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Summary 
 

Action perception, planning and execution is a broad area of study, crucial for future 

development of clinical therapies treating social cognitive disorders, as well as for 

building human-computer interaction systems and for giving foundation to an 

emerging field of developmental robotics. We took interest in basic mechanisms of 

action perception, and as a model area chose dynamic perception of body motion. 

The focus of this thesis has been on understanding how perception of actions can be 

manipulated, how to distill this understanding experimentally, and how to 

summarize via numerical simulation the neural mechanisms helping explain 

observed dynamic phenomena. 

Experimentally we have, first, shown how a careful manipulation of a static object 

depth cue can in principle modulate perception of actions. We chose the luminance 

gradient as a model cue, and linked action perception to a perceptual prior previously 

studied in object recognition – the lighting from above-prior. Second, we have 

explored the dynamic relationship between representations of actions that are 

naturally observed in spatiotemporal proximity. We have shown an adaptation 

aftereffect that may speak of brain mechanisms encoding social interactions. 

To qualitatively capture neural mechanisms behind ours and previous findings, we 

have additionally appealed to the perceptual bistability phenomenon. Bistable 

perception refers to the ability to spontaneously switch between two perceptual 

alternatives arising from an observation of a single stimulus. Addition of depth cues 

to biological motion stimulus resolves depth-ambiguity. To account for neural 

dynamics as well as for modulation of action percept by light source position, we used 

a combined architecture with a convolutional neural network computing shading and 

form features in biological motion stimuli, and a 2-dimensional neural field coding for 

walking direction and body configuration in the gait cycle. This single unified model 

matches experimentally observed switching statistics, dependence of recognized 

walking direction on the light source position, and makes a prediction for the 

adaptation aftereffect in perception of biological motion. 
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Introduction 

A. What is action perception? 

Action perception can be broadly understood as the study of neural and behavioral 

processes at a time scale of 0.6 - 20 seconds in response to ''action'' stimuli. Examples 

of action stimuli are displays of human or animal locomotion, displays of grasping an 

object or using a tool, or displays of multiple interacting agents. In most studies, the 

stimuli have been reduced from those observed in nature, so that they are composed 

of only a limited set of cues (features). These enabled a targeted study of the effects 

of these cues on perception and on tuning of neurons found to be responding to such 

stimuli. One frequently studied process, together with its stimulus class, is the 

recognition of biological motion. Initially, motion and form cues have been addressed 

the most  (Bonda, Petrides, Ostry, & Evans, 1996; Oram & Perrett, 1996; Vaina, 

Solomon, Chowdhury, Sinha, & Belliveau, 2001), culminating in a phenomenological 

model (M. A. Giese & Poggio, 2003) incorporating parallel processing via dorsal and 

ventral pathways of the visual cortex. The outputs of pathways are integrated to 

model sequence-selective responses of neurons in area STS to full motion patterns. 

This neurally - plausible architecture has been successfully adopted to aid tasks in 

computer vision models and systems (Escobar, 2008; Jhuang, 2007; Layher, 2014). 

 

B. The focus of this thesis 

Here we focused on modeling dynamic neural processes underlying the perception of 

locomotion, where a surface shading cue is added to the stimulus of a depth-

ambiguous walking figure. Surface shading is a classically studied static object 

perception cue, that has been adopted also to study perception priors – particularly, 

the lighting-from-above prior (Adams, Graf, & Ernst, 2004; Brewster, 1844; Kleffner 

& Ramachandran, 1992; Ramachandran, 1988; Sun & Perona, 1997). We take a point 

of view that all stages of signal processing should be taken into account, so that an 

interest in studying, in this example, a lighting-from-above prior, should be start with 
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understanding computations in the visual cortex that stimuli with luminance 

gradients induces. In terms of dynamic neural processing of luminance gradients 

inside the figure contour, several neurally plausible models have been proposed 

(Grossberg, Kuhlmann, & Mingolla, 2007; Mingolla & Todd, 1986). Brain networks for 

texture processing and extraction of fine-grained object shape have been partially 

probed with human imaging studies (Fleming, Holtmann-Rice, & Bulthoff, 2011; 

Gerardin, Kourtzi, & Mamassian, 2010; Tsutsui, Jiang, Yara, Sakata, & Taira, 2001; 

Tsutsui, Sakata, Naganuma, & Taira, 2002; Yamane, Carlson, Bowman, Wang, & 

Connor, 2008). We combined the luminance gradient (a sstatic object cue) with the 

biological motion display, and discovered the influence of the light source position on 

the walking direction percept. To explain the surprising combination of these two 

distinct areas of study (shading cues in object perception and biological motion in 

action perception), we considered the dynamic stability of action percepts and the 

shading cues as one way to influence the perceptual state. We unified both in a single 

model using neurally plausible mechanisms to explain the processing of the shading 

cue in biological motion (Chapter 2) and the bistability in action perception (Chapter 

3). The bistability investigation also triggered our interest in the interplay between 

perceptual and neural adaptation aftereffects and lead to an experimental study 

delving into an area of social cognition (Chapter 1). The modeling is based on recent 

electrophysiological studies of coding for such stimuli in macaque visual temporal 

cortical neurons (Vangeneugden et al., 2011; Vangeneugden, Vancleef, Jaeggli, 

VanGool, & Vogels, 2009), on psychophysical experiments with such stimuli in 

humans in other literature, and on human psychophysical experiments performed in 

this study. Effects represented in the model include multistability, influence of firing 

rate adaptation on behavioral measurements, and a novel perceptual illusion, also 

tested experimentally. The model incorporates computations on the same exact 

stimuli that were used experimentally, and proposes an explanation how stimulus 

changes drive the observed bistable dynamics at the relevant time scale. 

 

Furthermore, we followed up on the idea that neural-population level adaptation 

aftereffects in action coding circuits may be observable behaviorally (N. Barraclough 
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& Jellema, 2011; Ferstl, Bulthoff, & de la Rosa, 2017; Troje, Sadr, Geyer, & Nakayama, 

2006). Current approaches deal with coding of single action sequences and their 

implemention in the brain. We set out to probe the interplay between the coding of 

multiple action sequences. Particularly, the exact question we formulated showed 

overlap with social cognition: whether we could speak of dedicated neural processing 

mechanisms behind social interactions. We describe (psychophysical) evidence for 

such mechanisms. Namely, the behavioral adaptation aftereffect induced by visually 

dissimilar, but spatiotemporally proximal actions. 

The introduction to this thesis starts with acknowledging the spatially local nature of  

action processing in the brain by referencing studies on brain networks in action 

perception, and concluding that we mostly base our understanding on a small part of 

these networks. We then briefly pay due to the area of bistable perception in general, 

and further restrict our attention to modelling bistability as a way to qualitatively 

summarize many empirical accounts. We discuss three modelling studies eliciting 

aspects of bistable perception in general (and that are applicable to action 

perception): one using two level of neurons with bistability at both of them, one using 

psychophysical measurements to restrict the model parameters, and one using a tool 

similar to ours – a neural field. We highlight methodological challenges in the models 

that we found useful for our own work. Bistability models feature an adaptive 

component and can be simulated for exhibiting an adaptation aftereffect as well. 

Hence, we discuss the empirical basis for adaptation aftereffects in action perception. 

We review some imaging and behavioral studies that facilitate an adaptation 

aftereffect to justify why further basic studies are important, as well as why the 

adaptation aftereffect could be useful.  

Working with extremely diverse aspects in perception of action, we have only begun 

to probe mechanisms in action perception (and not even to account for further stages, 

such as action planning). Yet, at this point of the journey at which this dissertation is 

submitted, we propose that both instantaneous processing of external signals and 

slower dynamic mechanisms, both constrained by brain network properties, 
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interplay to induce action percepts. The multitude of effects and their complexity 

requires empirical studies using both behavorial methods, imaging and 

electrophysiological recordings, and numerical simulation, as opposed to using only 

a single method of observation dominated by a sole theoretical argument. 

 

C. Brain networks for perceiving actions 

An investigation of functional brain networks involved in action perception requires 

advanced imaging methods in addition to modelling and behavioral methods and thus 

goes beyond the scope of this thesis. However, a number of key references to imaging 

studies may be of use for different types of action stimuli, as biological motion 

perception (Beauchamp, Lee, Haxby, & Martin, 2003; Calvo-Merino, Glaser, Grezes, 

Passingham, & Haggard, 2005; Grezes & Decety, 2001; Howard et al., 1996; Saygin, 

Wilson, Hagler, Bates, & Sereno, 2004), grasping and hand actions, (Aziz-Zadeh, 

Wilson, Rizzolatti, & Iacoboni, 2006; Cheng, Meltzoff, & Decety, 2007; Chong, 

Williams, Cunnington, & Mattingley, 2008; Cunnington, Windischberger, Robinson, & 

Moser, 2006; Gallagher & Frith, 2004; Wheaton, Thompson, Syngeniotis, Abbott, & 

Puce, 2004),  dynamic face stimuli (Calvert & Campbell, 2003; Grosbras & Paus, 2006; 

Pelphrey, Morris, Michelich, Allison, & McCarthy, 2005), and social interaction (King-

Casas et al., 2005; Montague et al., 2002).  

Until now a hierarchical signal processing architecture is one historically developed 

and well-studied viewpoint in action perception. This architecture was perhaps a 

starting point, influenced by the success in formalizing basic mechanisms in object 

recognition (see e.g. (Riesenhuber & Poggio, 1999) and follow ups for a summary). Of 

course, there is an understanding in the field that further studies need to consider the 

signal flow of action stimuli through brain networks more completely, and to include 

recurrent inter-area connections as well (Decety & Grezes, 1999; M. A. Giese & Poggio, 

2003; Hamilton & Grafton, 2006; Lestou, Pollick, & Kourtzi, 2008; Van Overwalle & 

Baetens, 2009; Wurm & Lingnau, 2015). The localized brain region that has been 
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investigated most in the context of body action processing, is the superior temporal 

sulcus (STS). In this region one finds single neurons selective for specific actions 

(Oram & Perrett, 1996; Perrett et al., 1989; Perrett et al., 1985). STS is thought to be 

a hub of the action recognition network in humans as well (Allison, Puce, & McCarthy, 

2000; E. Grossman et al., 2000; E. D. Grossman & Blake, 2002; Puce, Allison, Bentin, 

Gore, & McCarthy, 1998; Puce & Perrett, 2003). However, interactions between STS 

and other brain regions are necessary as the action stimulus typically lasts sufficiently 

long (at least 1 second) to engage other cortical regions and thus inter-area 

interactions as well. Yet, it is understood how basic body motion processing 

mechanisms work in a feedforward pass to build up the STS neuronal signaling (M. A. 

Giese & Poggio, 2003). For perception of causality, we refer to a study of area F5 in 

monkeys (Caggiano, Fleischer, Pomper, Giese, & Thier, 2016), and for inferring the 

intention of an action, the inferior parietal and frontal motor cortices are important 

(Becchio et al., 2012; Fogassi & Luppino, 2005; Hamilton & Grafton, 2006; Iacoboni et 

al., 2005; Van Overwalle & Baetens, 2009). Our work focuses on using full body 

motion stimuli exclusively, behavioral measurements and numerical simulation.  

 

D. Bistability phenomenon 

Bistable perception refers to interpreting a single stimulus inducing two subjectively 

distinct perceptual experiences (referred to as ‘percepts’), where only a single 

percept is experienced at a time (R. Blake & Logothetis, 2002; Leopold & Logothetis, 

1999; Sterzer & Kleinschmidt, 2007). During continuous observation of a bistable 

stimulus, the transition between percepts happens spontaneously (Braun & Mattia, 

2010; Leopold & Logothetis, 1999). From experimental data, the percept durations 

are random and appear to be Gamma-distributed (R. R. Blake, Fox, & McIntyre, 1971; 

J. W. Brascamp, Klink, & Levelt, 2015; Levelt, 1967; Murata, Matsui, Miyauchi, Kakita, 

& Yanagida, 2003; Walker & Powell, 1979). Variations of the percept duration 

distribution are possible depending on the experimental paradigm (Lehky, 1995; 



6 | P a g e  
 

Leopold & Logothetis, 1996; Logothetis, Leopold, & Sheinberg, 1996; Moreno-Bote, 

Shpiro, Rinzel, & Rubin, 2010; Rubin, 2003; J. Zhou, Reynaud, & Hess, 2014; Y. H. Zhou, 

Gao, White, Merk, & Yao, 2004). While we should be more precise with respect to how 

the percept durations are measured (this is elaborated below), the finding that the 

percept durations are Gamma-distributed appears to be observed across a variety of 

stimuli and types of measurement (Borsellino, De Marco, Allazetta, Rinesi, & Bartolini, 

1972; J. W. Brascamp, van Ee, Pestman, & van den Berg, 2005; Walker, 1975; Y. H. 

Zhou et al., 2004).  

 

There are many types of bistable stimuli that have been commonly used, and we refer 

to only some of them here. Binocular rivalry is the most prominent example (R. Blake 

& Logothetis, 2002; Leopold & Logothetis, 1999; van Ee, 2005). A methodologically 

convenient feature of binocular rivalry is that it enables a percept readout additional 

to the voluntary report, in case moving gratings of opposite orientation are used as 

rivalrous displays. Particularly, the opto-kinetic nystagmus (OKN) – which is the eye-

movement trace following the perceived grating – is an indication of the percept. This 

direct read-out using OKN prompted its use in electrophysiological recordings in 

macaques, as both the trained voluntary report and the OKN trace contain current 

percept information that can be compared. The kinetic depth effect, such as a rotating 

sphere or rotating cylinder (Parker & Krug, 2003; Wallach & O'Connell, 1953) is 

another bistable example, in which a moving point-light display can induce the 

percept of a voluminous object (sphere of cylinder accordingly), seen rotating in one 

of the two mutually exclusive directions. A motion quartet is another example of a 

bistable display, as it is amenable to easy manipulation of perceptual dynamics, and 

thus featured in development of unique experimental paradigms addressing 

properties of perceptual hysteresis (Hock, Kelso, & Schoner, 1993; Hock, Schoner, & 

Giese, 2003) The earliest historical reference, as well as the simplest to demonstrate 

is the Necker cube ref (Necker, 1832). 
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In action perception, a point light biological motion display induces bistable 

perception with respect to the walking direction (de Lussanet & Lappe, 2012), where 

one way to bias perception towards one of the perceptual alternatives is by changing 

a depth cue (Jackson & Blake, 2010; Vanrie, Dekeyser, & Verfaillie, 2004). It holds 

more generally that perception of a bistable display towards one of the alternatives 

can be biased by a cue, e.g. aspect ratio biases apparent motion (Giese M A, 1995; Hock 

et al., 1993). This cue can then be used to investigate perceptual stability. As part of 

this work, we found that one previously well-studied static object perception cue –

light source position – can modulate the (ref Chapter 2) walking direction percept.  

 

E. A note on auditory bistability 

Another popular setting to investigate bistability is auditory one. In the simplest case, 

two sequences of tones are concurrently presented to participants binaurally, so that 

they hear two distinct streams of auditory tones. One tone is considered a single 

symbol, so that two input sequences become two strings of that single symbol. 

Participants are probed if they are hearing two or more recurring string patterns, 

where each pattern recurs a combination of symbols from the two input ones. Just 

like in visual bistability, only one string pattern is heard at each instant of time. The 

analysis of such experimental data involves estimation of transition probabilities 

between discrete perceptual states. We consider it sufficiently distinct from the 

investigation path we follow in our work, where the questions are asked with a 

continuous state space in mind, as well as with an ability to continuously morph 

between stimulation patterns. However, it is worth referring to the literature for one 

popular auditory line of research by Denham et al. (Farkas et al., 2016; Farkas, 

Denham, & Winkler, 2018; Winkler, Denham, Mill, Bohm, & Bendixen, 2012), where 

the above considerations are elaborated in further detail. An auditory setting can be 

combined with a visual one, and there are studies on crossmodal interaction using 
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audiovisual bistable perception (Hupe, Joffo, & Pressnitzer, 2008; Sato, Basirat, & 

Schwartz, 2007). 

