Routing Partial Permutations in General Interconnection
Networks based on Radix Sorting

Tripti Jain and Klaus Schneider
University of Kaiserslautern, Germany
http://es.cs.uni-kl.de/

Abstract. In general, sorting networks can be used as interconnection networks in that the
input messages are simply sorted according to their target addresses. If the target addresses
form a permutation of all addresses, this is obviously correct since then the sorting algorithm
routes each message to its target address. However, if not all inputs need a connection to
one of the outputs, then some output addresses do not appear as target addresses, and thus,
partial permutations have to be implemented. In this case, sorting networks work no longer
correctly as interconnection networks since all messages with target addresses larger than the
smallest missing target address will be routed to the wrong outputs. For merge-based sorting
networks, there is a well-known general solution called the Batcher-Banyan network. However,
for the larger class of radix-based sorting networks this does not work, and there is only one
solution known for a particular permutation network [28]. In this paper, we present three
general constructions to convert any binary sorter into a ternary split module which is the key
to construct a radix-based interconnection network that can cope with partial permutations.
We compare the sizes and depths of the circuits obtained by our constructions for six known
binary sorters and show this way that the obtained circuits are of practical interest.

1. Introduction

Non-blocking unicast interconnection networks allow every input component Xxy, ..., X,—1 to be
connected with any output component yy, ..., y,—1 provided that none of the outputs y; is the
target of more than one input x;. Hence, such networks can implement all n! permutations of the
addresses {0, . . ., n—1} as routes through a switching network that is typically built by 2 X2 crossbar
switches. In practice, however, not all input components have to be always connected to an output
component. For this reason, even all 3" i! (:L)2 partial permutations have to be implemented by
non-blocking unicast interconnection networks.

Even for total permutations, the efficient implementation of such networks turned out to be a
difficult challenge for many decades: The simplest non-blocking network is the crossbar that can
be implemented as circuit of size O(n?) and depth O(log(n)) for connecting n components. While
the depth of the crossbar is optimal, its size grows with O(n?) and becomes quickly prohibitive for
large n. The challenge is therefore to develop non-blocking interconnection networks with a size
of less than O(n?) and with a poly-logarithmic depth O(log(n)¢) (for some small constant ¢ € N).

To reduce the size of the crossbar network, Clos [7] constructed a three-stage network using g
r X p crossbars in the first stage, p g X g crossbars in the second stage, and g p X r crossbars in

the third stage with n = ¢ - r. He proved that his network is non-blocking without rearranging
existing connections iff p > 2r — 1 and still non-blocking for p > r when existing connections are
rearranged. Based on these observations, Benes [3, 35] constructed special Clos networks built by
2 log(n) — 1 stages of 2 X 2 crossbars only. Many other networks based on 2 X 2 crossbars were then
proposed, e.g., the Q-network [21], the butterfly (Banyan) networks [11], fat trees [25], flattened
butterfly [18] to name just a few (see textbooks like [8, 33] for further examples). For all of these
networks, however, it turned out that they are either blocking or that it is very difficult to determine
the configuration of their 2 X 2 crossbars to establish a desired permutation. In particular, the
routing problem for the Benes network has been considered in many research papers [23, 29] and
the known parallel algorithms to compute configurations have a depth larger than the network itself.

Sorting networks [2] are therefore an attractive alternative for the design of non-blocking inter-
connection networks [10]: To that end, the inputs x, . . ., x,—; are simply sorted according to their
target addresses to implement the desired permutation. The 2 X 2 crossbars become then compare-
and-swap switches that determine their configuration by simply comparing the incoming target
addresses. The AKS network [1] proves that there exist sorting networks with depth O(log(n)) and
size O(nlog(n)), so that the use of sorting networks can significantly improve the costs of crossbars!.
However, the constants hidden behind the O-calculus turned out to be prohibitively large so that
the AKS network is unfortunately impractical [24, 31, 34]. However, well-known sorting networks
like Batcher’s bitonic and odd-even merge networks [2] and related variants [9, 20, 30] with a depth
O(log(n)?) and size O(nlog(n)?) are still competitive?2.

However, the implementation of partial permutations by sorting networks is not straightforward
and depends on the used sorting algorithms as we will outline in the next section. In particular, there
is a general solution for the class of merge-based networks, while for radix-based sorting networks
that were often considered for the design of interconnection networks [4, 5, 16, 17, 19, 22, 28],
only a special solution given by Narasimha [28] was known so far. Unfortunately, his network has
a bad depth of O(n) and is therefore not efficient enough for many applications.

In this paper, we present three general constructions that can transform binary sorters to ternary
Split modules. The latter are the key modules that directly lead to interconnection networks
for partial permutations based on radix-based sorting. This way, many efficient interconnection
networks [4, 5, 16, 17, 19, 22, 28] that were designed for total permutations can be transformed
so that the resulting networks can also work with partial permutations. While our constructions
roughly double the size of the circuits, they nearly maintain their depths, and thus do not influence
the latency of the networks. In particular, we still obtain networks of size O(nlog(n)?) and depth
O(log(n)?) (see [16]). By experimental results, we also show that the sizes of the obtained networks
are still in a practical range and are competitive to other known solutions.

