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Introduction

This thesis deals with the theory of Cox sheaves, i.e. C1(X)-graded O x-algebras
R with homogeneous parts Rip] = Ox (D). Their global sections R(X) are called
Cozx rings and the structure homomorphisms O(X) — R(X) are Cox algebras. For
the present X denotes a normal prevariety over an algebraically closed field K, but
later, more general spaces will take its place. Of particular interest will be the role
of finiteness conditions and the generalization of existing results on algebraic and
geometric properties of Cox sheaves and rings. Generalizing [I7], we show that
normal prevarieties X have a Cox ring R(X) of finite type over the base field K
if and only if they admit a very neat embedding into a normal toric prevariety Z,
see Theorem Such embeddings are described entirely by toric morphisms
which are relative spectra of toric Cox sheaves, termed toric characteristic spaces,
and K-algebras R with the characterizing algebraic properties of Cox rings and
certain finite systems of generators, see Theorem [VIT.2.2.8]

A minimal set of those characterizing properties is formed by factoriality of
the set "™ \ 0 of non-zero homogeneous elements, all homogeneous units having
degree zero and the grading group gr(R) being generated by the degrees of the
units of the localization R, at each homogeneously prime divisor p of R, see Theo-
rem [VIT:3:33] Of the three characterizing conditions, the latter is easily checked in
terms of the generators of R. For factoriality of R"™ \ 0 we provide a reduction to
factoriality of (S™'R)q in Theorem where S is generated as a monoid by
the homogeneously prime elements among the generators of R, which in turn may
be verified in terms of conditions on the exponents occuring in defining relations
of R, see Proposition [[T.2:2.6] This new characterization of Cox rings of finite type
over K differs from the original one from [17] in that integrality and normality are
no longer necessary conditions for a ring to be a Cox ring, which means we also
have obtained a sufficient criterion for those two in terms of graded algebra, see
Corollary

A key object of study for a Cox sheaf R which is locally of finite type (e.g. has
a finitely generated Cox ring) is its relative spectrum X = Specy (R) — X, termed
the characteristic space of R, which is a good quotient by the canonical action by
H:= Spec(K[C1(X)]). We establish a criterion for a good quotient q: X — X by
a quasi-torus H to be a characteristic space in terms of H -factoriality of X , coin-
cidence of homogeneous units of O(X ) and units of O(X), and existence of a big
saturated open subset of X on which H acts freely, sce Theorem for the
case H = {1}. This criterion differs from its model from [4] in that irreducibility
and normality of X are not among the sufficient conditions.

A strong motivation for this work has been the question which properties still
hold for Cox sheaves and Cox algebras which are not (locally) of finite type and
indeed, for Cox sheaves and algebras of spaces X which are not (locally) noetherian.
Moreover, it would still be desirable to have geometric realizations, i.e. character-
istic spaces, for such Cox sheaves and also a characterization in geometric terms
similar to the one given above. In order to work in full generality and within a
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iv INTRODUCTION

setting that allows geometric realizations of graded sheaves without loss of informa-
tion we consider the category of graded schemes (over A = Z or the mulitiplicative
monoid A = F; = {0,1}). These are topological spaces X with graded structure
sheaves Ox, which are locally sets of homogeneously prime ideals of a graded A-
algebra, the latter being graded ideals whose homogeneous elements form a prime
ideal of the set of all homogeneous elements.

In order to have a suitable notion of Weil divisors and class groups, we require
X to be of Krull type, meaning quasi-compact such that each Ox(U)™ \ 0 is
a Krull monoid. In particular, classical noetherian normal schemes over Z are of
Krull type. Here, a Krull monoid is a cancellative monoid M for which the par-
tially ordered monoid Div(M) of non-empty proper M-submodules of Q(M) which
are intersections of principal submodules M f is a group whose minimal positive
elements form a Z-basis. Equivalently, there exist a group L containing M and a
family v;,i € I of homomorphisms from L to Z, called valuations, such that M is
the intersection of all v; *(Ny) and for each f € M there exist only finitely many
1 € I with v;(f) # 0. A monoid M is factorial, i.e. M/M* is a direct sum over
copies of Ny, if and only if M is a Krull monoid for which the class group Cl(M),
i.e. the quotient of Div(M) by the group PDiv(M) of principal submodules M f, is
Zero.

In this general setting, we provide the first algebraic criterion for an O x-algebra
R to be a Cox sheaf. Using the model of Krull monoids resp. rings, we define what
it means for a (pre-)sheaf of (graded) monoids, Fy-algebras or rings to be of Krull
type, see Section a condition which structure sheaves of normal prevarieties,
actions of Krull type and graded schemes X of Krull type (over F; or Z) all satisfy.
Specifically, each prime divisor Y on X defines a graded valuation vy on the constant
sheaf IC of graded fraction rings as well as a graded valuation sheaf K., C K, and
Ox 1is the intersection over all K,,.. Adjoining to K the group WDiv(X) gives a
constant sheaf [WDiv(X)] in which one takes the direct sum over all Ox (D)x? to
obtain the divisorial Ox-algebra Ox (WDiv(X)). A Coz sheaf on a graded scheme
X of Krull type is then an Ox-algebra R allowing a homomorphism of (graded)
Ox-algebras

m: Ox(WDiv(X)) — R, ¢: gr(Ox) @ WDiv(X) — gr(R)

such that 7 is an epimorphism of presheaves which restricts to isomorphisms of
homogeneous components and 1~ (gr(Ox)) N WDiv(X) is the group PDiv(X) of
principal divisors.

We show that an Ox-algebra R is a Cox sheaf if and only if it is Veronesean
and of Krull type such that its defining graded valuations restrict bijectively to
{vy }y and, modulo its intersection with gr(Ox), the degree support set of R is
isomorphic to C1(X) via a map which is induced by the defining valuations of R, see
Theorem The defining graded valuations of R are determined by its stalks
at the prime divisors of X so that we have obtained an intrinsic characterization of
Cox sheaves. For a Cox algebra Rg = O(X) — R = R(X) the monoid R"™ \ 0
is then factorial with the same units as Rg?m \ 0 and each homogeneously prime
divisor p of R satisfies deg((Rp°™)*) + G = gr(R), and conversely, a Veronesean
inclusion Rg C R satisfying these conditions is a Cox algebra of some graded scheme
provided that gr(R)/G is finitely generated, see Theorem

With view towards geometric properties of Cox sheaves we show that Verone-
sean good quotients, i.e affine morphisms whose accompanying sheaf homomor-
phisms are Veronesean, are closed and compatible with intersections of closed sub-
sets and have special points in each fibre, see Proposition The classical
Proj-construction of a Ng-graded ring offers a well-known example of a bijective
Veronesean good quotient. The characterizing properties of graded relative spectra
q: Specy, x (R) — X of Cox sheaves, called graded characteristic spaces, are then ¢
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being a Veronesean good quotient, X being of Krull type with Cl()? ) = 0, order-
preserving invertibility of the pullback ¢% : WDiv(X) — WDiv(X) of the sheaves of

Weil divisors, coincidence of homogeneous units of O(X) and O(X), and canonical
isomorphy of grading group modulo degree support set of O ¢ and Ox, respectively,

see Theorem [V.3.1.41

We translate these results in to the realm of actions on prevarieties. For the
case that K is an algebraically closed field we establish an equivalence of reduced
graded schemes of finite type over K and morphical quasi-torus actions on prevari-
etes over K, see Theorem As a first step, each graded scheme X over K
is assigned its canonical action Spec,, (K[gr(Ox)]) X — X which is induced on
affines by the coaction f,, — x* ® fu. Secondly, we apply the functor from graded
schemes to (0-graded) schemes which sends W to the (graded) relative spectrum
of the composition of Oy with the forgetful functor from graded rings to rings.
Thirdly, we apply the equivalence of schemes over K to prevarieties over K. In
the converse direction, we send H CZ to Z, equipped with the topology Q7 g of
H-invariant Zariski open sets and the (canonically X(H)-graded) structure sheaf
Ozu = (0Oz)a, 4 after which we apply the soberification functor.

For an action H C'Z of Krull type, meaning that O(U)"™\ 0 is a Krull monoid
for each U € Q7 g we define H-prime divisors as invariant closed 2z g-irreducible
subsets Y C Z of 1z g-codimension one. On the constant sheaf gy of graded
fraction rings which assigns the stalk of Oz g at the Q7 g-irreducible closed subset
Z each Y then defines a graded valuation vy whose image is the skyscraper sheaf
7Y) on Qz g which sends €z p-neighbourhoods of Y to Z and all other invari-
ant opens to 0. Oz g is then the intersection over the graded valuation sheaves
(K)uy defined by {vy}y. In other words, Oz g is of Krull type. The direct sum
over all Z(Y) gives the sheaf WDivy of H-Weil divisors on Q z g and the sum over
all vy gives a homomorphism divy : (IC]}?m)* — WDivy. Its image and cokernel
presheaves are PDivy and Cly. Each D € WDivy(Z) defines an Oz g-module
Oz (D) in the usual way and taking the direct sum over all these gives the Oz p-
algebra Oz g (WDivy (Z)). A Cox sheaf on Qz g is now an Oy gy-algebra R which
allows a homomorphism 7: Oz y(WDivy(Z)) — R with accompanying group ho-
momorphism ¢: X(H)®WDivy(Z) — gr(R) such that 7 restricts to isomorphisms
of homogeneous components and WDivy (Z) Ny~ (X(H)) = PDivy(X) holds. An
affine morphism of actions (6, q): HGZ — HGZ for which ¢:O5 5 is a Cox sheaf
is a characteristic space over H C Z. An already well-known example of such a char-
acteristic space is the toric morphism associated to the homogeneous coordinate ring
of a toric variety as introduced by Cox in [10].

The obtained equivalences preserve good quotients and characteristic spaces,
and commute with formation of (invariant) Weil divisors and class groups. More-
over, the singleton closure map sc from Z to the soberification of (Z,Qz g1, Oz 1)
defines a natural correspondence between algebras and modules over Oz y and
those over Ox, and this correspondence sends Cox sheaves to Cox sheaves, see Sec-
tion [VI.4] We also show that the pullback property of characteristic spaces may be
translated to the existence of a big g-saturated H-invariant open set on which ker(0)
acts with constant isotropy, see Proposition The condition on degree sup-
port sets corresponds to 6 restricting to an isomorphism )i  — Hz of the generic
isotropy groups. The resulting criterion is the general version of Theorem [VI.4.2.7]

The connection between the respective Cox sheaf theories of (quasi-)toric pre-
varieties and Fi-schemes is also investigated. Similarily to quasi-tori over K we
define graded quasi-tori over A =, or A = K as group objects G in the category
of affine graded schemes over A for which the degree map is bijective on the set
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G(O(H)) of homogeneous group-like elements of O(H) and the canonical morphism
H — Spec,, (A[G(O(H))]) is an isomorphism. A graded torus additionally has a
free set of group-like elements, see Section Quasi-toric graded schemes over
A are then degree-preserving open embeddings of quasi-tori of finite type over A
into graded schemes of finite type over A, morphisms being compatible pairs of mor-
phisms (of group objects) in the category of graded schemes over A. Applying K[—]
resp. (—)/K* on the level of structure sheaves then defines mutually inverse equiv-
alences between these two categories of quasi-toric graded schemes. For A = F; the
forgetful functor is an equivalence onto the category of integral Fq-schemes (with
dominant morphisms), the essential inverse sending X to the canonical action of
Spec(IF1 [K(X)*]) on X where both are endowed with the natural K(X)*-grading.
Here, X is integral if each Ox (U) \ 0 is cancellative. For A = K the equivalence of
graded schemes and quasi-torus actions induces an equivalence of quasi-toric graded
schemes with quasi-toric prevarieties over K, which are invariant open embeddings
of foom HCH — HCZ. Theorem formulates the resulting equivalence
of integral [F1-schemes of finite type and quasi-toric prevarieties over K, thus ex-
tending a result from [14]. Intuitively, the F-scheme corresponding to a quasi-toric
prevariety may be viewed as its orbit space.

A scheme X of finite type over [F; is then of Krull type if and only if the cor-
responding quasi-toric prevariety H CH — H C Z is of Krull type, meaning H CZ
is of Krull type. Normal Toric prevarieties then correspond to Krull schemes X of
finite type over F; for which IC(X)* is free. The canonical map sc: Z — X estab-
lishes correspondences for sheaves on Qx and Q . In particular, Weil divisors and
H-WEeil divisors are in correspondence, and divisorial Oz g-modules are naturally
of type K[sc™1Ox (D)] with grading group K(X)*, while divisorial Ox-modules are
of type sc.Oz (D)™ /K* with the grading being forgotten. Moreover, each Cox
sheaf on H G Z is of the form K[sc™'R] with grading group R% for some Cox sheaf
R on Qx and conversely, each Cox sheaf on X is of type sc,S"™/K* with grading
group Cly(Z) for some Cox sheaf S on Q7 pr, see Proposition Geomet-
rically, we have induced equivalences between graded characteristic spaces over X
and toric characteristic spaces over H CH — H C Z, see Proposition

A Krull scheme X of finite type over Fy with IC(X)* free may be viewed as a
combinatorial object because the specialisation preorder and the sets of non-trivial
valuations at each point determine X, see Section More generally, for a
graded scheme X over F; or Z the restriction of Ox to the set Bx of non-empty
affine open sets forms a schematic cofunctor. The latter form a category J of which
graded algebras over [F; or Z are a subcategory, and Spec,, extends naturally to a
contravariant equivalence of J with the category of graded schemes over F; or Z,

see Section [V.2.31

This thesis is organized as follows: In Chapter [[] we develop divisibility theory
for monoids and F;-algebras, i.e. multiplicative monoids with zero. Some results on
Krull monoids have been stated without proof in [9]. In the interest of completeness
we provide the proofs omitted there as far as needed for our purposes, although
they are just analoga of the ring-theoretic proofs. Our (non-standard) results on
homomorphisms of divisor monoids and essential valuations will be a crucial step
for the characterization of characteristic spaces, see Proposition With view
towards Fi-schemes we also provide basics on prime ideals and their complements,
faces. Furthermore, we introduce regular noetherian Fi-algebras and prove the
Auslander-Buchsbaum-Theorem and its converse for integral Fi-algebras, i.e. we
show that a noetherian integral Fi-algebra is regular if and only if it is factorial,

see Proposition [.2.7.6]
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Chapter [[] firstly provides basic constructions in the setting of graded alge-
bra like localizations, (co)limits, monoid algebras as well as the basic theory on
graded noetherianity - including a graded version of Hilbert’s basis theorem, and
on homogeneously prime ideals. Our results on graded ideals under Veronesean
inclusions ascertain the good behaviour of good quotients of graded schemes, see
Proposition [[I.T.8:14] Secondly, we develop the divisibility theory of graded rings,
from graded integrality, the localization behaviour of graded factoriality, graded val-
uations on simply graded rings to the characterization of graded rings of Krull type
in terms of their monoid of graded divisors, finally treating graded normality. As
a class of examples we treat natural divisorial algebras in Section [[I.2.6] which are
motivated by divisorial Ox-algebras. We also show that for a K @ F-graded ring R,
where F' is free, the discussed properties are well-behaved under coarsening to the
induced K-grading. In particular, R is of Krull type with respect to the coarsened
K-grading if and only if it is so with respect to the K @ F-grading, and the class
groups then coincide, see Theorem This gives a graded version of Gauf}’s
Theorem. Parts of these results, in addition to the result on graded factoriality
and localization, were published by the author in [5]. All concepts are studied with
respect to their behaviour under graded homomorphisms which restrict to isomor-
phisms on homogeneous components (CBEs).

Chapter [[T] gives generalities on the continuity behaviour of sheaves to an arbi-
trary category as well as basics like the sheafification construction for presheaves to
the various categories of graded objects. Moreover, we give first results on sheaves of
Krull type and the behaviour of graded (pre)sheaves under homomorphisms which
restrict to isomorphisms of homogeneous components (CBEs). In Chapter we
develop the theory of graded schemes over A = Z and A = Fq, their quasi-coherent
modules and algebras and graded relative spectra. Moreover, we introduce (Verone-
sean) good quotients as well as canonical actions by graded quasi-tori. While graded
schemes over A behave analogously to schemes over A in many ways, it is notewor-
thy that the structure sheaf Ox of a graded scheme X will not generally be a
sheaf with respect to the category of sets but only with respect to the category of
gr(Ox)-graded rings, see Example

Chapter [V]introduces graded schemes of Krull type, their Weil divisors and class
groups, as well as divisorial algebras, Cox sheaves and graded characteristic spaces,
and gives proofs of our stated results surrounding the two latter’s characterization.
We also differentiate between finite Weil divisors and locally finite Weil divisors on
graded schemes which are locally of Krull type, and consequently consider quasi-
Cox sheaves as well as proper Cox sheaves. Parts of the results of this Chapter were
published by the author in [6]. These results are then translated into the realm of
quasi-torus actions in Chapter [VI After the proof of equivalence of graded schemes
and quasi-torus actions in Section we treat the connection between stalks of
the invariant structure sheaf Oz i and geneneric H-isotropy groups in Section

In Chapter [VII|we treat the connection between Fy-schemes and quasi-toric pre-
varieties, as well as very neat embeddings into toric characteristic spaces. Working
in full generality, we show that an action of Krull type allows a very neat embedding
into a toric characteristic space if and only if it has a finitely generated Cox ring.
Moreover, a Veronesean algebra Rg C R with R finitely generated over K is shown
to be Cox algebra O(Z) C R(Z) of some action HC Z if and only if RP™ \ 0 is
factorial, we have (R1o™)* = (REP™)* and each homogeneously prime divisor p of
R satisfies deg((Rp™)*) + G = gr(R). Furthermore, we generalize statements from
[17] and show that in the setting of a very neat embedding, ambient and embed-
ded space have the same formulae for (semi-)ample and moving cones of classes of
invariant divisors.
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Conventions

By Ny and N we denote the natural numbers with and without zero, respectively.
F; denotes the multiplicative monoid {0,1}. K denotes an algebraically closed field
of characteristic 0, e.g. the field C of complex numbers. All semigroups, rings,
modules etc. are assumed to be commutative. Regarding concepts from graded
algebra which are analoga of classical algebraic concepts we distinguish the former
from the latter either by denoting the grading group as a prefix in terminology or an
index in notation, leading to the set Specy (R) of K-prime ideals of R, or by using
modifiers like “graded” or “homogeneous(ly)” in terminology and an index “gr” in
notation, as in homogeneously prime ideal, graded spectrum, Specgr(R). Similarily,
in the context of quasi-torus actions H C'Z we use modifiers like “(H-)invariant(ly)”
or an index H to distinguish a concept that is formulated with respect to the
topology €1z g of H-invariant open subsets or Ozq, , from its classical model.
We also employ some conventions resp. general concepts from category theory as
featured below.

With respect to an arbitrary category € we speak of limits and colimits in the fol-
lowing sense. Given a (contravariant) functor D: I — € (also called a (co-)diagram)
we may consider the categories of natural transformations (i.e. morphisms of (con-
travariant) functors) from constant I-shaped (co-)diagrams to D and vice versa. A
limit of D is a terminal object in the former category, while a colimit is an initial
object in the latter category. Products are limits, while coproducts, stalks and glu-
ing along open subschemes are examples of colimits. The €-sheaf property may be
defined in terms of €-limits. This way is neccessary e.g. for categories of graded
rings. Existence of (co-)limits often depends on I being small, which means that
the class of I-objects form a set and for two fixed I-objects the class of I-morphisms
from one to the other also form a set. In cases where we provide an explicit con-
struction we call the result the limit resp. colimit and use the notation limp or
lim;cy D(4) resp. colimp or colim;es D(3).

Given a tensor category € with a binary functor ®¢: €x€ — € and 1-object 1¢,
e.g. a category with binary products and terminal object or the category of graded
Z-modules with tensor product ®z and 1-object Z, one may define the category of
C-monoid/-group objects and that of €-comonoid/-cogroup objects. A monoid (resp.
group) object is a €-object G together with a multiplication morphism G® G — G,
a unit morphism 1 — G (and an inversion morphism G — G) such that these
structure morphisms satisfy the diagram conditions that define monoids and groups
in terms of multiplication map, inclusion of the unit element (and inversion map).
Comonoid (resp. cogroup) objects are defined analogously with all arrows reversed.
Morphisms are €-morphisms which respect structure morphisms. With respect to
®z, graded rings are monoid objects in the category of graded Z-modules and graded
Hopf algebras over Z are cogroup objects in the category of graded rings. Affine
algebraic groups resp. graded group schemes are group objects in the categories of
affine varieties resp. graded schemes.

Likewise, one may consider (co-)actions of monoid/group objects on €-objects.
These are given by a morphism G ® X — X (resp. X — G ® X) which satisfies
the diagram-theoretic conditions in which the definition of group actions may be

xi
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phrased (resp. the dual conditions). It is then usual to call X a G-(co-)module,
or to write GC X for the action. Morphisms of (co)actions are pair consisting of a
morphism of (co-)monoid/group objects and a €-morphism such that the canonical
diagram conditions are satisfied. Examples include homomorphisms induced by
scalar multiplications of graded rings R on graded Z-modules M turning the latter
into graded R-modules, morphical actions of an algebraic torus T on a prevariety
Z, coactions of graded Hopf algebras on graded algebras.
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CHAPTER I

F,-algebras, monoids and their divisibility theory

This chapter provides the algebraic preparation for the theory of Fi-schemes,
in particular those of finite and Krull type. To this end, the first part features
a version of Hilbert’s basis theorem, a discussion of faces of monoids (and Fy-
algebras) and of their complements viz. prime ideals. In the second part we develop
divisibility for monoids (and F;-algebras). We characterize Krull monoids in terms
of their divisor monoid and define homomorphisms of divisor monoids induced by
homomorphisms of Krull monoids. This lays the foundation for the definition of
Weil divisors of [F1-schemes and their pullbacks under dominant morphisms. The
properties of divisor monoid homomorphisms featured in Proposition [.2.6.9] will be
crucial for our results on Cox sheaves and characteristic spaces. We close the chapter
with the observation that under presence of integrality the Auslander-Buchsbaum-
Theorem and its converse hold, i.e. factoriality is equivalent to regularity. This is
reflected geometrically in the fact that all smooth affine toric varieties are of type
K™ x (K*)™. All monoids and F;-algebras will be assumed to be abelian without
further notice.

I.1. Modules and faces of monoids and F,-algebras

After the introduction of the basic concepts in Section we prove Hilbert’s
basis theorem for monoids in Section As a preparation for the discussion
of F1-schemes of finite type we treat faces of monoids in Section and their
complements, i.e. prime ideals, in Section

I1.1.1. Monoids, F;-algebras and their modules. By a monoid we mean
an associative semigroup with neutral element. If no other specification is given
monoids will be written multiplicatively and the neutral element of a monoid M
is denoted 1;;. Homomorphisms of monoids are by definition required to preserve
neutral elements.

DEFINITION 1.1.1.1. An absorbing or zero element of a monoid A is an element
04 such that 04a = 04 holds for every a € A. In the category of monoids with
absorbing element a morphism is a monoid homomorphism that preserves absorbing
elements.

REMARK I1.1.1.2. Ty := {0,1} is the initial object of the category of monoids
with zero, which therefore in the interest of brevity is termed the category of Fi-
algebras, denoted Algg, . Its terminal object is {0}.

REMARK 1.1.1.3. The category of Fi-algebras is a full subcategory of the cate-
gory of sesquiads, whose objects are pairs (M, R) consisting of a commutative ring
R such that the underlying Fi-algebra (R,0g, 1) contains M as a F;-subalgebra
and R is generated as a ring by the subset M. Morphisms of sesquiads are ring
homomorphisms that restrict to Fi-algebra homomorphisms. Other subcategories
of sesquiads include rings.

REMARK 1.1.1.4. The forgetful functor i: PtSet — Set from pointed sets to
sets is right adjoint to the functor sending S to S U {0} due to Lemma [A.0.0.2

5
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REMARK 1.1.1.5. The colimit of a small diagram D: I — PtSet,i — (X;,0;)
of pointed sets is the colimit of the corresponding diagram of sets modulo the
equivalence relation generated by 0; ~ 0; for 4,5 € I. Another way to think of the
coproduct in PtSet is as the set of all x € [[,.; X; whose coordinates are zero for
all, or all but one i € I.

The limit is the Set-limit, i.e. the subset of those (x;); € []; X; such that
D(a)(z;) = z; holds for each I-morphism «a: i — j, together with the distinguished
point (0x,);-

For a fixed object A of Mon or Algy, the category of objects under A is denoted
Alg ,, its objects are called A-algebras or algebras over A. For a given A-algebra
B the category SubAlg ,(B) of A-subalgebras of B has as its objects A-algebras C
which are subsets of B such that the inclusion C' C B is an morphism of A-algebras,
and as its morphisms inclusion maps.

The notion of modules over monoids was introduced in [15]. It is obtained
from the theory of modules over rings by eliminating every occurrence of addition,
i.e. one replaces rings with monoids and abelian groups with sets. Thus, modules
over monoids are actions of monoids on sets. From now on, A denotes a fixed
monoid/F-algebra.

DEFINITION L.1.1.6. A module over A is a set resp. pointed set M (with sta-
tionary element Opr) together with an associative action ppr: A x M — M such
that 14 acts identically on each element (and the product of 04 with each element
is the A-invariant element 0ps).

A morphism of M-modules is an equivariant map (which preserves stationary
elements). A submodule is a module supported on a subset such that the inclusion
map is a morphism.

ExaMPLE 1.1.1.7. The operation of a monoid/F;-algebra M turns M into an
M-module. M-submodules of M are called ideals.

REMARK 1.1.1.8. Each pointed set carries a canonical (and unique) F;-action.
Thus, pointed sets are equivalent to Fi-modules.

ProroSITION 1.1.1.9. In the category of modules over a monoid A products and
coproducts are given by Cartesian products resp. disjoint unions. In the category
of A-submodules of an A-module M products are intersections and coproducts are
UNIONS.

CoNSTRUCTION 1.1.1.10. Let M be an A-module. The A-submodule generated
by a subset N C M is the intersection over all A-submodules of M which contain
N, i.e. the union over all M f for f € N.

REMARK 1.1.1.11. Under morphisms of A-algebras/-modules preimages of A-
subalgebras/-submodules are again A-subalgebras/-submodules. Moreover, images
of A-subalgebras are A-subalgebras. Under surjective morphisms, images of A-
submodules are A-submodules, too.

REMARK 1.1.1.12. Under a monoid homomorphism ¢: A — B the preimage of
a subgroup G is a subgroup if and only if ¢~(G) C A*.

DEFINITION 1.1.1.13. Let B be an A-module (resp. an A-algebra). A con-
gruence on B is an equivalence relation ~ on B such that we have ab ~ ab’ (and
be ~ ') for all a € A and b,b,¢,¢’ € B with b~ ¥ (and ¢ ~ ).

REMARK 1.1.1.14. For a congruence ~ on an A-algebra/-module B the set
B/ ~ of congruence classes is again an A-algebra/-module and the canonical map
B — B/ ~ is a morphism. Conversely, for a morphism ¢: B — C the relation
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~ defined by all pairs (b,0') with ¢(b) = ¢(V') is a congruence, called the kernel
relation of ¢.

ExAaMPLE 1.1.1.15. Let B be an A-module. For an A-submodule C of B the
equivalence relation ~¢c:= C x C'U UbeB\C (b,b) is a congruence and the quotient
B/ ~¢ is also denoted B/C, see citation[12]. Note that the class C' x C is a
stationary element of B/C even if A is only a monoid.

The following is known as the homomorphism theorem.

PropPOSITION 1.1.1.16. Let ~ be a congruence on an A-algebra/-module B.
Then B — B/ ~ is the initial object in the category of B-algebras whose kernel
relation contains ~.

ExaMmpPLE 1.1.1.17. Let B be an A-algebra. Then each subalgebra N C B
defines a congruence ~y where b ~y c if and only if bN = ¢N. Note that bN = Nb
holds due to commutativity of B. Congruence classes are N-orbits (minus the zero
point) if and only if N is simple.

CONSTRUCTION 1.1.1.18. Let M be a module over the monoid/F;-algebra A
and let N C A be a submonoid. The localization N~'M of M by N is the set
M x N modulo the equivalence relation given by all pairs ((m,n),(m’,n’)) for
which there exists k € N with kmn’ = km/n. Its elements are denoted m/n. If A
is an Fq-algebra then Oy-137 := 0p7/14 is a stationary element. For M = A one
obtains the structure of a monoid/F;-algebra via (m/n)(m’/n’) := (mm’/nn’) and
In-1a7 := 1a/14. For arbitrary M one thus has an A-module structure defined by
a(m/n) = (am)/n, and a N~! A-module structure via (a/k) - (m/n) = (am)/(kn).
The canonical map 2p;: M — N~'M is a map of M-modules.

CONSTRUCTION 1.1.1.19. Let M be a module over the monoid/F;-algebra A and
let f € A be an element. The localization by f is then the localization My := N 1M
by the submonoid N C A generated by f.

PROPOSITION 1.1.1.20. Let ¢: M — M’ be a homomorphism of A-modules and
let N C A be a submonoid. Then the map

N7l'¢: N7'M — N *M', m/n+— ¢(m)/n
is the unique homomorphism of N ™' A-modules such that N~ ¢ o1y = 1p © .

ProPOSITION 1.1.1.21. Let ¢: M — M’ be a homomorphism of monoids and let
N C M be a submonoid with ¢(N) C M'™. Then there is an induced homomorphism
of monoids

N7t'¢: N7'M — M', m/n+— ¢(n)"  o(m).

REMARK 1.1.1.22. If ~ is a congruence on an A-module/-algebra B and N C A
is a submonoid then there is an induced congruence N~! ~ on N~ !B generated
by all pairs (b/n, b’ /n’) for which there exists s € N with sb'n ~ sbn’. Moreover,
N~! ~ is the kernel relation of the canonical epimorphism of N~!A-modules/-
algebras N~'B — N~Y(B/ ~).

If ~ was induced by a submodule b or a subalgebra C' then N~' ~ is induced
by N~'b resp. N~1C.

REMARK 1.1.1.23. Let B be a monoid/Fy-algebra and let A be a submonoid/F;-
subalgebra. For an A-submodule b of B the intersection N Nb is empty if and only
if N~1b is proper.
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1.1.2. Noetherianity and Hilbert’s basis theorem. This section serves to
prove a version of Hilbert’s basis theorem which in turn is used to show noetherianity
of finitely generated abelian monoids (and Fj-algebras). Again, A denotes a fixed
monoid/Fy-algebra.

DEFINITION 1.1.2.1. Let M be an A-module.

(i) An A-submodule m of an A-module M is finitely generated if m = AS
holds with a finite subset S C M. If S is a singleton, then m is called
principal.

(ii) M is noetherian if all its submodules are finitely generated. M is 1-
noetherian if each ascending chain of principal submodules becomes sta-
tionary.

(iii) A is called (1-)noetherian if it is (1-)noetherian as a module over itself.

REMARK 1.1.2.2. For an A-module M the following are equivalent:

(i) M is noetherian,
(ii) every non-empty set of ideals of M has maximal elements with respect
to inclusion,
(iii) every ascending chain of ideals in M becomes stationary.

REMARK 1.1.2.3. An A-module M is 1-noetherian if and only if each non-empty
set of principal submodules has maximal elements with respect to inclusion.

The next statement is Hilbert’s basis theorem for monoids.

PROPOSITION 1.1.2.4. Let M be a noetherian (additive) monoid. Then M x Ny
is noetherian.

PROOF. Let a be an ideal of M x Ny. For every m € Ng let b,, be the set of all
elements b € M such that (b,m) € a. b, is an ideal since whenever r € M and b €
b,, we have (r4+b,m) = (r,0) + (b,m) € by, i.e. r+b € b,,. Moreover, b, C by, 11
because (b, m) € a implies (b, m+1) = (0,1)4(b,m) € a. By noetherianity the chain
defined by all b,,, eventually terminates, i.e. there exists k such that b; contains all
other b,,. Moreover, for i < k we have b; = M +¢;1 U... UM + ¢; 4, with some
elements ¢; ; € b;. We claim that a is the (finite) union over all M x Ny + (¢; ;, %)
wherei < kand j < d;. Let (a,m) € a. Thena € b,. If m < k then there exists j <
dy, with a = w+c¢p j; € M +¢py j for some w € M. Thus, (a,m) = (w,0)+(¢m,j, m)
has the desired form. If otherwise m > k then in particular a € by, hence there
exist j < dj and w € M with a = w+cg ;. Therefore, (a, m) = (w,m—k)+ (¢ ;, k)
has the desired form. ]

COROLLARY 1.1.2.5. If M is noetherian, then so is M x N} for everyn > 1.

REMARK 1.1.2.6. Let ¢: M — N be a surjective homomorphism of monoids.
If M is noetherian then so is N. Indeed, for an ideal a of N the ideal 7~ !(a) is
finitely generated and hence the images of the generators generate a = (7~ 1(a)).

COROLLARY 1.1.2.7. Every finitely generated algebra M over a noetherian monoid
A is noetherian.

PrROOF. If wy, ..., wy generate M as an A-algebra then we obtain an epimor-
phism 7: A x N¢ — M of A-algebras by sending (a, k) to a + Z?Zl kiw;. O

1.1.3. Faces of modules over semirings. Here, we treat faces of modules
over semirings, in particular, of monoids with focus on the finitely generated case.
To keep notation simple we write monoids additively throughout this section. De-
pending on the context Ny denotes both the additive monoid (Ng,+,0y) and the
semiring (No, +, -, 0y, In).  Our discussion of the duality operation will be essen-
tial for the interpretation of F;-schemes of finite type in terms of combinatorics in

Section [V.34]
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DEFINITION 1.1.3.1. A module M over a semiring S consists of a commutative
(additive) monoid M on whose underlying pointed set the multiplicative F;-algebra
underlying S defines a module structure which satisfies a(v + w) = av 4+ aw and
(a+b)v = av+bv foralla,b € Sand v,w € M. A homomorphism of modules over S
is a homomorphism of monoids which is compatible with the scalar multiplications.

ExAMPLE 1.1.3.2. Modules over Q>( are rational cones.

REMARK 1.1.3.3. The category of commutative monoids is equivalent to the
category of modules over the semiring Ny of non-negative integers in the same way
that abelian groups are equivalent to Z-modules.

CONSTRUCTION 1.1.3.4. Let S be a semiring and let 7" C S be a multiplica-
tive submonoid. Then the F;-algebra T—!S constructed in Construction
becomes a semiring via a/t + b/u := (ua + tb)/tu for a,b € S and t,u € T. For an
S-module M the localization T~ M as constructed in Construction[L.1.1.18 becomes
an T~1S-module via v/t + w/u := (uv + tw)/tu for v,w € M and t,u € T.

REMARK 1.1.3.5. In the above setting, the localization map S — T—1S is a
homomorphism of semirings, i.e. it respects both the additive and the multiplica-
tive monoid structures. The localization map t7: M — T~ 'M then becomes a
homomorphism of S-modules.

DEFINITION 1.1.3.6. A face of an S-module M is an S-submodule 7 such that
u + v € 7 implies u,v € 7 for all u,v € M. To indicate that 7 is a face of M we
write 7 < M. The set of all faces of M is denoted faces(M).

REMARK 1.1.3.7. Intersections of faces of a monoid M are again faces of M.
Also, faces of faces of M are faces of M. Moreover, preimages of faces under
homomorphisms are faces. Furthermore, if M is generated as an S-submodule by
{v;}ier then each face is generated as an S-submodule by {v; };cs for some J C I.

DEeFINITION 1.1.3.8. The face generated by a subset A C M of an S-module M
is the intersection face(A) over all faces of M which contain A. If A = {a} is a
singleton then face(a) := face(A4) is called a principal face of M.

DEFINITION 1.1.3.9. For a face 7 of a monoid /Fq-algebra M the relative interior
is the set 7° of all elements of 7 which do not belong to a proper face of 7.

REMARK 1.1.3.10. Let V be a finite-dimensional Q-vector space. Let 7 be a
cone in V generated by vy,...,vq € V. Then with respect to the standard metric
topology 7° = Zle @Q=ouv; is the interior of 7 in the vector space 7 — 7 generated
by 7. This standard fact can be found e.g. in [11].

REMARK 1.1.3.11. The relative interior of an S-module 7 is an ideal of the
underlying monoid 7. Moreover, a face i of 7 is principal if and only if its relative
interior n° is non-empty, in which case each element of 1° generates 7.

DEFINITION 1.1.3.12. A face of a monoid/[Fi-algebra M is a face of the as-

sociated module over the semiring Ng. M is called pointed if {0} is a face of
M.

REMARK 1.1.3.13. Let M be a monoid, i.e. a module over Ny. Then N~!'M/
is a cone and the maps a: 7 — N7'7 and f: 9 — zgl(n) form mutually inverse
inclusion preserving bijections between faces(M) and faces(N~1M). In particular,
we have M° =o' (N"'M)°) and (N1 M)° = N~ (M°).

Indeed, for v,v’ € M,n,n’ € N with (v/n)(v'/n’) € N7l ie. nn'vv’ € 7 we
have v,v" € 7, meaning that N~17 is a face. For B(a(r)) = 7 let v € ¢~ (a(T)).
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Then there exist w € 7 and n € N with v/1 = w/n, i.e. there exists k € N with
knv = kw € 7 and hence v € 7. Moreover, since 7 is invariant under Qs we have

a(B(n)) =n.

DEFINITION 1.1.3.14. Let M C N be an inclusion of semigroups. The saturation
of M in N is the set sat(M, N) of all v € N for which there exists & € N such that
kv e M. M is saturated in N if M = sat(M, N). If in the last case it is clear which
ambient semigroup IV is meant we will also say that M is saturated.

REMARK 1.1.3.15. The saturation of M in N is a saturated subsemigroup of
N. Moreover, if N is a monoid then sat(M, N) is a submonoid if and only if M is a
submonoid. Moreover, for a subsemigroup L C M we have sat(L, N) C sat(M, N),
sat(L, M) C sat(L,N) and sat(L,sat(M,N)) = sat(L, N) = sat(sat(L, M), N).
Indeed, if for v € N there exists k € N such that kv € sat(L, M) then there exists
l € N with lkv € L C M and in particular, we have v € sat(M, N). Consequently,
if L is saturated in M and M is saturated in N then L is saturated in N.

ExaMPLE 1.1.3.16. Faces of monoids are in particular saturated submonoids.

REMARK 1.1.3.17. Let ¥: K — L be a homomorphism of monoids. Then the
preimage of the saturation of a submonoid N C L is the saturation of ¢»~1(V).

LEMMA 1.1.3.18. Let M be an abelian monoid, i.e. a module over the semiring
No. Then the following hold:

(i) The saturation of a submonoid T in M is 1" (N~17).

(i) 7 + N7'7 and o — 13" (0) define mutually inverse bijections between
saturated No-submodules of M and Qx>q-submodules of the Qxo-module
N~!'M. Both assignments commute with arbitrary intersections.

(iii) If M is a finitely generated abelian group then a saturated submonoid T
of M is finitely generated over Ny if and only if N~17 is finitely generated

over Q>p.

PrOOF. In (i) let w € M and n € N with nw € 7. Then nw/1 € N~ and
hence w/1 € N7, ie. w € o' (N~17). Conversely, if w/1 = v/n holds with v € 7
and n € N then there exists k € N with knw = kv € 7, i.e. w belongs to the
saturation of 7.

In (ii) note that if nw/1 € o holds with n € N then w/1 € o, which shows
ZN_l(O') is saturated. Lastly, if for a family 7,,7 € I of saturated Ny-submodules
v € M satisfies v/k = w;/k; with w; € 7; and k, k; € N for each ¢ then there exist
l; € N with [;k;v = [;kw; € 7; and saturatedness gives v € 74, i.e. v/k € N71 N 7i-

For (iii) let N~17 be finitely generated by w1 /1,...,wy/1 where w; € 7. Let P
denote the parallelepiped spanned by all w; /1, i.e. the set of all linear combinations
Z?:l Ai(w; /1) where 0 < \; < 1. Then 13" (P) has the form U?Zl v; + t(M) with
respect to certain v; € M and the torsion module ¢(M) of M. 7 is now generated
by wi,...,wg,v1,...,v, together with finitely many generators of ¢(M). Indeed,
let w € 7 with w/1 = Zle a;(w;/1) where all o; € Q>¢. Then upto t(M) the
element w — Zle la; Jw; € T is one of the v,. O

ProprosITION 1.1.3.19. Let K be a finitely generated abelian group, let M be a
finitely generated submonoid and let vy, ...,v, € M be elements such that M is the
saturation of > Nov; in M. Then the following hold:

(i) M° is the saturation of ., Nuv; in M.

(ii) For a homomorphism ¢: K — L of finitely generated abelian groups ¢p(M)
is the saturation of ¢(3_, Nov;) in ¢(M) and ¢(M)° is the saturation of

P(M®) in p(M).
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PRrROOF. For (i) we apply Remark [[.1.3.10[ to N™'M = 3", Q>ov;/1 and use
Remark and Lemma [[.1.3.18) to obtain the assertion. In (ii) first note
that for ¢(v) where kv = >, kjv; with £ € N and k; € Ny we have ko(v) =
> kidp(vi). Secondly, if w € ¢(M)° then kw = Y | kip(v;) = (> kiv;) holds
with k,k; € N and hence kw € ¢(M°). Conversely, if for w € ¢(M) there exist
veE M and k, k; € Nwith kv =37, k;v; as well as | € N such that lw = ¢(v) then
klw = ¢(kv) = Y7, kk;p(v;), meaning that w € ¢(M)°. O

ProrosiTiON 1.1.3.20. Let ¢: M — N be a homomorphism of monoids. Then
the inclusion-preserving maps a: T +— face(¢p(7)) and B: n — ¢~1(n) are mutually
inverse bijections in the following cases:

(i) ¢ is the inclusion of a submodule whose saturation is N. «(7) is then the
saturation of T.

(ii) ¢ is an epimorphism such that ¢p(v) = ¢(v') implies that there exists a € N
with av = av’. In this case, a(T) = ¢(7) holds for every face of M.

PrOOF. In (i) note that the saturation 7/ of 7 € faces(M) is contained in
face(7) € faces(N). To see that 7/ is a face first observe that for v € 7" and a € N
with av € 7 and s € S we have a(sv) = s(av) € 7, i.e. sv € 7/. If we have
v,v" € N with vv’ € 7/ then there exists a € N with (av)(av’) = a(vv’) € 7. Now
let b0’ € N with bv,b'v' € M. Then (abb'v)(abb'v') € T gives abb'v,abb'v’ € T and
hence v, v’ € 7.

For B(a(1)) = 7, let v € B(a(r)). Then there exists k € N with kv € 7 and
thus v € 7. The converse follows from 7 C a(7). For a face n of N let v € a(nNM).
Then there exists k € N with kv € nN M and we obtain v € . Conversely, if v € 5
then each k£ € N with kv € M satisfies kv € nN M.

In (ii) let 7 be a face of M. Let v,v’ € M with ¢(v)¢(v') = ¢(w) for some w € 7.
Then there exists a € N with a(vv’) = aw € 7 which implies ¢(v), d(v') € ¢(7).
Consequently, we have B(a(7)) = ¢~ (¢(7)) = 7. O

Consider a finite-dimensional Q-vector space V and set W := V* = Homg(V, Q).
The canonical isomorphism V' — W* sends v € V to the map ¢,: W — Q which
evaluates v € W at v. For ACV and B C W set

AY = {p e W|p(A) € Qx0}, B :={veVl]p,(B) S Qxo}
as well as AL := AV N (—=A)Y and B+ := BYN(-B)". Forx € V and ¢ € W we
use the notations zv := {x}V, 2t = {2}, ¥V = {¢}V and ¥ := {y)}+. The
following facts on finitely generated cones and dualization are found e.g. in [11].

REMARK 1.1.3.21. In the above setting consider a cones 7,0 C V. Then the
following hold:

(i) 7 is finitely generated over the semiring Q>¢ if and only if it is of the
form 7 = {1)1,...,%4}", and in that case 7V is also finitely generated.

(ii) If 7 and o are finitely generated over the semiring Q>o then we have
r=(")Waswellas (t+0)Y =7"No” and (tNo)V =7V +0".

(iii) If 7 is finitely generated over the semiring Q> then n C 7 is a face if and
only if it is of the form 7 = 7N {1 }+. Moreover, sending a face 1 of T to
7V Nyt and a face o of 7V to 7N ot defines mutually inverse inclusion
reversing bijections between faces(7) and faces(7V). Moreover, we have
dim (V) = dim(ling(n)) + dim(ling(r Nnt)).

(iv) We have dim(V) = dim(U) +dim(U~) for each Q-linear subspace U C V.

Consider a finitely generated abelian group K and set L := Homy (K, Z). Then
the kernel of the canonical epimorphism K — Homy(L,Z),v — ¢, is the torsion
part ¢(K) of K. For AC K and B C L set

AV = [ € LY(A) CNo}, BY = {v € K|¢u(B) C No}.
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as well as A+ := AV N (-A)Y and B+ := BYN(-B)V. Forw € K and ¢ € L we
use the notations w" = {w}V, wt = {w}+, ¥V = {y}V and ¥+ := {y}+.

REMARK 1[.1.3.22. In the above notation the following hold:

(i) If A resp. B is a submonoid then Homy, (A, Ny) resp. Homy, (B, Np) is
canonically isomorphic to AY resp. BY /t(K).
(ii) A and B define evaluation homomorphisms

ea: L — H Zyap — (Y(a))aca, Op: K — H Zyw — (Y(w))yen

acA YeB

and we have AV = & ([],c 4 No) and BY = 5;1(Hw63 Np), in particular,
AY and BY are saturated in L resp K.
(iii) (—)Y translates unions to intersections, and gives the same result for a
generating subset of a submonoid A, for A itself and for its saturation.
In particular, (—)V translates sums of submonoids into intersections.
(iv) If A resp. B are submonoids then we have N71(AY) = (N71A)Y
N=}(BY) = (N7'B)Y in N"'L = Homg(N~'K,Q) resp. N"1K.

ProPOSITION 1.1.3.23. In the above setting the following hold for a submonoid
M of K:
(i) If M is saturated then for any free abelian subgroup F C K such that
K=tK)+F and t(K)NF = {0k} we have M =t(K) + (M NF).
(ii) If M is finitely generated over Ny then MV is finitely generated and MY
is the (also finitely generated) saturation of M.
(iii) If M is finitely generated over Ny then sending T <= M to MY N1+ and
n =< MY to MNnt defines mutually inverse bijections between the faces of
M and M. Moreover, ranky(K) is the sum of the ranks of the Z-modules
generated by n and MV Nnt, respectively.

PROOF. In (i) consider v € t(K) and w € F with v+ w € M. For n € N with
nv = 0 we then have nw = n(v +w) € M and obtain w € M from saturatedness.

For (ii) note that N 1M is finitely generated over Ny by Lemmall. 111) By
Remark [[.1.3.21| N~ = (N=1M)V is finitely generated over Q> and another
application of Lemma I 1. 3 18(iii) gives finite generation of MY over Ny. Similarily,
MYV is finitely generated over Ny because N~}(MVV) = (N7!M)VV = N~1pm
is finitely generated over Qso. The inclusion MYV C sat(M, K) follows from
Lemma [[.1.3.18(i) because N"'(MVV) = N~1 M.

In (iii) the map faces(M) — faces(MV) factorizes into three steps the first
being the bijection faces(M) — faces(N"1M) from Remark [[.1.3.13] the second
being the bijection faces(N~1M) — faces((N~1M)Y) from Remark and the
third being the bijection faces((N"1M)Y) — faces(M"Y). Indeed, with respect to
the localization map uy: MY — N™'MY we have

i (NTPM)Y N (NP ) ) = o "(NTH MY nrt)) = MY

Likewise, the map faces(M ") is the composition of the three corresponding inverse
maps. Indeed, with respect to the localization map uy: M — N™!M we have

i (NTIM AN ) =o' (NTH M npt) = M ot
The rank formula now follows from the dimension formula of Remark [1.3.21] be-
cause ling(N~1(MY N71)) = N~ ting (MY nrt). O
REMARK 1.1.3.24. Let ¢: K — K’ be a homomorphism and let M C K and
M’ C K’ be submonoids. Then the following hold:
(i) We have (¢*)1(MY) = ¢(M)" because ¢*(v)(M) = y(¢(M)).
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(ii) If p(M) C M’ then ¢*(M'V) C MV. The converse holds if M’ is saturated
in K’ and finitely generated, because then M"Y C (¢*)"Y(MY) = ¢(M)V

implies ¢(M) C M'VV = M’ by Proposition [[.1.3.23
LEMMA 1.1.3.25. For finitely generated submonoids M, N of K (resp. L) each
u € (M — N)V satisfies the following:
(i) If MNN =M Nut = Nnut holds then we have
(MNN)Y=M"Y —-Nou=N"+Nou=M"+NV,

and the converse holds if M and N are saturated in K (resp. L).

(i) If (M — N)N (N — M) = (M — N)Nut then the condition of (i) is
satisfied.

(iii) If MNN s a face of M and N then each element of (M —N)V)° satisfies
the condition of (ii).

PRrROOF. In (i) suppose that the first condition holds. Clearly, MY and NV are
contained in (M N N)V. Let A C M be a finite generating set. For w € (M N N)Y
let k be the maximum over all |w(a)| where a € A\ ut. Then (w+ ku)(a) > 0 holds
for each a € A and hence w € MY — Nyu. Together, we obtain

MY+ NYC(MNN)YCMY-NouC MY+ NY.

In the same manner, one shows the above inclusions with NV 4+ Nyu in the place of
MY — Ngu. In the converse direction we use stability of M and N under (—)VV to
obtain M N (—u)¥ = NNu¥ =MNN. Now, u € MV gives M N (—u)¥ = M Nut
and u € =NV gives NNu" = N Nut.

In (ii) first note that M N N C u*. For w € M Nut we have w = b — a with
a € Mand bée N. Thus, w+a=5b€ M NN gives w € M N N. Analogously, we
obtain M NN = NNut.

For (iii) note that if u € (M — N)Y)° then according to Proposition
(M — N)Nut = (M — N)Nface(u)” is the minimal face of M — N, which is equal
to (MNN)—(MNN) because M N N is a face of M and N. O

The above is known as the separation lemma and an element u satisfying the
condition of (i) is called a separating linear form for M and N.

REMARK 1.1.3.26. Let M, N C K be submonoids of an abelian group. Then
M+ N =M — Nou = N — Nyv holds with certain u € M and v € N if and only if
there exists w € M N —N such that M + N = M — Now = N + Now.

Indeed, if the first condition holds then there exist a,c € M and b,d € N with
a+b=—-uand c+d= —v. The element w:=c—b=c+a+u=—-d—v—>bnow
lies in M N —N and we have

M4+NCM-NouCM-NowCM+NCN-NpwCN+NywCM+N
because —u=a+c—w € M —Nogw and —v=b+d+ w € N + Nyw.

ExampLE 1.1.3.27. Consider a submonoid L = Nj @G of the group K = Z"®G
where G is a finitely generated additive abelian group. For elements u,v € L we
set M := L —Nou and N := L — Ngv. Then we have M + N = L — Ny(u + v) and

{we MN—-N|M+ N =M —Now =N + Now} = face(v)® — face(u)°.

Indeed, let w =Y. | vv; + w'j € S belong to the left-hand side where v; € Z
and w’ € G. Here, v; € N denote the element whose i-th coordinate is 1 and whose
other coordinates are 0. We have u =}, _; av; + ' and v = ), Biv; + ' for
unique u’, v’ € G, I,J C {1,...,n} and «;, 5; € N. In this notation, we obtain
M=L-Ng) ,c;viand N=L—-Ng} , ;v; as well as

L-NoY vi—Now=L-Nyg » v;=L-No) v +Now.
icl ie1ul icJ

icJ
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In particular, both w and —w lie in L —Ng » ., ; v; which means that for each i in
the complement of I U J we have ~;, —v; > 0 and hence v; = 0. Since — Zie]uJ V4
liesin L—Ng ), ; vi +Now we have v; < 0 fori € I'\J. Likewise, since —» . _; ;v
belongs to L — Ny Ziel v; — Now we have ; > 0 for ¢ € J \ I. In other words, we
have

w E Z Nv; — Z Nv; + Z Zv; + G = face(v)® — face(u)°.

ieJ\I i€I\J icInJg

I.1.4. Prime and radical ideals and faces of monoids and [F,-algebras.
In this section we study prime ideals of monoids and F;-algebras as preparation
for the theory of Fi-schemes as well as that of prime divisors of monoids and F;-
algebras of Krull type. We start with the connection between prime ideals and
faces.

DEFINITION 1.1.4.1. An ideal p of a monoid/Fy-algebra is prime if it is proper,
and whenever it contains a product ab of elements of M it already contains one of
the factors.

PROPOSITION 1.1.4.2. For a monoid/F1-algebra M there is an inclusion-reversing
bijection
{faces of M'} — {prime ideals of M}
T— M\ T
M\ pe—p

Here, the group of units M* is the unique minimal face of M. Its complement, the
unique maximal proper ideal of M, is consequently prime. Since the intersection of
proper faces is a proper face, every union of prime ideals is again a prime ideal.

PROOF. Let 7 be a face of M. First we ascertain that p := M \ 7 is an ideal.
Let a € M and b € p. If we had ab ¢ p, i.e. ab € 7 then in particular b € 7 - in
contradiction to the choice of b. Thus, ab € p. Now, let a,b € M with ab € p and
suppose that a ¢ p,i.e. a€7. f wehad b ¢ p,ie. beTthenabeT=M\p-a
contradiction. Therefore, b € p.

Conversely, let p be a prime ideal and let a,b € M. Then 1 € 7:= M \ p and
whenever a,b € 7 we have ab € T because otherwise we had a ¢ Torb ¢ 7. If ab € 7
and we had a ¢ 7, i.e. a € p then the ideal property gives ab € p - a contradiction.
Therefore, a belongs to 7 and analogously we deduce b € 7.

We next show that M™* is indeed a face. Let a,b € M with ab € M*. Then
there is a ¢ € M with a(bc) = 1)y € M*. Thus, a € K* and analogously b € K*.
For minimality, let 7 < M be any face and let a € M*. Take any b € 7. Then
a(a™'b) =b € 7 and thus a € 7. O

REMARK 1.1.4.3. Unions of prime ideals are prime ideals.

REMARK 1.1.4.4. If M is an F;-algebra and 7 a face containing 0 then 7 = M,
in particular, M is a principal face. Indeed, for any a € M we have a0 = 0 € 7 and
consequently a € T.

CONSTRUCTION 1.1.4.5. Let M be a monoid/F;-algebra and let a and b be
ideals of M. Then the product ab is the ideal generated by all elements ab where
a € a and b € b. Explicitely, this is the union over all Mab where a € a and b € b.

PROPOSITION 1.1.4.6. An ideal p of a monoid/F,-algebra M is prime if and
only if whenever a product ab of ideals of M lies in p then a or b does, too.
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PROOF. Suppose that p is prime and let a, b be ideals of M with ab C p. If a
is not contained in p then there exists an element a € a\ p. For any b € b we have
ab € p and deduce b € p from primality of p. Thus, b is contained in p.

For the converse, let ab € p. Then MaMb = Mab C p and we deduce Ma C p
or MbC p,ie.a€porbdcenp. a

ProPOSITION 1.1.4.7. Preimages of faces resp. prime ideals under homomor-
phisms of monoids/F1-algebras are faces resp. prime ideals.

PROOF. Let ¢: M — N be a homomorphism and let 1 be a face of V. Since
#(1) = 1 we know that 7 := ¢~ (n) is non-empty. Now, let ab € 7 for some a,b € M.
Then ¢(a)p(b) = ¢(ab) € n which implies ¢(a), p(b) € n, i.e. a,b € T. O

DEFINITION 1.1.4.8. Let M be a monoid/[Fy-algebra.
(i) An ascending chain py C ... C p, of prime ideals py,...,p, is said to
have length n.
(ii) The height ht(p) of a prime ideal p of M is the supremum of all lengths
n of chains of prime ideals which end in p,, = p.
(iii) The Krull dimension dim(M) of M is the supremum over all lengths of
chains of prime ideals of M.

ProprOSITION 1.1.4.9. Let N be a subgroup of the unit group M* of a monoid M
and let ¢: M — M/N be the canonical map. Then there is an inclusion preserving
bijection

faces(M) «— faces(M/N)
T— (1)
¢~ () e
and a bijection respecting products and inclusions
{ideals of M} «—— {ideals of M/N}
ar— ¢(a)
¢~'(b) «—b
which restricts to a bijection of the sets of prime ideals.

PROOF. Let b be an ideal of M/N. Then b contains an element @ where
a € M, in particular, a := ¢~1(b) is non-empty. If m € M and b € a then
p(mb) = ¢p(m)p(b) € b, i.e. mb € a. Hence, a is an ideal.

For the equation ¢~1(4(a)) = a let m € M with ¢(m) = ¢(a) for some a € a.
Then there exists u € N with m = au € a. Then converse is always true. The
equation ¢(¢~1(b)) = b is due to surjectivity.

Now, Proposition [[.T.4.6] gives the statement on the sets of prime ideals. The
statement concerning faces follows from the one about prime ideals since we know
that ¢(M) = M/N and ¢~ '(M/N) = M. |

PROPOSITION 1.1.4.10. Let N be a submonoid of a monoid/F1-algebra M and
consider the localization map 1y: M — N~=*M. Then the following hold:

(i) For each ideal a of M the ideal generated by 1x(a) is N~ ta. Moreover, a
has empty intersection with N if and only if N~1a is proper.

(ii) For each (N~1M)*-invariant subset S C N='M, in particular for ideals
and faces, we have Nfl(zj\,l(S)) = S. Consequently, if b is a proper ideal
of N~'M, then 15" (b) does not intersect N.

(iii) The assignments a — N~'a and b +— 13" (b) define inclusion preserving
mutually inverse bijections between the set of prime ideals of M which do
not intersect N and the set of prime ideals of N~1M.
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(iv) The assignments T +— N~'7 and 1 — 1 (n) define inclusion preserving
mutually inverse bijections between the set of faces of M which contain
N and the set of faces of N"'M. In particular, 15 (N"'M)*) is the
smallest face containing N. Moreover, for each face T containing N we
have N~*fr N N=Y(M \ 7) = 0. Furthermore, m/n € N=*M is a unit if
and only if m € 1 (N"1M)*).

PRrOOF. For (i) note that if a € N N a then a/1 is a unit. Conversely, if
1/1 =a/n € N~'a then there exists n’ € N with nn’ = an’ € NNa.

In (ii) let a/n € S. Then 1y(a) = na/n € S and thus a € 15" (S) and a/n €
N1 (S). Conversely, if a € 15! (S) then a/n = (1/n)iy(a) € S.

In (iii) note that if b is prime, then so is 2 (b) by Proposition Now, let
p be a prime ideal of M which does not intersect N. Then, whenever (a/k)(b/n)
lies in N~!p there exist ¢ € p and | € N with (a/k)(b/n) = ¢/l and hence there
exists h € N with (hl)(ab) = hknc € p which implies ab € p. Now, we may assume
that a € p and deduce a/k € N~1p. Thus, N~ !p is a prime ideal.

Next, we show that p = 1y'(N~'p). Let a € M such that there exist b € b
and n € N with a/1 = b/n. Then there exists k € N with (kn)a = kb € p and we
deduce a € p.

In (iv) for well-definedness we consider a face 7 with N C 7. For m/n,m//n’ €
N=IM with mm//nn’ =v/k € N~17 for v € 7 and k € N there exists [ € N with
lkmm' = Inn’v € 7 and we deduce m,m’ € 7. a

DEFINITION 1.1.4.11. For a prime ideal p of a monoid/F;-algebra M the local-
ization My := (M \ p)~'M is called the localization at p.

REMARK 1.1.4.12. By Proposition[[.1.4.10] the height of a prime ideal p is equal
to the Krull dimension of the localization at p.

REMARK 1.1.4.13. Consider an element f of a monoid/F;-algebra M. The
principal face 7 generated by f is the preimage of (Mj)* under the localization
map 15: M — My. Here, My is the localization by f from Construction
In other words, 7 is the set of ¢ € M for which there exist m,n > 0 and h € M
such that f™gh = f*tm.

DEFINITION 1.1.4.14. Following [15] we call a morphism ¢ : M — M’ of
monoids/Fi-algebras local if ¢~1(M'*) = M* holds.

REMARK 1.1.4.15. If ¢ : M — M’ is a morphism of monoids/F;-algebras, then
for N := ¢~1(M’*) the induced morphism N~1M — M’ is local.

DEFINITION 1.1.4.16. The radical of an ideal a of a monoid/Fy-algebra M is its
saturation v/a in M. If a = y/a then a is called radical.

PROPOSITION 1.1.4.17. Let a and b be ideals of a monoid/F1-algebra M. Then
the following hold:
(i) Every intersection of prime ideals is radical.
(i) v/a is the intersection over all prime ideals containing a.
(iii) We have vVab =+vanb=vanvb
(iv) For a morphism ¢: N — M we have ¢~ 1(y/a) = /¢~ 1(a).

PRrROOF. In (ii) let r € M and set S := {r"},>¢. If S intersects a non-trivially
than every prime ideal which contains a also contains 7. If SNa is empty then S™'a
is proper. Then 15" (S™'M \ (S~'M)*) contains a but not 7 because it intersects S
trivially.

For (iii) we calculate vanb C y/an Vb = Vab C Vanb using Proposi-
tion[[.1.4.6] Lastly, f € N satisfies ¢(f) € v/a if and only if there exists n € N with
&(f") = ¢(f)™ € a which holds if and only if f* € ¢~ (a). O
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1.2. divisibility theory of monoids and F;-algebras

In this section, we develop key concepts from divisibility theory of monoids
(and F;-algebras), including divisor (class) monoids and the Krull property. As
remarked in [9], this works analogously to the case of rings. Standard references for
the latter include [16], [20].

1.2.1. Cancellation and integrality.

DEFINITION 1.2.1.1. An F;-algebra M is said to have no zero divisors or to be
zero divisor free (ZDF) if M \ {Opr} is a submonoid. M is integral if M\ {0} is a
cancellative submonoid.

DEFINITION 1.2.1.2. A monoid/F;-algebra M is simple if it has only one proper
ideal.

REMARK 1.2.1.3. A monoid/F;-algebra M is simple if and only if each (non-
zero) element is invertible.

DEFINITION 1.2.1.4. For a cancellative monoid/integral Fy-algebra M the quo-
tient group/Fi-algebra is the localization Q(M) by all (non-zero) elements of M.

DEFINITION 1.2.1.5. A cancellative monoid resp. integral Fi-algebra M is called
normal, if it is saturated in Q(M).

REMARK 1.2.1.6. Let ¢: M — N be a homomorphism of F;-algebras.

(i) Assume that ¢=1(0) = 0. An element is a zero divisor of M if and only if
its image is a zero divisor of N. Consequently, if N has no zero divisors,
then neither has M. The converse holds if N = N*¢(M).

(ii) If M is simple then ¢~1(0) = 0, because images of units are units. More-
over, if N = N*¢(M) then N is simple.

1.2.2. Factoriality. In addition to the canonical characterizations of factorial-
ity in terms of freeness resp. generation by prime elements we discuss its behaviour
under pseudo-faces and localization. Throughout, all monoids (and F;-algebras) are
abelian. Recall that two elements a, b of a monoid M are associated if aM™* = bM*.

DEFINITION 1.2.2.1. An (non-zero) non-unit p in a monoid/F;-algebra M is
(i) irreducible, if p = ab with a,b € M implies a € M* or b € M*,
(ii) prime, if plab with a,b € M implies p|a or plb.

REMARK 1.2.2.2. An irreducible element that is divided by a prime element is
associated to that element.

REMARK 1.2.2.3. In cancellative monoids resp. integral F;-algebras, prime el-
ements are irreducible. Indeed, if p € M is prime and p = ab then we may assume
a = pc. Thus, we have p = pcb and hence ¢b = 1 by the cancellation property.

The coproduct of a family M; of Fi-algebras is the coproduct (i.e. the direct
sum) of the underlying monoids modulo the equivalence relation generated by all
Ons; ~ Opr;- An element m = [(m;);e1] is non-zero if and only if all m; are non-zero,
in which case m; is called the i-th component of m.

PROPOSITION 1.2.2.4. Let M = [];.; M; be the coproduct of a family of com-
mutative monoids resp. Fyi-algebras. Consider an (non-zero) element m with com-
ponents m;,i € I. Then the following hold:

(i) m € M is a unit if and only if all m; € M; are units,
(ii) m is a zero divisor of the Fy-algebra M if and only if one m;, is a zero
divisor of M;,,
(iii) M is cancellative/integral if and only if each M; is cancellative/integral,
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(iv) m € M is irreducible/prime if and only if one m;, is irreducible/prime
and all m; for i # iy are units.

PrOOF. In (i) if m is a unit then there exists w € M with 1 = mw which
means its components w; satisfy 1y, = m;w; for every i. Conversely, if all m; are
units then let J be the finite set where m; # 1, and define w; := m;l forie J
and w; = 1y, for all other ¢. The element w with components w; then satisfies
mw = 1.

In (ii) suppose that m is a zero divisor, i.e. there exists a non-zero w with
components w; such that mw = 0py. Then m;,w;, = 0;, holds for some iy3. Con-
versely, if there exist ig € I and a non-zero w;, € M;, then the element w whose
ip-component is w;, and whose other components are 1 satisfies mw = 0.

For (iii) let M be cancellative/integral. For every 4, if a;b; = a;c¢; holds for
(non-zero) elements of M; then the elements a, b, ¢ € M with i-th component a;, b;
and ¢; respectively and other components 1, satisfy ab = ac which implies b = ¢,
i.e. b; = ¢;. Conversely, let every M; be cancellative/integral and let ab = ac hold
with (non-zero) elements of M. Then the respective components satisfy a;b; = a;¢;
and hence b; = ¢; holds for all ¢ meaning b = c.

In (iv) let m € M be irreducible. Then m is no unit, hence there exists ig such
that m;, is no unit. We claim that all other m,; are units. Indeed, consider i # iy
and let m’ be the element which differs from m only in having i-th component 1,
and let m” be the element whose i-th component is m; and whose other components
are 1. Then by (i) m = m/m’ implies that m” is a unit because m’ is no unit. Thus,
m; is a unit. If m,;, = a;,b;, then the elements a,b € M with ¢p-th component a;,
resp. b;, and 1, in all other components satisfy m = ab. Thus, a or b is a unit
which means that a;, or b;, is a unit. Conversely, suppose the io-th component m;,
of m is irreducible and all other components are units. If m = ab then a;b; is a unit
for all ¢ # i, and irreducibility of m;, = a;,b;, implies that a;, or b;, is a unit, i.e.
a or b is a unit.

Now, suppose that m € M is prime. Since m is no unit there exists ig € [
such that the ip-component m;, is no unit. We claim that all other m; are units.
Indeed, consider ¢ # ig and let m’ be the element which differs from m only in
having ¢-th component 1, and let m” be the element whose i-th component is m;
and whose other components are 1. m does not divide m” because m;, does not
divide 1. Hence m divides m/, i.e. there exists an element w € M with mw = m/
and for the i-th components we have m;w; = 1. If m;,¢;, = a;,b;, in M;, then let
a be the element whose 7p-th component is a;, and whose other components a; are
m;, and let b, c be the elements whose io-th components are b;, resp. c;, and whose
other components are 1. These elements then satisfy mc = ab. We may assume
m|a and deduce m;, |a;,. Conversely, suppose that m has ip-th component m;, with
a prime of M;, and all other components are units m|ab implies m;,|a;,b;, and we
may assume m;,|a;,. By invertibility we have m;|a; for all other ¢ and conclude
that m divides a. (Il

PROPOSITION 1.2.2.5. Let M be a monoid/F1-algebra and N C M* a subgroup.
Then
(i) alb in M if and only ifalb € M/N,
(i) (M/M*)* = {T},
(iii) M is cancellative/integral if and only if M/N is cancellative/integral,
(iv) p is prime in M if and only if  is prime in M/N,
(v)
PrOOF. For (i) note that ac = b implies @c = b and thus @b whenever alb.
For the converse, suppose that @|b which means there exist ¢ € M with @ = b.

v) p is irreducible in M if and only if D is irreducible in M/N.
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Then there exists a d € N with acd = b and hence alb. Assertions (ii) and (iv) are
consequences of (i).

For (v) let p be irreducible in M. Then 7 is no unit and for a,b € M with
P = ab there exists u € N with p = (ua)b. Then either (ua) or b is a unit and hence
wa = a or b is a unit. Conversely, let p be irreducible. Again, p does not divide 1
because p does not divide 1. For a,b € M with p = ab we have p = ab and which
implies @|T or b|T, i.e. a|l or b|1. |

DEFINITION 1.2.2.6. A cancellative monoid resp. integral F1-algebra is factorial
if every (non-zero) non-unit is a product of primes.

EXAMPLE 1.2.2.7. Let I any index set and let M := @, .; No. Then M* = {0}
and the primes of M are the precisely the standard basis elements. By construction,
M is factorial.

PROPOSITION 1.2.2.8. For a cancellative monoid M the following are equivalent:
(i) M is factorial,
(ii) the (No,+,)-module M has a decomposition M = M* & P
a family of pairwise non-associated primes p; € M,
(i) M/M* is a free (No,+,-)-module.

ier Nop; with

PROOF. Let M be factorial. Then M/M* is generated by its primes, i.e. by
the classes of the primes of M. We show that every element @ € M/M* is a
unique product of primes. Let pi*! - pg*¢ = qi'* - - - 5! with primes p; and q; and
ki,l; € Ng. We may assume that all prime factors occuring on both sides have
already been cancelled. Then both sides must be 1. Otherwise, we had k; > 1
for some 4 and consequently p; must divide some g; with {; > 1 which means that
Pi = q; - a contradiction to our assumption. Thus, M/M* is in particular free.

Now, suppose that (iii) holds and let P be a system of representatives of the
primes of M/M*. Since M/M* is free, the primes of M/M* form a basis. Indeed,
let gi,i € I be a No-basis of M/M*. If g;|ab then there exist k;,l;,t; € Ng for j € I
such that @ =[], 3", b = [1;c, @ and with ¢ = [, g;* we have

a|[@" =ge=ab=[[g"*"
Jjel jeJ

which implies k; + 1= l; +t;. Hence [; or t; must be at least 1 which means
that g; divides @ or b. Conversely, any prime is a member of the basis, because if
7=11 jes @G is prime then it divides one g; which implies § = g;.

We now claim that every a € M is a unique product qu cpP"? with only
finitely many of the n, > 0 being non-zero. Indeed, if @ = Hpe pP"* then there
exists u € M* with a =u HpeP p"». For uniqueness, note that if

vakP:azqu”P
peP pEP
with v € M* then Hpepﬁkp = Hpepﬁnp which implies k, = n,, for all p € P. Then
cancellation gives v = w. This establishes (ii). The implication from (ii) to (i) is
obvious. O

DEFINITION 1.2.2.9. A submonoid N of a monoid M is a pseudo-face if whenever
a,b € M satisfy ab € N and a € N then also b € N.

PropPOSITION 1.2.2.10. Let N C M be a submonoid. If Nis a pseudo-face then
in(N) = Q(N) Nay (M) holds in N~ M. If the localization map 15: M — N=tM
is injective then the converse holds.
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ProoOF. If N is a pseudo-face and a,b € N and ¢ € M satisfy a/b = ¢/1 then
there exists s € N with as = (bs)c € N and thus ¢ € N. If for the converse we
consider ab € N and a € N then b/1 = ab/a € Q(N) Ny (M) =1y (N) and hence
be N. O

REMARK 1.2.2.11. Preimages of pseudo-faces under homomorphisms are pseudo-
faces.

ExaMPLE 1.2.2.12. Subgroups of groups are pseudo-faces.

Primality, irreducibility and thus also factoriality are not well-behaved under
inclusions of submonoids but behave better under inclusions of (pseudo-)faces:

PROPOSITION 1.2.2.13. Let N be a submonoid of a monoid/F1-algebra M such
that N C M is a pseudo-face of M and let s € N. Then the following hold:

(i) N*=M*NN.

(ii) If s is irreducible in M, then it is also irreducible in N. If NM™* is a face
of M, then the converse statement also holds.

(iii) If s is prime in M, then it is also prime in N. If NM* = M then the
converse also holds.

(iv) If NM* is a face and M is factorial, then N is factorial, too, and s € N
is prime in N if and only if it is prime in M. If NM* = M and N is
factorial then M is factorial, too.

(v) If N maps onto M/M*, then N is factorial if and only if M is factorial.

PRrROOF. For assertion (i), consider s € M* N N. Then there exists t € M with
1 = st. Since 1 € N we obtain ¢t € N from the pseudo-face property and s € N*.

For (ii), let s = ab with a,b € N. Then we may assume that a € M*. Thus
a,aa"t =1 € M*, soa~! € N by the pseudo-face property. If N is a face, consider
a,b € M with s = ab. By the face property, we have a,b € N and may assume
a € N*, in particular a € M*.

For (iii), let a,b € N with s|ab in N. By primality we may assume that s|a in
M, i.e. there exists t € M with st = a. By the pseudo-face property, t € N, so s|a
in N. Now suppose that NM* = M and s is prime in N. If s|ab with a,b € M then
there exist u,v € M* with ua,vb € N and we have s|(ua)(vbd) in M, i.e st = uavb
with some t € M. Since s,st € N the pseudo-face property of N implies ¢t € N.
Thus, primality in N implies s|ua or s|vb in N and hence s|a or s|b in M.

In (iv) consider a (non-zero) s’ € N\ N*. Then s’ = p; - - p, with p; prime in
M. By the face property, the p; = piu; holds with p, € N and u; € M*, and by
(ii) each p} is prime in N. Thus, s’ = (uj*---u;,')p} - - - p’, holds and the pseudo-
face property yields ufl ~-uyl € N. If & is prime in N then it is in particular
irreducible in N and hence s’ = p; for some 1.

Now suppose that NM*M and N is factorial and let s’ € M be a (non-zero)
non-unit. Let ¢ € M* with ts’ € N. Then we have ts’ = p;y - - - pg with primes p;
of N which are also prime in M by (iii). Thus, s’ = (¢p1)p2---paq is a product of
primes.

For (v), note that (i) implies N/N* = M/M*, so Proposition gives the
assertion. O

We have seen that faces of factorial monoids are factorial. The following is a
partial converse.

ProproSITION 1.2.2.14. Let M be a cancellative monoid and let N C M be a
submonoid that is generated by M™ and a set of primes of M. Then N is a face.

PROOF. Let a,b € M with ab € N. Then there exist elements py,...,pq € N
which are pairwise non-associated primes of M, natural numbers kq,...,kq and a
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unit u € M* such that ab = up’f1 e psd. By primality, each p; divides at least one
of the elements a and b. Since the p; are non-associated each p; can occur at most
k; times as a factor of a resp. b. Thus, there exist I;,t; € Ny and elements v, w € M
with a = vplf -~-pild and b = wptl1 ~--pg"' such that the p; divide neither v nor w.

Then

upllﬁ . .p/;d — Uwpl11+t1 . .pild-ﬁ—ttd

implies k; > [; + t; and thus

upllﬁfll*tl . _pgd*ld*td — ow

and since none of the p; divide vw we deduce k; = [; +t; and v = vw. Hence v and
w are units and we obtain a,b € N. O

LEMMA 1.2.2.15. Let A be a 1-noetherian monoid/Fi-algebra. Then every non-
zero non-unit s a product of irreducible elements.

PROOF. Suppose that the set M of all (non-zero) principal proper ideals (a)
generated by elements a € A which are no products of irreducible elements is non-
empty. Then, M by l-noetherianity has a maximal element (a’) whose generator
a’ is in particular not irreducible. So there are s,t € A\ A* with o’ = bc and
(") C (b), (b) are proper inclusions. Thus, by maximality of (a’) the elements b and
c are products of irreducible elements. But then, so is a’ - a contradiction. O

By a principal ideal monoid /F;-algebra we mean a monoid resp. Fi-algebra in
which each ideal is principal.

PROPOSITION 1.2.2.16. Integral principal ideal monoids/F1-algebras are facto-
rial.

Proor. For a principal ideal monoid/F;-algebra A Lemma reduces
the problem to showing that every irreducible p € A is prime. By definition, (p)
is maximal among all the principal ideals - so in our case among all ideals. Thus,
A/(p) is simple and hence integral. O

1.2.3. The divisor monoid. In this section, we consider divisors of a multi-
plicative cancellative abelian monoid resp. integral Fi-algebra M, i.e. intersections
of submodules M f < Q(M). These form a monoid Div(M) in terms of which we
later characterize complete integral closedness (Section 7 the Krull property

(Section [[.2.5)) and factoriality (Section [[.2.6]).

DEFINITION 1.2.3.1. Principal M-submodules of Q(M) are called principal di-
visors. An M-submodule of Q(M) is called fractional or a fractional ideal if it is
non-empty and is contained in a principal divisor.

REMARK 1.2.3.2. For non-empty /-zero submodules a, b <p; Q(M) the following
hold:

(i) the localization of a by (the non-zero elements of) M is Q(M), because
for a,b € M and f/g € a we have af = (ag)(f/g) € a and hence a/b =
(1/60)(af) € (M)a.

(ii) aN b is non-empty/-zero, because it contains (a N M)(b N M).

(i) If a € M(u/v) and b C M(x/y) are fractional then ab C M (uz/vy) and
aUb C M(1/vy) are also fractional.

CONSTRUCTION 1.2.3.3. A divisoris a non-zero/-empty intersection over a (non-
empty) family of principal divisors. For each fractional ideal a the intersection div(a)
over all principal divisors containing a is a divisor. The set Div(M) of divisors
endowed with the operation sending D, D’ € Div(M) to D + D’ := div(DD') is a
monoid with neutral element 0p;,(ar) := M. Setting D < D" if and only if D O D’



22 I. Fi-ALGEBRAS, MONOIDS AND THEIR DIVISIBILITY THEORY

turns Div(M) into a partially ordered monoid, called the divisor monoid of M. It
comes with the divisor homomorphism

div: Q(M)* — Div(M), fr—div(f):=div(Mf)=Mf
whose image PDiv(M) is the subgroup of principal divisors. The factor monoid
Cl(M) = Div(M)/PDiv(M) is the divisor class monoid of M.

REMARK 1.2.3.4. For an integral Fy-algebra M set N := M \ {0ps}. Then we
have Q(M)* = Q(N) and there is a bijection

{M-submodules of Q(M)} «— {N-submodules of Q(N)}
ar—a\ {0}
bU{0} b
which respects intersections, products, principal divisors and divisors, in particular
it restricts to an isomorphism Div(M) — Div(N).

ExampLE 1.2.3.5. Every ideal of Ny is of the form a + Ny with a € Ny and thus
every fractional ideal, in particular every divisor, is of the form a + Ny with a € Z.
Therefore the map

div: Z=Q(Ny) — Div(Ny), a+—a+ Ny
is an isomorphism. In particular, C1(Np) = 0.

ProproOSITION 1.2.3.6. Let N C M™* be a subgroup of a cancellative monoid
M. Then the canonical homomorphism m: Q(M) — Q(M/N) = Q(M)/N satisfies
7 Y (M/N) = M and induces an isomorphism of Fy-algebras

{M -submodules of Q(M)} — {(M/N)-submodules of Q(M/N)}, X r— 7(X)

which respects intersections, unions, products and quotients. It restricts to an iso-
morphism of the monoids of (principal) divisors and hence induces an isomorphism
of the divisors class monoids.

PRrROOF. It suffices to observe that every M-submodule X of Q(M) is w-saturated
because whenever m(z) = w(z’) holds with 2’ € X we have x = ua’ € X with
some u € N. In particular, 7= *((M/N)fN) = 7= *(r(Mf)) = Mf holds for
feQM). O

REMARK 1.2.3.7. A divisor D = (;c; M f; where f; € Q(M) is equal to the in-
tersection D’ of all principal divisors M f containing D. Indeed, D’ is an intersection
of supersets of D, and D is a subintersection D’.

REMARK 1.2.3.8. For a cancellative monoid M the following hold:
(i) For each D € Div(M) we have

D={feQM)|MfcD}={fecQM)]|div(f) > D}
= div™ Y (Div(M)>p),

in particular M = div™ " (Div(M)so),

(ii) We have ker(div) = M* because f € M* if and only if M f = M,

(i) We have Div(M) = Div(M)>o+PDiv(M) because for D € Div(M) there
exists f € Q(M) with D C M f, i.e. div(f~!)+ D > 0.

ProprosSITION 1.2.3.9. For a cancellative monoid M, a fractional ideal a and a
set S :={D;li € I} C Div(M) the following hold:
(i) S has a supremum if and only if it has an upper bound, which holds if and
only if it has an upper bound which is a principal divisor. This holds if and
only if (; D; is non-empty, e.g. if I is finite, and then sup; D; = (), D;.
In particular, div(a) is the supremum of all divisors (resp. all principal
divisors) containing a.
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(ii) S has an infimum if and only if it has a lower bound, which holds if and
only if it has a lower bound which is a principal divisor, i.e. if \J, D; is
fractional, e.g. if I is finite. In that case we have inf; D; = div({J, D;).
In particular, the infimum of all divisors (resp. all principal divisors)
contained in a is div(a).

PRrROOF. In (i) denote by D’ the intersection over all D;. If D’ is non-empty
then it is a divisor and since it is contained in every D; it is an upper bound of
{D;|i € I}. Each further upper bound E is also contained in every D; and hence is
a subset of D', ie. E> D’.

For the supplement let D’ is the intersection over all divisors containing a. Then
D’ C div(a) holds. Conversely, as an intersection of principal divisors containing a,
D’ is a subintersection of div(a) and thus contains div(a).

For (ii) let a be the union over {D;;i € I'} and set E := div(a). By definition, E
is a lower bound of the set {D;;i € I'}. If E' € Div(M) is greater or equal to all D;
then it is contained in all of them set-theoretically. E’ equals the intersection over
all principal divisors containing E’ and is thus a sub-intersection of E and hence
greater or equal to F. (|

All claims from the construction of Div(M) are proven in the remainder of
the section. In particular, Div(M) is a partially ordered monoid due to Proposi-

tion [[.2.3.14] For brevity denote Q(M) by K.
DEFINITION 1.2.3.10. If a, b are M-submodules of K, then their quotient is

[a:b]:={we K |wbCa}.

