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Abstract 

 

Deformation of conglomerates has received a range of attention in structural geology. Of 

particular interest is the study of deformation processes, the rock rheology and the tectonic 

evolution. A range of studies based on field observations, analogue and rock experiments and 

on numerical modeling have revealed that a variety of parameters, such as the pebble shape, 

the material properties, the concentration and interaction of pebbles, can affect the 

deformation of the conglomerate. Despite these efforts it is not yet well understood how the 

concentration of pebbles and the interaction of neighbouring pebbles affect the deformation of 

conglomerates. Internal structures of pebbles in deformed conglomerates, such as folds, have 

been used to recognize the deformation process. Folds in pebbles can either originate in 

deformation processes of the source rock, prior to the formation of conglomerates, or during 

the deformation of the conglomerate. It is not clear how and when folds within pebbles 

develop during conglomerate deformation. Although mechanical anisotropy is a factor that 

can affect the development of structures, such as folds, only a few studies addressed its 

influence in numerical modelling. In this study we coupled the Viscoplastic Fast Fourier 

Transform Method (VPFFT) with the numerical platform ELLE and used it to simulate the 

deformation of conglomerates, and the development of folds and other structures in an 

anisotropic matrix.  

Our results suggest that pebbles in deformed conglomerates can behave as rigid, deformable 

and passive inclusions depending on both the viscosity ratio and their concentration. 

Changing the pebble concentration also changes the transition viscosity ratio between the 

deformation regimes. The effect of increasing pebble concentration is similar to a decrease of 

viscosity ratio between pebbles and matrix, and vice versa. Clusters of closely spaced pebbles 

can behave as single objects. A mean Rf- plot is suggested in order to gain an estimate of the 

pebble deformation behaviour and the amount of strain in case of permanently stretching 

pebbles. Deforming layered pebbles may develop internal folds. Internal folding is facilitated 

by a layering initially at a narrow range of steep angles relative to the shear plane, sufficiently 

thin internal layers to achieve fold wavelengths smaller than the diameter of the pebble, and a 

large area fraction of pebbles. It furthermore requires a narrow range of viscosity contrasts 

between pebble layers and matrix to allow enough strain to develop folds, but still keep the 



pebble recognisable as such. Using the mean Rf- plot, it is suggested that the deformed 

conglomerates of the Hutuo Group in the Wutai mountains, North China Craton had a 

viscosity ratio of 5 to 8 in case of a linear rheology (n=1) and of 2 to 5 in case of a power-law 

rheology (n=3) and underwent a simple shear strain of about six. The difficulty in achieving 

internal folds within pebbles may explain the scarcity of internally folded BIF-pebbles in 

deformed conglomerates at the base of the Hutuo Group. Few pebbles with folds do not 

necessarily indicate a previous deformation event, but may have been formed during 

deformation of the conglomerate itself. This may change the tectonic interpretation of the 

rock significantly, as it removes the need for a whole cycle of burial, metamorphism, 

deformation and exhumation preceding the deposition of the conglomerates. 

The results of our numerical simulations indicate that mechanical anisotropy can play a key 

role on the development of folds, mantled clasts and C' shear bands. Folding in an anisotropic 

matrix develops in similar-type folds or crenulations that do not decay away from the 

competent layer. Fold hinges align to form an axial-planar crenulation cleavage. In case of 

mantled clasts embedded in an anisotropic matrix, rotation of the clast is inhibited and thus a 

σ-clast forms. C' shear bands forms in all models of anisotropic composite material. 

Mechanical anisotropy leads to a distinct strain and strain-rate localisation in homogenous, 

anisotropic materials. The shear rate localizes in narrow shear bands, depending on the 

magnitude of anisotropy and the stress exponent. 

  



 

Zusammenfassung 

 

Die Untersuchung der Verformung von Konglomeraten erfährt von Seiten der 

Strukturgeologie große Aufmerksamkeit. Von Interesse sind die zugrunde liegenden 

Verformungsprozesse, die Rheologie und die tektonische Entwicklung. Anhand von 

Geländebeobachtungen, Experimenten an Gesteinen und Gesteinsanalogen sowie mittels 

numerischer Modellierungen konnten eine Reihe von Untersuchungen bereits zeigen, dass die 

Verformung von Konglomeraten von einer ganzen Reihe von Parametern kontrolliert wird, 

z.B. von der Konzentration, den Materialeigenschaften, der Form und der Interaktion der 

groben Komponenten (Kies). Trotz dieser Untersuchungen ist der Einfluss der Konzentration 

und der Interaktion benachbarter Grobkomponenten auf die Verformung des Konglomerats 

bislang noch kaum verstanden. Die Internstrukturen der Grobkomponenten in verformten 

Konglomeraten, z.B. Falten, wurden hier verwendet, um den Verformungsprozess zu 

rekonstruieren. Gefaltete Grobkomponenten können bereits vor der Ablagerung und Bildung 

des Konglomerats verformt worden sein oder während der Verformung des Konglomerates 

selbst. Es ist unklar, wie die interne Verfaltung der Kieskomponente mit der Verformung des 

Gesamtgesteins gekoppelt ist. Obwohl mechanische Anisotropie ein Parameter ist, der die 

Entwicklung von Internstrukturen beeinflussen kann, ist ihr Einfluss nur in wenigen Studien 

numerisch modelliert worden. Wir koppeln in dieser Studie die 'Viscoplastic Fast Fourier 

Transform Method' (VPFFT) mit der numerischen Plattform ELLE, um die Deformation von 

groben Konglomerat-Komponenten inklusive der Entwicklung von Falten und anderer 

Strukturen in einer anisotropen Matrix zu modellieren. 

Unsere In deformierten Konglomeraten können Kiese entweder als starre, als deformierbare 

oder als passive Inklusionen auftreten, entsprechend des Viskositätskontrastes und der 

Konzentration grober Komponenten. Mit der Konzentration der Kies-Komponente ändert sich 

auch der Viskositäts-Kontrast, der den Übergang zwischen den Verformungs-Regimen 

bestimmt. Eine höhere Konzentration von Kies-Komponenten hat die gleich Wirkung wie 

eine Abnahme des Viskositäts-Kontrastes zwischen Grobklasten und Matrix, und umgekehrt. 

Gruppen eng benachbarter grober Komponenten können das gleiche Verhalten aufweisen wie 

einzelne Objekte. Rf- Plots haben sich als nützlich erwiesen, um das Deformations-Verhalten 



und den Betrag der Verformung im Fall grober Konglomerat-Komponenten unter permanenter 

Dehnung abzuschätzen. Deformierte geschichtete Grobkomponenten können intern verfaltet 

werden. Diese interne Verfaltung wird begünstigt wenn (1) Schichtung und Scherfläche 

innerhalb eines kleinen Bereichs großer Winkel zueinander orientiert sind, (2) die interne 

Schichtung fein genug ist um Falten-Wellenlängen zu erzielen die kleiner sind als der Klast 

selbst, und (3) eine hoher Anteil der Kies-Komponente. Darüber hinaus muss sich der 

Viskositätskontrast zwischen Matrix und Lagen grober Klasten innerhalb einer engen 

Bandbreite bewegen, um einerseits genügend Verformung zuzulassen um Falten zu 

entwickeln, aber zugleich auch einzelne Klasten als solche erkennbar zu lassen. Der mittlere 

Rf- Plot deformierter Konglomerate der Hutuo Gruppe in den Wutai Bergen (Nord-China 

Kraton) legt für eine lineare Rheologie (n=1) einen Viskositätskontrast von 5-8 nahe, und 

einen Viskositätskontrast von 2-5 für eine nicht-lineare Rheologie (n=3). Die 

Scherverformung beträgt etwa 6. Die große Zahl an Vorbedingungen, die für die interne 

Verfaltung der Grobklasten notwendig sind, erklärt die Seltenheit intern verfalteter BIF-Kiese 

in verformten Konglomeraten an der Basis der Hutuo Gruppe. Einige wenige gefaltete Kiese 

müssen nicht notwendig auf ein vorhergehendes Deformationsereignis hinweisen, sondern 

können während der Deformation des Konglomerates selbst entstanden sein.  

Unsere numerischen Modellierungen zeigen, dass das Vorhandensein einer mechanischen 

Anisotropie eine Schlüsselrolle in der Entwicklung von Falten, ummantelten Porphyoklasten 

und C' Scherbändern spielen kann. Faltung in einer anisotropen Matrix resultiert in ähnlichen 

Falten oder Krenulation, die mit zunehmender Distanz von der kompetenten Lage nicht 

abnehmen. Faltenscharniere richten sich so aus, das sie ein Achsparalles Krenulationsgefüge 

bilden. Im Falle eines ummantelten Klasten in einer anisotropen Matrix wird die Rotation des 

Klasten nun verhindert, so dass sich ein σ-Klast formt. C'-Bänder bilden sich in allen 

Modellen, die auf anisotropen, Kompositmaterialien basieren. Mechanische Anisotropie führt 

zu deutlicher Lokalisierung der Verformung und der Verformungsrate in homogenen, 

anisotropen Materialien. Lokalisierung der Scherverformungsrate in dünnen Scherbändern 

tritt auf, abhängig von der Stärke der Anisotropie und dem Spannungs-Exponenten (n). 
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Chapter 1 

 

Introduction 

1. Introduction 

Structural geology is the subject of geology that mainly focuses on the deformation of rocks 

in the lithosphere of the Earth or other planets (e.g., Moon and Mars). Understanding rock 

deformation is one of the keys to gain knowledge of processes of the Earth (from the surface 

to great depth), such as mountain formation and uplift, plate movements and earthquakes 

(Ramsay and Huber, 1983; Twiss and Moores, 1992; Davis et al., 2011; Fossen, 2016). It is 

well known that there are two end-member types of rock-deformation: elastic-brittle and 

viscoplastic or ductile deformation, but with transitions between them in nature (Ramsay and 

Huber, 1983; Twiss and Moores, 1992; Passchier and Trouw, 2005; Fossen, 2016). 

Elastic-brittle deformation occurs at a shallow level of earth‘s crust where the temperature and 

pressure are relative low. It leads to the formation of fractures in rocks with minor distortion 

in between (Ramsay and Huber, 1987; Twiss and Moores, 1992; Fossen, 2016). Ductile 

deformation occurs commonly at a moderate to deep levels with high temperature and 

pressure. With ductile deformation or viscous flow strain rate depends on stress. Most rocks 

exhibit a linear (Newtonian) or power-law relationship (with the stress exponent >1) between 

strain rate and stress (Carter and Tsenn, 1987; Kirby and Kronenberg, 1987). Such ductile 

deformation is modelled in this thesis. A large range of structures under viscous deformation 

are currently preserved in the outcrops, such as folds, porphyroclasts/porphyroblasts and shear 

zones.  

Structural geologists aim to identify the material properties, boundary conditions, deformation 

processes and tectonic evolution of geological bodies through the studies of ductile 
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deformation structures at different scales, from the crystal lattice of individual grains to whole 

continents. Deformed objects such as layers and inclusions, together with their matrix, are 

widely used to gain insight into deformation processes and rheology. Folds formed by 

deformed layered structures have been addressed by a range of studies including field 

observations, rock and analogue deformation experiments, analytical models, as well as 

numerical simulations (e.g., Biot, 1961; and review of Hudleston and Treagus, 2010). 

Through these studies we have gained knowledge of deformation histories, such as finite 

strain, and lithological properties, such as competence contrasts and rheological behaviour 

(linear or power-law rheology). Deformed inclusions are another important structure in 

structural geology, such as porphyroclasts/porphyroblasts in deformed metamorphic rocks and 

pebbles in deformed conglomerates (e.g., Ramsay and Huber, 1987; Passchier and Trouw, 

2005). They are usually simplified as a system of inclusion(s) embedded in a matrix. A range 

of studies have dealt with the rotation and distortion of inclusion(s), the flow pattern of the 

matrix and effects of rheology (e.g., Flinn, 1956; Eshelby, 1957; Ramsay, 1967; Dunnet, 1969; 

Bilby et al., 1975; Fry, 1979; Lisle et al., 1983; Treagus and Treagus, 2002; Passchier and 

Trouw, 2005; Jiang, 2007a,b; and reviews of Marques et al., 2014). Mantled porphyroclasts, 

including - and -clasts, form a special, more complex group of inclusions. There is an 

ongoing debate how - and -clasts develop (e.g., Bell et al., 1992; Passchier et al., 1992; ten 

Brink and Passchier, 1995; Bons et al., 1997; Griera et al., 2011; 2013; Ran et al., 2018b, 

Chapter 4). Of the many ductile deformation structures, this study focuses on the deformation 

of conglomerates. 

2. Deformed Conglomerates 

Deformed conglomerates have received particular attention in structural geology for studies 

on strain analysis, deformation process, rheology and tectonic evolution (e.g., Flinn, 1956; 

Ramsay, 1967; Dunnet, 1969; Fry, 1979; Lisle et al., 1983; Treagus and Treagus, 2002; 

Passchier and Trouw, 2005). Deformed conglomerates are classical indicators of finite strain, 

stress orientation, vorticity, and viscosity contrast between pebbles and their matrix (e.g., 
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Ramsay, 1967; Lisle et al., 1985; Freeman and Lisle, 1987; Czeck and Hudleston, 2003).  

2.1. Finite strain 

One of the most widely used methods is the Rf- method that makes use of aspect ratios (Rf) 

and long axis orientations () of pebbles for the estimation of strain (Ramsay, 1967; Dunnet, 

1969; Lisle, 1985). The very basic assumption of this method is passive deformation of 

pebbles. The assumption is that initially elliptical pebbles with random distribution of their 

long-axis orientations deform passively, embedded in a matrix with an identical viscosity. It 

provides a very simple method, only using the measurements of aspect ratios and orientations 

of pebbles, to determine the bulk strain in planer sections of natural deformed conglomerates. 

Various ways to determine the value of the ellipticity of the finite strain ellipse (length of long 

axis divided by that of short axis, Rs) from the Rf- plot have been proposed, including the 

calculation of the geometric mean of the minimum and maximum values of Rf. Lisle (1977) 

systemically compared the arithmetic, geometric and harmonic means of Rf with Rs and 

showed how they differ from the Rs. He proposed that the harmonic mean of Rf is closest to Rs. 

However, the estimation based on the Rf- method ignores the viscosity contrast between 

pebble and matrix which occurs very commonly in natural conglomerates. The Rf- method is 

ideally applied to matrix-supported conglomerates where pebbles do not interact with their 

neighbours. It is obviously that the bulk strain is usually underestimated as pebbles are more 

competent than the matrix in most natural cases (Treagus and Treagus, 2002). However, the 

Rf- method can provide a good estimation of pebble strain, especially if all pebbles are of the 

same rock type, rather than the bulk strain (Treagus and Treagus, 2002).  

Another well-accepted method for strain estimation is the Fry method (or its modifications) 

that is widely used to evaluate the bulk finite strain (Fry, 1979; Erslev and Ge, 1990; 

McNaught, 2002; Treagus and Treagus, 2002; and reviews of Kumar et al., 2014). The strain 

ellipse is displayed by the central void in scatter plots of center-to-center distances in a 

two-dimensional section. The Fry method can ideally provide a good strain ellipse when 
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pebbles have similar sizes and the deformation is homogeneous. Otherwise, the central void is 

diffuse and thus leads to an uncertain strain ellipse. Some studies have pointed out that the 

bulk strain evaluated by Fry method (or its modifications) is not completely reliable 

considering the interactions between pebbles and the effect of brittle-ductile deformation 

(Czeck et al., 2009), but it is one of the most widely used methods to estimate the bulk strain 

in natural conglomerates (Treagus and Treagus, 2002; Czeck et al., 2009).  

2.2. Rheology—viscosity contrast 

Deformed conglomerates can provide a range of rheological information, especially on 

viscosity contrast. Viscosity contrast is quantified as the ratio of inclusion (pebble) and matrix 

viscosity. In linear (Newtonian) rheology, the viscosity ratio is a constant. However, it is not a 

constant and depends on strain rate in power-law rheology. An effective viscosity ratio is 

therefore sometimes used (e.g., Treagus, 1999). It is commonly used for the viscosity contrast 

between pebble and matrix in deformed natural conglomerates (e.g., Treagus, 1999; Treagus 

and Treagus, 2002; Czeck et al., 2009). In fact it is more accepted to use the viscosity ratio of 

pebble to whole rock instead of to matrix in natural conglomerates since it is easier to 

estimate the bulk finite strain rather than the matrix strain.  

Eshelby (1957; 1959) propose a theory for the motion of deformable ellipsoidal inclusions 

embedded in an infinite elastic matrix, which assumes that both inclusions and matrix are 

isotropic but may have different elastic contrasts. It is also pointed out that the general theory 

can be applied to the viscous deformation of inclusion embedded in the matrix with a different 

viscosity (Eshelby, 1957; 1959).  

Gay (1968) analyses the deformation of circularly or elliptically viscous inclusions embedded 

in a Newtonian fluid (linear viscous) matrix under pure and simple shear, considering the 

viscosity ratio between inclusions and matrix. He points out that the viscosity ratio is an 

important factor that affects the inclusion deformation. The relationship between single 

inclusion deformation and viscosity ratio under pure shear given by Gay (1968) is:  
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ln 𝑅𝑓 = ln 𝑅𝑖 +
5 ln 𝑅𝑠

2𝑅𝜂+3
, (1) 

where 𝑅𝑓, 𝑅𝑖 and 𝑅𝑠 is the aspect ratio of deformed inclusion, initially elliptical inclusion 

and strain ellipse, respectively. The equation can be applied to simple-shear deformation, 

which is considered as a pure shear combined with a rotation. He also considers that the 

inclusion concentration can affect the bulk rheology of inclusion-matrix system, and thus 

affect the individual inclusion deformation. Another equation considering the influence of 

inclusion concentration by Gay (1968) is  

𝑅𝜂𝑏𝑢𝑙𝑘 = 𝑅𝜂 *1 +
5𝐴𝐶(𝑅𝜂−1)

2𝑅𝜂+3
+⁄ , (2) 

where 𝑅𝜂𝑏𝑢𝑙𝑘 is the viscosity ratio between inclusions and bulk system. A is a factor related 

to the interaction between inclusions. The values of A at different pebble concentrations 

(C=volume(pebbles)/total volume) are used from Happel (1957). It should be noted that Gay‘s 

(1968) equation is based on Lamb‘s formulation for spherical surfaces. However, the equation 

mixes spherical and elliptical coordinates to obtain a solution. It is not considered strictly 

correct, but obtains a good first approximation of the viscous deformation of an 

inclusion-matrix system with viscosity contrasts (Bilby et al., 1975; Bilby and Kolbuszewski, 

1977; Treagus and Treagus, 2001; 2002; Mulchrone and Walsh, 2006). 

Bilby et al. (1975) and Bilby and Kolbuszewski (1977) extend Eshelby‘s (1957) theory and 

derive a non-linear expression for the viscous deformation of inclusion-matrix system with 

viscosity contrast. It is assumed that an initial circular inclusion deforms in an infinite matrix, 

in the linear viscous rheology under pure shear. There is no slip at the interface between 

inclusion and matrix. The equation of Bilby et al. (1975) and Bilby and Kolbuszewski (1977) 

is 

ln 𝑅𝑠 = ln 𝑅𝑓 +
( 𝑅𝜂−1)(𝑅𝑓−1)

𝑅𝑓+1
. (3) 
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Both of the equations (Eqs. (1) and (3)) for the deformation of single inclusion discussed 

above can provide a good prediction for the relation between the bulk finite strain and 

inclusion strain at different viscosity contrast. It is noted that they have similar solutions for 

the deformation of competent inclusions (i.e., 𝑅𝜂＞1) (Gay, 1976; Treagus and Treagus, 2002; 

Fig. 1). It is common that pebbles are more competent than the matrix in natural 

conglomerates. Both equations give comparable predictions of the bulk strain for a given 

viscosity ratio. Alternatively, they can be used to estimate the relative viscosity ratio between 

inclusion and matrix when we know the bulk strain and inclusion strain. For an 

inclusion-matrix system with an initially circular inclusion, we can rewrite the Eqs. (1) and (3) 

respectively, in terms of viscosity ratio, 

𝑅𝜂 =
5 ln 𝑅𝑠−3 ln 𝑅𝑓

2 ln 𝑅𝑓
, (4a) 

and 𝑅𝜂 =
(ln 𝑅𝑠−ln 𝑅𝑓)(𝑅𝑓+1)

𝑅𝑓−1
+ 1. (4b) 

 

 

Fig. 1. Comparison between Gay‘s (1968) equation (solid lines) and Bilby et al. (1975) equation 

(dashed lines) at viscosity ratios of 2, 5, 10, 20 and 50.They shows similar predicted relationships 

between Rf and Rs. 

A range of studies have dealt with the estimation of viscosity ratio between pebble and matrix 

in natural deformed conglomerates using either Gay‘s (1968) or Bilby et al.‘s (1975) equation 

(e.g., Treagus and Treagus, 2002; Vitale and Mazzoli, 2005; Czeck et al., 2009). The Rf- 
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method is used to evaluate the finite strain of a particular lithology (i.e., same rock-type 

pebbles), and the Fry method or the weighted mean of finite strains of different rock types is 

used to evaluate the matrix (whole rock) finite strain. The viscosity ratio between pebbles and 

matrix is calculated by pebble strain and matrix or bulk strain, using either Gay‘s (1968) or 

Bilby et al.‘s (1975) equation. The calculated viscosity ratios among different rock types are 

found to have a limited range (mostly less than 12; e.g., Lisle et al., 1983; Treagus and 

Treagus, 2002; Czeck et al., 2009 and references therein). Although minerals are usually 

assumed to deform with a power-law rheology (by dislocation creep; Carter and Tsenn, 1987; 

Kirby and Kronenberg, 1987; Hirth and Tullis, 1992), the behaviour of common rock types in 

natural conglomerates has been approximated with a linear viscous rheology at the outcrop 

scale (Treagus, 1999; Treagus and Treagus, 2002; Czeck et al., 2009). It has been noted that 

an increase in pebble concentration can decrease the calculated viscosity ratio in natural 

conglomerates (Vitale and Mazzoli, 2005), in line with the theoretical analysis of Gay (1968).  

2.3. Numerical modelling studies 

Numerical modelling provides a good method to investigate and understand the deformation 

mechanism and rheology of conglomerates in linear and power-law rheology. In numerical 

models, conglomerates are idealised as polyphase systems formed by inclusion(s) embedded 

in a (weaker) matrix. A range of numerical modelling studies reveal that there are several key 

factors that control the deformation (See Ran et al., 2018a, Chapter 2):  

(1) Initial shape of the inclusion(s) (e.g., Treagus and Lan, 2000; 2004; Treagus, 2002). The 

distortion of an elliptical or square inclusion is more than that of an initially circular one 

at a given viscosity contrast to matrix.  

(2) Material properties, in particular the viscosity contrast between inclusion and matrix 

(Treagus and Treagus, 2001; Mandal et al., 2003; Takeda and Griera, 2006; Griera et al., 

2013), the matrix anisotropy (Treagus, 2003; Fletcher, 2004; Griera et al., 2011; 2013; Qu 

et al., 2016) and the linear or power-law rheology (Mancktelow, 2002; 2011; Jiang, 2013; 
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Qu et al., 2016). An increase in viscosity contrast of inclusion to matrix reduces the 

distortion of inclusion, but enhances its rotation. The influence of power-law rheology is 

similar to an increase of linear viscosity contrast. Mechanical anisotropy in matrix slows 

down the inclusion rotation.  

(3) Behaviour of the interface between inclusion and matrix (e.g., Johnson et al., 2009; and 

reviews of Marques et al., 2014). The slipping on the interface between inclusion and 

matrix reduces inclusion rotation, and even make it rotate backwards. 

