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CHAPTER 1

I NTRODUCTION

All organisms live in an environment full of changes, full, as it has been said, of ’happenings’
(Smith, 2000). Some of these changes will be beneficial to the organism, others detrimental.
The fullest possible knowledge of relevant ’happenings’ underlies the organisms ability to adapt
to its environment. Thus,sensory perceptionof environmental stimuli is a fundamental char-
acteristic of all living organisms and is of utmost importance for survival. Highly sophisticated
sensory systems for a large panoply of physical stimuli haveevolved (Hudspeth and Logo-
thetis, 2000), and each sensory system is tuned to a specific type of stimulus, termedadequate
stimulus. The major types of sensory systems are mechanoreceptors, chemoreceptors and pho-
toreceptors, although more exotic receptor types such as electroreceptors and magnetoreceptors
have evolved as well. In animals neural sensory systems developed that connect the sensory
perception to the animal’s nervous system. Thus, sensory perception in animals is atransduc-
tion of a certain physical stimulus into an electrical signal that can be processed by its nervous
system. The transduction is accomplished by receptor cells, which transforma physical stim-
ulus step by step into thestimulus representation. The transformation of each step defines the
relationship between the stimulus and the response of the sensory receptor. The succession of
each individual step forms asignal transduction chain. As more is known about the biophysical
structure of a sensory system on a molecular and anatomical level, more emphasis is placed on
its functional characteristics. These can be recognized asa critical level of biological organi-
zation (Hartwell et al., 1999) and offers the means to connect molecular biology to emergent
phenomena.

Neural Basics Neural systems are composed of neuronal cells, called neurons. Alike all bio-
logical cells, neurons exhibit a negative voltage potential across their cell membrane. Neurons
utilize changes of this membrane potential to process and convey information. The steady-state
of the membrane potential is dependent on the types and amounts of ions inside and outside the
cell as well as on conductivity of the cell membrane to these ions. Relevant ions usually are
potassium, sodium and chloride. The specific composition ofinner and outer fluids is strongly
dependend on the specific cell type and organism. The conductivity of the cell membrane is
controlled by the presence of specialized ion-channels. Specialized structures of neurons pro-
cess and convey the information stored in the membrane potential actively and for this purpose
feature voltage-dependent ion-channels that possess dynamic opening properties. The opening
state, better, the opening probability of these voltage-dependent ion-channels is associated with
the membrane potential.
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Figure 1.1: HODGKIN-HUXLEY MODEL. Time course of the membrane potential and gating parameters due
to constant input. Gating parameters are shifted and displayed without axis. Figure adapted fromHodgkin and
Huxley(1952a,b,c,d).

There are many types of neurons and each type exhibits a complex anatomy, the character-
istics of which adapt the neuron to its individual function.Despite the anatomical complexity
and functional variety of neuronal cells, there are common features. These are the neuron’s
soma, which comprises the cell nucleus, thedendrite, which typically receives the cell’s main
excitatory input and theaxon, which conveys the processed information to other cells. Exci-
tatory inputs are typically depolarising and inhibitory inputs hyperpolarizing. Typically, the
axon and the so-called ’axon hill’ (the region of the soma where the axon originates) feature the
voltage-dependent ion-channels described earlier. When the membrane potential at the axon hill
exceeds a certain threshold, a so-calledaction potentialis evoked in an all-or-nothing fashion.
The details of the underlying processes that cause this particular response have been unrav-
eled and described by the unprecedented work of Hodgkin and Huxley (Hodgkin and Huxley,
1952a,b,c,d). The properties of the mathematical model is shown in Figure (1.1). Due to the
particular response behaviour of voltage-dependent ion-channels, the axon hill can be recog-
nized as the site of signal integration, where incoming signals from the dendrite are processed.
Other regions of the neuron, e.g. the dendrite, exhibit passive electrotonictransduction proper-
ties only.

Passive Membrane Properties The thin and isolating cell membrane divides well conducting
compartments and thus acts as an electric condensator, whose capacity is found to be uniformly
1µF/cm2 in all cells examined so far (Gentet et al., 2000), due to the homogenous structure of
the lipid double layer. If a constant current step with amplitudeI0 is injected into a small and
isopotential patch of passive neuronal membrane, the charge flows into the capacitance and the
potential rises starting atVm(0) = 0

Vm(t) = V∞(1−e−t/τm), (1.1)
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with the membrane time constantτm = CmRm, whereCm is the specific membrane capacitance
(in µF cm−2) andRm the specific membrane resistance (inΩ cm2). This time course is governed
by exponential decay toward the steady-stateV∞ = RmI0. Thus, in one time constant (t = τ) the
electrotonic potential will reach 63 % ofV∞. The estimates ofτm are known to depend heavily on
the experimental conditions, i.e. the composition of the physiological solution and the quality
of the seal. For a full review, seeZigmond et al.(1999).

1.1 Auditory Transduction and Mechanoreceptors

The process of hearing captures acoustic information that is embedded in rapid pressure fluctua-
tions of a medium. Accordingly, auditory sensory organs arefound to be composed of mechani-
cally resonating structures that are driven by the sound-waves and conjuncted mechanosensitive
(auditory) receptor cells, which convert the induced oscillations of the resonators in electrical
signals. A huge variety of resonating structures such as eardrums, basilar membranes and hair
sensilla have evolved (Robles and Ruggero, 2001; French, 1988; Martin C. Göpfert, 2002). The
oscillations cause mechanosensory ion-channels to open (Hudspeth, 1985; Hill , 1983; Gillespie
and Walker, 2001) and thereby induce a depolarising transduction current. The transduction
current accumulates and charges the membrane. Areceptor potentialbuilds up and either di-
rectly evokes action potentials in the receptor cell or is transmitted to other cells.

Most information in sound is contained in its temporal structure. To be able to extract the
behaviourally relevant information, the temporal resolution of auditory system must be as fine
as the relevant structures of the stimulus. This attribute makes the auditory system particularly
well suited for the study of time processing in nervous systems. The time resolution is not by
far limited by the width of an action potential, as has been shown by several examples (Mason,
Oshinsky, and Hoy, 2001; Knudsen, 1980; Neuweiler and Schmidt, 1993), where resolutions
of a few microseconds are achieved. The ability of auditory receptor cells to read out stimuli
with high temporal resolution often finds its correspondence in the temporal accuracy of the
response.

Auditory systems have developed in a huge variety in animals, but common features exist. Typ-
ically, the stimulus space of sound comprises a much higher dimensionality than the response
space of the receptor neuron. Hence, auditory transductionprocess involves adimensional
reductionthat can be interpreted asstimulus integration. The auditory transduction process
is based on the recognition of oscillation structures and, therefore, on mechanosensitive ion-
channels in the receptor cells. These channels are very scarce (Hudspeth, 1989; Gillespie,
1995) and many details about them are unknown. Transduction is rapid and, thus, no second
messengers can be involved (Hudspeth and Logothetis, 2000; Gillespie and Walker, 2001). Fur-
thermore, mechanoperception is evolutionarily old and is found as the basis for different senses
in all kinds of organisms. Hence, evolutionary relationships can be suspected (Martinac, 2001).

1.2 Anatomy of the Locust Auditory System

Gollisch et al. performed studies on the auditory peripheryof the migratory locust (Locusta mi-
gratoria L., Orthoptera, Acrididae). The physiology of hearing in locusts is less complex than
in mammals and has been well described (Gray, 1960; Michelsen, 1971a; Stephen and Bennet-
Clark, 1982; Jacobs, Otte, and Lakes-Harlan, 1999). The basic structure is highly conserved
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Figure 1.2: SCHEMATA OF THE TYMPANUM AND AUDITORY GANGLION OF THE LOCUST Schistocerca gre-
garia. (A) The auditory ganglion (Müller’s organ) is attached directly to the tympanum. Four branches (a-d)
project to different attachment sites of the tympanum that possess different resonance characteristics. (B) Attach-
ment sites (a-d) of the tympanum. The structure of the tympanum is heterogenic. Thick and thin parts of the
tympanum are indicated and correspond to different resonance frequencies. (C) Location of the Müller’s organ on
the tympanum. The arrow indicates the viewing angle for panel A. Figure taken fromMichelsen(1971a).

across locust species. Still, the coupling of receptor cells to an eardrum suggests functional
similarities to the mammalian ear. Locust possess two ears,located in the first abdominal seg-
ment, just above the coxa of the hindlegs, where the leg is attached at each side of the body.
Both ears are connected by a cavity that allows air-pressureto pass through the animals body
and, thus, locust ears act as pressure-difference receiverfor low sound frequencies. The reso-
nance structure of each ear is a heterogenic structured tympanum. Attached to the inner side
of the tympanum is the auditory ganglion (Müller’s organ), which contains the somata of 60-80
receptor cells (1.2).

The auditory receptor cells of locusts are chordotonal organs, which are commonly used in
insects for mechanoperception. Chordotonal organs are composed of scolopodia (Fig.1.3A)
that contain a single primary (neuronal) receptor cell (Fig. 1.3B). The dendrites of the recep-
tor cells project to four different attachment sites of the tympanum each exhibiting different
resonance characteristics. The receptor cell’s dendritesare approximately 100µm long and are
enclosed by satellite cells. The dendrites don’t branch andcontain a single cilium that protrudes
from its apex and connects to the hypodermis of the tympanum.Physiological classification
due to sensitivity maxima and absolute sensitivities of thereceptor neurons yields three (Ja-
cobs et al., 1999) to four functional groups (Michelson, 1971). However, receptor cells exhibit
characteristic frequencies of about 5 kHz inlow-frequency receptor cells, or of about 15 kHz
in high-frequency receptor cells. The tuning properties are obtained from the local resonance
characteristics of the tympanum (Fig.1.2B) and, thus, resemble aplace codingsimilar to those
of vertebrate ears. The receptor cell’s axons project to themetathoracic ganglion. In order
to keep the auditory periphery intact, electrophysiological measurements were performed at a
distal position of the axonal projection.

In comparison to the mammalian ear, locust ears are structurally simple. The mammalian
cochlea possesses complex mechanical properties, including feedback loops and nonlinear am-
plification (Martin and Hudspeth, 1999; Eguíluz, Ospeck, Choe, Hudspeth, and Magnasco,
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Figure 1.3: ANATOMY OF AUDITORY RECEPTORS CONNECTED TO AFOLD OF THE TYMPANUM OF THE LO-
CUST Schistocerca gregaria. (A) Chordotonal organ in the auditory ganglion. Chordotonal organs are central
building blocks of auditory receptors in insects. Each organ consists of specialized sensilla known as scolopidia.
Each scolopidium consists of one or more neurosensory cellsfrom whose dendrite a sensory cilium originates.
The receptor neurons are surrounded by satellite cells - glial cells, fibrous sheath cells, and scolopale cells. The
distal segment of the dendrite is enclosed within an attachment cell and the whole attached to a cap cell. The cap
cell in turn connects to the tympanum. (B) Dendritic structure of a receptor neuron. Dendrite and cilium display
particular dilations whose function and relevance for transduction is unknown. Figure taken fromGray(1960).
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2000), which seem to be absent in locust auditory receptors. However, measurements of otoa-
coustic emissions indicate small nonlinear effects in locust ears, too (Kössl and Boyan, 1998).
Mammalianhair cells, are secondary (non-neuronal) auditory receptors that convey the recep-
tor potential via synapses to auditory-nerve fibers. However, sound transduction in mammalian
and insect ears conceptually involves the same sequence of procceses. Thus, functional insights
gained from the investigation of the locust auditory systemis likely to be beneficial for the
functional understanding of mammalian hearing.

1.3 Iso Response Method

Central to this thesis is the indirect analysis of transduction with iso-response methods as intro-
duced byGollisch, Schütze, Benda, and Herz(2002); Gollisch and Herz(2005), as well as by
the dissertation ofGollisch(2004).

The periphery of the locust auditory system is delicate and vulnerable, andin vivo investiga-
tions of auditory signal transduction need to minimize the impact on the site of transduction in
order to yield reliable results. This calls for indirect methods, so that the mechanical structures
of the ear remain intact. The auditory transduction chain isa sequence of processes transform-
ing the acoustic input into a series of action potentials. This computation, as it is performed
by auditory receptor neurons, is characterized byfunctionalmodules. Prior knowledge of the
system’s basic structure, given by its biophysical composition, may act as a guide to the devel-
opment of a model framework (a so calledcascade model) to identify the functional modules.
Such an approach may be referred to as agray-box. Typical elements of cascade models are
temporal linear filtersandstatic nonlinear transformations. A characteristic of a temporal lin-
ear filter is that it uses stimulus contributions from different time points to determine the final
output.

What do we know about the auditory signal transduction chainin the locust? From the
transduction chain’s physical structure, we can assume a step-by-step conversion of the incom-
ing signal. First, air-pressure fluctuations of the sound wave drive an oscillation of the me-
chanical resonator, the eardrum. These oscillations are hypothesized to induce the opening of
mechanosensitive ion channels in the apical dendritic membrane of the auditory receptor neu-
rons. The opening of the ion channels leads to transduction currents which cause a generator
potential over the cell’s membrane. Eventually, such a generator potential activates voltage-
dependent ion channels that trigger action potentials, once a certain threshold is reached.

In this sequence of processes, at least two potentially nonlinear transformations can be
identified. (1) The gating-process and (2) the transformation of an electrical potential into a
sequence of all-or-nothing action potentials. Commonly used techniques provided by nonlinear
systems theory for the analysis of cascade models are limited to cascades with only a single
nonlinear transformation. Another issue of many classicalapproaches is the limited temporal
resolution, when the system’s output is jittered by noise. In case of the auditory system the spike
jitter (about 1 ms) smooths out the temporal correlation between input and output and hence,
the temporal resolution needed to analyze auditory systems(about 10µs) can’t be achieved.

An alternative approach to this problem is the iso-responsemethod. It extends an exper-
imental strategy well known from the measuring of tuning curves in psychophysics and the
measuring of threshold curves in neurobiology: the application of ’equivalence criteria’ to an-
alyze a certain system. Central to this method is the identification of sets of different stimuli
that cause the same response. Theseiso-response sets(IRS) are subsets of the stimulus space
and characterize the invariances of the system. A classicalexample for the measurement of
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Figure 1.4: EFFECT OF AN INPUT NONLINEARITY IN AN NLN CASCADE. The responses of two models to the
two-dimensional stimulus space (defined by stimulis1 ands2) are compared. The first model (A, Eq.1.2) takes
the linear sum and the second model the quadratic sum (B, Eq.1.3) as an argument of a sigmoidal nonlinear
output function. The surface plots of the model’s response functionsr(s1,s2) are similarly shaped and the response
functionsr(s1) andr(s2) are even identical. However, the contour lines (iso-response sets) of the systems clearly
differ and reveal the input nonlinearity. Figure taken fromGollisch et al.(2002).

iso-response sets comes from psychophysics: so called ’isophones’ are curves that identify the
identically perceived loudness of a tone in respect to it’s frequency and sound-pressure-level.