REMARK 1.2.3.11. [a: b] is again a M-submodule, since wb C a implies mwb C
wb C aforallme M.

CONSTRUCTION 1.2.3.12. For the cancellative monoid/integral Fy-algebra M
the set F'(M) of non-empty/-zero fractional ideals of M forms a commutative par-
tially ordered monoid, the operation being the product of submodules, the neutral
element being M, and the order being the reverse inclusion order.

REMARK 1.2.3.13. For any submodule a C K over the monoid/F;-algebra M
the following hold:

(i) ais fractional if and only if [M : a] is non-empty/-zero.

(ii) [M : [M : a]] is the intersection of all principal divisors containing a.
Indeed, for a € Mw we have [M : [M :a]] C [M : [M : Mw] = Muw.
Conversely, if v lies in all principal divisors containing a, then for every
u € [M : a] we have v € Mu~! which shows v € [M : [M : a]].

ProrosiTioN 1.2.3.14. The following hold:

(i) If a,b,¢ are M-submodules of K such that b C ¢ then [a:b] D [a: ¢].
(i) If a,b are M-submodules of K, then [a: [a: [a: b]]] = [a: b].
iii) If a,b,c are M-submodules of K, then [a: bc] =[[a:b]: .
iv) The relation a ~ b if [M : a] = [M : b] defines a congruence on F(M).
(v) The map ¢: a — div(a) induces an isomorphism F(M)/ ~ — Div(M) of
partially ordered monoids.

PrROOF. For (i) note that any w € [a : ¢] satisfies wb C we C a, i.e. w € [a: b].
For (ii), we first observe that b C [a : [a : b]]. Indeed, for every b € b we
obtain b[a : b] C a because bc € a for all ¢ € [a : b]. Now, consider w € K with
wla: [a:b]] C [a]. Then
wb Cwla: [a:b]] Cla].
Conversely, if w € [a : b], then wla : [a : b]] C a, because we € aforallc € [a: [a: b]].



24 I. Fi-ALGEBRAS, MONOIDS AND THEIR DIVISIBILITY THEORY

For (iii), observe that if wbc C a, then web C a, i.e. we € [a: b] for all c € ¢
and hence we C [a: b], i.e. w € [[a: b] : ¢]. Conversely, if w € [[a: b] : ¢], then
we € [a: b], i.e. web € aforall ¢ €c¢,beband hence wbe C a, i.e. w € [a: bel.

In (iv) first note that the relation is an equivalence relation because it is defined
in terms of an equality which is symmetric and transitive in its arguments. Secondly,
if a ~ b and ¢ ~ 0 then we have

[M:adg=[M:a]:c]=[M:b]:¢]=[M:c:b]=[M:0]:b] =[M : b0

For (v) first note that due to (iv) we always have ab ~ div(a)div(b) and hence
div(ab) = div(div(a)div(b)) = div(a) + div(b). Thus, ¢ is an isomorphism of mag-
mas, i.e. of sets with binary operation. Consequently, the operation of Div(M)
inherits associativity and commutativity. Clearly, M is neutral in both F(M) and
Div(M). By (i) ¢ also preserves the partial order. The inverse of ¢ is the composi-
tion of the inclusion Div(M) C F(M) with the quotient map F(M) — F(M)/ ~,
both of which preserve the respective partial orders. Thus, ¢ is an isomorphism of
partially ordered monoids. O

1.2.4. Complete integral closure and valuations. Here, we treat complete
integral closures and valuations, both of which will be relevant to the discussion of
the Krull property in the next section.

DEFINITION 1.2.4.1. Let M C N be an inclusion of integral F;-algebras resp.
cancellative monoids. An element f € N is almost integral over M, if there exists
g € M such that gf* € M for all £ > 0. The set of almost integral elements of N
is denoted CInt(M, N).

REMARK 1.2.4.2. CInt(M, N) is a submonoid resp. Fi-subalgebra of N. If M
is a pseudo-face of N then CInt(M,N) = M.

DEFINITION 1.2.4.3. A cancellative monoid resp. integral [Fy-algebra M is com-
pletely integrally closed (CIC) if M = CInt(M, Q(M)).

REMARK 1.2.4.4. If M is CIC and N is a pseudo-face then N is CIC due to
Proposition [.2:2.10]

ProprosITION 1.2.4.5. Let M be an integral Fy -algebra resp. cancellative monoid.
Then the saturation of M in Q(M) is contained in CInt(M,Q(M)). In particular,
complete integral closedness implies normality. If M is noetherian then the converse
inclusion also holds.

ProoOF. Consider f = g/h with (non-zero) g,h € M. If f¥ = a € M holds for
some k € N then we have h*~1f™ ¢ M for m = 1,...,k — 1. For m > k we have
hE=1fm = pk=1fm=kq ¢ M by induction.

For the converse, suppose that bf™ € M holds for some b € M and all m € N.
The chain of ideals a,, := (bf*|1 < k < m) becomes stationary and hence there
exists n € N with bf"*! = cbfk for some ¢ € M and 1 < k£ < n and we conclude
frti-k=ce M. O

ProroSITION 1.2.4.6. A cancellative monoid resp. integral Fy-algebra M is
CIC if and only if Div(M) is a group, and in that case the inverse of a divisor D
is [M : D].

Proor. If M is CIC consider D € Div(M) and set D’ := [M : D]. Since
DD’ C M every principal divisor containing M also contains DD’. Conversely, let
DD’ C Mh and set f := h='. Then fDD’ C M and thus fD C [M : D') = D
which gives f*D C D for each n > 0 by induction. Now let d € D and w € Q(M)
with D C Mw. Then g:=w~'d € M and gf" € w= "D Cw~ 1D C M holds for
each n > 0, hence f € M by assumption and thus M C Mh.
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For the converse suppose that Div(M) is a group and let f € Q(M) and g € M
such that gf™ € M for all n > 0. Then a := M{f";n > 0} C Mg~! is fractional
and since (M f)a C a and we obtain div(f) + div(a) > div(a) and thus f € M. O

REMARK 1.2.4.7. Let M be CIC. Then the following hold:

(i) For every D € Div(M) we have Div(M)>p = Div(M)>o + D and hence
D = div ' (Div(M)sq + D).
(ii) If D € Div(M)>¢ is a prime element then D <;; M is a prime ideal.

ProrosiTION 1.2.4.8. Let M;,i € I be CIC monoids resp. Fi-algebras with
Q(M;) = K. Then M := (), M; is CIC.

PrOOF. Let f € K be almost integral over M. Then there exists g € K such
that gf™ € M for all n > 0. For every ¢ we conclude that f € M; and thus
feM. O

DEFINITION 1.2.4.9. A cancellative monoid resp. integral Fi-algebra M is a
valuation monoid/F1-algebra if for every pair of (non-zero) elements v, w € M we
have v/w € M or w/v € M in Q(M).

A (normed) valuation on a simple monoid/F;-algebra K is a (surjective) ho-
momorphism v: K* — G to a totally ordered group G whose group operation by
convention is written additively. The associated valuation monoid/F;-algebra K,
is v71(G>0) resp. v H(Gxo) U {0}.

REMARK 1.2.4.10. If M is a valuation monoid resp. Fi-algebra, then the canon-
ical map v: Q(M)* — Q(M)*/M* is a normed valuation and we have M = Q(M),.
If v: K* — G is a valuation then K, is a valuation monoid resp. Fj-algebra with
Q(K,) = K and K} = ker(v). The induced map Q(K,)*/K} — G is an isomor-
phism if and only if v is normed.

REMARK 1.2.4.11. Since PDiv(M) = Q(M)/M* holds, a cancellative monoid
resp. integral Fi-algebra M is a valuation monoid resp. Fi-algebra if and only if
PDiv(M) is totally ordered.

REMARK 1.2.4.12. Let K be a simple monoid/F;-algebra, let v: K* — G be
a valuation and let M C K, be a submonoid/-Fy-algebra. Then Gso C G>¢ is a
maximal ideal and hence the intersection of v (Gxp) resp. v™1(Gso) U {0} with
M 1is prime in M.

DEFINITION 1.2.4.13. A valuation monoid/F;-algebra M is discrete if PDiv(M)
is isomorphic to Z as an ordered group. A valuation v to G = Z is a discrete
valuation.

REMARK 1.2.4.14. M is a discrete valuation monoid resp. Fj-algebra if and only
if M/M* is isomorphic to (N, +) resp. the (additive) F;-algebra (No, +)U{oc}. In
particular, such M is factorial and since Div(M) = Z, M is CIC. Its prime elements,
called uniformizers, are pairwise associated to each other. They generate the only
non-empty prime ideal which consequently is maximal.

REMARK 1.2.4.15. We have seen that Div(Ny) = PDiv(Ny) = Z and since for
every discrete valuation monoid M we have Div(M) = Div(M/M*) = Div(Ny) = Z,
we obtain that M is in particular CIC.

PROPOSITION 1.2.4.16. Let M be a discrete valuation monoid. Then any further
monoid M C M' C Q(M) equals M.

PrROOF. We have Ny = M/M* C M'/M* C Q(M)/M* = Q(M/M*) = Z.
Since Ny is maximal among the proper submonoids of Z the assertion follows. O
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DEFINITION 1.2.4.17. Let M be a cancellative monoid resp. integral F;-algebra
and let v be a discrete valuation on Q(M) with M C Q(M),. For each fractional
ideal a we define v(a) as the maximum of all values v(f) where f ranges over all
(non-zero) elements of [M : a].

REMARK 1.2.4.18. v(a) is well-defined because for each a € a, v(a) is an upper
bound of the set {v(f) | f € [M : a]}. Moreover, we have v(a) = v(div(a)). If b is
a fractional ideal containing a then v(b) > v(a).

1.2.5. The Krull property and its characterization. Monoids and F;-
algebras of Krull type and their prime divisors, i.e. the basis elements of their
divisor groups, generalize factorial monoids resp. Fi-algebras and also form the
basis for the geometric theory of Weil divisors and ultimately, Cox sheaves. We
characterize them in terms of their divisor monoids. Moreover, we show that in the
presence of noetherianity, e.g. finite generation, the Krull property is equivalent to
normality (i.e. saturatedness in the quotient group resp. algebra).

DEFINITION 1.2.5.1. A cancellative monoid resp. an integral Fi-algebra M
is said to be a Krull monoid resp. Fi-algebra, to be of Krull type or to possess
the Krull property if there exist a simple monoid/F;-algebra K containing M as a
submonoid/-F;-algebra and a family of discrete valuations {v;};cr on K such that

(1) M = ﬂi K’/i’
(ii) for every (non-zero) f € M the number of ¢ € I with v;(f) # 0 is finite.
The family {v;};cr is then said to define M in K.

REMARK 1.2.5.2. An Fj-algebra M is of Krull type if and only if M \ 0 is.

ExaMPLE 1.2.5.3. If M is a simple monoid/F;-algebra then Div(M) = 0 and
M is of Krull type, defined by the empty family.

REMARK 1.2.5.4. For a submonoid/F;-subalgebra M of Krull type in K defined
by {v;}ier the following hold:
(i) the restricted family {v;|q(ar) }ier defines M in Q(M),

(ii) we have M* =ker(}_; v;) = [, ker(v;) because ker(} _, v;) is a subgroup

of M, and conversely ). Vi M — @, Ny maps units to units,
(iii) the localization N~'*M by a submonoid N C M is of Krull type and
defined in K by those v; with N C ker(v;). Indeed, if v;(f) > 0 for all
i € I with N C ker(v;) then for a product s over suitable s; € N \ ker(v;),
where i is such that v;(f) < 0, we have sf € M and f = sf/s € N"1 M.

COROLLARY 1.2.5.5. For a family M;,i € I of monoids/F1-algebras of Krull
type defined in K by {v; j}jes, such that each f € (), M; is a unit in all but finitely
many M; the intersection M := (", M; is the monoid/F:-algebra of Krull type de-
fined by {v; j}ier jeu,-

The Krull property may be characterized in terms of divisor monoids as follows:

ProroSITION 1.2.5.6. A cancellative monoid resp. integral Fi-algebra M is of
Krull type if and only if Div(M) is a group whose minimal positive elements form
a basis.

By positive elements of a partially ordered monoid we always mean elements
which are greater than and different from the neutral element. During the remainder
of the section we prove the above. We begin by reformulating the condition on
Div(M).

LEMMA 1.2.5.7. In a partially ordered group G with elements a,b,c,d the fol-
lowing hold:

(i) If a is the infimum of {c,d} then a + b is the infimum of {b+ c¢,b+ d}.
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(ii) If ¢ € Gsg is a minimal element and a,b € Gsq then firstly inf(c,a) €
{0,¢} and secondly, if c < a+0b thenc<a orc<hb.

(i) If G is a lattice group (or a group in which each two elements have an
upper bound) then Gsqo generates G.

PROOF. In (i) note that since a < ¢ and a < d we have a + b < ¢+ b and
a+b<d+b. If eis a lower bound of b+cand b+ d, thene—b<cande—b<d
which implies e — b < a, i.e. e < a+b.

In (ii) the first statement follows from the fact that a is non-negative and the
only non-negative lower bounds of ¢ are 0 and c¢. Secondly, we observe that if
inf(c,a) = 0 then b = inf(c+b,a + ) > c.

For (iii) note that if g € G is not already positive and h is an upper bound of
{g,0}, then g = h — (h — g) where h — g > 0 and h > 0. O

PRrROPOSITION 1.2.5.8. For a partially ordered group G the following are equiv-
alent:
(i) G has a basis of positive elements, i.e. G is as a partially ordered group
isomorphic to @, ; Z for some set I,
(ii) the minimal positive elements of G form a basis,
(iil) G is a lattice group and every non-empty set of positive elements of G
has minimal elements.

PROOF. Assume that (iii) holds. Let P be the set of minimal elements of Gxg.
If the set S of positive elements which are not a linear combination of elements of
P were non-empty, it would have a minimal element g. Since g ¢ P there exists
p € P with p < g. The element g — p > 0 would then be a linear combination of
elements in P and so would ¢ = p+ (g — p). This contradiction means that S is
empty.

For linear independence consider a finite linear combination a := Zpe pApp = 0.
Let I,J C P be the subsets of those p € P with A, > 0 resp. A, < 0. Assume
that I is non-empty. Then 0 < >° 7 Aqq = >_  ; App and hence J is non-empty.
For every ¢ € I we then have ¢ < ZpeJ App and hence ¢ < p for some p € J by
Lemma [[.2.5.7- a contradiction. Therefore, I = () and in the same way J =0. O

In the injection defined below, we use the concept of valuations of fractional
ideals from Definition [[.2.4.17

PROPOSITION 1.2.5.9. Let M be a monoid/F1-algebra of Krull type defined by
{vitier in Q(M). Then there is an injection of partially ordered sets

> v Div(M) — P Z, D r— vi(D))ier
i€l icl
and the natural partial order on Div(M) is the partial order induced by @, Z.

LEMMA 1.2.5.10. Let M be a monoid/F1-algebra of Krull type defined in Q(M)
by {viticr. If a and b are fractional ideals of M, then a is contained in all principal
divisors containing b if and only if v;(a) > v;(b) for alli € I; in particular, we have

div(b) = {w € Q(M)|v;(w) > v;(b) for all i € I}.
PROOF. If a is contained in all Mw containing b then for all i € I we have
(b) = (w) < (w) = vi(a).
v;(b) Jax. vi(w) < Jnax vi(w) = v;(a)
Conversely, let >, vi(a) > >, v;(b). If b € Mw, then for all @ € a and i € I we
have v;(aw™!) > v;(a) —v;(a) > 0. Thus, aw~! € M and we conclude a C Mw. [

ProOF OF PROPOSITION [L2.5.91 Due to the above Lemma, ) . v; is injective,
and the natural partial order on Div(M) is the induced one. O
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PROPOSITION 1.2.5.11. Let M be a monoid/F1-algebra of Krull type defined by
{Vitier in Q(M), let N C M be a submonoid and let a <5 Q(M) be a submodule.
Then the following hold:

(i) For f € Q(M) we have N~ta C N~ M f if and only if there exists s € N
with a C Ms™'f, in particular a is fractional if and only if N~'a is
fractional.

(ii) If a is fractional then we have v;(N~ta) = v;(a) for each i € I with
N C ker(v;) and N=1divys(a) = divy-1(N"ta).

PROOF. In (i) suppose that N='a € N-!Mf and consider the set J C I
of those j € I such that N ¢ ker(v;) and vj(a) < v;(f). For each j € J let
sj € N\ ker(v;) with vj(a) > v;(f) — v;(s;). With s := [];.;s; we then have
a C M f/s because for each g € a and j € I we obtain v;(g) > v;(f/s).

For (ii) let f € divy-15/(N~"ta). Then there exists s; € S \ ker(v;) for each j
with v;(f) < v;(N~'a). Then the product s over suitable powers of the s; satisfies
sf € div(a) and hence f € N~1div(a). O

PROOF OF PROPOSITION PARrT I. If M is of Krull type then it is CIC
because it is an intersection of discrete valuation monoids/F;-algebras, meaning
Div(M) is a group. Since Div(M) allows an injection of partially ordered sets into
some (P, ; Z such that the natural partial order on Div(M) is the induced one,
every subset of Div(M )< has minimal elements. O

DEFINITION 1.2.5.12. Let M be an cancellative monoid resp. integral F;-algebra
whose divisor monoid is a group whose minimal positive elements form a basis. Then
this basis is denoted PB(M) (or P if no confusion can arise) and its members are
the prime divisors of M.

For each p € P denote by pry: Div(M) = ®pem Zp — 7 the projection
onto the p-th coordinate. The essential valuation associated to p is then the map
Vp := pryp o div.

REMARK 1.2.5.13. In the in the above situation, consider a fractional ideal a
and a prime divisor p € PB(M). Due to Proposition we have

vp(a) = pry(div(a)) = inf pry(div(f)) = minv, (f).
f€a f€a
The following concludes the proof of Proposition

PRropPOSITION 1.2.5.14. In the situation of Definition each v, is sur-
jective and {vy}peq(v) defines M as a monoid resp. Fi-algebra of Krull type in

Q(M).
PROOF. v, is surjective because there exists f € p with v,(f) = pry(p) = 1.
Furthermore, we have M = div™"(Div(M)sg) = N, Q(M),, and for every f € M

the principal divisor div(f) is a finite sum over the p, meaning that only finitely
many vp(f) are non-zero. O

ProrosITION 1.2.5.15. In Proposition the map ), v; is an isomorphism
if and only if {v;}; are the essential valuations.

PROOF. If {v;}icr = {¥p}peqp(ar) is the family of essential valuations then Re-
mark tells us that the map ¢: D +— (v;(D));es is a homomorphism which
maps p to the basis vector ey, i.e. an isomorphism. Conversely, if ¢ is an iso-
morphism then it restricts to a bijection of the sets P (M) and {e;};csr of minimal
positive elements. For p € P(M) with ¢(p) = e; we deduce that

vi(D) = pri(¢(D)) = pry(D) = 1v,(D)
holds for every D € Div(M). Therefore, {v;}icr = {Vp }peg(ar)- O
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By Proposition in presence of noetherianity the criterion of Proposi-
tion becomes the following.

COROLLARY 1.2.5.16. A noetherian monoid resp. Fi-algebra is of Krull type if
and only if it is normal.

1.2.6. Prime divisors and maps of divisor monoids of monoids and F;-
algebras of Krull type. Given a homomorphism ¢: M — N one may consider
the map Div(M) — Div(N) of sets which sends D to div(N¢(D)). However, this
need not be a homomorphism of semigroups. For the case that M and N are
of Krull type we define a homomorphism Div(M) — Div(N) in terms of prime
divisors. The (non-standard) results we give in Proposition on properties of
this homomorphism and the respective essential valuations are a crucial preparation
of later results on Cox sheaves and characteristic spaces.

PROPOSITION 1.2.6.1. The set of prime divisors defined in Definition
of a monoid resp. Fy-algebra M of Krull type has the following descriptions:
P(M) = {prime elements of Div(M)>o} = {q I M | q prime, ht(q) = 1}
= {q € Div(M)>¢ | q is a prime ideal of M}

REMARK 1.2.6.2. Due to Remark [[.2.4.7| each prime divisor p = M N V;l(Z>0)
of a Krull monoid M is a prime ideal. Since M \ p = M Nker(v,) and different
prime divisors do not contained one another we have

MP - m Q(M)Vq = Q(M)Vp'

qeP(M)
M\pCker(vq)

In particular, ht(p) = ht(p,) = 1.
PRrROOF OF PropPOSITION [[2.6.1] If q < M is a prime ideal of height 1, then
Remark [[:22.5.4] gives
My= (] QM),.

M\qCker(vy)

Since My # Q(M), there exists a p € P with M \ g € M Nker(ry,) = M\ p, ie.
p C q and by minimality of q¢ we deduce q =p € B C Div(M)xo.
If q € Div(M)so considered as an ideal of M is prime, then we have

q= Zlm”p(q)P = div (H pP"p(‘ﬂ) D HPPTF(CI) — H pPTp(q)’
p

p P vp(q)>0

which means that q contains some p, and minimality yields q = p € *B. |

PROPOSITION 1.2.6.3. The family of essential valuations {vy}yeq(ary of a Krull
monoid M is contained in each family of valuations defining M in Q(M).

PROOF. Let {v;}jcs be any family defining M in Q(M) and let p € PB. Then
by Remark [[.:2.5.4] we have

QM),, =M,= () QM),
M\pCker(v;)

and since M, # Q(M) this cannot be the empty intersection, which means there

exists j € J with Q(M),, € Q(M),,. Now, Proposition [[.2.4.16] gives Q(M),, =
Q(M),; and hence v, = v;. O
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REMARK 1.2.6.4. For a submonoid N of a Krull monoid M the canonical maps
restrict to a bijection between P(N~1M) and the set of those p € P(M) with
pNN = 0. For each ¢ € P(S~'M) we have Q(M),, = S™'M, = M, vy =
Q(M)”,El(q)’ meaning that v = Vo1 (q)

Consequently, each prime ideal of M is the union of the prime divisors it con-
tains.

REMARK 1.2.6.5. Let M be a Krull monoid and let p € P(M). Then there
exists f € M such that p; is principal in M. Indeed, let g/h be a uniformizer
of M, and let p1,...,p, € P(M) be those prime divisors which differ from p and
belong to the support of div(g/h). Then there exist f; € p; \ p and we have
Prfrfo = (g/hf1 f).

Next, we treat canonical homomorphisms between divisor monoids of Krull
monoids.

REMARK 1.2.6.6. Let ¢: M — N be a homomorphism between Krull monoids
and let a <p; Q(M) be a fractional ideal. Then there are only finitely many
g € P(N) with a C ¢ 1(q).

Indeed, if ¢(a) C q then div(N¢(a)) > g, because N¢(a) > q holds for every
a € a. Consequently, we have vq(div(N¢(a))) > 0 and since all but finitely many
coordinates of div(N¢(a)) are zero, the assertion follows.

CONSTRUCTION 1.2.6.7. Let ¢: M — N be a homomorphism between Krull
monoids and denote the induced map also by ¢: Q(M) — Q(N). The natural
homomorphism of divisor monoids B4 maps p € P(M) to the divisor whose g-th
coordinate is vq(Nq@(Pgy-1(q))) if Cl(Mg-1(q)) = 0 and zero otherwise. Note that
vq(Be(p)) is non-zero if and only if Cl(My-1(q)) = 0 and p C ¢~ (q).

ProprosITION 1.2.6.8. For a homomorphism ¢: M — N between Krull monoids
with canonical extension ¢': Q(M) — Q(N), prime divisors p € P(M), q € P(N)
and a fractional a <p; Q(M) the following hold:

(i) If Ci(My-1(q)) = 0 then we have

pry(Bs(div(a))) = (vq 0 ¢')(a) = vq(N¢'(div(a))) = pry(div(N¢'(div(a)))),
in particular, prqo Bpodivy = prgodivy o ¢'. Consequently, there exists
D € Div(M) with q € supp(D) if and only if $~1(q) is non-empty with
Cl(My-1(q)) = 0.
(ii) If ~1(q) = p and By(p) = q then we have vy, = vq0¢'.
(ili) If vy = vq0 ¢ then we have vy(a) = vqy(N¢'(a)).
PROOF. In (i) let P’ be the set of all p’ € supp(div(a)) with p’ C ¢~1(q). For
each p’ € P’ fix g,y € Q(M) with p;,l(q) = Mg-1(q)gp’- Then the product g over all

Vypr (a)

9y satisfies div(a)g-1(q) = My-1(q)g because we have vy (div(a)g-1(q)) = vp(9)
for all p’ € P’ by Proposition [[.2.5.11} Thus, we calculate

pry(Be(div(a)) = Y v (a)vg(¢ (g9) = v4(#'(9)) = (vq 0 &) (My-1(q)9)

b P

(Vg 0 ¢')(div(a)y-1(q)) = (vq 0 ¢')(div(a)) = (vq 0 ¢')(a)
v(¢'(9)) = vq(Ngd' (My-1(q)9)) = vq(Ng¢'(div(a)y-1(q)))

= min  ve(¢'(f)) = min ve(d'(f)) = ve(N¢'(div(a))).

fEdiv(a)qsfl(q) fediv(a)
In (ii) we calculate pr,(divn(¢'(f))) = pry(Bs(divar(f)) = pry(divas(f)). For
(iil) we calculate

vp(a) = gg;i,?u) ve(9) = heﬂ{}g}(u) vq(h) = vq(N¢/(a)).
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O

ProrosiTiON 1.2.6.9. For a morphism ¢: M — N between monoids of Krull
type and its extension ¢': Q(M) — Q(N) the following hold:

(1) By restricts to a bijection P’ := P(M) \ ker(B8y) — B(N) if and only if
there exists a defining family {v;}icr of N in Q(N) such that all v;o¢' are
pairwise different essential valuations of M. In this situation, the inverse
of (Bg) |y sends E € Div(N)>q to the ideal ¢~ (E) and E € Div(N) to
S vi(B)¢~ (v '(N)). Moreover, we have v; = Vg, (=1 (=t ()"

(i) Cl(Mg-1(q)) = 0 holds for every q € B(N) and By restricts to an injection
PB(M) — B(N) if and only if there exists a defining family {v;}ier of M
in Q(M) and an injection d: I — B(N) such that v; = vy 0 ¢’ holds for
each i € I, and M C ker(vq 0 ¢') holds for each q € P(N) \ im(d).

(ili) By restricts to a bijection P(M) — P(N) if and only if N has a defining
Jamily {pp}pepon in Q(N) such that vy = py o ¢'.

PROOF. Suppose the latter condition in (i) holds. Then the preimage of E €
Div(N)>o under ¢ is the set of f € Q(M) such that v4ee (f) > v4(E) holds for
each q € P(N) and v, (f) > 0 holds for each p € P(M) Nker(By). In particular, we
have ¢~1(q) = M N (vqo0¢’) 1 (N) € B(M) for each q € P(N), which gives the first
condition.

Since v; is non-trivial, there exists a q € P(N) which lies in a; := N nv; *(N).
Then pg = ¢~ 1(q) C ¢~ (a;) = M N (v; 0 ¢') " (N) =: p; which means p; = p; and
hence vgo ¢ =v;0¢, i.e. Vg =1;.

Suppose that in (ii) the latter condition holds. Let {v;}; be the essential valua-
tions of M. For p € P(M) we have ¢~ 1(d(p)) = (b_l(NﬁV;(;)(N)) = Mnv, (N) =
p. For ¢ € P(NV) \ im(d) we have ¢~1(q) = () which shows the first condition. O

ProPOSITION 1.2.6.10. Let ¢: M — M’ be a homomorphism between Krull
monoids and let N C M and N' C M’ be submonoids with ¢(N) C N’ and let
wiv: M — N7IM be the localization map. Then the following hold:

(i) B,y (D) = N"1D holds for each D € Div(M). In particular, the induced
map CI(M) — CI(N~tM) is surjective.
(ii) There is a commutative diagram of natural maps of divisor monoids

Div(M) % Div(M")

Buyrop
i% \ i%'
B
_—

Div(N~1M) —— " Dy (N1 M)

PRrOOF. In (i) note that since each q € P(N) satisfies CI(M,~1,)) = 0 we
obtain 8, (D) = div({1x (D)) y-1a) = N~1D using Proposition [[.2.5.11

For (ii) let g € PN’ M’) and p € P(M) with pN N = (). Then the equalities
M(ﬁ_l(l;v}(q)) = N_lMN’l(ZN/Otﬁ)(q) and p¢_1(1;11(q)) = N_lefl(zN/W)(q) give the
assertion. g

In light of the above, we will also write pry-1, instead of 3, .

REMARK 1.2.6.11. Let M;,i € I be a family of monoids/F;-algebras. Then the
coproduct M := [[, M; (for monoids, this is the direct sum) is of Krull type if and
only if all M; are. Indeed, extending the essential valuations of each M; trivially to
QM) =11, Q(M;) defines a family of valuations realizing M in Q(M) and these
are the essential valuations. Conversely, restricting a defining family of M to Q(M;)
realizes M; = M N Q(M;) as a monoid/F;-algebra of Krull type.
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Moreover, we have a bijection | |, B(M;) — PB(M) sending p € P(M;) to Mp.
The monomorphisms 3; of divisor monoids corresponding to the inclusions M; C M
fit together to an isomorphism [, Div(M;) — Div(M). Since we always have
B;(PDiv(M;)) = im(B;) N PDiv(M) the induced map [], C1(M;) — CI(M) is an
isomorphism.

PropPOSITION 1.2.6.12. Let M be a cancellative monoid which is generated by its
irreducible elements. Then each prime element p € M defines a discrete valuation
vy on Q(M) via v,(m) :=sup {k € Ng | p*|m} and v,(m/n) := vy(m) — vy(n).

PROOF. For m = ¢y - - - gq with irreducible elements ¢;, v,(m) is equal to the
number of indices for which p divides g;, i.e. is associated to g;. O

LEMMA 1.2.6.13. Let M be a monoid/F1-algebra such that each ascending chain
of principal ideals is stationary. Then M is generated by its units and irreducible
elements.

PROOF. Suppose that the set S of proper principal ideals generated by a (non-
zero) element which is no product of irreducible elements is non-empty. Then, by
assumption it has a maximal element Ma whose generator a is in particular not
irreducible. So there are non-units b, ¢ with a = bc and we have Ma C Mb and
Ma C Mc. By maximality of Ma the elements b and ¢ are products of irreducible
elements. But then, so is a - a contradiction. O

REMARK 1.2.6.14. A Krull monoid M satisfies the ascending chain for principal
ideals. Indeed, any ascending chain of principal ideals corresponds to a descending
chain of positive principal divisors. The second chain becomes stationary and hence
so does the first.

PRroOPOSITION 1.2.6.15. Let M be a cancellative monoid and let N C M be
a submonoid generated by a set of prime elements of M and units of M. Then
M is a Krull monoid if and only if M is generated by its units and irreducible
elements and N~'M is a Krull monoid. Moreover, in these cases the canonical

map CI(M) — CI(N M) is an isomorphism.

PROOF. Let P C N be a set of pairwise non-associated prime elements of
M which together with a set of units of M generate N. We show that M is
the intersection of N7'M and the Krull monoid defined by {v,},ecp. Let n =
up’lCl o -psd € N with p; € P and v € M*, and let m € M. If v,(m/n) > 0 holds
for all p € P then p;|m and inductively we obtain n|m, i.e. m/n € M.

With respect to the class groups, consider D € Div(M) such that §,, (D) =
divy-137(f) with some f € Q(M). Then each p € supp(D — divy(f)) intersects
N non-trivially and hence contains an element p € N which is prime in M. By
minimality, we have p = (p) = div(p) and thus, D € PDiv(M). O

ProroOSITION 1.2.6.16. A cancellative monoid M is factorial if and only if M
is a Krull monoid with CI(M) = 0.

Proor. If M is factorial, then the canonical map CI(M) — Cl(Q(M)) is an
isomorphism by Proposition Conversely, if M is a Krull monoid with
Cl(M) = 0 then M/M* = PDiv(M)>o = Div(M)>¢ is factorial and hence M is
factorial. 0

EXAMPLE 1.2.6.17. Let K C Z? be the subgroup generated by (1,2),(2,1).
Then M := KNN? is a Krull monoid and the divisor homomorphism is the inclusion
K — Z2. Thus, CI(M) is isomorphic to Z/3Z and hence M is not factorial. This
shows that the Approximation Theorem for Krull rings has no analogon for Krull
monoids.
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REMARK 1.2.6.18. If each ideal of a cancellative monoid resp. an integral F;-
algebra M is principal, then each fractional ideal is also principal. In particular, we
then have CI(M) = 0. If additionally, M is of Krull type, then M is factorial by
the above Proposition.

PROPOSITION 1.2.6.19. For a cancellative monoid M the following are equiva-
lent:

(i) M is a discrete valuation monoid,
(ii) Div(M) = Z,

(iii) PDiv(M) =72,

(iv) M is factorial with B(M)| = 1.

ProoF. Equivalence of (i) and (ii) is due to the criterion for Krull monoids. If
M is a discrete valuation monoid, then M/M™* = Ny is factorial with |B(M)| = 1.
Moreover, (vi) implies (iii) because by the previous Proposition M is a Krull monoid
and therefore Div(M) is generated by the unique element of PB(M), and again
by factoriality we have Div(M) = PDiv(M). If (iii) holds then div: Q(M) —
PDiv(M) = Z is a valuation and we have M = div™ ' (PDiv(M)so) = div_ ! (Z>),
i.e. M is a discrete valuation monoid. ]

1.2.7. Regular F;-algebras and the Auslander-Buchsbaum-Theorem.
The classical Auslander-Buchsbaum-Theorem states that (noetherian) regular local
rings are factorial. We show that for integral noetherian [F;-algebras the analogous
statements as well as its converse also hold. Geometrically, this is reflected in the
fact that an affine quasi-toric variety is smooth if and only if it is (globally) factorial.
Recall from Example[[[T.T.15] that in the setting of modules over F;-algebras to form
the quotient by a submodule is to contract that submodule to a single point.

REMARK 1.2.7.1. Let A be an integral Fi-algebra whose maximal ideal we
denote m := A\ A*. Then m/m? is a free A/m-module. More precisely, m/m? is the
coproduct over principal (4/m)-submodules (A/m)[v] for certain v € m \ m?, each
of which is isomorphic to A/m as an (A/m)-module.

Indeed, consider a,b € A* and v, w € m \ m?. If [a][v] = [b][v] then [a][v] # [0]
implies av = bv and cancellation gives a = b. Thus, the orbit map A/m — (A/m)[v]
is an isomorphism. Secondly, if [a][v] = [b][w] # [0] then we have v = a~'bw and
w = b~ lav which gives (A/m)[v] = (A/m)[w)].

PROPOSITION 1.2.7.2. Let A be an integral F1-algebra with mazximal ideal m. If
{vi}ier is minimal among the subsets of A which together with A* generate A as
an F1-algebra then {v;}icr is an (A/m)-basis of m/m?2.

PROOF. Due to minimality we have {v;},c; C m. Suppose v; belongs to m?,
i.e. it is the product of two elements u[],vf* and v ][, v} where u,v are units
and only a finite but non-zero number of each k; and [; are non-zero. If k; +1;
were greater than 0 we had uvv;c it Hl jvfﬁl” = 1 - a contradiction to the
minimality requirement. But then v; is a product of the other v; and elements of
A* - again in contradiction to the minimality requirement. We conclude that each
v; belongs to m \ m?. Each non-zero element of m \ m? is of the form v;u with
u € A*. Thus m\ m? = (J, A*v; and this union is disjoint due to the minimality
requirement. O

PRrROPOSITION 1.2.7.3. Let A be an integral noetherian F1-algebra with mazimal
ideal m. If the elements vy,...,v, satisfy m = Avy U...U Av, then together with
A* they generate A as an Fq-algebra.
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PrOOF. For v € m let M be the set of those principal ideals a of A for which
there exist a € a with a = Aa as well as kq,...,k, € Ny with v = cw]fl v,’i M
is non-empty since v lies in some Av;. By noetherianity M has a maximal element
b. Let a € b and ky,...,k, € Ng with b = Aa and v = avfl vﬁ" By maximality
a cannot lie in any Awv;, hence it is a unit. O

COROLLARY 1.2.7.4. For an integral noetherian F1-algebra A with mazimal ideal
m there exists a finite minimal set {v;}_; of elements who together with A* generate
A as an algebra and whose classes form a basis of m/m?.

DEFINITION 1.2.7.5. An integral noetherian F;-algebra A with maximal ideal m

is called regular if the Krull dimension dim(M) is equal to the number of non-zero
(A/m)-orbits of m/m?.

PROPOSITION 1.2.7.6. An integral noetherian Fi-algebra A with mazximal ideal
m is reqular if and only if it is factorial.

PROOF. Set B := A/m and suppose that A is regular. By Corollary
there exist vy, ..., v, € A which together with A* generate A as an F;-algebra and
whose classes form a basis of m/m?. Since dim(A) = r there exists an ascending
chain of length r of prime ideals of A. Taking complements produces a chain
A*=71C...C 7 = A\ O of faces of A. Each 7; is generated as a monoid by A*

together with those v; which lie in 7;. After reordering of the elements vy, ..., v,
we may thus assume that 7; is generated as a monoid by vq,...,v; and A*. We
claim that vy,...,v, are irreducible. Let v; = u[[;_, vfiv -, vg" with u,v € A*

and k;,l; € Ng. By minimality of {vy,...,v,} we have k; +1; > 0. Since none of
the v; are units we must have k; +1; =1 and k; 4+ [; = 0 for j # 4.

For uniqueness consider u]], vf =v]]; vﬁ After full cancellation we may
assume that at least one of k; and [; is zero for each ¢. Suppose that there exists j
with k; +1; # 0 and that j is maximal with that property. We may assume that
k; # 0. Since v; is no unit there also exists a maximal h < j with I;, # 0. Then
ul_[:-;l vf € T gives v; € Ty, - a contradiction. Thus, after cancellation all k; and
l; must be zero, i.e. we have u = v. This shows factoriality of A.

Conversely, if A is factorial consider a prime system P of A. Since the elements
of P are pairwise non-associated, P is minimal among the subsets of A which
together with A* generate A as an Fi-algebra. By Proposition {Ipl}pepr
form a basis of m/m?. In particular, |P| is finite. On the other hand, each proper
face 7 of A is generated as a monoid by A* and those p € P with p € 7, and to
faces coincide if and only if they contain the same elements of P. Therefore, the
length dim(M) of a maximal properly ascending chain of proper faces of A is equal
to |P| and we conclude that A is regular. O



CHAPTER II

Graded algebra and divisibility theory of graded
rings

In this chapter we give algebraic preparations for several geometric concepts like
Veronesean good quotients as well as (invariant) Weil divisors and Cox sheaves on
graded schemes resp. quasi-torus actions. We also study graded factoriality, which
is an important property of Cox rings. The objects under investigation are graded
monoids, Fi-algebras and rings as well as graded algebras and modules over them.
The general approach will be to globally fix a graded monoid/Fi-algebra or ring
A as a base, formulate statements on algebras or modules over A and differentiate
between the cases in the proofs. Here, proofs for the monoid/F;-algebra cases may
be entirely ommitted whenever the grading structure is irrelevant and the statement
was proven in Chapter [} The results of the present chapter were partly published
by the author in [5]

I1.1. graded rings and their modules

After basic definitions and canonical constructions in Section we study
morphisms and constructions which are peculiar to the graded setting in Sec-
tion [I.T.2] In particular, we introduce and characterize component-wise bijective
graded morphisms which will later be a defining feature of Cox sheaves. We give
preparations such as the appropriate notions of limits needed to define structure
sheaves of graded schemes in Section Graded monoid algebras, colimits and
tensor products are discussed in Sections [[I.1.4] [I.1.5| and [[.1.6] respectively. Next
to further preparations on homogeneously prime and radical ideals and localization
Section studies the behaviour of graded ideals under Veronese subalgebras
in order to make sense of Veronesean good quotients of graded schemes. We also
prove the graded version of Hilbert’s basis theorem which states that polynomial
rings over K-noetherian rings are K-noetherian, see Section [[I.1.7}

I1.1.1. categories of graded monoids, F;-algebras, rings and their al-
gebras and modules. In the definitions below, the coproduct is taken in the
category of sets, pointed sets or abelian groups, respectively.

DEFINITION I1.1.1.1. A graded monoid/F1-algebra/ring is a monoid,F;-algebra
or ring A together with a decomposition A =[], gr(A) Ay, indexed by an abelian
group gr(A), into subsets/pointed subsets/additive subgroups, such that we have
1g € Apg and A, Ay C Ay for all v,w € gr(A).

A morphism of such objects is a homomorphism ¢: A — B of monoids/F;-
algebras/rings with an accompanying homomorphism v : gr(A) — gr(B) such that
#(Aw) € By holds for all w € gr(A). The category thus defined is denoted
GrMon/GrAlgg /GrRing.

The category of objects under a fixed object A of GrMon, GrAlgy, or GrRing
is denoted GrAlg . The objects of GrAlg 4 are called graded A-algebras or graded
algebras over A.

DEFINITION I1.1.1.2. Let A be a graded monoid/Fi-algebra/ring. A graded
A-module is an A-module M together with an gr(A)-module structure vyy; on a
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set gr(M) and a decomposition M = ][, c,.(ar) Mw into subsets/pointed sub-
sets/subgroups such that we have A, My, C M., (y,u) for v € gr(A),w € gr(M).

A morphism from a graded A-module M to a graded A-module N is a morphism
of A-modules ¢: M — N together with a morphism ¢: gr(M) — gr(N) of gr(A)-
modules such that ¢(M,,) C Ny, holds for w € gr(M). The category thus defined
is denoted GrMod 4.

DEFINITION I1.1.1.3. For a graded A-algebra/-module B, gr(B) is the grading
object of B and will also be called the grading group/set if gr(A) = {0}.

ExaMPLE I1.1.1.4. Let A be {1}, F; or Z. For an arbitrary A-algebra/-module
R and an abelian group K we obtain a trivial K-grading by setting Ro, := R and
defining each further R,, as the initial A-module.

REMARK II.1.1.5. Let A be a graded algebra over {1}, F; or Z and let B be
the underlying algebra over {1}, F; or Z, respectively. Then the following hold:

(i) The forgetful functor from graded A-algebras/-modules to B-algebras/-
modules preserves initial and final objects.
(ii) The functor sending a graded A-algebra/-module to its grading object
preserves initial and final objects.
(iii) By Lemmathe functor gr is right adjoint to the faithful functor ¢r
sending K to the initial B-algebra/-module, endowed with the canonical
K-grading.

Next, we turn to subcategories of the various categories defined at the beginning.

DEeFINITION II.1.1.6. A morphism in one of the above categories is called
degree-preserving if the accompanying map is an identity map. For a fixed group
K the objects of GrMod, GrAlgy, resp. GrRing with grading group K to-
gether with degree-preserving morphisms form subcategories GrMonX, GI'Alg]{f1
and GrRing” , respectively.

For a fixed graded monoid/F;-algebra/ring A and gr(A)-algebra resp. -module
~ the category of graded A-algebras/-modules accompanied by ~ with degree-
preserving morphisms is denoted GrMod); resp. GrAlg). If in the above v is
an inclusion of subgroups then we use the upper index K instead of ~.

DEeFINITION I1.1.1.7. Let € denote GrMon, GrAlgg, or GrRing. Let A be a
C-object. A graded submonoid/F1-subalgebra/subring is a €-object supported on a
subset of A, such that the inclusion and idg,(4) form a €-morphism. The category
formed by these objects together with degree-preserving inclusion maps is denoted
GrSubMon(A4)/GrSubAlgy (A)/GrSubRing(A).

Let © denote GrAlg, resp. GrModa. A graded A-subalgebra/-module of
a ®-object B is a ®-object supported on a subset of B, such that the inclu-
sion and idg,(py form a ®-morphism. The category formed by these objects to-
gether with degree-preserving inclusion maps is denoted GrSubAlg ,(B) resp.
GrSubMod4(B).

ExampLE I1.1.1.8. A graded ring A is a graded module over itself. Its graded
submodules are then called graded ideals and their category is denoted GrId(A).

ExAMPLE I1.1.1.9. For a graded submodule N of M € GrMod 4 the annihila-
tor Ann(V) is a graded ideal of A.

REMARK I1.1.1.10. Let A denote i) Z or ii) Fy and let B denote i) F; or ii) {1}.
Let ¢ denote GrAlg 4 resp. GrMod4 and let ® denote GrAlgy resp. GrModg.
Let R denote the category of i) abelian groups or ii) pointed sets and let £ denote
the category of i) pointed set or ii) sets. Let f: 8 — £ be the forgetful functor.
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Then sending a €-object C' to hom(C) := [[,,¢ () f(Cw) defines a functor to D.
For a fixed graded A-algebra R this induces a functor GrModr — GrModyom(r)-
In case i) we also denote hom by (:)1°™ and call it the functor of homogeneous
elements.

DEFINITION IL1.1.11. Let B = [[,¢ 4.
or ring resp. a module over one of the former.

B) B,, be a graded monoid, F;-algebra

(i) By is the w-homogeneous component or homogeneous component of degree
w, its (non-zero) elements are called w-homogeneous or homogeneous of
degree w.

(ii) For each subset K C gr(B) denote by Br= ][,
(in the category of sets, pointed sets or abelian groups, respectively) over
all homogeneous components of degree in K.

(iii) The union over all homogeneous components forms the set B"™ of ho-
mogeneous elements.

(iv) If B is a graded ring or a module over one then for an arbitrary element
f the image f,, under the projection onto the w-homogeneous component
is the w-homogeneous part of f.

B) B,, the coproduct

REMARK II.1.1.12. For a graded ring R we have (RPM™)* = RBo™ N R* | be-
cause multiplicatively inverse elements of homogeneous elements are homogeneous.
Moreover, the requirement 1r € Ry is superfluous because (1r)or = r holds for all
homogeneous (and hence all) elements r of R.

REMARK II1.1.1.13. Let € be the category of sets/pointed sets or abelian groups,
let A be {1}, F; or Z, equipped with the trivial grading by gr(A) = {0}, let
K be a gr(A)-module and let w € K. Then due to Lemma the functor
(Dw: GrModf — € assigning the w-homogeneous component is left adjoint to the
faithful functor sending G to the graded module whose w-homogeneous component
is G and whose other homogeneous component are @) resp. {0}. Moreover, for a
fixed K-graded A-module M the restriction of (-),, to GrSubMod 4(M) maps to
SubMod 4 (M,,) sending a graded submodule N < M to N, is left adjoint to the
faithful functor sending G < M,, to the graded submodule of M defined by G.
Furthermore, (-),, commutes with intersections.

REMARK II1.1.1.14. Let A be a (0-graded) monoid/F;-algebra/ring. Let € de-
note Alg, or Mod4 and let ® denote the corresponding one of GrAlg, and
GrMod 4. Then the following hold:

(i) € embedds as a full subcategory into ©, by endowing C' with the trivial
grading by the 0-algebra 0 resp. the O-module {pt}. Due to Lemma
this inclusion functor is right adjoint to the forgetful functor.

(ii) If € = Alg, then equipping a €-object C' with the trivial K-grading
embedds € as a full subcategory into GrAlgf .

DEeFINITION II.1.1.15. Let B be a graded monoid/F;-algebra/ring or a module
over one of the former.

(i) The degree map deg, also written deg, for K = gr(B), sends each non-
zero homogeneous element to its degree in gr(B).

(ii) The set degsupp(B) := im(deg) of degrees with non-trivial homogeneous
component is the degree support of B.

REMARK II.1.1.16. Let € be the category of inclusion morphisms S C G of
submonoids S of simple monoids G resp. of subsets S in groups G with €-morphisms
being group homomorphisms G — G’ which restrict to homomorphisms S C S’ of
the submonoids resp. to maps of the subsets.
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Then endowing S C G with the G-grading obtained by taking the inclusion
map as the degree map defines a faithful functor from € to (simple) graded 1-
algebras/-modules which by Lemma is right adjoint to the functor sending
N to deg(N) C gr(N). The restrictions to (simple) subalgebras/-submodules of a
fixed group K on the one hand and K-graded (simple) 1-algebras/-modules on the
other again define an adjoint pair.

REMARK II.1.1.17. Let A be a graded monoid/F;-algebra/ring and let B be
an A-algebra/-module. Then multiplication with an element/unit a € A, defines
an homo-/isomorphism B,, — B, of Ajp-modules. Moreover, deg restricts to a
homomorphism on the set of homogeneous units of A.

Next, we deal with graded congruences and submodules. Congruences for
monoids, Fy-algebras and modules over them were discussed in Section [1.1]

DEFINITION I1.1.1.18. A congruence on ring R is an equivalence relation ~ on
R such that a ~ a’ and b ~ b imply a+b ~ a’+b" and ab ~ o'V’ for all a,a’,b, b’ € R.

A congruence on an R-module M is an equivalence relation ~ on M such that
u~u and v ~ v imply u +v ~ v + v and ru ~ ru’ for all u,v’,v,v" € M and
r € R.

REMARK I1.1.1.19. For a congruence on an R-module M the elements which are
equivalent to 0p; form a submodule of M. Conversely, the pairs of elements whose
difference lies in a given submodule of M form a congruence of M. This constitutes
an inclusion preserving bijection between congruences on M and submodules of M.

REMARK 1I1.1.1.20. Arbitrary intersections of congruences are again congru-
ences. The intersection over all congruences containing a given set of pairs is the
congruence generated by these pairs.

DEFINITION I1.1.1.21. Let A be a graded monoid/F;-algebra/ring and let M
be an algebra/module over A. A congruence ~C M x M is graded if it is generated
as a congruence by pairs of homogeneous elements whose coordinates belong to the
same homogeneous component.

REMARK I1.1.1.22. For a congruence ~ on a graded A-algebra/-module M the
following hold:

(i) If A is a graded monoid then ~ is graded if and only if deg is constant
on each equivalence class.
i is a grade 1-algebra then ~ is graded if and only if deg is constant
(ii) If A is a graded F;-algebra th is graded if and only if deg i
on each non-zero equivalence class.
(iii) If A is a graded ring then ~C M x M is graded if, whenever we have
w ~ w then f,, ~ g, holds for all the homogeneous parts.
P owfw~ w9 g g

REMARK 1I1.1.1.23. The kernel relation of each degree-preserving morphism is
graded. Conversely, the quotient map associated to a graded congruence is a degree-
preserving morphism.

REMARK I1.1.1.24. Let N C A be a submonoid of homogeneous elements and
let B be an A-algebra/-module. Let ~x be the congruence generated by all pairs
(b,ndb) where b € Bandn € N. If N C Aj then ~y is graded. If A is a graded ring
and, then the submodule corresponding to ~ is generated by all terms 1 — n for
n € N.

REMARK I1.1.1.25. Subalgebras or -modules of an algebra or module over a
graded monoid/F;-algebra A are canonically graded. If A is a graded ring and B is
a graded A-algebra/-module then for a subalgebra resp. submodule C' the following
are equivalent:
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(i) C carries the structure of a graded subring resp. a graded submodule,
(ii) C is the sum of its intersections with the homogeneous parts,
(iii) C contains the homogeneous parts of all its elements,
(iv) C is generated as a subring resp. submodule by homogeneous elements.

In all cases, C,, is the intersection of C' with B,,,.

Indeed, if (i) holds then the supplement follows from the fact that for elements
of C' the homogeneous parts with respect to the gradings of C and B are the same.
(iii) implies (ii) because products of homogeneous elements are homogeneous.

COROLLARY 11.1.1.26. A submodule m of a graded module M over a graded
ring A carries the structure of a graded submodule if and only if the corresponding
congruence ~y, s graded.

COROLLARY I1.1.1.27. Sums of graded submodules are graded submodules. Prod-
ucts of graded ideals are graded ideals. For an R-algebra R — S the quotient [a: b]
of two graded R-submodules a,b of S is again graded.

CONSTRUCTION II.1.1.28. Let M be a graded module over a graded ring R.
For an arbitrary R-submodule N of M the graded submodule
N# = (NNM"™™ = P NnM,
wegr(M)
has the same homogeneous elements as N and is maximal among all graded sub-
modules contained in N.

REMARK I1.1.1.29. For a morphism ¢: M — M’ of graded R-modules and any
R-submodule N’ <p M’ we have ¢~ 1(N®&)8" = ¢~ 1(N)e".

DEFINITION I1.1.1.30. An ideal a of the F;-algebra RP™ is said to be closed
under partial addition if for every w € K and all 7,7’ € R, Na we have r + 1’ € a.
Such an ideal is also called a sesquiad ideal of R"™ or, more precisely an ideal of
the sesquiad (R"™™, R).

REMARK II.1.1.31. Intersections of sesquiad ideals of are again sesquiad ideals.

CONSTRUCTION 11.1.1.32. Let a;,i € I be a family of sesquiad ideals of RP™.
(i) The sum } . ;a; is the intersection over all sesquiad ideals containing

Uier ai-
(ii) In case [ is finite, the product [];,
ideals containing each product []

a; is the intersection over all sesquiad
ier @i where a; € a;.

REMARK I1.1.1.33. By [13] a sesquiad is a pair (M, R) where M is an ;-
subalgebra of the ring R which generates R as a ring. Sesquiads offer a unified
theory for Fi-algebras, rings and graded rings, and possibly many others. However,
sesquiad homomorphisms between graded rings might not automatically be also
graded homomorphisms.

ProrosiTiON 11.1.1.34. Let R be a K-graded ring. Then there are mutually
inverse canonical bijections

{sesquiad-ideals of R*™} «— GrSubModg(R)
a+— (a)
b RM™ b
REMARK 11.1.1.35. A graded monoid may also be conceptualised as a homo-
morphism §: A — K of monoids to a simple K such that A is the coproduct, i.e.
the disjoint union, over all §~1(w) for all (non-absorbing) w € K. Here, we denote

K multiplicatively. Morphisms may be thought of as pairs of homomorphisms such
that the resulting diagrams of monoids commute.
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REMARK I1.1.1.36. If every non-trivial homogeneous component of a graded
[F1-algebra A contains a non-zero divisor then deg(A \ 0) is a monoid.

REMARK 11.1.1.37. Let w: A — B,¢: gr(A) — gr(B) be a morphism of graded
rings. A B-module/-algebra N with accompanying map -y defines an A-module sup-
ported on N with accompanying map v oy by composing the scalar multiplication
with 7 x idy resp. the map of graded rings with 7. This defines a functor (m,v)*
from (constantly) graded B-algebras/-modules to (constantly) graded A-algebras/-
modules.

If 7 and % are surjective then by Lemma (m,4)* is right adjoint to
the functor (7, ). which sends a graded A-module/-algebra M with accompanying
map 7 the quotient M/(ker(y))M) together with the induced map §: gr(B) —

gr(M)/~(ker(y)).

I1.1.2. coarsenings and component-wise bijections. Recall that left ad-
joints preserve colimits, in particular coproducts and cokernels, and epimorphisms
whereas right adjoints preserve limits, in particular categorial products and ker-
nels, and monomorphisms. Throughout this entire section let A be a fixed graded
monoid, Fi-algebra or ring.

CoNSTRUCTION II.1.2.1. Let ¢: L — K be a morphism of gr(A)-algebras/-
modules whose gr(A)-algebra structure rep. scalar multiplications we denote by
A and x. Let € denote GrAlg" or GrMod’; and let © denote GrAlgj}l resp.
GrMod). The coarsening functor coy: ® — € sends D to D = Hocx
There is a canonical morphism (idp, ) of graded A-algebras/-modules which has
the property that each morphism («,): D — C factors uniquely into a composition
of (idp, ) and a €-morphism co, (D) — C, the latter being («, idk).

The augmentation or lifting functor aug,: € — D sends C to Hoer Coo)-
There is an induced morphism aug,(C) — C with accompanyment ¢ which on
homogeneous components is given by the identity aug,,(C), — Cy,). It has the
property that each morphism («,¥): D — C of graded A-algebras/-modules factors
uniquely into a composition a the D-morphism D — aug,(C) and the canonical
morphism aug,,(C') — C. Specifically, the first morphism is given on homogeneous

Dw71(w).

components via Dy, < Cy(y) = aug,,(C),. The unique factoring properties give rise
to an adjunction and we have an adjoint pair (coy,aug,).

The above adjunction is due to [24].

REMARK I1.1.2.2. Let ¢: R — R',¢: gr(R) — gr(R’) be a graded morphism
and let o’ be a gr(R')-graded ideal of R’. Then ¢~1(a’) is a gr(R')-graded ideal
with respect to the gr(R’)-grading of R induced by ).

CONSTRUCTION II1.1.2.3. Let B be a graded A-algebra/-module. For a gr(A)-
subalgebra/-module M of gr(B) the Veronese A-subalgebra/-module is the coprod-
uct By over all B, where w € M, endowed with the canonical M-grading. We also
say that By; C B is Veronesean.

By Lemmal[A.0.0.2|the functor sending a gr(A)-subalgebra/-module M of gr(B)
to By is right adjoint to the functor sending an A-subalgebra/-module to the gr(A)-
subalgebra/-module generated by its degree support.

DEFINITION I1.1.2.4. A morphism (¢,v): B — C,gr(B) — gr(C) of graded
A-algebras/-modules is called Veronesean if it defines an isomorphism onto Ciy,(y)-
A graded A-algebra A — B is a Veronesean algebra if its structure morphism is
Veronesean.

DEFINITION I1.1.2.5. Let R be a graded A-algebra and let G C gr(R) be a sub-
group. Then R is called G-associated if for each f € R"™ there exists g € (RPO™)*
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with fg € Rg, i.e. we have degsupp(R) C deg((R"™)*) + G, or equivalently,
(degsupp(R)) + G = deg((R"™)*) + G.

PROPOSITION I1.1.2.6. Let A be a graded monoid and let K < gr(A) be a
subgroup. Then the following hold:

(i) Ax C A is a pseudo-face in the sense of [1.2.2.9
(il) AxA* is a face of resp. equal to A if and only if deg(Ak) + deg(A*) is
a face of resp. equal to deg(A).

PROOF. Assertion (i) follows from Remark[[.2.2.11] For (ii), let Ax A* be a face
of A. Let w = deg(r), w’ = deg(r') € deg(A) such that w+w' € deg(Ax)+deg(A*).
Let v € deg(A*) with w + w' + v € deg(Ak) and let a € A* with deg(a) = v.
Then arr’Ayiw o and the face property implies a,r, 7’ € AxgA*. Thus, there
exist t,t’ € Ag and s,s' € A* with r = ts and v’ = t's’, and we conclude w =
deg(t) + deg(s),w’ = deg(t') + deg(s’) € deg(Ak) + deg(A*).

For the converse, let 7,7’ € A with ' = ts where t € Ax and s € A*.
Then deg(r) + deg(r’) € deg(Ak) + deg(A*) and the face property implies that
deg(r) = w+ v and deg(r’) = w’' + v’ with w,w’ € deg(Ak) and v,v" € deg(A*).
Let a,a’ € A* with v = deg(a) and v' = deg(a’). Then ar € A, and o'’ € A,
which gives r = ara™! € Ag A* and v’ = a'r'a’"! € A A*.

If deg(Ak) + deg(A*) = deg(A) holds then for f € A we have deg(f) = w +
deg(a) with certain w € K,a € A* and consequently, f = (fa™')a € AxA*. O

PROPOSITION I1.1.2.7. Let A be a graded monoid/F1-algebra, let K < gr(A) be
a subgroup and denote by M and Mg the monoids generated by degsupp(A) and
degsupp(Ag), respectively.

If 7 := Mg + deg(A*) is a face of M then 0 # fg € Ax A* with f,g € A always
implies f,g € AgA*. Conversely, if Ak A* < A then T is a face of M.

PrOOF. deg(f)+ deg(g) = deg(fg) € deg(AxA*\ 0) = Mg + deg(A*) implies
deg(f),deg(g) € Mk + deg(A*). Thus, there exist a,b € A* such that deg(f) +
deg(a) € Mg and deg(g) + deg(b) € My which implies af,bg € Ax and hence
f, g e AKA*

Suppose that AgA* = A. Let b = > ky,w and ¢ = ) l,w be finite non-
negative linear combinations of elements of degsupp(A), whose sum belongs to 7.
For w € degsupp(A) with k., + [, # 0 choose a non-zero f,, € A,. Then the
product over all these f,, belongs to Ax A* and by assumption f,, = gl(,w)u(w) holds
with certain ggw) € A, \ {0} and ™) € A* where v € K. Thus, w € 7 and in
particular, a,b € 7. a

REMARK I1.1.2.8. Let R be a graded ring and let K < gr(R) be a subgroup. If
g € Rg and h € R"™ satisfy 0 # gh € Ry, then h € Ry.

DEFINITION I1.1.2.9. A morphism 7: R — S,v¢: gr(R) — ¢r(S) of graded
A-algebras/-modules is a component-wise bijection (CB) (resp. a component-wise
bijective epimorphism (CBE)) if for each w € gr(R) the induced morphism

™ »
Ryr(ayw — Sgr(aypw),  gr(A)w — gr(A)p(w)
of graded A-modules is an isomorphism (and 1 is surjective).

REMARK II.1.2.10. A graded morphism 7: R — S, ¢: gr(R) — gr(S) of graded
A-algebras/-modules is a CB if and only if for each w € gr(R) the restrictions
gr(A)w — gr(A)y(w) and R, — Sy are bijective.

REMARK I1.1.2.11. Let m: R — S,¢: gr(R) — gr(S) be a CB of graded A-
algebras/-modules.
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(i) For each w € gr(R) we have gr(A), = gr(A)yw) for the respective
stabilizer subgroups.

(ii) For each r € R"™™ we have (A"™), = (AM™)_ ) for the respective
stabilizer submonoids. Moreover, the orbit map orb, : Ahom — Abomy g
injective if and only if orb,(, is injective.

REMARK I1.1.2.12. Let 2: A — R,j: gr(A) — gr(R) be a graded A-algebra
and let 7: R — S,¢: gr(R) — gr(S) be a CB of graded A-algebras. Then we
have (0 7)™ (¥(w)) = 5~ (w) and (7 © 1) prom (Y (1) = 1] ghom (1) for w € gr(R)
and r € R"™, the second equation following from the first and bijectivity on
homogeneous parts, the first from bijectivity on gr(A)-orbits. In particular, (v, ) is
a monomorphism if and only if (7 02,1 0 3) is a monomorphism.

PROPOSITION I1.1.2.13. Let w: S — R,4: gr(S) — gr(R) be a morphism of
graded monoids/F1-algebras/rings and denote by N the set of homogeneous preim-
ages of 1g. Then (m,%) is a CB if and only if im(7) = Riy(y) and there exists a
subgroup N’ C N such that deg: N’ — ker(1)) is bijective and the kernel relation of
¢ 1s the congruence ~n+ defined by N'. Moreover, in this case N' equals N.

PROOF. First, consider the cases of graded monoids/F;-algebras. If (m, 1) form
a CB then deg: N — ker(¢) is bijective, and whenever s € S,,t € S, satisfy
m(s) = w(t) the element u € N, _,, satisfies 7(s) = 7w (tu) and hence s = tu.

Conversely, suppose that deg: N’ — ker(¢) is surjection of groups and ~p-
equals the kernel relation of n. For s,t € S, with n(s) = m(t) we then have
sN' = ¢tN'. Then there exists u € N} with s = tu and since deg(1l) = deg(u) we
have v = 1. For the supplement, note that for u € N there exists u’ € N, éeg(u) and
we conclude v = u/'.

If (m,4) is a CB of graded rings then denote the element of N, by w,. For
s = Zveker(w) Swv € ker(m) with sy € Syiy we then have

5= Z Swrv(ls —u_y) + Z Swaoli—y € {lg—u|u€N)
vEker () vEker (1))

because the right-hand summand belongs to S, Nker(7) = {0}.

If (7, %) is a morphism of graded rings such that deg: N’ — ker(¢)) is bijective
and ~py/ equals the kernel relation of 7, denote the element of N; by u,. Let
s € Sy Nker(w). Then there exist sf;‘,) € Sy forue N\ {1} and w’ € ¥~ (¢(w))

such that s = (“)(1 — u). Substituting each summand as

u,w’ Sw!
sgﬁ)(l —u) = uw,w/sfﬁ,)(l —uyt u) — uw,w/sgﬁ)(l —uyt )

we obtain a sum s = > a® (1 —u) where a® € S,,. w-Homogeneity of s then

implies 0 = Syt deg(u) = —a™uy, ie. a™ = 0 holds for each u which gives s = 0.
Now consider r € Ry(y). Then there are s) € S,,, for v € ker(¢) such that
(3, s®) = r and we conclude Y, s®u_, € S, N7 L(r). O

REMARK I1.1.2.14. For a CB ¢: S — R,v¢: gr(S) — gr(R) of graded monoids
resp. [Fp-algebras the following hold:
(i) In the case of F;-algebras, 0 is the only element mapped to 0.
(11) (¢,v) defines a CBE onto Rip(y), .
(ifi) ¥ ~"(degsupp(R)) = degsupp(S), ¢ (degsupp(S)) = im(¢) N degsupp(R).
(iv) the canonical map S/S* — R/R* is injective with image Ry (y)R*/R*
and we have ¢! (deg(R*)) = deg(S*) and 1 (deg(S*)) = im(¢))Ndeg(R*).
(v) If R is simple then so is S. Conversely, if S is simple then so is Ry (y)-

REMARK I1.1.2.15. Let w: S — R be a CBE accompanied by 9. If S’ C S is a
graded subring then 7|/ : S” — 7(S’) is again a CBE accompanied by ¢. If R" C R
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is a graded subring then mj —1(g)er: 7 Y(R')® — R is a CBE with accompanying
map .

ProposiTiON 11.1.2.16. Consider the commutative diagram of graded mor-
phisms

R—2.g

¢

R —— 5
and suppose that g and wg are CBs accompanied by the same map ¥ and that ¢
and ¢’ are degree-preserving. Then the following hold:
(i) Injectivity/surjectivity of ¢’ implies injectivity/surjectivity of ¢. The con-
verse holds if ¢ is surjective.
(i) For each w € gr(R) = gr(S) we have ¢(R)y = g (¢'(R')) N .

PRrROOF. We use the induced commutative diagram:

®

Ry —— Su

WRl/N N\Lﬂs

Rl —> 5,

P(w)

Assertion (i) now follows from the fact that for degree-preserving morphisms in-
jectivity resp. surjectivity conditions need only be checked for homogeneous ele-
ments. (|

PROPOSITION I1.1.2.17. Let mr: R — R’ be a morphism of graded monoids/F -
algebras/rings, let S and S’ be graded algebras/modules over R resp. R’ and let
wg: S — S be a morphism of graded algebras/modules over {1} /F1/Z such that
ws(rs) = mr(r)mws(s) holds for all T € R,s € S, and we have g o~y =~ og for
the respective accompanying maps.

Then by Lemma the functor a from graded R-subalgebras/-modules of S
to graded R'-subalgebras/-modules of S’ which sends a to (rg(a))r = (ms(al*™)) g
is left adjoint to the functor B which sends b to wg'(b)&", and we have a C B(a(a))
and a(B(b)) C b. Moreover, the following hold:

(i) In the case of graded algebras o commutes with multiplicative products of
subalgebras/-modules.

(ii) If §"hom = (RMom)*71g(Shom) then a o B is the identity, in particular, o
1s surjective and [ is injective.

(iii) Suppose that mr and ws are CBs of monoids/F1-algebras/rings, and that
7' ~Y(im(vs)) C im(br) holds. Then with respect to subalgebras and sub-
modules o « is the identity, in particular, « is injective and 3 is surjec-
tive. Furthermore, B then commutes with sums of submodules.

(iv) If @ and B are mutually inverse then both commute with intersections,
sums and finite products.

ProOOF. For (ii) let a <p S be a graded subalgebra/-module and consider a
(non-zero, homogeneous) element s € g ' ((¢(a))r). Then ms(s) = S, rims(a;)
holds with (non-zero, homogeneous) a; € a and 7, € R’ which we may choose such
that +/(deg(r})) + v¥s(deg(a;)) = vs(deg(s)). In the case of monoids/F;-algebras
we have n = 1. Thus, we have r; € R,y S Riy,) = Im(Tr), Le. there
exist (homogeneous) r; € R with wr(r;) = ri. Let u; € S be homogeneous units
such that mg(u;) = 1 and deg(¢(r;)uia;) = deg(s). Then >, ¢(ri)ua; € a and s
have the same degree and image under g and hence coincide.
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To see that 8 preserves sums of submodules consider b; <r S’. Let s € S be
(non-zero, homogeneous) such that there exist i1, ...,i, and b; € b;; with m5(s) =
Z;-L:l b;. The b; may be chosen of degree 1g(deg(s)) and thus each b; has a unique
preimage a; in Sgeg(s) Which also belongs to 3(b;;). Since Zj a; and s have the
same image and degree they coincide. |

I1.1.3. localization and limits. Here, we construct limits for the differ-
ent categories of graded A-algebras/-modules, where A denotes a graded monoid,
Fi-algebra or ring which is fixed for the entire section. Moreover, in Proposi-
tion we prepare the proof of the sheaf property of structure sheaves of
graded spectra.

ConsTrRUCTION II.1.3.1. Let S C |J,, Aw be a multiplicative submonoid of the
homogeneous elements of the graded monoid/F;-algebra/ring A. For w € gr(A) let
(S71A),, be the union over all (1/s)A, where s € SN A, with v—u = w. This turns
S~1A into a gr(A)-graded monoid/F;-algebra/ring called the graded localization of
A by S. The canonical map 15: A — S~1A is a degree-preserving graded morphism
and is the initial object in the category of graded A-algebras ¢: A — R such that
¢(S) C R*.

The assignment S~!(—) sending an A-algebra ¢: A — R to the S~!A-algebra
S71p: S7'A — ¢(S) 'R, a/s — ¢(a)/P(s) is functorial.

CONSTRUCTION I1.1.3.2. Let (M,~) be a graded A-module, let S C |J,, Aw be
a submonoid and denote the localization map by 7: M — S~'M. Then defining
(S~1M),, as the union over all (1/s)7(M,) where s € SN A, with v—~(u) = w turns
(S~1M,~) into a graded module over S~!A called the graded localization of (M, )
by S. Note that for a graded submodule N <4 M we have SN = (3(N))g-1;-

ConsTRUCTION II.1.3.3. For an A-algebra ¢: A — R,¢: gr(A) — gr(R) the
graded localization is the S~!A-algebra S~1¢: ST1A — ¢(S) 1R, a/s — ¢(a)/o(s)
together with the accompanying map 1.

REMARK II.1.3.4. Sending a graded A-algebra/-module to its localization by
S defines a functor S~!(—) which commutes with the (—)P°™-functor, with A[],
coarsening and augmentation.

REMARK II1.1.3.5. Let 7: S — R be a CB(E) accompanied by % and let M C
U, Sw be a submonoid. Then 7: M 'S — 7(M) 'R is a CB(E).

If in the above S = {f" },,ez., holds with f € Abom | then we write Ay := S™1A
and My := S~ M.

REMARK I1.1.3.6. For a graded module M over A, a submonoid S C A (of
homogeneous elements) and a finite family of graded A-submodules N;,i € I we

have Sil(ﬂi Nz) = ﬂl SilNi.

CoNSTRUCTION I1.1.3.7. Consider a small diagram D: I — € i — B;. If the
objects of € have no fixed global accompanying map then D defines a diagram
of gr(A)-algebras whose limit we denote v: gr(4) — K = lim; gr(B;), with the
associated maps written as pr;: K — gr(B;). Otherwise, v: gr(A) — K is given
together with € and we set pr; := idg. Then the limit of D is [ [, ¢ s lim; (B;)pr, (w)-
The (scalar) multiplication of homogeneous elements are induced by the maps

lim (Bi)pr, (w) X Hm (Bi)pr, (v) = (Bi)pr,w) X (Bi)pr,w) = (Bi)pr, (wto)

resp.
Au > 0 (Bi)pr, ) = Au X (Bi)pr,0) = (Bi)pr, (r(w)+0)-
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PROPOSITION 11.1.3.8. Let € and €7 denote the category of graded A-algebras/-
modules, in the latter case with a fized accompanying gr(A)-algebra/-module K with
structure map y. Let 8 denote the appropriate category of algebras resp. modules
over the monoid/F1-algebra/ring underlying A. Then the following hold for a small
diagram D: I — €7 i+ B;:

(i) If A is a graded monoid then omitting the grading of the €-limit gives the
R-limit of the induced diagram I — R.
(ii) If D is a € -diagram then the €-limit B is an A-subalgebra of the R-limit
B'. If additionally A is a ring and I is finite then B = B'.
(iil) The €-limit equals the €Y-limit if and only if v equals the limit of the
diagram gr o D of gr(A)-algebras.

PROOF. Throughout, let B’ denote the &-limit of the induced diagram. In
(i) let b = (b)), € B’ and consider 4,j € I and a morphism «;;: i — j. Then
gr(D(a; ;))(deg(b®)) = deg(D(a; ;) (b)) = deg(b?)) holds and we conclude that
b belongs to the €-limit.

In (ii) consider (b());c; € B’ and let b =3 b be the compositions into

homogeneous elements. Then we have b=} . (bﬁ))ia € B. O

REMARK II.1.3.9. Let A be a graded F;-algebra such that B := A\ 0 is a
(graded) monoid and let D be a diagram of graded A-algebras/-modules such that
substracting all 0-elements defines a diagram D’ of graded B-algebras/-modules.
Then lim D’ U {0} is the limit of D.

PROPOSITION I1.1.3.10. Let F C AM™ pe o subset which generates A as an
ideal. Then each object B of GrAlg) resp. GrMod, is canonically isomorphic to
the limit of the diagram defined by all the morphisms By — By, where f,g € F.

Moreover, B is finitely generated over A if and only if each By is finitely gen-
erated over Ay. In particular, B is a homogeneously noetherian A-module if and
only if each By is a homogeneously noetherian Ag-module. Furthermore, if A is a
graded R-algebra then A is finitely generated over R if and only if each Ay is finitely
generated over R.

PROOF. First, we treat the case that F' = {f1,..., fa} is finite. The statement
is obvious for graded [F;-algebras because in that case one of the f; is a unit. Now,
consider the case that A is a graded ring. For j = 1,...,d let w; € gr(A) with
fj € Aw,. Let I CP({1,...,d}) be the set of subsets of cardinality one or two with
its natural partial order. For i € I let f; be the product of all f; with j € ¢ and
let B; be the localization of B by the monoid generated by all these f;. Then the
diagram of gr(A)-algebras given by the maps gr(B) = gr(B;) — gr(B;) = gr(B)
has limit gr(B). For injectivity of the canonical degree-preserving homomorphism
B — lim B;, z — (2/1);cr note that if z/1 = 0/1 in every B, then every f; lies in the
radical of Ann(z). But then so does 14 which implies 1 € Ann(z), i.e. x = 14z = 0.

For surjectivity, consider an element (x;/f;""); € (lim; B;),, for some w € gr(B).
Set n := max;ern; and put y; = f'""x; for ¢ € I. Then z;/f]" = vy;/fI" in B;.
For each two-element set ¢ := {j, k} € I we have yj/fjn = y,/fi in B; and hence
there exists m; with fIf/"'y; = f;'fi"yr. By setting m := max; m; we obtain
TE(fife) ™y = f7(fj fe)"yx for all such .

By assumption, there exist a; € A_,,; with 1 = Zj a;fj. Taking the d(n+m)-
th power we obtain ¢; € A_(ymyw, for j = 1,...,d such that 1 = Ej cjf;”m.
Now, z := Zj cjfi"y; € By is the desired element with z/1 = y;/f;" in B;. Indeed,
for j =1,...,d we calculate

d d
e =) e = > ey = 1y
k=1

k=1
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which gives /1 = y;/f;" in B;. Fori = {j,k} € I this implies y;/f]' = y;/f]' = z/1
Concerning finite generation over A consider bﬁ . ,bf;i) € BPo™ gych that B 1
is generated as an Ay -algebra/-module by bgi)/l7 . .7bfi?/1. For a b € B"™ we

have b/1 = z;/f"* with certain n; and a A-linear combination x; of (products of)

the elements bl(i). Then we have (z;/f'"); € lim; B; and in the above notation x is

an element of the A-subalgebra/-module generated by all bl(z). Moreover, injectivity
gives ¢ = b.

If B is an A-module such that By, is a noetherian Ay,-module then in particular
By, is a noetherian Ay-module. For a graded A-submodule b of B, each by, is
finitely generated over Ay,. Since b is the limit of all by,, it is finitely generated
over A by the previous assertion.

Lastly, suppose that A is an R-algebra such that each Ay, (and hence each Ay,)
is finitely generated over R. Let a§2)7 .. ,a,(;) e Abom guch that agl)/l, . 412?/1
and 1/f; generate Ay, as a R-algebra. Then in the above notation, A is generated
by all a\”, all f; and all c.

Now, we treat the case of a general subset F' C Abom  Then there exists a
finite subset F/ C F with A = (F’). Denote the canonical localization maps by
1rg: By = By — Bygy. Let ¢y 4: C — By, f,g € F be a family of morphisms
which are compatible with the all 27 ;. Then there exists a unique degree-preserving
homomorphism ¢: C — B with ¢;, =154 0¢ for all f,g € F'. For a,b € F there
exists a unique ¢': C' — B with ¢4 = 15450 ¢ for all f,g € F' U {a,b}. By
uniqueness of ¢ we have ¢ = ¢'. Now, let ¢": C — B be another degree-preserving
morphism with ¢, =144 0 ¢” for all f,g € F. By uniqueness of ¢ we then have
¢" = ¢ which establishes the limit property. All other properties with respect to
general F' directly follow from the finite case. ]

ProrosiTiON 11.1.3.11. Let D: I — €&,i — B; be a diagram of graded alge-
bras/modules over a simple 0-graded monoid/F1-algebra A. Then we have a canon-
ical isomorphism (lim; B;)/A* = lim; (B;/A*).

I1.1.4. Free graded A-algebras and -modules in graded monoids and
sets. This section deals with the properties of free algebras and modules over a
fixed graded monoid/F;-algebra/ring A. First, we describe the construction which
will be applied on the level of grading objects.

CONSTRUCTION II.1.4.1. Let G be a monoid and let H be a monoid resp. a
set. Then the free G-algebra in H is is the set G[H] := G x H equipped with the
induced G-algebra/-module structure. Specifically, the scalar multiplication is the
product of the multiplication map of G with idg. If H is a monoid, then the map
sending g to (g,1x) defines a G-algebra. For a morphism ¢: H — H' the induced
map G[¢] :=idg X ¢: G[H] — G[H'] is a morphism of G-algebras/-modules.

REMARK I1.1.4.2. By Lemma the forgetful functor i from G-algebras/-
modules to monoids resp. sets is right adjoint to the faithful functor G[-] defined
above. This makes use of the fact that for an G-algebra/-module H we have a
canonical morphism G[i(H)] — H, and likewise, for a monoid resp. a set X we
have a canonical morphism X — i(G[X]).

In the following we perform the construction of free A-algebras/-modules, dis-
tinguishing between the different types of base objects.

CONSTRUCTION 1I.1.4.3. Let A be a graded monoid and let N be a graded
algebra/-module over the monoid {1}. The associated free graded A-algebra/-
module is the A-algebra/-module A[N] from Construction equipped with
the gr(A)[gr(N)]-grading given by A[N].w) = Ay X Ny. A graded morphism
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¢: M — M gr(¢): gr(M) — gr(M’) induces a morphism A[¢p] with accompanying
morphism of grading objects gr(A)[gr(¢)] as constructed before.

CONSTRUCTION II.1.4.4. Let A be a graded F;-algebra and let IV be a graded
l-algebra/-module. The free graded A-algebra/-module associated to N is the set
A[N] of maps N — A which at most one element is not mapped to 04. The
homogeneous component of degree (v, w) € gr(A)[gr(N)] is the set of all f € A[N]
for which each n € N with f(n) # 0 satisfies f(n) € A, and n € N,,. Equipped
with point-wise A-action, A[N] carries the structure of a A[N]-graded A-module.

If M is an Fy-algebra then the product of f,g € A[M] sends a product kl # 0p;
of elements with f(k) # 04 and g(1) # 04 to f(k)g(l) and all other m € M to 04.
This turns A[N] into a gr(A)[gr(N)]-graded A-algebra.

If M is a graded module over the graded Fi-algebra B then the scalar multipli-
cation B x M — M induces a graded A[B]-module structure A[B] x A[M] — A[M]
whose grading object is the gr(A)[gr(B)]-module gr(A)[gr(M)]. Explicitly, the
product of f € A[B] and g € A[M] sends (a non-zero) m € M to the sum over all
f(k)g(l) where kl = m.

In all cases, a morphism ¢: M — M’ induces a morphism A[¢]: A[M] — A[M’]
sending f € A[M] with f(m) # 04 to the map which sends ¢(m) to f(m), with the
morphism of grading objects gr(A)[gr(¢)] sending (u,v) to (u, gr(¢)(v)).

CONSTRUCTION I1.1.4.5. Let A be a graded ring and let M be a graded F;-
module/-algebra. Then the graded A-module/-algebra is the set A[M] of morphisms
M — A of F;-modules which attain 04 for all but finitely many m € M, equipped
with point-wise addition and scalar multiplication.

If M is an FFy-algebra then the product of f,g € A[M] is the map sending
m # 0ps to the sum over all f(k)g(l) where kl = m. f € A[M] is homogeneous of
degree (v,w) € gr(A)[gr(M)] if each m € M with f(m) # 04 satisfies m € M,, and
f(m) € A,.

If M is a graded module over the graded [F;-algebra B then the scalar multipli-
cation B x M — M induces a graded A[B]-module structure A[B] x A[M] — A[M]
whose grading object is the gr(A)[gr(B)]-module gr(A)[gr(M)]. Explicitly, the
product of f € A[B] and g € A[M] sends (a non-zero) m € M to the sum over all
f(k)g(l) where kl = m.

In all cases, a morphism ¢: M — M’ induces a morphism A[¢]: A[M] — A[M’]
sending f € A[M] to the map which sends a non-zero m’ € M’ to the sum over all
terms f(m) where m € ¢~1(m/), with the morphism of grading objects gr(A)[gr(¢)]
sending (u,v) to (u, gr(¢)(v)).

