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CHAPTER 1

INTRODUCTION

All organisms live in an environment full of changes, fuls ihhas been said, of 'happenings’
(Smith, 2000. Some of these changes will be beneficial to the organisherstdetrimental.
The fullest possible knowledge of relevant 'happeningsiarties the organisms ability to adapt
to its environment. Thussensory perceptionf environmental stimuli is a fundamental char-
acteristic of all living organisms and is of utmost impoxtarior survival. Highly sophisticated
sensory systems for a large panoply of physical stimuli rexaved Hudspeth and Logo-
thetis 2000, and each sensory system is tuned to a specific type of stayi@drmedhdequate
stimulus The major types of sensory systems are mechanorecepterapceceptors and pho-
toreceptors, although more exotic receptor types sucleatreteceptors and magnetoreceptors
have evolved as well. In animals neural sensory systemdagea that connect the sensory
perception to the animal’s nervous system. Thus, sensacgpon in animals is &ansduc-
tion of a certain physical stimulus into an electrical signat ten be processed by its nervous
system. The transduction is accomplished by receptor, aetisch transforma physical stim-
ulus step by step into th&timulus representationThe transformation of each step defines the
relationship between the stimulus and the response of tisosereceptor. The succession of
each individual step formssgnal transduction chainAs more is known about the biophysical
structure of a sensory system on a molecular and anatoreiea| more emphasis is placed on
its functional characteristics. These can be recognizedl @gical level of biological organi-
zation Hartwell et al, 1999 and offers the means to connect molecular biology to enm¢rge
phenomena.

Neural Basics Neural systems are composed of neuronal cells, called nsufdike all bio-
logical cells, neurons exhibit a negative voltage potémaiiaoss their cell membrane. Neurons
utilize changes of this membrane potential to process andeganformation. The steady-state
of the membrane potential is dependent on the types and dmofuons inside and outside the
cell as well as on conductivity of the cell membrane to theses. Relevant ions usually are
potassium, sodium and chloride. The specific compositianreér and outer fluids is strongly
dependend on the specific cell type and organism. The candydcif the cell membrane is
controlled by the presence of specialized ion-channeleci@fized structures of neurons pro-
cess and convey the information stored in the membrane foatantively and for this purpose
feature voltage-dependent ion-channels that possessnityogening properties. The opening
state, better, the opening probability of these voltageeddent ion-channels is associated with
the membrane potential.
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Figure 1.1: FODGKIN-HUXLEY MODEL. Time course of the membrane potential and gating paramdtes
to constant input. Gating parameters are shifted and gisglavithout axis. Figure adapted frorodgkin and
Huxley (1952ab,c,d).

There are many types of neurons and each type exhibits a emrapatomy, the character-
istics of which adapt the neuron to its individual functiddespite the anatomical complexity
and functional variety of neuronal cells, there are comneatures. These are the neuron’s
soma which comprises the cell nucleus, tendrite which typically receives the cell's main
excitatory input and thexon which conveys the processed information to other cellsci-Ex
tatory inputs are typically depolarising and inhibitoryputs hyperpolarizing. Typically, the
axon and the so-called "axon hill’ (the region of the somangtibe axon originates) feature the
voltage-dependention-channels described earlier. Wheemembrane potential at the axon hill
exceeds a certain threshold, a so-caletion potentiais evoked in an all-or-nothing fashion.
The details of the underlying processes that cause thigcplart response have been unrav-
eled and described by the unprecedented work of Hodgkin andeld (Hodgkin and Huxley
1952ab,c,d). The properties of the mathematical model is shown in Edlrl). Due to the
particular response behaviour of voltage-dependent namgels, the axon hill can be recog-
nized as the site of signal integration, where incomingalgfrom the dendrite are processed.
Other regions of the neuron, e.g. the dendrite, exhibitipagsectrotonictransduction proper-
ties only.

Passive Membrane Properties The thin and isolating cell membrane divides well condugtin
compartments and thus acts as an electric condensatorewapacity is found to be uniformly
1uF/cn? in all cells examined so faQentet et al.2000, due to the homogenous structure of
the lipid double layer. If a constant current step with amoplel is injected into a small and
isopotential patch of passive neuronal membrane, the elfngs into the capacitance and the
potential rises starting &n(0) =0

Vin(t) = Ve (1—€7"/™), (1.1)
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with the membrane time constamnt = C\Rn, WhereCy, is the specific membrane capacitance
(in uF cm2) andRy, the specific membrane resistance@ien?). This time course is governed
by exponential decay toward the steady-state= Rylp. Thus, in one time constartt£€ 1) the
electrotonic potential will reach 63 % ¥§,. The estimates af,, are known to depend heavily on
the experimental conditions, i.e. the composition of thegublogical solution and the quality
of the seal. For a full review, seggmond et al(1999.

1.1 Auditory Transduction and Mechanoreceptors

The process of hearing captures acoustic informationstexhbedded in rapid pressure fluctua-
tions of a medium. Accordingly, auditory sensory organdawed to be composed of mechani-
cally resonating structures that are driven by the soungewrand conjuncted mechanosensitive
(auditory) receptor cells, which convert the induced datdns of the resonators in electrical
signals. A huge variety of resonating structures such afr@aus, basilar membranes and hair
sensilla have evolvedRpbles and Rugger@001, French 1988 Martin C. Gopfert2002. The
oscillations cause mechanosensory ion-channels to ¢hetspeth1985 Hill, 1983 Gillespie
and Walker 2001) and thereby induce a depolarising transduction curreihie ffansduction
current accumulates and charges the membranecéptor potentiabuilds up and either di-
rectly evokes action potentials in the receptor cell oramsmitted to other cells.

Most information in sound is contained in its temporal stuiwe. To be able to extract the
behaviourally relevant information, the temporal resolutof auditory system must be as fine
as the relevant structures of the stimulus. This attribua&en the auditory system particularly
well suited for the study of time processing in nervous systeThe time resolution is not by
far limited by the width of an action potential, as has beaeswshby several exampled@ason,
Oshinsky, and Hoy2001 Knudsen 1980 Neuweiler and Schmidtl993, where resolutions
of a few microseconds are achieved. The ability of auditegeptor cells to read out stimuli
with high temporal resolution often finds its corresponaemcthe temporal accuracy of the
response.

Auditory systems have developed in a huge variety in aninbalscommon features exist. Typ-
ically, the stimulus space of sound comprises a much higineersionality than the response
space of the receptor neuron. Hence, auditory transduptiocess involves a@imensional
reductionthat can be interpreted asimulus integration The auditory transduction process
Is based on the recognition of oscillation structures aherefore, on mechanosensitive ion-
channels in the receptor cells. These channels are verges¢dndspeth 1989 Gillespie
1995 and many details about them are unknown. Transductiorpis @nd, thus, no second
messengers can be involvedidspeth and Logotheti200Q Gillespie and Walker2001). Fur-
thermore, mechanoperception is evolutionarily old andistl as the basis for different senses
in all kinds of organisms. Hence, evolutionary relatiopstsan be suspectedlértinag 2001).

1.2 Anatomy of the Locust Auditory System

Gollisch et al. performed studies on the auditory peripluéthe migratory locustl(ocusta mi-
gratoria L., Orthoptera, Acrididae). The physiology of hearing icugts is less complex than
in mammals and has been well describ&daly, 1960 Michelsen 1971a Stephen and Bennet-
Clark, 1982 Jacobs, Otte, and Lakes-Har)d999. The basic structure is highly conserved
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Figure 1.2: SHEMATA OF THE TYMPANUM AND AUDITORY GANGLION OF THE LOCUST Schistocerca gre-
garia. (A) The auditory ganglion (Muller's organ) is attachededitly to the tympanum. Four branches (a-d)
project to different attachment sites of the tympanum tloaspss different resonance characteristics. (B) Attach-
ment sites (a-d) of the tympanum. The structure of the tyrapais heterogenic. Thick and thin parts of the
tympanum are indicated and correspond to different resmiaquencies. (C) Location of the Miiller's organ on
the tympanum. The arrow indicates the viewing angle for pAnEigure taken fronMichelsen(19713.

across locust species. Still, the coupling of receptorsdellan eardrum suggests functional
similarities to the mammalian ear. Locust possess two &arated in the first abdominal seg-
ment, just above the coxa of the hindlegs, where the leg ala¢d at each side of the body.
Both ears are connected by a cavity that allows air-pregsupass through the animals body
and, thus, locust ears act as pressure-difference redeiview sound frequencies. The reso-
nance structure of each ear is a heterogenic structuredatynmp. Attached to the inner side
of the tympanum is the auditory ganglion (Muller's organhi@h contains the somata of 60-80
receptor cellsl.2).

The auditory receptor cells of locusts are chordotonalmsgerhich are commonly used in
insects for mechanoperception. Chordotonal organs arg@ased of scolopodia (Figl.3A)
that contain a single primary (neuronal) receptor cell (RidgB). The dendrites of the recep-
tor cells project to four different attachment sites of thiempanum each exhibiting different
resonance characteristics. The receptor cell's dendareeapproximately 100m long and are
enclosed by satellite cells. The dendrites don’t branchcamdiain a single cilium that protrudes
from its apex and connects to the hypodermis of the tympanhysiological classification
due to sensitivity maxima and absolute sensitivities ofrémeptor neurons yields thregat
cobs et al.1999 to four functional groupsNlichelson 1971). However, receptor cells exhibit
characteristic frequencies of about 5 kHzlanv-frequency receptor cell®r of about 15 kHz
in high-frequency receptor cellsThe tuning properties are obtained from the local resomanc
characteristics of the tympanum (Fih.2B) and, thus, resemble@ace codingsimilar to those
of vertebrate ears. The receptor cell’s axons project tonte&athoracic ganglion. In order
to keep the auditory periphery intact, electrophysiolagineasurements were performed at a
distal position of the axonal projection.

In comparison to the mammalian ear, locust ears are stallstigimple. The mammalian
cochlea possesses complex mechanical properties, ingléeiedback loops and nonlinear am-
plification (Martin and Hudspeth1999 Eguiluz, Ospeck, Choe, Hudspeth, and Magnasco

4



A B

4aauouuouanaoo
2

scolopale cap

5
tympanum §

dilation of cilium

attachment cell

o cilium

dilation of
dendrite trunk

‘\ scolopale cell

1 %
> 4:;\-- \

peex A fibrous sheath cell
: s dendrite

soma

nucleus

axon

Figure 1.3: AVATOMY OF AUDITORY RECEPTORS CONNECTED TO AOLD OF THE TYMPANUM OF THE LO-
CcUsST Schistocerca gregaria (A) Chordotonal organ in the auditory ganglion. Chordatoorgans are central
building blocks of auditory receptors in insects. Each argansists of specialized sensilla known as scolopidia.
Each scolopidium consists of one or more neurosensory ftelis whose dendrite a sensory cilium originates.
The receptor neurons are surrounded by satellite cellsat ¢gils, fibrous sheath cells, and scolopale cells. The
distal segment of the dendrite is enclosed within an attactircell and the whole attached to a cap cell. The cap
cell in turn connects to the tympanum. (B) Dendritic struetaf a receptor neuron. Dendrite and cilium display
particular dilations whose function and relevance forsdarction is unknown. Figure taken fra@ray (1960.



2000, which seem to be absent in locust auditory receptors. Meweneasurements of otoa-
coustic emissions indicate small nonlinear effects in $b@ars, tooKdssl and Boyan1998.
Mammalianhair cells, are secondary (non-neuronal) auditory receptors thategotie recep-
tor potential via synapses to auditory-nerve fibers. Howesgind transduction in mammalian
and insect ears conceptually involves the same sequenceanigses. Thus, functional insights
gained from the investigation of the locust auditory sysisrikely to be beneficial for the
functional understanding of mammalian hearing.

1.3 Iso Response Method

Central to this thesis is the indirect analysis of transducwith iso-response methods as intro-
duced byGollisch, Schiitze, Benda, and HER002); Gollisch and Her2005, as well as by
the dissertation oGollisch(2004).

The periphery of the locust auditory system is delicate ariderable, andh vivoinvestiga-
tions of auditory signal transduction need to minimize th@act on the site of transduction in
order to yield reliable results. This calls for indirect imedls, so that the mechanical structures
of the ear remain intact. The auditory transduction chaamssquence of processes transform-
ing the acoustic input into a series of action potentialsis Tomputation, as it is performed
by auditory receptor neurons, is characterizedunctionalmodules. Prior knowledge of the
system’s basic structure, given by its biophysical contpmsimay act as a guide to the devel-
opment of a model framework (a so calleascade modgto identify the functional modules.
Such an approach may be referred to agay-box Typical elements of cascade models are
temporal linear filtersandstatic nonlinear transformationsA characteristic of a temporal lin-
ear filter is that it uses stimulus contributions from diéfiet time points to determine the final
output.

What do we know about the auditory signal transduction clvaitine locust? From the
transduction chain’s physical structure, we can assumepalst-step conversion of the incom-
ing signal. First, air-pressure fluctuations of the soundemdrive an oscillation of the me-
chanical resonator, the eardrum. These oscillations goethgsized to induce the opening of
mechanosensitive ion channels in the apical dendritic nmengbof the auditory receptor neu-
rons. The opening of the ion channels leads to transductioremts which cause a generator
potential over the cell's membrane. Eventually, such a ggoe potential activates voltage-
dependent ion channels that trigger action potentialsg argertain threshold is reached.

In this sequence of processes, at least two potentiallyimesnl transformations can be
identified. (1) The gating-process and (2) the transforomatif an electrical potential into a
sequence of all-or-nothing action potentials. Commongdugchniques provided by nonlinear
systems theory for the analysis of cascade models are tintoteascades with only a single
nonlinear transformation. Another issue of many classapglroaches is the limited temporal
resolution, when the system’s output is jittered by noisedse of the auditory system the spike
jitter (about 1 ms) smooths out the temporal correlatiomeen input and output and hence,
the temporal resolution needed to analyze auditory systebmit 1Qus) can't be achieved.