 

F. Three studies modelling aspects of bistability 

The first study we discuss is the model of binocular rivalry proposed by Hugh Wilson 

(Wilson, 2003). In that work, there are two competitive levels of neural populations: 

a monocular level, represented by two populations, and a binocular one – represented 

by one population. Each of the three populations has two neurons each tuned to one 

of two orthogonal grating stimuli. In the monocular population, the neuron’s firing 

rate 𝐸𝑙1 models the response to the grating preferred by the population. Its activity is 

modulated by the population tuned to the opposite orientation (inhibitory state 

variable 𝐼𝑟2), by the input stimulus 𝑉𝑙1 and by the firing-rate adaptation of this neuron 

𝐴𝑙1 (at time-scale 𝜏𝐴 an order of magnitude slower than that of the firing rate) via an 

after-hyperpolarizing potential current. The inhibitory variable of the neuron within 

a monocular population 𝐼𝑙1 is driven linearly by an excitatory neuron within same 

population. The second lower-level monocular population is symmetric. We refer the 

reader to the original publication for details on parameter values and simulation 

methodology. The equations of the lower layer are:  
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The single higher-level (binocular) population is virtually same, where the input to a 

neuron tuned to each of the two gratings is pooled from the two monocular neurons 

tuned to the same grating. The equations for the higher layer are: 

 

The rivalry in the model occurs both at a lower (monocular) and at a higher 

(binocular) level. The model was proposed to resolve the issue of whether the 

competition between neurons indicative of the experience of rivalry is more 

prominent in lower visual cortical areas, such as V1, or in higher cortical areas, such 

as V4. Since then, modifications (J. Brascamp, Sohn, Lee, & Blake, 2013; H. H. Li, 

Rankin, Rinzel, Carrasco, & Heeger, 2017) of this model, as well as other models 

(Laing & Chow, 2002; Said & Heeger, 2013; Vattikuti et al., 2016) have been proposed 

for rivalry. The characteristic qualitative feature is that the bistable dynamics arises 

at more than one level and at different time scales. 

The second study on bistability (Pastukhov et al., 2013) that we discuss here  

investigated: what qualitative features of neuronal circuitry contribute to bistable 

perceptual experience? In that and other modelling studies, including the one 

developed in this thesis (Chapter 3), it is most frequently understood that the right 

combination of three factors is necessary to exhibit bistable dynamics (Huguet, 

Rinzel, & Hupe, 2014; Shpiro, Moreno-Bote, Rubin, & Rinzel, 2009). These factors can 

be represented explicitly as parameters of a model neural circuit. These parameters 

are: (1) the level of noise and (2) the level of adaptation of neurons coding for target 

stimuli, and (3) the level of mutual inhibition between neurons coding for rival 

stimuli. The parameters need to be chosen from a certain range for the circuit to 
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operate in a bistable regime. Accordingly, the authors experimented with three 

different bistable displays to collect empirical data constraining their model: a kinetic 

depth multidot display (Wallach & O'Connell, 1953), a binocular rivalry display with 

orthogonally oriented green and red gratings ((Meng & Tong, 2004; Wheatstone, 

1962), and the Necker cube (Necker, 1832). To match the simulation results to the 

experimental data, they used summary measures to constrain the parameter space of 

the model (Laing & Chow, 2002). In particular they used the mean percept 

durationdominance duration, the coefficient of variation of the percept duration 

duration, the coefficient of correlation with dominance history and the time-constant 

of dominance history. For the detailed introduction to the last two measures and the 

reasoning behind them we refer to the earlier paper by (Pastukhov & Braun, 2011). 

The authors report that using these four measures enabled them to constrain the 

parameter region more than when only using the dominance duration statistics. They 

further argued that the perceptual history-dependent statistics are less sensitive to 

the contribution of the noise and thus constrain the search in parameter space in the 

dimension given by the noise-modulating constant. Therefore, including history-

dependent measures in parameter search helps more precise identification of the 

realistic operating regime. It is indeed surprising how an approximately similar 

parameter range was obtained using three diverse bistable displays. The authors 

propose that their finding generalizes in the sense that this more constrained region 

should have a similar “shell-like” qualitative shape (as they describe it) for 

phenomenological models of other bistable stimuli. 

The third study we review is the model by Rankin, Meso, Masson, Faugeras and 

Kornprobst (Rankin, Meso, Masson, Faugeras, & Kornprobst, 2014), who analyzed a 

model most closely related (in a technical sense) to the one we use here (Chapter 3). 

The authors perform a bifurcation analysis of a single-dimensional neural field model 

(Amari, 1977; Wilson & Cowan, 1972, 1973) with the stiffness of the firing rate 

function (described below) and the adaptation strength as parameters. The 

characteristic feature of the neural field for competition models is the ability to built 

in a continuous parameterization of stimulus features. In their case, as the authors 
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study the bistability induced by a barberpole illdrifting luminance grating (Wade, de 

Weert, & Swanston, 1984), they use a single (and periodic) feature – the grating 

orientation. With the neural field, they represent the evolution in time 𝑡 of the activity 

of a single neural population 𝑢(𝑣, 𝑡), where 𝑣 is said stimulus parameter. The activity 

(u) is normalized to values in the [0, 1] range. Instantaneous propagation of both the 

excitatory and the inhibitory connectivity between neurons is described by a 

convolution operator 𝑤(𝑣). In this and some other neural field models (Bressloff & 

Webber, 2012; Deco & Roland, 2010; Detorakis & Rougier, 2012; Rankin, Tlapale, 

Veltz, Faugeras, & Kornprobst, 2013), including ours in Chapter 3, the so-called 

‘Mexican hat’ kernel is used to model the short-range excitation and long-range 

inhibition in space, representing the orientation selectivity pattern in visual cortical 

neurons (Ben-Yishai, Bar-Or, & Sompolinsky, 1995; Somers, Nelson, & Sur, 1995). The 

authors use adaptation with an-order-of-magnitude slower time scale to induce 

switching between modelled percepts. The stochastic variable 𝑋𝑡 represents an 

Ornstein-Uhlenbeck process with the same time scale 𝜏𝐴 as the adaption variable 

𝑎(𝑣, 𝑡). It is scaled by a parameter 𝑘𝑋 chosen to match the switching time statistic. The 

model is as follows: 

 

The firing rate function 𝑆(𝑥) is a sigmoidal nonlinearity that bounds the field input. 

The explicit input bound is convenient for non-autonomous simulation, where the 

field input also represents the output of an additional complex signal processing (or 

statistical) model, as in our case (Chapter 3).  
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However, we and several authors also preferred to use the Heaviside function, which 

also has the input bounding property and enables a certain simplification in the 

analysis of the model (Lefebvre, Hutt, Knebel, Whittingstall, & Murray, 2015). 

Nevertheless, Rankin et al. (Rankin et al., 2014) use the sigmoidal function with its 

stiffness parameter 𝜆 (and the adaptation gain 𝑘𝑎) to illustrate a 2-d bifurcation 

diagram with respect to its change. What makes the numerical bifurcation analysis 

(using the numerical continuation methods (E Doedel, 1997) with the AUTO97 

package) possible, is the decomposition of field variables in components 

approximating 𝐽(𝑣) ((Curtu R, 2004),  following the result by Veltz and Faugeras 

(Veltz, 2010). There it is shown, when using this approximation, that the remaining 

orthogonal components decay to zero in infinite time, and thus stationary and 

oscillatory solutions can be studied using ODE methods:  

 

Using the decomposition, Rankin et al. exhibit the qualitative difference in main 

switching mechanism, considering their model can also be used to represent the 

barberpole illusion (Castet, Charton, & Dufour, 1999). With low contrast in that 

stimulus, the perceptual switches are argued to be driven by noise, while with high 

contrast – by adaptation. The main contribution, however, is the use of numerical ODE 

methods for the neural field model. Not only the barberpole illusion, but also other 

bistable stimuli with continuous parametrization can be potentially represented by a 
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1-dimensional field. The Veltz-Faugeras decomposition, together with a 

demonstration of how an ODE integration and numerical continuation methods could 

be applied can give way to bifurcation analyses of other interpretable parameters. 

In a sense, the basic structure of the neural field bistability model, and especially the 

practical challenge of parameter choice within the simulation, is the same as in the 

ODE models, like the one by Pastukhov et al. (Pastukhov et al., 2013), Wilson (Wilson, 

2003) or others referenced above. There is mutual inhibition between neurons 

competing for perceptual dominance, self-induced slow adaptation for oscillation 

between percepts, and a noise process to model the randomness in percept duration. 

The symmetric Mexican hat kernel in a one-dimensional neural field models a 

winner-takes-all mechanism. Due to long-range inhibitory coupling, the neural field 

exhibits winner-takes-all dynamics (Chen, McKinstry, & Edelman, 2013; Maass, 2000; 

Mao & Massaquoi, 2007): field neurons at a sufficiently long distance inhibit each 

other proportionally to their excitation. Two excited neurons exhibit transient 

activity right after stimulus onset, but with sufficient time one of them will suppress 

the other. The time required for suppression is controlled by the field dynamics time 

constant. The reason to bring this up is that in practice, depending on how long we 

wait to read out the neuronal activity after stimulus onset, we might consider the 

activity at readout time as the final “decision” that the neuronal population makes. 

Presenting the field with input and waiting for its dynamics to evolve  into a stationary 

single bump can model “decision-making” as such. Here we do not discuss the 

decision making further and refer the reader to the recent paper by Klaes et al. (Klaes, 

Schneegans, Schoner, & Gail, 2012). 

 

Interestingly, as in the last chapter gives, it is possible to use a two-dimensional 

neural field, where the Mexican hat kernel can be visualized as a two-dimensional 

surface. The second dimension there is asymmetric, and exploits the ability to model 

sequence-selectivity using feed-forward excitation and backward inhibition in a 

neural circuit (Xie & Giese, 2002; Zhang, 1996). However, the mathematical analysis 
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of a sequence-selective neural field, has only been performed for a one-dimensional 

field. 

Other modelling applications of neural fields include motion integration (M. A. Giese, 

1999), decision making (Klaes et al., 2012), visual working memory (Johnson, 

Spencer, Luck, & Schoner, 2009) and hallucinatory pattern formation in the visual 

cortex (Ermentrout & Cowan, 1979). 

 

G. How to measure bistability 

Simulation of the models, including ones described in this introduction and the one 

we used in our chapter (Chapter 3), involves matching experimental data. Human and 

animal experimental data may come in a different form than the simulation data, 

however. Because the phenomena underlying bistable perceptual switching are 

sufficiently complex, it is worth paying attention not only to the generative 

mechanisms, but also to the ”readout functions” that match different data types in 

order to fit the same phenomenological description. The problem with obtaining the 

readout time behaviorally is that it may lack precision, because of including the time 

it takes the participant to report on the percept after seeing it. The problem with 

simulation is similar to that of the spiking data analysis, in that one has to deal with 

noisy non-stationary time series. If we want to obtain the percept durations 

behaviorally, the easiest thing to do is to present the bistable stimulus continuously 

and instruct participants to report a switch as soon as they experience one. Although 

there are some methodological considerations (e.g. the fact that the button press time 

includes the time needed to execute the motor command; here we do not elaborate 

on this problem further), the instruction would readily give the percept durations. 

This is not the situation when analyzing extracellular neural recordings (Leopold & 

Logothetis, 1996)! For example, accepting that we can reliably determine spike 

density functions of two sites selective for each of the two percepts, we still face, in 

practice, two noisy non-stationary time series. It is not obvious how to extract the 
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switching times from these data. We are unaware of any detailed study that addresses 

the issue of how to extract switching times from noisy spike measurements. However, 

we expect that the need for time-precise experimental measurements will increase 

with the ongoing development of neural signaling manipulation techniques such as 

optogenetics (Boyden, 2011). In the next paragraph we describe an approach that is 

directly applicable to both spike density data and to simulation data (where the 

neuronal activities are represented explicitly). 

Conceptually, one wants to describe at every point of time, the present ‘operating 

stage’ of a neuron tuned to a percept, as well as of a neuron tuned to a rivalling 

percept. There are attempts in literature to link the moment at which a particular 

percept begins to be experienced to neural activity, when discussing it in terms of 

visual consciousness (Kang, Petzschner, Wolpert, & Shadlen, 2017). In practice, 

however one has samples of bivariate neural activity over a fixed time interval, and 

wants to infer: the point in time at which activity of one neuron became larger than 

that of the other neuron, and points in time at which each neurons’ activity trended 

from active to decreasing, from decreasing to completely inactive, and vice-versa. 

Moreover, one wants to minimize the number of “operating stages” of neural activity 

detected in the analysis. 

It turns out that a  recent approach to trend filtering (S. Kim, Koh, K., Boyd, S., 

Gorinevsky, D., 2009), gives precisely that kind of summary of bistable neural activity 

data. 

Concretely, for an observation vector 𝑦 (spike train) one obtains a piecewise-linear 

estimate 𝛽̂ by solving a minimization problem defined as: 

 

There, 𝜆 is a regularization parameter controlling the smoothness-residual tradeoff, 

and || • ||1  denotes the 𝑙1 norm. The difference matrix  𝐷 is diagonal-constant with 

first row  [1 − 2 1 0 . . 0] is chosen so that the second term above is minimized when 
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a triple of consecutive estimate points lie on the same line (same as the original 

Hodrick-Prescott filtering (HP-filtering; (Hodrick R., 1997)) by which it is inspired). 

The minimization problem is convex and can is solved in O(n) time (with respect to 

number of data points) using interior point methods, but unlike the HP-filter, it gives 

a piecewise linear estimate of the data vector 𝑦. One convenience for the bistability 

data analysis is that we get linear trends, the time-points at which the trend changes 

(so called kinks), and consequently (not part of the filtering, but after applying it to 

data from rivalling neurons), can estimate the time at which one neuron stops to 

dominate the other one. The method itself allows for extension to incorporate 

periodic components, outlier detection, as well as extension to spatial trend 

estimates. 

Linear trends give a more concise summary of behavior of rivalling neurons than a 

smoothing approach, like e.g. HP-filtering. Yet, they retain the features an 

experimentalist might be looking for, like the point in time when the neural activity 

starts to decrease. Because the recordings usually come in multiple trials, it is then 

possible to consider empirical distributions of the time points of trend change. Same 

is true for the switching time point. 

One possible future prospect in studying visual cortical computation is to distinguish 

the roles of hierarchical levels in mid- and high-level perceptual dynamics. 

Electrophysiological recordings from more than one cortical site simultaneously will 

become one measurement to distinguish those. In a bistable stimulus experiment, one 

would want to consider stochastic dynamics at multiple sites, and the interaction 

between them instead of considering a singleton instance of a switching distribution 

within a circuit. One obvious question would then be – does the switching happen 

later at one site than at the other. There, more precise quantification of the point in 

time when one neuron becomes dominant over the other would be of immediate use. 
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H. Perceptual Adaptation 

In our own study (Chapter 1), when studying perception of social interaction, we 

utilize the well-known psychophysical adaptation paradigm. In it, one can reduce the 

likelihood of perceiving either of the alternatives from a bistable stimulus by 

previously showing a participant the stimulus that induces that percept 

unambiguously. An idea of how behavioral adaptation aftereffects could be, in 

principle, indicative of neuronal tuning properties, was first put forward by von 

Bekesy (Bekesy, 1929). Exploiting neural adaptation, a multitude of methods have 

been proposed since then to investigate neural representation of certain stimulus 

classes. For example, the study of object recognition has enjoyed a multitude of 

papers exploring the fMRI-adaptation paradigm. Inferior temporal cortex has been a 

brain area of frequent focus when investigating population codes in object perception 

(Lehky, Kiani, Esteky, & Tanaka, 2011, 2014; Lehky & Tanaka, 2016). A 

comprehensive review, as a well as a detailed study of adaptation mechanisms in area 

IT is found in the recent thesis of Kaliukhovich KU Leuven (Kaliukhovich, 2014); or 

see for example (M. A. Giese, Kuravi, P., Vogels, R., 2016) for a summary of population-

level adaptive mechanisms in area IT. 