Here, this method will be used to analyze the locust auditorytransduction chain. Neurons
perform areductionof the high-dimensional stimulus space to a lower dimensional output.
While the sensory system can be driven by a wide range of possible stimuli,s(t), consisting of
a set of components,s1,s2, ...,sn, the system’s response is limited to a lower-dimensional output
function r(s(t)). In the simplest case, the response would be described as a one-dimensional
variabler, representing, e.g., a firing rate of spikes or a ’spike probability’ of a single sensory
receptor neuron. The method is complemented by a mathematical cascade-model framework.
A cascade model describes the transformations performed bya signal processing system (e.g.,
a receptor neuron) as a sequence of filter functions. To understand this approach, we begin with
an example. We compare two signal processing systems with only two input componentss1

ands2. The first model is an LN-cascade, where a linear function, L,is followed by an output
nonlinearity, N, which is represented by a filter functiong( ·). The second model is an NLN-
cascade, which contains an additional quadratic input nonlinearity, so that the linear function
is sandwiched between two nonlinearities. The output nonlinearities areg(x) = tanh(x) for the
first model andg(x) = tanh(

√
x) for the second. We obtain the form of the two models as

r1(s1,s2) = tanh(s1+s2), (1.2)

r2(s1,s2) = tanh

(

√

s2
1+s2

2)

)

. (1.3)

If only a single input component is presented, the two modelswill show identical responses.
The square root in model two cancels the square of the input nonlinearity and nothing is re-
vealed about the input nonlinearity. The responses of thesemodels to two input components
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Figure 1.5: ISO-RESPONSE SETS FORSUPERPOSITIONS OFTWO PURETONES FROMONE RECEPTORCELL AT

DIFFERENT FIRING RATES. Stimuli composed of superpositions of two pure sine tones with amplitudesA1 and
A2 are tuned to yield the same output firing rate as indicated. Measuring multiple ratiosA1/A2, specifically shaped
curves in stimulus space were obtained that reveal information about the underlying integration process. The solid
lines are ellipses fitted to the data and indicate a static quadratic nonlinearity. Note the different scales ofA1 and
A2. These are due to the differential response of the system to different frequencies, that are in accordance with
frequency tuning-curves of the locust’s auditory receptor. Figure taken from Gollisch et al., 2002.

look very similar in surface plots (Fig.1.4) and any measurement along a radial direction will
produce sigmoidal response curves similar to the response of those with only a single input
component. But the projections of the contour lines below the response surfaces reveal how
such nonlinearities can be determined experimentally. While the first model produces straight
contour lines, those of the second model are segments of circles. The difference of these pro-
jections is clearly and easily distinguishable in experiments and can thus be used to identify the
character of input nonlinearities. Any arbitrary contour line represents a certain output level
and thus corresponds to an iso-response set. For each iso-response set the input parameters are
tuned to yield the same level of response. This identical response is the reason why this method
is independent of the specific shape of the output nonlinearity, provided the output function is
monotonic. The application of such an analysis in an experimental situation can be achieved by
fixing all but one degree of freedom of a stimulus and tune the remaining free parameter until
the desired response is achieved. This free parameter then defines the direction of search for
iso-response stimuli.

1.4 Analysis of the Auditory Signal Transduction Chain

1.4.1 What does the Receptor Neuron measure?

The receptor neuron is a measuring device that could possibly measure different qualities of
sound. In order to distinguish between several hypothesis,an investigation of the mechanism
underlying spectral integration has been performed (Fig.1.5, Gollisch et al., 2002). For this
purpose iso-response sets for superpositions of long pure tones were measured and three hy-
pothesis were examined experimentally. It was tested whether the amplitude, the energy or

8



Figure 1.6: ISO-RESPONSESETS FORTWO-CLICK STIMULI AND IDENTIFICATION OF RELEVANT STIMULUS

PARAMETERS. Two short clicks, separated by an interclick interval∆t, were presented for multiple fixed amplitude
ratiosA1/A2 and simultaneously tuned to yield the same spike probability p = 70%. Each panel shows results for
a single cell and iso-response sets for two different interclick intervals∆t. Iso-response sets display specific shapes
for short and long inter-click times∆t. For short∆t (40 and 50µs, A-C) iso-response sets are well described
as straight lines, for long∆t (500 and 750µs, A-B) iso-response sets are well described by segments of circles.
Intermediate∆t (120µs, C) are stronger bulged and don’t fit either scheme. This behaviour is interpreted as
two different processes that govern stimulus integration at short and long time scales, which might overlap for
intermediate time scales. Thus, for short∆t the sound-pressure seems to be the relevant stimulus parameter, while
for long ∆t the sound energy is the relevant stimulus parameter. Figuretaken fromGollisch and Herz(2005)

the sound pressure determines the response of the receptor neuron. The approach presented in
Section1.3 was applied and stimuli composed of two pure sine tones with fixed and unequal
frequencies,ω1 andω2, were presented:

s(t) = A1sin(ω1t) + A2sin(ω2t). (1.4)

Measurements were performed for multiple amplitude ratiosA1/A2, which were kept fixed for
each measurement and simultaneously tuned to yield the sameoutput firing rate as the receptor
neuron. Since a constant output level indicates a constant input into the spike generator, the
output nonlinearity can be neglected. This characteristicis the key feature of the iso-response
method, because it allows to treat an LNLN-cascade model mathematically as an LNL-cascade
model. Each hypothesis corresponds to a specific shape of iso-response curves. According
to the amplitude hypothesis, iso-response curves are straight lines; according to the energy
hypothesis, they are ellipses; and according to the pressure hypothesis, they are even more
strongly bent curves, whose exact shape has to be determinednumerically. The measured iso-
response curves for different output firing rates (Fig.1.5) are found to be described best by
ellipses, a strong evidence that the square of the amplitudes is added. These results correspond
to the energy hypothesis since the square of the amplitude isproportional to the energy of sound
waves.

1.4.2 Temporal Integration

Experiments with long, stationary stimuli are well suited to examine static nonlinearities of the
auditory system. Because dynamics of temporal integrationoccur on shorter time scales, they
are averaged out by this type of experiment. Hence, for investigating temporal integration in
receptor neurons another type of experiment is needed . Furthermore, long, stationary stimuli
don’t correspond well to the situation in a natural environment, where often quick fluctuations in

9



the amplitude and frequency of sound waves convey importantinformation that enables organ-
isms to perform tasks such as sound localization, echolocation and communication. To capture
this information, auditory systems must be able to follow these rapid changes, and thus, fine
temporal resolution can be expected. Little is known about the temporal characteristics of audi-
tory systems on short time scales. To investigate these processes, iso-response sets with short,
temporally structured stimuli were designed (Gollisch and Herz, 2005).

The core building blocks of these experiments were short sound-pressure pulses with a
width of 20 µs, calledclicks. These clicks were combined in pairs of two and are separated
by a peak-to-peak interval,∆t, in order to examine the signal cascade for input nonlinearities
on different time scales. The stimulus space is thus parameterized by the click amplitudes,A1

andA2, while ∆t defines the time scale of the experiment. The response of the receptor neurons
to such stimuli is at most one action potential per double click. A firing rate is an inadequate
description of response strength and thus the spike probability, p, was used instead. While
stimulus intensity hardly influenced spike timing, it had strong influence on spike probability.
Measurements were performed for multiple repetitions for the same stimulus and the average
number of action potentials per trial was taken to yieldp.

Similar to the experiments introduced in the previous Section, stimuli consisting of pairs
of clicks with fixed amplitude ratios,A1/A2, were tuned simultaneously to yield the same pre-
defined spike probability ofp = 70%. Again, iso-response sets are measured for multiples
ratiosA1/A2 and different peak-to-peak intervals∆t (Fig. 1.6). The shapes of the iso-response
sets vary systematically with∆t. For short interclick intervals (40µs) iso-response sets exhibit
straight lines, while for long interclick intervals ellipses are obtained. Sets of intermediate∆t
(120µs) don’t fall in either of these categories, but show a particular bulged shape. These results
indicate that at least two different processes govern signal processing on different time scales.
On short time scales a linear summation of the clicks causes iso-response sets with straight lines
and indicate that sound pressure is the relevant stimulus parameter here. This is not suprising
as the first known step in auditory signal transduction is thedeflection of the eardrum. Because
of the mechanical inertia of this structure, superpositionof quick following clicks can be ex-
pected. On longer time scales the quadratic sum governs the response and thus the sound energy
is the relevant stimulus parameter. Thus, two different summation processes exist, which are
separated by a static quadratic nonlinearity. Biophysically, the second summation is assumed
to occur at the neural membrane, where electrical charge accumulates. This is supported by the
findings that the DC component of the membrane potential in hair cells is proportional to sound
energy (Dallos, 1985).

1.4.3 The Cascade Model

With this knowledge, a model for the auditory transduction for pulse-like click stimuli has been
suggested (Gollisch and Herz, 2005). As a first step, the tympanic oscillation is caused by the
first click, with a deflection proportional to the amplitudeA1. The change in the membrane
potential is then proportional toA2

1, due to the static quadratic nonlinearity. After the interclick
interval,∆t, the second click will add to the tympanic oscillation and tothe membrane poten-
tial. But as some time∆t has passed, both the deflection of the tympanic oscillation as well
as the membrane potential have changed in dependence of∆t. These changes are described
as filter functionsL(∆t) for the tympanic oscillation andQ(∆t) for the membrane potential.
Therefore at time∆t the deflection of the tympanum isA1 ·L(∆t) and the membrane potential
is A2

1 ·Q(∆t). The second click at time∆t adds it’s amplitudeA2 to the tympanic oscillation,
yielding A1 ·L(∆t) + A2, and thus changes the membrane potential with[A1 ·L(∆t) + A2]

2,
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Figure 1.7: SEQUENTIAL PROCESSING IN THEAUDITORY TRANSDUCTION CHAIN . Sound stimuli are encoded
into a neural spike response by a series of biophysical transformations. Sound-pressure waves deflect a mechanical
oscillatory component (1, mechanical coupling) like the tympanic membrane, which is supposed to be linked to
ion-channels in the receptor cell’s apical membrane. The deflection causes the ion-channels to open, a transduction
current is induced (2, mechanosensory transduction) and charges up the membrane potential (3, electrical integra-
tion). Voltage-dependent ion-channels are activated and action potentials are triggered once a certain threshold is
reached (4, spike generation). The first and third step are approximated by linear, while the gating mechanism is
well described by a static quadratic nonlinearity and the spike generation is known to comprise a static nonlinear,
sigmoidal shape. Figure taken fromGollisch and Herz(2005)

considering the squaring of the oscillatory component. Therefore, we obtain an effective stim-
ulus strength,J(∆t), where

J(∆t) = A2
1 ·Q(∆t) + [A1 ·L(∆t) + A2]

2 . (1.5)

This effective stimulus strengthJ(∆t) will be transformed into a spike probabilityp by the final
static nonlinearityg(J(∆t)) = p, which describes the nonlinear transformation of the spikegen-
erator. The obtained signal processing chain has the form ofan LNLN-cascade. The possible
biophysical mechanisms underlying of the auditory transduction chain are displayed in Figure
1.7.

The Generalized Cascade Model

The corresponding LNLN cascade, which is not limited to click stimuli, is presented in Figure
1.8. The input to the general model is a time-dependent sound-pressure wave A(t). The com-
ponents of the general LNLN cascade model are four model steps (with the causality condition
τ > 0):

1. convolution with a linear filterl(τ) = sin(ωτ)e−δτ

2. squaring

3. convolution with a linear filterq(τ) = e−λτ, yielding the effective sound intensityJ(t)

4. application of a nonlinear transformation ˜g(J).

The responser(t) is thus given by
r(t) = g̃(J(t)). (1.6)

11



Figure 1.8: GENERALIZED CASCADE MODEL OF THEAUDITORY TRANSDUCTION CHAIN . The linear temporal
filters l(τ),q(τ) and the squaring nonlinearity transform the sound-pressure waveA(t) into the effective stimulus
strengthJ(t). Finally the nonlinearity ˜g( · ), which may differ from the nonlinearityg( ·) of the click-version,
transformsJ(t) into the neural responser(t). Figure taken from Gollisch et al., 2005.

1.4.4 Temporal Characteristics of Stimulus Integration

The Equation1.5offers a direct way to obtain the filter functionsL(∆t) andQ(∆t) by compar-
ison of iso-response sets with conveniently chosen stimuli. Although the effects of these two
filter functions may largely overlap, it is possible to distinguish between them. As we are deal-
ing with two unknowns, we need two equations for each∆t to be able to calculate solutions for
both unknowns. Equation1.5indicates that any pair of clicks(B1,B2) at a fixed time∆t should
yield the same spike probabilityp as the pair(A1,A2) whenJ(A1,A2) = J(B1,B2). For each
∆t two different patterns of paired clicks are used for iso-response sets. In the first pattern, the
second click is presented in the same direction as the first click (amplitudeA2, ”positive”) and
in the opposite direction in the second pattern (amplitudeÃ2, ”negative”). The first click,A1, is
held positive in all measurements. Because both patterns ofstimuli are tuned to yield the same
spike probabilityp, this implies thatJ(t) is equal in both instances. As derived inGollisch and
Herz(2005), only a small part ofJ(t) contributes to the spike probability,p. Therefore, we will
refer to the effective stimuli intensity by the termJ from here on. Let us note that amplitudes
A2 andÃ2 used here are theabsolute values of these amplitudesand we get

J = A2
1 ·Q(∆t) + [A1 ·L(∆t) + A2]

2 (1.7)

J = A2
1 ·Q(∆t) +

[

A1 ·L(∆t) − Ã2
]2

(1.8)

Setting the two right sides equal to each other, we obtain

[A1 ·L(∆t) + A2]
2 =

[

A1 ·L(∆t) − Ã2
]2

(1.9)

with the solution

L(∆t) =
Ã2 − A2

2A1
(1.10)

for the first linear filter. InsertingL(∆t) into (1.7), we get for the second linear filter

Q(∆t)−c= −
(

Ã2 + A2

2A1

)2

, (1.11)

with c = J/A2
1, which can be left as a free parameter. Measurements for different values of

∆t make it possible to extract the whole time course ofL(∆t) andQ(∆t), as shown in Figure
1.9. The possible temporal resolution of this approach is much higher than that of traditional
approaches of nonlinear system analysis, because it is not limited by the precision of the output,
rather only by the precesion of the input. The functionL(∆t) is interpreted as the oscillation
of the tympanum at the attachment site of the receptor cell. The functionQ(∆t) is interpreted
as the electrical integration and the decay time constant isinterpreted as the membrane time

12



Figure 1.9: TEMPORAL STRUCTURE OF THEMECHANICAL OSCILLATION AND ELECTRICAL INTEGRATION.
(A) For the measurement of the filter functionsL(∆t) andQ(∆t), two different patterns of stimuli were used. For
each pattern, two clicks were presented, separated by a interclick interval ∆t. While the first click (amplitude
A1) was always held positive, the second click was presented ineither the same (amplitudeA2, ”positive”) or the
opposite (amplitudẽA2, ”negative”) direction ofA1. (B) Time course of the eardrum vibration, calculated asL(∆t),
of a low-frequency receptor neuron. The frequency is obtained by comparison with a damped harmonic oscillation
(C) Time course of the electrical integration process. Decay time is obtained by comparison with an exponential
decay function. Figure taken from Gollisch et al., 2005.

constant. The latter was found to be in the range of 200 to 800µs. These values are by at least
one order of magnitude smaller than membrane time constantsof typical neurons.