DEFINITION I1.1.4.6. If A is a graded ring and M is a graded 1-algebra/-module
then we define A[M] := A[F,[M]].

REMARK I1.1.4.7. In the setting of the above constructions we have an injection
x: M — A[M],m — x™ where x™ is (14,m) if A is a graded monoid resp. the
function x™ € A[M] which assigns 14 to m and 04 to all other m’ € M, in the
other cases. Moreover, for each (non-zero) m € M the canonical map A — Ax™
is injective. x™ is called the monomial in m and x™ := im(x) is called the set of
monomials in M.

Let B be a graded algebra over 1 resp. F;, and let A be a graded algebra
over 1 resp. Fy, or a graded ring. Let K be a gr(B)-algebra/-module which is
simultaneously a gr(A)-algebra/-module, with the scalar multiplication denoted ~
resp. 0, such that those structures commute with one another. Then we obtain an
induced gr(A)[gr(B)]-algebra/-module structure v on K.

Let € denote one of the categories GrMod 4(p, GrModXs[B], GrAlgA[B],

GrAngf’E B] and let ® denote the corresponding one of the categories GrModp,
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GrMod};, GrAlgg, GrAlg),. We have a canonical functor h: € — © which in
case A is a graded monoid is the forgetful functor and otherwise is the functor hom

from Remark [T.1.1.10/

PRrROPOSITION 11.1.4.8. In the above situation, the following hold:

(i) For a D-object M the map from Remark induces an injective
D-morphism M — H(A[M]).

(ii) For a €-object V sending f € A[b(V)] to >, oy f(v)v defines a surjective
C-morphism A[H(V)] — V. The kernel relation is generated by all the
relations ax’ ~ x* (and in case A is a graded ring x'+9 ~ xf +x9) for
a€ Ay, f,9g € Vy,uegr(Ad),we gr(V).

(iii) The assigments of (i) and (ii) are functorial and give rise to an adjunction

via Lemma i.e. b is right adjoint to the faithful functor A[]
sending M to A[M].

PrOOF. In (i) note that if M is an Fj-algebra/-module then x maps into
h(A[M]). If M is an 1-algebra/-module then each x™ is non-zero and hence defines
a unique element of h(A[M]). For (ii) consider f = 3 1, aixy,g = >_7_ bjw; with
ai,b; € AP\ 0 and v;,w; € Vo™ \ 0 satisfying v := Y, a;v; = >_;bjw; and
deg(a;) deg(v;) = deg(b;) deg(wj;) for all 7,j. Then under the relation ~ specified
via its generators we have f ~ x¥ ~ g. Since the kernel relation is gr(V)-graded
the assertion follows. ]

COROLLARY I1.1.4.9. As an A-module A[M] is the coproduct over all Ax™
(where m £ Oy ).

REMARK 11.1.4.10. We have a canonical surjective degree-preserving morphism
hom(A)x N — hom(A[N]). If A is a graded F;-algebra, then this is an isomorphism.
If A is a graded ring then the kernel relation is generated by all relations (04,n) ~
(a,0n) for a € A°™ and n € N.

REMARK II.1.4.11. A[-] commutes with coarsening and augmentation. More-
over, A[-] preserves CB(E)s.

DEFINITION 11.1.4.12. In the situation of Proposition the image A[D]
of the functor A[—]: © — € is called the category of free graded A-algebras/-modules
with arguments in ©. If D is the category of graded monoids then A[D] is also called
the category of graded monoid algebras over A.

REMARK II.1.4.13. Consider a graded morphism
¢: AIM] — A[M], +: gr(A)[gr(M)] — gr(A)[gr(N)]

such that ¢(x™) C xV and ¥(x9" ™)) C x9" (™), Then there exists a unique graded
morphism («,8): M — N, gr(M) — gr(N) such that (¢,v) = A, 8].

DEFINITION I1.1.4.14. A graded polynomial ring over a graded ring A is an
A-algebra A[M] in a free abelian graded monoid M with generators T;,i € I and
arbitrary grading group gr(M), where A[M] carries the gr(M)-grading induced by
a gr(A)-algebra structure on gr(M). T;,i € I are called the homogeneous indeter-
minates and we also write A[T;|i € I] :== A[M].

REMARK I1.1.4.15. For a graded 1- or F;-algebra B and a graded algebra/module
M over B consider the canonical injection x: M — A[M]. By Lemma
the functor A[-] from graded subalgebras/-modules of M to graded subalgebras/-
modules of A[M] is left adjoint to the functor sending V' to x~1(V Nx(M)). More-
over, we have N = x~1(x(M) N A[N]) and A[x 1 (x(M)NV)] CV for all graded
submodules N <p M and V' <45 A[M]. Furthermore, A[-] commutes with inter-
sections, and if M is a B-algebra then A[-] also with products of submodules.
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REMARK I1.1.4.16. Suppose A = K is a field and B is a graded F;-algebra.
Then the functor f: ® — © which sends M to K[M]/K* is naturally isomorphic to
idp, the isomorphism at M being the canonical map M — K[M]/K*. In particular,
f and idp are also mutually essentially inverse equivalences.

ExamMpPLE I1.1.4.17. Let A be a graded FF-algebra/ring, let M be a graded
monoid/Fy-algebra and let a be a graded ideal of A. Then as a pointed set/group
(a)apar) is the coproduct over all ax™ where m runs through all (non-zero) ele-
ments of M. Consequently, we have (a)ajas; N A = a and a canonical isomorphism
A[M]/(a) appgy = (A/a)[M].

II.1.5. colimits. The colimit of a small diagram of graded A-subalgebras/-
submodules of a given graded A-algebra/-module is generated by the union over
the respective family of A-subalgebras/-submodules. In this section, we construct
colimits for the categories of graded A-algebras/-modules, with or without a fixed
accompanyment. In the following, let € denote one of the categories GrAlg,,
GrAlg),, GrMod,, GrMod), and let © denote the corresponding one of the
categories GI’Alg{l}7 GrAlgﬁ}, GrModyy;, GrModﬁ}.

CONSTRUCTION II.1.5.1. Let K be the non-graded category corresponding to
9. Let D: I — ®,i+— N, be a small diagram. In case © denotes a category whose
objects have arbitrary grading groups, let gr(N) be the colimit of the diagram
of grading groups, otherwise set gr(N) := K. Then the &-coproduct N’ of the
induced diagram has a canonical @, gr(V;)-grading which naturally coarsens to a
gr(N)-grading. The kernel relation of the canonical map from N’ to the K-colimit
N is then gr(N)-graded. N equipped with the resulting gr(NV)-grading is then the
©-colimit of D.

CONSTRUCTION II.1.5.2. Leti: € — ® and f: ® — € be the canonical functors.
Let D: I — € be a small diagram. Let C’ be the colimit of the induced D-diagram
ioD. Let gr(C) be the range of the colimit of the diagram gro D of gr(A)-algebras.
Then the colimit of D is the quotient C of §(C"), equipped with the gr(C)-grading
obtained by coarsening, modulo the graded congruence generated by all relations
axfi ~ x*fi, and in case A is a graded ring also all relations yfit9 ~ /i 4 9,
where f;, g; € D(i)w,,w; € gr(D(i)),a € Abm i e L.

REMARK II.1.5.3. Let A be a graded monoid/IFy-algebra/ring and let D: I —
GrAlg,,i — B; with colimit B. Let f; € Bf™ i € I be elements which are 1 for
all but finitely many i, such that for a: i — j we have D(«)(f;) € (B;)},. Let f be
the element of B defined by (f;);. Then By is canonically isomorphic to the colimit
B’ of the diagram D': I — GrAlgy,,i— (B;)y,.

Indeed, the map B — B’ given through the colimit property of B by all the maps
B; — (B;)y, — B’ induces a map By — B’ which is inverse to the canonical map
B’ — By obtained through the colimit property of B’ from the maps (B;)y, — By.

ExampLE I1.1.5.4. The localization by a submonoid S C Rbom g the colimit
of all principal localizations at elements of S.

REMARK II.1.5.5. Suppose that A is a graded ring/F;-algebra and B = hom(A)
is the induced graded Fy-algebra/monoid. Then the canonical functors from (K-
Jgraded A-algebras resp. -modules to (K-)graded B-algebras resp. -modules pre-
serve limits and directed colimits.

PROPOSITION II.1.5.6. Let A and s be gr(A)-algebra/-module structures on L
and K and let ¢: L — K be a surjective morphism of gr(A)-algebras/-modules. Let
D: 1 — ¢ and E: I — €% be small diagrams and let F: I — Mor(€) be a small
diagram such that F (i) is a CBE from D(i) to E(i) accompanied by 1. Then the
induced map from the (co-)limit of D to the (co-)limit of E is a CBE accompanied

by 1.
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PrOOF. The statement on limits is shown via direct calculations. For the
statement on colimits first suppose that A is a graded monoid. Then the canonical
map | |, D(i) — |, E(¢) is a CBE accompanied by 1 and hence so is the canon-
ical map colim; D(i) — colim; E(i). Now consider the case that A is a graded
F,-algebra/ring. Let hom”: €* — D% and hom™ : ¢ — DX be the canonical func-
tors. By the above the induced map p: colim; hom™(D(i)) — colim; hom™ (E(i)) is
a CBE accompanied by 1 and thus A[colim; hom™(D(i))] — A[colim; hom™ (E(i))]
is a CBE accompanied by idg.4) X %. Consequently, the canonical morphism
colim; D(i) — colim; E(i) is surjective. Injectivity follows from the fact that for
all v,u; € colim; hom”(D(i)) and (homogeneous) a; € A such that x¥ and a;x%
have the same L-degree, p(v) = 37, a;p(u;) implies v = 377, a;u;, where in the
case of [F1-algebras we take n to be 1. O

ProPOSITION I1.1.5.7. Let D: I — 2, i +— A; be a non-empty diagram of graded
Fy-algebras/rings (with constant accompanying group K ) and let E: I — €, i — C;
be a diagram of graded algebras/modules over {1} resp. Fy (with constant accom-
panying K-algebra/-module ). Then the following hold:

(i) If A — At € T and C — Cy,i € I are cones such that canonical map
from A[C] to lim; A;[C;] is an isomorphism then so are the canonical
maps C — lim; C; and - if C and C; are algebras - A — lim; A;.

(ii) If the canonical map from lim; A;[lim; C;] to lim; A;[C;] is an isomorphim
then so are the ones to lim; (A;[lim; C;]), to lim; (lim; A;)[C;] and to
limm Ai [OJ] .

(iii) Suppose that D (and E) send morphisms « of I to morphisms under
which preimages of zero are zero, and that for each i,j € I there exist

i =10,...,0n = j € I and morphisms ay from ip_q to iy or vice versa.
Then the canonical map from (lim;c; A;)[limjer C;] to lim; A;[C5] is an
isomorphism

(iv) If the canonical morphism from colim; A;[C;] to (colim; A;)[colim; Cy] is
bijective then the ones from colim; (A;[colim; C;]), colim; (colim; A;)[C}]
and colim, ; A;[C;] are, too.

(v) The canonical morphism from colim; A;[C;] to (colim; A;)[colim; C;] is
an isomorphism if I is directed.

PrOOF. For (i) note that we have natural embeddings C' — A[C] and lim; C; —
lim; A;[C;] which together with C' — lim; C; and A[C] — lim; A;[C;] form a commu-
tative diagram. Under the extra assumption we likewise have embeddings natural
embeddings A — A[C] and lim; A; — lim; A;[C;] which together with A — lim; 4;
and A[C] — lim; A;[Cy] form a commutative diagram.

In (ii) the second and third isomorphism are applications of the first where
the second resp. first argument are constantly lim; C; resp. lim; A; with identity
morphisms. Furthermore, keeping the second argument constantly at C'; we obtain
that the canonical map (lim; A;)[C;] — lim; A;[C}] is an isomorphism and hence
so is the canonical map lim; (lim; 4;)[C;] — lim; lim; A;[C;]. The same argument
with arrows reversed shows (iv).

In (iii) the extra assumptions guarantee that elements of lim; A;, (lim; C;) and
thus also of lim; 4;[C;] are zero if and only if they have a zero coordinate. For
surjectivity let (a;x™*); € lim; A;[C;] be non-zero. Then all coordinates are non-zero
and hence we have a; = D(a)(a;) and w; = E(«)(w;) for each morphism a: i — j.
For injectivity let (a;);x()3, (b;);x (") € (lim; A;)[lim; C;] with a;x** = b;x" for
all . If (a;x"*); = 0 then we have (a;); = 0 (or (w;); = 0) as well as (b;); =0 (or
(vj); =0). If (a;x"*); # 0 then we have 0 # a; = b; and (0 #)w; = v; for all 4.

In (v) denote the canonical maps by ¢;: A; — colim; A;, ¢;: C; — colim; C;
and 0;: A;[C;] — colim; A;[C;]. For surjectivity consider a; € A;,w; € C;. There
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exist a: i — k and o’: j — k, so we have
di(a:)x P = pr(D()(az))x**F@I i),

For injectivity consider a; € A;, w; € Cy, b; € Aj, v; € C;. First note that
¢i(a;) = 0 or ¢;(w;) = 0 suffice for ;(a;x™*) to be zero. Indeed, in both cases there
exists a: i — k with D(a)(a;) = 0 or E(a)(w;) = 0, meaning D(a)(a;)xZ(@ ™) =0
and hence 6;(a;x"") = 0.

Now suppose that ¢;(a;)x¥ (") = ¢;(b;)x%/(%7) holds. Due to the above con-
siderations we are left to treat the case that this equation is non-zero, i.e. we have
¢i(a;) = ¢;(b;) and ¢;(w;) = 1;(v;). Then there exists a: ¢ — kand o’: j — k with
D(a)(a;) = D(a/)(bj). Since i (E(o)(w;)) = Yi(E(e’)(v;)) there exists §: k — 1
with E(f o a)(w;) = E(S o ’)(vj). Thus, we have

D(B o a)(a;)x o)) = D(B o a/)(b;)y PP @)
and hence 0;(a;x"") = 0;(bjx"). 0

PropoOSITION I1.1.5.8. Let A be a graded Fy-algebra and let € denote GrAlg 4
or GrAlg), where v: gr(A) — K is a homomorphism. Let D: i — B; be a small
filtered diagram of graded A-algebras and let B and C be its €-limit and colimit.

(i) If all morphisms D(i — j) are monomorphisms then all the canonical
maps pr;: B — B; and ¢;: B; — C' are monomorphisms.

(ii) Suppose that all morphisms D(i — j) are monomorphisms and that each
B; is free of zero divisors resp. integral. Then B and C' are free of zero
divisors/integral.

PROOF. In (i) the statement on limits holds in all categories. For injectivity of
¢; let f,g € B; with ¢;(f) = ¢i(g9). Then there exists [ € I and a;;: 7 — [ such
that D(a,1)(f) = D(cv,1)(g) which gives f = g.

For (ii) let g : gr(B) — gr(Bx) denote the canonical map. For non-zero (f;); €
B, and (g;); € B, there exist i, j € I with f; # 0 and g; # 0. Let k € I be an object
with morphisms a;x: i — k and ajx: j — k. Then fi = D(a;x)(fi) € Bryw) \ 0
and g, = D( x)(9j) € Br, (v) which implies frgr € By, (w+v)\0, i.e. fg € Buiy\0.
Moreover, if each B; is integral then B — B; — Q(B;) is a composition of injections
and hence B is integral.

If ¢;(f)¢;(h) = 0 holds with h € B; then for k € I which allows morphisms
a4 — kand ajr: j — k we have 0 = ¢ (D(ay 1) (f)D(a;k)(h)). By injec-
tivity this means D(a;1)(f)D(ejx)(h) = 0 and by integrality, we may assume
D(o; 1)(f) = 0, which implies f = 0 and hence ¢;(f) = 0. Moreover, if each B; is
integral then the canonical map C' — colim; Q(B;) is injective because each of the
maps B; — Q(B;) — colim; Q(B;) is a composition of injections. |

I1.1.6. tensor and symmetric products.

REMARK II.1.6.1. Due to Lemma the inclusion functor from simple
graded monoids/F;-algebras to GrMon resp. GrAlgg, is left adjoint to the functor
sending a graded Fq-algebra M to M* resp M™* LI {0}

CONSTRUCTION 11.1.6.2. Let H;,i € I be a family of G-algebras/-modules. Let
H be the product over all H; in the category of 1-algebras/-modules. Let ~ be
the congruence on G[H| generated by (g, (hi);) ~ (eq,{gh;} X (hi)ix;). Then the
tensor product @),.; H; in the category of G-algebras/-modules is G[H]/ ~. The
induced map H — ), ; H; of 1-algebras/-modules is G-multilinear.

DEeFINITION I1.1.6.3. Let € denote GrAlg 4 or GrMod 4. A A-multilinear map
of €-objects consists of a set-theoretical map : [[,c; N; — N from a €-product to
a €-object and a map 1: [[,c; gr(Ns) — gr(NN) such that

(i) ¢ is a gr(A)-multilinear map,

icl
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(ii) for j € I and f; € (N;)w, the induced maps N; — (f;)iz; x Nj 5N
and gr(N;) — (wi)iz; X gr(N;) v, gr(N) together form a GrMod 4-
morphism,
(iii) and, in case € = GrAlg,, the pair (0,7) forms a homomorphism of
graded monoids/Fy-algebras/rings.
A morphism from (0, 1) to (0’,1") consists of a €-morphism (¢, v) such that ' = ¢of
and 1Y’ = v o hold. This forms the category of A-multilinear maps of €-objects.

CONSTRUCTION I1.1.6.4. Let A be a graded monoid/Fy-algebra/ring. Let € be
one of the categories GrAlg, or GrMod 4 and let ® be the corresponding one of
the categories GrAlgy;y and GrMod(,;. Let i: € — © and A[]: © — € be the
canonical functors.

Let I be a set and let Cy,i € I be objects of €. The canonical gr(A)-multilinear
map [[, gr(Ci) — &, gr(C;) induces a ), gr(C;)-grading of i([[, C;) with the w-
homogeneous component being the union over all i([[, Ci)w, with ®;w; = w. The
gr(A)-algebra/-module structure then extends this grading to A[i([[, Ci)].

We now obtain a @), gr(C;)-graded congruence ~ defined by the relations
ax(e)i ~ ylac)x(eizs and y(Gte)x @iz o y(ei 4 (€)X (e)izi _ the latter only
if A is a ring, where j € I, a € A7cj,c;- € C; are arbitrary/homogeneous elements
and c¢;, c; belong to the same homogeneous part. The tensor product of C;,i € I in
¢ is the quotient &), C; := A[([], C;)]/ ~. The class of an element x(¢)i is denoted
®;c;. If Ais a ring then for ¢ := (¢;); € [[; Ci we write ®;¢; = Zi,(wi)i ®i(€i)uw,
and call elements of this form pure tensors. In the case € = GrAlg,, ®;1¢, is the
neutral element of &), C;.

REMARK I1.1.6.5. The universal property of tensor products is the observation
that in the above situation, the canonical maps [[, N; — A[i(I[, V)] — @, N:
and [[, gr(N;) — gr(A)[gr(I]; Ni)] — &, gr(N;) form the initial object of the
subcategory of A-multilinear maps from [, IV;.

REMARK II.1.6.6. The forgetful functor GrAlg,, — GrMod 4 preserves tensor
products because in the above construction the congruences with respect to A-
algebra and -module structure define the same relation.

REMARK I1.1.6.7. For finitely many graded A-algebras/-modules N;,i € I with
fixed accompanying A-algebra v: gr(A) — K the map [[, K — K, (w;); — >, w;
is gr(A)-multilinear and thus induces a homomorphism ¢: @, K — K of gr(A)-
algebras. Coarsening by ¥ now yields the structure of a graded A-algebra/-module
with accompanyment v on ), V;.

REMARK I1.1.6.8. For each graded A-algebra/-module B the scalar multipli-
cation is A-bilinear and hence induces a morphism A ® 4 B — B which is an
isomorphism whose inverse sends b to 1 ® b.

REMARK I1.1.6.9. For a submonoid S C A"™ the functor S~!(—) is canonically
isomorphic to ST1A ®4 (—).

REMARK I1.1.6.10. Let B be a graded A-algebra and let C' be a graded B-
algebra. Then we have a canonical isomorphism C ®p (B®4 —) 2 C®4 —. In case
C = S~'B holds with a submonoid S C B""™ we thus have a canonical isomorphism
(S7!B)®4 — 2 S HB®a —).

REMARK I1.1.6.11. Let R be a graded A-algebra with accompanyment ~y. Let
K be a gr(A)-algebra/-module, with structure homomorphism resp. scalar multipli-
cation denoted 1. Then gr(R) ®4,4) K is a gr(R)-algebra/-module with structure
homomorphism resp. scalar multiplication being v: gr(R) — gr(R)QK,u — u®1lk
resp. v: gr(R) x (gr(R) ® K) — gr(R) @ K, (u,v ® w) — uv ® w. Let € be one
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of the categories GrAlgy, GrAlg),, GrModpr, GrMod}, and let © be the corre-

sponding one of the categories GrRing 4, GrRing?, GrMod 4, GrModfﬁ". Then
due to Lemma [A.0.0.2] the forgetful functor € — D is canonically right adjoint to
the functor S — R®4 S.

ProPOSITION I1.1.6.12. Let J be a set, let I;, j € J be pairwise disjoint sets
and let M;,, i; € I; be graded modules over A. Then we have canonical graded

morphisms
@ ®M%‘ — ® @ M;,
(i);€ll e, 15 7€ jedJ i;el;
and
® @ My, — H ®Mij'
JEJi;€L; (i5);€ll e, L I€J

The second defines a left-inverse of the first, and if J is finite then these are mutually
inverse isomorphisms.

Proo¥. For a fixed (i}); the inclusions M;» — €, .,
phism [[; My — [I; @;,c;, Mi; whose composition with the canonical map to
®; D;,cr, Mi; is A-multilinear and hence induces a morphism from @ ; M;:. The
direct sum of these is the desired inverse.

Secondly, for each fixed (i}); the projection [, €D, ¢;, Ms; — [1; Mi; composed
with the canonical map [[; M — X, M is A-multilinear and thus induces a mor-

M;, give rise to a mor-

phism from ), €D, ¢;, M, These morphisms induce a morphism to [, ) &; M;,
whose image lies in @(ij)j &, M;, if J is finite. The equations need only be checked
for pure tensors, which may be done in direct calculations. O

COROLLARY I1.1.6.13. Let M;,i € I be finitely many graded A-modules. If
fij € MPom g € J; form A-linearly independent systems resp. bases of M; then so
does the family of all ®; ; fi ; with respect to @, M.

COROLLARY I1.1.6.14. Let M and N be graded A-modules and suppose that
{fiYier € MP°™ js an A-basis of M. Then we have

M®AN%@(A]%®AN) %@(AQ@AN) %@N
iel i€l i€l
in particular, for a family {g;}ic C N of whose elements only finitely many are
non-zero we have Y, ; fi ® gi = 0 if and only if g; = 0 holds for all i € I.

CONSTRUCTION I1.1.6.15. For a graded module M over A set M; := M for all
elements ¢ of a set I. Let L be the colimit of the diagram given by idg,.4) and
all the maps gr(A) — gr(M;) and gr(M;) — gr(M;) for i,j € I. Then M®1 :=
(®;cr)M; and the congruence ~ generated by all relations ®;err; ~ Qierro(;) for
r; € MP™ o € Per(I) are canonically L-graded, and Sym’ (M) := M®1/ ~ is the
I-fold symmetric product in GrMod 4. If we have I := {1,...,n} for some n € N
then Sym™ (M) := Sym’ (M) is the n-fold symmetric product.

REMARK II.1.6.16. For a graded monoid/F;-algebra/ring A and a homomor-
phism ¢: gr(A) — K the following hold:

(i) The forgetful functor GrAlg, — GrMod, is canonically right adjoint
to the functor Symy,: M — Sym’; (M) where Sym 4 (M) carries
the canonical grading.

(ii) The forgetful functor GrAlgﬁ — GrModﬁ is canonically right adjoint
to the functor Sym%: M — @
the canonical K-grading.

neNy

nen, Sym’s (M) where Symﬁ(M ) carries
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(iii) For a graded A-algebra R the forgetful functor from graded A-subalgebras
to graded A-submodules of R is canonically right adjoint to the functor
sending M <4 R to the graded A-subalgebra of R generated by M.

PROPOSITION I1.1.6.17. A morphism ¢: R — S, ¢: gr(R) — gr(S) is a mono-
/isomorphism of graded A-algebras/-modules (with with constant accompanyment)
if and only if ¢ and ¢ are in-/bijective.

PROOF. If (¢,) is a monomorphism then v is a monomorphism because the
functor gr and the forgetful functor from gr(A)-algebras/-modules to sets both have
a left adjoint. Likewise, the functor h from graded A-algebras/-modules (with fixed
accompanyment) to graded monoids/sets (with fixed accompanyment) has a left
adjoint, as does the forgetful functor from graded monoids/sets to sets. Thus, ¢ is
injective on each homogeneous component, and by injectivity of ¢, on all of R. [

I1.1.7. graded noetherianity and principality. Here, we introduce termi-
nology required in subsequent results and prove the graded version of Hilbert’s basis
theorem in Theorem [LT.7.5

DEFINITION I1.1.7.1. A K-graded module M over a graded ring R is K -noetherian
or has a noetherian grading, if every graded submodule is finitely generated. R is
gr(R)-noetherian if it is a gr(R)-noetherian module over itself.

ProrosITION I1.1.7.2. The following are equivalent:
(i) M is K-noetherian,
(ii) every ascending chain of K-graded submodules of M becomes stationary,
(iil) every non-empty set of K -graded submodules of M has mazimal elements.

LEmMA I1.1.7.3. Let a;,i € I be an ascending chain of K-graded submodules of

the K-graded R-module M. Then a:=J;c; a; is again a K-graded submodule.

PROOF. Clearly, a contains 0. If a,a’ are elements of a then there exist 4,5 € T
with ¢ € a; and o’ € a;. We may assume that ¢ < j and thus a € a; and
a+ad € aj Ca Ifr e Rthen ra € a; C a and thus, a is a submodule. In
order to see that a is K-graded consider a = @, € a. Then there exists i € 1
with a € a; and hence a,, € a; C a for every w € K. O

ProOF OF ProprosITION [LT7.2l If (i) holds, consider an ascending chain
{a;}icr of K-graded submodules. Then the submodule a := (J; a; is K-graded
and is generated by some rq,...,7rs. Let ¢ € I be an index such that ry,...,rs € a;.
Then a; C a C a; for all k& > 4. The direction from (ii) to (iii) holds in any partially
ordered set and is due to the axiom of choice.

If (iii) holds, let M be the set of all finitely generated K-graded submodules
contained in a given K-graded a < R. Let b € M be a maximal element. For any
r € an Rt we have r € b+ (r) C b by maximality, and thus a = b is finitely
generated. (|

REMARK I1.1.7.4. Let (¢, %) be a morphism of graded rings/R-modules. If the
assigment a — (¢(a)) between the sets of graded submodules is surjective then
graded noetherianity of the domain implies graded noetherianity of the range. If
a= ¢ 1({(¢(a)))e" holds for every graded submodule a then graded noetherianity of
the range implies graded noetherianity of the domain.

THEOREM I1.1.7.5. Let R be a K-graded ring and let R[T] be a K-graded poly-
nomial ring. If R is K-noetherian then so is R[T].

DEFINITION I1.1.7.6. A graded A-algebra R is of finite type over A if gr(R) is
of finite type over gr(A), i.e. gr(R) is a finitely generated gr(A)-algebra, and the
underlying ring of R is of finite type over the underlying ring of A.
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COROLLARY I1.1.7.7. Let ¢: R — S be a degree-preserving graded morphism
such that S is a graded algebra of finite type over R. If R is K-noetherian then so
is S.

Proor oF THEOREM [[LT.7.5l Let b be a K-graded ideal of R[T]. For n > 0
let M,, be the union of {0} and the set of a € R occuring as the leading coefficient
of some K-homogeneous f € b. Then M, is closed under multiplication with RPo™
and under addition of elements of the same K-degree. Thus, the K-graded ideal
a, := (M,) satisfies a,, N R"*™ = M,,. Moreover, we have M,, C M, and hence
{an}n>0 is an ascending chain of K-graded ideals of R. By K-noetherianity there
exists ng > 0 with a,, = ay,, for all n > ng. Moreover, we know that forn =0,...,ng
we have a, = (a, j,j = 1,...,d,) with certain d,, > 0, a, ; € M, N R*. For each
n and j fix f,; € bN R[T]" of maximal-degree n with leading coefficient a,, ;.

We claim that b is generated by the (finite) set of all f,,;, n = 0,...,ng,
7 = 1,...,d,. Otherwise, there were K-homogeneous elements in b which are
no R[T)-linear combination of the f, ;. Among these consider an element g with
minimal maximal-degree m. Then the leading coefficient a of g belongs to a,,. With
k := min(m, ng) we have a € a; and hence there exist 7 ; € Rcg(a)—deg(ar ;) With
a= Z‘;’;l Tk jak,;- But then h = g — T™=F >k Thifrj € b has maximal-degree
smaller than m and hence h is a linear combination of the f, ; which implies that
g is a linear combination of the f,, ; - a contradiction. O

DEFINITION I1.1.7.8. A graded submodule a of a (K-)graded module M over
R is principally graded or K-principal if there exists f € M"™ with a = (f). R
itself is a prinicipally graded A-algebra if each of its ideals is prinicipally graded.

REMARK II1.1.7.9. Let m: S — R be a CBE. Then R satisfies the ascending
chain condition on gr(R)-principal ideals if and only if S satisfies the ascending
chain condition on gr(S)-principal ideals.

PrROPOSITION 11.1.7.10. Let w: S — R,¢: gr(S) — gr(R) be a CBE of A-
algebras, let {e;};cs be generators for ker(v) and for e € ker(¢) let k(e) € Se be the
preimage of 1g. Then for a family {s;}icr C SP°™ the family {m(s;)}icr generates
R over A if and only if {si}iu{m(efl)}j generate S over A. In particular, if ker(¢)
is finitely generated then R is of finite type over A if and only if S is so.

PROOF. For s € S. we have 7(s) = 3 cq w., ;77" with a, € Ahom
where for each v with a, [[, 7} # 0 we have deg(a) + ", deg(r;) = deg(n(s)) and

hence there exists u(*) € @D, Z with e — deg(a) — >_,; deg(s;) = >_; u(-y)ej. Then

J
u)

Zue@i N Hi,j r(e;)"s

I1.1.8. graded primality and maximality. The notion of K-prime ideals
is due to [17].

s/t € S, is mapped to 7(s) and thus equals s. O

DEFINITION I1.1.8.1. A graded ideal p of a K-graded ring R is
(i) K-prime/-radical or homogeneously prime/radical if R*™ N p is prime
resp. radical,
(ii) K-mazximal or homogeneously mazimal if it is maximal among proper
graded ideals of R.
For a K-prime ideal p of R and a graded R-module M (e.g. M = R) the localization
of M atpis M, := (R"™\p)~1 M and the localization map is denoted 1, : M — M,.

REMARK I1.1.8.2. Under the bijection of graded ideals of R and ideals of
the sesquiad (RP*™, R) from Proposition homogeneously prime/maximal
ideals correspond to prime/mazimal ideals of (R**™, R). The latter notions are de-
fined for general sesquiads (also called blueprints) in [22], where they form the basis
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of a corresponding theory of blue schemes, which encompasses (graded) schemes
over F; and Z.

REMARK I1.1.8.3. By Proposition a graded ideal p of a graded ring R
is homogeneously prime if and only if ab C p implies a C p or b C p for all graded
ideals a, b of R.

REMARK I1.1.8.4. A graded ideal a is homogeneously radical if it equals \/ng.
Moreover, an arbitrary ideal a satisfies v/a* = v/ agrgr, because it suffices to check
the equality for homogeneous elements and we have a N Rho™ = & n Rhom

REMARK I1.1.8.5. Let p be a graded-prime ideal of the graded ring R. Then
deg(RM™ \ p) = degsupp((R/p)) is a submonoid of gr(R) and we have

deg(((Ry)"™)*) = deg(Q(R™™ \ p)) = Q(deg(R"™ \ p)) = degsupp(Qg:(R/p)).

Moreover, if R = Ro[f;|i € I] holds with certain f; € R"™ then deg(R"™ \ p) is
the submonoid of gr(R) generated by all deg(f;) with f; ¢ p. Indeed, each g € R,,
is an Ro-linear combination of monomials fi* - - fi'* such that } . n; deg(fi;) = w.
If g ¢ p then one of these monomials does not belong to p and hence none of the
respective f;, do.

REMARK I1.1.8.6. Under graded homomorphisms ¢, homogenized preimages
¢~ 1(a)8" of homogeneously prime/radical ideals a are again homogeneously prime
resp. radical. Specifically, we always have

o (VA = o (Vo) = Vo () = Vot (wE
LEMMA I1.1.8.7. For a graded A-module M the following hold:

(i) M =0 if and only if My = 0 for all gr(A)-prime/-mazimal ideals m < A.
In particular, this holds if M = (f) with f € M"™. In case A is a ring,
fyg € M, thus coincide if and only if f/1 = g/1 holds in My, for all
gr(A)-prime/-mazimal ideals m < A.

(ii) A graded submodule N <4 M is precisely the set of those f € M with
f/1 € Ny for all gr(A)-prime/-mazimal ideals m < A.

(iii) For graded submodules N,N' <, M we have N C N’ if and only if
N C N[ holds for all gr(A)-prime/-mazimal ideals m < A.

PROOF. In all instances the assertion with respect to gr(A)-maximal ideals
implies that with respect to gr(A)-prime ideals via localization. In (i) note that if
there exists 0 # m € M"™ then Ann(m) is proper and thus lies in some gr(A)-
maximal ideal m. Then m/1 € My, is non-zero. The supplement is an application
of (i) to the submodule (f — g).

In (iii) we use the canonical isomorphisms My, /Ny = (M/N )y to obtain that
f/1lies in Ny, if and only if [f]/1 = 057/ /1 holds in (M/N)y. By (ii) we thus have
f/1 € Ny, for all gr(A)-maximal/-prime ideals m of A if and only if [f] = Opr/n,
ie. f € N. Assertion (iv) is a consequence of (iii). O

DEFINITION I1.1.8.8. The graded height or K-height of a K-prime ideal p of
a K-graded ring R is the supremum htg,(p) over all n € Ny which allow a chain
po S ... C p, =p of K-prime ideals p; of R.

The graded dimension or K-dimension of R is the supremum dimg, (R) over all
n € Ny which allow a chain py € ... C p,, of K-prime ideals of R.

REMARK I1.1.8.9. Let S C RP™ be a submonoid. Then by Proposition
the assignments p — S~ 'p and q — zgl (q) define mutually inverse inclusion preserv-
ing bijections between the set of K-prime ideals of R whose intersection with S' is
empty and the set of K-prime ideals of S~!'R. In particular, the map q +— zgl (q) pre-
serves the K-height of K-prime ideals. Moreover, we have S™(, p;) =, S~ 'pi
for each family {p;};csr of K-prime ideals of R whose intersection with S is empty.
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DEFINITION I1.1.8.10. R is K-local, homogeneously local or locally graded if it
has precisely one homogeneously maximal ideal. A graded morphism ¢: R — S
of homogeneously local rings with homogeneously maximal ideals mp resp. mg is
homogeneously local if mpg = ¢~ (mg)8".

REMARK I1.1.8.11. By Remark [[T.1.8.9] graded localizations of graded rings at
prime ideals are locally graded. If ¢: R — S is a graded homomorphism and p < .S
is homogeneously prime then the canonical map Ry-1(,) — Sy is homogeneously
local.

ProprosITION 11.1.8.12. Let a and b be graded ideals of a K-graded ring R.
Then the following hold:

(i) Every intersection of K-prime ideals is K-radical.
(ii) V@ s the intersection over all graded-prime ideals containing a.

(ili) We have vab® =+vanb® =a® nve®.

PrROOF. In (ii) let » € R'™ and set M := {r"},>o. If M intersects a non-
trivially than every K-prime ideal which contains a also contains r. If M Na
is empty then M 'a is proper and hence contained in some K-maximal ideal q.
Then ¢}, (q) contains a but not r because it intersects M trivially. For (iii) we use

Remark [[1.1.8.3| to calculate van b° Ca® N N C+Van 6" O

PROPOSITION 11.1.8.13. Let R be a K-graded ring and let S C R"™™ be a
submonoid.

(i) For a graded ideal a of R we have S~—'\/a* = v/ S—1g".
(ii) If S is generated by a single element f € R"™ then we have S™' (), p; =
N, S~'p; for any family {p;}icr of K-prime ideals.

PrOOF. For (i) consider a/s € STLRM™. If a” € a then (a/s)" € S~'a, which

shows S~1y/a® C v5-Ta""™. If (a/s)" = b/t € S~a holds with b € a and ¢ € S
then there exists u € S with (tua)” € a and hence a/s = tua/stu € S~'\/a*. In

(ii) note that if a/f™ belongs to the right-hand intersection then af lies in every p;
and hence af/f" ™ € ST1 N, pi. O

The following statements will be used for the verification of elementary prop-
erties of Veronesean good quotients of Fi-schemes and graded schemes.

PROPOSITION 11.1.8.14. Let R be a K-graded Fi-algebra (resp. ring) and let
G C K be a subgroup. For a G-graded q <, Rg the ideal m(q) generated by all
K-graded b <p R with bN Rg C q, called the special ideal over q, has the following
properties:

(i) a (homogeneous) element r € R belongs to m(q) if and only if RrNR¢a C q.

(ii) We have m(q) N Rg = q, and consequently, for every K -graded ideal a of
R we have a C m(q) if and only if aN Rg C q.

(iii) For each (G-graded) p <g, Rg we have q C p if and only if m(q) C m(p).
Consequently, we have m((), q;) = (), m(q;) for each family {q;}; of G-
graded ideals of Rg.

(iv) m(q) is proper resp. (homogeneously) prime, radical or mazimal if and
only if q is so, and we have \/m(q)" = m(y/q%).

(v) If q is (homogeneously) prime then the canonical map (Rg)q — (Rm(q))c
1s surjective. In the ring case this map is also injective if no element of
r € Rg allows a (homogeneous) element s € R\ m(q) with rs = 0.

(vi) For each K-maximal ideal a of R, a N Rg is G-mazimal and we have
a=m(aN Rg).
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(vii) For each submonoid S C Rg (of homogeneous elements) we have a canon-
ical isomorphism 7: ST1(Rg) = (S7'R)g and if q is (homogeneously)
prime then S™m(q) = m(3(S~1q)).

PROOF. First note that since intersecting with Rg commutes with sums of K-
graded ideals we have m(q) N Rg C g. For each (homogeneous) r € m(q) we thus
have Rr N Rg C m(q) N Rg C q, which gives (i). For assertion (ii) note that each
f € q satisfies Rf N Rg C (q)r N Rg = q and hence lies in m(q). Assertion (iii)
follows from (ii).

In (iv) note that m(q) N R = q implies that if m(q) is not proper, or (homoge-
neously) prime/radical than so is q. If ¢ = R then m(q) = R by definition. Now,
let g be (homogeneously) prime. For (K-graded) a,b < R with ab C m(q) we then
have (aNRg)(bNRg) C abN Ri C q which implies aN Rg C qor bN Rg C g, ie.
a Cm(q) or b C m(q).

If g is (homogeneously) maximal, and m(q) € n holds with a (K-graded) ideal
n then ¢ € nN Rg holds by (iii), and the assumption gives n N Rg = Rg and
hence n = R. Conversely, if m(q) is (homogeneously) maximal, and ¢ € n holds
with a (G-graded) ideal n then m(q) C m(n) holds by (iii). By assumption, we have
m(n) = R and hence n = R¢g by (ii).

Concerning graded radicals, we use that by Proposition and assertion
(iii) m(,/g®") is the intersection of (homogeneously) prime ideals m(p) where p ranges
over all G-prime ideals containing q.

In (v) consider (homogenous) a € R\ 0,s € R\ m(q) with deg(a) — deg(s) € G.
By definition of m(q) there exists a (homogeneous) b € R with bs € Rg \ ¢, in
particular b € R\ q, and we conclude that a/s is the image of (ab)/(sb) € (Rg)q.
Assertion (vi) follows from (iv).

For (vii) consider r € Ry, and s € S,. If Rr N Rg C ¢ then for each a € Ry
and t € Sy with w+w —v —v" € G we have w + w’ € G, i.e. ar € q and
(a/t)(r/s) € S71q. Conversely, if ST1R(r/s) N (ST1R)g C 7(S~1q) then for each
a € Ry with w+ w' € G we have ar/1 = b/t with b € q and ¢t € S. Thus there
exists u € S with tuar = ub € q and (homogeneous) primality gives ar € g. (Il

ProprosiTION I1.1.8.15. Let R be a K-graded ring, let v: K — G be an epi-
morphism and let p be a K-prime/-mazimal ideal. Then there exists a G-prime/-
maximal ideal q such that p is the ideal qx generated by all K-homogeneous elements

of q.

PRrOOF. First consider the case that p is K-maximal. Let M be the set of
G-homogeneous ideals a with ag = p. Then M is non-empty because it contains p.
Moreover, for every chain a;,i € I in M the union a := J,; a; is again an element
of M. Indeed, a is a G-graded ideal by Lemma By Zorns Lemma M has
maximal elements. Let q be one of these. We claim that q is G-maximal. Indeed,
if b is a G-graded ideal properly containing ¢, then p C bgx. But b cannot belong
to M due to maximality of q in M and thus we have p C bg and K-maximality of
p implies bx = R, i.e. b = R.

Now, consider the general case where p is K-prime. Let 1,: R — R, be the
canonical map. By the above, there exists a G-maximal ideal a of R, with ax = p,.
We claim that the G-prime ideal q := z;l(a) satisfies qx = p. Indeed, if f is a
K-homogeneous element of qx then ¢,(f) € a is K-homogeneous and thus belongs
to pp which implies that f € 2, 1(pp) = p. Conversely, if f is a K-homogeneous
element of p then 4,(f) € pp = ax C a and hence f € 1, ' (a) = q. O

PRrOPOSITION I1.1.8.16. Let F' be a totally ordered group. A K & F-graded ideal
a of a K@ F-graded ring R is K ® F-prime if and only if it is K-prime. Moreover,
the K-radical of a equals the K & F-radical of a.
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PROOF. Let p be K @ F-prime. Let g and h be K-homogeneous with gh € p.
Let g = gn, + ...+ gn, and h = hy,, + ... + hyp, be the decompositions into
F-homogeneous parts, written in ascending order with respect to their F-degree.
F-homogeneity of p yields gn,hm, € P, SO gn, € P Or hp, € p by K & F-primality
of p. Now we have (g — gn,)h € p or g(h — hyn,) € p and by induction on the sum
of the numbers of F-homogeneous parts of g and h, we get g € p or h € p.

Now, suppose that for h as above there exists n € N with A" € a. Since
hy, . is the (nm;)-homogeneous part of A", hy,, belongs to the K @ F-radical. In
particular, we have h,,, € v/a and hence h—h,,, € v/a. By induction on the number
of K @ F-homogeneous parts of h we obtain h,,, € v/a for each 1. a

PROPOSITION I1.1.8.17. Let M be an integral graded Fy -algebra such that gr(M)
is a totally ordered group and let R be a K-graded ring. Consider R[M] equipped
with a K -grading that coarsens the canonical K @ gr(M)-grading and extends the K -
grading of R. Then an ideal a <p R is K-prime/-radical if and only if b := (a) rjan

is K-prime/-radical. Moreover, we have w(a}R[M]gr = <\/agr>R[M].

PROOF. First note that K-primality /-radicality of b implies K-primality resp.
-radicality of a = b N R. Now, consider the induced K & gr(M)-grading of R[M]
given by deg(ax™) = degy(a) + degy (x™) + deg(m). Note that this grading has
the same homogeneous elements as the canonical K @ gr(M)-grading.

If a is K-prime consider f,g € R"™ and m,n € M with fx™gx™ € b. Then
fg € a by Example and we may assume f € a which means fx™ € b.
This shows K @ gr(M)-primality with respect to the induced grading, and hence
K-primality by Proposition Lastly, let fx™ € R[M] be K & gr(M)-
homogeneous and let n € N. If f*x™™ € b then f™ € a by Example[[I.1.4.17] which
means fx™ € <\/ag‘">R[M], and conversely, if f € a then f™"x™ € b. This shows
the K & gr(M)-radical (i.e. the K-radical) of b is (v/a*') g O

ExamMPLE I1.1.8.18. Each torsion-free abelian group allows the structure of a
totally ordered group. Thus, the above Proposition holds in particular for graded
polynomial rings R[T;|i € I] = R[P,; No| with canonical gr(R) & P, ; Z-grading.

I1.2. divisibility theory of graded rings

In this section we develop the divisibility theory of graded rings ananogously
to the divisibility theory of their sets of homogeneous elements, thereby laying the
foundation for discussions on (invariant) divisors and Cox sheaves in later chapters.
As a class of examples of K-Krull rings which occur as sections of Cox sheaves
we treat natural algebras over (graded) rings of Krull type in Subsection In
Subsection [[T.:2:2] we prove a criterion for graded factoriality of a given ring R in
terms of factoriality of Veronese subalgebras of suitable localizations of R. The
latter condition may in turn be verified in terms of exponent vectors occuring in
relations among generators of R.

For K & F-graded rings, where F' is free, we show that behaviour with re-
spect to coarsening to the induced K-grading is very well, with K @& F-integrality/-
factoriality/-normality being equivalent to K-integrality /-factoriality /-normality,
see Subsections [[1.2.1] and [[T.2.7] respectively. Moreover, K @& F-simple rings are
K-factorial, and R is a K @ F-Krull ring if and only if it is a K-Krull ring, in which

case we have Clggr(R) = Clg (R), see Theorem [[1.2.5.15

I1.2.1. graded integrality and simplicity. A ring is a field if and only if
it is simple as a module over itself, meaning it has only trivial ideals. In order to
avoid an ambiguous term like graded field we instead speak of simply graded rings.
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This fits into the terminology of simple monoids resp. Fi-algebras as those with
only trivial ideals, see Definition

DEFINITION 11.2.1.1. A K-graded ring R such that R"™ is integral/simple is
called K -integral/-simple or integrally/simply graded.

REMARK I1.2.1.2. The homogeneous zero divisors of a graded ring R coincide
with the zero divisors of RM™,

REMARK II.2.1.3. A graded ring R is integrally graded if and only if RP°™ has
no zero divisors. Moreover, under these conditions if a € RP™ \ 0 satisfies ab = ac
with arbitrary b, c then b = c.

Indeed, if in the latter case ab = ac holds with a € RP™ \ 0 and arbitrary
b,c € R then b = ¢ because a(b, — ¢;,) = 0 and hence b,, = ¢, holds for all
w € gr(R).

REMARK I1.2.1.4. A K-graded ideal a of a K-graded ring R is K-prime/-
maximal if and only if R/a is K-integral/-simple. In particular, K-maximal ideals
are K-prime.

REMARK I1.2.1.5. A graded ring R is K-simple if and only if {0} and R are the
only graded ideals.

DEFINITION I1.2.1.6. The homogeneous fraction ring of an integrally graded
ring R is Qg (R) := (RM™\ 0)"!R. For a K-graded ring R we will also write
QK (R) instead of Qg (R) to distinguish the K -homogeneous fraction ring from the
fraction rings defined by suitable gradings of other groups on R.

ExamMPLE I1.2.1.7. Let M be a graded Fi-algebra and let A be a graded ring.
Then the Q(M)*-graded ring R = A[M] is integrally graded if and only if A is
integrally graded and M is integral. Moreover, if A is a field then all ideals of RPo™
are sesquiad ideals and the natural maps between ideals of M and graded ideals
of R resp. M-modules of Q(M) and graded R-modules of Qg (R) = K[Q(M)] are
mutually inverse bijections.

REMARK I1.2.1.8. Let R be a K @ F-integral ring, where F' is a totally ordered
abelian group. Then the following hold:
(i) Ris K-integral.

(ii) all K-homogeneous units are K @ F-homogeneous.

(iii) The monoid of non-zero K @& F-homogeneous elements is a face of the
monoid of non-zero K-homogeneous elements. In particular, if a is a non-
zero K-homogeneous element such that Ra contains a non-zero K & F-
homogeneous element then a is K @& F-homogeneous.

(iv) If a/bis a fraction of K-homogeneous elements such that R(a/b) is K& F-
homogeneous then there exists a fraction of K @ F-homogeneous elements
c¢/d with a/b = c¢/d. Indeed, we have decomposition a/b = (1/d) ), cp cu
where d, ¢, are K @ F-homogeneous. But then ¢ := )" ¢, is K ® F-
homogeneous because Rec = RdR(a/b) is K & F-homogeneous.

REMARK I1.2.1.9. A graded polynomial ring R’ := R[T;|i € I] has the same
homogeneous units as R, and is integrally graded ring if and only if R is. Moreover,
if R is integrally graded then RP°™ \ 0 is a face of R™°™ \ 0.

ProprosiTION 11.2.1.10. Let R be a K & F-simple ring, where F is free, and
denote by prp: K ®@ F — F the canonical map. Then for a basis v;,i € I of
G = pry(deg(R"™\ 0)) and elements r; with prp(deg(r;)) = viwe obtain a degree-
preserving isomorphism ¢: Rxgo[G] — R by sending x** to r;.
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PrOOF. For surjectivity note that for a r € RB™ \ {0} there exist I; with
deg(r) — >, liv; € K and thus r = ¢(r iri_l’i [1, x"). For injectivity note that if
> a5l 77 =0, where aj € Qgr(R)f, then a;[[; 7. = 0 and hence a; =0. O

ExampLE I1.2.1.11. Let A be an integral domain, let M C K and N C L be
submonoids of abelian groups K and L. Let Q: K — L be a homomorphism of
groups such that Q(M) C N. Then the induced homomorphism ¢: A[M] — A[N]
has kernel

ker(¢) = (x* — x¥ | v,w € M,v — w € ker(Q)).

Indeed, if f = a1x™* + ...+ agx™? is an element of the kernel of ¢, then we may
suppose that all w; have the same image under ). Thus Z?Zl a; = 0 and we may
write f as

1 j

= <Z az) (X" = x"7 ).
j=1 \i=1

Since A[N] is L-integral, so is im(¢) and therefore the ideal ker(¢) is L-prime. If

M is a subgroup of K then ker(¢) = (x" —1 | v € ker(Q) N M).

REMARK I1.2.1.12. Each graded module M over a simply graded ring R is free.
Moreover, each maximal homogeneous R-linearly independent family in M and each
minimal homogeneous generating family of M is a basis.

DEFINITION I1.2.1.13. A K-noetherian K-local ring (R, m) is K-regular or reg-
ularly graded if its graded dimension (in the sense of Definition [[I.1.8.8)) equals the
rank of the free R/m-module m/m? (i.e. the length of a R/m-basis of m/m?).

I1.2.2. graded factoriality. The notion of graded factoriality is due to [17]
where it was proven to be a characterizing property of Cox rings. We reduce graded
factoriality to factoriality of rings in Theorem [[I.2.2:4] and give a sufficient condition
for the latter via Proposition [[1.2.2.6]

DEFINITION I1.2.2.1. Let R be a K-integral ring.

(i) r € Rh™ is K-prime/-irreducible or homogeneously prime/irreducible if
7 is prime/irreducible in R"o™.
(ii) R is K-factorial or factorially graded if RP*™ is factorial.

PROPOSITION I1.2.2.2. Principally graded rings in the sense of[II.1.7.§ are fac-
torially graded.

PRrROOF. If the grading of R is principal it is noetherian and Lemma
reduces the problem to showing that every irreducible p € RM™ is prime. By
definition, (p) is maximal among all the principal ideals of homogeneous elements
- so in our case among all homogeneous ideals. Thus, R/(p) is simply and hence
integrally graded. O

REMARK 11.2.2.3. For a K-factorial ring R which is finitely generated over a
graded subring A each system P of K-primes of R and each system of homogeneous
generators { f; };cr determine a system {g; };e of pairwise non-associated K-primes
and homogeneous units of R which generates R over A. Specifically, each f; is
a unique product of a homogeneous unit and elements of P, and all the factors
occuring in such products make up {g;};.

The behaviour of factoriality of monoids with respect to localization was dis-
cussed in Propositions [[.2.6.10] and [[.2.6.15] Using theses statements we prove the
following criterion for graded factoriality.
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THEOREM 11.2.24. Let R = K[f1,..., f.] be a K-graded algebra over the field
K which is generated by primes fi,...,fs and units feiq,...,fr of RM™. Let
S C RM™ pe the multiplicative submonoid generated by fi,...,fs. Then R is K-
factorial if and only if (S~1R)g is factorial.

Proor. By Propositions [[.2.6.15] and [[.2.6.16] K-factoriality of R is equivalent
to K-factoriality of ST'R. Since (STIR)P™ = ((S~1R)P™)*(S~!'R)y, Proposi-
tion [[.2.2.13| gives that S~ R is K-factorial if and only if (S~'R)g is factorial. [

In the situation of Theorem we have a degree-preserving epimorphism

K[Ty,...,Ts, Tsi_i_l17 ..., TF] — R whose kernel is generated by certain homogeneous
elements h; € K[Ty,...,Ts, Tsﬁlh ..., T-#+1]. Fix Laurent monomials 7% such that

deg(T" h;) = O and an isomorphism 2: K[T5, ... T — K[TH, ... TF,. Let
gi be the unique Laurent polynomial with 2(g;) = T h;. Then we have an induced
isomorphism (S™'R)o = K[TE, ..., TE)/ (g1, -, gm)-

REMARK 11.2.2.5. If for a set gi,...,gm of Laurent polynomials we have g; —
Tpmyi € K[TEY, ..., TE ] then

K[Tlil’ s aTr:Ltl]/<gl7 s ’gm> = K[Tlilv s ’Trtijm](91*Tn7m+1)'“(9m*Tn)
is factorial.

Recall that the support of a Laurent polynomial g € K[Tlil, ..., TF], denoted
Supp(g), is the set of exponent vectors u € Z™ such that T% occurs with a non-
zero coefficient in g. By the primitive span of a set of vectors in Z™ we mean the
saturation of their linear span.

ProposIiTION 11.2.2.6. Let g1,...,9s € K[Tlﬂ, .., T, Suppose there exist
u; € Supp(g;) fori = 1,...,m such that for the primitive span N of the set of
vectors | J;—, (Supp(g;) \ {w:}) the sublattice 3" | Zu; + N is primitive in Z" and
equals @, Zu; ® N. Then K[Tlil, o TEY g1, - ., gm) is factorial.

PRrROOF. Let upy1,...,ux € N be a basis of N. Then uy,...,u; is a basis of
@D." | Zu; ® N which due to primitivity in Z" we may complete to a basis u1, ..., u,
of Z™. Then h; := a;lgi —T" is a Laurent polynomial in T%m+1 ... T"k. Let ¢ be
the automorphism of Z™ mapping u; to the i-th standard basis vector e;. Under the
corresponding automorphism ¢ of K[Tlil, .., TF], #(h;) is a Laurent polynomial

in Thy41,...,1r and by Remark
K[Tlilﬁ ce 7Tnil]/<glv s 7gm> = K[Tli17 “e ’Tvzijm]¢(h1)"'¢(hm)

is factorial. O

In the following we indicate how to check the condition of Proposition
via Smith Normal Form calculations. Recall that the Smith Normal Form of an
integer matrix A is the unique matrix SNF(A) of form

(03)

(i) D is diagonal with positive diagonal entries satisfying D; ;| D11 i+1,
(ii) there exist unimodular matrices S and T with S+ A-T = SNF(A).

REMARK II.2.2.7. In the Setting of Proposition let A be the matrix
whose columns are the elements of |J!*, Supp(g;) \ {v;} and let B be the matrix
whose columns are the vectors uy,...,u,,. Let S,T be unimodular matrices such
that SAT is in Smith Normal Form, set [ := rank(A) and let C be the matrix whose

such that
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rows are rows [+ 1 to n of the matrix SB. Then the condition of Proposition

holds if and only if
SNF(C) = ( E; > .
Onflfm

The condition that 27;1 Zu; + N is a direct sum and primitive in Z™ may be
checked by calculating a set v1, ..., v, of generators of IV and ascertaining that the
non-zero part of the Smith Normal Form of the matrix

U:=[v1,.. ., U, UL,y Un]
is Ejm. Choose k =1 and v; = S~'e; for i = 1,...,1. Then our task amounts to
calculating

SNF(U) = SNF(SU) = SNF([ey, ..., e1, SB]) = SNF ( aed )

and the non-zero part of this Smith Normal Form is Ej,, if and only if the non-zero
part of SNF(C) is Ey,.

I1.2.3. graded divisors of integrally graded rings. Here, we introduce the
monoid of graded divisors in terms of which we later characterize homogeneously
completely integrally closed rings, graded valuation rings and graded rings of Krull

type.

DEerFINITION 11.2.3.1. Let R be a K-integral ring. A non-zero K-principal R-
submodule of Qg (R), i.e. a submodule of the form Rf with some non-zero f €
Qgr(R)hom, is also called a K -principal divisor or graded principal divisor of R. A
graded R-submodule of Qg (R) which is contained in a graded principal divisor is
a graded fractional ideal.

REMARK II1.2.3.2. If a is a non-zero K-graded R-submodule of Qg (R) then
(Rhom\ 0)7la = Qg (R). Indeed, if a,b € RP™ \ 0 are given and f/g € a is a non-
zero homogeneous fraction, then af = (ag)(f/g) € a and hence a/b = (1/bf)(af) €
(Rhom \ O)_la.

REMARK 11.2.3.3. Every finite intersection of non-zero graded R-submodules
of Qg (R) is again non-zero. Indeed, if a,b are submodules containing non-zero
homogeneous elements a = vw ™' resp. b = a2y~ ' where v,w,z,y € M, then
vx = wzra = vyb is contained in their intersection.

Moreover, products and finite sums of fractional ideals are again fractional.
Indeed, if a C Rf and b C Rg with homogeneous fractions f = uv~! and g = 2y,
then ab C M fgand a+b C Mv—ly~ L.

REMARK 11.2.3.4. Let ¢: R — S be a morphism between integrally graded
rings with ker(¢) N R'™ = {0g}. Let ¢: Qu(R) — Qu(S),7/t — ¢(r)/é(t) be
the induced morphism. Then for a fractional graded ideal a <gr Qg (R), (¢(a))s is
fractional.

CONSTRUCTION I1.2.3.5. A graded divisoris a non-zero intersection over a (non-
empty) family of graded principal divisors. For each graded fractional ideal a the
intersection div®"(a) over all graded principal divisors containing a is a graded
divisor. The set Div®"(R) of graded divisors endowed with the operation send-
ing D,D" € Div®"(R) to D + D’ := div(DD’) is a monoid with neutral element
Opiver(r) := R. Setting D < D" if and only if D 2 D’ turns Div® (R) into a par-
tially ordered monoid, called the graded divisor monoid of R. It comes with the
divisor homomorphism

dive": Qgr(R)hom \ 0 — Div®"(R), f+— div®'(f) :=div®"(Rf) = Rf

whose image PDiv® (R) is the subgroup of graded principal divisors. The factor
monoid CI#'(R) = Div®(R)/PDiv® (R) is the graded divisor class monoid of R.
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ProrosiTION 11.2.3.6. There is a canonical isomorphism
Div® (R) «— Div(R"™)
D+ DN Qg (R)™™
(E)r «— E

which restricts to an isomorphism PDiv® (R) — PDiv(RIO™).

PROOF. Evidently, each f € Qg (R)"™ \ 0 satisfies Rf N Qg (R)P°™ = Rhom f
and R(RPMMf) N Qg (R)P°™ = RMOMf. This establishes the claim on principal
divisors and for D € Div®"(R) we see that the set D N Qg (R)™™ = Npcrys Rhom ¢
is indeed a divisor of RPo™.

On the other hand, for a divisor £ = (1, RMom f; of RP°™ given by a family
fi € Qg(R)™™\ 0,i € I we claim that (E)g = (;c; Rfi. If r € R"™\Oand g € F
then rg € Rh™ f; for every i and hence rg € (), Rf;. Conversely, if g € Qg (R)"™\0
lies in every Rf;, then for every i there exists r; € RM™ such that g = r;f; which
means that g € E C (F)g. Thus, (E)g is a graded divisor of R.

To see that R(D N Qg (R)"™) = D note that the left hand side is by definition
a graded R-submodule of D. For the other inclusion let f € D be homogeneous.
Then 1f € R(D N Qg (R)1o™).

For the equation £ = ((E)g) N Qg (R)"™ consider a product rf € (E)g of
homogeneous elements. Then rf € E because r € RP™, O

COROLLARY 11.2.3.7. The graded divisor monoid of R has the following prop-
erties:

(i) For f,g € Qu(R)™™\ 0 with f + g € Qg:(R)™™\ 0 we have
div® (f + g) > div®" (RS + Rg) = inf{div® (f), div® (g)}.
(ii) For each D € Div®'(R) we have

D:{wa|fw:() ordivgr(fw)szoralleK}.

weK

PROOF. For (ii) let D € Div®(R). For g € Qg (R)"™ \ 0 we have g € D if
and only if Rg C D, i.e. div¥'(g) > D. If f =3y fuw is the decomposition into
homogeneous parts then f € D if and only if for every w € K with f,, # 0 we have
fuw € D, ie. div¥(f,) > D. 0

REMARK I1.2.3.8. Let R be an integrally K & F-graded rings where F' is to-
tally ordered. Then coarsening via the projection map K & F' — K defines a
monomorphism Divggr(R) — Divg (R) which respects principality and induces a
homomorphism Clggr(R) — Clg(R) which is injective due to Remark

11.2.4. graded valuation rings and graded Euclidean rings. As a prepa-
ration for the notion of graded rings of Krull type we introduce graded valuations.
Moreover, we discuss graded Euclidean rings and in particular, polynomial rings of
simply graded rings.

DEFINITION I1.2.4.1. A K-graded ring R is a (discrete) graded valuation ring if
Rhom s a (discrete) valuation Fy-algebra. A K-prime element of a discrete graded
valuation ring R is called a homogeneous uniformizer of R.

DEeFINITION I1.2.4.2. A (disrecte) graded valuation or K-valuation on a K-
simple ring S is a homomorphism of semigroups v: (S2°™)* — G to a totally ordered
group G (resp. to Z) such that v(a+b) > min{v(a),v(b)} holds for all a,b € (Shom)*
with a + b € (S"°™)*. A surjective graded valuation is called normed.
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ProrosiTiON 11.2.4.3. Let R be an simply K & F-graded ring where F is a
totally ordered group. Then each graded valuation v on R extends to Qk(R) via
v(a) = min{v(a,)|u € F,a, # 0} and v(a/b) := v(a) — v(b) for non-zero K-
homogeneous a,b € R.

ProOOF. For K-homogeneous non-zero a,b € R let v and v be minimal with
respect to the chosen order such that a, and b, are non-zero and we have v(a) =
v(a,) and v(b) = v(b,). Using that ig u < v’ and v < v’ hold then u 4+ v < v’ + v’
we obtain v(ab) = v(ayby,) = v(ay) + v(b,) = v(a) + v(b). This shows that v is a
graded valuation on Qg (R). O

DEeFINITION 11.2.4.4. A euclidean graded ring is an integrally graded ring R
with degree function or euclidean function §: R?™ \ 0 — Ny such that for each
f € Rb™ and g € RP™ \ 0 there exist ¢,r € R"™ with f = gg+r and 6(r) < 6(9)
orr=0.

REMARK I1.2.4.5. A K-valuation v on a K-simple ring S defines a K-valuation
ring S, such that Sio™ = p=1(Gso) U {0}, v=1(0) = (SE°™)* and S = Qg (R).
Conversely, for a K-valuation ring R the map div: (Qg (R)"™)* — PDiv,,(R) is a
normed K-valuation and we have R = Qgr(R)div.

REMARK I1.2.4.6. A discrete graded valuation ring R is locally and factorially
graded and each homogeneous uniformizer generates the unique maximal graded
ideal of R. Furthermore, R together with (divg, )| gnom o is euclidean.

REMARK I1.2.4.7. In a euclidean graded ring R each non-zero graded ideal
a < R is generated by one of its homogeneous elements f € a with minimal degree

(S(f) € Np.

PrOPOSITION 11.2.4.8. For a graded polynomial ring R[T] the following are
equivalent:

(i) R[T] is principally and integrally graded,
(ii) R[T] is euclidean,
(iil) R is simply graded.

PROOF. If R is simply graded then let f = ag7° + ...+ a,, 7™ € R[T]™™ and
g="boT’+ ...+ b,T" € R[T|™™ \ 0 with a;,b; € R*™ and ay,, b, # 0. If m =0,
then f = 0-g+ f is as wanted. Let now m > 0. We only need to consider the
case m > n. Then f':= f — b, an,T™ "g € R[T]qeq(s) and by induction we find
q',r € R[T|™™\ 0 with f' = ¢’g+7 and r = 0 or deg,,,...(7) < deg,,...(g). Thus, we
get f = qg +r where ¢ := ¢ + b, ta,, T™ "

If R is principally and integrally graded then T is K-prime and hence K-
irreducible. Thus, (T) is maximal among principal ideals of K-homogeneous el-
ements, i.e. among all graded ideals. Consequently, all non-zero K-homogeneous
elements of R = R[T]/(R) are units. O

REMARK 11.2.4.9. For a graded homomorphism ¢: R — S between simply
graded rings the following hold:

(i) Each graded valuation v on S defines a graded valuation y := /0 ¢|grom\o
on R which valuates ¢~*(1g) N R"™ trivially, and the associated graded
valuation rings satisfy ¢(R,) C S,. If ¢ is a CB then R, — S, is a CB.

(ii) If p is a graded valuation on R and SP™ = A¢(R"™) holds with a
subgroup A C Shm\ 0 such that ¢~1(A) N RP°™ C ker(u) then setting
v(ag(r)) := p(r) for a € A and r € RP*™ \ 0 defines a valuation on S,
and we have ¢(R,) C S,. If ¢ is a CBE then R, — S, is a CBE.
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I1.2.5. graded rings of Krull type. Now, we define and characterize graded
rings of Krull type and introduce homomorphisms of monoids of graded divisors.
Moreover, we study Krull property and class group under coarsening from a K & F-
grading to a K-grading, where F' is free.

DEeFINITION I1.2.5.1. An integrally graded ring R is of Krull type if it is the
graded subring of a simply graded ring S and there is a (possibly empty) family of
discrete graded valuations v;, ¢ € I such that

() R =ies Sui>
(ii) for each 0 # a € R"™ there are only finitely many i € I with v;(a) # 0.

The family {v;};cr is then said to define R in S.

REMARK I1.2.5.2. If a family {v;};cs defines R in S, then the restricted family
{Vi|(Qgr(R)h°m)* }i defines R in Qgr(R)

If Rhm is of Krull type then the minimal positive elements 3(R), called the
K -prime divisors, form a basis of Divg,(R) = Div(R2™). If no confusion can arise
we write or 9 for B(R). Due to Corollary for each p € B the composition of
div®" with the projection Divg,(R) — Zp is a graded valuation, called the essential
graded valuation corresponding to p. It restricts to the essential valuation vpngnom
of the prime divisor p N R"™™ € P(RM™). Since {Vpnpghom}p define R™™ as an
[Fi-algebra of Krull type {v,}, define R as a graded ring of Krull type. Thus, we
have the following.

PROPOSITION 11.2.5.3. A graded ring R is of Krull type if and only if R™™ is
of Krull type.

ProrosiTiON 11.2.5.4. For a K-Krull ring R the set of K-prime divisors has
the following descriptions:

PB(R) = {D € Divg(R)>0 | D is prime}
= {q € Divg(R)>0 | q is a K-prime ideal of R}
={q < R|q is K-prime with hty.(q) = 1}

PROOF. From Div,,(R) = Div(R"™) and Chapter [I| we obtain all but the last
equality. If D € Divy,(R) is K-prime and p C D is a non-zero K-prime ideal
then p N R"™ C DN RP™ is an inclusion of non-empty prime ideals which implies
p N RP™ = DN RM™ and hence p = D. Conversely, if q is a minimal non-zero
K-prime ideal then Rgom is the intersection over all R, where p is a K-prime divisor
lying in q. Since Rq # Qg (R) such a p exists and minimality gives q =p € *B. O

PROPOSITION 11.2.5.5. The family of essential K-valuations {vp}peqpar) of a
K-Krull ring R is minimal among all families of valuations defining R in Qg (R).
Moreover, for each p € B we have Qg (R),, = Ry and p N R™™\ 0 = vy H(N).

REMARK 11.2.5.6. Each K-prime ideal q in a graded ring R of Krull type ring
satisfies
Ry= (] Qu®, = [] Ry

PEP(R) pEP(R)
pCq pCq

In particular, if ¢’ is another K-prime ideal then q C ¢’ if and only if every K-prime
divisor p inside q is also contained in q'.

REMARK I1.2.5.7. Due to Remark for every homogeneously prime di-
visor p of a K-Krull ring R there exists f € R'™ such that p; is K-principal in
Ry.
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REMARK I1.2.5.8. Let R;,7 € I be a family of K-Krull rings in the K-simple
ring S. If every non-zero homogeneous element f of R := (), R; is a unit in all but
finitely many R; then R is a K-Krull ring.

DEFINITION I1.2.5.9. Let R be a K-Krull ring defined by {v;}icr in Qg (R).
For each graded fractional ideal a set v;(a) = maxqc gy vi(f) = vi(a N Qg (R)1O™).

CONSTRUCTION 11.2.5.10. Let ¢p: R — S be a morphism between graded rings
of Krull type. Then the composition 84: Divg (R) = Div(RP™) — Div(Shom) =
Divg, (S) of the canonical maps is the natural homomorphism of graded divisor
monoids induced by ¢.

ProprosiTION 11.2.5.11. Let ¢: R — S be a morphism between simply graded
rings. Let {v;}ier be a family of graded valuations on S and let {u;}ier = {vi o
@|(rrom)- Yicr be the corresponding family of graded valuations on R. Let R’ and S’
be the intersections of all the rings R, resp. S,,.

(i) If {vi}; defines S’ as a graded ring of Krull type in S then {u;}; defines
R’ as a graded ring of Krull type in R, and if SPo™ = (§'hom)*p( Rhom)
then the converse is true. Moreover, in the latter case {v;}ic1 are then the
essential graded valuations of S’ if and only if {u;}icr are the essential

graded valuations of R'.
(ii) If ¢ is a CB(E) then so is R’ — S’.

REMARK I1.2.5.12. Let R’ := R[T;|i € I] be a graded polynomial ring over a
K-Krull ring R and consider the grading by L := K & @, Z assigning to T; the
degree (degy (T3), e;). Then the monoid of non-zero L-homogeneous elements of R’
is the coproduct (in this case, also the Cartesian product) of the abelian monoids
Rbom \ 0 and €, Ng. Thus, by Remark R’ is an L-Krull ring and we have
Cl (R 2 Clg(R).

REMARK I1.2.5.13. Let F be a totally ordered abelian group. Let {v;};cr be
a family of K @ F-valuations defining a K @ F-Krull ring R in S such that for
non-zero s € S"°™ the set of i with v;(s) # 0 is finite. Then the extended family
{p;}i from Proposition defines a K-Krull ring R’ in Qx(5).

Indeed, if f = f1 + ...+ f, is a decomposition into K ¢ F-homogeneous parts
of the same K-degree then the set of all ¢ with u;(f) # 0 is contained in the union
of all ¢ with v;(f;) # 0 where j =1,...,m.

LEMMA 11.2.5.14. Let F' be a totally ordered abelian group. For a K & F-graded
K-Krull ring R the following hold:

(i) The prime K& F-graded divisors p of the K® F-Krull ring R are precisely
the prime K-graded divisors of R which are K & F-homogeneous, i.e.
those which contain a non-zero K @& F-homogeneous element.

(ii) the canonical map f: Divger(R) — Divig(R) induced by the map from
the K & F-graded ring R to the K-graded ring R coincides with the map
from Remark[II.2.3.8 Consequently, it preserves primality of graded di-
visors and the induced map Clggr(R) — Clg (R) is a monomorphism.

PRrROOF. If p € P (R) contains a non-zero K @ F-homogeneous element 7 then

we have
b= J] 97" Cdivker(b)=RrCp.
1€Prar(R)

Thus, we have q C p for some q € Prgr(R), and K-primality of q gives q = p.

For q € Prer(R) the K @ F-graded localization R’ at q is again a K-Krull
ring defined by the K-valuations of all p € Px(R) contained in q. If r € g\ 0 is
K @ F-homogeneous it cannot be a unit in R’ and thus there exists p € Px(R)
with r € p C q. Since p is then K @ F-graded we conclude p = q.



68 II. GRADED ALGEBRA AND DIVISIBILITY THEORY OF GRADED RINGS

For (ii) note that by (i) for each K-graded prime divisor q the K & F-graded
ideal qxer generated by the K @ F-homogeneous elements of q is {0} or ¢, in
particular Clggr(Rqxer) = 0 holds. Thus, we have §(D) = divg(D) = D by
Proposition O

THEOREM 11.2.5.15. Let R be a K & F-graded ring, where F is free. Then R
is a K & F-Krull ring if and only if it is a K-Krull ring. Moreover, the canonical
map Clggr(R) — Cli(R) is an isomorphism.

PROOF. Suppose that R is a K @ F-Krull ring. Let R’ be the K-Krull ring
defined by the extensions of the essential K ¢ F-valuations of R to Qx(R).

We claim that Qxgr(R), which by Proposition is Qrez(R)k[G] for
a subgroup G of F, is K-factorial. Then R = R' N Qggr(R) is again a K-
Krull ring, and due to K-factoriality of Qxgr(R), Clgx(R) is generated by the
classes of K-prime divisors containing a non-zero K & F-homogeneous element. By
Lemma these are the K @ F-graded prime divisors of R and the canonical
homomorphism Clggr(R) — Clg(R) is bijective.

If rk(F) = 1 then K-factoriality of Qxgr(R) follows from Propositions
and[[1.2.:2.2] Therefore K @ Z-factorial rings, and inductively K & Z™-factorial ones,
are K-factorial. By Remark (Laurent) polynomial rings in m variables over
a K-simple ring S are K @ Z™-factorial and hence K-factorial by the above. This
shows the claim for the case that F is finitely generated. For an arbitrary Laurent
polynomial ring S" := S[T*'|i € I] note that an element h is K-prime if and
only if it is K-prime in one (and hence each) Laurent polynomial ring in finitely
many variables including those occuring in h. Thus, each K-homogeneous non-zero
non-unit of S’ is a product of K-primes. This proves the claim. O

We have now generalized the factoriality criterion from [2] the following.

COROLLARY 11.2.5.16. A K & F-graded ring, where F is free is K ® F-factorial
if and only if it is K-factorial.

In the above proof we also showed the following two statements:

COROLLARY 11.2.5.17. Graded polynomial rings over factorially graded rings
are factorially graded.

COROLLARY 11.2.5.18. K @ F-simple rings, where F' is free, are K-factorial.

REMARK 11.2.5.19. Let R be factorially graded, let G < gr(R) be a subgroup
with R = Rg[f;|i € I] for certain primes f; of R"™. Then by Remark the
localizations Ry at all p € PB(R) satisfy deg((Rpo™)*) + G = (deg(R"™ \ 0)) + G if
and only if for all i € I we have (deg(R"™ \ 0)) + G = (deg(f;)|5 € I\ {i}) + G.

I1.2.6. natural divisorial algebras over Fi-algebras and graded rings.
In this section, A denotes a graded Fi-algebra or ring. The graded A-algebras of
Krull type discussed here are modeled after divisorial Ox-algebras and have similar
properties.

DEFINITION II.2.6.1. Let A be an integrally graded F;-algebra resp. ring. A
Veronesean algebra A C R (in the sense of Definition is natural if R is
integrally graded and the assignment (Qg, (R)1™)* — Dive"(A), f — Rf N Qg (A)
defines a homomorphism.

In the following, we consider algebras :: A C R over a F;-algebra/graded ring
A with R being integrally graded. We then denote Qg (A) by A" and Q4 (R) by R'.
Lastly, we denote gr(A) by K.

REMARK 11.2.6.2. For a natural Veronesean algebra A C R the following hold:
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(i) degsupp(R) + K equals (degsupp(R)) + K because R4k # 0 holds for
each w € (degsupp(R)).

(ii) R’ coincides with the localization of R by the non-zero (homogeneous)
elements of A because for each (homogeneous) f € R there exists g € R
such that gf~* € A’\ 0. Consequently, we have R} = A’, and Rf N A’ =
R_., 4k f holds for each f € R),.

(iii) The special ideal over {0} is m({0}) = {0}, because Rf N A is non-zero
for each (homogeneous) f € R.

(iv) In the case of rings we have R_,,  x (f+g) > inf{R_y+x f, R—wi+Kg} for
fyg € R, with f+ g # 0 because R_y1x(f+9) C R_wikf+ Rwikg
holds.

ExaMPLE I1.2.6.3. Let A be an integrally graded F;-algebra/ring, let M be a
simple graded monoid and let ¢ be a monoid homomorphism from M to Div(A)
resp. Div®"(A). Let R be the graded A-subalgebra of the gr(A) @ gr(M)-graded
A'-algebra A'[M] with Ryt = ¢(—w)yx* for v € gr(A),w € G. Then A C
R is natural and is called the divisorial A-algebra associated to ¢. Indeed, the
map ax” +— Rax™ N Qu(A) = ¢(w) + div(a) constitutes the required a group
homomorphism.

ProrosITION 11.2.6.4. An A-algebra A — R is Veronesean and natural if and
only if there exists a divisorial A-algebra S and a CBE 7w: S — R of A-algebras.

PROOF. Let ¢: L — gr(R) be a map from a free abelian group L such that the
composition with the canonical map gr(R) — gr(R)/K is surjective. Then the map
v K®L — gr(R),w+v — w+¢(v) is also surjective. Let L' := ¢~ (degsupp(R’))
and let S’ be the Veronese subalgebra A'[L] ke equipped with the K & L-grading.

Let {e;};cr be a basis of L’ and choose a non-zero f; € R;}(ei) for each 7 € I. For
v=">Neset f =TI, f[\ Sending x¥ to f¥ then defines a CBE 7: S — R’ of
A’-algebras with accompanying map . Each 7,: S|, — R;s( )1k Testricts to an
isomorphism S,y x := (Rf7"NA")x" — Ry(y)+x because Rf ""NA" = Ry 4k 7"
The A-subalgebra S generated by all S, is then divisorial and 7 restricts to a
CBE 7: S — R. O

ProrosiTiON 11.2.6.5. Let 1: A C R be a Veronesean algebra with A of Krull
type. Then 1 is natural if and only if R is of Krull type and the canonical map
B, of divisor monoids is an isomorphism of partially ordered groups. Moreover, in
these cases with p denoting the composition of deg with the quotient map gr(R) —
gr(R)/K the following hold:

(i) For each p € PB(Rg) the corresponding gr(R)-prime ideal m(p) from
Proposition equals B(p). In particular, Ry is K-local if and
only if Rk is gr(R)-local.

(i) For q € P(R) each homogeneous uniformizer of Aqna is a homogeneous
uniformizer of Ry, i.e. deg(((Rq)"™)*) + K = (deg(RM™\ 0)) + K.

(iii) Denote by D(—) and C(—) the monoids of (graded) divisors resp. their
classes. Then in the following diagram of abelian groups the rows, columns
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and the dashed sequence are exact:

PrOOF. If A is of Krull type then for every p € PB(A) composing the p-th
projection pr, with the canonical map f — Rf N A’ defines a (graded) valuation
pp on R'. The family {4 }peq(a) then realizes R as an Fi-algebra/graded ring of
Krull type in R’ and thus Proposition [[.2.6.9|implies that $, is an isomorphism.

If B, is an isomorphism then its inverse a sends p € PB(R) to pN Rx and direct
calculations show that sending f to Rf N A’ = a(Rf) defines a homomorphism.

In (i) note that for p € P(A) each q € P(R) with q C m(p) satisfies a(q) =
ANg C p by Proposition and hence a(q) = p. Thus, m(p) contains no
q € P(R) apart from G(p) and hence equals 5(p).

Assertion (ii) follows from (i) and the fact that §, preserves primality. O

REMARK I1.2.6.6. Let Ry C R be a natural algebra of Krull type and let
S C R}}é’m \ 0 be a submonoid. Then S™1Rx C S™1R is natural.

I1.2.7. graded normality. Throughout this section, R is a K-integral ring.
We introduce graded normality and show that in presence of graded noetherianity
it is equivalent to the graded Krull property.

DEFINITION I1.2.7.1. Let R C S be a degree-preserving inclusion of integrally
graded rings. The (complete) integral graded closure of R in S is the graded ring
Intg, (R, S) (resp. CInt(R,S)) generated by all homogeneous elements of S which
are integral over R (resp. almost integral over R in the sense of Definition .
For S = Qg (R) we use the notation Intg. (R). To clarify the grading in question we
will denote the grading group K as an index when neccessary. If R equals Intg, (R)
(resp. Clntg(R)) then R is normally graded or K-normal (resp. K-completely
integrally closed, or K-CIC).

REMARK I1.2.7.2. The classical theory on integral closures already provides the
fact that sums and products of integral elements are integral. Moreover, we always
have Int(Rhom, Shom) C Intg, (R, )™ and Clnt(RMO™, SPom) = Clntg, (R, S)hom.

PROPOSITION 11.2.7.3. We have Intg (R, Qgr(R)) C Clntg, (R, Qgr(R)). If the
grading is noetherian, then equality holds.

Proor. If f* = Z;:Ol a; f* holds with f = g/h € Qg (R)"™, a; € RM™ and
n € Nthen h" " 'fm ¢ Rform=1,...,n—1 and hence /"' f* € R. For m > n
and b= h""! we have bf™ = 32"~ a;bf™ " and obtain bf™ € R by induction
over m.
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For the second part let f € Qg (R)"™\0 such that there exists g € RP°™\0 with
gf™ € Rforalln € Z~(. Then the chain of ideals defined by a,, := (gf* | 1 <k < n)
is stationary, so there exists an n with gf"*' = "  r;gf* for certain r; € R.
Dividing by gf gives an integrality equation for f. O

COROLLARY 11.2.7.4. A K-noetherian ring is a K-Krull ring if and only if it
is K-normal.

