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Zusammenfassung

Induktion-Rekursion ist ein Definitionsprinzip in Martin-Löf Typentheorie das Familien
(U,T : U → D) : Fam(D), für eine beliebige (große) Menge D : Set1 (wie beispielsweise
D = Set, was den in motivierenden Beispielen auftretenden Fall darstellt), definiert, wobei
simultan U : Set durch Induktion-, und T : U→ D durch Rekursion auf U definiert ist;
die Qualifikation “simultan” meint hier dass U von Funktionswerten von T abhängen darf.
Zwei äquivalente1 Axiomatisierungen dieser Situation wurden von Dybjer-Setzer [38][40]
vorgeschlagen. In beiden Fällen wird eine (große) Menge DS D D (respektive DS′ D D)
von Codes für induktiv-rekursive Definitionen definiert sodass jeder Code c : DS D D
Anlass gibt zu einem Endofunktor J c K : Fam(D) → Fam(D) zwischen Kategorien von
Familien dessen initiale Algebra die Familie ist welche durch diesen Code c definiert ist.

Diese Axiomatisierungen ([38][40]) sind jedoch nicht die einzigen vernünftigen Axima-
tisierungen für Induktion-Rekursion. Es gibt mindestens zwei Wege zu diesem Schluss
zu kommen: der eher praktisch orientierte Zugang ist motiviert durch die Beobachtung
dass während es in der Referenz-Theorie der induktiven Definitionen immer möglich
ist (in semantisch bedeutungsvoller Weise) die Komposition von zwei Codes zu einem
einzigen-, neuen Code zu bilden, dies kaum der Fall zu sein scheint für die bisher ex-
istierenden Axiomatisierungen von induktiv-rekursiven Definitionen. Die zweite-, eher
konzeptuelle Beobachtung über die bereits existierenden Axiomatisierungen ist dass diese
keine Konstruktoren für abhängige Produkte (oder Potenzen2) von Codes, sondern nur für
abhängige Summen von Codes enthalten. In der Tat zeigen wir dass beide Beobachtungen
in Zusammenhang stehen, indem wir beweisen dass Kompositionalität für Dybjer-Setzer
inductiv-rekursive Definitionen äquivalent ist zur Existenz von Potenzen dieser Codes
durch Mengen.

In der Folge definieren-, und untersuchen wir zwei neue Axiomatisierungen für induktiv-
rekursive Definitionen welche die erwähnten äquivalenten charakterisierenden Eigen-
schaften erfüllen und für die wir Kompositionalität beweisen. Die Erste ist erreicht indem
wir ein Untersystem3 UF, bestehend aus uniformen Codes, des Dybjer-Setzer induktiv-
rekursive Definitionen definierenden Systems DS identifizieren für das Potenzen von Codes
existieren.

Die zweite Axiomatisierung PN die polynomielle Codes (so genannt da diese auf der Idee

1Diese Axiomatisierungen sind äquivalent falls das “logical framework” entsprechend gewählt ist.
2Es besteht eine enge Beziehung zwischen abhängigen Produkten und Potenzen.
3Gemeint ist hier dass eine Semantik-erhaltende Übersetzung von UF nach DS existiert.
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Polynome4 zu iterieren basieren) definiert ein System in das DS eingebettet werden kann
und das einen Konstruktor für abhängige Produkte (und insbesondere Potenzen) von
Codes enthält. Während für DS die Existenz eines (mengentheoretischen) Modells durch
eine Einbettung in ein bereits existierende Modell für DS erhalten werden kann, können
wir nicht in dieser Weise ein Modell für PN erhalten, und konstruieren daher stattdessen
ein neues Modell das aber beinahe mit denselben, große Kardinalzahlen betreffenden,
mengentheoretischen Annahmen wie das Modell für DS auskommt: während Dybjer-Setzer
induktiv-rekursive Definitionen ein Modell in ZFC erweitert durch eine Mahlo Kardinalzahl
und eine 0-unerreichbare Kardinalzahl haben, benötigen wir hier ZFC erweitert durch
eine Mahlo Kardinalzahl und eine 1-unerreichbare Kardinalzahl.

Da das System PN nicht einfach caeteris paribus durch Hinzunahme eines Konstruktors für
abhängige Produkte von Codes entsteht, sondern eine Neudefinition aller Konstruktoren
erfordert, stellt sich weiterhin die Frage nach Konstruktoren die das Bild der Einbet-
tung DS ↪→ PN erzeugen; wir nähern uns dieser Frage indem wir ein Zwischensystem
das zwischen DS und PN liegt, und eine Übersetzung dieses Zwischensystems nach DS
definieren. Dieses Zwischensystem entsteht nicht allein durch Entfernen des Konstruktors
für abhängige Produkte, denn dies ermöglichte uns noch nicht eine gewünschte Überset-
zung zu erhalten, sondern durch zusätzliches Einführen einer Uniformitätsbedingung die
mithilfe einer Annotation der Codes mit Binärbäumen realisiert ist.

Eine gemeinsame Eigenschaft beider neuer Systeme UF und PN ist, dass diese eine
flexiblere Beziehung zwischen Codes und Untercodes besitzen als dies für DS der Fall ist:
unter-DS-Codes eines gegebenen DS-codes haben alle denselben Typ während unter-UF-,
und unter-PN-Codes dieser Einschränkung nicht unterliegen. Die letzgenannte Eigenschaft
enthüllt einen abstrakteren Weg zu dem Schluss zu kommen dass Dybjer-Setzer Induktion-
Rekursion nicht die allgemeinste Formulierung induktiv-rekursiver Definitionen ist: in
ähnlicher Weise wie induktive Definitionen durch eine Menge von Operationen auf Mengen5

definiert werden können, so sind induktiv-rekursive Definitionen durch eine Menge von
Operationen auf Familien bestimmt (diese Operationen sind repräsentiert durch die
Funktoren die durch die Codes definiert sind) und Dybjer-Setzer’s Systeme DS und DS′

zogen Operationen welche die indizierende Menge D ändern nicht in Betracht während
die Syteme UF und PN das tun.

In Konsonanz mit der Idee Induktion-Rekursion als zum Vorhaben Typentheorie in
Typentheorie zu formalisieren beitragend vorzustellen, kehren wir zu Dybjer-Setzer’s ur-
sprünglicher Formulierung zurück und geben ein relational-parametrisches Modell das als
ein Kategorien-mit-Familien Modell auf der Kategorie der reflexiven Graphen formuliert
ist; Kategorien-mit-Familien wurden in [34] als eine Formalisierung von Typentheorie in
Typentheorie vorgeschlagen die auch einen kategorientheoretischen Zugang ermöglicht.
Relationale-Parametrizität ist eine wohlbekannte und wichtige Beweistechnik um metathe-
oretische Eigenschaften von Typentheorien zu untersuchen.

4Polynome in dem hier zu verstehenden Sinne sind auch als “Container” bekannt und sind eine
Formalisierung von induktiven Definitionen.

5Diese Operationen werden “strikt positive Operationen” genannt (siehe [36]).
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Abstract

Induction-recursion is a definitional principle in Martin-Löf Type Theory defining families
(U,T : U → D) : FamD where D : Set1 is an arbitrary fixed (large) set (which in
motivating examples is chosen to be D = Set), and U : Set is defined by induction while T
is simultaneously defined by recursion on U; the qualifier “simultaneously” means here
that U may depend on values of the function T : U→ D. Two equivalent6 axiomatizations
of this situation were proposed by Dybjer-Setzer in [38][40]. In both cases a (large) set
of codes DS D D (respectively DS′) for inductive-recursive definitions is defined such
that each code c : DS D D decodes to an endofunctor J c K : FamD → FamD between
categories of families whose initial algebra is the family defined by this code c. The authors
proved the consistency of their axiomatizations be giving a set-theoretic model.

These axiomatizations DS and DS′ are however not the only reasonable axiomatizations
of induction-recursion. There are at least two ways to come to this conclusion: the more
practical one is motivated by the observation that while in the reference theory of inductive
definitions it is always possible to compose (in a semantically sound way) two inductive
definitions to a single new one, this seems hardly to be the case for the preexisting
axiomatizations of Induction-Recursion. The second-, more conceptual observation about
the existing axiomatizations of induction-recursion is that it does not contain constructors
for dependent products (or powers7) of codes but only for dependent sums of codes.
Indeed, we show that these two observations are related by characterizing compositionality
of Dybjer-Setzer induction-recursion in terms of the existence of powers of codes by sets.

Departing from this characterization, we define- and explore two new axiomatizations
of induction-recursion satisfying the mentioned characterization and for which we prove
compositionality. In the first one, this is achieved by restricting to a subsystem8 UF of DS
of uniform codes for which powers of codes exist. Consistency of this system is established
by a semantics-preserving embedding into the system DS.

The second axiomatization PN of polynomial codes (so called since they are based on
the idea of iterating polynomials9) defines a system into which DS can be embedded
and which contains a constructor for dependent products- (and in particular powers) of
codes. While for UF the existence of a model can be obtained by embedding it into DS for
which Dybjer-Setzer themselves devised a (set-theoretic) model, we cannot argue in this

6These axiomatizations are equivalent if the underlying logical framework is chosen appropriately.
7There is a close relationship between dependent products-, and powers of codes.
8By “subsystem” we mean here that there is a semantics-preserving translation from UF to DS.
9Polynomials are also called containers and are a formalization for inductive definitions.
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way for a model of PN and instead we provide a new model for the latter having almost
the same set-theoretical assumptions concerning large cardinals: while Dybjer-Setzer
induction-recursion can be modeled in ZFC supplemented by a Mahlo cardinal and a
0-inaccessible, we need ZFC plus a Mahlo cardinal and a 1-inaccessible.

Since the system PN does not simply arise by adding a constructor for dependent products
of codes to DS caeteris paribus, but additionally requires redefining all other constructors,
the question about constructors generating the image of the inclusion DS ↪→ PN imposes
itself; we approach this question by defining an intermediary system lying between DS
and PN and give a translation of this intermediary system into DS. This intermediary
system does not only arise by removal of the constructor for dependent products of codes
since this did not yet enable us to define a desired translation to DS, but by introduction
of an additional uniformity constraint realized by an annotation of codes by binary trees.

A common feature of both new systems UF and PN is that they admit a more flexible
relation between codes and their subcodes than this is the case for DS: sub-DS-codes
of a given DS-code do all have the same type while sub-UF-, and sub-PN-codes are not
constrained in this way. This latter feature reveals a more abstract way of arriving at the
conclusion that Dybjer-Setzer induction-recursion is not the most general formulation of
induction-recursion: like inductive definitions can be characterized by a set of operations on
sets10, inductive-recursive definitions are also determined by a set of operations on families
(namely those represented by the set of functors defined by codes) and Dybjer-Setzer’s
systems did not take into account operations that change the (large) set D indexing
families while the new systems UF and PN do so.

In line with the idea of considering induction-recursion as contributing to the pursue of
the project of formalizing the meta theory of type theory in type theory itself [34, p.1], we
return to Dybjer-Setzer’s original formalization DS and provide a relationally-parametric
model for it that we articulate as a categories-with-families model in the category of
reflexive graphs; categories-with-families were proposed in loc.cit. as a formalization of
type theory inside type theory that is additionally well adapted to category theoretic
reasoning. Relational parametricity is an established and important proof technique to
establish meta-theoretic properties of type theories.

10Theses operations are called “stictly positive operations” (see [36]).
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Induction-recursion (IR)1 is the appropriate notion of induction for families (U, T ) :
Fam(D), i.e. for pairs where U : Set is a (small) set, and T : U → D is a function
from U to the arbitrary2 large set D : Set1. The term “induction” traditionally has
been restricted to refer to inductively defined sets as opposed to a more general meaning
referring generally to objects in categories that are “inductively” defined in the sense
of arising as initial algebras Section 2.2.4.4 which arguably makes sense in set-theoretic
foundations since there everything is reducible to sets (and the element relation). In
type-theoretic foundations like Martin-Löf type theory —with which we will be concerned
in this thesis— functions like T : U → D are however not realized as a sets but enjoy more
ontological autonomy. The operation to define functions “inductively” —if we understand
this term for the moment as meaning “step-by-step, bottom-up, incrementally” or the
like— is usually called “recursion” and is available in case the function’s domain U is
defined inductively. Here “U is defined...” before the invention of induction-recursion
meant more precisely that the definition of U had to be completed before that of T could

1We use the acronym IR to stand for ’induction-recursion’ in general. As it stands, induction-recursion
is an informal notion. We do not present a formal system ’IR’ in this thesis which would attribute some
universality to this system whereas this thesis is just a step towards finding such an universal or canonical
system.

2See [88, p.2] for the use of the term “arbitrary”.
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be begun. But with induction-recursion, both U , and T can be defined simultaneously,
i.e. U may depend on values of T (in structurally smaller arguments of U).

The idea of simultaneous induction-recursion is implicit already in [88] where the first
consistent version of Martin-Löf Type Theory was presented, for which normalization
is shown by using inductive-recursively defined “computability predicates” (loc.cit. §4).
More programatically, loc.cit. expresses the possibility to provide a formal definitional
principle to define all definition of a certain kind:

“The type N is just the prime example for a type introduced by an ordinary
inductive definition. However, it seems preferable to treat this special case
rather than to give the necessarily much more complicated formulation which
would include [all other inductive definitions, and] N as special cases.” [88,
p.6]

Indeed, Martin-Löf had given such a “much more complicated formulation” already in his
earlier paper [91] -however not in intuitionistic type theory but in the language of first
order predicate logic3-, but the above quoted passage is usually read pars pro toto as a
motivation for a definitional schema not only for “ordinary inductive definitions” but one
replacing preferably the set of all rules defining particular types and type families (such
as Tarski universes) by a single generic rules defining all particulars [32, p.2].

0.1 Martin-Löf Type Theory and Inductive Types

Martin-Löf Type Theory (MLTT) [88] —in which the theory of inductive-recursive defini-
tions is situated— is a constructive foundational theory of mathematics formulated as a
natural-deduction calculus. As such it implements the very concept of induction4: every
type is specified by a formation rule supplying a name in form of a logical constant symbol
for the type defined, moreover every nonempty type is introduced by rules positing certain
terms called constructors for this type and these introduction rules are complemented
by one elimination rule that states that a function having the defined type as domain is
fully determined by specifying its values on constructors only, as well as one computation
rule for every introduction rule relating the introduction- and elimination rules. Together
these rules enforce that the defined type is constructed only using its constructors, and
moreover that it is the least type5 defined in this way.

The universal example of an inductive definition of a set6 —in the sense that every
inductive definition can be expressed in this form— is the type of trees (also called

3The above quotation from [88, p.6] continues: “See Martin-Löf 1971 [that is [91]] for a general
formulation of inductive definitions in the language of first order predicate logic.”

4We are rather brief on induction in general in this introduction and focus here more on IR specific
matters. More on induction is in Section 2.2 and Section 2.1 containing a short historic account of
induction.

5The notion of “the least type” can be made precise by the initial algebra semantics of type theory
explained further below.

6Unless otherwise stated, we mean by ’set’ a term of type Set in MLTT. We will briefly comment on
Set in Section 0.5.
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W-type Section 2.2.4.27) of a given branching signature, where a branching signature
(A : Set, B : A → Set) is simply a family of sets where A can be regarded as the set of
available nodes of for the trees, and for every node a, the set B(a) is interpreted as the
set of available branches departing from node a. The the set W(A,B) of all trees that
can be formed with these data can be defined by the constructor

sup : (a : A)(B(a)→ W(A,B))→ W(A,B) .

Equivalently it is the least fixpoint of the function X 7→ (a : A)(B(a)→ X). We give a
self-contained discussion of MLTT in Section 2.2 including all rules for the just sketched
W-types.

0.2 Basic Examples of Induction-Recursion

Before commenting on formal notions of induction-recursion, the definitional principles
defining families8 (U,T) ∈ Fam(D) := ΣU :SetU → D which we will mainly be interested in
this thesis, we informally list a few basic examples.

Every inductive definition of a set U is a (degenerate) example of an inductive-recursive
definition: U can be regarded as the family (U,T : U→ 1) indexed over the one element
set which is the terminal object in the category Set1, and hence there is by definition an
isomorphism Fam 1 ' Set. That the formalism defining inductive-recursive definitions
(see Section 3.2.1) reduces to that defining inductive definitions (see Remark 2.2.4.6) is
easily observed once we have introduced them.

Maybe less obvious but nevertheless true is that also every inductive-recursively defined
family (U,T : U→ A) where A : Set is a small set —as opposed to a large set in Set1—
can be translated to an equivalent, merely inductive definition9.

A further degenerate example of an inductive-recursive definition is given by the family
(N,Fin) where the function Fin : N→ Set assigns to every natural number n a set with
exactly n elements (so, essentially Fin n = {1, . . . , n}, see also Example 3.2.1.7). This
family can be defined by the constructors

zero : N
suc : N→ N

(or equivalently as least fixpoint of the functor X 7→ X + 1 on the semantical side) and
the recursive definition of the function Fin given by

7Where the letter ’W’ stands for ’well-order’, reminding us of the fact that a tree is exactly a
well-ordered relation.

8Here and in the following we will pay attention to use the font (U,T) especially for families defined by
induction-recursion while we use the font (U, T ) for families in general; likewise, we use U for inductively
defined sets and U for sets in general.

9Albeit not necessarily in Set but in the topos Set/A —a different model of the type Set, see the point
“small induction-recursion” in Section 3.1.1 or [58][gh].
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Fin(zero) := ∅

Fin(suc n) := Fin(n) ∪ {n} .

So, in particular Fin (and more generally every recursively defined function) is defined
by specifying values on all constructors having no arguments and all terms that —as
expressions— have the form of a constructor binding other constructors or generic terms
(e.g. zero is a constructor binding no terms, and suc n is the the term consisting of the
constructor suc binding the generic term n) of its inductively defined domain (in this case
N) such that the assigned value contains no terms of the inductively defined domain, or
only such terms of it that are structurally smaller than their preimages (for instance ∅
does not contain any term of N, and n is structurally smaller that suc n).

In this example the indexing object Set : Set1 is not small and there is some recursion
taking place, but the recursion is not taking place simultaneously with the induction: the
constructors zero and suc for N make no reference to Fin. Nevertheless, both parts of the
definition can be integrated such that the family (N,Fin) —as one object— is an10 initial
algebra11 of the functor12

F : Fam(Set)→ Fam(Set)

F = 〈F0, F1〉

F0 : Fam(Set)→ Set

F0(U, T ) = U + {∗}

F1 : ((U, T ) : Fam(Set))→ F0(U, T )→ Set

F1(U, T )(inl u) = T (u) + {u}
F1(U, T )(inr ∗) = ∅ .

This example is interesting because of another aspect that we mention in passing before we
come to the next example: it highlights the constructive nature of type theoretic definitions:
the axiom of infinity of ZF set theory ∃ I(∅ ∈ I∧∀ x((x∪{x}) ∈ I)) does merely assert the
existence of an infinite set while the type theoretic definition gives an explicit construction
of this infinite set. Indeed there is an explicit set-theoretic construction of N as well: the
von Neumann ordinal has as underlying set exactly {Fin(0),Fin(1),Fin(2), . . . } and it is
the minimal set satisfying the axiom of infinity. Of course this construction presupposes

10We write here cautiously “an” initial algebra, but since by Lambek’s theorem all initial algebras of a
functor are isomorphic, “the” (up to isomorphism uniquely determined) initial algebra is also a standard
terminology that we will use after having stated the theorem.

11We will explain initial algebras in Section 2.2.4.4. For the moment, this notion can be understood as
the appropriate generalization of “least fixpoint”.

12Here inl and inr denote the coproduct inclusions, and by ∗ we denote he unique inhabitant of the
unit type. Like every function into a Sigma type like Fam(Set), also F can be written as F = 〈F0, F1〉.
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the existence of some version of natural numbers to define Fin and can be proven to exist
in ZF only by the axiom of infinity.

The motivating example for (nondegenerate) induction-recursion is an axiomatic descrip-
tion of a universe closed under application of a number of specified set-formers; this
axiomatic description is “generic” in the sense that it does not depend on what concretely
these set-formers are, but only their type matters for the definition. A universe13 is here
conceived as a pair (U,T : U→ Set) where U is thought of as a set of codes for the objects
the universe contains, and T as a function assigning to each such code u the actual set
Tu encoded by u. A universe (U,T) closed under Σ types can then be defined by the
following pair consisting of a constructor Σ′ for U and a recursive definition of T that
depend on each other:

Σ′ : (u : U)(T u→ U)→ U

T(Σ′(u, t)) := Σ(Tu)(T ◦ t) .

Again, this can equivalently be expressed as an initial algebra of the endofunctor on
Fam(Set) defined by (U, T ) 7→ (Σu:UT (u)→ U, λ(u, t)→ Σ(Tu)(T ◦ t)). As we said (cf
“generic”), this definition works for any constructor K : (U : Set)→ (U → Set)→ Set (not
only Σ) in the sense that we can define K′ in the same way.

0.3 Axiomatizations of Induction-Recursion

An axiomatization of induction-recursion is a set of axioms that can be used to define
all pairs (U : Set,T : U → D) such that U is defined by induction, and (possibly
simultaneously) T by recursion on U. The discussion of induction-recursion is usually
situated in Martin-Löf Type Theory and also we shall be interested only in this setup
throughout this thesis.

0.3.1 DS

One example of such an axiomatization DS for inductive-recursive definitions was devised
by Dybjer-Setzer [40]14 (see Section 3.2.1). The system DS consists for each pair of
arbitrary large sets D E : Set1 of three constructors ι, σ, δ inductively defining a large
set DS D E : Set1 whose terms are called codes. On this large set is recursively defined a
decoding function15

13This type of universe is called a Tarski universe. Another style of universe is that of a Russel universe
which is not interesting from the viewpoint of induction recursion since it is only a set, and not a family.

14They used the notation OP in place of DS.
15In a bit more detail, J K is a function in its first argument and a functor in its second argument.

We do not consider morphisms of codes which would turn a functor also in its first argument. For a
discussion of morphisms of codes, see [49] or Remark 3.2.1.17.
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J K : DS D E → Fam(D)→ Fam(E) .

The meaning of these constructors and their names is that ι includes terms of E into
DS D E and the functor defined by this constructor assigns a constant functor, σ defines
an indexed sum of functors, and δ defines a sum of functors whose indexing set may
depend on earlier stages of the decoding — as such only δ can encode non-degenerate
inductive-recursive definitions, i.e. those having inductive arguments like the above
mentioned paradigmatic case of the closure of the Tarski universe under Σ. The final
step (after the definition of codes, and decoding) in the three component machinery of
DS consists of rules asserting that each endofunctor defined by a code c : DS D D has an
initial algebra (U,T)c defined by the code.

0.3.2 DS′

Dybjer-Setzer [38] gave one more axiomatization of IR: DS′ is slightly more complicated
than DS and historically preceded DS. We found it however more apt to generalizations
for our purposes than DS. Again for every pair of large sets D E : Set1, a large set
DS′ D E of codes is defined where each code defines a functor between categories of
families and endofunctors are asserted to have initial algebras. Unlike DS, however, the
part of the DS′ machinery defining codes consists itself of two components (SP,Arg).

SP which takes only one argument D, stands for “strictly positive” referring to the fact
that inductive definitions can equivalently be characterized as those definitions arising
as initial algebras for endofunctors out of a class of endofunctors defined as the closure
under certain set-formers such as binary product and the eponymous operation A −→
where (A is an arbitrary but fixed set and) the underscore indicates that the inductive
argument may occur only in strictly positive position to the right of an arrow. This
constraint of strict positivity is informed by Cantor’s theorem of ZF set theory in an
appropriate extension of which the theory of induction-recursion is supposed to have a
model: would an inductive occurrence to the left be allowed, the putatively defined object
would not be a set in the sense of ZF; the basic example of a non strictly positive functor
is the power-set functor X 7→ (X −→ 2) (where 2 is the two-element set) which has no
fixpoint in ZF sets according to Cantor’s theorem and as such does not define any ZF set.
Dybjer-Setzer (following other authors) tried to carry over a notion of strict positivity
from sets to families by requiring that in the constructors for a family (U,T) defined by
DS′ (or DS) all occurrences of U in its constructors must be strictly positive while T (and
values of T ) may appear in negative position (i.e. to the left of an arrow); for this style of
definition they adopted the terminology of “half positivity”.

Arg : SP D → Set1 is then (for every D : Set1
16) defined by recursion on SP D. The

large set E is finally incorporated in the system by taking a code c : DS′ D E to consists
of two parts c = (Q : SP D, f : Arg Q → E). The system DS′ is thus a container (see
Definition 1.2.4.1) which determines some of its amenable properties. Since SP D is

16The definition of Arg depends on D but we do not use a subscript ArgD to indicate this.
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defined by induction, and Arg by recursion on SP D, the definition of DS′ is a degenerate
inductive-recursive one since SP D does not depend on values of Arg.

? ? ?

Dybjer-Setzer showed in [40] that both systems DS and DS′ are equivalent under reasonable
assumptions.

0.4 Compositionality (Outline of the Thesis)

While Dybjer-Setzer’s axioms cover a wide range of examples of inductive-recursive
definitions, it is still unclear whether indeed all inductive-recursive definitions are covered
by them and this thesis will focus on one way to approach the question whether they do.

It is difficult, though, to find an explicit example of a family (U,T) that —by some
reasonable standard17— is defined inductive-recursively but cannot be expressed in the
system DS (or the equivalent DS′).

The next best attempt to decide whether all conceivable inductive-recursive definitions
are expressible in DS is to consider not examples, but properties and structure of the
system DS. In this thesis we focus on one significant property relevant to every definitional
principle whose semantics is given in terms of initial algebras for endofunctors: while
it is well known that for any two inductive definitions c and c′ there exists a composite
inductive definition c • c′ such that J c • c′ K = J c K ◦ J c′ K where ◦ denotes composition
of functors, for inductive-recursive definitions it is unknown whether for every pair of
codes there exist such a composite code. This implies that if there are other systems
of induction-recursion that satisfy the compositionality property while DS does not, we
would have found evidence that not all inductive-recursive definitions are definable in DS.

Thus a program for this thesis is set: in Section 4.1 —after dedicating earlier sections to
basics— we give a new equivalent characterization of compositionality for DS in terms
of powers of codes by sets: DS satisfies compositionality if and only if for every code c
and every set A : Set there exists a power code A −→ c with semantics J A −→ c KX =
A −→Fam J c KX18. While it is very unlikely that powers are definable in DS, we could
not show that they are indeed not definable and so we took the next best approach
to define new systems for induction-recursion for which we can show that they satisfy
compositionality. There are two possible ways to arrive at such new systems: first we can
restrict the system DS to those definitions that do compose and axiomatise this system;
the result is the system UF of uniform codes for induction-recursion (see Chapter 5). The
other way is to reflect more conceptually on what is needed to define composition for all
codes and axiomatize a new system that extends DS by supplementing its constructors

17That is: by a sufficiently formal non-syntactical / semantical notion of induction-recursion, see also
below in Section 8.2.

18Here −→Fam constructs powers (see Section 1.2.1) in the category whose object (large) set is the
union ΣD:Set1Fam(D) of all families for all index (large) sets D : Set1.
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with new axioms implying compositionality; the result is the system of polynomial codes19

for inductive-recursive definitions (see Chapter 6).

0.4.1 Why Composing Codes?

Before we proceed to an overview of the new axiomatizations of compositional induction-
recursion developed in this thesis, one might wonder whether, and —if so— which
intrinsic reasons there are to be interested in composing IR codes other than regarding
compositionality as a classifying criterion for defintional principles.

On the practical side, compositionality offers the option to split more complicated inductive-
recursive definitions into simpler ones and to study these parts in separation. A simple
example for this is the type of “node-A-labeled finitely-branching trees with finite lists of
subtrees” —usually briefly called “rose trees”— which is an initial algebra of

FA(X) := 1 + A× List(X) ,

where A is the set providing the node-labels and List is the functor sending a set X : Set
to the set of finite list with entries taken from X. If we write

L : Set→ Set→ Set

X 7→ (Y 7→ 1 +X × Y ) ,

List(X) is an initial algebra of the functor L(X)(−), and FA = L(A)(−) ◦ List. Thus one
can describe the type of rose trees by only referring to the simpler type of lists and the
generic composition operation and it is natural to want to express this also more generally
on the level of codes.

From the theoretical point of view, the problem of characterizing induction-recursion
semantically for example by closure properties of the class of functors IR codes define
is interesting. As for comparison to the reference theory of inductive definitions, the
class of functors defining inductive definitions is the smallest class of functors between
the appropriate categories containing the pullback functors and their adjoints, and is
closed under composition and natural isomorphism [45, Corollary 1.14]. Of course one can
construct categories whose class of morphisms is supposed to be that on IR functors only
if the latter are closed under composition. Thus compositionality can form the necessary
basis of this line of research.

0.4.2 Uniform Codes for Induction-Recursion (UF)

We come to an overview of the alternative axiomatizations of IR allowing for composition
of codes we are going to present in Chapter 5 and Chapter 6.

19Not to be confused with codes for polynomial functors; the latter are exactly inductive definitions.
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The system UF of uniform codes can be regarded —via a non-trivial translation— as a
subsystem of DS consisting of codes that have a uniform structure. It is derived from the
conjecture that one can compose every explicitly given pair of DS codes all of whose paths
have the same length up to an isomorphism of their semantics. Since DS D E is defined
by induction, it is (as recalled in Remark 2.2.4.4) a set W(A,B) of trees that share a
common signature (A,B) (see Remark 3.2.1.2). If composition of codes is —or involves—
grafting of trees[78, Proposition 1.1.19], it is not clear that the composite of two trees has
the same signature (A,B). It has however some plausibility —backed up by computing
examples— that application of semantics-preserving operations (see Example 3.2.1.12) on
the trees to be composed can bring them in a form allowing for their composition and such
that the composite is in a form complying with the prescribed signature. The problem is
that these operations cannot be defined inductively on the system DS. In other words,
there is a difference between being able to compose any two given codes, and recursively
defining a function

• : DS D E → DS C D → DS C E.

We resolve this problem in the passage from DS to UF by constraining the “tree shape”
of the code to a more uniform structure. The axioms of UF D E ensure that its codes
correspond to trees all whose branches have the same length; this succeeds essentially by
reversing the nestings of DS codes which has the effect that the existence of later stages
in one branch is aligned with the existence of later stages in all other branches.

From the categorical point of view, UF is similar to DS′ in that it is a (large) container; it
differs however from DS′ in that it is itself defined by non-degenerate induction-recursion.

The system UF is a priori smaller than DS and cannot directly express DS-codes with
unbounded branch length (see Remark 3.2.3.4). But there is an elementary procedure to
replace a DS code whose maximal branch length is explicitly given, by a DS-code with
uniform branch length having isomorphic semantics such that one can find a UF-code
with isomorphic semantics corresponding to this DS-code. UF ↪→ DS being a semantics-
preserving subsystem of DS exempts us from providing a new model for the axioms of UF
since the existence of such a model is implied by the inclusion of UF into DS for which by
Dybjer-Setzer already gave a model in [40].

0.4.3 Polynomial Codes for Induction-Recursion (PN)

To motivate the system PN of polynomial codes which we call by this name because like
polynomials20 it is constructed from sums and powers21: while DS has only constructors
forming sums of codes -in the sense of forming codes that decode to sums of functors-,
PN has an additional constructor forming powers of codes in this sense. For further

20Polynomials in category theory (which are generalizations of polynomials over a ring as studied in
algebra) are also called containers and encode inductive definitions (see Section 2.2.4.5. This motivates
the name “polynomial codes” also in a more technical sense explained in Remark 6.1.0.1, namely as an
inductive definition having as base case an inductive definition, i.e. as an “iterated container”.

21Or more generally, dependent products.
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explication, we return to the characterization of composable DS codes as codes for which
powers of codes by sets exist. Even if we could not prove that powers are definable in DS,
we still can try to pursue to option to stipulate the existence of powers by way of a new
axiom. Simply adding a constructor

−→ : (A : Set)→ DS D E → DS D (A→ E)

encounters however a problem: it seems to be impossible to extend the inductive definition
of • to this new constructor. The problem is related to the observation that the ’(A→ E)’
in the codomain of the constructor −→ seems to break functoriality of the system DS in
the second argument: the operation DS D : Set1 → Set1 is not only a functor but even a
monad, and the latter fact was used in the definition of composition • on DS under the
assumption of the existence of powers of codes. If it does indeed break functoriality, DS
and DS+−→ are different since DS is functorial.

The definition of PN proceeds consequently by giving axioms for a system that 1) subsumes
the axioms of DS, 2) has a constructor for powers22, and 3) makes PN D a monad (for
every D : Set1). All these requirements can be achieved by designing the new system (like
DS′ and UF) as a container ; PN is like UF itself defined by non-degenerate induction-
recursion. Thus defined PN indeed enjoys compositionality and we give a model (see
Section 6.4) proving the consistency of its axioms since this time we have only an inclusion
DS D E ↪→ PN D E and no inclusion in the other direction at our disposal and thus
cannot obtain a model for PN from a model for DS. This model has almost the same
set-theoretical assumptions concerning large cardinals: while Dybjer-Setzer induction-
recursion can be modeled in ZFC supplemented by a Mahlo cardinal and a 0-inaccessible
(see Definition 1.1.0.8), we need ZFC plus a Mahlo cardinal (see Corollary 1.1.0.21) and a
1-inaccessible.

Finally, since we did not arrive at the system PN by simply adding one constructor for
powers but had to set up the whole system entirely different to accommodate a constructor
for powers, it is a natural question whether the system PN−piCont obtained by removing the
constructor for powers from PN has a translation back to DS. We show in Section 6.7 that
there is at least a translation if codes of PN−piCont are annotated with additional information
about their nesting.

0.5 Formalization in Agda, and Notation

Most of the content of this thesis has been formalized in the proof assistant Agda.
This formalization is available at https://bitbucket.org/stephanspahn/thesis-3/

src/master/thesis-agda/agda/.

In the present text we treat Agda informally as a version of MLTT with Σ-types (aka
dependent pair types), Π-types (aka dependent function types), (non-dependent) function

22Even though the construction goes through with a constructor for powers, we mainly consider the
slightly more general case of dependent products of codes in place of powers.
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types, an empty type, a unit type, a cumulative hierarchy of two Russel style universes
Set : Set1, identity types, judgemental equality, and inductive- , as well as inductive-
recursive definitions.

In addition to the syntax of type theory introduced in Section 2.2.3, we synonymously use
the notations of the forms ’λ x→ f(x)’ and ’x 7→ f(x)’ for anonymous assignments. We
use both notations f(x) and (f x) for the application of a function to one of its arguments.
For families Z = (U, T ) : Fam(D), we use the notation ind Z = U and fib Z = T . We use
Agda convention to put arguments in type signatures in braces { , } if we do not want
to display them as arguments of the terms of the types of this signature, and we use the
Agda notation ∀{X} in a type signature if we do not wish to make explicit the type of
X; for this, an expression containing the expression {X = Y } means that the (not to be
displayed) variable X is substituted by (the not to be displayed) Y in this expression.

0.6 Structure of the Thesis

The rest of this thesis is structured as follows:

• Chapter 1 reviews the foundations we shall need: category theory and basics about
ordinals are needed for initial algebra semantics of type theory (the latter will be
introduced in the subsequent chapter). Families are the objects defined by induction-
recursion. Monads play an important role for composition of inductive-recursive
definitions.

• Chapter 2 opens by giving a brief historical overview on induction. Martin-Löf type
theory, the foundational theory in which the main part of the thesis is situated is
introduced with a focus on inductive types.

• Chapter 3 reviews Dybjer-Setzer’s two axiomatizations DS and DS′ of induction-
recursion as well as decoding of codes to functors between categories of families.

• Chapter 4 develops an equivalent characterization of compositionality for DS codes
in terms of powers of codes by sets.

• Chapter 5 gives a new axiomatization of inductive-recursive definitions that enjoys
compositionality. This system UF can be regarded as a subsystem of DS. Codes and
their decoding as functors between categories of families are defined. Differences
and commonalities to the system DS are discussed and illustrated by examples.

• Chapter 6 defines a second new axiomatization of induction-recursion with composi-
tion for all codes. The system PN subsumes DS. Syntax, decoding of codes, and
a set-theoretic model are given. Section 6.7 discusses a new system of codes lying
between DS and PN a translation of this intermediary system into DS is given.

• Chapter 7 is independent from the chapters on compositionality of induction-
recursion and can be regarded as a separate part of the thesis which contains its own
motivation-, introduction-, and foundations sections. Here a relational-parametric
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model of Dybjer-Setzer’s version DS of induction-recursion is given. Relational
parametricity is a standard property expected from type systems.

0.6.1 Publications and Contributions

Parts of the material concerning the characterization of compositionality of DS, and the
systems UF and PN were published in [52] and [51](together with Neil Ghani, Conor
McBride, and Fredrik Nordvall Forsberg).

I collaborated to the general development of all the material present in [52] and [51]. In
more detail, my main contributions were the following:

• I had-, and developed the idea to characterize compositionality for DS in terms of
the bind operation on DS, and proved Theorem 4.1.0.2.

• I gave the definition of UF its final form departing from a preexisting definition,
which was “right nested” and a “one-level system” (as opposed to a container);
this preexisting system was developed by Conor McBride building on ideas of
Peter Hancock. I gave the appropriate composition operation departing from the
composition operation for the previous system. The significance of this contribution is
that it provided a simplification which made it possible to prove that the composition
operation of this new system commutes with semantics while it is unclear whether the
composition operation for the previous system is semantically sound. I contributed
to the proofs of Lemma 5.9.1.3, and Theorem 5.9.2.1 and their formalization in
Agda; also Fredrik Nordvall Forsberg contributed to this formalization.

• I contributed to the formalization of the proof of Theorem 6.5.2.1. The system
PN is inspired by a definitional principle for inductive definitions [24] by Conor
McBride (and coauthors) that contains a constructor for products of codes. Neil
Ghani extended this system to a version of induction-recursion with composition
(PNcont) which is one of the systems of compositional induction-recursion we discuss
here; a second one (PN) which is a slight modification of PNcont was introduced
to the case of induction-recursion by Fredrik Nordvall Forsberg and myself but
the changes made are already implicit in Conor McBride’s work. I redefined the
embedding of DS into PN (see Proposition 6.7.1.4. and Section 6.7.2) in a way
revealing that and embedding does not necessarily use π-codes which is the point of
departure of Section 6.7.

The following parts were not published in [52] or [51].

• The study of the intermediary systems Section 6.7 is my own work entirely. The
significance of the intermediary system PN−piContbt is that there is a translation

PN−piContbt → DS while it was not possible to find such a translation to DS from

the system PN−piCont from which PN−piContbt is derived by annotation of codes by binary
trees; the choice of exactly this form of annotation is not obvious (we found that
an annotation with e.g. natural numbers did not work in the desired way). More
interesting than the system PN−piContbt itself is perhaps the annotation we found which
establishes a way to enforce uniformity conditions on codes that is different from the
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one used for UF; this can be helpful for future research on the comparison between
different axiomatizations of induction-recursion.

• Chapter 7 is my own work entirely. I presented an earlier version of this material at
the workshop [116]. The significance of a relational-parametric model for induction-
recursion is that it will make it possible to prove metatheoretical properties of
MLTT extended by induction-recursion. For example, I am presently working on
a relational-parametricity proof of the conjecture that for all definable DS-codes
there exists an UF-code with isomorphic semantics (this work is not contained in
this thesis).
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Chapter 1

Foundations

1.1 Ordinals and Cardinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Category Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.1 Power Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.2 Exponentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.3 Algebras for Endofunctors . . . . . . . . . . . . . . . . . . . . . . 20

1.2.3.1 Initial chains for endofunctors and fixpoint theorems . . . 21
1.2.4 Polynomials / Containers, Trees, and their Associated Functors . 23
1.2.5 Monads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3 Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

While we assume some familiarity with ZFC set theory and category theory, we will review
the material that is of explicit importance for us in this section. There is a separate
chapter containing an introduction to type theory (see Section 2.2).

Section 1.3 on families, and Section 1.2.4 on containers are of most direct relevance for IR.
The other sections in this chapter reviewing cardinals, ordinals, and initial algebras for
endofunctors are needed to explain the semantics-, and set-theoretic model of induction-
recursion; Mahlo cardinals which are of integral importance for models of IR are best
introduced directly in the context where they are used (see Section 6.4). Monads are
relevant for composition of inductive-recursive definitions, the central topic of this thesis.

1.1 Ordinals and Cardinals

Cardinals and ordinals are used for the construction of initial algebras for endofunctors and
thus for establishing models of type theory by initial-algebra semantics. An application of
the definitions in this section will be the construction of a model for a version of IR in
Section 6.4; initial algebra semantics will be recalled in Subsection 1.2.3. A good reference
for the topic is [71]. A general reference for set theory is [68]; in particular an introduction
to ordinals and cardinals (which we do not repeat here) is in loc. cit. §I.2 - I.3.

