deactivation), depicted by the adjectives placid, 

calm, at rest, still, quiet. The factors Energy and Tension can be combined into the higher order 

factor, Activation and the factors Tiredness and Calmness into the higher order factor, 

Deactivation. 

3.2.9  Neurofeedback Session Coding List. 

Motivation and mood are two powerful factors that influence learning, especially in the 

NFT and BCI domains (Nijboer, 2008). Consequently, assessing participants motivation and 

their positive and negative affect before and after NFT sessions and asking them how they 

thought they performed could have been a useful tool to check for lacking challenge (Mirifar, 

Beckmann, & Ehrlenspiel, 2017), frustration and even learned helplessness that may mediate 

NFT learning performance. In this study any unusual circumstances, such as participants 

reporting lack of sleep, headache, or frustration with no perceived NFT improvement was  

recorded on the NFT Session Coding List (see Appendix D). 

3.2.10  Rotter’s Locus of Control Questionnaire (LOC). 

The Locus of Control Questionnaire by Rotter (1966) is a 29-item forced-choice scale 

where a participant must choose between two value statements and six filler forced choice items 

that are not counted toward a test score. Each item scores as one or zero. The scale measures 

whether a person attributes a positive or negative outcome as contingent upon her own behavior, 

such as skill or due to external circumstances, like chance or luck.  Related to this attribution a 

subject may also differ in generalized expectancies for internal versus external control. A high 

score on the LOC represents an external locus of control. A low score represents an internal 

locus of control, the mean score across several general populations is 8.19 (SD = 3.47). 
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3.2.11   Neurofeedback Strategies and Treatment Satisfaction questionnaire. 

In every NFT study there are individuals, so-called non-learners, who, even after many 

sessions, are not able to learn how to modulate their brain waves. This issue has been attracting 

much research interest of late. It is estimated that between 33% and 50% participants of NFT 

studies are non-learners, depending on the calculations of change parameters, NFT protocol, and 

target group of participants (Alkoby, Abu-Rmileh, Shriki, & Todder, 2017). Non-learning of 

neuromodulation via NFT has various reasons, such as complexity or type of the feedback signal, 

differences in trainability of certain brain wave amplitudes, poor EEG signal processing (Jeunet, 

Jahanpour, & Lotte, 2016), but also using cognitive strategies (Hardman, Gruzelier, Cheesman, et 

al., 1997; Kober, Witte, Ninaus, et al., 2013). Kober and colleagues (2013) hypothesize that the use 

of strategies might actually “hinder the implicit learning of neuromodulation due to overburdening 

limited cognitive resources” (p. 7). 

Therefore, a questionnaire (Appendix D) was administered after completion of the ten NFT 

sessions that asked about which mental strategies if any were used during the NFT training and 

how effective these strategies had been for the respective participants. Furthermore, participants 

were asked what specific changes (if any) in thoughts, feelings and behavior in everyday life they 

perceived, and as a measure to control treatment expectancies subjects were asked what group they 

believed they were part of, EG or CG. Lastly, cognitive tasks, even unconscious ones, such as 

NFT, involve attention, learning, and memory; they are dependent on the degree of wakefulness of 

the participant (Knight & Mather, 2013).  Hence, questions regarding times-of-day for optimal 

learning, worst learning and “neutral times” were included.  
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3.3   Pre- and Post-Treatment QEEG 

An EEG was recorded before and after the completion of ten NFT sessions.  Participants 

had been instructed before the start of the study to wash their hair before EEG and NFT sessions 

and not to use any hair products, such as crème rinse, spray or gel in their hair, as sweat, sebum, 

and hair products alter the EG signal acquisition. Electro-Cap™ with 19 pure tin electrodes, were 

positioned on the scalp according to the international 10-20 electrode EEG system and linked ear 

sensors were used for the recording. The scalp and forehead were prepared with Weaver’s 

Nuprep skin prep gel to remove any dead skin cells and other products that might interfere with 

the EEG signal and ECI’s Electro-Gel was inserted into each electrode with a syringe. 

  The Brainmaster Atlantis I, 4×4 Module ® 3.0 amplifier and Brain Avatar miniQ 

software (Brainmaster Technologies, Inc.; http://www.brainmaster.com/) were used to record 

EEG brain oscillations (in Hz) for 120 seconds during standardized condition (relaxed, eyes 

closed, chin lightly placed on a chin and forehead rest) with linked ears as the reference. The raw 

electrical potential and wave frequency bands (in Hz) were amplified, fed digitally into the 

Brainmaster software, and transformed. Artifacts, such as movements, eye blinks, heart rate, 

respiration, and other corrupting factors were removed during the software calibration process. 

The sampling rate was 250 datapoints/second at 256 Hz. To filter out artifacts from the standard 

120 Hz AC/DC electricity in the United States a 60 Hz notch filter was used. Furthermore, an 

IIR Butterworth filter with a high pass filter at 1 Hz and a low pass filter at 40 Hz with a filter 

order of 6 was used and the artifact removal was set at 200 microV. 

Before statistical analysis, the raw EEG data were fast-fourier transformed (FFT) in 

Neuroguide which allowed an analysis of the data from the 19 channels in term of relative and 

absolute power of delta, theta, alpha, and beta (Beta 1-3) waves, as well as all combinations of 

http://www.brainmaster.com/
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wave ratios, including T/A ratios.  The EEG data were examined with a 2x2 ANOVA, 

comparing the variable TIME (pre- and post-treatment) and the variable GROUP for each, the 

changes in relative power for alpha, theta, and the theta/alpha ratio at the Pz location. Since the 

study hypothesis did not specify directionality of the comparison variance a non-directional, two-

tailed significance test was performed with the p-value set at p < .05. Eta square was computed 

to analyze effect size. 

 
Figure 3.3: Post-trial EEG from a study participant after concatenation of Brainmaster data in the Neuroguide software with 

four time-locked channels at a time (from top to bottom, first four channels, time-locked; next four channels time-locked, etc.). On 

the left: split half and test-retest reliability for all 19 channels; right top: relative power; bottom right: z score of relative power. 

3.4   Neurofeedback Training 

The BrainAvatar® 4.0 software from Brainmaster Technologies, Inc. was used for all 

NFT sessions, connected to the BrainMaster Atlantic I, 4 × 4 Module (Brainmaster 
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Technologies, Inc.; http://www.brainmaster.com/). The Pz location from 10-20 international 

EEG location system was selected as the active EEG recording site for both, A/T (EG) and B u/d 

(CG) training with a reference electrode on the right earlobe and a ground electrode on the left 

earlobe. The rationale for the respective NFT protocol and the Pz electrode site are described in 

Section 1.3.1. The ongoing EEG recording at Pz was sampled at 256 Hz per second at a 

resolution of <0.01 Hz, and 10,000 amplification. Impedance was maintained below 7 kOhm. 

Band pass filter (80 Hz high and 60 Hz low pass) and an A/D low pass filter (allowing 0.1-30 Hz 

activity) were used. Global smoothing time was set at 500 ms at 3 dB with a text damping factor 

at 100 ms and frequency band changes on the fly at .005. The artifact rejection threshold was set 

at 200 microV to control for eye and muscle artifacts. Amplitude values for delta, theta, alpha 

and beta bands were extracted from the raw EEG and then Fast Fourier transformed (FFT). 

Each NFT session used a standardized Neurofeedback Session Checklist (Appendix D) 

and lasted for approximately 45 minutes including, filling out the AD-ACL questionnaire pre- 

and post- NFT session, connecting and disconnecting the EEG leads to the participant, recording 

of a one- minute baseline EEG at the Pz location and three eight-minute NFT blocks with two, 

one to two- minute breaks between the blocks. The lengths of the breaks depended on each 

participant’s preference. Participants were seated in a comforTable chair, approximately three 

feet from the computer monitor giving audio-visual feedback during the NFT sessions. The room 

in which all QEEG and NFT sessions were administered was windowless, and shortly before the 

start of the EEG and NFT recording the lights were dimmed to keep distraction to a minimum. 

The experimenter sat quietly at a second computer screen perpendicular and approximately five 

feet away from the participants, so as not to distract the subject from the NFT tasks and to 

monitor artifacts and record participant behaviors and concerns.  

http://www.brainmaster.com/
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After the placement of the electrodes the participant was instructed to relax with eyes 

open for approximately 60 seconds, allowing the experimenter to check for appropriate signal 

transmission, impedance, and artifact control. Afterwards the EEG initial baseline was recorded 

for 30 seconds and used to calculate the reward criteria for the two audiovisual feedback signals. 

As described above, the Brainmaster Avatar software extracted the component amplitude band 

width from the continuous data stream, using third order Butterworth filters. The results of the 

band width filtering were almost instantaneously displayed on the experimenter’s computer 

screen in both raw and extracted amplitude bands. The value of the band amplitude was 

transformed online into audiovisual feedback which was displayed to the participant on the 22-

inch computer monitor. The actual operant reward criteria differed depending on the NFT 

protocol of the EG and CG will be discussed in the next two Sections (3.4.1 and 3.4.2). Feedback 

thresholds were kept constant during each of the three eight-minute segments.  

Instantaneous visual feedback was given via the Flying Vulcan video on the Brainmaster 

multi-media player for EG and CG groups. The video showed a non-threatening dragon slowly 

flying toward and by the viewer in a continuous eight-second loop. The video brightened (Figure 

3.6, left) when the to-be-trained waveband reward thresholds were reached and became 

successively brighter, the longer the participant’s oscillations (alpha and theta for the EG and 

two Beta bins for the CG) remained above threshold and darkened (Figure 3.3, right graphic) 

when the oscillations dropped. The Flying Vulcan video was only able to generate one feedback 

signal. Therefore, the visual feedback was programmed by summing the thresholds for feedback 

conditions 1 and 2 and dividing them by two, creating an average that would be used as input 

signal for the visual feedback.  
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Figure 3.4: Computer screen shot for NFT: Visual feedback was given via Flying Vulcan video (adapted by B. Viereck 

from the video from the Brainmaster multi-media player). The video brightened (left graphic) when the alpha and theta 

reward threshold was reached became successively brighter the longer the participant’s alpha and theta oscillations remained 

above threshold and darkened (right graphic) when the oscillations dropped and remained dark as long as the reward threshold 

was not crossed. 

In addition, two auditory feedback sounds were given when the same sustained feedback 

criteria and refractory time between feedbacks were achieved. Each sound was louder 

proportionally to the power of the to be trained waveband (i.e., higher the power of the to be 

trained waveband the louder the sound) and more frequent the more time the participant was able 

to keep the trained wavelength over the threshold. The two feedback reward sounds were a steel 

drum sound (MIDI note 52 at 1046.5 Hz) and a pan flute sound (MIDI note 61 at 1760.0 Hz). 

Loudness starting level was set at 50 with a loudness change rate of 10. Both visual and audio 

feedback were set for an autothresholding so that reinforcement was provided for 65% of the 

time and was autoupdated after each 60-second epoch. In each session before the first eight-

minute training block a 30-second baseline was taken and for the second and third training block 

10-second baselines were taken. 

3.4.1  Experimental group: Alpha/theta neurofeedback training.   

For participants of the EG, a relative increase in theta amplitude (5-7.9 Hz) for a 

sustained time of over 250 ms was rewarded with a MIDI steel drum sound. The refractory time 

between successive rewards was set at 200 ms. A relative rise in alpha amplitude (8-11 Hz) was 
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rewarded with a MIDI pan flute sound. The visual reward was given when the activity for both 

alpha and theta was above the supra-threshold at approximately 65% of the time (A+T)/2.  Beta 

(15-30 Hz) and delta (2-4 Hz, inhibited for eye blink artifacts) were inhibited which meant that if 

relative beta or delta increased no reward would be given, even if alpha or theta amplitudes 

improved. 

3.4.2  Placebo control group: Successive sessions beta up- and down-training. 

Participants from the placebo CG received successive sessions of beta and high beta 

bands up- and down-training. In all uneven NFT (protocol a: sessions 1, 3, 5, 7, and 9) an 

increase in beta (15-19 Hz) and high beta (20-24 Hz) amplitudes over the supra-threshold of 650 

ms and 130 ms with a refractory period of 200 ms between feedback sounds were rewarded with 

a steel drum and pan flute sound, respectively. In all even NFT sessions (protocol b: sessions 2, 

4, 6, 8, 10) a decrease in beta (15-19 Hz) and high beta (20-24 Hz) amplitudes over the supra-

threshold of 350 ms and 750 ms with a refractory of 200 ms between feedback sounds were 

rewarded with a steel drum and pan flute sound, respectively. Delta at 2-4 Hz was inhibited for 

eye blink artifacts.  

This protocol follows Doppelmayr’s (2011) general idea of successively up-and down 

training different beta bins to allow learning within session but not between sessions. However, 

in Doppelmayr’s so called, randomized broadband placebo feedback randomly selected training 

frequencies within the beta band changed every session and participants were informed to either 

increase the amplitudes of 1-Hz broad bands between 6 and 35 Hz for half the blocks during a 

training session and decrease the same band for the other half of each session. Those bins that 

interfered with the frequencies of the SMR and theta/beta ratio training of the two experimental 

groups were inhibited. But Doppelmayr’s protocol had technical difficulties with maintaining 
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appropriate reward levels when switching from increase to decrease of bins and in order to keep 

participants motivated had to manually change reward thresholds between training blocks.  Thus, 

this researcher made the decision not to switch between up- and down-training of certain beta 

and high beta bins for half of a session each.  

The placebo protocol was used with three healthy volunteers before the start of the 

clinical trial; the protocol was programmed to have the same sustained time criteria as reward 

criteria. The trial run showed that beta-up training and high beta down-training received such 

high reward rate that the reward sounds were almost continuous, and volunteers were easily 

capable of distinguishing between control conditions a and b due to very high reward rates for 

beta up training in the uneven sessions and much lower reward rates for the even sessions. This 

was not a surprising result; high beta band, in this case 20-24 Hz bins, can be easily down-

trained just by not thinking too hard and beta band (15-19 Hz) can be fairly easily up-trained 

according to the instruction that was given to all participants of relaxing and letting yourself be 

to thinking without much effort. In addition, the almost continuous reward rate was perceived as 

an unpleasant sound that made volunteers nervous and stressed and might thus artificially inflate 

the differences in sample between experimental and control groups in de-activation, anxiety 

level, and treatment satisfaction. To avoid this potential error the reward sound percentage and 

loudness the placebo protocols a and b were re-programmed to approximately emulate the 

reward rates of the experimental group. This was achieved by having the three healthy volunteers 

sit for all three conditions repeatedly and changing the programming for the sustained reward 

criterion condition met on the Brainavatar software so that volunteers in all three conditions, 

experimental group and placebo groups a and b, had approximately the same amount of rewards.  
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3.5   Statistical Data Analysis 

Descriptive statistics and inferential statistics for the psychometric instruments were 

performed in SPSS (version 24.0, IBM Corporation, NY). QEEG data and the regression growth 

curve modeling for the neurofeedback data was performed in R Studio (version 1.0.136, 

http://www.R-project.org) with the additionally installed packages (lme4, lmertest, car, ggplot2, 

lattice).  

3.5.1  Demographic and psychometric data analysis.  

3.5.1.1  STAI, BAI, and GAD.  

A two-factor repeated measure ANOVA was performed with the within-subject factor 

TIME (pre–post–treatment) and between-subject factor GROUP (A/T, CO) for the STAI-T, the 

STAI-S, the BAI, and the GAD-7, respectively. 

3.5.1.2  AD-ACL. 

Thayer’s Activation-Deactivation Adjective Checklist (AD-ACL) was administered before 

and after each NFT session.  Four two-factor repeated measure ANOVAs for the AD-ACL sub-

scale factors activated and deactivated were performed with the within-subject factor TIME 

(pre–post NFT session) and between-subject factor GROUP (A/T, CO).  

3.5.2  Correlation of neurofeedback change scores with psychometric measures and 

neurofeedback strategies and treatment satisfaction.  

Pearson correlation calculations were performed to assess the strength of a linear 

relationship between the change scores of theta and alpha amplitudes, relative theta and alpha 

and theta/alpha ratio and the change scores of the psychometric measures of activation and 

deactivation (AD-ACL), treatment expectancy change, trait and state anxiety change, and change 

scores in the BAI and GAD-7, and Rotter’s LOC scores. Additionally, a point-biserial correlation 

http://www.r-project.org/
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analysis was performed to establish the strength of relationship between the NFT change scores 

and the belief in group belonging, time of NFT in relation to optimal learning time-of-day. 

 The qualitative items from the NFT Strategies and Treatment Satisfaction Questionnaire 

to specify what kind of strategies and changes were experienced due to the NFT were 

transformed into binary yes-or-no form for the following items:  

 Were mental strategies employed? 

 Were mental strategies successful? 

 Did you experience any changes in feelings in your everyday life due to the NFT? 

 Did you experience any changes in thoughts in your everyday life due to the NFT? 

 Did you experience any changes behavior in your everyday life due to the NFT? 

3.5.3  QEEG analysis. 

The Brainmaster Atlantis I amplifier was only able to record four EEG channels at once. 

To obtain a 19-channel EEG the amplifier has a five-position dial that the experimenter switches 

to record the next set of four channels, and this procedure is repeated four times, until all 19 

channels have been recorded, i.e., five recordings of four channels (with no recording on Oz). In 

other words, after the first four channels were recorded for 120 s the dial was turned, which 

severs the connection for the first four channels and establishes the connection to the next four 

channels for the recording. The channel recording sequence was as follows: 

 Position #1: Fz, Cz, F3, F4 

 Position #2: C3, C4, P3, P4 

 Position #3: T3, T4, O1, O2 

 Position #4: F7, F8, T5, T6 
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 Position #5: Fp1, Fp2, Pz (Oz shows on the screen but there is no electrode on the standard 

Electro-Cap™ at Oz) 

As only four channels each were time-locked (due to the limitations in the Brainmaster EEG 

recording system) Neuroguide’s automatic algorithms for artifact removal for those artifacts that 

the Brainmaster system had not picked up, could not be used. The Brainmaster Atlantis I system 

did not remove artifacts appropriately, despite correct programming and several consultations 

with Brainmaster’s technical support team. 

     

Figure 3.5: Electrode locations and switch positions for the Brainmaster Atlantis, 4-channel 5-position MINI-Q 2 EEG 
(Adapted by B. Viereck from BrainMaster MINIQ II User’s Manual, 2007, p. 36; https://brainmaster.com/software/pubs/m-qII.pdf).  

   
Thus, each participant’s EEG files had to be imported into the Neuroguide software 

program (NeuroGuide 2.8.8, Applied Neuroscience, Inc., USA) and be concatenated into a full 

19-channel EEG data set, for additional artifact removal. Since only four channels of each EEG 

data set were time-locked Neuroguide’s automatic artifact removal did not work and artifact 

removal had to be manually obtained through visual inspection of each of the four time-locked 

EEG channels at a time. The following textbooks were used to guide the artifact analysis: 

Ebersole’s Current Practice of Clinical EEG (2014), Hammond and Gunkelman’s The Art of 

Artifacting (2001), and Niedermeyer & Lopes da Silva’s (2003, Electroencephalography—Basic 
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Principles, Clinical Applications, and Related Fields (1999). Both split-half and test-retest 

reliability tests were conducted on the edited, artifact-free EEG segments. The records with  > 

95% split half reliability, > 90% test-retest reliability, and a total measurement of over 60 

seconds were used for further statistical analyses. For all EEG recordings the average 

measurements split-half and test-retest reliability was > .90. The reliability for individual 

channels was > .90, except for 29 out of 988 channels recordings (total EEG recordings: 52) 

where the Brainmaster computer screen showed active oscillations of all channels on the monitor 

but the ASCII transcript of the channel’s EEG had no data recorded. The channels with faulty 

recordings varied which made it unlikely that there was an electrode malfunction. For seven 

participants one channel did not record in the pre- and/or post treatment EEG, for three 

participants two channels, and for two participants three channels did not record correctly under 

the pre- and/or post-treatment condition. 

The raw EEG data were fast-fourier transformed (FFT) which allowed an analysis of the 

data from the 19 channels in term of relative and absolute power of delta, theta, alpha, and beta 

(Beta 1-3) waves, as well as all combinations of wave ratios, including T/A ratios.  The EEG 

data were examined with a 2x2 ANOVA, comparing the variable TIME (pre- and post-treatment) 

and the variable GROUP for the changes in relative power for alpha, theta, and the theta/alpha 

ratio at Pz. Since the study hypothesis did not specify directionality of the comparison variance a 

non-directional, a two-tailed significance test was performed with the p-value set at p < .05. Eta 

square was computed to analyze effect sizes. 

3.5.4   Neurofeedback data analysis. 

The Brainmaster Atlantis I provided delta, theta, alpha, low beta, beta, high beta, and 

gamma amplitude means, mean fraction of EEG energy in each waveform after FFT and the 
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standard deviation for all values after automatic artifact removal. Mean values were recorded 

every 15 seconds of the three eight-minute blocks during the NFT training and for a 30 second 

baseline recording before and after each eight-minute block of NFT. Most artifacts where 

automatically filtered out by the Brainmaster software algorithms. To capture and remove 

additional artifacts due to oculomotor, temporalis and frontalis muscles more accurately EMG 

electrodes at respective muscle sites would have been helpful. Unfortunately, this study had no 

funding to acquire this additional equipment. According to Goncharova, McFarland, Vaughan, 

and Wolpaw (2003) the contamination of the EEG by electromyographic artifacts is not very 

likely at the Pz location as the attachment sites of the temporalis and frontalis muscles, as well as 

the oculomotor sites are far away from Pz and Oz. Additional artifacts were removed by visually 

inspecting each NFT session record and excluding all data points for delta, theta, alpha and beta 

that had a measurement of over 100 Hz, after the initial artifact removal was done by the 

Brainmaster software. Any recordings over 100 Hz are very likely artifacts, except in epileptic 

seizures (Ebersole, 2014), which none of participants experienced during the trial. The data were 

averaged every 15 seconds so that four data points per minute were obtained for the 24 minutes of 

each NFT session and a 10-second baseline recording without feedback was recorded after minute 24.  

 The NFT session data were analyzed in R Studio with a hierarchical linear mixed model 

growth curve modeling (GCM) using the R statistical program with the lme4 package (Bates & 

Sakar, 2013) testing for main effects of within participant change (individual learning curves) 

and group membership (control or experimental group) and interaction between the two main 

effects. GCM is particularly well suited to analyze mixed effects time series data and to 

document learning curves because it can simultaneously analyze within subject effects, as well as 

between-subjects effects over multiple time points (Mirman, Dixon, & Magnuson, 2008). In 

comparison to a repeated measures ANOVA or traditional regression analysis for longitudinal 
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data, GCM regression has the advantage of building a separate regression model for each 

participant, accounting for individual differences in responding to the NFT, calculated as the 

random effects in each of the GCM regression models. In contrast, the traditional regression 

model assumes all participants respond the same to the treatment and the standard error 

represents differences in treatment response.   

A predictor that varies in time (here absolute and relative alpha, theta, and T+A 

amplitudes, and T/A ratio) is modeled as the weighted sum of main effects between the criterion 

variables and their interactions with the second predictor being treatment group (A/T) versus 

control group (B u/d) membership. Predictor variables were added to the initial regression model 

(model a) in successive steps.  In all successive models (b through e) added predictor variables 

were centered to lessen the collinearity between main effects and interactions. According to 

Mirman (2014) the strength of the growth curve model in comparison to the traditional 

multilinear regression model is that the researcher does not have to transform a continuous 

process arbitrarily into few discrete time bins to do the statistical thresholding. In other words, a 

lot of information regarding a learning curve is lost by using the mean for each session, or even 

means for the three eight-minute NFT session averages, instead of all 96 means for each session. 