PRrROOF. By Proposition we know that R is K-cic. By K-noetherianity,
maximal elements exist in all sets of K-homogeneous ideals of R, in particular, in
sets of non-negative graded divisors. O

ProrosiTiON 11.2.7.5. Let ¢: R — S be a graded homomorphism between
integrally graded rings with RP™ N ker(¢) = {0}. Denote the induced map by
¢ Qgr(R) — Qge(S). Then the following hold:

(i) We have ¢/ (Intg,(R)) C Intg,(S). If ¢'~1(S)8 = R then graded normality
of S implies graded normality of R.

(ii) If ¢ is CB then ¢/ '(Intg(9))8" = Intg (R). If we additionally have
Shom _ (Shom)*(b(Rhom) then Intgr(S)hom _ (Shom)*¢l(1ntgr(R)hom), n
particular, graded normality of R then implies graded normality of S.

(iii) If ¢ = wnr is a localization map then Intg, (M ~'R) = M~ 'Intg (R). In
particular, graded normality of R implies graded normality of M~ R.

PROOF OF PROPOSITION In (ii) first note that if the image of a ho-
mogeneous fraction a/b satisfies an integrality equation with homogeneous coef-
ficients then for degree reason these may be chosen to lie in ¢(R2™). For the
second statement let f/g c Qgr(S)hom \ 0 be integral over S with f,g € R™\ 0.
Then (f/g)" = > 70 a;(f/g)" holds with certain a; € S(,,— des(f/a): Let s¢,s4 €
(Shomy* with fs; = ¢(b),gsy = ¢(c) where b,c € R'™. Then s'tsg aZ = ¢(d;)
holds with d; € R(,—s)deg(asp)- Multiplying the above equation Wlth sy " yields

B((b/)") = B(S7, di(b/c)') and hence (b/c)" = S di(b/c)'.

In (iii) note that since tps(Intg, (R)) C Intg (M ~'R) we have M~ 'Intg, (R) C
Intg, (M ' R). For the converse let f/g € Intgr( _1R)h°m\0. Then there are n € N
and a;/m; € M~'RM™ with (f/g)" = Zl _0 (a;/m;)(f/g)t. Set m:=mg-- my,_1.
Multiplying the above equation with m™ turns gives mf/g € Intg (R), so f/g €
M Intg, (R). O

REMARK 11.2.7.6. For degree-preserving inclusions A C R C S of integrally
graded rings we have

Intg, (A, S) = Intg, (A4, Intg (R, S)), Clntg, (A, S) = Clntg, (A4, Clnte, (R, S)).

PROPOSITION I1.2.7.7. [25] Let S be integrally K & F-graded where F is totally
ordered and let R C S be a graded subring. Then we have

IntK(R, S) = IntK@F(R, S), CIntK(R, S) = CIDtK@F(R, S)

PrOOF. For w € K let h € S, satisfy A" = >_1" L ah? with a; € Rin—iyuw

and let h = Z =1 hy; be a decomposition into K & F-homogeneous parts with
uy < ...<ug. Then hy is the term of lowest F-degree in h™ and hence equals the
nui-homogeneous part of the right-hand side of the equation, i.e. h,, is integral
over R. Thus, i — hy, is integral over R and by induction, each h,,; is.

If h € S, satisfies gh™ € R for some g € R, then consider homogeneous
decompositions h as before and g = 22:1 gm,, into K @ F-homogeneous parts with
ascending F-degrees. Then g,,, hy;, is the m; + nuj-homogeneous part of gh™ and
hence belongs to R. Thus, h,, and thereby h — h,, belong to Clnt,, (R, S) and
inductively, every h,, does. O
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COROLLARY 11.2.7.8. A K & F-graded ring R, where F is free, is K @ F-
normal/-CIC if and only if it is K-normal/-CIC.

PROOF. Set S := Qrer(R). K-factoriality of S, which is due to Corol-

lary [[1.2.5.18] gives Intx (S, @k (S)) = S and Clntx (S, Qx (S)) = S. Consequently,
we have Intg (R, Qi (S)) = Intggr(R,S) and Clntg (R, Qk (S)) = Clntggr (R, S)

by Remark and Proposition O

ProrosiTioN 11.2.7.9. Let M be an integral F1-algebra. With respect to the
canonical Q(M)*-grading we then have Intg,(K[M]) = K[Int(M)]. In particular, M
is normal if and only if K[M] is normally graded.

PROOF. For f = ax® € Intg (K[M]),, there exist n > 0 and g; € K[M](,—)w
with [ = Z?:_Ol gi f*. Since f™ # 0 there exists an 7 such that g; # Ox. But then
(n —i)w € M and we conclude w € Int(M).

Conversely, for w € Int(M) there exits n > 1 with nw = v € M and hence
(x")™ = chi* € K[M] which means x* € Intg, (K[M]). O

THEOREM 11.2.7.10. The following are equivalent:

(i) R is normal,
(ii) every graded localization R, at a K-prime ideal p is K-normal,
(iii) every graded localization Ry at a K-mazimal ideal m is K-normal.
Proor. If (iii) holds then for every K-maximal m < R we have
(Intg, (R)/R),, = Intg(R)m/Rm = Intg(Rm)/Rw =0

using in turn the fact that localization commutes with factor modules and integral
closures, and the assumption. Lemma [II.1.8.7|now gives Intg, (R)/R = 0. O



CHAPTER III

Sheaves of Krull type

This chapter assembles sheaf-theoretic preparation for later chapters. Sec-
tion [[TL.1] features criteria for the sheaf property which will be applied in the context
of structure sheaves of graded schemes as well as a criterion which captures in which
sense the sheaf property is a continuity property, see Proposition Struc-
ture sheaves of graded schemes fall into one of several classes of sheaves of graded
objects which will be juxtaposed in Section [[II.2] where we also treat the various
sheafifications. Section [[TI.3]discusses spaces with structure sheaves as well as mod-
ules over them. In Section [[TL.4] we introduce valuation sheaves which assign Z or 0,
valuations on sheaves, leading to the concept of sheaves of Krull types, which is the
sheaf-theoretic analogon of graded monoids or rings of Krull type. The existence of
a canonical Krull structure will later be a key property of Cox sheaves and structure
sheaves in the setting of graded schemes (over Z or Fy) of Krull type where we have
a suitable notion of Weil and principal divsiors, see Chapter [V} In order to study
the relation between Cox sheaves and divisorial O x-algebras we treat component-
wise bijective epimorphisms of graded presheaves in Section in general and the
behaviour of the Krull property under them in particular. Parts of the last two sec-
tions were published by the author in [6]. Throughout, we work with a topological
space (X, x) but usually write only X with the topology 2x understood.

III.1. ¢-sheaves on bases and continuity properties of ¢-sheaves

Recall that a €-presheaf F on a topological space (X, {x), i.e. a contravariant
functor Qx — €, is a €-sheaf if for every open U C X and every cover U = | J;; U;
the diagram given by all the morphisms F(U;) — F(U; N U;) has limit F(U) in
€. For later application we list two criteria for a €-presheaf F to be a €-sheaf.
The first clarifies in what sense the sheaf property is a continuity-property, see
Remark The second is a well-known criterion in terms of a basis of Qx
which is stable under finite intersections. We start by recalling the concepts of basis
of a topology and stalk of a presheaf at an irreducible closed subset.

ConsTRrRUCTION II1.1.0.1. Let (X,Qx) be a topological space and let B be a
basis for Qx, e.g. B=Qx. Then defining B(U) as the subset of those V' € B with
V C U constitutes a Set°P-presheaf which is also denoted B.

REMARK II1.1.0.2. A non-empty topological space X with basis B is irreducible
if and only if for all non-empty U,V € B there exists a non-empty element of

B(U) N B(V).

DEFINITION II1.1.0.3. Let € be a category with all directed (i.e. upward-
directed) colimits. The stalk Ry of a €-presheaf R on X at a closed irreducible
subset Y C X is defined as the colimit of the diagram given by all R(U), where runs
through the inclusion ordered, downward-directed set of all U € Qx with UNY # (.

For a point x € X the stalk at xz is R, := r

ExaMPLE II1.1.0.4. For a topological space (X, Qx) with a basis B and a closed
irreducible subset Y C X the stalk By of B, considered as a presheaf in the sense

73
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of Construction [[II.1.0.1] is (canonically isomorphic to) the set of all U € B with
uny #10.

REMARK II1.1.0.5. If B is a basis of the topology Q2x on X and the category €
has directed colimits then for a €-presheaf 7 on X and an irreducible closed Y C X,
the canonical morphism C' := colimyeg, F(U) — Fy is an isomorphism.

For the inverse choose Wy € By N B(U) for each U € Qy and consider the
morphism F(U) — F(Wy) — C. These morphisms are compatible with restricition
morphisms because B is directed and hence induce a morphism Fy — C' which is
the required inverse.

DErINITION II1.1.0.6. Let F be a €-presheaf on X. Let B be a N-stable basis
of Qx. Then F is a &€-sheaf with respect to B if whenever U € B has a cover by
{Ui}ier C B then F(U) is the limit in € of the diagram given by all the morphisms

In the following the equivalence of (i) and (ii) appears to be a new result, while
the equivalence of (i) and (iii) is well-known.

ProrosiTiON II1.1.0.7. Let F be a €-presheaf on X. Let B be a N-stable basis
of Qx. Then the following are equivalent:
(1) F is a €-sheaf with respect to B,
(ii) F sends small B-colimits which are also Set-colimits to €-limits,
(i) F sends small codirected (i.e. downward-directed) B-colimits to €-limits.

COROLLARY II1.1.0.8. A €-presheaf on X is a sheaf if and only if it takes
Qx -colimits which are also Set-colimits to &-limits.

REMARK II1.1.0.9. For a €-presheaf F on X consider the associated covariant
functor F': QF — €. Then Proposition [[II.1.0.7| relates the sheaf property of F
with respect to a basis BB to preservation of certain limits under .7-'" gop+ 11 that sense,
the sheaf property may be viewed as a continuity property.

PROOF OF PROPOSITION [IT.1.0.7] Suppose that F is a sheaf with respect
to B. Let D: I — B,i+ U; be a diagram where I is a small category and the
morphisms of B are the inclusions of open sets. Suppose that U € B is a colimit
of the diagram obtained by composing D with the inclusion functor from B to Set.
Then for every x € U there exists ¢ € I with € U;. Moreover, for every i,j € I

with x € U; N Uj there exist ¢ =if,...,47; =j € I such that for each | we have
x € U;, and for [ = 1,...,n — 1 there exists a morphism ¢; — 441 or 411 — 7.

We consider the choice of if to be fixed for the remainder of this proof and set
UZ‘Z:UQQOU%I € B.

Let K be the category defined as follows. The objects of K are the objects of
I plus one object k; ; for each unordered pair i,j € I, i.e. for each subset of ob(I)
of cardinality 2. Besides the morphisms of I and the identity morphisms K has
the morphisms k; ; — ¢ and k; ; — j for ¢ # j € I. Then D induces a diagram
D': K — B and again, U is the colimit of the diagram obtained by composing D
with the inclusion functor B — Set. For k € K we use the notation Uy, := D' (k).

Let A be an object of € together with morphisms ¢;: A — F(U;) such that
pg] o ¢; = ¢; holds whenever there exists an I-morphism ¢ — j. We show that this

defines morphisms ¢ : A — F(Uy) such that pgf o ¢, = ¢; whenever there exists a
K-morphism k — [. For i,j € I consider k = k; ; and x € Uy. Then for every open
V C Uffj we have

Py O¢i1’:"':pv oqﬁiw.

Indeed, assuming that Uz-;s - Ui;s+1 we have
U;z U.x U;x U.z

1+1 . . 1 I+1 i _ K3 i
Py © ¢zf+1 =Py © va;f © ¢z'f+1 =py © ¢zf-
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Now, for x € Uy we set ¢, := pg}] op; = pg}J o ¢;j. For x,y € Uy restricting
. . uUE, v
to U, N Uﬁj then gives an equality prf;ﬂU?,j o ¢, = pU;{;ng]. o ¢, and by the
sheaf property on B there exists a unique morphism ¢r: A — F(Ug) such that
Op = pg’;_ o ¢y, for each . Now, uniqueness implies pgk o¢; = ¢ = pgi o @;.
i.j

Again by the sheaf property, there exists a unique morphism ¢: A — F(U)
such that ¢ = p{j jo ¢ for all k € K. For ¢': A — F(U) with ¢; = pf; o ¢’ for all
1 € I we then also have

U U; _ _ U; _ U /
PO, , 0P = P, , © i = bk, ; = P, , © ¢i=py,, 00

for all ¢, 5 € I and by uniqueness of ¢ we conclude ¢’ = ¢, which establishes (ii).
Suppose that (iii) holds and let U = |J,.;U; € B with U; € B. Let J be the
opposite of the (upward-)directed category of finite subsets of I with inclusions as
morphisms. Then U is also the Set-colimit of the diagram & sending 7 € J to
Uj :=(\;e; Ui- By assumption, F(U) is the limit of 7 o . Let ¢;: A — F(U;) be
morphisms for ¢ € I such that we always have PgilmU-, o ¢y = pgij’_, o ¢;. Then
composing with the appropriate restricition maps gives a system of morphisms
¢j: A — F(Uj) satisfying the necessary compatibility conditions. Thus, there
exists a unique morphism ¢: A — F(U) with ¢; = pgj o ¢. For any morphism
@'+ A — F(U) with ¢; = pgi o ¢’ for i € I we obtain ¢; = pgj o ¢’ by composing
with the appropriate restricition maps. Now, uniqueness of ¢ implies ¢ = ¢/,
showing that F(U) is the limit over all pgszi/. ]

ProrosiTION II1.1.0.10. Let F be a €-presheaf on X and let B be any basis of
Qx. Then F is a C-sheaf if and only if the folllowing conditions are satisfied:

(i) F is a €-sheaf with respect to B.

(ii) for W € Qx we have F(W) = limyenpmw) F(U), i.e. F(W) is the
limit over the diagram defined by all morphisms p%: F(U) — F(V) where
UVeBuwithV CUCW.

Proor. If F is a €-sheaf then Corollary yields (i) and (ii). For the
converse suppose that conditions (i) and (ii) hold. For an open set V' € Qx denote
by By the intersection of B with the powerset of V. Let V = UjeJ V; be an open
cover. Let ¢;: A — F(V;) be morphisms with P\anv,@ °o¢; = px‘;?mvk o ¢r. Let
U € By. For every W € Byny, set ow,; := p% o ¢j. Then for each two j, k € J
with W € V; N Vi, we have ¢w; = ¢w, and therefore set ¢pw = ¢w ;. Let U be
the set of those W € By which are contained in some V}. Then by (i) there exists a
unique morphism ¢rr: A — F(U) with ¢y = pY, o ¢y for every W € U. Moreover,
for U’ € By with U’ C U we have ¢y = p¥, o ¢ry. Now, (ii) provides a unique
morphism ¢: A — F(V) with ¢y = pg o ¢ for every U € By. Since

Py © b5 = dw = piy 0 b = py o (py, © d)
holds for every W € By, condition (ii) implies ¢; = p“fj o ¢. For uniqueness,
consider ¢': A — F(V) with ¢; = p“fj o¢'. For U € By and W € Byny, we then

have ¢y = ply 0 ¢’ = pY, o pt; 0 ¢'. Now (i) implies ¢y = pY; o ¢’ and (ii) in turn
gives ¢ = ¢'. O

II1.2. Sheaves of graded algebras and modules

Given any category €, PrShe(X) and She(X) denote the categories of €-
presheaves and -sheaves on X, respectively. For the remainder of this chapter let A
be a graded monoid /F;-algebra/ring and let € denote one of the categories GrAlg 4
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or GrMody. Let « be the structure map of a gr(A)-algebra/-module K. By &Y
we then denote GrAlg), resp. GrMod)).

In this section, we define several categories of €- resp. €7-(pre-)sheaves and
basic notions derived from such (pre-)sheaves. Afterwards, we treat the sheaf prop-
erty and sheafification before turning to the construction of adjoining one presheaf
to another.

DEFINITION I11.2.0.1. A graded (pre-)sheaf of modules/algebras over a monoid,
[Fi-algebra or ring B is a (pre-)sheaf R of B-modules/-algebras together with a
decomposition of presheaves R =[], . gr(R)(X) R., into subpresheaves of B-modules
with gr(R)(X) being a set resp. an abelian group set such that we have R, R, C
Ryt for all w,w' € gr(R).

REMARK II1.2.0.2. Graded (pre-)sheaves of B-algebras/-modules canonically
form a subcategory of (pre-)sheaves of graded algebras/modules with fixed accom-
panying object over the O-graded ring B. In the presheaf case, this is an equality.

The above notion is useful in the description of invariant structure sheaves of
quasi-torus actions and their Cox sheaves, as well as structure sheaves and Cox
sheaves of graded schemes of Krull type. However, it is too strong for the general
case of structure sheaves of graded schemes because due to absence of noetherianity
of the respective topological spaces the latter may fail to be Ring-sheaves, instead
only being GrRingK -sheaves.

DEFINITION II1.2.0.3. For a €-presheaf R fix the following notations.

(i) If Ais a graded ring and R is a €-presheaf then R™ denotes the composi-
tion of R with the functor (—)"°™ from graded A-algebras resp. -modules
to graded AM°™-algebras/-modules. If A is a graded monoid or F;-algebra
then we set Rh°™ := R and if A is a graded monoid than we take R"°™\ 0
to mean just R.

(ii) gr(R) denotes the composition of R with the grading object functor gr.

(iii) If A is a graded monoid/Fi-algebra and €= GrAlg,, then R* denotes
the composition of R with the units functor (—)* from € to simple graded
monoids.

CoONSTRUCTION II1.2.0.4. Let R be a €-presheaf on X. If for open sub-
sets U C V of X the gr(R)-restricition from V to U maps degsupp(R(V)) into
degsupp(R(U)) then the resulting presheaf degsupp(R) of sets is the degree support
presheaf associated to R, and we say that degsupp(R) exists.

A sufficient condition for the existence of degsupp(R) would be that R™ \ 0
defines a presheaf, i.e. pf;(R(V)Pm\ 0) C R(U)M™ \ 0 holds for all open subsets
U CV of X. In this case, degsupp(R) is the image presheaf of the homomorphism
deg: Rh™\ 0 — gr(R) of presheaves of sets.

REMARK II1.2.0.5. Let R be a &-presheaf on X and let B C X be closed and
irreducible.

(i) If A is a graded ring then (Rp)™ = (Rhom)p.

(ii) If A is a graded monoid or Fy-algebra and €= GrAlg, then we have
(Rp)* = (R*)B.

(iii) If degsupp(R) exists then we have degsupp(Rp) = degsupp(R)p in
gr(Rp) = gr(R)s-

(iv) If A is an Fj-algebra without zero divisors and R \ 0 is a presheaf of
graded (A \ 0)-algebras/-modules then we have (R\ 0)g = Rp \ 0.

Not to be confused with the degree support presheaf defined above is the fol-
lowing;:
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DEFINITION II1.2.0.6. Let R be a €7-presheaf, where v is a gr(A)-algebra/-
module structure on K. The degree support set of R is the set degsupp®* (R) of all
w € K for which R, is not the zero-sheaf, i.e. the union over all degsupp(R(U))
for U € Qx.

REMARK II1.2.0.7. Let X be irreducible and let R be a €7-presheaf on X. Then
degsupp®®* (R) is equal to the degree support of the stalk Rx of R at X.

DEFINITION II1.2.0.8. The category of (pre-)sheaves of graded A-algebras/-
modules with fixed accompaniment, denoted (Pr)Shesx(X), is the full subcategory
of PrS&he(X) defined by all (Pr)Shes (X) where § runs through the structure maps
of all algebras/modules over gr(A). Its objects are called €*-(pre-)sheaves.

Recall that a presheaf G is constant if the restriction maps between sections of
arbitrary open sets are identity maps.

REMARK I11.2.0.9. PrShenx(X) is just the subcategory of those presheaves R of
graded A-algebras/-modules for which the presheaf gr(R) is constant. In particular,
if (¢,) is a morphism in PrSherix(X) then 1 is a morphism of constant presheaves
of gr(A)-algebras/-modules, i.e. ¥x = 1y holds for all open U C X, and we treat ¢
as a homomorphism of gr(A)-algebras/-modules. Shgsix(X) is the full subcategory
of those PrShesx(X)-objects R which are ¢9"(R)(X)_sheaves. Its intersection with
the category of sheaves of graded A-algebras/-modules is the category of sheaves of
0-graded A-algebras/-modules.

CONSTRUCTION II1.2.0.10. Let R be an object of (Pre—)Shgnx(X). For each
w € gr(R(X)) the (pre-)sheaf R, (U) := R(U), of abelian groups is called the
w-th homogeneous component of R. This defines the structure of a graded presheaf
of Ap-algebras resp. -modules depending on whether € was the category of graded
A-algebras or -modules. Moreover, for a subgroup G C gr(R(X)) the (pre-)sheaf
Ra = [Lyeq Rw is the corresponding Veronese subalgebra.

DEerINITION II11.2.0.11. A homomorphism ¢ of €- or €”-presheaves on X is
called Veronesean if ¢y is Veronesean in the sense of Definition for each
open U C X.

REMARK II1.2.0.12. Let R be an object of (Pre—)Sheg:ix(X) and let B C X be
closed and irreducible. Then for each w € gr(R) the inclusion (Ry)p € (Rp) is
surjective onto (Rp)qy-

We now turn to statements on the sheaf property and sheafification.

REMARK II1.2.0.13. If A is a graded ring then a ¢f*-sheaf 7 on a noetherian
topological space X is automatically a sheaf of non-graded A-algebras/-modules
due to Proposition [[I.1.3.§]

REMARK I11.2.0.14. If A is a graded ring then a €- resp. €7-presheaf R is a
sheaf if and only if RP°™ is a sheaf of graded AP™-algebras/-modules.

REMARK II1.2.0.15. Depending on whether A is a monoid, F;-algebra or ring
let ® denote the category of sets, pointed sets or abelian groups. Let 7 be a fixed
gr(A)-algebra/-module structure on K. Then a €7-presheaf R is a €7-sheaf if and
only if each R, w € K is a ©-sheaf. i.e. a Set-sheaf.

REMARK II1.2.0.16. Let R be an object of Shenx(X). Then for each family
{Ui}ier of open sets, where I is non-empty, gr(R(J,;U;)) is the limit of the di-
agram defined by all morphisms gr(R(U;)) — gr(R(U; NUj)),i,j € I. Due to
Proposition this means that R(|J, U;) is the €-limit of the diagram de-
fined by all morphisms R(U;) — R(U; NU;). Thus, R is a €-sheaf if and only if
gr(R(0)) = {0}.
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CONSTRUCTION II1.2.0.17. Let R be an object of PrShgsix (X) resp. PrShe(X).
Let G denote gr(R) resp. its sheafification. For U € Qx and w € G(U) let R¥(U),,
be the set/pointed set/group of all (fz)ecv € [[,cr (Re)w, such that for every
x € U there exist V € Qp, and g € R(V)I™ with gy = fy for every y € V. Then

RU):= [ RO
wegr(R)H(U)
defines a €-sheaf on X. The sheafification functor (—)* thus defined is left adjoint
to the inclusion of €-sheaves (with fixed accompanying gr(A)-algebra/-module) on
X into €-presheaves (with fixed accompanying gr(A)-algebra/-module) on X. By

restricition to subcategories, we obtain a left adjoint to the inclusion of Shev(X)
into PrShe-(X).

REMARK II1.2.0.18. Let R be an object of Shgnx(X) resp. She(X) and let
S C R be a subpresheaf. For each z € X denote by 1,: {x} — X the canonical
inclusion. Let S®) be the preimage of ()., 'S under the canonical homomorphism
R — (14)+2;'R. Then the sheafification of S is canonically isomorphic to the
intersection over all S@) for z € X.

Recall that a sheaf is constant if it is isomorphic to the sheafification of a
constant presheaf.

ExAMPLE II1.2.0.19. Let S be a constant €7-sheaf on an irreducible space X
and let R be a subpresheaf. Then the following hold:

(i) All restricition maps to sections over non-empty sets are monomorphisms,
as are canonical maps to and between stalks. In particular, two sections
on U and V which define the same stalk at some point agree on U N V.
Moreover, we have Ry = Upcq, , R(U) in S(X).

(ii) R is a €7¥-sheaf if and only if it is a Set-sheaf, i.e. if and only if R sends
unions to intersections.

IT1.3. Algebras and modules over sheaves and spaces with structure
sheaves

We discuss operations such as tensor products of O-(pre-)modules, radicals of
(O-ideals and adjunction of one sheaf to another, as well as gluing of spaces with
structure sheaves. 7: gr(A) — K will denote a fixed gr(A)-algebra structure map.
First, we treat algebras and modules over (pre-)sheaves, in particular, ideals of a
(pre-)sheaf.

DEFINITION I11.3.0.1. For a €-/¢€7-/¢f*_(pre-)sheaf R the category of objects
under R is denoted (Pre—)Algy. Its objects are called (pre-)algebras over R or
R-(pre-)algebras. If R is a @- or €M*-(pre-)sheaf then for a fixed gr(R)-algebra §
we denote by (Pre—)Alg% the subcategory of R-algebras with accompanyment 6.

DeFINITION I11.3.0.2. Let € and © denote the categories of graded A-algebras
and -modules, respectively. Let O be a €-/€7 or €% (pre-)sheaf and correspond-
ingly, let M be a D-/D°- or D*(pre-)sheaf on X, where in the second case, §
denotes the structure map of a module over the gr(A)-algebra v: gr(4) — K.

An O-(pre-)module structure on M consists of homomorphisms p: Ox M — M
and \: gr(O) x gr(M) — gr(M) of presheaves of sets such that uy and Ay define
a graded O(U)-module structure on M(U) for every open U C X. We then say
that M is an O-(pre-)module with p understood.

A morphism of O-(pre-)modules is a homomorphism ¢: M — M’ of presheaves
of A-modules together with a homomorphism : gr(M) — gr(M’) of presheaves
of gr(A)-modules such that each (¢y,1ry) is a morphism of O(U)-modules. The
category thus defined is denoted Modp resp. PreModp.
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In case O is a €-(pre-)sheaf consider a gr(O)-(pre-)module G with structure
homomorphism of presheaves A\. Then (Pre—)Modi‘9 denotes the subcategory of
(Pre—)Mod,, whose objects all have A as their accompanying gr(O)-module struc-
ture, and whose morphisms are all accompanied by idg.

In case O is a €fi*_(pres-)sheaf consider a gr(O(X))-module G with structure
map A. Then (Pre—)ModE\9 denotes the subcategory of (Pre—)Mod,, whose ob-
jects all have A as their accompanying gr(O(X))-module structure, and whose mor-
phisms are all accompanied by id¢.

REMARK I11.3.0.3. Let O be a ¢-/€%_presheaf and let M be an object of
PreModo resp. PreModf‘g. Then applying sheafification yields an object M* of

Mod s, Modgn or Modypy;, the last two cases depending on whether \ defines a
gr(0)- or gr(O(X))-module structure.

CONSTRUCTION I11.3.0.4. Let O be a €-/€7- or €% (pre-)sheaf and let M and
N be O-(pre-)modules. Then the tensor product of M and N is the O-premodule
M ®p N which sends U to the tensor product M(U) @o(y N (U), resp. the O-
module obtained via sheafification of the former.

If A is the structure homomorphism of a gr(O)-(pre-)algebra G or a gr(O(X))-
algebra G, depending on whether O is a €- or a €M*-(pre-)sheaf, then the tensor
product of (Pre—)Mod’\O—objects M and N is the PreMod-object M ®o N

which sends U to the GrMod()‘Q[fU)— or GrMod)(‘g(U)—object MU) @owy N(U),

resp. the Modg‘g—object obtained via sheafification of the former.

DEFINITION I11.3.0.5. Let R be a €-/€7-(pre-)sheaf of and let Z be an R-
sub(pre-)module of R, i.e. an R-(pre-)ideal. The graded radical of T is the R-(pre-

)ideal VI* assigning \/I(U)gr to U. T is homogeneously radical if T = VI" .
REMARK II1.3.0.6. For a preideal Z of the €-/€7-sheaf R the following hold:

(i) IfZ is homogeneously radical then all its stalks are homogeneously radical.
In case 7 is an R-ideal the converse also holds.

(ii) If Z is an R-ideal and B is a basis of X then (\/fgr)u(U) is generated by
those (homogencous) f € R(U) which restrict to elements of vVZ° (U;)
for some family {U;};c; C B covering U.

(i) (VZ®)HU) = VZ° (U) holds for each quasi-compact U, which means
that (\/fgr)ti = V/Z* holds if X is noetherian.

(iv) If 7 is an Ox-ideal and X has a basis B of quasi-compact open subsets
then Z is homogeneously radical if and only if Z(U) is homogeneously
radical for each U € B.

Next, we treat the concept of adjoining one presheaf to another.

CONSTRUCTION II1.3.0.7. Let A be a graded monoid/IF;-algebra and let B be
a graded F;-algebra/ring. Let € denote GrAlg, or GrMod 4 and correspondingly,
let © denote GrAlgg or GrModpg. Fix a gr(A)-algebra/-module structure map -
and a gr(B)-algebra/-module § structure map. Likewise, let € denote GrAlg 45
or GrMod 4p), and denote by §7 the induced gr(A)[gr(B)]-algebra/-module struc-
ture.

For a €-/€7-/¢M_presheaf C and a ®-/D°-/D*-presheaf R on X let R[C] be
the €-/@7-/¢M_presheaf assigning R(U)[C(U)] to U. This defines a functor from
the category of €-/€7-/& % presheaves to the category of &-/¢%7-/¢* prealgebras
resp. premodules over R which by Lemma is left-adjoint to the forgetful
functor.

REMARK I11.3.0.8. For a presheaf R|C] of the type constructed above the stalk
at a closed irreducible Y C X is canonically isomorphic to Ry [Cy] due to Proposi-
tion LI.1.5.7
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REMARK III.3.0.9. Let X be irreducible and let R be a presheaf of (constantly)
graded Fq-algebras/rings and let C be a presheaf of (constantly) graded algebras or
modules over {1} resp. F;. Suppose further that preimages of zero are zero under
the restricition maps of R (and C if applicable). Then by Proposition RIC]
is a sheaf if and only if R[C](0) is terminal and for each family of open sets {U,; }ier
with I # 0, R(J, Us) is the limit of the diagram defined by all the restricitions
R(U;) — R(U; NU;) and C(|J, U;) is the limit of the diagram defined by all the
restricitions C(U;) — C(U; N Uj).

ExaMPLE I11.3.0.10. For a graded IFy-algebra/ring A denote by A[C] the presheaf

A[C] constructed in Construction [I11.3.0.7] with A being the constant presheaf as-
signing A.

CONSTRUCTION II1.3.0.11. Let F be a A[€]-presheaf on X. Then for each open
U C X there exists a unique €-object G(U) with F(U) = A[G(U)]. This defines
a C-presheaf with the restrictions being obtained from G(U) — F(U) — F(V) by
taking preimages under G(V) — F(V).

REMARK II1.3.0.12. The functor A[—]: PrShe(X) — PrShaje)(X) is inverse
to the functor f sending a A[€]-presheaf to its induced €-presheaf. If A is a 0-graded
field then the latter functor is isomorphic to (—)/A*. If additionally, the objects of €
are all canonically graded in the sense that Iy [degsupp(—)] is isomorphic to ide, then
f is also isomorphic to the functor obtained by composing a PrSh 4(¢)(X)-object
with Fy [degsupp(—)]. All of the above statements repect the sheaf-property.

Lastly, we discuss spaces with structure (pre-)sheaves.

DEFINITION I11.3.0.13. The categories of spaces with €- /&7 - resp. X structure
(pre-)sheaves have as its objects triples (X, Qx, Ox) where (X, ) is a topological
space and Oy is a €-/€7- resp. €i*-(pre-)sheaf on Qx, the latter being called the
structure (pre-)sheaf of X.

Morphisms are pairs ¢: X — Y, ¢*: Oy — ¢.Ox of continuous maps and
homomorphisms of ¢-/€7- resp. €fi*_presheaves on Qy. Usually the morphism
(¢, ¢*) will just be denoted ¢ with ¢* understood. The composition of ¢: X — Y
and ¥: Y — Z is the pair (¢ o¢,1.¢* oyp*). The categories thus defined are denoted
SpPrShe gpdhe gpProher gpdher gpPréhetix and SpSheti= respectively.

DEFINITION II1.3.0.14. The categories of spaces with stalkwise homogeneously
local €-/&7 resp. €8 structure (pre-)sheaves are the subcategories of spaces with
¢-/€7 resp. €8 _structure (pre-)sheaves whose objects satisfy that the stalks at all
points are homogeneously local.

A morphism ¢: X — Y, ¢*: Oy — ¢.Ox in one of these subcategories must
satisfy that for each € X the canonical map

. e .
1 Ovo) = (#:0x) () = colim Ox 5-1(y. ) — Oxa

is homogeneously local. The subcategories thus defined are denoted with an index

Sh g iix
loc, e.g. Splocqf‘

CONSTRUCTION II1.3.0.15. Let (X,Qx, Ox) be a space with a (stalkwise homo-
geneously local) €-/€7-/¢*_structure (pre-)sheaf. Then each open subset U C X
defines an open subobject (U, Qx v, Ox ) of (X,Qx,0x) where Qx| is the col-
lection of (2 x-open subsets of U and Ox |y is the restriction of Ox to Qx y.

DEFINITION I11.3.0.16. A morphism of spaces with (stalkwise homogeneously
local) €-/¢7-/&f*_structure (pre-)sheaves is an open embedding if it has an open
image and defines an isomorphism onto the open subobject given by its image.

Next, we consider colimits of diagrams of open embeddings, i.e. gluing.
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CONSTRUCTION II1.3.0.17. Let D be a small I-diagram of spaces with (stalk-
wise homogeneously local) €-/¢7- /€8 structure sheaves such that all occuring mor-
phisms are open embeddings. Set D(i) = (X;,Qx,,Ox,) for i € I. Let (X,Qx)
be the Top-colimit, i.e. the Set-colimit X endowed with the final topology of the
canonical maps ¢;: X; — X. Then each ¢; defines a homeomorphism onto an Qx-
open subset of X which is also denoted X;. For each U € Qx we define Ox (U) as
the limit of the induced diagram given by all Ox, (U NX;). The triple (X, Qx,Ox)
is then a colimit of D and the canonical maps ¢; are open embeddings.

REMARK II1.3.0.18. Let (X, Qx, Ox) be a space with (stalkwise homogeneously
local) €-/€7-/&8* structure sheaf and let ¢ be any cover of X. Then (X,Qy,Ox)
is the colimit of the diagram given by all the canonical inclusions

(UNV,Quav, Oxjuav) — (U, Qu, Oxu).

Recall that if K is a category with all directed colimits then a continuous map
¢: X — Y gives rise to an inverse image functor ¢~ from PrShg(Y) to PrSha(X)
by sending a presheaf G on Y to the assignment

¢ 'G: U colim G(V).
VeQy
H(U)CV

If R has all limits then composing the above with sheafification constitutes the
inverse image functor $—1 from Shg(Y) to Shg(X). The canonical isomorphisms
id — ¢. 09! and ¢! o ¢, — id induce an adjunction realising (¢~ !, ¢.) as an
adjoint pair.

CONSTRUCTION II1.3.0.19. Let ¢: X — Y, ¢*: Oy — ¢.Ox be a morphism
of spaces with (stalkwise homogeneously local) €¢-/&7-/&%*_structure (pre-)sheaves.
For an Oy-(pre-)algebra/-module F we write ¢*F for the presheaf Ox ®4-10, ¢~ F
resp. for its sheafification. For a morphism a: F — G we write ¢*a for idp, @™o
resp. for its image under sheafification.

This defines a functor called the inverse image by ¢ from Oy-(pre-)algebras/-
modules to O x-(pre-)algebras/-modules which by abuse of notation will be denoted
¢*. Moreover, the canonical isomorphisms id — ¢, o ¢* and ¢* o ¢, — id induce an
adjunction realising (¢*, ¢.) as an adjoint pair.

REMARK II1.3.0.20. Let ¢: X — Y be a morphism of spaces with €-structure
(pre-)sheaves. Then the restriction of the inverse image functor ¢* to Oy-(pre-
)submodules is isomorphic to the functor sending Z to the Ox-(pre-)submodule
generated by the image of Z under the morphism ¢*: Oy — ¢.Ox.

II1.4. Sheaves of Krull type

Here, we define (pre-)sheaves of Krull type - the sheaf-theoretic analogon of
K-Krull rings. This property occurs in the structure sheaves of (graded) schemes
of Krull type (in particular in those of normal prevarieties) as well as divisorial
algebras and Cox sheaves on such spaces. Throughout, let ® denote one of the
categories GrMon, GrAlgy, and GrRing and let K be an abelian group.

DEFINITION II1.4.0.1. A discrete value (pre-)sheaf on X is a (pre-)sheaf Z of
partially ordered abelian groups with values in {0,Z} and identity or zero-maps as
restricition maps.

REMARK III1.4.0.2. The stalk of a discrete value presheaf Z at a closed irre-
ducible subset B C X is Z if Z(U) = Z holds for each neighbourhood U of B, and
it is 0 otherwise.
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ExaMpPLE II1.4.0.3. Let B be an irreducible closed subset of the irreducible
topological space X. Then the skyscraper sheaf ZP) with value Z at B defined by

Z #BNU
Z(B)(U)::{o ;fBgUig

is a discrete value sheaf with restriction maps oY :=idz for V.C U with BNV # 0
and oY = 0 otherwise. The sheaf axioms follow from the fact that U = Uier Ui

(B)
c

intersects B if and only if some U; intersects B. The stalk Z; "’ at an irreducible

closed subset C' C X is Z if C C B and 0 otherwise.

EXAMPLE II1.4.0.4. If Z and Z’ are discrete value presheaves on X then so is
the presheaf Z 4+ 2’ assigning Z(U) + Z2'(U) CZ to U € Qx.

REMARK II1.4.0.5. A discrete value (pre-)sheaf Z defines a (pre-)sheaf Z>( via
Z50(U) := Z(U)>p. For a closed irreducible A C X we have (Z>0)a = (£4)>0-

DEFINITION 111.4.0.6. Let S be a ©- resp. DX -presheaf such that each S(U)
is simple/simply graded and denote S* resp. (S"™™)* by S’. A discrete graded
valuation on S is a morphism v: 8’ — Z to a discrete value presheaf such that
each vy is surjective and either a discrete graded valuation or zero. The associated
graded valuation presheaf is the subpresheaf S, C S generated by v=(Z>0).

In case gr(S) is constantly zero we speak of discrete valuations and their discrete
valuation (pre-)sheaves.

REMARK II1.4.0.7. For a discrete graded valuation v on § and an irreducible
closed B C X we have canonical isomorphisms v~ }(Z50)p = v5'(Z50,5) and
(SV)B = (SB)VB'

DEFINITION II1.4.0.8. For a family {v;};cs of graded valuations on a ©- resp.
DX _presheaf S with simple/simply graded sections R := () e 7Sy, is called

(i) locally of Krull type if if for each « € X there exists U € Qx , such that
for each (homogeneous, non-zero) f € R(U) only finitely many v; y(f)
are NON-zero.

(ii) of Krull type with respect to a basis B of Qx if for each U € B and
each (homogeneous, non-zero) f € R(U) only finitely many v; y(f) are
non-zero. If B = Qx then R is globally of Krull type or just of Krull type.

In all cases, {v;};cs is said to define R in S.

CONSTRUCTION II1.4.0.9. Let R be of Krull type in & with defining family
{vj}jes and denote S* resp. (S"™)* by S’. Then

divg := Hl/ji S — HZj
jed jeJ
is a homomorphism of presheaves of abelian groups and div{a1 (11
R, R\ 0 or Rt™ \ 0 respectively. Moreover, setting
JWU) :={j e JIZ;(U) =2} ={j € Jlv; # 0}
defines a Set’-presheaf, called the index presheaf of the family {v;};c .

jed Z;>0) equals

PROPOSITION I11.4.0.10. Let R be of Krull type in a ©- or DX -presheaf S with
defining family {v;};cs. Then the following hold:

(1) If all Z; are sheaves then so is J, meaning it respects arbitrary unions.
(ii) If all Z; are sheaves and S is a ®-, DX -sheaf or K-graded and a Set-sheaf
then so is R.
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ProoF. Set U = |J,; U;. For (i) to see that | J; J(U;) = J(U) note that Z;(U),
being a limit of all morphisms Z;(U; NUy) — Z;(U;), is zero if and only if all Z;(U;)
are zero.

In (ii) we consider the cases of monoids, Fq-algebras and rings in this or-
der. Firstly, divg' ([]; Zj>0) C S’ is a subsheaf of (K-)graded monoids because
[I; 25,0 € I[; 2; is a subsheaf of trivially (K-)graded monoids. Secondly, since all
restricition maps of S map non-zero elements to non-zero ones, divy' (I] ;Zj,>0) U
{0} is then a (graded) subsheaf of graded Fq-algebras. This implies that in the third
case S, is a (graded) subsheaf of graded rings.

Lastly, suppose that S is (K-graded and) a Set-sheaf and consider elements

FO €8, (U) with £) . = £y, - Then there exists f € S(U) with fiy, = f.
For each w € K we then have vy (fuw)ju, = vju( ff)) > 0 for all ¢ and hence
vju(fw) > 0 because Z; ¢ is a sheaf, which means f € S, (U). O

ProrosiTiON I11.4.0.11. Let R be of Krull type in S with defining family
{v;}jes. Then the following hold:

(i) The stalk J, at x € X is

Je= [ JWO)={j€J|Zj. =2} ={j € Jlvj. #0}.

UeQx o

(ii) Then Ry is of Krull type in S, with defining family {v; . }je, -

PRrROOF. In (i) note that j € J, if and only if Z;(U) # 0 for all U € Qx 5, i.e.
Zj. # 0. For (i) set H := [[;c; Zj>0- In S; we then have

divg! (M), = divgl, (He) = dive, ([T Z>0)
JEJx

Vjo =

and hence R, = ﬂjer (Sz) CS,. a

DEFINITION II1.4.0.12. Let B be a basis of Qx. A defining family {v;};c for a
presheaf of Krull type R in S is the family of essential graded valuations with respect
to B if for each U € B the localization of R(U) by all (non-zero/homogeneous non-
zero) elements is canonically isomorphic to S(U) and {v; v} je 7(v) form the essential
graded valuations of R(U).

EXAMPLE I11.4.0.13. Let S be a presheaf of simply graded F;-algebras/rings
and let A be a presheaf of simply graded monoids/Fi-algebras. Let {u;};er and
{v;};es be defining families for subpresheaves R C & and M C N of Krull type.
Then the folllowing hold:

(i) Each p; and v; extend trivially to graded valuations &i; and 7 on S[N],
and {@;}; U {75}, is a family defining R[M] as a subpresheaf of Krull
type in S[N]. If {y;}; and {v;}; are the essential graded valuations with
respect to B then so are {f;}; U {75};.

(i) For each i and j we obtain a graded valuation y; 4+ v; on S[N] with range
Z; 4+ Z;, where Z; and Z; are the respective range presheaves of y; and
vj, via (u; + v))u(fx") = wiu(f) + vju(n) for (homogeneous) units
f € S(U),n € N(U). Moreover, {p1; + vj};; defines a subpresheaf of
Krull type in S[N], and if I = J then so does the subfamily {u; +v;};. In
this case, if {;}; or {v;}; are the essential graded valuations with respect
to B then so are {u; + v;}; because they restrict to the essential graded
valuations on S resp. N.
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IT1.5. Component-wise bijective epimorphisms

In this section we list general properties of CBEs of PrShe(X)- or PrShenx(X)-
objects. Of particular use will be the result on the behaviour of the Krull property

under CBEs, see Proposition

DEFINITION II1.5.0.1. A morphism 7: F — G,v¢: gr(F) — gr(G) of €-pre-
sheaves is a component-wise bijective (epi-)morphism (CB(E)) if each (7, ¢y) is a

CB(E).

REMARK I11.5.0.2. Let ¢: F — G, ¢: gr(F) — gr(G) be a CBE of PrShgsx(X)-
objects. Then due to Remark [II1.2.0.15| F is a ¢f*_sheaf if and only if G is one,
because F,, is a sheaf if and only if gw(w) is one.

The following is a consequence of Proposition [[1.1.2.13

PROPOSITION II1.5.0.3. For a PrShe:x(X)-morphism w: F — G accompanied
by a group homomorphism 1 denote by N the constant subpresheaf assigning the
monoid of (homogeneous) elements in the preimage of Wal(lg(U)).

Then (m,%) is a CBE if and only if there exists a subpresheaf N' C N of groups
with bijective restricition maps such that deg: N'(X) — ker(y) is bijective, ~nr (v
equals the kernel relation of Ty and we have im(m) = Gim(y)-

ProproOsSITION I11.5.0.4. Suppose that A is a graded rings and let m: F — G be
a CBE of PrShenx(X). Then F is a sheaf of sets if and only if G and ker(w) are.

PROOF. Let c: gr(G) — gr(F) be a map of sets such that ) o ¢ = idg,(gy. For
an open cover U = Uiel U;set Uy j :=U;NUj fori,j € 1.

First, suppose that F is a sheaf. If g = ZwEgr(g) gw € G(U) restricts to Og(u,)
for each i € I then in particular gy, = (9jv;)w = Og,)- For w € gr(G) we then
have (77, )u Yo, = (ﬂ—lfc(w))l;il(gw‘Ui) = O0z,) for ever ¢ € I which gives
9w = Og(vy and g = Ug(U)

If g(z) = Zwégr(g gw S g( ) batlbfy g(l ‘U — g(])lU then

Z 97(4))|U7 9(2)|Ui,j = Q(J)\Ui,j = Z gg)\Ui,j
wegr(G) wegr(G)

and since Q( ;) is gr(G)-graded we obtain gg)‘Ui = gg)lU for every w € gr(G).

Now set ) o(w) = (MU, )I]-'(U) - )(g&)) € F(Ui)e(w) for i € I and w € gr(G). Then

_ — _ -1 j (49)
fC(w)|U (TrUi’j)‘]:(Ui,j)c(w) (gq(‘f \Uz‘,j) - (TrUi’j)‘]:(Ui,j)c(w) (gg)wi,j) fC w)\Ul ;

Fori € I set f(¥) := > wegr(@) fc(zzu) € F(U;). Note that this is a finite sum because

g is a finite sum and it is a decomposition into gr(F)-homogeneous parts because
c is a section. Then

I PO
B, = 22 Jewp, = 2 Ldww, =10,

wegr(9) wegr(9)
and gluing gives f € F(U) with fj, = f@. In particular, fC(w)|U» = fézfu) for every
w € gr(G) and i € I. Moreover, for every v € gr(F)\im(c) we have f,y, = =0

for every i and thus f, = 0. We claim that g := 7y (f) restricts to ¢ on each U;.
Indeed, we have g, = 7y (fe(w)) and thus

qu; = Z WU(fc(w))|Ui = Z Tu; (fc(w )= 9@
wegr(G) wegr(G)

Therefore, G is a sheaf and thus ker(r) is also a sheaf.
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For the converse, suppose that G and ker(7) are sheaves. If f € F(U) restricts to
07 v,y on every U; then the same holds for each f,,. Thus, ¢y (fw)\Ui = ¢u, (fuwv,) =
Og(u,) for every i which means that ¢y (f,) = Og). But then f, = 0r) and
I =0Fw).

Now, let f; € F(U;) with fiy, , = fiy,, for alli,j € I. Set g; := 7w, (fi)
for all ¢ € I. Then g;y, , = 9w, and since G is a sheaf there exists g € G(U)
with gy, = gi. Let f' € F(U) with 7y (f) = g. Then the elements f; — fllUi lie in
ker(m)(U;) and satisfy

(fi = fudw., = (fi = flu)w.,

and since ker(r) is a sheaf there exists h € ker(m)(U) with hjy, = fi — fj;,. Now,
f:=h+ f € F(U) is the desired element which restricts to f; on Us. O

REMARK II1.5.0.5. If 7: F — G is a CBE between sheaves of graded rings then
m(F) = im(F) = G is the image of 7 considered as a morphism of sheaves as well
as a morphism of presheaves.

PROPOSITION I11.5.0.6. A Shesx (X)-morphism w: F — G, ¢ is a CBE if and
only if every my: Fp — G is a CBE of graded A-algebras.

PrOOF. First, note that because direct sums commute with colimits and hence
direct sums of presheaves commute with stalks we have (Fy,), = (Fy)w for every
w € gr(F) and x € X. Now, mr, : Fu — Gy(w) is an isomorphism of sheaves if
and only if (mx,)z: (Fuw)z — (Gy(w))e is an isomorphism of abelian groups, i.e.
T |(Fo)w (Fa)w = (Ga)y(w) is an isomorphism. O

Lastly, we consider the behaviour of (graded) valuations and graded presheaves
of Krull type under CBEs.

ProPOSITION II1.5.0.7. Let m: F — G,v be a CBE of PrShenx(X)-objects.
Suppose that each F(U) is gr(F)-simple, i.e. each R(U) is gr(G)-simple. Let
R C F and S C G be subpresheaves such that S = w(R), in other words, we have
R = 7n1(8)8". Then the following hold:

(i) Bvery discrete gr(F)-valuation v on F induces a discrete gr(G)-valuation
v on G via vy(ny(f)) = vu(f) for f € (F(U)M™)*. Conversely, every
discrete gr(G)-valuation 7 on G defines a discrete gr(F)-valuation on F
via v :=V 0 T|(rrom)-. These assignments are mutually inverse.

(ii) If v and U are corresponding gr(F)- resp. gr(G)-valuations then w re-
stricts to a CBE m|r,: F, — Gy and we have F,, = 71 (Gr)E".

(iil) If {vi}ier and {U;}icr are corresponding families of gr(F)- resp. gr(G)-
valuations then one defines R in F as a subpresheaf of Krull type with
respect to B if and only if the other defines S in G as a subpresheaf of
Krull type with respect to B.

PROOF. Assertions (i) and (ii) are due to Remark|I1.2.4.9] Assertion (iii) follows
from Proposition [[I.2.5.11 (]






CHAPTER IV

Graded schemes over Z and [

The theory of graded schemes over Z or F; = {0,1} is developed analogously
to the theory of schemes over Z or Fy, the last being due to [15]. After establishing
the (contravariant) equivalence of graded schemes and graded algebras over A in
Section we provide the necessary background for the construction of relative
graded spectra of quasi-coherent O x-algebras in Section

In Section [[V.2.2] we introduce Veronesean good quotients and give their basic
properties for the later study of relative graded spectra of Cox sheaves. With view
toward the latter we give basic information on homogeneous integrality and reduced-
ness of graded schemes and construct the constant sheaf of graded fraction rings K,
see Section . There we also introduce closed subschemes, separatedness and
homogeneous noetherianity.

A distinguishing feature of a graded scheme is that the grading of the struc-
ture sheaf defines a canonical action by a graded quasi-torus, see Section
Using the canonical functor from graded schemes to (0-graded) schemes from Sec-
tion we will later establish an equivalence which sends a (homogeneously)
reduced graded scheme of finite type over an algebraically closed field K to an action
of a quasi-torus on a prevariety over K, see Chapter [VI]

In Section we explore the combinatorial nature of Fi-schemes of finite
type. As a preparation, Sections [[V.3.1] and [[V.3.2] conceptualize graded schemes
as cofunctors of graded rings which satisfy certain localization conditions. The
resulting category of schematic cofunctors of graded A-algebras is shown to be
equivalent to graded schemes over A via a canonical extension of the Spec,,-functor
on GrAlg,, see Proposition [[V.3.2.T1] the essential inverse sending X to the re-
striction of Ox to the set of non-empty affine open subsets of X.

Throughout let A denote a fixed F-algebra or ring, e.g. A is Fy, Z or a field K
equipped with the 0-grading, and let ¢ denote GrAlg 4.

IV.1. The category of graded schemes

There are some publications [23), [27] in which graded schemes or sets of homo-
geneously prime ideals haven been studied, but a standard reference for the basic
theory appears not to exist. The seemingly only reference which defines structure
sheaves for graded spectra of graded rings,[8], only treats noetherian (Z-)graded
rings, due to the desire to obtain Z-graded sheaves of rings. We develop the theory
in full generality which means that the structure sheaf Ox of X = Specgr(R) is
still gr(R)-graded presheaf of A-algebras (where A = Z or A = F;) and also a
GrAngT(R)—Sheaf, but in general not a Set-sheaf, see Example Among
the material treated in the following sections are various categorical aspects of
the theory, including the (contravariant) equivalence between graded A-algebras
and graded schemes over A, the equivalence of graded algebras/modules over R
and quasi-coherent OSpngr( r)-algebras/-modules, the equivalence of affine graded
schemes over X and quasi-coherent O x-algebras, the relation between closed subsets
of X and quasi-coherent Ox-ideals, as well as functors between different subcate-
gories of graded schemes.

87
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IV.1.1. Affine graded schemes. This section introduces affine graded schemes
and establishes the (contravariant) equivalence of affine graded schemes over A and
graded algebras over A. Note that structure sheaves are ¢f*-sheaves and not €-
sheaves because gr(O(0)) is usually non-zero.

CONSTRUCTION IV.1.1.1. Let ¢: A — R,¢: gr(A) — gr(R) be a graded A-
algebra. The set X = Spec,, (R) of its gr(R)-prime ideals is the graded spectrum of
R. For f € R"™ the principal open set is the set X of all p € X with f ¢ p. The
set BY of all principal open sets is an Fi-algebra with operation N, unit elements X
and zero element . For each U € BY let Sy := (¢ RUem\ p. The composition
of the homomorphisms of [Fy-algebras f — Xy and U — Sy is then the canonical
map sending f — face(f).

The topology Qx generated by BY is the Zariski topology Qx. The structure
sheaf Ox on (X, x) is the Shenx(X)-object defined via

- ; —1
Ox(U) := Welggr(}w) Sw R
where the limit is taken in €% and restriction maps are defined via universal prop-
erties of limits.

PROOF. As an intersection of faces containing f, Sx, also contains face(f).
r

If g € Sx, then for each p € X; we have g ¢ p and hence \/(T)gr C \/@g.
Thus, there exist n € N and h € R"™ with gh = f" € face(f) and we conclude
g € face(f).

The relation defined by f ~ g if and only if X; = X, is a congruence, and as
an Fy-algebra BY is isomorphic to R2™/ ~. Thus, U +— Sy is a homomorphism
because it is the map induced by f — face(f). O

REMARK 1V.1.1.2. The structure (pre)sheaf Ox of X = Spec,,(R?) has the
following properties: For f € RP™ there are canonical isomorphisms of graded
A-algebras Ox (Xy) — S;(}R — Ry. Consequently, for a point p € X there are
canonical isomorphisms of graded A-algebras

Ox.p <= colim Ox(U) = colim S;;'R = R,.
Xp w x(U) Somr Su P
because R"™ \ p is the colimit of the set of all principal faces it contains, partially
ordered by inclusion.

DEFINITION IV.1.1.3. An affine graded scheme is an object (X,Ox) of the
category of spaces with stalkwise homogeneously local ¢*-structure sheaves which
is isomorphic to the graded spectrum (Specgr(R),Ospecgr(R)) associated to some
graded A-algebra R. The full subcategory thus defined is denoted AffGrSch 4
resp. AffGrSchspecgr(A).

DEFINITION IV.1.1.4. Let X be an affine graded scheme.

(i) For z € X let m;, denote the homogeneously maximal ideal of Ox ,. Then
T.(X) := (pX)~Y(m,) is the vanishing ideal of x. Likewise, for a subset
Z CX,Iz(X):=NyeyLa(X) is the vanishing ideal of Z.

(ii) For a graded ideal a of O(X) let Vx(a) be the set of those z € X with
a C Z,(X). For f € O(X)'™ we set Vx(f) := Vx({f)) and define the
principal open subset associated to f as Xy := X \ Vx(f). The set of all
principal open subsets is denoted BY .

The following facts on affine graded schemes are inherited from graded spectra.

REMARK IV.1.1.5. In an affine graded scheme X the topology is generated by
BY . Sending f to Xy defines a homomorphism of Fi-algebras to the set BY of all
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principal open subsets, in which X and () are unit resp. zero element with respect
to the operation N. Sending U € BY to Sx,u := \,cy O(X)™™ \ Z,(X) defines a
homomorphism to the F;-algebra of faces of O(X)™. The composition of these
homomorphisms sends f to face(f).

Moreover, we have Sx y = (p)Uf)fol(X)hm((O(U)hom)*) and the canonical map
S’)}’IU(’)(X ) — O(U) is an isomorphism. Consequently, applying colimits gives an
isomorphism Ox , — O(X)z, (x)-

ProprosITION IV.1.1.6. For an affine graded scheme X consider graded ideals
a,a;,i € I and homogeneous elements f;,i € I of O(X) and subsets Z,Z;,i € I of
X. Then the following hold:

(i) If X = Specg,(R) then we have I7(X) = (\,c,p under the canonical
isomorphism O(X) — R and Vx(a) is the set of all p € X containing a.

(i) We have Vx({U; @) = ; Vx(a;), in particular, Vx(—) reverses inclu-
sions. Thus, we have |J, Xy, = X \ Vx ((fili € I)).

(ii) We have Iy, 7,(X) = (1;Z2,(X), and T_(X) reverses inclusions;

(iv) If I is finite then Vx (I, aZ) Vx (), %) = U, Vx(a;) holds.

(v) Vx(a) = Vx(va*) and va* = Ty, (o) (X).

(vi) The closure of Z is Vx(Zz(X)) and we have I7(X) =T,(X).

(vil) We have Z C Vx(a) if and only if a C ITz(X).

(viii) Z is irreducible if and only if Zz(X) is homogeneously prime.

ProOF. Throughout, it suffices to consider the case X = Spec,,(R). For (ii)
note that we have ({J;c; i) € Z,(X) if and only if a; € Z,(X) holds for every i.
Using (i) we may put assertions (v) and (iv) in terms of R, in which case they follow
from Proposition and additionally Remark in the case of (iv).

In (vi) note that Z C Vx(Zz(X)) implies Z C Vx(Zz(X)). On the other
hand, if Z C Vx(a) then applying (v) gives /a* = Zy, ()(X) C Zz(X) as well
as Vx(Zz(X)) C Vx(v/a*) = Vx(a). For the second equation we now calculate
T7(X) = Ty (1,(x))(X) = VIz(X)" =Tz(X).

Assertion (vii) follows from (vi). In (viii) note that if Z is irreducible then
be C Zz(X) implies Z C Vx(b) U Vx(c) and hence we have Z C Vx(b) or Z C
Vx(c), and consequently b C Zz(X) or ¢ C Zz(X). If Tz(X) is homogeneously
prime then Z C B U C implies Zg(X)Zc(X) C Zpuc(X) C Z7(X) and we deduce
Ip(X) CZz(X) or Zo(X) C Zz(X), which gives ZC ZC Bor ZC Z CC. O

PrOPOSITION IV.1.1.7. The structure presheaf Ox of X = Spec,,(R) is indeed

a €% sheaf. Thus, (X,Qx,Ox) is a space with stalkwise homogeneously local ¢*-
structure sheaf.

PROOF. Due to Proposition [[I1.1.0.10| it suffices to show that Ox is a ¢97(f).
sheaf with respect to BY. For Xj = J;cp Xy we have Rj, = <h>}gl = (F)i
and hence Ry, = (F);,. Now, Proposition [[I.1.3.10| shows that Ry is the limit over
all the canonical maps Ry/; — Ry4/1 where f,g € F' and since the isomorphisms

Ox(Xy) = Ry are compatible with the respective diagram structures we obtain

that Ox(X}) is the limit over all p§§ , as required. O

ExaMPLE IV.1.1.8. For A = Z or A = F; consider the Z-graded group algebra
A[Z] and the GrAlg’-product R := [1,.cn ClZ] which is a proper A-subalgebra of
the Alg 4-product R’. Let f,, € R be the element whose n-th coordinate is 1 and
whose other coordinates are 0. Let U be the union over all the principal subsets
Xy, of X = Spec,,(R). The sets Xy, are pairwise disjoint. By the GrAlg’-sheaf
property we have Ox(U) = R # R’, which means Ox is no Alg 4-sheaf (i.e. no
Set-sheaf).
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ProrosITION IV.1.1.9. An affine graded scheme X is quasi-compact and sober.
Moreover, a subset Z C X is irreducible if and only if the set {Z,(X)|x € Z} has a
unique minimal element, which in that case equals Tz(X).

ProoF. It suffices to consider a graded spectrum X = Spec,, (R). Firstly, if
X =Uyep Xy with some F' C O(X)hem then Vy ((F)) = 0, i.e. (F) = O(X). Thus,
there exists a finite subset £ C F' such that 1 € (F'), which means X = {J ;. Xy

Secondly, let Y C X be closed and irreducible. Then Zy (X)) is homogeneously
prime and the corresponding point p € X satisfies {p} = Vx(Zy (X)) = Y. For
uniqueness note that if {q} = Y then we have Z,(X) = Zy(X) = Z,(X) and
applying the canonical isomorphism O(X) — R gives q = p.

Thirdly, if Z is irreducible then the generic point z of Z lies in Z and we have
Z.(X) = Iz(X). In the converse case, Zz(X) is homogeneously prime and thus Z
is irreducible. ]

CONSTRUCTION IV.1.1.10. For graded A-algebras+: A — R, \: gr(4) — gr(R)
and ¢': A — R/, N:gr(4A) — gr(R') and let a: ' — R,¢: gr(R') — gr(R) be a
morphism. Then the map

¢ := Specg,(a): X := Specy, (R) — X' :=Spec, (R'), pr— a '(p)¥.
is Zariski-continuous, because ¢~ (V(a’)) = V({a(a’))) holds for each graded ideal
o’ of R" and hence ¢~ (X)) = X,y holds for each g € R™™. Moreover, for a
graded ideal a of R we have ¢(V(a)) = V(a~'(a)). For each U’ € BY, we have
face(a(Syr)) = Sg-1(wr). The homomorphism Spec,,(a)* = ¢*: Ox — ¢.O0x
with accompanying map 1 is given as

Ox/(U)= lim Sy'R lim S R — Ox (¢ (U
() viestoy V' T vies ) Do v T x(67(U))

where we have used the fact that the occuring limits are limits in GrAlg, as well
as in GrAlgﬁ resp. GrAlgﬁ. Now, (¢, ¢*) forms a morphism of graded schemes.

CONSTRUCTION IV.1.1.11. Let X be an affine graded scheme. Then the map
Jx: X — Spec,, (O(X)), z+— Z,(X)

is a homeomorphism such that (X ) = Specg, (O(X)) holds for each f € O(X)P™.
Moreover, the canonical isomorphisms

Txw: OU) = 85" 0(Specy (O(X))) — S, O(X) = O(x' (1))

)

for U € Bg;ecgr(O(X)) define an isomorphism 7% : Ospec,, (0(x)) — (7x)+Ox which
together with jx forms an isomorphism of affine graded schemes. For a morphism

¢: X — Y of affine graded schemes we have jy o ¢ = Spec,, (4}-) 0 jx.

PROOF. For surjectivity of jx consider p € Spec,, (O(X)). Then the generic
point z of Vx (p) satisfies Z,(X) = Ly, (5)(X) = /p* = p. For injectivity note that
if Z,(X) = Z,(X) then {z} = Vx(Z,(X)) = {y} and hence = = y.

The equation of morphisms holds set-theoretically because due to locality of
3+ Oy g(z) — Ox - Moreover, with respect to the faces defined by principal open

subsets we have
face((b;’ (-];,Specgr(O(Y))(SU))) = .];(,Specgr(O(X)) (face(specgr(d);/)gpecgr(O(Y))(SU)))'
This gives the equation of homomorphisms of sheaves on Bg;cc_ (o(vy) and hence,

on all of Qspecgr(O(Y))' i

ProposITION IV.1.1.12. The functor Spec,,: GrAlg, — AffGrSchy is es-
sentially inverse to the global section functor O(—) sending X to Ox(X) and a
morphism ¢: X — Y to ¢35 .
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PRrOOF. The isomorphism from idafGgrscn, to Specg, o O(—) is provided by

Construction [IV.1.1.11} The isomorphism from O(—) o Spec,, to idgraig, is pro-
vided by Remark O

PROPOSITION IV.1.1.13. Let ¢: X — Y be a morphism of affine graded schemes.

Then ¢~ (Vy (b)) = Vx ((¢3-(b))) and ¢(Vx (a)) = V¥ ((¢3) ™" (0)®") holds for graded
ideals a 1 O(X) and b < O(Y). In particular, we have ¢~ (Yy) = X4z (g) for

g € O(Y)hom. Likewise, for a closed subset Z C'Y and a subset W C X we have
Ty1(2)(X) = V(@3 Tz and Ly (Y) = (65)~H(Tw (X))2.

PROOF. For z € X we have Zy,)(Y) = (¢3) 1 (Zo(X))®" due to graded locality
of the map ¢ of stalks. Consequently, we have ¢~ (Vy (b)) = Vx ((¢%-(b))). as well
as Zywy(W) = (¢3) 1 (Zz(X))®". From this, we obtain

gr
Lo-2(2)(X) = Lo-1(y 22(v)) (X) = Ly (95 (@2 () (X) = /{63 (L2 (Y))))
and

o(Vx(a)) = W (Zy(vx (V) = W (83) 7 Ty () (X))F) = Vo ((65) 1 (Va™)#")

= Ve (65) L @E ) = Vi (65) " (@)).
[}

ProrosiTiON IV.1.1.14. Each principal open subset Xy of an affine graded
scheme X defines an affine graded subscheme (X, QX‘Xf,OX‘Xf). Moreover, each

Z C X satisfies Tznx,(X5) = <p§f (Zz(X))).

Proor. For a graded A-algebra R the localization map ¢y: R — Ry induces
a morphism of affine graded schemes Spec,,(1f) under which Spec,, (Ryf)g s is
mapped bijectively onto Spec,, (R)s, according to Remark Moreover, we
have a canonical isomorphism

O(Specg, (Ry)g/pn) = (Ry)g/pn = Rfg = O(Specy, (R) fg)-
Since these isomorphisms are compatible with restrictions between principal open
subsets, Specg,(1f) is an Spiﬁcﬁx—isomorphism onto Spec,, (R)y. In general, the

fi

isomorphism 7x reduces to an Spfféc *-isomorphism Xy = Spec,, (O(X));. Apply-
ing the above for R = O(X) we obtain an isomorphism Xy = Spec,, (O(X)y). The
supplement follows from Propositions [[V.1.1.13] and [[[.1.8.13] ]

IV.1.2. Graded schemes. This section deals with the topology of graded
schemes. Of particular use in the context of quasi-coherent Ox-modules will be
Lemma [[V-1.2:4] which states that the intersection of two affine open subsets of X
is covered by their common principal open subsets.

DEFINITION IV.1.2.1. A graded scheme is an object (X,Ox) of the category
of spaces with stalkwise homogeneously local ¢i*-structure sheaves such that X
has a cover by open sets U defining affine graded schemes (U, Ox|y). Such sets
U are called affine open subsets of X and their collection is denoted Bx. The full
subcategory thus defined is denoted GrSch 4 resp. GrSchSpecgr( 4)- The category
GrSch/X of graded schemes over X will also be denoted GrSchy.

First we note that graded schemes inherit sobriety from affine graded schemes
due to the following general fact.

REMARK IV.1.2.2. A topological space is sober if and only if it is covered by a
family of sober open subspaces.

REMARK 1V.1.2.3. A topological space X is quasi-compact if and only if it has
a finite cover by quasi-compact open subspaces.



92 IV. GRADED SCHEMES OVER Z AND F;

LEMMA IV.1.2.4. Let X be a graded scheme and let U,V be affine open subsets.
Then any principal open set Vy which is contained in a principal open set Uy C'V is
also a principal open subset Uy, =V, of U. Thus, the open subsets that are principal
in both U and V' form a basis for the topology of UNV .

PROOF. Let f € O(U)™ with Uy C V and let V, C Uy with g € O(V)hom,
Let gy, = W/f" € O(Uy) with some b’ € O(U) and n > 0. With h := h'f we
calculate

Vo =A{z €Us; g» ¢ ms} = {z € Uy; (gu;)e = Mo (fiu,)2"™ & ma}
={zeUy hly ¢ my} ={x €U; hlf, ¢ my} = U.

For the supplement, suppose that W C UNV is open. Then W = | J,; Uy, is a union

of principal subsets of U. Each Uy, is open in V and hence a union Uy, = |J e Ve,

of principal subsets of V. By the above each set V. is also principal in U.
REMARK IV.1.2.5. For a point z of a graded scheme X any U € Bx , defines

a canonical morphism

Specg, (p)

77 Specg, (Ox ) ———— Spec,, (Ox(U)) =U — X.

7 does not depend on the choice of U and maps bijectively onto the set of all points
which specialize to z. Moreover, for each p € Specgr((’)X@) the induced map of
stalks 751 Ox jp) — OSpecgr(Ox,w)m is an isomorphism.

REMARK IV.1.2.6. Let X be a sober topological space and let A be a closed
non-empty subset resp. a point closure. If A is minimal among closed non-empty
subsets resp. point closures then A = {x} consists of a closed point.

Affine graded Fi-schemes have a stronger property than quasi-compactness
which is discussed below.

ProproSITION IV.1.2.7. Let X be a topological space. Then the following are
equivalent:
(i) The set of non-empty closed sets has a (unique) minimal element, i.e.
the intersection of all non-empty closed sets is non-empty.
(ii) The set of point closures has a unique minimal element.
(iii) X is an element of every family of open sets which covers X, i.e. the
union of all proper open subsets is proper.

Proor. If (i) holds then uniqueness is a consequence of finite intersections of
closed sets being closed. Furthermore, the minimal closed set must be a closure of a
point due to minimality. Suppose that (ii) holds. Then each point « in the minimal
point closure P satisfies m = P by minimality. Each further non-empty closed set
B then satisfies P C {y} for each of its points y, which establishes (i). If X;,i € I
form an open cover of X then there exists 1 € I with PN X; # §. Since X \ Xj is
closed, but does not contain P, it must be empty by (i). O

REMARK IV.1.2.8. The point corresponding to the ideal of non-units in a graded
[Fi-algebra R is the unique closed point of X and is contained in all closures of points
of X, as was observed in [15].

PROPOSITION IV.1.2.9. A graded F1-scheme X is affine if and only if it satisfies
one of the conditions of Proposition[IV.1.2.7]

PROOF. Suppose that X contains a unique point closure m which lies in the
closures of all points of X. Let V' be an open affine neighbourhood of x. Then the
closure of 2 contains the closed point @’ of V, which means {x} = {#/} and hence
2 = ' by sobriety. Consequently, a point y € X cannot lie in X \ V' because then
so would z'. O
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IV.1.3. Quasi-coherent Ox-modules and affine morphisms. Through-
out, we consider (pre)sheaves on a fixed graded scheme (X, Ox). The goal of this
section is to introduce the relative graded spectrum of quasi-coherent O x-algebras
and relate this construction to the concept of affine graded schemes over X, i.e.
graded schemes over X with affine structure morphisms.

DEFINITION IV.1.3.1. An Ox-prealgebra/-premodule on X is quasi-coherent if
for all U € By and f € O(U)"™ the canonical homomorphism M(U); — M(Uy)
of O(Uy)-algebras/-modules is an isomorphism.

PROPOSITION IV.1.3.2. An Ox -prealgebra/-premodule M is quasi-coherent if
and only if for each V. € Bx and every U € By the canonical homomorphism
OWU) @owyN(V) = N(U) of OU)-algebras/-modules is an isomorphism.

PROOF. Suppose that M is quasi-coherent. Let VW denote the set of common
principal open subsets of U and V. For each W € W the canonical homomorphism
OW) @y M(V) — M(W) due to principality. Using quasi-compactness and
Proposition we see firstly, that M(U) is the limit over all M(W) with
W € W and secondly, that O(U) ®o(vy M(V) is a limit of the diagram given by
all O(W) ®@ovy M(V) with W € W. This gives the assertion. O

REMARK IV.1.3.3. The sum ) . N; of quasi-coherent O x-subpremodules N
of a given quasi-coherent Ox-premodule N is quasi-coherent due to additivity of
localization.

EXAMPLE IV.1.3.4. Let N be a quasi-coherent O x-premodule. Then every f €
N(X)hom defines a quasi-coherent O x-subpremodule Ox f which assigns Ox (U) fii
to U € Qx. More generally, if M < N (X) is a graded Ox(X)-submodule then
OxM := Zfthom Ox f is a quasi-coherent O x-subpremodule of N.

REMARK IV.1.3.5. Let A/ be a quasi-coherent O x-premodule/-prealgebra. For
U € Bx and z € U we then have a canonical isomorphism N, = N(U)y, () due to

Example

PROPOSITION 1V.1.3.6. A quasi-coherent Ox-prealgebra/-premodule N is a
sheaf with respect to Bx in the sense of Definition [II1.1.0.0.

PROOF. Let V € Bx and let Y C Bx be a cover of V such that V is the
Set-colimit of the diagram given by ¢. Then due to Proposition [L.I.3.10] AV (U) is
the limit of the diagram given by all N (Wy) where Wy € Wy = By N B}/ and
N (V) is the limit of the diagram given by all N(W) where W € (J; ¢, Wo. Note
that (J; ¢y Wo is a N-stable subcategory of BYY whose collection of morphisms is
the union over all Mor(Wy ). Thus, N (V) is the limit of the diagram given by all
N(U) where U € U. O

CONSTRUCTION IV.1.3.7. Suppose that (X,Ox) is the graded spectrum of a
graded A-algebra R and let ® denote GrAlg}\{ or GrMod}\% where A denotes a
fixed gr(R)-algebra/-module (resp. its structure map). The Ox-algebra/-module
N = N~ associated to a D-object N is defined via N'(U) := limyycppr Syt N for
U € Qx where restriction maps are induced by the universal property. If N was
an R-algebra then the maps Sy;' R — Sy;' N induce maps Ox (U) — N(U) which
form a homomorphism Ox — N of presheaves of constantly graded A-algebras with
accompaniment .

In the case of an R-module let w € gr(R) and v € gr(NN) and consider for all
W e B}/ the maps

OX(U)U) X N(U)v — (S‘;}R)w X (SV_[/lN)v — (SI/_VlN)/\(w,v)-
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The universal property of N(U)xw,w) = limyy ¢ spr (SV_[IlN)/\(wm) induces a map
Ox(U)wxN(U)y = N(U)x(w,v)- These maps fit together to a scalar multiplication
giving N (U) an Ox (U)-structure with accompaniment .

ProrosiTION 1V.1.3.8. For a graded A-algebra R with accompanying map
let X = Specgr(R), Then sending a ®-object N to N~ constitutes a functor to the
category of quasi-coherent Ox -modules/-algebras which is essentially inverse to the
functor sending N to N'(X).

PrROOF. By construction, N~ is quasi-coherent and thus a sheaf with respect
to BY due to Proposition By Proposition N~ is now a sheaf of
graded A-algebras/-modules with fixed accompaniment and hence an Ox-algebra/-
module. For a morphism N — N’ the morphism N~ — N'~ is defined via universal
properties of limits. Due to quasi-coherence, the canonical map N — N~ (X) is an
isomorphism and so is the morphism A(X)~ — A induced by the universal prop-
erty of limits. Using these isomorphisms one constructs the required isomorphisms
of functors. |

PROPOSITION 1V.1.3.9. Let N be a Ox-prealgebra/-premodule and let U C Bx
be a cover of X. Then N is quasi-coherent if and only if for each U € U and
W e B[ the canonical map S[}},VN(U) — N(W) is an isomorphism and for each
V e Bx, N(V) is the limit over all N(W) where W € Uy ¢, By N By

PROOF. If NV is quasi-coherent then Proposition[[V.1.3.2] verifies the first condi-
tion and Proposition[I[V.1.3.6|the second. In the converse situation, consider V' € By
and Vy € BYY. Then N (V) is the limit over all N (W) where W € Uy o, BY N By
Since localization is exact, it commutes with finite limits and hence N'(V); is the
limit over all N (W), = N(Wy,, ). By assumption this limit is N'(V}) because
By, N B is the set of all Wy, where W € By N By O

CONSTRUCTION IV.1.3.10. Let M be an Ox-algebra/-module and let U € Bx.
Then the canonical maps

li STt MU li MW) = M(V
Weé{g}(v) UwW ( )_>W61131§}(V) (W) (V)

for V € Qu define a homomorphism M(U)~ — My.

COROLLARY IV.1.3.11. An Ox-algebra/-module M is quasi-coherent if and
only if there exists a cover U C Bx of X such that the canonical map M(U)~ —

My is an isomorphism for each U € U. In this case, the statement also holds for
U=Bx.

PROPOSITION 1V.1.3.12. For a quasi-coherent Ox -prealgebra/-premodule N the
canonical homomorphism N'(U) — N*(U) is an isomorphism for each U € Bx. In
particular, N* is also quasi-coherent.

PROOF. Injectivity follows from Lemma For surjecitivity, consider
(f®)ev € N¥(U)y. Then there exist h; € O(U)y,,i = 1,...,d with U = |J, Up,
as well as n; € Ng and g; € O(U)w_n,v, such that f& = (h;)7™(g;). holds
for all z € Up,. Since we have (g;h}'/(hih;)")s = (gjh;"/(hih;)" ), for all
x € Up,p,, Lemmalll.1.8.7/implies g;h}" /(h;h;)" = g;ht? /(hih;)™ and thus Propo-
sition [I1.1.3.10] yields a g € N(U),, with 9v,, = gi/h;" for each i, which means g

is mapped to (f*)),cv. a

PROPOSITION 1V.1.3.13. Let X be a graded scheme and f € Ox(X)M™. Then
fix; is a unit in Ox(Xy). Moreover, for a quasi-coherent Ox-algebra/-module N
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the induced map (g§f)f: N(X)y — N(Xy) of O(X)-algebras/-modules is injec-
tive if X has a finite cover U C Bx, i.e. X is quasi-compact, and surjective if
additionally, U NV is quasi-compact for all U,V € U.

Proor. Note that X is the Set-colimit of the sets Uf\u where U € Bx. For
every U € By set gu == 1/(fiy) € O(Ugpy) = O(U)y. Then for W € By we have
U Wy, = 9W and thus there exists an element g € O(X;) with 9y, = 9u and it
satisfies (fg)jv = flugu = 1 for all U which means fg =1 in O(X}).

Let g/f" € N(X)¢ be an (homogeneous) element. If g/ f™ € ker((g%f)f) then
f&fngf = 0 and hence g|x, = 0. For each U € Bx we then have g|U/f|7}J =0
which means there exists my > 0 with flrgUg‘U = 0. If X has a finite cover by
U € Bx then we find m > 0 with (f™g);y = 0 for U € U and hence f™g =0, i.e.

" =0.

o Lastly, let h € N (Xy) be an (homogeneous) element. Then there exist (homo-
geneous) gy € N(U) and my € Ny such that hyy, = fl?JTU(gU)Wf. For U,V e U

we then have fi7oe) (9v)wav), = hjwnv), = fionv), (9u)way), and hence
(fKL/UQV)KUmV)f = (f|7gng)l(UﬂV)f' If each U NV is quasi-compact injectivity

gives (f|73UgV)|UﬂV = (f‘{"}"gU)wﬁV. Let m := maxy my and set g;; = fu“}_ngU.

Then (g7;)junv = (91 )junv and thus there exists g’ € O(X) with gI’U = g;; and by

construction we have fﬁ;fng"Uf = hjy,; and hence f‘;{;‘g"xf =h. a

REMARK IV.1.3.14. Let X be a graded scheme over A. Proposition [[1.1.3.10
implies that for a quasi-coherent O x-algebra/-module A being of finite type over
Ox resp. A need be checked only on an affine cover of X.

DEFINITION IV.1.3.15. A morphism ¢ : X — Y of graded schemes is affine if
for every affine open V C Y the preimage ¢~ (V) is affine.

ProrosITION 1V.1.3.16. A morphism ¢: X — Y of graded schemes is affine if
or some cover Y = .., Vi by affine V; the preimages ¢~ (V;) are affine.
el

PROOF. Each U € By is a union of finitely many common principal subsets
= (Vi) @ of U and the Vi, so ¢~ 1(U) is the union of the (affine) principal
sets ¢~ (U)gr () = qﬁ’l(‘/,-)%i(g;n). Moreover, we have 1 € (f;|j) and hence
1 € (¢5(f;)4). Thus, U is affine by Proposition [IV.1.5.2 O

CONSTRUCTION IV.1.3.17. Let X be a graded scheme and let A be a quasi-
coherent O x-prealgebra. Then for each U,V € Bx with U C V we have an open
embedding Spec,, (A(U)) — Spec,, (A(V')) obtained by covering U with all principal
common subsets of U and V, and using Propositions [V.1.3.6] and [[.1.3.10] The
resulting colimit

Uy,

J

Specgr,X (A) = ((31061%31’)1(1 Specgr (A(U))

together with the affine morphism ¢: Y := Spec,, y(A) — X induced by the
morphisms Spec,, (A(U)) — U is called the relative graded spectrum of A. Note
that A is a €*-sheaf if and only if the canonical homomorphism A — ¢,Oy is an
isomorphism.

We will later consider graded relative spectra of Cox sheaves. Moreover, we will
apply the construction in the general case of Ox-prealgebras when we define the
canonical functor from graded schemes to schemes.

ProrosiTiON 1V.1.3.18. For a graded scheme X let AffGrSchx be the sub-
category of GrSchx whose objects are affine morphisms to X. Then the following
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are mutually essentially inverse equivalences

{quasi-coherent Ox -algebras} «—— AffGrSchx
Specgr,X: [OX - A] — [SpngT,X(A) - X]
[A - B] L — [Specan(B) - Specgr,X (“’4)]

[Ox 1% Oy] i [X 5 Y]

Oy 2 6,0, < [y 2 7]

PROOF. Suppose that ¢ is affine. For U € By and f € Oy (Uy)"™ we have
$.0x(Us) = Ox (6~ (U)g,(5)) = Ox (67 (U)) gz, (5) = +Ox (U);

which shows well-definedness. O

IV.1.4. Vanishing sets and an affineness criterion. Following the discus-
sion of basic properties of vanishing sets of quasi-coherent Ox-(pre-)ideals we give
an affineness criterion, see Propositions which we apply in the discussion
of affine morphisms whose comorphisms are CBEs, see Proposition [[V.1.4.13]

CONSTRUCTION IV.1.4.1. Let Z be a quasi-coherent O x-preideal. Then
Vx(Z) :=Supp(Ox/I) :={z € X | I, # Oxu} ={z € X | I, Cmx;}

is the vanishing set of Z. For f € O(X)"™ we set Vx(f) := Vx(Oxf) and call
X=X\ Vx(f) the principal open subset associated to f.