 

There is also some indication that behavioral action adaptation effects are related to 

adaptive mechanisms in neuronal response. Whether (and how?) one can relate 

psychophysical action adaptation aftereffects to neuronal tuning is not completely 

conclusive at the moment. Yet, there does seem to be an overall link between 

behaviorally observed and neuronal-level aftereffects. For action perception, an 

argument that behavioral aftereffects can also elicit properties of neuronal tuning in 

area STS of primates was put forward by Barraclough (N. Barraclough & Jellema, 

2011). In a neuroimaging study Thurman et al. (Thurman, van Boxtel, Monti, Chiang, 

& Lu, 2016) investigate, using point-light individual action stimuli, that adaptation in 

area pSTS can correlate with the behavioral aftereffects. Enhancement of action 

stimuli discrimination through visual learning has been shown to induce plasticity 

changes that make fMRI-adaptation effects more pronounced in motion-related area 
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hMT+ as well as pSTS by Jastroff et al. (Jastorff, Kourtzi, & Giese, 2009) – a study we 

discuss below. 

 

We briefly discuss neural adaptation in general in the next section. After that we 

discuss several results on fMRI-measured adaptation in studying action perception. 

But first in this section we give detail on a couple of studies that exploit a purely 

behavioral adaptation paradigm in action perception. While differing in their 

research questions from our work, they are methodologically educational in using a 

psychophysical adaptation paradigm with action stimuli. 

 

To recall, a perceptual action adaptation aftereffect might be measured as follows. We 

pick two action stimuli that, as reported by participants, unambiguously induce two 

distinct percepts. That is similar to how we pick the stimuli when measuring 

bistability. In fact, any bistable display can be used with an adaptation aftereffect 

measurement. We parameterize the signal space from which the stimuli are chosen 

in a way that enables to obtain any stimulus signal on a path between the two 

(treating the initial two stimuli as extreme values on this path). The position on the 

path is the parameter around which the aftereffect measurement will be designed. 

This way, how we parameterized and obtained all stimuli along the path between two 

extreme stimuli then determines what questions we ask. For instance, we may decide 

to render a volumetric walker stimulus to study biological motion perception (like 

Vangeneugden et al did in a series of studies (Vangeneugden et al., 2011; 

Vangeneugden, Peelen, Tadin, & Battelli, 2014; Vangeneugden et al., 2009), though 

not addressing adaptation in particular). We then may treat the rendering program 

as a tool that already contains such a parameterization: it takes motion capture data 

as input, and produces a 3D signal – a 1000ms video sequence of a single gait cycle. 

We then keep all parameters equal except the one that in our conception (as 

experiment designers) represents the “walking angle”. Using this parameter – 

walking angle – we produce two walkers corresponding to two of its values: e.g. -45 

degrees of walking direction and 45 degrees of walking direction. As it is possible to 

generate stimuli with other angles of “walking direction” in the [-45, 45] range, we 
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will be asking a set of experimental questions on how the “walking direction” is 

represented in the brain. It is possible to study many properties of neural 

representation with such stimuli, by taking extracellular in vivo measurements in a 

local brain area. For example Vangeneugden et al. (Vangeneugden, 2010) studied area 

pSTS to investigate neural tuning properties with of the walking angle in macaques. 

With only behavioral measurements this concrete parametrization is problematic 

because some intermediate signals on the path would also induce stable percepts on 

their own (say a stimulus showing a 0 degree walking figure would induce its own 

percept of a 0 degree walking direction). What we want instead for an action 

adaptation aftereffect measurement is that none of the intermediate parameter 

values corresponds to an unambiguous percept. Alternatively, we might also take the 

two -45 and 45 walkers, again as two extreme stimuli signals, and morph the 

underlying 3D video signal by averaging each corresponding pixel, as such a 

parameterization will also give all signals on the path between the two extremes. This 

latter case turns out to be infeasible in practice, however, because none of the 

intermediate signals on a pixel-level morph path in the stimulus space induces an 

unambiguous percept.  

 

Then why, do some parametrizations make experimental sense, and some don’t? We 

currently understand that we want two things: first, every morph signal on the path 

to induce an unambiguous percept at each instant of time (or after a short viewing 

period); and, second, induced percepts from every point on the path to correspond to 

one of the initial extreme unambiguous percepts, and not to any other ones. 

 

With two displays of action stimuli inducing stable percepts, as well as with a list of 

morphs along the parameterization path between them satisfying the two conditions 

above, we perform the following, rather simple, perceptual manipulation. We first 

present every action stimulus for a short period of time and ask which of the two 

extremes is perceived by a participant, thus determining the baseline (non-adapted) 

perceptual representation. We can also estimate experimentally the likelihood to 

perceive either of the extremes for each chosen position on the path. It is then simple 
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to measure an adaptation aftereffect (given an initially arbitrary pair of extremes and 

their parameterization). We choose that stimulus signal for which the likelihood to 

see either of the alternatives is equal (called point of subjective equality), which we 

denote further as a test stimulus (as well as in our study in Chapter 1). Finally, we 

again measure the likelihood to see either of the percepts from the test stimulus, but 

now prior to displaying it, we also present one of the two extreme stimuli signals to 

the participant (which we refer to as an adaptor stimulus). From the resulting data, 

we infer to have observed a behavioral adaptation aftereffect if the likelihood of 

perceiving the adaptor-induced percept from the subsequent test stimulus has 

decreased. 

 

As a clarifying disclaimer – the adaptation aftereffect procedure is also common 

outside the action perception area, but we still felt it is worth describing it. The reason 

being that it can, conveniently, also serve as a follow-up constraining measurement 

to study bistable perception when investigating the same neural substrates, stimuli 

and participants (or even model animals in some cases). 

 

Even if the mistakes (wrong parameterizations) in the walking direction example 

might have appeared easy to avoid, and the discussion above somewhat redundant, 

our ability to generate a list of intermediate stimulus morphs in practice does pose a 

difficult experimental problem. What we would measure experimentally is 

constrained by our ability to produce intermediate stimulus morphs satisfying the 

two properties above. For example, to morph between two arbitrary actions becomes 

highly complicated depending on what actions are chosen as extremes. Motion 

capture data (such as post-processed time series of joint angles) for actions of 

‘catching’ and ‘taking’ allows simple averaging between the time series to produce the 

parameterization. But rendering stimuli for biomechanically different actions – given 

same type of data – becomes a current research problem in the area of computer 

graphics (working with motion capture data is out of scope of this thesis, yet a 

somewhat older work on statistical modeling of human interaction data is still 

illustrative of the point (Taubert, 2012)). For example, in Roether et al. (Roether, 
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Omlor, Christensen, & Giese, 2009) the investigation of perceiving emotion in action 

stimuli (while being still much simpler than the more general action morphing 

problem) already prompted more complex modelling of body movement data (M. 

Giese, Poggio, T., 2000) . Finally, given video data, instead of motion capture data, the 

task becomes currently technically unfeasible to best of our knowledge. Therefore, it 

is the ability to generate action morphs that determines what questions can be asked 

in studying action perception (with behavioral methods). 

 

Barraclough and Jellema (N. Barraclough & Jellema, 2011) examined whether action 

adaptation aftereffects occur when the test and adaptor stimuli differ by viewpoint. 

They use displays of a static walking figure in addition to videos of a walking sequence 

to measure the aftereffect. In addition to concluding that walking direction inference 

mechanisms are not sensitive to the identity of the actor, they confirm that perceiving 

static and dynamic biological motion displays rely on similar mechanisms (broadly 

speaking). Perhaps more curiously, they show how parameterization by viewpoint is 

a simple yet effective way to discredit an aftereffect explanation by low-level motion 

adaptation mechanisms. In the paper, they claim that the walking direction 

recognition mechanisms are independent of the viewpoint in the test stimulus. The 

view point in the adaptor and test stimuli was different in one of the experiments. 

This enabled a direct comparison of aftereffect size when the test and adaptor had 

either same or opposite view. The authors did not find that the view of the test with 

respect to the view of the adaptor does has a significant effect on the adaptation 

aftereffect magnitude. While this does not by itself completely rule out a contribution 

of lower-level mechanisms to the observed action adaptation aftereffect, they give a 

direct comparison of aftereffects for stimuli where the low-level motion features are 

opposite. 

 

Another study supports our argument about how much the morphing ability 

determines the question. For instance, because it’s easy to morph between motion 

capture signals of the same actions, when the action is performed by actors of two 

different genders, it is possible to measure an adaptation aftereffect with respect to 
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such a gender parametrization. See, for example a short note by Jordan et al. (Jordan, 

Fallah, & Stoner, 2006). A much more extensive study by Troje et al. (Troje et al., 

2006) also addressed adaptation derived from gender. However, the interesting part 

of that study is that the authors demostrate an investigation of the concrete 

parameters of the adaptation paradigm: that is the adaptor duration, the interval of 

time between the adaptor and test (which they call the ‘storage interval’, or the 

interstimulus interval in other studies) and the test stimulus duration. Indeed, the 

data on the duration of the adaptation aftereffect is a reasonably constraining 

addition for finding the right simulation parameters in bistability models that include 

an adaptation effect. With action stimuli such as biological motion and hand actions, 

as well as for facial actions the increase of adaptor duration leads to an increase of 

the aftereffect size (though not going above a certain bound the exact value of which 

will depend on the experimental paradigm), while the decrease of the measured 

aftereffect size can by triggered by increasing the storage interval (N. E. Barraclough, 

Keith, Xiao, Oram, & Perrett, 2009; Becchio et al., 2012; Ghuman, McDaniel, & Martin, 

2010; Hershenson, 1993; Leopold, Rhodes, Muller, & Jeffery, 2005; Magnussen & 

Johnsen, 1986; Rhodes, Jeffery, Clifford, & Leopold, 2007; Troje et al., 2006). In the 

work by Troje et al. (Troje et al., 2006) the authors do manage to find similar trends 

when varying the adaptor duration between 3.5 seconds and 14 seconds, and the 

storage interval between 0 seconds (it always must bit a bit bigger than zero to avoid 

apparent motion effect to carry over from adaptor to test, but in some cases it can be 

very small to be treated as effectively zero at this time scale, especially when 

conceiving a numerical simulation after a psychophysics study) and 2.4 seconds. 

These time intervals are relatively big, so that the aftereffect measurements only 

speak about the dynamics of the behavioral readout of the underlying action 

processing by the brain. The manipulation of adaptor, interstimulus and test 

durations is illustrative in the sense of being strongly constraining for models of 

underlying dynamics, -- potentially even applicable to a completely different type of 

recording, e.g. to a BOLD signal or an extracellular potential signal. 
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With respect to the perceptual action adaptation aftereffect, we should also mention 

that it could be be a useful marker in distinguishing autism spectrum disorder 

(Pavlova, 2012; Pellicano, Jeffery, Burr, & Rhodes, 2007) in humans using face 

(Pellicano et al., 2007) or biological motion stimuli (van Boxtel & Lu, 2013).  

 

I. Neural Adaptation 

The general term “adaptation” refers to a reduction of a measured spatially localized 

neuronal signal over time.  This may refer to a reduced firing rate of an extracellularly 

measured spiking activity, to a decrease in a haemodynamic response (Clifford et al., 

2007; Grill-Spector, 2006; Grill-Spector & Malach, 2001; Krekelberg, Boynton, & van 

Wezel, 2006), or similar phenomenon observed when working with other signals at 

different spatial and temporal scales (for instance using EEG and MEG measurement 

techniques (Ghuman, Bar, Dobbins, & Schnyer, 2008; Gilbert, Gotts, Carver, & Martin, 

2010)). A standard experimental paradigm to induce adaptation is the repeated 

presentation of same stimulus, which is referred to as "repetition suppression"(Kohn, 

2007; Wark, Lundstrom, & Fairhall, 2007; Webster, 2011). 

One use of the paradigm has been to decode the neural representations of a certain 

stimuli class, as it differentiates between stimulus parameter modifications in 

repeated presentation that do or do not lead to adaptation. For example, static object 

representations in inferior temporal cortex have been studied with adaptation 

paradigms using both fMRI paradigms and electrophysiological recordings (Grill-

Spector et al., 1999; Kaliukhovich & Vogels, 2011; Vuilleumier, Henson, Driver, & 

Dolan, 2002). There, with the firing rate signal, the time scale of response rate 

reduction is reported to be approximately 100-250 ms (M. A. Giese, Kuravi, P., Vogels, 

R., 2016; Kuravi & Vogels, 2017), which is smaller than the typical action stimulus 

presentation time. This already suggests that these paradigms could not directly be 

carried over from object perception to action perception. 
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When collecting fMRI response data in a repetition suppression paradigm, one may 

also see how the response decreases with the number of repetitions (Malach, 2012). 

Like in neural adaptation, this decrease is itself also limited so that it can saturate 

after six to eight stimulus repetitions (Grill-Spector & Malach, 2001). Important to 

keep in mind is that the nature of the relationship between fMRI adaptation and the 

neural adaptation is not completely understood. First, the detailed effects of neuronal 

spiking on the BOLD response remains to be studied (Bartels, Logothetis, & 

Moutoussis, 2008; D. S. Kim et al., 2004; Logothetis & Wandell, 2004; Sirotin, Cardoso, 

Lima, & Das, 2012). Second, it is not clear whether locally-assessed fMRI adaptation 

does not incorporate influences from other brain areas (Kohn & Movshon, 2003). Yet, 

while it is debated whether fMRI-adaptation can be interpreted in same way as 

adaptation observed electrophysiologically (Weigelt, Muckli, & Kohler, 2008), 

repetition suppression still gives an attractive paradigm to study neural 

representations. We reference its use in investigating perception of actions later. 

While detailed quantitative properties of adaptation may vary between experimental 

paradigms, of principal interest to us is the qualitative reduction in neural response 

induced by repetition suppression. 

Mechanistic explanations of adaptation include the decrease of firing rate (Miller & 

Desimone, 1994), the decrease in number of neurons responding to the stimulus 

((Desimone, 1996; L. Li, Miller, & Desimone, 1993), or the decrease in response 

latency (James & Gauthier, 2006); also see (Gotts, Chow, & Martin, 2012; Grill-Spector, 

Henson, & Martin, 2006) for an elaborate discussion of different adaptation 

mechanisms).  

Out of those three above, in modelling bistable perception (Chapter 3) we take the 

first point of view – when the neuronal response amplitude decreases already after 

several hundreds of milliseconds of stimulus repetition, and this reduction lasts up 

to, coarsely, 10 seconds. To clarify, we do not know of a detailed electrophysiological 

study that confirms that the firing rate adaptation in a certain proportion of biological 

motion stimuli sensitive neurons area pSTS will last for up to 10 seconds. The 
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important note here, instead, is the rough match of the particular type of adaptation 

time scale (500ms – 10s) to the common stimuli presentation time scale within 

experiments using that stimuli class (i.e. action stimuli). For instance, a recent 

investigation by Kuravi et al. (Kuravi, Caggiano, Giese, & Vogels, 2016) probed for 

repetition-suppression-induced adaptation using 1.4 second hand action stimulus 

using single-unit and multi-unit electrophysiology in STS, where they demonstrate 

the decrease in both firing rate and LFP activity. 