The calculation above derives solutions forL(∆t) andQ(∆t) for click experiments, without
explaining explicitly what these filter functions mean. Therelationships of these functions and
the functionsl(∆t) andq(∆t) of the general cascade model (Section1.4.3,Fig. 1.8) are explained
in detail in the appendix ofGollisch and Herz(2005). It is derived thatL(∆t) is identical to a
phase shifted form ofl(∆t), which may be interpreted as the velocity of the eardrum. It may also
be interpreted as the temporal change of the eardrum’s movement. The relationship between
Q(∆t) andq(∆t) is more complicated.

In this work, we investigate this relationship and ask whichparts of the spike generator
might be measured byQ(∆t). Subsequently, we explore possible interpretations of ourfindings.
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CHAPTER 2

SEQUENCED FILTERS

2.1 Linear Filters and Convolution

Sequences of filter functions play an important role in the description of signal cascades and
are mathematically treated as convolutions of these filter functions. Often, filter functions in
signal transduction chains comprise an exponentially decaying component. For this reason,
we introduce here the basic properties of convolutions withrespect to sequences of exponential
decay functions. The time course of the exponential decay functions, investigated here, depends
on time constants, τi , which can either delay or accelerate the convergence of thefunctions to
zero.

A sequence of filter functions results in an ’overall filter function’ that inherits its character-
istics by the individual filter functions. This overall filter function is identical to the convolution
of all sequenced filter functions. The results of the convolutions can also be understood in a
physical sense: they would then correspond to theimpulse responseof the sequenced filters to
a very short impulse.

We are particularly interested in how the time constants of the single filter functions influence
the overall filter function. Furthermore, we ask how well thetime constants of the individual
filter functions describe characteristics of the overall filter function.

2.1.1 Convolution of Two Exponential Filter Functions

The convolution of two functionsf (t) andg(t) is defined as

( f ∗g)(t) =
Z ∞

−∞
f (λ) g(t−λ) dλ. (2.1)

Convolutions are commutative and associative, so the orderof the convolution steps is insignif-
icant. Following Eq. (2.1), the convolution of two exponential functions

f (t) = Θ(t) · exp(−t/τ1) and g(t) = Θ(t) · exp(−t/τ2),

with time constantsτ1 andτ2, will be

( f ∗g)(t) =

Z +∞

−∞
Θ(λ) e

− λ
τ1 Θ(t−λ) e

− t−λ
τ2 dλ =

Z t

0
e
− λ

τ1 e
− t−λ

τ2 dλ, (2.2)

whereΘ(t) is the Heavyside function:Θ(t) = 1 for t > 0 andΘ(t) = 0 for t < 0.
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Figure 2.1: CONVOLUTIONS. Two exponential decay functions with time constantsτ1 andτ2 are convolved and
the analytical and numerical results are compared for the casesτ1 6= τ2 (A,B, Eq. 2.4) andτ1 = τ2 (C,D, Eq.2.6).
The tails of the results are matched manually with exponential decay functions to extract a single time constant
describing the tail.
(A,B) τ1 = 0.1 andτ2 = 0.5. Due to the significant difference of the time constants, the tail of the overall filter
function is well described by the longer time constant (ex1,τ = 0.5). (C,D)τ1 = τ2 = 0.5. The tail of the overall
filter function is not well described by the input time constant (ex1,τ = 0.5) . If such a sequence with similar time
constants would be analyzed by fitting the tail with an exponential decay function, it is likely that the time constant
is overestimated (ex2,τ = 0.9).
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1. If τ1 6= τ2, we get
Z t

0
e
− λ

τ1 e
− t−λ

τ2 dλ = e
− t

τ2

[

τ1τ2

τ1− τ2
e
−λ τ2−τ1

τ1τ2 −e
− t

τ2

]t

0
(2.3)

=
τ1τ2

τ1− τ2

[

e
− t

τ1 −e
− t

τ2

]

, (2.4)

which is a difference of two exponentials, multiplied by a constant factor. The shape
of the resulting function changed due to the substraction: unlike an exponential decay
function, the new function rises initially from zero to reach a peak and then converges to
zero again. If the time constants differ greatly in scale, e.g. τ1 ≪ τ2, the initial rise will
be short and the tail will be well described by the longer timeconstant (Fig.2.1B), since
exp(−t/τ1) will converge much faster to zero than exp(−t/τ2). But as the time scales
become more similar, the overall filter function will betterresemble the second case:

2. Forτ1 = τ2 = τ, we find the solution
Z t

0
e
− λ

τ1 e
− t−λ

τ2 dλ = e−
t
τ

Z t

0
e−λ·0 dλ (2.5)

= t ·e− t
τ . (2.6)

Although this solution is not a difference of exponential functions, the basic shape of this
result is similar to the first case (Fig.2.1C). However, the tail of the overall filter function
is not well described by the input time constantτ, since the factort in Eq. (2.6) increases
with time t → ∞ and by this distorts exp(−t/τ). In Figure (2.1D) we added a second
manually matched exponential decay function,ex2. We demonstrate that the overall time
course of the tail is much better described by a time constantmuch greater than those of
the convolved filter functions.

2.1.2 Convolution of Three Exponential Filter Functions

We now perform a convolution of these results with a third exponential filter function with time
constantτ3,

h(t) = Θ(t) ·exp(−t/τ3). (2.7)

1. Forτ1 6= τ2 6= τ3, we obtain from Eq.2.4

( f ∗g∗h)(t) =

Z t

0
a·

[

e
− λ

τ1 −e
− λ

τ2

]

e
− t−λ

τ3 dλ (2.8)

= a·b·
[

e
− t

τ1 −e
− t

τ3

]

−a·c·
[

e
− t

τ2 −e
− t

τ3

]

, (2.9)

with constantsa = τ1τ2
τ1−τ2

, b = τ1τ3
τ1−τ3

andc = τ2τ3
τ2−τ3

.

2. Forτ1 = τ2 = τ 6= τ3 we get

( f ∗g∗h)(t) =

[

ττ3

τ3− τ

]2

·
[

e
− t

τ3 −e−
t
τ − t · τ3− τ

τ3τ
·e− t

τ

]

. (2.10)

Both (1) and (2) are differences of exponentials again and thus show similar shape and
characteristics as the first case we discussed (Fig.2.2A,C). Again, when the longest time
constant differs greatly from the other time constants, thetail of the overall filter function
is well described by an exponential decay function with the longest of the three time
constants. (Fig.2.2B,D).
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3. Forτ1 = τ2 = τ3 = τ, we get

( f ∗g∗h)(t) =
1
2

t2 ·e− t
τ . (2.11)

While the basic shape remains the same, a broadening of the overall filter function results
and the description of the tail by an exponential decay function with the time constantτ
worsens, since the factort2 in Eq. (2.11) increases with timet → ∞ and by this distorts
exp(−t/τ). In Figure (2.1D) we added a second manually matched exponential decay
function, ex2. We demonstrate that the overall time course of the tail is much better
described by a time constant much greater than those of the convolved filter functions.

For the case of n convolved filter functions,f n, with τi = τ and 1≤ i ≤ n, we find the
solution for the overall function

f n =
1

(n−1)!
tn−1 ·e− t

τ (2.12)

2.1.3 Shifting of the Peak

We address the relationship between the shift of the peak andthe time constants of the involved
filters. For this we again consider the two cases, (1)τ1 = τ2 = τ and (2)τ1 6= τ2 separately.

1. Forτ1 = τ2 = τ. At the maximum the derivative of Eq. (2.6) vanishes and we get

d
dt

[

t ·e− t
τ

]

= e−
t
τ ·

[

1− t
τ

]

= 0. (2.13)

Thus, the maximum occurs, attpeak= τ.

For the case of n convolved filter functions,f n, with τi = τ ∀1 ≤ i ≤ n, we find the
derivative

d
dt

f n =
1

(n−2)!
tn−2 e−

t
τ

(

1− 1
τ n

t

)

(2.14)

Here, the maximum occurs, attpeak= τ (n−1). Thus, the more filter are contained in the
sequence, the later the peak occurs.

2. Forτ1 6= τ2. The derivative of Eq. (2.4) is

d
dt

[

e
− t

τ1 −e
− t

τ2

]

= − 1
τ1

·e−
t

τ1 +
1
τ2

·e−
t

τ2 = 0. (2.15)

Since this equation cannot be solved analytically, we hypothesize that Eq. (2.15) is true
for tpeak≈ τ1+ τ2. We then find that

e−1
[

− 1
τ1

e
− τ2

τ1 +
1
τ2

e
− τ1

τ2

]

≈ 0. (2.16)

This equation is true in the limit ofτ1 → ∞ andτ2 → ∞, and thus the peak is indeed at
tpeak= τ1+ τ2
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Figure 2.2: CONVOLUTIONS. Three exponential decay functions with time constantsτ1,2,3 are convolved and the
analytical and numerical results are compared for the casesτ1 6= τ2 6= τ3 (A,B, Eq. 2.9), τ1 = τ2 6= τ3 (C,D, Eq.
2.10) andτ1 = τ2 = τ3 (E,F, Eq. 2.11). The tails of the results are matched manually with exponential decay
functions to extract a single time constant describing the tail.
(A,B) τ1 = 0.1,τ2 = 0.2 andτ3 = 0.5. Due to the strong difference of the time constants, the overall filter function
is well described by the longer time constant (ex1,τ = 0.5). (C,D)τ1 = τ2 = 0.1 andτ3 = 0.5. Again, the overall
filter function is well described by the longest time constant (ex1,τ = 0.5). (E,F)τ1 = τ2 = τ3 = 0.5. The tail of
the overall filter function can’t be well described by the input time constant (ex1,τ = 0.5). If such a sequence with
similar time constants were analyzed by fitting the tail withan exponential decay function, it is likely that the time
constant would be overestimated (ex2,τ = 1.1).
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Chapter Summary

In this Chapter, we learned that sequenced linear filters canbe understood as convolutions the
filter functions. We demonstrated that the longest time constant of the individual filter functions
can be reliable extracted when the time constants differ greatly. We also demonstrated that
the shape of the overall filter function is distorted when theindividual time constants become
similar. The overall shape is then better described by a timeconstant greater than those of the
convolved filters.
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CHAPTER 3

I NTERPRETATION OF THE FILTER

FUNCTIONS OBTAINED BY THE

I SO-RESPONSE-M ETHOD

The iso-response sets (IRS) presented byGollisch and Herz(2005) are a novel and powerful
method to investigate sensory systems with a so far unprecedented high temporal resolution
and without the need to corrupt the delicate and vulnerable sensory mechanism. As an indirect
method the IRS returns the functional building blocks of thesignal transduction cascade,L(∆t)
andQ(∆t), which reflect the temporal characteristics of the eardrum vibration and the electrical
integration at the cell membrane, respectively. What do we measure withQ(∆t). We approach
this question with simulations of the auditory transduction chain and a short review of the
underlying mathematics. What characteristics of the spike-generator are captured by the IRS?
To answer this question, we use different kinds of output functions. Are the conclusions drawn
from previous experiments correct?

We begin our analysis with simulation of the first kind of iso-response sets, which utilizes
pairs of click to extract the temporal structure of the filters L(∆t) andQ(∆t). We then examine
the relationship between the measured filterQ(∆t) and the actual impulse response of the model
to a click impulse. Using different models as output functions, we approach the question, what
characteristics of these output functions are captured by the iso-response sets. Additionally,
we examine an alternative model for the general cascade, where we substitute the quadratic
nonlinearity of the model by absolute values.

3.1 Numerical Simulations of IRS

In the introduction, we reviewed the structure of the generalized cascade model proposed for
locust auditory transduction and the iso-response measurements, which are used to investigate
the temporal structure of stimulus integration. Here, we reproduce these experiments by nu-
merical simulations. To be able to calculate the two unknownfilter functionsL(∆t) andQ(∆t),
two iso-response sets have to be measured for each interclick interval,∆t. While the first click
is held constant in both set-ups, the second click is either presented in the same direction (first
setup, amplitudeA2) or in the opposite direction (second setup, amplitudeÃ2) as the first click.

We perform a simulation of the distinct filter functions of the signal transduction chain, which
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is modeled by

s(t)
l(τ)−→ [· ]2−→ q(τ)−→ Jt)

g̃(·)−→ p. (3.1)

The linear filter functions are given by

l(τ) = sin(ωτ)e−
τ

τtymp, (3.2)

q(τ) = e−
τ

τint , (3.3)

with ω = 2π f , the resonance frequencyf and the time constantsτtymp andτint . We model the
eardrum as a damped harmonic oscillator, which is driven by input stimuluss(t). It thus reads

s(t) = ẍ(t)+
2

τtymp
ẋ(t)+ω2x(t), (3.4)

This equation implements the first linear filter (Eq.3.2). The outputx(t) is the deflection of
the eardrum and is dimensionless. It is squared and used as input for the passive membrane
equation, which has the general form

τint
d
dt

Vm(t) = E−Vm(t)+RinI(t), (3.5)

with input I(t) = x2(t), input resistanceRin = 1, resting potentialE = 0 and time constantτint

of the electrical integration. We obtain

τint
d
dt

Vm(t) = −Vm(t)+x2(t)+D ·ξ, (3.6)

with the gaussian white noiseξ and the noise-strength factorD. Vm(t) is dimensionless. This
component implements the second linear filter (Eq.3.3) of the generalized cascade model
(Eq. 3.1) and reflects the characteristics of the electrical integration process. The electrical
integration is driven byI(t)= x2(t). For the spike generation we set a certain threshold,θ. When
the voltage traceVm(t) exceeds the threshold a spike is evoked. This type of spike generation
is known as aleaky-integrate-and-fire neuron. We are here using the probabilistic approach of
Gollisch and Herzand, thus, need a spike probability,p, as output of the signal transduction
chain. For that reason we added the gaussian noise to Equation 3.6. The standard deviation of
the white noise wasD = 15% of the threshold value, but the exact value is arbitrary.For each
interclick interval∆t a sufficient number of trials has to be simulated to calculatean accurate
spike-probability. The exact number of trials is dependentof the strength of the noise and can
reach several thousand in order to obtain smooth curves.

It is possible to shorten this approach by calculatingp directly instead of simulating a high
number of trials. Therefore, we begin by calculatingVm(t) by Eq. (3.6) without the noise term
D ·ξ. White noise added toVm(t) follows a gaussian distribution aroundVm(t), as long as the
voltage trace doesn’t change too rapidly. Therefore, the probability thatVm(t)+ D ·ξ crosses
the threshold at the timet can be calculated by an integral over the component of the tail of the
error function, which exceeds the threshold. The transientpoint of the error function over the
threshold,θ, is thereby given byx = θ−Vm(t). The integral can be conveniently calculated by
thecomplementary error function. In our simulations, we are interested in the probability that
a spike is evoked in a small time window,w, which is why we compute a second integral over
the time span from times zero tow. The whole calculation is given by

g(J(t)) = p =
Z w

0
dt

1
2

erfc

[

θ−Vm(t)

D ·
√

2

]

(3.7)
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The calculation of the spike probability itself is a nonlinear process with a sigmoidal shape. We
computed the spike probabilityp(A1, A2) andp(A1, Ã2), respectively, for each∆t.