An alternative approach to this problem is the iso-respansthod. It extends an exper-
imental strategy well known from the measuring of tuningvesrin psychophysics and the
measuring of threshold curves in neurobiology: the appboaof 'equivalence criteria’ to an-
alyze a certain system. Central to this method is the ideatifin of sets of different stimuli
that cause the same response. Thesgesponse se($RS) are subsets of the stimulus space
and characterize the invariances of the system. A classia@hple for the measurement of
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Figure 1.4: EEFECT OF ANINPUT NONLINEARITY IN AN NLN CASCADE. The responses of two models to the
two-dimensional stimulus space (defined by stinsulands,) are compared. The first model (A, Ef.2) takes
the linear sum and the second model the quadratic sum (B,1E8).as an argument of a sigmoidal nonlinear
output function. The surface plots of the model’s responsetions (s, s) are similarly shaped and the response
functionsr(s;) andr(s) are even identical. However, the contour lines (iso-respaets) of the systems clearly
differ and reveal the input nonlinearity. Figure taken frGollisch et al.(2002).

iso-response sets comes from psychophysics: so callggthisws’ are curves that identify the
identically perceived loudness of a tone in respect toliggfiency and sound-pressure-level.
Here, this method will be used to analyze the locust audii@ysduction chain. Neurons
perform areductionof the high-dimensional stimulus space to a lower dimerdioutput.
While the sensory system can be driven by a wide range oflplesstimuli,s(t), consisting of
a set of components;, s, ..., Sy, the system’s response is limited to a lower-dimensiongdutu
functionr(s(t)). In the simplest case, the response would be described as-dimensional
variabler, representing, e.g., a firing rate of spikes or a 'spike podibg@ of a single sensory
receptor neuron. The method is complemented by a mathexhesiscade-model framework.
A cascade model describes the transformations performedsiynal processing system (e.qg.,
a receptor neuron) as a sequence of filter functions. To statet this approach, we begin with
an example. We compare two signal processing systems wiyhtwo input components;
ands,. The first model is an LN-cascade, where a linear functions fgllowed by an output
nonlinearity, N, which is represented by a filter functmn ). The second model is an NLN-
cascade, which contains an additional quadratic inputineatity, so that the linear function
is sandwiched between two nonlinearities. The output nealiities arey(x) = tanh(x) for the
first model andy(x) = tanh(,/X) for the second. We obtain the form of the two models as

ri(s;,s) = tanhs+ <), (1.2)

ra(s,s) = tanh(\/s%Jr%)). (1.3)

If only a single input component is presented, the two moddlisshow identical responses.
The square root in model two cancels the square of the inpultngarity and nothing is re-
vealed about the input nonlinearity. The responses of thesgels to two input components

7
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Figure 1.5: BO-RESPONSE SETS FOBUPERPOSITIONS OFF WO PURETONES FROMONE RECEPTORCELL AT
DIFFERENTFIRING RATES. Stimuli composed of superpositions of two pure sine tonids amplitudesA; and

Ay are tuned to yield the same output firing rate as indicatecdasdieng multiple ratiog\ /Ay, specifically shaped
curves in stimulus space were obtained that reveal infaomabout the underlying integration process. The solid
lines are ellipses fitted to the data and indicate a statidrgia nonlinearity. Note the different scalesAyf and

A,. These are due to the differential response of the systernifévaht frequencies, that are in accordance with
frequency tuning-curves of the locust’s auditory recegfagure taken from Gollisch et al., 2002.

look very similar in surface plots (Fidl.4) and any measurement along a radial direction will
produce sigmoidal response curves similar to the respohese with only a single input
component. But the projections of the contour lines belogvrssponse surfaces reveal how
such nonlinearities can be determined experimentally.|&\the first model produces straight
contour lines, those of the second model are segments té<xirche difference of these pro-
jections is clearly and easily distinguishable in expenits@nd can thus be used to identify the
character of input nonlinearities. Any arbitrary contounel represents a certain output level
and thus corresponds to an iso-response set. For eaclszonge set the input parameters are
tuned to yield the same level of response. This identicalaese is the reason why this method
is independent of the specific shape of the output nonlityggrovided the output function is
monotonic. The application of such an analysis in an expamntad situation can be achieved by
fixing all but one degree of freedom of a stimulus and tune ¢meaining free parameter until
the desired response is achieved. This free parameter #fares the direction of search for
iso-response stimuli.

1.4 Analysis of the Auditory Signal Transduction Chain

1.4.1 What does the Receptor Neuron measure?

The receptor neuron is a measuring device that could pgssibasure different qualities of
sound. In order to distinguish between several hypothasisnvestigation of the mechanism
underlying spectral integration has been performed (Eié, Gollisch et al, 2002. For this
purpose iso-response sets for superpositions of long puestwere measured and three hy-
pothesis were examined experimentally. It was tested veindtite amplitude, the energy or

8
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Figure 1.6: BO-RESPONSESETS FORTWO-CLICK STIMULI AND IDENTIFICATION OF RELEVANT STIMULUS
PARAMETERS. Two short clicks, separated by an interclick inte¥glwere presented for multiple fixed amplitude
ratiosAs /Ay and simultaneously tuned to yield the same spike probglmilit 70%. Each panel shows results for
a single cell and iso-response sets for two different ifitdkentervalsAt. Iso-response sets display specific shapes
for short and long inter-click timeAt. For shortAt (40 and 5Qus, A-C) iso-response sets are well described
as straight lines, for lonét (500 and 75@s, A-B) iso-response sets are well described by segmentsotés
Intermediate/At (120us, C) are stronger bulged and don't fit either scheme. Thisdebr is interpreted as
two different processes that govern stimulus integratioshart and long time scales, which might overlap for
intermediate time scales. Thus, for shrthe sound-pressure seems to be the relevant stimulus paramieile

for long At the sound energy is the relevant stimulus parameter. Figkes fromGollisch and Her£2005

the sound pressure determines the response of the recepi@nn The approach presented in
Sectionl.3 was applied and stimuli composed of two pure sine tones wigdfand unequal
frequenciese andwy, were presented:

S(t) = Arsin(wt) + Azsin(opt). (1.4)

Measurements were performed for multiple amplitude raig8?\,, which were kept fixed for
each measurement and simultaneously tuned to yield the satpet firing rate as the receptor
neuron. Since a constant output level indicates a constaat into the spike generator, the
output nonlinearity can be neglected. This charactenstibe key feature of the iso-response
method, because it allows to treat an LNLN-cascade moddienatically as an LNL-cascade
model. Each hypothesis corresponds to a specific shape -ofsponse curves. According
to the amplitude hypothesis, iso-response curves argytrines; according to the energy
hypothesis, they are ellipses; and according to the predsypothesis, they are even more
strongly bent curves, whose exact shape has to be determimeerically. The measured iso-
response curves for different output firing rates (Fig5) are found to be described best by
ellipses, a strong evidence that the square of the amps$iisdedded. These results correspond
to the energy hypothesis since the square of the amplityztejgrtional to the energy of sound
waves.

1.4.2 Temporal Integration

Experiments with long, stationary stimuli are well suitecekamine static nonlinearities of the
auditory system. Because dynamics of temporal integrato@ar on shorter time scales, they
are averaged out by this type of experiment. Hence, for tigeting temporal integration in
receptor neurons another type of experiment is needed héfambre, long, stationary stimuli
don’t correspond well to the situation in a natural enviremtywhere often quick fluctuations in

9



the amplitude and frequency of sound waves convey impoiriégrimation that enables organ-
isms to perform tasks such as sound localization, echatwscabhd communication. To capture
this information, auditory systems must be able to folloesth rapid changes, and thus, fine
temporal resolution can be expected. Little is known abloeitémporal characteristics of audi-
tory systems on short time scales. To investigate theseepses, iso-response sets with short,
temporally structured stimuli were designé&aio{lisch and Herz2005.

The core building blocks of these experiments were shorhégquessure pulses with a
width of 20 us, calledclicks These clicks were combined in pairs of two and are separated
by a peak-to-peak intervalyt, in order to examine the signal cascade for input nonlitieari
on different time scales. The stimulus space is thus pasimetl by the click amplitude#y;
andAy, while At defines the time scale of the experiment. The response oétleptor neurons
to such stimuli is at most one action potential per doublekcliA firing rate is an inadequate
description of response strength and thus the spike priilyalp, was used instead. While
stimulus intensity hardly influenced spike timing, it hatbsy influence on spike probability.
Measurements were performed for multiple repetitions ier game stimulus and the average
number of action potentials per trial was taken to yipld

Similar to the experiments introduced in the previous ®&ctstimuli consisting of pairs
of clicks with fixed amplitude ratiosh; /Ay, were tuned simultaneously to yield the same pre-
defined spike probability op = 70%. Again, iso-response sets are measured for multiples
ratiosA; /A and different peak-to-peak intervals (Fig. 1.6). The shapes of the iso-response
sets vary systematically witht. For short interclick intervals (40s) iso-response sets exhibit
straight lines, while for long interclick intervals ellips are obtained. Sets of intermediAte
(120us) don't fall in either of these categories, but show a paldicbulged shape. These results
indicate that at least two different processes govern sgaessing on different time scales.
On short time scales a linear summation of the clicks cassessisponse sets with straight lines
and indicate that sound pressure is the relevant stimul@srger here. This is not suprising
as the first known step in auditory signal transduction isdiféection of the eardrum. Because
of the mechanical inertia of this structure, superposibbuick following clicks can be ex-
pected. On longer time scales the quadratic sum governsspemse and thus the sound energy
is the relevant stimulus parameter. Thus, two differentreation processes exist, which are
separated by a static quadratic nonlinearity. Biophykictle second summation is assumed
to occur at the neural membrane, where electrical chargenadates. This is supported by the
findings that the DC component of the membrane potentialimcieds is proportional to sound
energy (Dallos, 1985).

1.4.3 The Cascade Model

With this knowledge, a model for the auditory transductiongdulse-like click stimuli has been
suggestedGollisch and Herz2005. As a first step, the tympanic oscillation is caused by the
first click, with a deflection proportional to the amplitude. The change in the membrane
potential is then proportional #¢, due to the static quadratic nonlinearity. After the inliekc
interval, At, the second click will add to the tympanic oscillation andlte membrane poten-
tial. But as some timét has passed, both the deflection of the tympanic oscillatsowell

as the membrane potential have changed in dependense dfthese changes are described
as filter functionsL(At) for the tympanic oscillation an@(At) for the membrane potential.
Therefore at timé\t the deflection of the tympanum A - L(At) and the membrane potential
is A2.Q(At). The second click at timat adds it's amplituded; to the tympanic oscillation,
yielding A1 -L(At) + A,, and thus changes the membrane potential VthL(At) + Ay

10
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Figure 1.7: $QUENTIAL PROCESSING IN THEAUDITORY TRANSDUCTION CHAIN. Sound stimuli are encoded
into a neural spike response by a series of biophysicalfsemations. Sound-pressure waves deflect a mechanical
oscillatory component (1, mechanical coupling) like theapanic membrane, which is supposed to be linked to
ion-channels in the receptor cell's apical membrane. Tllect@®n causes the ion-channels to open, a transduction
currentis induced (2, mechanosensory transduction) aadjek up the membrane potential (3, electrical integra-
tion). Voltage-dependent ion-channels are activated atidrapotentials are triggered once a certain threshold is
reached (4, spike generation). The first and third step ggeajmated by linear, while the gating mechanism is
well described by a static quadratic nonlinearity and thikesgeneration is known to comprise a static nonlinear,
sigmoidal shape. Figure taken fra@ollisch and Her£2005

considering the squaring of the oscillatory component.réfoee, we obtain an effective stim-
ulus strengthJ(At), where

J(At) = AZ.Q(AL) + [Ar-L(A) + Ag?. (1.5)

This effective stimulus strengthi{At) will be transformed into a spike probabilityby the final
static nonlinearityg(J(At)) = p, which describes the nonlinear transformation of the sgé
erator. The obtained signal processing chain has the foram &fNLN-cascade. The possible
biophysical mechanisms underlying of the auditory tractidan chain are displayed in Figure
1.7

The Generalized Cascade Model

The corresponding LNLN cascade, which is not limited tokcBamuli, is presented in Figure
1.8 The input to the general model is a time-dependent souesispre wave A(t). The com-
ponents of the general LNLN cascade model are four modes $teith the causality condition
T>0):

1. convolution with a linear filtek(t) = sin(cwrt)e

2. squaring

3. convolution with a linear filteq(t) = e~*7, yielding the effective sound intensiyt)
4. application of a nonlinear transformatig@J).

The response(t) is thus given by

r(t) = gQ())- (1.6)
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Figure 1.8: GENERALIZED CASCADE MODEL OF THEAUDITORY TRANSDUCTION CHAIN. The linear temporal
filters1(1),q(t) and the squaring nonlinearity transform the sound-pressareA(t) into the effective stimulus
strengthJ(t). Finally the nonlinearityg(" ), which may differ from the nonlinearitg(-) of the click-version,
transformsl(t) into the neural responsét). Figure taken from Gollisch et al., 2005.

1.4.4 Temporal Characteristics of Stimulus Integration

The Equatiorl.5 offers a direct way to obtain the filter functiohgAt) andQ(At) by compar-
ison of iso-response sets with conveniently chosen stinAlthough the effects of these two
filter functions may largely overlap, it is possible to digfuish between them. As we are deal-
ing with two unknowns, we need two equations for eAtto be able to calculate solutions for
both unknowns. Equatioh.5indicates that any pair of click®81, B,) at a fixed timeAt should
yield the same spike probability as the paifA1,A2) whenJ(Aq,A2) = J(B1,Bz). For each
At two different patterns of paired clicks are used for ispogsse sets. In the first pattern, the
second click is presented in the same direction as the fickt @mplitudeA,, "positive”) and

in the opposite direction in the second pattern (amplitiglénegative”). The first clickAq, is
held positive in all measurements. Because both pattersisnodili are tuned to yield the same
spike probabilityp, this implies thatl(t) is equal in both instances. As derivedGollisch and
Herz (2005, only a small part 0d(t) contributes to the spike probability, Therefore, we will
refer to the effective stimuli intensity by the tedrfrom here on. Let us note that amplitudes
Ao and,&z used here are thebsolute values of these amplitudesl we get

J = AT-QY) + [Ar-L(At) + Agf? (1.7)
J = ALQAY) + [Ar-L(At) — Ag]? (1.8)
Setting the two right sides equal to each other, we obtain
AL L(At) + A% = [Ar-L(At) — Ay)® (1.9)
with the solution .
A — A
2A1
for the first linear filter. Inserting.(At) into (1.7), we get for the second linear filter

L(At) = (1.10)

Ay + Az)z

Q(At) —c=— < oA (1.11)

with ¢ = J/A2, which can be left as a free parameter. Measurements farelift values of
At make it possible to extract the whole time course @kt) and Q(At), as shown in Figure
1.9 The possible temporal resolution of this approach is mugher than that of traditional
approaches of nonlinear system analysis, because it ismted by the precision of the output,
rather only by the precesion of the input. The functigdat) is interpreted as the oscillation
of the tympanum at the attachment site of the receptor céié flinctionQ(At) is interpreted
as the electrical integration and the decay time constaintespreted as the membrane time
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Figure 1.9: EMPORAL STRUCTURE OF THEMECHANICAL OSCILLATION AND ELECTRICAL INTEGRATION.