(4) Distribution of inclusions (Treagus, 2002; Takeda and Griera, 2006) and the interaction 

between them (Ildefonse et al., 1992a,b; Tikoff and Teyssier, 1994; Marques and Bose, 

2004; Mandal et al., 2005; Jessell et al., 2009; Mancktelow, 2011). An increase in 

inclusion concentration and interactions between them is similar to a decrease of viscosity 

contrast in case of an isolated inclusion. The interactions reduce and can even stop 

inclusion rotation. Clusters can form by several inclusions and behave as a single object 

with the interactions (Blumenfeld and Bouchez, 1988; Tikoff and Teyssier, 1994; Jessell 

et al., 2009).  

However, most of the studies discussed above deal with the deformation of isolated inclusions 

and thus ignore the influence of inclusion distribution and interactions between neighbouring 

inclusions. Natural conglomerates are composed of multiple pebbles, usually resulting in 

interactions between neighbouring ones, especially in clast-supported conglomerates. A few 

studies have recognised that the deformation behaviour of inclusions and the bulk viscosity of 

the system are significantly affected by the concentration inclusions and their interaction (Gay, 

1968; Bons and Cox, 1994; Mandal et al., 2003; 2005; Vitale and Mazzoli, 2005; Jessell et al., 

2009; Mancktelow, 2011; Dabrowski et al., 2012; Marques et al., 2014).  

3. Mechanical anisotropy 

Structure geologist have recognized the significant influence of anisotropy on the 
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development of structures and rheology (e.g., Etchecopar, 1977; Lister et al., 1978; Treagus, 

2003; Fletcher, 2004; 2009; Mandal et al., 2005; Griera et al., 2011; 2013; Bons et al., 2016; 

Ran et al., 2018b, Chapter 4). In nature, anisotropy can be "intrinsic" and caused by aligned 

minerals or lattice preferred orientations (LPO) or "composite" when formed by alignment of 

different layered rock types, typically bedding. Anisotropy leads to a range of structures at 

multiple scales, from crystallographic lattice preferred orientations (LPO), folds and boudins, 

to continental structures (e.g., Etchecopar, 1977; Lister et al., 1978; Bercovici 2014).  

A number of studies have been dealt with the influence of anisotropy on folding and clast 

rotation (e.g., Treagus et al., 2003; Fletcher et al., 2004; 2009; Kocher et al., 2006; Griera et 

al., 2011; 2013; Ran et al., 2018b, Chapter 4). Anisotropy has a first-order effect on growth 

rate and wavelength (Kocher et al., 2006). Similar-type folds or crenulation cleavages can 

form in anisotropic matrix while the single competent layer is folded (Kocher et al., 2006; 

Ran et al., 2018b, Chapter 4). The rotation of rigid inclusion is related to the degree of matrix 

anisotropy. An increase in matrix anisotropy reduces the inclusion rotation rate (e.g., Fletcher 

et al., 2004; 2009; Griera et al., 2011; 2013). It allows us to consider the potential influence of 

anisotropy on the development of -/-clast. Although it is already suggested that anisotropy 

of the matrix would inhibit rotation, leading to the formation of σ-clasts (Bons et al., 1997), 

this effect has not been investigated in detail yet (Fig. 2; see Ran et al., 2018b, Chapter 4).  

 

https://www.sciencedirect.com/science/article/pii/S0191814118300087#bib24
https://www.sciencedirect.com/science/article/pii/S0191814118300087#bib60
https://www.sciencedirect.com/science/article/pii/S0191814118300087#bib24
https://www.sciencedirect.com/science/article/pii/S0191814118300087#bib60
https://www.sciencedirect.com/science/article/pii/S0191814118300087#bib7
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Fig. 2. Mantled clasts embedded in isotropic (a-c) and anisotropic (d-f) matrix in simple-shear 

(top-to-right) strain of two (a,d), five (b,e) and ten (c,f). An anisotropic matrix results in strain 

localisation, leading to the development of -clast, instead of -clasts that develop in the isotropic 

matrix. Same initial structure (inset in a) is used in both simulations. More details see Ran et al. 

(2018b), Chapter 4. 

Anisotropy that leads to strain softening is one of mechanisms of shear localisation. A 

lattice-preferred orientation (LPO) or shape-preferred orientation (SPO) as a result of 

anisotropy can soften the rocks, furthermore leading to shear localisation (see reviews in de 

Riese et al. (submmited, Chapter 5). It is also confirmed by the observation of numerical 

models of Griera et al. (2011) and Ran et al. (2018b, Chapter 4). However, few numerical 

studies on shear localisation included the effect of anisotropy, especially that of intrinsic 

anisotropy.  

There are two commonly used ways to simulate the deformation with anisotropy: (1) 

two-phase composites (e.g., layered structures) with alternating viscosity (Fig. 3a; e.g., 

Treagus, 2003; Fletcher, 2004; 2009; Dabrowski and Schmid, 2011; Griera et al., 2013) and (2) 

intrinsic anisotropy defined by orientation-dependent mechanical properties, e.g. related to 

slip systems (Fig. 3b; e.g., Griera et al., 2011; 2013; Bons et al., 2016; Ran et al., 2018b, 

Chapter 4; de Riese et al., submitted, Chapter 5). However, the anisotropy modelled by 

composites is limited by the scale, since the scale of layering or other structures is required to 

be small relative to the scale of deformation. Alternatively, intrinsic anisotropy is developed at 

all scales, and thus it can, at least theoretically, be applied to simulate the deformation at all 

scales. Deformation structures, such as folds, modelled by the two descriptions of anisotropy 

may appear similar (Fig. 3 c,d), but the distributions of strain rate and stress are quite different 

in two models (Fig. 3e-h).  
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Fig. 3. Two ways to simulate anisotropy in numerical models: (a) two-phase layered composite with 

alternating viscosity and (b) intrinsic anisotropy defined by different activities on slip systems. The 

patterns of folds are similar in composite (c) and intrinsic (d) anisotropy models, under 50% vertical 

shortening. Their normalized strain rate and stress, however, show different patterns in composite (e,g) 

and intrinsic (f,h) anisotropy models. Intrinsic anisotropy model is unpublished work from de Riese.  
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4. Motivations of the thesis 

This thesis is motivated by ongoing work on deformed conglomerates of the Hutuo Group in 

the Wutai Mountains, China. The deformed conglomerates at the base of the Hutuo Group 

provide key information to explain the deformation history and indicate the tectonic evolution 

of the North China Craton. The North China Craton consists of two continental blocks, named 

the Eastern and Western Blocks (Fig. 4a). The two blocks collided in the Paleo-proterozoic 

and formed a large orogenic belt between them: the Trans-North China Orogen (TNCO) (see 

reviews of Zhao and Zhai, 2013). However, there are ongoing debates of the timing and 

tectonic processes involved in the amalgamation of the two blocks (e.g., Zhao et al., 2001; Li 

and Kusky, 2007). The Hutuo Group located in the TNCO is divided into three subgroups: the 

Doucun, Dongye and Guojiazhai subgroups from base to top and consists of 

subgreenschist-facies to greenschist-facies sedimentary rocks and minor volcanic rocks (e.g., 

Bai, 1986). The Hutuo Group overlies the Wutai Group, which consists of metamagmatites 

and metasedimentary rocks from subgreenschist-facies to amphibolite-facies, intercalated 

with banded-iron formation (BIF) units. The age of the Wutai Group is estimated at ~2.5 Ga 

(see reviews of Zhao and Zhai, 2013), but the age of the Hutuo Group remains uncertain 

(~2.5-2.2 Ga or ~2.1-1.8 Ga) (Kusky and Li, 2003; Wilde et al., 2004; Li and Kusky, 2007; 

Liu et al., 2011). Pebbles in the Hutuo Group conglomerates consist mostly of Wutai Group 

lithologies (BIF pebbles dominating in the Yangjiaogou area) (Fig. 4b,d-g). This indicates that 

erosion of the Wutai Group during deposition of the Hutuo Group and an unconformity 

between the two groups. Both groups experienced at least one distinct deformation phase (D1 

of Zhang et al., 2012), resulting in a strong foliation in the conglomerate matrix that wraps 

around stretched and rotated pebbles (Fig. 4c-e). 

Deformation (Kusky and Li, 2003; Trap et al., 2012; Zhang et al., 2012) and sedimentary 

setting (foreland basin or intracontinental basin) (Kusky and Li, 2003; Wilde et al., 2004; Liu 

et al., 2011; Zhang et al., 2012) of the Hutuo Group are, however, still not understood well. 

Most pebbles with internal layering show no folding of that layering, even though the 



  Chapter 1 

13 
 

conglomerate is deformed. However, some BIF-pebbles show folding of the internal layering, 

especially in the Yangjiaogou area (Fig. 4b,f-g). Although the deformed conglomerates have 

been interpreted as basal conglomerates, which unconformably overlay the lower Wutai 

Group and Neoarchean granitoids, it is not clear whether the deformation structures of 

pebbles formed before or after the deposition of the Hutuo Group (Fig. 5a; e.g., Bai, 1986; 

Zhang et al., 2012; Du et al., 2012). If the pebbles were deformed before deposition, there was 

a major tectonic event between formation of the Wutai and Hutuo groups (Fig. 5b). 

Alternatively, if the pebbles were deformed after their deposition, the Hutuo Group may be 

older and the underlying Wutai Group would not have undergone a full cycle of burial, 

deformation and erosion (Fig. 5c). It leads to us consider the basic questions of the 

conglomerate deformation: (1) How do pebbles deform in conglomerates with multiple 

pebbles? (2) Can deformed conglomerates with a viscosity contrast between pebbles and 

matrix be used to quantitatively estimate the finite strain and understand the rheology? And (3) 

When and how can folding within pebbles develop and can folding be used to infer the 

tectonic evolution. Questions (1) and (2) lead to the studies of Chapter 2, and question (3) 

leads to the studies of Chapter 3. 

Furthermore, apart from the deformation of conglomerates, folding within pebbles also leads 

us to consider another question: the mechanism of folding. As mentioned above, a number of 

studies deal with this issue (e.g., Biot, 1961; and reviews of Hudleston and Treagus, 2010). 

However, to my knowledge, few studies address the effects of mechanical anisotropy in a 

matrix. Considering the significant influence of mechanical anisotropy on the development of 

structures, it is necessary to simulate folding, as well as the development of other structures, 

in mechanical anisotropic materials. This leads to the studies of Chapter 4 and Chapter 5. 
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Fig. 4. Deformed conglomerates in the Wutai Mountains, North China Craton. (a) Tectonic subdivision 

of the North China Craton (modified after Zhao et al., 2005). TNCO-Trans-North China Orogen. (b) 

Simplified geological map of the Yangjiaogou area and location of the outcrop with deformed 

conglomerates. (c) Elongated clasts and stretched pebbles in deformed conglomerates of the Hutuo 

Group (from Zhang et al., 2012). (d-g) Deformed conglomerates with BIFs pebbles in the Yangjiaogou 

area. Folding within BIFs pebbles can identified in (f) and (g). The diameter of the 1 dollar-cent coin is 

19mm. 
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Fig. 5. Two alternative deformation processes of deformed conglomerates in the Wutai Mountains, 

North China Craton. (a) BIFs underwent deformation (folded) before or after deposition of 

conglomerates. (b) BIFs underwent viscous deformation (folded), and then formed the conglomerates. 

Finally, conglomerates with folded BIFs pebbles underwent deformation and formed deformed 

conglomerates. There is a major tectonic event between formation of BIFs from the Wutai Group and 

conglomerates from the Hutuo Group. (c) BIFs pebbles were folded with the conglomerate deformation, 

after its deposition. There is no major tectonic event before the formation of conglomerates from the 

Hutuo Group. Solid red lines show the evolution of BIFs (pebbles) in (b) and (c).  

5. Numerical modelling methods—VPFFT+ELLE approach 

The viscoplastic fast Fourier transform method (a full-field approach) (VPFFT; Lebensohn, 

2001; Lebensohn et al., 2009; 2011) has been proposed in recent years and applied to a range 

of deformation simulations, including folding (Ran et al., 2018b, Chapter 4), development of 

porphyroclasts/porphyroblasts and mantled clasts (Griera et al., 2011; 2013; Ran et al., 2018b, 

Chaper 4), halite deformation (Gomez-Rivas et al., 2017) and polar ice and ice-air aggregate 

deformation (Bons et al., 2016; Llorens et al., 2016a,b; 2017; Jansen et al., 2016; Steinbach et 
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al., 2016; 2017). In general, the VPFFT approach has a better numerical performance than 

most FEM (Prakash and Lebensohn, 2009; Roters et al., 2011). For the same geometry and 

resolution, the FEM computation time tends to exceed that of the VPFFT. The VPFFT allows 

us to achieve a high finite strain of ≥10 and model the deformation of polycrystalline 

aggregates with intrinsic anisotropy in linear and power-law viscous rheology. The intrinsic 

anisotropy can be modelled by defining different critical resolved shear stress (CRSS) on 

basal and non-basal slip planes. It allows us to investigate the influence of mechanical 

anisotropy on the development of structures, which is ignored in previous studies as 

mentioned above. Therefore, the VPFFT approach is used to investigate the conglomerate 

deformation and the effect of anisotropy in the thesis. 

5.1. The ELLE numerical modelling platform 

The studies in the thesis utilize the numerical modelling platform ELLE (Jessell et al., 2001; 

Bons et al., 2008; Piazolo et al., 2010; http://www.elle.ws) in two-dimensional simple- and 

pure-shear deformation. ELLE is an open-source software, which has been used to simulate a 

range of geological processes and structures, such as dynamic recrystallization (Piazolo et al., 

2002; Gomez-Rivas et al., 2017), grain growth (Jessell et al., 2001; 2003), strain localization 

(Jessell et al., 2005; Gardner et al., 2017) and deformation of multi-phase rocks (Jessell et al., 

2009; Griera et al., 2011; 2013; Llorens et al., 2013a,b; Ran et al, 2018b, Chapter 4), and 

polar ice microstructures (Roessiger et al., 2011; Montagnat et al., 2014; Bons et al., 2016; 

Llorens et al., 2016a,b; 2017; Jansen et al., 2016; Steinbach et al., 2016; 2017). ELLE 

simulates the interaction of deformation process and the evolution of structures, and is 

therefore is ideally suited for the simulations in the thesis.  

The two-dimensional data structure of ELLE is defined as two layers: (1) a contiguous set of 

polygons (termed flynns; Fig.6a,c) and (2) a set of unconnected nodes (termed undoes) (Fig. 

6d). The boundaries of flynns consist of straight segments that are connected by boundary 

nodes (termed bnodes) in either double- or triple-junctions (Fig. 6c,d). The phases are defined 
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and visible by the flynns with various material properties in multi-phase simulations. In this 

study, the unodes are mapped on a regular rectangular 128×128, 256×256 or 512×512 grid. 

They store the material properties and state variables including stress, strain rate and lattice 

orientation.  

 

Fig. 6. Data structure. (a) The square unit-cell contains multiple phases (black, dark grey and light grey) 

composed of a set of flynns (defined by white solid lines). (b) Deformation is assumed to take place by 

glide of dislocations along the slip systems of a hexagonal mineral. (c) Flynns are defined by bnodes 

and define the grain boundaries, as well as sub-regions. (d) Unconnected nodes (unodes) are 

superimposed on flynns and used for storing physical properties and state variables. 

5.2. Viscoplastic fast Fourier transform method (VPFFT) 

The viscoplastic fast Fourier transform method (VPFFT) is used for the calculation of the 

deformation field, coupled with ELLE platform (Griera et al., 2013; Llorens et al., 2016b). 

Griera et al. (2011) summarise the function of the VPFFT code as such "Briefly, the FFT 

formulation provides an exact solution of the micromechanical problem by finding a strain 

rate and stress field, associated with a kinematically admissible velocity field, that minimizes 

the average local work-rate under the compatibility and equilibrium constraints". More 
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details can be found in Lebensohn, 2001; Lebensohn et al., 2009; 2011; and Montagnat et al., 

2014). In the VPFFT code intracrystalline deformation is assumed to be only accommodated 

by dislocation glide on different slip systems. It makes it possible to simulate the deformation 

of both isotropic and anisotropic crystalline materials using linear or power-law rheologies. 

The constitutive equation between the strain rate 𝜀̇ij (x) and the deviatoric stress 𝜎′(x) at each 

position x is given by 

𝜀̇ij (x) = ∑ 𝑚𝑖𝑗
𝑠𝑁𝑠

𝑠=1 (𝑥)𝛾̇𝑠(𝑥) = 𝛾̇0 ∑ 𝑚𝑖𝑗
𝑠𝑁𝑠

𝑠=1 |
𝑚𝑠(𝑥):𝜎′(𝑥)

𝜏𝑠(𝑥)
|
𝑛

𝑠𝑔𝑛(𝑚𝑠(𝑥): 𝜎′(𝑥)), (5) 

where the sum runs over all 𝑁𝑠 slip systems, 𝑚𝑠, 𝛾̇𝑠 and 𝜏𝑠 are the symmetric Schmidt 

tensor defined by the dyadic product of a vector normal to slip plane and slip direction, the 

shear strain rate and the critical resolved shear stress (CRSS) of the slip system s, respectively, 

𝛾̇0 is reference strain rate and n is the stress exponent (from Llorens et al., 2016b). A 

hexagonal symmetry "mineral" is used to simulate the mechanical properties of the 

polycrystal, and deformation is allowed to be accommodated by glide along basal-plane and 

along non-basal systems (i.e. pyramidal and prismatic; Fig. 6b). The resistance to shear of slip 

systems is simulated by means of the critical resolved shear stress (CRSS). For mechanical 

isotropic material, all CRSS are identical on basal and non-basal slip planes of a single phase. 

For mechanical anisotropic material, the grain anisotropy parameter (A) is used to accounts 

for the degree of anisotropy, which is the ratio of the critical resolved stresses of the non-basal 

basal to basal slip systems (e.g. Lebensohn et al., 2009; Ran et al., 2018b, Chapter 4; de Riese 

et al. (submitted), Chapter 5). A is comparable to the ratio between normal and shear viscosity 

as employed by e.g. Mühlhaus et al. (2002) and Kocher et al. (2006; 2008). 

To simulate conglomerates, two materials are defined: pebble and matrix, each with its own 

(non-linear) viscosity. The relative strength of the pebbles is defined by the viscosity ratio R. 

For isotropic simulations, R is the real viscosity ratio in linear rheology (n=1). In power-law 

rheology (in this study typically n=3), the meaning of R is more complex, as viscosity is not 

constant in power-law materials. The viscosity ratio is defined by: 
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.

    (6) 

Two end members can be envisaged: (i) stress is identical in both materials and strain rate is 

partitioned (Reuss bound; Reuss, 1929), and (ii) strain rate is identical in both materials and 

stress is partitioned (Voigt or Taylor bound; Voigt, 1928). Effective viscosity ratios range 

between these two extremes: 

Reuss: (pebble=matrix):  (7a) 

and Voigt: ( ):  . (7b) 

The real viscosity ratio for n>1 can range from R to Rn
, depending on the partitioning of 

stress and strain rate.  

5.3. Program flow of the VPFFT+ELLE method 

The Fourier points (unodes) are used to map critical resolved shear stresses (CRSS), stress 

exponents (n) and lattice orientations (three Euler angles). The VPFFT code reads information 

from each unode (through fft2elle code) and calculates the stress and strain rate field, as well 

as the velocity for each unode (fft code; Fig.7). After each calculation step of the VPFFT code, 

all information is updated in undoes (through fft2elle code; Fig.7). Velocity boundary 

conditions with constant strain rate are applied in the model, with top-to-the-right simple 

shear deformation or vertical shortening. Displacements (∆x) are derived from a linear 

integration of velocities (v) over a small time increment (∆t): ∆x=v·∆t, to achieve strain 

increments. The numerical simulation is achieved by iterative application of small time steps 
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of each process in turn. The displacement field is used to incrementally move boundary nodes 

that define the flynn boundaries. The model is repositioned to the initial rectangular unit cell 

and unodes are mapped back on the regular, rectangular grid, if necessary (only for simple 

shear), as is required by the VPFFT method, before each next deformation step (Fig. 7). More 

details of codes and program flow see Griera et al. (2013), Llorens et al. (2016b) and 

Steinbach (2017).  

 

Fig. 7. Program flow of the VPFFT+ELLE methods. The VPFFT code reads information of each unode, 

does calculation and then updates information of each unode. For simple shear, reposition function is 

required before the next deformation step. 

5.4. Model resolution 

Each model can be mapped with 2m × 2m undoes, with m a positive integer, which results in 

different resolutions of the models. To test the effect of different resolutions, we performed one 

multi-phase model with resolutions of 128×128, 256×256 and 512×512 unodes (Fig. 8). The 

models with 256×256 and 512×512 undoes show similar patterns of folds within inclusions, 

whereas the 128×128 model is distinctly different (Fig. 8a-c). The strain rate and stress 

localisation can be clearly identified in the inclusion layers with alternating viscosity in the 
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256×256 and 512×512 models, but there is distinctly less strain rate localisation inside the 

inclusion in the 128×128 model (Fig. 8d-i). This test shows that a resolution of 128×128, where 

the individual layers are one unode wide, is not sufficient. As the results of the 256×256 and 

512×512 tests are almost identical, we chose 256×256 for all further runs as a compromise 

between resolution and calculation time. More details of the resolution effect in homogenous 

materials see de Riese et al. (submitted, Chapter 5).  

 

Fig.8. Structures (a-c), normalized strain rate (d-f) and stress (g-i) in 128×128, 256×256 and 512×512 

resolution models, at simple-shear deformation (top-to-right) to a finite strain of four. The models use 

same initial structure that consists of an inclusion with alternating viscosity layers embedded in an 

isotropic matrix. 
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6. Framework and main conclusions of the thesis 

6.1 Framework of the thesis and introduction of chapters 

This thesis utilizes the numerical modelling method of the VPFFT+ELLE to simulate the 

viscous deformation of conglomerates with multi-pebbles and internal structures within 

pebbles, and the development of deformation structures and shear localisation due to 

mechanical anisotropy.  

 Chapter 1 Introduction. The present chapter 1 introduces the general background, 

briefly reviews deformation of conglomerates and mechanical anisotropy, the motivation 

of the thesis, the numerical modelling methods, the framework and main conclusions and 

the future perspectives.  

 Chapter 2 High-strain deformation of conglomerates: numerical modelling, strain 

analysis, and an example from the Wutai Mountains, North China Craton. In order to 

understand the influence of the pebble concentration and the interaction between pebbles, 

the ductile deformation of conglomerates with multiple pebbles is modelled with various 

viscosity contrasts between pebbles and matrix and pebble concentrations, in linear (n=1) 

and power-law (n=3) viscous rheologies, under simple shear conditions up to a shear 

strain of ten using the VPFFT+ELLE numerical modelling method. A mean Rf -

is suggested to gain an estimate of deformed pebble type of behaviour and the amount of 

strain. A natural example of deformed conglomerates from the Wutai Mountains, North 

China Craton is provided, whose finite strain and viscosity contrast are estimated with 

the mean Rf -  

 Chapter 3 Folding within pebbles during ductile simple-shear deformation: a 

numerical approach. It is not clear how and when folding within pebbles develops with 

deformation of conglomerates in nature. The folding within pebbles in the conglomerates 

with single or multiple pebble(s) are simulated, varying the orientation of pebble layers 

and the viscosity contrast among soft, hard layers and matrix in power law (n=3) 

rheology up to a ductile simple-shear strain of eight. Several folding cases are observed 

in simulations and suggest that the folds within pebbles from the deformed 

conglomerates in the Wutai Mountains, North China Craton develop with the 
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conglomerate deformation. 

 Chapter 4 Time for anisotropy: The significance of mechanical anisotropy for the 

development of deformation structures. Among factors that control deformation and the 

resulting structures, mechanical anisotropy has proven difficult to tackle. Using the 

VPFFT+ELLE approach for viscoplastic deformation of crystalline materials, this paper 

shows how mechanical anisotropy has a profound effect on developing structures, such 

as crenulation cleavages, porphyroclast geometry and the initiation of shear bands and 

shear zones.  