The outline of the paper is as follows: In the next section, we report about related work on
the use of sorting networks as interconnection networks. In particular, we discuss problems and
known solutions for establishing partial permutations with sorting networks. Section 3 contains
the core of the paper where we show how to transform binary sorters to ternary Split modules
to implement radix-sorting interconnection networks for partial permutations. Finally, Section 4
shows by experimental results that the obtained networks still have a competitive size and depth.

IThese complexities refer to the compare-and-swap modules that have to compare addresses 0, . . ., n— 1 having log(n)
bits. Gate-level implementations of these modules have size O(log(n)) and depth O(log(log(n))), so that gate-level
implementations of the AKS network will have circuit depth O(log(n) log(log(n))) and size O(n log(n)?).

2Their gate-level implementations have a depth O(log(n)? log(log(n))) and size O(nlog(n)?).

MBS(n/2) RBS(n/2) ZF A

MBS(n) " — Merge(n) RBS(n) " — Split(n) B

MBS(n/2) I RBS(n/2) Zﬁ

Figure 1: Merge-based sorting (MBS) versus radix-based sorting (RBS): MBS merges already sorted se-
quences with Merge modules while RBS partitions input sequences by Split modules into two
halves that are independently sorted.

2. Sorting Networks as Interconnection Networks

2.1. Routing Total Permutations by Sorting Networks

There are two important classes of sorting networks, namely the merge-based (MBS) and the
radix-based (RBS) sorting networks which are recursively defined as shown in Figure 1. In the
merge-based approach, a sorting network MBS(n) for n inputs is recursively constructed by splitting
the given sequence into two halves, recursively sorting these by two sorting networks MBS(5) of
half the size, and then merging the two sorted halves by a merge module Merge(n). Well-known
sorting networks following this paradigm are Batcher’s bitonic and odd-even sorting networks [2]
and related ones [9, 20, 30].

In radix-based sorting networks, the given inputs are partitioned into two halves by a Split(n)
module, e.g., by sorting them according to the most significant bit of their target address. Thus,
after the Split(n) module, the given inputs have already been routed to the right halves, so that the
remaining problems can be solved recursively in the same way (ignoring now the most significant
bits of the target addresses). The implementation of radix-based sorting networks is completely
determined by the implementation of the Split modules.

There are many ways to implement a Split module for total permutations, €.g., by means of binary
sorters [4, 5, 16, 17, 19, 22, 28] or concentrators [6, 13, 26, 32]: A (n, m)-concentrator is a circuit
with n inputs and m < n outputs that can route any given number k < m of valid inputs to k of its
m outputs. Split modules for total permutations can be obtained by two (n, 5)-concentrators: One
that routes the 7 inputs with a most significant bit 1 from the 7 inputs to the upper half of outputs,
and another one routing the other 5 inputs with a most significant bit O to the lower half of outputs.

2.2. Routing Partial Permutations by Sorting Networks

Independent on the choice of a particular sorting algorithm, sorting networks at first only implement
total permutations in that they can sort the n inputs by their target addresses which are numbers
0,...,n—1. If some inputs do not need a connection to an output, their target addresses are invalid,
denoted as L in the following. Note that there is no ordering of {L,0,...,n — 1} that would still
solve the routing problem by a simple sorting approach, since many values L may now occur and
they may have to be routed to different places in the final output sequence.

For merge-based sorting networks, there is a well-known solution known as the Batcher-Banyan
network [12,27]. The main idea is thereby to first treat L as a number larger than all target addresses
so that after using a normal sorting network this way, one obtains a preliminary output sequence
Y05 - - -» Yk—1> Vk» - - -» Yn—1 Where the k valid inputs were sorted as the prefix yy, ..., yx—; while the
invalid ones are placed in the suffix yg, ..., y,—1. A final Banyan permutation network can then

be used to move the valid inputs yy, . . ., yx— to the right places. To that end, one can simply use
a bit-controlled network like the Q)-network [21] where invalid target addresses L are ignored, so
that the valid ones are routed to their final destination. It can be shown [27] that the Q-network
[21] while being blocking in general will never block in this setting.

The same approach does however not work for the radix-based networks: If we treat L as a
number larger than all target addresses, it may happen that valid inputs with a most significant bit
1 will be erroneously routed by Split modules to the lower sub-network, where they are mixed up
with other valid inputs having a most significant bit 0. Hence, the resulting preliminary output
sequence will not consist of a sorted prefix of valid inputs as in the case of merge-based networks.

Hence, the Batcher-Banyan construction does not work for RBS networks. Recall that the task
of Split modules was to route the inputs already in the right halves. Inputs with invalid target
addresses can be routed to any half, but inputs with valid target address must be routed to the lower
and upper sub-networks in case the most significant bit of the target address is 0 and 1, respectively.

Instead of using binary sorters as in case of total permutations, one could therefore use ternary
sorters as Split modules using the ordering 0 < L < 1. This way, the output sequence of a Split
module will still route the inputs with valid target addresses to the right halves, while invalid inputs
may be routed to any half (note that still at most 5 inputs can have most significant bits 0/1).
However, while many constructions for binary sorters have been proposed [4, 5, 16, 17, 19, 22, 28],
none are known for the ternary case. We therefore show in the next section how to construct ternary
sorters from any binary sorter with almost the same circuit depth, but doubling the circuit size.
This way, we can transform any RBS network that has been constructed for total permutations into
a more powerful one that can work with partial permutations as well. Additionally, we consider
two optimizations of the ternary sorters for implementing RBS networks.