(A) For the measurement of the filter function@t) andQ(At), two different patterns of stimuli were used. For
each pattern, two clicks were presented, separated by rzliokeinterval At. While the first click (amplitude
A1) was always held positive, the second click was presentedhier the same (amplitud®, "positive”) or the
opposite (amplitudéy, "negative”) direction ofA;. (B) Time course of the eardrum vibration, calculatedl @),

of a low-frequency receptor neuron. The frequency is obthlyy comparison with a damped harmonic oscillation
(C) Time course of the electrical integration process. Ddirae is obtained by comparison with an exponential
decay function. Figure taken from Gollisch et al., 2005.

constant. The latter was found to be in the range of 200 tau800 hese values are by at least
one order of magnitude smaller than membrane time constétitpical neurons.

The calculation above derives solutions EgAt) andQ(At) for click experiments, without
explaining explicitly what these filter functions mean. Te&ationships of these functions and
the functiond (At) andg(At) of the general cascade model (Sectlof 3Fig. 1.8) are explained
in detall in the appendix o&ollisch and Her2005. It is derived thal (At) is identical to a
phase shifted form di At), which may be interpreted as the velocity of the eardrum aly also
be interpreted as the temporal change of the eardrum’s menvenThe relationship between
Q(At) andq(At) is more complicated.

In this work, we investigate this relationship and ask whpelnts of the spike generator
might be measured bQ(At). Subsequently, we explore possible interpretations ofindings.
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CHAPTER 2

SEQUENCED FILTERS

2.1 Linear Filters and Convolution

Sequences of filter functions play an important role in thecdption of signal cascades and
are mathematically treated as convolutions of these filtections. Often, filter functions in
signal transduction chains comprise an exponentially ylegacomponent. For this reason,
we introduce here the basic properties of convolutions vaipect to sequences of exponential
decay functions. The time course of the exponential deaagtions, investigated here, depends
on time constantst;, which can either delay or accelerate the convergence dutiations to
zero.

A sequence of filter functions results in an 'overall filtenétion’ that inherits its character-
istics by the individual filter functions. This overall fittkunction is identical to the convolution
of all sequenced filter functions. The results of the contvohs can also be understood in a
physical sense: they would then correspond tarfgulse responsef the sequenced filters to
a very short impulse.

We are particularly interested in how the time constantfiefdingle filter functions influence
the overall filter function. Furthermore, we ask how well thme constants of the individual
filter functions describe characteristics of the overakfifunction.

2.1.1 Convolution of Two Exponential Filter Functions

The convolution of two function$(t) andg(t) is defined as

00

(Fg)(t) :/ F(A) g(t—A) dA. 2.1)

—00

Convolutions are commutative and associative, so the aidt@e convolution steps is insignif-
icant. Following Eqg. 2.1), the convolution of two exponential functions

f(t)=0(t) -exp(—t/t11) and g(t) =0O(t) - exp(—t/12),

with time constants; andty, will be
+o0 Y _tA U A =
(frg)t)= [ OM)e HOt-Ne = d — / ete T d, (2.2
® 0

where®(t) is the Heavyside functior®(t) = 1 fort > 0 and®(t) =0 fort < 0.
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Figure 2.1: @NVOLUTIONS. Two exponential decay functions with time constantsindt, are convolved and
the analytical and numerical results are compared for thesta =~ 12 (A,B, Eq. 2.4) andt; = 12 (C,D, EQq.2.6).
The tails of the results are matched manually with expoaédgcay functions to extract a single time constant
describing the tail.

(A,B) 11 = 0.1 andt, = 0.5. Due to the significant difference of the time constants,t#il of the overall filter
function is well described by the longer time constant (ex£,0.5). (C,D)t1 = 12 = 0.5. The tail of the overall
filter function is not well described by the input time comgtgex1,1 = 0.5) . If such a sequence with similar time
constants would be analyzed by fitting the tail with an expiaédecay function, it is likely that the time constant
is overestimated (ex2,= 0.9).
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1. If 11 # 12, we get

t A _ta [ 1T, azu ]t
/ e 1e 2 dA=e © 12 e?%m _e (2.3)
0 T1—12 0
11T _t _t
=2 [e 1—e .2 ], (2.4)
T1—T2

which is a difference of two exponentials, multiplied by anstant factor. The shape
of the resulting function changed due to the substractionike an exponential decay
function, the new function rises initially from zero to réa& peak and then converges to
zero again. If the time constants differ greatly in scalg, & < T2, the initial rise will

be short and the tail will be well described by the longer tonastant (Fig2.1B), since
exp(—t/t1) will converge much faster to zero than ¢€xft/12). But as the time scales
become more similar, the overall filter function will bettesemble the second case:

2. Forty =12 =1, we find the solution

t A A t
/e_Tle_th dA:e—i/ e 0 (2.5)
0 0

|~

=t-e . (2.6)

Although this solution is not a difference of exponentialdtions, the basic shape of this
result is similar to the first case (Fig.1C). However, the tail of the overall filter function
is not well described by the input time constansince the factor in Eq. (2.6) increases
with timet — o and by this distorts eXp-t/1). In Figure @.1D) we added a second
manually matched exponential decay functiex2. We demonstrate that the overall time
course of the tail is much better described by a time constaich greater than those of
the convolved filter functions.

2.1.2 Convolution of Three Exponential Filter Functions

We now perform a convolution of these results with a thirdagntial filter function with time
constants,

h(t) =0(t) -exp—t/13). (2.7)
1. Forty # 12 # 13, we obtain from Eq2.4
t _A D N I T
(f*g*h)(t):/ a [e 1o—e T2]e 3 dA (2.8)
0
=a-b- [e“t_l—e_%} —a-c- [e*;_z—e_%}, (2.9)
with constants = TTll_Tﬁz, b= Trll_rig andc = T?_?g.
2. Forty =1, =1 # 13 We get
2
113 —L _t 3—1T _t
f h)(t) = . B et —t- e . 2.10
(FegenO= | 2] [e —et ot B et @

Both (1) and (2) are differences of exponentials again and #how similar shape and
characteristics as the first case we discussed 24, C). Again, when the longest time
constant differs greatly from the other time constantsiaiief the overall filter function
is well described by an exponential decay function with thiegkest of the three time
constants. (Fig2.2B,D).
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3. Forty =1, =13 =1, we get

(f*g*h)(t):%tz-e . (2.11)
While the basic shape remains the same, a broadening of énalld¥lter function results
and the description of the tail by an exponential decay fonawith the time constant
worsens, since the factot in Eq. 2.11) increases with timé — c and by this distorts
exp(—t/1). In Figure @.1D) we added a second manually matched exponential decay
function, eX2. We demonstrate that the overall time course of the tail usehhmbetter
described by a time constant much greater than those of thleed filter functions.

i

For the case of n convolved filter function§!, with 1; = T and 1< i < n, we find the
solution for the overall function

o1 1 (2.12)

2.1.3 Shifting of the Peak

We address the relationship between the shift of the peakhantiime constants of the involved
filters. For this we again consider the two casest{H 1> =1 and (2)11 # 12 separately.

1. Forty = 12 = T. At the maximum the derivative of Eq2.6) vanishes and we get
d _t _t t
a{t'e ]_ .[17]_0_ (2.13)

Thus, the maximum occurs, Bkak= T.

For the case of n convolved filter function8], with 1 = T V1 <i < n, we find the
derivative g L L
— = "2et (1- —t 2.14
dt (n—2)! N (2.14)

Here, the maximum occurs, gkak= T (n—1). Thus, the more filter are contained in the
sequence, the later the peak occurs.

2. Forty # 12. The derivative of Eq.4.4) is

dr _t _t 1 ¢ 1 _t
&[e 1 —e Tz]:__.e T _|_T_e 2 =0. (215)

Since this equation cannot be solved analytically, we hyggize that Eq.2.15 is true

for tpeak~ 11 +T2. We then find that

1 1 .1
el {——e U4 e } ~ 0. (2.16)
T1 T2

This equation is true in the limit aff — o andt, — oo, and thus the peak is indeed at
tpeak=T1+ 12
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Figure 2.2: @NVOLUTIONS. Three exponential decay functions with time constangs are convolved and the
analytical and numerical results are compared for the casgsto # 13 (A,B, Eq. 2.9), 11 = 12 # 13 (C,D, Eq.
2.10 andt1 = 12 = 13 (E,F, EQ. 2.11). The tails of the results are matched manually with exptakdecay
functions to extract a single time constant describing #lile t

(A,B) 11 =0.1,1, = 0.2 andtz = 0.5. Due to the strong difference of the time constants, theadhfdter function

is well described by the longer time constant (ex%, 0.5). (C,D)11 = 12 = 0.1 andtz = 0.5. Again, the overall
filter function is well described by the longest time consi@x1,T = 0.5). (E,F)11 = 12 = 13 = 0.5. The tail of
the overall filter function can’t be well described by theuhfime constant (exT,= 0.5). If such a sequence with
similar time constants were analyzed by fitting the tail veithexponential decay function, it is likely that the time
constant would be overestimated (ex2; 1.1).
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Chapter Summary

In this Chapter, we learned that sequenced linear filterdoeaimderstood as convolutions the
filter functions. We demonstrated that the longest time @on®f the individual filter functions
can be reliable extracted when the time constants diffesttyre We also demonstrated that
the shape of the overall filter function is distorted whenitidividual time constants become
similar. The overall shape is then better described by a tiomstant greater than those of the
convolved filters.
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CHAPTER 3

INTERPRETATION OF THE FILTER
FUNCTIONS OBTAINED BY THE
| SO-RESPONSEM ETHOD

The iso-response sets (IRS) presented3ojlisch and Her72005 are a novel and powerful
method to investigate sensory systems with a so far unpeated high temporal resolution
and without the need to corrupt the delicate and vulnerasis@y mechanism. As an indirect
method the IRS returns the functional building blocks ofglgmal transduction cascadgAt)
andQ(At), which reflect the temporal characteristics of the eardribration and the electrical
integration at the cell membrane, respectively. What do wasure withQ(At). We approach
this question with simulations of the auditory transductahain and a short review of the
underlying mathematics. What characteristics of the spikeerator are captured by the IRS?
To answer this question, we use different kinds of outputtiams. Are the conclusions drawn
from previous experiments correct?

We begin our analysis with simulation of the first kind of issponse sets, which utilizes
pairs of click to extract the temporal structure of the fétefAt) andQ(At). We then examine
the relationship between the measured fi@eAt) and the actual impulse response of the model
to a click impulse. Using different models as output funesiowe approach the question, what
characteristics of these output functions are capturechbyido-response sets. Additionally,
we examine an alternative model for the general cascadeewte substitute the quadratic
nonlinearity of the model by absolute values.

3.1 Numerical Simulations of IRS

In the introduction, we reviewed the structure of the gelnerd cascade model proposed for
locust auditory transduction and the iso-response measnts, which are used to investigate
the temporal structure of stimulus integration. Here, waaduce these experiments by nu-
merical simulations. To be able to calculate the two unknéiter functionsL(At) andQ(At),
two iso-response sets have to be measured for each inkerdiézval, At. While the first click
is held constant in both set-ups, the second click is eithesgmted in the same direction (first
setup, amplitudéy) or in the opposite direction (second setup, amplitdgeas the first click.

We perform a simulation of the distinct filter functions oétkignal transduction chain, which
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is modeled by
.12 a( -
st) 1O L A0, 5y 800 (3.1)
The linear filter functions are given by
(1) = sin(wr)e ©m, (3.2)
q(1) =€ 7, (3:3)

with w = 2ntf, the resonance frequendyand the time constantsymp andTin:. We model the
eardrum as a damped harmonic oscillator, which is drivempuytistimuluss(t). It thus reads

y 2 .
S(t) = X(t) + ——X(t) + X (1), (3.4)
Ttymp
This equation implements the first linear filter (E8.2). The outputx(t) is the deflection of
the eardrum and is dimensionless. It is squared and usegassfor the passive membrane
equation, which has the general form

Tt < Vin(t) = E —Vin(®) + R (1), (35)

with inputl (t) = xz(t), input resistanc®, = 1, resting potentiak = 0 and time constart;
of the electrical integration. We obtain

Tt Vin(t) = ~Vin(8) +5(0) +D -, (3.6)
with the gaussian white noiseand the noise-strength factbr. Viy(t) is dimensionless. This
component implements the second linear filter (E333) of the generalized cascade model
(Eg. 3.1) and reflects the characteristics of the electrical intggmgprocess. The electrical
integration is driven by(t) = x(t). For the spike generation we set a certain thresi@old/hen
the voltage trac®y(t) exceeds the threshold a spike is evoked. This type of spikerggon
is known as deaky-integrate-and-fire neuroWe are here using the probabilistic approach of
Gollisch and Herand, thus, need a spike probabilify, as output of the signal transduction
chain. For that reason we added the gaussian noise to Eq@adioThe standard deviation of
the white noise wa® = 15% of the threshold value, but the exact value is arbitroy. each
interclick intervalAt a sufficient number of trials has to be simulated to calcudat@accurate
spike-probability. The exact number of trials is dependgnhe strength of the noise and can
reach several thousand in order to obtain smooth curves.