For comparability and consistency of our simulations we choose the same parameter values
for all of our models, if not mentioned explicitly elsewise.The tympanic membrane of the
locust has a heterogenic structure and contains thick and thin areas (Fig.1.2, Gray, 1960). This
composition enables it to convey a broad spectrum of low and high frequencies, ranging up to at
least 15 kHz. In correspondence to this and to experimental findings (Michelsen, 1971a; Jacobs
et al., 1999), we choose a tympanal resonance frequency off = 4 kHz for our modeled eardrum.
In experiments, the tympanal decay time constant ranged between 100 to 250µs. We here chose
τtymp to be 200µs. Furthermore, the experimental results indicate that thedecay time constant
of the electrical integration is ranging between 300 to 600µs. We here choseτint to be 500µs.
Another parameter of importance is the width of our simulated sound-pressure-pulses. To be
able to achieve a high temporal resolution we use very short pulses (’clicks’) with a length of
10µs and scan a range of interclick intervals from 0 to 3.5 ms in steps of 10µs.

Figure3.1A presents the absolute values of the amplitudes for the second click, denoted
asA2 if presented in the same direction as the first click, andÃ2 if presented in the opposite
direction. Each pair of stimuli (A1, A2) and (A1, Ã2) is tuned such that the resulting spike
probability is the same. The time courses ofA2 andÃ2 display strong oscillatory components,
reflecting the time course of the deflection of the tympanum. By means of Eq.1.10and1.11the
filter functionsL(∆t) andQ(∆t) are computed fromA2 andÃ2 (Fig. 3.1B,C). The time course
of L(∆t) matches well the filter function

l̃(∆t) = e
− t

τtymp · cos(ωt), (3.8)

which denotes a phase-shifted version of the filterl(∆t) and describes thechangeof the eardrum
vibration (Eq.3.2). The time course ofQ(∆t) matches well with the filter functionq(∆t) of the
electrical integration (Eq.3.3).

3.2 Properties of the Filter Functions

These results demonstrate that the IRS effectively captures essential parameters of the linear
filters before,l(∆t), and after the quadratic nonlinearity,q(∆t), as proposed byGollisch and
Herz (2005). Furthermore, the shapes of our calculated filter functions are very similar to the
experimental results ofGollisch and Herz, shown in Figure (1.9). Note, that for small interclick
intervals,Q(∆t) shows strong oscillations, which are found in experimentalresults, too. These
oscillations are not part of the modeled electrical integration (Eq. 3.6) or the filter function
q(τ), respectively. Also, the oscillations can’t be observed inthe voltage trace of the model in
response to a single click impulse (Figure3.1D). This observations suggests that the oscillations
are a characteristic trait of the iso-response method.

We possess full knowledge of all parameters in our simulation, including the time course of
the tympanic vibration and electrical integration process, and are, hence, able to compare these
with our results. Comparing the membrane potential andQ(∆t), we find thatQ(∆t) seems to
match well with a shifted form of the voltage trace of the model to a single click (Fig.3.2).
The required offset seems to equal the position of the peak ofthe voltage trace. Therefore,
the iso-response method only reveals a part of the temporal integration at the receptor neuron’s
membrane, while it reveals the whole time course of thechangein the eardrum’s vibration.
What is the reason for this phenomenon? Does this phenomenonoccur for all kinds of models?
Where does the ascent ofQ(∆t) come from?
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Figure 3.1: SIMULATION OF ISO-RESPONSE-SETS. For each iso-response-set two clicks were presented, sepa-
rated by a time interval,∆t. The amplitude of the first click,A1, was held constant throughout the experiment. The
amplitude of the second click was then adjusted to yield the desired spike probability. To be able to unravel the
two linear filters of the transduction chain, two different stimulus patterns had to be measured. Here, the second
click was either presented in the same (’positive’, A2) direction or in the opposite (’negative’, Ã2) direction as the
first click.
(A) Time course of the click-amplitudesA2 andÃ2, resulting in the same spike probability and, thus, corresponding
to the same output value of the effective stimulus intensityJ. Both amplitudes were normalized to toÃ2 (B) Time
course of thechangeof the eardrum vibration,L(∆t) (red line), calculated from the measured valuesA2 andÃ2

(Eq. 1.10). The results are compared to a damped harmonic oscillator (black line, Eq. 3.4) with fundamental
frequencyf = 4 kHz and decay time constantτtymp= 200µs of the modeled filter functionl(∆t). (C) Time course
of the electrical integration process,Q(∆t) (red line, Eq.1.11). The measured data are compared to an exponential
decay function with the time constantτint = 500µs of the modelled filterq(∆t) (Eq. 3.6). (D) The model’s voltage
curve was calculated by Eq. (3.6) without white noise in response to a single click. Figures B-D show normalized
values.
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Figure 3.2: COMPARISON OF THEMODEL’ S VOLTAGE RESPONSE ANDFILTER Q(∆t). (A) The voltage curve
in response to a click andQ(∆t) don’t match right away. (B) The voltage curve of the model hasto be shifted to
match the filter function, indicating that the method reveals a part of the electrical integration process only. Clearly
visible are the early oscillations of the eardrum, which appearance inQ(∆t) is a characteristic trait of the indirect
iso-response method.

3.2.1 Where does the Ascent ofQ(∆t) come from?

A look into the mathematical foundations of the general cascade model, as derived inGollisch
and Herz(2005), reveals that several assumptions were necessary to yieldthe relationships
betweenl(τ) andL(∆t) as well as betweenQ(∆t) andq(τ). For understanding the properties of
Q(∆t) we here review this calculation.

The connection of the generalized cascade model and its click version (Section1.4.4) is
derived as follows. The response of the receptor neuronr(t) is given by

r(t) = g̃(J(t)) (3.9)

with J(t) =
Z ∞

0
dτ′ q(τ′) ·

[

Z ∞

0
dτ l(τ) ·A(t− τ− τ′)

]2

. (3.10)

The following causality conditions are assumed to apply forthe filter functionsl(τ) andq(τ):

l(τ) = q(τ) = 0 for τ < 0 (3.11)

The functionr(t) can be interpreted as the instantaneous firing rate and, therefore,

p =

Z T+w

T
r(t) ·dt (3.12)

is the probability of finding a spike in the time windoww beginning at timeT. With Equations
(3.2), (3.3) and (3.8) the relationsships(τ1 > 0,τ2 > 0)

l(τ1+ τ2) = l(τ1) · l̃(τ2)+ l(τ2) · l̃(τ1) and (3.13)

q(τ1+ τ2) = q(τ1) ·q(τ2) (3.14)

hold.

In order to relate the generalized model (Eq.3.10) to the click model (Eq.1.5), we use a pair
of clicks (modeled as Dirac delta functions) with amplitudesA1 andA2 as inputs to the general
model. For clicks at timest1 = 0 andt2 = ∆t > 0 the input reads

A(t) = A1 ·δ(t)+A2 ·δ(t −∆t). (3.15)
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To continue with the calculation, some basic assumptions have to be made. We can assume
that the effective stimuli intensityJ(t) has a rather stereotypic, sharply peaked form and that
it will be adjusted to yield the same maximumJ. We assume that the spike probabilityp will
be dominated by the maximumJ. Simulations show that the maximumJ, and thus the relevant
instant of spike initiation, is obtained at the same timesT after the second click, for different
click combinations. Thus, spikes are initiated att = ∆t + T. InsertingA(t) Eq. (3.15) to Eq.
(3.10) we obtain forJ at timet = ∆t +T

J = J(∆t +T) =
Z ∞

0
dτ

[

A1 · l(∆t +T − τ)+A2 · l(T − τ)
]2 ·q(τ). (3.16)

The right-hand side of the term decomposes into

J = A2
1 ·q(∆t) ·

Z ∆t

0
dτ [l(τ)]2 ·q(T − τ)

+ [A1 · l̃(∆t)+A2]
2 ·

Z T

0
dτ [l(τ)]2 ·q(T − τ)

+A2
1 · l2(∆t) ·

Z T

0
dτ [l̃(τ)]2 ·q(T − τ)

+2·A1 · l(∆t) · [A1 · l̃(∆t)+A2] ·
Z T

0
dτ l̃(τ) · l(τ) ·q(T − τ).

(3.17)

The last term can be neglected as it will be small compared to the other integrals. Here, we
want to construct a form ofJ that is similar to Eq. (1.7) of the click-model in the introduction.
To obtain a comparable form, the following definitions are used:

k =

Z T

0
dτ [l(τ)]2 ·q(T − τ), (3.18)

ζ =
1
k
·

Z T

0
dτ [l̃(τ)]2 ·q(T − τ), (3.19)

γ(∆t) =
1
k
·

Z ∆t

0
dτ [l(τ)]2 ·q(T − τ). (3.20)

Eq. (3.17) can then be written as

J = A2
1 ·q(∆t) ·γ(∆t) ·k+[A1 · l̃(∆t)+A2]

2 ·k+A2
1 · [l(∆t)]2 ·ζ ·k (3.21)

⇐⇒ J = A2
1 ·{q(∆t) ·γ(∆t)+ [l(∆t)]2·ζ}·k+A1 · l̃(∆t) ·k+A2

2 ·k. (3.22)

The constant factork can be absorbed into the relation betweenJ andp. By comparison with
the Equation from the click-model,

J = A2
1 ·Q(∆t) + [A1 ·L(∆t) + A2]

2 (3.23)

we find the relationships

L(∆t) = l̃(∆t) (3.24)

Q(∆t) = q(∆t) ·γ(∆t)+ [l(∆t)]2·ζ. (3.25)

L(∆t) therefore corresponds to a phase-shifted version of the filter l(∆t) and can thus be inter-
preted as the velocity of the tympanic vibration.
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First,Q(∆t) is related toq(∆t), but not identical to it. The identity ofQ(∆t) is more complicated
and explains the occurence of an initial rise of this filter function. The correction factorζ is a
constant near unity. The factor[l(∆t)]2 is a squared damped sine function (Eq.3.13), with
l(∆t) = 0 for ∆t = 0. It has a strong oscillatory influence onQ(∆t) for early∆t, but converges
quickly to zero for larger∆t, sinceτTymp≪ τint . For this reason the term[l(∆t)]2 ·ζ is negligible
for ∆t ≫ τTymp. The termγ(∆t), on the other hand, is zero for∆t = 0 and approaches unity for
larger∆t due to the fast decay of[l(∆t)]2, because then the integral in Eq. (3.20) will become
equal tok in Eq. (3.18). Note, that thel2(∆t) terms decay withτtymp/2 due to the square
function that separates the two linear filter functions:

(

e
−t

τtymp

)2
= e

−2 t
τtymp = e

− t
τtymp/2 (3.26)

The mathematical details of the relationship of the click-version model and the generalized cas-
cade model explain the initial shape ofQ(∆t) for small interclick intervals,∆t. The calculations
demonstrate that the initial oscillations are a characteristic trait of this indirect approach, but
don’t correspond to biophysical processes.

3.2.2 Why doesn’tQ(∆t) reveal the whole time course?

Our simulations demonstrated that the time course ofL(∆t) captures the whole oscillation of
the eardrum. This result is very comprehensible. Any secondclick impulse has to be charged
against the oscillation caused by the first click impulse and, thus,mustbe found in the iso-
response sets from the first moment of the triggered oscillation.

Another intuition can be given for the finding that only a partof the electrical integration is
captured by the IRS. Any spike is obviously evoked by the maximum of the impulse response
(Fig. 4.2), which is denoted byJ. Roughly speaking, both clicks cause individual potentials
that superimpose, when the interclick interval is small enough. The maximum of the potential
evoked by the second click can by no means occur earlier than the maximum of the potential of
the first click. Hence, any inter-click interval,∆t, shifts the maximum of the second potential
away from the maximum of first potential. It now happens that the voltage curve evoked by
the first click descents in time and any second click has to compensate this descent to yield the
same spike probability. Thus, it occurs to be plausible thatthe IRS captures only those parts of
the electrical integration after the maximum of the first evoked potential.

The calculation in Section3.2.1provides the means to understand this phenomenon math-
ematically. In order to yield Eq. (3.16), we first assumed that the maximumJ of J(t) is the
relevant parameter for the tuning of spike probability. Second, we assumed that the maximum
J always occurs at time∆t +T and, therefore,J ≡ J(∆t +T). For interclick intervals∆t = 0,
we coherently getJ ≡ J(T), which is thus the smallest time of the effective stimulus intensity
we can measure by iso-response sets. In our simulation in Section 3.1, J(t) is identical toVm(t)
and we can thus writeJ ≡Vm(T).

3.2.3 The Impulse Response of the Signal Transduction Chain

In order to understand the relationships betweenQ(∆t) and the voltage trace of the model in
response to a short click, we calculate the impulse responseof the model. The air pressure wave
for a single short click is given by

A(t) = A1 ·δ(t) (3.27)
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To calculate the impulse response of the signal transduction chain we insert Eq. (3.27) into Eq.
(3.10) and get

J(t) =

Z ∞

0
dτ′ q(τ′) ·

[

Z ∞

0
dτ l(τ) ·A1 ·δ(t − τ− τ′)

]2
(3.28)

⇐⇒ J(t) = A2
1 ·

Z ∞

0
dτ q(τ) [l(t− τ)]2 (3.29)

Figure (3.2) suggests that the impulse response needs to be shifted to the left to be comparable
wit Q(∆t). Following the arguments from Section3.2.2we assume that this shift equals the
time T of the peak. The shifted impulse response then reads

J(t +T) = A2
1 ·

Z t

0
dτ q(τ) [l(t +T − τ)]2 (3.30)

This is exactly Eq. (3.16) with A2 = 0 and we can read of the solution from Eq. (3.22) to be

J(t +T) = A2
1 ·{q(t) ·γ(t)+ l̃2(t)+ l2(t) ·ζ}·k+A1 · l̃(∆t) ·k (3.31)

= A2
1 ·Q(∆t)+A1 · l̃(∆t) ·k, (3.32)

where the dependency on T is contained inγ(t) (Eq. 3.20) andζ (Eq. 3.19).

To be in agreement with our observations the impulse response (Eq.3.32) andQ(∆t) (Eq. 3.25)
should be equal for sufficiently large interclick intervals, ∆t. In this case, all terms containing
l(τ) converge to zero and Eq. (3.32) reduces to

J(t +T) = A2
1 ·Q(∆t) ·k. (3.33)

However, for small interclick intervals Eq. (3.25) and Eq. (3.32) differ significantly, which is in
agreement with our observations in Figure (3.2B).

