On Search-Space Restriction for Design Space Exploration of
Multi-/Many-Core Systems

Valentina Richthammer and Michael Glaf3
Ulm University
Germany
{valentina.richthammer,michael.glass}@uni-ulm.de

Abstract.

Design Space Exploration (DSE) for embedded system design with its multi-objective nature and
large search spaces typically prohibits exhaustive search and popularized the use of metaheuristic
optimization techniques. Recent large-scale multi- and especially many-core architectures
offering a multitude of application mapping possibilities create tremendously large search
spaces which give rise to the question whether established metaheuristics are still efficient. In
this work, we propose to employ a heuristic search-space restriction (SSR) approach based on
the exploration of subsystems, which significantly reduces individual search-space size and,
thus, exploration time. Knowing that this kind of restriction may miss global optima, we also
investigate the use of high-quality solutions derived from subsystems as an initial population for
the optimization of the complete system. Experimental results for tiled 8x8 to 24x24 many-core
architectures and several benchmark applications show that the proposed SSR enables the
metaheuristic to derive implementations of higher quality in a significantly reduced exploration
time. Although not all global optima are exposed to the restricted problem, this work gives
evidence that too complex search spaces may sacrifice the efficiency of metaheuristics drastically
and, thus, serves as a motivation for future research into SSR techniques for DSE.

1. Introduction

The growing complexity of modern embedded applications combined with the increasing utilization
of heterogeneous multi- and many-core architectures results in a multitude of application mapping
possibilities that exhibit great variance in execution properties like energy consumption, latency, etc.
Therefore, Design Space Exploration (DSE) techniques are typically employed to approximate a
Pareto-optimal front of operating points for run-time embedding, optimized for often conflicting
design objectives such as resource or energy requirements. Design- as well as run-time application
mapping consists of the following steps: (a) determining an allocation of resources from the
architecture, (b) binding each task of the application to a resource in the allocation so that
communication constraints imposed by data dependencies between the tasks can be met, and (c)
determining a feasible schedule for the execution of tasks. This in itself is an NP-complete problem
(commonly known as system synthesis) [1] that has been the subject of a large body of research (for
an overview see, e.g., [17]). During DSE, a multitude of feasible mappings needs to be constructed
and evaluated with respect to the design objectives, constituting a multi-objective optimization
problem (MOP). Evaluation is either done using simulation—which may require a considerable
amount of execution time—or analytically, often trading off evaluation accuracy for speed. Either

This work was supported by the German Research Foundation (DFG) as part of the Transregional Collaborative
Research Centre “Invasive Computing” under Grant SFB/TR 89.

vars # vars
48 | 12| | 12]
constr. 25 : # constr.

t, 400 | F &

: ;

¥

t

1

¥

t

(a) (b)

Figure 1: Application (a) and architecture graph (b) with number of variables/constraints in a SAT-formulation
generating feasible mappings. (c) shows three subsystems with corresponding search-space sizes.

way, the evaluation of tens of thousands of mapping possibilities contained in many-core search
spaces may become a bottleneck of DSE [14]. This, combined with ever-growing design spaces,
limits the applicability of exact and exhaustive DSE techniques covering the complete search space.
To illustrate typical search-space sizes many-core DSEs face nowadays, Fig. 1 shows an exemplary
3-task application (a) and the size of a Boolean Satisfiability (SAT)-problem formulation, based
on [8, 19], used to generate feasible mappings on a heterogeneous 4x4 Network-on-Chip (NoC)
architecture (b). This very small example already consists of 2*% ~ 2.81 x 10'* mapping possibilities
that have to fulfill 400 constraints to constitute a feasible mapping. The increasingly complex search-
space sizes for three benchmark applications from the Embedded Systems Synthesis Benchmarks
Suite (E3S) [2] and more realistic 8x8 and 24x24 NoCs, that will be used for evaluation later on, are
shown in Table 1.! State-of-the art DSEs, therefore, commonly employ problem-specific heuristics
or problem-independent metaheuristic optimization techniques like evolutionary algorithms (EAs)
to obtain high-quality solutions from these huge search spaces within reasonable time [17]. [3]
gives an overview of such techniques.