Furthermore, GCM is very robust regarding missing data. Data from participants who did not 

finish the treatment can be included in the GCM. In this study two participants from the control 

group quit after three and five sessions, respectively. 

The equation for the NFT component of this study can be modeled as follows: T/A ratio (or 

alpha or theta amplitudes) ~ time effect (run or trial) + participant (within subject effect) + 

condition effect (experimental or control) + interaction effect (time x condition) + error. 

All analyses modeled were started with a null model (model A): lmer(y~1 + 
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(1|participant)). This model added the log likelihood (logLik) of the random intercept for each 

participant, i.e., a different intercept is assumed for each participant. The time variables time 

within session (RUN) and time across sessions (TRIAL) were centered, which means that the 

first-time measurement is defined as point zero, to make the interpretation of the variable 

coefficients easier. Each model added one of the effect variables seen above into the model and 

run and an ANOVA was run, comparing the effects of one model with the effects of the new 

model regarding goodness of fit of the log likelihood (logLik) via the 2 test, in other words has 

the likelihood in the new model increased enough to the predict variable y to warrant the addition 

of the new parameter (for complete R coding script see Appendix E). 
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4.  Results 

4.1  Participants 

Twenty-seven subjects had been randomly assigned to the treatment condition (A/T NFT, 

n = 14) or to the control condition (B u/d NFT, n = 13). Two women from the control group 

dropped out; one after five NFT sessions due to time constraints with work and the other one, a 

student, after three sessions due to a six-week university holiday break that made the interval 

between individual sessions too long to be included in the study. Thus, 14 participants from the 

experimental group and 11 participants from the experimental group completed the study. The 

existing neurofeedback and AD-ACL data for the two dropouts was included in the study as 

GCM is very robust regarding missing data. 

The participant sample was heterogeneous but normally distributed with a mean age of 

the women (n = 14) in the control group of 32. 23 years (SD = 12.76 years) with an age range of 

19 to 56 years. The mean age of the women in the control group was 36.21 years (SD = 16.62 

years) with an age range of 20 to 69 years. 

 Unfortunately, as Table 4.1a indicates, the participant sample was very homogeneous 

regarding race / ethnicity and education level: 89% of the participating women were White / 

Caucasian and 11% Hispanic; no African American, Asian / Pacific Islanders or Native 

American women participated. In comparison to the U.S. Census Bureau’s 2016 data for the 

United States (https://www.census.gov/quickfacts/fact/table/US/PST045217) 77% of the country 

identify themselves as white, 18% Hispanic, 13% African American, 6% Asian, 3% multiracial, 

and 1% as American Indian. The Census further reports that 87% of the population of age 25 and 

above graduated from high school (or had higher education) and 30% of the population had a 

bachelor degree (or higher education). All participants had at least a high school diploma; 14.8% 

https://www.census.gov/quickfacts/fact/table/US/PST045217
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of the participants had some college credits but no degree; 3.7% had an associate degree; 37.0% 

had a bachelor degree; 29.6% had a master degree; and 14.8% had a doctoral degree. 

The 25.9% of women had not been formally diagnosed with any AD. 33.3% of the 

participants had been diagnosed with GAD, 25.9% with an AD diagnosed but not specified, 

11.1% had been diagnosed with SAD, and 3.7% with phobia. There was no option given of 

marking more than one AD to force participants to choose the AD most prevalent for them. 

Additional descriptive statistics of the participant sample by group membership (CG or EG) can 

be found in Table 4.1b. 

            
 

Table 4.1 a: Descriptive participant demographics. (*No multiple AD selection was allowed.) 

Lastly, Table 4.1 c illustrates that most participants used mental strategies over the course 

of the NFT trial to regulate their respective brain wave bands (84%) and little difference was 
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observed between EG and CG (89% of the EG and 82% of the CG). Of the participants who did 

use strategies, 86 % perceived their mental strategies to be successful (83% of the EG and 89% 

of the CG). Regarding perceived positive changes in feelings, thinking, and behavior due to the 

NFT 72% (90% of the EG and 55% of the CG) of participants reported changes in feelings, 48% 

successful (58% of the EG and 36% of the CG) in thinking, and 40% successful (43% of the EG 

and 36% of the CG) in behavior, with the participants of the EG reporting positive changes 

consistently at higher rates than the participants of the CG.  

 
Table 4.1 b: Descriptive statistics of interval variables of the participant sample by group. 
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Table 4.1 c: Descriptive statistics of categorical variables: Mental strategies used?, Mental Strategies successful?, Change in 

feelings, thinking and behavior due to NFT? of the participant sample by group. 

4.2   Psychometric Results 

To ensure there were no significant differences at baseline between the participants from 

the experimental group (A/T NFT) and the control group (B u/d NFT) a Levene’s tests for 



 75 

equality of variances and independent samples t- tests for equality of means were performed for 

the variables age, education level, pre-trial STAI, BAI, and GAD-7, AD-ACL, and SETS 

expectations of treatment. All Levene and t-tests had non-significant results which means that 

experimental and control groups had similar variances and means, respectively, and did not 

significantly differ from each other for all analyzed variables at baseline. 

4.2.1  Anxiety questionnaires: STAI, BAI, and GAD-7. 

Two-way mixed model ANOVAs were performed with the within-subject factor TIME 

(pre–post treatment) and the between-subject factor GROUP (A/T, CO) for the STAI (sub-scales 

STAI-T and STAI-S), the BAI, and the GAD-7. Assumptions were tested before running each 

ANOVA. A Shapiro-Wilk test to check for normality of distribution for each cell of the design 

was performed. The equality of variances and the equality of covariance matrices were tested 

with the Levene and Box Test, respectively. All tests had non-significant results which means 

that all necessary statistical assumptions for the 2x2 ANOVA were met. 

For the analyses of all self-report anxiety measures the factor time was significantly 

reducing participants’ scores in the various anxiety measures and an associated large effect size 

as measured by partial η2. For the STAI, sub-scale state anxiety (STAI-S), the anxiety scores 

decreased significantly between the beginning (M = 53.70, SD = 10.53) and the end of the trial 

(M = 46.63, SD = 8.52) for F(1, 25) = 9.518, p = .005, partial η2 = .276; for the STAI, sub-scale 

trait anxiety (STAI-T), the anxiety scores decreased significantly between the beginning (M = 

49.15, SD = 10.56) and the end of the trial (M = 41.63, SD = 9.32) for F(1, 25) = 22.988, p = 

.0001, partial η2 = .479; for the BAI the anxiety scores decreased significantly between the 

beginning (M = 17.63, SD = 8.73) and the end of the trial (M = 12.41, SD = 6.59) for F(1, 25) = 

11.524, p = .002, partial η2 = .316; and for the GAD-7 the anxiety scores decreased significantly 
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between the beginning (M = 10.04, SD = 4.00) and the end of the trial (M = 7.48, SD = 4.52) for 

F(1, 25) = 22.988, p = .0001, partial η2 = .479. However, none of the interactions between TIME 

and GROUP were significant: STAI-S (F(1, 25) = .41, n.s.); STAI-T (F(1, 25) = .09, n.s.); BAI 

(F(1, 25) = .15, n.s.), and GAD-7 (F(1, 25) = .18, n.s.), i.e., no differences between scores of the 

experimental and the control groups regarding the reduction in self-reported anxiety measures 

were observed.  

4.2.2  Stanford Expectation of Treatment scale (SETS). 

Repeated measures ANOVA were conducted with the within-subject factor TIME (pre–

post-treatment) and between-subject factor GROUP (A/T, CO) for Cronbach’s α = .05 for the 

SETS-positive and the SETS-negative items sub-scales (Figure 4.2). A Shapiro Wilk test to 

check for normality of distribution for each cell of the design was performed. The equality of 

variances and the equality of covariance matrices were tested with the Levene and Box Test, 

respectively. All preliminary tests had non-significant results which means that all necessary 

statistical assumptions for the 2x2 ANOVA were met.  

   
Figure 4.1: Mean SETS negative expectancy test score differences for EG (solid line) and CG (dotted line). Pre- and post-

treatment: A significant reduction of scores in the negative treatment expectancy sub-scale were observed between beginning and 

end of the trial. However, no significant difference between the EG and CG was observed. 
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While a significant reduction in the SETS-negative sub-scale could be observed between 

the beginning (M = 2.14, SD = 1.40) and the end of the NFT trial (M = 1.42, SD = .94) for F(1, 

25) = 5.809, p = .024, partial η2 = .189), the GROUP x TIME interaction for SETS-negative 

(F(1, 25) = .01, n.s.) was not significant. For the SETS-positive sub-scale, neither factor TIME 

(F(1, 25) = .25, n.s.) nor the TIME x GROUP (F(1, 25) = 1.09, n.s.) were significant.  

4.2.3  Activation Deacktivation Checklist (AD-ACL).       

All preliminary tests had non-significant results which means that all necessary statistical 

assumptions for the 2x2 ANOVA were met, except for the AD-ACL sub-scale tension for the 

pre-trial measurement; the Box test had a significant result (p = .027) for this sub-scale. As all 

other assumptions for the ANOVA were met no additional one-way repeated measures ANOVA 

for each group of the between-subjects factor tension were run. 

4.2.3.1  Traditional 2x2 and 2x5 ANOVAs for AD-ACL activation and deactivation 

scales and four sub-scales 

Repeated measure 2x2 ANOVAs were conducted with the within-subject factor TIME 

(pre–post-treatment) and between-subject factor GROUP (A/T, CO) for Cronbach’s α = .05 for 

the activation and deactivation scales, as well as for each of the four sub-scales (energy, tension, 

tiredness, calmess).  Activation, comprised of the tension and energy sub-scales, decreased 

significantly between the beginning (M = 3.951, SD = 1.126) and the end of a NFT session (M = 

3.280, SD = .968), F(1, 256) = 157.295, p < .0001, partial η2 = .381. Activation decreased 

significantly more for the CG (M pre = 4.059, SD pre = .979; M post = 3.263, SD post = .790), p < 

.034, partial η2 = .017)) than the EG (M pre = 3.859, SD pre = 1.232; M post = 3.295, SD post = 

1.098), F(1, 256) = 4.539, p < .034, partial η2 = .017) between the beginning and the end of a 

NFT session. Deactivation, made up of the tiredness and calmness sub-scales, increased 
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significantly between the beginning (M = 4.617, SD = 1.217) and the end of a NFT session (M = 

5.623, SD = 1.157), F(1, 256) = 171.981, p < .0001, partial η2 = .402), (Figure 4.3). Deactivation 

scores did not significantly differ between pre- and post-session for the CG and the EG (F(1, 

256) = .339, n.s.). 

Source Mean pre-session SD pre-session Mean post-session SD post-session N 

Activation       

EG 3.860 1.213 3.294 1.097 140 

CG 4.060 .979 3.263 .790 118 

Total 3.951 1.126 3.280 .968 258 

Deactivation       

EG 4.508 1.316 5.554 1.267 140 

CG 4.746 1.079 5.705 1.011 118 

Total 4.617 1.217 5.623 1.157 258 

Tiredness        

EG 2.257 .918 2.660 .919 140 

CG 2.486 .859 3.013 .853 118 

Total 2.362 .897 2.821 .905 258 

Energy       

EG 2.119 .820 1.833 .810 140 

CG 2.085 .731 1.645 .666 118 

Total 2.104 .779 1.747 .752 258 

Calmness      

EG 2.251 .720 2.895 .714 140 

CG 2.237 .737 2.699 .651 118 

Total 2.245 .726 2.805 .697 258 

Tension      

EG 1.740 .858 1.461 .595 140 

CG 1.983 .713 1.605 .570 118 

Total 1.851 .802 1.527 .587 258 

Table 4.2 a: Descriptive statistics for the AD-ACL scores: Pre-post-NFT session results for EG and CG. 

All four ANOVAs for the sub-scales showed a main effect for the factor TIME (Figure 

4.3).  On average the participants’ energy decreased significantly between the beginning (M = 

2.10, SD = .78) and the end of a NFT session (M = 1.75, SD = .75), F(1, 256) = 63.24, p < .001, 

partial η2 = .198; and so did their tension between the beginning (M = 1.85, SD = .80) and the 

end of a NFT session (M = 1.53,  SD = .59), F(1, 255) = 69.63, p < .001, partial η2 = .214, as 

well. In contrast, participants’ calmness increased significantly on average between the 

beginning (M = 1.27, SD = .74) and the end of a NFT session (M = 1.77, SD = .70), F(1, 255) = 

103.21, p < .001, partial η2 = .29)  and so did their tiredness between the beginning (M = 1.46, 
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SD = .66) and the end of a NFT session (M = 1.74, SD = .58), F(1, 255) = 39.01, p < .001, partial 

η2 = .13). 

Source: Pre-post-NFT 

session difference scores 

SS df MS F p partial η2 

Activation        

Time 59.278 1 59.278 157.295 <.001** .381 

Time* group 1.711 1 1.711 4.539 .034* .017 
Error 96.476 256 .377    

Deactivation        

Time 128.531 1 128.531 171.981 <.001** .402 

Time* group .253 1 .253 .339 .561 .001 

Error 191.323 256 .747    

Tiredness         

Time 27.644 1 27.644 67.228 <.001** .208 

Time* group .483 1 .483 1.74 .280 .005 
Error 105.268 256 .411    

Energy        

Time 16.896 1 16.896 63.239 <.001** .198 

Time* group .760 1 .760 2.843 .093 .011 

Error 68.399 256 .267    

Calmness       

Time 39.087 1 39.087 147.745 <.001** .366 

Time* group 1.051 1 1.051 3.974 .047* .015 
Error 67.717 256 .265    

Tension       

Time 13.789 1 13.789 69.628 <.001** .214 

Time* group .315 1 .315 1.589 .209 .006 
Error 50.699 256 .198    

Table 4.2 b: 2 x 2 ANOVA for AD-ACL Pre-post-NFT session results for EG and CG. 

 The interaction of group and calmness was significant (F(1, 256) =3.94, p = .047, partial 

η2 = .015) with the EG experiencing significantly larger increase in calmness than the  

CG, but the effect size is small. The interaction of group and energy neared significance (F(1, 

256) =2.84, p = .093, partial η2 = .011) with the EG experiencing a not quite significantly larger 

decrease in energy than the CG. The interactions of group and tension (F(1, 255) =1.59, n.s.), 

and group and tiredness (F(1, 255) =1.174, n.s.) were not significant, indicating that on average 

no significant differences in the reduction in tension and the increase in tiredness from before to 

after the NFT sessions between the experimental and control groups were found. 
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Source: pre-post-NFT session 

difference scores 
SS df MS F p partial 

η2 
Activation (Scale)       

Time (within-subjects effect) 1.273 4 .318 .607 .659 .024 

Time* group (within-subjects effect) .085 4 .021 .041 .997 .002 

Group (between-subjects effect) .093 1 .093 .038 .847 .002 

Deactivation (Scale)       

Time (within-subjects effect) .667 4 .167 .513 .726 .020 

Time* group (within-subjects effect) 2.479 4 .620 2.909 .115 .071 

Group (between-subjects effect) 2.834 1 2.834 3.499 .073 .123 

Tiredness (Sub-scale)       

Time (within-subjects effect) 2.112 4 .528 1.883 .119 .070 

Time* group (within-subjects effect) .598 4 .150 .533 .712 .021 

Group (between-subjects effect) .475 1 .475 .347 .561 .014 

Energy 1(Sub-scale)       

Time (within-subjects effect) 1.030 3.125 .329 1.264 .293 .048 

Time* group (within-subjects effect) .671 3.125 .215 .823 .489 .032 

Group (between-subjects effect) .638 1 .638 1.080 .309 .041 

Calmness (Sub-scale)       

Time (within-subjects effect) 1.031 4 .258 1.304 .274 .050 

Time* group (within-subjects effect) .383 4 .096 .484 .747 .019 

Group (between-subjects effect) 1.259 1 1.259 1.501 .232 .057 

Tension (Sub-scale)       

Time (within-subjects effect) .245 4 .061 .479 .751 .019 

Time* group (within-subjects effect) .946 4 .236 1.848 .126 .069 

Group (between-subjects effect) .474 1 .474 .622 .438 .024 
1 Greenhouse –Geiser adjustment used. 

Table 4.3: 2 x 5 AD-ACL NFT session difference scores for sessions 1+2, 3+4, 5+6, 7+8, and 9+10 for EG and CG. 

Repeated measures 2x5 ANOVAs with the within-subject factor TIME, for the averages 

of sessions 1-2, 3-4, 5-6, 7-8, and 9-10, and the between-subjects factor GROUP (EG or CG) 

were performed for all AD-ACL scales (Table 4.3 and Figure 4.2). No significant changes in 

difference scores were observed across the course of the NFT sessions for the any of the AD-

ACL scales or sub-scales: Activation (F(4, 100) = .726, n.s.), Deactivation (F(4, 100) = .607, 

n.s.), Tension (F(4, 100) = .479, n.s.), Calmness (F(4, 100) = 1.304, n.s.), Tiredness (F(4, 100) = 

1.883, n.s.), and Energy (F(4, 78.134) = 1.264, n.s.). Furthermore, the EG and CG did not differ 

significantly in their results of AD-ACL scales and sub-scales throughout the course of the NFT 

trial as no interactions between factors TIME and GROUP were found for any of the scales and 

sub-scales: Activation (F(4, 100) = .041, n.s.), Deactivation (F(4, 100) = 1.909, n.s.), Tension 

(F(4, 100) = 1.848, n.s.), Calmness (F(4, 100) = .484, n.s.), Tiredness (F(4, 100) = .533, n.s.), 
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and Energy (F(4, 78.134) = .823, n.s.).  

For the between-subjects factor GROUP the results of the Deactivation scale were near 

significance (F(1, 25) =3.499, p = .073, partial η2 = .0123), whereas the results of the other scales 

and sub-scales were not significant: Activation (F(1, 25) =.0381, n.s.), Tension (F(1, 25) = .438, 

n.s.), Calmness (F(1, 25) = .232, n.s.), Tiredness (F(1, 25) = .347, n.s.), and Energy (F(1, 25) = 

1.080, n.s.). Additional figures modeling difference scores per session for all ten NFT sessions 

with confidence intervals are attached in Appendix E. 

   
Figure 4.2: AD-ACL deactivation pre–post session difference score changes for EG (solid line) and CG (dotted line) over 

the course of the NFT trial, averaging scores from sessions 1 & 2, 3 & 4, 5 & 6, 7 & 8, and 9 & 10. Deactivation approached 

significance (p = .073) in decreasing more across sessions for the CG than for the EG. 

4.2.3.2  Growth curve modeling for AD-ACL activation and deactivation scales, and         

fffour sub-scales 

In addition to the traditional 2x5 ANOVAs (see section 4.2.3.1) a growth curve modeling 

(GCM) analysis was performed in R Studio, version 1.0.136. The GCM theory and principles 

will be explained in detail in the next section (4.3.1). The GCM considers pre- and post-NFT 
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AD-ACL session difference scores of all ten sessions instead of combining pre-post session 

difference results of two sessions each and therefore offers a more nuanced statistical analysis 

than ANOVAs.  

The GCM confirmed the results from the 2x5 ANOVAs of AD-ACL scales and sub-scales 

in that across NFT sessions there was no significant change in scores in any of the scales or sub-

scales, except for the activation scale (Table 4.4 a) which neared significance ( = 0.280, SE = 

0.149, p = .071) with participants of the CG getting nearly significantly less activated as they 

progressed throughout the NFT sessions. As an interaction effect between factors TIME and 

GROUP was detected as well in this scale ( = 0.054, SE = 0.026), p < .05) a difference in 

patterns of activation across sessions is suggested. This makes an interpretation of the GROUP 

factor results difficult. Visually inspecting Figure 4.5 elucidates that while EG and CG have 

relatively similar difference scores in the activation scale in the first and last 2 sessions, in the in 

between 6 sessions members of the CG group were far less activated than in beginning or end of 

the 10 NFT sessions whereas EG group members were more activated remaining in those 6 

sessions. 

Predictor for AD-ACL Activation scale  (SE) p 

MODEL C: TIME ACROSS SESSIONS (ten NFT sessions) 

Intercept 
         -0.006 (0.019) 
             -0.676 (0.109) 

.742 
  < .001*** 

MODEL D: GROUP: group across sessions           0.280 (0.149) .071 

MODEL E: TIME ACROSS SESSIONS x GROUP 0.054 (0.026) < .0.5* 

Table 4.4 a: Results from GCM regression analyses predicting AD-ACL Activation from across sessions, and group (EG, 

CG). Note: Standard errors are given in parentheses. Intercept information is only shown for significant models. Significant 

results are shown in bold red. 

 

Predictor for AD-ACL Deactivation scale  (SE) p 

MODEL C: TIME ACROSS SESSIONS (ten NFT sessions) 

Intercept 
           0.004 (0.022) 
             -0.986 (0.175) 

  .853 
  < .001*** 

MODEL D: GROUP: group across sessions            0.064 (0.260) .808 

MODEL E: TIME ACROSS SESSIONS x GROUP   -0.009 (0.032) .788 

Table 4.4 b: Results from GCM regression analyses predicting AD-ACL Activation from across sessions, and group (EG, 

CG). Note: Standard errors are given in parentheses. Intercept information is only shown for significant models. Significant 

results are shown in bold red. 
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Predictor for AD-ACL Energy sub-scale  (SE) p 

MODEL C: TIME ACROSS SESSIONS (ten NFT sessions) 

Intercept 
         -0.0192 (0.018) 
             -0.266 ( 0.112) 

  .288 
< .0.5* 

MODEL D: GROUP: group across sessions           0.149 (0.124) .240 

MODEL E: TIME ACROSS SESSIONS x GROUP  0.023 (0.020) .249 

Table 4.4 c: Results from GCM regression analyses predicting AD-ACL energy sub-scale from across sessions, and 

group (EG, CG). Note: Standard errors are given in parentheses. Intercept information is only shown for significant models. 

Significant results are shown in bold red. 

 

Predictor for AD-ACL Tired sub-scale  (SE) p 

MODEL C: TIME ACROSS SESSIONS (ten NFT sessions) 

Intercept 
         0.027 (0.019) 
             0.328 ( 0.146) 

  .182 
<  .0.5* 

MODEL D: GROUP: group across sessions          0.130 (0.191)  .504 

MODEL E: TIME ACROSS SESSIONS x GROUP         -0.025 (0.025) 0.341 

Table 4.4 d: Results from GCM regression analyses predicting AD-ACL Tired sub-scale from across sessions, and group 

(EG, CG). Note: Standard errors are given in parentheses. Intercept information is only shown for significant models. 

Significant results are shown in bold red. 

 

Predictor for AD-ACL Calm sub-scale  (SE) p 

MODEL C: TIME ACROSS SESSIONS (ten NFT sessions) 

Intercept 
         -0.0.028 (0.018) 
             0.674 (0.094)  

.132 
  < .001*** 

MODEL D: GROUP: group across sessions           0.179 (0.154) .255 

MODEL E: TIME ACROSS SESSIONS x GROUP  0.028 (0.030) .349 

Table 4.4 e: Results from GCM regression analyses predicting AD-ACL Calm sub-scale from across sessions, and group 

(EG, CG). Note: Standard errors are given in parentheses. Intercept information is only shown for significant models. 

Significant results are shown in bold red. 