Set-theoretic models of IR are not models in sets defined only by the axioms of ZFC but
the latter set theory needs to be supplemented by an axiom asserting the existence by an
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appropriate strongly inaccessible cardinal. Intuitively these cardinals are larger than any
set that can be constructed by ordinary set operations (e.g. union, formation of limits).

Definition 1.1.0.1 (Ordinal). An ordinal is defined to be a transitive set that is totally
ordered by set inclusion. We denote the class of all ordinals by Ord. For α, β ∈ Ord, we
write |α| = |β| to express that there exists a bijection between α and β. ( see [68, Definitin
2.10]).

Definition 1.1.0.2 (Cardinal). An ordinal α is called a cardinal if |α| 6= |β| for all
β < α. ([68, p.29]).

Definition 1.1.0.3 (Limit of a sequence of ordinals). For an increasing sequence of
ordinals (γξ)ξ∈β, where α ∈ Ord, and either β ∈ Ord or β = Ord, we define limξ→α γξ :=
sup{γξ|ξ < α}.

Definition 1.1.0.4 (Cofinality). 1. Let α be a limit ordinal. The cofinality of α is
defined to be the minimum cf(α) = min{β|∃ increasing β-sequence (αξ)ξ<β, limξ→β αξ =
α} (see [68, p.33]).

2. We call β to be cofinal in α if there exists an increasing β-sequence (αξ)ξ<β such
that limξ→β αξ = α.

For Definition 1.1.0.6 we need to recall ordinal arithmetic:

Definition 1.1.0.5 (Odinal arithmetic). On ordinals three binary operations are de-
fined by transfinite recursion:

1. For all α

(a) α + 0 = α.

(b) α + (β + 1) = (α + β) + 1, for all β.

(c) α + β = limξ→β(α + ξ) for all limit β > 0.

2. (a) α · 0 = 0.

(b) α · (β + 1) = (α · β) + α, for all β.

(c) α · β = limξ→β(α · ξ) for all limit β > 0.

3. (a) α0 = 1.

(b) αβ+1 = αβ · α for all β.

(c) αβ = limξ→β α
ξ for all limit β > 0.

We shall sometimes write 1 for the empty set, and 2 = 1 + 1. (See [68, p.23-24] for more
on ordinal arithmetic.)

Definition 1.1.0.6 (Regular cardinal, (weakly-, and strongly-) inaccessible cardinal). 1.
A cardinal λ is (weakly) inaccessible if it is infinite, (a limit cardinal), and regular
(i.e. it is equal to its cofinality (see Definition 1.1.0.4) cf(λ) = λ).
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2. A cardinal λ is (strongly) inaccessible if it is weakly inaccessible, and 2κ < λ for all
κ < λ (see [68, p.58]).

Since we shall not use the notion of weakly inaccessible cardinal, for us “inaccessible
cardinal” shall always mean “strongly inaccessible cardinal”.

Lemma 1.1.0.7. 1. The existence of inaccessible cardinals is not provable in ZFC
(see [68, Theorem 12.12].

2. The Generalized Continuum Hypothesis (see [68, p.55]) implies that every weakly
inaccessible cardinal is strongly inaccessible.

Definition 1.1.0.8 (α-inaccessible cardinal, unbounded set). Let α be any cardi-
nal. A cardinal κ is α-inaccessible if it is inaccessible, and for every β < α, the set of
β-inaccessibles less than κ is unbounded in κ. Here, a set X ⊂ α of a limit cardinal α is
unbounded if the supremum of X equals α.

It obviously follows from the previous definition that a 0-inaccessible cardinal is just an
inaccessible cardinal.

Terminology 1.1.0.9 (Large cardinal). There is also the terminology of “large cardi-
nal”. There is no precise definition of this term (e.g. it is used without definition in [68])
but a large cardinal should at least be inaccessible. We will be interested only in cardinals
which are i-inaccessible, smaller than that, or Mahlo (which we will introduce later in
Corollary 1.1.0.21).

Ordinals can be used to define the so-called cumulative hierarchy which is a family of sets
indexed by ordinals in the following way:

Definition 1.1.0.10 (The cumulative hierarchy). [68, p.64]

The cumulative hierarchy is defined by

V0 = ∅
Vi+1 = P Vi

Vi = ∪j<iVj if i is a limit ordinal

where P is the operation assigning to a set A, its (decidable) powerset P A : A→ 2.

Lemma 1.1.0.11. The union
⋃
α∈Ord Vα ranging over the class Ord of all ordinals equals

the universal class V = { x | x = x } (see [68, Lemma 6.3]).

Definition 1.1.0.12 (Rank). By Lemma 1.1.0.11 every set A is contained in an Vρ for
some ρ. The minimal such ρ is called the rank rank(A) of A.

We will need the following lemma in Chapter 7.
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Lemma 1.1.0.13. Let κ be a regular cardinal, (Uα)α<κ be an increasing series of sets of
rank α < κ, f : A→

⋃
α<κ U

α, and rank(A) < κ.

Then there exists a β < κ such that the image of f is contained in Uβ — in symbols
f : A→ Uβ.

Proof. Define

g : rank(A)→ κ

g(λ) = min{β|(∀λ′ < λ)(g(λ′) < β) ∧ ∀ x ∈ A ∩ Vλ, f(x) ∈
⋃
α<β

Uα} ,

and notice that g(λ) < κ, and g is increasing (for this the first conjunct is needed). Assume
limλ→rank(A) g(λ) = κ. This implies rank(A) is cofinal in κ. It follows rank(A) ≥ cf(κ) =
κ > α, contradiction. �

Important about the cumulative hierarchy is the following fact.

Lemma 1.1.0.14. If I is a strongly inaccessible cardinal, VI is a model of ZFC (see [68,
Lemma 12.13]).

Remark 1.1.0.15 (Reflection Principle). Sometimes, statements of the form of pre-
vious lemma are called reflection principles (see [79] for a discussion). The idea is that
properties we believed to hold for the universal class V (or some other totality) is reflected
by an “initial segment” like VI.

This idea of reflection principles motivates the notion of a universe in type theory, which are
in turn the original motivation for induction-recursion (compare in particular Section 3.3).

The just explained philosophical idea of reflection principles should not be confused with a
more technical meaning of the term “reflection principle” in set-theoretic model theory
explained in [68, p.186] which will be of no direct interest to us in this thesis.

So, in particular, if we write “ZFC +I” for some inaccessible cardinal, we mean the theory
ZFC supplemented by an axiom asserting the existence of I, and thereby that VI is a set
in the theory ZFC + I.

In particular, as will be explained in Subsection 1.2.3 the result of iteratively applying
an endofunctor (on Set) to the empty set is contained in the cumulative hierarchy if
the iteration is indexed by an ordinal smaller than the ordinal defining the cumulative
hierarchy.

We will refer to the following definition in the discussion of codes for induction-recursion
in Example 3.2.1.14 and Remark 3.2.3.4.

Definition 1.1.0.16 (Continuous sequence, normal sequence, normal function).
Let β be a ordinal with uncountable cofinality, or β = Ord. A sequence (γξ)ξ∈β of ordinals
is called a normal sequence if it is increasing and continuous. In symbols, continuity of
this sequence means that for every limit α < β we have γα = limξ→α γξ.

Of course, we call a function f : β → β a normal function if the associated sequence
γξ := f(ξ) for ξ ∈ β is a normal sequence. ([83, Definition 4.11, (iii)], Normal sequences
are also defined in [68, Definition 2.17], but only for functions f : Ord→ Ord.)
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Definition 1.1.0.17 (Club set). Let κ be a limit. A subset S ⊆ κ is called a club set
(this is a contraction of closed unbounded) if

1. S is closed in κ, i.e. if: ∀ α ≤ κ (sup(S ∩ α) = α 6= 0 =⇒ α ∈ S).

2. S is unbounded in κ, i.e. if: ∀ α < κ (∃β ∈ S ∧ α < β).

Definition 1.1.0.18 (Stationary set). Let κ be a limit with cf(κ) being uncountable.
A subset S ⊆ α is a stationary subset of κ if S has a nonempty intersection with every
club set in κ.

Definition 1.1.0.19 (Mahlo cardinal). 1. A limit cardinal M is a weakly Mahlo
cardinal if it is weakly inaccessible and the set of all regular cardinals below M is
stationary. (Then also the set of all weakly inaccessibles below κ is stationary in κ.)

2. A limit cardinal M is a strongly Mahlo cardinal if it is strongly inaccessible and the
set of all regular cardinals below M is stationary. (Then also the set of all strongly
inaccessibles below κ is stationary in κ.)

[68, pp.95-96]

Lemma 1.1.0.20 (Fixed-point theorem for normal functions). [83] Let κ be an
ordinal with uncountable cofinality. Then the set of fixed points of every normal function
f : κ→ κ is a club set. (This follows from [83, Proposition 4.12])

Corollary 1.1.0.21 (Mahlo property). Let M be a Mahlo cardinal (weakly or strongly),
and f : M→ M be normal. Then f has a regular fixed point. If M is weakly Mahlo, f has
a weakly inaccessible fixed point, and if M is strongly Mahlo, f has a strongly inaccessible
fixed point.

Proof. By Lemma 1.1.0.20, the set of fixed points of f is a club set. Since the set Reg
of regular cardinals below M is stationary, the intersection of Reg with the set of fixed
points of f is nonempty. The claims in the second sentence follow analogously. �

We will usually refer to a Mahlo cardinal via the Mahlo property.

1.2 Category Theory

We assume familiarity with the basic definitions of category, functor, and natural trans-
formation. In this section we review the notions that are of particular importance for
us. A general reference useful for our purposes is [13] —in particular §9, Monads and
Algebras. Additional references are [19, §6.5, Tensors and cotensors], and [73, §3.7, Tensor
and cotensor products].

1.2.1 Power Objects

As we will see in Section 4.1, there is a close relation between compositionality of codes
and power objects. Power objects are for example discussed in [69, A2 1 1] in categories
with products.
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Definition 1.2.1.1. Let (C,⊗) be a monoidal category, c ∈ C an object, and A : Set a
(small) set. The power (object) or cotensor cA of c by A is defined to be an object such
that there is an isomorphism

homC(x, cA) ' homSet(A, homC(x, c))

which is natural in x ∈ C. By the Yoneda lemma, cA is essentially unique in case it exists.

Lemma 1.2.1.2. If C is a locally small cartesian closed category, all power objects exist,
and —for c ∈ C an object, and A : Set— can be defined by cA := Πa:Ac.

1.2.2 Exponentials

We shall need the following lemma in Chapter 7. Before stating it, we recall the following
definition:

Definition 1.2.2.1 (Global element). If U is an object in a category with terminal
object, a morphism x : 1→ U is called a global element.

Lemma 1.2.2.2 (Evaluation of exponential objects). 1. Recall that if AX is an
exponential object, then there is a map ev : AX × X → A. If f : 1 → AX and
a : 1→ X are global elements, we write fa : 1→ A for the global element ev ◦ (f, a)
defined by f and a.

2. There is a composition operation for exponential objects which we denote by ◦.
It is obtained from the map ev and the adjunction × A a A via the following
transpositions:

◦ : XY × ZX → ZY

XY → (ZY )(ZX)

XY → ZY×ZX

ev ◦ (ev × id) : XY × Y × ZX → Z

We will use the previous lemma often without further mentioning.

1.2.3 Algebras for Endofunctors

The importance of algebras for endofunctors F : C → C in regard to semantics of type
theory is that their initial algebras interpret inductively defined types since the system of
canonical maps out of the initial algebra to any other algebra represent the principle of
recursion on this inductive type. Which endofunctors have initial algebras depends on the
category C as well as on assumptions on the underlying set theory. An introduction to
this subject is [65]. A reference for initial algebras for polynomial functors (which are of
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particular interest for us) is [1, §5]. We will briefly return to the relation of initiality and
type definitions in general in Section 2.2.4.4.

As a caveat we mention that the terminological distinction between of induction and
recursion is potentially confusing - in particular when talking about induction-recursion:
in context of categorical semantics of type theory one usually identifies types with initial
algebras for endofunctors on Set, since however the object representing an inductive-
recursive definition is itself a family (see Section 1.3) such as (U,T) : Fam(Set) where
T : U→ Set is regarded as to be defined by recursion (on the simultaneously inductively
defined U), one is entitled to call the object (U,T) to be defined by induction (in the
category Fam(Set)). Now, even though U : Set, it is not defined by induction in the sense
that there would be a polynomial functor of which it is initial algebra.

The purpose of this (and the following) section is not to give a comprehensive introduction
to initial algebra semantics (which can be found in the given references) but mainly to
recall that polynomial endofunctors (on Set) do have initial algebras in ZF 1 ; we will
see later in Section 6.4 that the existence of initial algebras for endofunctors defining
inductive-recursive definitions needs the additional assumption of large cardinals (see
Terminology 1.1.0.9).

Definition 1.2.3.1 ((Initial) algebra of an endofunctor). An algebra for an endo-
functor F : C → C is a pair (X,α) where X ∈ Ob C, and α : F (X)→ X is a morphism. A
morphism H : (X,α)→ (X ′, α′) between F -algebras consists of a morphism h : X → X ′

making the following diagram commute:

F (X) α //

F (h)

��

X

h
��

F (X ′) α′ // X ′

An initial F -algebra is an initial object in the category of F -algebras.

We will sometimes leave the algebra-structure map α being part of the initial algebra
(X,α) implicit and refer to X as “the initial algebra”.

Lemma 1.2.3.2 (Lambek’s lemma [80]). If X is an initial algebra for an endofunctor,
then there is an isomorphism F (X) ' X.

1.2.3.1 Initial chains for endofunctors and fixpoint theorems

The most common way to construct initial algebras for endofunctors is by iterative
application of the endofunctor to an initial object.

1In the category Set, there is a canonical choice of an initial object, and thus the initial algebra defined
by the initial sequence of an endofunctor is a canonical choice for an initial algebra. In categories other
than Set, one needs in general the axiom of choice to choose one out of possibly infinitely many isomorphic
initial algebras.
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Definition 1.2.3.3 (Initial (finitary) ω-chain, colimit of an initial ω-chain). Let C
be a category with an initial object 0 ∈ Ob C, let ω be a countable ordinal, let F : C → C
be an endofuctor, and for all n < ω let F n be defined by F 1 = F and F n+1 = F ◦F n. The
chain

0
!−→ F0

F (!)−−→ F 20
F 2(!)−−−→ . . .

Fn−1(!)−−−−→ F n0
Fn(!)−−−→ . . .

is called the initial ω-chain of F . A cocone for the initial ω-chain of F is defined to be
a pair (A, (αn : F n(0) → A)n<ω) such that αn = αn+1 ◦ F n for all n < ω. A colimit for
the initial ω-chain of F is defined to be a cocone (C, (cn : F n(0)→ A)n<ω) together with a
map f : C → A for every cocone (A, (αn : F n(0)→ A)n<ω) factoring in the obvious way.

Theorem 1.2.3.4 (Construction of an initial algebra via (finitary) initial ω-chains).
Let C be a category with an initial object and colimits of (finitary) initial ω-chains. Then,
if F : C → C preserves colimits of initial ω-chains, then F has an initial algebra µF given
by µF = colimn<ωF

n0.

Proof. [65, Theorem 2.1.9].

Finitary initial chains are not sufficient for obtaining all inductive definitions of interest in
ZFC. But fortunately, there are versions of initial chains and an assorted fixpoint theorem
for uncountable limit ordinals.

Definition 1.2.3.5 (Initial chain, colimit of an initial chain). Definition 1.2.3.3 can
be extended to limit stages [65, §3.1] by putting

F j0 = colimi<jF
i0

for every limit ordinal j where the morphisms in the extended chain are induced by the
universal property of the colimit.

The following theorem is a corollary of a theorem of Zermelo-Knaster-Tarski stating that
least fixpoints for monotone functions of directed complete partial orders exists.

Theorem 1.2.3.6 (Construction of an initial algebra via initial chains). [65, The-
orem 3.1.1, Theorem 3.1.4] Let C be a category with an initial object 0 and with colimits
of chains. If the initial chain of an endofunctor F : C → C converges in α steps (i.e.
Fα(0) = Fα+1(0)), then Fα0 is an initial algebra of F where the algebra structure map is
given by the inverse of the chain map F (Fα0)→ Fα.

Corollary 1.2.3.7. Let C be a category with an initial object 0 and with colimits of
chains. If an endofunctor F : C → C preserves colimits of α-chains, then the initial chain
of F converges in α steps and the initial algebra of F is Fα(0). [65, Corollary 3.1.5].
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1.2.4 Polynomials / Containers, Trees, and their Associated
Functors

We inherit the synonymous terms polynomial and container, and the closely related term
of tree; while the first-mentioned two terms are really exact synonyms, they provide a
formalization of the informal idea of a (wellfounded) tree. We follow the convention to
talk about “containers” (rather than of “polynomials”) if not followed by “functor”, of
“polynomial functors” (rather than of “container functors”), and of “trees” when referring
to terms of the type defined by a polynomial functor.

The most important two facts about containers are that 1) there is an equivalence between
the category of containers and the category of polynomial functors on Set (see [45, p.11]),
and 2) every polynomial functor has an initial algebra and these initial algebras are exactly
inductively defined sets.

Polynomial functors are a generalization of polynomial functions from rings to sets [78,
p.1], and more generally to other locally cartesian closed categories [45][44], and even more
generally to categories with only pullbacks [127]. The notion (in one variant or another)
has been introduced many times according to loc.cit. where the first mention of the
term is in Eilenberg-McLane’s 1942 paper [41]. A more systematic theory of polynomial
functors has been developed by Joyal, Kock, and Gambino [77][76][45]; [78] is a draft
of a book on the topic. The theory of polynomial functors is already a well developed
one: a collection of the most important results is summarized in [45, p.11] characterizing
polynomial endofunctors of Set in several ways; a partial generalization (from Set to
locally cartesian closed categories) of these results is given in [75]. From the viewpoint
of topos theory there is work by Moerdijk, Palmgren, and van den Berg on the topic
[95][125]. From the viewpoint of type theory, relevant references are [1] which is a study of
the category of polynomial functors, and [3] showing that this category is locally cartesian
closed.

The theory IR functors is —compared to that of polynomial functors— still at its very
beginning and this thesis is merely about finding a ’correct’ definition of inductive-recursive
definitions - or at least about studying several alternative versions of the notion. And even
though the theory of polynomial functors differs in a several aspects from the emerging
theory of IR functors, polynomial functors play (at least) two different roles in the theory
of IR: firstly, polynomial functors2 appear as degenerate cases of IR functors since they
encode inductive definitions; and secondly, containers will play an organizational role in
our axiomatizations of IR.

Definition 1.2.4.1 (Container, (wellfounded) tree, polynomial functor). 1. A
container is a term (A,B) : ΣA:Set(A → Set). A morphism f : (A,B) → (A′, B′)
of containers is a pair (f0 : A → A′, f1 : (a : A) → B′(f0(a)) → B(a)). We
denote the category of containers in Set by Cont; we will see in Section 1.3 that
Cont = Fam(Setop) is just the category of families of opposite sets. See also [2] for a
discussion of categories of containers.

2This can also be seen on the level of containers which are special cases of familiesSection 1.3 (namely
families of sets), the objects defined by IR, where, if we consider morphisms of containers and -of families,
we have to take care of the direction of morphisms, see below.
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2. Every container (A,B) defines an endofunctor on Set by

J (A,B) K : Set→ Set

X 7→ Σa:A(B(a)→ X)

(f : X → Y ) 7→ ((a, t) 7→ (a, f ◦ t)) .

3. If H = (H0, H1) : (A,B)→ (A′, B′) is a morphism of containers, and E : Set, then
there is a function

J H KE : J (A,B) KE → J (A′, B′) KE
J H K E (Q,ϕ) = (H0(Q), ϕ ◦H1(Q)) .

The above definitions of course also make with Set1 in place of Set.

Remark 1.2.4.2. We can understand a container (A,B) as encoding a set of trees with
signature (A,B) in the following way: A is the set of nodes (marked with one ingoing
branch) of the tree, and for each a : A, the set B(a) is the set of branches directly extending
from the node a. A tree is wellfounded if every branch has finite length. Notice that
since B(a) can be infinite, the lengths of paths in a wellfounded tree can by unbounded.
Conversely, given one tree, one can define a set A consisting of the nodes of the tree
marked with one ingoing branch, and if for each a : A, B(a) is the set of edges extending
from a, we can define B as the union of all the B(a).

The category Cont is of central importance for us. Further properties of it will be explained
in Section 1.3 in more general context. In particular Cont is equivalent to the category
of families of opposite sets and thus inherits some properties of the monad structure of
Fam (see Lemma 1.3.0.6), and it is equivalent to the category of inductive definitions (see
Section 2.2.4.5). We sometimes use the notation con : Set→ Cont, A 7→ (A, λ → 0).

We have the following corollary to Theorem 1.2.3.6.

Corollary 1.2.4.3 (Initial algebras for Polynomial Functors). Polynomial endofunc-
tors always have initial algebras (in ZF set theory).

Proof. [65, Theorem 3.1.12] gives details of the proof that such an initial algebra is
the set of well-founded trees arguing via initial ω-chains Definition 1.2.3.5 and using
Theorem 1.2.3.6 for the existence statement. The proof shows that —for the polynomial
functor defined by f : B → A, the initial chain converges in at most α steps where α is
the first regular cardinal larger than the cardinality of B.

Remark 1.2.4.4. For later reference (in Section 6.4), we notice here that for establishing
initial algebras for IR functors, the assumptions proving Corollary 1.2.4.3 are too weak
since unlike in case of a container (A,B) where B can be used to obtain an upper bound for
the cardinality of the sets occurring in the initial chain, in the definition of an IR functor
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such a bound needs to be computed by induction on the code (see Section 3.2.1) defining the
functor, and is much higher. Indeed establishing initial algebras for IR functors depends
on the assumption of a large cardinal M which —very roughly speaking— is larger than
any such set ′B′ that can occur in the inductive definition of the code defining the IR
functor.

The content of this subsection continues in Section 2.2.4, in particular in Section 2.2.4.6
is recalled that the class of polynomial functors is closed under composition.

1.2.5 Monads

The notion of monad is a generalization of that of monoid known from algebra where it
provides a conceptualization of composition. This is exactly the purpose for which monads
will be important for us. We do not give an introduction to monads here which can be
found in [13, §10] or [81, §VI ] but only review the relation of monads to the binding
operation that will be important for us.

Definition 1.2.5.1 (Monad, Kleisli extension). A monad on a category C is given
by an endofunctor M on C and transformations η : idC → M called the unit and
µ : M ◦M →M called the multiplication of the monad, satisfying well known constraints.

Every monad induces a function

kl : HomC(D,M(E))→ HomC(M(D),M(E))

m 7→ µM(E) ◦M(m) ◦ ηD

called Kleisli extension.

Remark 1.2.5.2 (Extension system). Based on Kleisli extension, [87] (following ear-
lier work of [86]) gave an equivalent characterization of the notion of monad.

Maps of the type of the Kleisli extension will be more important for us than monad
structures themselves. In those cases of interest to us, one can uncurry kl:

Definition 1.2.5.3 (Bind). If M is a monad on Set (or on Set1), it induces the operation

bind : M(D)→ (D →M(E))→M(E)

bind X h = µ((M(h))X)

called the bind operation associated to M .

The following example is instructive for regarding monads as a mechanism facilitating a
composition operation.
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Example 1.2.5.4 (Free-monoid monad (aka list monad)). The functor M : Set→
Set assigning to a set A, the set of finite (possibly empty) lists of elements of A as entries
carries a monad structure where the component ηA : A→M(A) of the unit sends a : A to
the list of length one with a as the only entry, and the component of the multiplication
µA : M(M(A))→ A sends a list of lists of elements of A to the list obtained by removing
inner brackets — e.g. ((a1, a2), (a3, a4)) is sent to (a1, a2, a3, a4). The bind operation
bind X f thus first substitutes every entry a of X by the list being the value f(a) and then
removes inner brackets to obtain a list with elements of the codomain of f as entries.

1.3 Families

The objects defined by inductive-recursive definitions are families (U : Set, T : U → D) :
Fam(D) (for D : Set1) where each code encoding an inductive-recursive definition decodes
to a functor Fam(D) → Fam(E) (called IR-functors) between categories of families.
The interest in families as such is explained by the fact that families of (opposite) sets,
containers (aka polynomials), and inductive definitions are equivalent notions (in the sense
explained in Section 2.2.4.5) which are of great importance for dependent theory and its
semantics.

In this section we collect some material on families in general; a separate Section 1.2.4 on
families of (U, T ) : Fam(Set) of sets which are also called containers already preceded this
section. Since we are interested in families mainly in connection to IR, we will make some
anticipatory remarks about this connection which we will of course not assume in any
formal sense later on.

Definition 1.3.0.1 (Fam). We define a functor

Fam : Set1 → Set1

D 7→ ΣS:Set(S → D)

f 7→ ((S, h) 7→ (S, f ◦ h))

Terminology 1.3.0.2 (Fam(D)). The definition of the functor Fam of the previous defi-
nition makes sense more generally as a functor Fam : Cat→ Cat. Of interest to us is here
that in this case Fam(D) can carry two different category structures:

1. For D : Set1 a discrete category, we call a morphism h : (U, T )→ (U ′, T ′) defined
as a pair (h0 : U → U ′, h1 : h1 : (u : U)→ T (u) = T ′(h(u))), a cartesian morphism,
and the category with object set Fam(D) and cartesian morphisms as morphisms we
call the cartesian fragment of Fam(D). Since we will mainly be interested in this
category of families since in particular the notions of IR we discuss in this thesis
induce functors only on this kind categories of families , we usually refer to this
category just as “category of families”.

2. More generally3, if D is any category (such as D = Set), we can take morphisms
(U, T )→ (U ′, T ′) to be pairs (h0 : U → U ′, h1 : (u : U)→ T (u)→ T ′(h(u))).

3For a version of induction recursion defining an action on non-cartesian morphisms, see [49].
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For Fam(D) as a fibration (as defined in [117]) over D, the more restricted definition of
morphisms in the previous definition are the split cartesian morphisms, and if T = T ′ ◦ h
is only a propositional equality, the morphisms h is a cartesian morphism.

Remark 1.3.0.3. As we mentioned in Definition 1.2.4.1, we have Cont = Fam(Setop)
for the more general class of (not-necessarily cartesian) morphisms defined in Terminol-
ogy 1.3.0.2 .2.

Cartesian morphisms between families are closely related to a partial order on Fam(D).
That Fam(D) carries such a partial order is a similarity of Fam(D) to Set that obtains
for all D : Set1. This partial order is used for the construction of initial algebras for
endofunctors of Fam(D), see e.g. Section 6.4.

Remark 1.3.0.4 (Partial order on Fam(D) and cartesian morphisms between families).
For every D : Set1 the large set FamD is partially ordered where (U ′, T ′) ≤ (U, T ) iff
U ′ ⊆ U and T � U ′ = T ′ is the restriction of T to U ′.

Obviously (U ′, T ′) ≤ (U, T ) induces a split cartesian morphisms. Conversely, if h :
(U ′, T ′) → (U, T ) is a split cartesian morphism, we have (im(h0), T̂ ) ≤ (U, T ) where
im(h0) = Σx:UΣu:U ′(hu = x) and T̂ (x, u, p) := Tx.

Induction-recursion in the style of Dybjer-Setzer Chapter 3 defines an action on cartesian
morphisms between families and only on these and the functors arising as semantics of
Dybjer-Setzer’s IR are in particular monotonous functions with respect to the partial
order on families. We will comment on some problems arising from the limitations of
notions of IR acting only on cartesian morphisms in Remark 3.2.1.17.

Remark 1.3.0.5 (Properties of Fam and of Fam(D)). Fam has several interest-
ing properties which are important for the theory of induction-recursion and for the
semantics of type theory more generally:

Fam(Setop) is equivalent to the category of polynomial functors (see Section 1.2.4)
[44] and thus to the category of inductive definitions.

•• As an operation Fam has itself the form of a (large) polynomial functor defined by the
container (Set, id) (see also Section 1.2.4). In particular Fam : X 7→ ΣU :Set(U → X),
as a functor arises as a sum of representable functors, is an example of a familially
representable functor [128][21].

• More generally than the previous point, Fam is (as a 2-functor) the paradigmatic
example of a familial 2-functor [128, §5.9], and (as a 1-functor) it is a parametric
right adjoint (see loc. cit.). The latter implies that unit and multiplication of the
Fam monad are cartesian natural transformations, i.e. the naturality squares are
pullback squares. (We will not need to use this fact, though.)

• Fam(D) is a (Grothendieck) fibration and thus provides a basic model for type
dependency [66].

Lemma 1.3.0.6 (Monad structure on Fam). 1. For D : Set1, the D-component
of the unit of the monad (see Section 1.2.5) Fam is given by ηFamD : D → Fam D,
d 7→ (1, ∗ 7→ d).
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2. For D : Set1, the D-component of the multiplication of the monad Fam is given by
µFam
D : Fam(Fam(D))→ Fam(D), (U, T ) 7→ (Σu:U proj1 Tu), (u, k) 7→ (proj2(Tu)) (k)).

3. ηFam and µFam satisfy the triangle equalities.

4. Like every monad on Set1, Fam D admits a bind operation (see Definition 1.2.5.3)
given by >>=:= µFam ◦ Fam.

In particular composition of inductive definitions can be expressed via this monad structure
(see Corollary 2.2.4.13 and Section 2.2.4.6).

Remark 1.3.0.7 (Colimits and limits in Fam(D)). For every D : Set1, the category
FamD is the free set-indexed-coproduct cocompletion of D see [117, §6]4. In particular
binary coproducts exist in Fam(D). The existence of set-indexed coproducts in Fam(D)
will facilitate the definition of IR-functors as sums of already defined IR functors.

For an arbitrary D : Set1, the category Fam(D) is not well endowed with limits. It has no
terminal object or other binary products, and no exponential objects.

The situation is different if D : Set is small since then Fam(D) ' Set/D is as a slice
category of a topos itself a topos and as such has all limits. From the viewpoint of
induction-recursion this special case is however less interesting since it has been shown in
[58] that so-called small induction-recursion is equivalent to (just) induction.

Fam(D) is also more amenable if D = Set in which case FamD ' Set{0→1} is equivalent
to the arrow category of Set which is a presheaf topos called Sierpinski topos [69, A2.1.12,
B3.2.11 ]. This topos (like the above mentioned Set/D for small D) is moreover a cohesive
topos [110] and as such more similar to Set than just an arbitrary topos.

Remark 1.3.0.8 (The comma category i/Set1). The problems posed by the lack of
limits in the categories Fam(D) for arbitrary D : Set1 can in some situations answered by
instead considering the category ΣD:Set1Fam(D) (with morphisms defined in the obvious
way). This category is equivalent to the comma category i/Set1 where i : Set→ Set1 is the
cumulativity map. Like every comma category of a topos, this category is itself a topos
and has all limits; in particular the operation

−→Fam :
(
S : Set

)
→ Fam D → Fam (S → D)

S −→Fam (A,P ) = (S → A, g 7→ P ◦ g)

of powering (see Definition 1.2.1.1) families that can be used to define composition of IR
codes (see Section 4.1), can be understood as taking place in this category.

4A dual discussion, i.e. of the set-indexed-product completion can be found in [21, above Proposition
2.2].
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Induction constitutes 1 constructive mathematics. Non-technically speaking, as a proof
method it reasons from properties of parts to properties of the partitioned2 whole, and
is thus available only if the whole is structured appropriately. Martin-Löf Type Theory
(MLTT) makes this interplay of an object that is structured in a ’positive’ way by parts, and
a formalism proving properties of this object precise as we will explain in Subsection 2.2.2.

We will start this section by a short overview on induction in general, followed by an
introduction to MLTT focusing on induction and some comments on the semantics of
inductive definitions in MLTT.

Induction-recursion (see, Chapter 3) which has induction as an important special case is
formulated by a set of rules extending MLTT presented here.

2.1 A Brief History of Induction

2.1.1 Induction in general

Acerbi [5] reviews some of the scholarship on the history of induction (“complete induction”
in his diction): it is commonly understood that the first conscious use of induction is
found in Blaise Pascal’s “Traité du triangle arithmétique”, but that the use of inductive
arguments (broadly construed) in mathematics can be found much earlier — for example
in Arab mathematics, and possibly in Euclid. Moreover loc. cit. claims to have found
evidence for an inductive argument in the Platonic dialog “Parmenides”.

1It does this together with its dual notion of coinduction with which we shall not be concerned
much in this thesis (except for a few remarks in Subparagraph 2.2.3.3.3.1 Paragraph 2.2.3.3.6, and
Paragraph 2.2.3.3.7). Even though coinduction was not yet discussed by Brouwer (see, e.g. [20]) who
is a main reference point in the historical development of intuitionism and constructivism, almost all
constructivists today agree that coinduction is a constructive notion as well.

2We do not assume here that partitions are disjoint.
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2.1.2 Natural Numbers

In a more formal, axiomatic context, the natural numbers were characterized as an object
purely in terms of induction probably for the first times in Hermann Grassmann’s textbook
on arithmetic [57]; this was followed by a definition of Richard Dedekind [30] (who also
proved that any two models of his3 natural numbers are isomorphic) and a definition
equivalent to Dedekind’s by Giuseppe Peano [102]. Peano’s axioms contain also an axiom
(the induction axiom) asserting that proofs by induction on natural numbers are possible.

2.1.3 In Constructive Mathematics following Brouwer

The idea to establish more general mathematical objects themselves — as opposed to only
properties of them — by induction is an artefact of intuitionism, the kind of mathematics
introduced by L. E. J. Brouwer.

The philosophical- and ideological4- background of Brouwer is largely informed by Im-
manuel Kant who formulated his constructive ideas maybe most concisely in his opus
posthumum “He who would know the world must first manufacture it in his own self,
indeed.” ([72][p.240], see also [56][p.2] for more on Kant’s ideas of synthesis). Also
Brouwer’s terminology of intuition as constitutive for the kind of mathematical activity
conceived by him (see his notion of “creative subject” [121][§16]) originates with Kant
[72], see also [43] for more on Brouwer’s intuitionism and conception of constructive
mathematics.

More precisely, an inductive object (such as an inductive type) is an object that allows
to prove (all of) its properties by induction on it and thus the shift of terminology from
inductive proofs to inductive objects was effected by the desire to do inductive proofs
of properties of other objects than the linearly ordered natural numbers.To make this
possible, the object whose properties shall be proved inductively needs to be structured,
i.e. ordered, in a way facilitating such proofs. The most important such structures for
our purposes are species — analogues of classical sets [121][§4] which inform Martin-Löf’s
wellorderings [92].

2.2 Martin-Löf Type Theory

2.2.1 Intuitionistic Logic

We emphasized the close relation of induction and constructive mathematics. One
proof method that distinguishes “classical” (i.e. non-constructive) mathematics from
constructive mathematics is that of proof by contradiction (reduction ad absurdum) which

3The induction axiom of natural numbers can be formulated either in first-, or in second order logic.
That any two models are isomorphic holds however only for the second-order variant.

4Another source of influence for Brouwer was his Protestant faith and the assorted emphasis of the
subject as the centre of his constructivism.
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uses the law of excluded middle (LEM) that Brouwer started to reject [96] from 1908
as at odds with his constructivist program since the idea that understanding an object
means for him understanding it positively by constructing it whereas LEM can be used to
prove the existence of objects negatively, i.e. by establishing the impossibility of their
non-existence without giving any intrinsic description of the asserted object. Classical
logic minus the law of excluded middle is called intuitionistic logic.

We do not attempt here to comment on the question to what extend other formal systems
such as Hilbert-style ones used e.g. in the Principia Mathematica, which also devises a
type theory, conceives the notion of type as an object structured in a way facilitating
proofs of its properties by induction.

2.2.2 MLTT as a Natural Deduction Calculus

Martin-Löf type theory [88][92] is a type theory that incorporates an intuitionistic higher
order logic. Martin-Löf [92][p.13] understands the types defined in his type theory as
constructive sets or as sets about which one can reason constructively within the system.

Given Brouwer’s scepticism regarding formalised mathematics based on notational systems
as well as his separation of logic and mathematics it might surprise that Brouwer’s ideas
of intuitionistic mathematics survive today mainly in MLTT which is formulated as a
natural deduction system and as such does not separate logic from the theory of types
but instead implements the propositions-as-types and proofs-as-terms paradigm.

To treat objects and proofs of properties of these objects in one integrated formal
system such as MLTT became possible by Gentzen’s natural deduction calculus[47] a
notation system for logical inferences. This is realised by giving for each set/type rules
for its formation (defining constant symbols possibly binding terms of the premise of the
respective rules), introduction (defining constant symbols which stand for generic terms
of the types formed), elimination (allowing to define functions having the formed type as
domain; this subsumes in particular propositions —as traditionally understood— which
are functions with codomain the set with two elements (“booleans”)), and a computation
rule (also called equality rule, which relates the introduction and elimination rule; these
equality rules are instances of reduction rules in natural deduction which express that
subsequent application of an introduction and elimination rules can be simplified [105])
by discharging intermediary premises.

2.2.3 Elements of MLTT

2.2.3.1 The Judgements of MLTT

Each rule consists of finite set of (hypothetical) judgements (see [93] for an explanation of
this terminology) which are called the premises and one (hypothetical) judgement called
the conclusion of the rule. Judgements can have the following forms
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Judgement Intuitive meaning
Γ ctxt Γ is a well-formed context
Γ ` A type A is a well-formed type in the context Γ
Γ `M : A the term M has type A in the context Γ
Γ ` A = B type A and B are equal types in the context Γ
Γ `M = N : A the terms M and N are equal at the type A in the context Γ

All judgments in this table except the first one are called hypothetical judgments where
the context (here Γ) is the hypothesis. This means that all types and term defined in a
context may depend on terms occurring in this context; e.g. in Γ `M : A both M , and
A may depend on terms of Γ.

2.2.3.2 Why Dependent Types?

Since MLTT is supposed to be a “one-level system” (i.e a polymorphic type theory) treating
a syntactical symbolism and its meaning both on the same object level, it necessarily
incorporates quantifiers of first-order logic (∀, and ∃) since it becomes necessary to be
able to express “for all objects of what type” a proposition is in question to hold. This is
resolved by the notion of a dependent type written a : A ` B(a) type where B may depend
on terms of A.

2.2.3.3 The Rules of MLTT

After the discussion of the general forms of judgements used to express type dependency,
we come more specifically to the types of MLTT. There are different versions of dependent
type theory presented by Martin-Löf in his papers [92] [88] but we refer here to the latter
version. In the following paragraphs we will give the rules of MLTT that define instances
of the judgement forms listed in Section 2.2.3.1.

2.2.3.3.1 Rules for Context Formation The rules for context formation, and for
type formation apply simultaneously: a context can be regarded as an ordered list of types
while a (dependent) type is defined in a context; this is an example for induction-induction
[98]5. Defining the type theory by induction implies in particular that all the defined
constructs are wellfounded, e.g. contexts (subsequently defined) have finite length, and
types are generated by finitely many applications of constructors. The base case of this
induction-induction is the axiom (i.e. a rule having no premise) displayed to the left
below stating that there is an empty context, and the second mentioned rule for context
formation states that a context can be extended by a type in (this) context to form a
uniquely determined new context.

1 ctxt
Emp

Γ ctxt Γ ` A type

Γ, x : A ctxt
Ext

5We do not introduce induction-induction formally in this thesis.
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Notice that x in the conclusion of the context-extension rule on the right is a generic term
(aka arbitrary term) and does not appear in the premise of this rule. It is therefore not
possible to extend contexts by specific terms (i.e. terms specified in the premise of a rule),
but only by generic ones (for more on this point see Subparagraph 2.2.3.3.7.1).

2.2.3.3.2 Rules for Equality: Judgmental Equality The rules for judgemental
equality introduce a constant symbol ’=’ for an equivalence relation on (the union of all)
terms and types that moreover satisfies the rules

Γ ` x : A

Γ ` x = x : A
eq-form

Γ ` A type

Γ ` A = A
eq-Ty-form

Γ ` x = y : A

Γ ` y = x : A
eq-sym

Γ ` A = B

Γ ` B = A
eq-Ty-sym

Γ ` x = y : A Γ ` y = z : A

Γ ` x = z : A
eq-trans

Γ ` A = B Γ ` B = C

Γ ` A = C
eq-Ty-trans

Γ ` a : A Γ ` A = B

Γ ` a : B
eq-Ty

Γ ` a = b : A Γ ` A = B

Γ ` a = b : B
eq-Tm-trans

where in the second rule ’a = b : B’ should be read as “a and b are of type B and are
related by =” and not as “a = b is a term of type B”. Moreover there are rules expressing
that all the rules defining types are congruences with respect to the equivalence relation
=.

There is a further notion of equality realized as a type which we explain in Para-
graph 2.2.3.3.9.

? ? ?