 

J. Use of adaptation in study of action perception 

It is interesting that changes of the neural representation of actions at a much larger 

visual learning time scale (one to few days) can be employed to affect the 

representation at the adaptation time scale. For example, Jastorff et al (Jastorff et al., 

2009) have studied whether visual learning of point-light action stimuli enhances 

discriminability of similar movements. The authors use spatiotemporal morphing of 

action patterns to generate point-light displays with different degrees of 

discriminability between the pairs of patterns (refer to e.g. (M. A. Giese & Lappe, 

2002) for more detail on the relationship between perceptual similarity of 

spatiotemporal morphs). One of their experiments shows emergence of observable 

fMRI-adaptation through neural plasticity induced in participants by repetitive 

execution of discrimination task. Before long-term plasticity-related processes are 

triggered (that is – before training simply put; refer to (Berninger & Bi, 2002; Bi & 

Poo, 2001; Fremaux & Gerstner, 2015; Fusi, Drew, & Abbott, 2005; Messinger, Squire, 

Zola, & Albright, 2001, 2005; Yang & Calakos, 2013) for information on learning-

related neural plasticity time scales and mechanisms, though not specifically in the 

action perception context), the authors probe how much adaptation can be observed 

in biological motion related areas FBA and pSTS (E. D. Grossman & Blake, 2002; 

Michels, Lappe, & Vaina, 2005; Peelen, Wiggett, & Downing, 2006; Peuskens, Vanrie, 

Verfaillie, & Orban, 2005), as well in lower-level motion related areas hMT+ (Born & 
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Bradley, 2005; Herrington, Nymberg, Faja, Price, & Schultz, 2012; Sani et al., 2010). 

After training, they repeated the same measurement. By comparing the pre- and post- 

training adaptation statistics, they inferred an increase in fMRI-selective adaptation 

in biological-motion-related areas. More surprisingly, they inferred the appearance 

of fMRI-selective adaptation effects in low-level motion areas after training (with 

none present in pre-training measurement). We find it to be a potentially curious 

practical trick: perhaps visual training for discrimination can help to observe the 

fMRI-selective adaptation aftereffects, when the chosen stimuli patterns are not 

initially producing the aftereffect. With respect to the full paper contribution itself, 

the authors relate functional changes in action processing in different brain areas to 

the behavioral performance. 

Grossman et al. (E. D. Grossman, Jardine, & Pyles, 2010) addressed what action 

stimulus parameters the neural representations of actions in area STS might be 

invariant to? Using an fMRI-adaptation paradigm and point-light action stimuli, they 

expectedly observed specificity with respect to the action viewpoint in extrastriate 

hMT+. Yet, they concluded (partial) invariance to position, point of view and size of 

the action stimuli, when analyzing the haemodynamic response functions from pSTS. 

Hence, this particular study of invariance to action stimuli features using of fMRI-

adaptation is consistent with previous physiological findings (Jellema & Perrett, 

2006). Of course, the method enabled the authors to look at other brain regions as 

well, besides the hMT+ and pSTS areas. However, they duly point out that the 

conclusions from fMRI-adaptation in humans about those two areas are backed by 

both physiological studies and the anatomical homology of monkey and human visual 

cortices. Hence, invariance/sensitivity properties in other areas that they (can 

technically) compute is not necessarily conclusive without similar support. Of course, 

such limitation of the fMRI-adaptation method is constraining to studies with other 

sensorimotor stimuli classes, beyond action perception, as well. Yet, it is particularly 

critical for further study of perception of actions, because at the action stimulus time 

scale (0.6-20 seconds), we do indeed want to look at brain networks and inter-

architectural interactions holistically, beyond feature sensitivities of singleton areas.  
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In a more recent study (Thurman et al., 2016) have directly assessed the BOLD signal 

decrease in the repetition suppression paradigm using point-light walker stimuli in 

both human middle temporal complex (hMT+) and posterior STS. Thurman et al use 

a 25 seconds interval for an initial adaptor duration phase before every block, during 

which they display a point-light biological motion stimulus (it was a runner, a walker 

or parameterized morph between them). In the repetitive adaptation trials, just like 

in our action adaptation paradigm (Chapter 1), it was sufficient to use a 4.5 second 

adaptation block. What could be more critical for the technical execution of the 

paradigm, as well as for potential ecologically valid simulations of it (using neural 

modelling techniques as in Chapter 3), -- is the use of a variable (3 to 7 second) 

interstimulus interval (ISI). The authors refer to (Dale, 1999; Serences, 2004) as an 

improvement to extracting event-related responses from BOLD signal data.  

The question the authors of the above article intended to ask, however, is of utmost 

importance to our own study (Chapter 1). That is: when using repetition suppression 

with action stimuli, can one relate adaptation in posterior STS at a neural population 

level to behaviorally observed perceptual adaptation? If the answer is positive, then 

it might be possible to develop paradigms inferring properties of neural 

representation using fast-to-execute psychophysical methods. To be clear, previous 

probes of fMRI-adaptation aftereffects in pSTS have already successfully used 

repetition suppression to study neural representation of action stimuli at a sub-voxel 

resolution (Grill-Spector & Malach, 2001; Krekelberg et al., 2006; Webster, 2011). Yet, 

they have not directly tested how much the behavioral correlate of the aftereffect (i.e. 

perceptual adaptation) is representative of its fMRI-adaptation counterpart. 

In hMT+, similarly to the conclusions from the Jastorff et al. study (Jastorff et al., 2009) 

that we discussed above, Thurman et al. confirm location-specific adaptation effects . 

This conclusion is in line with the general understanding of feedforward biological 

motion perception theory (M. A. Giese & Poggio, 2003). Further, using a measure of 

neural aftereffect strength, and of behavioral aftereffect strength, Thurman et al find 

a positive correlation within the right pSTS. They did not, unfortunately, confirm that 
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aftereffects are significantly correlated when looking at the left pSTS. Moreover, they 

note that the behavioral responses were collected prior to the fMRI scan sessions.  

Further analysis in the paper (Thurman et al., 2016) focuses on attempting to elicit 

fMRI-adaptation aftereffects as a marker for autism traits. This is indeed an important 

objective, as well a potentially promising research venue. More generally speaking, 

from biological motion stimuli one may expand to study perception of social 

interactions (as we attempt to do in our Chapter 1). Subsequently, one may attempt 

to develop fast-to-execute behavioral procedures to measure indications of Autism 

Spectrum Disorder (ASD), and even therapies in the future. An elaborate discussion 

of Thurman’s results as well of ASD studies is out of scope of this thesis, however. For 

completeness, we give the references for the reader who may want to look at use of 

biological motion stimuli in ASD studies: (Pavlova, 2012; Pellicano et al., 2007; van 

Boxtel & Lu, 2013). 

As it stands, complete empirical evidence relating fMRI-adaptation in pSTS to 

behavioral adaptation aftereffects induced when using action stimuli is lacking. This 

might perhaps be complicated by the long time scale of an action display that enables 

the stimulation signal to traverse the whole brain before the corresponding BOLD 

signal is read out. Despite this, we are not prevented from mining further patterns 

using purely behavioral methods. We hope this thesis will support basic mechanistic 

understanding of the relationship of the neural and behavioral aftereffects in action 

perception in the future. 
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Lighting-from-above prior in 
biological motion perception
Leonid A. Fedorov 1,3, Tjeerd M. H. Dijkstra 1,2 & Martin A. Giese1,3

The visual system is able to recognize body motion from impoverished stimuli. This requires combining 
stimulus information with visual priors. We present a new visual illusion showing that one of these 
priors is the assumption that bodies are typically illuminated from above. A change of illumination 
direction from above to below flips the perceived locomotion direction of a biological motion stimulus. 
Control experiments show that the underlying mechanism is different from shape-from-shading and 
directly combines information about body motion with a lighting-from-above prior. We further show 
that the illusion is critically dependent on the intrinsic luminance gradients of the most mobile parts of 
the moving body. We present a neural model with physiologically plausible mechanisms that accounts 
for the illusion and shows how the illumination prior might be encoded within the visual pathway. Our 
experiments demonstrate, for the first time, a direct influence of illumination priors in high-level motion 
vision.

The perception of body motion is dependent on a variety of cues, including 2D form and motion1,2, but also on 
other cues which help to disambiguate the three-dimensional structure of the body, such as disparity3–6. While 
natural body motion stimuli often specify many cues for the disambiguation of the three-dimensional body struc-
ture, it has been shown that humans effortlessly recognize three-dimensional body motion even from strongly 
impoverished two-dimensional stimuli7. This requires the combination of ambiguous stimulus information with 
perceptual priors that are encoded by the visual system. The exact nature of such priors for the recognition of 
three-dimensional body motion remains largely unknown.

We present a new perceptual illusion that implies that the perceived locomotion direction of body motion 
stimuli critically depends on the prior assumption that such bodies typically are illuminated from above. Such 
‘lighting-from-above priors’ have been previously found for the perception of static shapes8–17. However, the 
influence of illumination direction and shading on body motion perception has never been systematically stud-
ied. Illumination from above results in the perception of the correct locomotion direction, while illumination 
from below can completely flip the perceived direction of locomotion. As shown by an additional control experi-
ment, the observed illusion is not just a side-effect of classical shape-from-shading mechanisms for the perception 
of static shapes, and their dependence on illumination direction. Instead, it must be based on a specific previously 
unknown mechanism that seems to combine temporally changing intrinsic shading gradients of object surfaces 
(i.e. gradients that are not caused by the object boundaries) with the perceived illumination direction.

In the following, we present two experiments. Our first experiment establishes the illusion, showing that flip-
ping the light-source position from above to below can completely change the perceived walking direction of a 
biological motion stimulus. In a second experiment, we isolate the visual features that critically drive this visual 
illusion. Our experiments motivate a computational model that accounts for the illusion, and which proposes a 
way how the underlying visual prior might be encoded by physiologically plausible neural mechanisms within 
the visual pathway.

Results
To investigate the influence of illumination direction on the perception of walking direction, we developed a 
novel biological motion stimulus, consisting of 11 conic volumetric elements with reflectional symmetry (Figs 1A 
and 2B–E). The movements of the elements were derived from motion-captured movements of a human walker 
(see Methods for details). It is well-known that 2D images of illuminated three-dimensional surfaces specify 
shading gradients that allow an estimation of the surface orientation. This estimation is also known as classical 
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‘shape-from-shading’ problem18. In this paper we investigated the influence of the such shading gradients on the 
perceived locomotion direction from a biological motion stimulus that consists of volumetric elements.

In Experiment 1 the elements were illuminated by a light source whose position was systematically varied 
(Fig. 1A). Previous work on the perception of walking from point-light stimuli has shown that direction percep-
tion can become ambiguous for particular view angles if no additional depth cues are provided3,6. The view of 
the body was chosen to minimize occlusions between different stimulus elements (see e.g. Figure 2B–E), which 

Figure 1.  Experimental paradigm and stimuli snapshots. (A) Scheme of experimental setup. Participants were 
viewing a walker moving TOWARDS or AWAY from them. The walker consists of volumetric conic elements 
with a reflective grayscale surface. It was rendered assuming a light source position with a fixed elevation angle. 
The walker performed two gait cycles before participants were asked to report the perceived walking direction. 
(B–D) Characteristic snapshots of the same body configuration of the walker during the TOWARDS gait with 
light source positioned at different elevation angles. (E) Snapshot of the walker with ‘flat’ shading with uniform 
shading within the individual elements. Movie 1 shows these 4 walker stimuli.
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Figure 2.  Experimental Results. (A) Results of Experiment 1. Accuracy of reporting the veridical walking 
direction as a function of the light source elevation angle α. Accuracy is defined as a probability of perceiving 
the true walking direction. Plotted points represent the means of the veridical binary responses per condition. 
The psychometric function was fitted with a generalized linear mixed effects model using cosine and sine of the 
light elevation angle, and walking direction as predictors (GLMM). (B) Snapshots from example stimuli lit from 
BELOW walking AWAY. Walkers illuminated from ABOVE and BELOW (light elevation angles ± 45 deg) were 
presented for which the gradual shading was removed from different combinations of stimulus elements. Left: 
‘forearms’ condition where gradual shading was removed from the thighs and the legs. Right: ‘legs’ condition 
where gradual shading was removed from the thighs and the forearms. Except for the ‘flat shading’ condition 
the trunk and the upper arms always had gradual shading. Movie 2 shows these 2 walker stimuli. (C) Results 
of Experiment 2. Boxplot of the mean difference of the response accuracies (probabilities of correct reporting 
of the veridical walking direction) between stimuli illuminated from ABOVE and BELOW. This measure of 
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maximizes the ambiguity in absence of shading cues because occlusions provide relative depth information19. The 
true walking direction of the walker was either straight out of the image plane in the direction of the observer 
(TOWARDS) or into the image plane away from the observer (AWAY). The light source elevation angles α 
(Fig. 1A) varied between 90 deg (illumination exactly from above) to −90 deg (illumination exactly from below). 
Elevation angle α = 0 deg corresponds to an illumination directly from the side. Within a forced-choice task, par-
ticipants responded whether the walker was perceived as walking ‘towards’ them or ‘away’ from them.

Participants always reported perceiving a walking human character. Whether this character was perceived 
as walking towards them or away from them depended on the light source elevation angle. Figure 2A shows the 
accuracy of the responses (proportion of correct responses where the reported direction matched the true walking 
direction of the walker) averaged over 13 observers (represented as points in Fig. 2A for illustration). Individual 
accuracies are reported in Fig. S1 in the Supplemental Information (SI). Illumination from above (α > 20 deg) 
results typically in correct perception of the veridical walking direction, while Illumination from below (α < −40 
deg) results in an illusion: the perception of walking opposite to the veridical direction. In an intermediate regime 
of elevation angles (about −40 to +20 deg) the stimulus was multi-stable and the percept alternated between the 
two veridical walking directions. Within individual trials, observers never reported switches during the stimulus 
presentation. Figure S1 (SI) shows that the illusion was present in the responses of all 13 observers.

Responses of all observers were fitted with a logistic mixed-effects model (see Methods) with the cosine 
and sine of light angle and veridical motion direction both as fixed and random effects. This analysis uncov-
ers systematic effects for all observers while still allowing for individual differences. The resulting fixed effects 
curves are plotted in Fig. 2A, one for AWAY and one for TOWARDS and the random effect ones are plotted in 
Fig. S1. The fits showed a highly significant effect of light angle (p < 10−16) on the perceived walking direction 
for both true walking directions (AWAY and TOWARDS). In addition, our analysis revealed a significant small 
effect of walking direction (p < 0.05). The small significant effect of walking direction is consistent with a bias 
that favors perception of walking ‘towards’ the observer, which has been also observed in previous studies with 
point-light-walkers20. A further analysis of the condition with frontal lighting (cf. Fig. S2) reveals that the veridi-
cal walking directions can be perceived with a performance above chance level even for this condition. This might 
be explained by the presence of subtle temporally changing shading variations within the stimulus elements even 
for this illumination condition.

Summarizing, the results of Experiment 1 show that the perception of body motion is influenced by a 
‘lighting-from-above prior’. For illumination from above the walking direction is correctly perceived from the 
2D stimulus and identical with the veridical locomotion direction of the 3D stimulus. Illumination from below, 
however, results in a misperception where the walker is perceived as walking in the opposite direction of the 
veridical locomotion.