 

Predictor for AD-ACL Tense sub-scale  (SE) p 

MODEL C: TIME ACROSS SESSIONS (ten NFT sessions) 

Intercept 
         -0.014 (0.012) 
             -0.410 ( 0.081) 

  .255 
   < .001*** 

MODEL D: GROUP: group across sessions           0.013 (0.146) .485 

MODEL E: TIME ACROSS SESSIONS x GROUP  0.029 (0.030) .349 

Table 4.4 f: Results from GCM regression analyses predicting AD-ACL Tense sub-scale from across sessions, and group 

(EG, CG). Note: Standard errors are given in parentheses. Intercept information is only shown for significant models. 

Significant results are shown in bold red. 

 

 

4.3  Neurofeedback Training Results 

Descriptive statistics run on the NFT session data set in SPSS revealed a limited amount 

of missing data due to alpha and theta amplitude artifacts that had not been automatically 

removed by the BrainAvatar® 4.0 software, such as any amplitudes over 100 Hz that had not 

been removed although appropriate band pass filters had been programmed into the Brainmaster 

program. The data were replaced by averaging the amplitudes for all waves (delta, theta, alpha, 

beta, and gamma) of the minute before and the minute after the recorded artifact. 1.28% 
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(83/6480 minutes) of recorded NFT session minutes had to be replaced by the averaging method. 

Participant 011 was the only person who was consistently an outlier throughout the trial with 

extremely high alpha and theta amplitudes and corresponding alpha and relative theta amplitudes 

but average T/A ratio. The participant was taken out of the statistical calculations which reduced 

the standard error (SE) of the measurements slightly but did not change any of the statistical 

analysis results. Consequently, 011 was left in the final report of statistical results as this study 

had a small sample size and a reduction in sample would lead to a reduction in power. 

4.3.1 Growth curve modeling with absolute and relative alpha, theta, T+A, and T/A     

rratio. 

The NFT data were analyzed by modeling absolute and relative alpha, theta, and T+A, and 

T/A ratio. Due to some large standard error values in comparison to the unstandardized beta 

values additional analyses of all variables using the growth curve modeling approach. As 

discussed in chapter 3.5.1, a logit mixed effects GCM was programmed into R-Studio and p 

values were obtained by lmerMod.  

A 2 test for each of the criterion variables was administered regarding factor TIME 

WITHIN SESSIONS (RUN) and showed significant likelihood of fit for model C, with the 

added assumption that the intercept is different for each participant (center_t | participant), 

represented the best model fit for the regression equation for all tested criterion variables— with 

absolute and relative alpha, theta, T+A, and T/A ratio (run: 2 test: p < .0001) | trial: 2 test; p < 

.0001). Additionally, model E, the interaction between TIME WITHIN SESSION and GROUP, 

represented an equally good fit with the 2 test result of p < .0001 for all criterion variables.  The 

2 test for the factor TIME ACROSS SESSIONS (TRIAL) was significant (p < .0001) for 

models C and E only for absolute alpha and theta amplitude, and relative T+A amplitude (Table 
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4.3 a, e, d).  For relative alpha and theta amplitude, and T/A amplitude ratio (Table 4.5 b, f, c) 

only model C presented the best fit, i.e., the 2 test was only significant for model C and not for 

model for the factor TIME ACROSS SESSIONS.  Interestingly, model E represented an 

alternative best fit model for prediction of all criterion variable scores within sessions (run) and 

most of the criterion variables between sessions although none of the interactions showed 

significant fixed effects in any of the criterion variables. The only criterion variable where the 

interaction between TIME x GROUP is at least remotely approaching significance is for TIME 

WITHIN SESSIONS for the T/A amplitude ratio (p = .114). All other p values are between .231 

and .918. The Bayesian Information Criteria (BIC) values for model C were slightly lower for all 

variables than for model E. The BIC is an estimate of how probable each of a number of finite 

models is of being true, with a lower BIC value representing a better fit model. Consequently, 

model C represents a better fit and the best model to predict NFT alpha and theta amplitudes, as 

well as for the Relative T+A amplitude. 

TIME WITHIN SESSIONS was a significant predictor for all tested criterion variables, 

which means that on average over the course of a session a significant increase in absolute alpha 

amplitude ( = 0.066, SE = 0.012, p < .0001), T/A amplitude ratio ( = -0.004, SE = 0.001, p = 

.002), relative alpha amplitude ( = 0.067, SE = 0.010, p < .0001), relative theta amplitude ( = 

0.007, SE = 0.0003, p < .001), and relative A+T amplitude ( = 0.074, SE = 0.0017, p < .0001) 

could be observed within NFT sessions and nearing significance for absolute theta amplitude ( 

= 0.026, SE = 0.015, p < .094). The analysis of TIME ACROSS SESSIONS revealed that as time 

passed between sessions absolute alpha amplitude ( =0.134, SE = 0.048, p = .011) and relative 

alpha amplitude ( =0.121, SE = 0.013, p < .0001) increased significantly on average. But no 

such significant trend could be observed for T/A ratio ( = -0.006, SE = 0.004, p = .109, n.s.), 
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absolute theta amplitude ( =0.029, SE = 0.053, p = .589, n.s.), relative theta amplitude ( 

=0.013, SE = 0.036, p = .735, n.s.), or relative T+A amplitude ( =0.019, SE = 0.014, p = .171, 

n.s.). The analysis of the GROUP factor did not reveal any significant change for the factor 

TIME WITHIN SESSION, nor for TIME ACROSS SESSIONS for T/A amplitude ratio. 

Predictor for ABSOLUTE alpha amplitude (in µV)   (SE) p 

MODEL C: TIME WITHIN SESSIONS 
(24 one-minute runs per NFT session) 

Intercept 

0.066 (0.012) 
 

9.442 (0.739) 

   < .0001 *** 
 

 < .0001 *** 

MODEL C: TIME ACROSS SESSIONS (ten NFT sessions) 

Intercept 
0.134 (0.048) 
9.691 (0.755) 

  .011 * 
< .0001 *** 

MODEL D: GROUP: within session 0.165 (1.172) .889 

MODEL D: GROUP: group across sessions 0.439 (1.464) .767 

MODEL E: TIME WITHIN SESSIONS x GROUP 0.012 (0.019) .556 

MODEL E: TIME ACROSS SESSIONS x GROUP 0.055 (0.093) .560 

Table 4.5 a: Results from GCM regression analyses predicting absolute alpha amplitude from run (within session), trial 

(across sessions), and group (EG, CG). Note: Standard errors are given in parentheses. Intercept information is only shown for 

significant models. Significant results are shown in bold red. 

 

Predictor for RELATIVE alpha amplitude (in %)  (SE) p 

MODEL C: TIME WITHIN SESSIONS 
(24 one-minute runs per NFT session) 

Intercept 

         0.067 (0.010) 
 

         17.585 (0.613) 

  < .0001 *** 
 

< .0001 *** 

MODEL C: TIME ACROSS SESSIONS (ten NFT sessions) 

Intercept 
        0.121 (0.013) 
        17.709 (0.589) 

  < .0001 *** 
< .0001 *** 

MODEL D: GROUP: within session         -0.065 (1.149) .955 

MODEL D: GROUP: group across sessions 0.376 (1.164) .749 

MODEL E: TIME WITHIN SESSIONS x GROUP 0.022 (0.018) .244 

MODEL E: TIME ACROSS SESSIONS x GROUP 0.014 (0.115) .901 

Table 4.5 b: Results from GCM regression analyses predicting relative alpha amplitude from run (within session), trial 

(across sessions), and group (EG, CG).Note: Standard errors are given in parentheses. Intercept information is only shown for 

significant models. Significant results are shown in bold red. 

 

Predictor for T/A RATIO  (SE)   p 

MODEL C: TIME WITHIN SESSIONS 
(24 one-minute runs per NFT session) 

Intercept 

         -0.004 (0.001) 
 

           0.993 (0.037) 

    .002 ** 
 

   < .0001 *** 

MODEL C: TIME ACROSS SESSIONS (ten NFT sessions) -0.006 (0.004)         .109 

MODEL D: GROUP: within session -0.033 (0.071) .647 

MODEL D: GROUP: group across sessions -0.023 (0.068) .739 

MODEL E: TIME WITHIN SESSIONS x GROUP -0.003 (0.002) .114 

MODEL E: TIME ACROSS SESSIONS x GROUP -0.001 (0.007) .918 

Table 4.5 c. Results from GCM regression analyses by successively adding predictors for T/A amplitude ratio from 

run (within session), trial (across sessions), and condition (EG, CG).  Note: Standard errors are given in parentheses. 

Intercept information is only shown for significant models. Sigificant results are shown in bold red. 
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Predictor for RELATIVE A+T amplitudes (in %)  (SE) p 

MODEL C: TIME WITHIN SESSIONS 
(24 one-minute runs per NFT session) 

Intercept 

0.074 (0.017) 
 

34.251 (0.664) 

< .0001 *** 
 

< .0001 *** 

MODEL C: TIME ACROSS SESSIONS (ten NFT sessions) 0.019 (0.014) .171  

MODEL D: GROUP: within session 0.483 (1.240) .700 

MODEL D: GROUP: group across sessions 0.456 (0.796) .572 

MODEL E: TIME WITHIN SESSIONS x GROUP 0.039 (0.097) .690 

MODEL E: TIME ACROSS SESSIONS x GROUP -0.014 (0.033) .667 

Table 4.5 e:  Results from GCM regression analyses predicting relative A+T amplitudes from run (within session), trial 

(across sessions), and group (EG, CG). Note: Standard errors are given in parentheses. Intercept information is only shown 

for significant models. Significant results are shown in bold red. 

 

 

Predictor for ABSOLUTE theta amplitude (in µV)  (SE) p 

MODEL C: TIME WITHIN SESSIONS 
(24 one-minute runs per NFT session) 

Intercept 

0.026 (0.015) 
 

8.303 (0.443) 

        .094 
 

< .0001 *** 

MODEL C: TIME ACROSS SESSIONS (ten NFT sessions) 0.029 (0.053) .589  

MODEL D: GROUP: within session 0.418 (0.786) .600 

MODEL D: GROUP: group across sessions -0.018 (0.859) .983 

MODEL E: TIME WITHIN SESSIONS x GROUP 0.039 (0.097) .690 

MODEL E: TIME ACROSS SESSIONS x GROUP 0.030 (0.100) .768 

Table 4.5 f: Results from GCM regression analyses predicting theta amplitude from run (within session), trial (across 

sessions), and group (EG, CG). Note: Standard errors are given in parentheses. Intercept information is only shown for 

significant models. Significant results are shown in bold red. 

 

 

Predictor for RELATIVE theta amplitude (in %)  (SE)    p 

MODEL C: TIME WITHIN SESSIONS 
(24 one-minute runs per NFT session) 

Intercept 

0.007 (0.014) 
 

8.594 (0.348) 

        .690 
 

< .0001 *** 

MODEL C: TIME ACROSS SESSIONS (ten NFT sessions) 0.013 (0.036) .735 

MODEL D: GROUP: within session -0.147 (0.682) .710 

MODEL D: GROUP: group across sessions -0.592 (0.717) .416 

MODEL E: TIME WITHIN SESSIONS x GROUP -0.034 (0.028) .231 

MODEL E: TIME ACROSS SESSIONS x GROUP -0.015 (0.072) .842 

Table 4.5 g: Results from GCM regression analyses by successively adding predictors for relative theta amplitude from 

run (within session), trial (across sessions), and group (EG, CG). Note: Standard errors are given in parentheses. Intercept 

information is only shown for significant models. Significant results are shown in bold red. 
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To summarize the results from Table 4.5 a-f, regarding the factor TIME over the course 

of a session on average, there was a significant increase in absolute alpha amplitude ( = 0.066, 

SE = 0.012, p < .0001), absolute T/A amplitude ratio ( = -0.004, SE = 0.001, p = .002), relative 

alpha amplitude ( = 0.067, SE = 0.010, p < .0001), relative theta amplitude ( = 0.007, SE = 

0.0003, p < .001), and relative A+T amplitude ( = 0.074, SE = 0.0017, p < .0001). Relative 

theta amplitude neared significance ( = 0.026, SE = 0.015, p < .094). Regarding the factor 

TIME across sessions there was on average a significant increase in absolute alpha amplitude ( 

=0.134, SE = 0.048, p = .011) and relative alpha amplitude ( =0.121, SE = 0.013, p < .0001). 

But no significant change could be observed for the T/A amplitude ratio ( = -0.006, SE = 0.004, 

p = .109, n.s.), absolute theta amplitude ( =0.029, SE = 0.053, p = .589, n.s.), relative theta 

amplitude ( =0.013, SE = 0.036, p = .735, n.s.), and relative T+A amplitude ( =0.019, SE = 

0.014, p = .171, n.s.). No significant differences for the factor GROUP were observed between 

the treatment (A/T NFT) and control group (B u/d NFT), neither over course of treatment, nor 

within course of session for T/A amplitude ratio. 

4.3.2  Traditional 2x5 ANOVAs for with absolute and relative alpha, theta, T+A, and 

T/A ratio. 

Because the original protocol for this study included the traditional statistical data analysis 

of the NFT data via a 2x5 Repeated Measures ANOVA these analyses were performed as well. 

The average of absolute and relative alpha, theta, and T+A amplitudes in µV, as well as and to 

the T/A amplitude ratio were calculated for two sessions, for the aggregated data of sessions 1+2, 

3+4, 5+6, 7+8, and 9+10, respectively.  

A visual analysis of the Normal Q-Q plots was performed and revealed a fairly linear 

distribution of the values. This attests that the observed values are normally distributed. 
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Additionally, a Shapiro-Wilk test of normality was run on the studentized residuals of all 

variables. Values for the T/A ratios, relative theta, relative alpha amplitude, and A+T amplitudes 

were normally distributed (p > .05) for both, experimental and control groups, except for the 

relative alpha of the experimental group in session 1-2 (p = .026). 

For absolute theta amplitude most values were normally distributed (p > .05) except for 

mean absolute theta for the CG in combined sessions 1-2 (p = .015), session 7-8 (p = .015) and 

session 9-10, (p = .011) and for the experimental group in sessions 1-2 (p = .001). For absolute 

alpha amplitude all values were normally distributed (p > .05) for the CG but not for the values 

in the EG, session 1-2 (p = .001), session 3-4 (p = .003), session 5-6 (p = .001), session 7-8 (p = 

.004), and session 9-10, (p = .004) and for the EG in sessions 1-2 (p = .004) due to consistent 

extreme outlier values for participant 011. Participant 011 was removed from the analysis but 

because results of the 2x5 ANOVA were similar in both analyses, the normal Q-Q plot revealed 

a normal distribution except for subject 011, she remained in further statistical analysis and no 

data transformation was performed. Mauchly’s test of sphericity indicated that the assumption of 

sphericity was violated for theta amplitude (p = .002) 2 (9) = 26.479, p = .002. A Greenhouse-

Geiser correction had to be applied to changes in absolute and relative alpha, theta, and T+A 

amplitudes, as well as and to the T/A amplitude ratio. 

 The factor TIME was significant for absolute alpha amplitude F(2.643, 66.076) = 4.881, 

p = .006, partial η2 = .163), T/A ratio F(4, 100) = 2.843, p = .044, partial η2 = .102),  relative 

alpha amplitude F(2.355, 58.875) = 6.951, p = .001, partial η2 = .218), and relative T+A 

amplitude F(2.540, 63.512) = 5.376, p = .004, partial η2 = .177). Absolute T+A amplitude was 

nearing significance with F(2.785, 69.619) = 2.332, p = .086, partial η2 = .085).  Absolute theta 

F(2.773, 69.336) = .739, n.s.), and relative theta amplitudes F(2.643, 68.285) = .739, n.s.) did not 
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change significantly over the course of the NFT sessions. To determine which combination of 

time points were changing significantly over the course of treatment, post-hoc ANOVAs were 

conducted.  A significant interaction effect was found for absolute theta (F(2.773, 69.336) = 

2.843, p = .043, partial η2 = .105), and relative theta amplitudes (F(2.771, 68.285) = 3.398, p = 

.026, partial η2 = .120) which makes further interpretation of time effects ambiguous. 

Source: Pre-post-NFT session difference 

scores 

   SS             df          MS         F     p    partial          

η2 

Absolute alpha amplitude (in µV) 1       

Time (within-subjects effect) 35.674 2.643 13.497 4.881 .006** .163 
Time * group (within-subjects effect) 13.003 2.643 4.920 1.779 .166 .066 

Group (between-subjects effect) 40.320 1 40.320 .403 .532 .016 

Relative alpha amplitude (in %) 1       

Time (within-subjects effect) 52.926 2.355 22.474 6.951 .001** .218 
Time * group (within-subjects effect) 8.084 2.355 3.433 1.062 .361 .041 

Group (between-subjects effect) 14.204 1 14.204 .217 .645 .009 

Absolute theta amplitude (in µV) 1       

Time (within-subjects effect) 4.887 2.773 1.762 .739 .523 .029 
Time * group (within-subjects effect) 19.446 2.773 7.012 2.940 .043* .105 

Group (between-subjects effect) .353 1 .353 .012 .914 .000 

Relative theta amplitude (in %) 1       

Time (within-subjects effect) .285 2.731 .104 .082 .961 .003 
Time* group (within-subjects effect) 11.767 2.731 4.308 3.398 .026* .120 

Group (between-subjects effect) 8.351 1 8.351 .397 .534 .016 

T/A ratio       
Time (within-subjects effect) .084 4 .021 2.843 .028* .102 

Time* group (within-subjects effect) .053 4 .013 1.777 .139 .066 

Group (between-subjects effect) .036 1 .036 .191 .666 .008 

Absolute alpha+theta amplitudes (in µV) 1        

Time (within-subjects effect) 47.478 2.785 17.049 2.332 .086 .085 
Time * group (within-subjects effect) 53.276 2.785 19.131 2.616 .062 .095 

Group (between-subjects effect) 36.262 1 36.262 .172 .682 .007 

Relative alpha+theta amplitudes (in µV) 1        

Time (within-subjects effect) 49.842 2.540 16.619 5.376 .004** .177 
Time * group (within-subjects effect) 10.521 2.540 4.141 1.135 .337 .043 

Group (between-subjects effect) .773 1 .773 .009 .927 .000 

      1 Greenhouse –Geiser adjustment used. 

Table 4.6: 2 x 5  EEG parameter NFT session difference scores (pre-post session scores) 

Consequently, post-hoc ANOVAs were only conducted for absolute and relative alpha 

amplitude, T/A ratio, and relative T+A amplitude to find out which pairwise time comparisons 

were significant. To reduce the family-wise error I Bonferroni adjustments for the four time 
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comparisons were run. Absolute alpha amplitude increased significantly between sessions 1+2 

and 5+6, as well as between sessions 1+2 and 7+8, with adjusted p = .024 in both cases. Relative 

alpha amplitude decreased significantly between sessions 1+2 and 3+4 (adjusted p = .012), 

sessions 1+2 and 5+6 (adjusted p = .001), and sessions 1+2 and 7+8 (adjusted p = .008); sessions 

1+2 and 9+10 approached significance (adjusted p = .064). T/A ratio decreased significantly 

between sessions 1+2 and 3+4 (adjusted p = .012),but was not significant for the other three 

session comparisons. Relative T+A amplitude increased significantly between sessions 1+2 and 

5+6 (adjusted p = .001), sessions 1+2 and 7+8 (adjusted p = .001; sessions 1+2 and 9+10 

approached significance (adjusted p = .068) and the comparison between sessions 1+2 and 3+4 

was not significant (p = .116), (Figure 4.6). 

No differences between the EG and CG regarding changes in absolute alpha amplitude 

F(1, 25) = .403, n.s.), relative alpha amplitude (F(1, 25) = .217, n.s.), absolute theta amplitude 

F(1, 25) = .012, n.s.), relative theta amplitude F(1, 25) = .397, n.s.), T/A ratio F(1, 25) = .191, 

n.s.), absolute T+A amplitudes (F(1, 25) = .172, n.s.), and relative T+A amplitude F(1, 25) = 

.009, n.s.) were observed. 

4.4  QEEG Results 

A 2x2 repeated-measures ANOVA with the within-subjects factor TIME and factor 

GROUP were performed for theta, alpha, T+A absolute and relative power, and T/A ratio at Pz. 

A visual analysis of the Normal Q-Q plots was performed for all variables which revealed a 

fairly linear distribution of the values which attests that the observed values are normally 

distributed. Only one extreme outlier (SD > 2.5) was found for the T/A ratio (participant 025) 

and few other outliers (SD > 1.0): for relative theta power (participants 012 and 025), for 

absolute theta (participants 021 and 023), absolute alpha (participant 007), and for T/A ratio 



 92 

(participant 23). None of the variables showed a statistically significant change between pre- and 

post-treatment and no differences between EG and CG was observed for any of the variables, 

either.  

4.4.1  Theta and alpha absolute power. 

The 2x2 ANOVA for absolute theta power revealed that the factor TIME was not 

statistically significant, indicating that no significant change in theta power was observed at Pz 

between the beginning and the end of the trial (pre-trial (M = 19.169, SD = 16.626); post-trial (M 

= 19.178, SD = 14.292); F(1, 25) = 0.000, p = .985, partial η2 = .000; n.s.). The TIME*GROUP 

interaction exhibited no statistically significant difference between the EG and CG for absolute 

theta power at Pz between pre- and post-trial (F(1, 25) = 0.426, p = .520, partial η2 = .066; n.s.) 

which suggests that no differential treatment effect for the A/T NFT (or for the placebo NFT) 

was observed for absolute theta. 

The 2x2 ANOVA uncovered no statistically significant change for absolute alpha power 

in the EEG at Pz between pre- and post-trial (F(1, 25) = 0.179, p = .676, partial η2 = .007; n.s.). 

Moreover, no statistically significant difference between the EG and CG for absolute alpha 

power at Pz between pre- and post-trial was observed (F(1, 25) = 0.004, p = .953, partial η2 = 

.000; n.s.). 

4.4.2  Theta and alpha relative power.  

The 2x2 ANOVA indicated that no statistically significant change in relative theta 

power in the EEG at Pz between pre-and post-treatment (F(1, 25) = 0.705, p = .409, partial η2 

= .027; n.s.) and no statistically significant difference in relative theta power between the EG 

and CG and time of the EEG was found (F(1, 25) = 1.763, p = .196, partial η2 = .066; n.s.).  

The 2x2 ANOVA revealed no significant change for relative alpha power in the EEG at 
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Pz between the pre- and post-trial (F(1, 25) = 0.224, p = .640, partial η2 = .009; n.s.) and no 

statistically significant difference between the EG and CG and time of the EEG was observed 

(F(1, 25) = 0.435, p = .515, partial η2 = .017; n.s.). 

4.4.3  Theta / alpha power ratio. 

The 2x2 ANOVA showed no significant change for the theta / alpha power ratio in the 

EEG at Pz between pre-and post-treatment (F(1, 25) = 0.916, p = .348, partial η2 = .035; n.s.) and 

no significant interaction between the EG and CG and time of the EEG could be observed (F(1, 

25) = 0.172, p = .682, partial η2 = .007; n.s.).   

