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Abstract.

In networked control systems, sensors and actuators are connected via networks to the controller
platform. Contrary to direct links, delays vary in a more or less wide range in network links.
Hence, delays are one of the key issues in the design process of a networked control system.
Therefore, obtaining safe upper bounds is essential to guarantee the desired behavior of the
system. On the other hand, the bounds should be as tight as possible. Large overestimations
result in over-dimensioned platforms and networks. A common approach is to assume the
occurrence of the worst case response time (WCRT) for all transmissions. This simplifies the
design process as the WCRT can be derived directly from the platform model. Though, it
contains inherently large overestimations.

A more accurate approach is featured by delay densities. By not treating each event individually,
delay densities give a description of the timing behavior within intervals. Additionally, the
method is not limited to strictly periodic events.

In this paper, we propose a method for deriving an upper bound from a platform description in
Real-Time-Calculus.

1. Introduction

The behavior of networked control systems is dependent on the physical context. It is necessary
that the systems comply with the characteristics derived from that context to guarantee a desired
behavior. But, on the other hand, the hardware platform should be designed as slim as possible to
limit costs or energy consumption. Both objectives compete with each other in the design process.
It has to be guaranteed that the task set which is executed on the computation platform is schedulable
under all circumstances. Also, the controllers’ state has to stay within its specifications. For both
objectives, the timing behavior of the system turns out as the key figure. However, the correlation
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between the timings of the physical process, which shows a continuous behavior, and the discrete
computation process is not fully understood yet. This means, simplifications have to be made to
bound execution times and network latencies, which we term as delays in the following. The delay
bound has to be a safe upper bound which should be as tight as possible to avoid poor utilization.
The maximum delay is one option for the upper bound. To calculate the maximum delay, several
methods exist in real-time analysis techniques. However, accounting the maximum delay for all
instances leads to an overestimation of the actual timing behavior. This is due to the issue, that the
maximum delay occurs rarely during the runtime of the control system. Besides, sporadic longer
delays may not result in violation of the performance specifications.

In [3]], Bund et al. proposed the delay density model which is more realistic and offers tighter
bounds than the worst-case response time (WCRT). Bund et al. show how delay densities can be
build from sequences of delays in the time domain. From those sequences, minimum and maximum
cumulative delay functions are derived in the interval domain. The model is included in [2] in a
complete set of densities, in particular the signal and disturbance density and the density of dropped
samples. Those densities allow to bound the influence of disturbances, delays and dropped samples
on the control quality. However, there is no method given to calculate safe upper bounds for delay
densities directly from a system’s specification, given by a task set and scheduling. In this paper
we propose a safe upper bound (as described in: [11]), which can be calculated by utilizing the
principles of Real-Time-Calculus (RTC).

The paper is structured into four sections. We give a brief overview about the related work in
This is followed by the definition of the delay density function as described in [3]] and a
short introduction to the Real-Time Calculus [[13]] in[subsection 3.2l In[section 4] we describe our
algorithms for the calculation of upper bound for delay densities.

2. Related Work

Several approaches have been published in recent years to address the problem of describing the
timing behavior more realistic than the WCRT does. In [9] the delay analysis is based on knowledge
of the probability distribution of delays. Lincoln et al. [[7] propose to use a Markov Jump Linear
System to model a closed-loop digital control system. Both are based on stochastic models and do
not provide a guaranteed bound for the delay. However, safe bounds are mandatory when designing
safety critical systems [4]]. A method to find the demand bound function for a schedulability analysis
for self triggered controllers is proposed by Aminifar et al. [[1]. This is done by partitioning the state
space into subregions. For each subregion the maximum time the system could run in open-loop
until it becomes unstable is determined. Then a transition graph is created to model the possibility
of transitions from one subregion to another. The transition graph is finally used to calculate the
demand bound function by finding the shortest interval with a minimum number of events. Xu et
al. propose methods for scheduling and control co-design in [[14] and [[15]. The methods are based
on minimizing costs for LQ-controllers by the determination of optimal periods. Both publications
are focused on the issue of event generation and delays are modeled either as upper bounded or
averaged values. In [5] a maximum rate on stable and unstable samples is derived from a control
system. A delay threshold is set to classify if a sample is stable or not. [8] proposes a method
to model the time delay as a constraint of the estimator. Eliminating the delay in the system, the
controller can be parameterized using methods for delay-free systems. The delay itself is a constant
delay. In [12], Tolic and Hirche examine the gain in stability by using an estimator. Delays are