Narasimha addressed the problem to route partial permutations in his RBS network in [28]. In
Section III of [28], he explains without giving a proof that his network can also work with partial
permutations if an additional Split module is added on the left side of his RBS network. While
this is true for his network, and also for some others (we prove a characterization which networks
can be transformed this way in an upcoming publication), it is definitely not true for general RBS
networks (like three of the six we consider in the experimental results).

3. Split Modules for Routing Partial Permutations in RBS Networks

In this section, we present three constructions based on binary sorters to implement Split modules
for routing partial permutations in RBS networks. For all implementations, we assume that any
input x; is a bitvector in the format given on the left-hand side below:

| Xiq Xig+iogn) | Msb |

’xio...xl'q—l ‘Xiq‘xiqﬂ---xiqﬂog(n)‘) 0 0
: ; . : d 1 0 0
1 1 1

The leftmost g bits are the message bits that should be sent to an output, bit g is the valid bit that
indicates whether this input shall be connected to some output, and the remaining bits are the bits
of the target address where the most significant bit (msb) is the rightmost one (that is consumed by
each Split module in the RBS network). Considering x; 4 and x; 4110¢(n) Only, we interpret inputs x;
as ternary values {0, L, 1} as shown on the right hand side above.

uln-1] P— 0 0 -
x[n-1]— | _ [yl -4 "q“‘)g(")H i,g “i.g+log(n) |"i,g "i.g+log(n)
binary ° 0 * 0 1 0 0
1=0 sorter © 1 0 1 0 1 0
(1-sorter) S _ 1 1 1 1 1 1
<] 0 ._ 0 —
£ 3 Xifq = Xig X gtoa(n) = g V Xig+log(n)
I[n-1] :;-) = Xig *= Xiq xi,q+log(n) "= Xiyg N\ Xig+log(n)
x[n-1]— —— 5 g
binary § PR D P) L
> - . .
11 (ofggt:;r) > li g+10gm) 1[0 ... 0 1.1
(0] = (0] 7P LR Y S |
X — — —
0] y Ui g +tog(m £|0 - 00 ... O[]
Yig:1...1/0 ... O[T 1
Yig+logn) :|0 ... 0|1 ... 1|T . 1

Figure 2: Construction of a Ternary Sorter by two Binary Sorters.

3.1. Constructing Split Modules by Ternary Sorters

The left-hand side of Figure 2 shows how a ternary sorter can be constructed by two binary
sorters that we call the O-sorter and the 1-sorter, respectively. Both binary sorters obtain the n
inputs x, . .., x,—1 after a preprocessing step that modifies the msbs x; ;410¢() Of the invalid target
addresses as shown on the upper right part of Figure 2 as xl?qﬂog(n) and xl.{q Hog(n) for the 0- and
1-sorter, respectively. Note that after the preprocessing step, only the valid inputs have msbs 0 and
1 for the O- and 1-sorter, respectively.

After this, the O-sorter and the 1-sorter sort their input sequences to output sequences [y, . . ., [,
and uy, . ..,u,—1, respectively, by only considering the modified msbs xgq +log(n) and xi{q +log(n)"
Hence, the O-sorter uses the ordering 0 < {1, 1} while the 1-sorter uses ordering {0, L} < 1
(regarding the original inputs).

The lower right part of Figure 2 shows how the 0- and 1-sorter’s output sequences look like in
general: The O-sorter’s output sequence starts with values (I; 4, /i g +10g(n)) = (1,0), i.e., 0, followed
by values ([; 4, li g+10g(n)) = (%, 1),1i.e., L or 1, while the 1-sorters output sequence starts with values
(Ui,g» Ui g 4108(n)) = (%,0), i.e., 0 or L, followed by values (u; g, u; g+109(n)) = (1, 1), i.e., 1.

The final stage of multiplexers will then determine output y; by selecting one of the corresponding
values /; or u; as follows where [is obtained from /; by setting its valid bit to 0:

up - if Uig N\ Ujg+log(n)
yii=9 L :if li,q A 7l g+log(n)
I/ : otherwise

Note that the number of valid inputs can be at most n, hence, we never have both u; 4 A u; 4110(n)
and iy A =l 41100n)- Note further that we have to set /i, := 0 in case /; is chosen for y;, but
lig A =i g110g(n) does not hold (this way, we avoid that an input with (x; 4, X; 4 +10g(n)) = (1, 1) will be
taken from the O-sorter that has already been copied from the 1-sorter).

It can be easily verified that the circuit shown in Figure 2 implements a ternary sorter, i.e., any
input sequence X, . . ., Xy,—1 of values {0, L, 1} is correctly sorted using the total order 0 < L < 1.

[n-1] Ll BV
L - 5yl V- —
binary ’xi’q xi,q+log(n)Hxi,q x[’q+10g(") xi’q xi,qHOg(n)
1-0 sorter —y[n/2] 0 * 0 1 0 0
(1-sorter) ' 1 0 1 0 0 0
x[0]— - = | 1 1 0 1 1 1
u
xgq = Xig N T X g+log(n) xgqﬂog(n) = Xig V Xig+log(n)
I[n-1] xl = Xi,g N Xi,g+log(n) X = Xig A Xijg+log(n)
x[n-1]— 7r' L.q > 4 i,q+log(n) > >
o bi"iry : lig:|1...1[0...0[0...0[0...0
1 sorter .
(O-sorter) yIn/2-11 i gatogn 20 .- O] 1|1 1]1.. . 1
Ui g 3]0 ... 0[0...0[[0... O
0]— 0
x10] o] Y Ui gstoatny 3|0 ... 0[0 ... 0/[0 ... O[T T
Yig |1 ... 1[0 ... 0[]0 ... OfFuaT
y[’q+]0g(n):0...0 1...1]0...0/1 ... 1

Figure 3: Construction of a Ternary Splitter by Binary Sorters.