One issue that research into heuristic DSE techniques faces as a consequence of this, is the fact
that the Pareto-optimal solutions of the MOP are usually not known and can therefore not be used
for the evaluation of novel approaches. New work in this area is, thus, typically only compared to
existing DSEs that are based on (meta)heuristics as well. 1t therefore remains an unanswered—but
all the more important—question, whether the high-quality solutions found by these techniques are
a good approximation of the global optima for increasingly complex search spaces, as encountered
in many-core DSE. To bypass this problem and provide a first insight into potential shortcomings of
metaheuristic optimization techniques for DSE of large-scale systems, we present a novel perspective
by evaluating the effect a reduction of the search-space size has on the performance of state-of-the-art
metaheuristics. By decomposing the DSE into a set of subproblems, we will be able to compare
optimization quality of the decomposed problems to the solutions obtained from an optimization of
the complete system. The search-space restriction (SSR) is achieved by decomposing the target
architecture and limiting the exploration and optimization of application mappings to small parts of
the original system. Figure 1(c) exemplifies a possible decomposition into three yellow subsystems
and the respective search-space sizes, that are already dramatically reduced. Furthermore, Table 1
shows search-space sizes for a 4x4 subsystem and the benchmark applications. Since the search
space of subproblems is significantly smaller, we will be able to demonstrate that the performance
of modern optimization techniques (both in terms of optimization quality and time) is affected by
the complexity of current DSE search spaces and can easily be improved by employing a simple

Al reported SAT problems have already undergone advanced preprocessing, e.g. by unit clause propagation.

Table 1: Number of variables and constraints in a SAT-based problem formulation generating feasible
application mappings for benchmark applications onto various NoCs.

4x4 NoC 8%x8 NoC 24x24 NoC
application (# tasks) #vars # constr # vars # constr # vars # constr
consumer (11) 162 2,026 620 7,512 5944 71,356
telecom (14) 224 3,575 896 13,895 8,064 123,975
automotive (18) 288 3,809 1,152 14,801 10,368 132,049

SSR based on a decomposition of the architecture. In short, even a very basic SSR strategy may
already outperform state-of-the-art DSEs without SSR.

The remainder of the paper is organized as follows: Sections 2 and 3 present related work and
the fundamentals of DSE. The proposed SSR is introduced in Sec. 4 and evaluated using a set of
benchmark applications and architectures in Sec. 5. Finally, Sec. 6 concludes the paper.

2. Related Work

Traditionally, embedded system design tailors the platform to an application and optimizes it
for execution objectives and requirements. Related research into simplification techniques for
DSE of embedded systems is, therefore, based on a hierarchical view and decomposition of the
application rather than the architecture [6, 11, 15]. Recent years have seen a shift to the development
and utilization of multi- and many-core architectures that offer the possibility to dynamically
embed a multitude of applications. These large-scale platforms typically consist of a variety
of heterogeneous processing elements (PEs) connected by a scalable Network-on-Chip (NoC)
communication infrastructure [17], supporting the execution of diverse application mixes. Current
DSEs for many-core systems as in [19] explore and optimize concrete application mappings to
the given target architecture. A problem with this type of approach for increasingly complex
systems is the size of the search space of the optimization problem that strongly depends on the
number of PEs and the resulting multitude of mapping possibilities [18]. Therefore, most existing
run-time—and even design-time—techniques are not exact and do not consider and evaluate all
possible mappings; instead, metaheuristic techniques like EAs are often employed to determine a
set of high-quality solutions, while limiting exploration time to practicable magnitudes [13, 17].
Furthermore, large-scale systems are very likely to comprise redundancy in the search space due
to architectural symmetries, i.e. recurring patterns in the topology or distribution of PEs. Recent
symmetry-eliminating approaches circumvent this issue by identifying symmetric subsystems [4] or
reformulating the optimization problem to avoid the repeated exploration of equivalent mappings [16].
We will study the effect of SSR for both types of DSE to take into account any inherent differences
between both types of design spaces. Other works in this area include search-space pruning
techniques [14] or application-specific decomposition of DSE problems [12]. Finally, decomposition
based on a classification scheme that is envisaged to automatically detect suitable subproblems in
any DSE is proposed in [22]. This may be an interesting aspect of future advanced SSR techniques,
whose relevance the work at hand shall motivate.

3. Fundamentals

DSE in the context of Electronic System Level (ESL) design requires the exploration and optimization
of implementations representing application-to-architecture mappings.