It is possible to shorten this approach by calculagdjrectly instead of simulating a high
number of trials. Therefore, we begin by calculatigt) by Eq. @.6) without the noise term
D-&. White noise added t¥ny(t) follows a gaussian distribution aroulgh(t), as long as the
voltage trace doesn’t change too rapidly. Therefore, tlodaiility thatViy(t) + D - crosses
the threshold at the tintecan be calculated by an integral over the component of theftthe
error function, which exceeds the threshold. The trangeitt of the error function over the
thresholdp, is thereby given byx = 8 —Viy(t). The integral can be conveniently calculated by
the complementary error functionn our simulations, we are interested in the probabiligtth
a spike is evoked in a small time window, which is why we compute a second integral over
the time span from times zerowa The whole calculation is given by

6 —Vm(t)

g(J(t)) = p:/owdt% erfc {W] (3.7)
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The calculation of the spike probability itself is a nonbm@rocess with a sigmoidal shape. We
computed the spike probabilify A, A2) andp(Ag, Az), respectively, for eacht.

For comparability and consistency of our simulations weodeathe same parameter values
for all of our models, if not mentioned explicitly elsewis@he tympanic membrane of the
locust has a heterogenic structure and contains thick anateas (Figl.2 Gray, 1960. This
composition enables it to convey a broad spectrum of low agilufrequencies, ranging up to at
least 15 kHz. In correspondence to this and to experimentiihigs Michelsen 1971a Jacobs
etal, 1999, we choose a tympanal resonance frequendy-e# kHz for our modeled eardrum.
In experiments, the tympanal decay time constant rangeEleet 100 to 25@Q.s. We here chose
Trymp 0 be 20Qus. Furthermore, the experimental results indicate thatléway time constant
of the electrical integration is ranging between 300 to #0We here chosg,; to be 500us.
Another parameter of importance is the width of our simwlegeund-pressure-pulses. To be
able to achieve a high temporal resolution we use very shusep ('clicks’) with a length of
10us and scan a range of interclick intervals from 0 to 3.5 msaepsof 10us.

Figure 3.1A presents the absolute values of the amplitudes for thenskeclick, denoted
asA; if presented in the same direction as the first click, Andf presented in the opposite
direction. Each pair of stimuliAi, A2) and @1, Ay) is tuned such that the resulting spike
probability is the same. The time coursestefandA, display strong oscillatory components,
reflecting the time course of the deflection of the tympanugnm@ans of Eql.10andl1.11the
filter functionsL(At) andQ(At) are computed frond, andA, (Fig. 3.1B,C). The time course
of L(At) matches well the filter function

~

[(At) — e mp. coga), (3.8)

which denotes a phase-shifted version of the filtAt) and describes thehangeof the eardrum
vibration (Eq.3.2). The time course o(At) matches well with the filter functiog(At) of the
electrical integration (Ec3.3).

3.2 Properties of the Filter Functions

These results demonstrate that the IRS effectively capteseential parameters of the linear
filters before,l(At), and after the quadratic nonlinearityAt), as proposed bgollisch and
Herz (2005. Furthermore, the shapes of our calculated filter funstiare very similar to the
experimental results dbollisch and Herzshown in Figure1.9). Note, that for small interclick
intervals,Q(At) shows strong oscillations, which are found in experimergsillts, too. These
oscillations are not part of the modeled electrical integra(Eqg. 3.6) or the filter function
q(1), respectively. Also, the oscillations can't be observethmvoltage trace of the model in
response to a single click impulse (Fig@®.dD). This observations suggests that the oscillations
are a characteristic trait of the iso-response method.

We possess full knowledge of all parameters in our simulaticluding the time course of
the tympanic vibration and electrical integration pro¢cessl are, hence, able to compare these
with our results. Comparing the membrane potential @t), we find thatQ(At) seems to
match well with a shifted form of the voltage trace of the middea single click (Fig.3.2).

The required offset seems to equal the position of the pedkeof/oltage trace. Therefore,
the iso-response method only reveals a part of the tempuegriation at the receptor neuron’s
membrane, while it reveals the whole time course of¢hangein the eardrum’s vibration.
What is the reason for this phenomenon? Does this phenonteeon for all kinds of models?
Where does the ascent@fAt) come from?
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Figure 3.1: SMULATION OF ISO-RESPONSESETS. For each iso-response-set two clicks were presented; sepa
rated by a time intervalit. The amplitude of the first clickd\;, was held constant throughout the experiment. The
amplitude of the second click was then adjusted to yield #srdd spike probability. To be able to unravel the
two linear filters of the transduction chain, two differetibsilus patterns had to be measured. Here, the second
click was either presented in the sameaitive, A) direction or in the oppositeifegativé, Ay) direction as the
first click.

(A) Time course of the click-amplitudels andA,, resulting in the same spike probability and, thus, cowasing

to the same output value of the effective stimulus intensitBoth amplitudes were normalized toAe (B) Time
course of thechangeof the eardrum vibration, (At) (red line), calculated from the measured valhesand Ay

(Eg. 1.10. The results are compared to a damped harmonic oscillatack line, Eq. 3.4) with fundamental
frequencyf = 4 kHz and decay time constamjmp= 200us of the modeled filter functiol{At). (C) Time course

of the electrical integration procesg(At) (red line, Eq.1.11). The measured data are compared to an exponential
decay function with the time constamnt; = 500us of the modelled filteq(At) (Eq. 3.6). (D) The model’s voltage
curve was calculated by E¢3.6) without white noise in response to a single click. Figure® Bhow normalized
values.
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Figure 3.2: @MPARISON OF THEMODEL'S VOLTAGE RESPONSE ANDFILTER Q(At). (A) The voltage curve

in response to a click an@(At) don’t match right away. (B) The voltage curve of the model tualse shifted to
match the filter function, indicating that the method reseapart of the electrical integration process only. Clearly
visible are the early oscillations of the eardrum, whichegmpnce irQ(At) is a characteristic trait of the indirect
iso-response method.

3.2.1 Where does the Ascent dP(At) come from?

A look into the mathematical foundations of the general adesanodel, as derived (@ollisch
and Herz(2005, reveals that several assumptions were necessary to thieldelationships
betweenr (1) andL(At) as well as betwee®(At) andq(t). For understanding the properties of
Q(At) we here review this calculation.

The connection of the generalized cascade model and its wdision (Sectiorl.4.4 is
derived as follows. The response of the receptor neufjris given by

rt) =gQ()) (3.9)
2

with J(t):/ dt’ q(t')- {/ dri(t)-At—-1-1)| . (3.10)
0 0
The following causality conditions are assumed to applytterfilter functiond (1) andq(t):
I(t1)=q(t)=0fort <0 (3.11)

The functionr (t) can be interpreted as the instantaneous firing rate anejftiney

T+w
p :/T r(t)-dt (3.12)

is the probability of finding a spike in the time windawbeginning at timél'. With Equations
(3.2), (3.3) and @.8) the relationsshipét; > 0,12 > 0)

l(T1+712) =1(t1)-1(12) +1(T2)-I1(T2) and (3.13)
q(T1+T2) = 9(11)-q(T2) (3.14)
hold.

In order to relate the generalized model (Bgl0 to the click model (Eql1.5), we use a pair
of clicks (modeled as Dirac delta functions) with amplitade andA; as inputs to the general
model. For clicks at timeg = 0 andt, = At > 0 the input reads

At) = Ag-3(t) + Az 3(t — At). (3.15)
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To continue with the calculation, some basic assumptions bha be made. We can assume
that the effective stimuli intensity(t) has a rather stereotypic, sharply peaked form and that
it will be adjusted to yield the same maximuim We assume that the spike probabilgywill

be dominated by the maximudn Simulations show that the maximuinand thus the relevant
instant of spike initiation, is obtained at the same tifesfter the second click, for different
click combinations. Thus, spikes are initiated at At + T. InsertingA(t) Eq. 3.15 to Eq.
(3.10 we obtain forJ at timet = At+T

J=J(At+T) :/Owdr [Al-I(At—l—T—T)—l—Ag-I(T—t)]z-q(r). (3.16)

The right-hand side of the term decomposes into

— 2. . o 2. —
I=AZ-q(a)- [ de (@ a(T -1

1A T(o) A% [ 1 (0-o(T 1) (3.17)

T o
+A§-|2(At>-/ dt [[(0)2-q(T 1)
0
o T .
+2~A1~I(At)-[Al-I(At)+A2]-/ dt i(v)-1(1)-q(T - 7).
0
The last term can be neglected as it will be small comparetidmther integrals. Here, we

want to construct a form af that is similar to Eq. 1.7) of the click-model in the introduction.
To obtain a comparable form, the following definitions aredis

]
k= / dt [ (1) q(T 1), (3.18)
lo T ~
(= [ arlim)zaT -, (3.19)
1 it
y(At):E~/0 dt [1(1)2- (T —1). (3.20)

Eq. 3.17) can then be written as
J=AZ.q(At)-y(At) -k+[Ar-T(At) + A% -k+AZ-[1(A1)]2- -k (3.21)
— J=A2.{q(At) -y(At) + [|(A1)]?- T} -k+Aq - T(AL) -k+ A -k. (3.22)

The constant factdk can be absorbed into the relation betwdeand p. By comparison with
the Equation from the click-model,

J=A2.Q(At) + [Ar-L(At) + Ag)? (3.23)

we find the relationships
L(At) =i (At) (3.24)
Q(At) = q(At)-y(At) + [I(A1)*-Z. (3.25)

L(At) therefore corresponds to a phase-shifted version of tlee[fjist) and can thus be inter-
preted as the velocity of the tympanic vibration.
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First,Q(At) is related tay(At), but not identical to it. The identity dp(At) is more complicated
and explains the occurence of an initial rise of this filtandtion. The correction factaf is a
constant near unity. The fact@ifAt))? is a squared damped sine function (E&13, with

| (At) = O for At = 0. It has a strong oscillatory influence Q{At) for early At, but converges
quickly to zero for largeit, sincettymp< Tint. For this reason the terﬁ’(At)]2 - is negligible
for At > trymp The termy(At), on the other hand, is zero fat = 0 and approaches unity for
largerAt due to the fast decay dif(At)]?, because then the integral in E®.Z0 will become
equal tok in Eq. (3.18. Note, that thd?(At) terms decay withttymp/2 due to the square
function that separates the two linear filter functions:

—t \ 2 _o_t ot
<eTtymp> —e “Wymp — @ Tymp?2 (3.26)

The mathematical details of the relationship of the clieksion model and the generalized cas-
cade model explain the initial shape@fAt) for small interclick intervalsit. The calculations
demonstrate that the initial oscillations are a charastiertrait of this indirect approach, but
don’t correspond to biophysical processes.

3.2.2 Why doesn'tQ(At) reveal the whole time course?

Our simulations demonstrated that the time course(at) captures the whole oscillation of
the eardrum. This result is very comprehensible. Any seatiokl impulse has to be charged
against the oscillation caused by the first click impulse, @ahds, mustbe found in the iso-
response sets from the first moment of the triggered osoitiat

Another intuition can be given for the finding that only a pafrthe electrical integration is
captured by the IRS. Any spike is obviously evoked by the mmaxn of the impulse response
(Fig. 4.2), which is denoted byl. Roughly speaking, both clicks cause individual potestial
that superimpose, when the interclick interval is smalligio The maximum of the potential
evoked by the second click can by no means occur earlier teamaximum of the potential of
the first click. Hence, any inter-click intervalf, shifts the maximum of the second potential
away from the maximum of first potential. It now happens that voltage curve evoked by
the first click descents in time and any second click has topamsate this descent to yield the
same spike probability. Thus, it occurs to be plausibletiv@iRS captures only those parts of
the electrical integration after the maximum of the firstlea potential.

The calculation in SectioB.2.1provides the means to understand this phenomenon math-
ematically. In order to yield Eq.3(16), we first assumed that the maximuhof J(t) is the
relevant parameter for the tuning of spike probability. @&t; we assumed that the maximum
J always occurs at timAt + T and, therefore) = J(At + T). For interclick intervald\t = 0,
we coherently ged = J(T), which is thus the smallest time of the effective stimulusmsity
we can measure by iso-response sets. In our simulation tio8&c1, J(t) is identical toViy(t)
and we can thus writé = Viy(T).

3.2.3 The Impulse Response of the Signal Transduction Chain

In order to understand the relationships betw&¢At) and the voltage trace of the model in
response to a short click, we calculate the impulse respafritee model. The air pressure wave
for a single short click is given by

A(t) = Ap-0(t) (3.27)
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To calculate the impulse response of the signal transductiain we insert Eq.3(27) into Eq.
(3.10 and get

) = / dt’ q(v')- [/ dt1(1)-Ay-3(t—1— 1)) (3.28)
0 0
— J(t) = A2 / dt q(1) I (t =) ]2 (3.29)
0
Figure B.2) suggests that the impulse response needs to be shifted keftio be comparable

wit Q(At). Following the arguments from Secti@2.2we assume that this shift equals the
time T of the peak. The shifted impulse response then reads

t
I+ T) :A%/O drqn) I t+T -1 (3.30)

This is exactly Eq. .16 with A, = 0 and we can read of the solution from E8.22 to be

J4+T) = A2 {q(t) -y(t) +2(t) +12(t) - T} -k+Aq - T(AL) -k (3.31)
= A2.Q(At) + Aq-T(At) -k, (3.32)

where the dependency on T is containeg(in (Eqg. 3.20 and( (Eq. 3.19.

To be in agreement with our observations the impulse regp(des 3.32 andQ(At) (Eq. 3.25
should be equal for sufficiently large interclick interyal$. In this case, all terms containing
[ (1) converge to zero and Eq3.32 reduces to

J(t+T)=A2.Q(At)-k. (3.33)

However, for small interclick intervals Eq3.25 and Eq. 8.32 differ significantly, which is in
agreement with our observations in Figu8e2B).