2.2.3.3.3 The Structure of the Rules Defining Types The rules for type for-
mation given in the following paragraphs6 always consists of one formation rule, zero- or

6For negative types (see, Subparagraph 2.2.3.3.7.1) there can be more than one elimination rule. An
example for this is the alternative exhibition of Σ-types as negative types (see Paragraph 2.2.3.3.6).
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finitely many introduction rules, one elimination rule, and one computation rule for each
introduction rule:

The formation rule for a types introduces a constant symbol, say K, for the type to be
defined which may bind some arguments.

An introduction rule states that a constructor applied to its argument(s) (if any) yields a
term of the type being defined, where the arguments are terms specified in the premise of
the rule. It is not compulsory that a type has an introduction rule since the case of an
empty type is not excluded.

The premise of an elimination rule7 has three parts: firstly the specification of a motif
x : K `M(x) type which is a type family dependent on the type being defined, secondly
the judgment that M evaluated in a constructor is an inhabited type x : C ` d : M(cx)
(this is called the inductive hypothesis), and thirdly the provision of an arbitrary term of
the type to be eliminated:

The premise of computation rule shares the first two premises with the elimination rule
and states that the term in the evaluated motif —which asserts the inductive hypothesis—
is equal (in the sense explained in Paragraph 2.2.3.3.2) to the eliminator applied to the
constructor.

We usually suppress contexts that are shared by all premises and the conclusion in a rule,
e.g. in place of

Γ ` A type Γ, x : A ` B type

Γ ` K(A,B) type
K-form

.

we write

A type x : A ` B type

K(A,B) type
K-form

.

We also write x1, . . . , xn : A instead of a list of judgements x1 : A, . . . , xn : A
containing distinct variables of the same type (this notation should not be confused with
a context since the x1, . . . , xn are not assumed to be generic but can be specific, see
Paragraph 2.2.3.3.1).

2.2.3.3.3.1 Positive-, and Negative Type definitions Generally an elimination
rule is so called because it eliminates some assumptions in the premise of the rule. This
can however happen in different ways. One can distinguish two kinds of elimination-, and
assorted computation rules: the case of positive type definitions where the conclusion
of the computation rule describes the result of applying an eliminator to a constructor,

7At least for positively defined types (see Subparagraph 2.2.3.3.3.1 for the distinction to negatively
defined types).
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and negative type definitions where the conclusion of the computation rule describes the
result of applying a constructor to an eliminator. Positive type definitions can express
inductive types (see Section 2.2.4) while negative type definitions can express coinductive
definitions8. The reason why both terminologies —positive types and inductive types
(respectively negative types and coinductive types)— are in use is that the definition
of inductive types already assumes some (positive) type definitions. So, the positive /
negative terminology is somewhat more fundamental.

We will give two examples for negative type definitions in Subparagraph 2.2.3.3.3.1
and Paragraph 2.2.3.3.6 but we will be mainly interested in positive types since the
axiomatizations of IR we present in this thesis do not define negative types.

2.2.3.3.4 The Empty Type The empty type 0 has formation rule

0 type
intro-0

.

It has no introduction rule since it has no terms. The elimination rule

x : 0 `M(x) type z : 0

elim(M, z) : M(z)
elim-0

is trivial in the sense that elim(M, z) : M(z) regardless what M is. This elimination rule
is traditionally called ex falso sequitur quodlibet.

There is no computation rule for the empty type since it has no introduction rule.

2.2.3.3.5 The Unit Type The unit type 1 has the formation rule and introduction
rules

1 type
form-1

∗ : 1
intro-1

.

The elimination rule is

x : 1 `M(x) type m : M(∗) z : 1

elim(M,m, z) : M(z)
elim-1

and the computation rule is

8The categorical dual to inductive definitions in the algebra semantics of type theory which we do not
discuss in this thesis.

36



x : 1 `M(x) type m : M(∗)
elim(M,m, ∗) = m : M(∗)

comp-1
.

2.2.3.3.6 Σ-Types (as Positive-, and as Negative Types A Σ-type has as terms
pairs where the type of the second component may depend on the first component.

A type x : A ` B type

ΣAB type
form-Σ

a : A ` B(a) type a : A ` b : B(a)

(a, b)Σ : ΣAB
intro-Σ

We will usually omit the subscript of ( , )Σ.

x : ΣAB `M(x) type x : A, y : B(x) ` m(x, y) : M((x, y)Σ) z : ΣAB

elim(M,m, z) : M(z)
elim-Σ

x : ΣAB `M(x) type x : A, y : B(x) ` m(x, y) : M((x, y)Σ)

elim(M,m, (x, y)Σ) = m(x, y) : M((x, y)Σ)
comp-Σ

From these rules, the following two projection rules are derivable

q : Σx:AB(x)

proj0(q) : A
proj0-Σ

q : Σx:AB(x)

proj1(q) : B(proj0(q))
proj1-Σ

(where we have not typed out the premises we already know — a practise that we will
adopt frequently in the following).

Alternatively, one can define Σ-types negatively by assuming the formation-, and in-
troduction rules, the two projection rules (as elimination rules) complemented by the
computation rules

x : A ` y : B(x)

proj0(x, y)Σ = x
proj0-Comp

x : A ` y : B(x)

proj1(x, y)Σ = y
proj1-Comp

.
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With ELIM-Σ and COMP-Σ one can furthermore derive

q : Σx:AB(x)

(proj0(q), proj1(q))Σ = q
comp’-Σ

.

Notice that the elimination rule using a motif has in the left-hand-side of the equation in
the conclusion of the computation rule an application of an eliminator to a constructor,
whereas we have here in the computation rule for the elimination via projection an
application of the constructor to the eliminators. The first mentioned style is called a
presentation of the type a positive type, and the second one a presentation as a negative
type; positive types are types definable by induction (see Section 2.2.4) whereas negative
types can be defined by coinduction (for which we will only have a few passing remarks
this thesis). For Σ types one can show (see e.g. [46]) that both presentations are equivalent
but not all types can be presented positively and negatively.

2.2.3.3.7 Π-Types as Negative Types (Elimination via an Application Rule)
While Σ types can equivalently be presented as positive and negative types, this is not
possible in case of Π-types without modifying the whole type theory somewhat (see
Subparagraph 2.2.3.3.7.1). We start therefor with the negative presentation which can be
formulated in the version of MLTT as we have presented it so far.

The formation rule

A type x : A ` B(x) type

Πx:AB(x) type
form-Π

where we use the notation A→ B in place of Πx:AB(x) if B(x) does not depend on the
choice of x, and the introduction rule for Π-types

x : A ` B(x) type x : A ` f(x) : B(x)

λx.f(x) : Πx:AB(x)
intro-Π

share the same pattern with the other types of MLTT, whereas the elimination rule

f : Πx:AB(x) a : A

app(f, a) : B(a)
app-Π

that is also called application rule is here not formulated via a motif f : Πx:AB(x) `
M(f) type. again, the application rule is still an elimination rule in the sense that it can
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be used to discharge premises of the introduction rule (here a : A); it is complemented by
the computation rule

f : Πa:AB(a) x : A

app(λx.f(x) , a) = f(a)
comp-Π

.

qualifying the whole definition as a negative one in the sense explained in Paragraph 2.2.3.3.6).

2.2.3.3.7.1 Π-Types as Positive Types (Elimination via a Motif Using Higher
Order Hypothetical Judgements) This paragraph briefly comments on what modi-
fications of MLTT are necessary to present Π-types positively. Since we will not use this
presentation in the following sections, this paragraph is optional, but it serves to describe
the scope of induction (as opposed to coinduction), and as such of induction-recursion.

The problem in defining the elimination rule using a motif for Π-types arises since we need
to instantiate the motif in the premise of this elimination rule by an evaluated constructor,
i.e. we would need to find a context in which M(λx.f(x)) is defined. Examining the
introduction rule, we see that we would need to transform x : A ` f(x) : B(x) into
a context which is however not possible: the only candidate context available in the
polymorphic presentation would be “x : A , f(x) : B(x)” but this is not a context since
f(x) does not denote a generic term of B(x) but a specific one; in comparison, the
construction does works for Σ-types since in “x : A , y : B(x)”, the term y is a generic
term of B(x). The problem is resolved (see [122]) by defining a new construct that can turn
a hypothetical judgment like x : A ` f(x) : B(x) into a context [x : A]f(x) : (x : A)B(x);
inference rules using this construct are called higher order inference rules (see [111]). With
this we obtain the elimination rule

g : Πa:AB(a) `M(g) type
[x : A]f(x) : (x : A)B(x) ` d(f) : M(λf) m : Πa:AB(a)

elim(d,m) : M(m)
elim-Π

.

We shall not use this construct in the following.

Remark 2.2.3.1 (Recursion, non-dependent elimination). [123, p.30] uses the al-
ternative terminology of dependent elimination and non-dependent elimination for “in-
duction” and “recursion” respectively. The explanation for this wording is: let T be a type
defined by induction, then:

1. The non-dependent elimination principle for T is defining a function f : T →M by
recursion.

2. If t : T `M(t) is a dependent type, “dependent elimination” means to define a term
f : Πt:TM(t).
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Before we come to inductive definitions at the end of this section about which we shall
say a few more words because of the central role they play in this thesis, we explicate
two sets of rules that each define not only an isolated element of the type theory but
whose definition involve all other types defined in the type theory: universes and rules for
equality.

2.2.3.3.8 Universes Universes generally are intended to formalize the idea of a total-
ity of objects. Näıve imagination tends to be somewhat rash in positing totalities of “all”
objects of some kind —such as all sets or all types— which repeatedly resulted in incon-
sistent systems: Russel’s paradox, consisting in the assertion (and simultaneous negation)
of the statement that the “set” {x | ¬(x ∈ x)} defined by unrestricted comprehension
contains itself, led to the development of ramified type theory in [108]. Similarly, the first
version of Martin-Löf type theory [88] was inconsistent since it entailed Girard’s paradox
since the judgment type : type is derivable in it.

More specifically, type : type is a strongly impredicative definition (see [100] for a discussion
of this definition) and as such at odds with most conceptions of constructive mathematics
and induction. Therefore it does make sense to consider a universe, such as Set, either
within some other sort like Set type (read: “Set is a type” as opposed to “Set is of
type type”) such that a noncircular positive definition within type becomes possible, or
(additionally) to define a hierarchy Set : Set1 (where Set type as well as Set1 type) were
both Set as well as Set1 are defined within type together with additional rules establishing
the relation Set : Set1.

2.2.3.3.8.1 Russel Universes The style of universes admitting the direct typing
relation Set : Set1 we have just explained is called Russel universe. The rules for a Russel
universe U are:

U type
form-U

and for every type under which U shall be closed, we need an introduction rule: for not
defining the empty type, we can require that it e.g. contains the type of natural numbers
by

N : U
intro-U

.

For closure under a type constructor K binding a family of types (such as Σ or Π)

A : U x : A ` B : U

K(A,B) : U
K-U

.
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Moreover, there is a cumulativity rule

A : U

A type
cum-U

.

In this thesis we will assume a hierarchy of two Russel universes Set and Set1, i.e. we
have now two versions of U which we denote by Set, and Set1. To negotiate the relation
between these universes, there are two further rules:

Set : Set1

intro-Set1
A : Set

A : Set1

cum-SetSet1
.

2.2.3.3.8.2 Tarski Universes The style of universes we are interested in this thesis
is however of a different kind. Tarski universes are not single set-like objects (of whatever
size) but certain families (see Section 1.3). As such, and assuming that they are definable by
an inductive- or constructive process, they are examples of inductive-recursive definitions;
in fact they are even the motivating example of inductive-recursive definitions and were
already part of Martin-Löf type theory as presented in [92]. The reason why one considers
Tarski universes instead of the seemingly simpler Russel ones are a number of type
theoretical disadvantages —e.g. with respect to subtyping and canonicity— of the latter;
nevertheless it is true that they are easier to use for other purposes, see [84] for a discussion.

A Tarski universe (U,T) (in Set) is understood as having as first component U : Set a set
of “codes” 9 representing elements contained by the universe, and a decoding function10

T : U→ Set sending a term u : U to the actual set that u encodes.

Formally, the definition of a Tarski universe proceeds (after we have simultaneously
introduced the constant symbols U, and T) by specifying the operations under which
one wants the universe to be closed. These are the premises of n introduction rules
C1 . . . Cn : Fam(Set) → Set. As abbreviation, we define the set of internal families in
(U,T) by IFam(U,T) := Σu:U(T(u)→ U), then for each 1 ≤ k ≤ n we give the introduction
rule

(u, t) : IFam(U,T)

CI
k(u, t) : U

intro-U
.

and a rule

Ck : Fam(Set)→ Set (u, t) : IFam(U,T)

T(CI
k(u, t)) = Ck(T(u),T ◦ t) : Set

rec-T
.

9Not to be confused with the codes that will define inductive-recursive definitions later on.
10This function T is often denoted by El in the literature.
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stating that T is defined by recursion on U.Of interest in this definition is the occurrence
of T : in the constructor CI

k : (u : U)(T (u) → U) → U , the expression T (u) occurs in
negative expression. Since in the definition of the pair (U, T ) only U appears in only
positive position, this definition —and inductive-recursive definitions generally— are called
half positive definitions ; we will return to this notion in Chapter 3 Chapter 5Chapter 6.
[89] and [92] also considers a hierarchy of universes (Ui,Ti) for i ∈ N with the two new
(i.e. additional to the rules stating that the (Ui,Ti) are universes) rules stating that each
Ui+1 contains a code for Ui, i.e.

ui : Ui+1 Ti+1(ui) = Ui

and rules stating that the hierarchy thus obtained is cumulative in the sense that

a : Ui

ki(a) : Ui+1

a : Ui

Ti+1(ki(a)) = Ti(a)

Which we can summarize by

U : (n : N))→ Set T : (n : N)→ U(n)→ Set

un : U(n) T n un = U(n)

k : (n : N)→ U(n)→ U(n+ 1) T(n+ 1)(k n un) = T n un

Martin-Löf does not give elimination rules for Tarski universes ([92][88][90, p.182]11).
The reasons for this were both, philosophical and technical: Martin-Löf liked to think of
MLTT as an open system that always can accommodate new type constructors while the
elimination rules must of course account for all constructors under which the universe is
supposed to be closed. On the technical side, a rule in natural deduction calculus must
not contain transfinitely many premises which implies that in case one wants to formulate
closure under transfinitely many constructors, or a transfinite hierarchy of universes, one
must package the transfinitely many premises into a finite number by, e.g, internally
indexing the required sequences; this has been done by other authors (see, [101]). The
elimination rule (see e.g. [64, §2.1.6]) for a single universe closed under the set operation
C : Fam(Set)→ Set is given by:

M : U→ Set1 (u0, t0) : IFam(U,T) ` k : M(CI(u0, t0)) u : U

elim(M, (u0, t0), u) : M(u)
UTelim

.

We close this paragraph with a remark on a motivation of universes relevant to induction-
recursion and another remark on the use of universes in constructive set theory.

11In the last mentioned reference the rules for universe cumulativity are called “elimination rules”.
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Remark 2.2.3.2 (Reflection Principles). Universes are (or are closely related to)
reflection principles[79]. The latter were invented by Gödel in context of ZFC set theory as
a means to reduce incompleteness. The name “reflection principle” reflects the intention
that the totality of all sets (which is inconsistent) should contain a sets itself satisfying the
axioms of ZFC: Gödel believed that an axiom asserting the existence of such a set would
be justified12 by the fact that we believed the would-be set of all ZFC sets to satisfy this
axiom in first place.

This idea of reflecting structure of a containing totality into a contained object is also
active in the definition of the system DS′ Section 3.3 for induction-recursion.

2.2.3.3.9 Rules for Equality: Identity Type In addition to judgmental equality
(see Paragraph 2.2.3.3.2), there is one more notion of identity as a type (family). The
so-called (intuitionistic) identity type x y : A ` IdA(x, y) type of a type A : type is actually
a type family which has as introduction rule

x : A

reflx : IdA(x, x)
intro-Id-A

which can semantically be regarded as the least equivalence relation on A. We sometimes
omit the subscript and write refl in place of reflx (in particular we do so in case we apply
the rules in Paragraph 2.2.3.3.12).The assorted elimination-, and computation rules are

x, y : A, p : IdA(x, y) ` C(p) type
z : A ` c(z) : C(reflz) a, b : A q : IdA(a, b)

elimIdA(x, y, p, C(p), z, c(z), a, b, q) : C(q)
elim-Id-A

x, y : A, p : IdA(x, y) ` C(p) type z : A ` c(z) : C(reflz) a : A

elimIdA(x, y, p, C(p), z, c(z), a, a, refla) = c(a) : C(refla)
comp-Id-A

.

In case there is a p : IdA(x, y), then x and y are also called to be propositionally equal. We
will also use the notation x = y for propositional equality and indicate whether we mean
propositional equality of judgemental equality explained in Paragraph 2.2.3.3.2.

2.2.3.3.10 Reasoning About Propositional Equalities

2.2.3.3.10.1 Dependent Pattern Matching For defining a function on a dependent
type, it is desirable to be able to specify the function only on constructors of the type as
opposed to using the elimination rule. Unfortunately this is not in general possible without
the assumption of further axioms (such as UIP, see Paragraph 2.2.3.3.12, or Streicher’s

12This justification strategy is called “intrinsic justification”.
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axiom K, see [55] and [118]). Generally, assuming pattern matching for all dependent
types implies a form of extensionality, see [29]. In some cases it is however possible to
define functions by pattern matching without assuming further axioms (see [26]), and we
will freely do so subsequently. One example of this are certain functions for reasoning
about propositional equalities which we will define in the following paragraph.

2.2.3.3.10.2 Id as an Equivalence Relation, Substition, Congruence For the
purpose of reasoning with propositional equalities (which we denote here by =) we shall
use the following functions. Since we want to give this definitions for small-, and for large
sets, we let a, b, c be either 0 or 1.

The introduction rule of the identity type says that the propositional-identity relation is
reflexive. Moreover, it is an equivalence relation since we have:

Transitivity:

trans : {A : Seta}{x y z : A} → x = y → y = z → x = z

trans refl refl = refl .

Symmetry:

sym : {A : Seta}{x y : A} → (p : x = y)→ (y = x)

sym refl = refl .

Every function is a congruence with respect to the equivalence relation of propositional
equality:

cong : {A : Seta} → {B : Setb} →
(f : A→ B)→ {x y : A} → x = y → fx = fy

cong f refl = refl .

We have a substitution function:

subst : {A : Seta} → (B : A→ Setb)→
{x y : A} → x = y → Bx→ By

subst P refl p = p .

There are many more such functions that we use in the Agda files but elide here.
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2.2.3.3.11 Function Extensionality The rule for function extensionality states that
functions are propositionally equal (see Paragraph 2.2.3.3.9) if they send propositionally
equal arguments to propositionally equal values:

p : Πx:AIdB(x)(f(x), g(x))

ext(f, g, p) : IdΠx:AB(x)(f, g)
ext-Π

.

Notice that some of the Agda formalizations we rely on make use of funcion extensionality.
This is the case for most proofs concerning preservation of semantics in Chapter 5 and
Chapter 6.

2.2.3.3.12 Rules for Extensional Equality The rules for IR (see Chapter 3) ex-
tending those for MLTT require some rules for extensionality [40, p.6]

A type x : A y : A p : IdA(x, y)

x = y : A
eq-reflection

A type x : A y : A p : IdA(x, y)

p = refl : IdA(x, y)
uip

.

Lemma 2.2.3.3 (Extensionality implies function extensionality). The previous two
rules imply that the types idΠx:AB(x)(f, g) and Πx:AIdB(x)(f(x), g(x)) are equivalent (see [40,
p.6], and [123] for a definition of equivalence of types).

Some of the Agda formalizations we rely on make use of UIP. We believe that this is just
a choice of convenience and not of necessity and that with (considerable) more work it is
possible without this assumption but we have not checked this.

2.2.4 Inductive Types
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2.2.4.1 Introduction: What Exactly is now an Inductive Definition?

We said that MLTT is the appropriate theory to pursue constructive mathematics since its
types are inductively13 defined. Then we proceeded to write down a list of type definitions
the choice of whose members is so far not justified by anything but their semblance to
popular standard operations of set formation. Informal mathematics would proceed from
here by producing further definitions in prose style using types from the list we have
given. Formal mathematics requires the production of further definitions however to
follow the same schema as that for the standard operations above, i.e. to consist of a
formation-, introduction-, elimination-, and elimination rule. This raises the questions 1)
which types can we possibly define 2) in which sense are the standard examples above not
only standard but moreover canonical or universal, 3) can we formally define how a rule
defining a type must look like?

All these questions have satisfying answers that can be found in the well developed
literature on the topic. There are at least three possible ways to axiomatize the notion of
inductive definition:

1. Martin-Löf [89] introduced a type of wellorderings —today usually called a W-type—
formalizing constructively the notion of a wellfounded set. The axiom of foundation
of ZF states that the element relation for sets is acyclic and loc.cit. implements
this in form of trees which are exactly acyclic connected graphs. We will see in
Section 2.2.4.5 how this answers 2) and 3) above.

2. On the other hand, one can explicitly write down a sequence of constructors
capturing an intuitive notion of inductive definition that prima facie resembles
rather a definition of an ordered sequence of sets of trees. This answers 1) above.

3. On the third hand, one can define an inductive type as being the initial algebra —if
it exists— for an endofunctor where one is left with the task of specifying a class of
endofunctors that really do have initial algebras. This essentially takes the standard
operations as canonical-by-definition and as such addresses 2) and 3).

In the subsequent subsections we will discuss the three equivalent conceptions of inductive
definitions. The questions 1)2)3) are for us not of historical interest but are mutatis
mutandis relevant for axiomatizations of inductive-recursive definitions as well where they
have not yet found as satisfying answers as in the simpler case of inductive types.

2.2.4.2 W-types

Like the types in the preceding subsection, W-types were introduced (under the name
wellfounded types) in [88]. W types are often also called tree types since the introduction
rule can be read as a schema how to construct a tree inductively: for a node a : A, the set
B(a) is regarded as the set of possible ingoing edges into the node a and the constructor
sup a t ’grafts’ on every branch x : B(a) of the tree under construction the tree t(x) to

13If we bracket the question about coinduction for now.
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obtain a new tree. W(A,B) is then the set of all possible trees with A as set of nodes and
the ’branching signature’ B that can be obtained in this way.

x : A ` B type

WAB type
form-W

x : A ` B type x : A ` t : B → WAB

sup a t : WAB
intro-W

w : WAB `M(w) type
a : A, t : B → WAB ` m : M(sup a t) x : WAB

elim(M,m, x) : M(x)
elim-W

w : WAB `M(w) type a : A, t : B → WAB ` m : M(sup a t)

elim(M,m, sup a t) = m : WAB
comp-W

W types can for instance be used to formulate the well-known n-th number classes.

Example 2.2.4.1 (Constructive number classes and ordinal notation systems).
One can take the cardinality of the set N of natural numbers which is usually denoted by
ℵ0 —or ω0 if it is meant as an ordinal— as basis of the “induction”

ℵα+1 = ωα+1 = least cardinal greater than ℵα
ℵα = ωα = sup{β | β < α} .

where ωα is called the α-th number class (see, [68, p.30 ]). We have put the word
’induction’ in quotation marks since it is prima facie not clear that this definition is
inductive in the sense of constructive mathematics; e.g. determining the supremum of
an infinite set is not in general possible by induction. The underlying set of the second
number class ω1 can for example be regarded as the set of all countable ordinals (see also
[42, p.9]). Finiteness of members of N can be defined by supplying a system of notations
for them. For N this is accomplished by representing an element by the constructors14

zero and suc. Likewise, we can reduce the problem of finding a system of notations for the
elements of the ordinals ωα to exhibiting the definitions of the the latter as an inductive
definition. The second number class ω1 for example arises as initial algebra of the functor

14Notice that writing a (natural) number in a certain basis is a different problem —namely that of
finding a convenient system of notation— while we are here only interested in finding any notation.
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F (X) := 1 +X + (N→ X)) .

The second number class has been the subject of study of Church [25] and the encoding of
ordinals in the style of loc. cit. is sometimes called church encoding.

More generally, the n-th number classes O n can be obtained as the sequence of iterated
W-types

O : N → Set

O n = W (Fin n) (TO n)

where

TO : (n : N) → Fin n → Set

TO zero n = ∅
TO (suc n) zero = W (Fin n) (TO n)

TO (suc n) (suc m) = TO n m .

In particular O 1 = 1, O 2 = N, O 3 = Kleene’s second number class [74].

Ordinal notation systems are inductively defined systems of denotations for (certain)
ordinals [74]. Ordinals for which there is a notation are also called recursive ordinals or
computable ordinals where ’recursive’ and ’computable’ means here to be computable by
an algorithm. Since a notation for an ordinal is a finite word over a finite alphabet (for
example the alphabet {zero, suc}, (well-formed) words over which are natural numbers —
or rather numerals15), the set of all ordinal notations.

Ordinal notation systems —for which the above defined number classes are examples—
play an important role for determining (lower bounds of) the proof-theoretical strength
of theories (see Section 3.1.1) in that the theory in question is used to define an ordinal
notation system attached to this theory. In other words, the ordinal notations are here
those ordinals that are computable by the theory in question, and the proof-theoretical
strength of the theory (also called its proof theoretical ordinal) is (roughly) the supremum of
those ordinals (it supplies notations for, and) up to which the theory can prove transfinite
induction.

Remark 2.2.4.2 (Constructive Set Theory). Another application of W-types in con-
junction with Tarski universes (see Subparagraph 2.2.3.3.8.2) is constructive set theory.
[6] uses a universe (U,T) to interpret constructive set theory into Martin Löf type theory
by considering the W-type (see Section 2.2.4.2) W(U,T) of “transfinite types”.

15By definition, a natural number is a term n : N, the terminology of ’numeral’ is used to indicate that
this n is explicitly given as the application of a specified, finite member of applications of suc to zero.
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2.2.4.3 W-types as Normal Forms of Inductive Types

Even though W types explained in the previous subsection doubtlessly match the intuition
of what an inductively type should be, one might come upon the idea that there is a
more general notion of inductive type consisting of a repetition of the schema ’(a : A)→
(B(a)→ X)→ X’.

Definition 2.2.4.3 (Inductive type (type theoretic definition)). An inductive type
is defined by a finite sequence of constructors

C1 : (a1
1 : A1

1)→ (f 1
1 : B1

1(a1
1)→ X)→ (a1

2 : A1
2(a1

1))→ (f 1
2 : B1

2(a1
1, a

1
2)→ X)→

· · · → (a1
n1 : A1

n1
(a1

1, . . . , a
1
n1−1))→ (f 1

n1 : B1
n1(a1

1, . . . , a
1
n1)→ X)→ X

C2 : (a2
1 : A2

1)→ (f 2
1 : B2

1(a2
1)→ X)→ (a2

2 : A2
2(a2

1))→ (f 2
2 : B2

2(a2
1, a

2
2)→ X)→

· · · → (a2
n2 : A2

n2(a2
1, . . . , a

2
n2−1))→ (f 2

n2 : B2
n2(a2

1, . . . , a
2
n2)→ X)→ X

...

Ck : (ak1 : Ak1)→ (fk1 : Bk
1 (ak1)→ X)→ (ak2 : Ak2(ak1))→ (fk2 : Bk

2 (ak1, a
k
2)→ X)→

· · · → (aknk : Aknk(a
k
1, . . . , a

k
nk−1))→ (fknk : Bk

nk(a
k
1, . . . , a

k
nk)→ X)→ X

where

• Aij may depend on terms of Ail for l < j.

• Bi
j may depend on terms of Ail for l ≤ j.

• Aij and Bi
j must not depend on any f il .

• The type of Ci may depend on C l for l < i.

An elimination rule would have as inductive hypothesis the obvious judgements

· · · ` m1 : M(C1a1
1f

1
1 . . . a

1
n1f 1

n1)

...

· · · ` mk : M(Ckak1f
k
1 . . . a

k
nkf

k
nk)

There is however an algorithm to compute a normal form for every inductive definition
reducing it to the basic form of a W type. This reduction crucially relies on the constraints
on dependency between the arguments of the constructors of inductive types together
with the universal properties of (dependent) sums allowing to commute non dependent
summands.
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Remark 2.2.4.4 (Normal forms for inductive definitions are W-types). One can
encode every inductive definition Definition 2.2.4.3 as a W-type: since the types of the
aij must not depend on any f il , we can exchange the order of the occurrence of the typing
judgments involving these expressions; more precisely, we can transform Ci to:

Ci : (ai1 : ai1)→ (ai2 : Ai2(ai1))→ (aini : Ain1
(ai1, . . . , a

i
ni−1))→

· · · → (f i1 : Bi
1(ai1)→ X)→ (f i2 : Bi

2(ai1, a
i
2)→ X)→ · · · → (f ini : Bi

ni(a
i
1, . . . , a

i
ni)→ X)→ X

Next we can sum the arguments in the following way

Ci : Σ(. . . (Σ(Σ(ai1 : ai1)(ai2 : Ai2(ai1))) . . . (aini : Ain1
(ai1, . . . , a

i
ni−1)) . . . )→

Σ(. . . (Σ(Σ(Bi
1(ai1))(Bi

2(ai1, a
i
2)) . . . (Bi

ni(a
i
1, . . . , a

i
ni)) . . . )→ X)→ X

such that the type of Ci is a already a constructor type for a W-type. We abbreviate this
type by dom′Ci. Finally we sum the series of constructors obtained in this way, to obtain
a single constructor for a W-type

C : (Σdom′C1(dom′C2(. . . (Σdom′Ck−1dom′Ck) . . . )→ X)→ X .

In the above some care is to be taken what we mean by “encode [inductive definitions]”.
While it is true that the above procedure works without further assumption, we obtain from
it merely an injective map from the set of inductive definitions to the set of W-types; e.g.
in case n = 2, the maps (B → A)× (B′ → A)→ (B + B′ → A) and back, are given by
sending (f, g) 7→ [f, g] 7→ (inl[f,g], inr[f,g]). However, the intended roundtrip starting from
the coproduct map h : B + B′ → A, would be h 7→ (inlh, inrh) 7→ [inlh, inrh], but the latter
function is not in general equal to h unless we assume for example function extensionality
(see Paragraph 2.2.3.3.11).

2.2.4.4 The Equivalence between Initial Algebras and Type Definitions

The remaining way to characterize inductive definitions is by construing them as initial
algebras for a sufficiently general form of endofuctor, i.e. without the presumption that
such an endofunctor is defined by certain constructors we have specified beforehand.
This amounts to solving the problem of giving a more conceptual description of which
endofunctors (on Set) should have initial algebras.

Before we can enter this discussion, we need to explain how type definitions by introduction-
and elimination rules can be expressed as initial algebras for endofunctors on Set. We
take here the (so far generic) example of W-types.
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2.2.4.4.1 Formation- and Introduction Rule From the premise x : A, t : B(x)→
W A B of the introduction rule, we define the polynomial functor (see Definition 1.2.4.1)
whose action on objects is P : X 7→ Σa:A(B(a)→ X) by sending a set X to the set being
the Σ-type obtained from summing the types in the premise where all occurrences of the
type to be defined (i.e. W A B) is replaced by X.

We assume that the endofunctor obtained in this way has an initial algebra which we
denote by W A B.

The introduction rule supplies the algebra map in : P (W A B)→ W A B since an element
(x, t) : P (W A B) is an instance of the premise of this rule, such that we can define
in(x, t) := sup(x, t).

Conversely, if we have an initial algebra for a polynomial functor, we can introduce a
constant symbol for it. Evaluating this functor in the initial algebra yields the set of all
ordered pairs being terms of the types in the premise of an introduction rule. The algebra
map applied to one such pair (x, t) gives a term which we denote by sup(a, t).

2.2.4.4.2 Elimination Rule For interpreting the premise of the elimination rule, we
interpret the judgment defining the motif

w : WAB `M(w) : Set

by the morphism proj1 : Σw:WABM(w)→ WAB. With M := Σw:WABM(w), the judgment

x : A, t : B(x)→ W A B ` d : M(sup(a, t))

is encoded by the set P (M), and there is the map P (proj1) : P (M)→ P (W A B). Then,
if we assume a term w : W A B, the conclusion of the elimination rule gives us a term
elim(x, t, d, w) : M(w) which defines a map s : W A B →M . Thus we can define the map
a := s ◦ in ◦ P (proj1) : P (M)→M making the diagram

P (M) a //

P (proj1)

��

M

proj1
��

P (WAB) in //WAB

.

commute, i.e. the elimination rule is encode by the statement that M carries a P -algebra
structure.

Conversely, assuming that M carries a P -algebra structure, initiality of W A B implies
via Lambeks’s lemma (see Lemma 1.2.3.2) that proj1 : M → W A B has a section which
evaluated in w : W A B yields a term of M(w) which satisfies the conclusion of the
elimination rule.
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2.2.4.4.3 Computation Rule The computation rule, finally is equivalent to the
statement that s is a P -algebra homomorphism.

? ? ?

Having seen that initial algebras for polynomial endofunctors correspond to the rules
defining W-types and thus —via the reduction in Remark 2.2.4.4— to inductive definition
in the type theoretical sense (as defined in Remark 2.2.4.4), it is natural to ask whether
initial algebras for (general) endofunctors on Set correspond to a more general notion of
inductive type that can be characterized in MLTT. As we will recall in the next paragraph,
this question has been answered in the negative.

2.2.4.4.4 Strict Positivity Inspired by the following informal definition

Terminology 2.2.4.5 (Inductive definition (functorial definition)). An inductive
definition of a set is given by an endofunctor on Set definable in a metatheory which is a
constructively acceptable version of ZFC having an initial algebra.

Dybjer [36] established that all inductive definitions in the sense of being defined by an
initial algebra of an ’admissible endofunctor’ are equivalently W-types; these results in
[36] were strengthened [4] to what is called there strictly positive types which subsume
nested inductive- and coinductive types.. As an exact rendition of the notion of admissible
endofunctor, loc.cit. uses the notion of a strictly positive endofunctor.

The idea is that an endofunctor F is strictly positive if it is defined from the standard
operations for set formation, i.e. for a set X, the set F (X) must iteratively be constructed
from finite (possibly empty) sums, finite (possibly empty) products, and —so one is
tempted to add– function types. In the last case of the constructor for function types,
however, special care is to be taken: the term “strictly positive” means to indicate that
in the type expression F (X), the variable X must not occur to the left of ’→’; there is
also a weaker notion of positivity were X may occur only to the left of an even number of
→ symbols such as in (X → 2)→ 2. To see why this constraint is necessary, we recall
Lambek’s theorem (see Lemma 1.2.3.2), X being an initial algebras for F implies that
there is an isomorphism F (X) ' X, and thus any reasonable definition of F should not
try to enforce an impossible isomorphism.

More specifically, the constraint of strictly positive occurrence is motivated by Cantor’s
theorem stating that there is no ZF set isomorphic to its power set, in symbols there is no
X such that X ' X → 2 and thus admitting of X → 2 as a possible value of F in X would
mean that the resulting type theory has no model in ZF. A more constructively charged
example (than Cantor’s theorem) why one may wish to rule out non strictly-positive
definitions that double negation of a proposition is intuitionistically not equivalent to
the proposition itself, i.e. since negation is defined as ¬X := (X → ⊥), then ¬¬A is
intuitionistically not equivalent to A.

A category theoretic rendering of [36] (that strictly positive type definitions are equivalent
to W types) is given in [45], namely that the class of polynomial functors is the least class
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of functors containing the pullback functors and their adjoints and which is closed under
composition. In particular, this more abstract gloss becomes available only if inductive
definitions are closed under composition; that they are we will recall in Section 2.2.4.6 for
which we need some more definitions given in Section 2.2.4.5.

2.2.4.5 The Equivalence of Inductive Types, Families of (opposite) Sets, and
Containers

The set Ind of all inductive definitions (as defined in Definition 2.2.4.3) can itself be defined
inductively. Each code c : Ind for an inductive definition defines an endofunctor J c K on
Set having an initial algebra by Corollary 1.2.4.3.

Remark 2.2.4.6 (The inductive type of inductive definitions). There is an induc-
tive type Ind of all inductive definitions defined by the constructors

base : Ind

sum : (A : Set)→ (A→ Ind)→ Ind

dsum : Set→ Ind→ Ind

One can recursively define a function16 J K : Ind→ Set→ Set by

J base K X := 1

J sum A f K X := Σa:AJ f(a) KX
J dsum A c K X := Σk:A→XJ c KX .

There are mutual semantics preserving translations:

Lemma 2.2.4.7 (Translation Ind→ Cont).

tr : Ind→ Cont

tr(base) := (1, λ → 0)

tr(sumAf) := (Σa:A(proj1tr(f(a))), λ(a, x)→ (proj2tr(fa))x)

tr(dsumAc) := (proj1tr(c), λx→ A+ (proj2tr(c))x)

Proof. Let X : Set.

J tr base KX = J 1, λx→ 0 KX
= Σx:1(0→ X)

=' 1

= J base KX

16We use the notation J K also for other “decoding functions” and let the context indicate which one is
meant.
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J tr sumAf KX = J (Σa:A(proj1tr(f(a))), λ(a, x)→ (proj2tr(fa))x) KX
' Σ(a,x):Σa:Aproj1(tr(f(a)))((proj2(tr(f(a)))x)→ X)

' Σa:AΣproj1(tr(fa))((proj2(tr(f(a)))x)→ X)

= Σa:AJ tr(f(a)) KX
' Σa:AJ f(a) KX
= J sumAf KX

J tr(dsumAc) KX = J (proj1tr(c), λx→ A+ (proj2tr(c))x) KX
= Σx:proj1tr(c)((A+ proj2tr(c))x→ X)

' Σx:proj1tr(c)Σk:(A+proj2tr(c))x→X1

' Σx:proj1tr(c)Σk:A→XΣk′:proj2tr(c)x→X1

' Σk:A→XΣx:proj1tr(c)(proj2tr(c)x→ X)

' Σk:A→XJ trc KX
= Σk:A→XJ c KX
= J dsumAc KX .

Lemma 2.2.4.8 (Translation Cont→ Ind).

rt : Cont→ Ind

rt(S, T ) := sum S(λ s→ dsumT (s)(base))

Proof. Let X : Set.

J rt(S, T ) KX = J sum S(λ s→ dsumT (s)(base)) K
= Σs:SΣk:T (s)→XJ base K
' J (S, T ) KX .

Corollary 2.2.4.9. Cont is a retract of Ind with retraction tr.

Proof.

tr(rt(S, T )) = tr(sum S(λ s→ dsumT (s)(base)))

= (Σs:S(proj1(tr(dsumT (s)(base)))), λ(s, x)→ proj2(tr(dsumT (s)(base)))x)

= (Σs:S(proj1(1, λx→ T (s) + 0)), λ(s, x)→ proj2(1, λx→ T (s) + 0)x)

' (Σs:S1, λs→ T (s))

= (S, T )

Remark 2.2.4.10. Corollary 2.2.4.9Lemma 2.2.4.7, and Lemma 2.2.4.8 together justify
to call the containers tr(c) a normal forms of the inductive definition c. (Compare this
with Remark 2.2.4.4.)
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2.2.4.6 Composition of Inductive Definitions

A central point of this thesis will be composability for inductive-recursive definitions which
we will begin to discuss in Chapter 4. In this section we will recall the special case that
inductive definitions are composable. The statement that they do compose, as well as
elementary description of the composition operation as such are well known (see e.g. [45]),
and we will give a characterization focusing on two components that will be important for
our generalizations later on: the bind operation (defined in Definition 1.2.5.3), and power
objects (defined in Definition 1.2.1.1). To do so, we make use the semantical equivalence
between Cont and Ind (see Section 2.2.4.5), and show composability for Cont.

Definition 2.2.4.11 (Composition for containers).

◦ : Cont→ Cont→ Cont

(S, P ) ◦ (U, T ) := (Σs:S(P (s)→ U), λ(s, f)→ Σx:P (s)T (f(x))

In container notation (J (S, P ) K U, λ(s, f)→ J P (s), λx→ 1 K (T (f(x)).

Lemma 2.2.4.12 (Container composition commutes with container evaluation).
In the situation of the previous definition we have isomorphisms J (S, P ) ◦ (U, T ) K '
J (S, P ) K ◦ J (U, T ) K.

Since Cont is by definition Fam(Setop), we can use the bind operation

>>= : Fam(D)→ (D → Fam(E))→ Fam(E)

(U, T ) >>= h = ((µFam ◦ Fam→)(h))(U, T )

= µFam(U, h ◦ T )

= (Σu:Uproj1(h ◦ T )(u), λ(u, k) 7→ proj2((h ◦ T )u)(k))

and find the following corollary

Corollary 2.2.4.13 (Composition of containers in terms of bind and powers).
For (S, P ) (U, T ) : Cont we have

(S, P ) ◦ (U, T ) = (S, P ) >>= e(U,T )

for the map

e(U,T ) : Set→ Fam(Set)

e(U,T )(X) := (X → U, λh→ Σx:XT (hx)) .