3.2. Constructing Split Modules by Ternary Concentrators

We have already mentioned that the Split modules do not have to be ternary sorters to partition the
inputs according to their msbs. Instead, it is sufficient to route all inputs x; with (x; 4, X; g+10g(n)) =
(1,1) to the upper half and all inputs x; with (x; 4, X; g+10g(r)) = (1,0) to the lower half, while the
invalid inputs x; with x; , = 0 may be routed to any half among the other values routed there.

For this reason, we can also consider the slightly simplified construction given in Figure 3.
Compared to Figure 2, we modify the msbs x; ;110(s) Of the target addresses in the same way, but
additionally invalidate all 1s and Os in the O- and 1-sorter, respectively, as shown in the upper right
part of Figure 3. Hence, the O-sorter will only have inputs (xgq, xgqﬂog(n)) e {(0,1),(1,0)}, ie.,
{1, 0}, and the 1-sorter will only have inputs (xl.l’q, xi{q+log(n)) € {(0,0),(1,1)},i.e., {L,1}.

Again, the 0- and 1-sorter only consider the modified msbs xgq+10g(n) and xl."q+10g(n),
to generate their output sequences ly, . . ., [,—1 and uo, . . ., u,_1, respectively.

Assuming now that at most 75 inputs x; satisfy (Xi g, Xi g+log(n)) = (1,0) and also at most 5 inputs
x; satisfy (xi g, Xi g+10g(n)) = (1, 1), we can simply determine y; as follows (see lower right part of
Figure 3):

respectively,

Rz :ifiE{%,...,n—l}
YTV L rified0,.. .2 -1}

As long as at most 5 inputs x; are 0 and 1, the output sequence will even be a sorted ternary
sequence. However, if more than 5 inputs x; should be 0 or more than 5 inputs x; should be 1, the
circuit will omit some of the inputs and will therefore no longer be correct. We therefore do not
consider the circuit of Figure 3 as a ternary sorter, but each part of it is a (r, 7) concentrator that
concentrates on the 0 and 1 values, respectively.

While not yielding a ternary sorter for general ternary sequences, Figure 3 still sorts all ternary
input sequences that will appear in RBS networks for partial permutations. However, it does not
allow some further optimizations as the one shown in the next section.

Sort(n/2) J7

Split(n) — HC(n)

Sort(n/2) ZF

Figure 4: Construction of a Ternary Splitter by Ternary Sorters and a Half Cleaner.

3.3. Constructing Split Modules by Ternary Sorters and Half Cleaners

In previous work [14, 15], we have shown how (ternary) Split modules with n inputs/outputs can
be constructed as shown in Figure 4 using two (ternary) sorters with 5 inputs/outputs and a half
cleaner circuit. Half cleaners were introduced by Batcher in [2] for the construction of his bitonic
sorting networks. We observed that half cleaners can also be used to implement binary [15] and
ternary [14] Split modules as shown in Figure 4. Due to lack of space, we cannot list details of
the definition of half cleaners, and just mention here that these circuits have size O(n) and depth
O(1), so that the depth is mainly determined by the used sorting networks (see [14, 15] for further
details).

As outlined in [14], it is required to use sorting networks for the construction of Figure 4. In
particular, the construction shown in the previous section, i.e., in Figure 3 cannot be used. Hence,
even though our initial construction of Figure 2 cannot compete with the one in Figure 3, it allows
the optimization shown in Figure 4. As our experimental results show, this implementation often
turns out as the best one of the three versions discussed in this paper.

4. Experimental Results

The depth of the circuits is mainly determined by the depth of the binary sorters which is O(log(n))
or O(log(n)?) for known implementations. Note that modifying the msbs and the selection of the
outputs as either /; or u; does only require circuits of depth O(1). Also the size of the circuits is
mainly dominated by the size of the binary sorters. While the depth does only increase by some
constant, the size obviously is twice the size of the binary sorters plus some O(n) gates for the
mapping and possible multiplexer stages.

To consider concrete circuits, we have implemented the constructions described in the previous
section for six binary sorters that we abbreviate by the acronyms of the authors of the paper where
these binary sorters were published: Batc68 [2] (the bitonic sorter reduced to one bit), ChOr94 [5],
ChChO6 [4], JaSJ17 [16], KoOr90 [19], and Nara94 [28].

The tables shown in Figure 5, Figure 6, and Figure 7 show the experimental results that we
obtained for the constructions given in Figure 2, Figure 3, and Figure 4, respectively. In these
tables, we list the depths and sizes of the generated circuits for n inputs/outputs, and the numbers
of NOT, AND, OR, XOR gates, half adders (HA), full adders (FA), 2:1 multiplexers (MX) and
2 X 2 crossbar switches (SW). The tables show only the size of the Split modules, and not of the
corresponding RBS networks. The size always improves from Figure 5 via Figure 6 to Figure 7,
but the depths are sometimes best for Figure 6 and sometimes for Figure 7.