3.2.4 A Non-Oscillatory Eardrum

To strengthen our reasoning of Section (3.2.1) about the influence of thel(∆t) terms onQ(∆t),
we investigate a model without oscillatory components (Fig. 3.3). We substitutel(τ) (Eq. 3.2)
with

l(τ) = e
− τ

τtymp, (3.34)

which is modeled by

τtymp
d
dt

x(t) = −x(t)+s(t) (3.35)

All other parameters are similar to the original model in Section 3.1. In the previous chapter
we demonstrated thatQ(∆t) reveals the partJ(t) after the timeT, only. As this is a general
characteristic of the iso-response method, this characteristic applies here, too, and we can ex-
pectQ(∆t) to begin with the maximum ofJ(t). However, similar to section3.2.1, we have to
consider the influence of the termγ(∆t).
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Figure 3.3: MODEL WITH A NON-OSCILLATORY EARDRUM. (A) Time course of the change of the eardrum
vibration,L(∆t) (red line), calculated from the measured valuesA2 and Ã2 (Eq. 1.10). The measured data are
compared to an exponential decay function with the time constantτtymp= 200µs of the modelled filterl(∆t) (Eq.
3.35). (B) Time course of the electrical integration process,Q(∆t) (red line, Eq.1.11). The measured data are
compared to the time course of the convolution (2.4) with τ1 = 0.5·τtymp = 100µs andτ2 = τint = 500µs of the
modelled filterq(∆t). Filter Q(∆t) matches perfectly with the voltage curve and unravels the whole time course of
the electrical integration.

0 1 2
0

1

C
lic

k 
- A

m
pl

itu
de

Time [ms]

 A2; negative click
 A2; positive click

Figure 3.4: TIME COURSE OF THECLICK -AMPLITUDES A2 AND Ã2 The later part of the time course ofA2

is clearly governed by the time constantτint = 500µs of q(∆t). The time course of̃A2 comprises additional
information about the time course ofl(τ), (Fig. 3.3A).
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Theoretical Considerations

To find the relationships betweenQ(∆t) andq(τ) we perform a calculation analogous to that in
Section (3.2.1). Starting with Eq. (3.16), we get

J =

Z ∆t

0
dτ A2

1 ·
[

l(τ)
]2 ·q(∆t) ·q(T − τ)

+

Z T

0
dτ

[

A1 · l(∆t) · l(τ)+A2 · l(τ)
]2 ·q(T − τ)

(3.36)

J = A2
1 ·q(∆t) ·

Z ∆t

0
dτ

[

l(τ)]2 ·q(T − τ)

+

(

[

A1 · l(∆t)
]2

+A2
2 +2A1A2 · l(∆t)

)

·
Z T

0
dτ

[

l(τ)
]2 ·q(T − τ)

(3.37)

Using the following definitions

k =

Z T

0
dτ

[

l(τ)
]2 ·q(T − τ) (3.38)

γ(∆t) =
Z ∆t

0
dτ

[

l(τ)]2 ·q(T − τ). (3.39)

we get

J = A2
1 ·q(∆t) ·k·γ(∆t)+

(

A1 · l(∆t)+A2
)2 ·k (3.40)

In comparison with Eq. (3.23) for the click-model, we find

L(∆t) = l(∆t) (3.41)

Q(∆t) = q(∆t) ·γ(∆t) (3.42)

This is an exact solution and no approximations by neglecting terms like in the original calcu-
lation had to be made. In Eq. (3.42) we again find the factorγ(∆t), while the term[l(∆t)]2 ·ζ
we obtained in Equation (3.25) has vanished. The termγ(∆t) approaches unity due to the fast
convergence of[l(∆t)]2 = exp[−∆t/(τ/2)] to zero.

In this model we findQ(∆t) to be identical to the impulse response of the transduction chain.
We read

Q(∆t) = q(∆t) ·γ(∆t) (3.43)

=

Z ∆t

0
dτ [l(τ)]2 ·q(T − τ) ·q(∆t) (3.44)

=
Z ∆t

0
dτ [l(τ)]2 ·q(T +∆t − τ) (3.45)

= ([l(τ)]2∗q)(T +∆t), (3.46)

which is the convolution of the functional filters of the model. In Section3.2.2we argued that
Q(∆t) capturesJ(T +∆t) only and, still, here we find the whole time course ofJ revealed. This
is possible due to the correction factorγ(∆t), which, in this model, happens to be identical with
the convolution of the functional filters.
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Figure 3.5: ISO-RESPONSE-SETS FOR THE’I NTEGRAL’-M ODEL. (A) Time course of thechangeof the eardrum
vibration,L(∆t) (red line), calculated from the measured valuesA2 andÃ2 (Eq. 1.10). The results are compared to
a damped harmonic oscillator (black line, Eq.3.4) with fundamental frequencyf = 4 kHz and decay time constant
τtymp= 200µs of the modeled filter functionl(∆t). (B) Time course of the electrical integration process,Q(∆t) (red
line, Eq. 1.11). In this case, the iso-response-set doesn’t reveal any information about the electrical integration.
This approach reveals the oscillatory effects of the iso-response method for small∆t, which are found inQ(∆t) of
the other model-versions,too.

Both linear filter functions,l(τ) andq(τ), have the same form as the convolutions we investi-
gated in Chapter2 and we thus find

Q(∆t) =
1
2 ·τtymp·τint

1
2 ·τtymp− τint

[

e
− 2∆t

τtymp −e
− ∆t

τint

]

(3.47)

Thus, the time course ofQ(∆t) in Figure (3.3) is identical to that in Figure (2.1A).

3.2.5 Illumination of the Artificial Elements in Q(∆t)

It is possible to display the combined effects of the termsγ(∆t) and [l(∆t)]2 ·ζ in Equation
(3.25). The model we used for reproducing the iso-response sets ofGollisch and Herzstill used
a probabilistic output function to calculate the desired spike probabilityp. Instead, we now use
an deterministic approach and calculate the integral over the whole time courseJ(t) to compute
the ’spike probability’p:

p = J =

Z ∞

0
J(t) dt = constant (3.48)

Due to the integral function, both click amplitudesA1 andA2 fully contribute toJ. As both
clicks are added independently of the electrical integration, represented by filterq(∆t), this
impliesq(∆t) = 1. Considering this, Equation (3.25) decomposes to

Q(∆t) = γ(∆t)+ [l(∆t)]2·ζ. (3.49)

Therefore,Q(∆t) describes the effects of the termsγ(∆t) and[l(∆t)]2 ·ζ only (Fig. 3.5). Com-
parison with Figure3.2 explains the initial rise ofQ(∆t) from zero and the differences to the
time course of the voltage curve. Note, that bothγ(∆t) andζ contain the termq(∆t) = 1 and,
hence, are not identical to Eq. (3.19) and Eq. (3.20). However, the difference is small as the
dynamics ofq(∆t) are slower than that ofl(∆t) and the influence ofl(∆t) on Q(∆t) becomes
apparent. In Section3.2.1we proposed that the decay time ofl(∆t) would be halved due to the
squaring. Here, we find these predictions confirmed by comparison of the time course ofL(∆t)
andQ(∆t) in Figures (3.5A) and (3.5B), respectively.
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3.3 Replacing the Quadratic Nonlinearity with the Absolute
Value Function

Apparently, the quadratic nonlinearity makes it possible to separate the filter functionsl(τ) and
q(τ). However, a complete retrieval ofq(∆t) is not possible. Here we investigate how the first
nonlinearity influences this result by using an absolute value function instead of the quadratic
nonlinearity. This would still yield the important rectification characteristic. At the same time
the influence ofl(τ) in time is extended, as the shortening influence of the squaring is absent
(see Section3.2.1). The resulting signal transduction cascade has the form

s(t)
l(τ)−→ |· |−→ q(τ)−→ J(t)

g(·)−→ p. (3.50)

Due to the substitution of the static quadratic nonlinearity by absolute values, we require a
different equation for computingL(∆t) andQ(∆t) from the click experiments. We derive the
required equations by a similar calculation to that in Section 1.4.4. In our simulations, we
tune each pair of stimuli(A1,A2) and (A1, Ã2) to yield the same spike probabilityJ, so that
J(A1,A2) = J(A1, Ã2). The effective stimuli intensity for each pair of clicks is given by

J = A1 ·Q(∆t)+ |A1 ·L(∆t)+A2| (3.51)

J = A1 ·Q(∆t)+ |A1 ·L(∆t)− Ã2| (3.52)

Setting those equations equal, we get

|A1 ·L(∆t)+A2| = |A1 ·L(∆t)− Ã2| (3.53)

No matter, ifL(∆t) is positive or negative,A2 is tuned in such a way that the term on the left-
hand side is always positive. We thus read

A1 ·L(∆t)+A2 = |A1 ·L(∆t)− Ã2| (3.54)

The solutionA2 = −Ã2, for the case that the right-hand side is positive, doesn’t correspond to a
physical situation, asA2 andÃ2 denote absolute values. The only remaining case is that−Ã2 is
tuned in such a way that the term on the right-hand side is always negative. We then find

L(∆t) =
Ã2−A2

2A1
(3.55)

and via substitution into Eq. (3.51)

Q(∆t) = −Ã2+A2

2A1
. (3.56)

The difference to the solution of the original model (Eqn.1.11) is the missing square in the
solution forQ(∆t). Here, it seems thatQ(∆t) captures the whole time course of the electrical
integration (Fig.3.6). Unfortunately, the explicit calculation of the relationships betweenQ(∆t)
andq(τ) is not possible due to the absolute value function.
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Figure 3.6: ISO-RESPONSE-SETS FOR THEABSOLUTE-VALUE-MODEL. (A) Time course of thechangeof the
eardrum vibration,L(∆t) (red line), calculated from the measured valuesA2 andÃ2 (Eq. 1.10). The results are
compared to a damped harmonic oscillator (black line, Eq.3.4) with fundamental frequencyf = 4 kHz and decay
time constantτtymp = 200µs of the modeled filter functionl(∆t). (B) Comparison of the electrical integration
process,Q(∆t) (red line), and of the models’s impulse response. Both curves match well and FilterQ(∆t) seems
to contain information about the whole time course of the electrical integration.

3.4 Do we find Properties of the Spike-Generator inQ(∆t)?

The last nonlinearity in the generalized cascade model of locust signal transduction describes
the transformation of a receptor potential to a firing rate orspike probability, respectively. This
step certainly involves the spike generator. Here, we discover a difficulty in defining what we
mean exactly with the term ’spike-generator’. In the study of Gollisch et al. the process of
spike-generation was functionally described by the filter function g̃( ·), which translates the
effective stimulus intensityJ into a spike response of the receptor neuron. It was assumed to be
a static, monotonously rising function with sigmoidal shape (Gollisch and Herz(2005)). This
assumption is true for our initial simulation of iso-response sets in Section (3.1).

There, the electrical integration of accumulating charge at the cell membrane was modelled
by the filter functionq(τ). The convolution of the input signals(t) with the first three filter
functions yields the effective stimulus intensityJ. Finally,J is transformed to a spike probability
by means of an integral over the complementary error function (Eq. 3.7), which possesses the
claimed monotonous sigmoidal shape. Here, the processes ofelectrical integration and spike
generation are modeled separately and can clearly be distinguished.

But of course, a patch of passive dendritic membrane, as it ismodeled byq(τ) integrates ac-
cumulating charges differently (meaning linear) than a spike-generator with its voltage-depen-
dent ion-channels (meaning nonlinear). A simple and commonly used standard model is the
leaky integrate-and-fire model, which exhibits the same characteristics as the approach we used
before in Section (3.1). It would be straight forward to simulate a signal transduction chain with
a full conduction based model of a spike-generator as outputfunction. The signal transduction
chain we use here has the functional form

s(t)
l(τ)−→ |· |−→ q(τ)−→ j(·)−→ p (3.57)

where j( ·) stands for the spike-generator model and the effective stimulus intensityJ is em-
bedded inj( ·).

The Hodgkin-Huxley model has been derived from the giant axon of the squid and exhibits
oscillations in the range of 20 Hz (Hodgkin and Huxley, 1952a,b,c,d). The Traub-Miles model
builds up on the Hodgkin-Huxley model, but parameters were adapted to model the response
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Figure 3.7: MEASUREMENTS OF ISO-RESPONSE-SETS IN THE ’T RAUB-AND-M ILES’-M ODEL. (A) Time
course of the electrical integration process,Q(∆t) (red line, Eq.1.11). The measured data are compared to the
model’s impulse response.Q(∆t) and the impulse response match well and indicate that the dynamics of this model
are captured by the iso-response sets. (B) Histogram of the spike time variability at∆t = 40 ms. Simulations of
this model span 60 ms. Thus, we here show that our simulation captured all evoked spikes at the longest simulated
interclick interval.

0 5 10 15 20

0

1
A

V
ol

ta
ge

 &
 Q

(
t)

Interclick-Intervall t and Time [ms]

 Q( t)
 Membrane potential

4 6 8 10 12 14 16 18 20 22
0

100

200

300

400

500

B

S
pi

ke
s 

pe
r B

in

Time [ms]

Figure 3.8: MEASUREMENTS OFISO-RESPONSE-SETS IN THE ’H ODGKIN-HUXLEY ’-M ODEL. (A) Time course
of the electrical integration process,Q(∆t) (red line, Eq.1.11). Q(∆t) reveals a part of the voltage curve only. The
Hodgkin-Huxley-model shows slow oscillations which are not captured exactly by the method. (B) Histogram
of the spike time variability at∆t = 15 ms. Simulations of this model span 60 ms. Thus, we here showthat our
simulation captured all evoked spikes at the longest simulated interclick interval. Some spikes were evoked much
earlier by the first click.
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behaviour of the pyramidal neurons in CA3 (Traub et al., 1991). Due to these differences,
the Traub-Miles model shows much slower dynamics than the Hodgkin-Huxley model. These
two models behave in a complex way and combine the processes of electrical integration and
spike-generation in a single framework. It is not possible to explicitly distinguish the nonlinear
function that transforms the effective stimulus intensityJ into the spike-probabilityp from the
preceding integration. Details of the models are left to theappendix.

Similar to Section3.1, two iso-response sets are performed with a stimuluss(t), consisting
of two short clicks (width 10µs). The first click amplitude is held positive throughout the
simulations, while the second click was either positive forthe first IRS or negative for the
second IRS. The stimuluss(t) is convolved with the filter functionl(τ), the result is squared
and convolved with filter functionq(τ), yielding the membrane potentialVm(t). The inputI(t)
for the spike-generator model is then given by

I(t) = S·Vm(t)+D ·ξ (3.58)

with the input-scaling factorS, noiseξ and noise-strength factorD.
Both models possess much slower dynamics than the locust auditory system. For that reason

we have to simulate a much longer time than we did in previous simulations. If the simulation
time is too small to capture all spikes for larger∆t, the spike probabilitypwill be underestimated
and compensated by higher tuned amplitudes. This would result in a systematic tuning error,
while ∆t gets larger. Both models exhibit a relative broad spike-jitter. To make sure no spikes
were lost we present histograms of the spiketimes together with our results (Figures3.7B and
3.8B).

The input threshold of the Traub-Miles model is close toI = 0 and thus spikes are easily
evoked. This results in spontaneous activity even with low noise that distorts our results. For
that reason we added a negative baseline input (Ibase= −1µA/cm2) to Eq. (3.58) to eliminate
spontaneous activity.

The dynamical properties of both models change strongly in proximity to the threshold.
Therefore, we chose the first click’s amplitude in such a way that it results in a typical and
uniform shaped impulse response as it can be observed for click-amplitudes far away from the
threshold (Fig.3.8A, black curve). For details see appendix.