This map e(U,T ) essentially sends a set S : Set to the power of the family (U, T ) by this
set S. It is, however, important to take the word ’essentially’ literally here: in Section 1.3
we defined an operation

−→Fam :
(
S : Set

)
→ Fam D → Fam (S → D)

S −→Fam (A,P ) = (S → A, g 7→ P ◦ g)
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but the resulting object is —for an arbitrary D— only a power in the category of elements(
ΣD : Set1

)
(Fam D) of the functor Fam17. In the latter category one can show that there

is an isomorphism

(Set/U, (X → U, λh→ (proj2 : Σx:XT (hx)→ U)))) ' (X → Set, (X → U, λh→ T ◦ h)) .

Remark 2.2.4.14 (Composition and initial algebras). The fact that one can com-
pose inductive definitions raises the question about the effect of composition of the types
they define via initial algebra semantics, i.e. given inductive definitions I, J, and K = I ◦J ,
how do their initial algebras µJ I K, µJ J K, and µJ K K relate? [14] provides a collection of
general elementary answers to this question in the situation of more general endofunctors.
We are not going to pursue this in this thesis but leave it for future work.

? ? ?

2.3 Conclusion and Outlook

In this subsection we have presented W types as a universal coding scheme for inductively
defined types in MLTT. It is however not universal enough since we have already seen
definitions in MLTT which are not covered by it: Tarski universes (see Paragraph 2.2.3.3.8)
and identity types (see Paragraph 2.2.3.3.9). This is because both definitions are not
defining single types U : Set but families (U, T : U → Set) of types. It is not possible to
construe these families as e.g. a collection of independent W types since for example in
the definition of a Tarski universe T cannot properly be accommodated and the definition
of U depends on values of T which in turn refer to terms of U . Induction-recursion that
we start to present in the next chapter solves such problems by providing a more general
coding schema that can define families (U, T ) : Fam(D) (for arbitrary D : Set1).

17This category (where we omit the obvious definition of the morphisms) is equivalent to the comma
category i/Set1 of the inclusion i : Set→ Set1 )see Remark 1.3.0.8).
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In this chapter we will review the basic theory of induction-recursion as developed by
Peter Dybjer and Anton Setzer. We will start with an overview on the literature on
the topic, continue with an explanation of the basic motivational ideas (predicativity,
universes à la Tarski). We then explain one [40] of two (a priori) different axiomatization of
induction-recursion by (large) sets of codes, their decoding to (endo)functors on categories
of families (DS functors), give some examples and a discussion of DS functors. We close
this chapter by reviewing another axiomatization of induction-recursion given by Dybjer
[38] which historically precedes their first-mentioned one but which is more important for
the other variants of induction-recursion we present later in Chapter 5 and Chapter 6.
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3.1 Introduction

We will begin this introductory section by briefly commenting on the (in our opinion)
major articles about introduction-recursion available so far (see Section 3.1.1), we will
then (in Section 3.1.2) motivate induction-recursion from the viewpoint of predicativism
(which we already briefly mentioned in the discussion of universes in Paragraph 2.2.3.3.8)
supplemented by reflection principles (see, Remark 1.1.0.15), we will also give a second
motivation about extending techniques for defining inductive set to inductive-recursive
families (see Section 3.1.3).

3.1.1 Bibliographic History of Induction-Recursion

Universes in type theory which are the motivating examples for induction-recursion are
described in:

1. Intuitionistic type theory, Per Martin-Löf. Defines a Tarski universe, the (probably
first) example of an inductive-recursive definition. [88].

2. Predicative type universes and primitive recursion, Nax Paul Mendler, 1991. [94].

Indexed types, like families of types, consist of a type together with a function from
this type to Set (or another universe of type). The difference to families as defined by
induction-recursion is, firstly, that one considers collections of types indexed by a fixed
type while for families one considers collections where the indexing type is not fixed,
and, secondly, for inductive indexed types, the indexing type does not need to be an
inductively defined type, i.e. the indexing function is not defined by recursion on the
indexing type, but the fibers of the indexed types are instead defined inductively. An
example of an indexed type is the identity type (see Remark 3.2.1.13). Indexed containers
are generalizations of containers ’(A,B)’ carrying additional indexings in two sets; indexed
containers define endofunctors on the slice categories Set/X for small sets X and via
initial algebra semantics define indexed types.

1. Inductive sets and families in Martin Löf’s type theory and their set theoretic
semantics, Peter Dybjer, 1991. [35].

2. Inductive families, Peter Dybjer, 1994. [33].

3. Indexed containers, Thorsten Altenkirch, Neil Ghani, Peter Hancock, Conor McBride,
and Peter Morris, 2015. [8].

The next-mentioned three papers define what is usually understood by the term induction-
recursion: the object of inductive-recursive definitions are families (U,T) ∈ FamD (for
arbitrary large D : Set1) where U and T are defined simultaneously. The fourth paper
introduces indexed inductive-recursive definitions — an extension of induction-recursion
where not a family of types but an indexed family of types (Ui, Ti : Ui → Di)i:I is defined;
an important example of such a definition is Martin-Löf’s propositional identity type.

4. A general formulation of simultaneous inductive-recursive definitions in type theory,
Peter Dybjer, 2000. [32]. The first general formulation of induction-recursion.
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5. A finite axiomatization of inductive-recursive definitions, Peter Dybjer and Anton
Setzer, 1999. [38].

6. Induction-recursion and initial algebras, Peter Dybjer and Anton Setzer. [40].
Defines a large set of codes DS D E each of which encodes an inductive-recursive
definitions, together with an initial-algebra semantics and a set-theoretical model.

7. Indexed induction-recursion, Peter Dybjer and Anton Setzer, 2006. [39].

There are several possibilities how to advance the theory of induction-recursion regarding
scope and expressibility of inductive-recursive definitions.

8. Fibered data types, Neil Ghani, Lorenzo Malatesta, Fredrik Nordvall Forsberg,
Anton Setzer, 2013. [112]. The category Fam(Set) is a fibered category, and Dybjer-
Setzer induction-recursion recursion defines certain families. In this paper, this is
generalized to a version defining elements of more general fibered categories in place
of Fam(Set).

9. Small induction-recursion, Peter Hancock, Conor McBride, Neil Ghani, Lorenzo
Malatesta, Thorsten Altenkirch, 2013 [58]. It is shown that the set DS D E of
Dybjer-Setzer codes for induction-recursion for small sets D, E : Set (as opposed
to large sets D E : Set1) defines exactly inductive types aka polynomials (see
Section 1.2.4). From the equivalence of small induction-recursion and polynomials, a
notion of morphisms between codes is derived from the existing notion of morphisms
between polynomials.

10. Positive inductive-recursive definitions, Neil Ghani, Lorenzo Malatesta, Fredrik
Nordvall Forsberg, 2013. [50]. Dybjer-Setzer codes define endofunctors on the
categories FamD where D is a discrete category. This is generalized here to non-
discrete D. A notion of morphism between codes is considered.

11. Containers, monads, and induction-recursion, Neil Ghani, Peter Hancock, 2016.
[48]. (A previous version is titled “an algebraic foundation and implementation of
induction-recursion”). Develops decoding of DS codes in terms of initial algebra
semantics of the large inductive type DS D E. Presents an equivalent axiomatization
of DS by encoding σ and δ in a single constructor σδ.

12. Variations on inductive-recursive definitions, Neil Ghani, Conor McBride, Fredrik
Nordvall Forsberg, Stephan Spahn, 2017. [52]. Defines systems of induction recursion
where codes are composable.

On the proof theory of inductive-recursive definitions.

13. Proof Theory of Martin-Löf Type Theory – An Overview, Anton Setzer, 2004. [114]

14. Extending Martin-Löf Type Theory by one Mahlo-Universe, Anton Setzer, 2000.
[113].

15. Proof Theory and Martin-Löf Type Theory, Anton Setzer, 2007. [115].

The theory of inductive-inductive definitions is related to inductive recursive definitions.
In both definitional two components are defined simultaneously. ¡while in case of induction-
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recursion, one component is inductively defined and the other by recursion, in case of
induction-induction both components are defined by induction. Also on the level of the
definition of the definitional principles themselves there are relations: for example the sets
of codes for positive inductive-recursive definitions (mentioned above in this bibliography)
are definable by induction-induction.

16. Inductive-inductive Definitions, Fredrik Nordvall Forsberg, Anton Setzer, 2010. [99].

17. A categorical semantics for inductive-inductive definitions, Thorsten Altenkirch,
Peter Morris, Fredrik Nordvall Forsberg and Anton Setzer, 2011.[9].

18. Inductive-inductive definitions, Fredrik Nordvall Forsberg. [98].

3.1.2 Motivation I: Universes, Reflection Principles, and Pred-
icative Definitions

Martin-Löf [88] intends the type theory defined in this paper to be a “full scale system for
formalizing intuitionistic mathematics as developed, for example, in the book by Bishop”
(see [18] for a newer edition of that book). This means in particular that it should be a
formalization of set theory. Since universes and large cardinals whose existence is not
provable in plain MLTT are a part of set theory as currently pursued, it is a natural
question to which extend these extension can be formalized in MLTT (or extensions thereof)
as well. The notion of a universe closed under the set-formers for dependent sums-, and
products, as well as inductive definitions were formalized already in the first version of
MLTT. This did however not include notions of universes closed under universe-formation
as occurring in the definition of Mahlo cardinals, or other closure properties induced
by large cardinal axioms. We already mentioned that one way to justify such kinds
of universes are reflection principles Remark 1.1.0.15. The idea of reflection principles
also explicitly informs one axiomatization of induction recursion that we will recall in
Section 3.3 and we already explained what characterizes inductive/constructive definition
and we will discuss a further aspect that enters with the passage to induction-recursion
in the next paragraph Section 3.1.3. Before coming to this, we briefly mention one
further “taxon” in the collection of properties characterizing definitional principles to
which induction-recursion, or more specifically the formulation of Mahlo universes 1 in
type theory via induction-recursion is often assigned to; we are talking about predicativity :

According to Bertrand Russell’s conception [109](see also Poincaré [103]), a definition (of
a totality) is predicative if an element of this totality is conceived not by reference to the
totality it belongs to (and impredicative else). Unfortunately, taken in full generality, this
is an empty concept: can we define the empty set predicatively? We would need to be
able to discuss an element of it without reference to the (empty) totality, but we cannot
express the idea of ’no element’ without referring to the absence of any object which is
the only characterization of the empty set we know of. Also a natural number is defined
by being reachable from zero by the successor function in a finite number of steps; but

1an important example of a kind of universe that can be formulated by induction-recursion but which
is not definable in the original version of MLTT in [88].
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what is “a finite number” of steps? Well, it is synonymously a natural number of steps.
More generally we cannot define any object in this way.

Predicativity as it is conventionally understood is thus rather a definitional principle
starting from an accepted object (such as the natural numbers), together with an admissible
operation of predication —usually formalized as a power-set operation, i.e. either N→ 2
a term (i.e. a “predicate” or proposition) of which is a decidable subset, or N→ U where
U is a universe in need of its own justification— that may only be applied a finite number
of times. In this respect, the idea of predicative definitions is similar to that of induction.
This can also be seen by making a connection to the complementarity of introduction-,
and elimination rules in type theory: for example the induction axiom of Peano arithmetic

—asserting that one can prove propositions on the natural numbers by reduction to their
constructors— expresses the inference from the acceptability of N as constituted by its
constructors to computability of terms of its object of predications (N→ 2 or N→ U) by
’elimination’ (in the sense of and elimination rule ). In still other words, the acceptability
of the induction axiom on natural numbers is grounded in the inductive structure of the
natural numbers while the proposition that the natural numbers are exhausted by this
inductive structure is guaranteed by the induction axiom.

Returning to the topic of induction-recursion —in particular to Mahlo universes— we see
that it neither matches the informal original definition of predicativity, nor the relaxed
conception of the notion as “a type that is built up incrementally”: while a Tarski universe
closed under Σ-type, say, can still be imagined as being an incremental construction since
one can “add the Σ-type of a randomly chosen dependent type”, the definition of the
Mahlo universe makes explicit reference to all endofunctions of the universe itself:

Definition 3.1.2.1. Set has the (external) Mahlo property if for every function

h : Fam(Set)→ Fam(Set)

there is a family (Uh, Th) : Fam(Set) that is closed under h in the sense that there is a
function

ĥ : [(Uh, Th)]Uh → [(Uh, Th)]Uh

such that
Thĥ0(a, b) = h0(Th(a), Th ◦ b)

Th(ĥ1(a, b, c) = h1(Tha, Tha, Th ◦ b, c)

where (h0, h1) = h, (ĥ0, ĥ1) = ĥ), and we again used container notation [(A,B)]V =
Σv:A(B(a)→ V ).

Remark 3.1.2.2 (Internal Mahlo Universe). While the external Mahlo universe can
be defined by induction-recursion and is usually considered to be predicative (see [40, §6.3],
we will also recall this in Example 3.2.1.10), there is also the notion of an internal Mahlo
universe: briefly, while we in Definition 3.1.2.1 considered families (Uh, Th) : Fam(Set)
for h : Fam(Set) → Fam(Set) that were closed under h in the described way, for the
internal Mahlo universe, this definition is relativized to a universe (V, S) : FamSet and
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h : Fam(V )→ Fam(V ) such (Uh, Th) is a subuniverse of (V, S) that is closed under this
h in an analogous way (see [40, p.31]). This definition of an internal Mahlo universe is
however -as explained in loc.cit.- not an inductive-recursive definition since one of the
constructors is not strictly positive (compare Paragraph 2.2.4.4.4 and Section 3.1.3), and
not considered to be predicative:

“[...] the usual [i.e. internal] construction in type theory, where the Mahlo
universe has a constructor that refers to all total functions from families of
sets in the Mahlo universe into itself; such a construction is, in the absence of
a further analysis, impredicative.”([70], emphasis added)

See [124] for a general discussion of different notions of predicativity in constructive- and
non-constructive mathematics unrelated to induction-recursion.

3.1.3 Motivation II: “Strict Positivity for Families”

In Section 2.2.4.1 we said that one abstract way to conceive inductive definitions is as
initial algebras for an ’admissible’ endofunctor F : Set→ Set where the class of ’admissi-
ble’ endofunctors is described by a list of sufficiently formal, constructively acceptable
conditions implying that an admissible functor indeed has an initial algebra. As we
explained in Paragraph 2.2.4.4.4, ’admissiblity’ for endofunctors on Set can be taken to
be strict positivity, i.e. closure under the standard operators of set formation.

The same idea of induction as initial algebras is apparently available for endofunctors
on more general categories such as Fam(D) which is the relevant category for induction-
recursion. It is however prima facie unclear what an admissible endofunctor of Fam(D)
should be:

Firstly, since for arbitrary D : Set, the category Fam(D) is poorly endowed with limits
(see Remark 1.3.0.7), there are less operators available on Fam(D) (than on the topos Set)
under which Fam(D) is closed: e.g. Fam(D) does not generally have products and power
objects; taking a power of a family in Fam(D) by a set A yields a family in Fam(A→ D).
This change of the index set by some operators is a major difference between sets and
families. As a consequence fixating us on one ’D’ and endofunctors Fam(D)→ Fam(D) in
a single inductive-recursive definition might limit the space of inductive-recursive possible
in this way2.

Secondly, the problem which choice of operators matches the mutual dependency of U
and T in the intended inductive-recursive definition requires some more detailed thought.

Dybjer-Setzer [40] addressed in their axiomatization DS Section 3.2.1 of induction-recursion
mainly the second mentioned concern by providing constructors for DS that can encode

2A middle way between the extremes of fixing one D once and for all, and studying endofunctors on
the category i/Set1 (see Remark 1.3.0.8) of all families for all index (large) sets D which we shall pursue
later on (see Remark 5.6.0.1) is to consider endofunctors on Fam(D) that may factor through Fam(E) for
an E different from D in a way related to the construction of the inductive-recursive definition.
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constructors for (U,T) that are “half positive”3 in the sense that for an argument (U, T )4

of the endofunctor, U must occur only strictly positive in the definition of the pair (U,T)
while T may appear in negative position.

The axiomatization DS′ [38] which we will review in Section 3.3 is similar in its emphasis
on strictly positive operations on sets but is somewhat more flexible in regard to the
indexing set.

3.2 DS

Dybjer-Setzer introduced the system DS axiomatizing inductive-recursive definitions in
[40]. The authors regarded this system as a simplification of another system DS′ serving
the same purpose of axiomatizing inductive-recursive definitions that they had published
earlier in [38]. Both systems are equivalent as shown in [40] in case the logical framework
is chosen appropriately.

The systems defining inductive-recursive definitions we consider in this thesis always have
three parts: 1) a (large) set of codes (such as DS D E or DS′ D E for every D E : Set1)
is defined, 2) for each code, c : DS D E say, a decoding functor J c K : Fam(D)→ Fam(E)
is recursively defined, 3) finally, in case D = E, to c is associated a family (Uc,Tc) (where
we usually omit this subscript c) which is exhibited by a generic elimination rule as the
initial algebra5 of J c K.

3.2.1 DS Codes and Their Decoding

For D,E : Set1, the large set DS D E : Set1 of Dybjer-Setzer codes is inductively defined
by the three constructors

ι : E → DS D E

σ : (A : Set)→ (A→ DS D E)→ DS D E

δ : (A : Set)→ ((A→ D)→ DS D E)→ DS D E

Recursively on DS D E is defined the decoding function J K : DS D E → Fam(D) →
Fam(E) which —like every function into a category of families— can be given in two
components J K = 〈J K0, J K1〉

3See loc. cit. p.4, footnote 2. They follow other authors in the terminology of “half positivity”.
4Notice the different fonts (U, T ) for an argument of the endofunctor and (U,T) for a family that is an

initial algebra for this functor.
5The semantics of DS′ was originally (i.e. in [38]) given in another (but equivalent) way without

explicit reference to endofunctors on categories of families.
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J K0 : DS D E → Fam(D)→ Set

J ι e K0(U, T ) := 1

J σ A f K0(U, T ) := Σa:AJ f(a) K0(U, T )

J δ A f K0(U, T ) := ΣG:A→UJ f(T ◦G) K0(U, T )

J K1 : (c : DS D E)→ ((U, T ) : Fam(D))→ J c K0(U, T )→ E

J ι e K1(U, T )∗ := e

J σ A f K1(U, T )(a, x) := J f(a) K1(U, T )x

J δ A f K1(U, T )(G, x) := J f(T ◦G) K1(U, T )x

The action on (cartesian) morphisms h : (U, T ) → (U ′, T ′) between families in Fam(D)
which are determined by the action on the indexing sets (see Terminology 1.3.0.2) is given
by:

J K→ h : J c K0(U, T )→ J c K0(U ′, T ′)

J ι e K→ h = id1

J σ A f K→ h (a, x) = (a, J f(a) K→ h x)

J δ A f K→ h (g, x) = (h ◦ g, J f(T ′ ◦ h ◦ g) K→ h x)

where the last line is correctly types since by the assumption of h to be a cartesian
morphism we have T ′ ◦ h = T .

We will give a prose explanation of these constructors and their decoding just below
Remark 3.2.1.1, and a justification of decoding in categorical terms in Section 3.2.3.4.

The third, still outstanding, layer in the formalization DS given by initial-algebra semantics
for the DS functors J c K, we will explain later in Section 3.2.2.

Remark 3.2.1.1 (Explanation of the constructors of DS and their decoding). Let
us assume that (U,T) is an initial algebra for a DS code. The set U is inductive-recursively
defined in the sense that in its definition do not only appear arguments x : U of itself (this
would be the degenerate case of an inductive definition) but also values Tx of T which is
defined simultaneously (with U) by recursion on U. What we have just explained on the
side of the initial algebra (U , T) is reflected on the side of codes by three possibilities of
what such an argument of a constructor can be:

• It can be either trivial — case ι which forms the basis of the induction, in which no
real induction takes place beyond the definition of a constant functor λ → (1, λ∗ → e)
having as initial algebra the object (1, λ∗ → e) the functor is constant on.
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• Or it can be a non-inductive argument (followed by some further arguments) — case
σ, where in J fa K(U, T ) the argument a does neither depend on U nor on T . This
results in a definition without non-degenerate simultaneity of the induction and the
recursion taking place; i.e. the whole definition could instead be carried out by first
completing the definition of U and, in a second step, defining T by recursion on
U. In fact the constructors ι and σ together without a further constructor define
only constant functors: while σ allows us to form set-indexed sums of functors, ι
allows to assign only point values such that the most interesting code6 we can form
is of the form σAλa→ ιB(a) which decodes to the functor constant on the family
(A,B) : Fam(D).

• Or it can be an inductive argument (followed by further arguments) — case δ, where
the second argument of δ allows for assignment to a code of a family of values of
T. Here the argument T ◦G in J f(T ◦G) K depends on T . While J ιe K0(U, T ) and
J σAf K0(U, T ) are obviously strictly positive expressions in U (under the assumption
that their subcodes are), this is not the case for the δ-constructor for which we have

J δAF K0(U, T ) = ΣG:A→UJ F (G ◦ T ) K(U, T )

= ΣG:A→UJ ((A→ )(F ) ◦ ( → D)(G))(T ) K(U, T )

= ΣG:A→UJ ((A→ )(F ) ◦ ( → D)(G))(T ) K(U, T )

= ΣG:A→UJ ((A→ )(F ))(T ◦G→ D)) K

i.e. there occurs a reference to a term of U (of “half” of (U, T )), albeit only as
an argument of T in negative position as can be seen in the last line of the above
equations.

Remark 2.2.4.6 implies that DS 1 1 where the δ constructor is modified to δ′ : Set→
DS 1 1→ DS 1 1 —with decoding J δ′ A c KX := Σk:A→XJ c KX for X : Set— does
allow only for degenerate inductive-recursive definition equivalent to just inductive
ones. Also, the stronger statement, that DS D E for small sets D E : Set is
equivalent to a set of inductive definitions is true [58].

It is instructive to go through this explanation one more time in the motivating example
for induction-recursion, namely the Tarski universe (U,T) closed under Σ-types which we
described in Subparagraph 2.2.3.3.8.2. The endofunctor defining the family (U,T) can be
encoded by the code —i.e. by the constructors of DS D E— as δ1 λX. δX(∗)λY. ιΣX(∗)Y
and the decoding recovers the defining functor:

J δ1 λX. δX(∗)λY. ιΣX(∗)Y K0(U, T ) = Σp:1→UΣb:T (p∗)→UJ ιΣ(T ◦ p)(T ◦ b) K0(U, T )

6This is true only up to equivalence since, firstly, merging two subsequent σ codes σAλa.σB(a)λb.R(a, b)
to one sigma code σ(Σa:AB(a)λ(a, b)R(a, b) does usually not hold definitionally, and secondly, in σAf ,
the subcodes f(a) can be a σ code for one a and ι for others - but also for this one can find an equivalent
code decoding to a constant functor.
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J δ1λX. δX(∗)λY. ιΣX(∗)Y K(U, T ) ' (Σu:U(T (u)→ U), (u, b) 7→ ΣT (u)(T ◦ b))

Here the constructor Σ : (u : U) → (T(u) → U) → U encoded by this code is said to
take an “inductive argument” h : T (u)→ U depending upon the hypothetical judgement
U : Set, u : U ` T(u) : Set whose premises are not yet proven and themselves depend on
the type whose definition they support.

Of course, one can also regard DS D E itself as a universe of codes and its constructors as
reflecting operations under which it shall be closed: the base case ι gives us for every term
e : E a (code for) a ground type ιo) while σ gives us for every family (A, f : A→ DS D E)
of codes indexed by a set a new code σAf ; together ι, σ, and δ′ cover all ordinary inductive
definitions. δ finally allows to go beyond ordinary induction by indexing families of codes
by families of objects of D.

Notice that there is a difference between the definition as we give it and the original
one given in [40]: loc.cit. only considered systems of the form DS D D, i.e. where
E = D, which is seemingly sufficient for the discussion of initial algebras. It is however
conceptually advantageous to consider DS as an operation taking two arguments, since
then it is functorial in its second argument and opfunctorial in the first. This would
not be the case if we consider DS as an operation taking only one argument because
the ι constructor would indicate functoriality while the δ constructor would indicate
op-functoriality, and as a result, the system as a whole would be neither functorial nor
op-functorial. Funcoriality of DS (and the other systems of induction-recursion we will
consider in later sections) becomes relevant for example in the discussion of the question of
composability of codes. The following remark should be compared to the other systems of
induction-recursion Chapter 5 Chapter 6 where the analogous statement does not obtain.

Remark 3.2.1.2 (DS as W-type). For all D E : Set1, the large set DS D E is in-
ductively defined and thus we can encode it as a large W-type by DS := W X Y where
X := E + Set + Set, Y (in0 e) = 0, Y (in1 A) = A, Y (in2 A) = A→ D.

The following remark will receive further discussion in Remark 3.2.1.17.

Remark 3.2.1.3 (Monotonicity of decoding in the partial order on families). We
have seen above that decoding of DS-codes sends cartesian morphism to cartesian mor-
phisms. We have also seen that the partial order on Fam(D) defines a special class of
cartesian morphisms (see Section 1.3). One can prove by induction on codes that DS
functors are monotonous operators on this partial order. This monotonicity is important
for the existence of initial algebras of DS functors7. Remark 3.2.1.17.

7We do not recall this proof here which can be found in [40] but we will give a proof of a more general
statement in Section 6.4.
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3.2.1.1 Subcodes

One difference between DS-codes and codes of the other system of induction-recursion we
shall define in Chapter 5 and Chapter 6 are subcodes ; the latter correspond to subtrees if
we consider DS D E as W-type (see Remark 3.2.1.2).

Remark 3.2.1.4 (Monotonicity of decoding in subcode ordering). There is an ob-
vious partial order on codes given by

≺ : {D E : Set1} → DS D E → DS D E → Set1

c ≺ (ι e) = ⊥
c ≺ (σ A f) = ∃(a : A)((f a) ≡ c)

c ≺ (δ A F ) = ∃(X : (A→ D)))(F X ≡ c))

A partial order for codes is also discussed in [40, Lemma 5.3.7].

Remark 3.2.1.5 (Types of subcodes). With an eye to the variations of induction-
recursion we will present in Chapter 5 and Chapter 6, we highlight that if c′ ≺ c is a
subcode of c : DS D E, the type of this subcode is always DS D E, too. If we denote by
IR such another system the type of a subcode could also be IR D′ E ′ where D′ E ′ do not
necessarily equal D respectively E.

3.2.1.2 Examples of DS Codes

We give some examples of codes.

Example 3.2.1.6 (Coproducts of codes). If c, c′ : DS D E are two codes, we can
define a new code σ2f , where 2 is the set with 2 elements, and f : 02 7→ c and f : 12 7→ c′.
This code decodes to the coproduct of the functors defined by c and c′, i.e. there are
isomorphisms J c + c′ K(U, T ) ' J c K(U, T ) + J c K(U, T ) for every (U, T ) : Fam(D), and
since by [13, Proposition 8.8] colimits in functor categories are computed pointwise, this
defines a coproduct in Fam(D)→ Fam(E). Since for every D, Fam D can be characterised
as the free Set-indexed coproduct cocompletion of D (see Remark 1.3.0.7), taking coproducts
is one of the most basic and native operations to be performed on them.

We can now give an encoding of the endofunctor defining the family of finite sets we
mentioned in the introduction Section 0.2.

Example 3.2.1.7 (The family of finite sets). The family (N,Fin) where Fin assigns
to a natural number n a set with n elements is initial algebra for the functor F : Fam(Set)→
Fam(Set) where F0(U, T ) = U+1, and F1(U, T )(inl u) = T (u)+1, and F1(U, T )(inr ∗) = ∅.
This functor has code (δ 1 λX.ιX(∗)) + (ι∅).
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Example 3.2.1.8 (W-types). 1. By choosing D = E = 1, we can use DS 1 1 to
represent inductive definitions. Let us encode Martin-Löf ’s type W S P : Set of
wellfounded trees, where S : Set encodes the set of shapes of the tree, and P : S → Set
maps each shape to its branching degree. Recall that this type is inductively defined
by the constructor

sup :
(
s : S

)
→ (P (s)→ W S P )→ W S P

Here we see that sup takes one non-inductive argument s : S, followed by an inductive
argument P (s)→ W S P , which depends on the first non-inductive one. W S P can
be represented by the code cW S P : DS 1 1 with cW S P = σ S (s 7→ δ P (s) ( 7→ ι ?))
where σ is used for the non-inductive argument and δ for the inductive one, and
finally a closing ι.

For the decoding note that Fam 1 ∼= Set since the second component of such a family
is trivial. Thus, if (W,T ) : Fam 1, then

J cW S P K0(W,T ) =
(
Σs : S

)(
(P (s)→ W )× 1

)
(3.1)

such that indeed sup : J cW S P K0(W S P, ) → W S P (up to isomorphism), and
initial algebras of J cW S P K : Fam 1→ Fam 1 are W-types.

2. Instead of leaving the fibres of the family trivial, we can “upgrade” the given code to
do something interesting in the whole family. For instance, if we redefine cW S P :
DS Set Set by

cW S P = σ S (s 7→ δ P (s) (Y 7→ ι
((
x : P (s)

)
→ Y x

)
))

the index set decoding (3.1) stays the same, but the decoding J cW S P K1(W,T ) applies
T everywhere in the tree. In particular, if we choose S = N and P = Fin, where Fin n
is a finite type with n elements, then J cW N Fin K(X,T ) ∼= (ListX, [x1, . . . , xn] 7→
T x1× . . .×T xn) . We will see a use of this upgraded code later in Example 5.10.0.1.

We have mentioned the example of a Tarski universe closed under a set former such as Σ
already several times as motivating examples for IR. But only closing under such a set
former without assuming that the universe contains something is an induction without
base case and as such defines only the empty set. We can however use coproducts of codes
add codes of set formers and a code assuming a set the universe shall contain.

Example 3.2.1.9 (A universe containing 2 which is closed under W-types). We
get considerably more power by choosing D = E = Set. Now we can represent a universe
containing 2 that is closed under W-types by the code c2W : DS Set Set, where

c2W = σ {bool,w} (bool 7→ ι 2; w 7→ δ 1 (X 7→ (δ (X ?) (Y 7→ ι (W (X ?) Y )))))

First we offer a choice between two constructors: bool and w using σ. In the bool case,
we use an ι code to ensure the name bool decodes to 2; in the w case, we ask for a name
a for the shapes of the W-type using δ 1, and for every element in the decoding of that
name, we ask for a name for the branching degrees using δ (X?) — here X : 1 → Set
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represents the decoding of the name a. The rest of the code gets to depend on the decoding
Y : X?→ Set of this family, and we finish by declaring that this constructor decodes to
W (X?) Y . Note that this code can be written as a coproduct of codes c2 +DS cW: generally
for c d : DS D E, we define their coproduct c +DS d = σ 2 (ff 7→ c ; tt 7→ d). We will
return to this in Example 5.5.0.1.

The decoding of the code c2W : DS Set Set from Example 3.2.1.9 satisfies J c2W K0(U, T ) ∼=
1 +

(
Σa : U

)
(T (a) → U) with J c2W K1(U, T ) (inl ?) = 2 and J c2W K1(U, T ) (inr (a, b)) =

W (T a) (T ◦ b) which are the equations for a universe closed under W-types.

Example 3.2.1.10 (Mahlo universe). A code for the family (Uh, Th) participating in
the definition of the Mahlo universe described Definition 3.1.2.1 is

ιN + δ1λA.δA(∗)λB.ιf(A(1), B)) + δ1λA.δA(∗)λB.σf(A(1), B))λC.g(A(1), B, C) .

Remark 3.2.1.11 (Products of codes). As we mentioned before, Fam(D) does not
have (all) products. There is thus no definition of the product of DS codes and more
generally, there is no system of codes for induction-recursion in which products of codes
(in case they exist) decode to a product in Fam(D). A step towards a pointwise products
of codes has been taken in ([58][49]).

Example 3.2.1.12 (Padding of a code). If c : DS D E is any code, the code σ1 λ →
c is a code whose semantics is isomorphic to that of c.

Remark 3.2.1.13 (Fitting the identity type into the taxonomy of definition principles).
The so-called “identity type” (see Paragraph 2.2.3.3.9) is special among the definitions in
MLTT: its type signature Id : (A : Set)→ ((a, a′) : A× A)→ Set indicates that it is not
definable by DS. It is however definable by indexed induction-recursion [39].

On the other hand, since the constructors refl : (x : A)→ IdA(x, x) do not take inductive
arguments, the identity type is covered by the framework for defining inductive families
defined in [33, §5.1.2].

Example 3.2.1.14 (An unbounded DS-code). For sets X, Y : Set, we define

z : N→ DS Set Set

z(zero) = ιX

z(suc(n)) = σ Y λ → δY λ → z(n)

and the code Z = σN z : DS D E. The code z(n) has maximal path length 2n+ 1 (where
by “path length” we mean the number of constructors in a path of his code), and the code
Z has consequently unbounded path length.

It is however important to notice here what is necessary to define this code: since DS D E :
Set1 is a large set different from Set, defining z requires large elimination which is not
part of MLTT (without DS). In this sense, the definition of Z is one in iterated induction-
recursion. Comparing this situation to inductive definition, we recall that there is a
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difference between inductive definitions in MLTT [36], and iterated inductive definitions
(aka nested inductive definitions) in MLTT [4] which assumes an additional fixpoint
combinator corresponding to the elimination machinery for DS.

Example 3.2.1.15 (Realizability and computability predicates). C. Coquand [27]
shows normalization of a fragment of MLTT by a realizability argument which can be
formalized as an inductive-recursive definition. A similar method using an inductive-
recursively defined computability predicate was used by Martin-Löf [88] to show normal-
ization for the (inconsistent) system defined in loc. cit.

Example 3.2.1.16 (Reflexive-transitive closure of a graph). A graph is a family
(E,P ) : Fam(V × V ). The free category (E′,P′) : Fam(V × V ) on (E,P ) is given by the
following inductive-recursive definition:

E′ : Set1

ids : V → E′

edg : E → E′

comp : (e : E′) → ( e′ : E′) → (proj1 (P′ e′) ≡ proj2 (P′ e)) → E′

P′ : E′ → (V × V )

P′ (ids v) = (v , v)

P′( edg e) = P e

P′(comp p q r) = (proj1 (P′ p) , proj2 (P′ q))

This functor is represented by the coproduct DS V (V × V ) code with summands

σV λv → ι(v, v)

σEλe→ ι(Pe)

δ1λX → δ1λY → σ(proj1Y (∗) ≡ proj2X(∗)))λz → ι(proj1X(∗), proj2Y (∗))

So, the reflexive-transitive-closure functor is the functor that sends (E,P ) to the initial
algebra of the above DS-functor.

Remark 3.2.1.17 (Discussion of DS Functors). What can we say about DS functors
in their own right and how would we approach the problem to characterise them categori-
cally? A possible class of functors to which we could wish to compare them are parametric
right adjoints (pra) as studied by [128](and others).

A functor F : A→ B between categories with terminal object is a parametric right adjoint
if it factors as A→ B/F (1)→ C into the by F induced action on slice categories (where
A is identified with A/1) followed by dependent sum.
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DS functors and pras are both generalizations of polynomial functors. An example for a
pra which is not a polynomial functor but whose action can still be defined by induction-
recursion (see Example 3.2.1.16) is the functor assigning to a graph the free category on it
(loc.cit. p.671).

More generally, many functors as they appear in higher category theory are describable
in terms of pras. Unfortunately, however, the theory of induction-recursion we presented
here is inadequate with regard to the theory of pras since, for example, terminal objects
and non cartesian morphisms are essential for the latter. That Fam(D) for an arbitrary
D does not have a terminal object is as such not a problem since as soon as D has a
terminal object, also Fam(D) has one. But the fact that DS codes define only an action on
cartesian morphisms (in Dybjer-Setzer’s account even only on split cartesian morphisms)
is a problem since the morphisms to the terminal objects are not in general cartesian. For
example Fam(Set) has a terminal object (see Remark 1.3.0.7) given by (1, λ∗ → 1), but
the unique morphisms t : (U, T )→ (1, λ∗ → 1) are obviously not cartesian unless for all
u : we have T (u) = 1 which is not generally the case.

To see why DS functors only act on cartesian morphisms, we recall (from Section 3.2.1)
how this action is defined. Let c : DS D E and write8 J c K→ for this action where for
h : (U, T )→ (U ′, T ′) , (i.e. h = (h0 : U → U ′, h1 : T ⇒ T ′) where T ⇒ T ′ := (u : U)→
T (u) ≡ T ′(hu))

J c K→h = (J c K→0 h, J c K→1 h : (x : J c K0(U, T ))→ J c K1(U, T )x ≡ J c K1(U ′, T ′)(J c K→hx)

is defined by

J ιe K→h : (1, λx→ e)→ (1, λx→ e)

J ιe K→h := (id1, refl)

J σAf K→h : (Σa:AJ fa K0(U, T ), λax.J fa K1(U, T )x)→ (Σa:AJ fa K0(U ′, T ′), λax.J fa K1(U ′, T ′)x)

J σAf K→h := (〈id, (J fa K→h)0〉, λ(a, x).(J fa K→h)0x : J fa K1(U, T )x ≡ J fa K1(U, T )(J fa K→h)0x))

and we display the δ case in the diagram

Σk:A→UJ F (T ◦ k) K0(U, T )
〈λk.h◦k,Ψ〉 //

(t,x)7→J F (T◦k) K1(U,T ) x

%%

Σk′:A→U ′J F (T ′ ◦ k′) K0(U ′, T ′)

(t′,x′)7→J F (T ′◦k′) K1(U ′,T ′) x′

zz
D

where

8Notice that we changed the notation here slightly compared to Section 3.2.1.
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Ψ := (subst J F ( ◦ k) K0(U ′, T ′)(h1)) ◦ (J F (T ◦ k) K→h)0

for

subst J F ( ◦ k) K0(U ′, T ′)(h1) : J F (T ◦ k) K0U
′T ′ → J F (T ′ ◦ h ◦ k) K0U

′T ′

and the filling cell of type

λ(k, x)→ J F (T ◦ k) K1(U, T ) x ≡ J F (T ′ ◦ ◦h ◦ k) K1(U ′, T ′)x

is the inductive hypothesis.

A term J F (T ◦ k) K0(U
′, T ′) → J F (T ′ ◦ h ◦ k) K0(U

′T ′) we can however only obtain if
there is really an equality T ⇒ T ′ ◦ h. A solution to this problem was suggested in [49]: by
introducing morphisms between codes one obtains a morphism F (T ◦ k)→ F (T ′ ◦ h ◦ k)
and can define a functor J K0(U ′T ′), but this necessitates F to be a proper functor —as
opposed to a mere function— as well.

We thus conclude that for studying the category theory of inductive recursive definitions
it is recommended to choose a system defining morphisms between codes as well. This
system is likely to be a different one from that of [49] since for example products of codes
decode only to pointwise products and not in general to products in categories of families
as would be desirable.

We will not discuss morphisms of codes any further in this thesis.

3.2.2 The Rules for Dybjer-Setzer Families

Having defined Dybjer-Setzer codes c : DS D E and their decoding J c K, we come to the
definition of the families they define, where —since these families will be initial algebras
for endofunctors— we have to choose D = E.

The first two rules are the formation rules for a family (Uc,Tc)
9 defined by a code

c : DS D D

c : DSD D

Uc : Set
U-form

c : DSD D

Tc : Uc → D
T -form

and the next two rules assert that (U,T) is an algebra for the endofunctor J c K : Fam(D)→
Fam(D) by introducing a structure map intro. The second rule states that T is defined by
recursion on U.

c : DSD D

intro : J c K0(Uc,Tc)→ Uc

U-intro
c : DSD D x : J c K0(Uc,Tc)

Tc (intro x) = J c K1(Uc,Tc) x
T-rec

9We avoid here to write subscripts (Uc,Tc).

72



The elimination rule for inductive-recursive definition has a form similar to that for
ordinary inductive definitions: for every motif P : U → Set1 (notice that we eliminate
into large sets), for every x : U we want to obtain a term t : Px by using the induction
principle for U which has as argument functions (called step functions) of the form

step : (x : JcK0(U,T))→ IH c P x→ P (intro x)) .

This says that given the assumption (x : JUK0(U,T)), we can —by invoking the inductive
hypothesis IH c P x— draw the conditional (under the assumptions made) conclusion that
P (intro x). From this, the induction principle elim gives us the desired term elim P step x :
P x. More formally we have the typing

elim : (P : Uc → Set1) →
(step : (x : J c K0 (Uc , Tc)) → IH c P x → P (intro x)) →
(x : Uc) → P x

and defining elim by induction on Uc means that we have to give a definition for
elim P step (intro x) and it is apparent that this definition needs to be an instance
of step x. Thus we need a function that produces (recursively) from the data we already
have, an instance of the inductive hypothesis, where the latter is (for (U, T ) : Fam(D))
defined by:

IH : (c : DS D E) →
(P : U → Set1) → J c K0 (U, T ) → Set1

IH (ι e) P = 1

IH (σ A f) P (a , x) = IH (f a) P x

IH (δ A F ) P (h , x) = ((x : A) → P (h x)) × IH (F (T ◦ h)) P x .