5. Conclusions

In this paper, we presented three transformations that convert binary sorters to ternary Split modules.
Using the latter, interconnection networks based on radix-based sorting can be implemented that
can correctly route also partial permutations. Our transformations yield Split modules with the
same asymptotic complexities as the binary sorters in terms of circuit size and depth, and even only
add a constant to the circuit depth, but roughly double the size of the circuits. Nevertheless, the
sizes are still competitive since very good implementations of binary sorters have been developed in
many previous research papers that can now be used also for the implementation of interconnection
networks.

References

(1]
(2]

(3]
(4]

(5]
(6]
(7]

(8]
(9]

[10]
[11]
[12]

[13]

[14]
[15]
[16]
[17]

[18]

[19]

Ajtai, M., J. Komlos, and E. Szemeredi: An O(nlog(n)) sorting network. In Symposium on Theory of Computing
(STOC), pages 1-9. ACM, 1983.

Batcher, K.E.: Sorting networks and their applications. In AFIPS Spring Joint Computer Conference, volume 32,
pages 307-314, 1968.

Benes, V.E.: Mathematical Theory of Connecting Networks and Telephone Traffic. Academic Press, 1965.
Cheng, W. J. and W. T. Chen: A new self-routing permutation network. IEEE Transactions on Computers,
45(5):630-636, May 1996.

Chien, M.V. and A.Y. Orug: High performance concentrators and superconcentrators using multiplexing schemes.
IEEE Transactions on Communications, 42(11):3045-3050, November 1994.

Chung, F.R.K.: On concentrators, superconcentrators, generalizers, and nonblocking networks. The Bell Systems
Technical Journal, 58(8):1765-1777, October 1978.

Clos, C.: A study of non-blocking switching networks. Bell System Technical Journal, 32(2):406-424, March
1953.

Dally, W.J. and B. Towles: Principles and Practices of Interconnection Networks. Morgan Kaufmann, 2004.
Dowd, M., Y. Perl, M. Saks, and L. Rudolph: The balanced sorting network. In Symposium on Principles of
Distributed Computing (PODC), pages 161-172, Montreal, Quebec, Canada, 1983. ACM.

Galil, Z. and W.J. Paul: An efficient general-purpose parallel computer. Journal of the ACM (JACM), 30(2):360-
387, 1983.

Goke, L.R. and G. Jack Lipovski: Banyan networks for partitioning multiprocessor systems. In 25 Years of the
International Symposia on Computer Architecture (ISCA), pages 117-124, Barcelona, Spain, 1998. ACM.
Huang, A. and S. Knauer: Starlite: A wideband digital switch. In Global Telecommunications Conference
(GLOBECOM), pages 121-125, 1984.

Jain, T. and K. Schneider: Verifying the concentration property of permutation networks by BDDs. In Leonard,
E. and K. Schneider (editors): Formal Methods and Models for Codesign (MEMOCODE), pages 43-53, Kanpur,
India, 2016. IEEE Computer Society.

Jain, T. and K. Schneider: The half cleaner lemma: Constructing efficient interconnection networks from sorting
networks. Parallel Processing Letters, 28(1), March 2018.

Jain, T., K. Schneider, and A. Jain: Deriving concentrators from binary sorters using half cleaners. In Reconfig-
urable Computing and FPGAs (ReConFig), Cancun, Mexico, 2017. IEEE Computer Society.

Jain, T., K. Schneider, and A. Jain: An efficient self-routing and non-blocking interconnection network on chip.
In Network on Chip Architectures (NoCArc), pages 4:1-4:6, Boston, MA, USA, 2017. ACM.

Jan, C.Y. and A.Y. Orug: Fast self-routing permutation switching on an asymptotically minimum cost network.
IEEE Transactions on Computers, 42(12):1469—1479, December 1993.

Kim, J., W.J. Dally, and D. Abts: Flattened butterfly: a cost-efficient topology for high-radix networks. In Tullsen,
D.M. and B. Calder (editors): International Symposium on Computer Architecture (ISCA), pages 126—137, San
Diego, California, USA, 2007. ACM.

Koppelman, D.M. and A.Y. Orug: A self-routing permutation network. Journal of Parallel and Distributed
Computing, 10(2):140-151, 1990.

[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
(28]
[29]
[30]

[31]
[32]

Kutytowski, M., K. Lorys$, B. Oesterdiekhoft, and R. Wanka: Periodification scheme: constructing sorting
networks with constant period. Journal of the ACM (JACM), 47(5):944-967, September 2000.

Lawrie, D.H.: Access and alignment of data in an array processor. 1EEE Transactions on Computers (T-C),
24:1145-1155, December 1975.

Lee, C. Y. and A.Y. Orug: Design of efficient and easily routable generalized connectors. IEEE Transactions on
Communications, 43(2-4):646-650, 1995.

Lee, C. Y. and A.Y. Orug: A fast parallel algorithm for routing unicast assignments in BenesS networks. IEEE
Transactions on Parallel and Distributed Systems, 6(3):329-334, March 1995.

Leighton, F.T.: Tight bounds on the complexity of parallel sorting. 1EEE Transactions on Computers (T-C),
34(4):344-354, April 1985.