System Model For many-core systems, graph-based models of application and architecture as
in [1] are particularly suitable, since they easily capture the regular 2D-mesh topology of NoC-based
architectures and the data dependencies inherent in modern embedded applications (Fig. 1 (a), (b)).

Definition 1 (Architecture Graph) An NoC with dimensions X andY is a directed graph Gn,c(PU
R,L). PEs pe,, form the set of nodes P with x,y indicating each PE’s position within the
NoC. Communication is modeled using an NoC router r,, € R for each PE and the respective
communication links L with maximal bandwidth capacity bw,,,,. Heterogeneity among PEs is
captured by annotating each PE node with a resource type.

Definition 2 (Application Graph) An application is a directed acyclic graph G, (V, E). Vertices
V =T U M represent tasks T and messages M. The messages and edges E C (T x M) U (M X T)
model data dependencies in the application, since each edge connects exactly one task with one
message (or vice versa). DSE requires information about properties of tasks and messages to
determine feasible mappings and evaluate their run-time performance in regards to, e.g., energy
consumption, payload, or period. This can be annotated to the respective vertices.

DSE for Many-Cores DSE for modern embedded systems is an MOP of typically conflicting
design objectives such as resource costs or execution time.

Definition 3 (Multi-Objective Optimization (cf. [9])) In general, an MOP is defined as:
minimize {CTx | Ax < b)
with C € 7/"*, A € Z"™",b € 7", and x € {0, 1}".

In system synthesis, C = (cy,...,c;) represents z objective functions f;(x) = Cl.TX with i €

{1,..., z} that are used to evaluate any implementation described by the n-dimensional decision
vector x € {0,1}".2 During DSE, variables x; € x are varied to generate a variety of differing
implementations in the search for high-quality mapping possibilities. Constraints Ax < b define the
set of feasible implementations X, i.e. application-to-architecture mappings that enable successful
execution of the application. Such constraints may, e.g., ensure that data dependencies can be
respected by sufficient communication bandwidth between PEs hosting communicating tasks [6].

Pareto-Optimality of MOP Solutions Since the objective function f = (f,..., f;) for DSE
contains multiple design objectives, the MOP does not have a single optimal solution. Instead,
the optimization results in a set of Pareto-optimal solutions X, C Xr. In the context of DSE,
an implementation is said to be Pareto-optimal if it is not dominated by any other explored
implementation. Mathematically, this is defined as:

Definition 4 (Pareto Dominance (cf. [21])) An objective vector f(x) = (aj,...,a;) dominates
another objective vector f(X') = (by,...,b;), i.e. f(x)> f(X), iff Vi:a; <b;A3Ij:a; <b;.

Therefore, a successful DSE will yield an interesting mix of high-quality implementations with
variance in the objective values: Some implementations may require few resources, but face high
latencies. Other mapping possibilities may trade off poor energy efficiency for a fast performance.
At run time, a suitable mapping can thus be dynamically selected depending on current requirements.

Due to the described extreme size of many-core DSE search spaces, exhaustive search resulting
in the true Pareto-front of solutions is practically impossible. Instead, (meta)heuristic techniques
are used to approximate the Pareto-optimal solutions by optimizing for a set of non-dominated
high-quality solutions X . The quality of this approximation is, however, currently not known since
only relative comparisons with other (meta)heuristics are feasible.

2It can w.l.o.g. be assumed that typical design objectives can be formulated as minimization problems (by, e.g.,
negating the objective function for objectives to be maximized) [9].

& [~ |

Ce gl Lk

8~ [~
L SR | .

=T,
Peg3 Peys Pess
.

(a)
Figure 2: DSE of the complete system (a), basic subsystem DSE (b), and initial population construction (c).

4. Search-Space Restriction in DSE

This work, therefore, investigates the suitability of metaheuristics for DSE of modern many-core
systems. This is the current state-of-the-art in automatic system level design, since search-space
size prevents the use of exact optimization techniques. To this end, we evaluate the performance of
metaheuristic optimization techniques in regard to search-space coverage and execution time on
restricted sub-parts of system-level DSE, and compare them to a DSE of the complete system.

The regular layout of NoC-based many-core architectures inspires a restriction of the search space
by decomposing the architecture into smaller parts, or sub-architectures. Search-space size can be
significantly reduced by limiting the DSE to the exploration of embeddings on such subsystems,
since this drastically reduces the number of mapping possibilities (cf. Fig. 1 and Table 1).