4.4.4  Theta + alpha absolute power. 

The 2x2 ANOVA revealed no statistically significant change in (T+A) absolute power in 

the EEG at Pz between pre-and post-treatment (F(1, 25) = 0.151, p = .701, partial η2 = .006; n.s.) 

and no significant difference between the EG and CG and time of the EEG (F(1, 25) = 1.944, p = 

.317, partial η2 = .040; n.s.) µV 

4.4.5  Theta + alpha relative power. 

The 2x2 ANOVA did not indicate a statistically significant change for the (T+A) relative 

power in the EEG at Pz between pre-and post-treatment (F(1, 25) = 1.117, p = .330, partial η2 = 

.043; n.s.). The TIME*GROUP interaction was not significant, either, which suggests that no 

difference in treatment effect between the EG and CG could be observed (F(1, 25) = 2.442, p = 

.131, partial η2 = .089; n.s.).  However, relative T+A power between groups shows a slight trend 

toward significance (p = .131) with a medium effect size. 
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4.5  Correlations 

Quantitative variables of the study were analyzed via Pearson correlation matrix (Tables 

4.7 to 4.9). For any measure that was assessed pre-and post- trial (i.e., BAI, STAI-T, STAI-S, 

GAD-7, and QEEG measures) difference scores were calculated by subtracting the post-session 

score from the pre-session score. For measures that were gaged before and after each NFT 

session (i.e., NFT EEG measures and ADACL scores) mean difference scores of sessions 1 and 2 

and sessions 9 and 10 were subtracted from each other, i.e., (sessions 9+10) / 2 – (sessions 1+2) / 

2  =  difference score. Hence, the higher the difference score was the higher the post treatment 

score was.  The examination of the bivariate relationships showed, as was expected, higher 

correlations within groups of related variables, such as between the different anxiety instruments 

and between EEG alpha and NFT alpha measurements.  
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4.5.1  Participant demographic correlations. 

The participants age in years correlated significantly with the STAI-T (r = .417; p = .030) 

and STAI-S (r =.428; p = .026) difference scores (Table 4.7 a); higher age was significantly 

related to higher post-treatment scores in state and trait anxiety; in other words, the older 

participants did not exhibit as high of a reduction in anxiety by the end of the NFT as younger 

participants. Related to this finding is that older individuals were not able to reduce their level of 

calmness, as evidenced by the AD-ACL calmness sub-scale, as much as younger individuals 

between start and end of NFT sessions (r = -.434, p = .024). Age was also significantly correlated 

with lower learning rates of alpha and theta, as signified by lower theta (r = -.426, p = .027) and 

alpha         (r = -.531, p = .004) amplitude differences from the beginning to the end of a NFT 

trial, but not significantly correlated with T/A (r = -.103, p > .05, n.s.), and (T+A) relative 

amplitude differences (r = -.338, p > .05, n.s.). However, higher age did significantly relate to 

higher relative alpha measurements in the QEEG between pre- and post-trial (r = -.432, p = 

.024).  

 Education level correlated positively with GAD-7 difference scores (r = .409, p = .034) 

pre- and post-treatment; in other words, the higher the education level was the greater the 

reduction in anxiety, as measured by the GAD-7. However, the other anxiety measures, STAI-T 

(r = .261, p > .05, n.s.), STAI-S (r = .153, p > .05, n.s.), and BAI (r = -.030, p > .05, n.s.) did not 

show a significant correlation between perceived anxiety and education level.  

 

 

4.5.2  Duration of treatment and sessions per week correlations. 

The duration of treatment for ten NFT sessions significantly correlated negatively with 
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theta amplitude difference (r = -.426, p = .027) and T/A ratio difference (r = -.482, p = .011) from 

beginning to end of a NFT session; i.e., more days between NFT sessions were associated with 

poorer learning of theta amplitudes up-regulation and less change in T/A ratio difference 

between beginning and end of the trial (Table 4.7 a). Confirming these results was, sessions of 

NFT per week was only related to T/A ratio difference (r = .443, p = .021), i.e., the less sessions 

per week (the longer the duration of the NFT trial) the lower their T/A ratio difference score 

between the beginning and the end of the NFT trial. However, number of sessions per week did 

not significantly relate to theta amplitude differences. 

4.5.3  Anxiety questionnaires correlations. 

Age significantly correlated with both the STAI-S (r = .417, p < .05) pre-post difference 

scores and the STAI-T (r = .428, p < .05): The younger participants were the more state and trait 

anxiety was reduced after the ten NFT sessions (Table 4.3). Furthermore, GAD-7 pre-post 

difference scores were significantly related to the perceived success of mental strategies used to 

elevate the EEG parameters of the NFT protocols (r = .474, p < .05): The more successful the 

mental strategies were perceived the lowerwas the reduction in perceived anxiety at the end of 

the NFT trial. Lastly, STAI-T difference scores were significantly associated with absolute T+A 

amplitude increases between the means of sessions 1 and 2 in comparison to the mean of 

sessions 9 and 10 (r = .420, p < .05). All other parameters of the matrix did not significantly 

correlate with any of the study’s anxiety parameters. 

4.5.4  Activation and deactivation (AD-ACL) correlations. 

The AD-ACL mean difference scores of sessions 9 +10 subtracted from sessions 1 + 2 

for deactivation and activation scales and the tiredness, calmness, tenseness, and energy sub-

scales did not significantly correlate with any other measure, except for the AD-ACL calmness 
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sub-scale which significantly related to age (see above), including all anxiety self-report 

questionnaires and the participant perceiving their mental strategies as success (r = .437, p = 

.031), i.e., the more tired participants felt across sessions the more successful they perceived 

their mental strategies (Table 4.7 a). 

Furthermore, a correlation matrix was calculated that simply used the pre-post difference 

score of all sessions in its relationship to the other study parameters.  No significant correlations 

were observed between the AD-ACL scales and sub-scales and any of the anxiety scales. But 

most of the AD-ACL scales and sub-scales significantly correlated to the item whether any 

change of behavior was observed in everyday life due to the NFT training; a change in behavior 

(positive change regarding anxiety symptomology in all cases) was significantly associated with 

lower perceived deactivation (r = -.565, p > .01),  lower tension (r = -.467, p > .05), less 

tiredness (r = -.661, p > .01), and higher energy (r = .642, p > .01) post-NFT session; and a 

perceived change in thinking was associated with less perceived tiredness (r = -.462, p > .05) 

post-NFT session.  

As the CG protocol did not uptrain alpha and theta amplitudes, a bivariate correlation 

matrix was calculated for the EG only. The results of this new matrix were then compared to the 

correlation matrix for all study participants and (Table 4.7 b). Higher significant correlations for 

the AD-ACL deactivation scale for relative alpha differences between sessions 1+2 and last 

sessions 9+10 (r = .676, p < .01, instead of r = .501, p < .01), absolute theta (r = -.613, p < .05, 

instead of r = -.474, p < .05), relative T+A (r = .714, p < .01, instead of r = .474, p < .05) and T/A 

ratio (r = -.591, p < .05, instead of r = -.438, p < .05) were observed. Thus, the higher the relative 

alpha and relative T+A amplitudes were in sessions 9+10 in comparison to the sessions 1+2 

(larger difference score) the more deactivated participants felt. The higher the absolute theta 
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amplitudes and T/A ratio difference scores between sessions 1+2 and 9+10 were the less 

deactivated subjects felt. These trends were significant for both EG and CG but even more 

pronounced for participants of the the EG. However, no significant correlations were observed 

between AD-ACL deactivation and absolute alpha, absolute T+A, and relative theta, neither for 

the correlation matrix for the EG only nor for all participants. 

 
Table 4.7 b: EG only: Pearson bivariate significant correlations between AD-ACL measures and EEG-based NFT pre-

post-difference scores between session 1 & 2 and 9 & 10. Significant correlations are marked in orange or red: orange = are 

significant for both, EG & CG, red = only significant when looking at EG only. ** Correlation is significant at the 0.01 level (2-

tailed). * Correlation is significant at the 0.05 level (2-tailed). 

Analyzing the correlation between the AD-ACL mean difference scores (of sessions 9 + 

10 subtracted from sessions 1 + 2) for scales and sub-scales and EEG-based measures revealed a 

more nuanced picture on deactivation and activation. While the AD-ACL difference scores in 

energy did not significantly correlate with any of the NFT measures, the other AD-ACL sub-

scales did: tired (r = .553, p < .05), tense (r = -.539, p < .05), and calm (r = .543, p < .05), sub-

scales significantly correlated with relative alpha. The AD-ACL tired significantly correlated 

with relative T+A (r = .578, p < .05) and absolute theta (r = -.631, p < .05); and T/A ratio (r = -

.566, p < .05) correlated with the AD-ACL calm sub-scale (Table 4.4). All but the absolute theta 

correlations were significant for the EG only (not for EG and CG combined), i.e., for the EG the 

higher the relative and absolute alpha amplitude became over the course of the ten-session NFT 

trial, the less tense they felt; the higher the relative alpha amplitude became the more tired and 

calm participants felt; the lower the T/A ratio became the calmer EG participants felt.  
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4.5.5  QEEG-related correlations. 

Several QEEG pre- and post-treatment differences correlated with psychometric 

difference scores and demographic participant characteristics. The theta relative power 

difference between pre- and post-treatment correlated with two of the anxiety measures but in 

opposite ways: BAI (r = .417, p = .031) and GAD-7 (r = -.449, p = .019) (Table 4.9); for the BAI 

an increase in relative theta amplitude was associated with an increase in perceived BAI anxiety 

scores post treatment, whereas an increase in relative theta amplitude post treatment was 

associated with a decrease in post-treatment perceived anxiety scores on the GAD-7 (Table 4.5). 

Higher absolute theta power was associated with higher perceived anxiety scores in the BAI (r = 

.564, p = .002) and higher education level was associated with higher post-treatment absolute 

alpha power (r = .410, p = .034). Alpha relative power was positively related to age and 

education level (Section 4.5.1) and T/A ratio was not significantly correlated with any measure, 

except, like expected, with other EEG-related measures.  

 
Table 4.8: Pearson bivariate significant correlations between psychometric and EEG-based pre-post-difference scores and 

participant characteristics. Significant correlations are marked in grey. ** Correlation is significant at the 0.01 level (2-tailed). 

* Correlation is significant at the 0.05 level (2-tailed). 
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The only two correlations that proved to be significant in the QEEG and NFT pre-post-

difference scores (between session 1 & 2 and 9 & 10) correlation matrix were the correlations 

between NFT relative theta and QEEG absolute alpha difference scores (r = -.398, p < .05) and 

between NFT relative theta and QEEG absolute T+A difference scores (r = -.432, p < .05); i.e., 

the higher the mean post-trial absolute QEEG theta amplitude was the less was the change of 

absolute alpha and absolute T+A amplitudes between sessions 1+2 and 9+10 (Table 4.9). 

 

 
Table 4.9: Pearson bivariate significant correlations between QEEG-based pre-post-difference scores and NFT pre-post-

difference Scores between session 1 & 2 and 9 & 10. Significant correlations are marked in grey. ** Correlation is significant 

at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed). 

 

4.5.6  Cognitive strategies and time-of-day of neurofeedback. 

The use of mental strategies (r = .010, n.s.) and the perceived success of mental strategies 

(r = .008, n.s.) did not correlate with the belief that the participant belonged to the EG. As 

expected, perceived changes in everyday thinking (r = .540, p < .01), feeling (r = .418, p < .05), 

and behavior (r = .459, p < .05) highly correlated with the belief in EG, in other words, 

participants who believed in being part of the EG reported changes in thinking, feelings, and 

behavior due to the NFT in higher numbers than the participants who believed they were part of 

the CG (Table 4.7 a).  

Neither absolute alpha, theta, and A+T amplitudes, A/T ratio, nor relative alpha, theta, 

and A+T, were significantly correlated on the correlation matrix that included both, EG and CG 

(Table 4.7 a). However, looking at the correlation matrix for the EG (Appendix E) a significant 
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negative correlation was observed between the T/A ratio and the use of mental strategies (r = -

.556, p < .05); i.e., mental strategies use in the EG was associated with lower T/A ratios in 

sessions 9+10 in comparison to sessions 1+2. Furthermore, relative alpha (r = .546, p < .05), and 

relative T+A (r = .609, p < .05), amplitudes were positively correlated, meaning that a reduction 

in anxious thinking after the NFT trial was associated with higher relative alpha and T+A 

amplitudes by the end of the trial. 

As detailed in section 4.5.5, GAD-7 pre-post-difference scores were significantly related 

to the perceived success of mental strategies improving NFT reward rate (r = .474, p < .05): The 

more successful that mental strategies were perceived by the participant the greater the reduction 

in perceived anxiety at the end of the NFT trial. 

 The correspondence of the time-of-day of the NFT sessions (Appendix D: Neurofeedback 

Session Checklist) with the times-of-day of best learning did not correlate significantly with the 

difference scores between session 1+2 and 9+10 differences in absolute alpha (r = .210, n.s.) or 

theta (r = -.123, n.s.) amplitudes, nor relative alpha (r = -.097, n.s.) or theta (r = .028, n.s.), T/A 

ratio (r = .095, n.s.), nor relative (r = -.137, n.s.), or absolute T+A ratio (r = -.092, n.s.), meaning 

NFT sessions being held during a time of worst or preferred learning was not associated with a 

significant improvement in regulation of the parameters in the EG, nor was it associated 

significantly with any of the AD-ACL pre–post session difference scores, except for a difference 

in energy (r = .412, p <.10) and tension (r = -.335, p <.10) which were approaching significance. 

In other words, participants who had NFT sessions during their “worst time for learning” (which 

can be seen as a measure of tiredness, inattentiveness, and exhaustion) reported less energy and 

more tension throughout the NFT sessions in comparison to participants who had their NFT 

sessions scheduled during a neutral or best time for learning. The only other item preferred 
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learning time correlated with significantly was Rotter’s Locus of Control scale (r = -.478, p 

<.05); worst time of learning highly correlated with participants who had a more internal locus of 

control (higher LOC score), which may be a spurious correlation. 

4.6  Treatment Satisfaction and Self-Efficacy (SETS, LOC, Belief in Treatment) 

The SETS negative and positive expectations of treatment analyses were performed with 

a 2x2 ANOVA. A significant decrease in negative treatment expectations was observed between 

the beginning of the NFT trial and the end of the trial (pre-trial (M = 2.047, SD = 16.626); post-

trial (M = 1.419, SD = .937); F(1, 25) = 5.809, p = .024, partial η2 = .189) with a large effect size.  

The TIME*GROUP interaction exhibited no statistically significant difference between the 

groups for both negative (F(1, 25) = 0.001, p = .993, partial η2 = .001; n.s.) and positive (F(1, 25) 

= 1.090, p = .306, partial η2 = .042; n.s.) treatment expectations between pre- and post-trial. 

Change in treatment expectancy as a measure of treatment satisfaction shows that both, EG and 

CG participants, who had moderately high treatment expectancy (4.6 /7.0) at the beginning of the 

trial (EG: M = 4.714, SD = 1.280; CG: M = 4.501, SD = 1.280) experienced no significant drop 

in treatment expectations over the course of the treatment. 

 The Rotter Locus of Control Scale was administered at the end of the NFT trial to gauge 

the participants’ self-efficacy. On average, study participants had an above the mean LOC score 

(EG: M = 12.429, SD = 3.502; CG: M = 12.308, SD = 3.172). In fact, only three or the 27 

participants had a score below the mean for women of the Rotter scale (M = 8.42 = 58th 

percentile; SD = 4.06) and 11 participants scored at least one SD higher than the mean ( > 12.48 

= 88th percentile). A low score represents an internal locus of control.  Hence, participants of this 

study tended to have an external locus of control on average, which means that they tended to 

attribute successes or failures to external circumstances rather than their own efforts. However, 
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the standardization scores for the LOC have not been updated in more than fifty years and results 

need to be interpreted with caution. A one-way ANOVA was performed to investigate if 

differences in means could be detected between participants from the EG in comparison to 

members of the CG. No significant differences between the two groups were found (F(1, 25) = 

0.009, p = .926; n.s.). Point-biserial correlations were performed between the LOC score and all 

QEEG measures (e.g., Alpha and theta absolute and relative power and NFT measures (e.g., 

theta and alpha amplitudes and relative amplitudes /percent), as well as for the various anxiety 

measures (BAI, STAI, and GAD) and no correlation was significant (see correlation matrix in 

Appendix E). 

Belief in EG participation is another variable closely aligned with treatment satisfaction; 

19/27 participants (70.4%) believed that they were in the EG and were receiving an active 

treatment (11/14 members of the EG (78.6%) and 8/13 members of the CG (61.5%). Conversely, 

no belief in EG participation aligns with treatment dissatisfaction; 8/27 participants (29.6%) 

believed that they were part of the placebo group (5/13 participants from the CG (38.5%) and 

3/14 participants of the EG (21.4%). While differences in Belief in EG participation could be 

observed between the EG and CG with more participants from the EG believing in EG 

participation these differences were neither significantly associated with any of the QEEG and 

NFT EEG-related parameters, nor with any of the anxiety measure differences or AD-ACL 

measures. 

 A point-biserial correlation was performed for the Belief in EG participation. All 

participants were asked at the end of the trial if they believed they had been part of the 

experimental or control group. Belief in EG participation was significantly correlated with 

participants reporting a change in thinking (r = .540, p < .01), change in feelings (r = .418,          
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p < .05), and change in behaviors (r = .459, p < .05) due to the NFT trial. It comes as no surprise 

that participants who reported that they believed to be part of the EG reported change in 

thinking, feelings, and behaviors significantly more often than participants who did not believe 

that they had been part of the EG. Furthermore, Belief in EG participation was associated with 

age (r = .451, p < .05), i.e., the older the participants were the more they believed that they had 

been part of the EG, although no significant differences in the age distribution between EG and 

CG had been observed after the initial randomization of participants. 

4.7  Successful A+T Amplitude Learner Analysis 

According to a position paper by Uryniak, Chan, Fedorov, et al. (2011) the main purpose 

of a clinical trial is not only to demonstrate that a treatment effect is statistically significant but 

more importantly that this effect reveals a clinically relevant improvement of the primary 

outcome measure, i.e., a clinically relevant reduction in disease symptoms. A common way to 

show that there is a significant clinical improvement is to dichotomize the continuous primary 

outcome measure of a study into responders and non-responders and re-analyze the data; 

statistically significant data is likely to achieve a larger effect size and the associated 

improvement in effect size after re-analysis. One frequently used method is to define a clinically 

relevant change from baseline in the primary outcome variable apriori; participants are 

henceforth considered responders if they exceed this threshold. Some clinical societies and 

regulatory boards even require this method (Lin, 2016; Uryiak et al., 2011). Furthermore, a 

responder analysis is often used in a post-hoc analysis after statistical significance of the primary 

outcome measure has been established; it is in fact recommended by the European Medicines 

Agency (2002, as cited by Uryniak et al., 2011). 

However, a responder analysis “cannot rescue otherwise disappointing results in the 
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primary variables” (Uryniak et al., 2011, p. 478). It is important to point out that responders in 

the above discussed medical literature are defined as clinical responders, trial participants who 

experience a significant improvement of reduction in illness symptoms. In NFT literature the 

term “responder” is in some studies used interchangeably with the term “learner” or “regulator”. 

In this study “responder” is understood as a participant who shows improvements of anxious 

cognitive emotional and behavioral components of anxiety as well as a reduction in tension 

(higher deactivation). In comparison, “learners” are those participants who significantly enhance 

their A+T brain wave amplitudes at Pz. 

Learner analyses are used in some NFT studies after the primary outcome measures were 

not significant, for instance by median split (e.g., Studer et al., 2014). However, when a learner 

threshold value is chosen post-hoc without a valid reason this might constitute a potentially 

“inappropriate manipulation of the data” (Lin, 2016, p. 66). There seems to be no consensus of a 

definition on what exactly constitutes a responder to treatment; definitions depend on the area of 

disease and more careful research is needed to define a responder in NFT. Zuberer et al. (2015), 

for instance, elucidate in their meta-analysis of ADHD-related NFT studies of how each of the 

respective 15 research teams define the criterion of a learner differently regarding successful 

regulation of brain activity. In general, three approaches are used.  A “good performer” might be 

defined by a predefined criterion, such percentage cut-off (where learners are classified as such if 

they reached the learning goal in a predetermined percentage of sessions). Another approach is to 

define participants as learners if the wave bands they trained were significantly improved in the 

last NFT session in comparison to the first session or when they increased across all or most 

sessions. The last type of approach was the median split which divides participants into halves 

depending on the improvement on the training parameter which, in the case of uneven 
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distribution of learners and non-learners, leads to a mis-classification of participants. 

 
Figure 4.3: Learning curve for single participant for relative A+T amplitude per minute (24 minutes) for ten NFT 

sessions. The bold orange line represents the first session learning curve, the bold dark green line, the last / tenth session learning 

curve.  Left: Participant 019 of the EG is a learner: learning curves within and between sessions mostly improve from first to last 

session. Right: Participant 011 of the EG is a non-learner; learning curves between first and last session remain flat. 

 One goal of the current study was to review commonly used methods of 

operationalization and statistical analysis in NFT studies and find alternatives that might 

potentially help with NFT data analysis but more importantly to start a conversation about 

methodological considerations in this field. However, the current study revealed neither 

traditional statistical analysis with ANOVAs nor growth curve modeling, significantly better 

accounted for learning results in up-regulating alpha and theta for the EG than for the CG. 

Consequently, it would be inappropriate to use the method of learner analysis for a study in 

which general results are not significant. A learner (or responder) analysis, as explained above, 

should only be used to make an already statistically significant trial result more clinically 

significant by re-running the analysis with participants from the EG in comparison to the CG 

who had a (sufficiently) positive response to the treatment. The learner analysis in the current 

paper is included as a general example of how to define learners in NFT research, apart from the 
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commonly used median split. Furthermore, this thesis demonstrates that depending on which 

NFT parameter is used to determine a learner (alpha and theta absolute amplitude, alpha and 

theta relative amplitude, or T/A ratio) the subsequent analysis has quite different results. 

 The method of median split was not used in this study to avoid labeling participants 

learners who might not have been able to up-regulate their alpha and theta amplitudes. Instead, a 

linear regression line with the associated regression equation was calculated using mean 

alpha+theta amplitudes per minute, 240 data points per participant, over the course of ten 

sessions at Pz. For the EG, participants were considered learner if they exhibited a positive slope 

b of the regression line (Figures 4.5 and Table 4.10). The EG learner were then compared to all 

participants from the placebo group in all statistical analyses performed and described earlier 

(see sections 4.1 to 4.8). 

 
Figure 4.4: Regression equation (without error term). In this study, a learner was defined as any participant whose 

regression line over the course of 10 sessions had a positive slope b. 

The following participants from the EG had positive regression slopes and were therefore 

entered into statistical re-analysis: 

Learner analysis 1: EG Absolute (A+T) amplitude leaners of EG vs. all CG participants 

EG: 003, 011, 012, 014, 017, 019, 022, 023, 025, 028 (n = 10). 

CG: All CG participants (n = 13). 

Learner analysis 2:  EG Relative (A+T) amplitude learners vs. all CG participants  

EG: 001, 006, 012, 014, 017, 019, 022, 025, 028 (n = 9) 

CG: All CG participants (n = 13). 
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 Unfortunately, the further reduction of an already small sample size, reduced the 

statistical power of results and test sensitivity considerably which made it more difficult to detect 

any but large effects, for the relative (N = 23) and absolute (N = 22) A+T amplitudes learner 

analyses, respectively. Detailed results of both learner analyses can be found in Appendix E. A 

brief comparison of the GCM significant results of all participants and the two learner analyses 

can be found in Table 4.6 below. 

Comparing the results from the original GCM with the two learner GCM analyses 

reveals, as expected, that more of the EEG-based parameters of the factor TIME were 

significant after reducing the EG group to participants who were able (on average) to up-

regulate A+T across sessions. This was especially true for the absolute A+T learner analysis 

(learner analysis 1), an analysis that used the summation of absolute alpha and theta amplitudes 

as a criterion to determine learners.  