Leiserson, C.E.: Fat-trees: Universal networks for hardware efficient supercomputing. IEEE Transactions on
Computers (T-C), 34(10):892-901, October 1985.

Masson, G.M., G.C. Gingher, and S. Nakamura: A sampler of circuit switching networks. 1IEEE Computer,
12(6):32-48, 1979.

Narasimha, M.J.: The Batcher-Banyan self-routing network: universality and simplification. IEEE Transactions
on Communications, 36(10):1175-1178, October 1988.

Narasimha, M.J.: A recursive concentrator structure with applications to self-routing switching networks. IEEE
Transactions on Communications, 42(2-4):896—-898, February/March/April 1994.

Nassimi, D. and S. Sahni: Parallel algorithms to set up the BeneS permutation network. IEEE Transactions on
Computers (T-C), 31(2):148—154, February 1982.

Parberry, 1.: The pairwise sorting network. Parallel Processing Letters (PPL), 2(2-3):205-211, 1992.

Paterson, M.S.: Improved sorting networks with O(log(N)) depth. Algorithmica, 5(4):75-92, 1990.

Pinsker, M.S.: On the complexity of a concentrator. In International Teletraffic Conference (ITC), pages 318:1—
318:4, Stockholm, Sweden, 1973.

[33] Schwederski, T. and M. Jurczyk: Verbindungsnetze — Strukturen und Eigenschaften. Springer, 1996.
[34] Seiferas, J.: Sorting networks of logarithmic depth, further simplified. Algorithmica, 53(3):374-384, March 2009.
[35] Waksman, A.: A permutation network. Journal of the ACM (JACM), 15(1):159-163, January 1969.
B 0 DWXWOQDQODOOQ BOCOOCOOOOC 3\0(‘\0?0(‘!?0000 B\DO\ONDONNNVI‘\C B\COOOGOONCO\D\O B\OO\DF!WNNNV@
828383288 NS3803883 2ETINN] 288N RgSe SRR
el N — 00 O 00 N f o~ el el —n — O O F O 0 el — NSO 2 — N oo ol — 2] — T NSO
k3 — N AV — Ol 5 3* —MnXoood 3* — o oAl 3* — < — O\ 1 %© 3 — N oo Al A
SEZid 228 838 “ZEg 838
taNenw o bovonwe e e deNwIEaR e NoNw e D" o Ne N R e
— N0 T Ao AN — N =0 vy oo — 0 DN [=T I] — 0 0 [==} ATV odnaAao — N 0 O [=T =)
= SEEg|| B S5EE2E37| | SZEE|| B Sazg|| |2 RS 2g8ag
— N~ O o — - o -
—_ Al
Bl-cccccccoo|illll-cocccccco|llllccciacornyy|/M8lloccccccccco| Ml ciasscasa/llloccccccccos
£ £ E("SRZSZERSIR| 8 = IR R R -
H A I+ NN = * G ' oA = i
=8 =3
cocoocococooco dlccococcocoooo dlccococcococococe dlccoccococooe N ToOT IO cococoocoooco
E: B g g =| IR EEI] -
= 4 * * * — 3=
o | [0 <+ o0 0 1 0o |cnecvoxtorooo|g | Teoaseoas v+ 0o+ ooo v+ 0o+ ooa ||+ 00+ 0o
o0 — o A — o= — M= on =0n|&R — oA = alls —mnoan—all@ — O AW = Al — oA —=a
22 25| 2R SRE5E|BQ 2E5E|EQ 2Eog|ge 2ERE|BR S8R
9 %} El
<
= 19 S & 2 %
Slg|lccccoccccoo|glgllcavanrorze|Blllorrzgreexse|BlglcragsaggszelBllltrnacaacaacacaaBlallcrsesrtagsgeg
> O S an=3F3g a0l ACTaTF ST S A% oxdann|0ls UO A% o =3O F D
== = —3SE8L|B ZX2esisd|E S8ES LR T SEREI 8
e = (% SS|ER= SEE|FR N ol a4 £XER
2 [* * = = g# Bl E* =
= D 7 O I D
Clallcsaxconsoa|@lallcracroracx@lallcarrcasnoalBlallcasrvasnoal@lallcasrvasnealBlallcasrwoasnoan
IRELREE A= IEREEICEE|EL|CCARR22EEE AIRKSFTERE||Z AIRKSFTERE LIZLAFERR
(8} SRa22532|6 IRCSZ 2|6 2BERS|O 222056 Z2RLRE|0 228G
a3 —d %A < - & - & BAR - &
=+ an B 3 #*# # B
IR EEREE G R EEE S EEEEEE PR S SRR EEEE b EREEE R - LR R
S3E38EE 88588 SRERSE 88588 SRIFEES SRGE8
Z — Mo T e Z = a Z = cln = 4 =a 2 - & O < Z =a
= N 3 3 - * * - 3=
| e | | | 1 1) | o 20 i g Nl | e,
EFREERREEE [EEEEEEEEER] | EEEEREREH IR EEEEN LSRR ETESEIRELE
P E e e R ESIe3ose | |B LS RaSaERes|| |B[FRERESE0a|| [BEREEEaS8c| BF2E82528858
Q8RELSE T 3333832 5235932833 SRR NE- R BEEI2885 S3820830
MO T oA 22 8SR=F —n S o~ —dA~aon® 23I2ERG I N)
— N A —n~ o9 A = —< = — &N O O — < —
o O [— — —_ —_—
CEREREEEER - EERERFEEE| CIEREEEREEEEE]] | EEEb R | || EREEEEER] | SR E SR
4 4 4 < 4 =
1 o | | 1 | | | 1 [| I
eNTERIT eNTEROT eHTRRY eNTRRY eNTRRY eNTRRLY
— NN o —Nn o —_ Ao —_ NN o —_—Nn o —Nn o