4.1. Exploration of Subsystems

In principle, any architecture can be decomposed into subsystems to reduce search-space size—
even though problem-specific knowledge, e.g. about resources that are critical for the execution
of the application, may be required for complex architectural layouts with non-regular network
topologies, etc. As an illustrating case-study demonstrating the potential of SSR for DSE, we use
regular heterogeneous many-core architectures and decompose them into suitable sub-architectures
automatically and without relying on any problem-specific information (see Fig. 1(c)).

A first possibility to implement subsystem DSE is the exploration of one (or more) sub-architectures
instead of the complete system (see Fig. 2(b)). The resulting set of high-quality solutions is then
the Pareto-optimal combination of solutions obtained from all s explored sub-architectures, i.e.
U Xp: \ Xaom- Xdom = {x|3IX": f(X') > f(x)} (withx, X" € [X)) is the set of dominated solutions

N N
within the set union, according to Def. 4. This allows for a straight-forward evaluation of SSR in
regard to optimization time and quality, compared to a DSE of the complete system (Fig. 2(a)).
Alternatively, we propose a pre-exploration of sub-architectures to select a single subsystem
for extended exploration. The pre-exploration phase consists of the rapid optimization of multiple
subsystems for a limited period of time. By comparing optimization qualities after the pre-exploration
phase, the most promising subsystem for further exploration can easily be determined. This approach
offers the advantage of exploring a variety of subsystems in the beginning, while allowing an
in-depth optimization of a single subsystem, to balance exploration time and search-space coverage.

Benefits of SSR The exploration of sub-architectures improves DSE of many-cores twofold: Since
large-scale architectures are likely to contain recurring patterns in the topology and distribution
of PEs [4, 16], any DSE exploring concrete mappings on the complete architecture will suffer

from the exploration of redundant implementations that are equivalent in terms of the optimized
quality numbers. The repeated exploration and evaluation of these mappings does not add any new
information to the DSE; instead, exploration time is wasted on the construction and especially the
often time-consuming evaluation of solutions that will not improve optimization quality. Traditional
DSE techniques that do not explicitly implement mechanisms to eliminate architectural symmetries
will therefore explore large areas of the search space that contribute little to none to the final set of
high-quality solutions. Furthermore, many-core search spaces consist in large part of low-quality
implementations that are dominated in their objective values by other solutions. These solutions
will, therefore, not be part of the resulting set of high-quality solutions either.

Both problems are easily avoided by restricting DSE to subparts of the original architecture:
Redundant mappings are less likely to be contained in small subsystems and the number of dominated
solutions will be reduced. Since the search space of any sub-problem is furthermore significantly
smaller than that of the complete system, a faster and more thorough coverage is to be expected. A
final benefit is the reduced effort required to generate and evaluate subsystem implementations [5].

Drawbacks An easily rectified drawback is the problem of generalizing subsystem mappings to
the complete architecture, since a particular sub-architecture might already be occupied when the
application has to be mapped at run time. One possibility, as introduced in [19], is the abstraction
to equivalence classes of application mappings: From each resulting operating point, a set of
constraints on required resource types, maximal distance between communicating PEs, etc. is
extracted. Now, run-time mapping is equivalent to a constraint satisfaction problem that can be
fulfilled by any constellation of PEs in the system, so that dynamic mapping is possible at run time.
A second and more severe issue is the risk of losing high-quality solutions—and even the global
Pareto-optima—by no longer exploring the complete architecture and all mapping possibilities it
offers. For instance, mappings requiring a great number or rare constellation of PEs, specialized
components, etc. cannot all be captured in the restricted search spaces of subsystems. On the other
hand, the value of such implementation for run-time mapping may be limited, since the probability
of being able to dynamically allocate a suitable part of the architecture that is not occupied by
concurrently executed applications may be low. More importantly, the sheer size of the complete
search space may prohibit current techniques from ever reaching these solutions in the first place.

4.2. Sub-System Solutions as Initial Population

To circumvent the problem of losing high-quality solutions that can only be found on the complete
system, we investigate the use of subsystem DSE to construct an initial population as starting point
for DSE of the complete system (Fig. 2(c)). A related approach bases initial population construction
on subsystems of decomposed parts of the application [5]. In contrast, the approach proposed
here does not require a hierarchical structure of the application, but is applicable to any system
description that allows a decomposition of the target architecture.