treated separately for both directions, from plant to estimator and back. Stability is proven by the
Ljapunov method, which implies using constant upper bounds.

3. System Model

In this paper we consider an event triggered system consisting of n € N tasks. For each task the
events that trigger it are enumerated chronologically. Each event causes the creation of an instance
or job of that task. This instance is then processed according to the scheduler that is used. Since
the event that creates an instance of a task and that instance itself can be mapped bijectively, we
will be using the indexed event and its corresponding instance synonymously.

3.1. Delay Density

Given these assumptions a delay function can be defined for each task which maps each of these
events to the delay of their corresponding instance.

Definition 1 (Delay Function). Let k be a natural number (k € N) and let ay be a non-negative
real number (ay. € R() that denotes the point in time at which the k-th event occurs. Similarly let ey
be a non-negative real number (ey € R() that denotes the point in time at which the instance that
was generated by the k-th event has been completely processed. The delay function r: N — Ry
maps the k-th event to its delay and is defined as

r(k) := ey — ay. (1)

With the delay function a cumulative delay function 6 can now be defined which represents the
sum of the delays of the first k£ events.

Definition 2 (Cumulative Delay Function). Let r: N — R denote a delay function , then the
cumulative delay function §: No — R is defined as

o(k) := r(j). (2)

M~

Jj=1

Note that for k = 0 we have the empty sum, hence 6(0) = 0.
Based on the cumulative delay function the delay density is described.

Definition 3 (Delay Density). Let 6: No — R denote a cumulative delay function , then the
delay density dR" : Ny — R satisfies for all k, A € Ny

5(k + A) — 5(k) < dR*(A). 3)

For a fixed non-negative integer A the delay density dR*(A) denotes an upper bound of any sum of
delays of A consecutive instances.
Provided that the cumulative delay function is known, a valid delay density is

dR*(A) = sup {3k +4) = 6(K)} = (6 @ O)(A). 4)

The operator @ is defined as:



Definition 4 ((A, +)-deconvolution). Let f,g: R — R be two increasing functions, then the
(A, +)-deconvolution is defined as

(f @ 8)(x) := sup {f(x + 1) - g()} )

AER(’;

3.2. Real-Time Calculus

Wandeler [13]] has proposed the real-time calculus, a modular framework to analyze real-time
systems. Its core element is the greedy processing component (GPC) as shown in[Figure I} A GPC

P

Figure 1: Greedy Processing Component (GPC)

is used to model an entity that requires resources, e.g. a message on a bus or a task that is executed

on a processor. Either way, a GPC 71; has as input the arrival curves «; and the service curves S;.

These curves come in pairs, one describing a lower bound and the other describing an upper bound.
The arrival curves represent bounds on the frequency with which the GPC is being activated.

Definition 5 (Arrival Curves, cf. Definition 1 in [13]). Let t and A be non-negative real numbers
(t,A € R}) and let R[t,t + A) denote the amount of events that occur in the interval [t,t + A).
Then the lower bound o' and the upper bound o* of the arrival curve satisfies for all t, A € Ry the

condition
@ (A) < R[t,1 + A) < "(A). (6)

Similarly, the service curves represent bounds on the amount of resources that a GPC is being
assigned to according to the used arbitration method or scheduler.