Ij‘ﬂgure 5: Circuit Size and Depth for §plit Modules with n Inputs/Outputgzls Discussed in Section 3.1 using

Different Binary Sorters

960CET 0 0 0 2ol 095€T 2ol 8¥0C YCry801 STs 201
8LYS 0 0 0 TS 8¥C01 TIs 201 89505Y 89¢ TS .
cLeee 0 0 0 95T 09¢t 9¢C TIs 095€81 6€1 95T
e 0 0 0 8T1 0081 8CI 9T 896TL L 8Tl
T6ee 0 0 0 9 TIL 9 8¢l Y018C v 9
8YCI 0 0 0 [43 9C [43 9 9LE0T T (43
(434 0 0 0 91 88 91 (43 809¢ St 91
9¢1 0 0 0 8 T 8 91 Laan! 6 8
9¢ 0 0 0 14 14 4 8 80¢ 9 14
9 0 0 0 T 0 T 14 9¢ 14 T
9LI8LI oreor wrre oy ol T 2ol creel 861191 S 20l
91TEL 8091 PEITT 920T (189 T TIs P19 TSO1LY 94 TIs
0rr6T 80T cros 001 9sC [4 95T 918¢ (U847 34 95T
(498} 968 9rce 114 8TI T 8T1 08cl 0S€601 8¢ 8T1
ey 8¢ ¥S6 ore 9 T 9 9LS 80¢€Ty [43 9
8961 091 ¥6€ 148 [43 [4 [43 9T POLST LT (43
8TS 9 A T« 91 T 91 (41 06¥S 1 91
091 L4 s w@ 8 [4 8 8 OpLT 91 8
or 8 14 8 i4 T 4 0z 89 11 4
9 T 4 < T T T 8 8 8 T
960TET 0 0 0 201 9ssTe 201 80T 0Tre80t w 201
V8LYS 0 0 0 113 vSL6 TIs LUt YLOOSY 8¢ TIs
cLeee 0 0 0 9sC [ra44 95T TS 0zeesl 9 95T
T°Es8 0 0 0 8TI 9891 8T1 95t S8TL 9¢ 8T1
coee 0 0 0 9 099 9 8¢l TS08T 8T 9
8yl 0 0 0 [43 we (43 9 Se0l 0z (43
(434 0 0 0 91 08 91 [43 009¢ Pl 91
9¢1 0 0 0 8 w@ 8 91 wit o1 8
9¢ 0 0 0 i4 i4 i4 8 80¢ 9 14
9 0 0 0 < 0 T 14 99 14 T
088cTl 0 ¥SS¥T 0 201 0reor 201 88CTIT 98¢6TTT S¢ 201
8890S 0 PYCIl 0 11 8097 Tis Twis 86¥CTLY (43 TIs
080T 0 [4Usy 0 9sT 80T 9sT ¥eT PETr61 62 9sT
908 0 88CC 0 8Tl 968 8Tl wor O¥I8L 9T 8cl
cLog 0 oror 0 9 8¢ 9 o1 2090¢ €C 9
ozrt 0 9er 0 (43 091 (43 90¢T OLSTT 0z (23
8¢ 0 (41 0 91 9 91 06 0LTY L1 91
o1 0 L 0 8 T 8 w wort 4! 8
(43 0 9C 0 i4 8 i4 0z wy A 14
9 0 8 0 4 < < 1)1 01 L T
0 9981CTT 0 0 0s0¢ 920T 0s0¢ 8¥0CT 8€9L68Y 81 s
0 re96y 0 0 9ISt 001 9IST 201 9Er0661 0zl Tis
0 0S$961 0 0 0SL 6y 0SL as 90L88L S6 95T
0 9TesL 0 0 89¢ ore 89¢ 9T 96120 €L 8Cl
0 819LC 0 0 8LI 148 8LI 8¢l 0LOTTI S 9
0 0zs6 0 0 8 T« 8 9 9¢8¢ 8¢ (43
0 066 0 0 8€ @ 8€ [43 06021 4 91
0 108 0 0 9 8 91 91 e ST 8
0 861 0 0 9 T 9 8 S9 8 14
0 Tl 0 0 4 0 < 14 99 4 T
091CeL 0 0 0 ot 0 PrELS 9S8LS YOSELOS L91 2ol
08+9LT 0 0 0 113 0 (49374 808€T TILesTT LET Tis
9LETOT 0 0 0 9sT 0 wye 0096 9£E0ES 011 9sT
0r8se 0 0 0 8Tl 0 TILE 9LLE 9€EV6T 98 8Cl
960C1 0 0 0 9 0 80¥1 [Uggt 08966 <9 9
0r8¢ 0 0 0 (43 0 TIs 8TS TwoLIE Ly (43
ocIt 0 0 0 91 0 LT 81 9€€6 (43 91
88C 0 0 0 8 0 9¢ 09 8TYT 0z 8
09 0 0 0 4 0 91 81 81¢ 11 14
8 0 0 0 4 0 hd S SL S T

ing

it Size and Depth for Split Modules with n Inputs/Outputs as Discussed in Section 3.2 us