First, a set of subproblems is explored for a limited period of time. These subsystem DSEs start
out with random populations as is characteristic of metaheuristic optimization techniques [5]. The
best implementations from all s subsystem DSEs are accumulated into a set of non-dominated
solutions U Xp: \ Xdom, where Xgop = {x | IX": f(X') > f(x)} (Withx, X" € U X,). Using these

solutions as 1n1t1al population for a DSE of the complete system may guide the DSE towards areas
of the search space containing high-quality solutions. This offers the advantages of significantly less
complex subsystem DSE—yielding high-quality results in a short exploration time, see Sec. 5—
while exposing the complete search space to the optimization, so that all global Pareto-optima can
theoretically be found by the procedure.

5. Experimental Evaluation

This section presents an experimental evaluation of SSR for two types of DSE: a classic exploration
of concrete mappings [19] (Crassic) and a symmetry-eliminating DSE (Sym) that already reduces
the search space by optimizing classes of mappings [16]. Both DSEs were implemented in the
open-source optimization framework Opt4J [10]. We first present the experimental setup (Sec. 5.1)
and discuss the effect of SSR on DSE time and optimization quality in Sec. 5.2.

5.1. Experimental Setup

We show the effect of SSR for three applications from the E3S [2] (consumer, telecom, automotive)
that differ in communication requirements and number of tasks. Two heterogeneous NoC-based
architectures consisting of 8x8 and 24x24 PEs (each containing 3 different resource types) are
compared. Since the aim of this work is to give a first indication of the potential of subsystem
DSE, automatically generated 4x4 sub-architectures were used for all subsystem DSEs. Advanced
decomposition methods may, of course, yield even better results and may also be required for more
complex architectural topologies. The decomposition created 2 non-isomorphic 4x4 subsystems for
the 8x8 NoC and 4 such subsystems for the 24x24 NoC. For the basic SSR approach, two methods
have been implemented: We first discuss a simple strategy of exploring all automatically generated
sub-architectures (-all) and combining the resulting approximated Pareto-fronts according to Def. 4.
A second approach is the optimization of a single subsystem after a pre-evaluation phase (-pre). To
this end, all subsystems are explored for a limited period of time (300 generations); subsequently,
the subsystem offering the best optimization quality after the pre-exploration phase is selected for
further exploration. For comparison, the optimization quality of the single best subsystem DSE is
used; pre-exploration time is included in the reported execution times. Furthermore, we investigate
a strategy to construct the initial population for DSE of the complete system (-init). Here, all
subsystems are optimized for 500 generations; afterwards, the complete system is explored using the
combined non-dominated subsystem solutions as initial population. Results are averaged over 10
DSE runs for each implemented approach with a population size of 100 individuals and minimized
optimization objectives resource cost [number of PEs], energy consumption [m]], and latency [ms].

5.2. Experimental Results

We compare the quality of all SSR approaches to a DSE of the complete system. In particular, we
provide an analysis of optimization quality depending on exploration time to analyze the performance
of subsystem DSEs both in terms of search-space coverage and execution-time requirements. Multi-
objective optimization does not result in a single optimal solution, but in a set of non-dominated
points in the objective space. To compare different objective fronts with each other, the well-
established quality measures e-dominance [7] and hypervolume [20] are used in the following
analysis. e-dominance measures the distance between the solutions of one approach and a reference
set accumulated from all approaches to be compared. Hypervolume analyses the volume in the

Table 2: Optimization quality, depending on DSE time, and coverage of non-dominated solutions (CLASSIC).

8x8 NoC 24x24 NoC
coverage coverage
application approach e-dom. (50s) e-dom. (400s) hyperv. (50s) hyperv. (400s) sub/orig orig/sub e-dom. (50s) e-dom. (1000s) hyperv. (50s) hyperv. (1000s) sub/orig orig/sub
CLASSIC 0.264 0.200 0.636 0.475 - - 0.581 0.428 1.159 0.914 - -
consumer CLASSIC-all 0.117 0.089 0.218 0.109 0.946 0.014 0.117 0.086 0.209 0.078 0.978 0.000
CLASSIC-pre 0.217 0.086 0.467 0.074 0.960 0.005 0.225 0.085 0.468 0.078 0.976 0.000
CLASSIC 0.480 0.377 1.056 0.759 - - 0.707 0.667 1.539 1.421 - -
telecom CLASSIC-all 0.230 0.162 0.512 0.236 0.907 0.012 0.331 0.153 0.652 0.274 0.990 0.000
CLASSIC-pre 0.327 0.146 0.700 0.221 0.930 0.011 0.409 0.163 0.955 0.334 0.739 0.000
CLASSIC 0.421 0.367 1.162 0.881 - - 0.700 0.568 1.564 1.378 - -
automotive CLASSIC-all 0.284 0.247 0.640 0.476 0.948 0.002 0.363 0.213 0.768 0.407 0.959 0.000