Our stimuli were designed in a way that minimizes occlusions between different stimulus elements. Occlusion 
is a strong relative depth cue, which also could disambiguate the three-dimensional structure of our biological 
motion stimuli. Since this cue was minimized, this leaves mainly shading variations within the elements (intrinsic 
shading gradients) as possible depth cue. This motivated us to investigate what happens when we eliminate all 
intrinsic gradual shading cues from our stimuli. For this purpose, we replaced the luminance values of all pixels 
belonging to an element by the average luminance, averaging over all pixels that form the element and over all 
frames of a gait cycle. The resulting stimulus elements have a ‘flat’ shading profile that was constant over time 
within the elements (Fig. 1E). Note that this flat shading stimulus is different from the stimulus with frontal 
lighting, which still contains small changing shading gradients within the moving stimulus elements that change 
their orientation relative to the light source (Fig. 1D). We embedded trials with flat shading in the stimulus trials 
with gradual shading (as presented before in Fig. 1B–D). Consistent with our expectation, stimuli with flat shad-
ing were perceptually ambiguous and sometimes perceived as walking towards and sometimes as away from the 
observer. To test if there was any information about walker direction used by the observers, we fitted a logistic 
mixed-effects model using only an intercept as predictor to the data from trials with flat shading. We found a 
small but significant (p < 0.05) negative deviation of the response accuracy from chance level, i.e. observers per-
formed worse than chance. Thus, observers made no use of the remaining information about walking direction 
in the flat shaded stimuli. If anything, the remaining information resulted in the perception of the wrong walking 
direction. Further statistical analysis results on this stimulus class is presented in the SI and Fig. S3. This result 
implies that the information about the walking direction is largely carried by the gradual shading within the 
stimulus elements, while variations of the movement kinematics and shape variations of the boundaries of the 
stimulus elements are apparently not exploited by the visual system even though they also contain information 
about the walking direction.

The new illusion was further investigated in Experiment 2, in which we varied the amount of shading informa-
tion provided by the individual stimulus elements. As illustrated in Fig. 2B, we removed the shading from combi-
nations of elements (e.g. the ones forming the forearms or the legs). In total, we used a set of nine stimuli, ranging 
from the original fully shaded stimulus to a stimulus with flat shading within all stimulus elements (Fig. 1E). 
Specifically, we removed the gradual shading from the elements forming the head, torso, the forearms and upper 
arms, the thighs and the lower legs. The veridical motion of the walker was again either AWAY or TOWARDS the 
observer. As in the first experiment, participants responded within a forced-choice task whether they perceived 

the size of the illusion is shown for different combinations of elements with gradual shading. Boxes indicate 
the ranges of the data (middle 50% interquartile range (IQR)). Black thick lines within the boxes indicate the 
medians. Whiskers mark intervals of 1.5 times the IQR ranges, and the dots indicate outliers that do not fall 
within these intervals.
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the stimulus as walking towards or away from them. For this experiment, we used only two light source directions 
(α = −45 deg and α = 45 deg), which showed large differences in accuracy between illumination from above and 
from below for fully shaded stimuli in Experiment 1.

The results from the second experiment are shown in Fig. 2C, separately for the stimuli with veridical motion 
AWAY from and TOWARDS the observer. The figure shows the mean difference in accuracy between the lighting 
from above and below conditions for stimuli with gradual shading in different combinations of stimulus elements 
(see Fig. S4 for per-observer averages). The differences were averaged over repetitions, where the colored bars 
indicate the ranges of the means across the different participants. The mean difference in accuracy between the 
two illumination conditions characterizes the size of the illusion. Consistent with our expectation, the size of the 
illusion increases with the fraction of elements with gradual shading. Consistent with the findings in the first 
experiment, for the condition with gradual shading of all elements (‘all’) we observe a large difference in accuracy 
(0.85), which is close to the one found in Experiment 1 (0.88). For all conditions with gradual shading of stim-
ulus elements in the forearms, the legs, the thighs or combinations of them the difference in accuracy deviated 
significantly from zero (one-sample t test, p < 10−4 for both AWAY and TOWARDS). Contrasting with this result, 
stimuli without any gradual shading within the elements (labeled “none”) and the ones with gradual shading of 
the elements that form the head, torso and the upper arms (labeled “body”) show mean differences in accuracy 
that do not deviate significantly from zero (one-sample t test, p > 0.15). This indicates the absence of the illusion 
for those stimuli. A more detailed statistical analysis using a linear mixed-effects regression21 is presented in the 
SI. This analysis confirms that the head, torso and upper arm elements do not contribute to the illusion, while 
forearm, thigh and lower leg elements induce a significant illusion. In addition, the analysis shows that of the 
three groups of moving elements, the forearms are least effective in inducing the illusion, followed by the (lower) 
legs, whereas the thighs were most effective in inducing the illusory effect. From this we conclude that the gradual 
shading cues from the mobile elements of the walker are critical for the illusion, since in our stimulus the ele-
ments representing the head, the torso and the upper arms do not show much motion.

To further support our conclusion that the illusion is driven by the intrinsic shading gradients in the mobile 
stimulus elements, we developed a computational neural model that recognizes body motion by an analysis of 
luminance gradients. The model is based on a hierarchical neural architecture and is compatible with facts known 
about the visual pathway. The model learns a perceptual prior from training data that contains only stimuli that 
are illuminated from above. We demonstrate that this model reproduces the illusion shown in Experiment 1 and 
that it also reproduces qualitatively the results about the most informative features from Experiment 2.

The model is illustrated in Fig. 3. It is formed by a hierarchy of four layers that consist of neural detectors. 
The first layer consists of Gabor filters, modeling V1 simple cells, where the uneven Gabor filters estimate local 
luminance gradients. The second layer performs nonlinear gating to suppress the strong gradients on the bound-
aries of the stimulus elements. Since typically the background contrast is different from the one of the stimulus 
element this creates strong contrast edges, which without suppression would dominate in the higher levels of the 
hierarchy. The gating operation suppresses the responses of the detectors to these contrast edges. The third layer 
pools these gated filter outputs over limited spatial regions using a maximum operation, resulting in detector 
responses with increased position invariance22,23. To determine the connections to the fourth layer we applied a 
feature selection algorithm, which selects only those receptive fields in layer 3 whose responses vary significantly 
over the training set. A further reduction of the dimensionality of the feature space is accomplished by Principal 
Component Analysis (PCA). The resulting reduced feature vectors provide input to the highest layer that consists 
of two Gaussian radial basis function units, which model a two-component Gaussian mixture distribution mix-
ture (one component encoding AWAY and the other TOWARDS walking). The parameters of this distribution 
were learned in an unsupervised manner from stimuli from both veridical walking directions that were illumi-
nated from above (α = 78.75 deg). Our model thus assumes that the visual system is trained with typical stimuli, 
which are illuminated from above, implementing a learned perceptual prior. The ‘perceptual response’ of the 
model was then determined by the radial basis function unit with the largest response, where it can be shown that 
this decision rule implements a Bayesian classifier. (See SI for further details).

When the model was tested with the stimuli from Experiment 1 it reproduced the experimentally observed 
illusion. This is illustrated in Fig. 4A that shows the probability to classify the veridical walking direction of the 
walking stimuli, which were illuminated from the same directions as in the experiment. Like the human partici-
pants, the model misclassifies the walking direction for stimuli that are illuminated from below. The likelihood of 
correct classification increases as a function of the elevation angle of the light source, consistent with the results 
from Experiment 1, where in our analysis we averaged the responses of the AWAY and TOWARDS conditions. 
(See SI for details).

We also tested the model with the stimulus variants from Experiment 2. Like in Experiment 2, the size of the 
illusion increases with the number of gradually shaded elements of the mobile body parts, while shading of the 
head and torso is not providing reliable information for the classification of the walking direction. The stimulus 
without gradual shading cues results in completely ambiguous responses with equal probability of both classifica-
tion results. The model largely reproduces the relative importance of the individual elements for the illusion size. 
This is shown in Fig. 4B that shows the mean differences in accuracy (that quantifies the strength of the illusion) 
from the experiment and the one derived from the model. The two measures are significantly correlated (R2 = 0.8, 
p < 0.001). This result further supports the hypothesis that the illusion is based on an analysis of intrinsic lumi-
nance gradients of body motion stimuli. The higher illusion size for stimuli with shaded legs might result from 
the fact that during the observation of body movement humans tend to attend the body center24 while the model 
treats all body parts equally and does not account for such attentional biases.
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Figure 3.  Neural model. The model consists of four neural layers: (1) uneven Gabor filters that are sensitive to 
shading gradients, (2) a gating stage that suppresses the strong contrast edges on the boundary of the silhouette 
of the walker; (3) partly position-invariant neurons that detect the strengths and direction of luminance 
gradients within the individual parts of the moving Figure; (4) a recognition level that processes selected 
features transmitted from the previous level. This level is composed from two Gaussian radial basis functions 
units that are trained to approximate the statistics of training patterns, which all have been illuminated from 
above. (See text and SI for further details.).
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Discussion
We presented a new psychophysical illusion that provides evidence that the perception of body motion is influ-
enced by a lighting-from-above prior. Using a novel biological motion stimulus that consists of moving volumet-
ric elements, we showed that the perceived walking direction matches the veridical walking direction when the 
stimulus was illuminated from above. If the stimulus was illuminated from below, however, the walking direction 
was misperceived. This implies that body motion perception integrates the stimulus information with the a-priori 
assumption that the light source is typically is positioned above. While our first experiment established this novel 
psychophysical illusion, our second experiment narrowed down the relevant visual features. Critical for the illu-
sion were the shading gradients within the most mobile stimulus elements. We could qualitatively reproduce the 
illusion, and its dependence on these critical features by a neural model that analyzes intrinsic shading gradients 
inside the moving stimulus elements. In the model the lighting-from-above prior was learned from training pat-
terns that were illuminated from above. Such training reflects what humans might experience in the visual world 

Figure 4.  Simulation of experiments by the model. (A) Simulation of Experiment 1. The model reproduces the 
illusory effect, closely approximating the functional form obtained from the experimental data. Psychometric 
functions are averaged over patterns with the veridical walking directions AWAY and TOWARDS. (B) 
Simulation of Experiment 2. Separately for each stimulus type in Experiment 2, the correlation plot shows the 
mean differences of accuracies between illumination from above and below (cf. Figure 2C), as computed from 
the experimental data and the model predictions. The correlation between both measures is high (adjusted 
R2 = 0.7695) and significant (p < 0.01).
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during the maturing of the visual system. Without further training the model spontaneously shows the illusion, 
i.e. the misperception of walking direction for stimuli that are illuminated from below. In addition, the model 
reproduced the dependence on critical shading features as tested in Experiment 2.

Priors for illumination direction have been reported previously for other visual functions, including the per-
ception of static shapes10,13–15,25,26, visual search, and reflection perception27. One might thus argue that our illu-
sion does not reveal a new perceptual process, because it might be explained by the well-known dependence of 
static shape perception on illumination direction in individual frames. We argue against this criticism, main-
taining the claim that our illusion reveals a novel and fundamentally different perceptual process that directly 
analyses the dynamically changing intrinsic shading information. In order to provide support for this claim, we 
ran an additional control experiment.

In this control experiment we presented stimuli that prevented the reconstruction of 3D limb orientation 
from individual frames, while maintaining approximately the temporally varying intrinsic shading gradients of 
the individual stimulus elements. For this purpose, we replaced the rigid conic stimulus elements by elements 
with a fixed circular shape. The intrinsic luminance patterns of these elements were obtained by spatial warping 
of the texture of the conic stimulus elements in Experiment 1 onto these circular shapes (see Fig. S5A and the SI 
for details). Control subjects observing these control stimuli (see Supplementary Movies 7 and 8) perceived the 
elements as ‘deforming rubber sheets’, and they were not able to reconstruct reliably the 3D orientation of these 
elements from individual frames. However, the illusory effect was retained for these stimuli (Fig. S5B). Fitting a 
logistic mixed effects models to the data as for Experiment 1 we obtained a significant illusory effect of walking 
direction (p < 0.001). This result provides strong support for the claim that the illusion reported in this paper 
cannot be explained by classical shape-form-shading mechanisms, by an estimation of 3D segment orientations 
in individual keyframes. Rather, it must be based on a special potentially body motion-specific process.

Our neural model predicts the illusion by learning the relevant shading cues from example movies with illu-
mination from above. A thorough analysis of the similarities of the intrinsic shading features for walking in 
opposite directions for opposite illumination directions explains why the model, if trained only with patterns 
illuminated from above, explains the misperception of walking direction by the model. To our knowledge, our 
model is the first one that accounts for the influence of shading on body motion perception. Further extensions 
of the model account also for dynamical aspects of the multi-stable perception of such body motion stimuli, such 
as switching rates and hysteresis28, as well as for the integration of the intrinsic shading features with the contour 
cues of the body silhouette29.

In order to rule out that the observed psychophysical results, and specifically the illusion, can be explained by sim-
ple low-level motion perception, instead of a more sophisticated process related to biological motion, we performed 
an analysis of the average optic flow generated by the stimuli in Experiment 1. We varied the light source position and 
walking direction and for each condition computed responses of hypothetical motion-sensitive neurons represent-
ing the total motion energy in one of eight directions. While we found that these neural responses showed reliable 
differences betwwwn the different conditions, the pattern of these differences was incompatible with the observed 
psychophysical results (smoothness of response curves and their dependence on the light source position). Moreover, 
even the misclassification when the light source is flipped was not reproduced by this simplified model.

Since our model is based on simple mechanisms that, in principle, can be implemented with cortical neurons (fil-
tering, pooling, gain modulation/multiplicative gating, template matching) it makes specific predictions about cell 
types in the proposed visual pathway. Neurons involved in the processing of body motion stimuli have been found 
in macaque superior temporal cortex4,30. In addition, our model postulates a suppression of the contour information 
on the boundary of the body silhouette. Such a suppression of information on figure boundaries has been proposed 
also in models for other visual functions31,32. Electrophysiological studies will be required to unravel whether the 
postulated mechanisms for shading analysis really approximate computations in the biological visual pathway.

Methods
Apparatus.  Both experiments were performed on a Dell Precision computer using the MATLAB 
Psychophysics Toolbox version 3. Stimuli were displayed on a 24-inch BenQ XL2420-B LCD monitor with 
1920 × 1080 pixels resolution and a refresh rate of 120 Hz. Stimuli were viewed from a distance of 60 cm.

Stimuli.  All stimuli were pre-rendered before an experimental session and were identical for all participants. 
The stimuli presented a movie of a walking figure with a resolution of 800 by 600 pixels. The walking figure 
itself always fit into a 250 × 600 pixel box. The walker performed two gait cycles (four steps) and then a text was 
displayed that asked for the perceived perceptual alternative. The response was given by pressing one of the two 
buttons on the keyboard. Subsequently, the movie with the next experimental condition was started. One gait 
cycle took about 1 second.

Procedure.  Different observers participated in Experiments 1 and 2. Before both experiments, participants 
were presented with two movies of walkers lit from a 78.75-degree elevation angle walking away and towards. In 
this instructional step, the movies were viewed continuously until the participants confirmed seeing the veridical 
walking direction in both cases. To make sure the participants can follow the experimental procedure, they were 
then presented with a short experimental block consisting of a 20% random subset of all conditions in the exper-
iment. No feedback was given.

In both experiments, all conditions were block-wise randomly permuted. They were presented subsequently 
without breaks between the blocks. In case participants wanted a break, they could stop the stimulus sequence 
and continue after the break. The whole experimental procedure including the instruction phase lasted less than 
1 hour in both cases.
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Experiment 1 comprised 36 conditions (17 light source positions and the condition with flat shading, each 
presented for two veridical walking directions). Each condition was repeated 15 times, resulting in a total of 540 
trials. Experiment 2 included 36 conditions (9 different combinations of shaded elements, two walking directions, 
and two different light source positions). Because we expected the effects in this experiment to be subtler, we used 
20 repetitions, resulting in a total of 720 trials

Participants.  Thirteen volunteers (mean age 25) participated in Experiment 1 of which seven were females. 
In Experiment 2 sixteen volunteers participated of which 7 were females. All participants were naïve about the 
goals of the study and were compensated by 10 EURO per hour. After the experiments, they were debriefed and 
informed about the study.

Motion capture.  We used the processed motion capture data from the experiments of Roether and col-
leagues33. For both experiments we used a single female walker performing an emotionally neutral gait, as defined 
in the above reference. For the model simulation, we used motion capture data from 3 extra actors (2 male, 1 
female) also performing an emotionally neutral gait.

Consent.  Psychophysical experiments were performed with informed consent of participants. All experimen-
tal procedures were approved by the ethics board of the University of Tübingen (Germany) and all experiments 
were performed in accordance with relevant guidelines and regulations.