Definition 6 (Service Curves, cf. Definition 2 in [13]). Let t and A be non-negative real numbers
(t,A € R[) and let C[t,t + A) denote the amount of resources that are available in the interval
[t,t + A). Then the lower bound B' and the upper bound B of the service curve satisfies for all
t, A € R the condition

B(A) < C[t,1 + A) < BY(A). (7)

Usually service curves are provided in resource units, e.g. 8/(A) describes how many resources
have been assigned at least to the GPC in any interval of length A. However in this work we assume
that the service curves are provided in event units, e.g. 8(A) describes the amount of events that
can be processed at least in any interval of length A. If a service curve is provided in resource units
B and the GPC has a worst-case execution time of ¢* and a best-case execution time of c‘,+then

the service curve in event units can be obtained through a division, i.e. ,81 = /j—+ and g* = = cf.
Equation (4.4) in [[13]].

Besides its input, a GPC has an output for the outgoing arrival curves ;1 as well as the remaining
service curves S;;1. In this work we only use the lower bound of the remaining service curve. The
equations for the other bounds can be found in [13]].



Proposition 1 (Remaining Service Curve, cf. Equation (2.10) in [13]). Let &' be the upper bound
of the arrival curve and ﬁf the lower bound of the service curve, then the lower bound of the
remaining service curve ,Bf R

Bl (A) = S {B1(D) - (1)} (8)

With the arrival and the service curves, an upper bound of the delay of a GPC can be expressed
by means of the greatest horizontal distance.

Definition 7 (Greatest Horizontal Distance, cf. Equation (2.11) in [I3]). Let f,g: R} — R be
two increasing functions, then the greatest horizontal distance between them is defined as

ARy | HERG

(f & g):= sup { inf {u: f(1) < g(4 +u)}}- 9)

Proposition 2 (Delay Bound, cf. Equation (2.11)in [13|]). Let a" be an upper bound of the arrival
curve and 8 the lower bound of the service bound, then the delay of a single instance is bounded
by

rt = (2" o Bh. (10)

Note that any delay bound r* of a GPC 7 satisfies r(k) < r* for every k € N,

4. Deriving Delay Densities

Let 7 be a greedy processing component for which its arrival curves and services curves are known.
Then we first derive a delay density that is based on a delay bound. Afterwards we improve the
delay density by using additional information that is contained in the arrival and service curves
which was previously ignored. We want to show this by a running example:

Example 1 The activation of the GPC is modeled by the model denoted as periodic events with
burst (Section 4.3 of [10]) with the parameters period T = 150, jitter J = 450, and minimum event
distance d = 15. The GPC requires at most ¢c* = 20 resource units to process an instance and is
provided resources through a time division multiple access (TDMA ) scheme where the cycle length
is ¢ = 10 time units long, the assigned slot for this GPC is s = 6 time units long, and per time
unit b = 1 resource unit is provided. This example describes essentially task T1 of the distributed
example presented in [6|]. Only the parameter minimum event distance was modified to have a
value of d = 15 instead of the original value d = 0 in order to visually distinguish the different
events more easily in the figure. With the provided parameters of the activation model the upper

arrival curve (Equation 4.14 in [|10]) is
A
| d
and the lower service curve is
A A b
Bl(A) = ({—| - § + max {A - {—| -c—(c— s),O}) —.
c c c

The curves of this example are shown in|Figure

A+J

a“(A) = min{ —
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Figure 2: Upper arrival curve a* (solid staircase function), lower service curve B! (dashed continuous

function), the service spent for processing the events o (solid continuous function), and the
remaining lower service curve 8" (dotted continuous function).

4.1. Delay Density Based on Delay Bound

A simple bound for the delay density of a GPC is based on a delay bound r*, which we refer to as
delay bound based delay density (DB-DD). This delay bound can be obtained for example through

().

Theorem 1 Let T be a GPC and let r* be a delay bound for it, then a delay density for the GPC t
is
dR*(A)=A-r*. (11)

The DB-DD assumes that every instance requires the same amount of time to process as the
delay bound. Provided that the delay bound is the smallest upper bound of the delay function,
i.e. r™ = sup;{r(k)} then it is possible that this assumption is true. However it appears to be
improbable that this assumption is accurate for most applications. Hence we expect that the delay
density as presented in (TT)) is severely over-approximated in most cases.