CONSTRUCTION 1V.1.4.2. Let A C X be a subset of a graded scheme. Then
setting
Za(U) = (] (Y) " (mxa)
zeUNA

for U € Qx defines an Ox-ideal called the sheaf of vanishing ideals associated to
A.

REMARK IV.1.4.3. For a subset A C X = Spec,, (?) the canonical isomorphism
R =2 Ox(X) restricts to an isomorphism /(A) = Z4(X). Consequently, we have
Vx(Za) =V (I(A)) = A.

PROPOSITION IV.1.4.4. Let A be a subset of X and let J,J;,i € I be a quasi-
coherent graded Ox -preideals.
(i) For each U € Bx we have To(U) = Zanu(U) and V(T (U)) = Vu(Jv)
with respect to the notions from Definition [IV.1.1.7)
(ii) Za equals /Z,* and is quasi-coherent since we have (Za)jv = Zanv for
each U € Qx,
(ili) Vx(J) = Vx(J*) is closed because we have Vi (Jjv) = Vx(T)NU for

each U € Qx,
we have Vx(Za) = ZX,

)
) we have Ty, 7y = (VT*,
(vi) if I is finite then Vx([[, 7i) = Vx("; Ti) = U, Vx (Ji).-
i) we have Vx (32; Ji) = ; Vx (Ji)-

) Z_ and Vx (=) reverse inclusions of sets resp. quasi-coherent graded Ox -
preideals.
(ix) A is irreducible if and only if JT C Ty implies J C Ty or T C Iy for
each two quasi-coherent graded Ox -preideals. In these cases, each Ta(U)
1s homogeneously prime.



IV.1. THE CATEGORY OF GRADED SCHEMES 97

PROOF. Assertion (i) follows from the respective definitions. In (ii) quasi-
coherence follows from Proposition and each Z4(U) is homogeneously
radical as an intersection of homogeneously prime ideals. Assertion (iii) follows
from Remark [V.1.4.3

Assertion (iv) follows from the fact that due to Proposition we have
Vo(Zaw) NV = ANV for each V € By. For (v) we use (ii), (iii), Proposi-
tion and Remark to argue that

gr

Ty () (U) = Ty (7,)(U) = VT (O) = (VTHOU)

holds for U € Bx .
For (vi) and (vii) note that due to Proposition [[V.1.1.6| for each U € Bx we
have

Vx Hz nU = VU(H J\w) Hz = Vx ﬂz nU = VU(ﬂUi)w)

ﬂjz vam )nU = UVU (T)w) = UV
and
Vx(Q_J)NU =Vu(Y_(Tw) = Zz )=V (&
—ﬂVU (T)w) = ﬂvxz

In (ix) first suppose that A is irreducible. If ZJ C Z4 holds then we have
A CVx(Za) CVx(ZT) = Vx(Z) UVx(J) and we deduce that A C Vx(Z) or
A C Vx(J) holds. Thus, we have Z C Ty, (z) € Za or J € Zy,(g) € Za. For
the converse suppose that A C B U C holds with closed subsets B,C C X. Then
IZlc C Ip NZe = Ipuc € Z4 holds and by assumption we have Zg C Z4 or
Zo C T4, which gives A C Vx(Za) C Vx(Zp) = B or A C Vx(Z¢) = C. Finally,
consider f,g € O(U)"™ with fg € Za(U). Then Oy fOpyg C (Za)v = Zanv
and by irreducibility of A NU we obtain Oy f C Zany or Opg C Zany and hence
feZs(U)orgeZa). O

PropPOSITION 1V.1.4.5. Consider a subsetY of a graded scheme X and a graded
ideal a of O(X). Then with respect to the topology 'y generated by all Xy for
f € O(X)hom the following hold:

(i) We haveY C Vx(a) if and only if a C Ix(Y). Consequently, Vx(Ix(Y))
is the Q' -closure of Y and we have a C Ix(Vx(a)).

(i) Y is QY -irreducible if and only if Ix(Y') is homogeneously prime. In par-
ticular, Qx -irreducibility of Y implies homogeneous primality of Ix(Y).

PROOF. Regarding (i) note that Y C Vx(a) means Y C Vx(f) for each f €
alom je. f, € mg for each x € Y and each f € aP™. In other words, for each
f € a"™ we have f € Ix(Y). This means a C Ix(Y).

In (ii) note that if Y is Qs-irreducible and a, b are graded ideals of O(X) with
ab then ¥ C Vx(a) U Vx(b) implies Y C Vx(a) or Y C Vx(b), i.e. a C Ix(Y)
or b C Ix(Y). Conversely, consider Q' -closed sets A, B with Y C AU B, where
A = Vx(a) and B = Vx (b) holds with graded ideals a, b of O(X). Then ab C Ix(Y)
gives a C Ix(Y) or b C Ix(Y) which means Y C Aor Y C B. O

REMARK IV.1.4.6. If ¢: X — Y is a morphism of graded schemes, V C Y is an
open set and g € Oy (V)™ then ¢~1(V,) = (l)_l(V)%(g). Indeed, for an element
x € ¢1(V) we have gy € (O?foﬁm )* if and only if ¢%(g(z)) = 0} (9)e € (OKR)*
by locality of ¢ .
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REMARK 1V.1.4.7. A morphism ¢: U — X of affine graded schemes is an open
embedding if and only if there exist (homogeneous) fi,..., fn € O(X) such that
U=Ups(f)Y-..UUps (s, and the restrictions Uy (y,) — Xy, are isomorphisms,
ie. O(U) = (% (f1),---, % (fn)) and the natural maps O(X)y, — O(U)ysx (5,) are
isomorphisms.

Indeed, if ¢ is an open embedding then ¢(U) = Xy U...U X, holds with
fi € O(X)'*™ and we have U = ¢~ 1 (¢(U)) = Ugs (fyU---UUgs (1), in particular

OU) = (ox (f1),---, % (fn))-

ProprosITION IV.1.4.8. Let X be a graded scheme. Then an open set U C X is
affine if and only if there exist Uy, ...,U, € By which cover U such that each face
7i = (pF,) "H(O(U;)Pom)*) is principal, TiflTl;lpgmUk is an isomorphism, U; N Uy,
is affine and we have O(U) = (77,..., 7). If X has an affine cover X = J;c; X;
then the U; may be chosen as principal open subsets of the X;.

PROOF. If the second set of conditions is satisfied then we have open princi-
pal open embeddings U; N Uy — Spec,, (O(U)) =: U" which are compatible and
whose images cover U’ due to Proposition Thus, they fit together to an
isomorphism U — U’.

For the supplement, suppose that U is affine. Then UNX; is covered by common
principal subsets of U and X;. By quasi-compactness, U is covered by finitely many
such sets. ]

REMARK IV.1.4.9. If X = (J,.; X; is an open affine cover of a graded IF;-scheme
then Bx = |J; BY,, because each U € Bx is a union of principal subsets (X;)y, ;
and by Proposition [[V.1.2.7] (iii) it must equal one of these.

REMARK 1V.1.4.10. Let ¢: X — Y be a morphism of affine graded schemes.
Then the composition of the inverse image functor ¢*, restricted to quasi-coherent
Oy-algebras/-modules, with the global sections functor to O(X)-algebras/-modules
is isomorphic to the composition of the global sections functor with the functor
sending an O(Y)-algebra/-module R to O(X) ®oy) R.

Denote by ¢ the functor from Oy-ideals to Ox-ideals from Remark
Then the composition of ¢T, restricted to quasi-coherent Oy-ideals, with the global
sections functor is isomorphic to the composition of the global sections functor and
the functor sending an O(Y')-ideal a to (¢% (a))o(x)-

REMARK IV.1.4.11. Let ¢: X — Z be an affine morphism of graded schemes.
Then the direct resp. inverse image functors ¢, and ¢* both respect quasi-coherence.

REMARK IV.1.4.12. Let ¢: X — Z be an affine morphism of graded schemes.

For each quasi-coherent Ox-preideal Z we have Vz(¢.Z) = ¢(Vx(Z)). Moreover,
for each quasi-coherent O z-preideal J we have Vx ({(¢*(7))) = ¢~ 1 (Vz(T)).

PROPOSITION 1V.1.4.13. Let ¢: X — Z be an affine morphism of graded schemes
such that ¢*: Oz — ¢.Ox is a CBE. Then the following hold:

(i) ¢ is a homeomorphism.

(ii) The canonical map By — Bx is bijective. Moreover, for each U € By
the canonical map BYy — Bgil(U) is bijective.

(iil) The canonical functors between quasi-coherent O z-ideals and quasi-coherent
Ox -ideals are mutually essentially inverse equivalences.

(iv) For x € X the taking image resp. preimage under ¢ defines mutually in-
verse bijections between the (affine) neighbourhoods of x and ¢(x). More-
over, the canonical map ¢y: Oz gy — (6+O0x)p(2) = Ox,z is a CBE.

PROOF. We assume that X is affine. By Proposition taking graded
preimages resp. images under ¢7, defines a bijection between the graded ideals of
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O(X) and O(Z) which preserves graded principality and primality. Therefore, ¢
is bijective and we have ¢(Xyx (s)) = Zy for f € O(Z)hem_ This gives (i) and
bijectivity of the map BY — BY. Moreover, if ¢! (U) is affine then U is affine by
Proposition For (iii) we use the setting of Remark and apply
Proposition Assertion (iv) follows from Remark O

IV.1.5. Adjoint pairs and limits. In this section we consider functors be-

tween various categories of graded schemes and consider constructions such as finite
limits.

ProrosiTiON IV.1.5.1. The following defines a covariant functor
aff: GrSchy — AffGrSch4
(X, Ox) — (Specg, (Ox (X)), Ospec,, (0x (X))

(X 5 Y,0y 5 6,0x) — (Specy, (9 ), Spec (67)°)
with the following properties:
(i) For a graded scheme (X,Ox) we have a morphism
ox: X — Specgr((’)X(X)L x— Ix({z})

which satisfies ax' (aff(X) ;) = X for f € O(X)hom,
(ii) A graded scheme (X, Ox) is affine if and only if the canonical morphism
ax 1s an isomorphism.
(iii) off is canonically left adjoint to the inclusion AFGrSch — GrSch.
ProOOF. Let (¢,¢") : (X,0x) — (Specg,(R), Ospec,, (r)) =t (Y, Oy) be an iso-
morphism. For every x € X and p := ¢(x) we have, in the notation of Section
a commutative diagram

¢§' JR

Do) J

Ox o <=— Oy g(a) <—R,

whose rows are isomorphisms. We show that ax equals the morphism
o = Specy, ((¢3) 1) 0 Specy, ((1r) 1) 0 ¢ : X — Spec,, (Ox (X))
For p we know that m, = 7,(S, 'p) and 2, ' (S, 'p) = p thus we may calculate
o () = 63 (r(0()) = 67 Urlpm (S3L 6(2)))
= 05 (05 a)) " (Mg(@))) = (p) 7' (M) = ax ()
In (i) continuity of acx follows from the supplement. Moreover, Proposition|[lV.1.3.13
provides canonical maps
Oujix) (aff(X) ) = Ox(X) 5 — Ox(Xy) = Ox (k' (aff(X)y))
and applying limits defines a morphism of graded sheaves o : Oqj5(x) — (ax)«Ox-.

Assertion (iii) is an application of Lemma |A.0.0.2 O

PROPOSITION IV.1.5.2. A graded scheme X over A is affine if and only if there
exist (homogeneous) f1,...,fn € O(X) such that O(X) = (f1,..., fn) and each
Xy, is affine.

PROOF. Suppose the second condition holds. By Proposition we have
X =, Xy,. Moreover, each Xy N Xy, = (Xfi)fjle is affine and hence the canon-

ical morphism O(X);, — O(Xy,) is an isomorphisrr; by Proposition [IV.1.3.13] For
f = fiand f = f;f; we have canonical isomorphisms X; — Spec,, (O(X)y) by
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Proposition|IV.1.5.1)which define compatible open embeddings Xy — Spec,, (O(X)).
Their images cover Spec,, (O(X)) because the f; generate O(X). Thus, the induced
morphism X — Spec,, (O(X)) is an isomorphism. O

PROPOSITION IV.1.5.3. Let S be a graded scheme and consider gr(Og)-algebras
k: gr(Ogs) — K and A: gr(Og) — L and a homomorphism ¢: K — L of gr(Og)-
algebras. Denoting the coarsening and augmentation functors from Section
by co? resp. aug? we have the following:

(i) Sending a K-graded scheme X over S to Specy(co¥ o Ox) defines a
functor GrSch — GrSchs.

(ii) If ¥ is surjective then sending an L-graded scheme (Y,Oy) over S to
(Y, aug¥ oOy) defines a functor GrSché — GrSchg which is left adjoint
to the functor from (i).

PROOF. Using the canonical functors sending X to Specy (co¥ 0cOx) — X and
Y to (Y,0y) — (Y,aug¥ o Oy) we apply Lemma |A.0.0.4 O

ProproOSITION 1V.1.5.4. The inclusion functor from schemes to graded schemes
is left adjoint to the functor s° which sends X to Spec,,. x(co® o Ox), where co’
denotes the forgetful functor form graded rings to rings. Moreover, the following

hold:

(i) The canonical affine morphism s°(X) — X is surjective.

(ii) The inclusion of affine schemes into affine graded schemes is left adjoint
to the restriction of s° to affine graded schemes. Moreover, both these
functors commute with taking principal subsets.

(iii) If X is a colimit of a diagram D: I — GrSch of open embeddings then
s9(X) is a colimit of s° o D. Thus, s° preserves open embeddings.

PROOF. The main assertion follows from Lemma [A.0.0.4] assertion (i) from

Proposition
|

ProrosITION 1V.1.5.5. The above functor commutes with fibre products and
maps affine graded schemes to affine schemes. Moreover, it respects localization.

REMARK IV.1.5.6. The restriction of the structure sheaf of s°(X) to the initial
topology of the canonical map jx: 5°(X) — X is naturally gr(X)-graded since we
have Ogo(x) (7% (U)) = Ox (U) for every open U C X.

CONSTRUCTION IV.1.5.7. Let I be a category with finitely many objects and
morphisms. Let D: I — GrSchg be a diagram assigning ¢ to m;: X; — S. Let J
be the set of all pairs (U, (V;)icr) where U € Bg and V; € Bﬂi—l(U) are such that
for each I-morphism «: ¢ — i we have D(a)(V;) C Vi;. Then D restricts to a
GrSchy-diagram D; for each j = (U, (V;);) € J. The limit 7;: Y; — U of D;
together with the morphisms ¢;;: Y; — V; is defined by taking the image of the
limit of O o D; under Spec and employing the isomorphisms Spec(O(V;)) = V; and
Spec(O(U)) =2 U. Note that this GrSchy-limit is also a GrSchg-limit.

Due to compatibility of colimits of graded A-algebras with localization, see
Remark we have canonical open embeddings Y; — Yj/ of schemes over S
for all j < 5/ € J. Let Y be the GrSch-colimit of the diagram J — GrSch, j — Yj.
Then each morphism 7; induces a morphism 7: Y — S and each morphism ¢;;
induces a morphism ¢;: ¥ — X; of graded schemes over S. Then 7 and {¢;};
together form the limit of D.

REMARK IV.1.5.8. Let ¢: X — Y be a morphism of graded schemes over
F; resp. Z. Then due to Example [AZ0.0.3] the associated base change functor
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GrSchy — GrSchyx,[Z — Y] — [Z x4 X — X] is right adjoint to the functor
sending a morphism to X to its composition with ¢.

CONSTRUCTION IV.1.5.9. Fix a graded scheme X over Z and let Z be a
graded scheme over Fy. For U € Bz and f € O(U) we have an open embedding
Specy, x (Ox[O(Uy)]) — Specy, x(Ox[O(U)]) of graded schemes over X. Thus,
all V' € By yield open embeddings Spec,, x(Ox[O(V)]) — Specy, x(Ox[O(U)]) of
graded schemes over X. Taking the colimit over Bz we obtain a graded scheme
X[Z] over X, which we call the free graded scheme over X in Z and also denote by
Specg, (Ox[Oz]).

X[Z] is covered by all Spec,, (O(W)[O(U)]) where W € Bx and U € Bgz.
For such W and U the canonical map Spec,, (O(W)[O(U)]) — Spec,, (O(U)) which
sends a homogeneously prime ideal to its intersection with O(U) is continuous. Note
that in a generalized setting of graded sesquiad schemes, i.e. spaces with structure
sheaves which are locally sets of homogeneously prime ideals of graded sesquiads,
this map should be a morphism. For each f € O(W)"™ the canonical map
Spec,, (O(W;)[O(U)]) — Spec,, (O(U)) is the composition of the aforementioned
map and the open embedding Spec,, (O(W;)[O(U)]) — Spec,, (O(W)[O(U)]). Thus,
we have obtain a well-defined continuous map Spec,, yv(Ox[O(U)]) — U. For
g € O(U) the respective maps, together with the principal open inclusions U, — U
and Spec,, v (Ox[O(U,)]) — Specy, x(Ox[O(U)]) form a commutative diagram.
Therefore, these maps fit together to a continuous map X[Z] — Z, which in the
more general setting should turn out to be a morphism of graded sesquiad schemes.

For a morphism Z — Z’ we obtain an induced morphism X[Z] — X[Z'] of
graded schemes over X. This turns X[—] into a functor from graded schemes over
F; to graded schemes over X.

ExaMpPLE 1V.1.5.10. Let M be an abelian monoid with cancellation and let k
be a simply graded ring, e.g. a 0-graded field. Let R := k[M] be the canonically
gr(k) ® Q(M)-graded monoid algebra of M over k. Then there mutually inverse
order reversing bijections

faces(M) «— Specg(ap) (R)
T— (X" [weM\T)
deg(R"™ \ p) < p

with both sets being ordered by inclusion. In this setting, s} is isomorphic to the
functor k[—] which replaces each structure sheaf Ox with k[Ox].

REMARK IV.1.5.11. Let A be a graded ring and let S be a graded A-algebra.
Take the forgetful functor from graded S-algebras to graded F;-algebras and com-
pose with Spec,, on one side and with the global sections functor on the other.
The resulting functor i is left adjoint to Spec,, (S)[—] due to Proposition
Moreover, for each graded S-algebra R we have a canonical injection

Specg, (R) — Spec(RM™™), p— p N Rho™

which is continuous. Indeed, the preimage of V(a) is V({a)r). Consequently, i
preserves inclusions of principal open subsets.

IV.2. Properties of graded schemes and their morphisms

IV.2.1. Homogeneous integrality, regularity and closed graded sub-
schemes. In this section we assemble the preliminaries for Chapter [V] and some
further basic properties of graded schemes, including homogeneous integrality, re-
ducedness and noetherianity, as well as closed subschemes and separatedness.
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REMARK IV.2.1.1. Let Z be a quasi-coherent A-ideal of a quasi-coherent Ox-
algebra A. By Remark and Proposition|[lI.1.8.13]7 is homogeneously radical

if and only if Z(U) = +/Z(U)~ holds for each member U of an affine cover of X.
This is because for each principal open subset Uy of such a U we have

I(Uy) = T(U); = VIO)E = \JTW0), = \JT(W0y) .

DEFINITION IV.2.1.2. A graded scheme X is homogeneously integral/reduced if
Ox (U) is homogeneously integral resp. {0p, ()} is homogeneously radical for each
UeQx.

ProrosiTiON IV.2.1.3. Let X be an trreducible graded scheme which admits an
affine cover U such that O(U) is homogeneously integral for each U € U. Then X
is homogeneously integral.

PROOF. First note that for each non-empty W € By where U € U the sections
O(W) are again homogeneously integral. Here, if W’ is principal in W then the
restriction O(W) — O(W’) is an injective localization map. Secondly, V' € Qx is
covered by all W e BYY N Qy where U € U. Thus, O(V) is the limit over all these
O(W), and is consequently homogeneously integral by Proposition O

PROPOSITION 1V.2.1.4. A graded scheme X is irreducible and homogeneously
reduced if and only if no O(U) has homogeneous zero divisors.

PRrROOF. If no O(U) has homogeneous zero divisors then X is homogeneously
reduced. Suppose there exist U,V € Qx with UNV = . Then O(U UV)
O(U) x O(V) has homogeneous zero divisors - a contradiction.

Conversely, suppose that X is irreducible and homogeneously reduced. Let
U € Qx and let fg = 0 with homogeneous non-zero f,g € O(U). Then U =
Vu (f) UV (g) means we may assume U = Vi (f). For each W € By we then have

W =Vw(fiw), i.e. fiw € \/{O@(W)}gr which by homogenous reducedness means
Jiw = 0. Thus, we obtain f = 0. |

DEFINITION IV.2.1.5. For a homogeneously integral graded scheme X the con-
stant sheaf of rational fractions K is defined as the sheaf assigning the stalk at the
generic point £ of X to each non-empty open set of X.

ProrosiTION 1V.2.1.6. For a homogeneously integral graded scheme X, Ox is
a subsheaf of IC.

PROOF. Due to quasi-coherence the canonical (localization) map O(U) — K(U)
is a monomorphism for affine open sets U and by Proposition for all open
sets. (]

CONSTRUCTION IV.2.1.7. Let X be a graded scheme and let Z be a quasi-
coherent Ox-ideal. Then the morphism Z := Spec,, x(Ox/Z) — X defines a
homeomorphism 7 onto its image Y, and (Y, 7.0z) is called the closed graded sub-
scheme of X associated to Z. 7 is then an isomorphism of graded schemes and the
inclusion ¢: Y — X naturally becomes a morphism of graded schemes. Specifically,
we have canonical isomorphisms between (UNV (Z), Oy (UNV(Z))) and the graded
spectrum of O(U)/Z(U) for all U € Bx.

DEFINITION IV.2.1.8. A morphism ¢: Y — X of graded schemes is a closed
embedding if it factors into a product Y = #(Y) - X of an isomorphism and an
inclusion of a closed graded subscheme into X.
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ExampLE IV.2.1.9. Let R be a graded ring and a a graded ideal of R. Then
the canonical map Spec,, (R — R/a) is a closed embedding. In the general case, a
morphism ¢: X — Z of affine graded schemes is a closed embedding if and only if
¢%: O(Z) — O(X) is a surjection with bijective accompanying map.

REMARK IV.2.1.10. A morphism ¢: Z — X of graded schemes is a closed em-
bedding if and only if ¢ is affine and ¢, is the image €f*-sheaf of ¢*, and in that
case ¢ factors into an isomorphism onto Vi (ker(¢*)) and an inclusion morphism.

DEeFINITION IV.2.1.11. A graded scheme X over Y with structure morphism
¢: X — Y is of finite type if there exists an affine cover Y = U; U...U U, such
that each of the preimages has a finite affine cover ¢—1(U;) = ViiU...UVig,
and each of the homomorphisms Oy (U;) — Ox(V; ;) defines a finitely generated
Oy (U;)-algebra.

DEFINITION 1V.2.1.12. Let X be a graded scheme over Y with structure mor-
phism ¢: X — Y and denote by (X xy X)9(©x) the product of ¢ with itself in
GrSch‘({f(OX). Then the diagonal morphism Ag: X — X Xy X factors in to the
diagonal morphism AZT(OX) : X — (X xy X)97(©x) and the canonical (affine) mor-
phism (X xy X)97(0x) — X xy X. ¢ is separated if Agf(o’() is a closed embedding.

DEFINITION IV.2.1.13. A graded scheme X is of affine intersection if the inter-
section of each two affine open subsets is again affine.

DEFINITION 1V.2.1.14. A graded scheme X is locally homogeneously noetherian
if O(U) is homogeneously noetherian for each U € By. If X is also quasi-compact
then it is called homogeneously noetherian.

REMARK IV.2.1.15. If X is homogeneously noetherian then Qx is noetherian.

REMARK IV.2.1.16. Due to Proposition a graded scheme X is locally
homogeneously noetherian if it is covered by affine open U with homogeneously
noetherian sections. In particular, if X is affine then it is homogeneously noetherian
if and only if O(X) is homogeneously noetherian.

ExAaMPLE IV.2.1.17. A graded scheme of finite type over a homogeneously
noetherian A is homogeneously noetherian. If A is a graded ring this is due to the
homogeneous version of Hilbert’s basis theorem which is given in Theorem [[L.1.7.5]
If A is a graded monoid/Fi-algebra the claim follows from Proposition

DEFINITION IV.2.1.18. A point p of a homogeneously noetherian graded scheme
X is called regular if Ox ), is regularly graded. X,., denotes the set of regular points
of X. If X = X,eg then X is called regular.

The theory may now be developped in the same way as for schemes. For graded
schemes over F; we have the following:

REMARK IV.2.1.19. Due to Proposition [[.2.7.6] a point p of a homogeneously
noetherian graded scheme X over [y is regular if and only if its stalk is factorial.
Moreover, if p € X is regular and p € {p’} then p’ is also regular. Thus, the set
X:eg of regular points of X is open.

IV.2.2. Veronesean good quotients. To distinguish the good quotients de-
fined below from quotients by actions we term them Veronesean, since they are
defined in terms of Veronese subalgebras.

DEFINITION IV.2.2.1. A morphisms ¢: X — X is a (Veronesean) good quotient
if ¢ is affine, ¥: gr(Ox) — gr(Og) is injective and ¢*: Ox — (4O %)y (gr(0x)) 18
an isomorphism. X is then called the quotient space of q. If gr(Ox) =0, i.e. X is a
scheme, then g is said to be a good quotient by gr(Ox) or by the gr(Ox)-grading.
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ExamMpLE IV.2.2.2. For a Veronese subalgebra :: Rz — R the morphism
Spec,, (2) is a good quotient.

ProrosiTioN 1V.2.2.3. For a good quotient q: X — X the following hold:

(i) For x € X the preimage q~'(x) contains a unique point T, called the
special point over x, which is contained in all closed set B with x €
q(B), in particular in all closures of points in ¢~ (x). Moreover, we have
Oxq = (O)?@)gr(ox)' Furthermore, x is closed in U € Bx 5 if and only
if T is closed in ¢~ *(U), and I~ (Z) is the special ideal over Iy (x)
from Proposition [IT.1.8.17)

(ii) q is surjective.

(iii) ¢ is closed.
(iv) q(N); X)) = ﬂlq()?l) holds for all closed X; C X.

PrROOF. In (i) consider  and U € Bx . The special point over z is then
defined as the point Z of ¢~*(U) corresponding to the special ideal over Ir;(z) from
Proposition Since the formation of special ideals over homogeneously
prime ideals commutes with localization 7 is independent of the choice of U. The
desired properties of  may be checked in the affine neighbourhoods ¢=1(U) and
thus follow from Proposition [[I.1.8.14] The existence of special points in particular
implies surjectivity of q.

For (iii) consider U € Bx and « € U. For a closed set Z C X with z € q(Z) we
have I, (ZNg~*(U))NOx (U) C Iy(x) and hence -1y (ZNg ' (U)) contains
the special ideal over Iy (z) which means the special point Z over z lies in Z. In

(iv) let U € Bx. Then Proposition gives
Ox(U) N Zlq—l(U)(Xi n q_l(U)) = ZOX(U) n Iq—l(U)()?Z' n q_l(U))

which means ¢((; X)NU = N ¢ X)NU. O

ProrosiTION 1V.2.2.4. For a good quotient q: X — X the following hold:
(i) ForeachU € Qx the restriction qjq-1(v): q Y(U) — U is a good quotient.
(i) For a quasi-coherent O ¢-preideal { denote Spec,, x(Ox/(¢*)""(¢.T))
and Specgr,g(Og/I) by Z resp. Z. Then q induces a good quotient
qz: Z — Z which together with the closed embeddings Z7 — X and Z — X
forms a commutative diagram.

ProOF. For (ii) first note that the composition of canonical homomorphisms
Ox — ¢:0% — ¢.O0%/q.T is equal to the composition of the canonical homomor-
phisms Ox — Ox /(¢*) ' (¢.Z) — ¢.O%/q.Z, with the last factor being Veronesean.
Applying Spec,, x gives the desired diagram because we have canonical isomor-

phisms Z — Spec,,. x (405 /q.T), X - Spec,,. x(¢«O%) and X — Spec,, x(Ox).
(Il

DEFINITION IV.2.2.5. A bijective good quotient is called geometric.

EXAMPLE IV.2.2.6. Let R be a Z-graded ring with a unit f € R"™ of non-zero
degree. Then Specgr(Ro C R) is a geometric good quotient. For injectivity, let
p,q€ Specgr(R) with pN Ry = qN Ry. Then for a € p"°™ \ 0 there exist m,n € Z
with mdegy(a) = ndegz(f). Then a™f~™ € pN Ry = q N Ry and hence a™ € q,
ie. a€q.

REMARK 1V.2.2.7. If g: X — X is geometric then ¢ is a homeomorphism and
each 7 € X is special over ¢(Z). Indeed, the single point in ¢~1(g(Z)) is by definition
special over ¢(T).
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DEFINITION IV.2.2.8. Let g: X — X be a Veronesean quotient and let A C X
be a closed set. The special set over A is the closure of the set of all ¥ € X such
that ¢(Z) € A and 7 is the special point over z.

ProrosiTiON 1V.2.2.9. For a good quotient q: X — X and the closed subset
Z C X the following hold:
(i) Z is the unique closed subset of X which satisfies q(Z) = Z and is con-
tained in all closed sets whose image under q contains Z. Moreover, 7 is
the intersection over all closed sets whose image under q contains Z.
(ii) for U € Bx, Iz(q~'(U)) is the special ideal over Zz(U).
(iii) 7 is irreducible if and only if Z is so. In particular, the special set over
{z} is the closure {Z} of the special point T over x.
(iv) If X is homogeneously integral/reduced/quasi-compact then so is X.

PROOF. In (i) first note that the set Z of all special points over points of Z has

image Z, and continuity gives Z = Z C ¢ 1(Z). Next, we show that a closed subset
Y C X contains Z (equivalently, 2) if and only if Z C q(}?) If Y is closed with
Z C q(f/) then the special point T over a z € Z is contained in the closure of some
point of Y with image x and hence T € Y. Conversely, if Z CY then Z C q(f/)
For uniqueness, consider a minimal closed set Y’ with Z C q(Y’). Then Z C Y’

implies Z = Y". In (ii) we calculate

Ty(a7 (V) = Ty (U) = () Zela () = () Z(U) = Zz(0).

zeZ x€Z

In (iii) suppose that Z = {z} is irreducible. Then {Z} is the minimal closed
set with image Z which by (i) means {Z} = Z. In assertion (iv) the statement
concerning homogeneous reducedness follows from Remark applied to the
cover [Jy ¢ 5y U. The statement on homogeneous integrality follows from the fact
Veronese subalgebras inherit homogeneous integrality from their containing alge-
bras. The statement on quasi-compactness follows from surjectivity of q. ]

IV.2.3. The canonical quasi-torus action on a graded scheme. We
briefly introduce the concept of graded group schemes and show that each graded
scheme X over A comes with a natural action by the quasi-torus Spec,, (A[gr(X)]).
This constitutes a functor from graded schemes to actions of graded group schemes.
Moreover, we relate quasi-tori over F; and K to one another.

In the above definition, group object and action refer to the concepts defined
in terms of GrSchg-products and commutative diagrams of GrSchg-morphisms.

Below, we continue to make the assumption that all occuring algebras are com-
mutative.

DEFINITION 1V.2.3.1. A graded bialgebra over A consists of a graded A-algebra
u: A — R,gr(u): gr(A) — gr(R) together with an A-algebra homomorphism
p: R — R®a R,gr(p): gr(R) — gr(R) ®ga) gr(R) called the comultiplicaltion,
which satisfies the coassociativity condition
(n®idg)op = (idp ® p) o p,
(gr(p) @ idgr(r)) © gr(p) = (idgr(ry ® gr(p)) o grp),

and an A-algebra homomorphism cu: R — A, gr(cu): gr(R) — gr(A), called the
counit, and satisfy the equations

((wocu)-idg) o p =idg = (idg - (u o cu)) o u,
((gr(u) o gr(cu)) + idgT(R)) o gr(u) =idgr(g) = (idgT(R) + (gr(u) o gr(cu))) o gr(u).
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A morphism of graded bialgebras over A is a morphism of graded algebras that is
also compatible with the respective comultiplications and counits.

CONSTRUCTION 1V.2.3.2. For a graded bialgebra R over A the set M(R) of
homogeneous monoid-like elements is the set of those f € R"™ whose image under
comultiplicaltion and under the counit is f ® f resp. 14. M(R) is a submonoid
of RP™ which is graded by the kernel ker(gr(cu)) of the map accompanying the
counit.

For a morphism ¢: R — R',v¢: gr(R) — gr(R’) of graded bialgebras over A the
restrictions M (¢): M(R) — M(R’),ker(gr(cu)) — ker(gr(cu’)) form a morphism
of graded monoids.

REMARK IV.2.3.3. Each graded monoid R is canonically a graded bialgebra over
{1}, with the diagonal map A: R — R x R = R®1y R,r — r @ r together with
gr(A): gr(R) — gr(R) x gr(R),w — (w,w) serving as comultiplication. Moreover,
each homomorphism of graded monoids is automatically a morphism of graded
bialgebras over {1}. By definition, we have M(R) = R. Conversely, consider a
bialgebra R over {1} with comultiplication cm: R — R ®;13 R. The counit cu is
the unique map R — {1}. By the counit axiom, each coordinate of em(f) equals
f, i.e. we have em = A. Thus, endowing a graded monoid with this canonical
bialgebra structure is inverse to the forgetful functor from graded bialgebras over
{1} to graded monoids.

REMARK 1V.2.3.4. Due to Lemma the functor M(—) from Construc-
tion is right adjoint to the functor A[—] which sends a graded monoid N
to A[N]. The adjunction is defined using the canonical morphisms A[M(R)] — R
and N = M(A[N]).

LEMMA 1V.2.3.5. If AM™ js simple then the set of homogeneous monoid-like
elements of a graded bialgebra R over A is A-linearly independent.

PRrROOF. Assume that n € Ny is minimal with the property that there exists a
linear combination f = Y7, a;f; with a;,€ A"™ and distinct f;, f € M(R) such
that deg(a;f;) = deg(f). Minimality of n gives a; # 0 and linear independence of
fi,--+, fa. By Corollary (fi ® f;) are linearly independent and hence

> aiaj(fief)=fef=> afi®f)
i, i

implies a; = 1, which gives a contradiction if n = 1, and a;a; = 0 for i # j, which
gives a contradiction if n > 1. ]

DEFINITION 1V.2.3.6. A graded Hopf algebra R over A is a graded A-bialgebra
together with an A-algebra endomorphism « on R, called the antipode. A morphism
of graded Hopf algebras over A is a homomorphism of the underlying graded A-
bialgebras.

REMARK IV.2.3.7. Morphisms of graded Hopf algebras commute with antipodes.

REMARK IV.2.3.8. The functor sending simple graded monoid G to its to its
associated graded {1}-bialgebra together with the antipode g — ¢! is inverse to
the forgetful functor from graded Hopf algebras over {1} to simple graded monoids.

REMARK IV.2.3.9. The adjunction from Remark[[V.2.3.4restricts to an adjunc-
tion of the functor sending a simple graded monoid G to the Hopf algebra A[G],
where the antipode is A[g — ¢g~!], and the functor sending a Hopf algebra R to its
homogeneous monoid-like elements M[R], which are then called its homogeneous
group-like elements. In the latter case, note that the antipode sends a monoid-like
element to its multiplicative inverse.
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DEFINITION 1V.2.3.10. Let Z be a graded scheme.

(i) The group objects of GrSchy are called graded group schemes over Z.
(ii) An action of a graded group scheme over Z on a graded scheme over Z
is an action of a group object in GrSchz on an object of GrSchy.

ProrosiTiON 1V.2.3.11. The anti-equivalence of affine graded schemes over
A and graded algebras over A induces an anti-equivalence of affine graded group
schemes over A and graded Hopf algebras over A.

CONSTRUCTION 1V.2.3.12. Let H be a graded group scheme over Z with struc-
ture morphism ¢. Let M(Opg)(U) be the set of those f € ¢.Oy(U)™™ such that
62—1(U)(f) = lo, () and we have m:;—l(U)(f) = (p""l)z—l(U)(f)(pw);—l(U)(f) with
respect to the projection morphisms pri,pro: H Xz H — H. This defines a sheaf
M(Opr) of constantly ker(gr(e’;))-graded monoids, called the sheaf of homogeneous
group-like elements of H. Moreover, if f € M(Og)(U) is invertible in ¢.Og(U)
then it is invertible in M(Og)(U).

For a morphism 6: H — H’ of graded group schemes over Z with structure
morphisms ¢ and ¢’ the homomorphism ¢, Og — ¢.Og restricts to a homomor-
phism M(Ogr) — M(Opr) of constantly graded sheaves of graded monoids. This
turns M into a functor from graded group schemes over Z to sheaves of constantly
graded monoids on Z.

Proor. Let U = |J;U; be an open cover and consider f; € M(Og)(U;)w
with fijy,nu, = fj\UmUj for all 4,j. Let f € On(¢~'(U)). be the unique element

with fiy, = fi. Then mj_, ;) (f) and (pr1)j-. gy (f)(Pr2)j-1 1) (f) both restrict to
mz,l(Ui)(fi) on each ¢~1(U;) and therefore coincide.

Concerning inverse elements note that if there exists ¢ € Oy (¢~1(U)) with
fg = 1 then mj_, ¢ (g9) equals (prl)(’;,l(m (g)(prg)z,l(U)(g) because the latter is
inverse to mz,—l(U)(f) = (prl);—l(U)(f)(pm)zs—l(U)(f)- U

REMARK 1V.2.3.13. For a graded group scheme H over Z with affine structure
morphism ¢ the multiplication m, unit e and inverse ¢ are also affine, due to Propo-
sition Moreover, for each U € By the set of group-like elements of the
graded Hopf algebra Oy (¢~1(U)) over O(U) is then M(Oy)(U).

DEFINITION 1V.2.3.14. A graded group scheme H over Z is a graded quasi-torus
over Z if M(Og)(Z) has a bijective degree map and the canonical morphism H —
Specy, z(Oz[M(On)(Z)]) is an isomorphism. A graded torus over Z additionally
satisfies that M(Og(Z)) is free. A morphism of graded quasi-tori is a morphism of
graded group schemes over Z.

ProprosiTION 1V.2.3.15. Consider the faithful contravariant functor i sending
an abelian group L to Specy, »(Oz[L]) and the contravariant functor f sending a
graded quasi-torus H over Z to the underlying group of M(Og)(Z). These are
mutually essentially inverse. Moreover, if Z is 0-graded then § is isomorphic to the
contravariant functor sending H to gr(Opg).

PROOF. Consider a graded quasi-torus H over Z with structure morphism ¢.
Then the canonical maps f(H) — O(H) — O(¢~1(U)) induce an isomorphism
Oz[f(H)] — ¢+Op which gives rise to the defining isomorphism ng: H — i(f(H)).
For a morphism 6: H — H' the induced morphism ny: i(f(H)) — i(f(H')) together
with g and ng form a commutative diagram. This constitutes an isomorphism 7
from the identity functor to io f.

Let L be an abelian group. Then for each U € Bz the canonical homomor-
phism L — M(O(U)[L]) = M(Oyr,))(U) is bijective, as are all restriction maps
of M(Oj(r)) to principal open subsets and hence so is the induced homomorphism
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7 L — §(i(L)). Again, this is compatible with morphisms, and we obtain an
isomorphism 7 from the identity to f o i. O

PROPOSITION 1V.2.3.16. Over a (0-graded) base field K the following hold:

(i) Let K be an abelian group. Then an element of K[K] is K-homogeneous
if and only if its image under comultiplication is a pure tensor. Thus,
a morphism K[K| — K[K'] of Hopf algebras over K maps {x" }wek to
{Xw/}w’eK’ and hence respects the canonical grading structures.
(ii) Let R be a K-algebra, let K be an abelian group and let (: R — K[K|®g R
be a coaction. Then denoting by R,, the set of f € R with {(f) =x"® f
for w € K we obtain a K-grading of R.
(i) The functor f sending a graded quasi-torus Q over Fy to (Q,K[Og]) is
essentially inverse to the functor g sending a graded quasi-torus H over
K to (H, (O%™)/K*). Moreover, g is isomorphic to the functor ¢ sending
H to (H,Fy[degsupp(Op)]), equipped with the canonical gr(Og)-grading.

PROOF. In (i) note that the comultiplication of ), ; a;x" is >, a;(x"* ® x*?),
which can only be a pure tensor if [I| < 1 since {x* ® X" }w, is a K-basis of
K[K] @k K[K]. Consequently, {x"}wek is the set of group-like elements of K[K].
The supplement follows from the fact that morphisms of Hopf algebras send group-
like elements to group-like elements.

In (ii) consider a graded quasi-torus @ over Fy. Since O(Q) is simple Q is a
singleton. Thus, due to Example (Q,K[Og)) is an affine graded scheme
over K. Due to Remark [V.I.5:11] f preserves products and thus also the group
object structure. Conversely, for a graded quasi-torus H over K, the global sections
are simply graded and hence H is a singleton. By Remark [[I.1.4.16 we have a
canonical isomorphism 7z : K[O(H)"™ /K*] — O(H) and thus Example [[V.1.5.10
implies that (H,O%™/K*) is an affine graded scheme over F;. Since we have a
canonical isomorphism

(O(H) @x O(H))'™ /K* = (O(H)"™ /[K*) @, (O(H)"™/K"),

(Q,0q) := (H,0%m/K*) is a graded group scheme. Moreover, we have a canonical
isomorphism

M(O(H)"™ [K*) = M(O(H)) = (O(H)"™ /K*) \ {0}

which means @ is a graded quasi-torus. ng induces an isomorphism f(g(H)) — H.
These define an isomorphism between fog and the identity functor. For an arbitrary
graded quasi-torus @ over F; the isomorphism O(Q) — K[O(Q)]"*™/K* induces an
isomorphism @ — g(f(Q)). These define an isomorphism between g o f and the
identity functor.

Concerning the supplement, note that for each graded quasi-torus H over K
the degree map induces an isomorphism O™ /K* — K[degsupp(Qy)] and hence
an isomorphism ¢(H) — g(H). These constitute an isomorphism from £ to g. O

CONSTRUCTION 1V.2.3.17. Let R be a graded algebra over A. Then we obtain
a coaction

R— A[gr(R)]®a R, Ry,>f—x"®f
of the Hopf A-algebra A[gr(R)] on R. This defines a functor ca from graded algebras
over A to coactions of Hopf A-algebras. ca is compatible with graded localizations.

CONSTRUCTION 1V.2.3.18. Let Z be a graded scheme and let ¢p: X — Z be a
graded scheme over Z. Then G := Spec,(Oz[gr(Ox)]) acts on X as follows. Then
the actions

Specy ([O(V) — O(U)[gr(Ox)] ®ow) OV), O(V)w 3 f — x" @ f])
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for U € Bz and V € By-1(y fit together to the canonical action Ax: G xz X — X
on X. Sending a graded scheme X over Z to its canonical action Ax constitutes a
functor from GrSchy to actions of group objects on graded schemes.

PROOF. Let A be a graded ring and let ¢: R — Z,¢: gr(R) — gr(S) be a
morphism of graded rings over A. Then the canonical maps form a commutative
diagram of graded algebras over A:

| |
Algr(R))@a R— - — - - = Algr(S)] ®4 S

O

CONSTRUCTION 1V.2.3.19. Let K be a field. For an abelian group K and a
coaction ¢: R — K[K] ®k R we obtain a K-grading on R by defining R,, as the set
of all f € R with {(f) =x"® f.

PROOF. First observe that since M (K[K]) form an K-basis of K[K] the canon-
ical map K®g R — K[K]®k R is a monomorphism. Consequently, if {(f) = x* ®g¢
then coaction axioms on counits give 1 ® f = 1 ® g and hence f = g. Another
consequence is that R, = ("1(Kx” ® R).

Now, consider f € R. Then ((f) = >_1; x** ® g; holds with pairwise different
w; and certain g; € R. Likewise, we have ((g;) = Z?;l X" ® g;; with pairwise
different w; ; and certain g; ; € R. Applying the axioms of coactions we obtain

n n n;

DX OXT @gi =) Y X" OX @4,

i=1 i=1 j=1
and linear indendence gives ((¢g;) = x“* ® g;. Applying our first observation to
g1 and f— > " ,g; we obtain f = Y  g;. Lastly, consider pairwise different
wy,. .., wy, € K and f; € R, with 377" f; = 0. Then by Corollary
doimi XM @ fj =0 gives f; =0 for all 5.

ProPoOSITION 1V.2.3.20. The above construction defines a functor from coac-
tions of group algebras over K to graded algebras over K which is inverse to the

functor from Construction [IV.2.5.17.

ProoF. Consider coactions (: R — K[K] ®x R and ¢': " — K[K'] @k R’
and a pair of morphisms §: K[K] — K[K’] and ¢: R — R’ forming a morphism
of coactions. By Proposition :IV.2.3.16 we have § = K[¢] with a unique group
homomorphism ¢: K — K’. For f € R,, we then have

C(B(f) = (02 ¢)L() = K] @ ¢)(x* @ f) = x¥™ @ ¢(f),
ie. ¢(f) € Rip(w) as required. O

ExAaMPLE 1V.2.3.21. Let X be a graded scheme over a zero graded ring/F;-
algebra A and let & be a group. Then the canonical (projection) map Spec,, (A[K])x 4
X — X is a Veronesean good quotient.

IV.3. Graded schemes via schematic cofunctors

Throughout, we will consider a partially ordered set I as a category where a
morphism ¢ — j is a pair (4, j) such that ¢ < j. For a graded scheme (X, Ox) over
A the restriction Ox p,\(g} to the set of non-empty affine open sets, ordered by
inclusion, is a cofunctor (i.e. a contravariant functor) of graded A-algebras with the
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property that the colimit of Spec,,0Ox |54\ 9} in the category of locally A-algebraed
spaces is (X, Ox).

We show that assigning this cofunctor to a given graded scheme over A con-
stitutes an anti-equivalence of graded schemes with the category J of schematic
cofunctors of graded A-algebras, which are cofunctors subject to certain localiza-
tion requirements. This may be considered an extension of the anti-equivalence
of graded A-algebras and affine graded schemes over A. In the next two sections
we treat J-objects and -morphisms, respectively, before turning to the description
of properties of (morphisms of) graded schemes in terms of schematic cofunctors.
The case of F1-schemes of finite type allows further descriptions because points are
then in canonical bijection with affine open subsets, see Section [[V.3:4] The present
topic will be concluded in Section [V:3.4] of the next chapter with the treatment of
combinatorial schematic functors which may be used for the description of Krull
schemes of finite type over [F.

IV.3.1. Schematic cofunctors of graded rings and Fi-algebras. This
section is dedicated to the definition of the objects of the category J of schematic
cofunctors. Again, we denote by € the category GrAlg, for a fixed graded F;-
algebra/ring A, e.g. A=TF, or A=17.

DEeFINITION IV.3.1.1. A schematic cofunctor or simply, a J-object is a con-
travariant functor O: J — € from a partially ordered set J, with p! denoting the
morphism which O assigns to ¢ < j, such that the following hold:

(i) gr o J is constant.

(ii) The set 4Jgj of principal elements below j, which are i € J<; such that
T = (pg)r(;(j)hom((O(i)honl)*) is principal and 7, 'p! is bijective, is iso-
morphic to the reversely inclusion ordered set of proper principal faces of
O(j)°™ via the map i — 7; whose inverse is denoted T + i,;

(ili) For each j,k € J and i € J<;NJ<y there exist iy, ..., i, € JE;NJE;NJIZ,

. iN—1 .
such that O(i) = <(p§1)‘o(i)hom((O(zl)hom)*)oﬂ =1,...,n) holds.

(iv) sy, ... ip, € J2) satisfy O(j) = (17,...,75) then j = supj, ir,.

(v) If for 41,...,4, each iy; = maxJ<;, N J<;, exists and for the limit R

ikl

is principal, each (77) 'pri, , is bijective and R = (77,...,75), then

r'n

over all p; " with projections pr;, , each 7, := (prik‘k)l},‘lhm((O(ik)hom)*)

J :=sup], i; exists, and O(j) and pzk , form a limit over all piif

REMARK IV.3.1.2. If A is an Fj-algebra then (iii) and (iv) amount to the
condition J2; = J<; for all j € J. Axiom (v) is then vacuous.

CONSTRUCTION 1V.3.1.3. Let O: J — € be a J-object. For i < j € J the
morphism Specy, (p; ) : Specg, (O(i)) — Spec,, (O(j)) is an open embedding of graded
schemes over A. Consequently, Spec,, 00O is a diagram of open embeddings of graded
schemes over A, whose colimit is denoted Spec,,(0). For j € J let U; denote the
image of the morphism Spec,, (O(j)) — Spec,, (O).

PROOF. Specgr(pg) is an open embedding due to axiom (iii) of J-objects. O

ProrosiTiON 1V.3.1.4. For a J-object O: J — € the morphism of partially
ordered sets a: J — Bspec  (0) \ {0},7 — Uj is an isomorphism and we have a
natural isomorphism OSpecgr(O) oa — O. Moreover, a restricts to isomorphisms

J<j — By, \ {0} and JZ; — By \ {0} for each j € J.

PROOF. The second supplement is a direct consequence of axiom (ii). For
injectivity of o and order preservation of the inverse, let a,b € J with U, C U,.
Then there exist iy, ...,i, € J<qNJ<p with U, = J, U;,. Due to (iii) for each i; we
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find finitely many j; x € J2, NJZ, NJZ; with U;, = U, Uj, . Since U, = Uy, Uy, ,
the relative interiors of the corresponding faces 7, of O(a) then generate O(a) as
an ideal and using (iv) we deduce a = sup, ;. jix < b.

For U € Bspec,,(0) \ {0} Proposition m gives iy,...,4, € J such that
U =, Ui, each U;, NU;, is affine and for 7, := (pgik)|—01(U)h0,,,((O(Uik)hom)*) each
(Te71) PG, v, 18 an isomorphism and R := O(U) as an ideal is generated by all
Ti. Moreover, U;, N U;, is principal in U;, and U;, with the defining face being
generated by pg (11) resp. pgil (7). Correspondingly, there are iy € Jgik and
i1 € J2;, with Uikl = Uy, NU;, = Uy, and hence ix; =i} ;. R is the limit of all
pﬁ’;.l. By condition (v) j = sup, ¢; exists and we have U C U; and the canonical map
OU) — O(j) — O(Uj) is a composition of isomorphisms, which gives U =U;. O

DEFINITION IV.3.1.5. Let O: J — € be an J-object. A J-subobject of O is a
J-object O": J" — € such that J C J is a partially ordered subset and O’ = O, ;.
More loosely, we also call J" a subobject if O);: J* — € is a subobject.

REMARK IV.3.1.6. For a J-object O: J — € a subset J' C J carries a subobject
structure if and only if J' contains all elements j allowing i, , ..., i, € J2 ﬁJ " with
O(j) = (17,...,75) and hence all elements below its elements the last Condltlon
being sufficient if A is an Fj-algebra. Consequently, intersections of subobjects
are subobjects, and if A is a Fj-algebra then arbitrary unions of subobjects are
subobjects.

CONSTRUCTION 1V.3.1.7. For a J-object O: J — € the subobject generated by
a subset L C J is defined on the set J' of those j € J allowing ir,...,i,, € JZ}
which are also principal below some I € L such that O(j) = (r¢,...,7°). L is then
called a generating subset of J'.

PROOF. For ir,,...,ir, € J2; NJ" such that O(j) = (77,...,7;) there exist
krgrseo skrgm, € Jg’;T which are principal below some elements of L such that
Olir,) = (T915-++>Tam,)- Then each k

s la,m

of L, and we have
O(J) = <(piTa)t)r(jl(j)hom((O(kTQ,t)hom)*)o | a = 17 e ,’I’L,t = 17 e 7ma>7

because the respective open subsets of Spec,, (O) satisty U; = U, , Uk, ,- O

is principal below j and some element

Ta,t

REMARK IV.3.1.8. The subobject generated by L C J is the minimal subobject
of O defined on a superset of L and we have ;¢ 1, U; = Uep, U in Specy, (O).

Moreover, the subobject generated by a union of subsets L;CJvelis the same
as the subobject generated by the union over the subobjects generated by each L;.

IV.3.2. Morphisms of schematic cofunctors. In this section, various classes
of morphisms of the category J of schematic cofunctors are defined and in Proposi-
tion the equivalence of schematic cofunctors over A with graded algebras
over A is established.

DEFINITION 1V.3.2.1. A J-morphism from O: J — €to O’: J' — € is a functor
f: J — SubCat(J’), together with a family f* = {7 };es of cones f;: O(j) — Oy,
for j € J such that the following hold:
(i) ff o p! is a subcone of fi fori <j,ie. §5, =fi, 0 p? holds for i’ € f(i);
(ii) for i. € JZ}, f(i) consists of those k' € J/ for which there exists j' € f(4)
such that &’ is the element of J /<p i» defined by the face generated by 5, (7);
(iii) f(k) Nf(l) is the subobject of J’ generated by |, iesernie F(9);

(iv) J' is generated by ;¢ ; f(4)-
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The composition of a morphism (g,g*) from O’ to O”: J’ — € with (f,{*) is
the assignment sending j € J to the subobject generated by U] ‘€6 g(j/) together
with the family of cones (g* o f*) where (g* o §*); j» is the map mduced by the
homomorphisms g7 ;. of; ;, for j* € f(j) and i" € g(j')ﬁJg-,r,. idp is the assignment
j — J<; together with the family of cones (pf )ics.,; for j € J. This constitutes a
category J, also denoted as J4.

LEMMA 1V.3.2.2. Compositions of J-morphisms are indeed J-morphisms.

ProoF. Let (f,f*) and (f,§*) be morphisms from O: J — € to O': J' — €
resp. from O’ to O”: J” — €. For well-definedness of their composition (g, g*)
first consider j € J, j',k" € f(j) and ¢’ € §/(j') N (k). By axiom (iii) there
exist i ,...,i € JZ‘;,T, which also belong to Ul,eJ, I, (") such that O(i") is
generated as an ideal by all 77. Fix [ € JZ; N J<k, with z” € /(1)) and denote by
Ta,p the face generated by 77. For all a, b we then have

i// /% E3 *
pifr’abof_] lllof]j/_ I8 z”’lbopl’of]]’_ i, Z”bofj,lfl
1% k' % *
= . O O . = . O . O .
fl&”'r'a,b Pz;l fiw Pz;/mb Jir i o fipr

and since O(i") is the limit of the diagram given by all pl:,’,“ the universal property
a,b
gives fi7 0 i = filmo 71 as desired. This defines a cone from O(j) to the

restriction of 0" to le;,r, NUjr e F'(5"), for which O”(j") together with the maps

pi,,/ is a limit, and hence we obtain an induced map (f* o f*)j 2 O0@) — 0" (5").
For axiom (ii) let i, € J2) and consider an element j” of the subobject g(j)

generated by Uj’ef(j) (5'). Let i, € JZ?,Y, N g(j) be the element corresponding to
* /1pr

7" := face(g] ;» (7)) and denote P := J.U, N U, g F'(57)- For i” € PN (j') with

defining face 7}/, we have

ol = face(pz,,,/(T”)) = face(gj (7)) = face(f}: ;. (face(f} ; (7))
€ f(ir) which
implies j), € g(ir). Since O(i,) = (o7 | i e P) we obtain i”,, € g(i,).

and hence axiom (ii) gives j, € f(facc(f* () and zfam(f* ()

. eos . . 11
For axiom (iii) consider j” € J” which allows &/, ... k7, 1'7’,,, N
1 m

such that £, € f(k}) and l;;,,;/ € §'(1;,) hold with certain ka € f( ) and [ € f(I) and
we have
O"(") = (r{ e 71) = ()

Then the relative interiors of all face(r,/n;’) generate O”(j”) and each of the corre-

sponding principal elements i, , lies in '(k;) N §'({;). Axiom (iii) for §' now yields
e J’P'  such that the relative interiors of their defining faces

<z"
%a,b

generate O"(ig, ) and 7/, . € (t, ) holds for a certain #;

" "
a,b,17° "7 Ya,b,pap

a,b,c

S Jg’tr, such that the relative interiors
of the corresponding faces generate O'(t,,;, .) and we have j;, . s € f(Ja,b,c,a) With
a certain jq ped € J<k N J<;. The image of the defining face of jmb,c’d defines an
11pr

t”
Za,b,c

faces of ji/, . ; then generate O”(j”) and axiom (iii) is verified for the composition.
To show that J” is generated by ;U; ;) F'(4) let j” € J” and consider

. .. y
iom (ii) for f glves ]mb,c,l, s Jabicsqan.e

element jy , .4 € J N § (Jop.c.a) Dy (i). The relative interiors of the defining

i, € T, where i, € f(j;) such that O"(j") = (r{’°,...,7°). Let
iy oy, € JZ) with i, € f(jag) satisfy O'(j) = (7%, .., 72%,)- Then

the element j7’7’/, Jw correspondmg to 0, := face(j' il (7;.1)) lies in §'(i%, )
ak ak
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and we have O"(ill,) = (g3, - -, Mn,)- Consequently, O”(j") is generated as an
ideal by the relative interiors of the faces defined by (O(j;, yhom ), O
a,k

CONSTRUCTION IV.3.2.3. Consider a morphism (f,f*) from O: J — € to
QO’:J — €. Then each j € J defines a morphism

¢j: Specgr(off(j)) - Spngr(O(j)) - Specgr(o)

and these induce a morphism (¢, ¢*) := Spec,,(f,f*): Specy, (0’) — Spec,,(O).
This constitutes a contravariant functor Specg]r from J to GrSchy. Moreover,
the canonical isomorphism o’: J' — Bspecgr(o/) then restricts to an isomorphism

f(5) = Bg-1(v,) \ {0} for each j € J.

PROOF. Proposition together with J-morphism axioms (iii) resp. (iv)
of implies that firstly, for ¢ < j, ¢; is the composition of ¢; and the canonical
embedding Specgr((’)l’f(i)) — Specgr(Ol’f(j)) and secondly, the canonical morphism
colim;e s Specgr(O"f(j)) — Spec,, (0') is an isomorphism. O

REMARK IV.3.2.4. For a J-object O: J — € each subobject J' C J defines an
open embedding Spec,, (O, ;) — Spec,, (O) onto UjeJ/ Uj.

REMARK IV.3.2.5. Let (f,f*) be a morphism from O: J — € to O': J — €.
Then for i, € JZ and j" € f(j) the element i, € Jgjjr, corresponding to the face 7/
generated by f; (1) the canonical diagram

T (0 of;],,)

T10(j) LO'(j")
- |-
f:,,i/, "
O(i,) - o'(i’)

commutes due to the universal property of localizations.

CONSTRUCTION IV.3.2.6. For a graded scheme (X,Qx), the inclusion-order
turns (Ox)iBx\{0} into a J-object. A morphism (¢,¢*): (X,0x) — (Y,Oy) in-
duces a J-morphism consisting of the map [U +— By-1y) \ {#}] and the family of

-1

cones (p@ GO ¢*U)V€B¢71(U)\{®}’ where U runs through all of By \ {#}. This
constitutes a contravariant functor Oz from GrSch4 to J.

PROOF. For well-definedness of O| note that (Ox )5\ (g} satisfies the defining
axiom (vi) due to Proposition |[V.1.4.8] and axiom (iv) is due to Lemma [[V.1.2.4

Axiom (v) holds because fi,...,f, € R"™ generate R as an ideal if and only if
Specgr(R) is covered by their principal subsets. ([l

REMARK 1V.3.2.7. For a graded scheme (X, Ox) the subobject generated by a
subset U C Bx \ {0} is By \ {0}.

DEFINITION 1V.3.2.8. Let J' be the category with object class ob(J) whose
morphisms from O: J — € to O: J' — € are those J-morphisms (f,*) such that
for each j' € J' there exists a uniquely minimal j € J with ;' € §(j).

DEFINITION 1V.3.2.9. Let J°°V® be the category with object class 0b(J) whose
morphisms from O: J — € to O: J' — € are pairs (a, o*) consisting of morphisms
a: J — J' of partially ordered sets and natural transformations a*: O’ oo — O of
functors such that for i/, € Jg’jr, the set a=!(J<;/) consists of those k € .J for which
there exists j € a~'(JL;) such that k is the element of J2; corresponding to the

face generated by o (p),;(7"))-
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Again, when there is need to emphasize the basis A we use the notations J/,
and J3V** for the categories defined above.

ProproSITION 1V.3.2.10. Then the following hold:
(i) 3’ has all J-isomorphisms.
(ii) We obtain mutually inverse functors between J' and Jeovar by sending a
' -morphism (f,1*) from O to O to the map «: j' — mingi¢s(;) j together
with the natural transformation o* defined at j' by fa(J e and sending a
Jeovat_morphism (a, « ) from O to O to the asszgnmentf j—at(J<y)
and the family (a7, o pa(j ))j’ef(j) where j runs through all of J.
(iii) For a Jeovar- morphzsm (o, @*) from O to O each of the homomorphisms
o, is (homogeneously) local.

ProOOF. In (i) we show that for mutually inverse J-isomorphisms (f,*) and
(g,9%) from O: J — € to O': J — € and vice versa, each f(j) and g(j’) has a
unique maximal element, and that max g(—) and max f(—) define mutually inverse
isomorphisms between J and J'. Indeed, we have JZ ;, = [J;¢ ;) f(é) which means
there exists j € g(j') with j' € f(j), and hence §(j) = JZ;,. Moreover,

J<iCa() S | e@) =Jg
i E€F(4)
which shows j/ = maxf(j) = maxf(maxg(j’)). Furthermore, maxf(—) is order-
preserving because f(i) C f(k) holds for ¢ < k.

In (ii) consider a J'-morphism (f,f*) from O to O’ and set a(j ) == minj ey J-
Then we have j' € a™1(J<;) = §(j) because a(j') < j implies j’ € f(a(j")) C §(j)
and conversely, 7' € f(j) implies a(j’) < j. If a O -morphism (o, a*) from O’
to O is given then a(j’) is the minimum over all j € J with j' € a™!(J<;) because
firstly, j € o™ (J<qa(jr)) and secondly, for each j € J with j' € a~!(J<;) we have
a(j’) < J.

For (iii) consider f € O(a(j"))"™ with ol (f) € O'(j)* and set 7 := face(f).
Then we have j' = zface(a*‘/(ﬂ) € a !(J<;.) and minimality implies a(j’) = i, and

hence f € O(a(j'))*. O

PROPOSITION 1V.3.2.11. The functors Spec,,: J — GrScha and O con-
structed above are mutually essentially inverse contravariant equivalences of cat-
€qgories.

PrOOF. For functoriality of Spec,, consider morphisms (f, {*) and (f’, ) from
O:J—€to0:J — €resp. from O to O”: J” — € and denote their composition
by (g, g*). Denoting for j € J, 57/ € f(j) and j” € §(j') the induced morphisms
by ¢j 2 Uiy — Uj, @y Ujl — Ul and thje j: Ujl, — Uy and the canonical
embedding by 151 Uj — Specy, (0) we calculate

(Specg: (F, %) © Specy (F', 1)), = 15 0 6551 & jo = 1 0 Y5 = Specg, (8, 8707,

which gives Specg, (f, f*) o Specy, (', ) = Specy, (g, g*) because the sets U7, of the
above type cover Spec,, (0").

For functoriality of Ojz consider morphisms ¢: (X,0x) — (X',Ox/) and
¢ (X',0x1) = (X",0xn). For U"” € Bx» \ {0} the union over all By-1 ) \ {0}
where U’ € By—1(ym) \ {0} covers (¢' o)~ (U") and hence generates B(gop) -1 () \
{0}. Moreover, for non-empty U’ € By—1(yn) and U € B¢71(U/) we have

‘o // —1 / r—1
P o (0 )i =0t o gt 0 pll Y 0 gl

which shows functoriality.
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Now, the canonical isomorphisms Spec,, ((Ox)sy\{gy) — X form the de-
sired natural isomorphism between idgrscn, and Spe(:g]r o (’)‘ 5. For an J-object
O: J — € the isomorphism a: J — Bgpec,,(0) \ {0} from Construction
together with the natural isomorphism a*: O — O)z(Spec,,(0)) o a defined at
J by the canonical isomorphism a7 : O(j) — O(U;) forms an J°V*-isomorphism.
Proposition [[V:3.:2.10] yields a corresponding J-isomorphism and since the above is
compatible with J-morphisms we obtain a natural isomorphism between id; and
O\ o Specg, . |

IV.3.3. Describing properties and neighbourhood bases. Here, we give
first descriptions of algebro-geometric properties in terms of schematic cofunctors.
The study of neighbourhood bases leads to another functor which is isomorphic to
Spec,,.

gr

REMARK IV.3.3.1. A morphism (¢, ¢*) of graded schemes corresponding to a
J-morphism (f,f*) from O: J - Cto O': J — € is
(i) dominant if and only if each §(j) is non-empty;
(ii) affine if and only if for some (and hence each) generating subset L of J
and each [ € L the set f(I) has a greatest element if it is non-empty; note
that all these together then generate J';
(iii) a good quotient if and only if for some (and hence each) generating subset
L of J and each [ € L the set f(I) has a greatest element I’ and flo s
Veronesean.

REMARK IV.3.3.2. A morphism (¢, ¢*) of graded schemes corresponding to a
Jeovar_morphism («, a*) is a good quotient if and only if each a~1(i") has a greatest
element i and o} is Veronesean.

DEFINITION 1V.3.3.3. A J-object O: J — € such that J allows a finite gener-
ating subset is finitely generated.

REMARK 1V.3.3.4. A J-object O: J — € is finitely generated if and only if the
corresponding graded scheme X over A is quasi-compact. This is because L C J
generates J if and only if {U; },ecy, covers X.

DEFINITION IV.3.3.5. Let (X,Qx) be a topological space and let B be a basis
of Qx.

(i) For A C X the induced basis of the set {x 4 of neighbourhoods of A,
which are U € Qx intersecting A non-trivially, is denoted B := BNQx 4.

(ii) A B-neighbourhood basis is a subset W C B\ {0} such that if V € W
lies in the union of U C B then U N W # 0. W is called irreducible if it
is non-empty and W C W U W" implies W C W or W C W for all
B-neighbourhood bases W and W”.

REMARK IV.3.3.6. Qx 4 is determined by B4 as the set of those U € Q2x which
contain some V' € B4. Moreover, we have B4 = By.

ExXAMPLE IV.3.3.7. Each open U C X determines the B-neighbourhood basis
Bx\v = B\ By.

PROPOSITION 1V.3.3.8. Let (X,Qx) be a topological space and let B be a basis
of Qx. Then the following hold:

(i) All unions of B-neighbourhood bases are again B-neighbourhood bases.
(ii) The map A — B4 commutes with arbitrary unions of subsets.
(iil) A By defines an inclusion-preserving bijection between the closed sub-
sets of X and the set of B-neighbourhood bases, with the inverse sending
W to Ay = X\ J (B\W), and both maps preserve irreducibility.
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(iv) A B-neighbourhood basis W is irreducible if for U,V € W there exists
WeW withW CU and W C V.

PrOOF. In (iii) we first note that A is the intersection of the complements
X\U of all U € Ba, i.e. the closure of A. For a B-neighbourhood basis W, consider
U € B. If U intersects Ayy trivially then it is contained in |J B\ W which gives
U ¢W. Conversely, if U ¢ W then UN Ay CUN (X \U) =0 and we conclude
Ba,, =W. Now, (i) and (ii) give preservation of irreducibility under the first map,
which gives the same for the second. In (iv) note that for A C X with W = B4 the
given condition characterizes irreducibility of A and thus irreducibility of W. [

REMARK 1V.3.3.9. Let ¢: X — X' be a morphism and let A C X. Then By
is the set of those U € Bxs with By-1(y N Ba # 0.

DEFINITION IV.3.3.10. For a J-object O: J — €&, J' C J is an irreducible
neighbourhood basis if and only if for k,l € J' there exists m € J with m < k
and m < [, and whenever k € J' allows i1,...,in, € Jgrk N Jgjl for certain
J1s--.,ja € J such that O(k) is generated as an ideal by all pf  ((O(ipm,1)"™)*)°
then some j; belongs to J'.

REMARK IV.3.3.11. For a J-object O: J — € the canonical isomorphism
a:J — Bspecgr(@) induces bijections between the set of (irreducible) neighbour-
hood bases p of O and the set of (irreducible) Bspecgr(@)-neighbourhood bases W.
For each U € W we recover W as the set of V € Bx with By NWN B’ # (. Conse-
quently, each p is recovered for j € p as the set of those i € J with J<;NpNJZ; # 0.

CONSTRUCTION IV.3.3.12. For a J-object O: J — € let n(O) be the set of
irreducible neighbourhood bases. The topology generated by all the sets V; of those
p € n(O) which contain j is denoted (). Note that we have U; C U; for i < j.
For U € Qu0) let Oy 0)(U) be the limit over all O(j) with V; € U. The maps
induced by universal properties of limits turn Oy () into a presheaf on Q). For
p € n(O) we then have a canonical isomorphism On(), = colim Op,. This turns
(n(0), 240y, On(0)) into a graded scheme over A.

PROPOSITION 1V.3.3.13. In the above notation, (n(O), Qy(0y, Ono)) is canon-
ically isomorphic to Specg, (O).

PrOOF. The canonical isomorphism a: J — Bx, where X := Spec,,(O), de-
fines a bijection f: n(O) — X sending p to the generic point of X \ |J (Bx \ a(p)),
and z € X to a !(Bx,). We have p € V; if and only if JZ5 N p generates p,
which holds if and only if a(J2}; Np) = Bgrj N a(p) generates a(p) = Bg(p), i.e.
if and only if 8(p) € U;. In particular, this shows continuity of 3 and v := 871
Moreover, the canonical isomorphisms O(j) — Ox(U;) extend to isomorphisms
On0)(V) — Ox(B(V)) and we obtain homomorphisms v* and 8* turning (3, 3*)
and (y,7*) into mutually inverse morphisms of graded schemes over A. |

CONSTRUCTION 1V.3.3.14. Consider a J-morphism (f,*) from O: J — € to
O': J' — € The map ¢: n(O') — n(O) sending p’ € n(O’) to the set of j € J with
p' N§(j) # 0 then satisfies ¢~ (V;) = Ujres(j) Vi» in particular, ¢ is continuous. For
U € Qo) we obtain a homomorphism ¢}, : On0) — Onon) (¢~ H(U)) as the map
induced by all f; ;, for V; C U and j" € §(j). The pair n(f,§*) := (¢, ¢*) then forms
a morphism of graded schemes over A.

PROPOSITION 1V.3.3.15. The functor n(—) is naturally isomorphic to Spec,,.

PRrROOF. For functoriality, consider morphisms (f,§*) (f,{*) from O: J — €&
to O': J' — € resp. from O to O”: J” — € and denote their composition by

(9,97). Let (¢,07) := n(f, "), (¢',¢) := n(f',f*) and (,9") := n(g,g") be the
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corresponding morphisms of graded schemes. To see that ¥ = ¢ o ¢’ holds note
that for j € J there exists j/ € §(5) N n(f,§*)(p”) if and only if there exists j” €
P NUjejy) F'(5), Le. if and only if there exists j” € p” N g(j). For each j € J as
well as all j' € f(j) and j” € f(j') we have g} ;, =7 . of} ; and hence

YL (V) ¢ (V) ) YH(V;)
Pvy, OV =y 0 0 pyy 0 Bl = pyy 0 Oy © O

Since such V), form a basis of ¥~ 1(V;) the sheaf properties give vy, = (b:;*l(vj) °By,
and since Vj, j € J form a basis of Qo) we have ¥* = (¢.¢") 0 ¢* as desired.

Next we show that the morphisms constructed in the proof of Proposition
satisfy Specy,(f,f*) o Bor = Bo o n(f,f*). For j* € f(j) and p’ € V; we have The
neighbourhood basis of Spec,, (f, *)(8or(p')) is the set of those U; for which there
exists U}, € Bspec,, (1,i)-1(U;) N aor(p'), i.e. there exists j° € f(j) Np’. On the
other hand the neighbourhood basis of o (é(p')) is ao(é(p')), i.e. the set of those
U; such that j € ¢(p'), i.e. f(j) Np’ # 0. Thus, the diagram of continuous maps
commutes. Since the homomorphisms of structure sheaves are all defined in terms
of the maps p] the diagram of morphisms of graded schemes commutes. O

REMARK 1V.3.3.16. Let X be the graded scheme corresponding to a J-object
O: J — €. Then X is irreducible if and only if J defines a collection of neighbour-
hoods of an irreducible closed subset. Moreover, X is integrally graded if and only
if J defines a collection of neighbourhoods of an irreducible closed subset and each
O(j) is integrally graded, i.e. if and only if for all j,k € J we have J<; N J<i # 0.

~

DEFINITION IV.3.3.17. For each of the categories J,J and J°°V?' we obtain a
category denoted Jing, Ji: resp. Jiw® as follows: An object is a pair of a J-object
O:J — ¢ and a simply graded R € €, such that O maps into GrSubAlg ,(R),
in particular all restrictions p{ are inclusions, and each of the canonical maps
Qe (0(j)) — R is an isomorphism.

A morphism from (O, R) to (O’, R’) is a morphism (f,f*) resp. (o, a*) in the
given category such that (with respect to the morphism (f, f*) derived from («, a*))
each f(4) is non-empty together with a €-morphism ¢: R — R, ¢: gr(R) — gr(R’)
such that §7 ;, equals ¢j0(;): O(j) — O(j’) for each j* € §(j). The composition of
morphisms is defined in terms of the composition of the constituent parts.

CONSTRUCTION IV.3.3.18. Let 8 be the subcategory of J, J" resp. J°¥ whose
objects O: J — € satisfy that for all j, k € J we have J<; N J<j # (0 and each O(j)
is integrally graded, and whose morphisms (f, f*) (resp. (o, a*)) satisfy §(j) # () for
each j € J (for the morphism (f,f*) derived from («, a*)).

For a f-object O the canonical injections O(j) — R := K(X) define a Jins-
object (O, R). For a f-morphism (f,*) from O to O': J' — € the induced homo-
morphism ¢: K(X) — K(X’) together with f and the induced homomorphisms ?;:j,
for j/ € §(j) form a Jin;-morphisms. This constitutes a functor from R to Jint, Jipt
resp. Jigp

PROPOSITION 1V.3.3.19. The functor defined above is essentially inverse to the
forgetful functor.

IV.3.4. Schematic cofunctors of graded Fi-schemes of finite type. The
key statement of this section is that for Fi-scheme of finite type, points are in
bijection to affine open sets, see Proposition From now on let A = F; and
¢ = GrAlgy, Below, we consider a graded scheme X with the partial specialization
order where z < y if and only if = specializes to y, with anti-symmetry following
from uniqueness of generic points.
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DEFINITION 1V.3.4.1. Let O resp. Op>*" be the full subcategory of Jr, resp.
JF constituted by all Jg,-objects O: J — GrAlgg, such that each O(j) is of
finite type over Fy.

REMARK 1V.3.4.2. For each D-object O: J — €, J is finite and hence generated
by JmB,X.

PROPOSITION 1V.3.4.3. For a graded scheme (X,Ox) of finite type over Fy the
following hold:

(i) Sending U € Bx to the unique closed point xyy in U and x € X to its min-
imal affine neighbourhood U, constitutes mutually inverse isomorphisms
of partially ordered sets with X partially ordered by specialization.

(ii) U, is the set of points specializing to x and pY= is an isomorphism.

PRrROOF. In (i) let V' € B,. Then O(V) is generated as a monoid by certain
elements fi, ..., fo. Let f be the product of those f; which are lie in (pY )~ 1(O% ,.)-
Then f is not contained in any proper face and U, := V} is the minimal element
of By which contains x. For any further W € B,, W NV is covered by common
principal subsets of V' and W, meaning that x lies in one of these. By minimality
in By we conclude Vy C W.

For (ii) first note that if y specializes to  then y € U, and conversely, no proper
principal subset of U, contains x, which means that x is the point corresponding
to the maximal ideal of O(U,). In particular, p¥+ is bijective and = = zy, .

Now, functoriality of = +— U, is a consequence of (ii). For U = U,,, note that
minimality of U,, implies U,,, C U. The converse holds because x; belongs to all
Qu-closed subsets and hence lies in no proper principal subset of U. (]

CONSTRUCTION IV.3.4.4. For a graded scheme (X, Ox) of finite type over Fy
the functor (with respect to specialization) wx : X — € sending z € X to Ox , is a
0-object. For a morphism (¢, ¢*): (X,0x) — (Y, Oy) of graded schemes of finite
type over F; the (specialization preserving) map ¢ together with the natural maps
Oy ¢(z) — Oxz forms a OF?**-morphism. This constitutes a (covariant) functor
to Ogver.
1
ProproSITION 1V.3.4.5. The following hold:
(i) O' =9, i.e. O is a subcategory of Iy, .
(ii) The functor w sending X towx is naturally isomorphic to the composition

of the restriction of O|z to graded schemes of finite type over Fy with the
anti-equivalence O’ — OOV,

PROOF. Let (¢,¢*): (X,0x) — (Y,Oy) be a morphism. In (i) observe that
for U € Bx the set Ug(ar) € By is uniquely minimal among all V' € By with
(b(U) Q V, iLe. U g B¢—1(V).

In (ii) the canonical isomorphism X — Bx \ {0} from Proposition
together with the family of isomorphisms pU= ensures that wx is an Dv*-object
and the pair constitutes the required D"* -isomorphism from wx to (Ox)|z,\{0}-
This constitues a natural isomorphism due to the proof of (i) and the fact that

* Up(a) Uz ¢ (Us(a)) * holds f h
¢$Op¢(w) =pz"opy, O¢U¢(m> olds for each z € X. O



CHAPTER V

Cox sheaves on graded schemes of Krull type

In this chapter we discuss algebraic and geometric properties of Cox sheaves on
graded schemes of Krull type as well as their global sections, which are called Cox
algebras. The latter were introduced for toric varieties as homogeneous coordinate
rings in [10] and their finite generation was shown in [19] to guarantee a normal
variety’s good behaviour under Mori’s Minimal Model Program. Known properties
of Cox algebras (of normal prevarieties) include integrality, normality and graded
factoriality [3, 4, [7].

We study algebraic properties of Cox sheaves as a whole and show that they nat-
urally are graded sheaves of Krull type whose grading group and defining graded val-
uations satisfy several extra conditions. These conditions characterize Cox sheaves
and may be formulated entirely in terms of the sheaf itself, i.e. they provide an
intrinsic algebraic characterization, see Section [V.2.2]

Our basic geometric objects are graded schemes over A which are (locally) of
Krull type, the base A being a graded algebra over Z or F;. In the non-graded
case some aspects of Krull schemes were discussed [2I]. We stress a sheaf-theoretic
point of view on Weil divisors on a graded scheme X of Krull type so that the
graded valuations vy to the skyscraper sheaves Z(*) sum up to a homomorphism
of presheaves div: (K"™)* — WDiv in terms of which one defines PDiv and Cl, as
well as the Ox-modules Ox (D), see Section

Leading to our results on Cox sheaves Section discusses the more general
notion of natural divisorial Ox-algebras of Krull type. of which the divisorial al-
gebra O(WDiv(X)) is an example. For graded schemes which are locally of Krull
type we distinguish finite and arbitrary Weil divisors, the latter being only locally
finite. This distinction leads to the concepts of quasi-Cox sheaves and Cox sheaves,
which coincide in the presence of quasi-compactness.

The study of graded (quasi-)characteristic spaces, i.e. of relative graded spec-
tra is the subject of Section After giving a set of characterizing conditions
in the general case, we study the influence of finite generation conditions on the
level of grading groups in Section Graded schemes of finite and Krull type
over [F1 as well as their class groups and graded characteristic spaces are treated
in Section Lastly, we modify the setting of Section to establish a
covariant equivalence between IFq-schemes of finite and Krull type and the category
of schematic combinatorial functors, allowing us to translate graded characteristic
spaces of these [Fi-schemes into more combinatorial terms. The results presented in
this Chapter were in part published by the author in [6].

V.1. Divisors and their Ox-modules on graded schemes of Krull type

V.1.1. Graded schemes of Krull type and their structure sheaves. We
define prime divisors on graded schemes which are (locally) of Krull type and show
that they define graded valuations which realize the structure sheaf as a sheaf of
Krull type (with respect to the basis affine open sets).

DEFINITION V.1.1.1. An integral graded scheme X is locally of Krull type if for
some open affine cover X = (J,.; X; every O(X;) is a gr(X)-Krull ring. X is of
Krull type or a graded Krull scheme if it is quasi-compact and locally of Krull type.

119
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DEFINITION V.1.1.2. Let X be a graded scheme which is locally of Krull type.
A prime divisor on X is an irreducible closed subset Y of codimension one. For
each open U C X denote by Yx(U) (or just Y(U)) the set of prime divisors Y on
X which intersect U non-trivially.

REMARK V.1.1.3. By Section the assignment V: U +— Y(U) defines a
sheaf to the opposite category Set°? of the category of sets. Moreover, ) commutes
with finite intersections due to irreducibility of prime divisors. The stalk at an
irreducible closed subset A C X is Y4 = {Y € Y(X) | A C Y}. Consequently, we
have Y(U) = U,y Ve

REMARK V.1.1.4. Let X = Spec,,(R) be the graded spectrum of a K-graded

ring of Krull type. Then p — {p} defines a bijection P(R) — Y(X) whose in-
verse assigns the genereric point. Moreover, we have V(q) = (\;5peq( R) V(p) by

Remark for g € X.

