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Abstract. In general, sorting networks can be used as interconnection networks in that the
input messages are simply sorted according to their target addresses. If the target addresses
form a permutation of all addresses, this is obviously correct since then the sorting algorithm
routes each message to its target address. However, if not all inputs need a connection to
one of the outputs, then some output addresses do not appear as target addresses, and thus,
partial permutations have to be implemented. In this case, sorting networks work no longer
correctly as interconnection networks since all messages with target addresses larger than the
smallest missing target address will be routed to the wrong outputs. For merge-based sorting
networks, there is a well-known general solution called the Batcher-Banyan network. However,
for the larger class of radix-based sorting networks this does not work, and there is only one
solution known for a particular permutation network [28]. In this paper, we present three
general constructions to convert any binary sorter into a ternary split module which is the key
to construct a radix-based interconnection network that can cope with partial permutations.
We compare the sizes and depths of the circuits obtained by our constructions for six known
binary sorters and show this way that the obtained circuits are of practical interest.

1. Introduction

Non-blocking unicast interconnection networks allow every input component Xxy, ..., X,—1 to be
connected with any output component yy, ..., y,—1 provided that none of the outputs y; is the
target of more than one input x;. Hence, such networks can implement all n! permutations of the
addresses {0, . . ., n—1} as routes through a switching network that is typically built by 2 X2 crossbar
switches. In practice, however, not all input components have to be always connected to an output
component. For this reason, even all 3" i! (:L)2 partial permutations have to be implemented by
non-blocking unicast interconnection networks.

Even for total permutations, the efficient implementation of such networks turned out to be a
difficult challenge for many decades: The simplest non-blocking network is the crossbar that can
be implemented as circuit of size O(n?) and depth O(log(n)) for connecting n components. While
the depth of the crossbar is optimal, its size grows with O(n?) and becomes quickly prohibitive for
large n. The challenge is therefore to develop non-blocking interconnection networks with a size
of less than O(n?) and with a poly-logarithmic depth O(log(n)¢) (for some small constant ¢ € N).

To reduce the size of the crossbar network, Clos [7] constructed a three-stage network using g
r X p crossbars in the first stage, p g X g crossbars in the second stage, and g p X r crossbars in



the third stage with n = ¢ - r. He proved that his network is non-blocking without rearranging
existing connections iff p > 2r — 1 and still non-blocking for p > r when existing connections are
rearranged. Based on these observations, Benes [3, 35] constructed special Clos networks built by
2 log(n) — 1 stages of 2 X 2 crossbars only. Many other networks based on 2 X 2 crossbars were then
proposed, e.g., the Q-network [21], the butterfly (Banyan) networks [11], fat trees [25], flattened
butterfly [18] to name just a few (see textbooks like [8, 33] for further examples). For all of these
networks, however, it turned out that they are either blocking or that it is very difficult to determine
the configuration of their 2 X 2 crossbars to establish a desired permutation. In particular, the
routing problem for the Benes network has been considered in many research papers [23, 29] and
the known parallel algorithms to compute configurations have a depth larger than the network itself.

Sorting networks [2] are therefore an attractive alternative for the design of non-blocking inter-
connection networks [10]: To that end, the inputs x, . . ., x,—; are simply sorted according to their
target addresses to implement the desired permutation. The 2 X 2 crossbars become then compare-
and-swap switches that determine their configuration by simply comparing the incoming target
addresses. The AKS network [1] proves that there exist sorting networks with depth O(log(n)) and
size O(nlog(n)), so that the use of sorting networks can significantly improve the costs of crossbars!.
However, the constants hidden behind the O-calculus turned out to be prohibitively large so that
the AKS network is unfortunately impractical [24, 31, 34]. However, well-known sorting networks
like Batcher’s bitonic and odd-even merge networks [2] and related variants [9, 20, 30] with a depth
O(log(n)?) and size O(nlog(n)?) are still competitive?2.