 Chapter 5 Shear localisation in homogeneous, anisotropic materials: a numerical 

study. Of the various mechanisms for localisation, mechanical anisotropy has received 

relatively little attention, especially in numerical modelling. Simple-shear deformation of 

a homogeneous, but anisotropic, power-law rheology material is simulated up to shear 

strains of five, using the VPFFT+ELLE approach. The effects of the mechanical 

anisotropy are addressed and the numerical simulations are compared with the natural 

case of the Northern Shear Belt at Cap de Creus, NE Spain. 

 Appendix numerical model setup. The appendix gives the descriptions of the input files 

and parameters of the VPFFT+ELLE method used in the simulations of the thesis.  

6.2 Main conclusions of the thesis 

The thesis shows how the viscosity ratio between pebble and matrix and the pebble 

concentrations affect the deformation of conglomerates, how folds within pebbles can develop 

as a conglomerate deforms, and how the mechanical anisotropy affects the development of 

structures and shear localisation.  

(1) In deformed conglomerates, pebbles can behave as rigid, deformable and passive 

inclusions depending on both the viscosity ratio and their concentration. Raising the 

pebble concentration also raises the transition viscosity ratio between the deformation 

regimes. The effect of increasing pebble concentration is similar to a decrease of viscosity 

ratio between pebbles and matrix, and vice versa. An increase in concentration and 

interaction enhances pebble distortion, but reduces the mean rotation of pebbles. Clusters 

of closely spaced pebbles can behave as single objects. Rigid clusters continue rotating, 
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but survive for only a short strain interval. Deformable clusters initially rotate rapidly 

towards the shear direction, and then keep on elongating with minor rotation. The slower 

rotation facilitates the stability of deformable clusters. A mean Rf-

gain an estimate of pebble deformation behaviour and the amount of strain in cases of 

permanently stretching pebbles. Using the mean Rf-

deformed conglomerates of the Hutuo Group in the Wutai mountains had a viscosity ratio 

of 5 to 8 for a linear rheology (n=1) and 2 to 5 for a power-law rheology (n=3) and 

underwent a simple shear strain of about six.  

(2) Deforming layered pebbles may develop internal folds. Internal folding is facilitated by a 

layering initially at around 174° to 178° relative to the shear plane, sufficiently thin 

internal layers to achieve fold wavelengths smaller than the diameter of the pebble, and a 

high area fraction of pebbles. Internal folding furthermore requires a narrow range of 

viscosity ratios between pebble and matrix to allow enough strain to develop folds, but 

still keep the pebble recognisable as such. The difficulty in achieving internal folds within 

pebbles may explain the scarcity of internally folded BIF-pebbles in deformed 

conglomerates in the Wutai Mountains, North China Craton. Our simulations thus 

indicate that the few pebbles with folds must not necessarily indicate a previous 

deformation event, but may have formed during deformation of the conglomerate itself. 

This alternative interpretation has significant impact on the geotectonic history of the 

Trans-North China Orogen, as it may "remove" a whole cycle of burial, metamorphism, 

deformation and exhumation preceding the deposition of the conglomerates.  

(3) Mechanical anisotropy can play a key role on the development of folds, mantled clasts 

and C' shear bands. Under pure and simple shear, the geometry of the folded single layer 

in the anisotropic matrix is similar to that in isotropic matrix. However, the geometry of 

microfolds represented by passive gridlines in the anisotropic matrix is very different 

from those in isotropic cases. The grid lines are folded in similar-type folds or 

crenulations that do not decay away from the competent layer. Fold hinges align to form 

an axial-planar crenulation cleavage. In case of the mantled clast embedded in anisotropic 

matrix, deformation in the matrix is highly heterogeneous with folds and shear bands. 

Rotation of the clast is now inhibited and the attachment points of the wings do not rotate 

enough to develop the distinct embayments of -clasts. Instead, a -clast forms. In 

contrast, a clast in an isotropic matrix rotates faster, leading to wings developed by 

smearing out of the mantle. As the points where the wings attach to the object rotate along 
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with the object, a -clast develops. C' shear bands formed in all models of anisotropic 

composite material with >1% weak phase and were more abundant in models with a 

higher proportion of weak phase. In nature models C' shear bands are dominantly defined 

by the weakest phase. It is suggested that anisotropy is required for their development.  

(4) Mechanical anisotropy leads to distinct strain and strain-rate localisation in homogenous, 

anisotropic materials. Localisation of shear rate in narrow shear bands occurs, depending 

on the magnitude of anisotropy and the stress exponent. At high anisotropy values, 

strain-rate frequency distributions become approximately log-normal with heavy, 

exponential tails. Localisation due to anisotropy is scale-independent and thus provides a 

single mechanism for a self-organised hierarchy of shear bands and zones from the mm- 

to km-scale.  

7. Future perspectives 

The studies gain the knowledge of the deformation of conglomerates with multiple pebbles, 

the development of folding in layered pebbles and the effects of mechanical anisotropy, as 

mentioned above. However, some questions remain unanswered.  

7.1 Linear or power-law rheology in viscous flow? 

Rock and mineral experiments support that rocks usually exhibit a power-law rheology, i.e. 

the stress exponent is larger than one (e.g., Carter and Tsenn, 1987; Kirkby and Kronenberg, 

1987). Rocks typically deform by dislocation creep mechanisms, and thus show the 

power-law relationship between strain rate and stress, with the stress exponent generally 

between 2 and 8 (Carter and Tsenn, 1987). However, some field studies on deformed 

conglomerates show similar values of viscosity ratio between pebbles and matrix and suggest 

common type rocks in conglomerates mostly behave in linear rheology (e.g., Treagus and 

Treagus, 2002). As mentioned above, a range of analytical theories and numerical models are 

assume rocks to behave as linear (Newtonian) viscous fluid, i.e. stress exponent is one (e.g., 

Gay, 1968; Bilby et al, 1975; Treagus and Treagus, 2001). More and more analytical theories 

and numerical models, as well as the models in this thesis, have extended the field to the 
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power-law rheology (e.g., Mancktelow, 2011; Griera et al., 2011; 2013; Llorens et al., 2013). 

However, the term of viscosity ratio that is widely used in models with power-law rheology is 

essentially applied to linear rheology. In strict terms, there is no constant viscosity ratio in 

power-law rheology, as the discussion in Section 5 Numerical modelling methods above. 

Furthermore, only a stress exponent of three is used in this thesis to model power-law 

rheology. It is still necessary to consider whether rocks commonly behave in power-law 

rheology and which value of the stress exponent should be used in simulations.  

7.2. Pebble shapes 

Pebble shape can affect the deformation of conglomerates (e.g., Gay, 1968; Treagus and Lan, 

2000; 2004; Treagus, 2002). In nature, pebble shapes in 2D plane are variable: nearly circular 

or elliptical shapes in well-rounded conglomerates and angular shapes in poorly rounded 

conglomerates. Nearly circular or elliptical pebbles deform to other elliptical shapes, whereas 

angular ones can deform to irregular shapes under pure and simple shear (Treagus, 1996; 

Treagus and Lan, 2000; 2003). Irregular shapes give more difficulties for understanding the 

deformation of conglomerates, since it is much easier to develop heterogeneous strain on 

pebbles than with elliptical ones. The studies in this thesis only consider the deformation of 

initially circular pebbles in multi-pebble models. Few studies deal with the effect of the 

pebble concentration and the interaction between pebbles using the multi-pebble model with 

different pebble shapes, which can be addressed in future.  

7.3. Pebbles embedded in an anisotropic matrix 

The studies on mechanical anisotropy in this thesis reveal the influence of anisotropy on the 

development of structures, such as folds, mantled clasts and shear bands. It has been pointed 

out that the mechanical anisotropy in the matrix develops strain localisation and leads to the 

inhibition of the rotation of rigid inclusions, as well as the mantled inclusions (Griera et al., 

2011; 2013; Ran et al., 2018b, Chapter 4). It means we need to consider the influence of 

mechanical anisotropy in the matrix on the deformation of conglomerates with multiple 
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pebbles. The strain localisation in an isotropic matrix is controlled by the distribution of 

pebbles. If the matrix is mechanically anisotropic, the strain localisation can be affected by 

both pebble distribution and anisotropy. Another effect of anisotropic matrix is the inhibition 

of the rotation of pebbles. The anisotropy can slow down or even stop the pebble rotation. The 

viscosity contrast becomes complex if the matrix is anisotropic, even in linear rheology, 

because the viscosities on different slip planes are not identical. The calculated viscosity 

contrast only offers the ratio of isotropic pebble viscosity to average matrix viscosity on 

different slip planes.  
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Abstract 

Conglomerates have been widely used to investigate deformation history and rheology, strain, 

vorticity and viscosity. Previous studies reveal that several factors, such as pebble shapes and 

concentrations, as well as material properties, affect conglomerate deformation. However, 

how pebble concentration and interaction between pebbles affect deformation is not 

understood very well. We use the 2D numerical modelling platform ELLE coupled to the full 

field crystal visco-plasticity code (VPFFT) to simulate the deformation of conglomerates with 

various viscosity contrasts between pebbles and matrix and different pebble concentrations, 

with both linear (stress exponent n=1) and power-law (n=3) viscous rheologies, under simple 

shear conditions up to a shear strain of ten. Pebbles can behave as effectively passive, 

deformable or effectively rigid. An increase in pebble concentrations/viscosity contrasts 

enhances pebble deformation, but reduces their rotation. A mean aspect ratio (Rf) - orientation 

() plot is proposed to gain an estimate of pebble deformation behaviour and the amount of 

bulk strain. Closely spaced rigid or deformable pebbles can form clusters that mechanically 

act as single inclusions. Rigid clusters rotate and survive for only short strain increments, 

whereas the more stable deformable ones keep on elongating with minor rotation. We provide 

a natural example of deformed conglomerates from the Wutai Mountains, North China Craton. 

These consist of banded-iron-formation (BIF) pebbles embedded in a schistose matrix. Using 

the mean Rf- plot, a finite strain of ~6 under simple shear could be determined. The viscosity 

of the pebbles is estimated at about 5 to 8 times that of the matrix for a linear rheology (n=1), 

or 2 to 5 times if a power-law rheology with n=3 is assumed.  

 

Keywords: Conglomerates, numerical modelling, strain analysis, North China Craton  
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1. Introduction 

Conglomerates have received particular attention in structural geology for studies on strain 

analysis, deformation process, rheology and tectonic evolution (e.g., Flinn, 1956; Ramsay, 

1967; Dunnet, 1969; Fry, 1979; Lisle et al., 1983; Yin et al., 1999; Treagus and Treagus, 2002; 

Passchier and Trouw, 2005; Czeck et al., 2009). Deformed conglomerates are classical 

indicators of finite strain, stress orientation, vorticity, and viscosity contrast between pebbles 

and their matrix (e.g., Ramsay, 1967; Lisle et al., 1985; Freeman and Lisle, 1987; Czeck and 

Hudleston, 2003). Conglomerates are polyphase rocks formed by pebbles (inclusions) 

embedded in a matrix that is usually assumed weaker (e.g., Gay, 1968; Fletcher, 2004; Jiang, 

2007a,b, 2013; Marques et al., 2014). A range of rock and analogue deformation experiments, 

analytical models, as well as numerical simulations have been applied to study the viscous 

deformation of single or multiple inclusion-matrix systems aiming to quantify their behaviour 

(e.g., Jeffery, 1922; Rosenberg, 2001; Treagus, 2002; Treagus and Treagus, 2002; Mancktelow, 

2002, 2011; Mandal et al., 2003, 2005; Takeda and Griera, 2006; Jiang, 2007a,b, 2013; Jiang 

and Bentley, 2012; Johnson et al., 2009a,b; Griera et al., 2011, 2013; Dabrowski et al., 2012; 

Räss et al., 2016; Ran et al., 2018). These studies reveal that there are several key factors that 

control their deformation behaviour: (1) the initial shape of inclusion(s) (Lisle, 1979; Treagus, 

2002; Treagus and Lan, 2004), (2) the material properties, in particular the viscosity contrast 

between inclusion and matrix (Treagus and Treagus, 2001; Mandal et al., 2003; Vitale and 

Mazzoli, 2005; Takeda and Griera, 2006; Griera et al., 2013), the matrix anisotropy (Treagus, 

2003; Fletcher, 2004; Griera et al., 2011, 2013; Qu et al., 2016) and the linear or power-law 

rheology (Mancktelow, 2002, 2011; Jiang, 2013; Qu et al., 2016), (3) the behaviour of the 

interface between inclusion and matrix (Marques and Bose, 2004; Johnson et al., 2009b), and 

(4) the distribution of inclusions (Treagus, 2002; Takeda and Griera, 2006) and the interaction 

between them (Ildefonse et al., 1992a,b; Tikoff and Teyssier, 1994; Marques and Bose, 2004; 

Mandal et al., 2005; Jessell et al., 2009; Mancktelow, 2011). 

Pebbles in a ductile viscous conglomerate can behave as effectively passive, deformable or 
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rigid inclusions, depending on the viscosity contrast between pebbles and matrix. The first 

analytical solutions, proposed by Eshelby (1957) and Gay (1968) and further developed by 

Bilby et al. (1975), Bilby and Kolbuszewski (1977) and Treagus and Treagus (2001), indicate 

that inclusions in linear viscous systems deformed in pure shear behave passively (i.e., their 

deformation rate approximately equals that of the matrix) when the viscosity () ratio 

(R=inclusion/matrix) between inclusion and matrix is less than two (see Table 1 for a list of 

symbols and abbreviations). Initially circular inclusions remain effectively rigid (i.e., 

inclusions only undergo very minor deformation) when R is larger than ca. 20 to 50. In 

between these two end members we define "deformable inclusions" as those that deform 

significantly, but distinctly less than their surrounding matrix. Pulsating behaviour, with 

cyclical rotation of inclusions and changes in their ellipticity, can occur in non-coaxial 

shearing at moderate R (Bilby and Kolbuszewski, 1977). Based on analogue experiments, 

Piazolo and Passchier (2002) estimated the transitions between rigid and pulsating behaviour 

at R≈1200, and between pulsating and passive behaviour at R≈5 to100. Mancktelow (2011) 

extended the solution of Bilby and Kolbuszewski (1977) to systems with power-law rheology 

and proposed that the effect of power-law viscous rheology is similar to an increase of the 

linear viscosity contrast between the competent and soft phase. This was also observed by 

Llorens et al. (2013b) from modelling of single-layer folding. 

Most of the studies discussed above deal with the deformation of isolated inclusions and thus 

ignore the influence of inclusion distribution and interactions between neighbouring 

inclusions. However, natural conglomerates are composed of multiple pebbles, usually 

resulting in interactions between neighbouring ones, especially in clast-supported 

conglomerates. A few studies have recognised that the deformation behaviour of inclusions 

and the bulk viscosity of the system are significantly affected by the concentration of 

inclusions and their interaction (Gay, 1968; Bons and Cox, 1994; Mandal et al., 2003, 2005; 

Vitale and Mazzoli, 2005; Jessell et al., 2009; Mancktelow, 2011; Dabrowski et al., 2012; 

Marques et al., 2014). One effect of interaction between inclusions is that they behave as if 

they are softer than when they are isolated in the matrix (Mandal et al., 2003; Vitale and 
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Mazzoli, 2005; Jessell et al., 2009). Therefore, the distribution of inclusions and their 

interactions are likely to affect the R-boundaries between passive, deformable and rigid 

behaviour regimes. A further effect of increasing inclusion concentration and thus their 

interaction is that their rotation rate can be slowed down or inclusions may even stop rotating. 

This effect is associated with inclusion collisions or flow disturbances in the matrix (Ildefonse 

et al., 1992a,b; Samanta et al., 2003; Marques et al., 2014). Closely spaced inclusions can also 

form clusters or trains that mechanically act as single inclusions (Blumenfeld and Bouchez, 

1988; Tikoff and Teyssier, 1994; Jessell et al., 2009). According to Tikoff and Teyssier (1994), 

clusters of rigid inclusions are short-lived, while those composed of deformable inclusions 

with slipping boundaries remain coherent for longer times. However, it is still not entirely 

clear how the pebble concentration affects the R-boundaries between different behaviour 

regimes and how rigid and deformable clusters form and develop, respectively. 

Numerical simulations of the deformation of inclusion-matrix systems were until recently 

limited to relatively low finite strains (e.g., Treagus et al., 2002; Treagus and Lan, 2003; 

Takeda and Griera, 2006; Jessell et al., 2009). Only recently have codes such as 

ELLE+VPFFT (Lebensohn, 2001; Lebensohn et al., 2009, 2011; Griera et al., 2013) and 

Milamin/MVEP2 (Dabrowski et al., 2008; Kaus, 2010) reached high shear strains (e.g., 

Dabrowski et al., 2012; Griera et al., 2013; Pouryazdan et al., 2017). In this study, we use the 

ELLE+VPFFT code to simulate viscous deformation of conglomerates with interactions 

between pebbles, varying the concentration of pebbles and viscosity ratio between pebbles 

and matrix, in both linear and power-law viscous rheologies, and up to a simple-shear strain 

of ten. Our simulations produce a range of structures, depending on the various parameters. 

We use conglomerates in the Wutai mountains, North China Craton, to illustrate how a 

proposed Rf- plot can be used to estimate the viscosity contrast between pebbles and matrix 

in naturally deformed conglomerates. 

2. Methods 
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We numerically model the viscous deformation of conglomerates in two-dimensional simple 

shear. This study utilizes the open-source numerical modelling platform ELLE (Jessell et al., 

2001; Bons et al., 2008; Piazolo et al., 2010; http://www.elle.ws), which has been applied to 

simulate a range of geological processes, such as strain localisation (Jessell et al., 2005; 

Llorens et al., 2016a,b; Gardner et al., 2017), folding (Llorens et al., 2013a,b; Jansen et al., 

2016), and deformation of two-phase rocks and ice (Jessell et al., 2009; Steinbach et al., 2018), 

including those containing porphyroclasts and porphyroblasts (Griera et al., 2011, 2013), 

among many other studies. The deformation field is calculated using the VPFFT code, 

coupled with the ELLE software (Griera et al., 2013; Llorens et al., 2016b) for handling the 

data structure, re-meshing and pre- and post-processing of modelling results. Using a spectral 

solver, the VPFFT method finds a strain rate and stress field, associated with a kinematically 

admissible velocity field, which minimizes the average local work-rate under the 

compatibility and equilibrium constraints (Lebensohn, 2001; Griera et al., 2011). The VPFFT 

code requires discretisation of the system into a regular grid and periodic boundary conditions, 

of which the latter has the advantage that high-strain deformation in simple shear can be 

achieved without modifying the square model shape (a feature employed by, e.g., Jessell et al., 

2009).  

As we use the same numerical approach as Griera et al. (2011, 2013) we refer to them for 

details of the numerical procedure and to Lebensohn (2001), Lebensohn et al. (2009, 2011), 

Montagnat et al. (2014), and Llorens et al. (2016b) for details of the VPFFT method. A model 

mineral with a hexagonal symmetry is used here (similar to Griera et al., 2011, 2013) to 

simulate the mechanical properties of the material, and deformation is allowed to be 

accommodated by glide along basal plane and along non-basal systems (i.e., pyramidal and 

prismatic; Fig. 1e). The resistance to shear of slip systems is simulated by means of the 

critical resolved shear stress (CRSS; ), which is set to the same value for the different slip 

systems, but is different for pebbles and matrix. This way, the materials are effectively 

isotropic and the lattice orientation of grid elements makes no discernible difference to the 

result and is assigned randomly at the beginning of the simulation. Griera et al. (2011) showed 
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that with this VPFFT approach the rotation rate of a circular rigid inclusion embedded in a 

viscous isotropic matrix successfully follows the analytical solution of Jeffery (1922), thus 

validating this approach for the modelling of inclusion behaviour.  

In our simulations with isotropic material properties (meaning that all slip systems have the 

same ), the relation between differential stress () and strain rate (𝜀̇) of the material is 

defined by: 

𝜀̇ = 𝐴 (
𝜎

𝜏
)

𝑛
,            (1) 

where n is the stress exponent and A is a pre-exponential (scaling) factor, identical for all 

materials used in these simulations. The critical resolved shear stress () of the matrix was set 

to unity (matrix=1) in all cases. Pebbles are more competent than the matrix (pebble>1). The 

stress exponents (n) of pebble and matrix are always identical in one simulation, being either 

one or three (see Table 1). We define the viscosity ratio R between pebble and matrix using 

as a proxy the CRSS ratio (R=𝜏𝑝𝑒𝑏𝑏𝑙𝑒/𝜏𝑚𝑎𝑡𝑟𝑖𝑥). For linear rheology models (n=1), R is the 

real viscosity ratio. For n=3, the meaning of R is more complex, as viscosity is not constant 

in power-law materials. The effective viscosity ratio is defined by: 

.

    (2) 

The 2-D description of the model conglomerate is defined in the ELLE data structure as a 

contiguous set of polygons (termed flynns; Fig. 1a,b) and a set of unconnected nodes or 

Fourier points (termed unodes; Fig. 1f). The boundaries of flynns consist of straight segments 

that connect boundary nodes (termed bnodes; Fig. 1c,f) in either double- or triple-junctions. In 

this study, flynns define single-phase regions, with either matrix or pebble properties. State 

variables, such as stress, strain rate and lattice orientation, which can vary within flynns, are 

stored in the unodes that are distributed on a regular, rectangular 256×256 grid. 
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Table 1. List of abbreviations and symbols used in the text. 

A Pre-exponential (scaling) factor 

BIF Banded Iron Formation 

C Pebble concentration 

∆t Time increment 

∆x Displacement 

n Stress exponent 

Rf Ratio between long and short axes of inclusions (pebbles) 

Rs Aspect ratio of strain ellipse 

R Viscosity ratio between inclusion(pebble) and matrix 

RGay Calculated viscosity ratio by Gay‘s equation (1968) 

VPFFT Full field crystal visco-plasticity code 

v Velocity 

W Vorticity 

𝜀̇ Strain rate 

∆ Finite shear strain, shear strain increment 

 Orientation of the inclusion (pebble) long axis 

 Differential stress 

 Critical resolved shear stress (CRSS) 

 

 

Fig. 1. Data structure. (a) The square unit-cell contains circular pebbles (black) embedded in a 

homogeneous matrix (grey) composed of a set of flynns (defined by white solid lines). (b) and (c) 

Flynns are defined by bnodes and define the pebble-matrix boundaries, as well as sub-regions. (d) The 

model is repositioned into the initial square unit cell after each step of dextral simple-shear deformation. 

(e) Deformation is assumed to take place by glide of dislocations along the slip systems of a hexagonal 



  Chapter 2 

46 
 

mineral. (f) Unconnected nodes (unodes) are superimposed on flynns and used for storing physical 

properties and state variables. (c) and (f) show the difference of region boundaries defined by flynns 

and unodes that are used for the VPFFT code. 

Starting models are square with a unit-cell size of 1×1 and contain approximately circular 

pebbles with a diameter of 0.075 times the unit-cell size. We use 24, 70 and 100 

randomly-placed pebbles, corresponding to pebble concentrations (C) of 10%, 30% and 45%, 

respectively. Velocity boundary conditions with constant strain rate are applied in the model, 

with top-to-the-right simple shear deformation. Displacements (∆x) are derived from a linear 

integration of velocities (v) over a small time increment (∆t): ∆x=v·∆t, to achieve shear-strain 

increments of ∆=0.02 /step. The velocity field is used to incrementally move boundary nodes 

that define the flynn boundaries and, hence, the pebble-matrix boundaries. The model is 

repositioned to the initial square unit cell and material properties (pebble or matrix) are 

mapped back on the regular, square grid, as is required by the VPFFT method, before each 

next deformation step (Fig. 1d).  