3.2.4 A Non-Oscillatory Eardrum

To strengthen our reasoning of Secti@2(1) about the influence of thgAt) terms onQ(At),
we investigate a model without oscillatory components.(Bi§). We substituté(t) (Eq. 3.2
with

T

(1) =e Tmp, (3.34)
which is modeled by
d
Teymp ¢ X(t) = —x(t) +s(t) (3.35)

All other parameters are similar to the original model int#er3.1 In the previous chapter
we demonstrated th&(At) reveals the pard(t) after the timeT, only. As this is a general
characteristic of the iso-response method, this chatiatteapplies here, too, and we can ex-
pectQ(At) to begin with the maximum ad(t). However, similar to sectioB.2.1, we have to
consider the influence of the teryft).
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Figure 3.3: MODEL WITH A NON-OSCILLATORY EARDRUM. (A) Time course of the change of the eardrum
vibration, L(At) (red line), calculated from the measured valdesand A, (Eq. 1.10. The measured data are
compared to an exponential decay function with the time tomnsym, = 200us of the modelled filtet(At) (Eq.
3.395. (B) Time course of the electrical integration proce@&At) (red line, Eq.1.11). The measured data are
compared to the time course of the convoluti@) with Ty = 0.5- Tyymp = 100us andt, = iy = 500us of the
modelled filterg(At). Filter Q(At) matches perfectly with the voltage curve and unravels thelevime course of
the electrical integration.
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Figure 3.4: TME COURSE OF THECLICK-AMPLITUDES Ay AND A, The later part of the time course 86
is clearly governed by the time constamk = 500us of q(At). The time course oA, comprises additional
information about the time course ldf), (Fig. 3.3A).
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Theoretical Considerations

To find the relationships betwe€)(At) andq(t) we perform a calculation analogous to that in
Section 8.2.]). Starting with Eq. 8.16), we get

At 2
I= | dt A [I(1)] - q(at) -q(T —1)

- (3.36)
+/0 dt[AL-1(At) -1 (1) +Ag-1(1)] 2 q(T — 1)
At
I=AZ-qan)- [ dt 0P o(T 1)
0 . (3.37)
+ ([Al-I(At)]2+A§+2A1A2~I(At)>~/0 dt [I(r)]z-q(T—r)
Using the following definitions
T 2
k:/0 dt [I(1)]"-q(T —1) (3.38)
At
V(At) = / dt [1(1)]2-q(T — 1) (3.39)
0
we get
— AZ-q(Dt) K- y(Dt) + (A-1(Bt) +Ag)° K (3.40)
In comparison with Eq.3.23 for the click-model, we find
L(At) = | (At) (3.41)
Q(At) = q(At) -y(At) (3.42)

This is an exact solution and no approximations by neglgdenms like in the original calcu-
lation had to be made. In Eq3.42 we again find the factoy(At), while the term[l (At)]?-C
we obtained in EquatiorB(25 has vanished. The tergiAt) approaches unity due to the fast
convergence ofl (At)]? = exg—At /(t/2)] to zero.

In this model we findQ(At) to be identical to the impulse response of the transductiamnc
We read

Q(At) = g(At WN> (3.43)
= Omdr —1)-q(At) (3.44)

— OAth q(T 4+ At —1) (3.45)

= (I(D)?*a)(T +At), (3.46)

which is the convolution of the functional filters of the mad@ Section3.2.2we argued that
Q(At) captures)(T +At) only and, still, here we find the whole time courselotvealed. This
is possible due to the correction fact@it), which, in this model, happens to be identical with
the convolution of the functional filters.
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Figure 3.5: BO-RESPONSESETS FOR THE'I| NTEGRAL'-M ODEL. (A) Time course of thehangeof the eardrum
vibration,L(At) (red line), calculated from the measured valdgsindA; (Eq. 1.10. The results are compared to
a damped harmonic oscillator (black line, By4) with fundamental frequencl/= 4 kHz and decay time constant
Ttymp= 200us of the modeled filter functiok{At). (B) Time course of the electrical integration procé&3gt) (red
line, Eq. 1.11). In this case, the iso-response-set doesn’t reveal anyntation about the electrical integration.
This approach reveals the oscillatory effects of the ispoase method for smalt, which are found irQ(At) of
the other model-versions,too.

Both linear filter functionsl(t) andq(t), have the same form as the convolutions we investi-
gated in Chapte? and we thus find

1. T 2t
Q(At) = M |:e_Ttymp _e*riATtt } (3.47)
5 Ttymp— Tint

Thus, the time course @(At) in Figure @.3) is identical to that in Figure21A).

3.2.5 lllumination of the Artificial Elements in Q(At)

It is possible to display the combined effects of the teyfrs) and [l (At)]?-Z in Equation
(3.295. The model we used for reproducing the iso-response s&slbsch and Herztill used
a probabilistic output function to calculate the desireitesprobabilityp. Instead, we now use
an deterministic approach and calculate the integral tneewhole time coursé(t) to compute
the 'spike probability’p:

p=J= / J(t) dt = constant (3.48)
0

Due to the integral function, both click amplitudas and A, fully contribute toJ. As both
clicks are added independently of the electrical integratrepresented by filteg(At), this
impliesq(At) = 1. Considering this, EquatioB.25 decomposes to

Q(At) = y(At) +[I (A1)]2- 2. (3.49)

Therefore Q(At) describes the effects of the tery@t) and |l (At)]?-Z only (Fig. 3.5). Com-
parison with Figure3.2 explains the initial rise 0Q(At) from zero and the differences to the
time course of the voltage curve. Note, that bgtht) and{ contain the terng(At) = 1 and,
hence, are not identical to Eq3.09 and Eq. 8.20. However, the difference is small as the
dynamics ofg(At) are slower than that d{At) and the influence df(At) on Q(At) becomes
apparent. In SectioB.2.1we proposed that the decay timel ¢At) would be halved due to the
squaring. Here, we find these predictions confirmed by coispaof the time course df(At)
andQ(At) in Figures 8.5A) and (3.5B), respectively.
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3.3 Replacing the Quadratic Nonlinearity with the Absolute
Value Function

Apparently, the quadratic nonlinearity makes it possibledparate the filter functiomér) and
q(t). However, a complete retrieval gfAt) is not possible. Here we investigate how the first
nonlinearity influences this result by using an absolutee/dlinction instead of the quadratic
nonlinearity. This would still yield the important rectifiton characteristic. At the same time
the influence of (1) in time is extended, as the shortening influence of the saqgasi absent
(see Sectiod.2.]). The resulting signal transduction cascade has the form

st) 10, 1L A0 g4y 90 . (3.50)

Due to the substitution of the static quadratic nonlingaoy absolute values, we require a
different equation for computing(At) and Q(At) from the click experiments. We derive the
required equations by a similar calculation to that in Secfi.4.4 In our simulations, we
tune each pair of stimuliAz,A2) and (A;,A;) to yield the same spike probability so that
J(A1L,A2) = J(Al,Az). The effective stimuli intensity for each pair of clicks ivgn by

J=A1-Q(At) + |Ar- L(AL) + Ay (3.51)
J=Ar-Q(At) 4 |Ag-L(At) — Ay (3.52)

Setting those equations equal, we get
|A1-L(At) +Ag| = |Ar-L(At) — Ay (3.53)

No matter, ifL(At) is positive or negatived; is tuned in such a way that the term on the left-
hand side is always positive. We thus read

Ar-L(At) 4+ Ax = |Ar-L(At) — Ay (3.54)
The solutionA; = —Ay, for the case that the right-hand side is positive, doesnmiespond to a

physical situation, a8, andA, denote absolute values. The only remaining case is-thAatis
tuned in such a way that the term on the right-hand side isyaslwagative. We then find

A —A;
L(At) = .
(At) o™ (3.55)
and via substitution into Eq3(51)
As+ A
Qat) — — 22 (3.56)

1

The difference to the solution of the original model (Edh1]) is the missing square in the
solution forQ(At). Here, it seems thd(At) captures the whole time course of the electrical
integration (Fig.3.6). Unfortunately, the explicit calculation of the relat&mps betwee@(At)
andq(t) is not possible due to the absolute value function.
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Figure 3.6: BO-RESPONSESETS FOR THEABSOLUTE-VALUE-MODEL. (A) Time course of thehangeof the
eardrum vibration|(At) (red line), calculated from the measured valdesandA; (Eq. 1.10. The results are
compared to a damped harmonic oscillator (black line,¥&4).with fundamental frequencl/ = 4 kHz and decay
time constantyymp = 200us of the modeled filter functioh(At). (B) Comparison of the electrical integration
processQ(At) (red line), and of the models’s impulse response. Both aumvatch well and FilteQ(At) seems
to contain information about the whole time course of theteleal integration.

3.4 Do we find Properties of the Spike-Generator irQ(At)?

The last nonlinearity in the generalized cascade modelafdbsignal transduction describes
the transformation of a receptor potential to a firing ratepke probability, respectively. This
step certainly involves the spike generator. Here, we disca difficulty in defining what we
mean exactly with the term ’spike-generator’. In the stuélyzollisch et al. the process of
spike-generation was functionally described by the filterction d{ - ), which translates the
effective stimulus intensity into a spike response of the receptor neuron. It was assuored t
a static, monotonously rising function with sigmoidal sbd@ollisch and Her2005). This
assumption is true for our initial simulation of iso-respersets in Sectior8(1).

There, the electrical integration of accumulating chatgéacell membrane was modelled
by the filter functionq(t). The convolution of the input signalt) with the first three filter
functions yields the effective stimulus intensityFinally, J is transformed to a spike probability
by means of an integral over the complementary error fundiia. 3.7), which possesses the
claimed monotonous sigmoidal shape. Here, the processasaifical integration and spike
generation are modeled separately and can clearly beglissimed.

But of course, a patch of passive dendritic membrane, asibteled byq(t) integrates ac-
cumulating charges differently (meaning linear) than &ejgenerator with its voltage-depen-
dent ion-channels (meaning nonlinear). A simple and contynesed standard model is the
leaky integrate-and-fire model, which exhibits the sameaattaristics as the approach we used
before in Section3.1). It would be straight forward to simulate a signal trangaucchain with
a full conduction based model of a spike-generator as odfimation. The signal transduction
chain we use here has the functional form

st) 10, 1L am e, (3.57)

where j(-) stands for the spike-generator model and the effectiveustisnintensityJ is em-
bedded inj(-).

The Hodgkin-Huxley model has been derived from the gianhaxdhe squid and exhibits
oscillations in the range of 20 HHpdgkin and Huxley1952ab,c,d). The Traub-Miles model
builds up on the Hodgkin-Huxley model, but parameters welagted to model the response
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Figure 3.7: MEASUREMENTS OFISO-RESPONSESETS IN THE 'T RAUB-AND-MILES’-M ODEL. (A) Time
course of the electrical integration proceQgAt) (red line, Eq.1.11). The measured data are compared to the
model’s impulse respons@(At) and the impulse response match well and indicate that thendios of this model
are captured by the iso-response sets. (B) Histogram ofpilke §me variability atAt = 40 ms. Simulations of
this model span 60 ms. Thus, we here show that our simulatiptuced all evoked spikes at the longest simulated
interclick interval.

B
1 ””””” —Q(At) i 500 -
3 3 Membrane potential|
= | 3 : : : m 400
3 7 1 1 e
c ‘ : : ‘ ‘
o 3 3 g 300
[} ; : ~
(o] ' —3
T ‘ : 2 2004
S ‘ ! @
> 1: o 100-
! i i : : 0""'"|I'I“'| T T T T T = T
0 5 10 15 20 4 6 8 10 12 14 16 18 20 22
Interclick-Intervall At and Time [ms] Time [ms]

Figure 3.8: MEASUREMENTS OFISO-RESPONSESETS IN THE'H ODGKIN-HUXLEY'-M ODEL. (A) Time course

of the electrical integration proces3(At) (red line, Eq.1.11). Q(At) reveals a part of the voltage curve only. The
Hodgkin-Huxley-model shows slow oscillations which are¢ naptured exactly by the method. (B) Histogram
of the spike time variability af\t = 15ms. Simulations of this model span 60 ms. Thus, we here shatour
simulation captured all evoked spikes at the longest sitedlaterclick interval. Some spikes were evoked much
earlier by the first click.
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behaviour of the pyramidal neurons in CABréub et al. 1997). Due to these differences,
the Traub-Miles model shows much slower dynamics than thdgkio-Huxley model. These
two models behave in a complex way and combine the proce$sdsctrical integration and
spike-generation in a single framework. It is not possiblexplicitly distinguish the nonlinear
function that transforms the effective stimulus intendiinto the spike-probability from the
preceding integration. Details of the models are left toappendix.

Similar to SectiorB.1, two iso-response sets are performed with a stims(s consisting
of two short clicks (width 1us). The first click amplitude is held positive throughout the
simulations, while the second click was either positive tfog first IRS or negative for the
second IRS. The stimulugt) is convolved with the filter functioh(t), the result is squared
and convolved with filter function(t), yielding the membrane potentidh(t). The inputl (t)
for the spike-generator model is then given by

I(t) = S-Vin(t) +D-& (3.58)

with the input-scaling facto®, noise and noise-strength factar.

Both models possess much slower dynamics than the locusbguslystem. For that reason
we have to simulate a much longer time than we did in previguslations. If the simulation
time is too small to capture all spikes for larder the spike probability will be underestimated
and compensated by higher tuned amplitudes. This wouldtresa systematic tuning error,
while At gets larger. Both models exhibit a relative broad spike+jitTo make sure no spikes
were lost we present histograms of the spiketimes togetfibromr results (Figure8.7B and
3.8B).

The input threshold of the Traub-Miles model is closd te 0 and thus spikes are easily
evoked. This results in spontaneous activity even with loma that distorts our results. For
that reason we added a negative baseline inpgie —1pA/cm?) to Eq. 8.59 to eliminate
spontaneous activity.

The dynamical properties of both models change stronglyraximity to the threshold.
Therefore, we chose the first click's amplitude in such a wet it results in a typical and
uniform shaped impulse response as it can be observed ¢tranplitudes far away from the
threshold (Fig3.8A, black curve). For details see appendix.

Traub-Miles Results are shown in Figur&.f). The iso-response sets yield a very good
approximation of the time course of the electrical inteigraof the spike generator. But as
might have been expected, all integrative parts of the spéeerator are captured I6y(At),
additionally to oscillatory parts df1) for early/At. As in Section 8.1), only the part of the time
course of the membrane potential beyond the peak is reve@edIlatory components of the
tympanum are found in the very early phas&Xjit ).

Hodgkin-Huxley Here, too, integrational parts of the spike-generator apgured by the
IRS. In comparison with the time course of the membrane piaiernwve find a very biased
Q(At) (Fig. 3.8A). The initial and the last part of the time course seem to &tlwith the
membrane potential, but the negative phase in between iafge. These results suggest that
either the spike-generator influences the extractid(dt ) in an unexpected way or something
else must have changed.