CONSTRUCTION V.1.1.5. Let X be an integral graded scheme which is locally
of Krull type. By Remark each stalk Ox y at a prime divisor YV is a
discrete graded valuation ring defined by a normed discrete graded valuation vy, x on
K(X) 2 Qu(Ox y). We obtain a discrete graded valuation vy : (KPom)* — Z() to
the skyscraper sheaf corresponding to Y by defining vy i (f) as vy x (f) if Y € Y(U)
and as 0 otherwise. Thus, IC,, (U) equals Ox )y if Y € Y(U) and K otherwise.

PROPOSITION V.1.1.6. For a graded scheme X which is locally of Krull type
the following hold:

(i) Ox = nYey(X) Koy,

(ii) for every open U C X contained in a quasi-compact open subset of X
and every f € (K(X)P°m)* only finitely many of the values vy (f) are
non-zero.

(iii) for every affine open U C X the graded ring Ox (U) is of Krull type with
essential graded valuations {vy,u}yeyw)-

PROOF. Let X = J;c; X;i be an affine open cover such that each O(X;) is of
Krull type. To show (i) we use firstly that the assertions holds for localizations
U = (Xi) ¢, secondly that we always have O({J, U;) = (; O(U;) and thirdly that Y
commutes with unions. Assertion (ii) holds for localizations (X;); and hence also
for finite unions of such.

In (iii) first note that by (ii) the sections over an affine open U are of Krull type.
Thus, Y(U) is in natural bijection with B(O(U)), and for corresponding ¥ and p
the graded valuations vy, and v, both are normed and define Oxy = O(U), in
K(X) = Qu(O(U)) which means that they coincide. O

REMARK V.1.1.7. Let X be a graded scheme of Krull type and let A C X be
closed and irreducible. Denote by j: Spec,,(Ox 4) — X the inclusion morphism
of all points which specialize to the generic point of A. Then the assignments
Y — (p3$) Ymxy) and p — {y(p)} define mutually inverse natural bijections
between V4 and PB(Ox 4).

COROLLARY V.1.1.8. Let X be an integral graded scheme. Then X is of Krull
type if and only if X is quasi-compact and Ox is of Krull type, and in this case
{vy }yey(x) are the essential graded valuations of Ox .

REMARK V.1.1.9. Let X be a graded scheme of Krull type and let U € Bx. By
construction, the canonical isomorphism j: K(U) — Qg (O(U)) respects valuations,
i.e. for a prime divisor Y € Y(U) and the corresponding homogeneously prime
divisor p := I(Y NU) € P(O(U)) we have vy, x = vy 0 Jj(c(u)yhom)= -
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REMARK V.1.1.10. Let X be a graded scheme of Krull type and let A C X
be closed and irreducible. Then the locally graded ring Ox 4 is of Krull type with
essential graded valuations {vy x }yey,, because for an affine neighbourhood U of
A we have Ox a4 = O(U)ranv)- In particular, we have

my N (Og‘?"}{ \{0})={f¢€ (93‘82 \ {0} | thereis Y € Y4 with vy x(f) > 0}.

REMARK V.1.1.11. Let X be locally of Krull type and let Y € Y(X). Then
due to Remark [I1.2.5.7] there exists U € Bx y such that I(Y NU) = (f) holds for
some f € O(U)hom,

PROPOSITION V.1.1.12. Let ¢: X — X' be a dominant morphism between
graded schemes which are locally of Krull type such that ¢(X) intersects each prime
divisor of X'. Then the preimage of a prime divisor contains a prime divisor.

PrOOF. For Y' € Y(X') let U" € Bx/y+ be such that I(Y' NU’) = (f) holds
for some f € O(U')"™, Let € X be such that ¢(z) is the generic point of Y.
Then there exists U € By-1 () N Bx,, and gzb‘fUl (Y'nU") = V(¢g(f)w) contains x
and is hence purely one-codimensional and so is its closure. |

V.1.2. Weil divisors and class groups. Here, we give a sheaf-theoretic
definition of Weil divisors, class groups and pullbacks thereof.

CONSTRUCTION V.1.2.1. Let X be a graded scheme which is locally of Krull
type. Then HYQ,( X) ZY) is a sheaf of partially ordered abelian groups with each
Y € Y(X) defining a homomorphism pry : [[y/cyx) 7Y — 70Y) The direct
sum of presheaves WDivi := Dyeyix) 7(Y) C ey 7Y) is the presheaf of
finite Weil divisors. The sheaf of Weil divisors on X is the sheafification WDiv x
of WDivi® in [yeyix 7). In other words, WDivy (U) is the group of those
D = (dy)y in HYey(X) ZY)(U) for which there exists a cover by V' € Qp such that
each D)y belongs to @Yey(v) Z. Elements of WDivx (U) are also written as locally

finite formal sums D = ZYey(U) dyY . The subsheaves WDivy > and WDivE{fZO
of effective (finite) Weil divisors assign those D = >, dyY in WDivx(U) resp.
WDivi?(U) with dy > 0 for all Y € Yx (U).

PROOF. To show that WDiv is isomorphic to the sheafification of WDiv we
observe note that the canonical map D +— (D,)cy is inverse to the map send-

ing (ES”))%U, where E®) ¢ @Yey(X) Z(Y)(V(”’)) with some V() ¢ Qx 4, to

(prm W(Er(zn)))neH(U) where 7 runs through the set H(U) of points of U with
one-codimensional closure. O

When we are concerned with only a single graded scheme X which is locally of
Krull type we will omit the index and use the notations WDiv, WDiv>, WDivin
and WDivl}.

REMARK V.1.2.2. In the above situation, we have WDivx (U) = WDivi® ()
for each U € Qx which is contained in some quasi-compact open subset of X.
Moreover, an element D € [y ¢y x,) ZY) (V) belongs to WDivy (V) if and only if
Dy € WDivi? (U) holds for each member U of a cover U C By of V (resp. for
U =By).

REMARK V.1.2.3. If X is locally of Krull type then Y(X) is in canonical bijec-
tion to the set of minimal positive elements of WDiv(X) (and indeed, of [[y <y x) Z

and WDivi" (X)), which is also the set of prime elements of WDiv(X)>o (and of
[Ty ey(x) No and WDivi§ (X)).
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REMARK V.1.2.4. For an open subset U of a graded scheme X which is lo-
cally of Krull type the bijection Yy (U) — Yx(U) induces an isomorphism between
WDivy and (WDivx )y which restricts to an isomorphism between VVDlVﬁn
(WDiv o

and

CONSTRUCTION V.1.2.5. Let X be locally of Krull type. Then the divisor
homomorphism is div := Yy vy : (K'™)* — WDiv. By PDiv we denote the image
presheaf of principal divisors. Its sheafification CaDiv in WDiv is the sheaf of
Cartier divisors. Specifically, CaDiv(U) is the set of all D € WDiv(U) such that
for each = € U we have D, € PDiv,. We then have O%™ \ {0} = div"'(WDivs()
and (O%™)* = ker(div). For the presheaf Cl := coker (div) of class groups the
canonical homomorphism is denoted ¢: WDiv — Cl. The quotient CaDiv / PDiv is
the presheaf Pic of Picard groups.

CONSTRUCTION V.1.2.6. Let X be locally of Krull type and let x € X be a
point, with the canonical inclusion morphism denoted 2,: {x} — X. Then the
preimage of the constant sheaf (1,).2, * PDivy under the canonical homomorphism
WDivy — (1;)+2, F WDivy is the sheaf PDlv(x) of Weil divisors which are princi-

pal near x. Applymg c: WDivy — ClX to PD1V glves the kernel Cl;) of the

canonical homomorphism Clxy — (1)1, IClx. In thls notation we have
CaDivy = [ PDiviy = () PD{, Picx=(af = () af.
zeX _xeX reX _zeX
{z}={z} {z}={z}

REMARK V.1.2.7. Let X be a graded scheme of Krull type and let U C X be
open and affine. Then the bijection Y(U) — P(O(U)) extends to an isomorphism
¢: WDiv(U) — Divg, (O(U)) of partially ordered groups and with the isomorphism
0: K(U) — Qu(O(U)) we have divg(U) 0 0|(xc(x)nom)= = ¢ odivy. Consequently, we
have

= {3 € Qu(OW)) | fu =001 divE ) (fu) = 6(D) } < Qu(O(U)),
weK

see Section [I.2.5] ¢ restricts to an isomorphism PDiv(U) — PDiv,, (O(U)) and
hence induces an isomorphism Cl(U) — Clg:(O(U)).

REMARK V.1.2.8. Let X be a graded scheme of Krull type and let A C X
be a closed irreducible subset. Then the bijection Y4 — P(Ox, 4) extends to an
isomorphism of partially ordered groups

¢a: WDiva= P z{) = @ Z— Divu(Ox.0)
YeY(X) YeVa
which together with the canonical isomorphism 64: K4 = K(X) — Qu(Ox,4)
satisfies diVOr o (6 A)| (Kchom)x = ¢4 odiva. Consequently, ¢4 restricts to an iso-
morphism PDIVA — PDivg, (Ox, 4) and induces an isomorphism Cly — Clg (Ox 4).
CONSTRUCTION V.1.2.9. Let X be a graded scheme which is locally of Krull

type and satisfies PDiv(X) € WDiv™"(X), i.e. PDiv C WDiv™. Then the quotient
C1f" .= WDiv™ / PDiv is the presheaf of finite divisor classes on X.

REMARK V.1.2.10. Let X be locally of Krull type with PDiv C WDiv'™ and
let V' C U be open subsets. Then we have an exact sequence

Sveyaonye) Y —= iUy —— a1 (V) —o.

CONSTRUCTION V.1.2.11. Let ¢: X — X’ be a dominant morphism between

graded schemes which are locally of Krull type. Then we have a homomorphism
PDiVX/ — QZS* PDiVX which sends diVU/(f/) to diV(z,fl(U/)((ZS;}/(f/)).



V.1. DIVISORS AND THEIR Ox-MODULES ON GRADED SCHEMES OF KRULL TYPE 123

For each Y € Y(X) we obtain a homomorphism WDivy, — 6.2 as follows:
If Clgmy # 0 or Y ¢ V(¢p~Y(U")) then WDivx/ (U') — ZY) (¢~ (U")) is the zero
map. Otherwise, it is the canonical homomorphism

WDivx/(U') — WDiv y, 55 = PDivy, 5577 — PDivxy = ZM (671 (U)).

oY) ()
The induced homomorphism WDivx: — ¢, Hyey(X) ZY) has image in ¢, WDivx
and thereby defines the pullback homomorphism ¢*: WDivyx: — ¢, WDivx.

ProoF. Consider U’ € Bx and U € By-1(y+y and denote the canonical homo-
-1

morphism by « := P?} W, &g O(U') — O(U). Then for each Y/ € YVx/(U’)

there exist only finitely many ¥ € Vx(U) with Clyyy = 0 and oY) CY' be-
cause by Proposition [.2.6.8| for each p’ € P (O(U’)) there exist only finitely many
p € P (O(U)) with C{O(U")q-1(p)) = 0 and p’ C a1 (p). O

REMARK V.1.2.12. For a dominant morphism ¢: X — X’ between graded
schemes of Krull type the following hold:

(i) We have pry x (¢ (divx:(f))) = vy.x (¢%(f)) for each f € (K(X")hm)*
and Y € Y(X) with Clyyy = 0. Thus, if Clgsy = 0 holds for all

Y € Y(X) then we also have a pullback homomorphism ¢*: Clyx, — Clx
of presheaves.

(ii) If X and X’ are affine then the canonical maps form a commutative
diagram:

WDiv(X') ——— WDiv(X)
Divge(O(X")) —= Dive(O(X)

(iii) For a closed irreducible A C X (e.g. A = {z}) we have a canonical
commutative diagram

e

WDiv y, 57— WDivx 4
Dngr(OX,,M) I—— Dngr(0X7A).

(iv) If ¢ is an open embedding then ¢%,: WDivy/(X’) — WDivy (X) equals
the composition of the restriction map pf(/X,) with the canonical isomor-
phism WDivx (¢(X')) =2 WDivx/ (X').

COROLLARY V.1.2.13. Let ¢: X — X' be a dominant affine morphism between
graded schemes which are locally of Krull type. Then the following are equivalent:

(i) ¢ induces a bijection Y(X) — V(X'),Y — ¢(Y) and for each Y € Y(X)
we have vy o ¢‘(K?(o/m)* = V3

(ii) The pullback ¢%,: WDiv(X') — WDiv(X) restricts to a bijection of the
sets of prime divisors.

(iii) ¢% : WDiv(X') — WDiv(X) is an isomorphism of partially ordered
groups.

(iv) ¢*: WDivyx: — ¢, WDivx is an isomorphism (of sheaves of partially
ordered groups).

(v) For each U’ € Bx/ the canonical map Divg,(O(U’)) — Divg, (O(U)) is an
isomorphism.
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PrOOF. The equivalence of the last to conditions is due to the fact that By
is a basis and the above remark. Condition (iii) implies (ii) because Y(X) is the
set of minimal positive elements of WDiv(X). Finally, (i) implies (v) because Y(U)
generates WDiv(U). O

PROPOSITION V.1.2.14. Let ¢: X — X' and ¢': X' — X" be dominant mor-
phisms between gmded schemes which are locally of Krull type. LetY € V(X)) satisfy
Cld)( =0 and Cl 50V = = 0. Then the respective pullbacks of Weil divisors satisfy

s ¢*p7“Y o(¢'o (b) = Q. Pupry © PP 0 9.

PROOF. By assumption the restriction (¢’ o ¢)3 : PD1V Ty PDivy is the
composition of the restricitions (bi; PD1V @y PD1V v and @51 PDiv—~~

)’
PDivy. For U € Q and D € WDivx~(U) we then calculate

(YY)
X7,¢'(6(Y))
DTy, ¢—1(¢'—1(U)) ((¢" 0 9)yD) = ((¢' 0 @)y D)y = (¢' qu);‘/Dm
= v (95 Paeay) = v (90 D)gy)

= (¢¢/—1(U)(¢U ))Y = ((¢*¢ )U(¢U ))Y

= ((¢\¢" 0™ )uD)y

= PTY,¢71(¢/71(U))((¢;¢* o Gf)/*)UD)-
O

EXAMPLE V.1.2.15. Let X be locally of Krull type such that gr(Ox) =K ® F
holds for some free abelian group F and an abelian group K. The projection
map pri: gr(Ox) — K then defines an Ox-algebra Ox — A and a morphism
m: Xk = Specy(A) — X. By Theorem Xk is locally of Krull type, by
Lemma the pullback of Weil divisors is injective and commutes with the
divisor homomorphism, and the induced pullback Cl(X) — Cl(X) is injective.

For the last statement, consider D € WDiv(X) with 7#%D = divx, (f) for
some f € (K(Xg)hm)*. By Theorem R = K(X) is a K-Krull ring, and
it satisfies Qx(R) = K(Xg). For each U € Bx the element of Div(O(r~1(U)))
corresponding to 7f;(D)yy) is supported solely on K-prime divisors which contain a
non-zero K @ F-homogeneous element. Lemma now gives divg x(f) =0
and hence f is a K-homogeneous unit of R and thereby K & F-homogeneous. We
thus have 7% D = n% divyx (f) and conclude D = divy (f).

V.1.3. Support and cones of divisors. In this section we treat the notions
of support of divisors and stable base loci, as well as various related monoids resp.
cones of divisor classes.

DEFINITION V.1.3.1. Let X be locally of Krull type and let U € Qx. The
support of D € WDiv(U) is the (closed) intersection |D| of U with the union over
the prime divisors occuring with non-zero coefficient in D.

REMARK V.1.3.2. X \ |D| is the set of z € X with D, =0, € WDiv,.

REMARK V.1.3.3. Let X be a graded scheme of Krull type, let U C X be an
open set and f € O(U)h™\ {0}. Then
Uy = {z € U | f, € ker(div,)} = U\ [diver(f)]
In particular, if U is affine then Vi (f) = |divy (f)].
PROPOSITION V.1.3.4. Let ¢: X — X' be a dominant morphism between graded

schemes which are locally of Krull type. Then the inclusion |¢%, D'| C ¢~1(|D'|) is
an equality for each D" € WDiv(X')>o such that Clo== y = 0 holds for all Y € Y(X)

with ¢(Y) C |D').

d(Y



V.1. DIVISORS AND THEIR Ox-MODULES ON GRADED SCHEMES OF KRULL TYPE 125

PRrROOF. Consider x € X and assume that D' = Y’ is prime. If ¢(z) € |Y’| then

Y}z > 0 and the assumption gives (¢%,Y")s = ¢3(Y{,)) > 0, ie. x € [¢%, Y. O

PROPOSITION V.1.3.5. Let X be locally of Krull type such that the intersection
of affine subsets is affine. Then X\U = UYey(X)\y(U) |Y'| holds for each non-empty
U € Bx. If X is quasi-compact then Y(X)\ Y(U) is finite.

PROOF. Let U, W € By \ {0}. Then there exists 0 # f € I(W \ U)*™ and we
have W; C U NW, in particular, Y(W) \ Y(U N W) is finite. Note that if X has a
finite cover W by such W then Y(X) \ Y(U) is the finite union over the finite sets
Y\ YU NW).

Consequently, the complement U’ in W of all prime divisors contained in X \U.
Then we have UNW C U’ and Y(U NW) = Y(U’). Since X is of Krull type this
implies O(UNW) = O(U’). Now, if W, is a principal subset contained in U’, then
the restricition monomorphism O(Wy) — O((U N W)y, ) is surjective because
YW,y) =I((UNW)gnw)- Then (UNW)g ., € Wy is an isomorphism because
both are affine, which means W, C U N W and we conclude U N W = U'. O

In the following we use the notation
Cl(X)g := N"* WDiv(X)/N~! PDiv(X) = N~! CI(X)

for the vector space of rational divisor classes. The following invariants are used to
introduce (semi-)ample cones later on.

DEFINITION V.1.3.6. Let X be a graded scheme which is locally of Krull type
and let B C X be closed and irreducible.

(i) Swpiv(x),B TeSP. WwDiv(x),B is the functor on Q?B which assigns to U
the submonoid of those D in WDiv(X) resp. N™!' WDiv(X) with D, > 0
and Dp = Op. Furthermore, we set Scix),p ‘= ¢x © Swpiv(x),p and
wex),s = N7t ex o wwpiv(x),B-

(ii) For U € Qx p let Ss\f,fDiv(X)_’B(U) resp. w{‘}‘ngiv(X)’B(U) be the set of those
D in SWDiv(X),B(U) resp. wWDiV(X)’B(U) with U\ ‘D‘ € Bx. Again, the
image under cx resp. N lcx is denoted Séflf(X),B(U) resp. w?jflf(X),B(U)'

REMARK V.1.3.7. If X is of Krull type then for D € Swpiy(x),5(U) we have
Swoiv(x),8(U \ |D]) = Swpiv(x),8(U)p. Moreover, for U,V € Qx p with U C V
we have SWDW(X% (V)° C Swoiv(x),5(U)°. In the same way, we obtain functors
w%vmv(x),m’ Sél(X),a: and wél(X),w

ProroSITION V.1.3.8. Let X be locally of Krull type. Then for each B the
following hold:

(i) Each S%\i;fDiv(X) (U) is N-invariant and the saturation sat(SCl(X) 5)(U)

of SéﬁX),B(U) is a semigroup. Moreover, we have

w%\%)iv(X),B(U) = N_lsé\%)iv(X),B(U)v W?:flf(x),B(U) 1501()() s(U).
(ii) For U,V € Qx p with U CV we have

sat (S&x) 5(V)) € sat(S&x).5(U),  wiiix)5(V)) € wlllix) sU)).
ProOF. For (i) consider v,w € Cl(X) such that there exist m,n € N and
D € mv, E € nw with Djy, Ejy > 0 and U \ |D|,U \ |E| € Bx,g. Then there
exists a principal (U \ |D|); which is contained in U \ |D + E| and intersects B non-
trivially. For k € N large enough we then have (k(nD +mE) 4 divx(f))jy > 0 and
U\ [k(nD +mE) +divx(f)| = (U \ |D|)s. Thus, kmn(v+ w) € Sat(Sgﬁf(X)’B(U)).
In (ii) let U C V with U € Qx p and consider w € Cl(X) and n € N as well
as D € w with Djy > 0 and V' \ |D| € Bx,p. Let (V\ |D]); € B%r\lDl 5 With
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(V\ID])y CU\|D|. Then (nD +div(f))y > 0 holds with some large n € N such
that (V\|D|); = V\|nD+div(f)| = U\|nD+div(f)|. Thus, nw € SCI(X) gU). O

DEFINITION V.1.3.9. Let X be of Krull type and let w be an element of C1(X)
resp. Cl(X)g. The P(X)°P-presheaf Bas(w) resp. StBas(w) of base loci resp. stable
base loci assigns to U € Qx the (closed) set of those x € U with w ¢ Saix) Q(U)

resp. w ¢ WCI(X),@(U)'

REMARK V.1.3.10. Let X be of Krull type, let B C X be closed and irreducible,
and consider U € Qx p. Then BNU is contained in Bas(w)(U) resp. StBas(w)(U)
if and only if w does not lie in Scy(x),5(U) resp. wei(x),5(U).

REMARK V.1.3.11. The preimage of Bas(v), resp. StBas(w), under the mor-
phism Spec,, (Ox ) — X is Bas(v, ) (Spec,, (Ox 2)) resp. StBas(w.)(Spec,, (Ox x))-

REMARK V.1.3.12. Let X be locally of Krull type. Then with suitable elements
of CI(X), Cl(X)g and Q¢ we have
Bas(w + w’) C Bas(w) UBas(w’), StBas(v+ v") C StBas(v) U StBas(v'),
StBas(Av) = StBas(v), StBas(w/1) = [,y Bas(nw).
REMARK V.1.3.13. Let X be locally of Krull type and let B C X be closed and
irreducible. Then the colimit over all Swpiv(x),5(U) where U € Qx p is ker(p3) =

(Swpiv(x),B(X)). Consequently, the colimit over all wey(x),5(U) where U € Qx p
is the group (Sci(x),5(X)) of all classes w which are principal near B.

DEFINITION V.1.3.14. Let X be locally of Krull type. The presheaves SAmple
and Ampley of semiample resp. ample rational divisor classes are defined via

SAmpley (U) = () weyx) m7(U),  Amplex (U ﬂ e U
zecU
for U € Q2x. The presheaf Movx of moving rational divisor classes is defined via

Movx (U) := ﬂ wex),y (U).
YeYx(U)

PROPOSITION V.1.3.15. Let ¢: X — X' be a dominant morphism between
graded schemes of Krull type. Then for each closed irreducible B C X the following
hold:

(i) We have ¢%., o WDW(X,) B S ¢« Swpiv(x),B- If each Y € Y(X)
satisfies Cld)(Y) = 0 then we have ¢%, o S(n(X/),M C ¢.Scix),B and
6.Bas(6%w) C 6~ (Bas(w)).

(ii) If each Y € Y(X) satisfies Clymy = 0 and ¢%. is injective and maps
prime divisors to positive multiples of prime divisors then we have

(¢§(’)71¢*SWDiv(X),B = SWDiV(X’),m'
(iii) If Clyy = 0 holds for each Y Y(¢~Y(U)) and the canomnical homo-
morphism ¢ Ox:/(D')(U) — Ox(¢% D) (¢~ (U)) is surjective then
[¢%. D' € SCI(X)’B(d)_l(U)) implies [D'] € SCI(X, (B)(U). Consequently,
we have ¢.Bas(¢%, [D ’])(U) = ¢71(Bas([D ).

(iv) If ¢ is affine then ¢%.,0S WD XN FB) & C s &?DN(X)VB, IfeachY € Y(X)

satisfies Clzb(Y) = 0 then we have ¢%, o SCI(X,) P - ¢*Sg§f(x)73,
PrOOF. In () note that for D’ € SWDIV X/’) ¢(B)(U) Wj% ha.ve QS;(’D\/;;&*(U) >0
and Op = ¢B(D’ ) ¢% (D) p. In (ii) let D’ € WDiv(X') with % Diy-11ry 2 0
and ¢%, Dy = OB Con81der Y’ € Y(U) and the unique Y € Y(¢~1(U)) in |¢%. Y|
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Then 0 < pry(¢%, D) = pry(D")pry (¢%,Y") implies pry/(D’) > 0. Y’ € Yomy
then we have B C ¢~ *(Y') =Y. Now, 0 = pry(¢%, D’) implies pry(D’) = 0.

For (iii) suppose that X \ |¢% D’ + divx(f)| € Qx g holds with a non-zero
f € Ox(¢% D) (¢~ (U))"™. Then we have f = >, ¢% (f;) with certain non-
zero fi € Ox/(D')(U)™™. Thus, B is not contained in

(165 (D" + divx (fi)| € [¢% D' + divx (f)]
i=1

and hence some X'\ |divx/(f;)+D’| liesin Qx p. Assertion (iv) follows from (i). O

V.1.4. Divisorial Ox-modules. Here, we show that all divisorial O x-modules
are precisely the modules Ox (D) and that they are in natural bijection with the
group WDiv(X), see Proposition Furthermore, we prove quasi-coherence
of divisorial Ox-modules, see Proposition

DEFINITION V.1.4.1. Let X be locally of Krull type. A graded O x-submodule
G <o, K is divisorial if
(i) G(U) = Nyey(w) v holds for each open U C X,
(ii) the stalk Gy at each Y € Y(X) is a principal Ox y-module with homo-
geneus generator,
(iii) and for each U € Bx we have Gy = Oxy for all but finitely many

Y e YU).

REMARK V.1.4.2. Note that due to Example [L11.2.0.19| divisorial O x-modules
are sheaves of sets.

CONSTRUCTION V.1.4.3. For a graded scheme X which is locally of Krull type
the set Div(Ox) of divisorial O x-submodules of K is a monoid with neutral element
Ox, where we define the operation via G * H(U) := (\ycy ) GvHy. Note that
(G *xH)y = GyHy, and with respect to inclusion G * H is the smallest element of
Div(Ox ) which contains GH. We have a canonical homomorphism

divo, : (K(X)"™)* — Div(Ox), f+— Oxf
whose image and cokernel are denoted PDiv(Ox) and Cl(Ox) respectively.

PROOF. Let fy € (G x H)bem \ {0} where f € G * H(U)"™ \ {0} with a
neighbourhood U of Y. Then fy € GyHy because Y € Y(U).

Conversely, let Gy = Ox yg and Hy = Ox yh and a € Ol}(o‘;) \ {0}. By axiom
(iii) the complement U C X of all prime divisors Y’ # Y such that Gy and Hy- do
not both equal Ox y+. Let V C U be a neighbourhood of Y with divy (agh) € ZY .
Then agh € G * H(V)2°™\ {0} and hence (agh)y € (G * H)5™ \ {0}.

Let F € Div(Ox) contain GH. Then GyHy = (GH)y C Fy holds for each
Y € Y(X), and taking the intersection over these stalks we see that GxH(U) C F(U)
holds for each open U C X. O

DEFINITION V.1.4.4. Let X be locally of Krull type. The Ox-module Ox (D)
associated to a divisor D € WDiv(X) is defined by

Ox(D)(U) = { Z fw S ’C(U) fw =0or diVU(fw) > _DU}

weK
We will also use the notation O(D) for Ox (D) when no confusion can arise.
REMARK V.1.4.5. Let ¢: X — X’ be a morphism between graded schemes

which are locally of Krull type such that Clm = 0 holds for each Y € Y(X). Then

the canonical graded homomorphism K(X’) — KC(X) restricts to a homomorphism
Ox/ (D) — ¢.0x (g% (D")) for each D' € WDiv(X’).
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ExAMPLE V.1.4.6. Let X be a graded scheme which is locally of Krull type such
that gr(Ox) = K@ F with a free group F. Let X’ be the induced K-graded scheme,
which is the relative spectrum of Ox equipped with the induced K-grading, and
let ¢: X’ — X be the canonical morphism. Then ¢% : WDiv(X) — ¢, WDiv(X’)
is a primality preserving injection, each Y’ € Y(X’) satisfies Clm = 0 and
Ox (D) — ¢.Ox(¢% (D)) is an isomorphism for each D € WDiv(X). This follows
from the affine case, which is due to Lemma [[T.2.5.14]

PROPOSITION V.1.4.7. Let X be locally of Krull type. Then we have mutually
inverse isomorphisms

WDiv(X) «— Div(Ox)

= D, min oy x()Y <G
Yey(X)fng \{0}

which restrict to isomorphisms PDiv(X) = PDiv(Ox) and hence induce isomor-
phisms C1(X) = Cl(Ox). Moreover, if PDiv(X) C WDivi"(X) then the above
restricts to an isomorphism between WDiv™(X) and those G € Div(Ox) for which
the set of Y € Y(X) with Gy # Ox.y 1s finite.

PRrROOF. For each prime uy € (’)E‘(O}“} we have Ox (D)y = (’)X,yu;pTY(D) which
shows (ii). For (iii) note that on U € Bx, Dy is a finite sum. Since f € (K(X)hom)*
satisfies divy (f) > — D)y if and only if divy (f) > —Dy, i.e. vyu(f) > —pry(D)
holds for each Y € Y(U), Ox (D) is divisorial. O

PROPOSITION V.1.4.8. Let X be locally of Krull type and let D € WDiv(X) be
a Weil divisor on X. Then the following hold:

(i) For U € Bx denote by ¢y: WDiv(U) — Divy, (O(U)) the canonical iso-
morphism. Then the canonical isomorphism Qg (O(U)) — K(U) restricts
to an isomorphism of O(U)-modules Ox (D)(U) — ¢u(—Dy).

(il) Ox (D) is quasi-coherent.

PROOF. Assertion (i) follows directly from Remark [V.1.2.7] In (ii) note that
for f € O(U)"™ \ {0} we have an isomorphism

Ey — O(D)(Uy), g/f"+—["g
where we have used Remark [V.1.2.7 |

REMARK V.1.4.9. For each U € Bx we have a canonical isomorphism of
graded Oy-modules Ox (D);y = Oy(D)y). For a closed irreducible A C X let
¢a: WDivy — Divg (Ox,a) be the canonical isomorphism. Then the isomorphism
K(X) — Qg (Ox,a) restricts to an isomorphism Ox (D)4 — ¢a(—Da). Indeed,
consider an affine open neighbourhood V' of A. Since O(D)a = ¢y (—Dyv)r(a)
Remark [V.1.2.7] gives the assertion.

V.2. Cox sheaves

In this section, we present details on the definition of Cox sheaves and prove
their main properties as well as their characterization among graded O x-algebras
of Krull type. A characterizing feature of Cox sheaves is that their Krull structure,
i.e. the family of graded valuations {uy }ycy(x) is compatible with that of Ox,
meaning that each py restricts to the essential graded valuation vy defined by Y.
O x-algebras with this property are called natural and studied in Section We
characterize general natural O x-algebras R of Krull type in terms of their stalks and
the Krull structure they define, see Theorem [V.2.1.3] and Veronesean ones in terms
of existence of a CBE from a divisorial Ox-algebra to R, see Theorem[V.2.1.9] After
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these preparations Section sees our main results on the characterizations of
Cox sheaves and their global sections in Theorems[V.2.2.4] and [V.2.2.5] respectively.

V.2.1. Natural and divisorial O x-algebras of Krull type. The prototype
of natural Ox-algebra of Krull type are the algebras Ox (K) associated to a sub-
group K < WDiv(X). In the same way, a homomorphism K — WDiv(X) defines
an Ox-algebra, see Construction General natural Ox-algebras are defined
in terms of the Krull property. Next to the characterizations in Theorems [V.2.1.3]
and we study the presheaf homomorphisms defined the Krull structures,
localization properties and conditions for graded factoriality of section rings.

DEFINITION V.2.1.1. Let X be locally of Krull type. A natural Ox-algebra
of Krull type is a graded Ox-algebra 1: Ox — R together with a gr(R)-simple
constant K-algebra 7: K — S wherein R = mYey(X) Sy is of Krull type with
respect to Bx with a defining family {uy }yey(x) such that 7 restricts to : and
Wy © 2j(jchom)= = vy holds for Y € Y(X).

REMARK V.2.1.2. Natural Ox-algebras of Krull type are sheaves of sets due to

Example [[11.2.0.19

THEOREM V.2.1.3. Let X be locally of Krull type and let 1: Ox — R be a
graded Ox -algebra. Then R is a natural Ox -algebra ﬂYey(X) S,y of Krull type in
a K-algebra 1: K — S with respect to Bx if and only if R C Kr is a subsheaf and
quasi-coherent, we have a canonical isomorphism O5% /(O%%)* = REp™ /(Rbm)*
for A € {X} UY(X), for each open U we have R(U) = (\ycyw) Ry, and for
V € Bx each f € RE™\ 0 is a unit in Ry for all but finitely many Y € Yx (V).

Moreover under these conditions the following hold with respect to the notation
of Construction [III.7.0.9:

(i) {uy}v are the essential graded valuations of R and we have py,y = py,x
if Y € Y(U) and py,u = 0 otherwise.

(i) {uy,x}vey, are the essential graded valuations of R4 for a closed irre-
ducible A C X. In particular, the homomorphism Kr — S is an isomor-
phism and we have S, (X) =Ry forY € Y(X).

(iil) For U € Qx each g € R(U)M™ \ {0} restricts to a unit on

Ug :=U\ |dive,u(9)| ={z € U | divr,(g2) = 0}
={z€U|g, € (R}™)"}

and the canonical map R(U)y — R(Uy) is an isomorphism.
(iv) We have a homomorphism

(§"™)* — Div(Ox), [r—7'(Rf) = Ox(~divr x(f))

PrROOF. If R is natural then py y equals py,x if Y € Y(U) and 0 otherwise,
because S is constant and the restricition maps of Z(*) are identities or zero maps
depending on whether or not Y € Y(U). Moreover, in the terminology of Sec-
tion Y is the index sheaf J corresponding to {uy}YGy(X). Its stalks at X
and at Y € Y(X) are 0 resp. {Y'}, and hence the respective stalks of R are S(X)
and S, (X). Moreover, the canonical isomorphism O?}’? (OE}"?)* — F1[Ny] fac-
tors into the canonical isomorphism RY™ /(REe™)* — [F;[Np] and the canonical
map O%P/(O%P)* — RY™/(RY™)* so that the latter is also an isomorphism.
Lastly, for a non-zero f € S(U)"™ we have divg i (f) € WDiv(U) because for each
V € By there exist non-zero g, h € R(V)P°™ with fiv = g/h and we thus have

diVR7U(f)‘V = diVRJ/(g) — diVR,V(h) S WDIV(V)

Regarding the further assertions note that by Proposition|.2.6.9 {1y, x }yey @)
are the essential graded valuations of R(U) for U € Bx because {vy,x}yeyw)
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are the essential graded valuations of O(U). Likewise, {uy,x }yey, are the essen-
tial graded valuations of the stalk of R at a closed irreducible A C X because
{vy,x }yey, are the essential graded valuations of Ox 4. In (iii) note that R(U), is
the intersection over all S(X),, , withY € Y(U) and py,u(g) =0, i.e. Y € Y(Uy).
Assertion (iv) follows through direct calculation.

Under the second set of conditions the stalk R x is simply graded and for each
Y € Y(X) the stalk Ry is a discrete graded valuation ring. Hence the canonical
map

v (REE™) 2 QUR™) — QURE™)"/(RE™)" = QUOYR)" /(O%R)” = 7
is a normed discrete graded valuation whose corresponding graded valuation ring
is Ry. Setting pyuy = pyx if Y € Y(U) and py,y := 0 otherwise defines a

discrete graded valuation vy : (Ki™)* — Z(). The family {py }yey(x) realizes as
a natural Ox-algebra of Krull type in Kg. O

PRrOPOSITION V.2.1.4. Let X be locally of Krull type and let R be a natural
Ox-algebra in S such that im(divg ) = WDivi™(U). Then the following hold:

(i) R(U) is factorially graded,

(i) for any irreducible closed A C X with U € Qx 4 let a(A) be the preimage
of the mazimal graded ideal under the map R(U) — Ra. Then Y4 is the
set of all Y € Y(U) with R(U)P°™ \ a(A) C ker(vy x). In particular, we
have R(U)q(a) = Ra in S(X).

(iii) The canonical isomorphisms

Divi, (R(U)) 2 (SW)"")* /(R(U)"*™)* = WDiv™ (1)

define a bijection Y(U) — P(R(U)) which sends Y to a(Y), and we have
By, U = Va(y)-

Proor. For (i) note that by assumption the map

R(U)M™\ {0}/ (R(U)"™)" — WDivEy(U) = P No
Yey(U)
is bijective and thus R(U)"°™ is factorial. For Y € Y(U) we now fix f¥ € R(U)bom
with Y = divg ¢ (fY). In (ii) consider Y € Y(U) with R(U)r™\ a(A) C ker(vy x).
Then we have f¥ € a(A) and hence 0 < divg a(fY) = Ya, i.e. A CY. In (iii) we
use that Qg (R(U)) = S(X) holds and we have (f¥') = a(Y) foreach Y € Y(U). O

CONSTRUCTION V.2.1.5. Let X be locally of Krull type, let M be a graded sim-
ple monoid and let ¢: M — WDiv(X) be a group homomorphism. The associated
divisorial gr(Ox) ® gr(M)-graded natural Ox-algebra is

Ox(M,¢) = @ Ox(¢(w))x” € K[M].
weM
The defining family {uy }yey(x) is given via uy,v (fx*) = vv,u(f) +pry,v(é(w)w)
for U € Qx.

REMARK V.2.1.6. In the above, we have divo (a,¢) (fX") = dive (f) + ¢(w) v
and hence im(dive . (v,4),0) = PDiv(U) + pff (im(¢)).

ExXAMPLE V.2.1.7. Let X be locally of Krull type and let L < WDiv(X) be a
subgroup. The associated gr(Ox) @ L-graded divisorial Ox-algebra is
Ox (L) := Ox(L,L C WDiv(X)).

REMARK V.2.1.8. If U C X is an open graded subscheme intersecting every
prime divisor of X then we have canonical isomorphisms of L-graded Oy-algebras

Kx[Lljv = Ky[Ly] and O(L);y = O(Ly).
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THEOREM V.2.1.9. Let X be locally of Krull type and let R be a graded Ox-
algebra. Then the following are equivalent:

(i) R is a Veronesean natural Ox-algebra in S,
(i) there exists a divisorial Ox-algebra A and o CBE n: A — R.
(iii) for each surjective homomorphism ¥: gr(Ox)®F — gr(R) of gr(Ox)-
algebras such that F is free there exist a divisorial Ox -algebra A and a
CBE 7: A — R accompanied by 1.

ProoF. If (iii) holds consider a family {v;};cr € gr(R) whose classes generate
gr(R)/gr(Ox). Then the induced homomorphism v: gr(Ox) ® P,c;Z — gr(R)
has the required properties and hence there exists a CBE A — R with accompanying
map .

If (ii) holds then by Proposition m: A — R induces a CBE K4 — Kr
and by Proposition R is a subsheaf of K. By Proposition the
family which defines A in K4 and restricts to {vy }yey(x) on (K"™)* induces a
family {py }yey(x) which defines R in K and also restricts to {vy }y on (Khom)*,

Suppose that (i) holds and consider a map ¢: F — gr(R) from a free abelian
group F such that the map ¢: gr(Ox) @ F — gr(R),w + v — w + ¢(v) is sur-
jective. Let F’' := ¢~ !(degsupp(S(X))) and let S’ be the Veronese subalgebra
K[F]gr(0x)er equipped with the gr(Ox) @ F-grading.

Let {e;}ier be a basis of F’ and choose a non-zero f; € S(X)g(,) for each i € I.
For v =3, \ie; set f =], £, Sending x* to f¥ then defines a CBE 7: 8’ — S
of K-algebras with accompanying map . Each 7, : S:H—gr(ox) — Spy+ox = Kf°
restricts to an isomorphism A, gr04) = (RfT' NK)x" — Rg(w)+gr(0x) because
RfTNK = Rew)+grox)f 7. The Ox-subalgebra A generated by all A, 4-(0y)
is then divisorial and = restricts to a CBE 7: A — R. |

REMARK V.2.1.10. Let X be locally of Krull type. For a natural Ox-algebra
R which is of Krull type in S with respect to Bx let pr: gr(R) — gr(R)/gr(Ox)
be the canonical projection. Then in the commutative diagram

1 1 0
|
I
prodeg v
o (01 o (REM)® P g (RIOM)*) 0
|
|
hom )% homyx _Prodeg ' hom \x
1 —— (Khom) (KR™)® ——— pr(deg((Kx™)*)) —=0
\
div divr |
WDiv =——— WDiv J‘
I
o Cl- — — > coker(divg) — — — — — >0
0 0

of presheaves of abelian groups with exact rows and columns the dashed sequence is
also exact. Moreover, if PDiv(X) C WDivi"(X) then the same holds if we replace
WDiv and Cl with WDiv™ resp. C1i",

REMARK V.2.1.11. For each U € Bx, O(U) C R(U) is natural in the sense of

Section [[T.2.6] due to Proposition [[I.2.6.5 and Proposition [[.:2.6.9]
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ProrosITION V.2.1.12. For a Veronesean natural Ox -algebra R in S each stalk
R satisfies the following:

(i) Ox.o C Ry is natural in the sense of Section in particular, R, is
gr(R)-local. Moreover, we have canonical isomorphisms
Cly(Ry) =2 coker (divg ), =2 Cl, /im(c, o divg ;) = Cl, /im(d,).
(ii) We have
x (pr(deg((R™™)"))) = {w € im(dx) | wy = [0].}.
(i) For each U € Qx , we have
O x (pr(deg(R(U) N (REom)*)) = Sci(x),.(U) Nim(8x).
PROOF. Assertion (i) follows from Proposition [[1.2.6.5] For assertions (ii) and

(iii) note that divg, x ((RE°™)*) resp. divg, x (R(U)"™ N (RE°m)*) is the set of all
D € im(divg,x) with D, € PDiv, (and D|yy > 0). O

REMARK V.2.1.13. Let R be a natural Ox-algebra which is locally of Krull
type. Let K denote WDiv(X) resp. WDivi™ and correspondingly, let C' denote
CI(X) resp. CI"™(X), in the latter case supposing that im(divg, x) € WDivi"(X).
Then the canonical map (Kg (X )hom)* AVRX, K - C induces a homomorphism
¢: Kr(X)bom)* /(JC(X)Bom)* — (' which is injective/surjective if and only if we
have (R(X)Pom)* = (O(X)P°m)* resp. im(divg,x) = K.

REMARK V.2.1.14. Let R be a Veronesean natural Ox-algebra and let f, f' €
R(U)y with f+ f' # 0. Then we have

dive,u (f)| N |diveru (f)NU C |diveu(f + f)INT.
Indeed, if for = € U the stalks f,, f. are non-units then so is (f + f/),.

ProproSITION V.2.1.15. Let X be a graded scheme of Krull type. For each

closed point x € X we then have S&f,wa( C S5 and S2

X),z = PWDiv(X),z ClX),e S SCI(X

PROOF. Let ¢: X := Spec o x(Ox(WDiv(X))) — X be the canonical mor-
phism and let D € SVng (X), (U). Since the special point Z over z is closed
O(qg YU \ |D|))/Zz(¢ *(U \ |D|) is homogeneously simple and hence its degree
support Sgr(ox)@WDiV(X)@(qfl(U\ |D])) is a group. Therefore,

Swoiv(x).«(U)p = Swpiv(x),« (U \ | D])
= pTWDiv(X)(Sgr(ox)@WDiv(X),i(q_l(U\ |DI)))
is a group and hence D € Swpiv(x),«(U)°. Likewise,

Scrx),(U)p] = ex (prwpivix) (Sgrox)awpivix).z(@” (U \ [D]))))
is a group and hence [D] € Scy(x),.(U)°. |

PROPOSITION V.2.1.16. Let ¢: X — Z be an affine morphism of graded schemes
such that ¢*: Oz — ¢.Ox is a CBE. Then the following hold:

(i) X is of Krull type if and only if Z is so, and in this case the pullback
WDivy — ¢ WDivx is an isomorphism of partially ordered groups which
commutes with the respective divisor homomorphisms and the induced
pullback Clz — ¢, Clx is an isomorphism.

(ii) For each D € WDiv(Z) the pullback Oz (D) — ¢.0x(¢% (D)) is a CBE
of graded sheaves of graded K-vector spaces. Likewise, for a subgroup
K < WDiv(Z) the pullback Oz(K) — ¢.Ox(¢%(K)) is a CBE of graded

sheaves of K-algebras.
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ProoFr. For U € Bz Proposition implies that Oz(U) is of Krull type
if and only if Ox(¢~(U)) is so. In particular, X is of Krull type if and only if Z
is. Now assume that X and Z are of Krull type. By Proposition (i) the
assignment Y +— ¢(Y) constitutes a bijection Y(X) — Y(Z). Moreover, for each
Y € Y(X) the canonical map Oy 4y) — Ox.y is a CBE by Proposition
(iv). This gives the remaining assertions. O

V.2.2. Cox sheaves and Cox algebras. After defining Cox sheaves and
quasi-Cox sheaves for graded schemes which are locally of Krull type we prove the
Theorem on their characterization, the stated conditions being sufficient if
WDiv(X) is free, e.g. if X is quasi-compact, in which case Cox sheaves and quasi-
Cox sheaves are the same. Theorem [V.2.2.5] characterizes what it means for an
algebra Rg C R to be a Cox algebra, with the given conditions being sufficient al-
ready under the mild assumption that gr(R)/G be finitely generated. Furthermore,
we give a constructive approach to (quasi-)Cox sheaves, see Construction
leading to very mild conditions for their existence. Uniqueness seems unavailable
in the general case, but each two Cox sheaves may be connected in some sense via
the defining CBEs from O(WDiv(X)), see Proposition

DEFINITION V.2.2.1. Let X be a graded scheme over A. A CBE of Ox-
algebras is a CBE (component-wise bijective epimorphism) of presheaves of con-
stantly graded A-algebras on X which is also a morphism of (graded) O x-algebras.

In the following for a graded scheme X which is locally of Krull type we fix the
notations L := WDiv(X) and L := WDiv"(X).

DEFINITION V.2.2.2. Let X be locally of Krull type and write K for L (resp.
L"), A (quasi-)Cox sheaf is an Ox-algebra R allowing a CBE of Ox-algebras
7: Ox(K) — R,¢: gr(Ox)®K — gr(R) with KNy~ (gr(Ox)) = PDiv(X). The
global sections R(X) are called a (quasi-)Cox ring and the algebra O(X) — R(X)
is a (quasi-)Cox algebra.

REMARK V.2.2.3. In the definition of (quasi-)Cox sheaves, it suffices to re-
quire that R be an Ox-prealgebra allowing a CBE as stated. Indeed, by Proposi-
tion each Ry (w,p) is a sheaf because Ox (D)., is a sheaf. Moreover, R is
a natural Ox-algebra of Krull type in g with respect to Bx. Thus, R is even a
sheaf of sets because it is a graded subsheaf of the constant sheaf Kr.

Also, it suffices to require that PDiv(X) be contained in K N~ (gr(Ox))
where K denotes L resp. L™ since the converse already holds. Indeed, if an
element D of K satisfies (D) € gr(Ox) then mx(x”) € K(X) and we conclude
D = divo(k),x (x?) = divg x (mx (X)) = divx (mx (x?)).

THEOREM V.2.2.4. Let X be a locally of Krull type and let R be a (graded)
Ox-algebra R. If R is a (quasi-)Cox sheaf then the following hold:

() R=MNyeyx)Suy €S is a natural Ox -algebra of Krull type,

(ii) the map dx from Remark is an isomorphism from gr(R)/gr(Ox)

to CI(X) (resp. C1I™(X)); equwalently, divg x has image L (resp. L)

and kernel (O(X)P°™)*, and we have deg((S(X)1™)*)+gr(Ox) = gr(R).

Conversely, if (i) and (i) hold with respect to L™ then R is a quasi-Cox sheaf. If
(i) and (i) hold with respect to L and L is free then R is a Cox sheaf.

PrOOF. Let K denote L resp. Li". If R is a (quasi-)Cox sheaf on X with a CBE
m: O(K) — R as required then it is natural Ox-algebra by TheoremR and
we have im(divg, x) = im(divo(x),x) = K. Since PDiv(X) C K Ny~ (gr(Ox))
we have (R(X)hom)* = 7 ((O(K)(X)rom)*) = (O(X)P°™m)*. Finally, note that
gr(O(K)) = deg((O(K)hom)*) + gr(Ox) and hence

gr(R) = ¥(deg((O(K)¢™™)")) + gr(Ox) = deg((R¢™™)") + gr(Ox).
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Conversely, suppose that K is free and that R satisfies conditions (i) and (ii)
with respect to K. Then the map dx from Remark is an isomorphism
from gr(R)/gr(Ox) to CI"(X). Let ¢: K — gr(R)/gr(Ox) be the composition
with the canonical map. Choosing representatives of ¢-images for basis elements
of K we obtain a surjective homomorphism ¢: gr(Ox) ® K — gr(R) of gr(Ox)-
algebras. By Theorem there exists a CBE of Ox-algebras m: O(L) — R
with accompanying map . Lastly, for D € PDiv(X) we have

Sx(¥(D) + gr(Ox)) = [dive, x (mx (x”))] = [divow) x (x”)] = [D] = [0]
ie. D e KNy~ (gr(Ox)). O

THEOREM V.2.2.5. Let Rg C R be a Veronese A-subalgebra of a graded A-
algebra. If there exists a quasi-Cox sheaf R on a graded scheme X which is locally
of Krull type such that we have an isomorphism R(X) = R restricting to an iso-
morphism O(X) = R then the following hold:

(i) RM™ s factorial,

(i) (RM™)* = (R&™)",

(iil) for every p € P(R) we have deg(((Ry)'™)*) + G = gr(R).
Conversely, if gr(R)/G is finitely generated and conditions (i) - (i) hold then there
exists a graded scheme X of Krull type (and of affine intersection) and a quasi-

Cox sheaf R with an isomorphism R(X) = R which restricts to an isomorphism

PART I. If R is a quasi-Cox ring then (ii) follows from Theorem [V.2.2.4] Con-
ditions (i) and (iii) are due to Proposition|V.2.1.4[and Theorem|V.2.1.3] The second
part of the proof is found in Section O

CONSTRUCTION V.2.2.6. Let X be locally of Krull type and denote L resp.
L by K. If 7: O(K) — R is a CBE to a (quasi-)Cox sheaf then sending a prin-
cipal divisor D to the unique element of O(K) (X)ESEI(IDX)+D Ny (1z(x)) consti-
tutes a monomomorphism x: PDiv(X) — (O(K)(X)P™)* because the restriction
prr: ker(y)) — PDiv(X) is an isomorphism. Conversely, for a monomomorphism
k: PDiv(X) — (O(K)(X)hom)* with k(D) € O(K)(X)E;’E%X)_’_D the Ox-module
R which has grading group (¢9r(Ox) ® K)/prr(deg(x(PDiv(X)))) and assigns

O(K)(U)/{k(D)v = Loxx)w) | D € PDiv(X))
to U € Qx is a (quasi-)Cox sheaf due to Proposition
PROOF. If (1) is a CBE to a (quasi-)Cox sheaf then by Proposition [[I.1.2.13

deg restricts to an isomorphism of (Wx)l_(gl(K)(X)hom(lR(X)) and ker(1)). Injectivity
of prr: ker(¢) — PDiv(X) follows from gr(Ox)Nker(¢) = {0}. Surjectivity follows
from PDiv(X) C K N~ 1(gr(Ox)) and component-wise bijectivity.

For the converse note that each 7y as constructed from « is a CBE of rings by
Proposition my. For bijectivity of the restricition 9: gr(Ox) — ¢r(Ox)
consider w € gr(Ox) with w = deg(k(D)) for some D € PDiv(X). Then we
have D = prp(deg(x(D))) = 0 and hence w = 0. Thus, 7y is a CBE of O(U)-
algebras. O

COROLLARY V.2.2.7. Quasi-Coz sheaves on a graded scheme X which is locally
of Krull type exist if and only if PDiv(X) C L. A sufficient condition for the
existence of Cox sheaves is freeness of PDiv(X).

It is well-kown that (quasi-)Cox sheaves are unique up to isomorphism of graded
Ox-algebras if C1(X) resp. CI"(X) is free because then each (quasi-)Cox sheaf is
isomorphic to Ox (K) where K is a subgroup of L resp. L™ which maps isomor-
phically onto Cl(X) resp. Clﬁ“(X ). A further condition enforcing uniqueness up
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to isomorphism in the case of prevarieties over an algebraically closed field K is
O(X)* = K* which holds e.g. if X is projective, see [4] Sect. 1.4.3]. In general, two
(quasi-)Cox sheaves are linked via the CBEs from Ox (K) which has the following
consequences.

PROPOSITION V.2.2.8. Let X be locally of Krull type and let R and R’ be two
(quasi-)Cox sheaves on X. Then for each U € Qx the following hold:

(i) The respective CBEs induce an isomorphism of Fq-algebras

R(U)P™\ {0}/ (R(U) ™) = R'(U)"™ \ {0}/(R'(U)"™)*
as well as bijections respecting sums, intersections, inclusions, products
and ideal quotients between the sets of graded ideals of R(U) and R'(U).
(il) R(U) is of finite type over Ox(U) if and only if R'(U) is so. If X is
a graded scheme over the (0-graded) affine scheme S = Spec(B), then
R(U) is of finite type over B if and only if R'(U) is so.

PROOF. In the first statement is due to Remark [L1.2.74] and the second to
Proposition Let K denote L resp. Li". In (ii) let B C O(U) be a subal-
gebra and suppose that R(U) is of finite type over B. Since Cl(X) resp. CIi"(X)
is isomorphic to gr(R(U))/gr(O(U)) it is finitely generated and hence there exists
a finitely generated subgroup G < K which the canonical projection ¢y maps onto
C1(X) resp. CI""(X). The group gr(Ox)®GNker(v)) is isomorphic to GNPDiv(X)
under the isomorphism pry: ker(¢)) — PDiv(X) from Construction[V.2.2.6] in par-
ticular, it is finitely generated. By Proposition Ox(G)(U) is of finite type
over B and hence, so is R'(U). O

The above shows that the question of uniqueness is of little practical conse-
quence since all Cox sheaves on a given X behave in the same way.

REMARK V.2.2.9. Let X be locally of Krull type and let U € Qx satisfy
L = WDivx(U) with +: U — X denoting the inclusion. Then we have canoni-
cal isomorphisms Oy (WDivy (U)) = Ox(L)y and 2.0y (WDivy (U)) = Ox(L),
and if PDiv(X) C L then the analogous statements hold for the divisorial al-
gebras defined by the respective groups of finite Weil divisors. Consequently, the
restriction of (quasi-)Cox sheaf on X is a Cox sheaf on U and the direct image of a
(quasi-)Cox sheaf on U is a Cox sheaf on X.

PROPOSITION V.2.2.10. Let R be a (quasi-)Cox sheaf on X with a defining
CBE 7: O(K) — R. If {lox)} is saturated in (K(X)"™)* then the set of all
f e (KIK](X)Mm)* with mx (f) = lo(x) is saturated in (K[K](X)hom)*.

PROOF. If f = gxP satisfies mx(f") = 1 then f™ and hence also f are units of
O(K)(X) which means that D is principal. Thus there exists a unique homogeneous
element h € K(X) with 7x(hx”) = 1. We then have g" = h™ and conclude
g=h. |

V.3. Graded characteristic spaces

V.3.1. The characterization of graded characteristic spaces. In this
section we prove characterization of graded characteristic spaces given in Theo-
rem |V.3.1.4] below. Moreover we consider good quotients gq: X — X of graded
schemes of Krull type and conditions which allow us to relate divisors and class
groups of X to those of X.

DEFINITION V.3.1.1. Let X be locally of Krull type. A graded (quasz )characteristic
space over X is a graded scheme X over X, given by a morphism g¢: X — X, such
that ¢ is affine and ¢.O¢ is a (quasi-)Cox sheaf on X.
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REMARK V.3.1.2. ¢: X > Xisa graded (quasi-)characteristic space if and
only if it is isomorphic as a graded scheme over X to some Spec,, x(R) — X where
R is a (quasi-)Cox sheaf on X.

ProrosiTION V.3.1.3. Let g: X > X bean affine morphism of graded schemes
where X is locally of Krull type. Then q is dominant, X is locally of Krull type and
the pullback q*: WDivx — q. WDivg is an isomorphism (of sheaves of partially
ordered abelian groups) if and only if ¢*: Ox — q.Og is natural in q.Kg in the
sense of Definition[V.2.1.1. In both cases we have a commutative diagram

Ldiv¥ .
(q*lC?A(Om)* - ¢« WDiv ¢ .
divq*o)? ~
g
WDiVX

PROOF. If ¢.Og is natural in ¢.C¢ with defining family {uy }yeyx) then
O(q~Y(U)) is of Krull type for each U € Bx and hence X is locally of Krull
type. For each U € Bx the graded kernel of ¢f;: O(U) — O(q~'(U)) is trivial
and hence gg-1(y: ¢~ (U) — U is dominant. By Theorem [V.2.1.3| {tiy,v }y ey
are the essential graded valuations of O(¢q~'(U)) and by Proposition [[.2.6.9] the
canonical map Divg, (O(U)) — Divg(O(¢g'(U))), and hence also the pullback
qfy: WDivx (U) — WDiv (¢! (U)), is an isomorphism.

Conversely, suppose that X is locally of Krull type, ¢ is dominant and the
homomorphism ¢*: WDivy — ¢, WDiv¢ is an isomorphism. Then for Y € Y we
have Y := i (Y) € V(X) and set py = 4+Vgy (v)- Then we have . Z) = 7Y)
and py qu(lchom)* = vy as required. Since ¢* restricts to a bijection Y(X) — y(f(),
{1y }yey(x) defines ¢.O¢ in ¢.Kx. O

THEOREM V.3.1.4. Let q: X > X bea morphism of graded schemes. If X is
locally of Krull type and q is a graded (quasi-)characteristic space then the following
hold with K denoting L (resp. L ):

(i) X is locally of Krull type,
(ii) ¢ is a good quotient and the pullback WDiv(X) — WDiv(X) is an iso-
morphism of partﬁally ordered groups,
(iii) we have deg((K(X)M™)*) 4+ gr(Ox) = gr(Og), divg is surjective onto
WDiv(X) (resp. WDivi™ (X)), and (O(X)bom)* = (O(X )bom)*,
If K is free then the converse holds.

PRrROOF. By Proposition [V.3.1.3|q is a graded (quasi-)characteristic space if and
V.2.2.4

only if condition (ii) of Theorem [V.2.2.4]is satisfied. This condition is there shown
to be neccessary for ¢.O ¢ to be a Cox sheaf, and in case K is free also sufficient. [J

REMARK V.3.1.5. For each Cox sheaf R on X, the corresponding graded char-
acteristic space ¢: X — X and each w € CI(X) we have

Bas(w)(X)= () |divex(N)l=aV( |J O(X)a)).
depr~ (w) depr—!(w)
0#fER(X)a

REMARK V.3.1.6. Let R be a Cox sheaf on (X,Qx g). Then for a closed
irreducible subset A C X and U € Q2x 4 we have

Sci(x),a(U) = ex (dive,x (R(U)"™ N (RE™))) = pr(deg(R(U)"™ N (RE™)")).
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V.3.2. Characterizations under finite generation conditions.

ProprosITION V.3.2.1. Let g: X — X bea good quotient of graded schemes of
Krull type. If there exists a q-saturated open set U - X intersecting every prime
divisor such that we have (’)hom = (C’)hom) (’)hom ) for each point 7 € U, then the

pullback ¢% : WDiv(X) — WDIV( ) is an lsomm“phzsm of partially ordered groups.
The converse is true if deg((K(X)m™)*)) + gr(Ox)/gr(Ox) is finitely generated.
In these cases each T € U in particular satisfies

deg((O%™)") + gr(Ox) = deg((K(X)*™)*) + gr(Ox).

PROOF. For U C X as above the open set U = q(ﬁ) C X intersects every prime
divisor of X by Proposition For Y = {n} € Y(X) let 7 be the special
point in ¢~ (n). Since we have Ohom = (Ohom) Ox . and Ox 4 is a discrete graded
valuation ring, so is Og 7 and a ﬁomogeneously prlme element in the former is
homogeneously prime in the latter. Y = {7]} e V(X ) is then the only prime divisor
with image in Y and thus equals ¢% (Y). If Y is an arbitrary prime divisor of X
then its generic point 7 lies in U.

Conversely, suppose that ¢%: WDiv(X) — WDiV(X ) is an isomorphism. For
Y € Y(X) and Y = gy (Y), OhPT has a uniformizer in Ohom which means that

deg((KC(X)"™)") + gr(Ox) = deg((Og )"™)*) + g7(Ox).

Due to the finite generation assumption there exist fi,..., fm € (O}Og)* with

deg((KC(X)™™)*) + gr(Ox) = (deg(f1), ..., deg(fm)) + gr(Ox).

With WY := X \ ¢(|div (], f;)|) we then have f; € (O(g= (WY ))Pom)* for each
i. Consequently, each W € By satisfies O(g~H(W))hom = (O(qg=1)hom)*O (W )hom
which in particular means that we have OI)L(OI; = (O?A(Om) Oljl(ogl(x) for each point

Z € X. The union U over all the sets ¢~*(W?Y) is then as desired. O

PRrROOF OF THEOREM [V.2.2.5] PART II. Now, let K/G be finitely generated,
and suppose Rg C R satisfies conditions (i) - (iii). Let F' be a system of repre-
sentatives for the K-prime classes in RP™/(Rh™)*. By finite generation of K/G
there are f1,..., f,, € F with (deg(f1),...,deg(fm)) + G = K. Condition (iii) for
p; = (f;) gives finite sets F; C F'\ {f;} with

(deg(f)|f € F}) + G = deg(((Rp,)"™)*) + G = K.

The union {f1,..., fr} of {f1,..., fm} and all F; satisfies (deg(f;)|j # k) +G =K
forevery k=1,...,r

For j =1,...,7 let R; be the localization by the product of all f;, with k # j.
Let X be the union of the sets )/(:j := Spec,,(R;) C Spec,,(R) =: X. By choice
of fi,..., fr all X;j = Spec,,((R;j)c) contain X’ = Spec((Ry,...,)c) as a principal
open subset and thus glue to a graded scheme X. The maps X ; — X; glue along
X = Spec(Ry,...y,) — X' to a good quotient g: X-X.

We verify that R is the Cox ring of X by showing that ¢ is a graded characteristic
space. X is a K-Krull scheme because every R; is a K-Krull ring (they are even
K-factorial). By construction each R; satisfies deg((R?""‘)*) + G = K. Firstly, this

yields deg((lC()/(\')hom)*) + G = K. Secondly, each pullback
: WDiv(X;) = Divy,((R;)a) — Divg(R;) = WDiv (X i)
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is an isomorphism and hence, so is g% : WDiv(X) — WDiv(X). Moreover, we have
yy()? ) = V5(X) because each Y (X) \yy(f( ;) is the set of the prime divisors cor-
responding to fi where k # j. Thus, we have O(X) = R and assertions (i) and (ii

give C1(X) = Cly(R) =0 and (O(X)hom)* = (O()?)g?m)* Thus, Theorem
gives the assertion. ]

V.3.3. Graded characteristic spaces of F;-schemes of finite type. We
know from Proposition that for a graded scheme X of finite type over F;
the (finite) set of points is in bijection with the basis By of open affine subsets.
We show that if X is of Krull type then Weil divisors and class groups are finitely
generated, as are sections of Cox sheaves and of O(WDiv(X)). We also give a
simplified formula for the semigroups ngllz XM(U ), see Proposition

ProPOSITION V.3.3.1. For an F1-scheme X of finite and Krull type the follow-
ing hold:
(i) Each WDiv(U) and CI(U) is finitely generated.
(ii) CIU) is finite if and only if {vy,u }yeyw) is linearly independent.
(iii) CI(U) = 0 if and only if {vy,u}yeyw) may be completed to a basis of
Homgz(K(X)*,Z).

PROOF. Assertion (i) follows from finiteness of X. In (ii) suppose that {¢;};cs
is a (finite) basis of Homg(N™'K(X)*, Q) containing {N~'vy,y}yeyw). The ele-
ment fy /ny of the dual basis corresponding to N~y s satisfies divy (fy) = nyY.
Conversely, if C1(U) is finite then for Y € Y(U) there are fy € K(X)* and ny € N
with diVU<fy) =nyY. Then N_1<O(U)\{O}) = N_IO(U)* @@YGJJ(U) on(fy/l)
and N™'C(X)* = NT'O(U)* © @yeywy Qfy/1) hold. Let O(U)* = G @ E be
the composition into a finite and a free Z-module. Now, {fy/ny }yeyw) extends
to a Q-basis of N'E & @, Q(fy/1). In the dual basis of Homg(N™1KX(X)*, Q)
the element corresponding to fy /ny is N™lvy p.

For (ili) suppose that {¢;};ecs is a (finite) basis of Homz(K(X)*,Z) which
contains {vy,u}tyeyw). Let K(X)" = G @ F be a sum of a finite subgroup G' and
a free subgroup F. Let {f;}jce; € F be the dual basis. Then the basis element
fy corresponding to vy y satisfies divy(fy) = Y. Conversely, if CI(U) = 0 then
there exist fy € K(X)* with divy(fy) =Y for each Y € Y(U). Then we have
OU)\{0} = O(U)" & By ey Nofy and K(X)* = OU)" & Dy ey Zfy- Let
O(U)* = G @ FE be the composition into a finite group G and a free group E. Now,
{fv}yeyw) extends to a basis of E & Py cy ) Zfy- Then in the dual basis of
Homgz(K(X)*,Z) = Homz(E ® @y cy(r) Zfy,Z) the element corresponding to fy
is Vyu- O

PRrROPOSITION V.3.3.2. Let X be a graded Fi-scheme of finite and Krull type.
Then the following hold:

(i) For each divisorial Ox-algebra and hence each Cox sheaf R on X, R(U)
is finitely generated for each open U.

(ii) If ¢: X — X is a dominant morphism between graded F1-schemes of finite
and Krull type such that the pullback ¢% : WDiv(X) — WDiV(X) is an
isomorphism of partially ordered groups, e.g. ¢ is a graded characteristic
space over X, then for a generic point 1) € X of a prime divisor we have
N Upm) = T/J\'ﬁ for the respective minimal affine open sets containing i
resp. ¢(N).

Consider an affine graded scheme X over Fy and let U,V € Bx. Then U C V is
K -saturated if there exists f € O(V)x with U = V. More generally, if ¢: X — Z
is a good quotient of graded Fi-schemes then open sets of the form ¢~!(U) with
U C Z open are called g-saturated.
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ProproOSITION V.3.3.3. Let X be an integral canonically graded affine F1-scheme,
let K C gr(Ox) be a subgroup and let m: gr(Ox) — gr(Ox)/K denote the canoni-
cal epimorphism. Then for U,V € Bx \ {0} the following hold:

(i) IfU CV then n(O(X)NO(V)*)° Cw(O(X)NOU)*)° if and only if U
1s K-saturated in V.

(i) If m(O(X)NOWV)*)°Na(O(X)NOU)*)° # 0 then UNV is K-saturated
in U and V', and the canonical map O(U) g ®@r, O(V)x — O(UNV)k is
then surjective. The converse holds if O(X) is factorial.

ProOOF. For (i) suppose that U is K-saturated in V, i.e. there exists w €
O(V)k with U =V,,. Let v € O(X) with V = X,,. Then w = u — kv holds with
u € (O(X)NOU)*)° and k € N. Thus, we have

() = 7(kv) € 7((O(X) NOWU)*)°) N7 ((O(X) NOV)*)°)
C 7(O(X) NOWU)*)° N x(O(X) NO(V)*)°.

)
and consequently, m(O(X) N O(V)*)° is contained in 7(O(X) N OU)*)°.
In (ii) suppose there exist v € (O(X)NOV)*)°,u € (O(X) N OU)*)° with
w:=v—u¢€ K. Then we have U = X,, V=X, and UNV = Xy, = U, = V_,.
Moreover,

O(U)K +O(V)K - O(UQV)K = O(U)K — Now = O(V)K + Now
COW)k+0(V)k

which means that U NV is saturated in both U and V, and the canonical map
OU)k @, O(V)k — OU N V) is surjective. If the converse holds then by
Remark [[.1.3.26 there exists w € O(U)x N —O(V) g with

O(U)K + O(V)K = O(Uﬂ V)K = O(U)K — Now = O(V)K + Now.
Due to Example [[.1.3.27 we must have w € (O(X) N O(V)*)° — (O(X) N O(U)*)°

as required. O

PRrROPOSITION V.3.3.4. Let X be a Fi-scheme of finite and Krull type and let x €
X. Ingflf(X)’z(U) is non-empty, i.e. w%flf(x)’z(U) is non-empty, then 5S¢y x) . (U) is
the saturation of Séflf(x),z(U) and we have wgflf(x)’x(U) = W), (U)-

PRrROOF. Let q: X - Xbea graded characteristic space, set L := WDiv(X)
and let m: K(X)* — L — CI(X) denote the canonical map. Consider U € Qx .z
and set U := ¢ 1(U). Then Séﬁf(x)’m(U) is the union over all the semigroups
cx (SL,y(U)°) where z specializes to y and Uy has a purely one-codimensional com-
plement in U. If such an y exists then U, has purely one-codimensional complement
in U,, and hence it also has a purely one-codimensional complement in U. Let &
and y be the special points over x resp. y. Since fj@ is K(X)*-saturated in (7@,

Proposition [V-3.3.3 gives

sat(cx (ST 4(U))) = SCi(x),,(U) 7
= S8(x),.(U) = sat(cx (57 ,(U)

(O@) N O(Uy)*)° € 7(O0) NOUz)*)°

)

which establishes the assertion. O

REMARK V.3.3.5. Let X be an F;-scheme of finite and Krull type. Then due
to the above Proposition X is covered by the set U of those U € Bx for which X \U
is purely one-codimensional if and only if i/ = Bx.
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V.3.4. Fi-schemes of finite Krull type and combinatorial schematic
functors. We continue in the notation of Section After performing a dual-
izing operation on the cofunctors defined there we obtain combinatorial schematic
functors whose equivalence with F;-schemes of finite and Krull type is shown in
Corollary [V.3.4.9] Using the results of the previous section we are then able to
give a characterization of graded characteristic spaces in terms of the corresponding
morphisms of combinatorial schematic functors in Proposition

DEFINITION V.3.4.1. Let R be the full subcategory of those Of*"-objects
(O:J — Algg ,B) for which each O(j) is of Krull type and B has a free unit
group.

~

DEFINITION V.3.4.2. The category J of combinatorial schematic functors is
defined as follows: A J-object is a functor o: I — Mon from a partially ordered
set together with a free finitely generated abelian group N such that

(1) I has a least element,
(ii) o maps to the category of pointed, finitely generated and saturated sub-
monoids of NV,
iii) for each i € I, o);_, defines an isomorphism to faces(o(7)).
| <i

An J-morphism from (o, N) to the pair formed by ¢’: I’ — Mon and N’ is a

morphism «: I — I’ of partially ordered sets together with a homomorphism
¢: N — N’ such that face(¢(o(7))) = o’ («(i)) holds for each i € I.

REMARK V.3.4.3. Note that for an J-object 0: I — Mon the set I is finite.
Moreover, the composition of J-morphisms is again a morphism because under
monoid homomorphisms ¢: M — M’ and ¢’: M’ — M" we have

face(¢' (face(¢(face(w))))) = face(¢ (¢ (u))) = face(¢' (¢(face(u)))).

EXAMPLE V.3.4.4. Let ¢: N — N’ be a homomorphism of free finitely gen-
erated abelian groups and let M C N and M’ C N’ be saturated submonoids
with ¢(M) C M’. Then ¢ together with «: faces(M) — faces(M'), T — face(¢(7))
defines an J-morphism from idgaces(ar) t0 idgaces(arr)-

REMARK V.3.4.5. If (a,¢) is a morphism from (o,N) to (¢/,N’) then for
J € I<i, a(j) is the unique minimal j* € I ;) with ¢(o(j)) € o'(j’). In other
words, for i € I the canonical isomorphism (faces(o (7)), N) — (o|7.,, N) composed
with the restriction (oy;_,, N) — (a" . N') is equal to the canonical morphism
(dfaces(o(i))s V) — (idaces(o’(a(i)))> N') composed with the canonical isomorphism
(faces(o’(a(i))), N') — (of;,  ,N').

<al(i)

CONSTRUCTION V.3.4.6. For an O{%?"-object (O: J — €, B) sending j € J to

int
a(j) = (0(j) \ 0)" C Homg(B\ 0,Z)
as defined in Section constitutes an J-object. For a morphism («a,) from

(O,B) to (O': J — €, B’), the induced map ¢: Homy(B\ 0,Z) — Homy(B'\ 0,2Z)
together with a forms an J-morphism. This defines a functor to J.

PROOF. Due to Proposition each o(j) is pointed and all faces of o(j)
are duals of principal localizations of O(j) \ 0. Let 7/ := o/(a(j)) N u't, where
1’ = face(u’) holds with some v’ € O'(a(j)) \ {0}, such that ¢(c(j)) C 7" =o'(2L,).
Then we have O'(i,) = 1n'~1O’'(a(j)) which means pam(n’) C O'(i’,)*. Then

') = w(pff(j)(u')) is a unit and locality implies that «’ is a unit in O(j) and
hence 7' = U’Ea(j)). O
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CONSTRUCTION V.3.4.7. For an J-object (0: I — Mon, N) sending i € I to
O(i) :=Fy[o(i)¥] C F1[Homz (N, Z)]

as defined in Section constitutes a K-object. For a morphism («, ¢) from (o, V)
to (o/: I' — Mon, N'), the induced map : Fi[Homz(N’,Z)] — Fi[Homz(N,Z)]
together with forms o an Kmorphism.

ProOOF. To show that («,) is a morphism consider ¢ € I and j' < «(i), and
let 7 = O'(a(i)) \ {0} be the corresponding face. Set 7 := face(¢(7")) =< O(4)
and let j be the corresponding element below i. Since ¥(7') C 7 we calculate
Y(O'(5") = (7710 (a(i))) € 771O(i) = O(j) and hence Remark [[.1.3.24] gives
d(c(7)) C o’(j'). Minimality gives a(j) < j’ as required. O

PRrROPOSITION V.3.4.8. The above constructions define mutually essentially in-
verse (covariant) equivalences of categories between J and K.

PROOF. Let o: I — Mon be an J-object. Then due to Proposition [[.1.3.23((ii)
For an J-object (o, N), id; together with the canonical isomorphism

N — Homg(F;[Homgz (N, Z)] \ 0,Z)

forms an J-isomorphism from (o, N) to the pair consisting of (Fi[o¥]\ 0)V and
Homy (F; [Homgz(N,Z)] \ 0,Z). These isomorphisms form a natural isomorphism
between idy and (—\ 0)Y o Fy[(—)V].

Likewise, for an R-object (O: J — Algp , B) Proposition [.1.3.23(ii) implies
that id; together with the canonical isomorphism

B — F;[Homyz(Homz(B\ 0,2),Z)]

forms an R-isomorphism from (O, B) to the pair consisting of F1[((O \ 0)¥)Y] and
Fy [Homz(Homgz(B \ 0,Z),Z)]. These morphisms form a natural isomorphism from
idg to Fi[(—)Y] o (—\ 0)". O

Together with Proposition [[V.3.:4.5] the above gives the following.

COROLLARY V.3.4.9. We have mutually essentially inverse covariant equiva-
lences between J and the category of Fy-schemes X of finite and Krull type for which
K(X)* is free and dominant morphisms; one sending (o, N) to Spec(F1[c¥ \ {0}]),
the other sending (X, Ox) to ((Ox g,\(oy \ {0})", Homz(Ox ¢ \ {0},7Z)).

DEFINITION V.3.4.10. For an J-object (o: I — Mon, N), I has a unique min-

imal element 0 € I. A minimal element of I+ is called a ray and the set of all rays
is denoted IV,

REMARK V.3.4.11. For i € IV we have ¢(i) = Ngv; with a unique v; € N
called the generator of the ray i. The corresponding element of the double dual of
N is denoted v;. Moreover, for each j € I, o(j) is the saturation of the monoid
generated by all v; for ¢ € I (<1j), and {v;}, 1) are the essential valuations of o(j).

- =J

REMARK V.3.4.12. For an FF;-scheme X of finite and Krull type such that
K(X)* is free consider the J-object consisting of the assignment [z — (Ox , \{0})"]
and the group Homyz (IC(X)*,Z). Then the minimal element of X with respect to
specialization is the generic point £ of X and the rays are precisely the generic
points of the prime divisors of X.

PROPOSITION V.3.4.13. Let (o, ¢) be an T-morphism from (o: T — Mon, ]V)

to(o: I — Mon,N). Letq: X — X be the corresponding morphism of F-schemes.
Then the following hold:

(i) ¢ is affine if and only if each non-empty o~ (I<;) has a greatest element.
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(ii) ¢ is a good quotient if and only if ¢ has full rank, each a='(i) has a
greatest element i and it satisfies o(i) = ¢(5(i))VV.

(i) The pullback q*: WDiv(X) — WDiv(X) is an isomorphism of partially
ordered groups if and only if o restricts to a bijection W — 1M gnd
o(v;) = Vo (d) holds for the respective ray generators.

(iv) Equipping O ¢ with the canonical K()A()*/q} (K(X)*)-grading turns q into
a graded characteristic space if and only if ¢ has full rank, each a™(i)
has a greatest element i and it satisfies o(i) = ¢(G (i)"Y, o restricts to a
bijection TV — 1) o(v;) = v, and {T%JZ\E T = g*{u;li € TW}E
hold for the ray generators, and {v;};.7n) may be completed to a Z-basis.

PROOF. Assertion (ii) follows from Remark [[V.3.3.2) and Remark [[.1.3.24] As-
sertion (iii) is due to Corollary [V.1.2.13] In (iv) we relate the conditions of The-

orem [V.3.1.4] to the present setting. The criterion for factoriality of X is due to
Proposition [V.3.3.1 The unit condition is due to O(X)* = {%;[i € IW}+ and
O(X)* = {v]i € M+ O

DEFINITION V.3.4.14. An J-morphism («,¢) whose associated morphism of

[F1-schemes carries the structure of a graded characteristic space is called a (combi-
natorial) Cox construction.

REMARK V.3.4.15. Let O: J — € be a J-object and let X be the associated
graded scheme. Then X is locally of Krull type if and only if each two j, k € J
satisfy J<; N J<p # 0 and each O(j) is of Krull type. We then have a canoni-
cal isomorphism WDiv(X) = colimjc s Divg(O(j)). The divisor homomorphism
divy: (K(U)Mm)* — WDiv(U) is then the map induced by all the canonical maps
(Que(O(j))*™)* — Divye (O()) for U, C U.

Let (f, f*) be a J-morphism from O to O’: J — € such that all O(j) and O’ (')
are of Krull type and both .J and J’ are finitely generated. Suppose the associated
morphism (¢, ¢*): (X',O0x/) — (X,O0x) of graded schemes is dominant, i.e. each
f(7) is non-empty. Then the pullback is the map induced by the canonical maps
Divg, (O(j)) — Divg, (O’ (5')) where j' € §(3).



CHAPTER VI

Cox sheaves of quasi-torus actions and their
characteristic spaces

In this chapter we translate the results on graded characteristic spaces into the
equivalent category of quasi-torus actions. For such a (morphical) action H C X on
a prevariety over K with affine H-invariant cover we consider the invariant topology
Qx, g on X and the invariant structure sheaf Ox g := ((’)X)|QX=H, which is naturally
graded by the character group of H. Provided that the sections of Ox g are of
Krull type (i.e. normally graded) one may define invariantly prime divisors, their
associated graded valuations, invariant class groups Clg(X), Cox sheaves on Qx g
and characteristic spaces of H CX.

After recalling facts on quasi-tori in Section and a brief discussion of the
invariant structure and good quotients of actions in the general case in Section[VL]]
we establish the equivalence between reduced graded schemes of finite type over K
and quasi-torus actions on prevarieties with affine invariant cover over K in Sec-
tion As a further preparation we discuss generic isotropy groups which turn
out to have a useful description in terms of the degrees of homogeneous units of the
stalks of the invariant structure sheaf in Section

Characteristic spaces are then characterized in Section [VI.4] as good quotients
0,q): HcX — HCX such that HCX is of Krull type with Clﬁ()?) = 0, the
rings O(X) and O(X) have the same homogeneous units, ker(d) acts with constant
isotropy on a big saturated H-invariant open subset of X and 6 restricts to an
isomorphism H ¢ — Hx. We also relate various cones of invariant divisor classes of

X to orbit cones of the actions of H resp. ker(6).

VI.1. Invariant geometry of algebraic actions

VI.1.1. Invariant topology and structure sheaf of an action. By the
category of affine algebraic groups over K we mean the category of group objects
in the category of affine varieties over K. The forgetful functor from affine varieties
to their underlying sets induces a functor from affine algebraic groups to groups.
In general, we consider only abelian affine algebraic groups H. The corresponding
cogroup objects in the category of affine K-algebras are affine Hopf K-algebras.

Throughout, we will study morphical actions of affine algebraic groups on pre-
varieties over K and correspondingly, coactions of affine Hopf K-algebras on affine
K-algebras. A morphical action u: H x X — X of an affine algebraic group H
on a prevariety X will also be denoted H CX. We will then also speak of an H-
prevariety X. For any K-prevariety X we denote the Zariski topology by (1x and
the basis of affine open subsets by Bx.

DEFINITION VI.1.1.1. Let H be an affine algebraic group and X an H-prevariety.

(i) The H-invariant topology on X is the subtopology Qx n C Qx of those
Zariski open subsets which are H-invariant. Its intersection with the set
Bx of affine open sets is denoted Bx g.

(ii) A subset of X is H-open/-closed/-irreducible if it is H-invariant and
Qx g-open/-closed/-irreducible.

143
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(iii) The H-invariant dimension of X is defined as the topological dimension
dimg (X) = dim(X, Qx, 1)

of the topological space (X, Qx m).
(iv) The H-invariant codimension of an H-irreducible subspace Y C X in X
is the codimension

codimXﬂ(Y) = COdim(X’QX,H)(Y)
in the topological space (X, Qx ).
REMARK VI.1.1.2. For an H-prevariety X the following hold:

(i) For A C X we have ZQX’H = ﬂﬂx because each Qx, g-closed set which

contains A also contains HA and conversely, HA"™ is H-invariant be-
cause whenever an ) x-closed set Y contains H A, so does the H-invariant
set (e MY

(ii) Minimal H-irreducible subsets are just orbits and minimal closed H-
irreducible subsets are closed orbits. Every H-closed subset contains
closed orbits.