Such a function is

mapIH : (c : DS D E) →
(P : U → Set1) → (g : (x : U) → P x) →
(x : J c K0(U, T )) → IH c P x

mapIH (ι e) P g = ∗
mapIH (σ A f) P g (a , x) = mapIH (f a) P g

mapIH (δ A F ) P g (h , x) = (g ◦ h , mapIH (F (T ◦ h)) P g x)

Now we can recursively call elim, and for c : DS D D give the definition

elim P step (intro x) = step x (mapIH c P (elim P step) x) .
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Remark 3.2.2.1 (Alternative elimination rules). [39, §5.4] points out that for some
purposes it poses a problem that IH c P x : Set1 in the previous definition is a large set, and
a solution is presented (see [39, Appendix B]) that replaces IH by a definition returning only
a small set, as well as assorted definitions replacing mapIH, and elim. These alternative
rules are equivalent in the sense of [39, Lemma B.2] to the original set of rules IH, mapIH,
and elim we explained above. Since for our purposes the size of IH c P x is not relevant
we shall stick to the original rules.

Remark 3.2.2.2 (In which sense can U be understood as an inductively defined set?).
The terminology of induction-recursion might be misleading in the following sense: in
previous sections we have seen that an inductive sets are initial algebras for polynomial
functors where a set is here understood to be a set in ZFC. However both terms “inductive”
and “set” are strictly speaking undefined terms in the present more general setting. As we
will see later, MLTT + DS does not posses a model in ZFC, but in (at least) ZFC + M +
I where M and I are large cardinals. Thus it is unclear (and unlikely) that the set U can
be defined by a polynomial functor on Set.

3.2.3 Functorial Aspects of DS

We start this subsection by collecting some properties of DS D : Set1 → Set1 as functor
in its second argument. These properties will be of interest in subsequent chapters. Of
more intrinsic interest at this point is Section 3.2.3.3 exhibiting DS D as a free monad,
and Section 3.2.3.4 using the universal property of free monads to compute decoding of
codes.

The basic observation is that DS is a functor in its second argument10, i.e.

DS : {D E E ′ : Set1} → (E → E ′) → DS D E → DS D E ′

DS h (ι e) = ι (h e)

DS h (σ A f) = σ A (λ a → DS h (f a))

DS h (δ A F ) = δ A (λ g → DS h (F g)) .

One can also show that it is op-functorial in its first argument.

3.2.3.1 DSD and Decoding

We also record that the functor DS D commutes with decoding, i.e. for C E E ′ : Set1,
c : DS C E, P : Fam C, h : E → E ′ there is an equality

J DS h c K P = Fam→ h (J c K P ) .

10Recall that we use Agda convention to put arguments in type signatures in braces { , } if we do not
want to display them as arguments of the terms of the types of this signature.
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3.2.3.2 Monad Structure of DS

Moreover, DS D is a monad whose unit is given by its first constructor.

ηDS : {D E : Set1} → E → DS D E

ηDS e = ι e

And multiplication by:

µDS : {D E : Set1} → DS D (DS D E) → DS D E

µDS (ι c) = c

µDS (σ A f) = σ A λ a → µDS (f a)

µDS (δ A F ) = δ A λ h → µDS (F h)

Like every monad, there is a bind operation derivable from it.

>>= : {D E E ′ : Set1} → DS D E → (E → DS D E ′) → DS D E ′

c >>= h = µDS (DS h c)

3.2.3.3 DS as a Free Monad, σδ-Codes

One can moreover show [48] that the monad structure on DS is universal in the following
sense. The implications of this are useful for the generalization of DS in Chapter 6.

We first define the following operation which is a covariant functors in its second argument
and a contravariant functor in its first argument.

Definition 3.2.3.1. For D,E : Set1 we define

CFam D E := Σ(U,T ):Fam(Set)(J (U, T ) KD → E) .

where we use the container notation J (U, T ) KD = Σu:U(T (u) → D) (see also Defini-
tion 1.2.4.1).

Definition 3.2.3.2 (σδ-codes). One can encode the two constructors

σ : (A : Set)→ (A→ DS D E)→ DS D E

δ : (A : Set)→ ((A→ D)→ DS D E)→ DS D E

into one:
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σδ : CFam D(DS D E)→ DS D E

with the decoding

J σδQ h K0(U, T ) := Σ(s,f):J Q KUJ h(s, T ◦ f) K0(U, T ) .

and it is not difficult to see how to define J σδQ h K1.

Proof. We have the semantics-preserving transformations:

σ A f 7→ σδ(A, λ .0)(λ(a, ).f(a))

δ A f 7→ σδ(1, λ .A)(λ(∗, g).F (g))

σδ (A,B) h 7→ σA(λa.(δB(a) λg → h(a, g)))

Remark 3.2.3.3 (DS D as a free monad). The constructors ι and σδ express that
DS D is the free monad of the functor CFam D .

Proof. We instantiate [45, Proposition A.4]:

For all D E : Set1, we define functors P = CFam D and PE = (Y 7→ E + P (Y )). By
Definition 3.2.3.2, DS D E is initial algebra of PE. By the implication (iii) to (i) of [45,
Proposition A.4], P has a pointwise free monad. [45, Proposition A.3] implies that this
pointwise free monad is the initial algebra of PE. �

Remark 3.2.3.4 (Failure of uniformization of unbounded DS-codes). Returning to
Example 3.2.1.12 where we have seen that one can prolong a code by padding without
changing its semantics, one might come upon the idea that —using the σδ presentation of
DS (see Example 3.2.1.14)— one could replace every DS code by a code with isomorphic
semantics all of whose branches have the same length. This is however not true as the
Example 3.2.1.14 of a code with unbounded path length shows: by Item 2 we would produce
by padding a “code” with N as maximal path length but this is impossible since DS D E is
a wellfounded set and as such all its term have finite path length.

Remark 3.2.3.5 (Non-constructivity of uniformization of DS-codes). A different
problem the attempt of applying the padding procedure with the aim of giving codes a
uniform structure has to face, is that this procedure cannot be defined by recursion on
DS D E —even not on the subsystem consisting of codes with bounded maximal path
length— since in one branch there is no information available whether other branches
already ended.

Remark 3.2.3.6 (Uniformization of DS-codes with explicitly given bounded branch length).
If a DS-code has bounded path length, it is obviously possible to apply the padding procedure
in all branches, prolonging all branches to the given bound for the branch length. Trans-
lating this code to the σδ-presentation of DS (see Definition 3.2.3.2) gives a code with
uniform structure. Translating the latter code to a UF-code with isomorphic semantics is
then just a matter of reversing the nesting (see for example Example 5.3.0.1).
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3.2.3.4 A Categorical Explanation of Decoding

From exhibiting DS D as free monad, we can obtain even more insight into this
system. As we will see now, one can infer the definition of decoding from the universal
property of the free monad: the type DS D E is defined by induction and as such it
is initial algebra for a functor — here F (X) = E + Fam D X; thus to obtain a map
f : DS D E → FamD → FamE it is sufficient to give an algebra structure on the (large)
set FamD → FamE. Now, there is a canonical map

ρ : CFam D E → FamD → FamE

ρ(X, h)(U, T ) = (J X K U, h ◦ J X K1T )

which can readily be extended to an algebra α of the desired form fitting in

E + Fam D (DS D E) in //

��

DS D E

J K
��

E + Fam D E
α // (FamD → FamE)

given by the coproduct map α = [e 7→ ((U, T ) 7→ (1, ∗ 7→ e)), ρ)].

3.3 DS′

An equivalent system of codes for induction-recursion which will be important for the other
system we discuss in later sections Chapter 5 Chapter 6 was defined by Dybjer-Setzer in
[38]: DS′ is a two-level system whose parts SP and Arg form for every D : Set1 a large
container11 (SP D,Arg) : Fam(Set1) where the large sets SP D of codes for strictly-positive
functors is defined by the following constructors:

nil : SP D

ni : (A : Set)→ (A→ SPD)→ SP D

ia : (A : Set)→ ((A→ D)→ SPD)→ SP D

where the name ’ni’ stands for “non-inductive [arguments]”, and ’ia’ stands for“inductive
arguments” for similar reasons as explained in regard to the constructors of DS D D (see
Remark 3.2.1.1) since these constructors play similar roles. The constructors have the
same shape as those for DS D D except the base case.

11Here we define Fam(Set1) :− ΣX:Set2(X → Set1) Definition 1.2.4.1. Dybjer-Setzer do not use
“container language” anywhere in their discussion.
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The second component of the system is given by a function Arg D : SP D → Set1 defined
by recursion on SP D.

Arg nil := 1

Arg ni A f := Σa:AArg f(a)

Arg ia A g := Σh:A→DArg f(h) .

such that both parts form a large container (SP D,Arg D) : ΣR:Set1R→ Set1 such that we
can define DS′ D E = J (SP D,Arg D) KE by container evaluation; in particular a code
(φ, g) : DS′ D E has now two components.

The decoding of codes is organized in two components

arg : SP D → Fam(D)→ Set

arg (nil)(U, T ) := 1

arg (ni A f)(U, T ) := Σa:Aarg(f(a))(U, T )

arg (ia A g)(U, T ) := Σh:A→Uarg(g(T ◦ g))(U, T )

map : (φ : SP D)→ Fam(D)→ Arg(φ)

map (nil) (U, T ) ∗ := ∗
map (ni A f)(U, T ) (a, b) := (a,map(fa)(U, T )b)

map (ia A f)(U, T )(f, b) := (T ◦ h,map(f(T ◦ h))(U, T )b)

This means we12 obtain an operation from container evaluation in a large set E : Set1 by
pairs (φ, g) : J (SP D,Arg D) KE each of which defines a function

J (φ, g) K : Fam(D)→ Fam(E)

(U, T ) 7→ (arg(φ)(U, T ), g ◦map(φ)(U, T ))

which —as the authors show in the following paper [40]— is equivalent to the decoding
function of the system DS D E . In [38] however develop the the theory DS′ of induction-
recursion purely in terms of (SP,Arg), i.e. they give (for every D : Set1, every phi :
SP D, and every map d : Arg(φ) → D) introduction and elimination rules for a pair
(U(φ, d),T(φ, d) : U(φ, d)→ D) such that

arg(φ)(U(φ, d),T(φ, d))intro //

map(φ))(U(φ,d),T(φ,d))

��

U(φ, d)

T(φ,d)

��
Arg(φ) d // D

12Dybjer-Setzer considered only the case D = E.
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The above diagram explains (see [40, §5.1]) the terminology of induction-recursion as
a reflection principle (compare Remark 1.1.0.15): the formalism reflects the operation
d (on D) into U. An illustrative example is the case of closure of the Tarski universe
under Σ types in which d becomes Σ : (A : Set)(A → Set) → Set, and intro becomes
Σ̂ : (u : U)(Tu→ U)→ U. This special case is also the instance where reflection principles
originally have been studied: Gödel advertised a justification strategy called intrinsic
justification for large cardinal axioms in set theory essentially saying that we can accept
an axiom positing a set having a number of properties (like being closed under some
operations) if we believed that Set has these properties in first place (see [79] for a technical
as well as philosophical discussion of reflection principles).

Remark 3.3.0.1. It is possible to code the two constructors ni and ia into a single one
like in the case of Definition 3.2.3.2.

Remark 3.3.0.2 (Elimination). Dybjer-Setzer define of course elimination for the sys-
tem DS′ which we omit here since the system is equivalent to DS as we will see in the next
subsection.

Remark 3.3.0.3 (Functorial aspects of DS′). DS′ is functorial in its second arument
which follows easily from the fact that for E : Set1, the system DS′ D E is by definition
the value J (SP D,Arg D) K E of a container.

One can moreover show that DS′ is a monad in its second argument.

3.3.1 Equivalence Between DS and DS′

Remark 3.3.1.1. There are translations between the systems DS′ and DS. For all D E :
Set1 we have:

] : DS D E → DS′ D E

] (ι e) = (1 , λ x → e)

] (σ A f) = (ni A (λ a → (proj1 (] (f a)))) , λ (a , x) → (proj2 (] (f a))) x)

] (δ A f) = (ia A (λ a → (proj1 (] (f a)))) , λ (a , x) → (proj2 (] (f a))) x)

[ : DS′ D E → DS D E

[ (nil , f) = ι ( f )

[ (ni A h , f) = σ A λ a → [( h a , λ x → f (a , x))

[ (ia A h , f) = δ A λ a → [( h a , λ x → f (a , x))

Moreover one can show roundtrips. A more detailed discussion of the equivalence can be
found in [40]
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Motivated by composibility for inductive definitions (see Section 2.2.4.6), the main interest
of this thesis will be whether a composition operation can be defined for a version of IR
definitions. In this chapter we try to answer this question by attempting to adapt the
composition formula for inductive definitions to DS. In the course we will find a new
equivalent characterization of compositionality for DS codes in terms of powers of codes
by sets. A bit more generally than adding powers, we will define an extesnion DS + π (see
Section 4.2) of the axiomatization DS by a constructor for dependent products of codes
and present a class of examples (see Section 4.2.1) of codes in this new system that are
not directly expressible in plain DS.

4.1 Characterization of Compositionality of DS-Codes

in Terms of Powers

Given DS-codes c : DS C D and d : DS D E, is there a code d • c : DS C E such that

J d • c K(U, T ) ∼= J d K(J c K(U, T )) ?

One observes that it is easy to define postcomposition of any code by a ι or a σ code: the
functor J ι e K ignores its argument, hence so must J (ι e) • c K, and for σ codes, we can
just proceed structurally.

The δ case, however, requires more thought. To exercise this thought we first recall the
reference case of composition for inductive definitions (see Section 2.2.4.6 and Corol-
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lary 2.2.4.13) which —in the convenient incarnation of the type Ind of inductive definitions
as Fam(Set)1— was given by

◦ : Fam(Set)→ Fam(Set)→ Fam(Set)

(S, P ) ◦ (U, T ) := (Σs:S(P (s)→ U), λ(s, f)→ Σx:P (s)T (f(x))

= (S, P ) >>= e(U,T )

where, to be explicit, the bind operation (see Lemma 1.3.0.6) is given by

>>= : Fam(D)→ (D → Fam(E))→ Fam(E)

(U, T ) >>= h = ((µFam ◦ Fam→)(h))(U, T )

= µFam(U, h ◦ T )

= (Σu:Uproj1(h ◦ T )(u), λ(u, k) 7→ proj2((h ◦ T )u)(k)) .

and

e(U,T ) : Set→ Fam(Set)

e(U,T )(X) := (X → U, λh→ Σx:XT (hx))

was the appropriation —via the isomorphism

(Set/U, (X → U, λh→ (proj2 : Σx:XT (hx)))) ' (X → Set, (X → U, λh→ T ◦ h)) .

— of the power operation

−→Fam :
(
S : Set

)
→ Fam D → Fam (S → D)

S −→Fam (A,P ) = (S → A, g 7→ P ◦ g)

for families taken in the category i/Set1 (see Remark 1.3.0.8) because of Fam(D)’s poverty
of limits in cases other than D = Set.

Returning to the problem of precomposing by a δ code we first consider the action on
index sets of families and find:

1To be precise, the category Ind is equivalent to Fam(Setop), but the op-ing is relevant only for
morphisms in the latter category and since the latter play no role in the present discussion, we suppress
the op in notation.
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J δ A F K0(J c K0Z) =
(
Σg : A→ J c K0Z

)(
J F
(
J c K1(Z) ◦ g

)
K0(J c KZ)

)
=
((
A −→Fam J c KZ

)
>>=Fam

(
g 7→ J F

(
J c K1(Z) ◦ g

)
K0(J c KZ)

))
0

This suggests that to define (δ A F ) • c we need to internalize >>=Fam and −→Fam in the
system DS. The first is readily achievable, because DS C is a monad (see Section 3.2.3.2)
(and a fortiori a functor), too, and the implied bind operation is moreover compatible
with decoding:

Proposition 4.1.0.1. The bind operation on DS

>>= : DS C D → (D → DS C E) → DS C E

defined by c >>= h := µ(DS h c) satisfies

J c >>= g KZ ∼= J c KZ >>=Fam (e 7→ J g e KZ)

for every Z : Fam C, c : DS C D and g : D → DS C E. �

Thus it would remain to define powers of codes. Here, however, problems arise if we try
to define S −→ c by induction on c: to apply the inductive hypothesis on f a in the
following S-fold power of a σ code

S → J σ A f K0 Z = S →
(
Σa : A

)
(J f a K0 Z) ∼=

(
Σg : S → A

)((
x : S

)
→ J f (g x) K0 Z

)
(4.1)

we would need to generalize our construction to dependent products
(
x : S

)
→ c(x) where

c : S → DS D E. But, if we do so, we can no longer do an induction on c, and we are
stuck (compare this to Definition 6.5.1.3 and to Remark 5.1.0.2 where solutions to this
problem are suggested). Even worse, any definition of composition necessarily involves
powers:

Theorem 4.1.0.2. There is a composition operator for DS if and only if there is a power
operator for DS. Here, by composition and power operators we mean terms

• : DS D E → DS C D → DS C E

−→ :
(
S : Set

)
→ DS D E → DS D (S → E)

respectively such that J c • d KZ ∼= J c K(J d KZ) and J S −→ c KZ ∼= (S −→Fam J c KZ).

Proof. Given −→ , we can define • by

(ι e) • d = ι e

(σ A f) • d = σ A (a 7→ (f a) • d)

(δ A F ) • d = (A −→ d) >>= (g 7→ (F g) • d)

using Proposition 4.1.0.1. Conversely, A −→ c := (δ A (h 7→ ι h)) • c is a power operator.
�
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Remark 4.1.0.3. A desired second part of the previous theorem would show that powers
are indeed not definable in DS. Unfortunately, a proof of this statement has remained
elusive so far. Reasons why we believe that this statement is nevertheless true are —besides
the failed attempt to define powers— the fact that the universal property of −→ is negative
while the constructors of DS decode to operations with positive universal properties.

Both systems of compositional IR we will define do have powers for codes: in UF they are
definable by Remark 5.9.1.4, and the system PN (see Chapter 6) is defined in a way that
can accommodate a constructor for powers directly.

As expected, for small DS the power operator is definable.

Remark 4.1.0.4 (For small DS, powers are definable). In [58] it has been shown
that small DS, i.e. the system of all DS D E where D E : Set are small sets is equivalent
to the system of polynomial functors between the slices Set/D → Set/E. Let c(S,T ) denote
the code representing a container (S, T ) : Cont (see Definition 1.2.4.1), and let A : Set,
then

J A −→ c(S,T ) KX = A→ Σs:S(T (s)→ X)

' Σf :A→SΠa:A(T (fa)→ X)

' Σf :A→S((Σa:AT (fa))→ X)

= J c(A→S,λf.Σa:AT (fa)) KX

where the first isomorphism is due to the axiom of intensional choice and the second one
is currying.

It is perhaps instructive to go through the previous construction of powers for small DS
in case of (unrestricted) DS to see where problems arise:

Remark 4.1.0.5 (For general (large) DS this approach fails). Let us try to raise
a code δBF to the power A using the Ansatz above:

J A −→ δBF K0(U, T ) := A→ J δBF K0(U, T )

= A→ Σk:B→UJ F (T ◦ k) K0(U, T )

' Σk′:A→B→U(Πa:AJ F (T ◦ (k′a)) K0(U, T ))

The only2 way to potentially encode this is

J δA×BF ′ K0(U, T ) ' Σk′′:A×B→UJ F ′(T ◦ k′′) K0(U, T )

2The “only” way means here the only way to encode this strictly and not up to an arbitrary isomorphism;
the isomorphisms indicated by ' in the previous and the following formula refer only to the canonical
isomrphisms given by the axiom of intensional choice respectively currying.
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where J F ′(T ◦ k′′) K0(U, T ) = Πa:AJ F (T ◦ (k′a)) K0(U, T ) which is already not nice since
we would need a dependent π (which we will revisit a bit further below Section 4.2) even
if we only want to define powers, i.e. · · · = J πAf ′ K0(U, T ) = Πa:AJ f ′a K0(U, T ) with
f ′a = F (T ◦ (k′a)). On the other hand does the prefix of the attempted code give us

J δ(A×B)λX.πAλa.F (X) K0 = Σk:A×B→UΠa:AJ F (T ◦ k) K0(U, T )

and there is no possibility to effect on the level of codes that k be replaced by k′a in the
last step since π does not take dependent arguments.

For clarity an emphasis we mention that the previous remark does of course not show
that it is impossible to encode powers in some other way by supplying a DS code with
isomorphic semantics.

Two natural options suggest themselves as solutions: (i) restrict codes to ensure that
no dependency arises in the definition of powers; (ii) devise a system with dependent
products of codes. In the next two chapters, we investigate new systems of codes for both
of these solutions.

4.2 DS+π

A bit more generally (at least prima facie so) than equipping DS with powers, one can
extend the system DS also by a constructor

π : (A : Set)(A→ DS D E)→ DS D (A→ E)

for dependent products of codes having semantics

J π A f K(UT ) := (Πa:AJ fa K(U, T ), λfλa.J fa K1(U, T )) .

As we explained in the last sentence above Theorem 4.1.0.2, also simply adding this
constructor (instead of a constructor for powers) to the system DS does not facilitate
composition for the system thus supplemented since the induction cannot deal with the
dependency. We will return to the project of adding such a constructor more systematically
in Chapter 6.

For the present section, the main application we have in mind for this new system is a
set of codes whose decoding relates to that of (plain) DS codes like power series relate to
polynomials.

4.2.1 Examples of DS+π Codes

We present a class of codes whose members do not (prima facie) reduce to DS codes
without π since their decoding is given by infinitely (in the example we give, ω0-many)
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iterated Σ types. For the construction of such codes, it is helpful to notice that it is
always possible to replace an iterated σ code, i.e. a code of the form σAλa.(σB(a)f(a)),
by a code σ(Σa:AB(a))λ(a, b).f(a)(b) which has isomorphic semantics, this fails for size
reasons in case of δ codes.

The codes we shall define all have the form Z A := πN+(z A) where z A is a sequence f
codes defined by recursion on N, N+ are the positive natural numbers (i.e. 1, 2, . . . ) and
A is an arbitrary set.

Example 4.2.1.1.

π N (λ n→ z A (n+ 1) ) : DS Set Set

z : (A : Set)→ N→ DS Set Set

z A 0 := δ 0 (λ → σ 1(λ → ι A))

z A (n+ 1) := δ A (λ X → σ A (λ a z (X a) n))

The indexing set of the semantics for z in case n+ 2 can be computed as

J z A (n+ 2) K0 (U, T ) = Σk:A→UΣa:AΣl:T (k a)→UΣb:T (ka)J z (T (l b)) n K0 (U, T )

and thus

J π N (λn→ z A (n+ 1)) K = Πn:NΣk:A→UΣa:AJ z (T (k a))(n+ 1) K0(U, T )

' Σφ:N→A→UΠn:NΣa:AJ z (T (φ n) a)(n+ 1) K=(U, T )

' Σφ:N→A→UΣψ:N→AΠn:NJ z (T (φ n)(ψ n))(n+ 1) K0(U, T ) .

Here we used twice the intensional “axiom” of choice where the quotation marks indicate
that this statement of derivable in MLTT:

Πx:XΣy:YC(x, y) ' Σφ:X→Y Πx:XC(x, φ x) .

This example has siblings sharing the same organization of defining a transfinite sequence
of codes and packaging this sequence into a single code with a final π. The code we just
presented is the same as in Example 3.2.1.14 of an unbounded DS-code except that the
final σ is replaced by a final π.

The following is a simpler variant:

Example 4.2.1.2.

π N (λ n. z A n) : DS Set Set

z : (A : Set)→ N→ DS Set Set

z A 0 := ι A

z A (n+ 1) := δ A (λ X → z (Σ A X) n)
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A version where the recursive function takes an infinite sequence (stream) of sets as first
argument is.

Example 4.2.1.3.

π N λ n→ z A n : DS Set Set

z : (A : N→ Set)→ N→ DS Set (N→ Set)

z A 0 := ι A

z A (n+ 1) := δ (Σ N A) λ X → σ (N→ (Σ N A))(λ a→ z (X ◦ a) n)

The codes we just presented are intended to provide examples of codes that lie in DS +
π but not in DS. The decoding of Example 4.2.1.1 indicates that we have a “δ-code of
infinite path length” which cannot really be a DS-code since DS D E —as an inductively
defined type— is a wellfounded set and its terms cannot be defined by infinitely many
constructors. Thus a possible proof that Z A cannot correspond to any DS-code could e.g.
show that there is no DS-code having as semantics the decoding of Z A. This would be
implied by a proof that a code containing infinitely many adjacent δ-constructors cannot
be compressed into a code with only finitely many constructors. One step in the direction
of such a proof is the following counterexample showing that at least in the case where in
all branches there are two subsequent δ-codes, there is no code replacing the two δ-codes
everywhere by only one.

Remark 4.2.1.4. We give a counter-example of a code δAλX.δB(X)λY.ιd(X, Y ) for
which there is no code of the form δSλX.σC(X)λY.ιd′(X, Y ), i.e. we show that

∃(D : Set1, A : Set, B : (A→ D)→ Set) (4.2)

¬∃(S : Set, C : (S → D)→ Set) (4.3)

∀(U : Set, T : U → D) (4.4)

Σ(k : A→ U)(B(T ◦ k)→ U) ' Σ(l : S → U)C(T ◦ l) (4.5)

Indeed, we have to show that no pair (S : Set, C : (S → D)→ Set) can satisfy Σ(k : A→
U)(B(T ◦ k) → U) ' Σ(l : S → U)C(T ◦ l) for all pairs (U : Set, T : U → D) for the
(D : Set1, A : Set, B : (A→ D)→ Set) defined below.

We define D := Set, A := 2, Bh := h0 for h : A→ D.

Instantiating (4) in (U, T ) with (1, T0) where T0 := λ .2 gives 12×12 ' 1S×C(λ .2) which
implies that C(λ .2) ' 1.

Instantiating (4) in (U, T ) with (U, T0) gives U2×U2 ' US ×C(λ .2) which implies S = 4
by C(λ .2) ' 1 by the previous result.

Instantiating (4) in (U, T ) with (1, T1) where T1 := λ .1 gives 12× 11 ' 14×C(λ .1) which
implies C(λ .1) ' 1.

Instantiating (4) in (U, T ) with (2, T1) gives 22 × 21 ' 24 × 1 which is not true and gives
the desired contradiction concluding the proof. �
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4.3 Conclusion and Outlook

Since we conclude with the end of this chapter our review-, and analysis DS-codes, a few
sentences of summary and outlook are in place.

As we indicated in Remark 4.1.0.3 and Section 4.1, it is still an open problem to decide
whether composition —or by Theorem 4.1.0.2 equivalently powering of codes— is possible
in DS. Among the possibilities to decide this problem would be the more concrete approach
to find a counterexample in the style of Section 4.2.1, i.e. a proof that there is indeed
no DS code with isomorphic semantics, or more abstract approaches like showing that
the functors DS D and (DS + π) D have different properties together with arguments
explaining why this implies that that there are (DS + π) codes with semantics different
from that of any DS code, or, alternatively, a justification why from a constructivist
viewpoint difference of the functors is significant enough to separate the systems.

To obtain further insight into the problem of compositionality of IR codes, and alternative
or different axiomatizations of IR in general, we will present in Chapter 5 and Chapter 6
two new axiomatizations for which we can show that they enjoy compositionality.
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This section presents our first new system for induction-recursion with a native compo-
sition operation. The system UF of uniform codes can be regarded a subsystem of DS
(Proposition 5.7.0.1).

5.1 Motivation: Uniformity-, and Definability of DS

Codes

Informally, a uniform code is a DS code where, for every constructor in a term, all
immediate subterms have the same root-constructor. To recognize this as a sound
intuition, we recall that DS D E as an inductive definition is in particular equivalent to a
W-type, and as such codes can be regarded as trees. More visually, a non-uniform DS
code can look like
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ιe1

##

ιe2

��

ιe4

��
σA1f 1

$$

ιe3

��

σA2f 2

zz
σAf

��

whereas a uniform DS code has on every level the same kind of code and all branches
have the same length.

ιe1

##

ιe2

��

ιe′

��

ιe4

��
σA1f 1

$$

σA′f ′

��

σA2f 2

zz
σAf

��

Remark 5.1.0.1 (Uniform codes as definable DS Codes). The above informal char-
acterization of uniform codes tells us that the only thing that can prevent a code from
being uniform is that the functions taken as second argument of σ and δ are functions
whose values may be codes starting with arbitrary constructors, and in particular dif-
ferent arguments may be sent to codes staring with different constructors, such that in
the presence of coproducts —allowing to define functions by case distinction such as
σ A f +DS δ B G = σ 2 (02 7→ σ A f ; 12 7→ δ B G) where one subcode is a σ code while the
other is a δ one— codes can be non-uniform. But this suggests that codes being expressions
over the alphabet consisting of the letters ι, σ, δ, lambda expressions, and variable symbols
(allowed to be bound by the lambda expressions) ranging over sets —i.e. definable1 DS
codes— are uniform DS codes in the above sense.

Remark 5.1.0.2 (Why uniformity intuitively implies compositionality). A par-
tial explanation why we can expect that uniformity or definability of codes implies com-
positionality of codes can be observed from Eq. (4.1) where we encountered the dilemma
that —attempting to inductively define powers upon DS codes— on the one hand would we
be necessitated to more generally define dependent products of codes to be able to call the
inductive hypothesis, but on the other hand would deprive us the presence of the family
(x : S)→ c(x) of codes in this dependent product in place of a single code, of the possibility
to do induction on this code c. This is different if for all x : S the c(x) start with the same
constructor as ensured by uniformity.

1As a warning in regard to this terminology, we should mention that there is a notion ’definability’ in
(set theoretic) model theory. That notion has the same intention that something is expressible within the
formal language under discussion. Our notion of ’definabilty’ is however of course different because we
are working in a different setup.
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5.2 UF Codes and Their Decoding

Even though the informal motivation for uniformity of codes given in the previous
subsection might convince to some extent, it does not give a constructive recipe how
to inductively define a (large) set containing only such uniform codes. The notion
of definability is more promising in this regard since it proceeds structurally. The
axiomatization UF of uniform codes presented below should thus —as explained in a bit
more detail in Section 5.2— rather be seen as an axiomatization of definable DS codes;
this is to be understood as saying that all UF codes can be regarded as (and as we shall
see: translated to) definable DS codes.

Definition 5.2.0.1 (The (large) set of UF codes and their decoding). For all D,E :
Set1, we define the (large) set UF D E : Set1 of uniform codes for induction-recursion
by UF D E :=

(
Σc : Uni D

)
(Info c → E) where the (large) family (Uni D : Set1, Info :

Uni D → Set1) is mutually defined in the following way:

Uni D : Set1

ιUF : Uni D

σUF :
(
c : Uni D

)
→ (Info c→ Set)→ Uni D

δUF :
(
c : Uni D

)
→ (Info c→ Set)→ Uni D

Info : Uni D → Set1

Info ιUF = 1

Info (σUF c A) =
(
Σγ : Info c

)
(A γ)

Info (δUF c A) =
(
Σγ : Info c

)
(A γ → D)

The decoding function is defined by:

J K : UF D E → Fam D → Fam E

J c, α KZ = Fam(α) (J c KUni Z, J c KInfo Z)

J KUni : Uni D → Fam D → Set

J ιUF KUni (U, T ) = 1

J σUF c A KUni (U, T ) =
(
Σx : J c KUni (U, T )

)
(A(J c KInfo (U, T )x))

J δUF c A KUni (U, T ) =
(
Σx : J c KUni (U, T )

)
(A(J c KInfo (U, T )x)→ U)

J KInfo :
(
c : Uni D

)
→
(
Z : Fam D

)
→ J c KUni Z → Info c

J ιUF KInfo (U, T ) ? = ?

J σUF c S KInfo (U, T ) (x, a) = (J c KInfo (U, T ) x, a)

J δUF c S KInfo (U, T ) (x, g) = (J c KInfo (U, T ) x, T ◦ g)
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We give a prose explanation of Explanation of UF codes and their decoding: we defined
a set Uni D : Set1 determining the code shapes simultaneously with a function Info :
Uni D → Set1 assigning to each code shape the information available for indexing code
shapes depending on it in a uniform way. Uniformity is reached here by realizing Uni as a
left-nested rather than a right-nested definition [104].

We can understand Uni as a set of ’contexts’ where each uniform code is defined in a
context of what has been defined earlier. To inductively incorporate “what has been
defined earlier” we somehow need to extract the ’variables’ available in an earlier stage
of the context —this is accomplished by the function Info : Uni D → Set1— and to allow
the next stage of the context to consist of sets defined with these variables —this is done
by the constructor(s) of type

(
c : Uni D

)
→ (Info c → Set) → Uni D; here the plural

(constructors) of two identical constructors is necessary because their ’internal decodings’
via Info differ: compared to the reference system DS, Info c should (at least) cover the
cases where as indexing object either a set A-, or the large set (A → D) of families of
terms of D is chosen where a constructor σUF respectively δUF effects that all variables
in σUF Q h respectively δUF Q h available for the next stage are exclusively “of type σ”
respectively “of type δ”, and ιUF means that there won’t be any next stage; here the
difference between σUF and δUF is steered via their different internal decoding.

So, we may understand the object Info Q as the ’(large) set of formulas with variables
drawn from the context Q’, a function h : Info Q→ Set as a family of sets where each fiber
h(ϕ) is the set defined by the formula ϕ and an argument pair (Q, h : Info Q→ Set) as
the data we need to define a new context with prefix Q and appended by new sets (h(ϕ))ϕ
of variable, and applying a constructor σUF Q h or δUF Q h finally determines whether the
context we form shall be “of type σ” or “of type δ”. This confirms our understanding of
uniform codes as definable DS codes (see Remark 5.1.0.1).

An alternative way of understanding the construction of uniform codes is to recognize it
as a version of DS where the dependencies in the constructor arguments are inverted to
the effect that later stages in tree corresponding the code cannot depend on earlier stages
and thus can be fixed in a uniform way upfront (see also Remark 5.2.0.2 and Section 5.7).
While this alternative explanation also convinces to some degree, it should not lead one
to the false conclusion that it would not be possible to define an equivalent version of UF
in “right nested” fashion (see Section 5.8).

Decoding of uniform codes UF D E is again given by functors Fam D → Fam E. The
definition is very similar to the decoding of DS codes except that UF codes have two
components. We use the same notation J K for decoding a uniform code as for decoding a
DS code; this convention is reasonable since we will give a semantics-preserving translation
from DS to UF in Section 5.7.

A few immediate observation about the systems of IR we have seen so far are in place.

Remark 5.2.0.2 (Preliminary comparison between UF, DS and DS′). Since UF D
is defined as the action of a container [3], it is automatically functorial. This two-level
presentation of codes (Uni, Info) is similar to DS′ (see Section 3.3) in that both systems
are (large) containers (see Definition 1.2.4.1). A difference is however that the family
(Uni, Info) is defined by non-degenerate induction-recursion whereas SP can be defined
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without reference to Arg which was defined by simple recursion on SP.

A further difference between UF and DS is the chirality of the nestings of their inductive
arguments: Uni is left-nested while SP as well as DS are right-nested, e.g. σUF : (c : Uni)→
(Info c→ Set)→ Set has (Info c) on the left in (Info c→ Set) whereas DS is right nested
in this sense. One can however define UF right-nested as well (see Section 5.8). See also
[104] for this sort of chiralities.

Remark 5.2.0.3. Like for DS codes (see Section 3.2.3.3) it is again possible to subsume
σUF and δUF in one constructor:

sd : (c : Uni)→ (Info c→ Cont)→ Uni

Info sd c A = Σ(Info c)(J A K D) .

5.3 Examples

Example 5.3.0.1 (W-types, again). For the sake highlighting differences between UF-,
and DS-codes, we return to the W-types of Example 3.2.1.8. A uniform code in UF 1 1
representing the W-type W (S, P ) is cW (S, P ),UF = δUF

(
σUF ιUF ( 7→ S)

)
((?, s) 7→ P (s)) :

Uni 1, together with the terminal map Info cW (S, P ),UF → 1. If we compare this to the
Dybjer-Setzer code from Example 3.2.1.8, we see that the order of the (non-base-case)
constructors is reversed:

(δUF
(
σUF ιUF ( 7→ S)

)
((?, s) 7→ P (s)) , 7→ ?) : UF 1 1

σ S (s 7→ δ P (s) ( 7→ ι ?)) : DS 1 1

Also this code can be promoted to a more interesting UF Set Set code applying a given T
everywhere in the tree. We get the same decoding as in Example 3.2.1.8 if we replace the
trivial map ( 7→ ?) : Info cW S P,UF → 1 by the map ((s, ?), Y ) 7→ (

(
c : P (s)

)
→ Y x).

Decoding cW S P,UF we see that

J cW S P,UF KUni (U, T ) =
(
Σ(?, s) : 1× S

)
(P (s)→ U)

J cW S P,UF KInfo (U, T )((?, s), Y ) = ((?, s), T ◦ Y )

where J cW S P,UF KUni (U, T ) is isomorphic to the domain of the W-type constructor sup,
but this time nested the other way compared to the decoding of cW S P in Example 3.2.1.8.

Example 5.3.0.2. A class of examples of DS codes whose members are not uniform in
the intuitive sense motivated above are those obtained from Section 4.2.1 by replacing the
leading π by a σ.

To recover the expected main example of a universe closed under operators Example 3.2.1.9
in the system UF Example 5.5.0.1, we need to introduce coproducts of codes Section 5.4
first.
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5.4 Coproducts of Uniform Codes

The coproduct c +DS d := σ 2 (02 7→ c; 12 7→ d) of two DS codes is not in general the
embedding of a uniform code —even if c and d are— as c and d may still have different
shapes and we can thus not generally immediately use the same construction to define
coproducts of uniform codes we used for DS codes. However, if c and d do have the same
shape, this construction still works. Our plan for constructing coproducts of uniform
codes is then to find equivalent replacements of the summands, such that the new pair
has a common shape, and then to use the standard coproduct construction upon these
replacement codes.

5.4.1 Graded UF Codes

To facilitate the replacement procedure, we first introduce an N-indexed variant UF+ D E n =(
Σc : Uni+ D n

)
(Info+ c→ E) of UF which we will later show to be equivalent to UF. We

inductively define:

Uni+ D : N → Set1

ι+ : Uni+ D 0

δσ : {n : N} → (G : Uni+ D n )→ (Info+ G → Cont) → Uni+ D (suc n)

Info+ : {n : N} → Uni+ D n → Set1

Info+ ι+ = 1

Info+ (δσ G H) = (Σ x : Info+ G ) ( J (H x) K D)

UF+ : (D E : Set1) → N → Set1

UF+ D E n = (Σ c : Uni+ D n ) (Info+ c → E)

Remark 5.4.1.1. Like in the case of DS (see Section 3.2.3.3) and UF (see Remark 5.2.0.3)
there are two two equivalent presentations for UF+, i.e. we can separate the δσ constructor
by:

σ+ : {n : N} → (G : Uni+ D n )→ (Info+ G → Set) → Uni+ D (suc n)

σ+ G A = δσ G (λ γ → (A γ , (λ → 0))

δ+ : {n : N} → (G : Uni+ D n )→ (Info+ G → Set) → Uni+ D (suc n)

δ+ G A = δσ G (λ γ → (1 , (λ → A γ)))
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Definition 5.4.1.2 (degree of a context). The degree of the context part of a code is
recursively defined by:

ν : Uni D → N
ν ι = 0

ν (σ G A) = suc (ν G)

ν (δ G A) = suc (ν G)

We have translations between the graded and the ungraded versions of UF.

Definition 5.4.1.3. The passage from UF to the graded system UF+ is given by the
following function:

] : (c : Uni D) → Uni+ D (ν c)

] ι = ι+

] (σ G A) = σ+ (] G) (A ◦ ]Info G)

] (δ G A) = δ+ (] G) (A ◦ ]Info G)

]Info : (c : Uni D) → Info+ (] c) → Info c

]Info ι = id

]Info (σ G A) = map (]Info G) proj1
]Info (δ G A) = map (]Info G) proj2

]UF : {E : Set1} → (R : UF D E) → UF+ D E (ν (proj1 R))

]UF (c , α) = (] c , α ◦ ]Info c)

Conversely, there is a “forgetful function” removing the degree:

[ : {n : N} → (c : Uni+ D n) → Uni D

[ ι+ = ι

[ (δσ G H) = δ (σ ([ G) (λ γ → proj1 (H ([Info G γ))))

(λ { (γ , x) → proj2 (H ([Info G γ)) x})

[Info : {n : N} → (c : Uni+ D n) → Info ([ c) → Info+ c

[Info ι+ x = x

[Info (δσ G H) (( γ , x) , y) = [Info G γ , x , y

[UF+ : {E : Set1}{n : N} → UF+ D E n → UF D E

[UF+ (c , α) = ([ c , α ◦ [Info c)
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Remark 5.4.1.4. The graded and the ungraded system of uniform codes are equivalent.
It is important, though, that this is only so because UF codes are uniform: a DS code σAf
does not have a well defined degree since branches can have different length. This remark
should be compared to Section 6.7.