4.2. Delay Density Based on Delay Function

The delay density presented in [4.1] is based on a delay bound which can be determined by the
greatest horizontal distance between the upper arrival curve and the lower service curve. However,
within these two curves additional information is provided than merely a delay bound, namely a
delay function can be derived. We use this to improve the delay density of a GPC, which we refer
to as delay function based delay density (DF-DD).

The arrival curve represents the maximum number of events and the service curve represents
the minimal computing power which is available within any time interval. Though, the actual time
interval when the particular worst case occurs is not correlated. Nevertheless, or just therefore, we
can assume the joint treatment to constitute an upper bound for the timing behaviour. Not only
for the worst case response time r*, but also for the response times of all other instances of a task
within a time interval.

The time interval from zero up to the intersection point is called the busy-period.

However this is only valid for the delays before both curves intersect, e.g. before A = 136 time
units in From there on the horizontal distance between these curves no longer holds any
useful information for our goal, e.g. in the fifth event occurs at the earliest within A = 150
time units and the resources to process five events would be available at the latest within an interval



of A = 166 time units. So the horizontal distance would be 16 time units. However, to process a
single event with the given parameters for the TDMA scheme would require at least 32 time units.
This discrepancy is due to the resources which have been assigned to this GPC in the time between
A = 136 time units and A = 150 time units. These resources were lost since no events were pending
to be processed. However, these resources were then assumed to have been used in processing the
fifth event even though the resources were lost before the fifth event even occurred.

We need to determine the delays of the instances after the curves have intersected. With the
available curves we can compute the remaining service curves, in particular the lower bound of
the remaining service curve (I). We now have on the one hand the lower bound of the available
service curve B’ denoting the amount of resources that were assigned at least to the GPC in any
interval of length A. On the other hand we have the lower bound of the remaining service curve 8’
denoting the amount of resources that remains at least in any interval of length A, or in other words
the amount of resources that were not used in processing the events of the GPC. This allows us to
determine the amount of consumed resources

Definition 8 (Consumed Resources). The consumed resources o by a GPC is specified by the
difference of the lower service curve and the remaining lower service curve

c=p -8

These curves are shown in where the lower service curve 8 is the dashed continuous
function, the remaining lower service curve ,81' is the dotted continuous function, and the consumed
resources o is the solid continuous function. From the consumed resources o~ can be seen that at
A = 186 time units the resources were spent to have processed the fifth event. Therefore the delay
for that instance is 186 — 150 = 36 time units. So the horizontal distances between the upper arrival
curve a" and the consumed resources o represents the delays of each of the instances even for those
instances beyond the point where the curves originally intersected. Note that 8/(A) is identical to
a(A) for A € [0, 136]. Since the greatest horizontal distance between o* and ' occurs before they
intersect, the greatest horizontal distance between o and ,81 is the same as between o* and o, i.e.
(@ & B = (a* & o).

Instead of expressing the delays of the instance as horizontal distance between the two curves,
we can also express it as the vertical distance of their pseudo inverse (Definition[9). So, the delays
of the instances 7 (k) can be expressed as

(k) = (™" =2 (k).

The functions used in real-time calculus have as requirement that they are increasing but not
necessarily strictly monotonically increasing. Therefore these function might not be bijective,
hence a corresponding inverse function might not exist. However a pseudo-inverse function can be
defined instead.

Definition 9 (Pseudo-Inverse). Let f: Rj — R be a function, then its pseudo-inverse is defined
as

F0) = inf {x oy < f(x)} (12)

Note that 7 constitutes a delay function, hence we can derive a delay density as proposed in
subsection 3.1, So we first obtain the cumulative delay function (k) = Zf:  7(j) (Definition

and then we obtain a delay density dR* = (6 @ 6), see @).