In the original GCM absolute and relative alpha amplitudes within and across sessions 

and absolute and relative A+T amplitude, and T/A ratio within sessions had been significant.  

Absolute theta amplitudes had not been significant neither within sessions nor across sessions 

and T/A ratio, and relative and absolute A+T amplitudes had not been across sessions. 

Furthermore, absolute and relative T+A became significant across sessions. By comparison, the 

relative A+T learner analysis showed only an added significance for the T/A ratio across 

sessions and all other EEG-based parameters remained non-significant. 
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Figure 4.5: Individual EG participants’ linear regression lines with associated individual regression equations for mean 

alpha + relative theta amplitude in percent for the course of the ten NFT (240 data points per participant). Green thick line 

represents the mean learning regression line across sessions. R2 represents how close each participants’ data points are to the 

mean regression line. 

In learner analysis 1, absolute theta amplitude neared significance within sessions ( = 

0.031, SE = 0.017, p = .076), and absolute A+T amplitude ( = 0.249, SE = 0.086, p < .01), and 

relative A+T amplitude ( = 0.210, SE = 0.072, p < .01**), became significant across sessions 

in comparison to the original statistical analysis. In learner analysis 2, absolute A+T amplitude  
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( = -.009, SE = 0.003, p < .01), and T/A ratio ( = 0.210, SE = 0.072, p < .01), became 

significant across sessions in comparison to the original statistical analysis. 

 
  Table 4.10: Results from GCM regression analyses from run (within session), trial (across sessions), and group (EG, CG).  
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Unexpectedly, all statistical results regarding the factor GROUP remained non-significant 

in both learner analyses. In other words, the NFT protocol was not associated with a 

significantly better regulation of alpha and theta up-regulation. One significant interaction effect 

was observed in absolute A+T up-regulation ( = 0.347, SE = 0.148, p < .05), in comparison to 

the original analysis (see section 4.3.1), which indicates that while there are no differences 

overall between the EG and CG regarding up-regulation of theta and alpha there are significant 

differences in how the up-regulation took place over the ten NFT sessions. This result relates 

well to the 2x5 ANOVA performed in Section 4.3.1 which confirms the differences in learning 

curves across NFT sessions. 
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5.    Discussion 

The primary objective of this study was to create a rigorous, placebo-controlled, clinical 

trial with a (sub)clinical sample of variously aged adults for the NFT treatment of AD in order to 

investigate if A/T NFT at Pz is an efficacious method for anxiety symptom reduction in women, 

as shown by neurophysiological changes in the EEG, changes in NFT learning curves, and 

changes in subjectively experienced anxiety symptoms. A secondary objective was to search for 

potentially better analyses methods for NFT trials in general that would not limit the aggregate 

amount of NFT EEG data to 2 to 5 time points, but, instead use GCM modeling to analyze 

individual learning curves. A variety of parameters are used in A/T and alpha NFT protocols 

(i.e., alpha and theta amplitudes, T/A ratio, relative alpha and theta values) to investigate how 

diverse types of statistical analyses with varying study parameters may influence the outcome of 

a study. The GCM analysis of each participant’s learning curve was then used to separate 

learners and non-learners. Models different from linear regression, specifically quadratic and 

cubic regression curves, were investigated as well. This type of analysis is, to the best of my 

knowledge, a novel application of statistical methodology in the field of NFT research. The third 

and last last objective of this study was to investigate cognitive variables involved in NFT, such 

as treatment outcome expectancy, personal attribution styles, use, types, and efficacy of 

cognitive strategies in NFT, which are rarely assessed in NFT trials. Also new to this 

investigation into whether there is a significant correlation between NFT learning performance, 

time of day the NFT sessions were held, and a participant’s best or worst time to learn. 

The present study, to my knowledge, was the first single-blind trial to test the A/T NFT 

protocol for trait anxiety in a clinical adult population with a placebo NFT control group, instead 

of a waitlist CG, other treatment modality CG (e.g., anxiolytics, EMG, meditation), or fake NFT 
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EG. Moreover, this trial was one of the first studies to use growth curve modeling for NFT data 

analysis and to define individual learners by positive regression curve slope. 

5.1 Primary Outcomes (H 1- H 2) 

5.1.1. Up-training of alpha and theta amplitudes within session (H 1a) and across 

sessions (H 1b).  

Hypothesis 1 (H 1a and H 1b): A ten-session NFT protocol of up-training alpha (8-11 

Hz) and theta (5-7.5 Hz) frequency bands at Pz will significantly elevate mean absolute and 

relative theta and alpha amplitudes and absolute and relative theta + alpha (T+A) amplitudes 

within (H 1a) and across (H 1b) NFT sessions of the NFT. These measures will not change 

significantly in the placebo group.  

H 1 was only partially confirmed. Contrary to expectations, both, A/T NFT training at Pz 

(EG) and active placebo B u/d NFT training improved the participants’ absolute and relative 

alpha amplitudes, absolute and relative T+A measures, and absolute theta amplitude neared 

significance within sessions (while absolute alpha, theta and T+A amplitudes did not change 

substantially). Across sessions only absolute and relative alpha amplitudes increased (and not 

absolute and relative theta, absolute and relative T+A, nor the T/A ratio), i.e., there was no 

significant difference on average between the EG and CG when increasing the alpha- and theta-

related parameters. Significant learning curves for the relative values within sessions were found 

for the EG as well as the CG, i.e., while there was a trend for the EG to have steeper learning 

curves there was no significant difference between the EG and CG in increasing the alpha and 

theta related parameters.  

This result is especially surprising because the CG protocol neither included feedback 

within the theta or in the alpha frequency range. Nor did it include feedback from the low beta 
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frequencies below 15 Hz that might have been upper alpha peak frequency in some of the 

younger participants. A fair amount of research indicates large interindividual differences in 

alpha peak frequency (APF) depending on biological trait and age (Niedermeyer & Lopes da 

Silva, 1999; Klimesch, 1999) and intraindividual differences depending on tasks (Klimesch, 

1999; Mierau, Klimesch, and Lefebvre, 2017) with younger age routinely being associated with 

higher individual APF. 

After the GCM a re-analysis of the data regarding time across NFT sessions (H 1b) with 

the traditional repeated measures 2x5 ANOVA was performed because this had been the method 

of choice for all previous NFT studies investigating ADs with post-hoc one-way ANOVAs for 

significant results. In the analyses for the current study EEG training data from only five data 

points per participant are used by aggregating data for each EEG parameter from two NFT 

sessions into one measurement point: sessions 1 + 2 (measurement 1), sessions 3 + 4 (2), 

sessions 5 + 6 (3), sessions 7 + 8 (4), and sessions 9 + 10 (5). Alpha amplitude, relative alpha 

amplitude, and relative T+A amplitude all increased significantly between most measurement 

points with large effect sizes for absolute and relative alpha amplitude and medium effect sizes 

for relative T+A. Absolute T+A amplitude was nearing significance (p = .086; medium effect 

size) but absolute and relative theta amplitude did not change significantly over the course of the 

NFT sessions. Furthermore, a significant interaction effect was found for absolute and relative 

theta amplitude (medium effect size) which made further interpretation of time effects 

ambiguous. Post-hoc one-way ANOVAs were only conducted for absolute and relative alpha 

amplitude, T/A ratio, and relative T+A to find out which pairs of time comparisons were 

significant. A significant increase of relative alpha amplitude in three of four measurement 

comparisons (measurements 1 and 2, 1 and 3, 1 and 4) and the last comparison nearing 
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significance (measurement 1 and 5) was observed. Absolute alpha amplitude increased in two of 

the four comparisons (measurements 1 and 3, 1 and 4).  A+T across two of the four comparisons 

(measurements 1 and 3, 1 and 4, and 1 and 5 nearing significance). It also showed an interaction 

effect between TIME and GROUP for absolute and relative theta that had not been observed in 

the GCM, i.e., no overall difference between the EG and CG regarding changes in absolute and 

relative theta over the course of the ten-session NFT trial was observed but the time course of 

theta changes was significantly different between EG and CG (see Appendix E). Generally, 

interaction effects are either due to different baseline values of the groups or due to a genuine 

effect of the treatment. Initial t-tests between EG and CG of absolute and relative alpha, theta, 

and T+A, as well as for T/A ratio proved no significant differences at baseline (4.3.2) leaving a 

treatment effect as a possibility, but as this result could not be confirmed by the more detailed 

GCM analysis, skewed artificial significance due to data point aggregation may be assumed. 

Consequently, GCM may be the approach of choice to keep spurious results to a minimum. 

Another possible explanation for the difference in time course of the change between EG and CG 

is that this might have been due to successive sessions of beta up-and down-training. However, 

aggregating data of subsequent sessions averages the results of one beta up-training session with 

the results of one beta-down-training session. 

Reducing the EG group to the 10 out of 14 participants who were able to (on average) up-

regulate A+T across sessions (H 1b) showed a more nuanced picture. In this learner analysis, in 

comparison to the previous analysis which had included all EG participants, revealed that 

absolute theta amplitude neared significance within sessions, and that on average, absolute and 

relative alpha increased significantly over the course of the ten NFT sessions and so did the 

summation of relative and absolute alpha and theta amplitudes. Unexpectedly, all statistical 
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results regarding the factor GROUP remained non-significant in both learner analyses: i.e., the 

A/T-NFT protocol was not associated with a significant better regulation of alpha and theta.  

The A+T learner analysis showed a significant interaction effect in absolute A+T up-

regulation in comparison to the original analysis which indicates that while there are no 

differences overall between the EG and CG regarding up-regulation of A+T there are significant 

differences in how the up-regulation took place over the course of the ten NFT sessions. This 

result is similar to those of the 2x5 ANOVA performed in Section 4.3.1 which confirm the 

differences in learning curves across NFT sessions. As explained in 5.1.2, the difference in the 

course of the changes between EG and CG for the aggregation of two successive sessions of beta 

up-and down-training for the 2x5 ANOVA should have eradicated any gains, i.e., the results of a 

session of uptrained beta which may have been associated uptraining of interdependent alpha 

waves should have been negated by downtraining beta and interdependent beta in the next 

session. Unfortunately, the GCM analysis models the 60 second aggregations of all 240 time 

points over the ten NFT sessions (24 minutes for 10 sessions) and as such does not offer CG and 

EG means per session to be compared for significant differences between EG and CG per 

session. 

As the 30-second baseline reading was confounded with the first minute of NFT training, 

it could not be used for further analysis. While the missing baseline values were of concern to 

pre- post-difference measurements of alpha and theta analyzed by ANOVAs, it had negligible 

effect on the statistics as GCM is a continuous model of alpha and theta band changes within and 

across all sessions.  

Similar results to the current study were found by Egner et al. (2002 and 2003) for 

healthy adults, although Egner and colleagues (2002) reported that EG and CG differed in T/A 
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ratio increase within sessions but not across sessions. Unfortunately, in a few studies which used 

active placebo NFT in the CG, the EEG amplitudes of participants from the CG were not 

recorded nor included in the later analysis (e.g., Raymond et al., 2005). These analyses did not 

take into consideration the effect that mock NFT may have on brain wave modulation and 

calculated only whether there was a significant improvement of alpha and theta amplitudes. This 

method is rather questionable, particularly considering the results of my study: if I had only 

analyzed the EG’s improvement in A/T regulation within and across sessions the result would 

have been that participants learn to successfully up-regulate their absolute and relative alpha, and 

T/A ratio within and across sessions and theta brain waves within sessions with a clinically 

relevant large effect size. Yet, comparing the NFT results to a placebo NFT group shows that 

although the EG is better at up-regulating alpha and theta than the CG, but not significantly. 

Consequently, it is possible that the observed NFT effects are non-specific in nature rather than 

the product of a specific NFT protocol.  

The only way to assure that there is a causal relationship between the particular NFT 

protocol and participants’ modulation of brain waves is to use an active placebo NFT protocol 

for the CG, which is as similar as possible in all parameters (i.e., reward frequency, reward 

sounds and visuals, length of each training session and number of sessions) to the EG protocol. 

Furthermore, the frequency bands to be trained in the CG cannot interfere with the target 

frequency bands of the EG.  There is a lack of such study protocols in NFT for AD. Of course, 

there are some experimental studies that report significant changes in EEG parameters for 

individuals with AD throughout the NFT trial (Dadashi et al., 2012; Garrett & Silver, 1978; 

Glueck & Strobel, 1975; Lu et al., 2017) but all are questionable because they the lack the kind 

of analysis described above. The same can be said for studies regarding anxiety in healthy 
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participants (mostly university students), such as Chisholm (1977), Eismont et al. (2011), 

Gruzelier et al. (2014a, b), and Sittenfeld (1976).  

Some critics assert that NFT active placebo CG are not necessary or cannot be 

successfully performed (Hammond, 2011 b), partially due to changes in some frequency bands in 

the control condition that may lead to other unintended consequences for the frequency bands 

trained in the experimental condition. Ros and colleagues (2013), for instance, observed in an 

fMRI study that used an alpha amplitude downregulation NFT protocol that the “within-subject 

amplitude correlations between theta, alpha, and beta bands during NFB were consistently 

positive within a statistically significant range of 0.5 to 0.7 suggesting a broader effect of NFB 

training on [non-trained] flanking frequency bands” (Ros et al., 2013, p. 328). More research is 

needed to understand what kind and how much of an effect specific NFT protocols may have on 

neighboring frequency bands. Moreover, Rogala (2016) states that there might be differences in 

the trainability of certain frequencies, as was evident in research with macaque monkeys 

(Carmina, 2003).  

The most plausible explanation for the surprising result regarding H1 is that uptraining 

beta and upper beta in NFT may lead to alpha frequency uptraining due to interdependency of 

alpha and beta bands, a concept that was not commonly known during the design and study 

protocol phase of this study (2015-2016). Only few researchers in the NFT realm, such as Ros et 

al. (2013), acknowledged that uptraining of certain beta bins may possibly lead to an increase in 

certain alpha bins. But not until very recently in a study by Jurewicz, Paluch, Kublik, Rogala, 

Mikicin, and Wróbel (2018) was this issue in my study were better at up-regulating alpha 

amplitudes within sessions they were also nearing significance of up-regulate theta within 

sessions. Furthermore, Rogala et al. (2016) report that especially changes in upper alpha 
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amplitudes were observed when subjects were told they were in the alpha inducing group. The 

individual learning curves (Figure 4.5) show that ten of fourteen participants in the EG learned 

how to increase their A+T amplitudes which corresponds to a 71.43% success rate. However, 

looking at individual alpha and theta amplitudes one of the ten successful A+T regulator actually 

did not upregulate their theta amplitude but instead had a real large increase in alpha, so only 

nine out of fourteen participants were able to increase their theta and alpha amplitudes across the 

NFT sessions (64.29%). Yet, while the EG’s amplitudes improved generally more, no 

statistically significant difference was found between the EG and the CG.  

 In addition, the effectiveness of both groups heightening T and A amplitude within a 

session could be caused by participants’ fatigue which lead to decreased beta activity and 

increased alpha, theta, and delta activity rather than by learning. This explains individual 

learning curves in some sessions for some participants. However, the majority of women did not 

follow this pattern but significantly increased their absolute and relative alpha and T+A 

amplitudes across sessions, which would be unlikely if little or no learning took place within 

sessions. Tiredness could definitely be a contributing factor to why the CG up-regulated their 

absolute and relative alpha, and T+A amplitudes with no active feedback since alpha and 

especially theta amplitudes increase when people get tired (see section 1 2.1). While tiredness 

was qualitatively tracked with the NFT Session Coding List, the AD-ACL pre-and post-session 

questionnaire, and participants’ best and worst time of day for learning, it would have been 

helpful to ask participants directly before each NFT session how many hours they slept the night 

before and how sleepy they currently felt.  

The decrease in energy over the course of a NFT session may be explained by mental 

fatigue, especially in conjunction with specific changes in alpha and theta band power in the 
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mid-parietal region. Mental fatigue in this context can be defined as subjective feelings of low 

energy, motivation, and drowsiness with additional difficulties of difficulties of performing 

continuous mental tasks (Trejo, Kubitz, Rosipal, Kochavi, & Montgomery, 2015). Trejo et al. 

(2015) analyzed spontaneous EEG power spectrum densities (PSD; obtained by decomposing an 

EEG time series into a voltage/frequency graph via FFT (Niedermeyer & Lopes da Silva, 1999) 

of continuous simple mental arithmetic tasks of 22 healthy volunteers until they felt fatigued. 

They investigated the occurrence of fatigue and its EEG correlates, as well as subjectively 

experienced moods and energy levels assessed by the AD-ACL and other measures. The authors 

discovered that in as little as 15 - 30 minutes of continuous performance mental fatigue occurred 

and “produced decreased general activation (i.e., self-reported energy) and preparatory arousal 

(i.e., self-reported calmness) and increased general deactivation (i.e., self-reported tiredness) but 

did not significantly influence other moods” (Trejo et al., 2015; p. 582). Lengthening response 

times and decreasing alertness were also reported but but did not lead to changes in the response 

accuracy of the mental tasks. 

The NFT sessions in the current study also involved a continuous rather complex mental 

task of learning to regulate EEG frequencies via feedback may be comparable to the Trejo study 

and shows that even a relatively short amount of time, such as the 25-minutes of the NFT session 

can cause mental fatigue. But even more interesting are the changes in PSD Trejo and colleagues 

(2015) found associated with mental fatigue. A significant and distinctive increase of alpha+theta 

PSD across subjects during fatigued states was observed, especially in frontal midline theta (Fz) 

and midline parietal (Pz) alpha activity, which increased as a function of time on task, without 

changes in other frequency bands. These results had previously been observed in extended 

performances of air traffic controllers (Krishnan, Dasari, & Ding, 2014; as quoted in Trejo et al., 



 122 

2015). Trejo and colleagues relate these decreases in performance and increases in alpha activity 

during mental fatigue to Pfurtscheller’s (1999) model how coherent (increase in) alpha band 

activity likely indicates decreased cognitive processing of the neuronal populations underlying 

the area (Lim et al., 2010; as quoted in Trejo et al., 2015). Furthermore, Trejo asserts “spatially 

diffuse theta rhythms associated with sleepiness, spatially focused, theta rhythms associated with 

cognitive effort and WM (working memory) load, lower alpha rhythms (8 - 10 Hz) associated 

with relaxed wakefulness, and focused higher alpha rhythm (10 - 12 Hz) suppression associated 

with spatial and non-spatial shifts of attention.” (Trejo et al., 2015; p. 585). In general, these 

research results seem to point to mental fatigue being associated with a shift toward the DMN 

which is accompanied by a low alpha idling mode (8-10 Hz) and lowered activities in the 

executive and attention networks. Both, EG and CG experienced mental fatigue and an 

upregulation of theta and especially alpha at Pz as each NFT progressed, as evidenced by the 

AD-ACL changes between beginning and end of the NFT session. Consequently, it is not clear if 

any learning had actually taken place, especially in light of the fact that the CG upregulated A+T 

without being trained for it, or if upregulating A+T is the result of mental fatigue alone. 

The EG and CG being able to uptrain relative and absolute alpha within and across 

sessions could be a sign that A/T NFT is an elaborate placebo and that sitting in front of a 

computer in a relaxed position while attempting to not think of anything in a quiet room with 

dim lighting has the unspecific effect causing alpha waves and even theta waves to increase. This 

might be especially true when one looks at the participants’ busy lives trying to balance work, 

family, and study. NFT sessions provide a refuge from the noisy stressful environment outside 

the lab.  
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Unfortunately, due to financial limitations and because this trial was essentially a one-

researcher and time-limited operation the scheduling of at least one or several follow-up 

appointments to re-assess QEEG and self-report anxiety scales and qualitative questions about 

changes in thinking, feeling and behavior was not feasible. Additional follow-up appointments 

would have allowed to analyze if and which long-term changes resulted after the NFT concludes, 

as well as if any differences between the EG and CG could be observed. Especially in NFT 

studies, which had used transfer trials, participants in the area of ADHD and epilepsy maintained 

the gains through the NFT in follow-up appointments (Strehl et al., 2014; Gevensleben et al., 

2009 and 2010; Leins et al., 2007). Furthermore, Engelbregt (2016) studied the short- and long-

term effects of frontal beta NFT on healthy adults by re-testing all subjects 36 months after the 

end of the NFT and showed that the gained increase in beta oscillations was maintained for the 

EG even after three years although the cognitive improvement originally observed right after the 

completion of the NFT were no longer observed. 

Lastly, as discussed in chapter 1.3.1, EG and CG were both trained at the Pz-LE locations 

which (beside Cz-LE) were the most used often used electrode placements in A/T NFT for ADs. 

The Pz electrode placement corresponds to the caudal superior parietal lobule which is connected 

with enhanced hippocampal activity which may be especially beneficial for enhanced memory 

consolidation and retrieval and activation of self-related functions that can be used to achieve a 

relaxed calmness, and down-regulation of the HPA axis according to Gruzelier et al. (2009). Yet, 

Olejarczyk, Bogucki, and Sobieszek (2017) in their study on the underlying mechanisms of split 

alpha peaks found that, depending on the choice of reference electrodes, alpha rhythm generators 

were not just found at the regular occipital (O1 and O2) and frontal locations but were also found 

at Pz (10 Hz) in some healthy participants. While Olejarczyk and colleagues were more 
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interested in finding out how alpha generators outside the occipital and frontal areas may 

influence the creation of overlapping double alpha peaks (split alpha) due to frequency 

differences between two alpha generator locations, the result of their study may offer another 

possible explanation why in the current study alpha amplitudes were raised even in the CG that 

did not uptrain alpha. If Olejarczyk and collegues’ (2017) results are replicable in a majority of 

individuals it may mean that independent of the NFT protocol, as long as the active electrode is 

placed at Pz rising alpha amplitudes are to be expected in cases of heightened attention which 

enhances alpha rhythm production (Klimesch, 1999). Thus, in future research it may be 

beneficial to consider different electrode locations, especially for the CG. 

5.1.2 Reduction of trait and other anxiety measures (H 2). 

Hypothesis 2 (H 2): A ten-session NFT protocol of up-training alpha (8-11 Hz) and theta 

(5-7.5 Hz) frequency bands at Pz will significantly lower the subjective experience of trait 

anxiety. These measures will not change significantly in the placebo group. 

H 2 was partially confirmed. Contrary to expectations, both, A/T NFT training at Pz (EG) 

and active placebo B u/d NFT training (CG) led to a significant reduction in anxiety in all self-

report anxiety scales anxiety (STAI-T and STAI-S, BAI, and GAD-7), including trait with large 

effect size. Yet a trend was observed that the A/T NFT protocol reduced anxiety measures more 

than the active placebo protocol of the CG.  

 The most plausible explanation for EG and CG showing significantly decreased scores in 

trait anxiety as well as in all other anxiety measurements is that both groups increased relative 

A+T amplitudes. Increasing alpha and theta oscillations targets the ANS indirectly and 

potentially leads to relaxed calmness and reduced anxiety symptoms (see chapter 1.1.4). 

Predominant theta oscillations may indicate internal orientation and increase drowsiness among 
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others (Horschig et al., 2014) whereas dominant alpha waves are associated with relaxed 

wakefulness and reduction of simultaneous processes that are unnecessary for a present task via 

increasing the signal-to-noise ratio (Klimesch et al., 2012).  