A decoding J − K+ can be defined for UF+ along the lines for the one for UF (alternatively,
Proposition 5.4.1.5(ii) below can be used as a definition).

Proposition 5.4.1.5. Let D,E : Set1 and Z : Fam D. If c : UF D E and d : UF+ D E n,
then (i) J ]UF c K+ Z ∼= J c KZ; and (ii) J [UF+ d KZ ∼= J d K+ Z. �

This proposition can be summed up in the following commuting diagram:

UF D E

J − K ((

〈ν,]UF〉
.. (

Σn : N
)
(UF+ D E n)

J − K+tt

[Info ◦ proj2

nn

Fam D → Fam E

Next, note J δσ c 1 ( 7→ 0) K+ Z ∼= J c K+ Z. Thus we can pad out c : UF+ D E n to
padk c : UF+ D E (n+ k + 1) without changing the meaning of the code:

Lemma 5.4.1.6. Let k : N. There is an operation padk : UF+ D E n→ UF+ D E (n +
k + 1) such that J padk c K+ Z ∼= J c K+ Z for every Z : Fam D which is given by

pad : {m : N} → (n : N) → (c : Uni+ D m) → Uni+ D (suc (m + n))

pad {m} zero c = subst (Uni+ D ◦ suc) (sym (+− rightId m))

(δσ c (λ → (1, λ → 0)))

pad {m} (suc n) c = subst (Uni+ D ◦ suc) (sym (+− suc m n))

(δσ (pad n c) (λ → (1, λ → 0)))

padInfo : {m : N} → (n : N)(c : Uni+ D m) → Info+ (pad n c) → Info+ c

padInfo {m} zero c UIP (+− rightId m) = proj 1

padInfo {m} (suc n) c UIP (+− suc m n) = padInfo n c ◦ proj 1

padUFR : {E : Set1}{m : N} → (n : N) → UF+ D E m → UF+ D E (suc (m + n))

padUFR n (c , α) = pad n c , α ◦ padInfo n c

where
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+−rightId : (n : N)→ n+ 0 = n

+−rightId zero = refl

+−rightId (suc n) = cong suc (+− rightId n)

+−suc : (m n : N)→ m+ suc n = suc (m + n)

+−suc zero n = refl

+−suc(sucm)n = cong suc (+− suc m n) ,

and UIP invokes uniqueness of identity proofs (see Paragraph 2.2.3.3.12). �

5.4.2 Definition of Coproducts for UF

Since all UF+ codes of the same length also are of the same shape, it is now easy to form
coproducts of such codes by:

++ : UF+ D E n→ UF+ D E n→ UF+ D E (sucn)

(c, α) ++ (d, β) = (c+Uni+ d, [α, β] ◦ (c+Info+ d))

+Uni+ : Uni+ D n→ Uni+ D n→ Uni+ D n

ι+ +Uni+ ι+ = σ+ ι+ ( 7→ 2)

(δσ c A B) +Uni+ (δσ d A′ B′) = δσ (c+Uni+ d) ([A,A′] ◦ (c+Info+ d)) ([B,B′] ◦ (c+Info+ d))

(c+Info+ d) : Info+ (c+Uni+ d)→ Info+ c+ Info+ d

Note that we did not need to consider the definition of e.g. ι+ +Uni+ (δσ c A B) as these
summands cannot possibly have the same length.

Lemma 5.4.2.1. For all c, d : UF+ D E n and Z : Fam D we have J c ++ d K+ Z ∼=
J c K+ Z + J d K+ Z, where the right hand side is a coproduct of families. �

Putting everything together, we have:

Theorem 5.4.2.2. Let D,E : Set1. Define +UF : UF D E → UF D E → UF D E by
c+UF d = forget (canon+ c++ canon+ d). Then J c+UF d K Z ∼= J c K Z + J d K Z. �

? ? ?
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5.5 Example of a Coproduct Code

Having coproducts 5.4 at our disposal, we can reproduce the example of a universe closed
under several operations 3.2.1.9.

Example 5.5.0.1 (A universe closed under W-types, again). We construct the code
c2,UF +UF cW,UF : UF Set Set from the following summands — again note that the nesting
is the other way around compared to the DS code in Example 3.2.1.9:

c2,UF = (ιUF, ? 7→ 2) : UF Set Set

cW,UF =
(
δUF

(
δUF ιUF (? 7→ 1)

)
((?,A) 7→ A?), ((?,A), B) 7→ W (A?) B

)
: UF Set Set

By Theorem 5.4.2.2, we will have J c+UF d K Z ∼= J c K Z + J d K Z, where the right hand
side uses the coproduct of families. Hence c2,UF +UF cW,UF decodes correctly.

5.6 Subcodes

Remark 5.6.0.1 (subcodes of uniform codes). Compare Remark 3.2.1.5 Again we
have a notion of subcodes which we can compare to DS subcodes. In the example of a code
for a polynomial functor, for the subtree being the branch over s : S respectively, we could
take

δP (s)(λ → ι?) ≺ σS(λs→ (δP (s)(λ → ι?)))

(δ(ιUF)(λ → P (s)), λ(?, Y )→ ?) ≺ (δ(σ(ιUF)(λ → S))(λ(?, s)→ P (s)), λ((?, s), Y )→ ?) .

If we consider the subcode for the “upgraded” code which has a modified map in the second
component not ignoring its arguments, we see that we that we have further possibilities
how to define a subcode: we can take the second-component map in the subcode to be the
composite of the sum inclusion ins : Info(δ(ιUF)(λ → P (s)))→ Info(cW S P,UF) followed by
the s-component of the map which is the second component of the “upgraded” code

(δ(ιUF)(λ → P (s)), λ(?, Y )→ (
(
c : P (s)

)
→ Y x)) ≺

(δ(σ(ιUF)(λ → S))(λ(?, s)→ P (s)), λ((?, s), Y )→ (
(
c : P (s)

)
→ Y x)) .

We could however also take only the sum-inclusion ins as second component in which case
the subcode has a different type than the code it is subcode of

(δ(ιUF)(λ → P (s)), λ(?, Y )→ (
(
c : P (s)

)
→ Y x)) : UF D Info(cW S P,UF)

Since in general a subcode of a subcode should not depend on the top-most code, the latter
suggested definition is better. Notice that in particular a subcode of a DS code always has
the same type as the code it is subcode of.
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5.7 Embedding of UF into DS and Consistency of UF

We embed UF into DS, i.e. we give a translation of codes which is semantics-preserving
in that the decoding of a code is isomorphic to the decoding of its translation. Since UF
codes are “backwards” compared to DS codes, this embedding resembles the well-known
accumulator based algorithm for reversing a list. Define accUFtoDS :

(
c : Uni D

)
→

(Info c→ DS D E)→ DS D E (the second argument is the accumulator) by

accUFtoDS ιUF F = F ?

accUFtoDS (σUF c A) F = accUFtoDS c (γ 7→ σ (A γ) (a 7→ F (γ, a)))

accUFtoDS (δUF c A) F = accUFtoDS c (γ 7→ δ (A γ) (h 7→ F (γ, h)))

and define UFtoDS : UF D E → DS D E by starting with a ι:

UFtoDS (c, α) = accUFtoDS c (ι ◦ α) .

Proposition 5.7.0.1. The translation UFtoDS is a (semantics-preserving) embedding,
i.e. for every c : UF D E and Z : Fam D, we have J UFtoDS c K Z ∼= J c K Z. �

Corollary 5.7.0.2 (Consistency of UF). The system UF is consistent via the embed-
ding it posits and the existing model of the system DS [38] into which it embeds.

5.8 Right Nested Uniform Codes

We said that the inclusion of UF into DS works by “reversing” the order of dependency
of codes. We mention for the sake of completeness that there exists also a right-nested
version UFop of UF defined by the constructors

UFop (D E : Set1) (Q : Uni D) : Set1

ιopQ : (Info Q → E) → UFop D E Q

σopQ : (A : Info Q → Set) → UFop D E (σUF Q A) → UFop D E Q

δopQ : (A : Info Q → Set) → UFop D E (δUF Q A) → UFop D E Q .

There is a translation2 of this system parametrized by ’contexts’ into DS

] : {Q : Uni D} → Info Q → UFop D E Q → DS D E

] e (ιopQ d) = ιUF (d e)

] e (σopQ A h) = σUF (A e) (λ a → ] (e , a) h)

] e (δopQ A h) = δUF (A e) (λ g → ] (e , g) h) .

2We use here the “enharmonic” notation ] to indicate that UFop (parametrized by ’contexts’) is a
subsystem of DS.
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which obviously provides a translation UFop D E Q → DS D E in case Q = ιUF.

Parametrized decoding of UFop, i.e. a map

J K : {Q : Uni D} → Info Q → UFop D E Q → Fam(D)→ Fam(E)

can obviously be defined by precomposing decoding of DS with ]. Since however com-
position (our main focus) for UFop-codes is much more difficult than for UF-codes, we
do not study the former system any further in this thesis; in fact we studied the right
nested version of uniform codes before we turned to the left-nested one because of the
just-mentioned reason.

5.9 Composition for UF codes

5.9.1 A Combined Power-Bind Operator for UF

Composition of DS codes —as we recall from section 4.1— can be inferred from a power
operation which we could not define because of the dependency arising in its attempted
construction. At the beginning of this chapter (in Remark 5.1.0.2) we gave an intuitive
explanation why uniformity of codes is able to resolve this problem. In this section we
will substantiate this idea with a formal proof.

Composition for UF will —as for DS— be facilitated by a combination of a power-, and a
bind operation. Unfortunately, however, the functor UF D is not a monad from whose
structure we could obtain the bind operation. More generally, since the relation between
the bind operation and monad structure is a very close one, (see [87]), we cannot obtain
a bind operation at all. The failure of defining both operations can be recognized by
remembering the geometric interpretation of these operations: Monad multiplication
would send a tree of trees T to a tree t by taking the root of t to be the root of the root
of T , and recursively grafting the trees of T onto this root; in the instance of trees: the
result of grafting uniform tress upon a uniform tree may not be a uniform tree since, first
the trees may differ in height, and second one would need to graft trees of the same height
on all leaves of the first tree and not only on some while leaving other branches too short.
The bind operation does the grafting more selectively according to its two arguments.

This description fortunately entails a way how to resolve the problem: we need to define
an operation that chooses the appropriate number of trees all of which have the same
height and does the grafting only with these. To this end it comes in handy that a ’context’
(see the explanation after Definition 5.2.0.1) c already has a layer structure capturing
this pre-formal idea since it exactly encodes the kind of matching of a prefix of context
to an appropriate postfix. We come to the following formalization of our bespoke bind
operation.

We can think of the operation − >>=[− −→ −] defined below either as a combination of
a bind operation, binding families of sets derived from a power operation of a context
by a family of sets indexed over the environment set of that code, i.e. a function
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c 7→ (λd.(λx.Info D c x → d))) : Uni → (Uni → Set) → Uni; or as an operation
((−,−) → −) which is an exponential function where for ((c, E) → d) the exponent
consists not of a code but of the two arguments which would give a code when the
appropriate constructor would be applied to them.

Definition 5.9.1.1 (− >>=[− −→ −]). We define

− >>=[− −→ −] :
(
c : Uni D

)
→ (Info c→ Set)→ Uni D → UniD

c >>=[E −→ ιUF] = c

c >>=[E −→ σUF d A] = σUF (c >>=[E −→ d])(γ 7→
(
e : E(>>=Info,0 γ)

)
→ A(>>=Info,1 γ e))

c >>=[E −→ δUF d A] = δUF (c >>=[E −→ d])(γ 7→
(
Σe : E(>>=Info,0 γ)

)
A(>>=Info,1 γ e))

(c >>=[E −→ d])Info : Info (c >>=[E −→ d])→
(
Σx : Info c

)
(E x→ Info d)

(c >>=[E −→ ιUF])Info x = (x, ( 7→ ?))

(c >>=[E −→ σUF d A])Info (x, g) = (>>=Info,0 x, e 7→ (>>=Info,0 x e, g e))

(c >>=[E −→ δUF d A])Info (x, g) = (>>=Info,0 x, e 7→ (>>=Info,0 x e, (a 7→ g (e, a)))

where >>=Info,0 and >>=Info,1 denote the first-, and second projection of (c >>=[E −→ d])Info
respectively, inferring the other arguments from context.

This definition is validated by the following proposition:

Proposition 5.9.1.2. There is an equivalence

J c >>=[E −→ d], (d >>=[E −→ d])Info K ∼= (J c, id K) >>=Fam (e 7→ ((E e) −→Fam J d, id K)) .

Proof. We do not not reproduce the Agda proof of the previous Proposition 5.9.1.2 here
but rather state the following lemma collecting properties of the >>=[−→] operation in
diagrammatic form that can be helpful in understanding the corresponding Agda proof. �

Lemma 5.9.1.3 (Decoding of >>=[ −→ ]). 1. For all c, E, d, Z for which the
following expressions are defined, there is a map Rt1 d as well as a family of
propositional equalities LemRt1 d x indexed over x : J c >>=[E −→ d] KUni Z
commuting the following square up to this family of propositional equalities.

J c >>=[E −→ d] KUni Z
Rt1 d //

J c>>=[E−→d] KInfo Z
��

J c KUniZ

J c KInfoZ
��

Info {D}(c >>=[E −→ z])
>>=Info,0 // Info {D} c

2. For all c, E, d, Z for which the following expressions are defined, there is a map
Rt2 d x as well as a family of propositional equalities LemRt2 d x e indexed over
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e : E(J c KInfoZ(Rt1 d x)) commuting the following square up to this family of
propositional equalities.

E(J c KInfoZ(Rt1 d x)) Rt2 //

subst E (sym (Lem Rt1 d x))

��

J d KUniZ

J d KInfoZ
��

E (>>=Info,0 J c >>=[E −→ d] KInfo Z x)
>>=Info,1 d // Info {D} d

3. For all c, E, d, Z for which the following expressions are defined, there is a map
Lt1 d as well as a family of propositional equalities LemLtfst d indexed over
x : J c KUniZ and g : EJ c KInfoZx→ J d KUniZ commuting the following diagram up
to this family of propositional equalities.

(x : J c KUniZ)
in(x,g) //

J c KInfoZ
��

Σ[x∈J c KUniZ](E(J c KInfoZx)→ J d KUniZ)

Lt1d
��

Info {D}c Info {D} [c+ +[E −→ d]]
>>=Info,0oo J c >>=[E −→ d] KUni Z

J c>>=[E−→d] KInfo Zoo

4. For all c, E, d, Z for which the following expressions are defined, there is a
family of propositional equalities LemLtsnd d indexed over x : J c KUniZ and
g : EJ c KInfoZx→ J d KUniZ commuting the following diagram up to this family of
propositional equalities.

E( >>=Info,0 d (J c >>=[E −→ d] KInfo Z(Lt1 d (x, g))))
subst E Lemfst d (x,g) //

>>=Info,1 d (>>=Info,0 d J c>>=[E−→d] KInfo Z(Lt1 d (x,g)))
--

E (J c KInfoZx)

g

��
J d KUniZ

5.

LemLtboth : ∀ {D c E} d → {Z : Fam D} →
(x : J c KUni Z)(g : (e : E (J c KInfoZ x)) → J d KUni Z) →
(c >>=[E −→ d])Info (J c >>=[E −→ d] KInfoZ (Lt1 d (x , g)))

≡ (J c KInfoZ x , J d KInfoZ ◦ g)

LemLtboth {c = c} {E} d {Z} x g
= Σ ≡ (LemLtfst {c = c} d x g)

(trans (subst− dom {A′ = E} (LemLtfst {c = c} d x g))

(ext (λ e →
trans (LemLtsnd d x g (subst E (sym (LemLtfst d x g)) e))

(cong (J d KInfoZ ◦ g)

(subst− sym− subst (LemLtfst d x g))))))
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Where the functions for equational reasoning used here are defined in Paragraph 2.2.3.3.10
and Paragraph 2.2.3.3.11.

Remark 5.9.1.4. While is not possible to derive a bind operator from >>=[ −→ ], we
do obtain a power operator with the correct universal property by:

A −→ (c, f) := (ιUF >>=[( 7→ A) −→ c], (γ 7→ f ◦ (proj2((ιUF >>=[( 7→ A) −→ c])Info))γ) .

(This fact will not be needed in the proof of composition in Theorem 5.9.2.1.)

5.9.2 Definition of Composition for UF

We can now define composition for UF codes in a fashion similar to Theorem 4.1.0.2,
except that we separate the action of the first component of a code and take care of the
second component in a second step:

Theorem 5.9.2.1. The operations

•Uni : Uni D → UF C D → Uni C

( •Info ) :
(
c : Uni D

)
→
(
R : UF C D

)
→ Info (c •Uni R)→ Info c

simultaneously defined by

ιUF •Uni R = ιUF

(σUF c A) •Uni R = σUF (c •Uni R) (A ◦ (c •Info R))

(δUF c A) •Uni (d, β) = (c •Uni (d, β)) >>=[(A ◦ (c •Info (d, β))) −→ d]

(ιUF •Info R) x = x

((σUF c A) •Info R) (x, y) = ((c •Info R) x, y)

((δUF c A) •Info (d, β)) x = ((c •Info (d, β)) (>>=Info,0 x, β ◦ (>>=Info,1 x))

make the following a composition operation for UF codes

• : UF D E → UF C D → UF C E

(c, α) • (d, β) = (c •Uni (d, β), α ◦ (c •Info (d, β)))

and this operation commutes with decoding in the sense that for every (U, T ) : Fam(C)

J c • d K(U, T ) ' J c K(J d K(U, T ))

is an isomorphism. �

? ? ?
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5.10 Example: Composing a Universe with A W-Type

We can now generate examples by the new composition operation Theorem 5.9.2.1.

Example 5.10.0.1 (Postcomposing a universe by a W-type). Composing the code
c2,W : UF Set Set for a universe closed under W-types, and containing 2 from Exam-
ple 5.5.0.1 with the “upgraded” code cW (N, Fin) : UF Set Set from Example 5.3.0.1, we get a
code for a universe where each constructor now takes a list of inductive arguments, with
decoding the product of the decodings. Up to an isomorphism relating coproducts of composi-
tions with compositions of coproducts, the resulting code is c2W •cW (N, Fin)

∼= c2,UF+UF c
′
W,UF,

where c2,UF is as before, and

c′W,UF = (δUF (σUF cW (N, Fin) ((?, n, Y ) 7→ (
(
x : Finn

)
→ Y x)→ N))

((?, n, Y, e) 7→
(
Σy :

(
x : Finn

)
→ Y x

)
Fin (e y)),

((?, n, Y, e, B) 7→
(
Σy :

(
x : Finn

)
→ Y x

)(
w : Fin (e y)

)
→ B (y, w)))

where

J (σUF cW (N, Fin) ((?, n, Y ) 7→ (
(
x : Finn

)
→ Y x)→ N)) KUni =(

Σ((?, n), Y ) : J cW (N, Fin) KUni
)
(((x : Fin(n))→ (T ◦ Y )(x))→ N)

(since J cW (N, Fin) KInfo(U, T )((?, n), Y ) = ((?, n), T ◦ Y )) arranges for the list of inductive
arguments.

5.11 Conclusion and Outlook

We have introduced a system UF of codes for composable induction-recursion . This
system can be regarded as a subsystem of DS and this embedding settles the consistency of
UF’s axioms. Even though every ’definable’ DS code —which includes all main examples
like Tarski universes (after some workaround arrange for the necessary coproducts) and
inductive definitions— corresponds to a UF code having the same semantics, the system
may be criticized because of not subsuming all of DS. We address the latter shortcoming
in the following chapter by presenting one more axiomatization of induction-recursion
that does subsume DS while enjoying composability for all of its codes.
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We saw in Section 4.1 that composition for Dybjer-Setzer codes requires a power operator.
However, simply adding a code for powers results in a system for which we could not
decide whether it carries a monad structure and we have seen that for the other systems
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we studied a bind operation (which would follow from the monad structure) was crucial
for constructing composition. In fact it is not even clear (but very unlikely) that DS +π is
functorial. This last problem was treated in Chapter 5 by creating a new system that is a
container (see Definition 1.2.4.1). Thus, our program for this chapter consists in defining
a new system that is a container and contains a constructor for powers (or more generally
dependent products of codes); it will turn out that the system PN of polynomial codes so
constructed is a monad.

There are two ways to justify the name ’polynomial codes’ for the present system: firstly,
codes are —like polynomials— (either trivial or) constructed as sums-, or products of codes.
Secondly, in an equivalent formulation of it, the base case constructor takes polynomials of
sets (aka containers) as base case. Since a system whose base case has already nontrivial
structure is less amenable for computations, we defer a more detailed presentation of this
alternative to Section 6.7 after briefly introducing the equivalent system as a motivation
in Section 6.1 and carrying out the main part of the chapter with the version Section 6.2
where the container base case is split in two cases that are easier to handle.

6.1 Motivation: Iterating Containers

We start with a motivation for the kind of extension of DS we are aiming at. Considering
the systems DS′ Section 3.3 (or UF Chapter 5), we noticed that the organization as a
container addresses the possible obstruction to functoriality posed by a constructor like

π : (A : Set)→ DS D E → DS D (A→ E)

where the argument ’D’ changes to ’(A→ D)’ depending on an argument taken by this
constructor, by disentangling the second argument ’E’ of DS′ D E from the inductively
defined SP D that uses only the first. Would we not know that DS and DS′ are equivalent,
the just repeated observation could nourish hope that adding a constructor for powers
to DS′ could be more successful than the failed attempt in Section 4.1 to add it to DS.
Indeed, in this chapter, we pursue the idea to add a constructor for powers to a modified
version of DS′:

In the attempt to add a constructor for powers to DS′ and to verify functoriality or
monadicity, one notices that the problem arising lies in that —since the argument Q
respectively J Q KD in the constructor

σδ′ : (Q : Cont)→ (J Q KD → SP D)→ SP D

is too inflexible— one is not able to find a container Q complying the requirements
imposed by the recursion calling it. One gets the idea that, like in case of UF where we
also defined Q : Uni by induction, and Info{D} : Uni D → Set1 by recursion, a pair (Q, h)
defined by induction-recursion might be successful also here. The objectives in the present
chapter are however to define a system that 1) subsumes all of DS while —as mentioned
above— maintaining the property 2) that this system be functorial-, 3) a monad in its
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second component, and 4) satisfies composability. In the following remark we describe
a schema for defining a system satisfying 1) and 2), and it will turn out that resulting
system automatically satisfies 3) (this is implied by the conjunction of Section 6.5.1 and
Proposition 6.7.1.3), and 4) (see Section 6.5) as well.

Remark 6.1.0.1 (“Inductive Container”). We will describe now the idea to define
the “inductive container” (PN−piContC ,PN−piContP ) satisfying the above described desiderata (1-
3); we chose the superscript −pi to indicate that that this system extended by a constructor
for dependent products- (or powers) of codes will be (equivalent to) the system that satisfies
also composability.

For every D : Set1, the (large) set of containers (Cont{zero} , λH → J H K D) :
Cont{suc 1}1 is itself a container one level higher in the universe hierarchy. Now , if we
would like to use this as the basis of an induction, we require a base case

bs : Cont{zero} → PN−piContC D

and for an inductive step, we require that for the ”decoding” PN−piContP Q of an “inductive
container” Q, for every family of inductive containers indexed over the decoding of Q, we
obtain a new inductive container

it : (Q : PN−piContC D)→ (PN−piContP D Q→ PN−piContC D)→ PN−piContC D

in a way that, if we decode the base case, we obtain simple container decoding i.e.
PN−piContP D (bs X) = J X KD, and for the it constructor we can define PN−piContC it Q f =

Σ(x : PN−piContP Q)(PN−piContP (f x)).

Recalling Remark 3.3.0.1, we can regard DS′ as a reduced version of PN−piCont:

bs− : PN−piContC

it− : (Q : Cont)→ (J Q KD → PN−piContC)→ PN−piContC .

Even if we will not pursue this in this thesis, we mention that one can iterate this process
on our ”inductive container” (PN−piContC ,PN−piContP ) to obtain:

PN−piContC

′
: (D : Set1)→ Set1

bs′ : PN−piContC D → PN−piContC

′
D

it′ : (Q : PN−piContC

′
D)→ (PN−piContP

′
D Q→ PN−piContC

′
D)→ PN−piContC

′
D

PN−piContP

′
: PN−piContC

′
D → Set1

PN−piContP

′
bs′ X = PN−piContP X

PN−piContP

′
it′ Q f = Σ(x : PN−piContP

′
Q)(PN−piContP

′
(f x)) .

1Here Cont{suc 1} := ΣA:Set1(A→ Set1).
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One can the define a sequence (CtnDE)n:N of systems obtained in this way by

• Ct1 D E = J (PN−piContC D, PN−piContP ) KE

• Ct2 D E = J (PN−piContC

′
D, PN−piContP

′
) KE

• Ctn+1 D E = (Ctn)′ D E for n > 1 by repeating the priming procedure described
above.

One obtains inclusion maps Ctn D E → Ctn+1 D E induced by bsn+1 such that each
system subsumes the previous step as a subsystem. And all systems in this sequence are
functorial.

We will return to the relation of DS′ and Ct1 in Section 6.7.

The idea of “inductive containers” we have just sketched is related2 to that of “levitation”
which appeared in [24] in context of inductive definitions.

Of interest for the purpose of compositionality is here in particular that Ct1DE is a
functorial system subsuming DS′. In this chapter we will be interested in a system
equivalent to Ct1 D E extended by a constructor for dependent products of codes, and we
will see that this system carries a monad structure and enjoys composability.

6.2 PN Codes and Their Decoding

In the first presentation PN of the system of polynomial codes for induction recursion,
we split the base case bs of the system PN−piCont in the motivation of Section 6.1 in two
cases idPN, and con and add a constructor for dependent products of codes (the same
construction works with powers in place of dependent products (see Remark 6.2.0.2); we
will see that that the splitting of the base case is inessential on the sense that we can add
the constructor pi to PN−piCont itself to obtain a system PNcont equivalent to PN .

Definition 6.2.0.1. Let D,E : Set1. The large set PN D E : Set1 of polynomial codes
for induction-recursion is defined by PN D E :=

(
Σc : Poly D

)
(Info c → E), where

Poly D : Set1 and Info : Poly D→ Set1 are mutually defined by the constructors

idPN : Poly D

con : (A : Set)→ Poly D

sigma : (S : Poly D)→ (Info S→ Poly D)→ Poly D

pi : (A : Set)→ (A→ Poly D)→ Poly D

2The idea of “levitation” is rather to define a hierarchy of sets of codes where each one contains a
code encoding (via initial algebra semantics) the set of codes on the previous stage. It is likely that one
can make the relation of “levitation” and the sequence we just presented more precise but we did not
pursue this.

108



and the recursively defined function

Info : Poly D→ Set1

Info idPN = D

Info (con A) = A

Info (sigma S F) =
(
Σx : Info S

)
(Info (Fx))

Info (pi A F) =
(
x : A

)
→ (Info (Fx)) .

Polynomial codes in PN D E decode to functors Fam D → Fam E in the following way:
let c : Poly D and α : Info c → E. This polynomial code induces a functor J c, α K =
(J c K0−, J c, α K1−) : Fam D → Fam E where J c, α K1 = α ◦ J c Kinfo are defined by:

J K0 : Poly D→ Fam D → Set

J idPN K0 (U, T ) = U

J conA K0 (U, T ) = A

J sigmaS F K0 (U, T ) =
(
Σs : J S K0 (U, T )

)
(J F (J S Kinfo (U, T ) s) K0 (U, T ))

J piAF K0 (U, T ) =
(
x : A

)
→ J Fx K0 (U, T )

J Kinfo : (c : Poly D)→ ((U, T ) : Fam D)→ J c K0 (U, T )→ Info c

J idPN Kinfo (U, T )x = T x

J conA Kinfo (U, T ) a = a

J sigmaS F Kinfo (U, T ) (s, x) = (J S Kinfo (U, T ) s, J (F (J S Kinfo (U, T ) s)) Kinfo (U, T )x

J piAF Kinfo (U, T ) g = a 7→ J (Fa) Kinfo (U, T ) (g a)

Warning: polynomial codes should not be confused with polynomial functors [44, 45] or
codes for them. Codes decoding to polynomial functors are exactly the terms of Ind (see
Remark 2.2.4.6).

We use the same name Info as in uniform codes for the function computing the information
represented by a code. The code idPN represents the identity functor, con A the functor
whose index set is constantly A, sigma S F represents a dependent coproduct of functors,
and pi A F represents anA-indexed dependent product of functors. Observe that PND
is again, like UFD , functorial by function composition.

We observe that while DS codes are right-nested (see Section 3.2.1), i.e. allow for a nesting
of terms depending on earlier steps in the second (“right”) argument (of the constructors),
and UF codes are nested in the first argument (see Section 5.2), PN codes are nested in
both arguments.

Remark 6.2.0.2. One obtains a weaker system by replacing the pi constructor with a
constructor power : Set→ Poly D → Poly D with Info (power A c) = A→ Info c. In the full
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system, such an operator can be defined by power A c := pi A ( 7→ c). The weaker system
also enjoys composition, and the embedding of Dybjer-Setzer codes in Proposition 6.7.1.4
factors through the system with powers only. Semantically, the stronger system is just as
easy to handle.

6.3 Examples

Example 6.3.0.1 (W-types, again). We revisit Examples 3.2.1.8 and 5.3.0.1. For S :
Set, P : S → Set the polynomial code for the W-type W S P is (cW S P,PN, 7→ ?) : PN 1 1
where cW S P,PN = sigma (con S)(s 7→ pi (P s) ( 7→ idPN)). Again this can be upgraded to
a PN Set Set code applying T : U → Set everywhere in the tree by replacing the trivial map
( 7→ ?) : Info cW S P,PN → 1 by the map ((s, Y ) 7→

(
c : P (s)

)
→ Y x) : Info cW S P,PN → Set.

Decoding cW S P,PN we get

J cW S P,PN K0 (U, T ) =
(
Σs : S

)
((P s)→ U)

this time matching the domain of the W-type constructor sup strictly.

Example 6.3.0.2 (A universe closed under W-types, again). We also revisit Ex-
ample 3.2.1.9 again. A polynomial code (c2W,PN, α) : PN Set Set for a universe containing
2, closed under W-types is given by c2W,PN : Poly Set where

c2W,PN = sigma (con {bool,w})(bool 7→ con 1; w 7→ sigma idPN (X 7→ pi X ( 7→ idPN)))

together with α2W,PN : Info c2W,PN → Set defined by α2W,PN(bool, x) = 2 and α2W,PN(w, (A,B)) =
W A B.

Decoding (c2W,PN, α2W,PN) we again get the same result as in Example 3.2.1.9.

6.4 Existence of Initial Algebras: A Set-Theoretic

Model of MLTT + PN

6.4.1 Interpreting the Elements of MLTT + PN . . . . . . . . . . . . . . . 111
6.4.1.1 Interpreting the Elements of MLTT . . . . . . . . . . . . . 111
6.4.1.2 Interpretation of Poly D . . . . . . . . . . . . . . . . . . 112

6.4.2 Construction of Initial Algebras for PN Functors . . . . . . . . . . 112
6.4.2.1 Continuity of PN-Functors in Monotone κ-Sequences . . 113
6.4.2.2 Continuity of PN-functors in Their Initial Sequences . . 115
6.4.2.3 Completing the Proof . . . . . . . . . . . . . . . . . . . 116

Since we do not exhibit PN as a subsystem of DS, we cannot rely on Dybjer and Setzer’s
proof that initial algebras of the corresponding functors exist. We can, however, extend
their proof to polynomial codes. Recall that, as we saw in Lemma 1.1.0.14, every
inaccessible cardinal I can be used to define the universe VI which can be proved to be
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a model of ZFC, and hence by Gödel’s second incompleteness theorem, the existence
of I cannot be proved in ZFC (see [68, Theorem 12.12]. Since all versions of IR can
define universes, it is not surprising that a model of IR has to assume inaccessibles. More
precisely in this section we will show:

Theorem 6.4.0.1. In ZFC+M+I (where M is a Mahlo cardinal (see Corollary 1.1.0.21),
and I is a 1-inaccessible (see Definition 1.1.0.8) containing M,) all functors J c K : Fam D →
Fam D associated to a polynomial code c : PN D D have initial algebras.

To prove this theorem, we adapt Dybjer-and-Setzer’s set-theoretic model [38, 39] in
ZFC+M+I′ and the Generalised Continuum Hypothesis3 to a model of PN. The assump-
tions of our model differ from Dybjer-Setzer’s only in that I has to be 1-inaccessible and
not 0-inaccessible as I′ where we recall that a cardinal I is 1-inaccessible if the set X of
0-inaccessibles less than I is unbounded in I, i.e. -if the supremum of X equals I.

6.4.1 Interpreting the Elements of MLTT + PN

We begin in the first subsection with the interpretation of the version of MLTT which is
necessary for the extension by PN.

6.4.1.1 Interpreting the Elements of MLTT

Like Dybjer-Setzer, we interpret Set as VM and Set1 as VI, where Vα is the cumulative
hierarchy. Dybjer and Setzer [39] require I to be 0-inaccessible (and containing M) only,
since their set of codes is only inductively defined.

The interpretation of the types and terms in MLTT is the same as given by Dybjer-Setzer
in [38, p.9-10] (see also [35, §2.3] and the further reference given there). We repeat it here
for the sake of completeness.

The interpretation of types is straightforward: In particular if x : A a B(x) : Set is
interpreted as ’if x ∈ LAM then LB(x)M ∈ Set’, and we interpret

L(A,B)M := {{A}, {A,B}},
Lλ (x : A)→ B(x)M := {(x,B(x))|x ∈ A},
LΠx∈AB(x)M := {f : A→ ∪x∈AB(x)|∀(x ∈ A).f(x) ∈ B(x)}
LΣx:AB(x)M := {(c, d)|c ∈ A ∧ d ∈ B(c)},
L0M := ∅,
L1M := {0},
L2M := {0, 1},
LA0 + · · ·+ AnM := Σi∈{0,...,n}Ai .

3Notice that that the Generalized Continuum Hypothesis implies the axiom of choice by a theorem of
Sierpinsky’s (see [53]). The axiom of choice is used explicitly in the construction of the model.
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6.4.1.2 Interpretation of Poly D

We now need to verify that Poly D can be constructed in the model, and that initial
algebras exist also for PN functors.

Lemma 6.4.1.1. The interpretation of the type Poly D is in VI, and so is the interpretation
of Info (X) for every X in Poly D.

Proof. First, to see that this lemma has the correct implications: since the interpretation
of D is required to be an element of the interpretation VI of Set1, also the interpretation
of Poly D must be in VI since (Poly D, Info ) : FamSet1.

That this is the case can be seen by observing that (Poly D, Info ) : FamSet1 is exactly a
Tarski universe in Set1 closed under Σ and Π, and containing a code for D. Such a Tarski
universe can be modeled by assuming a 0-inaccessible cardinal. Since we, however, need
to have such a Tarski universe for all D : Set1, we need to assume at least that the set of
all such 0-inaccessibles is contained in our model; by definition the least cardinal allowing
for this is a 1-inaccessible.�

Notice that arguing that (Poly D, Info ) is defined by induction-recursion on FamSet1 and
thus has a model by shifting the size of the model of [38] by one, would require a second
Mahlo cardinal containing the first one which would be an unnecessarily strong assumption.

Notice also that for the model of DS the assumption of a 0-inaccessible above M is sufficient
since for a fixed D, the definition of DS D D does not require an inaccessible beyond M.
And again the necessity of a 0-inaccessible comes about since we need to define DS D D
for all D.

6.4.2 Construction of Initial Algebras for PN Functors

The remainder of the construction of the model shows that initial algebras of PN functors
exist. As we have sketched in Section 1.2.3, the strategy is also here to iterate the
application of PN functors to an initial object(here: of Fam(Set)). But now we have —in
addition to convergence of the iteration— to take care that for a family (U, T ), and (U ′, T ′)
the result of sufficiently many application of an PN-functor to it, the interpretation of U ′

is still contained in the universe VI. Apparently, the (maximal) size of the interpretation
of U ′ depends on the inductive-recursive structure of the index-set J c K0 part of the
PN-functor as well as on the family (U, T ); this size is computed by the following definition
ofAux(c, (U, T )):

Definition 6.4.2.1. Given a polynomial code c : Poly D and an object (U, T ) of FamD,
the set Aux(c, U, T ) of premises of inductive arguments of c with respect to U , T is defined
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by induction over c:

Aux(idPN, U, T ) = Aux(conA,U, T ) = ∅

Aux(sigmaS F, U, T ) = Aux(S, U, T ) ∪
⋃

x : J S K0(U,T )

Aux(F (J S Kinfo(U, T )x), U, T )

Aux(piAF,U, T ) = {A} ∪
⋃
x : A

Aux(Fx, U, T )

We now observe that if for certain (U, T ), all A ∈ Aux(c, U, T ) are “small” in a suitable
sense then J c K is κ-continuous for some inaccessible κ < M. Hence, by a standard
argument — see e.g. Adámek et al [7] — we can conclude that J c K has an initial algebra.

6.4.2.1 Continuity of PN-Functors in Monotone κ-Sequences

We first show that PN-functors are monotone in the partial order on Fam(Set) (see
Remark 1.3.0.4).

Lemma 6.4.2.2. Let c : Poly D, and (U, T ), (U ′, T ′) be objects of Fam D. Assume U ⊆ U ′

and T ′ � U = T . Then

1. J c K0(U, T ) ⊆ J c K0(U ′, T ′), and

2. J c Kinfo(U ′, T ′) � J c K0(U, T ) = J c Kinfo(U, T ).

Proof. Induction on c:

• If c = idPN, then the assertion follows by assumption.

• If c = conA, then the assertion is trivial.

• If c = sigmaS F , then J c K0(U, T ) =
(
Σs : J S K0 (U, T )

)
(J F (J S Kinfo (U, T ) s) K0 (U, T )).

By the induction hypothesis, J S K0 (U, T ) ⊆ J S K0 (U ′, T ′) and J S Kinfo (U ′, T ′) s =
J S Kinfo (U, T ) s, hence by the induction hypothesis again

J F (J S Kinfo (U, T ) s) K0 (U, T ) ⊆ J F (J S Kinfo (U ′, T ′) s) K0 (U ′, T ′)

for every s ∈ J S K0 (U, T ), and the assertion follows from the monotonicity of
sigma-types.

• If c = piS F , then the assertion follows from the induction hypothesis and the
monotonicity of pi-types in the codomain. �

Notation 6.4.2.3. Write
⋃
α<κ(U

α, Tα) for (
⋃
α<κ U

α,
⋃
α<κ T

α).

Lemma 6.4.2.4 (Monotonicity of PN-functors in κ-sequences). Let κ be inacces-
sible and (Uα, Tα)α<κ be a monotone κ-sequence of objects of FamD, i.e. if α < β then
Uα ⊆ Uβ and T β � Uα = Tα. Assume for some α0 < κ that

Aux(c, Uα, Tα) ⊆ Vκ (6.1)

for all α0 ≤ α < κ. Then J c K0 is κ-continuous in (U, T ), i.e.

J c K0(
⋃
α<κ

Uα,
⋃
α<κ

Tα) =
⋃
α<κ

J c K0(Uα, Tα) .
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Proof. The direction ⊇ follows immediately from Lemma 6.4.2.2. We prove ⊆ by induction
over c:

• If c = idPN, then

J idPN K0

⋃
α<κ

(Uα, Tα) =
⋃
α<κ

Uα =
⋃
α<κ

J idPN K0(Uα, Tα) .

• If c = conA, then

J conA K0

⋃
α<κ

(Uα, Tα) = A =
⋃
α<κ

A =
⋃
α<κ

J conA K0(Uα, Tα) .

• If c = sigmaS F , then assume a ∈ J sigmaS F K0

⋃
α<κ(U

α, Tα). We want to
find α < κ such that a ∈ J sigmaS F K0(U

α, Tα). We know a = (x, y) for some
x ∈ J S K0

⋃
α<κ(U

α, Tα) and

y ∈ J F (J S Kinfo
⋃
α<κ

(Uα, Tα)x) K0

⋃
α<κ

(Uα, Tα) .

By the induction hypothesis, x ∈ J S K0(U
β, T β) for some β < κ. Without loss

of generality, α0 ≤ β (if not, choose β := α0: we still have x ∈ J S K0(U
β, T β)

by monotonicity of J S K0), and by Lemma 6.4.2.2, J S Kinfo
⋃
α<κ(U

α, Tα)x =
J S Kinfo(Uβ, T β)x, hence in fact

y ∈ J F (J S Kinfo(Uβ, T β)x) K0

⋃
α<κ

(Uα, Tα) .