The filter L(At) was reliably measured for both models. Also, both simutetishow, that the
IRS captures all integrational parts of the spike-generdteginning with the timel' of the
effective spike initiation.
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3.4.1 Why can’t we reproduce theVyy(t) of the Hodgkin-Huxley-Model?

Phenomenons close to the Threshold Since the first click brings the Hodgkin-Huxley model
already close to the threshold, it might be possible thasiiveesponse method scans for proper-
ties of the spike-generator close to the threshold. Thispimenon might lead to the particular
shape of)(At) we yield for this simulation. To investigate this possityilive explored how the
impulse response of the Hodgkin-Huxley model changes wifsedriven close to the threshold
by single clicks without evoking an action potential. Exdespfor this are shown in Figure
(3.9. In comparison with the time course in Figu®8A) the negative phase of the impulse
response gets larger the closer the system gets to the ¢hatedthe response shown in Figure
(3.9A) seems to matcl(At) much better than Figur&(8A), but the negative phase of impulse
response still doesn’t get as large@@\t). As the system gets even closer to the threshold, the
slope of the descent changes dramatically, too, and thedirzgde of the impulse response be-
comes very unalike to that 6J(At) (Figure3.9B). We conclude, that the shape of the measured
Q(At) is unlikely to be based on such phenomena close to thressolMkanvestigated them
here.

Another approach to analyze the particular behaviour ofibgkin-Huxley model in prox-
imity to the threshold is to add a positive baseline-inpuh®model. The constant input pushes
the model towards the threshold and thus changes the sstaidyparameters of the model,
which results in a different response behaviour. We expldine behaviour in response of the
model to a single click for different baseline-inputs. Resare shown in Figure3(10 for two
different values of baseline-input. The negative phase @e&ger with higher baseline input
and fits the initial and negative part QAt) well. However, as a side effect of baseline-input
the oscillatory frequency of the Hodgkin-Huxley model isneased, while the damping of the
oscillation is decreased, leading to a large positive lagwh. Therefore, we conclude again
that this approach doesn’t lead to a satisfying explanatfdhe shape ofQ(At).

Matching Q(At) with the Tail of the Voltage Trace Instead of matching the initial phase of
Q(At) to the voltage trace, we scal€At) to match the tail of the impulse response of the
model to single click (Fig3.11A). The offset ofQ(At) is equal to the time until the peak of the
impulse response is reached. The curves fit well after abmg B respect to the time scale of
Q(At). This time span corresponds well with the time course of tingulse responséy(t) in

the simulations of Sectio8.1 (Fig. 3.1D). Hence, it might be that the difference between the
impulse response ar@(At) of the Hodgkin-Huxley model is due to the influence of the filte
functionq(t). Due to the complexity of the Hodgkin-Huxley model ...

Simulating a cascade model withogft) results in aQ(At) (Fig. 3.11B) that differs only
minimal to theQ(At) obtained from the model including tregt) filter. This was expected
sinceq(t) operates on much faster time scales than the Hodgkin-Humtelel. The Hodgkin-
Huxley model has not a fixed filter function, but it rather higadepends on input current
and voltage. Therefore, we are not able to establish a goochrbatweerQ(At) and various
impulse responses. The IRS, thus, reveals the properteeserly particular dynamic regime of
the spike generator only.

Chapter Summary

In this Chapter, we used a simple structured model to rep®do-response sets performed
by Gollisch and Her£2005 by means of numerical simulations. We extracted the filtéfs )
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Figure 3.9: FODGKIN-HUXLEY: BEHAVIOUR CLOSE TO THETHRESHOLD. Here we investigate the impulse
response of a Hodgkin-Huxley-model which is driven closehi® threshold & = 61503) by a click impulse.
We compare the impulse response to the measQ(étl). (A) Amplitude A= 6100. (B) AmplitudeA = 6150.
Although the amplitude of the oscillation increases thesetdhe model gets to the threshold, the mismatch of the
impulse response and the results of the iso-response-thetim be explained by this approach.
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Figure 3.10: HODGKIN-HUXLEY: BEHAVIOUR WITH BASELINE-INPUTS. In addition to the clicks, the model

is driven by a baseline-inpug = 5 (A) andlg = 6 (B), which shifts the impulse response of the model closer
towards the threshold and thus changes it's behaviour. Tigle@mplitudes are relatively low, so that the model
doesn’t show close-to-threshold behaviour, as it does urdig.9. The higher the baseline-input the more in-
creases the oscillatory frequency of the Hodgkin-HuxlegleioWe don't find such behaviour in our iso-response-
measurements. The mismatch of the impulse response andghksrof the iso-response-method can't be ex-
plained by this approach.
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Figure 3.11:Q(At) FITTET TO THE TAIL OF THE IMPULSE RESPONSE We fittedQ(At) to the tail of the impulse
response of a single click. Two different models are showhA(Hodgin-Huxley model receives its input by filter
q(At). (B) A Hodgin-Huxley model without the filteg(At). The curves match well for large interclick intervals,
i.e. At > 5s. The initial region ofQ(At) doesn’t match well with both models. These findings for botidels
demonstrate that the initial mismatch@fAt) is not due to the influence of the filter functigfit).
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and Q(At) and demonstrated that essential parameters of the modélecealiably extracted

by the IRS. By comparison of th@(At) and the impulse response of the model we learned
that Q(At) reveals only a part of the effective stimulus intensliy). We demonstrated that all
integrative properties of the spike generator are capthyetRS and, thus, IRS measure the
temporal integration characteristics of the site of th&epiitiation. We also demonstrated that
dynamics of the spike-generator can distort the initialgghafQ(At) and that this distortion is
independent of the linear filtef§At) andq(At).
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CHAPTER 4

| SO-RESPONSESETS IN AMPLITUDE
SPACE OF TWO SHORT CLICKS

Gollisch and Herz2005 used IRS to analyze amplitude space and thus to determiaestvim-
ulus parameters govern locust auditory signal processirdjfterent time scales. Input stimuli
consisted of two positive click-impulses with a width of 20each, which were separated by
an interclick-intervalAt. Multiple measurements were performed for different atagk-ratios
A1/A; and tuned for each amplitude-ratio to yield the same spiibatility of p= 0.7. Figure
(1.6) shows iso-response sets in amplitude space as they havertesesured bysollisch and
Herz (20095. These measurements as interpreted demonstrated th#feverd time scales,
different stimulus parameters govern signal processhmgamplitudeA of a sound stimulus for
short times and its energ? for long times. Here we compare iso-response sets derioed fr
simulations of different cascade models in respect to thespretation.

4.1 Simulation of the original cascade model

Similar to the experiments of Gollisch et al., the simulatdresponse sets (Fig.1), feature
several particular shapes that can easily be distinguishédre interpreted to reflect different
modes of stimulus integration. For short interclick-ineds (At < 40us), straight lines indicate
almost linear summation of the click amplitudesandAo.

Dominant oscillations of the eardrum govern the shape ofR&curves for intermediate
interclick-intervals, up to approximatedyt ~ 500us, where the oscillations causedlifgt) dye
out (Fig. 4.1; see also SectioB.2.5and Fig.3.5; ). At this range of intervals, the IRS shapes
rapidly change their form with the interclick-intervat. The IRS display almost symmetric
curves and asymmetric bulbed curves (shownfibe= 120us for comparison with Figl.6).
The influence of the eardrum (and thus of filter functi¢fit)) is vanishes for larger interclick
intervals At > 500us, and the shape of the IRS curves are governed by the prdcelsstoical
integration,q(At). We find asymmetric curves for valuesauf of 500us and 75@s (Fig. 3.5).
As largerAt grows, the curves resemble more closely the shape of a s@Mare2.5ms, Fig.

3.5).

Why are the iso-response sets for a largeslightly asymmetric curves instead of ellipses?
And why do the iso-response sets approach the shape of sqoara largeAt? In order to
understand this phenomenon we recapitulate how the mosjgbmes to a single pair of clicks
(Fig 4.2). The first click initiates the vibration of the eardrum, theflection of the eardrum is
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Figure 4.1: REPRODUCTION OFISO-RESPONSESETS IN AMPLITUDE SPACE FORFIXED TIME INTERVALS

At. Each iso-response measurements was performed with dolitkestimuli for a fixed interclick time interval

At each. Multiple ratios of the click amplitudes /A, were tuned to yield the desired spike probabjity As

in the experiments published Wgollisch and HerZ2005, several prominent shapes of iso-response-sets can
be distinguished: straight lines, circles, ellipses amtdiitionally, squares. The shapes are interpreted to reflect
different modes of stimulus integration in the signal tidungtion cascade of the locust.

squared and serves as input for the passive membrane. bnessip the input by the eardrum
vibration an electrical potential over the membrane buildgFig. 3.1C). In case of a larger
interclick interval, e.gAt = 750us, the influence of the vibration of the eardrum due to the first
click will have almost died out. The second click will initeathe eardrum vibration anew, this
evoking an independent electrical potential. Because&bersl click was initiated before the
potential evoked by the first click had converged to steddtesbothelectrical potentialsare
added linearly (Fig.4.2). Roughly speaking, in this scenario the potential evokgddrond
click has a 'headstart’ because it builds up on the eledtpotential evoked by the first click,
which leads to the asymmetric shape of the IRS. The shapeedRiB will thus be dependent
on the value of)(At) at a particular interclick intervait.

A different situation is found for very large interclick arval, e.g.At = 2.5ms, where the
membrane potential evoked by the first click has already emad to zero. Both clicks are
then independent in respect to electrical integration@aséeond click’s potential doesn't build
up on the potential of the first click. For large and small atage-ratiosA; /A, only one of
the clicks will contribute to the spike probabilify, which results in a square-like shape of the
iso-response sets. Figu. ) shows such a square fat = 2.5ms. For amplitude-ratios close
to unity the IRS displays a circle-like shape. The radiuhdf tircle is dependent on the noise
added to the system, which can easily be shown in simulations

This phenomenon can be understood by means of Equétioior the effective stimulus
strength] of the click-model,

J=AZ2.Q(A) + [Ar-L(At) + A)?. (4.1)

In order to explain the observations of straight lines, asatnic curves and the square-like

40



Membrane potential

Voltage

Time [ms]

Figure 4.2: ScCESSIVECLICKS. The membrane potential in response to a sequence of twoctieks (indicated

by arrows), which are separated by the interclick inter&al,The potential evoked by the second cligl, builds

up on the the potential evoked by the first clidg,. The dashed lines indicate the peaks of evoked membrane
potentials. This example corresponds to the situation gaeby Eq. 4.3) and helps to understand, why the IRS
for At > 500us exhibit asymmetric ellipses.

shape, we distinguish three cases.

1. At = 0. Neither the eardrum vibration, nor the electrical in&tign are initiated. Thus,
Q(At) is zero and_(At) equals unity, as we found in Secti@2, Eq. 3.24and3.25
Therefore, Eq.4.1) reduces to

I=[A+ Adf?, (4.2)

which is a linear summation of the click amplitud®&sandA,, resulting in a straight line
in amplitude-space.

2. Atall zero crossings df(At) and at interclick intervals aft > 500us, when the eardrum
oscillation died out, we findl(At) = 0 and Eq. 4.1) reads

J=A7.Q(At) +A3. (4.3)
This equation describes the ellipses we find in Figdté)(

3. For interclick intervalét > 2.5ms bothL(At) andQ(At). Equation 4.1) remains
J=A2. (4.4)

When the click amplitudé, is sufficiently larger (the specific ratio betweAn and Ay

is dependent of the noise of the system) than the click aug@h;, almost all spikes are
evoked due td\,. In this case, the click amplitudeég and Ay will be tuned untilA; is
large enough to cause the desired spike probability, ieguh a horizontal curve in the
amplitude space in Figurd (1), for At = 2.5ms. The reciprocal case occurs, when the
click amplitudeA; is sufficiently larger than the click amplitud®. Then all spikes are
evoked due t&A; and, in the experimenf; andA, are tuned until;; is large enough
to yield the desired spike probability. The result is a \attiline in Figure 4.1), for

At =2.5ms.

The results of our simulations match very well with the resobtained byGollisch and Herz
(2009 in Figure @.6). IRS for short interclick intervalsit = 40us, exhibit straight lines
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Figure 4.3: GCILLATIONS IN AMPLITUDE SPACE DUE TOI(T). Here, the output function was an integral of
J(t), as described before in Secti8r2.5 For largeAt IRS are mere circles, reflecting the quadratic summation of
the amplitudes. For smalit the strong oscillations of the eardrum causes the IRS to &lipses, which change
form rapidly withAt.

and bulb-shaped curves fat = 120us. We also find slightly asymmetric ellipses i =
500us and 75Qus.

We don't find symmetric ellipses for these interclick int@sz We propose that the dif-
ferences between the experimental data and an asymmedpediellipses for these interclick
intervals is covered by the noise in the experimental datas ihterpretation is supported by
much higher standard deviations of the data in FigartéX) compared to Figuresl(6B and
C). The square-like shaped IRS are not measured in the stu@glbsch and Herzlue to too
small interclick intervalsit.

4.2 Simulations of Alternative Cascade Models

Oscillatory Components By integrating overJ(t) as output functiory we are able to di-
rectly show the oscillatory influence tft) on the IRS in amplitude space (Fig.3). Here,
the iso-response sets exhibit symmetric ellipses for largclick intervals, i.e At > 500us,
while the IRS curves for smallét are symmetric curves that vary strongly with The latter
phenomenon reflects the rapid oscillations of the eardrum.

Due to the integral function, both click amplitud&ésandA; fully contribute toJ in regard
to their evoked electrical potential. Therefore, no cdmition of either click is 'forgotten’ and
no 'independent’ clicks exist. Since the first click amptieualways fully contributes td, this
implies no dependence gfAt) and therefore(At) = 1. Applying this relation to Equation
(4.3, we get for largeAt whenL(At) =0

J=A2 + A3, (4.5)

which explains the symmetric ellipses, we observe for langerclick intervals At > 500us.
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Figure 4.4: LNLN-CGSCADE WITH ABSOLUTE VALUES. Main differences to the reproduction-model are a
stronger asymmetry of the ellipses for lafjeand a slower 'growth’ to the square-like shape of indepenclarks.
The similarity of these result to the reproduction modeidatk that IRS in amplitude-space are inappropriate to
unravel the nature of the second nonlinearity without pnofbknowledge of the signal transduction cascade.