However, the implementation of partial permutations by sorting networks is not straightforward
and depends on the used sorting algorithms as we will outline in the next section. In particular, there
is a general solution for the class of merge-based networks, while for radix-based sorting networks
that were often considered for the design of interconnection networks [4, 5, 16, 17, 19, 22, 28],
only a special solution given by Narasimha [28] was known so far. Unfortunately, his network has
a bad depth of O(n) and is therefore not efficient enough for many applications.

In this paper, we present three general constructions that can transform binary sorters to ternary
Split modules. The latter are the key modules that directly lead to interconnection networks
for partial permutations based on radix-based sorting. This way, many efficient interconnection
networks [4, 5, 16, 17, 19, 22, 28] that were designed for total permutations can be transformed
so that the resulting networks can also work with partial permutations. While our constructions
roughly double the size of the circuits, they nearly maintain their depths, and thus do not influence
the latency of the networks. In particular, we still obtain networks of size O(nlog(n)?) and depth
O(log(n)?) (see [16]). By experimental results, we also show that the sizes of the obtained networks
are still in a practical range and are competitive to other known solutions.

The outline of the paper is as follows: In the next section, we report about related work on
the use of sorting networks as interconnection networks. In particular, we discuss problems and
known solutions for establishing partial permutations with sorting networks. Section 3 contains
the core of the paper where we show how to transform binary sorters to ternary Split modules
to implement radix-sorting interconnection networks for partial permutations. Finally, Section 4
shows by experimental results that the obtained networks still have a competitive size and depth.

IThese complexities refer to the compare-and-swap modules that have to compare addresses 0, . . ., n— 1 having log(n)
bits. Gate-level implementations of these modules have size O(log(n)) and depth O(log(log(n))), so that gate-level
implementations of the AKS network will have circuit depth O(log(n) log(log(n))) and size O(n log(n)?).

2Their gate-level implementations have a depth O(log(n)? log(log(n))) and size O(nlog(n)?).
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Figure 1: Merge-based sorting (MBS) versus radix-based sorting (RBS): MBS merges already sorted se-
quences with Merge modules while RBS partitions input sequences by Split modules into two
halves that are independently sorted.

2. Sorting Networks as Interconnection Networks

2.1. Routing Total Permutations by Sorting Networks

There are two important classes of sorting networks, namely the merge-based (MBS) and the
radix-based (RBS) sorting networks which are recursively defined as shown in Figure 1. In the
merge-based approach, a sorting network MBS(n) for n inputs is recursively constructed by splitting
the given sequence into two halves, recursively sorting these by two sorting networks MBS(5) of
half the size, and then merging the two sorted halves by a merge module Merge(n). Well-known
sorting networks following this paradigm are Batcher’s bitonic and odd-even sorting networks [2]
and related ones [9, 20, 30].

In radix-based sorting networks, the given inputs are partitioned into two halves by a Split(n)
module, e.g., by sorting them according to the most significant bit of their target address. Thus,
after the Split(n) module, the given inputs have already been routed to the right halves, so that the
remaining problems can be solved recursively in the same way (ignoring now the most significant
bits of the target addresses). The implementation of radix-based sorting networks is completely
determined by the implementation of the Split modules.

There are many ways to implement a Split module for total permutations, €.g., by means of binary
sorters [4, 5, 16, 17, 19, 22, 28] or concentrators [6, 13, 26, 32]: A (n, m)-concentrator is a circuit
with n inputs and m < n outputs that can route any given number k < m of valid inputs to k of its
m outputs. Split modules for total permutations can be obtained by two (n, 5)-concentrators: One
that routes the 7 inputs with a most significant bit 1 from the 7 inputs to the upper half of outputs,
and another one routing the other 5 inputs with a most significant bit O to the lower half of outputs.