Traub-Miles Results are shown in Figure (3.7). The iso-response sets yield a very good
approximation of the time course of the electrical integration of the spike generator. But as
might have been expected, all integrative parts of the spike-generator are captured byQ(∆t),
additionally to oscillatory parts ofl(τ) for early∆t. As in Section (3.1), only the part of the time
course of the membrane potential beyond the peak is revealed. Oscillatory components of the
tympanum are found in the very early phase ofQ(∆t).

Hodgkin-Huxley Here, too, integrational parts of the spike-generator are captured by the
IRS. In comparison with the time course of the membrane potential, we find a very biased
Q(∆t) (Fig. 3.8A). The initial and the last part of the time course seem to fit well with the
membrane potential, but the negative phase in between is toolarge. These results suggest that
either the spike-generator influences the extraction ofQ(∆t) in an unexpected way or something
else must have changed.

The filterL(∆t) was reliably measured for both models. Also, both simulations show, that the
IRS captures all integrational parts of the spike-generator, beginning with the timeT of the
effective spike initiation.
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3.4.1 Why can’t we reproduce theVm(t) of the Hodgkin-Huxley-Model?

Phenomenons close to the ThresholdSince the first click brings the Hodgkin-Huxley model
already close to the threshold, it might be possible that theiso-response method scans for proper-
ties of the spike-generator close to the threshold. This phenomenon might lead to the particular
shape ofQ(∆t) we yield for this simulation. To investigate this possibility, we explored how the
impulse response of the Hodgkin-Huxley model changes when it’s driven close to the threshold
by single clicks without evoking an action potential. Examples for this are shown in Figure
(3.9). In comparison with the time course in Figure (3.8A) the negative phase of the impulse
response gets larger the closer the system gets to the threshold. The response shown in Figure
(3.9A) seems to matchQ(∆t) much better than Figure (3.8A), but the negative phase of impulse
response still doesn’t get as large asQ(∆t). As the system gets even closer to the threshold, the
slope of the descent changes dramatically, too, and the finalshape of the impulse response be-
comes very unalike to that ofQ(∆t) (Figure3.9B). We conclude, that the shape of the measured
Q(∆t) is unlikely to be based on such phenomena close to threshold as we investigated them
here.

Another approach to analyze the particular behaviour of theHodgkin-Huxley model in prox-
imity to the threshold is to add a positive baseline-input tothe model. The constant input pushes
the model towards the threshold and thus changes the steady-state parameters of the model,
which results in a different response behaviour. We explored the behaviour in response of the
model to a single click for different baseline-inputs. Results are shown in Figure (3.10) for two
different values of baseline-input. The negative phase gets larger with higher baseline input
and fits the initial and negative part ofQ(∆t) well. However, as a side effect of baseline-input
the oscillatory frequency of the Hodgkin-Huxley model is increased, while the damping of the
oscillation is decreased, leading to a large positive oscillation. Therefore, we conclude again
that this approach doesn’t lead to a satisfying explanationof the shape ofQ(∆t).

Matching Q(∆t) with the Tail of the Voltage Trace Instead of matching the initial phase of
Q(∆t) to the voltage trace, we scaledQ(∆t) to match the tail of the impulse response of the
model to single click (Fig.3.11A). The offset ofQ(∆t) is equal to the time until the peak of the
impulse response is reached. The curves fit well after about 3ms in respect to the time scale of
Q(∆t). This time span corresponds well with the time course of the impulse responseVm(t) in
the simulations of Section3.1 (Fig. 3.1D). Hence, it might be that the difference between the
impulse response andQ(∆t) of the Hodgkin-Huxley model is due to the influence of the filter
functionq(τ). Due to the complexity of the Hodgkin-Huxley model ...

Simulating a cascade model withoutq(τ) results in aQ(∆t) (Fig. 3.11B) that differs only
minimal to theQ(∆t) obtained from the model including theq(τ) filter. This was expected
sinceq(τ) operates on much faster time scales than the Hodgkin-Huxleymodel. The Hodgkin-
Huxley model has not a fixed filter function, but it rather heavily depends on input current
and voltage. Therefore, we are not able to establish a good match betweenQ(∆t) and various
impulse responses. The IRS, thus, reveals the properties ofa very particular dynamic regime of
the spike generator only.

Chapter Summary

In this Chapter, we used a simple structured model to reproduce iso-response sets performed
by Gollisch and Herz(2005) by means of numerical simulations. We extracted the filtersL(∆t)
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Figure 3.9: HODGKIN-HUXLEY: BEHAVIOUR CLOSE TO THETHRESHOLD . Here we investigate the impulse
response of a Hodgkin-Huxley-model which is driven close tothe threshold (A = 6150.3) by a click impulse.
We compare the impulse response to the measuredQ(∆t). (A) Amplitude A = 6100. (B) AmplitudeA = 6150.
Although the amplitude of the oscillation increases the closer the model gets to the threshold, the mismatch of the
impulse response and the results of the iso-response-method can’t be explained by this approach.
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Figure 3.10: HODGKIN-HUXLEY: BEHAVIOUR WITH BASELINE-INPUTS. In addition to the clicks, the model
is driven by a baseline-inputI0 = 5 (A) and I0 = 6 (B), which shifts the impulse response of the model closer
towards the threshold and thus changes it’s behaviour. The click-amplitudes are relatively low, so that the model
doesn’t show close-to-threshold behaviour, as it does in figure 3.9. The higher the baseline-input the more in-
creases the oscillatory frequency of the Hodgkin-Huxley model. We don’t find such behaviour in our iso-response-
measurements. The mismatch of the impulse response and the results of the iso-response-method can’t be ex-
plained by this approach.

0 5 10 15

0

1

0 5 10 15

0

1

V
ol

ta
ge

 &
 Q

(
t)

Interclick-Intervall t [ms] and Time [ms]

 Q( t)
 Membrane potential

A B

V
ol

ta
ge

 &
 Q

(
t)

Interclick-Intervall t [ms] and Time [ms]

 Q( t)
 Membrane potential

Figure 3.11:Q(∆t) FITTET TO THE TAIL OF THE IMPULSE RESPONSE. We fittedQ(∆t) to the tail of the impulse
response of a single click. Two different models are shown. (A) A Hodgin-Huxley model receives its input by filter
q(∆t). (B) A Hodgin-Huxley model without the filterq(∆t). The curves match well for large interclick intervals,
i.e. ∆t > 5s. The initial region ofQ(∆t) doesn’t match well with both models. These findings for both models
demonstrate that the initial mismatch ofQ(∆t) is not due to the influence of the filter functionq(∆t).
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andQ(∆t) and demonstrated that essential parameters of the model canbe reliably extracted
by the IRS. By comparison of theQ(∆t) and the impulse response of the model we learned
thatQ(∆t) reveals only a part of the effective stimulus intensityJ(t). We demonstrated that all
integrative properties of the spike generator are capturedby IRS and, thus, IRS measure the
temporal integration characteristics of the site of the spike initiation. We also demonstrated that
dynamics of the spike-generator can distort the initial phase ofQ(∆t) and that this distortion is
independent of the linear filtersl(∆t) andq(∆t).
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CHAPTER 4

I SO-RESPONSESETS IN AMPLITUDE

SPACE OF TWO SHORT CLICKS

Gollisch and Herz(2005) used IRS to analyze amplitude space and thus to determine what stim-
ulus parameters govern locust auditory signal processing on different time scales. Input stimuli
consisted of two positive click-impulses with a width of 20µs each, which were separated by
an interclick-interval∆t. Multiple measurements were performed for different amplitude-ratios
A1/A2 and tuned for each amplitude-ratio to yield the same spike probability of p= 0.7. Figure
(1.6) shows iso-response sets in amplitude space as they have been measured byGollisch and
Herz (2005). These measurements as interpreted demonstrated that on different time scales,
different stimulus parameters govern signal processing: the amplitudeA of a sound stimulus for
short times and its energyA2 for long times. Here we compare iso-response sets derived from
simulations of different cascade models in respect to this interpretation.

4.1 Simulation of the original cascade model

Similar to the experiments of Gollisch et al., the simulatediso-response sets (Fig.4.1), feature
several particular shapes that can easily be distinguishedand are interpreted to reflect different
modes of stimulus integration. For short interclick-intervals (∆t ≤ 40µs), straight lines indicate
almost linear summation of the click amplitudesA1 andA2.

Dominant oscillations of the eardrum govern the shape of theIRS curves for intermediate
interclick-intervals, up to approximately∆t ≈ 500µs, where the oscillations caused byl(∆t) dye
out (Fig. 4.1; see also Section3.2.5and Fig.3.5; ). At this range of intervals, the IRS shapes
rapidly change their form with the interclick-interval∆t. The IRS display almost symmetric
curves and asymmetric bulbed curves (shown for∆t = 120µs for comparison with Fig.1.6).
The influence of the eardrum (and thus of filter functionl(∆t)) is vanishes for larger interclick
intervals,∆t > 500µs, and the shape of the IRS curves are governed by the process of electrical
integration,q(∆t). We find asymmetric curves for values of∆t of 500µs and 750µs (Fig. 3.5).
As larger∆t grows, the curves resemble more closely the shape of a square(∆t = 2.5ms, Fig.
3.5).

Why are the iso-response sets for a larger∆t slightly asymmetric curves instead of ellipses?
And why do the iso-response sets approach the shape of squares for a large∆t? In order to
understand this phenomenon we recapitulate how the model responds to a single pair of clicks
(Fig 4.2). The first click initiates the vibration of the eardrum, thedeflection of the eardrum is
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Figure 4.1: REPRODUCTION OFISO-RESPONSESETS IN AMPLITUDE SPACE FOR FIXED TIME INTERVALS

∆t . Each iso-response measurements was performed with double-click stimuli for a fixed interclick time interval
∆t each. Multiple ratios of the click amplitudesA1/A2 were tuned to yield the desired spike probabiltyp. As
in the experiments published byGollisch and Herz(2005), several prominent shapes of iso-response-sets can
be distinguished: straight lines, circles, ellipses and, additionally, squares. The shapes are interpreted to reflect
different modes of stimulus integration in the signal transduction cascade of the locust.

squared and serves as input for the passive membrane. In response to the input by the eardrum
vibration an electrical potential over the membrane buildsup (Fig. 3.1C). In case of a larger
interclick interval, e.g.∆t = 750µs, the influence of the vibration of the eardrum due to the first
click will have almost died out. The second click will initiate the eardrum vibration anew, this
evoking an independent electrical potential. Because the second click was initiated before the
potential evoked by the first click had converged to steady-state, bothelectrical potentialsare
added linearly (Fig.4.2). Roughly speaking, in this scenario the potential evoked by second
click has a ’headstart’ because it builds up on the electrical potential evoked by the first click,
which leads to the asymmetric shape of the IRS. The shape of the IRS will thus be dependent
on the value ofQ(∆t) at a particular interclick interval∆t.

A different situation is found for very large interclick interval, e.g.∆t = 2.5ms, where the
membrane potential evoked by the first click has already converged to zero. Both clicks are
then independent in respect to electrical integration as the second click’s potential doesn’t build
up on the potential of the first click. For large and small amplitude-ratiosA1/A2 only one of
the clicks will contribute to the spike probabilityp, which results in a square-like shape of the
iso-response sets. Figure (4.1) shows such a square for∆t = 2.5ms. For amplitude-ratios close
to unity the IRS displays a circle-like shape. The radius of this circle is dependent on the noise
added to the system, which can easily be shown in simulations.

This phenomenon can be understood by means of Equation4.1 for the effective stimulus
strengthJ of the click-model,

J = A2
1 ·Q(∆t) + [A1 ·L(∆t) + A2]

2 . (4.1)

In order to explain the observations of straight lines, asymmetric curves and the square-like
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Figure 4.2: SUCCESSIVECLICKS. The membrane potential in response to a sequence of two short clicks (indicated
by arrows), which are separated by the interclick interval,∆t. The potential evoked by the second click,A2, builds
up on the the potential evoked by the first click,A1. The dashed lines indicate the peaks of evoked membrane
potentials. This example corresponds to the situation governed by Eq. (4.3) and helps to understand, why the IRS
for ∆t > 500µs exhibit asymmetric ellipses.

shape, we distinguish three cases.

1. ∆t = 0. Neither the eardrum vibration, nor the electrical integration are initiated. Thus,
Q(∆t) is zero andL(∆t) equals unity, as we found in Section3.2, Eq. 3.24 and3.25.
Therefore, Eq. (4.1) reduces to

J = [A1+ A2]
2 , (4.2)

which is a linear summation of the click amplitudesA1 andA2, resulting in a straight line
in amplitude-space.

2. At all zero crossings ofL(∆t) and at interclick intervals of∆t > 500µs, when the eardrum
oscillation died out, we findL(∆t) = 0 and Eq. (4.1) reads

J = A2
1 ·Q(∆t) +A2

2. (4.3)

This equation describes the ellipses we find in Figure (4.1).

3. For interclick intervals∆t > 2.5ms bothL(∆t) andQ(∆t). Equation (4.1) remains

J = A2
2. (4.4)

When the click amplitudeA2 is sufficiently larger (the specific ratio betweenA1 andA2

is dependent of the noise of the system) than the click amplitudeA1, almost all spikes are
evoked due toA2. In this case, the click amplitudesA1 andA2 will be tuned untilA2 is
large enough to cause the desired spike probability, resulting in a horizontal curve in the
amplitude space in Figure (4.1), for ∆t = 2.5ms. The reciprocal case occurs, when the
click amplitudeA1 is sufficiently larger than the click amplitudeA2. Then all spikes are
evoked due toA1 and, in the experiment,A1 andA2 are tuned untilA1 is large enough
to yield the desired spike probability. The result is a vertical line in Figure (4.1), for
∆t = 2.5ms.

The results of our simulations match very well with the results obtained byGollisch and Herz
(2005) in Figure (1.6). IRS for short interclick intervals,∆t = 40µs, exhibit straight lines
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∆t = 40µs
∆t = 80µs
∆t = 120µs
∆t = 200µs
∆t = 500µs
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∆t = 2.5ms

Figure 4.3: OSCILLATIONS IN AMPLITUDE SPACE DUE TO l(τ). Here, the output function was an integral of
J(t), as described before in Section3.2.5. For large∆t IRS are mere circles, reflecting the quadratic summation of
the amplitudes. For small∆t the strong oscillations of the eardrum causes the IRS to formellipses, which change
form rapidly with∆t.

and bulb-shaped curves for∆t = 120µs. We also find slightly asymmetric ellipses for∆t =
500µs and 750µs.

We don’t find symmetric ellipses for these interclick intervals. We propose that the dif-
ferences between the experimental data and an asymmetric shaped ellipses for these interclick
intervals is covered by the noise in the experimental data. This interpretation is supported by
much higher standard deviations of the data in Figure (1.6A) compared to Figures (1.6B and
C). The square-like shaped IRS are not measured in the study of Gollisch and Herzdue to too
small interclick intervals,∆t.

4.2 Simulations of Alternative Cascade Models

Oscillatory Components By integrating overJ(t) as output functiong we are able to di-
rectly show the oscillatory influence ofl(τ) on the IRS in amplitude space (Fig.4.3). Here,
the iso-response sets exhibit symmetric ellipses for largeinterclick intervals, i.e.∆t > 500µs,
while the IRS curves for smaller∆t are symmetric curves that vary strongly with∆t. The latter
phenomenon reflects the rapid oscillations of the eardrum.