Rendering of the surface shading and light source position.  The walker was composed of conic ele-
ments rendered as surfaces in MATLAB 2014b. The element sizes were adjusted manually to match the geometry 
of a walking human. We chose an infinite light source distance, resulting in parallel light rays of the illumination 
field (choosing white as ray color). In both experiments we varied the elevation angle of the light source. In 
Experiment 1 the elevation varied from −90 degrees to 90 degrees, in 17 equidistant steps, and in Experiment 2 
we used the two elevation angles −45 and 45 degrees, which maximized the size of the illusory effect. We used the 
ZBuffer renderer, which allows to specify the parameters AmbientStrength, SpecularStrength, DiffusionStrength 
and SpecularExponent of the surface. AmbientStrength refers to the amount of light present at every point of a 
scene, while the other three parameters refer to the surface reflectance properties. The walking figure was rendered 
on a gray background. For both experiments, we use the settings: AmbientStrength = 0.5, SpecularStrength = 0.3, 
and SpecularExponent = 10. For Experiment 1 we chose DiffusionStrength = 0.5, and BackgroundColor = [0.75 
0.75 0.75]. For Experiment 2 we chose DiffusionStrength = 0.4, and BackgroundColor = [0.8 0.8 0.8]. For all 
shaded surfaces we specified FaceColor = [0.99 0.99 0.99] and removed all surface edges. The Gouraud lighting 
algorithm was exploited to compute the pixel colors for the specified light source positions.

For the elements with ‘flat’ shading we set the FaceColor to a constant. To calculate its value, we individually 
rendered each shaded element and computed the average pixel brightness over a full gait cycle.

Neural model.  Space permits only a very brief summary of the model here and we refer to our previous work29 
for a more complete description (parameters of the model are summarized in Supplementary Table 1). The stim-
ulus set for training and testing of the model was generated from motion capture data from 4 actors (2 male and 2 
female). From each actor, we generated 25 three-dimensional body models with randomly varying sizes of the conic 
elements. One of these models was identical with the one used to generate the stimuli for the psychophysical exper-
iment. Each model was rendered for the two veridical walking directions (AWAY and TOWARDS), assuming 33 
different light source positions with elevation angles that varied equidistantly between −90 deg to 90 deg.

The model was trained with the stimuli (both veridical walking directions) rendered with a single elevation 
angle of 78.75 degrees, simulating illumination from above and using the data from all 4 actors and 25 body 
shape models with varying shape parameters. This variability in the training set prevents overfitting of individual 
training stimuli and makes the recognition more robust. For Experiment 1 the model was tested with all gen-
erated stimuli (in total 6600) using all 33 light source positions. To simulate Experiment 2, the training set was 
the same, and the test stimuli were generated from, also, 4 different actors, using only two light source positions, 
but rendered with 9 experimental conditions with different combinations of elements with or without intrinsic 
shading gradients (Fig. 4A). In total, only ~3% of the movies were used for training the model of Experiment 1 
and ~10.0% of the movies were used for training the model of Experiment 2.

Data availability statement.  All relevant data are available as supplementary information files, with cap-
tions included in the SI.
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Neural model  

Our hierarchical neural model consists of four layers that implement a position-invariant recognition of 

walking direction based on the intrinsic gradual shading variations of the individual stimulus elements. 

The model reproduces qualitatively the illusion, as well as the dependence of the illusion size on the 

available shading information.  

The first layer of the model is composed from uneven Gabor filters Gu that are ordered within a 

rectangular spatial grid.  Such filters are sensitive to oriented local luminance gradients. We assume 

that the receptive field center of the filter is specified by the vector (xc, yc), and that its preferred 

gradient direction is given by the angle . We assume further that the receptive field size is specified by 

the parameter  , and the preferred spatial frequency by the constant k0. With these parameters, the 

filter functions are defined as: 

  

                  xk
yx

yxyxG ccu
~2sin

2

~~
exp),,,;,( 02

22




 






 
                                                                               (1) 

 

where  sin)(cos)(~
cc yyxxx   and  cos)(sin)(~

cc yyxxy  . We used 810,000 

spatial grid points for the receptive field centers and eight different angles (cf. Tab. 1). Assuming 

I(x, y) as the gray-level input pixel image, the output signal of the filter with these parameters is given 

by the sum:   

                
x y

ccucc yxyxGyxIyxR ),,,;,(),(),,(1                                                                                     (2) 

In our experiments the walking direction could not be reliably extracted from the stimuli with ‘flat’ 

shading. These stimuli specify strong luminance gradients on the boundaries of the stimulus elements, 

but no shading gradients inside of them. The strong gradients on the element boundaries dominate the 

responses of the filters on the first hierarchy layer. In a set of additional simulations, we found that a 

more robust processing of the weak luminance gradients inside the elements can be accomplished by 

suppressing the gradient responses on the silhouette boundaries. This suppression is accomplished by 

the second layer of our model, exploiting a multiplicative gating mechanism. The underlying operation 

can be implemented by a simple feed-forward network that multiplies a gating signal with the filter 

responses from the previous layer. The gating signal is computed from all filter responses of the first 

layer with the same receptive field center, taking the maximum over the responses with selectivity for 
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different direction angles: ),,(max),( 1 


yxRyxC  . The output signals of the second layer are then 

given by thresholded products of the form:  

                      


 ),,()),((),,( 1

1

2  yxRyxCHyxR ,                                                                                       (3)  

with the Heaviside function H(x) = 1 for x > 0 and H(x) = 0 otherwise, the positive constant 1 and the 

linear rectifier function )0,max(][ xx  .  The resulting output signals form a population code of the 

luminance gradients inside the individual stimulus elements. This layer contains a total of 6,480,000 

model neurons. 

The third layer of the model pools the responses with same direction selectivity from the second level 

over limited spatial regions U(x,y) using a maximum operation, proving a (spatially subsampled) set of 

detector responses with partial position invariance. Mathematically these responses were given by: 

                     ),','(max),,( 1

),()','(

3  yxRyxR
yxUyx 

 ,                                                                                                     (4) 

The responses of the 648 neural detectors on this level can be interpreted as ‘mid-level features’ within 

the visual hierarchy. The recognition of walking direction was based on the classification of the 

activation patterns, exploiting a subset of these mid-level feature-detector responses, including only 

those detectors whose response varied significantly over the training set. In order to determine this set 

of detectors automatically, we computed, separately for each position (x, y), a population vector from 

the detector responses with different direction specificity, which was given by the complex number: 

                     


 )exp(),,(),( 3 iyxRyxp .                                                                                                          (5) 

Exploiting circular statistics, we computed the variance of these population vectors (see (29) for 

details) and retained only the responses of those detectors whose circular variance over the whole 

training set exceeded a fixed threshold. This operation corresponds to a feature selection stage that 

identifies features with robust variation within the set of training patterns. Interestingly, the selected 

feature detectors correspond nicely to the body parts whose shading, according to Experiment 2, is 

most critical for the size of the illusion.  

The highest level of the model (layer 4) is given by a classifier stage that is formed by two radial basis 

function (RBF) units that have been trained with example stimuli walking TOWARDS and AWAY, and 

which were illuminated from above. The underlying training set contained 100 movies of walkers that 

were lit with an elevation angle of 78.75 deg, where the veridical motion direction of 100 stimuli was 

AWAY and the one of the other 100 movies TOWARDS. The different movies were rendered using 4 

different actors (2 male, 2 female) and randomly varying sizes of the body elements. This training 
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encodes a perceptual prior, which reflects statistical properties of stimulus patterns that are 

illuminated from above, and forms thus the implementation of the ‘lighting-from-above prior’ in our 

model. 

In the model implementation, the basis function units were trained using a two-step algorithm, where 

this training was completely unsupervised without knowledge of the true class memberships 

(TOWARDS vs. AWAY) of the stimuli. First, the selected features were subject to a principle component 

analysis (PCA), over all training examples and stimulus frames, to further reduce the dimensionality of 

the feature vector. We retained only the first three principal components, explaining about 70% of the 

variance of the original feature vectors. This percentage was sufficient since the two walking directions 

were linearly separable in the corresponding reduced subspace. In order to test whether the chosen 

number of principle components influences the results critically, we also tested a model with 20 

principal components, capturing about 90% of the variance, and obtained essentially the same model 

predictions (results not shown). Denoting by x the output vector of the PCA, we fitted the distribution 

of these vectors over the whole training data set by a mixture of two Gaussians, which correspond in 

the neural implementation to the RBFs. The mixture distribution was fitted using Expectation 

Maximization (EM). The underlying mixture density is given by:  

                      ),;()(
2

1
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ngf  μxxx 


 ,                                                                                                                       (6) 

The EM procedure fits the mixture weights n  (both very close to 0.5), and the means n  and the 

covariance parameters n  of the Gaussian distributions, where we assume the Gaussian density 

functions:       
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Interpreting the parameters n as the prior probabilities of the two classes ‘walking TOWARDS and 

‘walking AWAY’ and the functions ),;( nng μx as the likelihoods of the vectors x conditioned on the 

class Cn, according to the Bayes formula the posterior probability of the two classes Cn is given by the 

ratio: 
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given that approximately 1 =2. The posterior class probability can thus be computed by a simple 

normalization operation from the RBF neuron activities, and the most likely class can be found by 

simple winner-takes-all competition. 

In order to compare the simulation results for Experiment 1 with the experimental data, we fitted the 

classification responses of the model with a logistic regression, and the experimental data with a 

logistic mixed-effects model (see section on statistical analysis of data from Experiment 1), using only 

the elevation angle as fixed and random effect predictor (smooth curves in Fig. 4A). Data was collapsed 

across the veridical walking directions since the model treats AWAY and TOWARDS walking equally 

and does not contain a special mechanism that can account for the walking towards bias that has been 

observed in biological motion vision (18). For Experiment 2, for each test stimulus, we computed the 

differences of the accuracies between the two light source positions (above and below) in order to 

quantify the size of the illusion. The similarity of the illusion sizes derived from the model with the real 

data for the different shading conditions was quantified by a linear regression analysis, predicting the 

illusion size obtained from the model with the ones in the experimental data (Fig. 4B). 

Statistical analysis of data from Experiment 1  

Statistical analysis was realized using R version 3.4, RStudio version 1.1.4, and lme4 version 1.1-12. We 

use ggplot2 version 2.2 to generate the statistical plots and multcomp version 1.4-6 for the multiple 

comparisons. 

For the analysis of the conditions from Experiment 1 with graded shading of all elements we combined 

the responses of all 13 observers and fitted them with a logistic mixed-effects model (function glmer 

from package lme4) with cosine and sine of the light elevation angle and veridical walking direction 

both as fixed and random effects. In total, we fitted data points from 13 (observers) * 2 (veridical 

walking directions) * 17 (light angle directions) * 15 (repetitions) = 6630 data points. We did not 

include the interaction between the light elevation angle and veridical walking direction in the 

regression because this interaction was not significant.  Fig. S1 shows the probability of perceiving the 

veridical walking direction as a function of light elevation angle in a separate panel for each observer 

(the panels are ordered by increasing difference in participant’s points of subjective equality). The data 

points in each panel are jittered to minimize overlap (hence some probabilities seem smaller than zero 

or larger than one). Different colors indicate the two veridical walking directions, and the curves from 

the random effects fit are shown in the same color. The illusion is present for all observers and both 

veridical locomotion directions, while the fitted curves show different offsets (thresholds) that vary 

between participants, and partly between the two veridical locomotion directions. 
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A particularly interesting question is whether the condition with frontal illumination ( = 0), which is 

the condition with the smallest luminance gradients within the different stimulus elements, conveys 

information about then veridical walking direction. The accuracy for this class of stimuli for the 

different observers is shown in Fig. S2. All participants show accuracies above 0.5, indicating that there 

is some remaining information about walking directions even for the stimuli with illumination from the 

side, potentially mediated by the subtle time-varying shading gradients in the stimulus elements that 

are present for this stimulus class. This stands in contrast with the stimuli with flat shading, that 

showed accuracies even below 0.5, indicating on average a perception of the wrong walking direction.  

A further set of statistical analyses investigated potential biases in the perception of walking direction 

in favor of walking TOWARDS or AWAY. Such biases were studied for the class of stimuli of all shaded 

walker elements as well as for the stimuli with flat shading. 

To quantify potential biases for the stimuli with gradual shading of all elements we analyzed the points 

of subjective equality (PSEs) of the random effects from the model fitted above (as plotted in Fig. S1). 

As shown in Fig. S3A, only observer 10 has a bias to perceive ‘away’, while eight participants have a 

bias to perceive walking ‘towards’ them. Further four observers have little to no bias (observers 9, 5, 

13 and 12). Thus, the bias in perceived walking direction is different for different observers, but most 

have a ‘towards’ bias, consistent with results on biological motion stimuli in the literature (18). 

We investigated also potential biases for the perception of walking direction for the stimuli with flat 

shading. Response accuracies are shown in Fig. S3B, separately for the AWAY and TOWARDS 

conditions. Observers are ordered by the sizes of the differences between the PSEs between AWAY and 

TOWARDS walking. Observers 10, 9, 5, 13 and 12, have similar accuracy for the AWAY and TOWARDS 

walkers, whereas all others are more accurate for the TOWARDS condition.  

There is a striking analogy between the two panels, in that observers with a larger difference in PSE’s 

while viewing the fully shaded stimuli also tend to have a larger difference in accuracy between AWAY 

and TOWARDS walkers while viewing stimuli with flat shading. To make this relationship explicit, we 

plotted the difference in accuracy for the stimuli with flat shading against the difference in PSE derived 

from the fully shaded stimuli in Fig. S3C. Testing the correlation between both variables, by an ordinary 

linear regression analysis, we found the slope of the regression line to be significantly different from 

zero (p < 0.01). This shows that the observer-specific bias in perceiving an ambiguous walker as 

walking towards the observer is similar for the two different stimulus classes: the fully shaded stimuli 

and the ones with flat shading. 

Statistical analysis of data from Experiment 2  
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We used the same software for statistical analysis as for Experiment 1. The combined responses of all 

16 observers were fitted with a linear mixed-effects model (function lmer from package lme4 (19)) 

with body part and veridical walking direction both as fixed and random effects. In total, we fitted 16 

(observers) * 2 (veridical walking directions) * 9 (body part conditions) = 288 data points, each of 

which was defined by the difference in accuracy between 15 repetitions with lighting from above and 

15 repetitions with lighting from below. The data was collected testing 9 levels of the factor body part, 

while only 8 levels were used in the main analysis, since the results for the levels “none” (flat shading) 

and “body” (gradual shading of head, torso and upper arms only) were not statistically different and 

hence combined. Fig. S4 shows all of these 288 means, with the panels ordered by increasing average 

accuracy difference. The trend of increasing mean accuracy with body part condition holds for most 

observers, although there are also clear inter-individual differences. Interestingly, there are only minor 

differences between the stimuli with different veridical walking directions. 

In a linear mixed-effects regression analysis we found a significant effect of factor body part (p < 10-15) 

and an insignificant effect of veridical walking direction (p > 0.05). Subsequently, we realized also 

selected pairwise comparisons with corrections for multiple testing (R package multcomp (20)). First, 

we first asked whether adding the forearms, the thighs or the (lower) legs increased the mean 

difference in accuracy. We found that adding each of these elements significantly increased (all p < 

0.001) the illusion relative to the baseline condition with gradual shading of the head, torso and upper 

arms. Second, we compared which of the three additions, forearms, thighs or (lower) legs lead to a 

larger illusion and found no significant differences between these three conditions (all p > 0.5). Third, 

we asked if the addition of a second moving limb region to the first increased size of the illusion. In 

detail, we asked whether adding (lower) legs or thighs to the forearms increased the illusion and found 

that it did (all p < 0.01). Adding the forearms to the (lower) legs or thighs did not increase the illusion 

(all p > 0.1). Adding the (lower) legs to the thighs or the thighs to the (lower) legs did increase the 

illusion by a modest amount (p < 0.05). Fourth, we asked if adding a third moving limb region to any 

other two moving limb regions resulted in a significant increase of performance. Only adding of the 

thighs to the forearms and (lower) legs resulted in a significant difference (p < 0.05), while this was not 

the case for the addition of the other two moving regions (p > 0.2). 