2.2. Routing Partial Permutations by Sorting Networks

Independent on the choice of a particular sorting algorithm, sorting networks at first only implement
total permutations in that they can sort the n inputs by their target addresses which are numbers
0,...,n—1. If some inputs do not need a connection to an output, their target addresses are invalid,
denoted as L in the following. Note that there is no ordering of {L,0,...,n — 1} that would still
solve the routing problem by a simple sorting approach, since many values L may now occur and
they may have to be routed to different places in the final output sequence.

For merge-based sorting networks, there is a well-known solution known as the Batcher-Banyan
network [12,27]. The main idea is thereby to first treat L as a number larger than all target addresses
so that after using a normal sorting network this way, one obtains a preliminary output sequence
Y05 - - -» Yk—1> Vk» - - -» Yn—1 Where the k valid inputs were sorted as the prefix yy, ..., yx—; while the
invalid ones are placed in the suffix yg, ..., y,—1. A final Banyan permutation network can then



be used to move the valid inputs yy, . . ., yx— to the right places. To that end, one can simply use
a bit-controlled network like the Q)-network [21] where invalid target addresses L are ignored, so
that the valid ones are routed to their final destination. It can be shown [27] that the Q-network
[21] while being blocking in general will never block in this setting.

The same approach does however not work for the radix-based networks: If we treat L as a
number larger than all target addresses, it may happen that valid inputs with a most significant bit
1 will be erroneously routed by Split modules to the lower sub-network, where they are mixed up
with other valid inputs having a most significant bit 0. Hence, the resulting preliminary output
sequence will not consist of a sorted prefix of valid inputs as in the case of merge-based networks.

Hence, the Batcher-Banyan construction does not work for RBS networks. Recall that the task
of Split modules was to route the inputs already in the right halves. Inputs with invalid target
addresses can be routed to any half, but inputs with valid target address must be routed to the lower
and upper sub-networks in case the most significant bit of the target address is 0 and 1, respectively.

Instead of using binary sorters as in case of total permutations, one could therefore use ternary
sorters as Split modules using the ordering 0 < L < 1. This way, the output sequence of a Split
module will still route the inputs with valid target addresses to the right halves, while invalid inputs
may be routed to any half (note that still at most 5 inputs can have most significant bits 0/1).
However, while many constructions for binary sorters have been proposed [4, 5, 16, 17, 19, 22, 28],
none are known for the ternary case. We therefore show in the next section how to construct ternary
sorters from any binary sorter with almost the same circuit depth, but doubling the circuit size.
This way, we can transform any RBS network that has been constructed for total permutations into
a more powerful one that can work with partial permutations as well. Additionally, we consider
two optimizations of the ternary sorters for implementing RBS networks.

Narasimha addressed the problem to route partial permutations in his RBS network in [28]. In
Section III of [28], he explains without giving a proof that his network can also work with partial
permutations if an additional Split module is added on the left side of his RBS network. While
this is true for his network, and also for some others (we prove a characterization which networks
can be transformed this way in an upcoming publication), it is definitely not true for general RBS
networks (like three of the six we consider in the experimental results).

3. Split Modules for Routing Partial Permutations in RBS Networks

In this section, we present three constructions based on binary sorters to implement Split modules
for routing partial permutations in RBS networks. For all implementations, we assume that any
input x; is a bitvector in the format given on the left-hand side below:

| Xiq  Xig+iogn) | Msb |

’xio...xl'q—l ‘Xiq‘xiqﬂ---xiqﬂog(n)‘ ) 0 0
: ; . : d 1 0 0
1 1 1

The leftmost g bits are the message bits that should be sent to an output, bit g is the valid bit that
indicates whether this input shall be connected to some output, and the remaining bits are the bits
of the target address where the most significant bit (msb) is the rightmost one (that is consumed by
each Split module in the RBS network). Considering x; 4 and x; 4110¢(n) Only, we interpret inputs x;
as ternary values {0, L, 1} as shown on the right hand side above.
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Figure 2: Construction of a Ternary Sorter by two Binary Sorters.