Since the delay density dR* is the self-deconvolution of the cumulative delay function ¢, the
delay density dR* is sub-additive and dR*(0) = 0 holds. So, according to Proposition any
non-negative whole number A € N satisfies

dR*(A) < A - dR*(1).

Prolj)iosition 3 Let f: Ri — R{ be an increasing function, then any non-negative integer n € N
satisfies

(foHn)<n-(fo ) (13)

Furthermore the greatest horizontal distance between o and ﬁl is the same as between o* and o,
as was noted earlier. Therefore it follows that dR*(1) = (a* < B') = r*. So overall we have

dR*(A) < A-dR*(1)=A-r™.

Above all, we have to take situations into account that the duration of the controller’s runtime can
be limited. Furthermore, the controller could be launched repeatedly after any unknown runtime.
To take this into account, it is necessary to calculate dR* for all possible runtimes and to compose
the supremum from all de.+, where i denotes the number of instances of the control task during
a particular runtime. This is sufficient, as the Real-Time Calculus considers the worst case of the
interference of all tasks when the interval A = 1. If the worst case response time r* will appear for
A =1, the DF-DD will be equal to the DB-DD.
Hence this DF-DD is not greater than the DB-DD presented in the previous subsection §.1]
Moreover, we expect that the DE-DD noticeably improves the DB-DD for task sets where r*
appears for one A > 1. If a minimum runtime before re-launch can be assumed, DF-DD will also
improve the DB-DD. To take this information into account, the algorithm has to ignore the dR;" for
time intervals shorter than the minimum runtime in line 14.

Given a trace containing n events, Algorithm[I|can be used to compute the DF-DD. For complete
coverage of all possible situations, n should cover the hyper period of the task set.

4.3. Comparison

We now compare the DB-DD with the DF-DD by means of the example shown in [Figure 2
According to the parameter from which the upper arrival curve is derived, the events occur at
A € {0, 15,30,45,150 - i} with i € N. The length of the interval at which k consecutive events are

processed at the latest can be determined with ,81_] (k) = [%l ‘(c—s)+k-c* (cf. Equation (2.9) in

[10]). Therefore the first few events are processed within an interval of length (36, 68, 100, 136, . . .).
Both curves, the upper arrival curve o“ and the lower service ,Bl, intersect at A = 136 time units.
The greatest horizontal distance between these curves occurs at A = 45 time units for the upper

arrival curve and at A = 136 time units for the lower service curve, resulting in a distance of
r* =136 — 45 = 91 time units. The resulting delay density is shown in [Figure 3|

5. Conclusion and Future Work

Estimating the timing behavior is a key issue in the design process of networked control systems.
For that, safe upper bounds for response times and latencies are essential to ensure the desired



Algorithm 1 Upper bound for the delay function based delay density

1o — (B -p") > consumed resources
2 (k) — (o' = a (k) > delays of each instance
3: 0(k) — Zfz 1 7(U) > cumulative delay function
4: fori < 1,...,ndo > for any runtime interval
5: forA—1,...,i—1do > (A, +)-deconvolution
6: Max < 0

7: forj—1,...,i—Ado

8: if (6(j + A) — 6(j) > Max) then

9: Max « 6(j + A) — 6(j)

10: end if

11: end for

12: dRF(A) « Max > delay density

13: end for
14.  DF-DD = sup;q {dR'}

15: end for
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Figure 3: Comparison of the delay densities for|l|based on the delay bound (DB-DD) and the delay function
(DF-DD).

behavior of the system. In this paper we have shown that it is possible to derive a safe upper bound
which is tighter than the classical bound for periodical task activations with jitter. It even holds
when the control system is stopped and launched again at any time. This bound is less pessimistic
than assuming the worst-case response time occurs for every triggered event. For future work we
intend to investigate methods for predicting stability of networked control systems based on de-
lay densities rather than the worst case response time. (In [2], Ljapunov stability is assumed a priori.)
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