(iii) If X = Hx then Hzx is the unique minimal element of Qx .

(iv) If Y C X is irreducible, then H - Y is H-irreducible.

REMARK VI.1.1.3. Equivariant morphisms are continuous with respect to the
invariant topologies, because under equivariant maps preimages of invariant sets are
invariant.

REMARK VI.1.1.4. A morphism (6,¢): HCX — GCY is called equivariantly
dominant if the induced continuous map (X, Qx g) — (Y, Qy ) is dominant.

REMARK VI.1.1.5. For an H-prevariety X the topology Qx g is noetherian.

PRrROPOSITION VI.1.1.6. For an H-closed subset Y C X the following hold:

(i) Any irreducible component Z C'Y is invariant under the connected com-
ponent H, containing the unit element e. The (different) products of the
form H - Z form a decomposition of Y into H-irreducible components.

(ii) If Y is H-irreducible then Y is equidimensional and all its irreducible
components Z satisfy Y = H - Z.

Proor. Let H = H.lUh1H U.. .UhgH, and Y = Z1U...UZ,, be decompositions
into connected resp. irreducible components.

H.Z; is the image of the irreducible set H. x Z; under the action and hence
H. - Z; is contained in some Z; which gives H.Z; = Z;, and the first part of (i) is
shown. We also infer that HZ; = H. Z;Uh1H . Z;U...UhqH.Z; is closed. Removing
duplicates we obtain a subset I C {1,...,m} such that

d
Y=H.Y= UHZi: U UtheZi

iel il j=0
is a decomposition into irreducible components h;H.Z; where hy = e. Therefore,
the sets HZ; are irreducible components with respect to €2x m. This shows the

remainder of assertion (i).

If Y is H-irreducible, then Y = H-Y = H-(Z;U...UZ,_1)UH - Z,, is
a decomposition into H-invariant closed subsets, so by H-irreducibility of Y we
obtain Y = HZ; for some i and the above decomposition of HZ; implies that the
irreducible components h;jH.Z; of Y = HZ; are pairwise isomorphic. ([l

REMARK VI.1.1.7. In an H-prevariety X translation by an element h € H

. —(h, x c .
defines a automorphism pp: X 2ok {h} x X LM%Y L X of prevarieties with
inverse pp—1. pp is H-equivariant if h lies in the center of H.
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DEeFINITION VI.1.1.8. Let X be a H-prevariety.
(i) Its invariant structure sheaf is the restriction Ox g := Ox|q, - Via

HxOx(U) — Ox(U), (h, f)—h-f:=(up-1)v(f),
H acts by automorphisms on the sections of Ox g in a way which is
compatible with restriction maps.
(ii) For any H-irreducible subset Y C X we define the stalk of Ox g at Y as
(OX,H)Y = colim OX,H(U)-
Ue QX,H)Y
It carries an induced H-action by automorphisms.
(iii) For an affine algebraic subgroup G C H the subsheaf O)Ci g € Ox g of
G-invariants sends U € Qx g to the G-fixpoint algebra

O$.n(U) = {f € Ox.uU) | p(f) = pri;(f)}-

REMARK VI.1.1.9. For a morphism (6,¢): GCX — HCY the induced homo-
morphism ¢*: Oy, g — ¢.Ox ¢ is compatible with the actions. Consequently, for
a G-irreducible subset Z C X the map (Oyﬂ)mnyﬂ — (Ox,u)z is compatible.

VI.1.2. Invariant Zariski topology. Until further notice we suppose that
H C X is an action on an affine variety and set R := O(X). In this section we relate
H-invariant subsets of X to H-invariant ideals of R.

DEFINITION VI.1.2.1. Anideal a < R is called H -invariant if Ha = a. A proper
H-invariant ideal ¢ < R is called H-prime if for any H-invariant ideals a, b, ab C q
implies a C q or b C q. p is called H-maximal, if it is maximal among H-invariant
ideals.

REMARK VI.1.2.2. Sums, intersections and finite products of invariant ideals
are invariant. Thus, Zorn’s Lemma implies the existence of H-maximal ideals.
Clearly, H-invariant prime ideals are also H-prime. The converse need not be true

in general, though it holds for certain groups, e.g. connected algebraic groups acting
on affine varieties and their coordinate rings.

PROPOSITION VI.1.2.3. Let p < R be prime. Then (¢ hp is H-prime.

PROOF. Set q := (),cpy hp and let a,b < R be H-invariant with ab C q C p.
Then we may assume a C p and for all h € H we get a = ha C hp. Thus,

aC ey hp =0 O

PROPOSITION VI.1.2.4. Let a < R be H-invariant. Then R/a has the induced
H-action and it respects ¢: R — R/a. Furthermore, the order preserving bijection

{a Cb < R; H— invarianty — {¢ < R/a; H — invariant}
b — ¢(b)
¢~ (c) b

induces bijections of the respective sets of H-invariant ideals and H-prime ideals.

COROLLARY VI.1.2.5. A H-invariant ideal p is H-mazximal if and only if R/p

has only trivial invariant ideals, and it is H-prime if and only if the zero ideal in
R/p is H-prime. In particular, H-mazimal ideals are H-prime.

PROPOSITION VI.1.2.6. For any ideal a < O(X), any set Y C X and any
h € H we have V(h-a) =h-V(a) and I(h-Y) = h-I(Y). Thus, the following hold:
6) V(H @) = (en h - V(a);
(i) I(H -Y) = M h- 10);
(iii) if a is H-invariant then V(a) is H-invariant;
(iv) if Y C X is H-invariant then I(Y) is H-invariant.
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In particular, if Y is closed then'Y is H-invariant if and only if I(Y') is H-invariant.

PRrROOF. We first show V(h- f) = h-V(f). Let x € X. Then z € V(h - f) iff
h=t.z e V(f) iff x € h-V(f). Moreover, we have I(h-x) = h-I(z): For any
f € O(X) wehave f € I(h-z) iff h=1- f € I(z) iff f € h-1(z). Now, the other
assertions follow. O

A consequence of the above and Hilberts Nullstellensatz is that H-prime ideals
are radical ideals:

PRrROPOSITION VI.1.2.7. Let q 9 O(X) a H-prime ideal. Then \/q = q.

PrOOF. Since O(X) is noetherian, /q is finitely generated, so there is an n > 0
with /q" C q. Because /q is H-invariant, H-primality of q gives \/q C g. ]

ProproOsSITION VI.1.2.8. Let Y C X be a closed H-invariant subset. Then'Y is
H -irreducible if and only if I(Y') is H-prime.

PROOF. Let Y be H-irreducible and let a, b < O(X) be H-invariant ideals with
ab C I(Y). Then Y C V(b) UV (b) is a decomposition into closed H-invariant sets,
so we may assume Y C V(a). Thus, a C I(V(a)) C I(Y).

Conversely, if I(Y') is H-prime, consider Y = AU B with closed H-invariant sets
A,B C X. Then I(A)I(B) = I(AUB) = I(Y) and we may assume I(A4) C I(Y),
soY C A. O

VI.1.3. Quasi-tori, characters and one-parameter-groups. Here, we list
well-known facts on quasi-tori, also called diagonalizable groups, with some (sketches
of) proofs added for convenience.

ExaMPLE VI.1.3.1. For the multiplicative group (K*)™ the multiplication map
and the canonical map {1} — (K*)™ to (1,...,1) are morphisms of affine varieties.
To see that the map inv: a — a~! is a morphism first note that the homomorphism
K[TY, ..., Tsy] — K[TEY, ..., TF] = O((K*)") which sends T; to T; and Tj,,, to
TijEl has kernel (ThT,+1 —1,...,T,,T, — 1) and induces an isomorphism ¢ from the
factor ring to O((K*)™). Then the projection

pri: X = ‘/V(K*)zn (TlTn+1 — 1, N ,TnTgn — 1) — (K*)n

onto the first n coordinates is an isomorphism because its corresponding ring ho-
momorphism is ¢~ 1. inv is now the composition of the projection pro: X — (K*)
onto the last n coordinates and pry 1 Thus, (K*)™ is an affine algebraic group
called the (standard) n-torus over K. With respect to the canonical Hopf algebra
structure group algebras from Section the isomorphism O((K*)™) — K[Z"]
is an isomorphism of Hopf algebras.

ExaMPLE VI.1.3.2. Consider G =Z/m\Z & ... ® Z/m,Z. Since Z/m;Z maps
bijectively onto the group of m;-th roots of unity G is in canonical bijection with
the closed algebraic subgroup H := V(17" — 1,..., T/ — 1) C (K*)™. We have
I(H) = (I{" —1,..., 7)™ — 1) because each of the generators T, decomposes
into m; pairwise different prime factors. Thus, the epimorphism of Hopf algebras
K[TEL, ... T — K[G], T; — x[™ induces an isomorphism of O(H) — K[G].

n

REMARK VI.1.3.3. The canonical full functor K[—] of Proposition
from abelian groups to Hopf algebras over Krestricts to a full functor from finitely
generated abelian groups to affine Hopf algebras. Indeed, the group algebra over
a finitely generated abelian group K = Z™ ) @ t(K) is the tensor product the
of affine algebras K[Z™ (¥)] and K[t(K)]. Composing with Spec, . then yields a
full contravariant functor from finitely generated abelian groups to affine algebraic
groups.
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DEFINITION VI.1.3.4. An affine algebraic group which is isomorphic to (an
affine algebraic subgroup of) some standard torus is a (quasi-)torus.

CONSTRUCTION VI.1.3.5. Let H be an abelian affine algebraic group. The
group X(H) of rational characters of H is defined as the abelian group of morphisms
of affine algebraic groups from H to K* with multiplication being defined point-wise.
X canonically defines a contravariant functor from abelian affine algebraic groups
to abelian groups by sending a morphism 6: H — G to the pullback

X(0) :=0": X(G) — X(H), x+— xob.

REMARK VI.1.3.6. X(H) may be considered as a (multiplicative) subgroup of
O(H) because every rational character gives rise to a unique morphism to K. Then
X(H) equals the set of group-like elements of O(H).

ProroSITION VI.1.3.7. The contravariant functor §f from finitely generated
abelian groups to the category of quasi-tori is essentially inverse to X.

PrROOF. For H = Spec,,,(K[K]) consider a surjection 7: Z" — K. Then
the corresponding morphism of algebraic groups H — T is a closed embedding.
The map X(Spec,,..(K[K])) — K, ¢ — deg(¢*(x')) is an isomorphism, with the
inverse mapping w to the morphism from H to K* defined by K[Z] — K[K], x! +
x*. The homomorphism property of the first map follows from the point-wise
definition of multiplication in the character group. These isomorphisms now define
an isomorphism between X o f and the identity.

For well-definedness of § consider a closed embedding H — T = (K*)". Then
the injection K[X(T)] — O(T) = K[Z"] is an isomorphism because the induced
map of the group-like elements is an isomorphism by Remark and Ex-
ample Using surjectivity of O(T) — O(H) we see that O(H) is also
generated by its characters and the restriction X(T) — X(H) is surjective. In
particular, the injection K[X(H)] — O(H) is bijective and the induced morphism
H — Spec,,(K[X(H)]) is an isomorphism. These isomorphisms now define an
isomorphism, i.e. a natural transformation, between the identity and f o X where
the relevant commutativity condition is due to Proposition O

COROLLARY VI.1.3.8. For two closed algebraic subgroups Hi, Hy of a quasi-
torus H we have X(Hy N Hy) = X(H)/(K; + K»3) where K; is the kernel of the
pullback X(H) — X(H;).

COROLLARY VI.1.3.9. An affine algebraic group H is quasi-torus if and only if
it 1s isomorphic to a product of a torus and a finite abelian affine algebraic group.

CONSTRUCTION VI.1.3.10. Let H be an abelian affine algebraic group. The
group A(H) of one parameter groups of H is the abelian group of morphisms of
affine algebraic groups from K* to H with multiplication being defined point-wise.
If ¢: H — G is a morphism of abelian affine algebraic groups, then there is an
induced push-forward homomorphisms

A(@) :=¢u: A(H) — A(G), x+— dox.
This turns A into a covariant functor from abelian affine algebraic groups to abelian
groups.
REMARK VI.1.3.11. Let H be an abelian affine algebraic group.
(i) We have a Z-bilinear canonical map
() X(H) x AH) — X(K*) = Z, (X A) — X«(A) = A" (X) = myox

(ii) Every A € A(H) maps into the unit component H, of H, and hence the
push-forward A(H,) — A(H) is an isomorphism.
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ExampLE VI.1.3.12. For a quasi-torus H the homomorphism

is an isomorphism by virtue of the contravariant equivalence of quasi-tori and finitely
generated abelian groups.

VI.1.4. Semi-invariants of characters. In this section we observe that semi-
invariants are well-behaved under morphisms and form a direct sum. Moreover, we
consider vanishing sets of semi-invariants and the Zariski topology defined by prin-
cipal open subsets associated to semi-invariants.

DEFINITION VI.1.4.1. Let H C X be an action.

(i) For every character x € X(H) the sheaf of x-semi-invariants is the sub-
sheaf of K-vector spaces (Ox,m)y € Ox, g defined by

(Ox.1)(U) :={f € Oxzg(U) | R - f =x(h)f for all h € H}.
(ii) The sheaf of Fi-algebras (Op x)x := UXeX(H) (Ox.m)y € Ox g is called
the sheaf of semi-invariants.

REMARK VI.1.4.2. Let X be a H-prevariety with an abelian affine algebraic
group H. Let U C X be open and invariant. Then f € Ox (U) is a y-semi-invariant

if and only if u3;(f) = pry(x)pri;(f) because ((u};)uv(f))(z) = pgr(f)(h, ) holds
forallz € X and h € H.

ExampLE VI.1.4.3. With respect to the action of a quasi-torus H on itself via
the multiplication morphism we have O(H), = Ky for each x € X(H).

ProrosITION VI.1.4.4. The sum ZXeX(H) (Ox.u)y € Ox g is direct.

ProOF. Let U € Q1x g and let n € Ny be the minimal number for which there
exist non-zero semi-invariants f1,..., f, € O(U) of different characters xi,...,Xn
such that >, f; = 0. If n # 0 then we must have n > 1. Each h € H,,_,,, then
produces an equation 0 = > | (x1(h) — xi(h))f; in which the number of non-zero
summands is greater than 0 but smaller than n - a contradiction. ]

REMARK VI.1.4.5. The sheaf of invariants O¥ ,; coincides with (Ox,H )0y sy -

PROPOSITION VI.1.4.6. Let (8,¢): HCX — GCZ be a morphism of actions
of affine algebraic groups and let x € X(G). Then ¢*: Oz.c — ¢.Ox, u restricts
to a homomorphism ¢*: (Oz.c)y — ¢+(Ox m)o+(x). Likewise, for an H-irreducible
subset B C X, the homomorphism ¢%: (Oz7g)m — (Ox,u)p restricts to a ho-
momorphism ¢ : ((0276*)@))( — ((OX7H)B)9*(X).

PROOF. Let U € Qgz ¢ and let f € Oz(U), where x € X(G). Then for every
h € H and every z € ¢~ (U) we have

ou () (hx) = f(d(hx)) = f(O(R)p(x)) = x(0(h))f(¢(x)) = 07 (x)(h)r (f)(x)
which means that ¢7;(f) € ¢«(Ox,1)o=()(U). O

ProprosITION VI.1.4.7. Let HC X be an action of an affine algebraic group on
an affine variety. Let Qx g x be the subtopology of Q1x mr generated by the principal

open sets at semi-invariants. Let Y C X be a Qx g x-closed Qx g x-irreducible
sbuset. Then the following hold:

(1) With S :== (Ox.u)x(X)\ I(Y) the canonical map
STlo(X) = coéiénO(X)s — ((Ox.m) )y = coéién(’)(Xs),

[Qx Hx

Flg— (ox,)v' fr
to the stalk at'Y is an isomorphism which respects the respective H -
actions (and hence maps semi-invariants to semi-invariants).
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(i) If (6,¢): HCX — GCZ is a morphism between actions then under
((OG’Z)|QZ,G1X)7¢(Y) — ((Ox,1)|0x 1)y sSemi-invariant preimages of units
are units.

PROOF. Assertion (i) is due to the fact that the sets X, s € S form a basis for
the Qx g x-neighbourhoods of Y. Assertion (ii) follows from the fact that we have

o~ (Ox,m)x(X)\ I(Y)) = (0z,6)x(Z2) \ 1(¢(Y)) and (Oz,c)x(Z) \ I(¢(Y)) is a
face of the multiplicative monoid (Oz,¢)x(Z). O

We close the section with variants of identity theorem and Krulls principal ideal
theorem for semi-invariants.

LEMMA VI.1.4.8. Let X be a H-irreducible prevariety. Then (Ox p)x has in-
jective restriction maps. In particular, if f € Ox(U)y and f' € Ox(U’)y coincide
on some open H-invariant V.C U NU’, then they coincide on all of UNU'.

PROOF. Let f € Ox(U) with fjy = 0. f~1(0) is closed by continuity and
H-invariant by semi-invariance of f. Using H-irreducibility of U we conclude U =
VX C 1), 0

LEMMA VI.1.4.9. Let X be an affine H-irreducible variety and let f be a x-
semi-invariant which is neither zero nor a unit. Then Vx(f) is equidimensional of
codimension one in X.

PrROOF. We already know that X is equidimensional and X = H - X' for all
components X' of X. Since f # 0 it vanishes on no X', because if otherwise f|x =0
for some X', then as semi-invariant, f would vanish on all - X', i.e. on all of X. By
the same argument, f is not a unit on any X’. Now, Krulls principal ideal theorem
applied to the restriction of f to the components X’ gives the assertion. O

VI.1.5. Good quotients of actions and minimal closed sets. Next to
known properties of good quotients in the setting of good quotients between actions,
we generalize the existens of unique closed orbits in the fibres of points and prove
that each a invariant closed set in the quotient space contains a special closed set
in its preimage with similar properties, see Proposition

DEFINITION VI.1.5.1. A morphism (6,¢): GCX — HCY of algebraic group
actions is a good quotient if ¢ is affine, 6 is surjective and the canonical homomor-
phism ¢*: Oy g — qﬁ*(?l;f’rg) is an isomorphism.

REMARK VI.1.5.2. (0, ¢) is a good quotient if and only if 8 is surjective, and ¢
is a good quotient by ker(#). In particular, good quotients are surjective.

PropPOSITION VI.1.5.3. Let (0,¢): GCX — HCY be a good quotient. Then
the following hold:
(i) If Z is G-closed then ¢(Z) is H-closed and (0,¢)7): GCZ — HC¢(Z)
s a good quotient.
(ii) For every V € Qy,u the restriction (0,djp-1(v)): GCo (V) — HCV
18 a good quotient.
(iii) If Z;,j € J are G-closed subsets then ¢((\;c; Z;) = (e #(Z;)-
(iv) Given a morphism (0,k): GCX — HCW there exists a unique mor-
phism (idg,y): HCY — HCW with (0,k) = (idg, ) o (0, ¢).

PRrOOF. All assertions are consequences of the properties of classical good quo-
tients by actions. O

PROPOSITION VI.1.5.4. Let (,¢): GCX — HCY be a good quotient and let
B CY be a closed subset. Then the closure A of the union over all closed ker(0)-
orbits in ¢~ 1(B) is called the special set over B and has the following properties.
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i) A is the minimal closed ker(0)-invariant subset mapping onto B.

) A is G-invariant if and only if B is H-invariant.

(i) A is Qx g-irreducible if and only if B is Qy g -irreducible.

(iv) B is an H-orbit closure Hy if and only if A is a G-orbit closure Gz, and
in this case any x € A with ¢(x) =y satisfies A = Gx.

(v) B is a closed H-orbit if and only if A is a closed G-orbit.

PROOF. In (i) note that firstly A is contained in ¢~1(B) and secondly A con-
tains fibres of all points of B so we conclude ¢(A4) = B. If A’ is closed and
ker()-invariant with B C ¢(A’). Let ker(f)x be a closed orbit in ¢~!(B). Then
¢(x) = ¢(z) holds with some z € A’ and we conclude ker(f)z C ker(f)z C A’. In
(ii) suppose that B is H-invariant. Let ker(6)z be a closed orbit with ¢(z) € B and
let g € G. Then ¢(gz) = 6(g)¢(x) € B by assumption. Furthermore,

ker(f)gx = gker(f)x = gker(f)ax = gker(f)z = ker(0)gx

shows gx € A.

In (iii) suppose that B is Qy, g-irreducible and that C' and D are closed G-
invariant subsets of X such that A C C'U D. Then we may assume that B C ¢(C)
and by (i) we conclude A C C. In (iv) suppose that B = Hy. For any z € A with
#(x) = y we then have B = ¢(Gz) C ¢(Gx) C B. By minimality of A this implies
Gz = A.

In (v) suppose that B = Hy. For any x € A with ¢(z) = y we then have A = Gz
by (iv). Furthermore, the closed G-orbit Gz’ of A satisfies ¢(Gz') = Hy = B which

implies A = Gz’ by minimality of A. O

REMARK VI.1.5.5. A ker(f)-invariant set U C X is ¢-saturated, i.e. it satisfies
¢ 1(p(U)) = U if and only if for z € U and z € X, ker(f)z Nker(0)z # O implies
x € U. Moreover, such U is open if and only if ¢(U) is open.

REMARK VI.1.5.6. For an action GC X on an affine X and an epimorphism
0: G — H between reductive affine algebraic groups the algebra O(X)ke (@) is
finitely generated by Hilberts Invariant Theorem. Then the inclusion O(X )ker(e) -
O(X) induces a morphism ¢: X — Y := Spec, .. (O(X)*(®) which is a good
quotient by the action of ker(6).

Moreover, Y has an induced H-action such that (0,¢): GCX — HCY is a
good quotient of actions. Indeed, in the diagram

max

GxX—X
i9x¢ lqﬁ
HxY-->Y

the morphism G x X — H XY is a good quotient by ker(6) x ker(6), the morphism
GxX — X — Y is ker(0) x ker(#)-invariant and by the universal property of
the quotient H x Y we obtain the desired morphism H x Y — Y. By similar
considerations, this is indeed an action.

ProPOSITION VI.1.5.7. Let (6,q): HoX — HCX be an affine morphism. If
X is of affine intersection then so is X. The converse holds if (8,q) is a good
quotient.

PROOF. Suppose that X is of affine intersection. Then X is covered by the
sets ¢71(U) for U € Bx u whose pairwise intersections are affine by affinenes of
q. Thus, the diagonal morphism of X is affine, i.e. X is of affine intersection. If
q is a good quotient and X is of affine intersection, then for U,V € Bx g the set
g (UNV) e Bgﬁ is saturated and uniqueness of good quotients gives U NV &
Specuae (O~ (U NV))). O



VIL.2. QUASI-TORUS ACTIONS AND GRADED SCHEMES 151

Lastly, we observe that geometric quotients, i.e. good quotients where all fibres
are orbits, have a number of desirable properties:

REMARK VI.1.5.8. Let (6,q): HcX - HcoX bea geometric quotient. Then
the following hold:

(i) We have mutually inverse inclusion preserving bijections
{H-invariant subsets of X} «— {H-invariant subsets of X}
A q(4)
¢ (A)— A

which restrict to mutually inverse inclusion preserving bijections between
Q)?.ﬁ and QX,H~
(ii) For each H-closed set A the minimal closed ker(f)-invariant set map-
ping onto A is ¢71(A). Thus, the above mappings also define bijections
between the set of H-closed H-irreducible subsets of X and the set of
H-closed H-irreducible subsets of X. These preserve invariant dimension
and codimension. R R R
Moreover, for H-irreducible H-closed A with image A := g(A) the
canonical map (¢:O% )4 — (O 77) 7 is an isomorphism which restricts

to an isomorphism (Ox g)a = ((q*(’))?ﬁ)A)ker(‘g) — (((’)gﬁ)g)ker(e).

VI.2. Quasi-torus actions and graded schemes

From now on, all algebraic groups under consideration are quasi-tori and our
general requirement of all quasi-torus actions is that they have an affine invariant
cover, i.e. we consider actions H C' X for which Bx g is a basis of Qx x. We will
only occasionally stress this assumption. In this Section, we discuss the connection
between graded schemes and quasi-torus actions. In Subsection [VI.2.1] we show that
the invariant structure sheaf of a quasi-torus action is graded, it decomposes into
the direct sum of the semi-invariants of characters. As an alternative to the well-
known proof using representation theory we offer a purely algebraic-geometric proof.
Subsection recalls the soberification functor t which assigns to a topological
space with structure sheaf the space of closed irreducible subsets equipped with the
induced sheaf. In Subsection we show that the soberification functor applied
to the invariant structure of quasi-torus actions defines an equivalence between
quasi-torus actions on prevarieties over K (with affine invariant cover) and reduced
graded schemes of finite type over K. This extends the well-known equivalence from
prevarieties over K to reduced schemes of finite type over K.

VI1.2.1. Canonical grading of the invariant structure sheaf.

THEOREM VI.2.1.1. Let HC X be a quasi-torus action such that X has an affine
invariant cover. Then (X,Qx u,Ox m) is a space with stalkwise homogeneously
local GrAlgHﬁ{‘—stmcture sheaf where

Ox,n = @ (Ox.1)x
X€X(H)

is canonically X(H)-graded. Moreover, sending HCX to (X,Qx u,Ox ) defines
a covariant functor inv from (morphical) quasi-torus actions to the category of topo-
logical spaces with stalkwise homogeneously local GrAlg%x—structure sheaves.

ProoOF. For each U € Bx g we may apply Construction [IV.2.3.19|to the coac-
tion O(U) — O(H) @k O(U) to obtain a grading O(U) = D, ex(m) (Ox,1)x(U).

For an arbitrary U € Qx. g let U = U U...UUy, and U;NU; = UL U...UULS ) be
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affine invariant covers. Due to Proposition [II.1.3.8) O(U) is the limit in GrRing®()
of the diagram defined by the restrictions O(U;) — O(Ui(f;)). Since (Ox m)y(U) is
the limit of the diagram defined by the restrictions (Ox m)y(U;) — (OX,H)X(Ui(f;))
we conclude O(U) = @B, ex(m) (Ox,1)x(U).

The stalks of Ox g are K-local due to Proposition|VI.2.1.4{iii). For a morphism
(0,¢): HCX — GCZ the map of graded sheaves Oz ¢ — ¢.Ox g is local because
of Proposition [VI.1.4.7] (ii). O

ExAMPLE VI.2.1.2. Consider a quasi-torus action H CK" and the correspond-
ing X(H)-grading of K[T7,...,T,]. Then for h € H and = € K" we have

hx = (deg(Th)(h)z1, ..., deg(Ty)(h)x,).

DEFINITION VI.2.1.3. Let X be an affine H-variety. Then BY ,;, C Bx g de-
notes the collection of principal open subsets defined by semi-invariants.

ProprosITION VI.2.1.4. Let HCX be an action of a quasi-torus on an affine
variety. Then the following hold:
(i) For each ideal a of O(X) we have (e ha = a®". In particular, a is
H-invariant if and only if it is X(H)-graded. Consequently, the radical of
a X(H)-graded ideal is again X(H)-graded, and an ideal a is H-prime if
and only it is X(H)-prime.
(i) BY ; is a basis for Qx g. Consequently, sections of Ox g are locally
fmétions with homogeneous denominators.
(iii) The canonical map

OX)1vy — Oxm)y, [flgr— (9x,)v Iy

18 a graded isomorphism. In particular, if X is H-irreducible than there
is a canonical isomorphism Qg (O(X)) = (Ox 1) x-

PRrROOF. For (i), first suppose that a is H-invariant. Let f = f,, +...+ fy, € a.
We proceed by induction on n to show that all f,, lie in a. If n > 1 then each
ho € Hy, —y,, satisfies

ashyt - f=xa(ho)f = (xi(ho) = x1(ho)) fy.-
i=2
By induction, x2(ho) — x1(h0))fxas---> (Xn(ho) — x1(ho))fy, € a. By choice of
ho we have f,, € a. Thus, f — f,, € a holds and another application of the
induction hypothesis yields fy,,..., fy,_, € a. Conversely, let a be X(H)-graded
and let f = f,, + ...+ fy, € a. Then f,, € a and for every h € H we have

=t f=xaM)f + - xa(h) fy, €a.

For the general statement it now suffices to note that a®" is the maximal
X(H)-graded subideal of a and [, .y ha is the maximal H-invariant subideal of
a. Assertion (ii) follows from (i). Assertion (iii) is a special case of Proposi-

tion [VI.1.4.7|1). 0

ProproSITION VI.2.1.5. Let R be a finitely generated K -graded K-algebra. Then
each K-radical ideal a of R is radical. In particular, if R is K-reduced, then R is
reduced.

ProOF. Let w: K[T},...,T,] — R/a be a degree-preserving epimorphism and
set H := Spec,,,,.(K[K]). Since V (ker(w)) is H-invariant, I(V (ker(n))) = /ker(m)
is H-invariant and hence graded, meaning

VEer(n) = VEker(n)® =7 1(/10)%) = 77 1({0)) = ker(r).

Consequently, R/a is reduced, i.e. a is radical. O
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COROLLARY VI.2.1.6. Let X be an affine H-variety. Then X(H)-prime ideals
of O(X) are radical.

PROOF. This follows from Proposition and Proposition O

ProrosiTiON VI.2.1.7. Let H be quasi-torus and let X be a H-prevariety
with affine invariant cover. For a closed H-irreducible Y C X be we then have
COdimX7H(Y) = dimx(H)((O)gH)y).

PROOF. We may assume that X is affine. Then the assignments A — I(A)
and a +— V(a) define order reversing mutually inverse bijections between the closed
H-irreducible subsets of X and the X(H)-prime ideals of O(X). Since the latter
are in natural bijection with the X(H)-prime ideals of (Ox )y = O(X)y) the
assertion follows. O

ProrosiTiON VI.2.1.8. Let H be quasi-torus and let X be a H-prevariety with
affine invariant cover. Let Y be a closed and H-irreducible subset of X. If Z is an
irreducible component of Y then codimx (YY) = codimx (Z).

LEmMA VI.2.1.9. Let H =T be a torus and let X be an irreducible H -prevariety
with affine invariant cover. Let Y C X be a non-empty H-irreducible subset and
set d := codimx (Y). Then there exists a (mazximal) ascending chain

Y=YyC...CY;CX
of H-irreducible subsets Y; of X containing Y. Therefore,
codimy g (Y) = codimx (V) = dim(X) — dim(Y").

PROOF. We argue by induction over d. If d = 0 there is nothing to show. If
d > 0 then I(Y) contains a non-zero homogeneous element f. In particular, f is no
unit. Let Z be an irreducible component of Vx (f) which contains Y. In particular,
Z is also H-invariant. By choice, the number d' := codimz(Y") is smaller than d.
By induction, there exits a chain

Y=YC...CYyr=27
which is maximal among all chains between Y and Z. Hence, the chain
Y=YC..CYyr=2CX

is maximal among all chains between Y and X and thus has length d.

The above shows that codimy (V) < codimx, g (Y). The other inequality is
immediate since every chain of H-invariant irreducible subsets is in particular a
chain of irreducible subsets. ]

ProOF OF ProPOSITION [VIL2.T.8 Let H = T x G where T is the unit com-
ponent of H. Let Z be an irreducible component of Y and set d := codimx (Z).
Then Z is T-invariant and by the above lemma there exists a chain

Z7=7yC...CZ;CX
of closed T-invariant subsets of X. Set Y; := GZ;. Then
Y=YC...CY;CX

is the desired proper chain. Indeed, if we had Y; = Y;;; at some index i then
equidimensionality of Y;, Y; 7 implies that their components Z;, Z; 1 have the same
dimension - a contradiction.

This shows that codimx (YY) < codimx (Z). For the converse inequality let

YoC...CY,CX
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be an ascending chain of closed H-irreducible subsets and set Zy := Z. Inductively,
we choose irreducible components Z; of Y; such that Z; C Z;,1. Then

Z0C...CZ,CX
is an ascending chain of closed T-invariant irreducible subsets which shows
codimy, i (Y) > codimx (Z).
a

PROPOSITION VI.2.1.10. Let (0, ¢): HCX — HCX be a morphism where X is
H -irreducible. Then the preimage of a closed H-irreducible subset’ Y of (invariant)
codimension one contains an H-irreducible component of (mvarwnt) codimension
one. Thus, if a ¢-saturated open set U is big in X then (U ) is big in X.

PROOF. We may assume that X is affine. By Lemma V(f) is of pure
codimension one in X for f € I(Y)?™\ 0. Let Yy,...,Y; be the H-irreducible
components of V(f) which differ from Y. Then there ex1st gi € I(Y;)hom\ I(Y)
and with g := H?Zl gi we have Vx (f) = Y N X,. Since ¢ is affine we have

¢ (Xy) = Xy (g). Thus,
-1 _ -1 _
Ry ¥ NX) =02 (Vx,(£))

=Vs
(9) Xgx(9)

(@*(1)

is of pure codimension one in X. O

VI.2.2. Quasi-coherent modules and algebras over Ox y. In this sec-
tion, we consider a fixed quasi-torus action H C X action with affine invariant cover.
Ox,u being a GrAlgHﬁg—sheaf on Qx pr, we consider algebras over Ox g in that
category, as well as modules over Ox g in terminology of Definition A
canonical example is the following.

DEFINITION VI.2.2.1. Let X be an H-irreducible H-prevariety. Then the con-
stant (pre-)sheaf Ky g assigning (Ox m)x is called the sheaf of graded fraction
rings of X.

We now list the main facts on quasi-coherent Ox g-algebras and their rela-
tive spectra. All proofs are analogous to those of Section [[V.I.3] and are therefore
omitted.

DEFINITION VI.2.2.2. An Ox g-algebra/-module is quasi-coherent if for each
(affine) U € Qx y and each f € O(U)P™ the canonical map A(U); — A(Uy) is an
isomorphism.

CONSTRUCTION VI1.2.2.3. For an affine quasi-torus action H C X set R := O(X)
and denote GrAlgy or GrMod} by © where ) is a fixed accompanying gr(R)-
algebra/-module structure. For W e BY ; set Sy := (p)vf,)‘_thm((O(W)hom)*).
The Ox g-algebra/-module A := A™ associated to a D-object A is defined via
AU) = limycppr Syt A for U € Qx where restriction maps are induced by the
universal property. If A was an R-algebra then the maps S;VIR — S;VIA induce
maps Ox(U) — A(U) which form a homomorphism Oy — A of presheaves of
constantly graded A-algebras with accompaniment A.

In the case of an R-module let w € gr(R) and v € gr(A) and consider for all
W e By the maps

Ox (V) X AU)s — (St Ryu (St A)y — (St A

The universal property of A(U)xww) = limyeprr (S‘,_VlA),\(w’v) induces a map
Ox(U)w x A(U)y — A(U)r(w,v)- These maps fit together to a scalar multiplication
giving A(U) an Ox (U)-structure with accompaniment .
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The next statements may be proven analogously to that of Section

ProprosITION VI.2.2.4. In the setting of the above proposition, let D denote the
category of quasi-coherent Ox m-algebras/-modules. Then sending a D-object A to
A(X) is essentially inverse to the functor sending A to A™.

REMARK VI.2.2.5. A quasi-coherent Ox p-algebra/-module A is locally of finite
type if and only if A(U) is finitely generated over O(U) (and hence over K) for every
U e BX,H~

REMARK VI.2.2.6. Let A be a quasi-coherent Ox g-algebra. Then A extends
uniquely to a quasi-coherent O x-algebra A. Specifically, for each U € B,y consider
the Opy-module defined by A(U). Then all these sheaves are compatible and thus

glue to an O x-module A which is quasi-coherent because quasi-coherence only needs
to be checked on an affine cover.

REMARK VI.2.2.7. Sending a reduced graded algebra R of finite type over K
to the coaction
R—Klgr(R)]®x R, Ry fr—x"®f

from Construction [[V:2.3.17] defines a functor ca from reduced graded algebras of
finite type over K to coactions of affine Hopf K-algebras. ca is compatible with
graded localizations.

CoNSTRUCTION VI.2.2.8. Let R be a quasi-coherent reduced Ox pm-algebra
which is locally of finite type over K. Denote the extension of R to Qx by R and
set G := Spec,, . (K[gr(R)]). For U € Bx, u we obtain a morphism

O(U) —K[X(H)] ® O(U)

| |

R(U) —=K[gr(R)] ® R(U)
of coactions of affine Hopf K-algebras. Applying Spec,,,, gives a morphism
G CSpec,,.(R(U)) - HCU

of quasi-torus actions. For all V' € B, and hence for all V' € By x the inclusion
Specax (R(V)) — Spec.(R(U)) is G-equivariant due to Proposition [VI.2.1.4

The relative spectrum of R is then the colimit Specy ;(R) := G CSpecy(R) of the
diagram defined by all these actions for U € Bx g.

ProprosITION VI.2.2.9. Let HCX be a quasi-torus action. Then the func-
tor sending a quasi-coherent reduced Ox p-algebra A which is locally of finite type
to Specx y(A) — HCX is essentially inverse to the functor sending an affine
quasi-torus action over H X with structure morphism (0,¢): GCZ — HCX to
Ox.u — ¢.0za.

VI1.2.3. The soberification functor.

CONSTRUCTION VI.2.3.1. Let (X,Qx) be a topological space. Denote by t(X)
the set of closed irreducible (in particular, non-empty) subsets of X. Then we have
a canonical map between the power sets

t:=tx0yx) P(X) — PH(X)), Br—{ActX)|BnA=A}
and a canonical singleton closure map
sc:= scx = sC¢(x,0x): X — HX), wr— {z}.
PROPOSITION VI1.2.3.2. Let B, B’ C X be any subsets. Then the following hold:
(i) If B is open then t(B) is the set of all A € t(X) with BN A # (.
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(ii) If B is closed then t(B) is the set of all A € +(X) with A C B.

(iii) ¢ is injective and preserves inclusions.

(iv) t commutes with finite intersections of arbitrary sets, and with arbitrary
intersections of open sets.

(v) We have t(BN B') C t(B)Nt(B’) with equality holding if of B and B’ at
least one is closed or both are open.

(vi) If B’ is constructible then t(B) C t(B’) implies B C B’. If B is also
constructible then t(B\ B') = t(B) \ t(B’).

PROOF. In (i) note that if ANB is a non-empty then it is dense in A. Conversely,
if AN B is dense in A then AN B # () because the empty set is dense only in itself.
For (ii) note that if A is contained in B then AN B = A is dense in A. Conversely,
if AN B is dense in A then A= AN B C B = B. Concerning (iii) note that if there
exists © € B\ B then we have {z} C {2} N B C {z} but {2} ¢ t(B’). In (iv) note
that if AN (BUB') is dense in A then A = AN BUAN B’ and by irreducibility
of A we may assume that A = AN B, i.e. A € t(B). Secondly, A € t(X) intersects
a union J;c; Us of open sets non-trivially if and only if it intersects some U; non-
trivially.

In (v) assume that B is closed and B’ is any set. If A C B and AN B’ is dense
in A then ANBN B’ = AN B’ remains dense in 4, i.e. A € t(BNB’). Now, assume
that B, B are open. If the open subsets AN B and AN B’ of A are non-empty then
irreducibility of A implies that their intersection A N B N B’ is also non-empty.

For (vi) first observe that if ¢(B) C t(B’) and B’ = [J;_, U; N A; is constructible
then for 2 € B the closure {z} is an element of t(B") = |, t(U;) N t(A;), i.e. there
exists ¢ such that @ intersects U; non-trivially and is contained in A;. If = were
no element of U; then {2} would be a subset of X \ U; - a contradiction. Thus,
z € U; N A; and we conclude B C B’. Lastly, note that if B’ is open or closed then
(i) and (ii) give ¢(X \ B') = ¢(X) \ t(B’). Using this as well as assertions (iii) and
(iv) one calculates ¢(B\ B’) = t(B) \ t(B’). O

CoNsTRUCTION VI.2.3.3. For a topological space (X,{x), setting Q¢ x) :=
t(Q2x) turns (¢(X), Qyx)) into topological space.

PRroPOSITION VI.2.3.4. For a topological space X the following hold:

(i) t and the assignment W s scx' (W) define mutually inverse inclusion-
preserving bijections between the collections of open/closed/constructible
sets of X and +(X). In particular, scx is continuous.

(ii) Qyx) is noetherian if and only if Qx is noetherian.

(i) If B C X is open/closed then t(B) is the smallest open/closed set con-
taining scx (B).
(iv) For every set B C X we have t(B) = t(B).
(v) B C X is open/closed/irreducible/quasi-compact if and only if t(B) is so.
(vi) For a closed irreducible B C X the bijections of (i) restrict to mutually
inverse bijectsions between Qx g and Qyx) 1 (B)-
(vil) (t(X), Qyx)) is sober.

PROOF. In assertion (ii) note that scx(B) C t(B) always holds. Let z €
scx (t(B)). If B is open then x ¢ X \ B, because otherwise 7 C X \ B. If B is
closed then x € B because TN B = Z N B. The remaining statements follow from
Lemma [VI.2.3.2

Assertion (iii) is a consequence of assertion (ii). In assertion (iv) note that if B C
X and W C t(X) are open/closed with B C scy' (W) then t(B) C t(scy' (W)) = W.

As a consequence of (ii) a set B C X is contained in an open or closed
set C if and only if ¢(B) is contained in ¢(C). Indeed, if ¢(B) C t(C) then
B C sc'(t(B)) C scy'(t(C)) = C. This observation yields assertion (v) and
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the statements on irreducibility and quasi-compactness in assertion (vi). The state-
ments on open and closed sets in (vi) follow directly from assertions (i) and (ii).
In (vi) note that if U € Qx p then t(U) € Qyx),¢(p) due to Proposition
(v). For (vii) let ¢(B) C t(X) be an irreducible closed subset. Then B C X is
irreducible and closed. We claim that B is the unique generic point of ¢(B). Firstly,
B € t(B) by definition. Thus, {B} C #(B). For the converse, consider A € t(B)
and any closed set W containing ¢(B). Then we have A C B C sc' (W) and hence
A € t(scx'(W)) = W. For uniqueness let B’ € t(B) be a generic point. Then
t(B') = {B’} = t(B) and since B, B’ are both closed we deduce B = B’. O

PropPOSITION VI.2.3.5. Sending a continuous map ¢: X — X' to the map

t(p): (X) — t(X/), A WA)
turns t into a functor from topological spaces to sober topological spaces with the
following properties:
(i) We have scx: o ¢ = t(¢) o scx.
(ii) We have im(t(¢)) = t(im(¢)). In particular, ¢ is dominant if and only if
t(¢) is dominant.
(iii) If ¢ is an open embedding of topological spaces then t(¢): t(W) — +(X)
18 an open embedding.
(iv) tis canonically left adjoint to the inclusion of sober topological spaces into
Top. Thus, t preserves colimits and in particular gluing.

PRrROOF. We have to show that if ¢: X — X’ and ¢': X’ — X" are continuous
maps then we have t(¢' o ¢) = t(¢') o t(¢) and moreover we have t(idx) = id¢(x).

For the equation im(t(¢)) = t(im(¢)) let A" € ¢(X’). If A’ = ¢(A4) € im(¢(9))
with A € t(X) then im(¢) N ¢(A) = ¢(A) is dense in A" and hence A’ € t(im(¢)).
This shows im(t(¢)) C ¢(im(¢)). Conversely, consider a closed subset B’ C X’ such
that ¢(B’) contains im(t(¢)). If A’ € t(im(¢)) then we have to show A’ € t(B’), i.e.
A" C B'. Let 2’ = ¢(x) € A’ Nim(¢) with some z € X. Then {2/} = {¢({z})} =
t(¢)({x}) which means that {2’} € t(B’) and hence {2’} C B’, in particular, 2’ €
B’. Thus, we obtain A’ Nim(¢) C B’ and hence A’ = A’ Nim(¢) C B'.

Suppose that ¢: X — X' is dominant. Then im(t(¢)) = ¢(im(¢)) = ¢(X’).
Conversely, if t(¢) is dominant then ¢(X’) = im(t(¢)) = ¢(im(¢)) and since both X’
and im(¢) are closed they coincide.

In (iv) we apply Lemma noting that we have {B} = {{z}|z € B} for
each closed irreducible B C X. O

DEFINITION VI.2.3.6. Let X be a topological spaces. The inverse image under
soberification is the functor t~! := t;(l = t(}% Qx) which sends a €-presheaf G on
t(X) to the presheaf G o t|o, and a homomorphism ¢: G — F of €-presheaves on

t(X) to the homomorphism given by ¢y for U € Qx.

PROPOSITION VI.2.3.7. t=1 constitutes a functor PrShe(t(X)) — PrShe(X)
which is wsomorphic to sc;(l, and which is inverse to (scx)«. Moreover, t=! and
(scx )« restrict to mutually inverse functors between She(4(X)) and She(X). Fur-
thermore, for €-presheaves F and G on X resp. t(X) and a closed irreducible A C X
we have canonical isomorphisms

((sex)«G)eay — Ga, (A" F)a = (cx' F)a — Fya)-

PRrROOF. The first two statements follow from Proposition [VI.2.3.4] (iii) and
(i), the stalk formulae from (vi). The supplement on sheaf-categories is a direct
consequence. O
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REMARK VI.2.3.8. Let F be a presheaf on t(X) and let ¢: X — X' be a
continuous map. Then we have t;(}t(gb)*}' = @t}l}' by Proposition |VI1.2.3.4

CONSTRUCTION VI.2.3.9. Let © denote the category of topological spaces
(X, Qx) with C-structure (pre-)sheaves Ox, where morphisms are consist of a topo-
logical map ¢: X — X’ and a homomorphism ¢*: Ox: — ¢,Ox. For a D-object
(X, Qx,Ox) setting Oy x) := (scx)«Ox gives an object (¢(X), Q(x), Oyx)) of the
full subcategory D* of sober topological spaces with €-structure (pre-)sheaves. For
a ®-morphism (¢: X — X', ¢*) we obtain a ©*-morphism via

scxr )« "
Oy 2%, (sex)dnOx = () (sx).Ox.

ProrosITION VI.2.3.10. The above construction turns t into a functor from
topological spaces with €-structure (pre-)sheaves to sober topological spaces with €-
structure (pre-)sheaves which is left adjoint to the inclusion functor.

REMARK VI.2.3.11. In the situation of Construction let A C X be
closed and irreducible and let (¢: X — X’ ¢*) be a ©-morphism. Then we have

txr(d(A)) = scx(9(A)) = sexr (¢(A)) = Ho)(sex (A)) = H(o)(scx (A))
= t(9)(tx(4)),

and due to Proposition the canonical isomorphisms from Proposition
give a commutative diagram

)
O gay —— > Oxa
J’ HP)ia)

Ouxn i@y — = Qux)ia)-

COROLLARY V1.2.3.12. Let € be the category of graded F1-algebras/rings. Then
t constitutes a functor from locally €% -ed spaces to sober locally € -ed spaces which
is left adjoint to the inclusion functor.

VI1.2.4. Equivalence of graded schemes and quasi-torus actions. This
section generalizes the equivalence between reduced schemes of finite type over K
and prevarieties over K, which we first briefly recapitulate. The functor pv sends
a reduced scheme (X,Qx,Ox) of finite type over K to the subset X, of closed
points of X equipped with the subspace topology and the structure sheaf sending
U € Qx_, to the Ox-sections of the set V' of all points of X which specialize to
points of U. Here, we identify f € Ox(V) with the function sending x € U to
[fz] € Ox o/m; = K. The soberification functor t restricted to K-prevarieties has
image in the category of reduced schemes of finite type over K and is essentially
inverse to pv.

In order to formulate the theorem on the equivalence of graded schemes and
quasi-torus actions we fix notation and recollect the various functors we are going
to employ. In one direction, we compose the functor inv to sending a quasi-torus
action to its invariant structure with the soberification functor t.

In the other direction the first step is to apply the functor a®" which sends a
graded scheme W over K to the canonical Spec,, (K[gr(Ow)])-action on W, see
Construction The functor " from Proposition sends a graded
scheme W to the relative spectrum of the trivially 0-graded Oyy-algebra defined
via coarsening of Oy . Since s5° preserves products we obtain an induced functor,
also denoted s°, from actions of graded group schemes over K to actions of group
schemes over K. This latter functor s° forms the second step. The third step is the
equivalence from actions of reduced group schems of finite type over K on reduced
schems of finite type over K which is induced by pv and which is also denoted pv.
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THEOREM VI1.2.4.1. Let K be an algebraically closed field. Denote by & resp.
& the category of (affine) homogeneously reduced graded schemes of finite type
over K, and by A resp. A the category of quasi-torus action on (affine) K-
prevarieties with affine invariant cover. Then the following hold:

(i) For a B-object W each of the rings Ow (U) is reduced.

(ii) acg :=po o (s¥ 0 a9")js and sy, = toinv resp. (acq)eaee and (54, ) s
are mutually essentially inverse covariant equivalences. Moreover, the
two latter functors commute with taking principal open subsets.

(iil) acy sends a & -object W to the canonical Spec,,,. (K[gr(Ow)])-action
on Spec,,..(O(W)) given by the coaction f, — X" ® f.

(iv) (8gr)|aee is isomorphic to the functor g sending H C X to Spec,, (O(X)),
via the isomorphism mapping Y € s4,.(HCX) to Iy (X).

Proor. For (i) note that the topology of a &-object W is noetherian by Ex-
ample and thus Oy is a sheaf of K-algebras by Remark For
each U € By, O(U) is of finite type and hence reduced by Proposition
By Remark [[V.2.1.1| this means that each Oy (V) is reduced. In assertion (iv) well-
definedness of the map 7~y : $°(H CX) — Spec,, (O(X)) follows from Proposi-
tions [VI.2.1.4] and [VI.1.2.8] Bijectivity is due to Proposition with the in-
verse map sending p € Spec,, (O(X)) to V(p) € X. The preimage of Spec,, (O(X))
is #(X) and vice versa. The canonical isomorphisms O(Spec,(O(X))) — O(t(Xy))
define an isomorphism of sheaves. Thus, 1~y is an isomorphism of graded

schemes over K. These isomorphisms define an isomorphism from 5Omaff to g. As-
sertion (iii) is due to the general fact that pv(Spec(R)) = Spec,,..(R).

In (ii) well-definedness of ac,; follows from the fact that firstly, s°(W) is reduced
by (i) and secondly, s° and pv commute with products and hence they map actions
to actions. For well-definedness of s, note that sy, preserves open embeddings,
which means well-definedness follows from (iv). In the following we use that sg,
and acg, and hence also their compositions, commute with open embeddings and
gluing of these. For a &*-morphism ¢: U — U’ (iii) and (iv) define a commutative
diagram

U —— sg,(acq(U))

laﬁ lsgr(acqt(ab))

U > sy (acu(U")).

For a ®-morphism ¢: W — W' the family of diagrams given by ¢y: U — U,
where for U’ € By and U € By-1y+, glue together to a commutative diagram.
Thus, a natural isomorphism between ide and s4, o acg is formed.

Likewise, for a A*f-morphism (6, ¢): HCU — H'CU’ (iii) and (iv) define a
commutative diagram

~

HcU acgt(sgr(HCU))

l(eﬁ) J{“th(sgr(e,d’))
H' CU' —> acy(sgr (H' CU"))

and gluing gives such a diagram for general 2-morphisms. Thus, a natural isomor-
phism between idy and acy o s, is formed, which establishes (ii). O

ProrosiTioN VI.2.4.2. Let X be an H-prevariety and let W be the associated

graded scheme, with scx: X — W denoting the singleton closure map. Then the
following hold:

(1) The induced bijection Qx g — Quw restricts to a bijection Bx g — By .
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(ii) We have mutually inverse isomorphisms (scx). and t=! between alge-
bras/modules over Ox g and Ow. These all preserve quasi-coherence
and the property of being of finite type.

(i) X is H-irreducible if and only if W is homogeneously integral, and we then
have canonical isomorphisms Kx g = sc;{lKW and Kw = (sex)«Kx 1.

LEMMA VI.2.4.3. Let q: Z — Zbea good quotient of graded schemes over K
and suppose that Z is of finite type over K and reduced. Then Z is also of finite
type over K and reduced.

PROOF. It suffices to consider the affine case. Let H X be the quasi-torus
action associated to Z and let ¢: gr(Qyz) — gr(0z) = X(H) be the accompanying
map of the graded morphism Oz — ¢.O. Then Hilberts Invariant Theorem says
that O(Z) = O(E)ker(d)) = O()?)ker(w) is a finitely generated K-algebra. O

ProrosiTION VI1.2.4.4. A morphism of quasi-torus actions is affine resp. a
good quotient if and only if the corresponding morphism of graded schemes is so.

REMARK VI.2.4.5. Let (0,q): HoX — HCX be a good quotient, let A C
X Dbe closed and H-irreducible and let A be the special set over A. Then by

Proposition |IV.2.2.3/ ¢%: (Ox,n)a — (Ox )z is Veronesean.

PROPOSITION VI.2.4.6. Let (3,1): HCX — GCZ be an affine morphism be-
tween quasi-torus actions such that Oz q — 1.Ox g is a CBE. Then the following
hold:

(i) The assignments A — Gu1(A) and B — 171(B) define mutually inverse
bijections between the sets of invariant subsets of X and Z, with both
respecting orbits, openness, closedness, invariant irreducibility, as well as
inclusions, unions and intersections.

(ii) The canonical map Bz.c — Bx g is bijective. Moreover, for each U €
Bz, the canonical map By, o — B,-1(uy,u is bijective.

PRrROOF. First note that by Proposition [[V.1.4.13| the induced morphism of
graded schemes is a homeomorphism. We now show that : induces an a bijec-

tion between H-orbits of X and G-orbits of Z. Indeed, for z € Z there exists
_ — Qg _
x € X with Ge(z) = «(Hz) -G by our initial observation. Thus, Proposi-

tion [VL.3.2.5| gives Gi(Hx) = Gi(x) = Gz. For injectivity, consider z,y € X with

Gi(z) = Ga(y). Then we have Gi(Hz) = Gi(z) = Ga(y) = Gu(Hy) and the initial
observation gives Hx = Hy which means Hx = Hy.

Next, we show that Gz = Gi(171(Gz)). Let x € X with Hz =17 1(G2). Then
Gi1(1=Y(Gz)) = Gi(Hzx) C Gz is an equality. Moreover, we have Hz = 1~ (G1(Hx)).
Indeed, for y € X with Hy C 1+~ 1(G2(Hx)) we have Gi(Hy) = Gu(Hz) and hence
Hy = Hzx. Thus, the assignments specified in the assertion are mutually inverse on
orbits, and hence on all invariant subsets.

For a family A;,i € I of H-invariant subsets of X we have

rl(m Gu(A;)) = mz_l(Gz(Ai)) = mAi = rl(Gz(ﬂ A))

which gives [, Gi(A4;) = Gu([); A;). Finally, for an H-invariant closed A C X
consider the unique G-invariant closed B C Z with A = z‘l(B). Then we have

Gi1(A) = Gi(1=1(B)) = B = B = G1(A).
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VI1.3. Isotropy groups and orbit closures

From this section onwards all occuring affine algebraic groups H are understood
to be quasi-tori, and all actions H C X are assumed to have affine invariant covers.
In the following two sections, we connect weight monoid functors at a point z and
their colimits, weight groups with the orbit closure of = resp. the isotropy group
of z. Generalizing from x to an H-closed, H-irreducible subset B we calculate the
generic isotropy of B in using the generic weight group at B.

VI.3.1. orbit closures and weight monoids. We observe basic properties
of the weight monoid functor at a given point = of an H-prevariety X (or more
generally, at a given H-irreducible subset of X). In the case of an affine H-variety
X, we recall the isomorphism O(Hz) — K[Sx()(X). This connects the orbit
closure Hx with Spec,, (K[Sx(#),.(X)]) and ultimately, with Spec(F1[Sx(x),.(X)]),
see Proposition Consequently, affine orbit closures inherit several topolog-
ical properties from affine F;-schemes of finite type which are featured in Proposi-

tion [VIL3. 1.4l

DEFINITION VI.3.1.1. Let HCX be an action and let B C X be closed and
H-irreducible. The functor Sxgy p: (x,1)p — Mon of weight monoids at B

sends U to deg((p%)r(gl(U)ho,n((05‘8‘1“{)}‘3)).
PROPOSITION VI.3.1.2. For a closed H-irreducible B C X and U € (Qx.u)p
the following hold:
(i) For each f € O(U), N (p%) 1 (((Ox,1)™)*) we have
Sx),8(Ur) = Sx(m).5(U)x-
(ii) If BC B’ C X is a closed and H-irreducible then
Sxm),B(U) € Sx(my,p (U).
(i) If O(U) =K[f1,..., fs] with homogeneous elements f1,..., fs then
Sxan,s(U)= Y Nodeg(f)).
figI(UNB)
If U is also affine then
Sx(),B(U) = deg(O(X)"™ \ I(B)) = degsupp(O(B)).
(iv) If the monoid Sxgy,5(U) is finitely generated then there exists an element
1 € (05)kymom (ORR)5) such that Sy 7:(U) = Sxa.s(U) holds
for each x € Uy N B. In this sense, Sx(my,p(U) is the generic weight

monoid of B.

PrOOF. For (i) let g/(f™) € O(Uy), be a fraction whose stalk at B is a unit.
Then g € O(U)y/4ny and gp is also a unit which means

X' = (X' +nx) — (nx) € Sx(m),58(U)y-

In (iv) consider fi,..., fm € O(U)P°™\ 0 whose degrees w; := deg(f;) generate
Sx(m),B(U), and let f be the product over all f;. For x € BN Uy we then have
Wiy oo, Wy € SX(H),m(U) which gives SX(H),B(U) - SX(H)W(U) O

PROPOSITION V1.3.1.3. Let HC X be an affine orbit closure with X = Hx and
set M := degsupp(O(X)) C X(H). Then the following hold:
(i) We have an isomorphism O(X) — K[M], fu, — fuw(z)x™.
(ii) We have order-preserving bijections between t(X,Qx m), i.e. the set of
orbit closures, Spec,, (K[M]) and Spec(M), and an order-reversing bijec-
tion from Spec(M) to faces(M).
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(iii) For U € Bx,g and f € O(X)"™\ 0 we have U = X; if and only if
deg(f) € Sx(a) 55 (X)°

PROOF. For (i) note that w € M holds if and only if O(X), € I(z) be-
cause I(z)®" = I(X) = {0}. In (ii) we first use (i) and the equivalence between
quasi-torus actions and graded schemes, then Example and lastly Propo-

sition [[.1.4.2, Assertion (iii) follows from O(U) = (Ox u)g;, which is shown in
Proposition [VI.3.1.4] and assertion (i). O

For an action H C X the set of H-orbits carries the specialization relation, where
we say that Hx specializes to Hy if Hy is contained in the closure of Hz.

ProrosiTiON VI.3.1.4. Let HC X have a dense orbit. Then the following hold:

(i) X consists of finitely many orbits, in particular, the dense orbit is the
minimal element of Qx g and Bx . Consequently, the set of H-orbits
18 partially ordered by specialization and the canonical map from orbits to
orbit closures is an isomorphism.

(ii) For an orbit O the union Up of all orbits that specialize to O belongs to
Bx.m. Thus, Uop is the smallest open invariant neighbourhood of O and
satisfies (Ox . m)g = O(Uo).

(iii) Each U € Bx g contains a unique orbit Oy which is mazimal with respect
to specialization among the orbits of U, in particular, Oy is closed in U.

(iv) The assignments U — Oy and O — Up define mutually inverse isomor-
phisms between Bx g and the H-orbits of X, equipped with inclusion resp.
specialization order.

PROOF. In (i) finiteness of the set of orbits follows from the affine case. If X
is affine then finiteness and soberness of t(X,Qx m) implies injectivity of O 0.
In general, if O = O’ then consider neighbourhoods U, U'Bx p of O resp. O’. By
irreducibility there exists V € Bx, g with O,0’ C V, and 0" =0 implies O = O’
Assertions (ii) and (iii) follow from the affine case using Proposition [VI.3.1.3]ii)
and the respective statements for affine Fi-schemes. For (iv) observe that Oy,
specializes to O because it is contained in Up, and conversely, O belongs to Up and
thus specializes to Op,. Therefore, both orbits have the same closure and hence
coincide. Moreover, U a neighbourhood of O and it is contained in Up,, because all
orbits in U specialize to Oy, hence U = Ug,, . ]

REMARK VI.3.1.5. Let (6,¢): GCX — HCY be a morphism of actions such
that Y = Hp(X). If X = Gz is a G-orbit closure then Y = Hg(x) is an H-orbit
closure and in that case the following hold for U € Bx ¢:

(i) The set Vzg(o,) € By,n corresponding to the orbit H$(Oy) is the inter-
section over all W € By, y which contain ¢(U).
(ii) Then U is ¢-saturated if and only if it is the union over all V' € Bx ¢
with ¢(V) € Vig(o,)- In this case we have ¢(U) = Vigoy,)-
(iii) ¢_1(VH¢(OU)) is the unique minimal ¢-saturated set containing U.

VI1.3.2. generic isotropy and weight groups in terms of graded stalks.
In this section, we calculate the isotropy group of x in terms of its weight group.
Generalizing leads to the concept of a generic weight group at a closed H-irreducible
subset whose generic isotropy may then be expressed in terms of the former. As an
application, Proposition characterizes orbits via homogeneous simplicity
of their sections, and orbit closures via finiteness of their collection of closed H-
irreducible subsets. Moreover, this shows that Hz = Hy implies = = y.
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CONSTRUCTION VI.3.2.1. Let HCX be a quasi-torus action. The generic
weight group of a closed H-irreducible subset B C X is

X(H)p = deg((OXR)p) = colim  Syans(@) = |J  Sxun.s0).
Ue(Qx u)B Ue(Qx. u)B

The weight group of a point x is X(H ), := X(H )z

By definition, the generic weight group is a local object, i.e. it may be calculated
in any invariant neighbourhood.

PrOPOSITION VI.3.2.2. For closed H-irreducible subsets B, C of X the following
hold:
(i) X(H)p = degsupp(Kp,u(B))
(ii) If C C B of X we have X(H)c C X(H)p.
(iil) If X is affine then
X(H)p = deg((O(X)}5))") = degsupp(Qe: (O(B)))
= (degsupp(O(B))) = (Sx(m),(X)) € (degsupp(O(X))).
Applied to a point x this means X(H), = (O(Hzx)) = (S (X))
Eaplicitely, if O(X) = K[f1,..., fs] for certain f; € O(X)h™\ 0 and B
s a closed H-irreducible subset then
X(H)p = (deg(f;) | f; € 1(B)).
PROOF. Assertion (ii) follows from injectivity of the map (O™)* — (Ohem)*.

The first set of equations in (iii) follow from Proposition|VI.3.1.2Jand Remark|lI.1.8.5

Lastly, in (i) we use that we may calculate (Ox g)p in any affine chart which in-
tersects B non-trivially. |

If X is not affine then the above equations in (iii) may fail to hold:

ExaMPLE VI.3.2.3. Consider the projective space X = P with its canonical
action by the torus T = K*. Then X(T)x = X(T)[;.1) = Z because T acts freely
on an open subset of X but O(X) = K means Sxry,1:1](X) = degsupp(O(X)) =0
does not generate X(T)x.

PRrROPOSITION VI1.3.2.4. Let X be an H-prevariety with affine invariant cover
and let x be a point. Then
O(H,) = O(H)/{(x — 1| x € X(H),) = K[X(H)/X(H).]
Hy =Vu(x —1]x € X(H)a)

PRrOOF. Fix U € (Bx,u)s- Let h € Hy. For any x € Sz 77 (U) consider an
element f € O(U), \ I(Hz). Then x(h)f(z) = f(hx) = f(x) # 0 implies x(h) = 1.
For each two x, X" € Sz 777 (U) we thus have (xxX Y (h) = x(h)X'(h)~* =1 and
since X(H )y = (Sx(pr) 77z(U)) we have h € Vg (x —1 | w € X(H)a).

Conversely, if x(h) =1 for all x € X(H), then we claim that f(hz) = f(z) for
all homogeneous and hence all f € O(U) which implies hx = z. If f(z) = 0 then
F(h) = deg()(h) () = 0 and i f(z) 7 0 then deg(f) € Sy 72(U) € X(H),
which means that deg(f)(h) =1 and hence f(hz) = deg(f)(h)f(x) = f(x).

By Example the ideal (x — 1 | x € X(H),) is X(H)/X(H),-prime, in
particular radical, and

O(H)/(x = 1| x € X(H):) = K[X(H)/X(H)q]-

ProprosSITION VI.3.2.5. Let X be an affine H-variety.
(i) X is an H-orbit if and only if O(X) is X(H)-simple.
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(ii) A closed H-irreducible A C X is an orbit closure if and only if the set
t(A) of closed H-irreducible subsets of A is finite.
(iii) We have Hx = Hy if and only if Hx = Hy.

PRrROOF. In (i) first note that O(Hz) = O(H/H,) = K[X(H),] is indeed X(H)-
simple. For the converse fix x € X. The orbit map p,: H — X induces a morphism
7i,: H/H, — X of H-actions. Since I(Hz) = {0} we have X = Hz and hence
s O(X) — O(H/H,) is injective. Its image is K[degsupp(O(X))] = O(H/H,)
because we have

degsupp(O(X)) = Sx(r),«(X) = X(H),
and therefore, i, must be bijective, i.e. p, is surjective.

In (ii) we may assume that A = X holds. If ¢(A) = {4, 44, ..., A, } holds with
pairwise different A; then there exist f; € Za,(X)M™\ {0}. For f := T[], f; the
ring O(X ) must be X(H)-simple, which by (i) means that the dense subset X is
an H-orbit. The converse follows from Proposition

For (iii) suppose that X = Hx = Hy holds and let Ay,..., A, be the orbit
closures which are strictly contained in Hz. Then there exist f; € Za,(X)2™\ {0}
and for f := ]\, f; the ring O(X ;) must be X(H)-simple, which by (i) means that
Xy is an H-orbit. Since y is not contained in any A; we have y € Xy = Hz. O

DEFINITION VI.3.2.6. For a closed H-irreducible subset B of an H-prevariety
X with affine invariant cover the generic isotropy group of B is

HB = VH(X_ 1 | X € X(H)B)
REMARK VI.3.2.7. In the situation of the above definition, Example [[I.2.1.11
gives O(Hp) = K[X(H)/X(H)p] and hence X(H)p is the kernel of the pullback
X(H) — X(Hp).

REMARK VI1.3.2.8. For two closed H-irreducible subsets C' C B of X we have
Hp C He.

The names generic weight and isotropy group are explained below.

ProrosiTiON VI.3.2.9. Let X be a H-prevariety with affine invariant cover
and let B be a closed H-irreducible subset. Then there exists U € (Bx, u)p, which
may be chosen from (BI));,H)B if X is affine, such that the following hold:

(i) deg((O(U)"™)*) = degsupp(O(U N B)) = X(H)z,
(i) Hy = Hp and X(H), = X(H)p for everyx € U N B.

Moreover, whenever there exists W € Qp y such that we have H, = H' resp.
X(H), = K’ holds for all x € W, then H = Hp resp. K' = X(H)p.

PROOF. Let uy,...,us € X(H)p such that X(H)p = (uq,...,us) and consider
V € (Bx,u)p. Then there exist elements fi,g; € O(V)r°m \ Zg(V) such that
deg(fi/g:) = wi. Set w; := deg(f;) and v; := deg(g;) as well as h:=[[;_, figi. We
claim that U := V}, has the desired properties. Firstly, note that by definition we
have

X(H)g = {u1,...,us) C{wg,v; |i=1,...,8) CX(H)p

Since f; and g; remain units on U N B we have X(H)p C degsupp(O(U N B)). The
converse inclusion follows from Proposition For (ii) note that f; and g;
remain units on Hz for every € UN B and thus X(H)p C X(H), C X(H)p. The
supplement follows from H-irreducibility of B. O

ProposITION VI.3.2.10. Let (0, q): HoX - HCX bea morphism, let ACX
be closed and H-irreducible and set A := q(A). Then we have H(I?K) C Hy and
X(H)a C (9*)’1(X(f[)2). If q is a good quotient and A is the special set over A
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then equality holds in both cases. In particular, I/i\'g — H 4 is then an isomorphism
if and only if X(H) = 6*(X(H)) + X(H) 3.

PROOF. let U € (Qx g)a such that H, = H4 holds for each x € U N A. Then
there exists V' € (Q such that H, = H 3 holds for each y € VN A
and we conclude

o). ) Ang1 ()

0(Hz) = 6(H,) C Hyy = Ha.

If ¢ is a good quotient then the second equality is due to Remark and the
first follows from the second via

(O3) " (X — 1K € X(H) 7)) = (x — Lx € X(H) 4).

For the last supplement note that the pullback X(H)/X(H)s — X(fI)/X(ﬁ)g is

~ —~

already injective, and surjectivity is equivalent to X(H) = 6*(X(H)) + X(H) ;. O
If X itself is H-irreducible then Hx is also called the kernel of ineffectivity.

ProrosiTiON VI.3.2.11. Let X be H-irreducible and let V' be the invariant open
subset of X whereon H acts with constant isotropy Hx. Then the following hold:

(i) V is covered by certain U € Bx g such that deg((O(U)*™)*) = X(H)x.
If X is affine then these U may be chosen from B)p(ryH,
(ii) Let k € {0,...,dimg(X)}. Then X \'V has codimension greater than k

if and only if for every closed H-irreducible B C X of codimension k we
have X(H)p =X(H)x, i.e. Hg = Hx.

PRrROOF. In (ii) first suppose that H acts with constant isotropy Hx on an open
H-invariant subset X’ with codimy (X \ X’) > k. For each closed H-irreducible
B C X of codimension &k we then have X' N B # (). Thus, Propositiongives
HB = HX and X(H)B = X(H)X

Conversely, suppose that X(H)p = X(H)x for each closed H-irreducible subset
B of codimension k. For each such B Proposition gives UB) ¢ (Bx.m)B
with

deg((O(U)™)*) = degsupp(O(UP) N B)) = X(H), = X(H)p = X(H)x

for every x € UP) N B. Let X’ be the union over all the sets U(%). Then the H-
irreducible components of X \ X’ have codimension at least k+ 1. In the situation

of (i) we note that V is the union over all UH®) where z € V. O

REMARK VI1.3.2.12. If H acts with constant isotropy Hx on X then every orbit
has dimension rk (X(H)x). Thus, all orbits are closed. Hence, if the action allows
a good quotient then this is already a geometric quotient. In particular, the above
holds for the case of free actions.

DEFINITION VI.3.2.13. Let H X be an action and let H C H be a closed
algebraic subgroup. Let A be a closed H-irreducible subset of X. Then the generic
isotropy group of the H'-action on A is Hy := Hy N H'.

REMARK VI.3.2.14. In the situation of the above definition, the kernel of the
pullback X(H) — X(H/)) is the sum of X(H)4 and the kernel of the pullback
X(H) — X(H").

ProPOSITION VI.3.2.15. Let HCX be an action and let H C H be a closed
algebraic subgroup. Let A be a closed H-irreducible subset of X. Then for any H'-

irreducible component B of A the generic isotropy group Hp equals H), and hence
X(H) 4 is the preimage of X(H')p under the pullback X(H) — X(H').



166 VI. CHARACTERISTIC SPACES OF QUASI-TORUS ACTIONS

PROOF. Let U be an open H-invariant subset of X such that all points of the
non-empty set U N A have isotropy group H,4. Then U N B is also non-empty, and
for each of its points x we have

H =H,NH =HsnH = H,.
Therefore, H/, equals Hf. |

REMARK VI1.3.2.16. For an action with constant isotropy all orbits have the
same dimension are a therefore closed.

PrOPOSITION VI.3.2.17. Let (0,q): HoX - HCX bea good quotient of in-
variantly irreducible actions. Then ker(6) acts with constant isotropy on X if and

only if X has an affine H-invariant cover by open q-saturated sets V' such that O(V')
is X(H)-associated.

PROOF. If ker(f) acts with constant isotropy on X holds consider a closed orbit
Hz and the closed orbit H7 in its fibre. Let U be an affine invariant neighbourhood
of Hz. Let fi,..., fm € O(qg Y (U))ho™ \ I(I;TE) be homogeneous elements whose
degrees generate deg(((@xﬁ)%’;)*) and set f := fi -+ fm. Then q(¢~'(U)y¢) is an
affine invariant neighbourhood of Hz and O(q~*(U)y) is X(H)-associated. Choos-
ing such an open set Uy for every closed orbit we obtain the desired cover.

For the converse consider 7 € X and an affine invariant neighbourhood U of
q(Z). By assumption O(q_l(U))Iq,l(U)(ﬁi) is X(H)-associated. For each homoge-

neous fraction f/g € Qu(O(¢~*(U)), iy (AE
units a,b € O(¢~(U)), 1y (A) such that af and bg have degrees in X(H). Thus,

)) = Kﬁ()?) we find homogeneous

deg(f/g) = deg(b/a) + deg(af /bg) € X(H)= + X(H)

~ ~

which means X(H); + X(H) = X(H)ﬁ—% + X(H), i.e. ker(f) ¢ = ker(6)s. O

VI1.4. Characteristic spaces of actions

Again, all actions HCX are morphical actions of quasi-tori on prevarieties
with affine invariant covers. After developing the theory of Weil divisors, class
groups, divisorial algebras and Cox sheaves with respect to {1x g we translate prop-
erties of a graded characteristic space into properties of the corresponding char-
acteristic space (0,q): HcoX — HCGX of actions. Specifically, order-preserving
invertibility of the pullback of Weil divisors translates into the existence of a big
H-invariant g-saturated subset on which ker(f) acts with constant isotropy, see
Proposition [VI.4:2.6] while the condition on the occuring grading groups translates
into the restriction 0: H ¢ — Hx being an isomorphism. This gives the criterion
of characteristic spaces in Theorem Finally, Section shows that all
notions of cones of divisors (or their classes) and base loci are well-behaved under
the equivalence of graded schemes and actions.

VI1.4.1. Invariant Weil divisors and Cox sheaves of actions. Here, we
define invariant Weil divisors for actions H C X of Krull type, meaning that for some
affine invariant cover the section rings are X(H )-Krull rings. All claims made during
the development of the theory of invariant Weil divisors, divisorial Ox g-algebras
and Cox sheaves on Qx g canonically follow from their analoga in the Chapter on
graded schemes of Krull type via the equivalence from Section

DEFINITION VI.4.1.1. An action H C X is of Krull type, H-normal or invariantly
normal if O(U) is of Krull type or equivalently, X(H)-normal for every U € Qx g.
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REMARK VI.4.1.2. An action is of Krull type if and only if the corresponding
graded scheme is of Krull type. In particular, H C X is of Krull type if the sections
of Ox g are of Krull type for an affine invariant cover of X.

DEFINITION VI.4.1.3. For an action H C X of Krull type an H-prime divisor
is a closed H-irreducible subset Y C X of codimension one. The presheaf which
assigns to U € Qx p the set of H-prime divisors of X which intersect U non-trivially
is denoted Vx g resp. Vg if there is only one H-prevariety under consideration.

CONSTRUCTION VI.4.1.4. Let HC X be of Krull type. For Y € Yy (X) denote
by Z(Y) the discrete value sheaf on (X,Qx p) assigning Z on (Qx g)y and 0 on
Qx .\ (Qx,m)y. Then one obtains a graded valuation vy : (ICB‘(‘”I‘})* — ZY) by
defining vy ; as the canonical map

(Kx,m(U)*™)" — (Kx,u (U)"™) /(Ox,m)¥™) = Z
it U € (Qx,u)y (and as the zero map otherwise).

ProPOSITION V1.4.1.5. For an action HCX of Krull type Ox g is of Krull
type in Kx u with essential graded valuations {vy }y ey, (x)-

CONSTRUCTION VI.4.1.6. For an action H C X of Krull type one obtains the
invariant divisor homomorphism

divy g = Z vy : (IC})I(OE)* — WDivx g = @ zY)
Y eV (X) Y eV (X)

to the sheaf of H-Weil divisors or invariant Weil divisors on (X,Qx ). Image
PDivx, g = im(divx z) and cokernel Clx z := coker (divy zr) of divx g are called
the presheaves of invariant principal divisors and invariant class groups respectively.
The quotient CaDivy g / PDivx g is the presheaf Picy g of Picard groups. We then
have O8¢5 \ {0} = diV}}H(WDiVZO) and (O%h)* = ker(divy, g). In situations
where we consider only a single action the subscript will feature only H instead of
X and H.

CONSTRUCTION VI.4.1.7. Let HCX be of Krull type and let A C X be H-
closed and -irreducible. Consider the canonical homomorphism ¢ from WDivx g
to the skyscraper sheaf assigning (WDivx g)a at A. The preimage under ¢ of

the skyscraper sheaf assigning (PDivx )4 at A is the sheaf PDng?jq of principal

divisors near A. The image of PDivg?}{ under c¢: WDivy g — Clx g is the kernel

Clgé}{ of the canonical homomorphism from Clx g to the skyscraper sheaf assigning
(Clx,m)a at A. In this notation we have

CaDivx y = ﬂ PDivg) - ﬂ PDivg(f{I:fI)’

zeX _zeX
Hx=Hzx
. Hx H
Picxr= ()OI = [ Y.
reX _zeX
Hx=Hzx

CONSTRUCTION VI.4.1.8. Let (6,¢): HCX — G CZ be an equivariantly dom-
inant morphism between actions of Krull type. Then we have a homomorphism
PDiVZ’G — (]5* PDiVX,H which sends diVU’G(f) to diV¢—1(U)7H(¢?J(f)).

For each Y € Yx i (X) we obtain a homomorphism WDivy ¢ — 6.2 as fol-
lows: If (Clz.a)zmy # 0 0r Y & Vx,u (¢~ (U)) then WDivz,(U) — 2™ (671 (U))
is the zero map. Otherwise, it is the canonical homomorphism

WDivz,(U) — WDIiv,, 555 — (PDivx m)y = 207 (¢7H(U)).
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The induced homomorphism WDivy g — ¢. HYEyX 1(X) ZY) then has image in
WDivx p and hence defines a homomorphism (6, ¢)*: WDivz ¢ — ¢ WDivx g
called the pullback homomorphism.

REMARK VI.4.1.9. In the situation of the above construction, each Y € Yy (X)
with (CIZ,G)M = 0 satisfies

pry,x ((6,0)7(divz,a(f))) = vv.x(¢z(f))

for all f € (Kg(Z)hm)*. Thus, if (CIZ,G)W = 0 holds for all Y € Yy (X) then
we also have a pullback homomorphism ¢*: Clz ¢ — Clx, g of presheaves.

ExXAMPLE VI.4.1.10. Consider H C' X with X of Krull type. Then H is of Krull
type and the pullback induced by the morphism (z,idx): 1C¢X — HCX is an
isomorphism onto its image, the Q x g-presheaf WDivH of H-invariant Weil divisors.
The images of the prime H-Weil divisors are just the sums of their irreducible
components, and they are called H-prime Weil divisors.

Indeed, for each Y € Y(X) the set HY is either X or of (invariant) codimension
one. In the latter case Y is an irreducible component of HY = HY.

PRrOPOSITION VI.4.1.11. Let X be an affine H-variety. Then HCX is of Krull
type with Cly (X) = 0 if and only if every X(H)-prime ideal of X(H )-height one in
O(X) is X(H)-principal.

PROOF. For a non-unit f € O(X)hm\ 0 let Y7,...,Y,, be the H-irreducible
components of V(f) and let p1,...,pm, be X(H)-prime elements with I(Y;) = (p;).
Due to noetherianity of O(X) the set of all k > 0 such that p¥|f is finite for every
1. Thus, f is a product of a homogeneous unit and powers of the p;. O

REMARK VI.4.1.12. Let HCX be a quasi-torus action of Krull type. If X
is of affine intersection (e.g. separated or even quasi-projective), then the proof
of Proposition shows that the complement of every affine (invariant) open
subset is of pure codimension one.

DEFINITION VI.4.1.13. Let HCX be of Krull type. For D € WDivy(X) the
corresponding Ox g-module Ox x(D) = O(D) on (X,Qx ) is defined via

OoD)U):= P KxuU)wn ({0} Udivy (—Dyy + WDivy (U)>0)).

weX(H)

REMARK VI1.4.1.14. Let (0, ¢): HCX — G CZ be a morphism between actions
of Krull type such that (Clz,g)m = 0 holds for all Y € Yy (X). Then due to
Remark|VI.4.1.9/for D € WDivg(Z) the canonical homomorphism Kz ¢ — ¢.Kx g

restricts to a homomorphism O(D) — ¢,.0((6, ¢)* D).

DEFINITION VI.4.1.15. Let HCX be of Krull type. The divisorial Ox -
algebra associated to a subgroup L < WDivy(X) is the X(H) & L-graded Ox p-
subalgebra

Ox.u(L) = O(L) := @ O(D)x" C KulL]
DeL
of the constant Ox p-algebra Kg[L].

In the following let L := WDivy (X).

DEFINITION VI.4.1.16. Let H C'X be of Krull type. A Cox sheafon (X, Qx )
resp. an nvariant Cox sheaf on X is an Ox g-algebra R which allows a CBE
w: Ox u(L) — R of Ox y-algebras whose accompanying group homomorphism
: X(H) & L — gr(R) satisfies LNy~ (X(H)) = PDivy(X).
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Next, we show that the inverse image under soberification and the direct image
under the singleton closure map induce correspondences of (invariant) Weil divisors,
their O x-modules and -algebras, as well as (invariant) Cox sheaves.

ProroOSITION VI.4.1.17. For a quasi-torus action H C X of Krull type and its
corresponding graded Krull scheme W = (X, Qx u,Ox u) the following hold:

(i) ForY € Yu(X) and t(Y) = {Y'} we have commutative diagrams

—1
(K 1 ,000)

C T

(i) —2 s 2

which together with the bijection Y (X) — Y(W),Y — t(Y) induce com-
mutative diagrams with exact rows

—1 4.
—— 7 (Ohom)r ¢ (fChom)x LY =1 WDivyy —= ¢~ Clyy —=0

(O%5) ()" ——>WDivx.n O ——0

|

(ii) For D € WDivy(X) and the corresponding E € WDiv(W) we have an
isomorphism t=1Ow (E) — Ox g (D) which is induced by the canoni-
cal isomorphism t= Ky — Kx . Consequently, for corresponding sub-
groups M < WDivg(X) and N < WDiv(W) the canonical isomor-
phism t'Kw[N] — Kx u[M] induces an isomorphism t~'Ow (N) —
Ox.u(M).