Rendering of stimuli for Control Experiment 

In a control experiment we used a stimulus that does not provide classical shape-from-shading cues that 

allow the reconstruction of the three-dimensional orientation of the body segments. However, the elements 

of this control stimulus approximate the internal luminance profiles of the elements of the original stimuli 

used in Experiment 1. The purpose of this experiment was to rule out the possibility that the observed 
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illusion just is a consequence of a classical shape-from-shading mechanism that estimates the stimulus 

element orientations in space.  

The walker for this control experiment was composed of elements with fixed circular shape in order to 

eliminate silhouette-based orientation cues. The internal luminance profiles of these circular elements were 

determined from the luminance patterns of the original stimuli in Experiment 1 by warping of the shading 

profiles of the conic elements onto these circular patches. For this purpose, each conic element was 

rendered separately on a black background. Using a Sobel edge detection algorithm, we extracted the 

coordinates of the boundary points of the elements. For each element we computed the center of mass 

),( cc YX and represented the boundary points ),( bb YX in terms of polar coordinates relative to this 

center, i.e. )sin,(cos)(),(   RYYXX cbcb . To each boundary point on the conic elements we 

assigned a corresponding boundary point *)*,( bb YX on the circular element according to the equation 

)sin,(cos*)*,*(  RYYXX cbcb , where the corresponding radius R* was given by the maximal 

radius of all boundary points of the conic element. This construction assigns to each point inside the conic 

element with polar coordinates ),( R a corresponding point )*,( R in the circular element with

10   . This implies for the corresponding points within the circular element the coordinates 

cos**  RXX cb and sin**  RYY cb . Exploiting these corresponding coordinate systems, we 

warped the luminance profiles of the original conic elements on the ones with circular shape using nearest 

neighbor interpolation.  Fig. S5A illustrates example frames form the generated control stimuli. The circular 

elements look like deforming rubber sheets and do not provide a clear impression about orientation in 

space.  

Control Experiment  

In order to assess the illusion size for the control stimulus that prevents the use of shape-from-shading 

for the estimation of element orientations in space, we used only three light source positions with 

illumination from ABOVE and three from BELOW. Like in Experiments 1 and 2, we asked the 

participants to report the perceived walking direction. A new group of 12 observers participated in this 

control experiment. The experimental protocol was identical to experiment 1 and 2, except for the fact 

that performed 8 instead of 4 steps (4 gait cycles instead of 2) with 20 repetitions per condition. 

The results were analyzed using the same procedure as in experiments 1 and 2. We combined the 

responses of all 12 observers and fitted them with a logistic mixed-effects model with light elevation 

angle and veridical walking direction both as fixed and random effects. In total, we fitted 12 

(observers) * 2 (veridical walking directions) * 6 (light angle directions) * 20 (repetitions) = 2880 data 

points. 
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The data (Fig. S5B) shows a weaker, but significant effect of the light source position on the accuracy of 

perceived walking direction (p=0.02). This shows that the illusion was present even for stimuli which 

make a reconstruction of the three-dimensional orientation of individual limb segments impossible. 

However, taking the holistic body configuration and the structure of the inner luminance gradients into 

account, the visual system was able to extract the walking direction from such stimuli and shows the 

same illusion as for the stimuli with conic elements in Experiment 1. The observed illusion is thus not 

just a consequence of a classical shape-from-shading process that estimates the orientation of 

individual stimulus elements. Instead, the observed phenomenon must be based on a mechanism that 

integrates body shape and information about internal shading gradients, as for example the mechanism 

realized by the proposed model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 
 

Supplementary Figure Captions 

Fig. S1. Per-participant data from Experiment 1. Accuracy of reporting the veridical walking direction as a 

function of the light source elevation angle α. The participants are ordered by increasing difference between 

their AWAY and TOWARDS points of subjective equality. 

Fig. S2. Accuracy of reporting veridical walking direction of the frontal lighting condition (𝛼 = 0) for the fully 

shaded walkers. The participants are ordered by increasing difference between their AWAY and TOWARDS 

points of subjective equality (same as Fig. S1). 

Fig. S3. Towards walking bias derived from conditions with and without gradual shading. (A) Towards 

walking bias derived from the conditions with full gradual shading. The figure shows the points of 

subjective equality (PSE) per participant, estimated from the random effects component of the GLMM fitted 

to the data of Experiment 1, using the conditions with gradual shading of all elements.  (B) Accuracy of 

reporting the veridical walking direction for the stimuli with flat shading. (Participants are ordered by 

increasing differences of the PSEs between their AWAY and TOWARDS walking.)  (C) Correlation between 

participant accuracies for stimuli with flat shading (panel (B)) and the PSEs derived from stimuli with full 

graded shading (panel (A)) (adjusted R2 = 0.4831; p < 0.01).  

Fig. S4. Per-participant accuracies of reporting the veridical walking direction as a function of the body part 

condition of Experiment 2. Participants are ordered by increasing difference in their accuracies, averaged 

over body part conditions and veridical walking directions. 

Fig. S5. Control Experiment. (A) Snapshots from the control experiment with left: one of the ABOVE light 

elevation angles and right: one of the BELOW light elevation angles, both walking AWAY. Shading of each 

individual element of the walker figure was stretched from original conic shape (used in experiments 1 and 

2) to a circular boundary via interpolation. Supporting Information (SI) Movie 3 shows these 2 walker 

stimuli. (B) Results. Walkers illuminated from 3 ABOVE and 3 BELOW light angles were presented. Plotted 

points represent the means of the veridical binary responses per condition. The data were fitted using a 

generalized linear mixed effects model (GLMM). 
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Supplementary Movie Captions 

Movie 1. One of the stimuli used for Experiment 1. The walker is walking TOWARDS and is lit below with -

90 deg elevation angle. 

Movie 2. One of the stimuli used for Experiment 1. The walker is walking TOWARDS and is lit above with 90 

deg elevation angle. 

Movie 3. One of the stimuli used for Experiment 1. The walker is walking TOWARDS and is lit in front with 0 

deg elevation angle. 

Movie 4. One of the stimuli used for Experiment 1. The walker is walking TOWARDS and has flat shading. 

Movie 5. One of the stimuli used for Experiment 2. The walker is walking AWAY, lit BELOW and has it’s 

thighs and legs flattened (FOREARMS condition). 

Movie 6. One of the stimuli used for Experiment 2. The walker is walking AWAY, lit BELOW and has it’s 

forearms and thighs flattened (LEGS condition). 

Movie 7. One of the stimuli used for Control Experiment. The walker is walking AWAY and is above with 

67.5 deg elevation angle. 

Movie 8. One of the stimuli used for Control Experiment. The walker is walking AWAY and is below with -

22.5 deg elevation angle.  

Movie 9. Demo video to show two walking figures next to each other. Both walkers are rendered to walk 

AWAY (the camera is positioned looking at the back of the walking figure). The left walker has light source 

positioned ABOVE, and the right walker has the light source positioned BELOW. Both walkers are looped for 

multiple gait cycles. Try judging the walking direction of each of them separately. Most observers would 

judge the left one as walking AWAY (correctly), but the right one as walking TOWARDS (opposite). 
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Supplementary Table 1  

Table 1. Parameter values used to simulate the model with experimental stimuli. 

Parameter Value Meaning 

  }315,270,225,180,135,90,45,0{   Orientation of maximal 

direction sensitivity of 

neurons in Layer 1 modeled as 

an angle value of the 2D 

uneven Gabor filter. 

  60  Gabor filter scale in Layer 1. 

0k  140
 Spatial filter frequency in 

Layer 1. 

1  25  Excitation threshold in Layer 2 

exceeding which activates the 

gating feedback inhibitory 

mechanism for boundary 

suppression. 

m  81 Number of partially-position 

invariant detectors at Layer 3, 

arranged in overlapping 

square grid with large spatial 

receptive field sizes. 

T  30  Number of keyframes taken in 

every individual walker movie. 

YX   900900  Resolution of a single 

keyframe. 

),( yxU  300300  Size of spatial max-pooling 

region in Layer 3. 
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Supplementary Dataset Captions 

Dataset 1. Collected participant data for Experiment 1, conditions with shaded walker. 

Columns indicate, in order: participant ID, light elevation angle in degrees, walking direction, participant’s 

binary accuracy in indicating the walking direction (1 if correct, 0 if not), participant’s binary accuracy in 

indicating the walking direction (1 if correct, 0 if not) in the previous trial. 

Dataset 2. Collected participant data for Experiment 1, single condition with flat walker. 

Columns indicate, in order: participant ID, light elevation angle set to ‘Inf’ indicating no shading present, 

walking direction, participant’s binary accuracy in indicating the walking direction (1 if correct, 0 if not), 

participant’s binary accuracy in indicating the walking direction (1 if correct, 0 if not) in the previous trial. 

Dataset 3. Collected participant data for Experiment 2. 

Columns indicate, in order: participant ID, light elevation angle in degrees, walking direction, participant’s 

binary accuracy in indicating the walking direction (1 if correct, 0 if not), body part condition name, recoded 

light source position (same as light elevation angle, coded ABOVE if 45, BELOW if -45), participant’s 

perceived walking direction. 

Dataset 4. Collected participant data for Control Experiment. 

Columns indicate, in order: participant ID, light elevation angle in degrees, walking direction, participant’s 

binary accuracy in indicating the walking direction (1 if correct, 0 if not). 
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Abstract:

Body motion perception from impoverished stimuli shows interesting dynamic properties, such as multista-

bility and spontaneous perceptual switching. Psychophysical experiments show that such multistability dis-

appears when the stimulus includes also shading cues along the body surface. Classical neural models for

body motion perception have not addressed perceptual multistability. We present an extension of a classical

neurodynamic model for biological and body motion perception that accounts for perceptual switching, and

its dependence on shading cues on the body surface. We demonstrate that a set of psychophysical observa-

tions can be accounted for in a unifying manner by a hierarchical neural model for body motion processing

that includes an additional shading pathway, which processes luminance gradients within the individual body

segments. The goal of our model is to explain psychophysics and neural mechanism in the brain.

1 INTRODUCTION

The perception of body motion from image sequences

requires the dynamic integration of complex spatio-

temporal visual patterns. This important visual func-

tion is accomplished by processing within a hierar-

chy of cortical areas along the visual pathway. Psy-

chophysical studies suggest depth cues are important

for biological motion perception (Jackson and Blake,

2010). In absence of such depth information, e.g. in

point-light walkers, body motion perception can be-

come multistable (Vanrie and Verfaillie, 2004). Then

the same stimulus can be perceived as alternating ran-

domly between two interpretations that correspond to

two different walking directions (Vanrie and Verfail-

lie, 2006). Multistabile phenomena has been also in-

vestigated in the context of static ambiguous figures

and binocular rivalry (Leopold and Logothetis, 1999),

(Blake and Logothesis, 2001), as well as in structure

from motion (Andersen and Bradley, 1998). An ex-

ample of the body motion stimulus that produces such

multistability is shown in Fig. 1A (panel SILHOU-

ETTE). For this stimulus, an articulating silhouette

without intrinsic shading cues, observers perceive the

walker alternately walking obliquely into or out of the

image plane. The two reported percepts correspond to

the unambiguous walking directions indicated in pan-

els TOWARDS and AWAY. The figure illustrates also

that this perceptual ambiguity disappears when shad-

ing gradients are added to the surface of the walker,

which provide information about the surface orienta-

tion of the body segments and occlusions.

Existing physiologically-inspired neural models

for the processing of body motion and goal-directed

actions (e.g. (Giese and Poggio, 2003), (Lange

and Lappe, 2006), (Escobar and Kornprobst, 2008),

(Jhuang et al., 2007), (Fleischer et al., 2013) and

(Layher et al., 2014)) do not reproduce such multi-

stability, or at least never have investigated this phe-

nomenon. Computer vision and deep learning archi-

tectures for body motion recognition do not address

perceptual multistability. Thus, the study of such phe-

nomena is important for neuroscience, even if such

multistability is often unwanted in technical action

recognition systems.

In the context of low-level vision, perceptual

multi-stability and the underlying neural dynamics

have been extensively studied e.g. in the context of

binocular rivalry (see e.g. (Wilson, 2003)), visual

motion integration (Rankin et al., 2014), or as gen-

eral property of attractor neural networks (Pastukhov

et al., 2013).

The goal of this paper is to extend existing

physiologically-inspired neural models (not computer



vision algorithms) in a way that accounts for multi-

stability in action perception, where we use as ex-

ample an established model that has been shown to

account jointly for many experimental results in this

area (Giese and Poggio, 2003). We extend it in two

ways: 1) by introduction of a multi-dimensional neu-

ral field that accounts for multi-stable behavior by lat-

eral interactions between shape-selective neurons; 2)

by addition of a new pathway that realizes robust pro-

cessing of intrinsic luminance gradients along the sur-

face of the body segments.

The paper is structured as follows: after dis-

cussing related work in the following section, we de-

scribe the developed architecture in section 3. In sec-

tion 4 we show simulation results, illustrating that

the model provides a unifying account for several key

psychophysical results, followed by a brief discussion

in section 5.

2 RELATED THEORETICAL
WORK

Body motion recognition has been a core topic in

computer vision and many technical neural architec-

tures for this purpose have been proposed (Edwards

et al., 2016), (Nguyen et al., 2016), (Ziaeefard and

Bergevin, 2015), (Lee et al., 2014). The goal of that

work is typically a maximization of recognition per-

formance, not a reproduction of perceptual dynamics

of humans. This paper does not contribute to com-

puter vision or machine learning and is entirely fo-

cused on modeling of the brain.

We follow the approach in physiologically-

plausible models of body motion perception, such as

(Giese and Poggio, 2003), (Lange and Lappe, 2006),

(Escobar and Kornprobst, 2008), (Fleischer et al.,

2013), (Layher et al., 2014), while other biological

models in this area (e.g. (Thurman and Lu, 2014)

(Thurman and Lu, 2016)) account for experimental

data without direct relationship to neural mechanisms.

Diverse approaches (see (Tyler, 2011)) have been

proposed for the analysis of shape from shading, but

typically not related to the processing of body mo-

tion. Perceptual dynamics and perceptual switching

have been extensively studied in the context of low-

level vision (reviews see e.g. (Leopold and Logo-

thetis, 1999), (Sterzer et al., 2009), (Pastukhov et al.,

2013)). Multistability in the processing of non-rigid

motion has been rarely studied in neural modeling.

While hierarchical technical algorithms in com-

puter vision typically focus on the problem how the

body motion patterns (e.g. the direction of body

movement) might be distinguished, our model tries

to unify this account with a reproduction of the dy-

namics of perceptual organization in humans which

emerges specifically for the SILHOUETTE stimulus,

where for the same stimulus two alternating percepts

emerge. This problem is typically not addressed in

technical recognition systems, and to our knowledge

no account for this phenomenon has been given in

biologically-inspired neural models for motion recog-

nition.

3 MODEL ARCHITECTURE

Our model builds on a previous neural model

(Giese and Poggio, 2003), which has been shown to

provide a unifying account for a variety of experi-

mentally observed phenomena in body motion per-

ception including physiological, psychophysical and

fMRI data. The original model included a motion and

a form pathway, processing shape and optic flow fea-

tures. The pathways consist of a hierarchy of feature

detectors that mimic properties of real cortical neu-

rons. For the implementation in this paper we used

only the form-pathway and extended it by a multi-

dimensional neural field, and a new pathway for the

processing of intrinsic luminance gradients. An ex-

tension by inclusion of an additional motion pathway

is straight-forward, and will be part of future work.