Now for every β ≤ α < κ, Aux(F (J S Kinfo(Uβ, T β)x), Uα, Tα) ⊆ Vκ by the definition
of Aux and the inductive hypothesis, and so

y ∈ J F (J S Kinfo(Uβ, T β)x) K0(Uβ′ , T β
′
)

for some β′ < κ by the induction hypothesis. We have a = (x, y) ∈ J sigmaS F K0(Uα, Tα)
where α = max{β, β′}.

• If c = piAF , then assume f ∈ J piAF K0

⋃
α<κ(U

α, Tα), i.e.

f ∈
(
x : A

)
→ J Fx K0

⋃
α<κ

(Uα, Tα) =
(
x : A

)
→
⋃
α<κ

J Fx K0(Uα, Tα)

by the induction hypothesis. Hence for every x ∈ A, there is an αx such that
f(x) ∈ J Fx K0(U

αx , Tαx). By the definition of Aux, A ∈ Vκ, hence |A| < κ, and
by the inaccessibility of κ, α′ := supx∈A αx < κ, and we have f ∈

(
x : A

)
→

J Fx K0(Uα′ , Tα
′
) as required. �
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6.4.2.2 Continuity of PN-functors in Their Initial Sequences

We now need to ensure that the hypotheses of Lemma 6.4.2.4 hold for the initial sequence
of an PN-functor, i.e. we need to show that 1) this initial sequence is a monotone κ-
sequence (of objects of FamD), and 2) that Aux(c, Uα, Tα) ⊆ Vκ . We first define this
initial sequence:

Definition 6.4.2.5. For c : Poly D and f : Info c→ D we define the initial sequence by

U0 = ∅ T 0 = ∅
Uα+1 = J c K0(Uα, Tα) Tα+1(x) = f(J c Kinfo(Uα, Tα)x)

Uλ =
⋃
β<λ

Uβ T λ(x) = T β where x ∈ Uβ

Lemma 6.4.2.6. Let c, f be a polynomial code and (J c, f Kα)α = (Uα, Tα)α the initial
sequence of the associated functor. If α < β then Uα ⊆ Uβ and T β � Uα = Tα.

Proof. Induction on α, β, using Lemma 6.4.2.2 for the step cases.

The proof of the following lemma showing that the second premise of Lemma 6.4.2.4 is
satisfied will be the only place where the existence of M is used in the model construction.

Lemma 6.4.2.7. Let (c, f) be a PN code and (J (c, f) Kα)α = (Uα, Tα)α the initial se-
quence of the associated functor. There exists an inaccessible κ such that Aux(c, Uα, Tα) ⊆
Vκ for all α < κ.

Proof. The strategy for the proof is as follows: we define an increasing function f : Ord→ Ord,
which tells us how much further up the cumulative hierarchy we need to go to contain
one iteration of J c K0. The important property of f will be

if Uβ′ ⊆ Vβ then Uβ′+1 ∪ Aux(c, Uβ′ , T β
′
) ⊆ Vf(β) (6.2)

for all β′ < M. We then show that f : M → M and use the Mahlo property to find an
inaccessible fixed point κ of f . Finally we show Aux(c, Uα, Tα) ⊆ Vκ by induction on α,
using (6.2).

The function f : Ord→ Ord is defined by transfinite recursion:

f(β) = min{α |(∀β′ < β)
(
f(β′) < α

)
∧

(∀β′ < M)
(
Uβ′ ⊆ Vβ =⇒ Uβ′+1 ∪ Aux(c, Uβ′ , T β

′
) ⊆ Vα

)
}

The first conjunct makes sure that f is increasing, and the second makes (6.2) true.

Claim: f : M→ M.
Proof of claim. Let β < M and note that

f(β) = min{α |(∀β′ < β)
(
f(β′) < α

)
∧

(∀β′ ∈ {β′ ∈ M | Uβ′ ⊆ Vβ})
(
Uβ′+1 ∪ Aux(c, Uβ′ , T β

′
) ⊆ Vα

)
} ,
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further that B := {β′ ∈ M | Uβ′ ⊆ Vβ} ∈ Vβ+1 ⊆ VM so that |B| < M. For each β′ ∈ B,
we have Uβ′+1 ∪Aux(c, Uβ′ , T β

′
) ⊆ VM and hence Uβ′+1 ∪Aux(c, Uβ′ , T β

′
) ⊆ Vαβ′ for some

αβ′ < M since M is inaccessible. Thus f(β) ≤ supβ′ αβ′ < M by the regularity of M. �

So f is an increasing function on M, however f does not need to be continuous at limits,
hence not normal and the Mahlo property might not apply. To fix this, we define a new
function θ : Ord→ Ord by θ(α) = fα(0).

Claim: θ : M→ M, and θ is normal.
Proof of claim. We prove that θ(α) < M for α < M by transfinite induction over α.
The base case and successor case are clear, since f : M → M. If λ < M is a limit, then
θ : λ→ M is a normal function so that θ(λ) = supβ<λ θ(β) < M by the regularity of M.
Finally θ is increasing since f is, and it is continuous at limits by definition. �

Hence by the Mahlo property, θ has an inaccessible fixed point κ < M.

Claim: f : κ→ κ.
Proof of claim. Assume α < κ. Since κ is inaccessible, α < β for some β < κ, and
β ≤ θ(β). Thus

f(α) < f(β) ≤ f(θ(β)) = θ(β + 1) < θ(κ) = κ

i.e. f : κ→ κ. �

This combined with (6.2) gives us a useful fact:

if Uβ′ ⊆ Vβ then Uβ′+1 ∪ Aux(c, Uβ′ , T β
′
) ⊆ Vκ (2′)

for all β < κ (since f(β) < κ, hence Vf(β) ⊆ Vκ).

Finally, we prove that Uα ⊆ Vκ for all α < κ. By (2′), it then immediately follows that
Aux(c, Uα, Tα) ⊆ Vκ. The proof is by induction on α:

• If α = 0, then U0 = ∅ ⊆ Vκ.

• If α = β + 1, then Uβ ⊆ Vκ by the induction hypothesis, and we are done by (2′).

• If α = λ limit, then Uλ =
⋃
β<λ U

β ⊆ Vκ by the induction hypothesis. �

6.4.2.3 Completing the Proof

By combining Lemma 6.4.2.4 and Lemma 6.4.2.7, we get:

Theorem 6.4.2.8. Assuming that a Mahlo cardinal exists in the meta-theory, all functors
J c K : Fam D → Fam D arising from a polynomial code c : PN D D have initial algebras.

Proof. Feeding Lemma 6.4.2.6 and Lemma 6.4.2.7 into Lemma 6.4.2.4, we get that

J c K0(
⋃
α<κ

Uα,
⋃
α<κ

Tα) =
⋃
α<κ

J c K0(Uα, Tα)

=
⋃
α<κ

Uα+1

=
⋃
α<κ

Uα .
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By Lemma 6.4.2.6, J c Kinfo(
⋃
α<κ U

α,
⋃
α<κ T

α) =
⋃
α<κ T

α, so that the initial sequence
converges after κ steps. By Adamek’s Theorem [7, Thm 3.1.4], J c K has an initial algebra.

? ? ?

6.5 Composition of PN Codes

Composition for PN codes can be defined following the same pattern as in Proposi-
tion 4.1.0.2, where we constructed composition for DS codes using the assumption of a
power operation, and the monadicity of DS. The system PN has a power operation using
the pi constructor, and is monadic thanks to the sigma constructor:

6.5.1 Monad Structure and Bind Operation for PN

Proposition 6.5.1.1. 1. For each D : Set1, PN D is a monad, i.e. there are terms

ηPN : E → PN D E

ηPN(e) = (con 1, 7→ e)

µPN : PN D (PN D E)→ PN D E

µPN(c, α) = (sigma c (proj1 ◦ α), (x, y) 7→ proj2 (α x) y)

satisfying the monad laws. Moreover the equations in terms of the monad structure
on Fam hold strictly.

2. Furthermore this monad structure is compatible with that of Fam:

Let (U, T ) : Fam D. Then J ηPN(e) K(U, T ) = ηFam(e) for every e : E, and
J µPN(c) K(U, T ) = µFam(Fam(J − K(U, T ))(J c K(U, T ))) for every c : PN D (PN D E).

Definition 6.5.1.2 (Dependent bind operation). Using the monad structure, we can
define a “dependent bind” operation

>>=PN : PN C D → (
(
x : D

)
→ PN C (E x))→ PN C (

(
Σx : D

)
(E x))

c >>=PN h = µPN(PN(x 7→ PN(y 7→ (x, y))) (hx) c)

The following definition which is possible by virtue of pi, solves the problem posed by the
obstruction to composition described in the passage after Eq. (4.1), and in the penultimate
sentence of Remark 5.1.0.2.
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Definition 6.5.1.3 (Compatibility of PN D with dependent functions). The pi
constructor gives rise to the following operation that commutes the dependent function
space and PN D for every S : Set and E : A→ Set1:

πPNA : (
(
a : A

)
→ PN D (E a))→ PN D (

(
a : A

)
→ (E a))

πPN A f = (pi A (proj1 ◦ f), (g 7→ (a 7→ proj2 (fa) (ga)))) .

Using these ingredients, we can now define composition of PN codes:

6.5.2 Definition of Composition for PN

Theorem 6.5.2.1. For c : Poly D and α : Info c→ E and R : PN C D, define (c, α)•R =
PN(α) (c/R) : PN C E, where / :

(
c : Poly E

)
→ PN D E → PN D (Info c) is defined by

idPN/R = R

(con A)/R = (con A, id)

(sigma c f)/R = (c/R) >>=PN (p 7→ (f p)/R)

(pi A f)/R = πPN A (a 7→ (fa)/R)

Then J R •Q K (U, T ) ∼= J R K (J Q K (U, T )). �

? ? ?

6.6 Examples of Composed Codes

Example 6.6.0.1. Let us compose c2W,PN from Example 6.3.0.2 with the “upgraded” code
cW N Fin,PN from Example 6.3.0.1. This time we get the code

sigma (con {bool,w})
(bool 7→ con 1;

w 7→ sigma cW N Fin,PN ((n, Y ) 7→ pi (
(
x : Finn

)
→ (Y x)) ( 7→ cW N Fin,PN))) .

Example 6.6.0.2 (Composition of W types). We recover the well known fact that W-
types are closed under composition by composing the codes (cPN,W (S, P ), α)(cPN,W (R, Q), α

′) :
PN 1 1 of for two W types from Example 6.3.0.1. The first component (the second one is
trivial) of (cPN,W (S, P ), α) • (cPN,W (R, Q), α

′) is given by cPN,W (S, P ) / (cPN,W (R, Q), α
′) =

(sigma (con S) (s 7→ pi (P s) cPN,W (R, Q) ), (s, g) 7→ (s, (p 7→ α′))) .
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6.7 Intermediary Systems

6.7.1 PNcont: an Equivalent Axiomatization of PN . . . . . . . . . . . . 119
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6.7.3.2.4 Completing the Translation PN−piContbt → DS′ . . 127

In this section we discuss two systems of codes lying between DS and PN. One system
we already sketched in Section 6.1 as a motivation for PN; the other system is a more
uniform version of this system where codes are annotated with information about their
nesting structure. We already mentioned in Chapter 3 that Dybjer-Setzer [40] defined a
one level- and a two-level system of codes for induction-recursion and showed that these
are equivalent 4. This raises the question whether our two-level system PN can be reduced
to a one-level systems as well. We will not address this question in full generality but
restrict ourselves to the discussion of whether the system PN without the constructor
for powers of codes can be reduced in his sense. We denote this system by PN−piCont

5 and
its intuition is to be constructed by iterating the constructors of DS without adding a
constructor of a “different kind” (like π). This restriction is justified by the fact that

—to our knowledge— there is no intrinsic relation between the two level system and a
constructor for powers beyond the capacity of the former to accommodate the latter. It
is rather that the flexibility of the two level systems allows subcodes to have a different
type than the code they are a subcode of (compare Section 3.1.3), and as a consequence
it allows constructors to generate subcodes of a larger variety of types. The π constructor
is an example generating such subcodes of different type6. Thus, the question whether
there is no translation of PN to DS could be answered negatively by giving translations of
PN to PN−piCont and PN−piCont to DS.

6.7.1 PNcont: an Equivalent Axiomatization of PN

We start by defining a system that is equivalent to PN.This system PNcont is defined by
the following constructors:

4At least after strengthening their logical framework to comprise case distinction for the set 2 into Set
[40, Definition 5.3.5] which we have generally assumed anyway.

5We can think of this acronym as standing for “iterated container” or “inductive container”.
6Another possible example would be a constructor for binary products of codes. In principle, the

strength of two level systems in the present sense is that one can add constructors changing the index set
as long as one finds an appropriate decoding function
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Definition 6.7.1.1.

PolyCxt (D : Set1) : Set1

eta : Cont → PolyCxt D

mu : (R : PolyCxt D) → (InfoCxt R → PolyCxt D) → PolyCxt D

piCont : (A : Set) → (A → PolyCxt D) → PolyCxt D

InfoCxt : {D : Set1} → PolyCxt D → Set1

InfoCxt {D} (eta (S , P )) = J S , P K D
InfoCxt (mu R f) = Σ (InfoCxt R) (λ x → InfoCxt (f x))

InfoCxt (piCont A f) = Π A (λ x → InfoCxt (f x))

PNcont : Set1 → Set1 → Set1

PNcontDE = J (PolyCxtD, InfoCxt) KE

The subscript of PNcont and its components shall indicate that the base case takes a
container (see Definition 1.2.4.1) as argument.

Definition 6.7.1.2 (Monad structure of PNcont D ). PNcont D is again a monad
whose unit is given by ηPNcont : e 7→ ((eta (1, 7 → 0), 7→ e)), and whose multiplication is
given by µPNcont : (R, f) 7→ (mu R (proj1 ◦ f), (x, q) 7→ (proj2 (f x)) q)).

We write in the following conCont A := eta (A, a 7→ 0).

We denoted the constructors by eta respectively mu because of the relation to the just
mentioned monad structure.

Proposition 6.7.1.3. The systems PN and PNcont can be translated into each other.

TrCont : {D : Set1} → PolyCxt D → Poly D

TrCont (eta (S , P )) = sigma (con S) (λ {(s, ?) → pi (P s) (λ → idPN) })
TrCont (mu R f) = sigma (TrCont R) (λ x → TrCont (f (TrPos R x)))

TrCont (piCont A f) = pi A (λ x → TrCont (f x))

TrPos : ∀ {D} → (x : PolyCxt D) → Info (TrCont x) → InfoCxt x

TrPos (eta (S , P )) ( s , f) = s , f

TrPos (mu R f) (x , y) = TrPos R x , TrPos (f (TrPos R x)) y

TrPos (piCont A f) g = λ a → TrPos (f a) (g a)

Tr : {D E : Set1} → PNcont D E → PN D E

Tr (c , α) = TrCont c , α ◦ (TrPos c)
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rTCont : {D : Set1} → Poly D → PolyCxt D

rTCont idPN = eta (1 , (λ → 1))

rTCont (con A) = conCont A

rTCont (sigma R f) = mu (rTCont R) (λ x → rTCont (f (rTPos R x)))

rTCont (pi A f) = piCont A (λ a → rTCont (f a))

rTPos : ∀ {D} → (x : Poly D) → InfoCxt (rTCont x) → Info x

rTPos idPN ( , d) = d ?

rTPos (con A) (a , ) = a

rTPos (sigma S T ) (x , y) = (rTPos S x) , (rTPos (T (rTPos S x)) y)

rTPos (π A T ) f = λ a → rTPos (T a) (f a)

rT : {D E : Set1} → PN D E → PNcont D E

rT (F , α) = rTCont F , α ◦ rTPos F

The interest of the system PNcont lies in that it reveals that the embedding of DS into PN
essentially does not use piCont — a fact which is rather hidden in the presentation as PN:

Proposition 6.7.1.4. The map

DStoPN : DS D E → PN D E

DStoPN c = (toP c, toI c)

where

toP : DS D E → Poly D

toP(ι e) = con 1

toP(σ Af) = sigma (conA) (toP ◦ f)

toP(δ AF ) = sigma (piA ( 7→ idPN)) (toP ◦ F )

toI :
(
c : DS D E

)
→ Info (toP c)→ E

toI(ι e) ? = e

toI(σ Af) (a, x) = toI (f a)x

toI(δ AF ) (g, x) = toI (F g)x

is semantics-preserving. �

6.7.2 DS ↪→ PN−piCont ↪→ PNcont

Proposition 6.7.1.4 should be surprising because on the one hand, the translation of a
δ-code is a code containing a pi code, but on the other hand, this translation is semantics
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preserving and thus the translation of a code decoding to a Σ-type should not suddenly
need a Π-type to which pi decodes. This situation can be clarified by the following
translation of DS into the system PNcont which does not use pi, and can be factored
through the system PN−piCont that we motivated in Remark 6.1.0.1. In this section we use
the σδ-presentations of the system DS (see Definition 3.2.3.2), and DS′ (for which we have
not introduced a separate notation, see Remark 3.3.0.1); we recall that these four systems
are all mutually equivalent (see Section 3.3).

Definition 6.7.2.1.

PN−piContC(D : Set1) : Set1

bs : Cont→ PN−piContCD

it : (R : PN−piContCD)→ (PN−piContPR→ PN−piContCD)→ PN−piContCD

PN−piContP : {D : Set1} → PN−piContCD → Set1

PN−piContP{D}(bs R) = J R KD

PN−piContP (it R f) = Σ(PN−piContPR)(λx→ PN−piContP (fx))

PN−piCont : Set1 → Set1 → Set1

PN−piContDE = J (PN−piContCD,PN−piContP ) KE .

Lemma 6.7.2.2 (Translation of DS7 into PN−piCont). There is a semantics-preserving
translation

DStoPNcont : {D E : Set1} → DS D E → PNcont D E

DStoPNcont (ι e) = eta(1, λ → e)

DStoPNcont (σδ (Q , f)) = µPNcont (eta Q , (λ x → DStoPNcont (f x))) .

In particular, this translation does not use π, and thus lands in PN−piCont. In contrast, the
translation toP(δ AF ) = sigma (piA ( 7→ idPN)) (toP ◦ F ) into PN does use π.

It might seem obvious that PN−piCont can be embedded into PNcont. However, constructively it
is not entirely trivial and we want to be absolutely precise about the distinction to be made
between having a translation for every explicitly given code, and having a constructively
definable map as in the statement of the following remark. Every explicitly given code in
PN−piCont is intuitively constructed by the same constructors as its image in PN - only the
names of the constructors have changed and the translation of this code is intuitively its
value under an identity map. But this argument does not quite go through constructively
because of the partition of the code into two components and the fact that these parts
are not defined by a simple induction but by induction-recursion. This distinction shall
be our concern also in the remainder of this section.

Remark 6.7.2.3. ’Obviously’ PN−piCont is a subsystem of PNcont. More formally, we can

define8 a map ] : PN−piCont D E → PN D E by

8We use here (and elsewhere in the Agda files) the “enharmonic” notations [ for functions that
intuitively reduce something and ] for functions that intuitively augment something.
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]Cxt : {D : Set1} → PN−piContC D → PolyCxt D

]Cxt (bs X) = eta X

]Cxt ( R f ) = mu (]Cxt R) (λ z → ]Cxt (f ([Pos R z )))

]Pos : {D} → (Q : PN−piContC D) → (PN−piContP Q) → InfoCxt (]Cxt Q)

]Pos (bs K) x = x

]Pos ( R f ) (x , z ) = (]Pos R x , subst (λ y → InfoCxt (]Cxt (f y))) ([]Pos R x ) (]Pos (f x ) z ))

[Pos : {D} → (Q : PN−piContC D) → InfoCxt (]Cxt Q) → PN−piContP Q

[Pos (bs K) x = x

[Pos ( R f ) (x , z ) = ([Pos R x , ([Pos (f ([Pos R x ))) z )

[]Pos : {D} → (Q : PN−piContC D) → (w : PN−piContP Q) → (w = (([Pos Q) ((]Pos Q) w)))

[]Pos (bs K) w = refl

[]Pos ( R f ) (x , z ) = Σ ≡ ([]Pos R x ) (q)

] : PN−piCont D E → PN D E

] = J (]Cxt, ]Pos) KE

where in the last line we used ’container notation’ Definition 1.2.4.1, and to spell out
the term q requires more definitions for equational reasoning than we gave in Para-
graph 2.2.3.3.10 and hence we refer to the Agda files.

6.7.3 PN−piContbt ↪→ PN−piCont, an Annotated version of PN−piCont

6.7.3.1 Nesting of Codes

The observation that the inclusion of DS into PNcont does not use pi, and factors through
the system PN−piCont which —like DS— does not contain a constructor for dependent products

of codes, raises the question whether there is a translation PN−piContDE → DSDE. We
could not decide this question in full generality but we found a translation of a subsystem
PN−piContbt of PN−piCont that is a more uniform version of PN−piCont that additionally carries an
annotation of codes by information about their shape to DS. This partial solution is
informed by the observation what is problematic in finding a translation from PN−piCont

to DS: PN−piCont arises by iterating application of the σδ-constructor of DS in ’contexts’.
Assuming that we base a translation on an operation reducing the degree of the nestings
of ’contexts’ arising from this iteration in steps of one, the translation would need to
keep track of how often this operation needs to be applied until we arrive at a ’context’
with a nesting degree of zero which amounts to it being just a container. But here again
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the problem arises that the nesting degrees may differ in different paths of a code. The
system PN−piContbt answers this problem by constraining the codes to have uniform path
length an annotating every code by information about its nesting. It turns out that a
convenient way to formalize the shape of PN−piCont codes is as binary trees bt : Set defined
by the constructors

leaf : bt

branch : bt → bt → bt

Without further pursuing it, we mention that the set of binary trees carries a simple
well-order relation and is an example of an ordinal notation system [82]. Thus, in principle,
one could carry out the following also by annotating codes by natural numbers. This is
what we tried in an earlier version of this section before we found the more convenient
option of annotating by binary trees which is closer to the structure of codes.

This annotated version is subject of the following definition:

Definition 6.7.3.1. We define the (large) container (PN−piContbt, PN−piCont) by the following
inductive-recursive definition.

PN−piContCbt
(D : Set1) : bt → Set1

bsbt : Cont → PN−piContCbt
D leaf

itbt : (xx yy : bt) → (R : PN−piContCbt
D xx) →

(PN−piContPbt
R → PN−piContCbt

D yy) → PN−piContCbt
D (branch xx yy)

PN−piContPbt
: {D : Set1} {xx : bt} → PN−piContCbt

D xx → Set1

PN−piContPbt
{D} (bsbt R) = J R K D

PN−piContPbt
(itbt xx yy Q h) = Σ (PN−piContPbt

Q) (λ x → PN−piContPbt
(h x))

The system of annotated uniform polynomial codes is again defined by container evaluation:

PN−piContbt : {D E : Set1} → Set1 → (xx : bt) → Set1

PN−piContbt D E xx = J (PN−piContCbt
D xx , PN−piContPbt

) K E

Decoding of PN−piContbt is given by simply forgetting the annotation and decoding as a

PN−piCont code. As a container PN−piContbt is of course again a functor.

We can think of the constructor itbt (or it in the version without annotation) as producing
iterations of nestings of the base case.
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6.7.3.2 A Translation PN−piContbt → DS

We give now a translation PN−piContbt → DS the components of which we summarize in the
diagram at the end of Paragraph 6.7.3.2.4.

6.7.3.2.1 Reducing the Degree of Nesting of Codes We want to compare this
system to an annotated version of Dybjer-Setzer’s system DS′ (aka (SP,Arg)) Section 3.3.
For codes with no nesting we already have a coincidence:

[leaf : {D E : Set1} → PN−piContbt D E leaf → DS′ D E

[leaf (bsbt X , f) = (ι′ X , f)

This indicates that we can obtain a translation if we can reduce the degree of the nesting
in PN−piContbt. The basic idea for this reduction is given by the following operation:

Definition 6.7.3.2 (A “differential operator” for codes).

∆ : {D E}{xx yy : bt}{Q : PN−piContCbt
D xx } → (h : PN−piContPbt

Q → PN−piContCbt
D yy) →

(x : PN−piContPbt
Q) → (f : (PN−piContPbt

(itbt xx yy Q h)) → E) → PN−piContbt D E yy

∆ h x f = (h x , λ q → f (x , q))

We use the symbol ’∆’ (and below d , dd etc.) as a reminiscience of “derivative”: the
intuition is here the rule d

dx
xn = n · xn−1 for differentiating powers of real numbers

where the “iteration” of n-times applying x to itself is replaced by the number being
the (n − 1)-times iteration of the application of x to itself combined with a “scaling”
by a factor of n. This will become even more clear in the following definition where
a code c : PN−piContbt D E (branch xx yy) with index branch xx yy is replaced by a code

d c : PN−piContbt D (PN−piContbt D E yy ) xx with index xx in a system “scaled” by yy.

The extension of ∆ to codes is a dependent function; we first have to define the codomain
Codd :

Definition 6.7.3.3 (“Differentiating” codes).

Codd : {D E : Set1} → bt → Set1

Codd {D} {E} (leaf) = PN−piContbt D E leaf

Codd {D} {E} (branch xx yy ) = PN−piContbt D (PN−piContbt D E yy ) xx

d : {D E : Set1} → {ww : bt} → PN−piContbt D E ww → Codd {D} {E} ww
d (bsbt R , f) = (bsbt R , f)

d (itbt xx yy Q h , f) = ( Q , λ x → ∆ {Q} h x f)
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In prose, the previous definition says that we can reduce the ‘outer‘ degree of a code from
(branch xx yy ) to xx - albeit at the cost of transforming the set E to which c decodes, to
a set of codes of degree yy. Notice that the definition of d is possible also for the systems
PN−piCont without the annotation of codes; the latter becomes relevant only later on. Our
intuition of the yin-and-yang of differentiation and its reverse of integration is backed up
by the following observation (which is true also for the system without annotation):

Lemma 6.7.3.4 (Justification of d ). 1. d acts as retraction of µPN−pi
Contbt on it codes,

i.e.there is a definitional equality

µPN−pi
Contbt (d (itbt xx yy R h , f)) = (itbt xx yy R h , f) .

2. d acts as the identity on bsbt codes.

Using d as the basis of our translation, the idea is now to iterate this process of
“differentiation” until all of the occurring sets of codes are indexed by leaf such that
we have ’flattened’ the set of codes PN−piContbt D E ww to an iterated set of codes

PN−piContbt D (PN−piContbt D (...PN−piContbt D E leaf...) leaf) leaf. This is accomplished by
the following dependent function dd which iteratively applies d .

Definition 6.7.3.5 (Iterating the “differentiation” of codes).

Coddd : (D E : Set1) → bt → Set1

Coddd D E leaf = PN−piContbt D E leaf

Coddd D E (branch xx yy) = Coddd D (Codd {D} {E} yy) xx

dd : {D E : Set1} → {ww : bt} → PN−piContbt D E ww → Coddd D E ww

dd (bsbt R , f) = (bsbt R , f)

dd (itbt xx yy Q h , f) =

dd (proj1 (d (itbt xx yy Q h , f)) , λ x → (d ((proj2 (d (itbt xx yy Q h , f)))x))) .

6.7.3.2.2 Translating PN−piContbt-Codes into Annotated DS′-Codes As an interme-
diary step in the intended translation, we define a function to an annotated version of the
system DS′

DS′bt : (D E : Set1) → bt → Set1

DS′bt D E leaf = DS′ D E

DS′bt D E (branch xx yy) = DS′bt D (DS′bt D E yy) xx

redu′ : (D : Set1) → {E : Set1} → (xx yy : bt) →
PN−piContbt D (PN−piContbt D E yy ) xx → DS′bt D(DS′bt D E yy) xx
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(We omit here and in the following several definitions for simplicity of presentation since
they involve further definitions distracting from the main line of the argument; the
complete set of definitions can be found in the Agda files. The definition of redu′ involves
[leaf , d , as well as functoriality of PN−piCont and DS′bt.) From this we obtain

redu : (D : Set1) → {E : Set1} → (yy : bt) → Codd {D} {E} yy → DS′bt D E yy

redu D leaf = [leaf

redu D {E}(branch xx yy) w = redu′ D {E} xx yy w

and the corresponding version for the iterated version of the function reducing the nesting

Conv : {D E : Set1} → (xx : bt) → Coddd D E xx → DS′bt D E xx .

(The definition of Conv uses [leaf as well as functoriality of Coddd .)

6.7.3.2.3 Defining the Last Component of the Translation The last step of our
translation is to use the monad structure of DS′bt; for DS′bt D leaf the monad multiplication
is of course simply that of DS′ (see Section 3.3)

µleaf : {D E : Set1} → DS′bt D (DS′bt D E leaf) leaf → DS′bt D E leaf

µleaf x = µ x .

For index trees other that leaf we obtain an appropriate multiplication by iterating µleaf

MU : {D E : Set1} → {xx : bt} → DS′bt D E xx → DS′bt D E leaf

(where the definition of MU involves functoriality of DS′bt).

6.7.3.2.4 Completing the Translation PN−piContbt → DS′ In total, a translation is
given by:

Proposition 6.7.3.6.

[ Trans : {D E : Set1}{xx : bt} → PN−piContbt D E xx → DS′ D E

[ Trans {D}{E}{xx} = MU {xx} ◦ ( Conv xx) ◦ dd {D}{E}{xx}

�
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We summarize the components in the following commutative diagram:

Coddd D E xx
Conv // DS′bt D E xx

MU

**
PN−piContbt D Exx

dd
66

[Trans // DS′bt D E leaf ' DS D E

One way to read the statement that the translation [Trans = MU ◦ Conv ◦ dd preserves
semantics (up to equivalence) is the statement that “MU ◦ Conv is a retraction of dd in
semantics”, i.e. that J (MU ◦ Conv) K ◦ J dd K ' J K. This extends Lemma 6.7.3.4

saying that d has a retraction (given by µPN−pi
Contbt on codes on which it does not act trivially).

There was unfortunately no time to formalize this.

? ? ?
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This chapter is concerned with a relationally-parametric model of MLTT + DS (see
Chapter 3 for a discussion of Dybjer-Setzer’s axiomatization DS of induction-recursion)
by establishing a category-with-families structure (see Section 7.5) on the category of
reflexive graphs (see Section 7.6.2) — the latter being an abstraction of reflexive relations.

Because we shall need several general definitions that previous chapters did not need,
this chapter contains a part introducing these basics; specifically, there is a discussion
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of the category of families of reflexive graphs (in Section 7.6.2), a category-with-families
structure which will constitute a relational-parametric model of MLTT, Section 7.7 on
unary-relational parametricity contains some definitions explaining how to obtain unary
parametricity as a degenerate case of binary one. Paragraph 7.6.3.1.3 provides a binary-
relational model of MLTT+DS by providing the mentioned category-with families structure
and interpreting the rules of DS in it.

7.1 Studying Type Theory from Within Type The-

ory

In a previous paper [37] I introduced a general notion of simultaneous
inductive-recursive definition in intuitionistic type theory. This notion
subsumes various reflection principles and seems to pave the way for a
natural development of what could be called “internal type theory”, that is,
the construction of models of (fragments of) type theory in type theory, and
more generally, the formalization of the metatheory of type theory in type
theory.
The present paper is a first investigation of such an internal type theory.

Peter Dybjer, “internal type theory”, 1992, [34]

The metatheory of (fragments of) type theory, to which Peter Dybjer is referring in the
passage quoted in the epigraph, is formulated in the paper from which the quote is taken
in form of categories with families Section 7.5 as a vehicle to reason about metatheoretic
properties that are —as the prefix (meta-) itself expresses– not accessible from within
type theory itself.

One collection of such metatheoretic properties consists of properties of substitution. From
this viewpoint the rules of type theory are regarded as rules regulating the use of variables
in type definitions. Type definitions can from this operational point of view be seen as
transformations of the “ingoing” variables (or terms) used in the premises of a rule to the
“outgoing” variables (or terms) in the conclusion of the rule.

Thus, one metatheoretic question is whether and which relations between the ingoing
variables or terms are preserved by the transformation associated to a type definition.
For example, the rules for judgmental equality assert that type formers preserve the
equality relation. If generally all relations are preserved by a type definition, it is called
relationally parametric, and if all types in the type theory under discussion globally can
be ascertained to have this property, it is called a relationally-parametric theory. For
example, an inhabitant of the polymorphic endomorphism type f : ΠX:Type(X → X) is
relationally parametric, if for all X, Y : Type, all relations R ⊆ X × Y , if (x, y) ∈ R,
then (f X x, f Y y) ∈ R. It is of interest that this property is satisfied since it rules
out the possibility that the type ΠX:Type(X → X) contains any other function than the
polymorphic identity λX → idX ; without the parametricity property this type would also
contain for example λX → (λx → (0, if X = {0, 1};x, else)) which is not in the spirit
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of parametric polymorphism where definitions should be “uniform” and not depend on
ad-hoc checking of input types.

We said that the question about the preservation of relations is metatheoretic since there
is no infrastructure present on the level of MLTT itself to deal with these relations. One
way to nevertheless pursue this inquiry is therefore to switch to models of type theory. A
relationally-parametric model of the type theory in question is then a model where each
type is modeled as a relation.

This model theoretic approach is also called external parametricity about which we say
more in Section 7.3.0.1. There is also a notion of internal parametricity which is pursued
by adding rules dealing with the relations to MLTT itself but we will not be interested in
this option in this thesis.

7.1.1 The Significance of Ralational-Parametricity for DS

The interest of formulating relational-parametricity for DS lies of course in the desire not
to have to formulate a parametricity statement (like the above-mentioned one that applies
to function types only) for every type defined in the theory separately, but to be able to
formulate one such statement that applies to all types defined by DS.

7.2 Further Motivations-, and Consequences of Relational-

Parametricity

Having (informally) explained what relational parametricity is, we come to the question why
it is interesting. Usually relational parametricity is introduced by a frame narrative woven
together from category-theory inspired applications (“functoriality without composition”
[15][62] allowing for what has been called “free theorems” [126]) together with an assorted
import of universal properties (“parametric limits” [59][31]) whose equivalents can be
defined by reference to functors in category theory, and foundational concerns related to
impredicativity.

The first mentioned plot comes from the attempt to generalize, appropriate, or make
a semblance between notions from category theory, the “abstract algebra of functional
relations”, and relational parametricity whose abstract theory one could call the “abstract
algebra of reflexive relations”.

The second mentioned story line around foundational problems posed by impredicativity is
informed by the fact that to obtain interesting implications from relational-parametricity
in (dependent) type theory, one needs a version of polymorphic type theory (see [106]
where relational-parametricity was introduced), i.e. a version of type theory having
dependent function types1 ranging over all (or at least a type of some) types. In the course
of considering relational parametricity in conjunction with impredicative quantification
also paradoxes are discussed [28].

1[106] uses the terminology of higher order functions.
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A third, rather meta-, or model-theoretic perspective of relational parametricity is related
to the first two perspectives. One important example for a model theoretic problem about
type theory is whether a semantic term2 of a semantic type is of canonical form in the
sense that it is composed of semantic terms of constructors of the type whose semantic
type is in discussion. As such, a general way to construe relational-parametricity is to
say that it bridges a possible mismatch between semantical expectations and syntactical
truth and -provability in typed theories.

A derived sort of problems is whether canonicity (if it holds) is preserved by operations
on types. For example [84] discusses the preservation of canonicity under subtyping and
what happens to canonicity in presence of a cumulative hierarchy of universes. [120] calls
properties like this semantic properties, elsewhere they are also called metatheoretical
properties and to resolve them loc.cit. suggests ways to make the problem approachable
on the level of the object theory.

There is no motivation to study relational parametricity for induction-recursion in excess
of the motivation to study it for the types defined by induction-recursion.

7.3 External-, and Internal Parametricity

There are two varieties of (relational) parametricity: external-, and internal one. We are
in this thesis only interested in the external variant but mention the internal one for the
sake of completeness.

7.3.0.1 External Parametricity

Given the distinction of object-, and meta theory it is not surprising that problems of
parametricity were discovered in cases where different levels are present already on the
side of the object theory: Girard [54] and Reynolds [106] studied the so-called polymorphic
lambda calculus (aka system F) where a type Type of (some) types (i.e. a universe) together
with the possibility to quantify over Type is present. This leads Reynolds to talk about
“higher order functions” —which are more commonly called polymorphic functions— by
which he means functions mapping types to functions. One example is the so-called the
“polymorphic endomorphism type” ΠX:Type(X → X) . Reynolds’ theory of parametricity
contains an abstraction theorem which is so called because parametricity statements about
particular functions such as inhabitants of X → X are “abstracted” to inhabitants of
ΠX:Type(X → X), i.e. to endomorphism of any generic set. In the above-mentioned
example of the polymorphic endomorphism type, that relational-parametricity is satisfied
in a model, means that if f : ΠX:Type(X → X), then Type is interpreted as the (large)
set of all relations bewteen sets, and we will see in Paragraph 7.6.3.1.2 how to express
the relational-parametricity statement mentioned above3 can be expressed in this model.

2i.e. the interpretation of a term in the model. Likewise, a semantic type is the interpretation of a
type in the model.

3i.e. f is relationally parametric, if for all X,Y : Type, all relations R ⊆ X × Y , if (x, y) ∈ R, then
(f X x, f Y y) ∈ R.

132



Moreover Reynolds proves an identity-extension theorem expressing that the identity
relation is respected by the semantic term of a semantic polymorphic function type.

Following the “algebraic” trend to discuss a type always together with relations (such
as equality), propositions, predicates, etc. on them, Reynolds sets out to give a formal
account of this tandem in terms of a relational-parametric model. Since he was concerned
with the polymorphic lambda calculus, his work did not comprise a treatment of inductive
types, but the extension to the latter has been addressed in later literature such as [61]
sometimes under the name of logical relations or predicate-, and relations lifting where
the latter terminology originates in the initial-algebra semantics practice of considering
algebras for endofuctors F : B → B and then “ lifting” this functor to a functor
F̂ : Prop(B)→ Prop(B) along appropriate fibrations p : Prop(B)→ B (where Prop(B)
denotes the category of propositions on elements of B) in a way that complies with the
formation of initial algebras for both functors.

Even though [61] does treat relational-parametric ideas in a fibrational setting and thus
in a rudimentary model of type dependency, it does not cover all aspects that are of type
theoretical interest: 1) the discussion is situated entirely in fibrational category theory
and the relation to type theory is left implicit or has example character, 2) the focus of
the paper —as far as examples are presented— is on logic or simple type theory (where
type variables are absent), 3) there are types in Martin-Löf type theory that are not
(merely) inductive (such as universes) and hence are not discussed, 4) the fibrational
framework used there does not in general model type theory strictly; moreover, while
equalities between types can be dealt with on the relations level, there is not provided a
formal way to deal with equalities between relations.

[12] addresses all the above mentioned points except 3) by giving a model of MLTT with
a universe, Π-types, and a natural-numbers type (but without identity type) in form of
a category-with-families structure (the notion the epigraph Section 7.1 was referring to)
on the category of reflexive graphs. This models type theory strictly (i.e. substitution is
strictly associative as opposed to be associative only up to an isomorphism).

7.3.0.2 Internal Parametricity

Instead of expressing parametricity statements in a model of type theory, one can also
add rules to the type theory expressing parametricity statements. See [17][16][10] for
discussion, bibliography, context and applications of the topic.

7.4 Bibliography on Relational Parametricity

To provide further background, we give a selective bibliography on relational parametricity,
the selection criterion being a preference for theoretical rather than applied articles.

• Reynolds, “Types, Abstraction and Parametric Polymorphism” [106], 1983. Intro-
duces relational-parametricity by giving a relational-parametric model of system F;
formulated an abstraction theorem, and an identity-extension lemma.
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• Bainbridge, Freyd, Scedrov, and Scott, “Functorial Polymorphism” [15], 1990,
addresses certain foundational set-theoretic problems arising from impredicativity
via relational parametricity.

• R. Hasegawa, “Categorical Data Types in Parametric Polymorphism” [60], 1994.
Starts a category-theoretic approach to relational-parametricity.

• R. Hasagawa “Relational Limits in General Polymorphism” [59], 1994, studies a
notion of relational-parametric limits.

• Robinson and Rosolini, 1994 “Reflexive Graphs and Parametric Poly- morphism”
[107] studies Reynolds’ model via internal category theory motivated by foundational
problems related to impredicativity.

• Dumphy and Reddy, “Parametric Limits” [31], 2004, formulates a general notion of
parametric limit inspired by the eponymous notion from category theory.

• Takeuti, “The Theory of Parametricity in the Lambda Cube” [120], 2001. Extends
the discussion of relational-parametricity to dependent types.