(iii) the isomorphism of Algox)H and Algy,, from Proposition re-
stricts to an isomorphism of Cox sheaves on (X,Qx ) and Cox sheaves
on W.

PRrROOF. For (i) we use the canonical isomorphism (Ox i)y — Ow,a. Assertion
(ii) is a consequence of (i). In (iii) note that upto the isomorphisms from (ii) each
defining CBE of a Cox sheaf on W is mapped to a defining CBE of a Cox sheaf on
(X,Qx g) under t~1, and the reverse holds under (scx ). O

REMARK VI.4.1.18. In the situation of Proposition [VI.4.1.17] consider an equiv-
ariantly dominant morphism (0, ¢): HCX — H'C X’ and the corresponding dom-

inant morphism 7: W — W’. Then with the notations t=! := t(_)% Qx.11) and
t=1= t(_)%, Qs 1) the isomorphisms from the above Proposition have the following
properties: '

(i) With we have a commutative diagram

r—1,_ %
=1 WDivyy: —% '~ 1p, WDivyy ——> ¢t~ WDivyy

WDiVXI,H/ ¢* WDiVX7H .
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(ii) Suppose that each Y € Yy (X) satisfies Cly 37y = 0, i.e. that each
A € Y(W) satisfies Clay = 0. Then we have a commutative diagram

r—1_ %
=1 Clyr —L =1y, Clyy ———> ¢ut~ Clyy

i 07 * i
Clx, s 0. 6, Cly.p1 .

Furthermore, in that case for D’ € WDivy/(X’) and the corresponding
E’ € WDiv(W’) we have a commutative diagram

t/—l

10w (B') L =10, O (1" E') — = 6,4~ Oy (n* E')

- ;

0,9)*
Oxr. (D) ( $.0x.u((0,)*D’).

VI1.4.2. Characteristic spaces of actions. By the last section, all results on
Cox sheaves of graded schemes of Krull type also hold (analogously) for Cox sheaves
of quasi-torus actions of Krull type. The same holds for the characterizing properties
of (graded) characteristic spaces. We will apply our observations from Section
to translate the properties concerning grading groups and the pullback of Weil
divsiors into more geometric statements on generic isotropy groups and obtain the
criterion in Theorem

LEMMA VI4.2.1. Let m: Ox g(K) — R,9 be a CBE of Ox g-algebras where
the classes of K < WDivy(X) generate Clgy(X). Then each U € Qx g such that
R(U) is finitely generated over K satisfies the following:

(i) for every V € Qu m, R(V) is also finitely generated over K,
(ii) gr(R) and Clg(X) are finitely generated,
(i) if U is affine then R(U) is affine, i.e. reduced.

Consequently, if R is locally of finite type then it is a sheaf of reduced K-algebras.

PROOF. In (i) note that there exists f € R(U)*™\0 with Yy x#(V) = Vu,u(Uy).
Then R(V) = R(U;) 2 R(U)y = R(U)[1/f] is finitely generated over K. Assertion
(ii) follows from the equation gr(R) = X(H) + (degsupp(R(U))). Assertion (iii)
follows from graded integrality of R(U) and Proposition

Under the conditions of the supplement the sections of R over an affine cover
each are reduced K-algebras by (iii). R is a subsheaf of the sheaf of rings Kg.
Therefore, the O-preideal Z of R is sheaf. Now, Remark gives radicality of
7, i.e. reducedness of R. U

ExAaMPLE VI.4.2.2. Suppose that 7: O(L) — R is a defining CBE onto an
invariant Cox sheaf on H G X. Then R is locally of finite type if and only if O(L) is
so, and in this case the embedding Spec(K[gr(R)]) CSpecyx (R) — Spec(K[X(H) &
L]) & Specx (O(L)) induces a homeomorphism of graded schemes.

DEFINITION V1.4.2.3. A morphism (6, q): HGX — HoX of actions is a char-
acteristic space if HC X is of Krull type and (6, ¢) is isomorphic as an action over
H C X to Specy y(R) — X for some Cox sheaf R on H C X which is locally of finite
type over K. Equivalently, we require that ¢ is affine and q*(’)x 7 is isomorphic to
a Cox sheaf on HCX. We also say that (6, ¢) is a characteristic space of HC X.

REMARK VI1.4.2.4. For a characteristic space (6, q): HcoX — Ho X and a big
U € Qx,u the restriction (0, q4-11)): HCq ' (U) — HCU is also a characteristic
space.
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REMARK VI.4.2.5. Let HC X be an action with an invariant Cox sheaf which
is locally of finite type and let W be the associated graded scheme. By Proposi-
tion the canonical equivalence of actions over H C X and graded schemes
of finite type over W restricts to an equivalence of characteristic spaces of H CX
and graded characteristic spaces of finite type over W.

PROPOSITION VI1.4.2.6. For a good quotient (0, q): HcoX — HoX invariant
normality of)? implies invariant normality of X and if both are present the following
are equivalent:

(i) ker(6) acts with constant isotropy on a H-saturated big open set X' of X,
(ii) the pullback ¢*: WDivy(X) — WDivFI()A() is an isomorphism of par-
tially ordered groups.
Moreover, for each X' as in (i) the open set q(X’) 1s big in X. Furthermore, if the
above are satisfied then X s the special set over X and |(0,q)*Y| is the special set
over' Y € Yy (X). If additionally CIH()?) is a torsion module then X is of affine
intersection if and only zf)? 18 quasi-affine.

PROOF. The equivalence of the two conditions follows from Proposition [V.3.2.1]
_71 3.2.17

and Proposition Concerning the supplement note that if X admlts an
H- equivariant open embedding into an affine H-action X then the former is of affine
intersection because the latter is. By Proposition[VL.1.5.7] X is of affine intersection.

If X is of affine intersection we fix Uy,...,U, € Bx g which cover X. For each

i we fix a f; € O(X)h™ for which the support of leX (i) consists precisely of

ﬁ( )\ Yi7(¢7*(U;)). Then there exist gg ). ,gml € O(X)hom which together
with f; ' generate O(q~'(U;)) as a K-algebra. Let R be the graded K-subalgebra
of O()A( ) generated by all gji) and f;. Then the corresponding affine H-variety X
contains each ¢~!(U;) as a principal open subset. O

As a consequence of Remark and Proposition we obtain the

following.

THEOREM VI1.4.2.7. A morphism (0, q): HoX - HCX of quasi-torus actions

is a characteristic space, if and only if the following hold:

(i) (0.4q) is a good quotient,

(ii) HoX is of Krull type,

(iii) ker(6) acts with constant isotropy on a big H-saturated open subset of X,

(iv) 0 restricts to an isomorphism HA — Hx,

(v) we have Clg (X X)=0,
(vi) we have (O(X)hom)* = (O(X)bom)~,

In the special case H = {1} we obtain a criterion for characteristic spaces of
normal prevarieties. The difference to our model from [4] is that there, irreducibility
and normality are neccessary conditions for a morphism to be a characteristic space.
We therefore obtain the following.

COROLLARY VI. 4.2.8. Let q: HoX > X be a good quotient by the quasi-torus
H and suppose that HCX is of Krull type, H acts freely on a big open satumted
subset of X, and we have Clz(X X) =0 as well as (O(X)Pm)* = O(X)*. Then X

is irreducible and normal.

V1.4.3. cones of divisors in terms of characteristic spaces. In this sec-
tion, we relate the various cones and (stable) base loci of invariant divisors of actions
to the corresponding notions of graded schemes. In the following we use the notation

Clg(X)g := N"? WDivy (X)/N™! PDivy(X) 2 N~! Cly(X)
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for the vector space of rational divisor classes.

DEFINITION VI.4.3.1. Let HC X be of Krull type and let A C X be H-closed
and -irreducible.

(1) SWDivy (x),4 T€SP. WwDivy (X),4 18 the functor on Qx 4 which assigns to
U the submonoid of those D in WDivy (X) resp. N7! WDivy(X) with
Dy > 0and Dy = 04. The composition with cx resp. N-lcy is denoted
SCly (X),A T€SP. WCl, (X),A-

(ii) For U € Qx4 let S%\i]fDivH(X),A(U) resp. w%‘f,fDivH(X)ﬁA(U) be the set
of those D in WDivy (X) resp. N™'WDivy(X) with U \ |D| € Bx,a
and Dy > 0. Again, the composition with cx resp. N~lcx is denoted
SéflfH(X)A resp. wéflfH(XLA'

REMARK VI.4.3.2. Let HCX be of Krull type, let W be the corresponding

graded scheme and consider a H-closed, -irreducible A C X. Then the isomorphisms
WDivg (X) — WDiv(W) and Clg(X) — CI(W) induce isomorphisms of functors

SWDivy (X),A — S\wpiv(x), {47 © Hx.mas SClu(x),4 — Sciw) a7 © Hx a0
WWDiv (X),A ~ Wywpiv(x),7a] © U2x mar  WCly(X),A — Woyw) a7 © Hoxma-

aff aff
Wil (X),A Werw), (a3 © Hox

as well as canonical isomorphisms

S%\i;fDivH(X),A(U) — S*V‘fDiV(W),m(t(U)), SéﬁfH(X),A(U) — ng(WLm(t(U))’

W%\fIfDivH(x),A(U) - wéSfDMW)’m(t(U))

for each U € Qx m 4.

DEFINITION VI.4.3.3. Let HC X be of Krull type and let w be an element of
Cly(X) resp. Clg(X)g. The P(X)°P-presheaf Bas(w) resp. StBas(w) of base loci
resp. stable base loci assigns to U € Qx g the (closed) set of those z € U with

w ¢ SCIH(X),i{Hz}(U) resp. w ¢ w01H(X),7{Hz}(U)'
REMARK VI.4.3.4. Let HC X be of Krull type and let W be the corresponding

graded scheme. Let ¢ denote the canonical isomorphism Clg(X) — CI(W) resp.
Clg(X)g — Cl(W)g. Then we have isomorphisms of functors

t o Bas(w) = Bas(¢(w)) o tjay ,, toStBas(w) = StBas(é(v)) oty -
for w € Clg(X) and v € Clg(X)g-

DEFINITION VI.4.3.5. Let H G X be of Krull type. The presheaves SAmpley
and Ampley p of semiample resp. ample rational divisor classes are defined via

SAmpley ;(U) := ﬂ WCIH(X),W(U)’ Ampley 4 (U) = wéflfH(X),W(U)‘
zeU zelU

for U € Qx, . The presheaf Movx, g of moving rational divisor classes is defined
via
Movx q(U) := ﬂ waly (x),y (U).
Yeyu (U)

REMARK VI.4.3.6. Let H C X be of Krull type and let W be the corresponding
graded scheme. Then the isomorphism Cly(X) — Cl(W) induces isomorphisms of
functors

SAmpleX7H — SAmpley;, o Lox s AmpleXVH — Ampley, o tx.ns

MOVX7H — MOVW Ot|QX s
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PROPOSITION VI1.4.3.7. Let (6,q): HcX — HCX be a characteristic space,

and write pr: X(H) — X(ker(0)) for the pullback. Let ¢ denote the canonical iso-
morphism Clg (X) — X(ker(0)). Then the following hold:

(i) Let AC X be ]j—closed and -irreducible, and let A - X be the special set
over A. Then ¢ restricts to an isomorphism

A ~ om *
I, (X) 2 pr(deg(((.05 7)h™)")) = X(ker(0)) 5.
Moreover, we have a canonical isomorphism of functors
Scrg(x).4 = @Pr (S, 4)-

(ii) @ restricts to an isomorphism

Picx.n(X) 2 () X(ker(0))z; = X (ker(6)) g
HzCX HzCX
Hi=Hz
PROOF. Assertion (i) is due to Proposition [V.2.1.12] Assertion (ii) is a conse-
quence of (i). O

REMARK VI.4.3.8. One may show that Ampley (X) is non-empty if and only

if HC X allows an equivariant closed embedding into an open toric subvariety of a
projective space.






CHAPTER VII

Very neat embeddings into toric characteristic
spaces and Cox algebras of finite type

In this chapter, we first explore the relation between quasi-toric prevarieties
and [F1-schemes of finite type and show that it preserves Weil divisors, their mod-
ules and cones, as well as Cox sheaves and characteristic spaces. Moreover, in
Theorem we prove that a characteristic space H X — H G X of actions
admits a very neat embedding into a toric characteristic space if and only if (9()? )
is of finite type over K. As an application, Theorem gives a neccessary
and sufficient criterion for a graded algebra of finite type over K to be a Cox ring
of some quasi-torus action. Together with previous knowledge on Cox rings this
provides an integrality and normality criterion for graded rings. Section [VIL.2 gives
a more general view on very neat embeddings of (characteristic spaces of) actions
with arbitrary ambient objects.

VII.1. Quasi-toric prevarieties

In the following we proceed to step by step to establish a canonical equivalence
between quasi-toric prevarieties over K, quasi-toric graded schemes over K and over
Fi, and integral schemes over Fy. In Section we turn to the description
of invariantly normal quasi-toric prevarieties via convergent one parameter groups
and relate the combinatorial schematic functors obtained from the latter to those
corresponding to Fp-schemes. Finally, we provide canonical correspondences be-
tween (invariant) Cox sheaves on quasi-toric prevarieties and those of Fq-schemes,
and between quasi-toric characteristic spaces and graded characteristic spaces over
[F1-schemes, see Section A comprehensive reference on separated (normal)
toric varieties is [L1], the non-separated case has been studied in [1J.

VII.1.1. Equivalence of quasi-toric prevarieties and [F;-schemes. In
this section, we show that the categories of quasi-toric prevarieties over K, quasi-
toric graded schemes over K and over [y, as well as integral schemes over [ are all
canonically equivalent to one another.

REMARK VII.1.1.1. Let 8 be a category with finite products. Denote by gr(RK)
the category of group objects of & and by ac(R) the category of group object ac-
tions on KR-objects. Then the group objects of ac(8) are actions of type GCH — H
where G, H are R-group objects whose multiplications are compatible with the ac-
tion. Moreover, the canonical functor sending a R-group object to its multiplication
morphism is full.

ProrosiTiON VIL1.1.2. Sending a quasi-torus multiplication action HCH
over K considered as a group object to its soberification t(HCH) is essentially
inverse to the functor sending a graded quasi-torus @Q of finite type over K to the
group object defined by the quasi-torus action acq(Spec,, (K[gr(Oq)]))-

Proor. It suffices to note that Spec,, o K[gr(O_)] defines an auto-equivalence
on the category of graded quasi-tori over K. |

175
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DEFINITION VIL.1.1.3. A (quasi-)toric prevariety is an equivariantly dominant
open embedding of (quasi-)torus actions (idg,2py): HCH — HCZ where HCH
is the group object in the category of quasi-torus actions determined by the mul-
tiplication morphism of H. HCZ is called the underlying action and (idg,ep) is
also called a (quasi-)toric structure on HCZ.

A (quasi-)toric morphism or a morphism of (quasi-)toric prevarieties is a mor-
phism of actions (8,¢): HCZ — H' CZ’ such that 1506 = ¢oay, i.e. the diagram

of actions

idgy,
Hog ) pey

l(e,m l(hﬁ)

HCcH —sHCcZ

(idgr,2pr)

commutes.

REMARK VII.1.1.4. Quasi-toric morphisms are equivariantly dominant. More-
over, due to Remark to give a morphism of (quasi-)toric prevarieties is
the same as to give a pair of morphisms HCZ — H'GZ' and HCH — H' CH'
of quasi-torus actions resp. group objects thereof such that the resulting diagram
commutes.

REMARK VII.1.1.5. To give an H-equivariant open embedding of a quasi-torus
H into HC Z is the same as to give a base point zg € Z such that the orbit map
h — hzg is an open embedding. Indeed, zg is the image of ey under the embedding.
Equivariant dominance of the embedding now means that Z is the closure of H zg.
Quasi-toric morphisms are then equivariant morphisms that map base points to
base points.

DEFINITION VII.1.1.6. Let A denote Fy or K. A quasi-toric graded scheme over
A is a degree-preserving open embedding @@ — W of a graded quasi-torus of finite
type over A into an integral graded scheme of finite type over A. A morphism in
the category QT GrSch, of quasi-toric graded schemes A is a pair consisting of
a morphism of graded quasi-tori and a morphism of graded schemes such that the
resulting diagram commutes.

REMARK VII.1.1.7. Morphisms of quasi-toric graded schemes over A are dom-
inant.

ProrosiTiON VIIL.1.1.8. Sending a quasi-toric graded scheme @Q — W over
K to the morphism of actions associated to Spec,, (K[gr(Oq)]) = Q@ — W defines
a functor | which is essentially inverse to the functor g obtained by applying the
soberification functor t from Section[VI.2.3 to the category of quasi-toric prevarieties
over K. Moreover, for a quasi-toric prevariety (idg,1): HCH — HCZ there is a
canonical map

cz: Z —HZ), z+~— Hz

so t(HCZ) may be considered as an orbit space of HCZ with a graded structure
sheaf.

PROOF. First note that the quasi-torus action ac,(Spec,, (K[gr(Ogq)])) is the
multiplication action of Spec,.. (K[gr(Og)]) on itself. By Proposition
both ac,: and t preserve structure morphisms of group objects which completes the
proof of well-definedness of § and g. |

REMARK VIL.1.1.9. The category of integral schemes (of finite type) over Fy
with dominant morphisms embedds naturally into the category of integral graded
schemes (of finite type) over F; with dominant morphisms. For each such Fy-scheme
X the structure sheaf is canonically (X )*-graded via the inclusion Ox \ 0 C K*.
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REMARK VII.1.1.10. For an integral canonically graded scheme X of finite type
over F; the canonical morphism Spec,, x(Kx) — X is a quasi-toric graded scheme
over F1. This defines an equivalence between integral canonically graded schemes of
finite type over F; with dominant morphisms and quasi-toric graded schemes over
F;.

PropPoOSITION VIL1.1.11. Applying the functor K[—] to structure sheaves de-
fines a functor j from quasi-toric graded schemes over Fy to quasi-toric graded
schemes over K which is essentially inverse to the functor  defined by applying
(—)hom /K* to structure sheaves. Moreover, £ is isomorphic to the functor | defined
by applying F[degsupp(—)] to structure sheaves (while keeping the grading groups).

PRrROOF. Let § denote the functor which sends a graded scheme X over F; to
(X,K[Ox]), which by Example is a graded scheme over K. Let 1: @ — X
be a quasi-toric graded scheme over F;. By Proposition (Q,K[Og]) is a
quasi-torus over K and since f preserves open embeddings, f(z) is a graded quasi-
torus over K.

Let g denote the functor which sends a topological space (Z,Qz) with a struc-
ture sheaf Oz of graded K-algebras to (Z,Qz,0%°™/K*). For a quasi-toric graded
scheme 2: Q — X over K the canonical isomorphism K[Og’m /K*] — Og from

Proposition |[V.2.3.16| induces an isomorphism
K[O5™ /K*] = K[im(z, )™ /K*] — im(2,) = Ox.

and together these constitute an isomorphism 7, from 2 to f(g(z)). Moreover, Ex-
ample [IV.1.5.10| shows that (U, O(U)"™/K*) is an affine graded scheme over F;
for each U € B. Consequently, g(z) is indeed a quasi-toric graded scheme over F;.
The isomorphisms 7, constitute a natural isomorphism between the identity functor
and jo &

For a quasi-toric graded scheme 2: ) — X over F; the canonical isomorphism
Og — K[Og]"™ /K* from Proposition gives rise to an isomorphism

Ox = im(1,) — Klim(z,)]"™ /K* = K[Ox]"™ /K*.

This defines an isomorphism ex : g(f(X)) — X which together with the isomorphism
9(f(Q)) — Q forms an isomorphism of quasi-toric graded schemes over F;. These
isomorphisms constitute a natural isomorphism from € oj to the identity functor.
For the supplement, denote by b the functor sending a graded scheme Z over K
to (Z,Qz,F[degsupp(Oyz)]). For a quasi-toric graded scheme Q — Z the respec-
tive degree maps then induce homomorphisms O}éom JK* — Fq[degsupp(Og)] and
Ohem /K* — Ty [degsupp(Qyz)], where the second one is an isomorphism because the
first one is an isomorphism due to Proposition [V:2:3.16] This defines an isomor-
phism of morphisms of graded schemes over F; from h(Q) — h(Z) to g(Q) — g(Z).
These now constitute an isomorphism from [ to ¢. (]

Composing the above equivalences now gives the following.

THEOREM VII.1.1.12. Let K be an algebraically closed field. Then we have
canonical equivalences § and g from quasi-toric prevarieties over K to the category
of integral Fy-schemes of finite type with dominant morphisms.

REMARK VII.1.1.13. Let Y = s(Z) be the scheme over K associated to the
quasi-toric H-prevariety Z. Then the orbit (closure) map gives rise to a natural
morphism Y — X in the category of sesquiad schemes which is affine and surjective
and has the initial topology Q17 .

DEFINITION VII.1.1.14. A (quasi-)toric morphism which is also a good quotient
is called a (quasi-)toric good quotient.
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REMARK VIL.1.1.15. Let (0,¢): HCZ — H'CZ' be a quasi-toric morphism
and let ¢: X — X' be the corresponding morphism of Fy-schemes. Then (6, ¢) is a
good quotient if and only if the morphism of canonically graded integral F1-schemes
defined by q is a good quotient, i.e. if ¢*: Ox: — ¢.Ox together with the canonical
map K(X')* — K(X)* is Veronesean.

VII.1.2. Invariantly normal quasi-toric prevarieties. In this section, we
show that an invariantly normal quasi-toric prevariety is a product of a normal
toric prevariety and a finite abelian group, see Proposition We also re-
late convergent one parameter groups to the category J of combinatorial schematic
functors from Section [V.3:4] and the latter’s connection to F;-schemes, see Proposi-
tion [VIL.T.2.10] Furthermore, we describe separatedness in terms of convergent one
parameter groups, see Proposition [VIL.T.2.11}

DEFINITION VII.1.2.1. A (quasi-)toric prevariety (idg,1g): HCH — HCZ is
invariantly normal or H-normal or of Krull type of Z is invariantly normal resp.
HC Z is of Krull type.

REMARK VIL.1.2.2. By Proposition [.2.7.9] a quasi-toric prevariety is invari-
antly normal if and only if the corresponding F;-scheme is normal, i.e. of Krull

type.

REMARK VII.1.2.3. By Theorem [[1.2.5.15| a toric prevariety is invariantly nor-
mal if and only it is normal.

Sumihiros well-known theorem states that a toric variety, i.e. a separated normal
toric prevariety, is covered by its affine invariant open subsets [26]. The same is
true also in the non-separated case:

ProprosITION VII.1.2.4. [l Prop.1.3] A normal toric prevariety is covered by
its affine invariant open subsets.

REMARK VIL.1.2.5. Let H be a quasi-torus and let ¢(X(H)) denote the torsion
elements. Then T := Vg (x — 1|x € t(X(H))) is the maximal subtorus and also the
unit component of H.

ProrosiTiON VII.1.2.6. Let H be a quasi-torus with unit component T and let
G C H be a finite subgroup such that H is the direct product of T and G. For a quasi-
toric prevariety (idpg,1g): HOH — HCZ set X := 1y(T). Then the restriction
TCT — TCX is a toric prevariety and G permutes the irreducible components
of Z. Moreover, Z is invariantly normal if and only if the canonical quasi-toric
morphism X x G — Z is an isomorphism and X is invariantly normal.

PRrOOF. First, note that the pullback X(H) — X(G) restricts to an isomor-
phism ¢(X(H)) — X(G). If Z is H-normal then for each U € Bz gy the group
t(X(H)) is a subgroup of the saturated monoid M := degsupp(O(U)) and the quo-
tient is again saturated. Thus, O(X NU) 2 K[M]/{(x — 1|x € t(X(H))) is normally
graded and X is T-normal. The induced map M — M /t(X(H))xX(G) is an isomor-
phism and gives the desired canonical isomorphism O(U) 2 O(XNU)®x O(G). O

DEFINITION VII.1.2.7. Let (idg,2): HCH — HCX be an affine quasi-toric
prevariety. Then the monoid o7(X) C A(H) of convergent one parameter groups is
the set of those A € A(H) which extend to a quasi-toric morphism (X, ¢) from the
canonical toric variety K* CK* — K*CK to (idg,1).

REMARK VII.1.2.8. Let (idg,2): HCH — HCX be a quasi-toric prevariety
and consider x € X(H) and A € A(H). Let n € Z be the element corresponding to
x © A € X(K*) under the canonical isomorphism Z — X(K*). Let u € Homgz(Z, Z)
be the element corresponding to x o A € A(K*) under the canonical isomorphism
Homy(Z,Z) — A(K*).
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Then n = p(1) holds and thus we have n > 0 if and only if 4(Ng) C Ny, which
in turn holds if and only if there exists a K*-equivariant morphism : K — K with
IK* O X O\ = 1) 0 aRx.

PROPOSITION VII.1.2.9. Let (idg,2): HCH — HCX be a quasi-toric preva-
riety. Then the following hold:

(i) If (N, ¢): K*CK — HCX is a morphism of quasi-torus actions such that
G- = 20\ then for each x € degsupp(O(X)) the unique f € O(X)y
with % (f) = x sends ¢(0) to 1 if x o A\ is constant and to 0 otherwise.
In particular, ¢ is closed. Consequently, if X is affine then a convergent
A € A(H) allows only one ¢ as required in the definition.

(ii) We have o7(X) C degsupp(O(X))Y in A(H) with respect to the canonical
pairing (-,-): X(H) x A(H) — Z. If X is affine then this is an equality.

Proor. Fix A € A(H) and first suppose that there exists a morphism of quasi-
torus actions (X, ¢): K* CK — HCX with ¢ ok~ =120 A. For y € degsupp(O(X))
there exists a unique f, € O(X), with g+ o x = fy o2 and we have

UK+ oxo)\:fxozo)\: (fxo¢)OZK*-
By Remark we have (x,\) > 0, i.e. A € degsupp(O(X))Y, and the first
part of (ii) is shown. Furthermore, if x o\ is constant then f, (¢(a)) = (xoA)(a) =1
holds for each a € K*, and continuity gives K = K* C (f, 0¢)~!(1). If xy o\ is non-
constant then f o ¢ € O(K),.o» is a non-constant monomial and hence f(¢(0)) =0,
which shows (i).

For the remainder of (ii) suppose that X is affine and (x,A) > 0 holds for
each xy € degsupp(O(X)), which by Remark means there exists a K*-
equivariant ¢X: K — K with 1g« oxyo A = ¢pXoug«. Let x1,..., xn € degsupp(O(X))
be a generating subset and let f; € O(X),, be the element with - o x; = f; 0.
Then we have a closed embedding of actions 7: X — K" x — (f1(x),..., fo(z))
with accompanying map H — (K*)* h +— (x1(h),...,Xxn(h)). Now, the morphism
(X1 .. pXn): K — K™ together with (x1,...,xn): K* — (K*)” induces a mor-
phism (A, ¢): K*CK — HCX with ¢ ok =10 A. a

PRrROPOSITION VII.1.2.10. Sending a quasi-toric prevariety HCZ to ([Bzu >
U oz(U)],A(H)) defines a functor to the category J of combinatorial schematic

functors from Section[V.3.4) Restricting this functor to toric prevarieties is isomor-
phic to the composition of the equivalence with Fy of finite type and the functor send-

ing (X,0x) to ((Ox B\ {0} \ {0})¥,Homyz(Ox ¢ \ {0},Z)) from Corollary V.3.4.9,
ProrosiTioN VII.1.2.11. Let HCH — HCZ be an invariantly normal quasi-
toric prevariety of affine intersection. Then the following are equivalent:

(i) Z is separated.
(ii) For all U,V € By z \ {0} we have oz(UNV) = oz(U) Noz(V).
(ii) For all U,V € By z \ {0}, the monoids oz(U) and oz(V') are separable
by an element of X(H).
(iv) War, (2),72(2)° NWery, ()75 (£)° is non-empty for all z,y € Z.

Proor. If Z is separated, then U NV is principal in U,V € Bz u because it is
affine. For f € O(U)"™ and g € O(V)h™ with U NV = U; = V, we then have

deg(O(U)"™\ 0) — deg(f) = deg(O(V)"™ \ 0) — deg(g) = deg(O(U NV)'™\ 0)
= deg(O(U)™™ \ 0) + deg(O(V)hom \ 0).
By Remark there exists w € deg(O(U)"™ \ 0) N — deg(O(V)r™ \ 0) with
deg(O(U)™™\ 0) — w = deg(O(V)"™ \ 0) + w = deg(O(U N V)™ \ 0)
= deg(O(U)*™ \ 0) + deg(O(V)"™ \ 0).
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Due to Remark [[.1.3.22] dualizing now gives oz(U NV) = oz(U) Noz(V) and we
have shown that w separates oz(U) and oz(V).
If (iii) holds then for U,V € Bz there exists w € deg(O(U)™ \ 0) N
—deg(O(V)hom \ 0) with
deg(O(U)"™ \ 0) — w = deg(O(V)"™\ 0) + w
= deg(O(U)"™ \ 0) + deg(O(V)'*™ \ 0)
C deg(O(UNV)\D0).
Consequently, we have U,, = V_,, and both sets are contained in U NV. Since w is
a unit in deg(O(U N'V) \ 0) the converse inclusion also holds. Applying (—)" now
realizes oz(U N'V) as the face of oz(U) resp. oz(V) defined by w.
If (ii) holds then oz (U) Noz(V) = oz(U N V) is a face of oz(U) and oz(V) for
U,V € Bz g which by Lemma means

deg(O(U NV)rom\ 0) = deg(O(U)™ \ 0) + deg(O(V)om\ 0).

Lastly, let (6,q): HoZ — HoZ be a quasi-toric characteristic space and let
Q: N7'X(H) — N~}(X(ker())) denote the localized pullback. Then H G Z is an
open toric subvariety of Z := Spec,,..(O(Z)) and for U € Bz i we have
Wl (2),00(Z) = Q(Wx(ﬁ),oq,lw)(z))
= Q(N"!deg(O(Z)™™ N (O(q~1(U))"™))).

Due to Proposition [V-3.3.3] the relative interiors of these cones intersect pairwise
non-trivially if and only if Z is separated. O

REMARK VII.1.2.12. Let (6,q): HoZ - HCZbea quasi-toric good quotient.
Then Z is separated if and only if for all maximal U,V € Bz 5 the intersection UNV
is affine, and o (U) and o(V') are separable by an element of (0, ¢)*X(H).

VII.1.3. Correspondence of Cox sheaves of toric prevarieties and F;-
schemes. In this section, we relate (invariant) Weil divisors, class groups, divisorial
algebras and Cox sheaves on toric prevarieties to those of the corresponding F;-
schemes, see Proposition Likewise, we establish an equivalence between
quasi-toric characteristic spaces over a quasi-toric prevariety H CZ and graded
characteristic spaces over the corresponding Fi-scheme, see Proposition [VIL.1.3.7]
We close the section with an observation on the behaviour of smoothness under the
correspondence of Fi-schemes and quasi-toric prevarieties.

REMARK VII.1.3.1. Let X be an integral scheme of finite type over F; and let
(idg,1): HCH — HCZ be the associated quasi-toric prevariety over K.

(1) Let a: Qz g — Qx denote the canonical bijection (induced by soberifi-
cation) and let orb: Z — X be the canonical map. Then composition
with « defines a functor from PrShyp (X, Qx) to PrShe (Z,Qz i) which
is inverse to orb, and isomorphic to orb™!. Here, all functors preserve
the sheaf-property.

(ii) We have Oz g = K[Ox o a] and this equation induces an isomorphism
’CZ,H = KUCX o O[].

(iii) Z is invariantly normal if and only if X is of Krull type.

REMARK VII.1.3.2. Let ¢: X — X’ be a dominant morphism of schemes of
finite and Krull type over Fy and let (6,n): HCZ — H' CZ' be the corresponding
quasi-toric morphism. Then the following hold:

(i) the canonical map orb: Z — X induces a bijection

yH(Z) — y(X), Y — {orb(Y)}.
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(ii) For each Y € Yy (Z) and D = {orb(Y)} € Y(X) the canonical homo-
morphism K% — orb, (K} — orb,Z() = Z(P) equals the valuation
corresponding to D.

(ii) The bijection of (i) gives rise to isomorphisms WDivx — orb, WDivyz g,
PDivx — orb, PDivz g and Clx — orb, Clz g which we all denote by
orb*. These are compatible with the pullbacks given by ¢ and (6,7) (so
far as they are well-defined), i.e. we have ¢,orb*o¢* = orb’, (0, n)* corb’™.

(iv) For each D € WDiv(X) the isomorphism from Remark [VIL.1.3.1] restricts
to an isomorphism orb,Oyz g (orb (D)) = K[Ox (D)] and these give rise
to an isomorphism orb,Oz g (WDivyz i (Z)) = K[Ox (WDivx (X))].

(v) For v € Cl(X) and w € Cl(X)g and each U € Qx we have

Bas(orb*(v))(orb™*(U)) = orb™ ! (Bas(v)(U)),
StBas(orb*(w))(orb™* (U)) = orb™*(StBas(w)(U)).

(vi) Let B C X be closed and H-irreducible, let Gz denote WDivy(Z) or
Clg(Z) and correspondingly, let Gx denote WDiv(X) or Cl(X). For
each U € Q0x we then have

SGZ’B(orb_l(U)) = orb¥ o SGL?MB)(U),

S glorb™H(U)) = orb% o S?Ji,m([])'

Consequently, we have
orb, WDivy i, >0 = orby o WDivx >o,
orb,Movz g = orb% o Movy,
orb,SAmple, 5 = orb o SAmpley,

orb,Ampley, ;; = orbk o Ampley.

ProrosITION VII.1.3.3. Let X be a scheme of finite and Krull type over F1 and
let (idgy,1): HCH — HCZ be the associated H-normal quasi-toric prevariety over
K. Then sending R to K[R o a] endowed with the canonical R% -grading defines
a functor § from Cox sheaves on X to invariant Cox sheaves on Z which is full
and an isomorphism onto its image category im(f). In particular, all invariant Cox
sheaves on Z are of finite type over K. Conversely, sending S to orb,SPo™ /K*
endowed with the canonical grading by Cly(Z) defines a functor g from invariant
Cox sheaves on Z to Cox sheaves on X which on im(f) is isomorphic to the inverse

§=1 from Remark|II1.5.0.14

PrOOF. For well-definedness of f consider a Cox sheaf R on X with defin-
ing CBE 7: Ox(WDiv(X)) — R,cx: WDiv(X) — CI(X). Then with respect
to the canonical gradings by Ox(WDiv(X))% = K(X)* @ WDiv(X) resp. R%
and the restriction 9 of mx as the accompanying map 7 remains a CBE. For
D € WDiv(X) with mx(x?) € K(X)* we have [D] = [divg x(mx(xP))] = [0]
as required. Using the isomorphism from Remark we obtain the desired
CBE Oz y(WDivg(Z)) — K[R o a] with accompanying map 1.

For well-definedness of g let 7: Oz g (WDivy(Z)) — S, 9 be a defining CBE for
a Cox sheafon Qz . Let p: gr(R) — Clg(Z) = C1(X) be the canonical map. Then
(m,p) remains a CBE and using the canonical isomorphism from Remark
we obtain a CBE

Ox(WDiv(X)) = orb, Oz i (WDivy (Z))P™ /K* — orb,S"™ /K*
with accompanying map cx: WDiv(X) =2 WDivy(Z) LR Cl(X) as desired.

Concerning fullness let S be a Cox sheaf on Qz y and let 7: Oz (L) — S be
a defining CBE where L := WDiv(Z). Let Dy,..., Dy be a basis of L for which
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there exist ny,...,nr € N such that nyDy,...,nyDy form a basis of PDivH(Z).

For each i there exists a unique a;x“ ™" € Oz y(L)(Z)n,p, (in the notation

from Remark [VII.1.3.2)) with image 1 under 7z and we may choose a n;-the root

b; € K* of a;. The invariant Cox sheaf with kernel relation y“ 7P ~ 1 is in the

image of f and is isomorphic to S via the isomorphism induced by the assignment
D; Di

X7t b 0

DEFINITION VII.1.34. Let (idg,2): HCH — H C Z be a quasi-toric prevariety.
A quasi-toric prevariety over (idg,t) is a morphism (idg,72) — (idg,?) of quasi-
toric prevarieties over K. A morphism of quasi-toric prevarieties over (idg,?) is a
morphism of the underlying quasi-toric prevarieties over K such that the resulting
triangle of morphism of quasi-toric prevarieties over K commutes.

REMARK VIL.1.3.5. For a quasi-toric prevariety (idg,?): HCH — HCZ and
its corresponding F;-scheme X we have an induced equivalence of quasi-toric pre-
varieties over (idg,2) and Fy-schemes over X.

DEerFINITION VII.1.3.6. A quasi-toric prevariety over H CZ whose structure
morphism is a characteristic space of actions is called a quasi-toric characteristic
space over H G Z.

ProrosiTiON VII.1.3.7. Let q: X > Xbea morphism of integral schemes of
finite type over Fy and let (07,qz): HcZ — HCZ be the corresponding morphism
of quasi-toric prevarieties. Then (0z,qz) is a characteristic space if and only if q
becomes a graded characteristic space once O is endowed with the canonical grad-

ing by K(X)*/K(X)*. Moreover, the canonical equivalence induces an equivalence

between graded characteristic spaces over X and quasi-toric characteristic spaces
over HCH — HCZ.

Proor. By Remark [VII.1.3.1 X and X are of Krull type if and only if HoZ
and H CZ are, which we from now on assume to be the case. By Remark
the pullback WDiv(X) — WDiv(X) is an isomorphism of partially ordered groups

~

if and only if the pullback WDivy (Z) — WDivz(Z) is one, and we have an isomor-
phism C1(X) = Clﬁ(z\). Moreover, the homomorphism (O(Z)hom)* — (O(Z)hom)*
is an equality if and only if O(X)* — O()A( )* is an equality. The degree map of
IC()Z') has kernel IC(X)* if and only if Ox — ¢.Og is Veronesean, i.e. if and only
if Oz y — (qz)*OEﬁ is Veronesean, and it is surjective if and only if the degree
support set condition of graded characteristic spaces is satisfied. Thus, ¢ (with
gr(Ox) = 0 and gr(Og) as stated) satisfies the conditions of Theorem if
and only if (07, qz) satisfies the conditions of Theorem

The induced functor in one direction sends a graded characteristic space over
X to the underlying of non-graded F;-scheme over X and then to the latter’s corre-
sponding quasi-toric prevariety over Z. In the other direction we send a quasi-toric
characteristic space over H C'Z to the associated Fi-scheme g¢: X — X over X
and endow Og with the canonical grading by IC()?)*/IC(X)* = Cl(X) using the
isomorphism provided by Remark O

REMARK VII.1.3.8. Consider a quasi-toric characteristic space HoZ - HcZ.
Then by Proposition |V.2.2.10| H is a torus if and only if H is a torus.

We close the section with observations on regularity of quasi-toric prevarieties
and their corresponding [Fi-schemes.

DEFINITION VIL.1.3.9. A Qg g-irreducible set Y C Z, e.g. an orbit, is said to
be regular, if its stalk is regularly graded in the sense of Definition [[.2.1.13]
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REMARK VII.1.3.10. Consider an integral F;-scheme X, its corresponding quasi-
toric prevariety H CZ and a point z € Z. Then Hz is regular if and only if orb(z)
is regular in X.

ProrosiTioON VII.1.3.11. A toric prevariety TC Z is smooth if and only if the
corresponding F1-scheme X 1is reqular.

PRrROOF. U € By is regular if and only if its closed point p is regular, which by
Remark is equivalent to factoriality of Ox , = O(U). This holds if and
only if O(orb™"(U)) is a principal localization of a polynomial ring by a monomial,
i.e. if orb™(U) is smooth. O

COROLLARY VII.1.3.12. A quasi-toric prevariety Z is smooth if and only if all
of its closed orbits are smooth.

VII.2. Embedded characteristic spaces and Cox data

In this section we discuss closed embeddings of characteristic spaces of actions
such that the pullback of invariant Weil divisors preserves invariant primality, the
invariant class groups coincide and the pullback of invariant Cox rings is surjective.
In Section we show that in the case of such irredundant very neat embed-
dings, Picard group and various cones of divisor classes coincide for the embedded
and its ambient object. In Section [VII.2:2] we also study commutative squares
made up of characteristic spaces and very neat embeddings, which we call very
neat embeddings of characteristic spaces. These turn out to be determined by the
ambient characteristic space and some global data from the other morphisms, see

Theorem [VI[.2.2.8

VII.2.1. Basic properties of very neat embeddings. Generalizing the
embeddings of prevarieties into toric varieties from [17] we consider arbitrary actions
of Krull type for the moment, with no restrictions on their Cox algebras as of yet.
We list first observations and introduce the notion of irredundance of a very neat
embedding.

DEFINITION VII.2.1.1. A morphism (3,2): HCX — GCZ of actions of Krull
type is a very neat embedding if

(i) @ is affine,

(ii) the induced morphism 2: (X,Qx g) — (Z,Qz.¢) of topological spaces is
dominant,

(iii) the pullback (3,2)%: WDivg(Z)>o — WDivy(X)>¢ is injective and pre-
serves primality, and each Y € Yy (X) satisfies Cl cimze =0,

(iv) the pullback (3,2)%: Clg(Z) — Cly(X) is an isomorphism,

(v) the induced homomorphism 5 : Oz c(D)(Z) — Ox u((3,2)*D)(X) is
surjective for each D € WDivg(2).

G C Z is then called the ambient space of H CX.

A morphism from a very neat embedding (7,2): HCX — GCZ to a very neat
embedding (y,7'): H' X' — G'CZ’ is pair of morphisms HCX — H' ¢ X’ and
GCZ — G'CZ' such that the resulting diagram commutes.

PROPOSITION VII.2.1.2. For a very neat embedding (3,2): HCX — GCZ the
induced homomorphism 1j;: Oz.c(D)(U) — Ox.u((3,2)*D)(x=1(U)) is surjective
for each U € Qz ¢ and D € WDivg(Z). In particular, v is a closed embedding.
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PROOF. Let S be the submonoid of all x? where D € WDivg(Z) satisfies
|D| € Z\ U. Then we have a canonical epimorphism

it Oz.6(WDivg(2))(U) = $7102,6(WDive (2))(2)
— 15(8) " Ox,1((3,0)" WDives(2))(X)
= Ox,11((3:1)" WDive(2)) (™ (U)).

Lastly, note that the assertion holds in particular for affine U and D = 0 which
means that ¢ is a closed embedding. O

ProrosiTioN VII.2.1.3. Compositions of very neat embeddings are very neat
embeddings.

PRrROOF. Let (3,2): HCX — H'CX' and (§,/): HCX' — H"CX" be very
neat embeddings. Under 2 and ¢’ and hence also under their composition invariant
closures of images of invariantly prime divisors are of codimension at most one.
Thus, we have (3,1)%. o (7/,7)%» = (4 0,4 01)%., for the respective pullbacks of
invariant Weil divisors and axioms (iii) and (iv) are verified. For D € WDivg~ (X")
the pullback of divisorial modules

(¢ 00)5n: Oxn gpn(D)(X") 2 Oxr g (7,4 D)(X)

*
3

— Oxu((f 0,4 00)x»D)(X)

is the a composition of surjections. |

DEFINITION VII.2.1.4. A very neat embedding (3,:): HCX — GCZ is irre-
dundant if the following hold:

(i) +(X) intersects each closed G-orbit (equivalently, each Q2 ¢-closed subset)
of Z,

(ii) for U,V € Bz such that «+=*(U) = += (V) holds and O(U) = O(V)
holds in K¢(Z) we have U = V.

ExampLE VII.2.1.5. For a characteristic space g: X — X and a defining CBE
of Ox-algebras 7: O(L) — ¢.Og the induced morphism X — Specy (O(L)) is an
irredundant very neat embedding.

REMARK VIIL.2.1.6. A very neat embedding (3,2): HCX — GCZ into a G-
orbit closure gives rise to a unique irredundant embedding, which is obtained by
gluing all the G-invariant affine open subsets of Z whose closed orbit intersects X
non-trivially along those U,V € Bz g with +=}(U) =+ 1(V) and O(U) = O(V) in
Ka(2).

REMARK VII.2.1.7. Due to Proposition [V.1.3.15| and Remark a very
neat embedding (3,2) has the following properties:
(i) We have Bas((7,2)*w)(x=*(U)) = 21 (Bas(w)(U)) for w € Clg(Z) and
U e BZ,G7
(ii) For A € (X, Qx g) and U € Qx g 4 we have

(1:9% © Sare ()@ (U) = Sciyx),a(tHU),
(23:0)7 0 sat(SEL_ 5z (V) S sat(Sef,, (x).4) (7' (V).

In particular, we also have (3,2)% o WDivg >o = 2« WDivy, >0 as well as
(9,1)% o Movg = 1.Movy.

(iii) If +(X) intersects every G-orbit closure then the inclusions of presheaves
(9,1)% o SAmple; C 2.SAmpley and (y,2)% o Pice(Z) C Picy(X) are
equations.
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CONSTRUCTION VIL.2.1.8. Let (8, ¢): HCX — GCZ be an equivariantly dom-
inant morphism of actions of Krull type. Let K be the subgroup of WDivy (X) gen-
erated by all Y € Yy (X) occuring in the support of some element of (6, ¢)* PDivg(Z).
Suppose that K maps onto Cly(X) and K NPDivy(X) = (6, ¢)* PDivg(2).

Let R be a Cox sheaf on GCZ. Let m: Oz(L) — R be a defining CBE of
Oz-algebras where L = WDivg(Z) and let x: PDivg(Z) — (Oz(L)°™)* be the
kernel character of m. Let Z be the Ox, r(K)-ideal defined by

ZU) == (1 - ¢"(s(D)) | D € PDivg(2))ox)w)-

Then the presheaf S := Ox(K)/Z is a Cox sheaf on HCX and Ox(K) — Sis a
CBE of Ox-algebras. Moreover, if (6, ¢) is a very neat embedding then the induced
map R — 1, S is surjective.

VII.2.2. very neat embeddings of characteristic spaces and Cox triples.
In the setting of a square made up of vertical characteristic spaces and arbitrary
horizontal morphisms we show that the lower morphism is a very neat embedding if
and only if the upper one is and the kernels of the characteristic quasi-torus homo-
morphisms coincide. Such squares are called very neat embeddings of characteristic
spaces. We show that they are determined by the ambient characteristic space and
a reduced set of (global) data from the other morphisms, see Theorem

PROPOSITION VII.2.2.1. For characteristic spaces (0,q) and (0z,qz) a commu-
tative diagram

Aox P Goz
l(&Q) lwz qz)
HCcX —GcZ

is a very neat embedding if and only if 7 maps ker(0) isomorphically onto ker(0y)
and (3,7) is a very neat embedding. Here, surjectivity of O(Z) — O(X) suffices for
surjectivity of all the pullbacks Oz 5(D)(Z) — Og 7((7:1)5D)(X).

PrROOF. Firstly, note that if ¢ is affine then considering an affine G-invariant
and gz-saturated cover shows that 7 is affine. Conversely, if 7 is affine then for
Ué€Bza, ¢ (7 (U)) =77 (g, (U)) is affine and hence so is : = (U).

If (5,2) satisfies axiom (ii) then so does (7,7) because 7 is the minimal closed
Q

7/\9’\ G - =__ N
subset over Z and we have gz (1(X) Z’G) =1(q(X)) “ = Z. The converse follows
from surjectivity of ¢ and ¢z.
From now on suppose that (3,:) and (3,7) satisfy axioms (i) and (ii). If (3,¢)

_ — Qg
satisfies axiom (iii) then for ¥ € V(X X) the set qz(’\(Y) ’G) = 1(q(Y)) “° has

—Qz a
codimension smaller than 2 and so do the minimal closed set over it and A(Y) “% be-

cause the latter contains the former. In particular, we have Cl G ze = = 0 and by
Proposition [V.1.2.14 the diagram of pullbacks of invariant Weil d1V1sors commutes.

Now, injectivity and preservation of primality follow from axiom (iii). Conversely,
if (3,2) satisfy axiom (iii) then for D € Yy (X) set D := (6,¢)*D € Y5(X). Then

—=2za . . . —
(D) ““ has codimension smaller than 2 and thus, so does its image 2(D) ¢ un-

der gz. Consequently, we have ClG Dyre = = 0 and by Proposition |V.1.2.14] the

diagram of pullbacks of invariant Weil divisors commutes. Now, injectivity and
preservation of primality follow from axiom (iii).

Suppose that (7,2) and (3,7) satisfy axioms (i) - (iii). Then the restriction
7: ker() — ker(fz) factors into the canonical isomorphism ker(¢) = Cly(X), the
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homomorphism Clg(X) — Clg(Z) and the isomorphism Clg(Z) = ker(6z). Thus,
(7,7) satisfies axiom (iv) if and only if (3,7) does.

From now on suppose that (3,2) and (3,7) satisfy axioms (i) - (iv). Consider
E € WDivg(Z) and f € (K(Z)"™)* with D := (05,42)"E = divg 5(f). Then

the restriction (9(2)[5,] 2, O()?)(j,z)*z[p] is the composition of the isomorphism
(’)(2)[,3] S, Oz ¢(E)(Z), with the pullback ¢}, : Oz c(E)(Z) — Ox,u((9,2)*E)(X)
at —1
and the isomorphism Ox i ((7,2)*E)(X) ACEN
circumstances, surjectivity of (9(2) — O(X ) is thus equivalent to that of all

O(D)(Z) — O((3,1)*D)(X). The supplement is due to invariant factoriality of
Z and X. O

O(X)(],’L)*Z([D]). In the present

DEFINITION VII.2.2.2. If the conditions of the above proposition are satisfied
then we say that (0, q) is very neatly embedded into (67, qz), the latter being called
the ambient characteristic space of the former, and the diagram is called a very neat
embedding of characteristic spaces.

A morphism of very neat embeddings is a quadruple of equivariantly dominant
morphisms of actions from the vertices of one square to those of the other such that
a commutative cube is formed.

REMARK VII.2.2.3. In the situation of Construction if the Cox sheaf
on GC Z is locally of finite type over K then so is the induces Cox sheaf on H C X
and in this case forming the relative spectra gives a very neat embedding of char-
acteristic spaces.

REMARK VIL2.2.4. In the notation of Definition [VIL.2.2.2{7(X) is the special
Q5 p-closed and -irreducible set over +(X) because X is the special Q¢ z-closed
and -irreducible set over X.

‘We now show that very neat embeddings of characteristic spaces are determined
by the ambient space (0z,qz), the graded homomorphisms 7% : 0(Z) — O(X)
and ¢%: O(X) — (9()? ) and their properties. More precisely, we establish an
equivalence of the category defined by such triples and the category of very neat
embeddings of characteristic spaces.

DEFINITION VII1.2.2.5. A Cox triple ((0z,qz), (24,%gr(4)), (7,%)) consists of

e a characteristic space (0z,qz): GoZ — GCZ,

e a Veronesean K-algebra 14: A — R,14.4): gr(A) — gr(R) such that
(Rhom)* = (Ahem)* and R is factorially graded,

e a graded surjection m: O(Z) — R, with trivial graded kernel inducing
a primality preserving injection O(Z)tem /(O (Z)hom)* —, Rhom /( Rhom)x
and a bijection X(G)/X(G) — gr(R)/gr(A).

A morphism from a Cox triple ((0z,qz),(24,%gr(a)), (7,%)) to a Cox triple
((0z,qz:), (1ar,1gr(ar)), (7',2)")) consists of an equivariantly dominant morphism
(¢, 0): GoZ — G'©Z', together with a morphism a: R — R, 3: gr(R") — gr(R)
of graded K-algebras such that ((14,.(4/)(97(A"))) C 2gr(a)(97(A)), ker(a)®" = {0},
mo ¢y =aon and 1o X(¢) = Boy)

REMARK VIL2.2.6. Due to Proposition|[[.2.6.9] (ii) the requirement in the above
that O(Z)hem/(O(Z)kem)* — Rhom /(Rhom)* ig 4 primality preserving injection is
equivalent to the condition that the canonical map Divgr(0(2 )) — Divg(R) is a
primality preserving injection and Clgr(O<IZ\)ﬂ-fl(p)gr> = 0 holds for each p € Py (R).
Moreover, having an induced bijection X(G)/X(G) — gr(R)/gr(A) spells out as
im(¢) +im(2g,(4)) = gr(R) and ¢*1(ng(A)) =im(X((02)%))-
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ConsTRUCTION VIL.2.2.7. Let ((0z,qz), (14,%gr(a)), (m,%)) be a Cox triple.
Let 0: H — H,7: H — G and 7: H — G be the morphisms of quasi-tori associated
t0 14504y, ¥ and ¥ 0 X((02)5) : X(G) — gr(A), respectively.

Then (0, qz): HCZ — HCZ is a good quotient and X := V5 (ker()) is closed
and H-invariant which means X := qz(X) is closed and H-invariant. Moreover,
the following diagram is a very neat embedding of characteristic spaces:

(3:9)

HoX 7=>GcZ
(9,(qz)§)l J{(9z,qz)
(43,9)
HCcX —GCZ

THEOREM VIL.2.2.8. Construction[VII.2.2.7] defines a covariant functor § from
the category of Cox triples to the category of very neat embeddings into character-
istic spaces, which is essentially inverse to the functor g which sends a very neat
embedding ((7,7), (3,2)) of (0.q): HCX — HCX into (0z,q2): GCZ — GO Z to
the Coz triple ((0z,qz), (¢x, X(0%)), (7%, X(7%)))-

PROOF. For a characteristic space (0z,qz): GCZ — GCZ fix f&) € O(Z)
with divaz(f(y)) =Y foreach Y € y@(é) and set f(U) .= HYey@(Z)\y@(U) f
for U € Bz &\ {0}. First, consider a very neat embedding ((7,7), (3,2)) of (6, q) into
(0z,qz). Then the map induced by ?% canonically factors into

O(Z)*™ (O(Z)"™)* = F1[WDiv4(Z) 0] — Fi[WDiv 5 (X)>0]
~ O( )hom/(o()’f)hom)*
and is thus a primality preserving injection, where the isomorphisms are induced

by divg 7 resp. divg g. This shows that ((6z,4qz), (¢%, X(0F)), (0% X(]G))) is a

Cox trlple For U € By &, ker(zU) is the image of ker(z%) s under the natural

isomorphism and hence equals (pU (ker(2%))). Thus, we calculate

m() U = Vi (ker(i)) = Vi ((of (kex(7)))) = V (ker(i3)) N U.

and obtain that Construction applied to the above triple gives the inclusion
of the quotient

SPC o (KX (H)]) Cim(7) SPmax EEOD2), g0 (KIX(H)]) Gim(o)

into (0z,qz). Now, 7 and ¢ together with the canonical isomorphisms of quasi-tori
H— SpecmaX(K[X(ﬁ)]) and H — Spec,,,.(K[X(H)]) form an isomorphism of very
neat embeddings.

For the quotient constructed from a Cox triple ((0z,qz), (24, %gr(a)), (7, %)) let

max(

7 X — Z and 1: X — Z denote the inclusion maps and set ¢ := (qz)lx. For each
U € Bz g\ {0} the graded ring O(X NU) = R,y is of Krull type and hence
X NU is Qg girreducible and also Q3 z-dense in U because ker(m)%,, = {0} yv.
For each further U’ € Bz z \ {0} there exists U"” € By, 5 \ {0} and we have
0+ U"NX CUNU'NX, which gives irreducibility of Q% 7~ Consequently, HoX
is of Krull type and X is QA g-dense in Z.
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Under 7 and thus also under %j; for U € BZ &> breimages of homogeneously
prime divisors are zero or homogeneously prime divisors. Consequently, the canon-
ical maps form a commutative diagram

Div,, (O(Z)) Divg, (R)

| ]

Divge (O(U)) — Divge (O(U 1 X))

which induces a commutative diagram

Div,:(0(Z)) Div,, (R)

L«
WDivg(Z) — WDiv ;5 (X).

Note that €, ¢ restricts to a bijection between the sets of homogeneously prime
divisors whose preimage under 7 resp. 7% is zero. Thus, under e the former

set of homogeneously prime divisors is in bijection with those D € yﬁ(?) with
D'7¢ = 7, Moreover, (7,7)%: WDiVa(Z\) — WDiVﬁ(.}?) is a primality preserving
injection because (3,2)7;: WDivgs(U) — WDivH()A( NU) is one for each U € B3 5.

Thus, €¢ is an isomorphism. Consequently, the isomorphism Qg (R) — IC(X )
with accompanying map 8: gr(R) — X(Spec,,.(K[gr(R)])) restricts to an isomor-
phism a: R — O(X). This gives surjectivity of 7% O(Z) — O(X), triviality of
Cl5(X) 2 Clg(R) and (O(X)P™)* = g% ((O(X)"™)*). Moreover, (idg,id;) and
(a, B) together form an isomorphism of Cox triples.

Let 2/ C Z be the big open G-saturated set of those points of Z on which
ker(fz) acts freely. j restricts to an isomorphism ker(d) — ker(fz) because 1
induces an isomorphism gr(O O(2))/gr(0(2Z)) — gr(R )/gr(A). In particular, ker(f)
acts freely on 7' N X because ker(fz) acts freely on Z'. To see that Z' N X is big
in X note that H -prime divisors which are not pullbacks of G—prlme divisors of Z
intersect 77 (U) non-trivially for each U € Q5 & while those that are pullbacks are

also preimages of @—prime divisors. Thus, the criteria for characteristic spaces in
Theorem and very neat embeddings thereof in Proposition are
satisfied.

The canonical isomorphisms of very neat embeddings resp. Cox triples obtained
in the above define isomorphisms of fog resp. gof and the respective identity functors
as required. O

VII.3. Embeddings into toric characteristic spaces

From now on we only consider neat embeddings into toric prevarieties resp.
toric characteristic spaces. Morphisms of such objects are morphisms of very neat
embeddings of characteristic spaces for which the morphisms between ambient toric
prevarieties are toric morphisms. In Section we prove that existence of a
very neat embedding into a tori character space is equivalent to finite generation of
the Cox algebra. Section [VIL.3.2] studies additional connections between properties
of embedded and ambient space which occur when the latter is toric. Namely, the
ambient space encodes the affine intersection and As-properties of the embedded
space and both have similar formulae for the cones of divisor classes defined in
terms of affine neighbourhoods. Lastly, Section we apply the existence
result to prove an algebraic criterion for Cox algebras of finite type over K, see
Theorem Together with the results from [4] on algebraic properties of
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Cox rings this gives conditions on the graded structure of a ring which guarantee
its being integral and normal.

VII.3.1. Construction of embeddings into toric characteristic spaces.
The main result of this section, stated below, generalizes a similar result from [17]
which stated that normal As-varieties has a finitely generated Cox ring if and only
if it allows a very neat embedding into a toric variety.

THEOREM VIL.3.1.1. An action of Krull type allows a very neat embedding into
a toric prevariety if and only if it has a Coz ring of finite type over K.

One direction of the above theorem follows directly from finite generation of
polynomial rings, the other is proven constructively below.

CONSTRUCTION VIIL.3.1.2. Let (6,q): HCX — HCOX be a characteristic space
such that (’)()/f) is of finite type over K, and let X = X; U... U X,, be an affine
invariant cover.

1) Choose pairwise non-associated primeb fi,--., fs and units fe4q1,..., fr of
O(X)hom such that O(X) = K[f1,..., fo f5 9+1’ ..., fF1] holds, each Y(X}) contains
y(XHi f,), and each X;;NX; is covered by U € Bx, y with y(Xl—[i 7)) S Y(U). Define
a morphism of actions by

H - Ti= (K", h— (deg(f1)(h),...,deg(f.)(h)),
(3

X = Specua(O(X)) = Z =Ky, .q,, Tr— (LT, [ (@)

Let 7: T — T be the cokernel of the induced morphism ker(6) — T.

2) For £k = 1,...,m let Ek C Z be the union of all T-orbits whose clo-
sure intersect ¢~!(Xj) non-trivially in Z. Then we have a toric good quotient
Oz, (qz)k): TcZ, — TCZy and an embedding (7,7): fIGq_l(Xk) — TcZz,
which induces an embedding (3,1): HC Xy — TC Zy.

For each two k,l =1,...,s let ZfJ be the union over all U € Bimfzﬁ which
are ker(6z)-saturated in Zr and Z; such that UNX C ¢ (XN X;)). Equivariant
gluing yields an irredundant very neat embedding

J{(aﬂ) i(GZ,qz)
(3:2)

HcX —=TcZ
into a toric characteristic space.

PROOF. For step 2) set G := ker(6) = ker(fz) and note that 7 is a closed

embedding into Z := K7, T We first show that gz is a well-defined toric

characterlstlc c_space. For every maximal affine T-invariant subset V C Zk consider
an H-orbit HZ 1y1ng in the closed orblt Oy of V. Then H#7 is closed because
the closed orbit HYy ¥ in the closure of H#7 also lies in Oy and is hence of the form
f[gj = Htz. Denote by gi the product of those f; whose corresponding Y € Vg (X)
does not intersect Xj;. Then

pTX(G)(Sx(ﬁ)7W(7)) — Nodegx () (9r) = Sy(q),72(X) — Nodegx ) (9x)
= Sx(c)ﬁg(qil(Xk))
is a group, i.e. degx(c)(gx) lies in the relative interior of S ,W(Z)' Since this
is true of all maximal affine T—invarianE V C 2k Remark [VII.1.1.15( and Proposi-
tion [V.3.3.3[ tells us that the quotients TCV — TCV /G glue to a separated good
quotient (Qz, (q2)k)5 TcZ, - TCZ,.
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Lemma now tells us firstly that the sets 2;671 are non-empty and hence
q is well-defined, and secondly that the union Z' over all 0- or 1-codimensional T-
orbits of Z is a G-saturated open subset of Z on which G acts freely. Consequently,
we have Cl@(?) = Cl=(Z) = 0 and all homogeneous units of O(Z) = O(Z) are of a
degree in ker(Q) because the units fsi1,..., f, have degree in X(H). Thus, (62, qz)
is a toric characteristic space.

By step 1) the set ¢~ (X} N X;) is a union in X of certain intersections of
X with affine open T-invariant subsets of Z. Let U € BT\E be maximal with the
property that the intersection of Oy with ¢~'(Xj N X)) is non-empty and let Hz
be an orbit contained in this intersection. As above, H7 is closed, and degx () (9k)

is contained in the relative interior of Sy ) 57(Z). Thus, U is G-saturated in every
maximal V' € B@ 7, containing U and hence in Zj,. Consequently, U is contained in
Z]g,l.

Therefore, ¢! (XpNX;) = XN 21@,1 and we conclude that the closed embeddings
g Xg) — ZC glue along ¢~ 1 (X N X;) — IZ\kJ to a closed embedding X -7 By
Proposition this constitutes a very neat embedding because firstly, the
elements f; are no zero divisors meaning that X intersects T non-trivially and
secondly, the graded surjection m maps pairwise non-associated prime elements of
O(Z)m to pairwise non-associated prime elements of O(X)"™, Irredundancy of
the embedding follows directly from the definition of Z\k,z- |

LEmMMA VIL.3.1.3. In the setting of Construction each U € B4
whose closed orbit Oy is 1-codimensional has the following properties:

(i) U is contained in some Zj.
(ii) G acts freely on U.
(i) whenever U is contained in Zy, it is G-saturated in Zy,.

Moreover, T is saturated in each Ek.
PROOF. For assertion (i) note that OyNX is one-codimensional in X and hence

intersects some ¢~ (Xy). For (ii) let Oy = V(T}) be the closure of Oy in Z. Then
we have

X(T)/X(T) = X(H)/X(H) = (deg(((R(s,))"™)*) + X(H))/X(H)

(Z Zdeg(f;) + X(H)) / X(H)

i=1
1#£]

(imegm +m>> / X(T)

i#j
= (deg(((O(2)5)"™)*) + X(T))/X(T)

for every j € {1,...,s}. Concerning (iii) note that U is G-saturated in Zy, by
assertion (ii). O

REMARK VIL.3.1.4. Let (6,q): HcoX — HCX be irredundantly and very
neatly embedded into a toric characteristic space (0z,qz): TcZ — TcZ Con-
struction returns the given embedding as output if in step 1) we choose
the cover UNX, U € Br,z and the graded surjection O(Z) — O(X),X(T) — X(H).

VII.3.2. Toric ambient characteristic spaces. We show that a toric ambi-
ent space and its embedded space share the formula for the cones of divisor classes
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defined in terms of affine neighbourhoods. Furthermore, we study the affine inter-
section and As-properties. The simplest example of very neat embeddings into toric
characteristic spaces are the characteristic spaces of the underlying prevarieties, see
below. Other known examples of such embeddings are those of torus actions of
complexity one, see [18].

ExaMPLE VII.3.2.1. For any toric characteristic space (6,q): TcZ — Tcz
the diagram

ker(f)cZ —=TCZ

l (1,idz) \L

10/ ——=TCcZ

is a very neat embedding. Indeed, by Theorem q is a characteristic space
because Cl(Z) = Clg(Z) = 0 and all units in O(Z) are X(T)-homogeneous of degree
in X(H), in particular, they have degree zero in X(ker(0)).

LEMMA VIL.3.2.2. For a very neat embedding (3,1): HCX — TCZ the follow-
ing hold:

(i) Consider V € Qg such that 1(x=*(V)) intersects V each T-orbit of V
which is closed in V' non-trivially. Then U € By has a purely one-
codimensional complement in V if and only if =1 (V \ U) is of pure codi-
mension one in 1= (V).

(ii) If X is of affine intersection and (3,1) is irredundant then Z\U is of pure
codimension one for each U € By .

(iii) For a closed H-orbit A C X, its T-invariant closure B := 1(A)
U € Qg1 p such that W%ﬁfT(z),B(U) 18 non-empty we have

(, Z)Z(W%fli(z),B(U)) = wéflTH(X),B(Z_l(U» = me(X),B(Z_l(U))O
= )z (wer(z),8(U)°).

Qz T
" and

PRrROOF. In (i) assume that +=1(V \ U) is of pure codimension one and let
O C V\ U be a T-orbit which is closed in V. Then 27!(O) is a non-empty subset
of :™}(V \ U) and thus is contained in +~}(Y N'V) for some Y € Yr(V) \ Yr(U).
By Remark assertion (ii) is a special case of (i). For (iii) we use Propo-
sitions [V.2.1.15] and [V.3.5.4) as well as Remarks [VIL.2.1.7] [VIT.1.3.2] and [VI.4.3.2] to

calculate

(2,07 (2),5(0)) € Wi, (x50 (V) € weryx),5 (1 (U))°
= (1:0)z(Wer(2),58(U)°) = (]71)E(w%ﬁfT(Z),B(U))'

]

ProprosITION VII.3.2.3. Let HC X be of Krull type with Cox ring of finite type
over K. Let V be the union over the set W of all W € Bx g with purely one-
codimensional complement. Then there exists an irredundant very neat embedding
(9,1): HCX — TCZ such that the complement of U € Bz in Z is purely one-
codimensional if and only if 1+~ (U) C V.

PROOF. V is finitely covered Xi,...,X,, € U and we may complete these to
an affine H-invariant cover X = X; U... U X,,,. Let (5,2): HCX — TCZ be the
embedding obtained from this input from Construction where the system
of generators was chosen arbitrarily. If U € Bz satisfies 1= 1(U) C V then there
exists 4 < n with +=1(U) C X;. Then 1~ 1(U) is purely one-codimensional in X; and
hence, in X. O
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ProrosiTiON VII.3.2.4. Let HC X be of Krull type with Cox ring of finite type
over K and consider a closed H-orbit AC X and 'V € Qx g a. If wgflfH(X) A(V) is

non-empty then it equals we,, (x),4(V)°.

PROOF. Suppose that there exists W € By g 4 such that V' \ W is purely
one-codimensional in V. Let Xy,...,X,, € Bx g with V =WUX,U...UX,
and X = WU X, U...UX,. Applying Construction then gives a very
neat embedding (7,2): HCX — TCZ such that V = +71(U) holds with some

UeQ 2T AR whose closed T-orbits intersect (V) non-trivially. Moreover,
there exists U’ € BZT A with = 1(U") € W. Then +~}(U’) has a purely one-
codimensional complement in W and hence in V. Now, Lemma VII.3.2.2 i) implies

that U \ U’ is of pure codimension one in U, in particular w01 (DG )QZT(U) is
T

non-empty, and (iii) gives the assertion. O

LEMMA VIL.3.2.5. Let X be an irreducible prevariety of affine intersection. If
for U1,Us € Bx and V € Qu,nu, the prevariety Y := (U; U Uz)/ ~v obtained by
gluing along V' is separated then V = Uy N Us.

PROOF. In the diagram of canonical homomorphisms

O(Ul X UQ) O(V)

U nNU
\ /‘/1:

OU, N Ts)

the horizontal arrow is a surjection by separatedness of Y and therefore, gUmU?

is also a surjection. Since X is irreducible, QUlmU2 is also injective. We have
UyNU; € Bx and V € By because X and Y are of affine intersection. Thus, the
inclusion V' — U; NU; is an isomorphism, i.e. V = U; N Us. O

PROPOSITION VIL.3.2.6. Consider a very neat embedding ((3,7), (3,2)) of the
characteristic space (6, q): HoX — HoX into 0z,qz): TcZ — TCZ such that
1(X) intersects every closed T-orbit of Z. Then X is of affine intersection if and
only if for each two U,V € BAT whose closed T-orbits intersect X non- trivially,

OU)=0(V) in IC@(Z\) implies U = V.

Proor. If X is quasi-affine, then so is X and hence X is an open subset of

~

= Spec(O(X)). Consider U,V € By 5 whose regular functions coincide and
max(O(U)) be the
corresponding T-invariant subset of Z = Spec,,,, (O(Z)). The set (UUV)NX C Z
is separated and is obtained by gluing two copies of U'NX along WNX, where W is
an open T-invariant subset W C U’. Thus, Lemmayields WnX =U'nX.
Since X intersects the closed T-orbit of U’ this means W = U’, i.e. U = V.

For the converse consider two maximal U, U’ € B 77 and let V, V' be the corre-
sponding subsets of Z. Let W C U be the subset corresponding to V' NV’ and let
W' C U’ be the subset corresponding to VNV, For every affine T-invariant subset
C C W whose closed orbit intersects X non- -trivially and the correspondlng subset
C’ C W' the assumption yields C' = C’. Therefore, U N U’ N X equals VN V"N X
in Z which means that (U UU’)NX equals (VUV’)NX in Z. Thus, X is an open
subset of X. |

whose closed T-orbits intersect 7(X) non-trivially. Let U’ = Spec

The following statement lists results from [28] which we are going to use there-
after.
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ProposITION VIL.3.2.7. [28] A normal prevariety X which satisfies the As-
property is separated. If X is toric then the converse holds.

ProprosITION VII.3.2.8. Let X C Z be an irredundant very neat embedding of a

normal prevariety into a normal toric prevariety. Then X satisfies the As-property
if and only if Z does.

PRrROOF. Suppose that X satisfies the As-property. By Proposition
X is then in particular separated. We show that Z is separated, which by Proposi-
tionimplies that Z satisfies the Ay-property. For two maximal U,V € B 5
let U',V' € By = be the corresponding subsets of Z = Spec,.. (O(Z)), and let
z€UNX and yeVn X be points in the respective closed T-orbits. By as-
sumption there exists an affine neighbourhood W C X of ¢(z) and ¢(y). Then the
complement of W is a divisor D on X and by Proposition|V.2.1.15|[D] is contained
in

Wil x),2(X) = Wy @) 05(2)° = wy@) oo, (2)°
and wy g TW(Z)O' Using Remark ?II.1.1.15 and Proposition [V.3.3.3] we see that
U' NV’ is ker(0z)-saturated in both U” and V', and the canonical homomorphism
O(U/)X(’JI‘) X O(V/)X(']T) — O(U/ N V/)X(']I‘) is surjective.

Let U" C U and V" C V be the subsets corresponding to U’ N V’. Since X is
open in X = Spec,,,. (O(X)) we have U"NX =U'NV'NX = V"N X and hence
q(UMNX =¢q(V")N X. Now, Proposition |VII.3.2.6| implies qz(U") = qz(V"), i.e.
U"” = V", In particular, U NV = U” = V" is affine. Therefore, the canonical map

O(qz(U)) x O(qz(V)) = O(U)x(r) X O(V)xr) — OU NV)xr) = Ogz(UNV))

is surjective and we have shown that Z is separated. O

VII.3.3. Cox algebras of finite type. We now characterize Cox algebras of
finite type over K in terms of graded algebra. Minimality of the set of characterizing
conditions is shown in Remark [VI[.3.3.7

THEOREM VIL.3.3.1. For a Veronesean algebra A — R of finite type over K
there exists an action H C' X with a Coz sheaf R and an isomorphism of morphisms
of graded K-algebras from A — R to O(X) — R(X) if and only if R is factorially
graded, (R"™)* = (AM™)* and deg((R°™)*) + gr(A) = gr(R) holds for each
p € Pe(R).

Moreover, in this case X may be chosen to be of affine intersection and with
the notations pr: gr(R) — gr(R)/gr(A) for the canonical epimorphism and w, for
the cones N~1pr(deg(R"™ \ p)) C N~1(gr(R)/gr(A)) associated to p € Pgr(R) the
following hold:

(i) If gr(A) = 0 then X may be chosen with the As-property if and only if
the sets wy for p € PBer(R) intersect pairwise non-trivially.

(ii) HCX may be chosen such that Ampley (X) is non-empty if and only if
the intersection over all wy,p € Pgr(R) is non-empty.

DEFINITION VIL.3.3.2. A Veronesean algebra A — R of finite type over K is
called a Cox algebra of finite type over K if (RP°™)* = (Ahom)* R is factorially
graded and deg((Rp°™)*) + gr(A) = gr(R) holds for each p € Py (R).

REMARK VII.3.3.3. If A — R is a Cox algebra of finite type over K then
gr(R) is by definition finitely generated, and R is affine by Proposition [VI.2.1.5
Consequently, A is finitely generated over K by Hilberts Invariant Theorem.

Since Cox rings of normal prevarieties with finitely generated class group are
known to be integral and normal [4), [7] we obtain the following:
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COROLLARY VII.3.3.4. A finitely generated K-algebra which is factorially graded
with homogeneous units only in degree zero such that the localizations at graded
prime divisors have units in every degree is integral and normal.

REMARK VII.3.3.5. Let ((6z,49z), A — R, (m,9)) be a Cox triple where (6z,qz)
is toric and let (6, q): HCX — HCX be the induced characteristic space which is
very neatly embedded into (07, qz). Fix a basis eq,...,e, of X(T) and denote by
Q: 7" — gr(R)/gr(A) the epimorphism sending e; to the class of 1 (deg(x®)). For
a H-closed -irreducible B C X let B - X be the special set over B. For U € Qz 1
we then have

Sciy (x),8(U) = > No@Q(ei) + > ZQ(e)
x“1€0(q; (U)\I(B) X% ¢0(az " (U))
in gr(R)/gr(A) = Clg(X).
CONSTRUCTION VII.3.3.6. Let A — R be a Cox algebra of finite type over K.
By Remark|I1.2.2.3| R has a system (f1, ..., f) of generators such that f,..., fs and
fs+1,- .., [r are pairwise non-associated primes resp. units of RP™. Fori=1,...,s
let Z; C K" be the principal open toric subvariety associated to the product of all

coordinate functions x% other than x®, and let Z be the union over all Z Then
we obtain a graded homomorphism

OZ)=KN; & Z"~°] = R, X +— fi,
X((K*)") = Z" 25 gr(R), e; — deg(f;).

Moreover, H' := Vig-)-(x° — 1le € ¥ (gr(A))) acts freely on Z and the orbit space

map is a geometric toric characteristic space (67,q¢7): (K*)" CZ — (K*)"/H' & Z
which together with A — R and (7, ¢) forms a Cox triple.

PROOF. Due to Remark [[1.2.5.19 each ¢ = 1, ..., s satisfies

(deg(fj)li € {1,..., s} \ i) + gr(A) = gr(R).
Consequently, H' acts freely on the principal subset defined by the product over
all x®,...,x° except x%, and (K*)" is H’-saturated in this set. Now, Theo-
rem [VI.4.2.7| implies that (07, qz) is a characteristic space. (|

ProoF oF THEOREM [VIL.3.3.7] The properties of Cox rings were given in
Chapter [V] If the algebra A — R satisfies the listed properties then by Construc—
tion we may complete it to a Cox triple ((0z,qz), A — R, (m,1)).
Theorem m § there exists an induced very neat embedding of a characterls—
tic space HCOX — HCX into (07,qz) such that O(X) — O(X) is isomorphic
to A — R. Note that X and Z are of affine intersection by construction. By
Remark [VIT.3:3.5] resp. Remark [[I.1.8.5] the set of all cones generated by at least
s — 1 of the values pr(deg(fi1)),...,pr(deg(fs)) is equal to firstly, the set of all
cones we,, (x),He (X ) for all closed H-orbits Hz, and secondly, the set of all wy, for
p € Ba(R).

Due to Remark the affine intersection property of X means that com-
plements of H-invariant affine open subsets are purely one-codimensional and by
Proposition we have wéfify(X),Ha:(X) = wely, (x),12(X)°. Consequently,
Ample; (X) is the intersection over all wy.

Suppose that H = {eg}. For each x € X we have

o 1T ff o
c"cm(X),HTv(X) = W?}lH(X),m(X) élT(Z) M(Z) = Wchr(Z),qTx(Z) .

If X satisfies the As-property then all these cones intersect pairwise non-trivially.
If the converse holds, then Z is separated by Proposition [VILI.2.T1] O
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REMARK VII.3.3.7. Note that the above set of three conditions for Cox algebras
is minimal. Firstly, consider the 0-graded monoid algebra R = K[M] over the
monoid M = {0,2,3,...}. Then R C R satisfies all conditions apart from graded
factoriality. Secondly, consider any toric variety TCZ with CI(Z) # 0. Then
S := O(WDiv"(Z)) is factorial, satisfies the third condition, but has to many units.
Finally, an example of a factorially graded K-algebra with trivial units which does
not satisfy the third condition is given in [5] Example 5.5].






APPENDIX A

Adjunction criteria

REMARK A.0.0.1. Recall that each category € defines a category £ := Mor(¢)
whose objects are €-morphisms ¢, and whose morphisms («, 8) € Morg(¢,¥) are
pairs of €-morphisms such that g o ¢ = 1 o . With respect to taking opposite
categories we have Mor(€°P) = Mor(€)°P

LEMMA A.0.0.2. Let i: € — D be a faithful functor and let §: © — € be a
functor. Let g: © — Mor(D) be a functor sending an object X to a morphism
9(X) € Morg (X, i(f(X))) with g(i(f(X))) = i(f(9(X))), and a morphism ¢: X —Y
to the pair (¢,i(f(¢))). Let h: € — Mor(€) be a functor sending an object X to
a morphism h(X) € More(f(i(X)), X) such that i(h(X)) o g(i(X)) = idi(x), and a
morphism ¢: X — 'Y to the pair (§(i(d)), ¢).

Then (f,i) is an adjoint pair. Specifically, i and § together with the natural
transformations s and t defined below form an adjunction, where for X € © and
Y € € we define sxy and txy via

More (f(X),¥) — Moro (X, (Y))
txy: ¢—i(¢)og(X)
H(Y) of(s) «— ¢ sxy

PROOF. Let X € @ and Y € €, and let ¢ € Morg (X, i(Y)). Using functoriality
of g we calculate

txy(sxy (1)) =i(b(Y)) 0i(f(¥) o g(X) = i(h(Y)) 0 g(i(Y)) 0 ¢ = .

For ¢p € More(f(X),Y") we use the equation i(f(g(X))) = g(i(f(X))) and functoriality
of g to calculate

i(sxy (tx,y () = i(H(Y)) 0i(j(i(9))) 0 i(f(a(X))) = i(H(Y)) 0 i(§(i(#))) © 8(i(f(X)))
=i(h(Y)) 0 g(i(Y)) 0 i(¢) = i(¢)

and since i is faithful we conclude sx y (tx,y(¢)) = ¢. For naturality of ¢t and s we
use functoriality of g and . Consider morphisms a: X — X’ in€and 8: Y/ - Y
in ®. Then ]

ExXaMPLE A.0.0.3. Let € be a category with finite colimits. Then for each €-
object A the category A\ € of €-objects uder A has finite colimits. Suppose that
we have chosen a coproduct functor for A\ €, whose output shall be written using
the @4-sign. Let ¢: A — B be a €-morphism. Then the functor A\ € — B\ €
sending C' to C @4 B is canonically left-adjoint to the faithful functor defined via
composition with ¢.

LEMMA A.0.04. Leti: € — D be a faithful functor and let §: © — € be a
functor. Let g: © — Mor(D) be a functor sending an object X to a morphism
9(X) € Morg (i(f(X)), X) with g(i(f(X))) = i(f(g(X))), and a morphism ¢: X —Y
to the pair (i(f(9)),d). Let h: € — Mor(€) be a functor sending an object X to
a morphism h(X) € More (X, f(i(X))) such that g(i(X)) o i(h(X)) = idix), and a
morphism ¢: X —'Y to the pair (f(¢,1(9))).

197
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Then (i,f) is an adjoint pair. Specifically, i and § together with the natural
transformations s and t defined below form an adjunction, where for X € € and
Y € © we define sx,y and txy via

Morgp (i(X),Y) — Morp;(X, f(Y))
txy: ¢+ f(¢)oh(X)
g9(Y)oi(y) «— i sxy

Proor. The induced functors i°P: €°P — D and fP: DP — € as well as
g°P: ©°P — Mor(D°P) = Mor(D)°P and h°P: €°P — Mor(€°P) = Mor(&)°P satisfy
the conditions of Lemma [A.0.0.2] Thus, (§°P,i°P) is an adjoint pair and hence, so
is (i, f). O
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