We can’t comprehend the symmetry of the IRS for smAaby means of equations.

Replacing the Quadratic Nonlinearity with the Absolute Value function Here, we use the
cascade model introduced in Secti8r8. The cascade model comprises the absolute value
function instead of the quadratic nonlinearity. The issp@nse sets for this model (Fig.4)
exhibit shapes very similar to the original model (Fg1). Main differences are a much more
pronounced asymmetry of the ellipses for snfdlland a slower 'growth’ of the asymmetric
ellipses for largeAt to the square-like shape of independent clicks. As expthineSection
(3.2.1), the quadratic nonlinearity causegmp effectively to be halved. The absence of this
effect in this model leads to the prolonged influencé(dt) and the greater asymmetry of the
ellipses for small interclick intervals.

Hodgkin-Huxley The cascade model with a Hodgkin-Huxley model as outputtion@x-
hibits particularly interesting oscillations in the 20 Hmge (Fig.3.8). The iso-response sets for
this model show highly symmetrical shapes for smallHere, we find IRS that exhibit straight
lines, ellipses, circles and squares, as we found themgmnatimodel (Fig.4.1). Additionally,
we find nose-like shaped IRS that reflect the oscillationbefHodgkin-Huxley-model at large
At (> 3ms). When the voltage response of the model enters a negdiase, the second click
has to compensate for the negative offset of the voltageecumhis results in the nose-like
shapes of IRS foft corresponding to a negative phase of the voltage curve.
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Figure 4.5: BO-RESPONSESETS WITH A HODGKIN-HUXLEY MODEL. For shortAt we find linear summation
(straight lines), for medium-rangeit the oscillatory influence of the eardrum causes rapidly ghenellipses.
For longerAt, IRS continue to grow to a square-like shapes, similar tee¢habserved in the simulation of the
original model (Fig.4.1). The shapes of these IRS are approximately symmetricad oBgillatory behaviour
of the Hodgkin-Huxley model results in nose-like shaped MBiSthe negative phases of the oscillation of the

membrane potential for largh.

Chapter Summary

We have shown that the IRS in amplitude spacesoflisch and Her22005 can be repro-
duced with a simple structured model. Furthermore, we hhews that asymmetric instead
of symmetric ellipses are the prominent shape of iso-respgets in amplitude space for large
interclick intervals At, when the filter function(At) almost converged to zero. For very large
At iso-response sets converge to a square-like shape witmdedwedge, which specific radius
depends on the noise of the system. We have shown, that thesbaped curves for small
interclick intervals are a characteristic trait of the eard oscillation only.Our results suggest
that the elliptical shape for iso-response sets for ldxgeas proposed bgollisch and Herz
(2005, is not a strong argument for a quadratic nonlinearity leetwthe filter function$(t)
andq(1), since this is heavily distorted dy(At) andQ(At) and dependend ag - ). However,
this quadratic nonlinearity has been independently meadshy the analysis of the spectral

integration of pure sine tone&0llisch et al.(2002).
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CHAPTER 5

SEPARATION OF FUNCTIONAL
SUBMODULES BY MEANS OF NOISE

The iso-response method offers the means to analyze thstlaaditory signal transduction
chain, as it is characteristic of this method to enable thraweling of the linear filter functions
of the LNLN-cascade. The identification of these linearffifterctions is possible only because
they are separated by a single nonlinearity. The terminalimearity remains without effect for
this analysis due to the very definition of iso-response &maionl.4.3. The processes de-
scribed by the linear filter functions are might be dividedurther functional submodules that
reflect the underlying biophysical processes in even gregiail. These functional submod-
ules can’'t be unraveled by the iso-response method, as thayoa separated by a significant
nonlinear process. For that reason the submodules act agla Blter function, similar to the
convolutions of exponential functions we investigated hra@ter2.

Yet it might be that a scenario exists, where some submoduéesaptured better by this
method than others. As a possibility, this scenario coufayapvhen two functional modules
are separated by a high level of noise. Here, we analyze plésifec scenario in order to
understand whether some functional components of therliifesxr functions are not or only
weakly captured by IRS.

For this purpose, we composed a signal transduction chaiN&-cascade) that features
a second linearity, which is composed of two linear submesl(d LNLLN-cascade so to speak,
Eq. 5.1). These submodules are a sequence of two exponential decetyoins that the IRS
typically captures as a single linear filter. The signal $chrction chain we use here has the
form

.12 .
s(t) (W) )7 at) w(T) () 9-) '), (5.1)
where the filter functions are given by

t

|(1) = sin(2rtf -t)-e Tymp, (5.2)
qr)=e %, (5.3)
w(T) = e . (5.4)

Although a significant amount of noise could be added to theadiat different positions of
the transduction chain, we are, in this case, only intedestethe effects of noise added to the
output ofg(t). This output is then convolved with(t), yielding the effective stimulus intensity
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Figure 5.1: $PARATING EFFECTS OFNOISE. We modeled an LNLLN-cascade and investigated if it is galesi
to separate the secorglr), and third linearityw(t), with a high-level of noise in between. (A&} = 500us, Ty =
250us. The extracted decay time constant of the tailQofit), Tine = 550us, is close to the largaluy and
indicates that no separation occurs due to high levels sendB)tq = 250us, Ty, = 500us. The extracted decay
time constant of the tail dQ(At), Tint = 550us, is close to the largeau,. The results suggest that no separation
of filters occurs in this scenario, either.

J(t). In the case that a high level of noise uncougles andw(t), the iso-response sets should
yield aQ(At) that mainly reflects the properties@ft) or w(t).

Following this paradigm, we model the signal transductibaic by the following steps. The
eardrum is simulated by

s(t) = X(t) + X(t) 4 w?X(t). (5.5)

Ttymp

The outpuix(t) is squared and serves as inputdgr), modeled as
d
Tg; Va(t) = —Va(t) +X2(t). (5.6)

The outpudy(t) serves as input fon(T)

TW% Viy(t) = —Viu(t) + Vg(t) + DE, (5.7)

with gaussian white noisgand the noise-strengi.

At this point we don’t know, if a separation of two filter fummis by noise is at all possible.
Furthermore, in the case that parameters of one filter arsumeg better than the other, which
of the two filters would it be? To be able to cover both posgied, we therefore performed
two different experiments. In order to distinguish betwé&@ncharacteristics af(t) andw(t),

we used time constantg andty, for the filter functions that differ significantly. We chooae
noise-strength factor dd = 20, which results in a standard deviation®m= 20% in respect
to the threshold level. In Chapt@rwe demonstrated that in a convolution of two exponential
decay filters the filter function with the larger time constaas dominant influence on the decay
time of the resulting overall function. In case no decouplizkes place, we will extract a time
constant fromQ(At), which is close to the longest time constant of each experiahesetup.
Otherwise, if we find a decay time constanQ(At) that is significantly smaller than the longer
time constant of the two filter functions, this would suggestecoupling of the linear filters.
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Experimental Setups

1. 1q = 500us, Ty = 250us. Results are shown in Figurg.{A). The extracted decay time
constant of the tail oQ(At) is very close torg, which suggests that the filter functions
q(t) andw(t) remain coupled even with high levels of noise added.

2. Tq=250us, Ty = 500us. Results are shown in Figure. {B). Analogous to the first case,
the extracted decay time constant of the tailQgi\t) is very close tory, and suggest a
coupling of both filter functions, even with high levels ofis® added.

Our simulations don’t suggest a separation of linear filtex th noise, at least for the scenarios
tested. Therefore, it is likely that even in noisy signahg@uction chains all sequenced linear
filters are captured as a single filter by the iso-responshadet
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CHAPTER 6

CONCLUSION AND DISCUSSION

The iso-response Sets introduced Ggllisch and Herz2005 provided a powerful method
combining theory and experiments for a functional analg§ibe locust auditory signal trans-
duction. This approach yielded detailed novel insightsualianctional modules of the trans-
duction chain and, by this means, the temporal integraticeuiditory receptor neurons. The
IRS bases upon the analysis of the signal transduction @sa@nsequence of functional filters,
which transform the input signa(t) into a lower-dimensional response, e.g. a spike probgbilit

A remarkable characteristic of the IRS is the reliable déacof the first linearity] (At),
which remains unmasked by influences of the second lineg(iy). In contrast, the estimation
of q(At) from q(At) is distorted by the first linearity(At), and is, therefore, possible only under
certain preconditions. Due to the separating quadratitimearity between(At) andq(At), the
decay time constant dfAt) is halved. However, if the temporal of extensidfAt) meets that
of q(At) a reliable extraction of the filteQ(At) is impossible, as its time course is severely
superimposed by(At) (Eq. 3.25. Although, this limitation due td(At) can’'t be avoided
by this indirect approach, experimental dataGullisch and Hersuggest that this limitation
plays a marginal rolen vivo, as the eardrum’s vibration typically dies out much eatlan the
electrical integrationtyec/Tint =~ 0.2 to 0.5).

By comparison we found that a shifted impulse response ofsitpeal transduction model
matcheQ(At). More generally, we here showed that after the first filted diat the second
linearity, q(At), the impulse response of the signal transduction chéift,), and the effective
stimuli intensity,J(t), are well identified byQ(At), except for a shift in the time axis by,
which reflects the time after the second click when a spikeoged. For the original model of
Section 8.1), we found the relationships for sufficiently large intesklintervals Qt >> Tyymp)

Q(At) = q(At+T) = J(At+T) = Vin(At +T). (6.1)

The ascent ofj(At) is masked by the influence ofAt). Unfortunately, information about
shorter time constants, which is contained in the asceqtAtf) (see Chapte), is lost by this
phenomenon.

In Section B8.2.4 we analyzed a different model, where the whole time coufskeoeffective
stimuli strength,J(t), of the auditory transduction chain can be unraveled. Theféature
of this model is a non-oscillatory first linearity with expantial decay characteristics. Due
to this characteristics the loss of the initial phasel@} until time T is compensated by the
correction factoy(At) which exactly reconstitutes the whole time coursd(of and, therefore,
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of q(At). This characteristic might be beneficial in future IRS ekpents on auditory receptors
to analyze the temporal integration of stimuli in greatdaadéy directly moving the tympanum
to abolish the masking effects of the oscillations.

In a neuron spike initiation is more complex than the leakggrate-and-fire model we used
in our initial analysis. In order to investigate what chaeaistics of the spike generator are
captured byQ(At), we simulated the full conduction-based models of spikeegators as output
function of our signal transduction chain. Our simulatiolesnonstrated that all integrational
sub-threshold components of the spike generator are eptwhen its dynamics are slower
than that of the preceding filters. Also, we found a profounsmatch of the initial phase of
Q(At) and the impulse response that might be attributed to themearlsubthreshold properties
of the Hodgkin-Huxley model. Another possible reason fa mfismatch of impulse response
andQ(At) could lie in the timeT, when a spike is evoked. In the original modeis assumed
to be a constant. This is not necessarily true for the Hodgkirley model and could, hence,
be the cause of the initial mismatch for small By our formal analysis of sequenced filters
and our elaborations on separation due to noise, we showeththintegrational sub-threshold
properties of the spike-generator and other linear filterg, the membrane properties of the
dendrite, are unlikely to be separable by the IRS.

Q(At) is, in any case, the combined second linear filter. If the worstants of individual
sequenced linear filters differ greatly, the tail of the @Wdiilter is determined mostly by the
longest time constant of the sequenced filters, as shownapter.

The application of the iso-response meth@bllisch and Herz2005 gave insight into the
dependence of successive inputs in respect to time, a ¢cbaséc represented by the extracted
time constantjy of the filter Q(At) (Fig. 1.9). In the study ofGollisch and Herztjy was
situated between 300-6@3. How can we put this information into a biophysical contaxd
how far can we stress a reliable interpretation? Here, weadidress these questions in two
ways. First, we ask if we can pufy in relationship to the time constang, of the passive
membrane (Eql.1) and, if so, what can we learn from that? Second, does the lkdge of
Tint give us a hint about the location of the spike generator?derdo approach these questions,
it appears to be necessary to begin with a short review ofrtieedonstants;; andt,, and their
relationships.

The membrane time constang, is given byt, = CyRm, WhereCy, is the specific membrane
capacitance (inF/cm?) andRy, the specific membrane resistance @ren?), both in respect
to a defined patch of passive cell membrane. The membranectnstant describes the time
course of the voltage respongg(t) of a small patch of passive neuronal membrane to a short
current step (Eqgl.1). After one time constanY/y(t) reaches 63% of the steady stse

The auditory receptors of locusts are sensory sensilla knasvscolopodiaMichelsen
19711. These are structural building blocks of the widely diaited chordotonal organs in in-
sects, whose structure has been described in great dénaith( 2000 Gray, 196Q Fig. 1.3A).
The receptor neuron’s dendrite is known to be relativelypdamvith no branches (Figlacobs
et al, 1999 1.3B). Thus, effects as they can be observed in spatially ergtraechd complex
structures of other neurons can be assumed to be small imtHds=locust auditory receptors.
These considerations suggests, that leak-currents tghhbering regions’ are small and the ac-
tual time course of the membrane potential is governed bynebrane resistance and, thus,
by t.

What isTint? The relationships in Eq.6(1) provide the basis for identifyingyy:. In any
case, the time constanf; describes théunctional characteristicef the temporal integration
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and, thus, of the second lindanctional modulef the auditory transduction chain. The quality
of the description is greatly dependent on how well the timrse ofQ(At) is described by an
exponential decay function of the form

o(t) = (6.2)

as it was used to extratiy in the study ofGollisch and Her2005. It might be asked how
Tint cOrresponds to the underlying physical processes of aatintegration. Provided that the
second linear filter is indeed well described by E§.2( and tj,: = Ty, the answer is given
right away. The situation is more complicated, when the sédmear filter module of the
auditory signal transduction is not ideally described by @). Such a situation might apply,
when the initiation site for action potentials is not in inaliege proximity to the site where
the receptor potential is evoked. In this case, the recquitantial has to be conveyed there
electrotonically. Such a process could be approximated sggaience of exponential decay
functions. In ChapteR, we learned that such sequences of exponential decay dasalvith
very similar time constantg can distort the overall filter function. In this case, an acted
time constantj, would overestimate the membrane time constant It is not a trivial task
to distinguish this scenario from the simpler structurednseio of Equationg.2) based on
experimental data (Figl.9C), since noise makes it impossible to determine the exagiesh
of Q(A). The determination is hampered further, &) revealsJ(t + T) only and the initial
phase ofQ(A) is distorted due to the influence of the squared first lingdfitt).