CLASSIC-pre 0.375 0.250 0.953 0.488 0.958 0.000 0.375 0.204 0.973 0.396 0.979 0.000

T 1 T 1 T

L p] — complete — all] — complete — all p) — complete — all
0.8 —pre init | 4 0.8 —pre init | 0.8} — pre init | |
v v Y
g g g
g 06 : g 06 S 06& B
g g g w
))) \
TO4K E 7047(TOA:_&]
w \ w w .
0.2} 0.2} = 0.2} 8
A
0 Il Il Il 0 Il Il Il 0 Il Il Il
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
time time time
(a) consumer (b) telecom (¢) automotive

Figure 3: e-dominance over time for all applications on an 8x8 NoC (DSE: Crassic).

objective space covered by each approach and the reference. For both metrics, smaller values (— 0)
correspond to a higher optimization quality.

Sub-System DSE for Initial Population Construction DSE of the complete system did not
benefit from initial population construction in any experiment (at least for the basic architecture
decomposition mechanism proposed in this work). In particular, no new non-dominated solutions
where found after switching to the complete system (see approach -init in Fig. 3, where optimization
quality after the switching point, indicated by the orange dotted line, does not improve), giving
further evidence that the extreme size of the complete search spaces prohibits successful exploration.
The following discussion of results, therefore, omits a detailed examination of -init.

DSE Time and Optimization Quality Table 2 shows optimization quality, quantified in e-
dominance and hypervolume, of each approach after 50 s and 400s/1000s of DSE CLassic. In
all experiments, the SSR approaches -all and -pre converge to significantly higher optimization
qualities very quickly, whereas DSE of the complete system is inferior. Especially for the 24x24
NoC, DSE quality is worse by a factor of up to =~ 5.04 for e-dominance and = 11.72 for hypervolume.
Fig. 3 shows a graphical representation of e-dominance over DSE time for all applications on
the 8x8 NoC, where it furthermore becomes clear that DSE quality stagnates after a certain
exploration time. Therefore, metaheuristic techniques will not be able to further improve the set
of non-dominated solutions for complex search spaces even if more DSE time is provided; this
demonstrates the need for novel approaches in DSE of large-scale systems all the more. Results
for the symmetry-eliminating DSE are shown in Table 3. Here, sub-system approaches converge to
significantly superior optimization qualities even more quickly than for the complete DSE.

The choice of SSR approach does not significantly influence performance for the current basic
decomposition mechanism. Approach -pre suffers from the pre-exploration time in the beginning
(shown as 7, in Fig. 3); optimization quality of the selected subsystem, however, quickly converges to
similar values and can even exceed -all’s quality in some cases—albeit by only very small fractions.

Fig. 4 illustrates the difference in optimization quality by showing the non-dominated solutions for

Table 3: Optimization quality, depending on DSE time, and coverage of non-dominated solutions (Sym).
8x8 NoC 24x24 NoC

coverage coverage

application approach e-dom. (100s) e-dom. (15,000s) hyperv. (100s) hyperv. (15,000s) sub/orig orig/sub e-dom. (100s) e-dom. (15,000s) hyperv. (100s) hyperv. (15,000s) sub/orig orig/sub