Three input parameters are systematically varied in the simulations (Table 2): (1) the 

concentration (C) of pebbles, (2) the stress exponent for linear or power-law viscous rheology 

(n=1 or 3), and (3) the viscosity ratio (R. To visualise the distribution of the strain rate 

intensity, we plot the von Mises strain rate (or equivalent strain rate) normalized to the bulk 

von Mises strain rate for each unode. The von Mises strain rate is the second invariant of the 

symmetric strain rate tensor. The distribution of the accumulated finite vorticity (W) and strain 

(Rs) for a strain increment are visualized by integrating the incremental stain rate tensor of 

each unode from each simulation step (Steinbach, 2017). Vorticity is the mean rotation angle 

(in radians) of material lines in a deforming material (e.g. Means et al., 1980). Considering 

the minor deformation of rigid pebbles in some simulations, we here use vorticity to visualize 

and discuss pebble rotation instead of the vorticity number (Means et al., 1980). We measure 

the ratios (Rf) between long and short axes of pebbles and the orientations of the long axes 

( using the particle analysis routine of the 
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freeware ImageJ software (Schneider et al., 2012; http://imagej.nih.gov/ij). The arithmetic 

means of Rf and are used for the statistical analysis of pebble deformation and rotation (cf. 

Lisle, 1977).  

Table 2. Settings for the simulations presented here. 

Experiment 
Pebble 

concentration (C) 
Stress exponent (n) R Supplementary movie 

10%𝑅𝜂2
𝑛1  10% 1 2  

10%𝑅𝜂5
𝑛1  10% 1 5 Movie 1 

10%𝑅𝜂15
𝑛1  10% 1 15  

10%𝑅𝜂45
𝑛1  10% 1 45  

30%𝑅𝜂2
𝑛1  30% 1 2  

30%𝑅𝜂5
𝑛1  30% 1 5  

30%𝑅𝜂15
𝑛1  30% 1 15  

30%𝑅𝜂45
𝑛1  30% 1 45  

45%𝑅𝜂2
𝑛1  45% 1 2  

45%𝑅𝜂5
𝑛1  45% 1 5 Movie 2 

45%𝑅𝜂15
𝑛1  45% 1 15  

45%𝑅𝜂45
𝑛1  45% 1 45  

10%𝑅𝜂2
𝑛3  10% 3 2  

10%𝑅𝜂5
𝑛3  10% 3 5  

10%𝑅𝜂10
𝑛3  10% 3 10  

30%𝑅𝜂2
𝑛3  30% 3 2 Movie 3 

30%𝑅𝜂5
𝑛3  30% 3 5  

30%𝑅𝜂10
𝑛3  30% 3 10 Movie 4 

45%𝑅𝜂2
𝑛3  45% 3 2 Movie 5 

45%𝑅𝜂5
𝑛3  45% 3 5  

45%𝑅𝜂10
𝑛3  45% 3 10  

 

3. Results 

The geometries of deformed conglomerates for different R and values of the stress exponent 

(n) are shown in Fig. 2 for a finite strain of ten (=10). Selected movies (Table 2) showing the 

evolution of the structure and normalised strain rate can be found in appendix A. 

Our simulations cover the three types of deformation behaviour of pebbles in deformed 

http://imagej.nih.gov/ij
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conglomerates: (i) passive, (ii) deformable and (iii) rigid (Fig. 2). For a power-law viscous 

rheology (n=3), passive deformation of pebbles is observed at R=2 and high pebble 

concentrations (C=45%). The same passive behaviour can be observed in systems with linear 

viscosity (n=1), in simulations with R=2 (all range of pebble concentrations) and with R=5 

with high pebble concentration (C= 45%). Rigid pebble behaviour, with minor distortion and 

only rotation, is observed at high R. For n=3, pebbles behave rigidly when R≥5 at C=10% 

and 30%, and at C=45% for R=10 only. The same pattern is observed for models with n=1, 

with pebbles behaving rigidly at R≥15 at C=10%, and at C=30% only at R=45. In between 

the end-member cases of passive and rigid behaviour, pebbles deform significantly, but 

distinctly less than their matrix. The deformation behaviour of pebbles in the simulations with 

R=2-10 for n=3 is approximately similar to that in the simulations with R=5-45 for n=1, in 

terms of amount of stretching and rotation. Pebbles in the deformable regime show elongate 

mica fish and -clast shapes (Fig. 2a,b; Passchier and Trouw, 2005). The deformed flynn 

boundaries in the matrix serve as a proxy for the expected trend that a foliation would develop 

by wrapping around rotating pebbles (Fig. 2a,b).  

With increasing finite strain, passive and deformable pebbles keep stretching (increasing their 

Rf) and their long axes rotate towards the shear plane (=0) (Fig. 3). Some of deformable and 

rigid pebbles show pulsating behaviour. In this case their long axes rotate towards and beyond 

the shear plane, while their Rf values remain low (<3). The Rf- graph (Fig. 3) thus shows two 

types of paths. In the first  consistently decreases towards =0 and Rf increases towards Rf= 

with progressive strain. In the second case, pebbles remain "trapped" at Rf smaller than about 

three and variable .  

At a low pebble concentration of C=10%, the mean rotation of rigid pebbles is similar to the 

ideal rotation of the single rigid inclusion calculated by Jeffery‘s (1922) solution (Fig. 4). 

With increasing concentration, the mean rotation of rigid pebbles decreases (Fig. 4). However, 

the variation in rotation rate between pebbles increases and some pebbles actually rotate faster 

than the prediction by Jeffery (1922). 
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Fig. 2. Results of simulations with different R-settings with a stress exponent of n=1 (a) and n=3 (b) 
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for simple-shear deformation (top to the right) up to a shear strain of =10. Pebbles are black, matrix 

light grey and flynn boundaries white. Initial structures of conglomerates with pebble concentrations of 

C=10%, 30% and 45% are shown as the first column of (a). The pebble behaviour is labelled as passive 

(P), deformable (D) or rigid (R). Movies 1-5 can be found in Appendix A. 

 

Fig. 3. Mean Rf- graph showing the trajectories of the mean pebble shape (Rf) and long axis 

orientation () for the different simulations as a function of strain. All the data displayed correspond to 

the arithmetic mean of the Rf or  of all individual pebbles in a model. Sub-vertical dashed lines 

indicate finite strain contours. Dark blue dashed lines separate passive, deformable and rigid pebble 

behaviour. 
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Fig. 4. Normalised mean rotation (vorticity) of all individual pebbles (with one standard deviation error 

bars) at different pebble concentrations of C=10%, 30% and 45% and viscosity ratio of R=10 in 

power-law (n=3) viscous rheology, for a strain increment of ∆=0.5. Normalised mean rotation is 

defined as the ratio between mean rotation angle in the simulation and the ideal Jeffery (1922) rotation 

of 14.3 ° for ∆=0.5. Each mean rotation angle with standard deviation is calculated from all rotation 

data at finite strains of 3.5-4, 4-4.5, 4.5-5, 5-5.5 and 5.5-6 in simulations 10%𝑅𝜂10
𝑛3 , 30%𝑅𝜂10

𝑛3  and 

45%𝑅𝜂10
𝑛3 . The rotation angle of one cluster is selected from the simulation 30%𝑅𝜂10

𝑛3  for ∆=0.5 

(4-4.5).  

As expected, strain rate and vorticity are highly variable in the matrix, especially at high R 

(Fig. 5). An increase in R and C enhances strain rate partitioning. The vorticity maps (Fig. 5, 

columns IV-VI) illustrate the sense of rotation of local deformation. Some of the highest strain 

rates (red tones in Fig. 5, columns II-III) are associated with a clockwise rotation (dextral 

shear, red tones in Fig. 5, columns V-VI) and develop in nearly horizontal zones, thus 

indicating the activity of synthetic C-type shear bands. At high R and C, vertical, C''-type 

shear bands with significantly elevated strain rates and negative vorticity (i.e., sinistral 

shear-sense) also form.  

Clusters formed by the association of several closely spaced deformable or rigid pebbles can 

behave as effectively single objects. They form with increasing finite strain in simulations 
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with high pebble concentrations such as 30%𝑅𝜂10
𝑛3  and 30%𝑅𝜂2

𝑛3  (Figs. 6, 7). In the 

simulations with rigid pebbles such as 30%𝑅𝜂10
𝑛3 , antithetic shear zones initially form 

perpendicular to the shear plane and progressively rotate toward it (Figs. 6, 7). The cluster 

formed by rigid pebbles rotate less than the mean rotation of individual pebbles and Jeffery‘s 

(1922) rotation model in simulation 30%𝑅𝜂10
𝑛3  (Fig. 4). 

 

Fig. 5. Maps of the von Mises strain-rate field normalised to the bulk von Mises strain rate at different 

viscosity ratios (R) (column I-III) and vorticity (for ∆=0.02) at different viscosity ratios (R) 
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(column IV-VI) for (a) power-law (n=3) and (b) linear (n=1) viscous rheology at finite strain of 10. 

The bulk sense of shear is top to right. 

 

Fig. 6. Evolution of rigid clusters in the simulation 30%𝑅𝜂10
𝑛3  (Appendix A, Movie 4). Pebble (white 

and coloured) and matrix (black) distribution is shown at shear strains of (a) =4.5, (d) at =6.0 and (g) 

=6.6. Pebbles belonging to a cluster are coloured. Incremental strain (Rs; b, e, h) and vorticity (W; c, f, 

i) distributions are shown for the preceding strain increment of ∆=0.2. Three pebbles are labelled A to 

C. At =4.5 they form a cluster, which has disintegrated at =6. Pebbles A and B form a cluster again at 

=6.6. The sense of shear is top to the right. 
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Fig.7. Evolution of deformable clusters in simulation 30%𝑅𝜂2
𝑛3  (Appendix A, Movie 3). Pebble and 

matrix (black) distribution is shown at (a) =4.5, (d) at =7 and (g) =8. Pebbles belonging to a cluster 

are coloured. Incremental strain (Rs; b, e, h) and vorticity (W; c, f, i) distributions are shown for the 

preceding strain increment of ∆=1. Three clusters are labelled A to C. The life span of these clusters 

with increasing finite strain is shown in (j). The sense of shear is top to the right. 
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4. Discussion 

4.1 Pebble deformation 

Passive, deformable and rigid behaviour of pebbles are observed in our simulations with 

different R and for different C (Fig. 2). For a given C value, decreasing R enhances pebble 

deformation (Figs. 2, 3). This is consistent with previous studies, which suggest that the 

deformation behaviour of inclusions is strongly influenced by R (e.g., Gay, 1968; Bilby and 

Kolbuszewski, 1977; Lisle et al., 1983; Treagus and Treagus, 2001; Mandal et al., 2003; 

Takeda and Griera, 2006; Jiang, 2013; Qu et al., 2016). In our simulations, pebble 

concentration (C) is another important factor. In models with high C closely spaced pebbles 

interact with their neighbours, thus enhancing their deformation (Figs. 2, 3). In both cases of 

linear and power-law viscous rheologies, the effect of increasing C is similar to a decrease of 

R, and vice versa. The pebbles deform as if they are ―softer‖ in models with higher C. An 

increase in C and pebble interaction slightly reduce the mean rotation rate of rigid pebbles, 

which is consistent with previous studies (Fig. 4; Ildefonse et al., 1992a,b; Samanta et al., 

2003; Marques et al., 2014). However, variation in pebble rotation rate increases with 

increasing C (Fig. 4).  

Previous studies have suggested that an isolated inclusion at R> ca. 20-50 deforms rigidly if 

rheology is linear viscous, even at high finite strain (Gay, 1968; Bilby et al., 1975; Weijermars, 

1993; Treagus and Treagus, 2001). Our simulations with n=1 show that pebbles in simulations 

with high viscosity ratios (R≥ 15) behave rigidly when the inclusion concentration is low 

(C=10%) with minor interactions between neighbour pebbles. However, at a high C of 45%, 

pebbles interact with their neighbours and are deformable even at R=45. The reported 

boundary between deformable and rigid from R=10-50 is thus confirmed by our simulations, 

with the lower end representing isolated inclusions and the higher end closely packed 

inclusions. According to Bilby and Kolbuszewski (1977), a single inclusion behaves passively 

at R≤ 2 for a linear viscous rheology. This is supported by our results for C=10%. Again, 
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raising the pebble concentration also raises the transition R, here up to about 5 for C=45% 

(Fig. 2b). Similar trends are found for a power-law rheology with n=3 (Fig. 2a). 

The range of R for deformable pebbles is quite narrow, between 2 and 15 for n=1 and 

C=10%, and at higher C still within one or two orders of magnitude. However, in the strict 

definition, all inclusions are deformable when not perfectly rigid. In practice, it is difficult to 

determine whether natural pebbles exhibited perfectly passive or rigid behaviour. We 

therefore use three fields in the mean Rf- plot (Fig. 8) based on the structures shown in Fig. 2 

and the data in Fig. 3: (i) effectively passive, (ii) deformable and (iii) effectively rigid. 

Effectively passive pebbles stretch significantly and achieve an average aspect ratio (Rf) of ≥ 

20 at high finite strain (≥10). Because of the strong stretching, there is no discernable 

deflection or wrapping of a foliation (if present) around the pebbles. Effectively rigid pebbles 

maintain an average aspect ratio (Rf) of less than about two, even at high finite strains. Any 

developing foliation would show strong deflections around the nearly equidimensional 

pebbles. Deformable pebbles occupy the field in between the previous two in Fig. 8. Pebbles 

are visible stretched, but a foliation would still be deflected around the pebbles, indicating 

even higher strains in the matrix. The field for deformable pebbles can be divided into two: 

pulsating behaviour (cyclical stretching and ongoing rotation at high R and/or low C) and 

permanently stretching (low R and/or high C).  

In simple shear, initially approximately equidimensional pebbles follow trajectories in Rf 

-space, starting from around Rf=1 and =45° and moving towards one of the two fabric 

attractors with increasing strain. Rf and  values can be measured in naturally deformed 

pebbles and their means can be plotted in the Rf -graph to gain an estimate of their type of 

behaviour and the amount of strain, in case of permanently stretching pebbles. An example is 

given further below. 

Effectively passive and deformable pebbles in deformed conglomerates are the most 

important and thus most widely investigated, as their shape fabrics can be used for strain 
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analysis and rheology studies (e.g., Gay, 1968; Lisle et al., 1985; Treagus and Treagus, 2002; 

Czeck et al., 2009). In our simulations, for a given R, an increasing C enhances the aspect 

ratios (Rf) of pebbles but reduces their rotation (Figs. 3, 4; Ildefonse et al., 1992a,b; Samanta 

et al., 2003; Mandal et al., 2004; Marques et al., 2014). Our simulations allow comparison 

with existing models for the evolution of mean Rf as a function of strain (Rs), such as the 

equation proposed by Gay (1968): 

ln(𝑅𝑓) =
5∙ln(𝑅𝑠)

2𝑅𝜂𝐺𝑎𝑦+3
⇔ 𝑅𝜂𝐺𝑎𝑦 =

2.5∙ln(𝑅𝑠)

ln(𝑅𝑓)
− 1.5,  (3) 

where RGay is the calculated apparent viscosity ratio.  

 

Fig. 8. Mean Rf- plot for deformed conglomerates with different viscosity ratios (R) and 

concentrations (C). Perfectly passive and rigid behaviours are shown as solid red lines. The solid pink 
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line separates the pulsating and permanently stretching deformation behaviour. Dark blue dashed lines 

separate effectively passive, deformable and effectively rigid behaviours. Sub-vertical dashed lines are 

contours of the bulk finite strain (). 

Another solution proposed by Bilby et al. (1975) is also widely accepted for the calculation of 

strain and viscosity ratio. However, Treagus and Treagus (2002) showed no distinct difference 

between the equations of Gay (1968) and Bilby et al. (1975) and suggested to use Gay‘s (1968) 

equation for practical geological applications, which we also use here. It should be noted that 

Eq. (3) applies to a linear viscosity only. However, it may also serve to gain insight in the 

apparent viscosity contrast for cases where n≠1.  

Figure 9a compares our simulations with the Rf-strain curves from Gay (1968). The 

development of shape fabrics of pebbles is different from the predictions using Gay‘s (1968) 

theory for single inclusion in linear viscous rheology. Most of our results show larger 

Rf-values with increasing finite strain than predicted with Eq. (3). Pebble concentration has a 

critical effect on shape fabrics in our simulations, especially at high finite strain. For low 

C=10%, the shape development is similar to that in Gay‘s (1968) theory at low finite strain 

(Rs< 10). However, the simulations show an increasing deviation from the corresponding 

theoretical solution at middle to high finite strain (Rs＞10), even for a very low C (10%).  

 

Fig. 9. (a) Variation of mean aspect ratios (Rf) with increasing finite strain (Rs) for simulations with 
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different pebble concentrations and R for both linear (n=1, red to orange) and power-law (n=3, blue to 

green) rheologies. Our simulations are represented by the solid lines with data points and Gay‘s (1968) 

prediction as dashed lines. (b) Comparison of viscosity ratios (R) and calculated viscosity ratios 

(RGay) using Eq. (3). Most n=1 data lie below the black R=RGay-line, indicating that Eq. (3) tends to 

underestimate the viscosity contrast, especially at higher pebble concentrations. 

We use Eq. (3) to calculate apparent viscosity ratios (RGay) and compare these with the 

known R in our simulations (Fig. 9b). For n=1 and C=10%, RGay≈R within error. However, 

at higher C, but same R, pebbles deform more with the result that Gay‘s (1968) solution 

tends to underestimate the true viscosity ratio (R). The concept of an apparent viscosity ratio 

could potentially be used for power-law rheologies, where Fig. 9b gives RGay>R for n=3. 

However, we did not find a consistent relationship between R and RGay. 

4.2 Nature of pebble clusters 

In some simulations with rigid and deformable pebble behaviour, closely spaced pebbles form 

a cluster that behaves as a single pebble, resulting in low strain rate and consistent vorticity 

within the cluster (Figs. 6, 7). There are two types of clusters depending on their deformation 

behaviour: rigid and deformable clusters.  

In rigid clusters, the pebbles rotate together and not relative to each other (Fig. 6). However, 

they do not survive long, as after a short deformation increment, strain begins to localise in 

the matrix between pebble clusters until the clusters break up. Figure 6 gives an example of 

the formation and disintegration of rigid clusters in the simulation 30%𝑅𝜂10
𝑛3 . Pebbles A, B 

and C form a cluster from a finite strain of =4 (Fig. 6a-c). There is no shearing of the matrix 

between them (Fig. 6b) and the pebbles and matrix in between together rotate at the same rate 

(Fig. 6c), which is similar to that of other individual pebbles in the model. This cluster 

survives until a finite strain of =4.6 is reached, at which point the cluster disintegrates and 

each pebble behaves independently (Fig. 6d-f). Pebbles A and B move towards each other 

again until they form a new cluster during the finite strain interval between =6.3 and 6.7 (Fig. 
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6g-i).  

In Fig. 6, single pebbles rotate on average ca. 13.6 ° over a finite strain increment of ∆=0.5, 

whereas the cluster formed by pebbles A, B and C rotates over ca. 12.6 ° from =4 to 4.5 

(∆=0.5; Fig. 4). The rotation of the cluster is less than that of individual pebbles as well as 

the finite rotation according to Jeffery‘s (1922) analytical solution (14.3°). This is consistent 

with previous studies suggesting that clusters rotate more slowly than single pebbles 

(Ildefonse et al., 1992a; Jessell et al., 2009). However, cluster rotation is still within the range 

of individual pebble rotations. Considering the short-lived character of rigid clusters, our 

results suggest that the formation of rigid clusters does not strongly affect the rotation of 

pebbles at large finite strains. 

Figure 7 gives an example of evolution of deformable clusters in the simulation 30%𝑅𝜂2
𝑛3 . 

Contrary to rigid clusters, clusters of deformable pebbles deform into shapes similar to those 

of isolated individual pebbles (Fig. 7). The strain distribution in some deformable clusters is 

heterogeneous, as is the case for isolated pebbles. Deformable clusters survive for longer 

strain increments, and some even persist until the end of the simulations (Fig. 7j). In Fig. 7, 

clusters A and B form at =3.2 and 3.4, and collapse at =5.4 and 7.2, respectively (Fig. 

7.a-f,j). There is no shearing of the matrix between them (Fig. 7b,c) and the pebbles and 

matrix in between deform jointly at the same rate (Fig. 7b). However, cluster C forms at =4.6 

and remains up to =10 (Fig. 7g-j). Deformable isolated pebbles and clusters rotate rapidly 

towards the shear direction and then keep on elongating with minor further rotation in 

response to progressive deformation. The slow rotation facilitates the stability of deformable 

clusters, as opposed to rigid-pebble clusters.  

Our observations can be compared with the models proposed by Tikoff and Teyssier (1994). 

They suggested three models of trains (clusters) based on Jeffery‘s (1922) and March‘s (1932) 

theories: (1) Jeffery-rotating train model, (2) March-rotating train model and (3) March-fixed 

train model. In the Jeffery-rotating train model, both inclusions and trains rotate rigidly 



  Chapter 2 

61 
 

according to Jeffery‘s (1922) theory, and trains are short-lived (cf. Fig. 6). In the 

March-rotating train and the March-fixed train models, it is assumed that there is slip at the 

interface between inclusions and matrix and the shear localisation takes place around the 

inclusions. Inclusions rotate according to March‘s (1922) theory for passive markers and are 

not allowed to rotate past the shear plane. Trains persist for longer deformation increments in 

the March-rotating train model, whereas trains remain fixed in the March-fixed train model. 

The behaviour of rigid clusters (Fig. 6) in our simulations is consistent with the 

Jeffery-rotating train model. Our deformable clusters are present for longer deformation 

increments (Fig. 7), which is similar to the March-rotating and the March-fixed train models, 

even though our simulations do not allow slip along the pebble boundaries. 

5. A natural example from the North China Craton 

Our simulation results are compared with deformed Proterozoic conglomerates in the Hutuo 

Group, North China Craton. The Hutuo group is exposed in the Wutai Mountains area, in the 

Trans-North China Orogen (TNCO), where the Eastern and Western Blocks of the North 

China Craton collided at ~2.5 or ~1.85 Ga (e.g., Zhao et al., 2001; Li and Kusky, 2007; Fig. 

10a,b). The group is divided into three subgroups: the Doucun, Dongye and Guojiazhai 

subgroups from base to top (Bai, 1986). The deformed conglomerates have been interpreted 

as basal conglomerates at the base of Doucun Subgroups, which unconformably overlay the 

Wutai Group and Neoarchean granitoids and were deposited after ~ 2.2 or ~1.9 Ga (e.g., Bai, 

1986; Zhang et al., 2012; Du et al., 2017).  

In the Yangjiaogou area, the deformed conglomerates mainly consist of pebbles composed of 

deformed banded-iron formations (BIFs) embedded in a foliated greenschist matrix (Fig. 

10c,d). Matrix-supported conglomerates with a pebble concentration of about 7% appear 

strongly deformed with limited interactions between pebbles. Pebbles are visible stretched, 

but the foliation in the matrix is deflected around the pebbles. We therefore classify the 

pebbles as deformable. Asymmetric structures, such as sigmoidal pebbles and 
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delta-clast-shaped rolling structures indicate top-to-SW shearing (Fig. 10c). The stretching 

direction of boudinage quartz veins, which is oblique to the shear plane, also suggests a 

top-to-SW shearing (Fig. 10c). Although the exact kinematic vorticity of deformation could 

not be determined, we assume here that deformation was approximately simple shear because 

of the consistent asymmetry and sense of shear of all structures.  

 

Fig. 10. Deformed conglomerates in the North China Craton compared with our simulation. (a) 

Tectonic subdivision of the North China Craton (modified after Zhao et al., 2005). TNCO is the 

Trans-North China Orogen. (b) Simplified geological map of the Yangjiaogou area and location of the 

outcrop with deformed Hutuo Group conglomerates. (c) Rolling structure and a boudinaged quartz vein 

indicating top-to-the-left sinistral simple shear. The ratio between final and initial length of boudinage 

quartz vein is estimated at ca. 2.3. The diameter of the 1 dollar-cent coin is 19mm. (d) and (e) 

Interactions between pebbles in outcrop compared with our simulation 10%𝑣𝑟5
𝑛1  at a finite strain of 

eight.  