Due to the integral function, both click amplitudesA1 andA2 fully contribute toJ in regard
to their evoked electrical potential. Therefore, no contribution of either click is ’forgotten’ and
no ’independent’ clicks exist. Since the first click amplitude always fully contributes toJ, this
implies no dependence ofq(∆t) and thereforeQ(∆t) = 1. Applying this relation to Equation
(4.3), we get for large∆t whenL(∆t) = 0

J = A2
1 +A2

2, (4.5)

which explains the symmetric ellipses, we observe for largeinterclick intervals,∆t > 500µs.
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Figure 4.4: LNLN-CASCADE WITH ABSOLUTE VALUES. Main differences to the reproduction-model are a
stronger asymmetry of the ellipses for large∆t and a slower ’growth’ to the square-like shape of independent clicks.
The similarity of these result to the reproduction model indicate that IRS in amplitude-space are inappropriate to
unravel the nature of the second nonlinearity without profound knowledge of the signal transduction cascade.

We can’t comprehend the symmetry of the IRS for small∆t by means of equations.

Replacing the Quadratic Nonlinearity with the Absolute Value function Here, we use the
cascade model introduced in Section3.3. The cascade model comprises the absolute value
function instead of the quadratic nonlinearity. The iso-response sets for this model (Fig.4.4)
exhibit shapes very similar to the original model (Fig.4.1). Main differences are a much more
pronounced asymmetry of the ellipses for small∆t and a slower ’growth’ of the asymmetric
ellipses for large∆t to the square-like shape of independent clicks. As explained in Section
(3.2.1), the quadratic nonlinearity causesτtymp effectively to be halved. The absence of this
effect in this model leads to the prolonged influence ofl(∆t) and the greater asymmetry of the
ellipses for small interclick intervals.

Hodgkin-Huxley The cascade model with a Hodgkin-Huxley model as output function ex-
hibits particularly interesting oscillations in the 20Hz range (Fig.3.8). The iso-response sets for
this model show highly symmetrical shapes for small∆t. Here, we find IRS that exhibit straight
lines, ellipses, circles and squares, as we found them in original model (Fig.4.1). Additionally,
we find nose-like shaped IRS that reflect the oscillations of the Hodgkin-Huxley-model at large
∆t (> 3ms). When the voltage response of the model enters a negative phase, the second click
has to compensate for the negative offset of the voltage curve. This results in the nose-like
shapes of IRS for∆t corresponding to a negative phase of the voltage curve.
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∆t = 9.0ms

Figure 4.5: ISO-RESPONSESETS WITH A HODGKIN-HUXLEY MODEL. For short∆t we find linear summation
(straight lines), for medium-ranged∆t the oscillatory influence of the eardrum causes rapidly changing ellipses.
For longer∆t, IRS continue to grow to a square-like shapes, similar to those observed in the simulation of the
original model (Fig. 4.1). The shapes of these IRS are approximately symmetrical. The oscillatory behaviour
of the Hodgkin-Huxley model results in nose-like shaped IRSfor the negative phases of the oscillation of the
membrane potential for large∆t.

Chapter Summary

We have shown that the IRS in amplitude space ofGollisch and Herz(2005) can be repro-
duced with a simple structured model. Furthermore, we have shown that asymmetric instead
of symmetric ellipses are the prominent shape of iso-response sets in amplitude space for large
interclick intervals,∆t, when the filter functionl(∆t) almost converged to zero. For very large
∆t iso-response sets converge to a square-like shape with a rounded edge, which specific radius
depends on the noise of the system. We have shown, that the bulb-shaped curves for small
interclick intervals are a characteristic trait of the eardrum oscillation only.Our results suggest
that the elliptical shape for iso-response sets for large∆t, as proposed byGollisch and Herz
(2005), is not a strong argument for a quadratic nonlinearity between the filter functionsl(τ)
andq(τ), since this is heavily distorted byL(∆t) andQ(∆t) and dependend ong( ·). However,
this quadratic nonlinearity has been independently measured by the analysis of the spectral
integration of pure sine tones (Gollisch et al.(2002)).
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CHAPTER 5

SEPARATION OF FUNCTIONAL

SUBMODULES BY M EANS OF NOISE

The iso-response method offers the means to analyze the locust auditory signal transduction
chain, as it is characteristic of this method to enable the unraveling of the linear filter functions
of the LNLN-cascade. The identification of these linear filter functions is possible only because
they are separated by a single nonlinearity. The terminal nonlinearity remains without effect for
this analysis due to the very definition of iso-response (seeSection1.4.3). The processes de-
scribed by the linear filter functions are might be divided infurther functional submodules that
reflect the underlying biophysical processes in even greater detail. These functional submod-
ules can’t be unraveled by the iso-response method, as they are not separated by a significant
nonlinear process. For that reason the submodules act as a single filter function, similar to the
convolutions of exponential functions we investigated in Chapter2.

Yet it might be that a scenario exists, where some submodulesare captured better by this
method than others. As a possibility, this scenario could apply, when two functional modules
are separated by a high level of noise. Here, we analyze this specific scenario in order to
understand whether some functional components of the linear filter functions are not or only
weakly captured by IRS.

For this purpose, we composed a signal transduction chain (aLNLN-cascade) that features
a second linearity, which is composed of two linear submodules (a LNLLN-cascade so to speak,
Eq. 5.1). These submodules are a sequence of two exponential decay functions that the IRS
typically captures as a single linear filter. The signal transduction chain we use here has the
form

s(t)
l(τ)−→ [· ]2−→ q(τ)−→ w(τ)−→ J(t)

g(· )−→ r(t), (5.1)

where the filter functions are given by

l(τ) = sin(2π f · t) ·e−
t

τTymp, (5.2)

q(τ) = e
− t

τq , (5.3)

w(τ) = e−
t

τw . (5.4)

Although a significant amount of noise could be added to the signal at different positions of
the transduction chain, we are, in this case, only interested on the effects of noise added to the
output ofq(τ). This output is then convolved withw(τ), yielding the effective stimulus intensity
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Figure 5.1: SEPARATING EFFECTS OFNOISE. We modeled an LNLLN-cascade and investigated if it is possible
to separate the second,q(τ), and third linearity,w(τ), with a high-level of noise in between. (A)τq = 500µs,τw =
250µs. The extracted decay time constant of the tail ofQ(∆t), τint = 550µs, is close to the largertauq and
indicates that no separation occurs due to high levels of noise. (B)τq = 250µs,τw = 500µs. The extracted decay
time constant of the tail ofQ(∆t), τint = 550µs, is close to the largertauw. The results suggest that no separation
of filters occurs in this scenario, either.

J(t). In the case that a high level of noise uncouplesq(τ) andw(τ), the iso-response sets should
yield aQ(∆t) that mainly reflects the properties ofq(τ) or w(τ).

Following this paradigm, we model the signal transduction chain by the following steps. The
eardrum is simulated by

s(t) = ẍ(t)+
2

τtymp
ẋ(t)+ω2x(t). (5.5)

The outputx(t) is squared and serves as input forq(τ), modeled as

τq
d
dt

Vq(t) = −Vq(t)+x2(t). (5.6)

The outputVq(t) serves as input forw(τ)

τw
d
dt

Vw(t) = −Vw(t)+Vq(t)+Dξ, (5.7)

with gaussian white noiseξ and the noise-strengthD.

At this point we don’t know, if a separation of two filter functions by noise is at all possible.
Furthermore, in the case that parameters of one filter are measured better than the other, which
of the two filters would it be? To be able to cover both possibilities, we therefore performed
two different experiments. In order to distinguish betweenthe characteristics ofq(τ) andw(τ),
we used time constantsτq andτw for the filter functions that differ significantly. We choosea
noise-strength factor ofD = 20, which results in a standard deviation ofσ = 20% in respect
to the threshold level. In Chapter2 we demonstrated that in a convolution of two exponential
decay filters the filter function with the larger time constant has dominant influence on the decay
time of the resulting overall function. In case no decoupling takes place, we will extract a time
constant fromQ(∆t), which is close to the longest time constant of each experimental setup.
Otherwise, if we find a decay time constant inQ(∆t) that is significantly smaller than the longer
time constant of the two filter functions, this would suggestan decoupling of the linear filters.
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Experimental Setups

1. τq = 500µs,τw = 250µs. Results are shown in Figure (5.1A). The extracted decay time
constant of the tail ofQ(∆t) is very close toτq, which suggests that the filter functions
q(τ) andw(τ) remain coupled even with high levels of noise added.

2. τq = 250µs,τw = 500µs. Results are shown in Figure (5.1B). Analogous to the first case,
the extracted decay time constant of the tail ofQ(∆t) is very close toτw and suggest a
coupling of both filter functions, even with high levels of noise added.

Our simulations don’t suggest a separation of linear filter due to noise, at least for the scenarios
tested. Therefore, it is likely that even in noisy signal transduction chains all sequenced linear
filters are captured as a single filter by the iso-response method.
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CHAPTER 6

CONCLUSION AND DISCUSSION

The iso-response Sets introduced byGollisch and Herz(2005) provided a powerful method
combining theory and experiments for a functional analysisof the locust auditory signal trans-
duction. This approach yielded detailed novel insights about functional modules of the trans-
duction chain and, by this means, the temporal integration in auditory receptor neurons. The
IRS bases upon the analysis of the signal transduction chainas a sequence of functional filters,
which transform the input signals(t) into a lower-dimensional response, e.g. a spike probability.

A remarkable characteristic of the IRS is the reliable detection of the first linearity,l(∆t),
which remains unmasked by influences of the second linearity, q(∆t). In contrast, the estimation
of q(∆t) from q(∆t) is distorted by the first linearity,l(∆t), and is, therefore, possible only under
certain preconditions. Due to the separating quadratic nonlinearity betweenl(∆t) andq(∆t), the
decay time constant ofl(∆t) is halved. However, if the temporal of extensionl2(∆t) meets that
of q(∆t) a reliable extraction of the filterQ(∆t) is impossible, as its time course is severely
superimposed byl(∆t) (Eq. 3.25). Although, this limitation due tol(∆t) can’t be avoided
by this indirect approach, experimental data ofGollisch and Herzsuggest that this limitation
plays a marginal rolein vivo, as the eardrum’s vibration typically dies out much earlierthan the
electrical integration (τdec/τint ≈ 0.2 to 0.5).

By comparison we found that a shifted impulse response of thesignal transduction model
matchesQ(∆t). More generally, we here showed that after the first filter died out the second
linearity,q(∆t), the impulse response of the signal transduction chain,Vm(t), and the effective
stimuli intensity,J(t), are well identified byQ(∆t), except for a shift in the time axis byT,
which reflects the time after the second click when a spike is evoked. For the original model of
Section (3.1), we found the relationships for sufficiently large interclick intervals (∆t ≫ τtymp)

Q(∆t) = q(∆t +T) = J(∆t +T) = Vm(∆t +T). (6.1)

The ascent ofq(∆t) is masked by the influence ofl(∆t). Unfortunately, information about
shorter time constants, which is contained in the ascent ofq(∆t) (see Chapter2), is lost by this
phenomenon.

In Section (3.2.4) we analyzed a different model, where the whole time course of the effective
stimuli strength,J(t), of the auditory transduction chain can be unraveled. The key-feature
of this model is a non-oscillatory first linearity with exponential decay characteristics. Due
to this characteristics the loss of the initial phase ofJ(t) until time T is compensated by the
correction factorγ(∆t) which exactly reconstitutes the whole time course ofJ(t) and, therefore,
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of q(∆t). This characteristic might be beneficial in future IRS experiments on auditory receptors
to analyze the temporal integration of stimuli in greater detail by directly moving the tympanum
to abolish the masking effects of the oscillations.

In a neuron spike initiation is more complex than the leaky-integrate-and-fire model we used
in our initial analysis. In order to investigate what characteristics of the spike generator are
captured byQ(∆t), we simulated the full conduction-based models of spike-generators as output
function of our signal transduction chain. Our simulationsdemonstrated that all integrational
sub-threshold components of the spike generator are captured, when its dynamics are slower
than that of the preceding filters. Also, we found a profound mismatch of the initial phase of
Q(∆t) and the impulse response that might be attributed to the nonlinear subthreshold properties
of the Hodgkin-Huxley model. Another possible reason for the mismatch of impulse response
andQ(∆t) could lie in the timeT, when a spike is evoked. In the original modelT is assumed
to be a constant. This is not necessarily true for the Hodgkin-Huxley model and could, hence,
be the cause of the initial mismatch for small∆t. By our formal analysis of sequenced filters
and our elaborations on separation due to noise, we showed that the integrational sub-threshold
properties of the spike-generator and other linear filters,e.g. the membrane properties of the
dendrite, are unlikely to be separable by the IRS.

Q(∆t) is, in any case, the combined second linear filter. If the timeconstants of individual
sequenced linear filters differ greatly, the tail of the overall filter is determined mostly by the
longest time constant of the sequenced filters, as shown in Chapter2.

The application of the iso-response method (Gollisch and Herz, 2005) gave insight into the
dependence of successive inputs in respect to time, a characteristic represented by the extracted
time constantτint of the filter Q(∆t) (Fig. 1.9). In the study ofGollisch and Herz, τint was
situated between 300-600µs. How can we put this information into a biophysical contextand
how far can we stress a reliable interpretation? Here, we will address these questions in two
ways. First, we ask if we can putτint in relationship to the time constantτm of the passive
membrane (Eq.1.1) and, if so, what can we learn from that? Second, does the knowledge of
τint give us a hint about the location of the spike generator? In order to approach these questions,
it appears to be necessary to begin with a short review of the time constantsτint andτm and their
relationships.

The membrane time constant,τm, is given byτm = CmRm, whereCm is the specific membrane
capacitance (inµF/cm2) andRm the specific membrane resistance (inΩ cm2), both in respect
to a defined patch of passive cell membrane. The membrane timeconstant describes the time
course of the voltage responseVm(t) of a small patch of passive neuronal membrane to a short
current step (Eq.1.1). After one time constant,Vm(t) reaches 63% of the steady stateV∞.

The auditory receptors of locusts are sensory sensilla known as scolopodia (Michelsen,
1971b). These are structural building blocks of the widely distributed chordotonal organs in in-
sects, whose structure has been described in great detail (Smith, 2000; Gray, 1960, Fig. 1.3A).
The receptor neuron’s dendrite is known to be relatively simple with no branches (Fig.Jacobs
et al., 1999, 1.3B). Thus, effects as they can be observed in spatially extended and complex
structures of other neurons can be assumed to be small in caseof the locust auditory receptors.
These considerations suggests, that leak-currents to ’neighboring regions’ are small and the ac-
tual time course of the membrane potential is governed by themembrane resistance and, thus,
by τm.