SYM 0.294 0.004 0.633 0.003 - - 0.294 0.004 0.633 0.003 - -
consumer SYM-all 0.003 0.003 0.002 0.002 0.952 0.167 0.011 0.011 0.012 0.012 0.536 0.452
SYM-pre 0.004 0.003 0.003 0.002 0.508 0.442 0.004 0.003 0.003 0.002 0.508 0.442
SYM 0.808 0.486 1.346 1.031 - - 0.808 0.486 1.346 1.031 - -
telecom SYM-all 0.079 0.055 0.074 0.047 0.503 0.097 0.097 0.095 0.084 0.071 0.656 0.004
SYM-pre 0.082 0.054 0.081 0.042 0.656 0.019 0.086 0.055 0.085 0.047 0.503 0.097
SYM 0.250 0.114 0.433 0.113 - - 0.513 0.321 1.108 0.685 - -
automotive SYM-all 0.100 0.087 0.095 0.071 0.758 0.089 0.107 0.107 0.100 0.091 0.890 0.030

SYM-pre 0.107 0.079 0.122 0.076 0.772 0.071 0.114 0.092 0.117 0.078 0.908 0.000

m
~complete ¢ all / : C(r)énplete ° ilrllllt
wpre init P -t
L e
15 oy utal®
2 g X
—
5 1g iz
. £ ; 20
@ g - "l
= a 5k/e ©F e 15 $\\
: ' f 0 &
7,000 6,000 5,000 4,000 éé S
o 7/
ener: N4 latency [ms] §
gy 9 S
consumption [mJ] ¥ — S

«—

Figure 4: Non-dominated solutions in the 3-dimensional objective space for application automotive on a
24x24 architecture (DSE: CLASSIC).

each approach in the 3D-objective space (application automotive on the 24x24 NoC, DSE CLassIcC).
Subsystem solutions accumulate in superior regions of the objective space that are not reached by a
DSE of the complete system, explaining the significantly improved quality numbers.

Coverage Finally, we analyze the coverage between the resulting sets of non-dominated solutions.
In Tables 2 and 3 columns sub/orig describe the percentage of solutions from the complete DSE
that each subsystem approach was able to find. For DSE CrassIic, subsystem approaches typically
find = 95% of solutions that were also discovered by a DSE of the complete system. On the other
hand, the complete DSE only covers a fraction of results of each subsystem approach (at most
~ 1.4%) (shown in columns orig/sub). This indicates again that too complex search spaces may
prohibit successful exploration and optimization. For DSE Sym, the differences in coverage are not
as extreme; the complexity reduction by the implemented symmetry-elimination, thus, successfully
reduces search-space size to some extent. Nevertheless, subsystem DSE is superior for classic as
well as symmetry-eliminating DSE, especially in terms of execution time.

6. Conclusion

This work investigates the suitability of established metaheuristics in the context of DSE for
many-core systems and their increasingly complex search spaces. A simple SSR limiting the
DSE to automatically generated subsystems significantly improves exploration time as well as
optimization quality, clearly demonstrating the limitations of metaheuristic optimization techniques
for large-scale problems. Initial population construction for a DSE of the complete system—using
a basic decomposition—merely produced results comparable to those of subsystem DSEs; this
emphasizes the need for advanced decomposition approaches and may give an indication for
prospective research directions into more elaborate SSR techniques for DSE of large-scale systems.

References

[1] Blickle, Tobias, Jiirgen Teich, and Lothar Thiele: System-Level Synthesis Using Evolutionary Algorithms. Design
Automation for Embedded Systems, 3(1):23-58, 1998.

[2] Dick, Robert: Embedded System Synthesis Benchmarks Suite (E3S). http://ziyang.eecs.umich.edu/
~dickrp/e3s/.

[3] GlaB, Michael, Jiirgen Teich, Martin Lukasiewycz, and Felix Reimann: Hybrid Optimization Techniques for System-
Level Design Space Exploration. In Ha, Soonhoi and Jiirgen Teich (editors): Handbook of Hardware/Software
Codesign, pages 1-31, Dordrecht, 2017. Springer Netherlands.

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Goens, Andrés, Sergio Siccha, and Jerénimo Castrillon: Symmetry in Software Synthesis. CoRR, abs/1704.06623,
2017. http://arxiv.org/abs/1704.06623.

Haubelt, Christian, Jiirgen Gamenik, and Jiirgen Teich: Initial Population Construction for Convergence Im-
provement of MOEAs. In Coello Coello, Carlos A., Arturo Hernandez Aguirre, and Eckart Zitzler (editors):
Evolutionary Multi-Criterion Optimization: Third International Conference, EMO 2005, Guanajuato, Mexico,
March 9-11, 2005. Proceedings, pages 191-205, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

Haubelt, Christian and Jiirgen Teich: Accelerating Design Space Exploration using Pareto-Front Arithmetics. In
Proceedings of the ASP-DAC Asia and South Pacific Design Automation Conference 2003, pages 525-531, 2003.