We use the geometries of boudinaged quartz veins to estimate the amount of shear strain, 
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using equations B.12 and 13b‘ of Ramsay and Huber (1987). The calculated finite strain is 

either 3.7 or 8.7 depending on the initial orientation of the vein (ca. 22 ° or −22 °) (see 

Appendix B for more details of the calculation). The formation of rolling structures (Fig. 10c) 

requires a significant rotation of pebbles of ≥150 ° at high finite strain. Together with the 

deflection of the foliation around the pebbles, this suggests that the finite strain is ca. 8.7, and 

not ca. 3.7. A low Rf of ~3.4 and an orientation of long-axes () nearly parallel to the shear 

plane (≈2.9°) was obtained from an analysis of 82 pebbles. The measurements and structures 

can be compared with our simulations with 10% pebble concentration characterized by minor 

interactions and the deflected foliation around pebbles (Fig. 10d,e). The mean of  is 

consistent with that in simulation 10%𝑅𝜂5
𝑛1  (Appendix A, Movie 1) at a finite strain of 8 to 10, 

whereas the mean of aspect ratios (Rf) is lower than that in simulation 10%𝑅𝜂5
𝑛1  at a finite 

strain of 8 to 10, thus suggesting a higher viscosity ratio (Fig. 11). An additional simulation, 

(10%𝑅𝜂8
𝑛1 ) with C=10% pebbles and a lower viscosity ratio (R=8) in linear rheology (n=1), 

was run for comparison with the deformed conglomerates in the Yangjiaogou area (Fig. 11). 

According to our Rf- plot (Fig. 8), we suggest that the viscosity ratio of deformed 

conglomerates in the Yangjiaogou area is 5 to 8 for a linear rheology (n=1) and 2 to 5 for a 

power-law rheology (n=3). The plot also suggests a finite strain of ≈6, close to the ≈8.7 

derived from the strain analysis on the boudinaged vein.  

The example from the Wutai Mountains shows that the graphs obtained from our simulations 

may aid to quantify the amount of deformation with relatively simple Rf and 

 measurements. Not only does one obtain an estimate of the finite strain, but also insight in 

the relative rheological properties of the lithologies involved.  
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Fig. 11. Mean Rf- plot for comparing the outcrop data (with one standard deviation error bars) of 

deformed conglomerates in the Yangjiaogou area compared with our simulations at different finite 

strains (γ) plotted on the graph of Fig. 8. 

6. Conclusions 

We use numerical simulations to model the viscous simple-shear deformation of 

conglomerates with different degrees of interaction between pebbles, by varying the 

concentration of pebbles and viscosity ratio between pebbles and matrix, in both linear and 

power-law viscous rheologies. Our results lead to the following conclusions: 

1. Pebbles can behave as rigid, deformable and passive inclusions depending on both the 

viscosity ratio and their concentration (volume fraction of pebbles).  

2. The effect of increasing pebble concentration is similar to a decrease of viscosity ratio 
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between pebbles and matrix, and vice versa. An increase in concentration and interaction 

enhances the pebble distortion, but reduces the mean rotation of rigid pebbles.  

3. Clusters of closely spaced pebbles can behave as single objects. Rigid clusters continue 

rotating, but survive for only a short strain interval. Deformable clusters initially rotate 

rapidly towards the shear direction, and then keep on elongating with minor rotation. The 

slower rotation facilitates the stability of deformable clusters. 

4. A mean Rf -

the amount of strain in cases of permanently stretching pebbles. 

5. A case study on deformed conglomerates of the Hutuo Group, North China Craton, 

illustrates the use of the mean Rf - , giving an estimate of the finite strain and 

viscosity contrast between pebbles and matrix. 
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Appendix A 

Movies of selected simulations, showing pebble and strain-rate distributions. Movie 1: 

10%𝑅𝜂5
𝑛1 , Movie 2: 45%𝑅𝜂5

𝑛1 , Movie 3: 30%𝑅𝜂2
𝑛3 , Movie 4: 30%𝑅𝜂10

𝑛3 , Movie 5: 45%𝑅𝜂2
𝑛3 . 

Appendix B 

The expression for the deformation of a linear marker under simple and pure shear in 2-D 

plane is given by Ramsay and Huber (1987; pp.283-286). We consider a line of unit length 

that joins coordinates (0, 0) and (x, y) and which has an angle α with the x-direction. After 

deformation, (x, y) is positioned at (x’, y’) and the line now has an angle α’ with the axis and 

its length is now 1+e. We assume homogeneous finite strain, described with: 

𝑥′ = 𝑎𝑥 + 𝑏𝑦 

𝑦′ = 𝑐𝑥 + 𝑑𝑦           (B1) 

where a, b, c and d are the elements of the position gradient tensor. For simple shear, the 

tensor is  

|
𝑎 𝑏
𝑐 𝑑

| = |
1 𝛾
0 1

|  (B2) 

The equation for the reciprocal quadratic extension (𝜆′ = 1/(1 + 𝑒)2) is given as: 

 𝜆′ =
1

2
(𝑑2+𝑐2−𝑎2−𝑏2) cos 2𝛼′−(𝑎𝑐−𝑏𝑑) sin 2𝛼′+

1

2
(𝑎2+𝑏2+𝑐2+𝑑2)

(𝑎𝑑−𝑏𝑐)2 . (B2) 

The relationship between  and ’ is: 

tan 𝛼 =
𝑐−𝑎 tan 𝛼′

𝑏 tan 𝛼′−𝑑
        (B3)  

The ratio between stretching and initial length (e) of the boudinage quartz vein in 

Yangjiaogou area (Fig. 10c) is estimated at ca. 2.3 and the angle (’) between boudinage 

quartz vein and shear plane is ca. 9.1°. Inserting these values into Eqs. (B2) and (B3) gives 

two solutions: =3.7 and =22° or  =8.7 and =-22°.  
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Abstract 

 

Folds within pebbles in conglomerates have been used to infer possible folding events before 

deposition of the conglomerate. However, it is not clear whether folds can develop within pebbles 

during deformation of conglomerates. We use the numerical modelling to investigate folding 

within internally layered pebbles in a ductile deformation up to a strain of eight in simple shear. 

We vary initial orientation and rheology of the layers, as well as the relative rheology of the 

conglomerate matrix, for single isolated pebbles and multiple, interacting pebbles in a power-law 

rheology. Folding within pebbles can occur, but is expected to be uncommon, as it only occurs 

within a narrow range of initial layer orientations and viscosity contrasts. Strongly deformed 

conglomerates from the Proterozoic Hutuo Group in the Wutai Mountains, North China Craton, 

contain a small percentage of pebbles with internal folds. We suggest that these formed during 

deformation of the conglomerate and do not represent inclusion into the unit of previously folded 

lithologies.  

  

Keywords: Folding; conglomerate deformation; Hutuo Group; North China Craton 
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1. Introduction 

Conglomerate deformation has been a subject of many studies in structural geology, in particular 

regarding tectonic evolution, strain determination and kinematics, deformation processes and 

rheology (Flinn, 1956; Ramsay, 1967; Lisle, 1985; Ramsay and Huber, 1983; Twiss and Moores, 

1992; Treagus and Treagus, 2002; Vitale and Mazzoli, 2005; Czeck et al., 2009; Fossen, 2016). 

Pebbles can deform passively (i.e. their deformation rate approximately equals that of the matrix) 

and rigidly (i.e. they only undergo very minor deformation). In between these two end members, 

deformable behaviour is defined as those that deform significantly, but distinctly less than their 

surrounding matrix (Ran et al., 2018a). Deformed pebbles record both the deformation history of a 

conglomerate and that of the source rock from which the pebbles were derived. The internal 

structures of layered or foliated pebbles can provide information on deformation process (Druguet 

and Hutton, 1998; Xu et al., 2003; Du et al., 2012). Druguet and Hutton (1998) provided a case of 

crenulated foliations within xenoliths in deformed magmatic bodies at Cap de Creus, Spain, which 

is similar to folded layers within pebbles. They used these crenulations to infer that the xenoliths 

were incorporated into the magma during syntectonic intrusion of that magma. Du et al. (2012) 

suggested that the folds within banded-iron-formation (BIF) pebbles in deformed conglomerates 

of the Hutuo Group, North China Craton, indicate a D1 deformation before the conglomerate was 

deposited. However, Zhang et al. (2012) argued that this D1 event affected the conglomerate and 

produced the folds inside the pebbles. The different interpretations have profound consequences 

for the inferred tectonic history. In the first scenario, the BIFs of the Wutai Group underneath the 

Hutuo Group would have been buried and subjected to a folding event before erosion and 

sedimentation of the Hutuo Group conglomerates. In the second scenario, the Wutai Group BIFs 

would have been undeformed when incorporated as pebbles in the conglomerate, thus removing a 

whole burial and exhumation cycle and deformation event between the two groups. Therefore, it is 

necessary to understand correctly if, when and how folds within pebbles in deforming 

conglomerates form.  

Many studies have addressed the deformation of inclusion-matrix systems, such as 
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conglomerates, investigating factors such as initial shape and concentration of inclusions, 

material properties, the behaviour of the interface between inclusion and matrix, etc. (Jeffery, 

1922; Lisle, 1979; Rosenberg, 2001; Treagus and Treagus, 2001, 2002; Treagus, 2002; 

Mancktelow, 2002, 2011; Mandal et al., 2003, 2005; Marques and Bose, 2004; Takeda and 

Griera, 2006; Jiang, 2007a,b, 2013; Jiang and Bentley, 2012; Johnson et al., 2009a,b; Griera et 

al., 2011, 2013; Dabrowski et al., 2012; Räss et al., 2016). However, to our knowledge, little 

is still known of the development of internal structures, such as folds, within inclusions during 

deformation. 

It is common that layered structures fold under ductile deformation. The development of 

folding is controlled by the viscosity contrast between layer(s) and matrix, mechanical 

anisotropy, thermal effects and other factors (e.g., Biot, 1961; Schmalholz and Podladchikov, 

2001; Hobbs, et al., 2008; Llorens et al., 2013a,b; Ran et al., 2018b). Biot (1961) predicted 

that the fold wavelength increases with increasing viscosity contrast between the layer and 

matrix. Schmalholz and Podladchikov (2001) investigated the influence of viscosity contrast 

on single layer folding under pure shear in linear and power-law rheologies, based on 

analogue and numerical experiments. Llorens et al. (2013a,b) extended the pure-shear 

deformation to simple shear using a finite-element method. Folding in non-coaxial shear is 

more complicated in coaxial shear, as the developing fold train rotates relative to the applied 

stress field (Treagus, 1973; Ramsay and Hubber, 1983; Viola and Mancktelow, 2005; Llorens 

et al., 2013a,b). In simple shear, fold trains rotate towards the extensional field and stretch 

again, possibly straightening out again completely (Llorens et al., 2013a). This aspect of 

folding is expected to be even more important in deforming conglomerates as layer 

orientation inside pebbles would vary from pebble to pebble and pebbles rotate themselves 

depending on their shape, orientation and the kinematics of deformation.  

Numerical modelling provides a method to simulate the viscous deformation of layered 

pebbles embedded in a matrix. The full-field, crystal-plasticity code VPFFT (Visco-Plastic 

Fast Fourier Transform) of Lebensohn (2001) and Lebensohn et al. (2009, 2011) coupled with 
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the ELLE software platform (Jessell et al., 2001; Bons et al., 2008; Piazolo et al., 2010; 

http://www.elle.ws) allows us to simulate geological processes achieving a high finite strain in 

linear or power-law rheology (Griera et al., 2011, 2013; Llorens et al., 2016a,b, 2017; Jansen 

et al., 2016; Steinbach et al., 2016, 2017; Gomez-Rivas et al., 2017; Ran et al., 2018a,b). In 

this study, we use the VPFFT+ELLE code to simulate high-strain viscous deformation of 

conglomerates with layered pebbles, varying the initial orientation of layers inside pebbles 

and the relative power-law viscous rheology of the hard and soft pebble layers, as well as that 

of the matrix. This study is restricted to simple-shear deformation, which we simulate up to a 

shear strain of eight. In addition, we provide a series of simulations of folding of a stack of 

alternating hard and soft layers to investigate the wavelength and amplitude as a function of 

viscosity ratio between the layers. Finally, we compare our numerical simulations with 

deformed conglomerates of the Hutuo Group in the North China Craton discussed above and 

provide an interpretation of folding within BIF pebbles.  

2. Methods 

2.1 The VPFFT+ELLE method 

We use the open-source numerical modelling platform ELLE (Jessell et al., 2001; Bons et al., 

2008; Piazolo et al., 2010; http://www.elle.ws), coupled with VPFFT code to calculate the 

stress, strain rate and resulting velocity field (Lebensohn, 2001; Lebensohn et al. 2009, 2011; 

Llorens et al. (2016b). The ELLE software handles the data structure, input and output and 

data visualisation (Bons et al., 2008). Most relevant previous studies that used this simulation 

software combination are Griera et al. (2011, 2013) and Ran et al. (2018a,b). The numerical 

approach we use here is as same as in Griera et al. (2011, 2013). We use a hexagonal 

symmetry model mineral to simulate the mechanical properties of the material, of which 

deformations by dislocation glide on the basal, pyramidal and prismatic planes. The resistance 

to shear of slip systems is calculated by means of the critical resolved shear stress (CRSS; ). 

The same value is set for the different slip planes and, hence, all materials are effectively 

http://www.elle.ws/
http://www.elle.ws/
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isotropic (see Griera et al., 2013). The relation between differential stress () and strain rate (𝜀̇) 

of the material is defined by: 

𝜀̇ = 𝐴 (
𝜎

𝜏
)

𝑛
,            (1) 

where A is a pre-exponential (scaling) factor, identical for all materials used in these 

simulations and n the stress exponent, set to n=3 here. We use the critical resolved shear stress 

() to define the viscosity () of each phase. In all cases matrix, and hence matrix, is set to unity. 

Hard and soft layers inside pebbles are equal to or more competent than the matrix by 

assigning them -values with hardhard)>hardsoft)≥matrixmatrix). We define the viscosity 

ratio R between soft and hard layers as R=hard/soft. The meaning of viscosity ratio is not 

strictly the same as viscosity contrast for a linear, Newtonian rheology, as viscosity is not 

constant in power-law materials, depending on the partitioning of stress and strain rate.  

The data structure of the models defined in ELLE consists of a contiguous set of polygons 

(termed flynns; Fig. 1a, c) and a set of unconnected nodes or Fourier points (termed unodes; 

Fig. 1b). The boundaries of flynns consist of straight segments connected by boundary nodes 

(termed bnodes; Fig. 1a, b) in either double- or triple-junctions. We use flynns to define 

single-phase regions, with the properties of either matrix, soft or hard layers within pebbles. A 

resolution of rectangular 256×256 unodes is used to store stress, strain rate and lattice 

orientation. The VPFFT code uses the unodes for calculation of viscoplastic deformation.  

In this study, three series of simulations are presented, i.e. (i) multi-layer folding, and 

deformation of (ii) a single and (iii) multiple pebbles. Starting models are square with a 

unit-cell size of 1×2 for multi-layer folding model and a unit-cell size of 1×1 for single- and 

multi-pebble models. Layers in the pebbles have a width of 0.0078× the unit-cell size. 

Multi-layer models consist of 64 competent layers and 64 soft layers, the same as the layered 

pebbles. Single-pebble models contain a circular inclusion with a diameter of 0.375× the 

unit-cell size embedded in matrix. Multi-pebble model contain multiple circular inclusions 
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with diameters of 0.125×, 0.1875× and 0.25× the unit-cell size. We use 6 and 21 randomly 

placed inclusions, corresponding to 18% and 47% concentrations of inclusions, respectively.  

Velocity boundary conditions with constant strain rate are applied in that velocities at the 

boundaries on average comply with pure shear deformation in multi-layer folding models and 

simple shear deformation in single- and multi-pebble models. Displacements (∆x) are derived 

from a linear integration of velocities (v) over a time increment (∆t): ∆x=v·∆t, to achieve 

strain increments for a vertical coaxial compression of ∆=0.01 /step and simple shear of 

∆=0.02 /step. The velocity field is used to incrementally move bnodes that define the flynn 

boundaries. The model is repositioned to the initial square unit cell and material properties are 

mapped back on the regular, square grid, as is required by the VPFFT method, before each 

next deformation step (Fig. 1d).  

Several parameters are systematically varied in the simulations (Table 1): (1) the viscosity 

ratio (R) between hard and soft layers for multi-layer folding simulations, (2) the initial 

orientation () of layers for single- and multi-pebble models, (3) the layer viscosities of hard 

and soft for single- and multi-pebble models, and (4) the concentration (C) of pebbles for 

multi-pebble models.  

The von Mises strain rate (or equivalent strain rate) normalized to the bulk von Mises strain 

rate for each unode is plotted to visualise the distribution of the strain rate intensity. The von 

Mises strain rate is the second invariant of the symmetric strain rate tensor.  
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Table 1. Settings for simulations  

Experiments 

name 

Hard 

layer 

viscosity 

Soft layer 

viscosity 

Viscosity 

ratio 

Matrix 

viscosity 

Stress 

exponent  

Initial layer 

orientation 

hard soft 
R=hard 

/soft 
matrix n (°) 

Multi-layer folding 

R2 2 1 2 1 3 
 

R 5 1 5 1 3 
 

R 10 1 1 1 3 
 

Single pebbble varing  

0 5 1 
 

1 3 0 

45 5 1 
 

1 3 45 

90 5 1 
 

1 3 90 

135 5 1 
 

1 3 135 

170 5 1 
 

1 3 170 

174 5 1 
 

1 3 174 

175* 5 1 
 

1 3 175 

176 5 1 
 

1 3 176 

178 5 1 
 

1 3 178 

Single pebbble varing  

1 1.5 1.5 
 

1 3 175 

2 2 1.25 
 

1 3 175 

3 3 1 
 

1 3 175 

4 3 1.2 
 

1 3 175 

5 4 1 
 

1 3 175 

6 4 1.25 
 

1 3 175 

7* 5 1 
 

1 3 175 

8 5 1.25 
 

1 3 175 

9 6 1   1 3 175 

*Simulation 175 is identical to simulation 7.  

 

Fig. 1. Data structure. (a) Boundary nodes (bnodes) define Flynns that define the phase boundaries and 
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sub-regions. (b) Unconnected nodes (unodes) are superimposed on these flynns and store physical 

properties and state variables. (c) The square unit-cell contains circular pebbles, with layers with 

alternating viscosity (dark grey and black), embedded in a homogeneous matrix (light grey) composed 

of a set of flynns that are visualised by white solid lines. (d) The model is repositioned into the initial 

square unit cell after each step for dextral simple-shear deformation. 

2.2 Model resolution 

Each model can be mapped with 2m × 2m undoes, with m a positive integer, which results in 

different resolutions of the models. To test the effect of different resolutions, we performed one 

multi-phase model with resolutions of 128×128, 256×256 and 512×512 unodes (Fig. 2). The 

models with 256×256 and 512×512 undoes show similar patterns of folds within inclusions, 

whereas the 128×128 model is distinctly different (Fig. 2a-c). The strain rate and stress 

localisation can be clearly identified in the inclusion layers with alternating viscosity in the 

256×256 and 512×512 models, but there is distinctly less strain rate localisation inside the 

inclusion in the 128×128 model (Fig. 2d-i). This test shows that a resolution of 128×128, where 

the individual layers are one unode wide, is not sufficient. As the results of the 256×256 and 

512×512 tests are almost identical, we chose 256×256 for all further runs as a compromise 

between resolution and calculation time. 
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Fig.2. Structures (a-c), normalized strain rate (d-f) and stress (g-i) in 128×128, 256×256 and 512×512 

resolution models, at simple-shear deformation (top-to-right) to a finite strain of four. The models use 

same initial structure that consists of an inclusion with alternating viscosity layers embedded in an 

isotropic matrix. 

3. Results 

3.1 Folding of multiple layers 

Layer thickening occurs more significantly in low viscosity ratio (R=2) case than that in 

high viscosity ratio cases (R=5 and 10), at 50% shortening in pure shear (Fig. 2b-d). The 

wavelength increases with increasing R, as does the fold amplitude, as is expected from 
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Biot's (1961) theory. In the simulation with R=2, the wavelength are much lower than that at 

high R, but the amplitude is too low to identify the folds clearly. For folds to develop inside 

pebbles, the wavelength of these folds must be smaller than the pebble (blue ellipses in Fig. 3). 

However, to be able to see any folding, amplitudes must be significant as well. For the given 

layer widths relative to pebble size, folding inside pebbles is thus only expected at viscosity 

ratios from 5 to 10.  

 

Fig. 3. Multi-layer initial structure (a) and folding after 50% vertical shortening, at viscosity ratio 

between competent (black) and soft (white) layers of R=2 (b), 5 (c) and 10 (d). Dashed and solid blue 

outlines show initial pebble and deformed shape and size under passive deformation of 50% 

shortening.  

3.2 Single-pebble simulations 

At a viscosity ratio of hard=5 and soft=1, the behaviour of pebbles and their layers are 

significantly controlled by initial angles () between layers and the shear plan (Fig. 4). At low  
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(0°, 45° and 90°), pebbles are extremely stretched and deform as if passive (Fig. 4a-c). The 

orientation of layers is close to that of pebble long axes. Layers are stretched along with the pebble, 

and are therefore not folded. At moderate  (135°and 170°), pebbles show pulsating deformation 

behaviour, with cyclical rotation and stretching (Ran et al. 2018a). Layers undergo limited 

stretching and bending. No folding can be observed in these cases. Foliations are wrapped around 

pebbles, which is visible by the deformed flynns in the matrix. At high (174°, 175°, 176° and 

178°), pebbles deform with deformable to passive behaviour. The orientation of layers is almost 

perpendicular to that of pebble long axes, and therefore undergoes significant shortening. Layer 

bending and folding can be observed from the center to margin. In our simulations, folding is only 

is observed when =174°, 175°, 176° and 178°. 

For a given initial angle of =175°, pebbles can deform as passive, deformable and rigid, 

depending on the relative viscosities of the layers and matrix (Fig. 5; Ran et al., 2018a). Increasing 

the soft (soft) and/or hard (hard) layer viscosity can switch pebble behaviour from passive (Fig. 

5a-c) to rigid (Fig. 5f,h). Folding within pebbles develops only in the simulations with viscosity 

settings of hard=3 and soft=1, hard=4 and soft=1, hard=5 and soft=1, hard=6 and soft=1.  
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Fig. 4. Deforming layered pebble with initial angle () of 0° (a), 45° (b), 90° (c), 135° (d), 170° 

(e), 174° (f), 175° (g), 176° (h) and 178° (i), at a viscosity setting of hard=5 and soft=1, for 

simple-shear deformation (top to right) up to a shear strain of =8. Hard and soft layers are grey 

and black, and flynn boundaries red.  
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Fig. 5. Deforming layered pebble with initial layer orientation of =175°, at different layer viscosity 

settings of hard=1.5 and soft=1.5 (a), hard=2 and soft=1.25 (b), hard=3 and soft=1 (c), hard=3 and 

soft=1.2 (d), hard=4 and soft=1 (e), hard=4 and soft=1.25 (f), hard=5 and soft=1 (g), hard=5 and 

soft=1.25 (h) and hard=6 and soft=1 (i), for simple-shear deformation (top to right) up to a shear strain 

of =8. Hard and soft layers are grey and black, and flynn boundaries red. 

3.3 Multiple pebbles 

A decrease in layer viscosity enhances pebble deformation, and vice versa, for a given pebble 

concentration (Fig. 6). Pebbles in single simulation show very different deformation behaviour. 
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They deform as both deformable and passive at same viscosity setting and shear sense, depending 

on the initial orientation of layers inside a pebble and relative positions of pebbles (Fig. 6). 