What isτint? The relationships in Eq. (6.1) provide the basis for identifyingτint . In any
case, the time constantτint describes thefunctional characteristicsof the temporal integration
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and, thus, of the second linearfunctional moduleof the auditory transduction chain. The quality
of the description is greatly dependent on how well the time course ofQ(∆t) is described by an
exponential decay function of the form

q(τ) = e
− τ

τint , (6.2)

as it was used to extractτint in the study ofGollisch and Herz(2005). It might be asked how
τint corresponds to the underlying physical processes of electrical integration. Provided that the
second linear filter is indeed well described by Eq. (6.2) andτint = τm, the answer is given
right away. The situation is more complicated, when the second linear filter module of the
auditory signal transduction is not ideally described by Eq. (6.2). Such a situation might apply,
when the initiation site for action potentials is not in immediate proximity to the site where
the receptor potential is evoked. In this case, the receptorpotential has to be conveyed there
electrotonically. Such a process could be approximated by asequence of exponential decay
functions. In Chapter2, we learned that such sequences of exponential decay functions with
very similar time constantsτi can distort the overall filter function. In this case, an extracted
time constantτint would overestimate the membrane time constantτm . It is not a trivial task
to distinguish this scenario from the simpler structured scenario of Equation (6.2) based on
experimental data (Fig.1.9C), since noise makes it impossible to determine the exact shape
of Q(∆). The determination is hampered further, asQ(∆) revealsJ(t +T) only and the initial
phase ofQ(∆) is distorted due to the influence of the squared first linearity, l2(τ).

Let us now review the literature about the membrane time constantτm. Experimentally,τm is
usually determined by injecting a brief hyperpolarizing current pulse into the soma and record-
ing the voltage response at the same point. Information about τm is contained in the decay-
ing phase ofVm and extracted using the so-called ’peeling’ method. Here,Vm is plotted on a
semilogarithmic scale and the slope of the tail of the decaying phase ofVm is −1/τm. Over the
last decades, the estimates forτm have grown significantly and more recent estimates range from
20 to 50 msec for the major types of central neurons (see, forα-motoneurons:Fleshman et al.,
1988; Clements and Redman, 1989; for hippocampal neurons:Brown et al., 1981; for vagal
motoneurons:Nitzan et al., 1990; for cerebellar Purkinje cells:Rapp et al., 1994). Estimates
have grown even further with tight-seal whole-cell recordings and are approaching 100 msec
in slice preparations (Andersen et al., 1990). But exceptions from these high values have been
found, too. In slices of the avian cochlear nucleus the time constant has been found to be only
2 msec using whole-cell recording with tight-seal (Reyes et al., 1994).

Estimates are available forL. migratoria, too. Hill (1983), deduced an order-of-magnitude
approximation from the cut-off frequency in the spectrum ofthe recorded voltage fluctuations
and obtained a value of 10 ms for the time constant of the receptor neuron. But because of the
difficulties in obtaining good recordings and the consequently noisy data, there is lots of room
for interpretation.Prinz and Ronacher(2002) performed studies, based on the analysis of spike
timing in response to sinusoidally modulated stimuli, and yielded estimates near 1 ms for the
integration time of the receptor cells.Russel and Sellick(1983) performed an analysis similar
to those of Hill and approximated membrane time constants ofmammalian hair cells from the
cut-off frequencies in the spectrum and yielded approximations between 0.3 and 0.9 ms. These
values are remarkable small in the context of time constantsof typical neurons.

It has been argued (Gollisch and Herz, 2005) that short time constants are necessary to
follow rapid stimulus input. Here, it is important to note that the response time of a neuron or
receptor cell, respectively, is not the same as it’s membrane time constant. In fact, neurons can
respond much quicker to incoming stimuli than membrane timeconstants suggest, so that these
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should more adequately be seen as a measure of howslowa neuron or receptor cell, respectively,
can respond (Koch et al., 1996).

Here, let us also note, that although the function of hair cells and locust auditory receptor
cells is the same, important differences exist. Hair cells are secondary receptor cells and transfer
their output via synapses to neurons in the nucleus cochlearis, which have transduction char-
acteristics of their own (e.g. avian chochlear nucleus). Locust auditory receptor cells, on the
other hand, are primary receptor cells with their own axons.The lack of a synaptic transmission
before long distance transduction to higher neuronal centres complicates the comparibility of
both cell types on a non-functional level.

The proximate advantage of a short time constant in a sensorysystem is the rapid independence
of successive inputs on a small time scale and, thus, an enhanced ability to discriminate accu-
rately between these inputs — even under non-optimal input/noise-conditions. It can also be
suspected that this implies an enhancement of information rates due to shorter integration times.
The downside of a short time constant can be a high leak-current (which results from a small
membrane resistance,Rm, which governs the time constant byτm = RmCm). A small membrane
resistance shortens the length-constantλ, which is in case of a passive dendrite governed by

λ =

√

Rm

Ri
· d
4
, (6.3)

with the diameterd, the specific membrane resistanceRm and the specific inner resistance,Ri .
Here, a small membrane resistanceRm implies a short length constant,λ. Thus, it might be
expected that the area of spike initiation (Trigger Zone) has to be in close proximity to the
supposed site of transduction-current input, namely the attachment site to the tympanum.

These considerations fit well with observations fromMichelsen(1966, 1971b) and Hill
(1983). In one type of receptor cellMichelsen(1966) observed two types of spike potentials:
large spikes and small spikes, where a large spike was alwaysevoked by a small spike (Figure
6.1A,B). A particular difference between these two types is in the shape. Small spikes never
show a repolarizing phase that undershoots the resting potential as large spikes do. Michelsen
confirmed these findings for all four groups of receptor cells(1971b) he describes and notes
that the small spikes seem most likely to occur in recordingsnear to the dendrite of the receptor
cell. Hill followed up on this observations and termed the small spikes ’apical’ spikes, from
the inferred site of their generation at the apical membraneof the sensory dendrite, and links
their occurrence to the presentation of sound stimuli. He argues that the shape of these apical
spikes could be explained with rather ’exotic’ ionic conditions where the receptor cell’s mem-
brane contacts the receptor lymph. The apical spikes in the locust auditory receptors appear
to be conducted electrotonically along the dendrite, whichwould explain the variation in the
recorded amplitudes and broadness of these potentials. Thesecond class of spike potentials,
which Hill termed ’basal’ spikes, as they are likely to be evoked at the basal dendritic mem-
brane, show characteristics of conventional action potentials in all respects, which seem to be
triggered by apical spikes with one to one correspondence. Considering these findings and the
short time constantτint and the implicated short length constant,λ, of the auditory receptors,
we may conclude that the occurrence of a short membrane time constant,τm, is made possible
by the early spike generation at the apical membrane. Figure6.1C shows the proposed scheme
of spike initiation byHill (1983).

It shall be noted that the occurrence of apical action potentials, close to the site of the
evoked receptor potential, is a common phenomenon in many kinds of mechanoreceptor cells
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Figure 6.1: RECORDINGS OF APICAL AND BASAL SPIKES AND SITES OF SPIKE INVITATION . (A) First recordings
of apical spikes by Michelsen, 1966. Here, apical spikes seem to evoke basal spikes. (B) The response to a sound
tone consists initially of small, apical spikes, which begin to trigger basal spikes in the latter part of the response
(C) Schematic drawing representing the locust auditory sensillum and showing distinct categories of physiological
recordings obtained from receptor cells and the inferred recording sites in each case. The proposition represented
in this figure is that transduction occurs at the cilium (c), subthreshold depolarizations and small spikes occur at
the apical membrane of the dendrite (a), which is in contact with the receptor lymph contained in the scolopale
lumen (sl), which is bounded by the scolopale cell (sc) and attachment cell (ac). Large amplitude basal spikes are
initiated in the basal part of the dendrite (b) and are then propagated via the cell body (cb) along the axon (ax) in
the tympanal nerve. Figures taken fromMichelsen(1971b) (A) andHill (1983) (B,C).
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in mammals. Examples for this are the tactile receptors in the mammalian skin (Pacinian and
Meissner’s corpuscles), hair follicle receptors, as well as the afferent sensory fibres of the mus-
cle spindle and the Golgi tendon organs (Smith, 2000). All of these examples have in common
that the evoked receptor potential spreads electrotonically to a close spike initiating site of the
dendrite, far away from the cell body.

The theoretical analysis of the auditory signal transduction raised new and more specific ques-
tions about functional aspects of hearing. Direct electrophysiological measurements at the neu-
ron’s soma with focus on the location and the characteristics of the spike-generator, as well as
on the mechanisms underlying the temporal integration of the auditory receptor neuron would
be the next consequential step. The analysis of the locust auditory signal transduction chain is
a great example for the benefits of intensive cooperation of theoretical and experimental work.
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Appendix

6.1 Hodgkin-Huxley model

The original model ofHodgkin and Huxley(1952d) with the resting potential set to−65mV.
The Hodgkin-Huxley model is an example of a class-II neuron.

CV̇ = −INa− IK − IL + I

Membrane capacitance: C = 1µF/cm2.

Sodium current

INa = ḡNam
3h(V −ENa)

ṁ = αm(V)(1−m)−βm(V)m

ḣ = αh(V)(1−h)−βh(V)h

ḡNa = 120 mS/cm2, ENa = +50 mV,
αm(V) = 0.1(V +40)/(1−exp(−(V +40)/10)),
βm(V) = 4exp(−(V +65)/18),
αh(V) = 0.07exp(−(V +65)/20),
βh(V) = 1/(1+exp(−(V +35)/10)).

Potassium delayed-rectifier current

IK = ḡKn4(V −EK)

ṅ = αn(V)(1−n)−βn(V)n

ḡK = 36 mS/cm2, EK = −77 mV,
αn(V) = 0.01(V +55)/(1−exp(−(V +55)/10)),
βn(V) = 0.125exp(−(V +65)/80).

Leakage current

IL = ḡL(V −EL)

ḡL = 0.3 mS/cm2, EL = −54.384 mV.
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6.2 Traub-Miles model

This model is a simple example of a class-I neuron (Traub et al., 1991). Note that it contains
the same currents as the Hodgkin-Huxley model. Only their parameters are slightly changed.
The resting potential is atV = −66.6 mV.

CV̇ = −INa− IK − IL + I

Membrane capacitance:C = 1µ F/cm2

Sodium current

INa = ḡNam
3h(V −ENa)

ṁ = αm(V)(1−m)−βm(V)m

ḣ = αh(V)(1−h)−βh(V)h

ḡNa = 100 mS/cm2, ENa = +48 mV,
αm(V) = 0.32(V +54)/(1−exp(−(V +54)/4)),
βm(V) = 0.28(V +27)/(exp((V +27)/5)−1),
αh(V) = 0.128exp(−(V +50)/18),
βh(V) = 4/(1+exp(−(V +27)/5)).

Potassium delayed-rectifier current

IK = ḡKn4(V −EK)

ṅ = αn(V)(1−n)−βn(V)n

ḡK = 200 mS/cm2, EK = −82 mV,
αn(V) = 0.032(V +52)/(1−exp(−(V +52)/5)),
βn(V) = 0.5exp(−(V +57)/40).

Leakage current
IL = ḡL(V −EL)

ḡL = 0.1 mS/cm2, EL = −67 mV.
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Deutschsprachige Zusammenfassung

Durch die Anwendung eines neuartigen Ansatzes ist es Gollisch et al. (2005) gelungen neue
Einblicke in die Dynamik und Signalverarbeitung von auditorischen Rezeptorzellen zu liefern.
In dieser Studie wurden mittels eines phänomenologischen Kaskadenmodells die linearen Fil-
ter und Nichtlinearitäten der auditorischen Signaltransduktion quantitativ allein aus der Kennt-
nis der Eingangsstimuli und der Ausgangs-Wahrscheinlichkeit, dass ein Aktionspotential (AP)
ausgelöst wird, bestimmt. Die verwendete Methode beruht auf der Messung von sogenannten
”Iso-Response”-Kurven, die in anderem Kontext in der Psychophysik (z.B. Isophone in der
Auditorik) verwendet werden. Bei diesem Ansatz werden die Stimulus-Parameter (s1,s2, ...,sn)
dergestalt verändert, dass der Output des Systems konstantbleibt. Die gemessenen Stimulus-
Konstellationen stellen Invarianzen dar, die das System nicht unterscheiden kann und enthüllen
bei geeigneter Wahl der Stimuli System-spezifische Eigenschaften. In der Studie von Gollisch et
al. (2005) wurden Paare kurzer akustischer Impulse (A1,A2), sogenannte ”Clicks”, verwendet,
die durch eine variable Zeit∆t getrennt sind. Die Amplituden der Impulse wurden so justiert,
dass die Wahrscheinlichkeit ein Aktionspotential auszulösen bei konstant 70% liegt. Die zeitli-
che Auflösung der Methode ist nur durch die Präzision des Stimulus begrenzt (ca. 10µs), und
damit um ein Vielfaches höher als die zeitliche Variabilität der APs (ca. 1 ms). Durch die Mes-
sung solcher ”Iso-Response Sets” (IRS) für verschiedene Zeiten ∆t kann auf diese Weise eine
hochaufgelöste ”Karte” der sogenannten ”effektiven Stimulusstärke” erstellt werden. Mithilfe
mehrerer solcher Datensätze für unterschiedliche Stimulilassen sich die funktionalen Filterei-
genschaften der auditorischen Signaltransduktion berechnen.

Diese Diplomarbeit beginnt mit einer Einleitung in den mathematischen Rahmen der Me-
thode und setzt dann mit der Reproduktion der oben genanntenStudie mit Hilfe numerischer
Simulationen fort. Wir untersuchen, wie die Ergebnisse derIRS interpretiert werden müssen
und stellen durch den Vergleich der Modelparameter mit den Messungen fest, dass nur ein Teil
der effektiven Stimulusstärke durch die Methode erfasst wird. Die Begründung für diese Ei-
genschaft wird durch eine Untersuchung des mathematischenRahmens der Methode geliefert.
Wir zeigen dann auf, dass die Unterscheidung der linearen Filter des Kaskadenmodells darauf
beruht, dass der Zeitverlauf des ersten linearen Filters kürzer ist als der des zweiten linearen
Filters. Durch die Simulation von vollständigen AP-Generatoren, wie sie im Neuron z.B. am
Axonhügel zu finden sind, zeigen wir, dass die Methode alle integrativen Eigenschaften des
AP-Generators erfasst, sofern dessen Dynamik langsamer ist als die der vorangehenden Pro-
zesse. In diesem Zusammenhang zeigen wir auch, das dass unter Umständen die Dynamik des
Spike-Generators einen störenden Einfluss auf die Messung der Filtereigenschaften haben kann.

Weiterhin zeigen wir, dass die Messung einer anderen Art vonIRS im ”Amplituden-Raum”
der Stimulus-Paare zu verschiedenen∆t keine eindeutige Einsicht in die Natur der Input-Nicht-
linearität liefert.

Neben unseren Untersuchungen zur Interpretation von IRS, testen wir, ob es unter Um-
ständen zu einer Trennung von funktionalen Filtermodulen durch den Einfluss von Rauschen
kommt. Die von uns verwendeten Szenarien ergeben keine Hinweise auf ein solches Phäno-
men, so dass wir davon ausgehen müssen, dass alle Filtereigenschaften der zweiten Linearität
des Kaskadenmodells durch die IRS erfasst werden.

Schließlich setzen wir die unsere Ergebnisse in einen größeren Zusammenhang und disku-
tieren welchen Aufschluss uns die IRS über tatsächlich bestehende biophysikalische Mechanis-
men gibt.
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