Laumanns, Marco, Lothar Thiele, Kalyanmoy Deb, and Eckart Zitzler: Combining Convergence and Diversity in
Evolutionary Multiobjective Optimization. Evol. Comput., 10(3):263-282, September 2002.

Lukasiewycz, Martin, Michael GlaB, Christian Haubelt, and Jiirgen Teich: SAT-decoding in Evolutionary
Algorithms for Discrete Constrained Optimization Problems. In IEEE Congress on Evol. Comp., 2007.

Lukasiewycz, Martin, Michael GlaB, Christian Haubelt, and Jiirgen Teich: Solving Multi-objective Pseudo-Boolean
Problems. In Marques-Silva, Jodao and Karem A. Sakallah (editors): Theory and Applications of Satisfiability
Testing — SAT 2007: 10th International Conference, Lisbon, Portugal, May 28-31, 2007. Proceedings, pages
56-69, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

Lukasiewycz, Martin, Michael Gla}, Felix Reimann, and Jiirgen Teich: Opt4J: A Modular Framework for
Meta-heuristic Optimization. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation, GECCO 11, pages 1723-1730, New York, NY, USA, 2011. ACM, ISBN 978-1-4503-0557-0.

Neubauer, Kai, Christian Haubelt, and Michael Gla3: Supporting Composition in Symbolic System Synthesis. In
2016 International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation.

Padmanabhan, Shobana, Yixin Chen, and Roger D. Chamberlain: Decomposition Techniques for Optimal Design-
space Exploration of Streaming Applications. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP *13, pages 285-286, New York, NY, USA, 2013. ACM.

Panerati, Jacopo, Donatella Sciuto, and Giovanni Beltrame: Optimization Strategies in Design Space Exploration.
In Ha, Soonhoi and Jiirgen Teich (editors): Handbook of Hardware/Software Codesign, pages 189-216, Dordrecht,
2017. Springer Netherlands.

Piscitelli, Roberta and Andy D. Pimentel: Design Space Pruning through Hybrid Analysis in System-level Design
Space Exploration. In Design, Automation, Test in Europe Conference Exhibition (DATE), pages 781-786, 2012.

Rao, D. Sreenivasa and Fadi J. Kurdahi: Hierarchical Design Space Exploration for a Class of Digital Systems.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 1(3):282-295, Sept 1993, ISSN 1063-8210.

Schwarzer, Tobias, Andreas Weichslgartner, Michael GlaB3, Stefan Wildermann, Peter Brand, and Jiirgen Teich:
Symmetry-Eliminating Design Space Exploration for Hybrid Application Mapping on Many-Core Architectures.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(2):297-310, Feb 2018.

Singh, Amit K., Muhammad Shafique, Akash Kumar, and Jorg Henkel: Mapping on Multi/Many-core Systems:
Survey of Current and Emerging Trends. In 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC),
pages 1-10, May 2013.

Srinivasan, V. Prasanna and A. P. Shanthi: A Survey Of Research And Practices In Multiprocessor System On Chip
Design Space Exploration. Journal of Theoretical and Applied Information Technology, 64:1, 2014.

Weichslgartner, Andreas, Deepak Gangadharan, Stefan Wildermann, Michael GlaB, and Jiirgen Teich: DAARM:
Design-Time Application Analysis and Run-Time Mapping for Predictable Execution in Many-Core Systems. In
Proc. of CODES+ISSS 2014, pages 34:1-34:10, 2014.

Zitzler, Eckart and Lothar Thiele: Multiobjective Optimization Using Evolutionary Algorithms — A Comparative
Case Study. In In Proc. of PPSN, pages 292-301, 1998.

Zitzler, Eckart, Lothar Thiele, Marco Laumanns, Carlos M. Fonseca, and Viviane G. da Fonseca: Performance
Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary
Computation, 7(2):117-132, April 2003.

Zverlov, Sergey: Decomposition of Design Space Exploration Problems in the Context of Model-Based Development.
In Proc. of the Doctoral Symposium at the 19th ACM/IEEE International Conference of Model-Driven Engineering
Languages and Systems 2016 (MoDELS 2016), 2016.