Furthermore, this study had an active placebo group which made sure that all parameters 

were exactly the same for CG and EG except for the frequency bins trained. Consequently, a 

placebo effect may have been observed that caused both groups to feel less anxious, as 

elaborated above. Participants developed relationships with the experimenter and NFT 

technicians which most certainly influenced the individual’s general level of comfortability, 

trust, motivation, and level of focus on the NFT treatment. This may be especially relevant for 

research with individuals with GAD and SAD as they often are uncomforTable with social 

situations. Also, having 45 minutes twice a week for ten sessions in a quiet pleasant room where 

participants are welcomed and receive undivided attention by the NFT trainer from the often 

busy often stressful lives trying to balance work, family, and study may serve as refuge and 

lessen anxiety.  

A possible explanation of the results is offered by social psychologist Leon Festinger’s 

theory of cognitive dissonance (Festinger, 1962). Festinger postulated that having conflicting 

cognitions cause an aversive arousal, the so-called dissonance, which a person attempts to reduce 

by choosing one of the inconsistent cognitions and devaluing and rejecting the other. Redelmeyer 

and Dickinson (2011) apply Festinger’s theory to the medical field by hypothesizing that when 

patients choose and endure a lengthy and /or unpleasant medical procedure they may reduce their 

dissonance by exaggerating the benefits of the treatment and downplay the negative parts of the 

procedure. Similarly, to participate in a ten session NFT clinical trial, with associated EEG 

sessions, and a multitude of self-report measures constitutes a lengthy time commitment, 
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especially for working women. Enhancing the positive effects of the NFT and downplay negative 

parts of the trial may be the result, specifically thoughts that such lengthy time investment might 

not have led to the reduction in anxiety symptoms that participants had hoped for.  

In addition, the participants’ reduced self-perceived anxiety scores may certainly have 

been influenced by the expectation of treatment outcome and by a person’s belief as to how 

much they can influence the outcomes of events in general. This might be particularly true for 

treatments involving technology that is perceived as cutting edge (Beier; 1999 and 2004) 

The studies of Bhat et al. (2012), Garrett & Silver (1978), and Rice et al. (1993) were the 

only three that had an active CG; Bhat compared NFT to pharmacological treatment, whereas 

Garrett & Silver (1978) and Rice used a semi-active control as they compared alpha NFT and 

frontal EMG-Feedback. In contrast, Agnihotri et al. (2007), Dadashi et al. (2015), and Vanathy et 

al. (1988) used wait-list participants. Only Lu et al. (2017) reported that even though an active 

treatment of anxiolytics was used for the CG the EG that received A/T NFT decreased anxiety 

symptoms significantly more than the CG. However, the sample size of this study was very small 

(N = 18). 

Another reason for the current study not significantly differentiating between EG and CG 

regarding the reduction in self-perceived anxiety may be the small sample size in this study (N = 

27) as a larger sample size would have been more sensitive to differences between groups. 

However, Lu (2017; EG: n = 10, CG: n = 8), Faridnia (2012; EG: n = 10, CG: n = 10), and 

Vanathy (1998; EG 1: n = 6, EG 2: n = 6, CG: n = 8) all had even smaller sample sizes and were 

still able to show significant differences in reduction of anxiety between EG and CG. Other 

studies found no significant difference between EG and CG reduction of anxiety for EG and CG 

after NFT: Bhat et al. (2012) with a larger sample of participants (N = 100) who had been 
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diagnosed with anxiety and depressive disorders, Rice et al. (1993) for participants with GAD, 

and Watson and Herder (1980) for psychiatric patients with multiple Disorders. While Bhat et al. 

(2012) used standard anxiolytic treatment as CG, Watson and Herder (1980) used a sham NFT, 

and Rice et al. (1993) used active opposite NFT protocols. Raymond et al. (2005) came to the 

same conclusion in a study with healthy adults.  In contrast, other RCTs reported that the EG had 

a significantly larger drop in self-reported anxiety scores than the CG, such as Lu et al. (2017), 

Faridnia et al. (2012), Garrett and Silver (1978), and Vanathy et al. (1998), for participants with 

PD, athletic performance anxiety, test anxiety, and GAD, respectively. None of the above studies 

used an active placebo group; one used mock NFT, while the others used wait list, no 

intervention, or treatment as usual (anxiolytics).  

 Most NFT studies discovered significantly decreased anxiety scores on self-report tests 

for the EG for adults with AD (Agnihotri et al., 2007; Dadashi et al., 2015; Faridnia et al., 2012; 

Lu et al., 2017; Vanathy et al., 1998) and for a non-clinical population (Eismont et al, 2011; and 

Plotkin & Rice, 1981). Yet, only Bhat et al., (2012), Garrett & Silver (1978), and Rice et al., 

(1993) reported decreased anxiety symptoms for both, the EG and CG, as was the result in this 

study. 

5.2 Other Treatment Effects (H 3– H 8) 

5.2.1 Activation and deactivation within session (H 3a) and across sessions (H 3b). 

Hypothesis 3 (H 3a and 3b): The treatment group will feel significantly more deactivated 

(as assessed by Thayer’s AD-ACL check list) within a NFT session (H 3a) and will subjectively 

become significantly more deactivated across NFT sessions (H 3b) while the placebo group will 

not. 

 H 3a was partially confirmed. A repeated measure 2x2 ANOVAs to test pre-and post-
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NFT session differences in AD-ACL scores revealed that general activation (consisting of sub-

scales energy and tension) decreased significantly between the beginning and the end of a NFT 

session (large effect size) and decreased significantly more for the CG than the EG (large effect 

size). General deactivation (composed of sub-scales calmness and tiredness) increased for both, 

EG and CG, significantly between the beginning and the end of a NFT session (large effect size) 

but no significant differences between EG and CG were observed. An analysis of the four AD-

ACL sub-scales showed that in both groups, EG and CG, participants’ energy and tension 

decreased significantly between the beginning and the end of a NFT session (large effect sizes) 

and their calmness and tiredness increased significantly (large and medium effect sizes, 

respectively). However, the EG experienced a significantly larger increase in calmness than the 

CG (small effect size) and an almost significant larger decrease in energy (p = .093; small effect 

size). No differences between groups were observed for the sub-scales energy and tension. Thus, 

to summarize the results, participants in EG and CG experienced significant changes in the 

activation and deactivation scales and all four sub-scales of the AD-ACL pre-to post NFT 

session. The CG additionally experienced a significantly larger decrease in general activation 

than the EG and the EG felt a significantly larger decrease in energy and increase in calmness 

than the CG. 

H 3b was not confirmed. A 2x5 repeated measures ANOVA that aggregated two pre- and 

post-session AD-ACL difference scores into one measurement point: sessions 1 + 2 

(measurement 1), sessions 3 + 4 (2), sessions 5 + 6 (3), sessions 7 + 8 (4), and sessions 9 + 10 

(5) were performed.  Differences between the EG and CG were detected for the activation scale 

where results approached significance with the CG being less activated than the EG (p = .073, 

medium effect size), i.e., across sessions the CG became more deactivated than the EG. No 
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significant changes across the five time-point comparisons were observed for the AD-ACL 

scales activation and deactivation and the individual sub-scales calmness, tiredness, tension, and 

energy. To summarize the results, neither EG nor CG experienced any significant changes in any 

of the scales and sub-scales of the of AD-ACL across sessions, but the CG was almost more 

deactivated than the EG across sessions. 

The GCM confirmed the results from the 2x5 ANOVAs of AD-ACL scales and sub-

scales. However, an interaction effect between factors TIME and GROUP was detected in this 

scale which suggests a difference in patterns of activation across sessions and makes an 

interpretation of the GROUP factor difficult. Visually inspecting Figure 4.5 elucidates that while 

EG and CG have relatively similar difference scores in the activation scale in the first two 

sessions of the NFT and in the last two sessions in the remaining six sessions members of the CG 

group are far less activated than in beginning or end of the ten NFT sessions whereas EG group 

members are more activated in the remaining six sessions. 

The results of the current trial were not surprising as they had been observed in a number 

of other studies regarding within session change (H 3a), such as by Egner et al. (2002; A/T NFT 

study) and by Gruzelier et al. (2014; SMR study) who showed that activation (as measured by 

the AD-ACL) decreased significantly between the beginning and the end of a NFT session and 

deactivation increased significantly although not differentiated analyses of the sub-scales were 

performed, which in the current study showed differences between EG and CG. Thus, no 

comparison to other studies regarding these additional parameters were possible. Additionally, 

the current study analyzed pre-and post- AD ADCL difference scores across sessions in which 

no significant changes over the course of the 10 sessions were observed and neither were group 

differences (although a reduction of activation in the CG approached significance).  None of the 
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reviewed NFT studies had performed an across sessions statistical analysis of the AD-ACL 

scores. NFT studies in the realm of anxiety and emotion regulation that had utilized a mood and 

energy scale comparable to the AD-ACL were also reviewed, such as Raymond et al. (2005) and 

Chow et al. (2017), who had used the Profile of Mood States (POMS). The POMS has sub-scales 

for tension, depression, anger, vigor, fatigue, and confusion (McNair, Lorr, and Droppleman, 

1971) is very similar to the AD-ACL. The tension, vigor, and fatigue sub-scales correspond to 

some degree with the tense, energy, and tired sub-scales of the AD-ACL, respectively. But in 

these studies no across sessions comparisons had been performed, either.  

As described in chapter 5.1.1, the decrease in activation over the course of a NFT session 

may be explained by mental fatigue, Trejo et al. (2015) found that already 15 - 30 minutes of 

continuous performance, such as in a NFT session, could cause mental fatigue in a participant 

associated with decreased energy and increased calmness and tiredness as measured by the AD-

ACL. Especially the increase of alpha+theta amplitudes associated with mental fatigue serve as a 

likely explanation why both EG and CG experienced a significant reduction in general activation 

and a significant increase in general deactivation over the course of the NFT.  

However, why the CG experienced significantly higher decrease in general activation than 

the EG over the course of a NFT session may not be explained by the mental fatigue model and 

remains unclear. Perhaps, not being able to continuously learn a protocol over the course of the 

NFT sessions but subsequent up-and down-training of beta and high beta is frustrating to 

participants, causes tension, and questions their self-efficacy which in turn may lead to disen-

gagement from any kind of conscious techniques in trying to regulate their brain oscillations 

which reduces tension more than the continuous reinforcement of the same oscillation bands in 

the EG. Clearly, more research in this area is needed.  
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Furthermore, the EG showed a significantly larger increase in calmness between the 

beginning and the end of a NFT session which could be explained by the intended A/T NFT 

working as intended, as enhanced A+T amplitudes were supposed to cause a decrease in 

participants’ anxiety levels via increase in calmness (and decrease in general tension which the 

protocol did not do in the current study). 

Across NFT sessions none of the AD-ACL scales had reached significance which was 

expected (if one assumes that an increase in A+T amplitudes is associated with a reduction in 

general activation and an increase in general deactivation) because absolute and relative A+T did 

not significantly increase across sessions, only absolute and relative alpha amplitudes did. 

5.2.2  Correlations: NFT measures and activation / deactivation difference scores (H 4). 

 Hypothesis 4 (H 4): The treatment group will show significant increase in absolute and 

relative theta and alpha amplitudes and absolute and relative theta + alpha (T+A) amplitudes 

across sessions which will correlate with higher deactivation and lower activation scores of the 

AD-ACL, while the placebo group will not. 

H 4 was partially confirmed.  The bivariate EG-CG correlation matrix revealed that higher 

relative alpha and relative T+A amplitudes, signaling more learning between sessions 1+2 and 

9+10, were significantly associated with higher deactivation scores on the AD-ACL for both, the 

EG and the CG. The correlations were even more pronounced in the EG-only correlation matrix.  

However, in contrast to H 3 higher absolute theta amplitudes and T/A ratio were associated with 

lower deactivation scores, and negative correlations were even stronger in the EG-only matrix. 

Analyzing the correlation between the AD-ACL sub-scales and NFT measures revealed a 

more nuanced picture.  In the bivariate EG-CG correlation matrix the only AD-ACL sub-scale 

that showed a significant correlation with any of the NFT parameters was the significant negative 

correlation of the calm scale with the absolute theta amplitude, i.e., the greater the absolute theta 
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amplitude increase between sessions 1 + 2 and 9 + 10 was, the less calm participants felt. This 

was even more pronounced in the EG-only correlation matrix. However, analysis of the EG-only 

correlation matrix revealed that AD-ACL tired, tense, and calm sub-scales significantly 

correlated with relative alpha amplitudes. A larger increase of the relative alpha amplitude over 

the course of the NFT study was associated with an increase of tiredness, a decrease in tenseness, 

and an increase in calmness. In contrast, a reduction in tenseness was the only sub-scale 

dimension that was significantly associated with higher absolute alpha amplitudes. These results 

indicate that perceived energy and mood changes might not be so much associated with an 

increase in absolute alpha amplitude but perhaps more with a reduction of other waves such as 

beta and high beta waves which are traditionally associated with rumination, especially in GAD 

and SAD (Section 1.2.1). 

Furthermore, in comparison to the EG-CG correlation matrix, the tired sub-scale of the 

EG-only matrix significantly correlated with relative T+A, and the calm sub-scale significantly 

correlated with the T/A ratio; i.e., for the EG, an increase of the relative T+A amplitude over the 

course of the NFT study was associated with an increase in tiredness, and an increase of the T/A 

ratio was correlated with a reduction in calmness. Relative theta and relative T+A still were not 

significantly associated with any of the AD-ACL scales or sub-scales.  

While an increase in tiredness over the course of a session was reported in most of the 

reviewed studies on A/T NFT (Table 1.4 a-c) no statistical analyses regarding differences in 

tiredness throughout the trial, via AD-ACL, POMS, or other scales, have been analyzed in any of 

the more than 40 studies. Particularly perplexing in our study is that increased tiredness was not 

significantly correlated with relative T+A amplitudes in the EG and CG correlation matrix but 

was significantly related in the EG-only matrix. Both CG and EG had a similar age distribution, 
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so age-related mental fatigue, associated with higher frontal midline theta for older people 

(Arnau, Moeckel, Rinkenauer, & Wascher, 2017) could not have played a leading role. 

Furthermore, an increase in mental task demand due to longer training periods, or 

different time of day of training is often associated with mental fatigue and increase of frontal 

midline theta for people regardless of age (Arnau et al., 2017); yet, in this study the duration of 

the training remained constant across sessions, so did (for the most part) time of day of the 

training, and most importantly, the NFT did not increase in difficulty but auditory and visual 

rewards were given for relative increases in in theta (5-7.9 Hz) and alpha amplitude (8-11 Hz). It 

would have been helpful to have further information on what dimensions of tiredness 

participants felt; mental or physical fatigue and fatigue due to reduced motivation potentially 

differ in origin and associated physiological parameters, with mental fatigue being directly 

related to the concentration on the NFT task, whereas physical tiredness may be only tangentially 

related to the task and more related to time of day, amount of sleep the night before, stress and 

amount of work during the work day and other unspecific effects. Age, belief of being part of the 

EG, and preferred learning time, factors that are routinely related to mental tiredness, did not 

significantly correlate with the AD-ACL tired sub-scale, neither in the CG-EG nor for the EG-

only correlation matrices. Reduced motivation on the other hand is likely related to participants’ 

perceptions of not improving and associated frustration. In future studies the Multidimensional 

Fatigue Inventory by Smets, Garssen, Bonke, & De Haes (1995) can further illuminate this issue. 

Lastly, age, belief of being part of the EG, and preferred learning time, factors that are routinely 

related to mental tiredness, did not significantly correlate with the AD-ACL tired sub-scale, 

neither in the CG-EG nor for the EG-only correlation matrices. 
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5.2.3  Correlations: NFT measures and anxiety measures difference scores (H 5). 

Hypothesis 5 (H 5): The treatment group will show a significant increase in absolute and 

relative theta and alpha amplitudes and absolute and relative theta + alpha (T+A) amplitudes 

across sessions which will correlate with a decrease in trait anxiety as measured by the STAI-T 

inventory. 

H 5 was partially confirmed. The STAI-T difference scores were significantly associated 

with absolute T+A amplitude increases between the means of sessions 1 and 2 in comparison to 

the mean of sessions 9 and 10; i.e., an increase in absolute T+A amplitudes was significantly 

associated with a reduction in trait anxiety. However, as seen in section 5.1.1.2, no significant 

differences between the EG and CG were observed and all other correlations between NFT EEG 

parameters and the STAI-T (and STAI-S, BAI, and GAD-7) were not significant. The only RCT 

study that reviewed NFT parameters and anxiety self-report scales and reported significant 

correlations was Lu et al. (2017) for patients with PD. Here an improvement of alpha amplitude 

from beginning to end of a twenty-session NFT trial was associated with a reduction in BAI 

scores. However, Lu and colleagues did not use an active placebo NFT placebo group but 

another active treatment modality, anxiolytic medication, as CG. Therefore, their results offer 

limited comparability with the current study. 

5.2.4  Physiological results: Pre–post differences in QEEG (H 6). 

Hypothesis 6 (H 6): The treatment group will have a significant increase in absolute and 

relative theta and alpha amplitudes and absolute and relative theta + alpha (T+A) amplitudes 

on the mini-QEEG in the Pz region while the placebo control group will not. 

H 6 was not confirmed. A 2x2 repeated-measures ANOVA with the within-subjects 

factor TIME and factor GROUP was performed for theta and alpha absolute power, theta and 
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alpha relative power, theta / alpha ratio, and theta + alpha absolute and relative powers at Pz. 

None of the variables showed a statistically significant change between pre- and post-treatment 

and no differences between EG and CG could be observed for any of the variables, except for 

A+T relative power with a small trend toward significance (p = .131) for time and group 

interaction with the EG having higher combined relative alpha and relative theta amplitudes in 

comparison to the CG with medium effect size. 

Furthermore, the only two correlations that proved to be significant in the QEEG and 

NFT pre-post-difference score correlation matrix (between session 1 + 2 and 9 + 10) were the 

associations between NFT relative theta and QEEG absolute alpha difference scores and between 

NFT relative theta and QEEG absolute T+A difference scores. The larger the mean post-trial 

absolute QEEG theta amplitude was, the smaller was the change of absolute alpha and absolute 

T+A amplitudes between sessions 1 + 2 and 9 + 10 (Table 4.6). 

Observing non-significant results in QEEG recordings between pre-and post-treatment 

seems to be common in NFT trials of anxiety DO (e.g., Vanathy et al., 1998; Dreis et al., 2015), 

and especially the older reviewed RCT studies did not even use pre- and post-treatments QEEG 

to measure improvements, such as Garrett & Silver (1978), Glueck & Strobel (1975), Peniston & 

Kulkosky (1991), Egner et al. (2002 and 2003), Gruzelier et al. (2013 and 2014 a, b), and 

Faridnia et al. (2012).  Walker et al. (2009), Dadashi et al. (2015), Dekker et al. (2014), and 

Dreis et al. (2015) analyzed pre-post EEG but only Dadashi reported significantly increased 

alpha and theta amplitudes in the EEG recording post-trial in the occipital area for the EG. 

However, Dadashi et al. (2015) used a waitlist group as their CG which is not able to take a 

placebo effect into consideration which, as elucidated in chapter 1.3.2, contributes significantly 

to people’s perception of treatment success, as well as to changes in physiological parameters for 
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participants of a CG. There was no significant correlation in the current study between 

participants’ belief that they were part of the CG and any of the measured anxiety, NFT, pre-

post-QEEG measures. This means that the active placebo condition was associated with a large 

placebo effect that would mitigate the treatment effect of the EG.  

5.2.5  Qualitative Results: Behavioral and cognitive effects (H 7). 

Hypothesis 7 (H 7):  Self-perceived successful cognitive strategies to modulate brain 

waves will be significantly correlated with learning as specified by the A/T NFT protocol. 

H 7 was not confirmed. Neither absolute alpha, theta, and A+T amplitudes, nor relative 

alpha, theta, and A+T, were significantly correlated in the correlation matrix that included only 

the EG as well as the matrix that included both, EG and CG. However, the correlation matrix for 

the EG did reveal a significant negative correlation between the T/A ratio and the use of mental 

strategies; i.e., for the EG the use of mental strategies was associated with lower T/A ratios in 

the difference scores of sessions 9+10 and 1+2 but was not correlated significantly with any of 

the other NFT EEG parameters (increase of absolute and relative alpha, theta, and A +T).  

To date, none of the NFT studies for AD has assessed participants’ use and type of 

cognitive strategies and their relation to learning of the NFT protocol. A review of NFT studies 

regarding other disorders garnered almost no results regarding the influence of mental strategies 

on NFT performance, either. Only four studies addressing cognitive strategies were found. 

Hardman et al. (1997) report from a three session NFT trial to improve left and right hemisphere 

activation  across F3 and F4 via slow cortical potentials negativity shifts towards the left or the 

right hemisphere The group that was given instructions to use positive emotional strategies to 

improve left hemisphere activation and negative emotional strategies to activate the right 

hemisphere did not better than the control group that received no instructions. Moreover, within 
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session improvement were larger in the no strategy group, particularly in the last third of each 

session.  

Kober and colleagues (2013) came to a similar result in a ten-session NFT study to  

uptrain either SMR or gamma power. Twenty healthy participants were initially instructed to 

stay focused on the computer screen and remain relaxed during the NFT. After their first and last 

NFT session participants were asked to write down the cognitive strategies they had used. These 

strategies were classified as breathing, conscious relaxation, concentration, visual, auditory, and 

cheering strategies. The four participants of the SMR group who had reported no specific mental 

strategies were the only ones who significantly improved their SMR performance. The other six 

participants in the SMR condition did not, but neither did any of the participants in the gamma 

condition, even if they had not used any mental strategy. However, only one of the ten 

participants of the gamma group had reported using no strategies. As the number of participants 

of this study was small results should be interpreted with caution, though, especially regarding 

the gamma group. The authors of the study interpret the results as an indication that the use of 

elaborate strategies to increase SMR may overburden the finite amount of cognitive resources 

and may lead to no significant learning of SMR over the course of the NFT sessions.  

Furthermore, Witte et al. (2013) performed a study with ten NFT sessions in which 10 

healthy participants underwent sham NFT whereas the other 10 participants were trained to 

increase their SMR power. An increase of SMR power over the ten sessions was significantly 

correlated with lower scores in the expectancy to control technological devices. Witte et al. 

hypothesized that the expectation of controlling the device may consume additional cognitive 

resources and lead to pressure or “forced mastery” (p. 1) that is not congruent with the effortless 

relaxation that may improve SMR power. Thus, Kober et al. (2013) and Witte et al. (2013) agree 
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in their interpretation that mental strategies may lead to a reduction in available finite resources 

which in turn may lead to worse learning of NFT parameters.  

Lastly, Nan et al. (2012), in a twenty-session NFT trial to improve memory functions 

with 32 healthy students, found that thinking about positive categories, particularly about friends, 

love, and family improved the ability to increase relative alpha amplitudes during and across 

NFT sessions, in comparison to thinking about neutral or negative strategies. All participants of 

this study had been instructed to use whatever mental strategies worked for them or use no 

mental strategies, if they so chose, to increase the respective wavebands that were trained. 

Taking the results of these studies mentioned above into account, the non-significant results of 

this study are not in line with any of their results, although non-significant results regarding 

mental strategies were observed in the gamma power group of the Kober et al. (2013) study. 

However, although the NFT protocol for the EG in this study uptrained both alpha and theta and 

not the T/A ratio it is interesting to observe that the use of mental strategies lead to significantly 

lower theta uptraining in comparison to the rise of alpha amplitude which in turn led to a lower 

T/A ratio. This observation may be in line with the results of the aforementioned three studies; 

considering that it is more difficult to uptrain theta than alpha, as mentioned above, a lower T/A 

ratio may point to limited resources not being used as efficiently to uptrain theta in relation to 

alpha while theta amplitude uptraining on its own had not been significant. 