Folding is observed in low-concentration (C=18%) simulations under top-to-right shearing, but in 

all simulations with a high concentration of pebbles (C=47%).  

 

Fig. 6. Deformation of conglomerates with pebble concentration of C=18% (first row) and 47% 

(second row), at different viscosity settings of hard=5 and soft=1 (Colum II and IV) or hard=5 and 

soft=1.25 (Colum I and V), under top-to-left (Colum I and II) and top-to-right (Colum IV and V) 

simple-shear. Initial structures are shown in Colum III.  

4. Discussion 

4.1 Single pebble: initial orientation and viscosity of layers 

Pebbles can deform as effectively passive, deformable and rigid depending on viscosity contrast 

between pebble and matrix, pebble concentrations and other factors (Ran et al., 2018a). From low 

to moderate initial angles (0°≤α≤~90°), pebbles are significantly stretched and show passive 

deformation behaviour (Fig. 7). Layers within pebbles are stretched with pebble deformation. 

Only layer thinning and bending along with the pebble is observed. At high initial angles 

(~135°≤α≤~170°), pebbles are deformable, and layers are shortening or thinning (Fig. 7). 
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Deformation of the pebbles is very limited, and thus there is not enough shortening to develop 

folding within pebbles. In the case with α=170°, layer bending is recognized, but does not develop 

into folds. Folding within pebbles only develops at very high initial angles (~174°≤α≤~178°) (Fig. 

7). Pebbles are deformable and passive. Folding develops with suitable wavelengths and 

amplitudes that make folds recognizable. When α increases to ~180° (identical to 0° that shows 

horizontal orientation), the situation goes back to that of low α. At 0°≤α≤~135°, layers within 

pebbles are stretching (Fig. 7). Otherwise, they are shortening at ~135°＜α＜180°. Our results 

suggest that folds within pebbles only develop in a quite narrow window of initial layer 

orientations (~174°≤α≤~178°), for a given viscosity setting. In natural conglomerates, the 

distribution and orientation of pebbles can be expected to be random, and thus the initial angle α to 

range from 0° to 180° randomly. It allows us to infer that only few per cent of all pebbles is 

expected to develop folds.  

 

Fig. 7. Distribution of pebble deformation with different initial angles (α) between pebble layers and 

shear plane, at a viscosity setting of hard=5 and soft=1. Initial angle α of ~135° divide two types of 

behaviour: stretching and shortening. Folds within pebbles only develop at ~174°≤α≤~178°.  

Our simulations with different viscosity settings of pebble layers also show a quite narrow 
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window of conditions that lead to folding (Fig. 8). An increase in viscosity ratio between hard and 

soft layers within pebbles inhibits deformation of pebbles at a certain initial orientation of layers. 

It is identical to an increase in bulk viscosity of pebbles, i.e. increasing both layer viscosities, in 

our simulations, as well as in previous studies (Treagus and Treagus, 2001; Mandal et al., 2003; 

Vitale and Mazzoli, 2005; Takeda and Griera, 2006; Ran et al., 2018a). Increasing the viscosity of 

hard or/and soft layers reduces pebble flattening, and thus decreases layer shortening and bending. 

An excessive decrease in viscosity, however, leads to passive deformation: both pebble and layer 

get stretching and no folds develop. The simulations suggest two end member regimes of too 

―hard‖ to deform and too ―soft‖ for folding. There is only a narrow widow of initial layer 

orientations and viscosity conditions at which folds within pebbles can form. In natural 

conglomerates, it is not easy to achieve the conditions of orientation and viscosity of layers, and 

thus it is not common that folding within pebbles develop with conglomerate deformation.  

 

Fig. 8. Distribution of pebble deformation with an initial layer orientation of α=175°, at different layer 

viscosity settings from Fig. 5. An increase of layer viscosity reduces pebble deformation and inhibits 

folding development (i.e. too ―hard‖ to deform). A decrease of layer viscosity enhances pebble 

deformation (i.e. too ―soft‖ for folding), and results in passive deformation. Folding in pebbles only 

occurs in a narrow range of conditions.  
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4.2 Interaction effects 

In simulations with a low pebble concentration (C=18%), pebble A with =176° behaves more 

passively than that in the single pebble simulation with same , at layer viscosity of hard=5 and 

soft=1, under dextral shear. Pebble A at viscosity of hard=5 and soft=1.25 is similar to the single 

pebble simulation. In high concentration cases, pebble B with =0° and a given viscosity set 

deforms differently in sinistral and dextral shear simulations. In dextral simulations, folding is 

observed in pebble B. In contrast, pebble B stretches extremely in sinistral shear. It is also 

different from the observation of the single pebble simulation. Previous studies have addressed the 

effect of interactions and reveal that an increase in pebble concentration enhances pebble 

deformation (Mandal et al., 2003; Vitale and Mazzoli, 2005; Jessell et al., 2009; Ran et al., 2018a). 

Our results suggest that the interactions between neighboring pebbles can not only affect the bulk 

deformation of pebbles but also the internal structures within pebbles.  

4.3 Natural example 

Our simulation results are compared with deformed conglomerates in the Yangjiaogou area, 

which lie at base of the Proterozoic Hutuo Group, North China Craton, already discussed 

above (Du et al., 2012 and Zhang et al., 2012). Ran et al. (2018a) suggest the deformed 

conglomerates with pebble concentration of 7% had a viscosity ratio of 5 to 8 for a linear 

rheology (n=1) and 2 to 5 for a power-law rheology (n=3) and underwent an approximately 

simple shear strain of about six. The low pebble concentration in this conglomerate allows it 

to be compared with our simulations of single pebbles in a power-law rheology (n=3) matrix.  

The North China Craton is divided into three parts: the Eastern and Western blocks, and the 

Trans-North China Orogen (TNCO) where two blocks collided at ~2.5 or ~1.85 Ga (e.g., Zhao et 

al., 2001; Li and Kusky, 2007; Li et al., 2010). The Hutuo group is located in the Wutai Mountains 

area, the TNCO. There are three subgroups in the Hutuo Group from base to top: the Doucun, 

Dongye and Guojiazhai subgroups (e.g., Bai, 1986). The Hutuo Group consists of 

subgreenschist-facies to greenschist-facies sedimentary rocks and minor volcanic rocks that were 
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deposited after ~ 2.2 or ~1.9 Ga (e.g., Wilde et al., 2004; Li and Kusky, 2007; Liu et al., 2011). 

Previous studies interpret the deformed conglomerates as basal conglomerates at the base of the 

Doucun Subgroups, and suggest a uncomfortable contact between the Hutuo Group and the lower 

Neoarchean granitoids and the Wutai Group composed of metamagmatites and metasedimentary 

rocks from subgreenschist-facies to amphibolite-facies, intercalated with banded-iron formation 

(BIF) units (e.g., Bai, 1986; Wilde et al., 2004; Du et al., 2012). Pebbles in the Hutuo Group 

conglomerates consist mostly of the Wutai Group lithologies. BIF pebbles are dominating in the 

Yangjiaogou area, the Wutai Mountains. In the Yangjiaogou area, BIF pebbles are significantly 

deformed, and the foliation in the matrix wraps around stretched and rotated pebbles. Layer 

folding can be identified within BIF pebbles that occur only in a few amounts. The folding within 

pebbles and foliation patterns are identical to our simulations.  

As we discussed in Introduction, it is not understood well when pebble-layer folding develops in 

the Hutuo Group conglomerates: before or after conglomerate deposition (Zhang et al., 2012; Du 

et al., 2012). If BIFs from the Wutai Group underwent a significant deformation leading to folding 

before conglomerate deposition, folds within pebbles should be common. It is different from our 

field observations in the Yangjiaogou area, where such folds do occur, but only in a small fraction 

of all pebbles. Our simulations indicate that the development of folding within pebbles requires a 

narrow range of initial orientations of pebble layers and viscosity contrasts between pebble layers 

and matrix. Folds within pebbles are therefore scarce, which is conformed to our field 

observations in the Yangjiaogou area. We suggest that the layer folding within pebbles formed 

after the conglomerate sedimentation. This indicates that there was no major tectonic event 

between formation of the Wutai and Hutuo Groups. The underlying Wutai Group would not have 

undergone a full cycle of burial, deformation and erosion before deposition of the Hutuo Group. 

Therefore, our simulations, together with field observations in the Yangjiaogou area, suggest that it 

is necessary to reconsider the relationship between the Hutuo and Wutai Groups and the tectonic 

processes in the TNCO.  
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Fig. 9. Deformed conglomerates with BIF pebbles in the Wutai Mountains, North China Craton and 

selected comparable simulations. (a) Tectonic subdivision of the North China Craton (modified after 

Zhao et al., 2005). TNCO-Trans-North China Orogen. (b) Simplified geological map of the 

Yangjiaogou area and location of the outcrop of deformed conglomerates with BIF pebbles (from Ran 

et al., 2018b). (c-e) Deformed conglomerates with BIFs pebbles in the Yangjiaogou area. Folding 

within BIFs pebbles can identified in (d) and (e). The diameter of the 1 dollar-cent coin is 19mm. (f-g) 

Simulation results with single pebble of 174 (f) and 9 (g) at simple-shear strain of eight, compared 

with deformed conglomerates in the Yangjiaogou area.  

5. Conclusions 

We use the VPFFT+ELLE method to numerically model the development of folding within 

layered pebbles during ductile simple-shear deformation, varying the initial orientation and 
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viscosity settings of layers, in power-law rheology, up to finite strain of eight. Additionally, 

multi-layer folding is simulated to investigate the effect of viscosity contrast between hard and 

soft layers, under ductile pure shear of 50% shortening. Our numerical modelling results lead to 

the following conclusions:  

1. Layers within pebbles can stretch, shorten and/or bend, depending on the initial orientation of 

layers relative to the shear plane, for a given viscosity setting, under ductile simple shear. 

Only a quite narrow range of initial orientations (with our settings from ~174° to ~178°) can 

result the development of folds within pebbles. 

2. Deformation of layers within pebbles and pebbles is significantly affected by the viscosity of 

hard and soft layers, for a given initial orientation of layers. A high viscosity ratio between 

layers and matrix leads to rigid deformation of pebbles. At the other end of the spectrum, a 

low viscosity ratio results in passive deformation. Only a narrow range of viscosity ratios 

between them can lead to folding within pebbles.  

3. Deformation of conglomerates with multi-pebble show that the concentration of pebble 

enhances pebble deformation, and the interactions between neighboring pebbles affect layer 

deformation.  

4. Folding development within pebbles requires quite limited conditions of the initial orientation 

of layers and viscosity ratios between layers and matrix. The difficulty in developing folds 

within pebbles suggests that BIF pebbles with rare folds in deformed conglomerates of the 

Hutuo Group in the Wutai Mountains, China, developed during conglomerate deformation. 

This may remove a major tectonic event between formation of the Hutuo Group and the 

underlying Wutai Group. 
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Abstract 

The forty-year history of the Journal of Structural Geology has recorded an enormous 

increase in the description, interpretation and modelling of deformation structures. Amongst 

factors that control deformation and the resulting structures, mechanical anisotropy has 

proven difficult to tackle. Using a Fast Fourier Transform-based numerical solver for 

viscoplastic deformation of crystalline materials, we illustrate how mechanical anisotropy has 

a profound effect on developing structures, such as crenulation cleavages, porphyroclast 

geometry and the initiation of shear bands and shear zones.  

 

Keywords: Mechanical anisotropy; porphyroclasts; strain localisation; folds; shear zones 
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1. Introduction 

Structural geologists have used a range of structures to determine deformation histories of 

rocks (e.g. Treagus, 1982; Ramsay and Huber, 1987; Hudleston and Lan, 1993; Passchier and 

Trouw, 2005). Many of these structures, such as folds and structures around rigid objects (i.e. 

porphyroclasts and porphyroblasts) are controlled by contrasts in the mechanical properties of 

the different minerals involved. These structures are therefore typically treated as 

inclusion-matrix (IM) systems, with typically a stronger inclusion phase (porphyroclasts, 

boudins, folding layers) embedded in a softer matrix.  

To improve and quantify the interpretation of structures observed in the field, geologists have 

developed increasingly complex models for IM systems. Initially these were based on 

pioneering analytical models, such as those by Jeffery (1922), Eshelby (1957) and Ramberg 

(1962) for rotation of elliptical inclusions and Biot (1961) for folding of a single layer in a 

softer matrix. Taylor (1938) recognised the importance of the anisotropy of crystal plasticity 

to the development of crystallographic preferred orientations, and Kamb (1972) first 

explained how this could modify dynamic recrystallization in ice. The 40-year history of the 

Journal of Structural Geology has seen the advent and blossoming of numerical modelling to 

simulate a range of IM structures, thus helping geologists to understand how they form. Since 

the earliest computer simulations, models have steadily increased in sophistication and 

resolution. Early computers were usually restricted to linear, Newtonian rheology (e.g. 

Dieterich, 1970). Non-linear rheology, assumed common in rocks (Kirby, 1983; Carter and 

Tsenn, 1987), has now become a standard ingredient in models (Huddleston and Lan, 1994; 

Bons et al., 1997; Jessell et al., 2009; Mancktelow, 1999; 2011; Schmalholz and Maeder, 2012; 

Llorens et al., 2013a; Gardner et al. 2017). Boundary conditions in early models were usually 

restricted to pure shear conditions. However, many natural high-strain structures of interest 

typically develop in mylonites that deform close to simple shear (e.g. Passchier and Trouw, 

2005; Gomez-Rivas et al., 2007). Simple shear deformation was therefore already applied to 

these IM systems early on (Jezek, 1994; Bons et al. 1997), but, for example, systematic 

modelling of folding in simple shear started much later (Viola and Mancktelow, 2005; Llorens 

et al., 2013a,b). The steadily increasing calculation speed of computers has allowed modellers 

to reach ever-higher finite strains (e.g. Schmalholz et al., 2001; Jessell et al., 2009; Dabrowski 

and Schmid, 2011; Dabrowski et al., 2012; Grasemann and Dabrowski, 2015). Additional 

factors and processes, such as shear heating, strain softening, slipping phase boundaries, 

grain-size effects, etc. have also been incorporated in models (Schmalholz and Podladchikov, 
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1999; Marques et al., 2005a,b, 2014; Schmalholz, 2006; Hobbs et al., 2008; Mancktelow, 

2013; Montagnat et al., 2014; Gardner et al., 2017, among others). 

Despite the enormous progress in IM-system modelling, there seems to be one elephant left in 

the room that is still commonly overlooked or ignored in these numerical models: anisotropy. 

Many material properties are known to be highly anisotropic in rocks and minerals, including 

magnetism, thermal expansion, elasticity, surface energy and mineral slip system activity. 

Early numerical simulations studies recognised the importance of mechanical anisotropy to 

the production of crystallographic preferred orientations in rocks (Taylor, 1938; Kröner, 1961; 

Etchecopar, 1977; Lister et al., 1978), and these have also been shown to be significant in the 

formation of larger-scale geological structures. For example, a field geologist would probably 

interpret the structure in Fig. 1a as follows (Druguet et al., 1997): the rock is a foliated biotite 

schist with a first foliation S1 formed by aligned biotite grains. The foliated schist and a 

younger quartz vein were then deformed in a second event (D2), which led to buckle folds in 

the vein and the formation of an axial-planar crenulation cleavage (S2) in the schist. The 

quartz vein folds are comparable with those in numerical simulations and these folds from 

Cap de Creus (Spain) have indeed been used to compare with and validate numerical models 

(Llorens et al., 2013a,b). However, folds in the matrix look completely different. Whereas the 

quartz vein forms approximately parallel buckle folds, the crenulations in the schist are closer 

to similar folds (Fig. 1a). Structural geologists are aware that this is because the schist already 

has a distinct S1-foliation, and is, therefore, strongly anisotropic. Although the importance of 

anisotropy for folding is known for decades (e.g. Bayly, 1970; Cobbold et al., 1971; Fletcher, 

1974; Watkinson, 1983; Weijermars, 1992; Zhang et al., 1993), most numerical simulations 

have been of buckle folds in isotropic matrices (see Hudleston and Treagus (2010) for a 

review), with relatively few exceptions, mostly dealing with chevron folds (Mühlhaus et al., 

2002; Kocher et al., 2006, 2008; Jansen et al., 2016; Schmalholz and Mancktelow, 2016). 

This example illustrates clearly that mechanical anisotropy needs to be taken into account 

when realistically modelling geological structures. Below we give examples of incorporating 

the effect of mechanical anisotropy in simulations of folding, -/-clast formation and shear 

localisation. 

In the following section, we present a numerical method that allows geologists to assess the 

influence of anisotropy in the development of geological structures. This is followed by a 

number of examples of models highlighting the fact that anisotropy of material properties 

may be one of the ―missing‖ keys to understand geological structures, holding much promise 

for future investigations. 
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Fig. 1. (a) Folded quartz vein in biotite-schist matrix at Puig Culip (Cap de Creus, Eastern Pyrenees, 

Spain). The matrix has a first cleavage (S1, solid yellow lines) that is crenulated to develop an 

S2-cleavage (white dashed lines), axial planar to the vein folds. One Euro coin for scale, Ø=23 mm. 

(b-c) Finite-element simulations of folding of a single competent layer embedded in a weaker, isotropic 

matrix (same as presented in Llorens et al., 2013a,b). (b) dextral simple shear up to a shear strain of 2, 

and (c) vertical pure shear up to 55% shortening. (d-e) VPFFT-ELLE simulations of single layer 

folding in an anisotropic matrix (A=20) in (d) dextral simple shear up to a shear strain of 1, and (e) 

vertical pure shear up to 50% shortening. Note that the anisotropy in the matrix results in an axial 

planar crenulation cleavage, comparable to the one shown in (a). Grey area in insets is area of model 

shown. 

2. The full-field crystal plasticity approach 

At the grain scale, the crystal structure results in anisotropic behaviour of many physical 

properties. This is particularly relevant for viscous deformation accommodated by dislocation 

glide along particular slip systems (Frost and Ashby, 1983). Montagnat et al. (2014) provide 

an example of the many approaches that have been applied to model single- and polycrystal 

deformation of the mechanically highly anisotropic mineral ice Ih. Here, our simulations of 

polycrystalline aggregates with intrinsic anisotropy (i.e. anisotropy well developed at all 

scales) are based on the full-field VPFFT crystal plasticity code (Lebensohn, 2001), which 
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calculates the viscoplastic deformation for a polycrystalline aggregate using a Fast Fourier 

Transform-based numerical solver. The VPFFT code solves the micromechanical problem by 

finding the strain rate and stress fields that minimize the average local work-rate satisfying 

the constitutive relation at local level, under the constraints of strain compatibility and stress 

equilibrium (see Lebensohn (2001), Lebensohn et al. (2008; 2009) and Montagnat et al. (2014) 

for a more detailed description of the theoretical framework and the numerical algorithm, and 

Griera et al. (2013) and Llorens et al. (2016a,b) for the coupling with the ELLE 

microstructural simulation platform). 

In geology the coupling of the full-field crystal plasticity VPFFT (Viscoplastic Full-Field 

Transform) method by Lebensohn (2001), Lebensohn et al. (2008) and the ELLE 

microstructural simulation platform (Jessell et al., 2001; Bons et al., 2008; Piazolo et al. 2010; 

http://www.elle.ws) has allowed the systematic simulation of deformation and 

recrystallization of polycrystalline rocks (such as ice and halite, e.g. Griera et al., 2011; 2013; 

Llorens et al., 2016a,b; 2017; Steinbach et al., 2016; 2017; Gomez-Rivas et al., 2017). In 

these cases, the polycrystalline aggregate is discretised into a periodic, regular mesh of nodes 

that store properties such as lattice orientation and dislocation density. These nodes act as 

Fourier Points in the VPFFT code and as unconnected nodes (unodes) in ELLE routines. 

Therefore, the integration between VPFFT and ELLE is based on the direct one-to-one 

mapping between the data structures of the two approaches. It is important to note that the 

VPFFT method is essentially scale independent and can therefore be used to simulate 

geological structures that have an inherent mechanical anisotropy ranging from small-scale 

(e.g. shear sense indicators, grain scale stress heterogeneities) to large-scale features (e.g. 

layers with contrasting rheology). 

Here, we present a number of examples utilizing the VPFFT-ELLE method. In these examples 

the mechanical properties of the polycrystal are simulated assuming a "numerical mineral" 

with hexagonal symmetry, as was used by Griera et al. (2011; 2013) to model 

porphyroclast/-blast systems. With this symmetry, deformation is allowed to be 

accommodated by glide on the basal plane (basal slip) and along non-basal planes (pyramidal 

and prismatic slip). In this approach the grain anisotropy parameter (A) that accounts for the 

degree of anisotropy is defined as the ratio of the critical resolved stresses (cr) of the 

non-basal basal and basal slip systems (e.g. Lebensohn et al., 2009). A is comparable to the 

ratio between normal and shear viscosity as employed by e.g. Mühlhaus et al. (2002) and 

Kocher et al. (2006, 2008). For all examples, a stress exponent of n=3 is assumed for all slip 

systems.  
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3. Examples 

In the following, examples we contrast the effect of different material behaviour in terms of 

anisotropy on the characteristics of developing geological structures during deformation.  

3.1. Single layer folding: The effect of matrix anisotropy 

In our example, we first show deformation of a layer embedded in an isotropic matrix, using a 

non-linear viscous finite element method (BASIL, Houseman et al., 2008) within ELLE (Fig. 

1b-c). BASIL is a finite element deformation module that simulates viscous deformation of a 

2D sheet in plane-strain. BASIL can be coupled within ELLE in order to calculate the viscous 

strain rates and the associated stress field for different boundary conditions (i.e. from pure to 

simple shear). The grid of regularly spaced unconnected nodes (unodes) is used to track the 

deformation history and deformation field through passive lines initially parallel to the 

folding layer. ELLE uses both horizontally and vertically wrapping boundaries, allowing the 

model to be periodic in all directions. This approach reduces detrimental boundary effects and 

simplifies visualisation of the model at very high strains. See Jessell et al. (2005), Bons et al. 

(2008), and Jessell et al. (2009) for details about BASIL and ELLE.  

In our simulations, we assigned homogeneous rheological properties to the polygons (Fig. 

1b-c) that define the layer and matrix. With no variation in properties within the material, 

perturbations in the layer surface are critical for the resulting folds (Mancktelow, 1999; Zhang 

et al., 2000). Small variations in layer thickness were therefore introduced to initiate folding, 

as in Llorens et al. (2013a,b). 

Figures 1b and 1c show the results for folding a single layer in simple and in pure shear, 

respectively. In BASIL, the rheology is defined by a power-law of the type: 

 ,        (1) 

with  the strain rate and  the differential stress. The competence contrast between layer 

and matrix is defined here by the ratio of Blayer/Bmatrix, set to 50 here (Table 1). Passive grid 

lines, originally parallel to the competent layer, show the deformation within the matrix. 

Folding decreases in intensity away from the "zone of contact strain" (Ramberg, 1962) near 

the layer, and strain is approximately homogeneous at the lateral edges of the model. 

In Fig. 1d-e, we present two numerical simulations of single competent layer folding in an 



  Chapter 4 

108 

 

anisotropic matrix using the VPFFT-ELLE code with power-law rheology. Initially, the basal 

slip plane of grains (individual square elements in the 256×256 element model) in the matrix 

were aligned approximately parallel to the layer. Therefore, starting models can be regarded 

as representing a foliated or mica-rich rock with anisotropy. The noise to initiate folding now 

derives from the small random variations in lattice orientation in the layer and matrix. The 

competent layer was set to be isotropic, with acr five times higher than the non-basal slip 

systems of the matrix. Their cr in turn was set at 20 times that of the basal slip system, giving 

an anisotropy factor A of 20 (Table 1). Under pure and simple shear, the geometry of the 

folded single layer in the anisotropic matrix is similar to that in isotropic matrix (Fig. 1b-c). 