Different Binary Sorters

ircu

C

Figure 6

8T6YCI 88CCl 0 0 9¢ST 96+0C 9601 09T Y9TLLOT SLT 201
9SP1S €98 0 0 89L 0zTL8 8¥0T 08¢I1 T6697Y vl s .
9€L0T 095¢ 0 0 8¢ 009¢ 2ol 0¥9 OLLIBI 18 95T
8TI8 [1y8¢ 0 0 61 vl Tis 0ce 080TL Rid 8z1
TLOE TIs 0 0 96 8T¢ 95T 091 Y99LT 113 9
vOT1 T 0 0 8v LT 8¢l 08 09101 w (43
89¢ 96 0 0 14 8t 9 or 0S€ 91 91
801 or 0 0 <t 8 (43 0T 9601 €1 8
T 91 0 0 9 0 91 or 88T U 14
€ 0 0 0 I 0 T 1 8T 14 T
T6LI9L t0SIT 89TTT TS0y 9¢ST 14 9601 PT8el 95T6IST 9¢ 20l .
6L 8CL6 2001 800T 89L i4 80T 00¥9 09829 0s TIs
Tr9e wser (4344 886 8¢ 4 20l 76T 96L¥ST 54 95T
81001 ozel 8061 08% 6l i4 TS el 919001 6€ 8T1
TILE (4%} 88L 8T 96 i4 95T 809 8E8¢E e 9
96C1 Tse Y0€ 01 8¥ 4 8¢l e 956¢1 8¢ (43
91y vl o1 14 14 i4 9 ozt viLy €T 91
911 9 8¢ 91 <t i4 (43 s vl 81 8
1 0z 14 14 9 14 91 w 8¢ St 14
€ 0 0 0 1 0 T 1 8¢ 14 T
8zorCl 88cTI 0 0 9¢s1 80S61 9601 09sT 9LTILOT S9 201
9SvIS €98 0 0 89L ores 80T 08cI TISOMY €S TIs
9€L0T 095¢ 0 0 8¢ TLee 20l 0¥9 8YSI8I1 34 95T
8TI8 TSIt 0 0 6l 0zel TS 0ce 9L6TL S¢ 8T1
TLOE TIs 0 0 96 81 95T 091 079LT LT 9
vOT1 T 0 0 Rid 091 8Cl 08 7101 1T (43
89¢ 96 0 0 14 14 9 oy 00S€ L1 91
801 or 0 0 <t 8 (43 0T 9601 €1 8
14 91 0 0 9 0 91 or 88T o1 14
€ 0 0 0 1 0 T 1 8¢ 14 T
9ELITT 88cTI 88YCT 0 9¢6T 9126 9601 96L0T YerIcHt 6€ 201
TLBLY €98 00T 0 89L 9601 80T 06¥ 0vesoy 9¢ (489
00z61 095t LSt 0 8¢ 6Ll 20l clee ceneel €€ 95T
88YL 4388 020T 0 61 89L TIs 066 9LOLL 0g 8cl
918T TS s 0 96 0ce 95T Laad TS00€ LT 9
8001 (4 9¢ 0 8t 8T1 8zl 00T 8CII T (23
9te 96 vyl 0 14 8v 9 [0zor 1c 91
00T or [0 <l 91 (43 v el 81 8
14 91 91 0 9 i4 91 w@ 8¢ 4! 14
€ 0 0 0 1 0 T 1 8¢ 14 T
w19 9S6L80T 0 0 rSe 800T 019 09T TW6ISTYY 9tl s
918T 809¥EY 0 0 9SLT 886 9€0€ 08cI 0CO89LT 101 TS
081 T€E891 0 0 98 08% 0ST 0r9 950L89 6L 9T
9LS 89579 0 0 ocy 8T ovL 0Te 88696T 09 8¢l
95T 9S61T 0 0 00T 01 09¢ 091 96906 v 9
(48 oL 0 0 %6 14 (A 08 TLs6t 13 (23
8v 0861 0 0 oy 91 08 oy 0818 1c 91
0z L4 0 0 91 4 9¢ 0T ceol 4! 8
8 8 0 0 9 0 91 o1 88T o1 14
€ 0 0 0 1 0 T 1 8¢ 4 T
81509 88TCl 0 0 9¢ST 0 9L10S 0r98y 9L60661 vl 2ol
000¥CT €98 0 0 89L 0 08+0C TiLel 887SS81 LIT Tis
8T108 09sT 0 0 8¢ 0 618 808L 8%9L99 €6 9T
9SvLT (498t 0 0 61 0 0oce 800€ 9690€T (73 8¢l
9688 as 0 0 96 0 91zt ocrr 8Y9SL S 9
TwoT T 0 0 8v 0 Riad 00 891¢€C 6€ [43
0cL 96 0 0 14 0 091 9¢l 99 LT 91
o1 U4 0 0 (1 0 9¢ r 861 81 8
8T 91 0 0 9 0 0T P1 8T¢ [14
€ 0 0 0 1 0 < 1 8¢ 4 T

ing

Section 3.3 us

mn

it Size and Depth for Split Modules with n Inputs/Outputs as Discussed

Different Binary Sorters

ircu

C

Figure 7