5.3 Control for Unspecific Effects (H 8 - H 9) 

Hypothesis 8 (H 8): No significant differences between the treatment and the placebo 

group in treatment expectations / self-efficacy as measured by the Stanford Expectations of 

Treatment Scale (SETS) and the Rotter Locus of Control Scale (LOC) will be observed in the 

study. There will not be significant differences between the treatment and the placebo group’s 
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pre-and post-treatment satisfaction as measured by the SETS modified outcome scale. 

5.3.1  Control for Experimenter Bias 

Humans are complex social beings who react to subtle emotional cues and develop 

relationships over the course of a ten-session trial. Consequently, interactions with the three NFT 

technicians certainly may influence the participant’s level of comfortability, trust, motivation, 

and focus. This would be an especially sensitive issue because all the women participating in this 

trial had moderate to high trait anxiety and 75% of them had a diagnosed AD. An unknown 

psychotherapeutic / medical environment with an unfamiliar technical procedure may bring up 

former negative experiences about medical illness. Therefore, the two NFT technicians who 

administered one third of the NFT sessions had been trained with a standard protocol of 

procedures and scripts on how to explain possible questions and practiced trial sessions before 

they administered NFT sessions. Unusual circumstances during each NFT session, such as 

excessive sleepiness, fidgeting, and unusual artifacts and equipment malfunctions were recorded 

in the Session Coding List. The NFT data was analyzed with t-tests before any other statistical 

analysis was performed to exclude the non-specific effect of varying experimenter personalities, 

varying degrees of professionalism, and potential experimenter bias. No significant differences 

between the three experimenters and the NFT session EEG parameters, as well as the 

experimenters and the pre-and post session AD-ACL results were found. Consequently, no 

experimenter bias influenced the results of the NFT sessions significantly. 

5.3.2  Control for Treatment Satisfaction and Self-Efficacy (H 8). 

No significant differences between the treatment and the placebo group in treatment 

expectations / self-efficacy as measured by the Stanford Expectations of Treatment Scale (SETS) 

and the Rotter Locus of Control Scale (LOC) were observed in the study. The use of mental 
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strategies and the perceived success of mental strategies did not correlate with the belief in EG 

participation. As expected, perceived changes in everyday thinking, feeling, and behavior highly 

correlated with the belief in EG participation. Participants who believed in being part of the EG 

were significantly more likely to report changes in thinking, feelings, and behavior due to the 

NFT than participants who believed they were part of the CG (Table 4.7 a).  

A significant decrease in negative treatment expectations was observed between the 

beginning of the NFT trial and the end of the trial with large effect size.  The TIME*GROUP 

interaction exhibited no statistically significant difference between the EG and CG for both 

negative treatment expectations between pre- and post-trial which suggests that no significant 

differences between the EG and CG were observed in the reduction of negative treatment 

expectations regarding A/T NFT.  

Positive treatment expectancy did not significantly change between the beginning and the 

end of the NFT trial. Change in treatment expectancy as a measure of treatment satisfaction 

shows that both, EG and CG participants, who had moderately high treatment expectancy, 

reported no significant drop in treatment satisfaction over the course of the treatment. 

 The Rotter Locus of Control Scale was administered at the end of the NFT trial to gauge 

the participants’ self-efficacy. Participants of this study tended to have an external locus of 

control on average, attributing successes or failures to external circumstances rather than their 

own efforts. A one-way ANOVA was performed to investigate if differences in means could be 

detected between participants from the EG in comparison to members of the CG. No significant 

differences between the two groups were found. Point-biserial correlations were performed 

between the LOC score and all QEEG measures (i.e., absolute and relative alpha, theta, T+A 

power and T/A ratio) and NFT measures (i.e., absolute and relative theta, alpha, and T+A 
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amplitudes, and T/A ratio), as well as for the various anxiety measures (BAI, STAI, and GAD) 

and no correlation was significant (see Table 4.7 a; correlation matrix).  

Belief in EG participation is another variable closely aligned with treatment expectation; 

19/27 participants (70.4%) believed that they were in the EG and were receiving an active 

treatment (11/14 members of the EG (78.6%) and 8/13 members of the CG (61.5%). Conversely, 

belief in CG participation empirically aligns with treatment dissatisfaction; 8/27 participants 

(29.6%) believed that they were part of the placebo group (5/13 participants from the CG 

(38.5%) and 3/14 participants of the EG (21.4%).  

While differences in Belief in EG participation were observed between the EG and CG, 

these differences were neither significantly associated with any of the QEEG and NFT EEG-

related parameters, nor with any of the anxiety measure differences or AD-ACL measures, i.e., 

the Belief in EG participation had no impact on any of the measured parameters. 

Belief in EG participation was significantly correlated with participants reporting 

changes in thinking, feelings, and behaviors attributed to the NFT trial. It comes as no surprise, 

that participants who reported that they believed to be part of the EG reported change in 

thinking, feelings, and behaviors significantly more often than participants who did not believe 

that they had been part of the EG. Furthermore, Belief in EG participation was associated with 

age with older participants being more likely to believe that they had been part of the EG, 

although no significant differences in the age distribution between EG and CG had been 

observed after the initial randomization of participants. 

5.3.3   Time-of-day of NFT (H 9). 

Hypothesis 9 (H 9): Participants’ NFT learning will be significantly correlated with each 

participant’s self-identified time-of day best, worst or neutral period for learning.  
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The correspondence of the time-of-day of the NFT sessions with the times-of-day of best 

learning did not correlate significantly with the difference scores between session 1+2 and 9+10 

differences in absolute alpha or theta amplitudes, nor relative alpha or theta, T/A ratio, nor 

relative, or absolute T+A ratio. This means NFT sessions being held during a time of worst or 

preferred learning were not associated with a significant improvement in regulation of the 

parameters in the EG, nor was it associated significantly with any of the AD-ACL pre- post-

session difference scores, except for a difference in energy and tension which was approaching 

significance. Participants who had NFT sessions during their worst time for learning (which can 

be seen as a measure of tiredness, inattentiveness, and exhaustion) reported less energy and more 

tension throughout the NFT sessions in comparison to participants who had their NFT sessions 

scheduled during a neutral or best time for learning. The variable worst time for learning was 

significantly associated with participants who had a more internal locus of control (higher LOC 

score), which may be explained by participants with more internal control being more likely to 

use mental strategies to influence the outcome of a NFT session and the use of mental strategies 

are more exhausting than not using any strategies. Hence, those participants using mental 

strategies are prone to be more impacted by less favorable learning times. 

As Cheon et al. (2016) point out, there are complex interactions between amplitude, 

frequency, phase, and coherence in mental processes. Especially neuronal oscillators are of 

concern which generate spontaneous rhythmic wave patterns that are sTable against minor 

disturbances and consist of more than one waveband, a continuum of brain oscillatory flux that 

changes from slow to fast rhythms during the daily cycle. Hence, depending on time of the day 

there may be different over-arching rhythmic patterns picked up by the EEG at Pz that may skew 

results between sessions if the time of the NFT session was changed during the trial, which had 
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to be done on occasion due to changes participants’ schedules. For statistical comparison of 

standardized conditions, testing within the same +/- 1.5 hours throughout the trial should 

definitely be observed. However, to transfer the newly learned waveband training to other 

situations, especially during times of day where one is not as alert, may be beneficial in later 

training sessions. But upregulation of alpha and theta wavebands will have to have been 

sufficiently learned to apply it to new (time) conditions. A similar concept guides transfer trials 

in later sessions of NFT for ADHD (Drechsler et al., 2007; Mayer et al., 2015; Strehl et al., 

2006) as mentioned above. 

5.4 Limitations 

Many of the hypotheses of this study, most notably the primary hypothesis, were only 

partially confirmed and some were not confirmed at all. Several weaknesses of the study design 

may be responsible for this. The study was a single-blind RCT design. The participants did not 

know if they were part of the CG or EG. However, the experimenters knew which group each 

participant belonged to because they saw the summary of protocol parameters when the NFT 

program was opened for each pre-programmed participant session and the person setting up and 

analyzing the data was this study’s prinicipal investigator. Consequently, a double or triple-blind 

design was impossible for a study like this one, whereby all functions were conducted by the 

same person. Triple-and double-blind studies require a multi-person team with separate and 

specialized roles.  

Moreover, the number of NFT sessions was limited to ten sessions. There are NFT 

studies, such as in the area of NFT for ADHD, that used between 20 and 40 NFT sessions and 

showed significant results (Arns et al., 2009), but in the area of NFT for AD most studies with 

significant results employed 5 to 12 session protocols (Watson & Herder, 1980; Hardt & 
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Kamiya, 1978; Rice et al., 1993; Egner et al., 2003; Gruzelier et al., 2009; Agnihotri et al., 2007) 

and reported significant results in at least some of the examined parameters. After reviewing 

existing studies in the field of A/T NFT it remains unclear how many sessions might be needed 

for participants to learn alpha and especially theta wave uptraining to significantly differentiate 

their absolute relative A+T amplitude up-regulation from the results of the CG.  

Definitions for boundaries between various EEG bands are not set in stone and vary 

slightly amount depending on the research study. A fair amount of research indicates large 

interindividual differences in alpha peak frequency depending on biological trait and age 

(Niedermeyer & Lopes da Silva, 1999; Klimesch, 1999) and intraindividual differences 

depending on tasks (Klimesch, 1999; Mierau, Klimesch, & Lefebvre, 2017). Mierau et al. (2017) 

had suggested to use individual alpha peak (APF) frequency, i.e., the spectral component of 

alpha with the largest power estimate (between 6 and 13 Hz) to define an individual’s alpha 

frequency for different scalp locations rather than using fixed frequency bands for all study 

participants. This procedure would have prevented from participants’ being accidently uptrained 

on a low beta frequency if their APF was on the low end (around 8 Hz) in some of the older 

participants and the beta frequency starting lower than normal, for instance at around 11 Hz. 

Unfortunately, this adds a level of complexity to the study design that was beyond this 

dissertation. Every participant would have had to be reliably tested (more than once as APF is 

quite sensitive to change) for their APF at rest at Pz via EEG and complex FFT functions in 

Matlab or Neuroguide and an individualized NFT protocol for the specific APF would have had 

to be added.    

Furthermore, having a larger number of participants in the study would have been more 

sensitive to detect differences between EG and CG and thus could have potentially led to 
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significant results, especially in those analyses where trends toward significance had been 

observed, such as the self-reported, post-treatment anxiety being more reduced in the STAI-T in 

the EG and small tendency toward significance (p = .131) of the EG having a higher A+T 

relative power increase in the QEEG at the end of the NFT trial. As specified in chapter 3.1 a 

power analysis was performed to find out how many participants would be necessary to detect 

moderate effects between EG and CG. This study enlisted 14 participants for the EG and 13 

participants for the CG. A total of 27 participants had been determined by power analysis to be 

sufficient to detect moderate sized (f = .25) interaction effects and within-subject’s effects with 

adequate power (.80). Furthermore, the results of the power analysis were compared with the 

number of subjects of other clinical NFT trials in AD that found significant effects. Eleven out of 

the nineteen (58%) RCTs which reported an effect in any variable had considerable less 

participants (N=5-11) in the EG than the current RTC (Egner et al. 2002, Eismont et al., 2011; 

Faridnia et al., 2012; Gruzelier et al., 2014a and b; Lu et al., 2017; Plotkin & Rice, 1981; 

Raymond et al., 2005; Rice et al., 1993; Sittenfeld et al., 1976; and Vanathy et al., 1998). Five 

(26%) RCTs had 12-16 participants per EG, approximately the same number as the current study 

(n EG= 14); i.e., Agnihotri et al., 2007; Chisholm et al., 1977; Dadashi et al., 2015; and Gruzelier 

et al., 2013. Only four studies (21%) enlisted significantly more participants (Bhat et al., 2012 [n 

EG = 50]; Egner et al., 2003 [n EG = 18]; Sarkar et al., 1999 [n EG = 25]; and Garrett and Silver, 

1978 [n EG = 18). However, the probability that recruiting more than 14 participants in the EG 

(and 13 for the CG) for this study would have shown significant differences between the EG and 

CG regarding A+T upregulation and pre- and post-trial QEEG results is small. A power analysis 

of those NFT RCT with significant results showed that moderate sized interaction effects and 

within subject effects of adequate power could be detected with a total number of 27 subjects. 
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Moreover, while larger samples are more sensitive to show significant changes in statistical 

analyses they may also reduce the power of the results to the point where statistical changes are 

not clinically relevant (Mertler & Vannatta, 2013; Aron, Coups, & Aron, 2013). 

As Engelbregt and colleagues (2016) point out that the short-term versus long-term 

effects as well as the generalized versus specific effects of A/T NFT for AD need to be addressed 

better. Long-term effectiveness of treatments is not available for most studies which poses a 

serious limitation, especially for AD associated with the fear-circuit, where extinction responses 

can be reversed to excessive stress or traumatic events (see section 1.1.3). 

 Several limitations regarding the characteristics of study participants were observed. As it 

was very difficult to recruit a sufficient number of male participants this trial was conducted with 

women only and thus does not allow generalizations to be made to both biological sexes. 

However, no significant differences had been found between men and women in any of the 

reviewed RCT NFT studies for ADs (see chapter 1.2.5.1). Consequently, biological sex had not a 

significant factor in former studies regarding learning outcomes in NFT and was thus not a likely 

serious limitation of this study. Furthermore, the participant sample was very homogeneous 

regarding race/ethnicity and education level. Thus, generalizing results to ethnic minorities and 

less educated population is questionable. However, the majority of NFT studies to date suffer 

from these limitations. In many studies 18- to 25-year old (mostly Caucasian) undergraduate 

students served as participants (Kirschbaum & Gistl, 1973; Chisholm et al., 1977; Egner et al., 

2002; Gruzelier, Thompson, Redding, et al., 2013; Gruzelier et al, 2014) whereas this study’s age 

range was heterogeneous and normally distributed (range = 19 to 69 years). Furthermore, 

participants were included in this study who were taking various prescription medication and 

caffeine daily but participants were asked not to change their medication and caffeine during the 
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course of the trial so that difference scores remained same between pre- and post-tests remained 

the same. Ideally, only participants not taking any medication or caffeine that might change brain 

oscillations should have been recruited but this would have been an unrealistic aim because 

caffeine consumption and prescription drug taking is ubiquitous in the United States. According 

it a recent study by Mitchell et al. (2014) 85% of the U.S. population consume at least one 

caffeinated beverage per day and 65% of the population have taken at least one prescription drug 

within the the past 30 days (Kantor et al., 2015). 

The most important technical limitation of this study regarding the pre-and post-EEG 

recordings, though, was that the Brainmaster Atlantis I, 4×4 Module ® 3.0 amplifier which only 

allowed the recording of four EEG channels at a time, i.e., 5 x 4 channels had to be recorded 

which resulted in only 4 channels being time-locked. Consequently, coherence, phase differences 

between hemispheres and different cortical areas and comodulation of brain waves throughout 

the brain could not be assessed in the EEG. Furthermore, Neuroguide’s automatic algorithms for 

artifact removal for those artifacts that the Brainmaster system had not picked up, could not be 

used and artifact removal had to be manually obtained through visual inspection of each of the 

four time-locked EEG channels at a time and records with >95% split half reliability, >90% test-

retest reliability, and a total measurement of over 60 seconds were used for further statistical 

analyses. An additional technical limitation of this study was that no ocular and temporalis or 

frontalis EMG sensors to measure eye movement and blinking artifacts or jaw tensing were 

available. Goncharova et al. (2003) point out that the EMG of temporalis and frontalis muscles 

can mimic EEG alpha, mu, or beta rhythms over the entire scalp and contaminate the EEG but 

that contamination of the EEG by EMG is not very likely at the Pz location as the attachment 

sites of the temporalis and frontalis muscles, as well as the oculomotor sites are far away from Pz 
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and Oz. Furthermore, the Brainavatar software has built in algorithms to detect EMG artifacts, 

although no studies exist, to my knowledge, on how effective these algorithms are in detecting 

and removing artifacts.  

In addition, the 30-second baseline reading for the beginning segment of each NFT 

session was included within the first minute of NFT training recording, i.e., half of the first 

minute was baseline recording and thereafter the feedback began and thus could not be used for 

further analysis. While the missing baseline values were of concern to pre-post-difference 

measurements of alpha and theta analyzed by ANOVAs, it had negligible effect on the statistics 

as GCM is a continuous model of alpha and theta band changes within and across all sessions.  

  Procedural limitations of this study also need to be addressed. First, participants’ 

responses to NFT may be influenced by the expectation of treatment outcome and by their belief 

as to how much they can influence the outcomes of events in general.  This may be particularly 

true for treatments involving technology that is perceived as cutting edge. The Stanford Expect-

ations of Treatment Scale (Younger et al., 2012) was used to measure the general outcome 

expectancy in this trial and the Rotter (1966) Locus of Control scale was assessed to control for 

participants’ general internal or external locus of control beliefs. Both scales revealed no 

differences between CG and EG and showed no significant correlations to other measures. It 

would have been helpful to administer the LOC pre- and post-trial to investigate if the A/T NFT 

treatment caused any changes in participants’ belief as to how much they can influence outcomes 

of events. Second, hours and quality of sleep per night during the course of the NFT trial were not 

formally assessed, although it was noted on the NFT Session Checklist form for the respective 

session if a participant mentioned that she was excessively tired. Significant sleep reduction, sleep 

deprivation, and poor quality of sleep may lead to be irritability, tension, inattentiveness, and 
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reduced learning due to reduced memory consolidation of dendritic spine formations via LTP 

during sleep (Yang, Lai, Cichon, Ma, et al., 2014). The lack of so-called transfer trials may have 

made it difficult for study participants to generalize study gains to regular life circumstances. 

Such trials, while not used in NFT for AD in the past, have been used in NFT studies for children 

and adults with ADHD (e.g., Drechsler et al., 2007; Mayer et al., 2015; Strehl et al., 2006) and in 

these studies are correlated with a reduction in reduction in ADHD symptoms. 
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6. Future Directions 

In order to gain a clearer understanding if A/T NFT is an efficacious treatment changes in 

the operationalization of the research design and the NFT protocol need to be instituted. As 

mentioned before, few NFT researchers acknowledged that uptraining of certain beta bins may 

lead to increase in alpha bins (Ros et al., 2013; Jurewicz et al., 2018). Thus, the analysis of CG 

beta band data in relation to theta and alpha band data will be necessary to evaluate how 

successful participants were in the upregulation of beta bins and if this upregulation of beta bins 

is associated with the upregulation of certain alpha and / or theta bins. Similarly, it is important 

to find out how successful participants were in learning to downtrain beta bins and associated 

changes in other wave bands or if a slow rise of beta and alpha are observed in both beta up-and 

downtraining protocols which would indicate non-specific factors, as in Jurewicz et al. (2018) 

study, and learning did not take place. In future studies inhibits for alpha and theta should be 

built into the NFT protocols of a CG to prevent the simultaneous rise of alpha and or theta.  

Measuring each participant’s alpha peak frequency and using it for an individualized A/T 

NFT protocol instead of the standard fixed EEG frequency ranges used in this study because as 

Bazanova (2016) points “…low and upper frequency range alpha factors with identical peak 

frequencies, which relate to different neuronal functions” (p. 1).  

Furthermore, integration of a learner analysis using each EG participant’s increase (or 

decrease) in linear regression equation slope before the start of a study could be added. A cut-off 

value for the slope can be determined below which a study participant is considered a non-

learner regarding the study-specific EEG training parameter and would be excluded from the 

study – although this may have unintended emotional and ethical consequences for participants 

which needs to be discussed further.  
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Moreover, using a more homogenous group of study participants based on what type of 

AD they have may be beneficial. Williams (2016) provided a detailed taxonomy for AD and 

depression regarding neural circuit dysfunctions and relates them to associated brain networks. 

Thus, targeting networks associated with a specific AD with an A+T protocol protocols would be 

helpful. For instance, a future study may recruit only participants with SAD or phobias, two AD 

that have symptoms of anxious avoidance at their center. Anxious avoidance, according to 

Williams (2016) is associated primarily with circuit abnormalities of the salience network, 

specifically the hypoconnectivity between left and right anterior insula and the sublenticular 

extended amygdala, and the hyperactivation of the amPFC. NFT training electrodes could be 

placed over the areas of the anterior insulae at the FC5, FT7 and FC6, FT8 electrode locations 

and A+T could be uptrained in both right and left insula or the less activated insula could be 

uptrained alternatively. Associated with a more precise NFT electrode locations would be to 

record to have an electrode cap with 60 leads, including FC5, FT7 and FC6, FT8 available for 

the EEG. According to Lau, Gwin, and Ferris (2012) the analysis of 35 timelocked EEG 

channels for pre-and post EEGs for reliably recording EEGs should be sufficient. In addition, 

ocular and temporalis or frontalis EMG sensors to measure eye movement and blinking artifacts  

or jaw tensing to limit artifacts during the EEG recordings and during NFT sessions would be 

helpful. 

Another consideration is to change the location of the NFT electrode location from Pz-LE 

– the location used for EG and CG in this study – to another location. (The Pz-LE and Cz-LE 

locations had been the most commonly used electrode placement in A/T NFT for AD). Yet, as 

discussed before, Olejarczyk, Bogucki, and Sobieszek (2017) found that alpha rhythm 

generators, beside the occipital and frontal locations, were also found at Pz in some healthy 
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participants which may indicate independence of the NFT protocol, as long as the active 

electrode is placed at Pz enhanced alpha rhythm production is to be expected in cases of 

heightened attention. Thus, in future A/T NFT research it may be beneficial to consider different 

electrode locations, especially for the CG. 

Participants developed relationships with the experimenter and NFT technicians which 

most certainly influenced the individual’s general level of comfortability, trust, motivation, and 

level of focus on the NFT treatment. This may be especially relevant for research with 

individuals with GAD and SAD as they often are uncomfortable with social situations. 

Development of a standardized method of recording and description of subject interaction with 

NFT technicians of interactions would ensure the recording and better factoring out of the NFT 

trainer / participant interactions. The English translation of the Fragebogen zur Erfassung 

relevanter Therapiebedingungen (FERT), developed by Vollmann et al. (2009), administered 

after each NFT session may be helpful to assess this variable and factor out these influences via 

co-variate analysis. Secondly, standardized structured NFT strategies tools to assess mental 

strategies used by participants after each session may be helpful. 

Lastly, scheduling at least one or several follow-up appointments, for instance after 6 

months, 12 months and 24 months to re-assess QEEG and self-report anxiety scales and 

qualitative questions about changes in thinking, feeling and behavior will be beneficial to 

analyze if and what long-term changes resulted due to continued practice of A/T self-regulation 

in vivo after the NFT concludes.
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7. Summary and Conclusions 

The present study, to my knowledge, is the first single-blind trial to test the A/T NFT 

protocol for trait anxiety in a highly anxious adult female population with an active placebo NFT 

control group and was one of the first NFT studies to use GCM for statistical NFT data analysis. 

The primary objective of this study was the design and implementation of a rigorous, 

placebo-controlled clinical trial to investigate if A/T NFT is an efficacious treatment method for 

women with moderate to high trait anxiety. Twenty-seven women ranging in age from 19 

through 69 who had scored higher than the 66th percentile in the STAI trait anxiety sub-scale 

(75% of which had previously been diagnosed with an anxiety disorder) were randomly 

distributed to either a ten-session alpha/theta NFT EG (n = 14) in which alpha and theta 

amplitudes were uptrained at Pz. The rest of the participants (CG) were given a ten-session 

active placebo training (n = 13) at Pz during which they received successive NFT sessions of up- 

and downtraining beta and high beta.  