3.1. Constructing Split Modules by Ternary Sorters

The left-hand side of Figure 2 shows how a ternary sorter can be constructed by two binary
sorters that we call the O-sorter and the 1-sorter, respectively. Both binary sorters obtain the n
inputs x, . .., x,—1 after a preprocessing step that modifies the msbs x; ;410¢() Of the invalid target
addresses as shown on the upper right part of Figure 2 as xl?qﬂog(n) and xl.{q Hog(n) for the 0- and
1-sorter, respectively. Note that after the preprocessing step, only the valid inputs have msbs 0 and
1 for the O- and 1-sorter, respectively.

After this, the O-sorter and the 1-sorter sort their input sequences to output sequences [y, . . ., [,
and uy, . ..,u,—1, respectively, by only considering the modified msbs xgq +log(n) and xi{q +log(n)"
Hence, the O-sorter uses the ordering 0 < {1, 1} while the 1-sorter uses ordering {0, L} < 1
(regarding the original inputs).

The lower right part of Figure 2 shows how the 0- and 1-sorter’s output sequences look like in
general: The O-sorter’s output sequence starts with values (I; 4, /i g +10g(n)) = (1,0), i.e., 0, followed
by values ([; 4, li g+10g(n)) = (%, 1),1i.e., L or 1, while the 1-sorters output sequence starts with values
(Ui,g» Ui g 4108(n)) = (%,0), i.e., 0 or L, followed by values (u; g, u; g+109(n)) = (1, 1), i.e., 1.

The final stage of multiplexers will then determine output y; by selecting one of the corresponding
values /; or u; as follows where [ is obtained from /; by setting its valid bit to 0:

up - if Uig N\ Ujg+log(n)
yii=9 L :if li,q A 7l g+log(n)
I/ : otherwise

Note that the number of valid inputs can be at most n, hence, we never have both u; 4 A u; 4110(n)
and iy A =l 41100n)- Note further that we have to set /i, := 0 in case /; is chosen for y;, but
lig A =i g110g(n) does not hold (this way, we avoid that an input with (x; 4, X; 4 +10g(n)) = (1, 1) will be
taken from the O-sorter that has already been copied from the 1-sorter).

It can be easily verified that the circuit shown in Figure 2 implements a ternary sorter, i.e., any
input sequence X, . . ., Xy,—1 of values {0, L, 1} is correctly sorted using the total order 0 < L < 1.
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Figure 3: Construction of a Ternary Splitter by Binary Sorters.

3.2. Constructing Split Modules by Ternary Concentrators

We have already mentioned that the Split modules do not have to be ternary sorters to partition the
inputs according to their msbs. Instead, it is sufficient to route all inputs x; with (x; 4, X; g+10g(n)) =
(1,1) to the upper half and all inputs x; with (x; 4, X; g+10g(r)) = (1,0) to the lower half, while the
invalid inputs x; with x; , = 0 may be routed to any half among the other values routed there.

For this reason, we can also consider the slightly simplified construction given in Figure 3.
Compared to Figure 2, we modify the msbs x; ;110(s) Of the target addresses in the same way, but
additionally invalidate all 1s and Os in the O- and 1-sorter, respectively, as shown in the upper right
part of Figure 3. Hence, the O-sorter will only have inputs (xgq, xgqﬂog(n)) e {(0,1),(1,0)}, ie.,
{1, 0}, and the 1-sorter will only have inputs (xl.l’q, xi{q+log(n)) € {(0,0),(1,1)},i.e., {L,1}.

Again, the 0- and 1-sorter only consider the modified msbs xgq+10g(n) and xl."q+10g(n),
to generate their output sequences ly, . . ., [,—1 and uo, . . ., u,_1, respectively.