However, the geometry of microfolds represented by passive gridlines in the anisotropic 

matrix is very different from those in isotropic cases. The grid lines are folded in similar-type 

folds or crenulations that do not decay away from the competent layer (similar to results 

obtained by Kocher et al., 2006). Fold hinges align to form an axial-planar crenulation 

cleavage. The resulting geometry is similar to that of the natural example (Fig. 1a), with the 

passive gridlines representing S1 and the crenulation cleavage S2.  

Table 1. Summary of method, deformation and properties of the models described in the text. All 

models were run using the ELLE platform.  

Figure Method
a
 Deformation Properties   

   Layer  Matrix  

Fig. 1b FEM simple shear B=50 B=1  

Fig. 1c FEM pure shear B=50 B=1  

Fig. 1d VPFFT simple shear cr(all)=100 cr(basal)=1 

cr(other)=20 

 

Fig. 1e VPFFT pure shear cr(all)=100 cr(basal)=1 

cr(other)=20 

 

   Core object Mantle Matrix 

Fig. 2a VPFFT simple shear cr(all)=50 cr(all)=0.8 cr(all)=1 

Fig. 2b VPFFT simple shear cr(all)=50 cr(all)=4 cr(basal)= 1 

cr(other)=10 

   Strong phase Intermediate  Weak phase 

Fig. 3b VPFFT simple shear cr(all)=30 cr(all)=15 cr(basal)= 1 

cr(other)=10 

   Whole model   

Fig. 4 VPFFT simple shear cr(basal)= 1 

cr(other)=1, 5, 20 

  

a
 FEM=finite element method with BASIL (Houseman et al., 2008). VPFFT= Viscoplastic Full-Field 

Transform method (Lebensohn, 2001), using 256×256elements. 

3.2. Mantled porphyroclasts: - or -clasts? 

- and -clasts, or more general mantled porphyroclasts are extremely useful shear-sense 

indicators (Passchier and Simpson, 1986; Hanmer and Passchier, 1991; Grasemann and 
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Dabrowski, 2015). These typically consist of a core porphyroclast with wings or tails of 

recrystallised material. Most studies addressed the rotation rate of isolated competent 

inclusions during deformation as a function of factors such as the object shape, stress 

exponent, and slipping object-matrix boundaries (e.g. Ghosh and Ramberg, 1976; Bons et al., 

1997; Mandal et al., 2000; ten Grotenhuis et al., 2002; Schmid and Podladchikov, 2005; Fay 

et al., 2008; Dabrowski and Schmid, 2011; Griera et al., 2011, 2013; Mancktelow, 2011, 2013; 

Jiang, 2016). Although the role of anisotropy was recognised early on (e.g. Passchier et al., 

1992), only Dabrowski and Schmid (2011) and Griera et al. (2011; 2013) actually included 

anisotropic flow properties in their numerical models. Main outcomes of these studies are that 

the rotation rate and the strain field around an object are affected by anisotropy.  

With a strong emphasis on the ongoing rotation versus non-rotation of porphyroblats debate 

(Bell et al., 1992; Passchier et al., 1992), little attention has been given to the question what 

causes mantles porphyroclasts to either form  or  geometries. The main model is that this 

depends on the weakness of the mantle (or slipping interface) and its thickness relative to the 

size of the central object, with thick mantles forming -clasts and thin ones -clasts 

(Passchier and Sokoutis, 1993; and review of Marques et al., 2014). Bons et al. (1997) already 

suggested that anisotropy of the matrix would inhibit rotation, leading to the formation of 

-clasts. Here we show an example of the effect of anisotropy on the developing shape of a 

mantled porphyroclast, again using the VPFFT-ELLE code.  

In the isotropic case (all slip systems of one phase have the same cr; Table 1), the core 

object's cr was set at 50x that of the matrix, while that of the mantle was 0.8x that of the 

matrix. Deformation is homogeneous in case of an isotropic mantle and the central object 

rotates at a rate close to the analytical solution of Jeffery (1922) (Griera et al., 2011; 2013) 

(Fig. 2a). Wings develop by smearing out of the mantle and as the points where the wings 

attach to the object rotate along with the object, a -clast develops (Fig. 2a). When the mantle 

is distinctly softer (cr=4) than the object (cr=50), and the matrix is anisotropic (A=10, with 

cr=1 for the basal slip system and cr=10 for non-basal slip systems), deformation in the 

matrix is highly heterogeneous and folds and shear bands develop (Griera et al., 2011; 2013). 

Rotation of the object is now inhibited (contrary to the analytical model of Fletcher, 2009) 

and the attachment points of the wings do not rotate enough to develop the distinct 

embayments of -clasts (Fig. 2b). Instead, a -clast forms.  
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Fig. 2. VPFFT-ELLE-simulations of a circular hard object (dark red), deformed to a dextral simple 

shear strain of ten, with a softer mantle (black), embedded in an (a) isotropic or (b) anisotropic matrix 

(A=10). Strain distribution is illustrated by the boundaries of the originally equidimensional elements. 

White arrows show the total amount of rotation of the objects. Ongoing rotation of the object in the 

isotropic matrix leads to the development of a -clast, while an anisotropic matrix leads to strongly 

heterogeneous matrix deformation, reduced object rotation and, hence, development of a -clast. 

These results confirm the observations of Griera et al (2013) that the incorporation of 

anisotropy provides an elegant way to explain controversies in structural geology regarding 

the duality between rotation or non-rotation of porphyroblasts (Bell et al., 1992; Passchier et 

al., 1992). Spiral geometries of inclusions preferentially develop in isotropic conditions, while 

an increase in anisotropy tends to reduce rotation of porphyroblasts of which the inclusion 

trails then indicate growth over a crenulated matrix.  

3.3. Shear bands in composite materials 

Structures in natural and modelled shear zones are determined in part by the strength contrast 

between minerals and slip systems within minerals. Weak minerals define the foliation 

(S-surface) at 45° from the shear zone boundary, and planes progressively rotate into 

parallelism with the shear zone boundary and the C-surface (Fig. 3a). Less well understood is 

the development of C' shear bands (Fig. 3a), despite their ubiquity in shear zones in nature, 

experiments, and models (White, 1979; Platt and Vissers, 1980; Platt, 1984; Dennis and Secor, 

1987). C' shear bands dip at an angle of ~15–35° from the shear zone boundary, in the 

opposite direction to the main foliation (or S plane; White, 1979; Platt and Vissers, 1980) and 

show synthetic, normal shear sense (Fig. 3a). They are most common in well-foliated rocks 
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such as schists and phyllites (Passchier, 1991; Delle Piane et al., 2009) and so it has been 

suggested that anisotropy is required for their development (Wilson, 1984; Goodwin and 

Tikoff, 2002).  

 

Fig. 3. C' shear bands in (a) a naturally deformed rock and (b) an VPFFT-ELLE simulation with a 

weak (black), intermediate (white) and strong (pink) phase. St = staurolite, Qtz = quartz, Bt = biotite. 

The S-foliation is highlighted with blue lines, C-planes with green lines and C'-planes with dashed 

green lines. 

We used VPFFT-ELLE to model the development of C' shear bands in anisotropic materials, 

building on the work of Jessell et al. (2009) by testing the proportion of weak phase required 

for the development of C' shear bands in three-phase models and by introducing anisotropy to 

the crystallography of the weakest phase. The model shown (Fig. 3b) included a strong, 

intermediate, and a weak phase, the latter of which had a basal plane ten times weaker than 

prismatic and pyramidal planes (i.e. A=10). We found that C' shear bands formed in all 

models with >1% weak phase and were more abundant in models with a higher proportion of 

weak phase. In nature (Fig. 3a) and in models (Fig. 3b) C' shear bands are dominantly defined 

by the weakest phase.  

3.4. Shear localisation 

Shear localisation develops at almost all scales in ductile rocks. For example, the shear zones 

in Cap de Creus (NE Spain) are linked in an anastomosing framework with self-similar 

properties, where a pre-existing foliation in the metasediments have led to instabilities, 

forming shear zones at a wide range of scales (Druguet et al., 1997; Carreras, 2001; Fusseis et 
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al., 2006; Schrank et al., 2008). In polar ice sheet dynamics, the behaviour of large ice masses 

is strongly influenced by visco-plastic anisotropy of grains and their ability to form a lattice 

preferred orientation (LPO) by lattice rotation (Azuma and Higashi, 1985; Alley, 1988). The 

flow of glaciers and polar ice sheets is controlled by the highly anisotropic rheology of Ice Ih 

crystals (Azuma, 1994; Bons et al., 2016; Llorens et al., 2016a,b; Llorens et al., 2017), which 

may lead to high strain zones in the glaciers and polar ice sheets (Marmo and Wilson, 1998) 

and folding (Bons et al., 2016; Jansen et al., 2016).  

To show how anisotropy (defined by the parameter A) affects localisation, we simulate the 

deformation of a pure, single-phase polycrystal in dextral simple shear (Fig. 4) up to a shear 

strain of 1.5 with VPFFT-ELLE described above. Basal planes were initially randomly 

oriented. Strain localisation occurs only in anisotropic cases (A>1), as can be seen by the 

passive deformation of the polygon boundaries that originally had a foam texture (Fig. 4a) 

and the map of the normalised Von Mises strain rate field (Fig. 4b). High strain-rate rate 

bands oriented at a low angle to the horizontal shear plane are clearly visible (Fig.4a and b), 

especially at high anisotropy values (A>>1). 

The frequency distribution of normalised strain rates, at a shear strain of three, in the isotropic 

material (A=1) is approximately normal (Fig. 4c). Simulations with A>1 show frequency 

distribution that deviate from normal distribution (Fig. 4c) and are closer to log-normal. 

However, they are not exactly log-normal, as they become heavy tailed for large strain-rate 

values. Higher strain rate values become overrepresented with values up to 20 times the mean 

for A=20. Therefore, a material with a higher degree of anisotropy will reach significantly 

higher strain rate values due to strain localisation. As a result, most of the material deforms at 

a significantly lower rate than the mean strain rate, as can be seen by the leftward shift of the 

frequency peak in Fig. 4c. 
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Fig. 4. VPFFT-ELLE simulations of polycrystals deformed in dextral simple shear up to a shear strain 

of 3 and with increasing degree of grain anisotropy (A) from 1 to 20. Anisotropy is defined as the ratio 

between the critical resolved shear stress (cr) required to activate the non-basal and basal slip systems. 

(a) Grain boundary network and (b) Von-Mises shear strain rate field, normalized with respect to the 

bulk value. For better visibility figures of Von Mises strain rate field have been enlarged two times, 

only showing the lower right quarter of the model. (c) Frequency distribution of normalised Von-Mises 

strain rates for different anisotropy values. Whereas the distribution for A=1 is approximately normal 

with a mean of one, higher A-values lead to a frequency peak below the mean and a "heavy tail" of 

high strain rate values. Inset shows the same data, but with a linear vertical scale. 

4. Discussion and conclusions 

The examples described in previous sections provide a brief glimpse into the effect of 

intrinsic mechanical anisotropy (Griera et al. 2013) on deformation structures in rocks. In all 

cases, anisotropy caused heterogeneous strain: expressed in the axial planar crenulation 

cleavage in Fig. 1d-e; folds and shear bands in the matrix of the -clast in Fig. 2b; and shear 

bands in shearing multiphase (Fig. 3) and single-phase (Fig. 4) models. The strain localisation 

may be the most interesting aspect here. Processes such as shear heating and grain-size 

reduction have been considered in detail as causes for strain localisation (Tullis and Yund, 

1985; Braun et al., 1999; de Bresser et al., 2001; Bercovici, 2003; Jessell et al., 2005; Kaus 

and Podladchikov, 2006; Platt and Behr, 2011; Montési 2013). Mechanical anisotropy may be 

of equal importance, leading to shear zones from the grain scale (Fig. 3) to possibly 

continental sutures, similar to the damage model of Bercovici (2014).  

In this paper we have used to VPFFT+ELLE numerical code to illustrate the effect of intrinsic 

mechanical anisotropy. We do not claim that this is the only available approach. We use this 

anniversary issue to encourage structural geologists to develop more analytical and numerical 

models to finally elucidate the role of mechanical anisotropy on all scales. 
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Abstract 

Localisation of ductile deformation in rocks is commonly found at all scales from crustal 

shear zones down to grain scale shear bands. Of the various mechanisms for localisation, 

mechanical anisotropy has received relatively little attention, especially in numerical 

modelling. Mechanical anisotropy can be due to dislocation slip-system activity of minerals 

(e.g. ice or mica) and/or layering in rocks (e.g. bedding, cleavage). We simulated simple-shear 

deformation of a locally anisotropic, single power-law rheology material up to shear strain of 

five. Localisation of shear rate in narrow shear bands occurs, depending on the magnitude of 

anisotropy and the stress exponent. At high anisotropy values, strain-rate frequency 

distributions become approximately log-normal with heavy, exponential tails. Localisation 

due to anisotropy is scale-independent and thus provides a single mechanism for a 

self-organised hierarchy shear bands and zones from the mm- to km-scale. The numerical 

simulations are compared with the natural case of the Northern Shear Belt at Cap de Creus, 

NE Spain. 

 

Keywords: shear zones, strain localisation, anisotropy, self-organisation, strain-rate 

distribution 
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1. Introduction 

Shear localisation is the concentration of deformation in part of the deforming material, 

usually in planar "shear zones" or, in the case of discrete planes, brittle faults. Here we only 

address localisation of ductile deformation (i.e. without loss of cohesion), which is a common 

phenomenon and develops at almost all scales in ductile rocks (Fig. 1), from small-scale shear 

bands to crustal-scale shear zones (e.g. Berthé et al., 1979; Hanmer and Passchier, 1991; 

Carreras, 2001; Carreras et al., 2010; Bak et al., 1975; Sørensen, 1983). Shear localisation is 

variable, from isolated shear zones to anastomosing networks of them (Arbaret et al., 2000; 

Mitra, 1979; Bell, 1981; Passchier, 1984; Gapais et al., 1987; Fusseis et al., 2006; Schrank et 

al., 2008; Ponce et al., 2013). The formation of such networks in rocks has been simulated 

experimentally (e.g. Herwegh and Handy, 1996; Bons and Jessell, 1999; Gomez-Rivas and 

Griera, 2011; 2012; Gomez-Rivas et al., 2015) and numerically (e.g. Gardner et al., 2017; 

Meyer et al., 2017).  

Despite decades of research, there is on going debate on the mechanisms of shear localisation. 

Strain softening associated with dynamic recrystallisation can lead to shear localisation 

(White et al., 1980). For example, by nucleation of new grains with relatively low dislocation 

densities (Tullis and Yund, 1985; Hirth and Tullis, 1992; Stipp et al., 2002; Fossen and 

Cavalcante, 2017), by grain boundary migration that lowers dislocation density (Shimizu, 

2008; Fossen and Cavalcante, 2017), or by grain-size reduction in the case of grain-size 

sensitive creep (White et al., 1980; Tullis and Yund, 1985; Behrmann and Mainprice, 1987; 

Warren and Hirth, 2006). However, questions remain whether grain-size reduction can 

actually lead to shear localisation (de Bresser et al., 1998, 2001; Platt and Behr, 2011).  

Deformation by dislocation-creep mechanisms can soften the rock due to the formation of a 

lattice-preferred orientation (LPO) if deformation rotates slip planes into favourable 

orientations (Poirier, 1980; Mainprice et al., 1986; Ji et al., 2004; Passchier and Trouw, 2005; 

Warren et al., 2008; Oliot et al., 2014; Fossen and Cavalcante, 2017; Llorens et al., 2016a,b; 

2017). This is a form of geometric weakening, in which the internal geometry of the material 

changes with strain. Geometric weakening also includes the development of a shape-preferred 

orientation, the re-orientation or redistribution of phases, e.g. alignment of planar minerals 

(e.g. micas), elongated grains or other components that make up a fabric (Jordan, 1988; 

Handy, 1990, Shea and Kronenberg, 1993; Johnson et al., 2004). Softening can further be 

induced by a change of composition, by introduction of a weak phase, such as melt (Brown 
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and Solar, 1998; Rosenberg and Handy, 2000; Handy et al., 2001) or by reaction softening 

during metamorphism in which new and, possibly, weaker minerals grow (Poirier, 1980; 

Mainprice et al., 1986; Ji et al., 2004; Passchier and Trouw, 2005; Regenauer-Lieb et al., 2009; 

Warren et al., 2008; Oliot et al., 2014; Fossen and Cavalcante, 2017). Introduction of 

(aqueous) fluids can induce softening by water weakening, enhancing dynamic 

recrystallization (e.g. fluid-assisted grain boundary migration; Urai, 1983) or enabling 

dissolution-precipitation creep (Hirth and Tullis, 1992; Mancktelow and Pennacchioni, 2004; 

Menegon et al., 2008; Oliot et al., 2014; Finch et al., 2015).  

 

Fig.1. Shear localisation on all scales at Cap de Creus, Eastern Pyrenees, Spain (a) Shear bands in 

deformed granodiorite at the Roses lighthouse (Carreras et al. 2004). (b) Shear zone in meta-turbidites 

at Tudela (Druguet, 1997). (c) Large shear zone (note the person in the lower right for scale) at Punta 
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dels Farallons (Druguet and Hutton, 1998). (d) Shear zones (black) in the Northern Cap de Creus shear 

belt forming an anastomosing pattern. Modified after Carreras (2001). Dashed red line shows the 

deflection of the bedding and bedding-parallel S1 cleavage by approximately NW-SE-directed dextral 

shearing. 

Shear heating is an additional mechanism that can soften a deforming rock with a 

temperature-dependent rheology, leading to shear localisation (Hobbs and Ord, 1988; 

Thielmann and Kaus, 2012; Thielmann et al., 2015; Thielmann, 2017; Brun and Cobbold, 

1980; Bercovici, 1993). 

For shear localisation to occur, instabilities must develop that inhibit a homogeneous 

distribution of deformation. Such instabilities can result from the above-mentioned 

strain-softening mechanisms, but also from strain hardening (Hobbs et al., 1990). In general, 

strain-softening processes are able to narrow shear zones (Ben-Zion and Sammis, 2003), 

whereas strain-hardening processes can widen them (Means, 1984; Hull, 1988; Fusseis et al., 

2006; Schrank et al., 2008). Most of the above shear localisation mechanisms assume a 

localisation of ductile shear with progressive strain. However, the opposite has also been 

proposed: shear zone initiation on brittle fractures (the extreme end member of localisation) 

that subsequently widen into ductile shear zones (Segall and Simpson, 1986; Fusseis et al., 

2006; Pennacchioni and Mancktelow, 2007; Goncalves et al., 2016).  

Shear zones are often arranged in anastomosing networks (Ramsay and Allison, 1979; Bell, 

1981; Hudleston, 1999), formed by linking of segments due to accumulated strain and 

displacement (Schrank et al., 2008; Fossen and Cavalcante, 2017). The Cap de Creus 

peninsula of the easternmost Pyrenees (Spain) provides an excellent example of such 

networks (Fig. 1d) (Druguet et al., 1997; Carreras, 2001; Carreras et al., 2004; Fusseis et al., 

2006; Schrank et al., 2008). The shear zones developed in medium to high 

metamorphic-grade biotite schists under retrograde metamorphic conditions (Druguet et al., 

1997, 1998). A progressive non-coaxial deformation regime is assumed to be responsible for 

their development (Carreras, 2001). The shear zones form a complex pattern, as they are 

linked in an anastomosing framework with self-similar properties (Carreras, 2001). In Cap de 

Creus one finds localisation structures and anisotropies from the grain scale to the scale of the 

entire, ca. 4 km wide, Northern Shear Belt (Schrank et al., 2008).  

Many studies have addressed scale invariance in geological media (Gutenberg and Richter, 
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1956; Turcotte, 1990; Turcotte, 1992; Bonnet et al., 2001). Nonlinearity is an essential 

condition for self-similar (fractal) statistics, which supports the system to be highly dynamical 

(Turcotte, 1997). Even tectonic plates display fractal distributions up to the largest plates 

(Bird, 2003; Sornette and Pisarenko, 2003), which can be explained with a dynamical model 

of plates with creation, fragmentation and destruction acting on all scales (Sornette and 

Pisarenko, 2003). Shear zone networks often develop over several orders of magnitude 

(Sammis and Steacy, 1995; Hippertt, 1999; Carreras, 2001; Carreras et al., 2010). Tchalenko 

(1970) identified similarities between shear zones at different magnitudes (microscopic scale 

in shear box test, intermediate scale in Riedel experiment, regional scale in earthquake fault), 

interpreting these in terms of mechanical properties of the material, the failure criterion and 

deformation kinematics. Fractal analysis of shear bands indicates that shear rates values are 

multifractal (Poliakov et al., 1994; Poliakov and Herrmann, 1994; Herrmann et al., 1995). 

Fractal distributions of shear bands that evolve spontaneously from a rather homogeneous 

strain distribution suggest the existence of some kind of self-organisation (Bak et al., 1987; 

Turcotte, 1992; Poliakov and Herrmann, 1994), where each shear band may be seen as a 

single internal "avalanche" on which the system releases stresses through larger displacements 

(Poliakov and Herrmann, 1994; Herrmann et al., 1995). In numerical simulations and in 

experiments, shear bands develop without tuning of external control parameters, which is a 

necessary condition for self-organization (Poliakov and Herrmann, 1994; Poliakov et al., 1994; 

Ran et al., 2018).  

Many properties are known to be highly anisotropic in rocks and materials. When a material 

deforms anisotropy originates through the development of LPOs and/or SPOs (Mainprice and 

Nicolas, 1989; Passchier and Trouw, 2005), which can trigger the development of foliations, 

which in term can result in internal instabilities. During deformation, anisotropic rocks 

develop internal structures whose geometry depends on the degree and type of anisotropy, 

from intrinsic to composite (Cobbold et al., 1971; Cosgrove, 1976; Griera et al., 2013; Ran et 

al., 2018). The lower crust develops a mechanical anisotropy as the result of intrinsic layering, 

which is enhanced by the anisotropy induced by stretching (Cosgrove, 1997). The shear zones 

at Cap de Creus (Fig. 1a) could be a result of anisotropy-induced shear localisation, as these 

have been interpreted as resulting from inherited anisotropies such as meta-turbidite layering, 

the axial planar S1-foliation, and pegmatite bodies (Druguet et al., 1997; Carreras, 2001; 

Schrank et al., 2008; Ponce et al., 2013). Furthermore, the degree of anisotropy impacts on, 

for instance, the geometry of deformed single layers (Toimil and Griera, 2007; Kocher et al., 

2008; Llorens et al., 2013a), the reactivation of fault and shear zones (Tommasi et al., 2009) 
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and on shear zone formation over pre-existing fabrics (Michibayashi and Mainprice, 2004). 

Although anisotropy has been recognised as an important factor in the formation of geological 

structures, relatively few numerical studies have included it (see discussion by Ran et al., 

2018). Most distinct exceptions are models of folding in anisotropic media (Cobbold, 1976; 

Latham, 1979; Mühlhaus et al., 2002; Llorens et al., 2013a; 2013b), and the influence of 

anisotropy on rigid object behaviour (Fletcher, 2004; Fletcher, 2009; Griera et al., 2011, 2013). 

In most numerical studies anisotropy has been implemented as a composite anisotropy, where 

the anisotropy results from stacking layers with different, but isotropic rheologies (see 

Hudleston and Treagus (2010), and references therein; Dabrowsky and Schmid, 2011). Few 

studies have utilized an intrinsic anisotropy, where the rheology of the material itself is 

anisotropic (Lebensohn, 2001; Griera et al., 2013). Here we present a series of numerical 

simulations to investigate strain (rate) localisation due to mechanical anisotropy. We aim to 

quantify the amount of localisation, which can emerge in a single-phase material as a function 

of degree of anisotropy. We use the same approach to model an intrinsically anisotropic 

material as in Griera et al. (2013), with the parameter defining anisotropy comparable to the 

ratio between normal and shear viscosity, as defined in Kocher et al. (2006; 2008). The 

simulations aim to quantify the amount of localisation as a function of the degree of 

anisotropy and allow making predictions on the expected volume fraction of material that 

experiences high strains, recognisable as shear zones, in deforming rocks and ice sheets. 