3.1 Silhouette Pathway

The backbone of our model is a ’silhouette pathway’

(Fig. 1B) that is identical to the the form pathway of

the classical model (Giese and Poggio, 2003). Due

to space limitations, we sketch here only some basics

about this pathway and refer to the original publica-

tion (Giese and Poggio, 2003) with respect to details.

In brief, the form pathway consists of a hierarchy of

layers that process form features of increasing com-

plexity along the hierarchy. More complex features

are formed by combination of the features from pre-

vious layers. Levels that increase feature complex-

ity are interleaved by layers that increase position and

scale invariance by MAX pooling. The highest level

of this shape processing hierarchy is formed by radial

basis function units (called ’snapshot neurons’) that

have been trained with the feature vectors that corre-

spond to keyframes from training movies showing the

recognized action. Each snapshot neuron responds se-

lectively to the body posture that corresponds to time

instance q (within the gait cycle). In addition, con-

sistent with physiological data (Vangeneugden et al.,

2011), we assume these neurons are view-specific,

where the variable f specifies the preferred view an-



Figure 1: A. Snapshots from movies showing dynamic walker: TOWARDS shaded walker, walking direction 45 deg; SIL-

HOUETTE bistable silhouette walker and AWAY shaded walker, walking direction -45 deg. B. Model architecture. Stimulus

is analyzed by Silhouette and Shading pathways. Their outputs are linearly combined and mapped linearly onto the input of

a 2D dynamic neural field that consists of laterally coupled snapshot neurons. Inset shows the lateral interaction kernel of the

field. The field activity is read out by Motion Pattern (MP) neurons that encode the perceived walking directions ±45 deg.

gle of the neuron. (We assume that the side view of

a walker walking to the right in the image plane de-

fines the view direction f = 0). Very similar architec-

tures underlie many other classical and modern neu-

ral and deep models for object recognition, where the

popular deep architectures are typically trained with

much more data and often include many more lay-

ers. Since the goal of this paper is to model the per-

ceptual dynamics, and not to maximize recognition

rate, we used this simple hierachical model, where ex-

tension with modern deep architectures as front-end

seem straight-forward.

3.2 Shading Pathway

The described simple form pathway recognizes body

shape on backgrounds with sufficient contrast. How-

ever, it turned out that with small amounts of training

data it is difficult to accomplish with this architecture

a robust recognition of the silhouette shape together

with a high sensitivity for the luminance shading gra-

dients that disambiguate the depth structure. As one

possible solution to this problem we implemented a

second pathway that is specialized for the processing

of intrinsic shading gradients using physiologically-

plausible operations (Fig. 1B). We do not claim this

is the only possible solution, but it is one that works

with small amounts of training data.

The first level of this new pathway overlaps with

the first hierarchy level of the silhouette pathway,

described above. It consists of Gabor filters that

are selective for local orientation features at differ-

ent positions, and for different spatial scales. Let

G
e,u(x,y,a,s) signify the output signal of the even

(e) or uneven (u) Gabor filter with preferred posi-

tion (x,y), preferred orientation a (we used 8 orienta-

tions), and scale s (we used 1 scale for the given small

stimuli set). The activations of the uneven Gabor fil-

ters provide a population code for the local luminance

gradients.



By pooling of the responses of the Gabor fil-

ters with the same preferred position over all orien-

tations we obtain position-specific detectors for con-

tours with the output signals:

C(x,y) = max

{e,u},a,s
|G

e,u(x,y,a,s)|. (1)

This output signal was used to suppress the re-

sponses of the uneven Gabor filters along the external

contour of the body, exploiting multiplicative gating.

The outer contour of the body typically creates strong

local contrast that dominates the detector responses,

so that the weak intrinsic gradients that signal the 3D

structure cannot be reliably estimated from the neural

responses. A population vector signaling the intrinsic

luminescence gradients is given by the gated signal:

L(x,y,a,s) = [G
u

(x,y,a,s) ·H(l
1

�C(x,y))]+. (2)

Here l

1

is a positive constant, and the function

H(x) is the Heaviside function, thus H(x) = 1 for x >
0 and H(x) = 0 otherwise.

The next level of the shading pathway consists

of (partially) position-invariant detectors for local lu-

minance gradients. Their responses are computed

by pooling of the gated responses of gradient detec-

tors for the same preferred gradient direction a over

all positions and scales in a quadratic neighborhood

U(x0,y0) of the point (x0,y0) using a maximum opera-

tion, providing the output signals:

D(x,y,a) = max

(x,y)2U(x0,y0),s
L(x,y,a,s). (3)

These position-invariant detectors were defined

for substantially less spatial positions, resulting in

a strong spatial down-sampling (6,480,000 position-

and scale-specific detectors vs. 648 position-invariant

detector units).

In order to make recognition robust against fluctu-

ating weak features, we selected the strongest features

that provide input to the radial basis function units.

We selected those features that showed the maxi-

mum variance over the training data (where clearly

much more sophisticated feature selections are avail-

able that might lead to better results). We computed

the circular variance of the detectors at position (x,y),

exploiting the (complex) circular mean:

The (complex) circular mean of these responses is

given by:

m(x,y) = (1/K)
K

Â

k=1

Â

a

D(k)(x,y,a)exp(ia), (4)

where K is the number of training patterns. A cir-

cular variance measure is then given by the formula:

V (x,y) =
K

Â

k=1

����Â
a

D(k)(x,y,a)exp(ia)�m(x,y)
���� .

(5)

We selected the direction-specific responses

D(x,y,a) that fulfilled the relationship:

V (x,y)> l

2

, (6)

where l

2

> 0 is a threshold parameter. In total 9

out of 81 feature vectors were selected according to

this criterion.

The next level of the shading pathway is formed

by Gaussian radial basis functions, whose centers

were trained with the feature vectors pl
(including

only the selected features) that were generated by in-

dividual keyframes from the training movies. For the

results shown here, the shading pathway was trained

with movies of fully shaded walkers, shown with view

directions �45 deg and 45 deg. In other implementa-

tions, we have realized such models with a continuum

of different views (Fleischer et al., 2013).

The RBF network returns an 50-dimensional out-

put vector R
SH

(t) for each keyframe at time t, where

the components of this vector are given by:

Rl
SH

(t) = exp(�l

3

||p(t)�pl ||2), (7)

where p(t) is the feature vector for the actual input

frame, and where the components correspond to the

different keyframes and associated training views.

In order to link the shape recognition pathway to

dynamic neurons that reproduce the perceptual dy-

namics, the outputs of the RBF units were mapped

linearly onto a discretely sampled two-dimensional

input activity distribution s
SH

(q,f; t) that provides in-

put to the neural field that is described below. Signi-

fying by s
SH

(t) the appropriately reordered sampling

points, the linear mapping was given by the equation:

s
SH

(t) = W(t)R
SH

(t). (8)

The weight matrices W(s) were learned by ridge

regression from a training set that consisted of pairs

of vectors R
SH

(t) for each training keyframe, and a

corresponding vector s
SH

(t) that was computed from

an idealized two-dimensional input activity distribu-

tion s
SH

(q,f; t). The idealized activity distribution

was given by a Gaussian peak that was centered at

the keyframe number q and the corresponding view

f of the walker (s.b.). A similar input distribution

s
SL

(q,f; t) was computed by a corresponding linear

mapping in the silhouette pathway. The total input

distribution of the neural field was then computed

by ’cue fusion’, modeled by a convex combination



of two input distribution functions according to the

equation:

s(q,f; t) = hs
SL

(q,f; t)+(1�h)s
SH

(q,f; t), (9)

with 0 h 1. Choosing h= 1 one can eliminate

the influence of the shading pathway.

3.3 Dynamic Neural Field of Snapshot
Neurons

The core of our model is a dynamic recognition layer

that is implemented as a two-dimensional neural field

of Amari type (Amari, 1977), which consists of body

shape-selective neurons that are laterally connected

(Fig. 1B). Consistent with physiological data (Van-

geneugden et al., 2011), we assume that such neurons

encode body shapes that emerge during actions in a

view-specific manner. In the spatial continuum limit,

we can describe the activity of neurons encoding the

body shape that corresponds to the normalized time q

(0  q  2p) during the gait cycle and the view angle

f by the function u(f,q, t). The network dynamics is

given by the equation (? signifying a spatial convolu-

tion):

tu
d
dt

u(f,q, t) =�u(f,q, t)+w(f,q)?H(u(f,q, t))

+s(f,q, t)�h+x(f,q, t)� caa(f,q, t).
(10)

The input signal s was described above. For the

trained stimulus movies it corresponds to an activity

maximum that moves in q-direction along the field.

The lateral connectivity is specified by the interac-

tion kernel w(f,q) (whose shape is indicated by the

inset in Fig. 1B). It stabilizes a traveling pulse so-

lution in q-direction and realizes a winner-takes-all

competition in the f-direction. As consequence, if

multiple views are consistent with the stimulus, one

view is selected by competition. The positive param-

eters tu and h define the time scale and the resting

potential of the field. The variable x(f,q, t) defines a

Gaussian noise process whose statistics was coarsely

adapted to the noise correlations from cortical data

(Giese, 2014). These fluctuations essentially drive the

perceptual switching in the model. Since action per-

ception shows adaptive properties, such as high-level

after-effects and fMRI adaptation, we also included

a neural adaptation process in the model, which re-

duces the activity of snapshot neurons after extended

firing. The corresponding adaptation variable follows

the dynamical equation:

ta
d
dt

a(f,q, t) =�a(f,q, t)+H(u(f,q, t)). (11)

The positive constant ca determines the strength of

adaptation(t

a

is the time constant). The parameters of

this adaptation dynamics were fitted to experimental

data (Giese, 2014).

The activity of the neurons in the neural field was

read out by motion pattern (MP) neurons, which sig-

nal the walking directions perceived in this case as

AWAY from and TOWARDS the observer. These

neurons compute the maximum of the neural field ac-

tivity function u(f,q, t) over the domains f > 0 and

f < 0 in the (f,q) space, producing the output signals

z
45

and z�45

.

4 SIMULATION RESULTS

Testing the model after training with a non-shaded

walker as illustrated in Fig. 1A, 1B and 1C, the out-

put of the shading pathway remained silent because

of the absence of intrinsic luminance gradients in this

stimulus. The silhouette pathway was activated in an

ambiguous way by this stimulus because the stimulus

is consistent with walking in the directions ±45 deg

relative to the image plane. Consistent with simula-

tions described in (Giese, 2014), this stimulus leads

to a bistable solution of the neural field that alternates

between two traveling pulse solutions that encode the

spontaneous perceptual switching of a traveling pulse

between the view angles f = ±45 deg (perception

of TOWARDS or AWAY from the observer). In this

case, the probabilities of the two percepts are almost

identical (Fig. 2B). More detailed simulations show

that the model coarsely reproduces also the switching

time statistics of human perception, comparing it with

experimental data (not yet published (Vangeneugden

et al., 2012)). Fig. 2G shows a histogram of the per-

cept times for the model, and Fig. 2H the percept

times estimated in the psychophysical experiment.

For shaded stimuli (see Figs. 1A TOWARDS and

AWAY), when both pathways are included (h = 0.5),

the model successfully disambiguates the walking di-

rection: For the AWAY stimulus (direction -45 deg)

the output neuron for AWAY remains always acti-

vated while the output neuron for TOWARDS re-

mains silent. If an TOWARDS stimulus is shown (di-

rection 45 deg) the situation is reverse and the TO-

WARDS output neuron is always active (Fig.2 C and

D).

If however the shading pathway is deactivated

(h = 0) again perceptual switching occurs, since the



output of the silhouette pathway is ambiguous, result-

ing in equal percept probabilities for either direction.

The silhouette pathway is not sufficiently sensitive to

disambiguate the stimulus robustly based on the avail-

able luminance gradients intrinsic to the body seg-

ments (Fig.2 E-F). This demonstrates the necessity of

the shading pathway in the chosen architecture for the

disambiguation of the percept.

The model makes several verifiable experimen-

tal predictions in relation to the time course of the

adaptation process. An example is illustrated in Fig.

1I that shows a diagram of a typical adaptation ex-

periment to demonstrate after-effects in action per-

ception. First, an unambiguous adaptation stimulus

(TOWARDS or AWAY) is presented to participants,

where the duration of the adaptor (2, 6, 10, 14, 18

or 22 gait cycles) was varied over different blocks of

the experiment. After this stimulus (and a fixed Inter-

stimulus Interval of 2.8 s) an ambiguous test stimulus

(SILHOUETTE) is presented for 3 gait cycles, asking

for the perceived walking direction.

The predicted results for such an experiment

(from 20 repeated simulations) are presented in Fig.

1J, which shows the probabilities of the percept for

the ambiguous test stimulus (which was identical in

all cases). With increasing the duration of the adap-

tor stimulus the probability that participants perceive

the test stimulus as walking in the same direction as

the adaptor decreases. A significant decrease of the

percept probability (from 0.5 without adaptator pre-

sentation) is already perceived for the shortest adap-

tor duration of 2 gait cycles, and we observed a fur-

ther decrease with longer adaptor durations (where 1

gait cycle corresponds to 1.4 seconds of stimulus du-

ration).

This behavior is consistent with after-effects, as

investigated previously for many modalities (motion,

lightness, etc) in low-level vision. Such after-effects

for action perception with a similar time course have

been shown for other types of action stimuli in the lit-

erature (see (Barraclough and Jellema, 2011), (de la

Rosa et al., 2014)), and we are presently running psy-

chophysical experiments to verify this prediction of

the model in detail.

A further set of experiments that we are presently

running, and for which the model provides quantita-

tive predictions, investigates the interdependence of

the stability of action percepts and the switching times

between the different percepts (which depend on the

mean-first passage times of the corresponding attrac-

tors). This extends studies that have been made for

muti-stability of low-level motion perception (Hock

et al., 1993) to the domain of action perception.

5 CONCLUSIONS

To our knowledge, we have described the first

biologically-inspired neural model that accounts si-

multaneously for the following properties of body

motion perception: (i) perceptual multi-stability and

switching, (ii) switching time statistics and (iii) the in-

fluence of shading information on the perceptual dy-

namics. We showed that the model reproduces the

psychophysically observed phenomenology and dis-

tributions of the percept times. Since the model is

based on learned templates, these results would trans-

fer trivially to other action patterns with the similar

form of bistability in the view domain.

It is important to stress that the goal of this pa-

per was the modeling of the perceptual dynamics, and

neither the proposal of novel deep shape or action

recognition architecture, nor the claim that the pro-

posed two-pathway architecture is significantly bet-

ter for shape recognition. Testing this claim would

require additional experiments with larger data sets,

and was not the focus of this paper. Also it remains to

be shown whether any of the popular recurrent deep

architectures reproduce the details of the human per-

ceptual dynamics.

Future work will have to extend the model for

more stimuli and include more accurate fits of exper-

imental data.
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Figure 2: A. Time courses of the activity of motion pattern neurons for depth-ambiguous walker stimulus. B-F. Percept

probability of the motion pattern neurons for the percepts TOWARDS and AWAY for (B) depth-ambiguous walker for model

with both pathways ; (C) shaded �45 deg (AWAY) walker for model with both pathways; (D) same for shaded 45 deg

(TOWARDS) walker; (E) shaded 45 deg (TOWARDS) walker for model without shading pathway; (F) same for shaded 45

deg (TOWARDS) walker; G-H. Histogram of percept times (PT) from experimental data (Vangeneugden et al., 2012) and from

the model. I. Paradigm for testing after-effects in action perception which is compatible with our model. After presentation

of an unambiguous adaptor stimulus (AWAY or TOWARDS), and a fixed Inter-stimulus Interval, an ambiguous test stumulus

(SILHOUETTE) is presented. J. Probability that test stimulus is perceived as walking in the adaptor direction as a function of

the duration of the adaptor.
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