Assuming now that at most 75 inputs x; satisfy (Xi g, Xi g+log(n)) = (1,0) and also at most 5 inputs
x; satisfy (xi g, Xi g+10g(n)) = (1, 1), we can simply determine y; as follows (see lower right part of
Figure 3):

respectively,

Rz :ifiE{%,...,n—l}
YTV L rified0,.. .2 -1}

As long as at most 5 inputs x; are 0 and 1, the output sequence will even be a sorted ternary
sequence. However, if more than 5 inputs x; should be 0 or more than 5 inputs x; should be 1, the
circuit will omit some of the inputs and will therefore no longer be correct. We therefore do not
consider the circuit of Figure 3 as a ternary sorter, but each part of it is a (r, 7) concentrator that
concentrates on the 0 and 1 values, respectively.

While not yielding a ternary sorter for general ternary sequences, Figure 3 still sorts all ternary
input sequences that will appear in RBS networks for partial permutations. However, it does not
allow some further optimizations as the one shown in the next section.
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Figure 4: Construction of a Ternary Splitter by Ternary Sorters and a Half Cleaner.

3.3. Constructing Split Modules by Ternary Sorters and Half Cleaners

In previous work [14, 15], we have shown how (ternary) Split modules with n inputs/outputs can
be constructed as shown in Figure 4 using two (ternary) sorters with 5 inputs/outputs and a half
cleaner circuit. Half cleaners were introduced by Batcher in [2] for the construction of his bitonic
sorting networks. We observed that half cleaners can also be used to implement binary [15] and
ternary [14] Split modules as shown in Figure 4. Due to lack of space, we cannot list details of
the definition of half cleaners, and just mention here that these circuits have size O(n) and depth
O(1), so that the depth is mainly determined by the used sorting networks (see [14, 15] for further
details).

As outlined in [14], it is required to use sorting networks for the construction of Figure 4. In
particular, the construction shown in the previous section, i.e., in Figure 3 cannot be used. Hence,
even though our initial construction of Figure 2 cannot compete with the one in Figure 3, it allows
the optimization shown in Figure 4. As our experimental results show, this implementation often
turns out as the best one of the three versions discussed in this paper.

4. Experimental Results

The depth of the circuits is mainly determined by the depth of the binary sorters which is O(log(n))
or O(log(n)?) for known implementations. Note that modifying the msbs and the selection of the
outputs as either /; or u; does only require circuits of depth O(1). Also the size of the circuits is
mainly dominated by the size of the binary sorters. While the depth does only increase by some
constant, the size obviously is twice the size of the binary sorters plus some O(n) gates for the
mapping and possible multiplexer stages.

To consider concrete circuits, we have implemented the constructions described in the previous
section for six binary sorters that we abbreviate by the acronyms of the authors of the paper where
these binary sorters were published: Batc68 [2] (the bitonic sorter reduced to one bit), ChOr94 [5],
ChChO6 [4], JaSJ17 [16], KoOr90 [19], and Nara94 [28].

The tables shown in Figure 5, Figure 6, and Figure 7 show the experimental results that we
obtained for the constructions given in Figure 2, Figure 3, and Figure 4, respectively. In these
tables, we list the depths and sizes of the generated circuits for n inputs/outputs, and the numbers
of NOT, AND, OR, XOR gates, half adders (HA), full adders (FA), 2:1 multiplexers (MX) and
2 X 2 crossbar switches (SW). The tables show only the size of the Split modules, and not of the
corresponding RBS networks. The size always improves from Figure 5 via Figure 6 to Figure 7,
but the depths are sometimes best for Figure 6 and sometimes for Figure 7.



5. Conclusions

In this paper, we presented three transformations that convert binary sorters to ternary Split modules.
Using the latter, interconnection networks based on radix-based sorting can be implemented that
can correctly route also partial permutations. Our transformations yield Split modules with the
same asymptotic complexities as the binary sorters in terms of circuit size and depth, and even only
add a constant to the circuit depth, but roughly double the size of the circuits. Nevertheless, the
sizes are still competitive since very good implementations of binary sorters have been developed in
many previous research papers that can now be used also for the implementation of interconnection
networks.
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