2. Methods 

In order to determine how mechanical anisotropy affects the amount of localisation, we 

simulate the deformation of a material with an intrinsic mechanical anisotropy. The 

crystallographic orientation can evolve with progressive deformation and vary within the 

model. 

2.1 The VPFFT-ELLE modelling platform 

We use the viscoplastic full-field formulation (VPFFT) based on the Fast Fourier Transforms 

coupled with the modelling platform ELLE (Lebensohn, 2001; Lebensohn et al., 2008; Griera 

et al., 2011, 2013; Llorens et al., 2016a; Steinbach et al., 2016) to calculate the stress and strain 

rate distribution during progressive simple shear. ELLE is an open-source modelling platform 

(http://www.elle.ws; Jessell et al., 2001; Bons et al., 2008) and aims to provide a generalized 

framework for the numerical simulation of the evolution of microstructures during 
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deformation and metamorphism. The VPFFT+ELLE code has recently been used to simulate 

recrystallisation in deforming ice and halite (Llorens et al., 2016a,b; Llorens et al. 2017; 

Gomez-Rivas et al., 2017; Steinbach, 2016, 2017), viscoplastic deformation of hard inclusions 

(Griera et al., 2011, 2013; Ran et al., 2018) and folding in anisotropic materials (Bons et al., 

2016; Jansen et al., 2016; Ran et al., 2018).  

2.2 Definition of the model 

Our 2D models consist of unconnected nodes (unodes), which provide a high-resolution 

regular grid for storing physical properties such as lattice orientation (defined by three Euler 

angles), stresses and strain rates. The unodes effectively represent crystallites or single grains 

with a constant internal lattice orientation. We use a second, non-regular, layer of unodes as a 

passive marker grid to visualise the finite deformation field. The passive marker grid is 

initially oriented vertical in all cases.  

2.3 Viscoplastic deformation using the full-field approach 

The VPFFT approach calculates a strain rate and stress field that minimize the average local 

work rate and satisfies the constitutive relation at local level, under the constraints of strain 

compatibility and stress equilibrium (see Lebensohn (2001), Lebensohn et al. (2008; 2009) 

and Montagnat et al. (2014) for a more detailed description of the theoretical framework and 

numerical algorithm, and Griera et al. (2013) and Llorens et al. (2016a,b) for the coupling 

with ELLE). The "full field" designation indicates that the approach explicitly resolves 

velocity and stress fields with a resolution that is defined by the size, SxS, of the unode or 

Fourier grid.  

We simulate the anisotropic behaviour using a nonlinear viscous rate-dependent approach, 

where deformation is assumed to be accommodated by dislocation glide only, taking into 

account the different available slip systems and their critical resolved shear stresses () 

(Lebensohn, 2001). The constitutive equation for the relation between strain rate 𝜀𝑖̇𝑗(𝑥) and 

the deviatoric stress 𝜎′(𝑥)  at position x of the Fourier grid is given by 
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 ,   (1) 

where the sum runs over all (𝑁𝑠) slip systems (s) in the crystal, 𝑚𝑠 is the symmetric 

Schmid tensor, 𝜏𝑠 is the critical resolved shear stress, 𝛾̇𝑠 is the shear strain rate, 𝛾̇0 is the 

reference strain rate and 𝑛 is the stress exponent. We use the same hexagonal crystal 

symmetry of ice 1h as in Llorens et al. (2016a, 2016b, 2017), Griera et al. (2011; 2013) and 

Ran et al. (2018) for our single-phase material, in which deformation is allowed to be 

accommodated by glide along the basal plane and non-basal, pyramidal and prismatic planes 

(Griera et al., 2013). The degree of anisotropy, A, is defined as the ratio between the critical 

resolved shear stresses of the basal and non-basal slip systems: 

  𝐴 =
𝜏(𝑛𝑜𝑛−𝑏𝑎𝑠𝑎𝑙)

𝜏(𝑏𝑎𝑠𝑎𝑙) .        (2) 

Each deformation step, the VPFFT code calculates the stress and velocity field for the whole 

model. Velocities are applied for a shear-strain increment of ∆γ=0.02. Since the VPFFT code 

requires a rectangular grid of unodes, the ELLE-code subsequently maps the translated 

material states of the shifted unodes (here the Euler angles) back on the original square grid. 

This routine employs the feature that the data structures of both the VPFFT and ELLE codes 

are fully wrapping. Therefore, a material point that moves across the right boundary enters the 

model on the left again. This way, the model can be represented by a square box at all times, 

which allows the modelling up to large strains without changing the outer shape of the model.  

2.4 Experimental setup 

We use square SxS models with S a power of two unodes. Each individual simulation 

considers a single material that is defined by its anisotropy, with A≥1, and -basal
 is always set 

to unity. Each unode in the model is initially assigned a random lattice orientation. We 

simulate the deformation of the material in dextral simple shear up to a shear strain of five in 

strain increments of ∆γ=0.02. Boundary conditions are such that the velocities at the 

boundaries are on average simple shear. Three series of simulations are presented here: In 

series I we varied the anisotropy parameter A. With series II we investigate the impact of 

different model sizes S on strain rate localisation. In series III we varied n from one to four, 
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and set A such that the effective viscosity ratio for non-basal and basal slip is 4096. 

Table 1. Simulation parameter 

Series name Anisotropy (A) Stress exponent (n) Size (SxS) 

Series I 1, 4, 16. 64 3 512 

Series II 16 3 128, 256, 512 

Series III 8, 16, 64, 4096 1, 2, 3, 4 256 

 

2.5 Data visualisation 

Stress and strain rate distributions are visualised by mapping the normalised Von Mises strain 

rates (𝜀𝑣̇𝑚) and Von Mises stresses (𝜎𝑣𝑚) (Fig. 2a-c), which are the second invariants of the 

symmetric strain rate and stress tensors respectively: 

  and 𝜎𝑉𝑀 = √
2

3
𝜎𝑖𝑗𝜎𝑖𝑗.      (3) 

To visualise the finite-strain field, we use a passive marker grid (Fig. 2d). This passive marker 

grid tracks the position of unodes, treated as passive material markers, which were initially 

arranged on an orthogonal grid. The bulk stress is calculated by averaging all stresses of 

individual unodes. Lattice orientations are visualised by mapping the Euler-𝜙 angles, i.e. the 

azimuth of the c-axis relative to the vertical axis (Fig. 2e). Frequency distributions of Euler-𝜙 

angles show the preferred orientation of c-axis (Fig. 2f). 

2.6 Strain Localisation  

We quantify the strain-rate localisation (L) in our model with a localisation factor defined by 

Sornette et al. (1993) and Davy et al. (1995), and modified by Gomez-Rivas (2008), 

Steinbach et al., (2016) and Llorens et al. (2017): 

 ,       (3) 

where nt denotes the total number of unodes. The strain localisation factor ranges from 0 to 1, 

where 0 means homogeneous deformation and 1 maximum localisation, where all strain is 
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accommodated by a single unode.  

 

Fig. 2. VPFFT-ELLE simulations (series I) of dextral simple shear up to a shear strain of γ=5. The 

degree of mechanical anisotropy (A) increases from 1 (quasi-isotropic) to 64 (highly anisotropic). 

Evolution of Von Mises strain-rate field, normalized to the bulk value, at a shear strain of (a) γ=2.5 and 
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(b) γ=5. In both (a) and (b) images have been enlarged 2x only showing the upper left quarter of the 

model. In the isotropic case (A=1) no strain localisation occurs. In all anisotropic cases sub-horizontal 

shear bands develop. (c) Von Mises stress field at a shear strain rate of γ=5. Highest stress values are 

within high strain zones. Stripes in the images are attributed to imperfect solutions for the stress field in 

the iterative VPFFT code. (d) Passive marker grid at a shear strain of γ=5 to illustrate the distribution of 

finite-strain. Images have been enlarged 4x, only showing the upper left part of the model box. (e) 

Orientation of c-axes azimuths (Euler 𝜙, or azimuth angle relative to the vertical) at γ=5. This images 

have been enlarged 4x, only showing the upper left part of the model box. (f) Frequency distributions 

of c-axes azimuths. When separating the high-strain values from the entire model (highest 5% of 

normalised Von Mises strain rate values) and analyse c-axis orientation within it at γ=5 it becomes 

apparent that c-axis azimuths are close to perpendicular to the shear plane, but oriented with a broad 

maximum of 80° to the shear plane in the entire model. A linear bin width of 1.8° has been used to 

generate the frequency distributions.  

3. Results 

Results of Series I show that distinct strain and strain-rate localisation occurs in all cases 

where A>1 (Fig. 2a-c). Although the material with A=1 is strictly speaking not isotropic, it 

behaves as an effectively isotropic material (Griera et al., 2011). Stress and strain rates 

(L<0.01) show very little variation and the finite strain grid consists of straight lines (Fig. 2d). 

However, Euler-𝜙 distributions indicate a maximum in c-axes perpendicular to the shear 

plane (Fig. 2e,f).  

For A>1, the normalised Von Mises strain-rate ( ) field becomes increasingly 

heterogeneous with progressive strain (Fig. 2a,b). High strain rate bands oriented at a low 

angle to the horizontal shear plane are clearly visible (Fig. 2a,b). Localisation of finite strain 

can be identified in the passive marker grid (Fig. 2d), which shows distinct shear bands for 

A=16 and A=64, and less localisation for A=4. This reveals that the heterogeneity in strain rate 

is not averaged out with progressive strain. For all anisotropic cases (A>1), c-axes become 

preferentially oriented with a broad maximum at about 80° to the shear plane (Fig. 2e,f). 

Within the high strain-rate zones (highest 5% of strain-rate values) the c-axes preferred 

orientation is stronger with the azimuths of c-axes closer to perpendicular to the shear plane 
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(Fig. 2f). Material within the shear zones thus has its basal plane well-oriented for the applied 

bulk simple shear. The strength of the c-axes preferred orientation within the shear zones 

decreases slightly from A=4 to A=64.   

The frequency distribution of strain rates (Fig. 3a,b) for an effectively isotropic material (A=1) 

at a shear strain of γ=5 is approximately normal. For A>1, the frequency distributions deviate 

from a normal distribution and shift towards log-normal distributions. Frequency distributions 

for A=16 and A=64 are almost identical up to a normalised strain rate of about five. However, 

the frequency distributions become heavy tailed and are therefore not exactly log-normal (Fig. 

3b). High strain rate values become overrepresented and have values that are up to ca. 20 

times higher than the mean for A=64 (Fig. 3a,b). Therefore, a material with a higher degree of 

anisotropy reaches significantly higher strain-rate values due to strain localisation. As a result, 

a major part of the material deforms at a significantly lower rate than the mean strain rate, as 

can be seen by the leftward shift of the frequency peak (Fig. 3a,b). The inset in figure 3b 

shows the localisation factor (L) plotted against the anisotropy parameter, and illustrates that 

localisation increases from A=1 to A=16, although localisation increases very little from A=16 

to A=64.  

When comparing the frequency distributions of Von Mises strain rate for different model sizes 

(S) in Series II, we observe that the shape of the frequency distribution is largely 

independent of S (Fig. 3c). For example, the probability to reach a particular strain rate f( ), 

for a 512x512 model is four times higher than that for a simulation with 256x256 unodes, and 

16 times higher than that for a simulation with 128x128 unodes. The ratio R, defined as 

 ,       (5) 

is approximately unity (inset in Fig. 3c). The highest strain rates that are achieved in a 

simulation do, however, depend on S. The frequency of =15 is about one per 512x512 

unodes (i.e. =262,144 unodes) for A=16 and γ=5. This means that the chance that one unode 

with =15 occurs in a 128x128 unode model is only 1/16 or about 6%. 
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Fig. 3. Frequency distributions of normalised Von Mises strain rates at a shear strain rate of γ=5. 

Normalised frequency distributions of normalised Von Mises strain rate in (a) log-linear and (b) linear 

scaling, for anisotropy parameters of A = 1, 4, 16 and 64 (series I). Frequency distributions have been 

processed with linear bin widths of 0.002 (for A=1), 0.008 (A=4), 0.031 (A=16) and 0.048 (A=64). For 

the isotropic material (A=1) the frequency distribution is approximately normal with the mode slightly 

above one. Modes are indicates by arrows. Higher anisotropy leads to data peaks which are below the 

mean, whereas the high strain rate values develop a heavy tail, which becomes more pronounced with 

increasing A. Inset in (b) shows the localisation factor L plotted against A (for γ = 2.5 and γ = 5), 

illustrating an increase of localisation from A=1 to A=16, though the intensity of localisation increases 

very little from A=16 to A=64. (c) Frequency distribution for different model sizes (Series II; 128x128, 

256x256, 512x512 unodes). To be able to compare the different data sets, a linear bin size of 0.1 has 

been used to calculate the frequency distributions. As one can see, for a system size of 512 by 512 

unodes the frequency of Von Mises strain rate values appears four times more often than for a systems 

with a size of 256 by 256 unodes, and 16 times more often than for a system with 128 by 128 unodes. 
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Inset in (c) shows the ratio R, which compares frequency distributions of Von Mises strain rate for 

different model sizes. (d) Cumulative frequency distribution of the same data set as in (a) and (b). 

Plots of Von Mises stresses (VM) against normalised Von Mises strain rates ( ) (for each 

unode, at γ=5) show a large scatter that increases with A (Fig. 4). This means that both  

(Fig. 3) and VM values become increasingly variable with increasing A. The scatter for each 

simulation has a lower bound, with an exponent n=3, that is defined by (non-basal)
. Material 

points on this bound deform by non-basal glide. The upper bound is defined by (basal)
 and 

material points that plot here deform by basal glide. With increasing A, the cloud moves to the 

right, because (basal)
 is always one, while (non-basal)

 corresponds to A.. One also sees that fewer 

points reach the upper basal-glide-only bound with increasing A. Figure 4 shows that  

and VM do correlate, but rather poorly. High-VM zones are visible in the VM distribution at 

high A (Fig. 2c) and correlate to some extent with high  zones.   

 

Fig. 4. Normalised Von Mises strain rate (normalised to bulk value) plotted against Von Mises stress at 

a shear strain rate of γ=5 for series I. Data plot in the form of a cloud, that spreads with increasing A. 

The bottom right side of each cloud plots as straight line with a slope of n=3. For A=4 the top left 

bound is a straight line as well. Points on the upper straight line are those with 100% basal glide, points 

on the lower bound are those with 100% non-basal glide. Since basal glide is set to unity for all cases, 

the bound for basal glide is the same for all A. Non-basal glide is set to 1, 4, 16 and 64, resulting in a 
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rightward shift of the lower bound. For A=16 and A=64 the upper left 100% basal glide is not reached. 

This can be explained by the fact that 100% basal glide means is effectively an extremely soft unode, 

which, however, cannot deform freely, since it is constrained by its surroundings. 

Results of Series III (Fig. 5) show distinct strain localisation for n>1 at γ=5 (Fig. 5a). The 

localisation factor increases with n, from L=0.22 for n=1 to L=0.56 for n=4, with only minor 

increase from n=3 to n=4 (Fig. 5a). The plot of Von Mises stresses (VM) against normalised 

Von Mises strain rates ( ) (Fig. 5b) (for each unode, at γ=5) show largest scatter for runs 

with n=3 and n=4. With decreasing n and increasing A the scatter becomes less wide in the 

direction of strain rate, but reaches higher stress values (Fig. 5b). The non-basal bound is 

reached in all cases, but the basal bound never. When comparing normalised frequency 

distributions of normalised Von Mises strain rate for Series III (Fig. 5c), we observe that the 

mode shifts to the left for higher n. For n=1 and A=4096 the frequency plots as a shifted 

log-normal distribution. For n=2 to n=4 the frequency distribution plots approximately 

exponential, with a slightly higher tendency to evolve a heavy tail for higher n values.  

 

Fig. 5. Results for series III (a) Distribution of Von Mises shear strain rates, normalized to the bulk 

value, at a shear strain of γ=5. For n=1 and A=4096 only minor localisation is visible. For n>1 and 

A<4096 the localisation factor increases with increasing n and decreasing A, with most strain 
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localisation for n=4 and A=8, with only a minor difference to n=3. (b) Von Mises strain rate 

(normalised to bulk value) plotted against Von Mises stress at a shear strain rate of γ=5. The bottom 

right side of each cloud plots as straight line in log-log with a slope of n is 1 to 4, where the dashed 

lines indicate the stress exponents of n=1 to 4 in corresponding colours respectively. The upper bound 

is a straight line with the same slope, but is never reached in any of the simulations. The pink arrow 

indicates maximum range of possibly reachable Von Mises strain rate values, which is always A
n
=4096. 

(c) Normalised frequency distribution of normalised Von Mises strain rates at a shear strain rate of γ=5 

in a log-linear plot. Arrows indicate mode of normalised Von Mises strain rate for different 

configurations, which shift to the left with increasing n and decreasing A. For n=1 the frequencies have 

a shifted log-normal distribution. For n=2 to 4 the frequency distribution are approximately exponential, 

with a slightly higher tendency for a heavy tail at higher n values. Normalised frequency distributions 

have been calculated with linear bins of 0.022 for n=1, 0.052 for n=2, 0.056 for n=3 and 0.046 for n=4. 

4. Discussion 

The simulations indicate that mechanical anisotropy leads to distinct strain and strain-rate 

localisation into networks of sub-parallel shear bands, with the intensity depending on the 

degree of anisotropy and the stress exponent. Frequency distributions of Von Mises strain 

rates show heavy tails for high A, with an approximately exponential decrease in frequency of 

high values (Fig. 3). These distributions emphasise the continuous nature of the  

distributions, only cut off by the model resolution. Although a visual inspection of strain-rate 

and finite strain distributions (Fig. 1,2) suggests the presence of distinct shear zones or bands, 

the results indicate there is actually no sharp distinction between low and high strain (rate), 

but, instead, a continuum.  

Llorens et al. (2017) used the same VPFFT+ELLE approach as in this study to simulate the 

deformation of ice. Aice is assumed to range between 60 and 100 for n=3 for basal slip system 

and n=2 for non-basal slip systems (Duval et al., 1983), but Llorens et al used Aice=20 to 

speed up calculation time and n=3 for all slip systems. This appears permissible if 

determining the amount of localisation is not the main aim of the study, as our A=16 and A=64 

results are quite similar. In our simulations, each unode can be regarded as representing a 

single grain with a single, homogeneous lattice orientation. Llorens et al. (2017) modelled 
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grains composed of many unodes and incorporated dynamic recrystallisation. Yet, they also 

observed strong strain (rate) localisation. When comparing our results with those from 

Llorens et al. (2017) one observes that although we use no dynamic recrystallisation we get a 

localisation factor (L≈0.38 at γ =2.5) that is similar to that of a polycrystalline material with 

minor recrystallisation. Our results (without recrystallisation and substructures within grains) 

would thus overestimate the amount of localisation (for a given A) in very pure ductily 

deforming materials that flow at slow rates (such as ice sheets). When, however, the 

contribution of recrystallisation is suppressed by high strain rates, impurities and/or the 

presence of multiple minerals (as is common in rocks), our simulations may give an 

indication of the amount of strain localisation that can be expected. 

Heavy tailed frequency distributions are often assumed to indicate underlying self-similar 

(fractal) processes (e.g. Bons and van Milligen, 2001; Brunetti, 2009). Such distributions are 

usually approximately log-normal, with or without a power-law or exponential tail, depending 

on small changes in model assumptions (Hähner et al., 1996; 1998; Mandelbrot, 1997; 

Mandelbrot, 2001; Mitzenmacher, 2004). The frequency distributions of strain rates (Fig. 3) 

as well as their spatial distributions (Fig. 2a,b) support the notion that strain (rate) localisation 

is self-similar. Between the most conspicuous shear zones, one can discern less distinct shear 

zones as well. The same was proposed for the pattern of shear localisation at Cap de Creus 

(Fig. 1, and Carreras, 2001). Shear localisation happens on all scales, making cm-scale shear 

bands (Fig. 2d) small versions of the larger shear zones that contain them (e.g. Hippertt, 1999; 

Carreras, 2001). 

The scale-independence of the strain rate distributions (as a result of anisotropy; Fig. 3c) has a 

major advantage that the models can be used for predictions on scales well beyond the limited 

scales of our computer models (due to limited computing time and memory capacity). If we 

assume that A=16 is representative of the schists at Cap de Creus that have a strong 

layer-parallel foliation, defined by aligned biotite (Druguet et al., 1997; Carreras, 2001). 17% 

of the area shown in Fig. 1d is mapped as "shear zone" by Carreras et al. (2004), i.e. material 

with distinctly higher strain than the rest of the outcrops. The cumulative strain-rate 

distribution indicates that, at A≥16, 17% of the material has a strain rate of ≥2 times the 

average (Fig. 3d), which itself is about three to four times the mode (Fig. 3b). Deformation in 

the area shown in Fig. 1d is approximately NW-SE directed dextral simple shear with a 

transpressive component (Druguet et al., 1997; Carreras, 2001; Druguet, 2001; Bons et al., 

2004). The general trend of the subvertical bedding and parallel S1 foliation rotates about 45° 

relative to the low-strain area in the SW-corner. Shear strain in the most abundant (≈83%), 
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non-shear-zone areas (i.e. lozenges) is thus in the order of unity. Assuming that this γ≈1 is the 

mode, the 17% of the area that is mapped as shear zone would then have a shear strain of at 

least six to eight. Such shear strains would indeed warrant mapping them as shear zone. The 

average shear strain would be about three to four. The aim of this comparison with Cap de 

Creus here is not to exactly determine the amount of strain. This would require a more 

extensive analysis of the area, and consideration of other, additional localisation mechanisms. 

Future work also needs the address how the instantaneous strain-rate distribution relates to 

that of the finite strain (compare Fig. 2b and d).  

Shear localisation due to anisotropy appears almost inevitable when A is large enough (here 

roughly A≥4 at n≥3). Localisation arises from the non-linear (both A and n >1) constitutive 

law (Ord and Hobbs, 2018). Our results indicate that localisation is self-similar and does not 

average out over large scales or large strain increments. One reason for the lack of a 

characteristic scale is that the property anisotropy has no length scale. This sets localisation 

due to anisotropy apart from localisation mechanisms that do incorporate a length scale, such 

as shear heating (only effective at scales above the heat-diffusion length; e.g. Thielmann et al., 

2015) and microstructural processes, such as grain-size reduction (e.g. de Bresser et al., 2001). 

Such mechanisms do not result in scale invariance and do not provide a single mechanism for 

the localisation of shear in small shear bands within larger shear zones.  

Although the published range of strain localisation mechanisms can certainly all operate in 

rocks and ice, we show that mechanical anisotropy is a very effective additional mechanism. 

Self-similarity is a particular characteristic of this mechanism. This obviates the need to find 

individual mechanisms for strain localisation structures at different scales.  
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Appendix 

 

Numerical model setup 

Descriptions of files used in model and detailed settings of numerical models in this thesis are 

presented here. There are two kinds of files required for simulation: initial ELLE file (.elle) 

and VPFFT files (.sx and .in). Initial ELLE file is used to define the initial structures.  

1. The phase file (.sx)  

It defines the phase properties including critical resolved shear stress (CRSS) and stress 

exponent (n) of each slip system. 
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Numbers in red circles define the stress exponent (n) of each slip plane. n=1 or 3 is used to 

simulate linear or power-law rheology in the thesis. Same n is set to all slip planes for single 

phase. Numbers in blue circle define the CRSS of each slip plane, i.e. viscosity. Two numbers 

are same in each plane. Mechanical anisotropy is defined by different CRSS on slip planes.  

2. The ppc.in file  

It defines amount of phases and unodes and boundary conditions.  

 

More details of settings for models are presented in each chapter. More details of Preparations 

and post-processes of simulations follow descriptions of Steinbach (2017).  
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