Growth curve modeling (and traditional 2x5 repeated measures ANOVA) were 

performed on the NFT sessions data to model individual and average group learning curves and 

to separate learners and non-learners. Cognitive variables, such as treatment outcome 

expectancy, personal attribution styles, use, types, and efficacy of cognitive strategies in NFT, 

and correlations between NFT learning performance, time of day the NFT sessions were held, 

and a participant’s best or worst time to learn, which are rarely assessed in NFT trials, were also 

investigated.  

The study’s primary hypothesis that A/T NFT is an efficacious treatment method for 

women with moderate to high trait anxiety could only be partially confirmed as for both, EG and 

CG a significant rise in A+T amplitudes and a reduction in self-perceived anxiety was observed. 
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An analysis of individual learning curves, GCM, and ANOVA all confirmed that the majority of 

women of the EG up-regulated absolute and relative A+T amplitudes within a NFT session, but 

so did the participants of the CG who had not received any A+T uptraining. Participants of the 

EG and CG felt significantly more deactivated at the end of a NFT session in comparison to the 

beginning; the AD-ACL sub-scales energy and tension decreased significantly while calmness 

and tiredness increased significantly but no significant gains in deactivation across NFT sessions 

were made. In both groups participants’ anxiety was significantly reduced on all anxiety 

measures. Although a trend could be observed that the EG reduced anxiety scores more than the 

CG these differences did not rise to statistical significance. Lastly, no significant changes in the 

pre-post trial QEEG were found pre-post, although a trend of higher combined relative A+T 

power at the end of the trial was observed in the EG.  

In the EG the use of mental strategies was associated with lower T/A ratio difference 

scores between the beginning and the end of the NFT trial. However, it was not correlated with 

the T+A parameter trained in the EG.  Belief in EG group membership, not surprisingly was 

highly correlated with reported changes in everyday thinking, feeling, and behavior at the end of 

the NFT trial. Time-of-day participants prefer for learn for learning activities in life and time-of-

day participants avoid for learning activities did not correlate significantly with alpha or theta 

NFT parameters, i.e., NFT sessions being held during sub-optimal times of day were not 

associated with poorer learning performance. 

The failure of the A/T protocol to lead to significantly better results than the active 

placebo group could be due to an elaborate placebo effect: sitting in front of a computer in a 

relaxed position in a quiet, dimly-lit room while attempting to not think of anything is a refuge 

from the stressful busy lives of participants. It is an unspecific effect that causes alpha waves and 
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even theta waves to increase. Regarding the anxiety AD-ACL scales, participants could also 

have both engaged in the largely unconscious process of reducing cognitive dissonance by 

enhancing the positive effects of the NFT trial — which constitutes a significant time 

investment— and downplayed negative parts of the trial. More well-designed RTCs are needed 

to conclude if A/T NFT is an efficacious treatment method for anxiety disorders or if the effects 

of this NFT method are largely due to non-specific effects, such as placebo effects, EEG 

frequency drifts, alpha’s idling mode and inhibitory role during task performance, functional 

coupling of certain EEG frequencies in general, or perhaps simply that some frequency bands 

(alpha) are more susceptible to change and easier to train.  Especially inhibiting flanking non-

trained bands in the NFT protocol, i.e., beta bands in A+T training upregulation and alpha and 

theta bands in beta upregulation, to prevent frequency drifts will be necessary along with larger 

sample sizes and detailed GCM modeling of all frequency bands, not just the frequency band/s 

trained via NFT protocol, and how they change over the time of the NFT will be necessary to 

find an answer to this question. 
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9.  Appendices 

Appendix A: IRB Approval Forms, NIH Protocol Publication, and Recruitment Materials 

A.1 Institutional Review Board Approval 
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A.2 NIH: ClinicalTrials.gov Study Protocol Registration 
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A.3 Recruitment Flyer 
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Appendix B: Screening and Trial Participation Consent Forms 

B.1 Screening Consent Form 
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B.2 Trial Participation Consent Form 
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Appendix C: Selected Questionnaires 

C.1 SETS Pre-trial Questionnaire Sample 
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C.2 SETS Post-Trial Questionnaire Sample 
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C.3 NFT strategies, change in thinking, feeling, behavior, and best & worst times of day for 

learning (sample answers) 
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Appendix D: Neurofeedback Session Checklist  

 



 210 

Appendix E: Additional Tables and Graphs 
E1: Randomization Procedure of Study 

Vector Integers within 

vector 

Participant numbers 001-028 (with assigned conditions: 0=control 

condition; 1=experimental group) 

Vector 1 [1010] 001 (1), 002 (0), 003 (1), 004 (0) 

Vector 2 [1100] 005*(1), 006 (1), 007 (0), 008 (0) 

Vector 3 [0011] 009 (0), 010 (0), 011 (1), 012 (1) 

Vector 4 [0110] 013 (0), 014 (1), 015 (1), 016 (0) 

Vector 5 [1010] 017 (1), 018 (0), 019 (1), 020 (0) 

Vector 6 [0110] 021 (0), 022 (1), 023 (1), 024 (0) 

Vector 7 [1100*] 025 (1), 026 (1), 027 (0), 028 (*1, replacing 005) 
 

control group participants 

(n = 13):  

002, 004, 007, 008, 009, 010, 013, 016, 018, 020, 021, 024, 027 

experimental group 

participants (n = 15):  

001, 003, 005*, 006, 011, 012, 014, 015, 017, 019, 022, 023, 025, 026, 028 

 (* participant 005 finished the treatment but had to be replaced with participant 028 because he was the only male participant in 

the study. To control the study for biological sex he had to be replaced by a female participant (028) in the treatment group). 

 

E2: Faulty QEEG recording by participants and channels. 
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E.3: Session Checklist Results 
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E.4: GCM: R-Script for GCM Example for Alpha Per Run and Trial Alpha amplitude per Run 

(within sessions) 
library(lme4) 

library(lmerTest) 

library(lattice) 

setwd("~/Desktop/FILENAME") 

read.csv("FILENAME.csv",h=T)->m.data 

 

xyplot(Alpha~RUN, data=m.data, groups=trial,type = "b",auto.key=T) 

m.data$RUN - 1 -> m.data$center_r 

 

lmer(Alpha~1 + (1|participant),data=m.data, REML=FALSE)->modelAr.a 

summary(modelAr.a) 

 

lmer(Alpha~1 + center_r + (1|participant),data=m.data, REML=FALSE)->modelAr.b 

summary(modelAr.b) 

anova(modelAr.a,modelAr.b) 

 

lmer(Alpha~1 + center_r + (center_r|participant),data=m.data, REML=FALSE)->modelAr.c 

summary(modelAr.c) 

anova(modelAr.b,modelAr.c) 

 

lmer(Alpha~1 + center_r + condition + (center_r|participant),data=m.data, REML=FALSE)->modelAr.d 

summary(modelAr.d) 

anova(modelAr.c,modelAr.d) 

 

lmer(Alpha~1 + center_r + center_r:condition + (center_r|participant),data=m.data, REML=FALSE)-

>modelAr.e 

summary(modelAr.e) 

anova(modelAr.d,modelAr.e) 

 

Alpha amplitude per Trial (between sessions) 
library(lme4) 

library(lmerTest) 

library(lattice) 

setwd("~/Desktop/FILENAME") 

read.csv("FILENAME.csv",h=T)->m.data 

 

xyplot(Alpha~trial, data=m.data, groups=trial,type = "b",auto.key=T) 

m.data$trial - 1 -> m.data$center_t 

 

lmer(Alpha~1 + (1|participant),data=m.data, REML=FALSE)->modelAt.a 

summary(modelAt.a) 

 

lmer(Alpha~1 + center_t + (1|participant),data=m.data, REML=FALSE)->modelAt.b 

summary(modelAt.b) 

anova(modelAt.a,modelAt.b) 

 

lmer(Alpha~1 + center_t + (center_t|participant),data=m.data, REML=FALSE)->modelAt.c 

summary(modelAt.c) 

anova(modelAt.b,modelAt.c) 
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lmer(Alpha~1 + center_t + condition + (center_t|participant),data=m.data, REML=FALSE)->modelAt.d 

summary(modelAt.d) 

anova(modelAt.c,modelAt.d) 

 

lmer(Alpha~1 + center_t + center_t:condition + (center_t|participant),data=m.data, REML=FALSE)-

>modelAt.e 

summary(modelAt.e) 

anova(modelAt.d,modelAt.e) 

 

 

E.5: GCM: EG Absolute A+T amplitude responders vs. all CG participants 

Predictor for ABSOLUTE alpha amplitude (in µV)  (SE) p 

MODEL C: TIME WITHIN SESSIONS 
(24 one-minute runs per NFT session) 

Intercept 

0.070 (0.847) 
 

             9.699 (0.847) 

< .0001 *** 
 

 < .0001 *** 

MODEL C: TIME ACROSS SESSIONS (ten NFT sessions) 

Intercept 
0.177 (0.050) 

            9.812 (0.847) 

  < .01** 
< .0001 *** 

MODEL D: GROUP: within session 0.536 (1.367) 0.699 

MODEL D: GROUP: group across sessions 0.312 (1.702) 0.856) 

MODEL E: TIME WITHIN SESSIONS x GROUP 0.017 (0.023) 0.460 

MODEL E: TIME ACROSS SESSIONS x GROUP 0.175 (0.085) 0.055 

Table 4.10 a: Results from GCM regression analyses predicting alpha amplitude from run, trial, and group. Note: Standard errors are given in 
parentheses. *p < .05, **p< .01, ***p< .001. Intercept information is only shown for significant models. Significant results are shown in bold 

red. 
 

 

Predictor for RELATIVE alpha amplitude (in %)  (SE) p 

MODEL C: TIME WITHIN SESSIONS 
(24 one-minute runs per NFT session) 

Intercept 

0.068 (0.011) 
 

           17.976 (0.651) 

< .0001 *** 
 

< .0001 *** 

MODEL C: TIME ACROSS SESSIONS (ten NFT sessions) 

Intercept 
0.188 (0.067) 

           18.043 (0.651) 

     < .01**  
      < .0001 *** 

MODEL D: GROUP: within session 0.880 (1.280) 0.499 

MODEL D: GROUP: group across sessions 1.189 (1.280) 0.366 

MODEL E: TIME WITHIN SESSIONS x GROUP 0.025 (0.023) 0.225 

MODEL E: TIME ACROSS SESSIONS x GROUP 0.057 (0.133) 0.673 

Table 4.10 b: Results from GCM regression analyses predicting relative alpha amplitude from run, trial, and group. Note: Standard errors are 
given in parentheses. *p < .05, **p< .01, ***p< .001. Intercept information is only shown for significant models. Significant results are shown 

in bold red. 
 

 

Predictor for ABSOLUTE A+T amplitude (in µV)  (SE)   p 

MODEL C: TIME WITHIN SESSIONS 
(24 one-minute runs per NFT session) 

Intercept 

0.100 (0.028) 
 

          18.560 (1.229) 

     < .01**  
 

< .0001 *** 

MODEL C: TIME ACROSS SESSIONS (ten NFT sessions) 

Intercept 
0.249 (0.086) 

          18.784 (1.324) 

     < .01**  
     < .0001 *** 

MODEL D: GROUP: within session 1.919 (2.253) .403 

MODEL D: GROUP: group across sessions 0.899 (2.664) .739 

MODEL E: TIME WITHIN SESSIONS x GROUP 0.003 (0.051) .960 

MODEL E: TIME ACROSS SESSIONS x GROUP 
Intercept 

0.347 (0.148) 
          18.802 (1.322) 

     < .05* 
< .0001 *** 

Table 4.10 c: Results from GCM regression analyses by successively adding predictors for T/A amplitude ratio from run, trial, and group. 

Note: Standard errors are given in parentheses. *p < .05, **p< .01, ***p< .001. Intercept information is only shown for significant models. 
Significant results are shown in bold red. 
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Predictor for RELATIVE A+T amplitude (in %)  (SE) p 

MODEL C: TIME WITHIN SESSIONS 
(24 one-minute runs per NFT session) 

Intercept 

0.081 (0.020) 
 

          34.736 (0.732) 

< .0001 *** 
 

< .0001 *** 

MODEL C: TIME ACROSS SESSIONS (ten NFT sessions) 

Intercept 
0.210 (0.072) 

         34.905 (0.771) 

    < .01 ** 
 < .0001 *** 

MODEL D: GROUP: within session 1.471 (1.364) 0.292 

MODEL D: GROUP: group across sessions 0.817 (1.545) 0.602 

MODEL E: TIME WITHIN SESSIONS x GROUP         -0.010 (0.037) 0.792 

MODEL E: TIME ACROSS SESSIONS x GROUP  0.085 (0.144) 0.536 

Table 4.10 d:  Results from GCM regression analyses predicting theta + relative alpha amplitude from run, trial, and group. Note: Standard 

errors are given in parentheses. *p < .05, **p< .01, ***p< .001. Intercept information is only shown for significant models. Significant results 

are shown in bold red. 
 

 

Predictor for ABSOLUTE theta amplitude (in µV)  (SE) p 

MODEL C: TIME WITHIN SESSIONS 
(24 one-minute runs per NFT session) 

Intercept 

0.031 (0.017) 
 

            8.864 (0.445) 

0.076 
 

< .0001 *** 

MODEL C: TIME ACROSS SESSIONS (ten NFT sessions) 0.074 (0.057) 0.200 

MODEL D: GROUP: within session 0.617 (0.898) 0.499 

MODEL D: GROUP: group across sessions 0.131 (0.986) 0.886 

MODEL E: TIME WITHIN SESSIONS x GROUP         -0.012 (0.033) 0.716 

MODEL E: TIME ACROSS SESSIONS x GROUP          0.135 (0.102) 0.201 

Table 4.10 e: Results from GCM regression analyses predicting theta amplitude from run, trial, and group. Note: Standard errors are given in 

parentheses. *p < .05, **p< .01, ***p< .001. Intercept information is only shown for significant models. Significant results are shown in bold 

red. 
 

 

Predictor for RELATIVE theta amplitude (in %)   (SE)    p 

MODEL C: TIME WITHIN SESSIONS 
(24 one-minute runs per NFT session) 

Intercept 

  0.0128 (0.016) 
 

       16.766 (0.375) 

0.438 
  

   < .0001 ***  

MODEL C: TIME ACROSS SESSIONS (ten NFT sessions)  0.022 (0.041) 0.594 

MODEL D: GROUP: within session  0.066 (0.757) 0.931 

MODEL D: GROUP: group across sessions -0.371 (0.815) 0.654 

MODEL E: TIME WITHIN SESSIONS x GROUP -0.027 (0.032) 0.411 

MODEL E: TIME ACROSS SESSIONS x GROUP  0.007 (0.081) 0.928 
Table 4.10 f: Results from GCM regression analyses by successively adding predictors for relative theta amplitude from run, trial, and group. 

Note: Standard errors are given in parentheses. *p < .05, **p< .01, ***p< .001. Intercept information is only shown for significant models. 
Significant results are shown in bold red. 

 
 

 

E.6: GCM: EG relative A+T amplitude responders vs. all CG participants: 

Predictor for ABSOLUTE amplitude (in µV)  (SE) p 

MODEL C: TIME WITHIN SESSIONS 
(24 one-minute runs per NFT session) 

Intercept 

0.061 (0.011) 
 

             9.013 (0.545) 

   < .0001 *** 
 

   < .0001 *** 

MODEL C: TIME ACROSS SESSIONS (ten NFT sessions) 

Intercept 
0.141 (0.547) 

            9.217 (0.547) 
   < .05 * 

   < .0001 *** 

MODEL D: GROUP: within session -0.082 (1.057) .939 

MODEL D: GROUP: group across sessions -0.268 (1.102) .810 

MODEL E: TIME WITHIN SESSIONS x GROUP  0.014 (0.021) .524 

MODEL E: TIME ACROSS SESSIONS x GROUP  0.071 (0.109) .522 

Table 4.11 a: Results from GCM regression analyses predicting alpha amplitude from run, trial, and group. Note: Standard errors are given in 

parentheses. *p < .05, **p< .01, ***p< .001. Intercept information is only shown for significant models. Significant results are shown in bold 

red. 
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Predictor for RELATIVE alpha amplitude (in %) 
 (SE) p 

MODEL C: TIME WITHIN SESSIONS 
(24 one-minute runs per NFT session) 

Intercept 

0.065 (0.010) 
 

17.546 (0.567) 

   < .0001 *** 
 

   < .0001 *** 

MODEL C: TIME ACROSS SESSIONS (ten NFT sessions) 

Intercept 
0.218 (0.062) 
17.458 (0.483) 

   < .01 ** 
   < .0001 *** 

MODEL D: GROUP: within session 0.282 (1.131) .805 

MODEL D: GROUP: group across sessions         -0.389 (0.931) .680 

MODEL E: TIME WITHIN SESSIONS x GROUP 0.024 (0.020) .231 

MODEL E: TIME ACROSS SESSIONS x GROUP 0.134 (0.115) .259 

Table 4.11 b: Results from GCM regression analyses predicting relative alpha amplitude from run, trial, and group. Note: Standard errors are 
given in parentheses. *p < .05, **p< .01, ***p< .001. Intercept information is only shown for significant models. Significant results are shown 

in bold red.  

 

 

Predictor for T/A RATIO  (SE)   p 

MODEL C: TIME WITHIN SESSIONS 
(24 one-minute runs per NFT session) 

Intercept 

-0.003 (0.001) 
 

0.991 (0.035) 

  < .01 ** 
 

   < .0001 *** 

MODEL C: TIME ACROSS SESSIONS (ten NFT sessions)  

Intercept 
-0.009 (0.003) 

0.997 (0.032) 
< .01 ** 

       < .0001 *** 

MODEL D: GROUP: within session -0.035 (0.067) .607 

MODEL D: GROUP: group across sessions -0.002 (0.063) .981 

MODEL E: TIME WITHIN SESSIONS x GROUP -0.002 (0.002) .187 

MODEL E: TIME ACROSS SESSIONS x GROUP -0.007 (0.006) .268 
Table 4.11 c. Results from GCM regression analyses by successively adding predictors for T/A amplitude ratio from run, trial, and group. 

Note: Standard errors are given in parentheses. *p < .05, **p< .01, ***p< .001. Intercept information is only shown for significant models. 

Significant results are shown in bold red. 
 
 

Predictor for RELATIVE A+T amplitude (in %)  (SE) p 

MODEL C: TIME WITHIN SESSIONS 
(24 one-minute runs per NFT session) 

Intercept 

0.093 (0.025) 
 

          17.532 (0.823) 

   < .01 ** 
 

   < .0001 *** 

MODEL C: TIME ACROSS SESSIONS (ten NFT sessions) 0.136 (0.090) .155 

MODEL D: GROUP: within session        -0.137 (1.576) .932 

MODEL D: GROUP: group across sessions        -0.430 (1.913) .825 

MODEL E: TIME WITHIN SESSIONS x GROUP          0.006 (0.049) .896 

MODEL E: TIME ACROSS SESSIONS x GROUP  0.025 (0.177) .888 

Table 4.11 d:  Results from GCM regression analyses predicting theta + relative alpha amplitude from run, trial, and group. Note: Standard 

errors are given in parentheses. *p < .05, **p< .01, ***p< .001. Intercept information is only shown for significant models.  Significant results 

are shown in bold red. 
 
 

Predictor for ABSOLUTE theta amplitude (in µV)  (SE) p 

MODEL C: TIME WITHIN SESSIONS 
(24 one-minute runs per NFT session) 

Intercept 

0.031 (0.016) 
 

             8.523 (0.337) 

        .094 
 

< .0001 *** 

MODEL C: TIME ACROSS SESSIONS (ten NFT sessions) -0.003 (0.051) .951 

MODEL D: GROUP: within session -0.157 (0.656) .813 

MODEL D: GROUP: group across sessions -0.454 (0.542) .593 

MODEL E: TIME WITHIN SESSIONS x GROUP -0.006 (0.031) .849 

MODEL E: TIME ACROSS SESSIONS x GROUP -0.049 (0.088) .584 

Table 4.11 e: Results from GCM regression analyses predicting theta amplitude from run, trial, and group. Note: Standard errors are given in 

parentheses. *p < .05, **p< .01, ***p< .001. Intercept information is only shown for significant models. Significant results are shown in bold 
red. 
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Predictor for RELATIVE theta amplitude (in %) 
           (SE)    p 

MODEL C: TIME WITHIN SESSIONS 
(24 one-minute runs per NFT session) 

Intercept 

0.014 (0.016) 
 

         16.743 (0.377) 

        .401 
 

< .0001 *** 

MODEL C: TIME ACROSS SESSIONS (ten NFT sessions) 0.014 (0.041) .742 

MODEL D: GROUP: within session 0.014 (0.761) .986 

MODEL D: GROUP: group across sessions        -0.346 (0.813) .674 

MODEL E: TIME WITHIN SESSIONS x GROUP        -0.025 (0.032) .447 

MODEL E: TIME ACROSS SESSIONS x GROUP        -0.012 (0.082) .884 

Table 4.11 f: Results from GCM regression analyses by successively adding predictors for relative theta amplitude from run, trial, and group 
Note: Standard errors are given in parentheses. *p < .05, **p< .01, ***p< .001. Intercept information is only shown for significant models. 

Significant results are shown in bold red. 

 

E.7: Mean anxiety test score differences for EG (Solid Line) and CG (Dotted Line) pre- and 

post-treatment 

     

     
Clockwise from upper right: STAI-T, STAI-S, GAD-7, and BAI. All anxiety test scores decreased significantly between 

beginning and end of the NFT trial but no significant differences in reduction could be observed between EG and CG. 
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E.8: Mean NFT measures for EG (Solid Line) and CG (Dotted Line) over the course of the NFT Trial 
averaging scores from sessions 1 & 2, 3 & 4, 5 & 6, 7 & 8, and 9 & 10 and corresponding mean NFT measures for EG (dark bold line) and CG (light thin line) over the 

course of ten sessions with 95% CI bars. By row from upper left:  alpha amplitude for combined sessions and 10 sessions; theta amplitude for combined sessions and 10 
sessions; T/A ratio for combined sessions and 10 sessions; relative theta amplitude for combined sessions and 10 sessions; relative alpha amplitude for combined sessions 

and 10 sessions; Relative T+A amplitude for combined sessions and 10 sessions. 
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E9: Mean AD-ACL test score differences for EG (dark, bold, purple line) and CG (light, thin, 

orange line) over the course of ten sessions 

 

  

 
Mean AD-ACL test score differences for EG (dark, bold, purple line) and CG (light,t hin, orange line) over the course of 

ten sessions with 95% confidence interval error bars. Clockwise from upper right:  Activation and deactivation scores, and sub 

scale scores:  tension, calmness, energy, and tiredness scores. 

 

 

 

E10: Mean AD-ACL test score differences for EG (solid line) and CG (dotted line). 
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Mean AD-ACL test score differences for EG (solid line) and CG (dotted line). Pre- and post-treatment for clockwise from 

upper right:  Activation, Deactivation, and for Sub-scales: Tension, Calmness, Tiredness, and Energy. Significant differences 

were observed for the activation and deactivation scales and for all four sub-scales. 
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E.11 For EG and CG: AD-ACL items pre-Post session Pearson Point-Biserial and Bivariate Correlations 

between Demographic, Qualitative, Psychometric and EEG-Based Post-Pre-Difference Scores.  
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E.12 For EG only: AD-ACL items pre-Post session Pearson Point-Biserial and Bivariate Correlations 

between Demographic, Qualitative, Psychometric and EEG-Based Post-Pre-Difference Scores.  
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