Let us now review the literature about the membrane timeteois,,. Experimentally;ty, is
usually determined by injecting a brief hyperpolarizingreat pulse into the soma and record-
ing the voltage response at the same point. Informationtahgis contained in the decay-
ing phase oW, and extracted using the so-called 'peeling’ method. Hekgeis plotted on a
semilogarithmic scale and the slope of the tail of the degaphase oYy, is —1/tm. Over the
last decades, the estimatestgrhave grown significantly and more recent estimates range fro
20 to 50 msec for the major types of central neurons (se&-footoneuronsFleshman et al.
1988 Clements and Redmath989 for hippocampal neuronsBrown et al, 1981, for vagal
motoneuronsNitzan et al, 199Q for cerebellar Purkinje cellsRapp et al. 1994). Estimates
have grown even further with tight-seal whole-cell recogd and are approaching 100 msec
in slice preparationsAndersen et al.1990. But exceptions from these high values have been
found, too. In slices of the avian cochlear nucleus the tiorestant has been found to be only
2 msec using whole-cell recording with tight-sellkefyes et al.1994).

Estimates are available far migratoria, too. Hill (1983, deduced an order-of-magnitude
approximation from the cut-off frequency in the spectruntha recorded voltage fluctuations
and obtained a value of 10 ms for the time constant of the tecepuron. But because of the
difficulties in obtaining good recordings and the consetjyemisy data, there is lots of room
for interpretation Prinz and Ronach€R002 performed studies, based on the analysis of spike
timing in response to sinusoidally modulated stimuli, anelded estimates near 1 ms for the
integration time of the receptor cellRussel and Sellickl983 performed an analysis similar
to those of Hill and approximated membrane time constantsashmalian hair cells from the
cut-off frequencies in the spectrum and yielded approxmonatbetween 0.3 and 0.9 ms. These
values are remarkable small in the context of time constartigical neurons.

It has been argued3pllisch and Herz2005 that short time constants are necessary to
follow rapid stimulus input. Here, it is important to notethhe response time of a neuron or
receptor cell, respectively, is not the same as it's men#tiame constant. In fact, neurons can
respond much quicker to incoming stimuli than membrane tiorestants suggest, so that these
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should more adequately be seen as a measure délloove neuron or receptor cell, respectively,
can respondKoch et al, 1996.

Here, let us also note, that although the function of haiscahd locust auditory receptor
cells is the same, important differences exist. Hair celssacondary receptor cells and transfer
their output via synapses to neurons in the nucleus coas)eahich have transduction char-
acteristics of their own (e.g. avian chochlear nucleus)cusb auditory receptor cells, on the
other hand, are primary receptor cells with their own axdme lack of a synaptic transmission
before long distance transduction to higher neuronal esrdomplicates the comparibility of
both cell types on a non-functional level.

The proximate advantage of a short time constant in a sesgstgm is the rapid independence
of successive inputs on a small time scale and, thus, an eetiability to discriminate accu-
rately between these inputs — even under non-optimal inpigé-conditions. It can also be
suspected that this implies an enhancement of informagit@s due to shorter integration times.
The downside of a short time constant can be a high leak+wugnéich results from a small
membrane resistandg;,, which governs the time constant by = RyCy). A small membrane
resistance shortens the length-conshanthich is in case of a passive dendrite governed by

A:,/%-%, 6.3)

with the diameted, the specific membrane resistariRg and the specific inner resistané®,
Here, a small membrane resistarig implies a short length constamt, Thus, it might be
expected that the area of spike initiation (Trigger Zongy twabe in close proximity to the
supposed site of transduction-current input, namely ttaelment site to the tympanum.

These considerations fit well with observations frivichelsen (1966 1971h and Hill
(1983. In one type of receptor ceMichelsen(1966 observed two types of spike potentials:
large spikes and small spikes, where a large spike was aleeed by a small spike (Figure
6.1A,B). A particular difference between these two types isha shape. Small spikes never
show a repolarizing phase that undershoots the restingiptas large spikes do. Michelsen
confirmed these findings for all four groups of receptor c€él&71h he describes and notes
that the small spikes seem most likely to occur in recordimegs to the dendrite of the receptor
cell. Hill followed up on this observations and termed thearapikes 'apical’ spikes, from
the inferred site of their generation at the apical membritee sensory dendrite, and links
their occurrence to the presentation of sound stimuli. H@es that the shape of these apical
spikes could be explained with rather 'exotic’ ionic coilits where the receptor cell’'s mem-
brane contacts the receptor lymph. The apical spikes inatwest auditory receptors appear
to be conducted electrotonically along the dendrite, whwclild explain the variation in the
recorded amplitudes and broadness of these potentialssddwnd class of spike potentials,
which Hill termed 'basal’ spikes, as they are likely to be lex at the basal dendritic mem-
brane, show characteristics of conventional action p@snin all respects, which seem to be
triggered by apical spikes with one to one correspondenoasi@ering these findings and the
short time constant;,; and the implicated short length constakt,of the auditory receptors,
we may conclude that the occurrence of a short membrane tmsantt,, is made possible
by the early spike generation at the apical membrane. Figifshows the proposed scheme
of spike initiation byHill (1983.

It shall be noted that the occurrence of apical action pa@kntclose to the site of the
evoked receptor potential, is a common phenomenon in margslof mechanoreceptor cells
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Figure 6.1: FECORDINGS OF APICAL AND BASAL SPIKES AND SITES OF SPIKE INVATION. (A) Firstrecordings

of apical spikes by Michelsen, 1966. Here, apical spikemdeeevoke basal spikes. (B) The response to a sound
tone consists initially of small, apical spikes, which bretyi trigger basal spikes in the latter part of the response
(C) Schematic drawing representing the locust auditorgiiem and showing distinct categories of physiological
recordings obtained from receptor cells and the inferrednding sites in each case. The proposition represented
in this figure is that transduction occurs at the cilium (cihthreshold depolarizations and small spikes occur at
the apical membrane of the dendrite (a), which is in contattt the receptor lymph contained in the scolopale
lumen (sl), which is bounded by the scolopale cell (sc) atathment cell (ac). Large amplitude basal spikes are
initiated in the basal part of the dendrite (b) and are th@pagated via the cell body (cb) along the axon (ax) in
the tympanal nerve. Figures taken frivtichelsen(1971H (A) andHill (1983 (B,C).
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in mammals. Examples for this are the tactile receptorsemthmmalian skin (Pacinian and
Meissner’s corpuscles), hair follicle receptors, as wellree afferent sensory fibres of the mus-
cle spindle and the Golgi tendon orgaisr(ith, 2000. All of these examples have in common
that the evoked receptor potential spreads electrotdyittab close spike initiating site of the
dendrite, far away from the cell body.

The theoretical analysis of the auditory signal transauctaised new and more specific ques-
tions about functional aspects of hearing. Direct eledtysmplogical measurements at the neu-
ron’s soma with focus on the location and the charactesistiche spike-generator, as well as
on the mechanisms underlying the temporal integration @ftiditory receptor neuron would
be the next consequential step. The analysis of the locualsioay signal transduction chain is
a great example for the benefits of intensive cooperatiohawretical and experimental work.
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Appendix

6.1 Hodgkin-Huxley model

The original model oHodgkin and Huxley(1952d with the resting potential set te65mV.
The Hodgkin-Huxley model is an example of a class-Il neuron.

CV = —Iya— Ik — I +1

Membrane capacitance: C suF/cn?.

Sodium current

INa = g_NamSh(V_ENa)
m = am(V)(1—m) —PBm(V)m
h = ap(V)(1—h)—Bn(V)h

ONa = 120 mS/cm, Ena = +50 mV,

am(V) = 0.1(V +40) /(1 — exp(—(V +40) /10)),
Bm(V) = 4exp —(V +65)/18),

an(V

) =0.07exg—(V +65)/20),
Bn(V)

1/(1+exp(—(V +35)/10)).

Potassium delayed-rectifier current

Ik = @Kn4(V—EK)
h = an(V)(L—n)=Ba(V)n

gk = 36 mS/cm, Ex = —77mV,

an(V) = 0.01(V +55)/(1—exp(—(V +55)/10)),
Bn(V) =0.125exg—(V + 65)/80).

Leakage current
IL=0a.(V—E)
gL =0.3mS/cnt, EL = —54.384mV.
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6.2 Traub-Miles model

This model is a simple example of a class-I neurdragb et al. 1991). Note that it contains
the same currents as the Hodgkin-Huxley model. Only thewarmpeaters are slightly changed.
The resting potential is & = —66.6 mV.

CV = —lInya— Ik — I +1

Membrane capacitanc€ = 1 u F/cn?

Sodium current
INna = g_Namsh(V_ENa)
m = dam(V)(1-m) —Bm(V)m
h = an(V)(1—h)—Br(V)h

Ona = 100 mS/crd, Ena = +48mV,

am(V) = 0.32(V +54)/(1—exp(—(V +54) /4)),
Bm(V) = 0.28(V +27)/(exp((V +27)/5) — 1),
ap(V) = 0.128exg—(V +50)/18),

Bn(V) =4/(1+exp(—(V +27)/5)).

Potassium delayed-rectifier current

Ik = gxn*(V—Ex)
A = an(V)(1—n)—B(V)n

Ok = 200mS/cm, Ex = —82mV,
an(V) =0.032(V +52)/(1—exp(—(V +52)/5)),
Bn(V) = 0.5exp(—(V +57)/40).

Leakage current

gL =0.1mS/cnt, EL. = —67mV.
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Deutschsprachige Zusammenfassung

Durch die Anwendung eines neuartigen Ansatzes ist es Glolgs al. (2005) gelungen neue
Einblicke in die Dynamik und Signalverarbeitung von audgochen Rezeptorzellen zu liefern.
In dieser Studie wurden mittels eines phanomenologisclesk&denmodells die linearen Fil-
ter und Nichtlinearitaten der auditorischen Signaltratksidn quantitativ allein aus der Kennt-
nis der Eingangsstimuli und der Ausgangs-Wahrscheindithétass ein Aktionspotential (AP)
ausgelost wird, bestimmt. Die verwendete Methode beruht@uMessung von sogenannten
"Iso-Response”-Kurven, die in anderem Kontext in der Peptiysik (z.B. Isophone in der
Auditorik) verwendet werden. Bei diesem Ansatz werden dim@us-Parametess(, s, ..., Sy)
dergestalt verandert, dass der Output des Systems kohtdrtt Die gemessenen Stimulus-
Konstellationen stellen Invarianzen dar, die das Systemt minterscheiden kann und enthtllen
bei geeigneter Wahl der Stimuli System-spezifische Eideafgen. In der Studie von Gollisch et
al. (2005) wurden Paare kurzer akustischer ImputgeAp), sogenannte "Clicks”, verwendet,
die durch eine variable Zefit getrennt sind. Die Amplituden der Impulse wurden so justier
dass die Wahrscheinlichkeit ein Aktionspotential auszedbei konstant 70% liegt. Die zeitli-
che Auflosung der Methode ist nur durch die Prazision desuitisnbegrenzt (ca. 1%), und
damit um ein Vielfaches hoher als die zeitliche Variabildér APs (ca. 1 ms). Durch die Mes-
sung solcher "Iso-Response Sets” (IRS) fir verschiedeiterzat kann auf diese Weise eine
hochaufgeloste "Karte” der sogenannten "effektiven Stumstarke” erstellt werden. Mithilfe
mehrerer solcher Datenséatze fiur unterschiedliche Stilasgien sich die funktionalen Filterei-
genschaften der auditorischen Signaltransduktion bassth

Diese Diplomarbeit beginnt mit einer Einleitung in den neatfatischen Rahmen der Me-
thode und setzt dann mit der Reproduktion der oben genai8itehe mit Hilfe numerischer
Simulationen fort. Wir untersuchen, wie die ErgebnisselB& interpretiert werden muissen
und stellen durch den Vergleich der Modelparameter mit dessvngen fest, dass nur ein Tell
der effektiven Stimulusstarke durch die Methode erfasstiwbie Begriindung fur diese Ei-
genschaft wird durch eine Untersuchung des mathematidsgbmens der Methode geliefert.
Wir zeigen dann auf, dass die Unterscheidung der lineatésr Bies Kaskadenmodells darauf
beruht, dass der Zeitverlauf des ersten linearen Filteraekiist als der des zweiten linearen
Filters. Durch die Simulation von vollstandigen AP-Generan, wie sie im Neuron z.B. am
Axonhigel zu finden sind, zeigen wir, dass die Methode allegmativen Eigenschaften des
AP-Generators erfasst, sofern dessen Dynamik langsama@sigie der vorangehenden Pro-
zesse. In diesem Zusammenhang zeigen wir auch, das das§)orgginden die Dynamik des
Spike-Generators einen stdrenden Einfluss auf die Messrnigltereigenschaften haben kann.

Weiterhin zeigen wir, dass die Messung einer anderen AriR&im "Amplituden-Raum”
der Stimulus-Paare zu verschieded¢ikeine eindeutige Einsicht in die Natur der Input-Nicht-
linearitat liefert.

Neben unseren Untersuchungen zur Interpretation von I&$en wir, ob es unter Um-
standen zu einer Trennung von funktionalen Filtermodulercid den Einfluss von Rauschen
kommt. Die von uns verwendeten Szenarien ergeben keinedisvauf ein solches Phano-
men, so dass wir davon ausgehen missen, dass alle Filteseligdten der zweiten Linearitat
des Kaskadenmodells durch die IRS erfasst werden.

Schliel3lich setzen wir die unsere Ergebnisse in einen gedlZusammenhang und disku-
tieren welchen Aufschluss uns die IRS Uber tatsachlictebestde biophysikalische Mechanis-
men gibt.
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