• Atkey, “Relational Parametricity for Higher Kinds” [11], 2012, Extends relational
parametricity to higher kinded polymorphism, which allows quantification over type
operators and types, and presents a model of relational parametricity for System Fω,
within the impredicative Calculus of Inductive interprets inductive types indexed by
an arbitrary kind, and discusses initiality in terms of impredicative quantification.

• Atkey, Ghani, and Johann, “A Relationally Parametric Model of Dependent Type
Theory” [12], 2014. First relational-parametric model of dependent type theory that
can prove the existence for (internally defined) so-called “indexed functors” (i.e.
functors between categories of families fixing the indexing set).

• Krishnaswami and Dreyer, “ Internalizing Relational Parametricity in the Exten-
sional Calculus of Constructions” [97], 2013. Construct a realizability model of the
Calculus of Constructions, using Quasi-PERs to simultanously define the underlying
and relational interpretations of types.

• Hermida, “Logical Relations and Parametricity – A Reynolds Programme for Cat-
egory Theory and Programming Languages” [62], 2014. A programmatic article
emphasizing the category-theoretics viewpoint on relational-parametricity.

More on the side of applications and not directly aimed at furthering the theory of
relational parametricity:

• Wadler, “Theorems for Free!” [126], 1989. Studies instances of the parametricity
statement (called “free theorems”).

• Coquand, “A New Paradox in Type Theory” [28], 1995. Derives a paradox in
type theory from impredicative quantification and instances of the parametricity
statement.
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7.5 Categories with families

Categories with families (CwFs) [34] are a well studied class of categorical models of
dependent type theory providing sound and complete models of dependent type theories
and a close and intuitive correspondence between object- and meta-theory (that is, between
the theory being modeled and the theory in which the model is situated), e.g. dependent
type theory can be exhibited as the initial category with families [23]. CwFs can be
formalized in type theory itself and thus contribute —like induction-recursion— to the
project of “internalising” type theory in itself. An advantage of CwFs as compared to
other (categorical) models of type theory is that it models substitution in a strict way,
whereas other fibrational models render substitution in a weak way up to the isomorphism
granted by the universal property of pullbacks.

CwFs are only a model of type dependency, in particular the existence of particular
types defined by introduction-, and elimination rules is not automatic in a CwF and
has to be established separately. Formally, this is accomplished by exhibiting the CwF
as a generalised algebraic theory (GAT) [22] and adding further operator symbols and
equations to this GAT recovering the inference rules formulating the introduction and
elimination of types. In case of MLTT, the underlying GAT has to be extended to cover
dependent sum- and dependent product types, W-types, and universes (for the example
of Π-types see, e.g. [34, §2.2]).

It is important to notice that we make two adaptions regarding the categories of families
(see Section 1.3 ) in which our model will be situated: first we have to consider families of
large sets i.e. Fam(Set1) := ΣA:Set1(A→ Set1), and second, we are considering now also
non-cartesian morphisms in the category Fam(Set1) in case it figures in a CwF structure.

Definition 7.5.0.1 (Category with families (CwF)). A category with families con-
sists of a category C ∈ Cat(Set1) with a chosen terminal object, and a functor T =
(Ty,Tm) : Cop → Fam(Set1) equipped with an operation4 • : (C ∈ Ob C)→ Ty C → C
(called comprehension) such that

HomC(C
′, C • A) ' {(f,M) | f : C ′ → C,M ∈ Tm C ′ (Ty f(A))} .

The function Ty f is also called type substitution, and the transformation Tm f is called
term substitution. For emphasis, the morphism T =

Ty C ′
Ty f //

Tm C′

��

Ty C

Tm C

��

Tm f

Set1

4Some properties of this operation can be expressed in terms of relating the monad structure of Fam
and the functor T .
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is not necessarily cartesian and as such Tm f : (x : Ty C ′)→ Tm C ′ x→ Tm C (Ty fx)
is not necessarily a family of identities.

Given a type theory (i.e. in syntactical form), the term model is intended to be the closest
representation possible of the type theory “in terms” of a CwF.

Definition 7.5.0.2 (Term model). [63, Example 1] spells out the standard example of
a CwF5 - called the term model CT .

For a type theory T , the category CT is defined to have as objects contexts of T , and
as morphisms substitutions. The functor (Ty,Tm) : Cop → Fam(Set) is defined to have
as value Ty Γ the set of types in context Γ, and for A ∈ Ty Γ, the set Tm Γ (A) is
that of terms of A. The action on morphisms applies substitutions to types and terms.
Comprehension is defined by the rule for context extension in the type theory T .

The term model of a type theory T is distinguished in that it is initial in the category of
CwF models of T ; i.e. if F : C → Fam(Set1) is any CwF model of T , then there is a
functor H : CT → C preserving the terminal object and a transformation h : F T → F ◦H
from the term model F T : CT → Fam(Set1).
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In this section we will recall a reflexive-graph model for MLTT with Sigma type, Pi types,
and two universes Set : Set1; this model is the one presented in [12] except that loc.cit.
deals with a version of MLTT with only one universe.

5To be precise, loc. cit. talks about so-called ’categories with attributes’ - but this notion is equivalent
to that of a CwF as stated in [34, §2.1] and proved in [64].
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7.6.1 Reflexive Graphs

Definition 7.6.1.1 (RG). We define the category RG by ObRG = {0, 1} and Mor RG
is generated by the set {s : 1 → 0, t : 1 → 0, r : 0 → 1}, identities, and the equation
sr = tr = id0; in other words Mor RG = {id0, id1, r, s, t, r ◦ s, r ◦ t, s ◦ r}.

Definition 7.6.1.2 (RG, Reflexive Graph). We define the functor category RG :=
(RG→ SET1) objects of which we call reflexive graphs6. A morphism of reflexive graphs
is defined to be a natural transformation of the underlying functors.

A discrete reflexive graph is a reflexive graphs that sends all morphisms to identities.

For A : RGΓ we will sometimes use the notations A(0) = A0, A(1) = A1, A(s) = sA,
A(t) = tA.

If we want to emphasize that we are talking about small respectively large reflexive graphs
meaning that the functor A factors through SET respectively does not factor in this way,
we use the notation: RG(SET), repsectively RG(SET1).

7.6.2 Families of Reflexive Graphs

Definition 7.6.2.1 (Category of elements (Grothendieck construction)). Let C
be a category. The category of elements of a functor F : C → SET1 is defined to be
the category

∫
C with Ob (

∫
C) = {(c, x)|c ∈ Ob C, x ∈ F (c)}. Morphism have the form

φ : (c, x)→ (c′, x′) where φ is a morphism φ0 : c→ c′ in C such that F (φ0)(x) = x′.

This construction is a special case of the situation where F : C → Cat is a functor into
the category of categories. Sometimes the category of elements is called Grothendieck
construction as well.

Definition 7.6.2.2 (RGΓ). Let Γ : (RG)→ SET1 be a reflexive graph. For S either Set,
or Set1, or TYPE we define the category of (small, respectively large, respectively very
large) reflexive graphs7 over Γ as the functor category RG(S)Γ := (

∫
Γ)op → S.

In our model, a type in a context Γ will be interpreted as as a presheaf A ∈ RGΓ

7.6.2.1 Comprehension

For the purpose of modeling a dependent type in context, we need a construction accounting
for comprehension: if Γ ` A type, we need to form the new context Γ, a : A to define
Γ, a : A ` B(a) type. We first make the following definition:

6Notice that some authors refer to reflexive graphs as (contravariant) presheaves on the opposite
category RGop. While of course (RGop)op is isomorphic to RG, some care is to be taken when discussing
universes in the resulting functor categories since the construction of these universes as described [119] is
given only for contravariant presheaves and it is not immediately clear that this carries over to covariant
presheaves without further changes in addition to “or-ing”.

7Mind also here the remark concerning variance made in the footnote of Definition 7.6.1.2.
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Definition 7.6.2.3. For A : (
∫

Γ)op → SET1, we (overload notation and) define RGA :=
(
∫
A)op → SET1

As such, B ∈ RGA is not yet an exact interpretation of the syntax Γ, a : A ` B(a) type
since A is no reflexive graph and thus no semantic context. This is rectified by the
following definition and the subsequent lemma:

Definition 7.6.2.4 (Comprehension (Γ indexed family of reflexive graphs over a base)).
For A :

∫
Γ→ SET1, we can promote the category

∫
A to a reflexive graph Γ •A : RG→

SET1 by

x 7→ {((x, γ), ζ) | γ ∈ Γ(x), ζ ∈ A(x, γ)}

where source, and target maps are defined in the obvious way, and call this reflexive graph
the comprehension of A in Γ.

Lemma 7.6.2.5. In the situation of the previous definition we have
∫

(Γ •A) '
∫
A.

As an aside, we notice that the above definition and its assorted lemma obviously make
sense for general presheaves, not only for reflexive graphs.

Lemma 7.6.2.6 (Slices of RGΓ (families of reflexive graphs over a fixed base)).
There is an equivalence RGΓ/A ' RGA.

Proof. Given f : HomRGΓ
(B,A) we obtain a presheaf Xf :

∫
A→ Set. Since

Ob

∫
A = {((x, γ), ζ) | x ∈ RG, γ ∈ Γ(x), ζ ∈ A(x, γ)}

we define

Xf : ((x, γ), ζ) 7→ {((x, γ), ξ) | ξ ∈ B(x, γ), f(x, γ)(ξ) = ζ} = B(x, γ)ζ

and if h : ((x, γ), ζ)→ ((x′, γ′), ζ ′) we have that

Xf (h) = (((x′, γ′), ξ′)) 7→ ((x, γ),A(h′)(f(x′, γ′)(ξ′)))

or, equivalently

Xf (h) = (((x′, γ′), ξ′)) 7→ ((x, γ), f(x, γ)(B(h′)))

where h′ : (x, γ)→ (x′, γ′) is the morphism in
∫

Γ underlying h.

Conversely, if X :
∫
A → Set, we can define B by B(x, γ) = Σζ∈A(x,γ)X((x, γ), ζ). The

maps B(x, γ)→ A(x, γ) are the projections which also determine an action on morphisms.
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7.6.3 Interpreting MLTT in T : RG→ Fam(SET1)

7.6.3.1 Interpreting Σ-, and Π-Types . . . . . . . . . . . . . . . 139
7.6.3.1.1 Σ-Types in RGΓ . . . . . . . . . . . . . . . . . . 140
7.6.3.1.2 Π-Types in RGΓ . . . . . . . . . . . . . . . . . 140
7.6.3.1.3 Exponentials in RGΓ . . . . . . . . . . . . . . . . 141

7.6.3.2 LSetM , LSet1M . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.6.3.3 LFamM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

The relational-parametric model of MLTT + DS we are about to define consists in inter-
preting all types and terms in the following CwF

T : RG→ Fam(TYPE)

T(Γ) = (RG(TYPE)Γ,A 7→ (1→ A)) .

Since a CwF model is in first place a model for type dependency, the definitions of concrete
types have to be expressed with respect to this CwF structure which is standard (see e.g.
[64, §3]) in case of Sigma and Pi types since they are characterized by universal properties.
If we wish to interpret further types such as universes or IR we need to refer to additional
structure of our particular model.

In our model such additional structure is that of presheaf topoi: we are defining a presheaf
topos model in the sense that contexts and types are interpreted as (covariant) presheaves
and terms as certain morphisms of presheaves, and thus the types we describe in our
model are instances of the respective definitions in a general presheaf topos model and as
such are validated as instances of these already existing models. General references for
the type theory associated to a topos are [69, pp. D 4.3, D 4.4][66][85]; these references do
not cover the interpretation of universes for which we will give references separately in
Section 7.6.3.2.

7.6.3.1 Interpreting Σ-, and Π-Types

In this section we describe the types expressible in terms of the CwF structure alone; these
are Σ-types, Π-types, and function types as degenerate Π-types. Π-types were described
in [11] and [12].

For the case of Σ-, and Π-types which bind a dependent type we need to refer to
the semantics of comprehension defined in Definition 7.6.2.4. On the syntactical level,
comprehension forms from Γ ` A type, and Γ ` a : A the new context Γ, a : A in which we
can define Γ, a : A ` B(a) type. Now, if K stands for the constructor of either Π, Σ (or any
other constructor binding a dependent type such as W-types), we obtain Γ ` K(A,B) type.
In terms of T this reads A ∈ T0(LΓM), B ∈ T0(LΓM • A), K(A,B) ∈ T0(LΓM). We use these
notational conventions for the following paragraphs. By overloading notation, we use the
letters s, t, r to stand for the source,- target, and reflexivity maps of all reflexive graphs
without annotating as subscripts which reflexive graph is meant.

139



7.6.3.1.1 Σ-Types in RGΓ

ΣAB(0, γ0) := {(a, b)|a : A(0, γ0), b : B(0, γ0, a)}
ΣAB(1, γ1) := {((aR, bR))|

aR : A(1, γ1) bR : B(1, γ1, a
r)}

s(aR, bR) := (saR, sbR)

t(aR, bR) := (taR, tbR)

r(a, b) := (ra, rb)

There are two projection morphisms which we denote with the same name as the set-level
projections:

proj1 : ΣAB→ A

proj1(x, γ)(l, r) := l

proj2 : ΣAB→ B( , , proj1)

proj2(x, γ)(l, r) := r

The universal property of dependent sums is described in [64, Definition 3.18].

We thus interpret the Σ-type by LΣ A BM = ΣLAMLBM. Notice that we use the symbol ’Σ’
for both: Σ-types of types, and Σ-types of families of reflexive graphs.

7.6.3.1.2 Π-Types in RGΓ

ΠAB(0, x) := {(f0, fr)|
f0 : ∀a0 : A(0, x).B(x, a0)

fr : ∀ar : A(1, (rx)).B(rx, ar)

∀ar : A(1, (rx)).s(frar) = f0(sar)

∀ar : A(1, (rx)).t(frar) = f0(tar)

∀a0 : A(0, x).r(f0a0) = fr(ra0)}

And

ΠAB(1, y) := {((f s0 , f sr ), (f t0, f
t
r), F )|

(f s0 , f
s
r ) : ΠAB(0, sy)

(f t0, f
t
r) : ΠAB(0, ty)

F : ∀ar : A(1, y).B(1, y, ar)

∀ar : A(1, y).sFar = f s0sar

∀ar : A(1, y).tFar = f t0tar}
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sΠABy((f s0 , f
s
r ), (f t0, f

t
r), F ) := (f s0 , f

s
r )

tΠABy((f s0 , f
s
r ), (f t0, f

t
r), F ) := (f t0, f

t
r)

rΠABx(f0, fr) := ((f0, fr), (f0, fr), fr)

We interpret the Π-type by LΠ A BM = ΠLAMLBM. Also the symbol ’Π’ we use for Π-types
of types, and Π-types of families of reflexive graphs.

7.6.3.1.3 Exponentials in RGΓ The interpretation of exponentials is a special case
of that of Π-types

(A⇒ B)(0, γ0) = {(f0, f1) | f0 : A(0, γ0)→ B(0, γ0), f1 : A(1,Γ(r)(γ0))→ B(1,Γ(r)(γ0))

B(s) ◦ f1 = f0 ◦B(s), B(t) ◦ f1 = f0 ◦B(t)

B(r) ◦ f0 = f1 ◦A(r)}

(A⇒ B)(1, γ1) = {((f src0 , f src1 ), (f tgt0 , f tgt1 ), R) | (f src0 , f src1 ) : (A⇒ B)(0,Γ(s)(γ1))

(f tgt0 , f tgt1 ) : (A⇒ B)(0,Γ(t)(γ1))

R : A(1, γ1)→ B(1, γ1)

B(s) ◦R = f src0 ◦A(s)

B(t) ◦R = f tgt0 ◦A(t)}

(A⇒ B)(r) : (f0, f1) 7→ ((f0, f1), (f0, f1), f1)

(A⇒ B)(s) : ((f src0 , f src1 ), (f tgt0 , f tgt1 ), R) 7→ (f src0 , f src1 )

(A⇒ B)(t) : ((f src0 , f src1 ), (f tgt0 , f tgt1 ), R) 7→ (f tgt0 , f tgt1 )

We interpret the (non-dependent) function type by LA→ BM = LAM⇒ LBM. The notation
LAM⇒ LBM should not be confused with the notation LAM→ LBM where the latter denotes
the set of morphisms of families of reflexive graphs.

? ? ?

7.6.3.2 LSetM , LSet1M

A translation of set-theoretic universes in presheaf topoi is in [119]. To model type theory
strictly (and not only up to equivalence) the model of loc.cit. has to be reviewed which
was done in [12].

Definition 7.6.3.1. We interpret Γ ` Set1 type as the following family of reflexive graphs:

141



LSet1M : (

∫
Γ)op → TYPE

(x, γ) 7→
{
A(x, γ) | A ∈ RG(Set1)LΓM

}
s : A(1, γ) 7→ A(0, s(γ))

t : A(1, γ) 7→ A(0, t(γ))

r : A(0, γ) 7→ A(1, r(γ))

The interpretation of the Russel universe Set has two manifestations — namely first via
the interpretation of the judgment Γ ` Set type exhibiting Set as a type, and second via
the judgment Γ ` Set : Set1 (expressing cumulativity) exhibiting it as a term of Set1.
Since in our model types and terms are interpreted as materially different (i.e. not only
by a formal distinction) kind of things —namely families of reflexive graphs and global
elements of families of reflexive graphs— we have to give two different interpretation
where we denote the interpretation of ’Set as a type’ by rg(SET)Γ, and the interpretation
of ’Set as a term’ by LSetM. Since these definitions are equivalent, we will usually write
LSetM for both incarnations.

Definition 7.6.3.2 (L Γ ` Set type M). We define rg(SET)Γ ∈ RG(SET1)Γ by:

rg(SET)Γ : (

∫
Γ)op → SET1

(x, γ) 7→
{
A(x, γ) | A ∈ RG(SET)LΓM

}
s : A(1, γ) 7→ A(0, s(γ))

t : A(1, γ) 7→ A(0, t(γ))

r : A(0, γ) 7→ A(1, r(γ))

Definition 7.6.3.3 (L Γ ` Set : Set1 M). We define the following global element:

LSetM : 1→ LSet1M
LSetM(x, γ)(∗) = rg(SET)LΓM(x, γ)

where we obtain the s, t, r since rg(SET)LΓM ∈ RG(SET1)Γ.

7.6.3.3 LFamM

We define
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LFamM : 1→ LSet1M⇒ LSet1M

LFamM(0, γ0)(∗) := (f
Fam,(0,γ0)
0 , f

Fam,(0,γ0)
1 )

f
Fam,(0,γ0)
0 : D(0, γ0) 7→ ΣA(0,γ0):LSetM(0,γ0)(A(0, γ0)→ D(0, γ0))

f
Fam,(0,γ0)
1 : D(1, r(γ0)) 7→ ΣA(1,r(γ0)):LSetM(1,r(γ0))(A(1, r(γ0))→ D(1, r(γ0)))

LFamM(1, γ1)(∗) := (((f
Fam,src,(1,γ1)
0 , f

Fam,src,(1,γ1)
1 ), (f

Fam,tgt,(1,γ1)
0 , f

Fam,tgt,(1,γ1)
1 )), f

Fam,(1,γ1)
R )

f
Fam,src,(1,γ1)
0 : D(0, s(γ1)) 7→ ΣA(0,s(γ1)):LSetM(0,s(γ1))(A(0, s(γ1))→ D(0, s(γ1)))

f
Fam,src,(1,γ1)
1 : D(1, r(s(γ1))) 7→ ΣA(1,r(s(γ1))):LSetM(1,r(s(γ1)))(A(1, r(s(γ1)))→ D(1, r(s(γ1))))

f
Fam,tgt,(1,γ1)
0 : D(0, t(γ1)) 7→ ΣA(0,t(γ1)):LSetM(0,t(γ1))(A(0, stγ1))→ D(0, t(γ1)))

f
Fam,src,(1,γ1)
1 : D(1, r(t(γ1))) 7→ ΣA(1,r(t(γ1))):LSetM(1,r(t(γ1)))(A(1, r(t(γ1)))→ D(1, r(t(γ1))))

f
Fam,(1,γ1)
R : D(1, γ1) 7→ ΣA(1,γ1):LSetM(1,γ1)(A(1, γ1)→ D(1, rγ1))

By Lemma 1.2.2.2, we can evaluate the global element LFamM : 1→ LSet1M⇒ LSet1M in a
global element D : 1→ LSet1M to obtain a global element LFamMD : 1→ LSet1M. One can
define pointwise projection maps induced by the set-level Σ-types.

We can define LFamM also as a function LFamM : RG(SET1)Γ → RG(SET1)Γ. This defi-
nition is an instance of Σ-types (see Paragraph 7.6.3.1.1), and exponentials (see Para-
graph 7.6.3.1.3). As a Σ-type, LFamMLDM comes with two projections which is more
convenient. We spell out some details of this for later reference:

Definition 7.6.3.4 (LFamM). 1. For LDM : RG(SET1)Γ we define

LFamM LDM ∈ (

∫
Γ)→ SET1

LFamM LDM = ΣLSetM( ⇒ LDM)

Σ(LSetM( ⇒ LDM))(0, γ0) := {(u, t)|u : LSetM(0, γ0), t : ( ⇒ LDM)(0, γ0, u)}
Σ(LSetM( ⇒ LDM))(1, γ1) := {((uR, tR))|

uR : LSetM(1, γ1) tR : ( ⇒ LDM)(1, γ1, u
R)}

s(uR, tR) := (suR, stR) (7.1)

t(uR, tR) := (tuR, ttR) (7.2)

r(u, t) := (ru, rt) . (7.3)

2. We define LFam(D)M := LFamMLDM.
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Remark 7.6.3.5 (Global element of LFamMD). For a global element (u, t) : 1→ LFamMD
we obtain the following more convenient description of the notation of the previous defini-
tion: if u = u(0, γ0)(∗) in

( ⇒ LDM)(0, γ0, u) = (U⇒ LDM)(0, γ0) ,

then u = U(0, γ0) for an U ∈ RG(SET)Γ, and analogously for uR = u(1, γ1)(∗) in

( ⇒ LDM)(1, γ1, u
R) = (U⇒ LDM)(1, γ1) ,

uR = U(1, γ1) for an U ∈ RG(SET)Γ.

t ∈ (U⇒ LDM)(0, γ0) = {(t0, t1) | t0 : U(0, γ0)→ LDM(0, γ0), t1 : U(1,Γ(r)(γ0))→ LDM(1,Γ(r)(γ0))

LDM(s) ◦ t1 = t0 ◦ LDM(s), (7.4)

LDM(t) ◦ t1 = t0 ◦ LDM(t) (7.5)

LDM(r) ◦ t0 = t1 ◦ U(r)} (7.6)

And

bR ∈ (U⇒ LDM)(1, γ1) = {((t src0 , t src1 ), (t tgt0 , t tgt1 ), tR) | (t src0 , t src1 ) : (U⇒ LDM)(0,Γ(s)(γ1))

(t tgt0 , t tgt1 ) : (U⇒ LDM)(0,Γ(t)(γ1))

tR : U(1, γ1)→ LDM(1, γ1)

LDM(s) ◦ tR = t src0 ◦ U(s) (7.7)

LDM(t) ◦ tR = t tgt0 ◦ U(t)} (7.8)

(U⇒ LDM)(r) : (t0, t1) 7→ ((t0, t1), (t0, t1), t1)

(U⇒ LDM)(s) : ((t src0 , t src1 ), (t tgt0 , t tgt1 ), tR) 7→ (t src0 , t src1 ))

(U⇒ LDM)(t) : ((t src0 , t src1 ), (t tgt0 , t tgt1 ), tR) 7→ (t tgt0 , t tgt1 )

We also unpack the following family of reflexive graphs for later reference:

Definition 7.6.3.6 (LFam(D)M⇒ LFam(D)M).

(LFam(D)M⇒LFam(D)M)(0, γ0) = {(F0,F1) |
F0 : LFam(D)M(0, γ0)→ LFam(D)M(0, γ0),

F1 : LFam(D)M(1,Γ(r)(γ0))→ LFam(D)M(1,Γ(r)(γ0))

LFam(D)M(s) ◦ F1 = F0 ◦ LFam(D)M(s), (7.9)
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LFam(D)M(t) ◦ F1 = F0 ◦ LFam(D)M(t) (7.10)

LFam(D)M(r) ◦ F0 = F1 ◦ LFam(D)M(r)} (7.11)

(LFam(D)M⇒ LFam(D)M)(1, γ1) = {((F src0 ,F src1 ), (F tgt0 ,F tgt1 ),FR) |
(F src0 ,F src1 ) : (LFam(D)M⇒ LFam(D)M)(0,Γ(s)(γ1))

(F tgt0 ,F tgt1 ) : (LFam(D)M⇒ LFam(D)M)(0,Γ(t)(γ1))

FR : LFam(D)M(1, γ1)→ LFam(D)M(1, γ1)

LFam(D)M(s) ◦ FR = F src0 ◦ LFam(D)M(s) (7.12)

LFam(D)M(t) ◦ FR = F tgt0 ◦ LFam(D)M(t)} (7.13)

(LFam(D)M⇒ LFam(D)M)(r) : (F0,F1) 7→ ((F0,F1), (F0,F1),F1)

(LFam(D)M⇒ LFam(D)M)(s) : ((F src0 ,F src1 ), (F tgt0 ,F tgt1 ), R) 7→ (F src0 ,F src1 )

(LFam(D)M⇒ LFam(D)M)(t) : ((F src0 ,F src1 ), (F tgt0 ,F tgt1 ), R) 7→ (F tgt0 ,F tgt1 )

In particular an argument taken by F0 is a tuple (U(0, γ0), (t0, t1)) satisfying Eq. (7.1)
Eq. (7.2)Eq. (7.3), and the pair (t0, t1) where t0 : U(0, γ0) → LDM(0, γ)0, and t1 :
U(1, r(γ0))→ LDM(1, r(γ0)) has to satisfy Eq. (7.4)Eq. (7.5)Eq. (7.6).

An argument taken by F1 is a tuple (U(1, r(γ0)), ((t src0 , t src1 ), (t tgt0 , t tgt1 ), tR)) satisfying
Eq. (7.1) Eq. (7.2)Eq. (7.3), and ((t src0 , t src1 ), (t tgt0 , t tgt1 ), tR) must satisfy Eq. (7.12) where
(t src0 , t src1 ) : (U ⇒ LDM(0, s(r(γ0)))), and (t tgt0 , t tgt1 ) : (U ⇒ LDM(0, t(r(γ0)))) (where the
latter two types are identical since by the reflexive graph axioms s ◦ r = t ◦ r), and
tR : U(1, r(γ0))→ LDM(1, r(γ0)).

An argument taken by FR is a tuple (U(1, γ1), ((t src0 , t src1 ), (t tgt0 , t tgt1 ), tR)) satisfying Eq. (7.12)
where (t src0 , t src1 ) : (U ⇒ LDM(0, s(γ1))), and (t tgt0 , t tgt1 ) : (U ⇒ LDM(0, t(γ1))), and
tR : U(1, γ1)→ LDM(1, γ1).

? ? ?

7.6.4 Interpreting DS

The idea to define binary relational parametricity for DS is to write down the same
constructors as for DS but in the presheaf topos RGΓ. For simplicity we give the the
model only for the case DS D D.

For D : RGΓ we intend to define LDSM D : RGΓ by
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ι′ : D→ LDSM D
σ′ : (A : RGΓ)(A⇒ LDSM D)→ LDSM D
δ′ : (A : RGΓ)((A⇒ D)⇒ LDSM D)→ LDSM D

Since we presently have no notion of strict positivity for objects in RGΓ telling us whether
the morphisms ι′, σ′, δ′ really define something in line with our set theoretic foundations,
we reduce the above definition to a mutual inductive definition of two (namely for x = 0,
and x = 1) families of sets by two families of constructors ι−, σ−, δ− simultaneously with
recursively defined families of maps rDS, sDS, tDS.

Definition 7.6.4.1 (LDSM). We inductive-recursively define the family of sets (LDSM D):

ι−(x, γ) : D(x, γ)→ (LDSM D)(x, γ)

σ−(x, γ) : (A : RGΓ)(A⇒ LDSM D)(x, γ)→ (LDSM D)(x, γ)

δ−(x, γ) : (A : RGΓ)((A⇒ D)⇒ LDSM D)(x, γ)→ (LDSM D)(x, γ)

simultaneously with three families8 of maps

rDS : (LDSM D)(0, γ0)→ (LDSM D)(1,Γ(r)(γ0)), rDS : δ−(0, γ0)AF 7→ δ−(1,Γr(γ0))A(rF ), †
sDS : (LDSM D)(1, γ1)→ (LDSM D)(0,Γ(s)(γ1)), sDS : δ−(1, γ1)AF 7→ δ−(0,Γs(γ1))A(sF ), †
tDS : (LDSM D)(1, γ1)→ (LDSM D)(0,Γ(t)(γ1)), tDS : δ−(1, γ1)AF 7→ δ−(0,Γt(γ1))A(tF ), †

(The formulas marked with † are required to hold with ’iota’- and ’sigma’ in place of
’delta’, too.) Since A and the exponentials in the domain are by definition families of
reflexive graphs, one observes that sDS ◦ rDS = tDS ◦ rDS = id.

Remark 7.6.4.2. Even though, the definition of LDSMD defines an indexed (over
∫

Γ)
family of sets by a simultaneous indexed induction-recursion, there are some differences
preventing it (prima facie) from being an instantiation of the coding scheme of indexed
induction-recursion (IIRD) presented in [39], and thus we do not automatically get a
set-theoretic model for ’parametric MLTT + LDSM’ (that is: including decoding (see
Section 7.6.4.1 and initial algebras (see Section 7.6.5))) —proving consistency of the latter
system— from the model of IIRD given in loc.cit.:

1. Our object of codes LDSMD lives (as an object)(like all elements of our parametric
model) not in the category of sets but in the category of families of reflexive graphs.

2. in our definition, the first argument ′A′ of the constructors σ−, and δ− is is a not a
set but a family of reflexive graphs, and is indexed over

∫
Γ.

8We suppress here the the indices (x, γ) in rDS(x, γ), sDS(x, γ), and tDS(x, γ).
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3. We have an indexing category (namely
∫

Γ) and not only an indexing set and since
the reflexive-graph laws are expressed in terms of morphisms in

∫
Γ they are not

directly expressible in IIRD

Proof. The proof contained in the Agda files shows that this definition is strictly positive
and terminating.

By construction we have now for D : RGΓ defined a family of large reflexive graphs
LDSM D : RGΓ as desired.

Definition 7.6.4.3. 1. We call a global element c : 1→ LDSMD a LDSMD-code.

2. We can Definition 7.6.4.1 write in more compact form as:

d : 1→ D

ι− d : 1→ LDSMD
intro-ι−

A : RG(SET)Γ f : 1→ A⇒ LDSMD
σ− A f : 1→ LDSMD

intro-σ−

A : RG(SET)Γ f : 1→ (A⇒ D)⇒ LDSMD
σ− A f : 1→ LDSMD

intro-δ−
.

We will sometimes suppress the argument ∗ and write d (x, γ) in place of d (x, γ)(∗),
and likewise for f and F.

Definition 7.6.4.4 (Interpretation of DS D D). 1. Of course we define LDS DM :=
LDSMLDM.

2. We interpret the constructor ι as the morphism of families of reflexive graphs with
components ι−(x, γ), i.e. LιM(x, γ) = ι−(x, γ), and likewise for the constructors σ,
and δ.

3. The ((x, γ) :
∫

Γ)-indexed family of constructors ι−(x, γ), σ−(x, γ), δ−(x, γ) define
by mutual induction a family of (large) sets (LDSM D)(x, γ) : Set1.

7.6.4.1 Decoding of LDSMD-Codes

For a code c : 1→ LDSM D, we want to define a global point, i.e. a morphism ⟪c⟫ : 1→
(LFamMD⇒ LFamMD). This amounts to defining

⟪c⟫(1, γ)(∗) ∈ (LFamMD⇒ LFamMD)(1, γ)
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⟪c⟫(0, γ)(∗) ∈ (LFamMD⇒ LFamMD)(0, γ)

satisfying

sγ(⟪c⟫(1, γ)(∗)) = ⟪c⟫(0, s(γ))(∗) (7.14)

tγ(⟪c⟫(1, γ)(∗)) = ⟪c⟫(0, t(γ))(∗) (7.15)

rγ(⟪c⟫(0, γ)(∗)) = ⟪c⟫(1, r(γ))(∗) (7.16)

The following two definitions are simultaneous.

Definition 7.6.4.5 (⟪c⟫(0, γ)(∗)). We define ⟪c⟫(0, γ)(∗) by induction on c. We write

⟪c⟫(0, γ)(∗) =: (F c
0,F c

1)

and

F c
0(U(0, γ), (t0, t1)) = (Uc(0, γ), (t c

0, t c
1))

(t c
0, t c

1) : (U(c)⇒ D)(0, γ)

t c
0 : Uc(0, γ)→ D(0, γ)

t c
1 : Uc(1, r(γ))→ D(1, r(γ))

F c
1(U(1, r(γ0)), ((t src0 , t src1 ), (t tgt0 , t tgt1 ), tR)) = (Uc(1, r(γ0)), ((t src,c0 , t src,c1 ), (t tgt,c0 , t tgt,c1 ), tR,c))

t src,c0 : Uc(0, s(r(γ0)))→ D(0, s(r(γ0)))

t src,c1 : Uc(1, r(s(r(γ0))))→ D(1, r(s(r(γ0))))

t tgt,c0 : Uc(0, t(r(γ0)))→ D(0, t(r(γ0)))

t tgt,c1 : Uc(1, r(t(r(γ0))))→ D(1, r(t(r(γ0))))

tR,c : Uc(1, r(γ0))→ D(1, r(γ0))

For c = ι− d , we define

Uι− d (0, γ0) = 1

t ι
− d

0 : Uι− d (0, γ0)→ D(0, γ0)

t ι
− d

0 (∗) = d (0, γ0)

t ι
− d

1 : Uι− d (1, r(γ0))→ D(1, r(γ0))

t ι
− d

1 (∗) = r(d (0, γ0)) ,

and
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Uι−d (1, r(γ0)) = 1

(t src,ι
−d

0 , t src,ι
−d

1 ) : (U⇒ LDM(0, s(r(γ0))))

t src,ι
−d

0 (∗) = const d (0, γ0)

t src,ι
−d

1 (∗) = const rd (0, γ0)

(t tgt,ι
−d

0 , t tgt,ι
−d

1 ) := (t src,ι
−d

0 , t src,ι
−d

1 )

tR,ι
−d : Uι−d (1, r(γ0))→ LDM(1, r(γ0))

tR,ι
−d (∗) = d (1, r(γ0))

For c = σ− A f we define

Uσ− A f (0, γ0) := Σa:1→AU
fa(0, γ0)

tσ
− A f

0 : Uσ− A f (0, γ0)→ D(0, γ0)

tσ
− A f

0 a x = t f a
0 x

tσ
− A f

1 : Uσ− A f (1, r(γ0))→ D(1, r(γ0))

tσ
− A f

1 a x = t f a
1 x

Uσ− A f (1, r(γ0)) := Σa:1→AU
f a(1, r(γ0))

t src,σ
− A f

0 : Uσ− A f (0, s(r(γ0)))→ D(0, s(r(γ0)))

t src,σ
− A f

0 a x = t src,f a
0 x

t src,σ
− A f

1 a x = t src,f a
1 x

t tgt,σ
− A f

0 a x = t tgt,f a
0 x

t tgt,σ
− A f

1 a x = t tgt,f a
1 x

tR,σ
− A f a x = tR,f a x

For c = δ− A F we define

Uδ− A F(0, γ0) := ΣG:1→(A⇒U)U
F((t0,t1)◦G)(0, γ0)

t δ
− A F

0 : Uδ− A F(0, γ0)→ D(0, γ0)

t δ
− A F

0 G x = tF((t0,t1)◦G)
0 x

t δ
− A F

1 G x = tF((t0,t1)◦G)
1 x
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Uδ− A F(1, r(γ0)) := ΣG:1→(A⇒U)U
F((t0,t1)◦G)(1, r(γ0))

t src,δ
− A F

0 : Uδ− A F(0, s(r(γ0)))→ D(0, s(r(γ0)))

t src,δ
− A F

0 G x = t src,F((tsrc0 ,tsrc1 )◦G)
0 x

t src,δ
− A F

1 G x = t src,F((tsrc0 ,tsrc1 )◦G)
1 x

t tgt,δ
− A F

0 G x = t tgt,F((ttgt0 ,ttgt1 )◦G)
0 x

t tgt,δ
− A F

1 G x = t tgt,F((ttgt0 ,ttgt1 )◦G)
1 x

tR,δ
− A F G x = tR,F((tsrc0 ,tR)◦G) x

For this definition we recall Lemma 1.2.2.2, and that we have the global element (t0, t1) :
1 → (U ⇒ D)(0, ). Notice that in the last line of the previous definition we also could

have written tR,F((ttgt0 ,tR)◦G) x since s ◦ r = t ◦ r.

Definition 7.6.4.6 (⟪c⟫(1, γ)(∗)). We define ⟪c⟫(1, γ1)(∗) by induction on c. We write

⟪c⟫(1, γ)(∗) =: ((F src,c0 ,F src,c1 ), (F tgt,c0 ,F tgt,c1 ),F c
R)

and

F src,c0 (U(0, γ), (t0, t1)) = (Uc,SRC(0, γ), (t c,SRC
0 , t c,SRC

1 ))

F src,c1 (U(1, r(γ0)), ((t src0 , t src1 ), (t tgt0 , t tgt1 ), tR) =

(Uc,SRC(1, r(γ0)), ((t src,c,SRC0 , t src,c,SRC1 ), (t tgt,c,SRC0 , t tgt,c,SRC1 ), t c,SRC
R ))

F tgt,c0 (U(0, γ), (t0, t1)) = (Uc,TGT (0, γ), (t c,TGT
0 , t c,TGT

1 ))

F tgt,c1 (U(1, r(γ0)), ((t src0 , t src1 ), (t tgt0 , t tgt1 ), tR) =

(Uc,TGT (1, r(γ0)), ((t src,c,TGT0 , t src,c,TGT1 ), (t tgt,c,TGT0 , t tgt,c,TGT1 ), t c,TGT
R ))

F c
R(U(1, γ1), ((t src0 , t src1 ), (t tgt0 , t tgt1 ), tR) =

(Uc,R(1, γ1)), ((t src,c,R0 , t src,c,R1 ), (tR,c,R0 , tR,c,R1 ), t c,R
R ))

t src,c,R0 : Uc,R(0, s(γ1)))→ D(0, s(γ1), R)

t src,c,R1 : Uc,R(1, r(s(γ1))))→ D(1, r(s(γ1)), R)

tR,c,R0 : Uc,R(0, t(γ1)))→ D(0, t(γ1), R)

tR,c,R1 : Uc,R(1, r(t(γ1))))→ D(1, r(t(γ1)), R)

t c,R
R : Uc,R(1, γ1))→ D(1, γ1, R)

150



where these terms are defined by:

For c = ι− d we define:

F src,ι
− d

0 : 7→ (1, const d (0, s(γ1)), const d r(0, s(γ1)))

F src,ι
− d

1 : 7→ (1, (const d (0, s(γ1)), (const rd (0, s(γ1)))),

(const d (0, s(γ1)), (const rd (0, s(γ1)))), (const d (0, r(s(γ1))))))

F tgt,ι
− d

0 : 7→ (1, const d (0, t(γ1)), const d r(0, t(γ1)))

F tgt,ι
− d

1 : 7→ (1, (const d (0, t(γ1)), (const rd (0, t(γ1)))),

(const d (0, t(γ1)), (const rd (0, t(γ1)))), (const d (0, r(t(γ1))))))

F ι− d
R : 7→ (1, (const d (0, s(γ1)), (const rd (0, s(γ1)))),

(const d (0, t(γ1)), (const rd (0, t(γ1)))), (const d (1, γ1)))

For c = σ− A f we define

Uσ− A f ,SRC(0, γ) = Σa:1→AU
f a,SRC(0, γ)

tσ
− A f ,SRC

0 a x = t f a,SRC
0 x

tσ
− A f ,SRC

1 a x = t f a,SRC
1 x

Uσ− A f ,SRC(1, r(γ0)) = Σa:1→AU
f a,SRC(1, r(γ0))

t src,σ
− A f ,SRC

0 a x = t src,f a,SRC
0 x

t src,σ
− A f ,SRC

1 a x = t src,f a,SRC
1 x

t tgt,σ
− A f ,SRC

0 a x = t tgt,f a,SRC
0 x

t tgt,σ
− A f ,SRC

1 a x = t tgt,f a,SRC
1 x

tσ
− A f ,SRC

R a x = t f a,SRC
R x

Uσ− A f ,TGT (0, γ) = Σa:1→AU
f a,TGT (0, γ)

tσ
− A f ,TGT

0 a x = t f a,TGT
0 x

tσ
− A f ,TGT

1 a x = t f a,TGT
1 x
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Uσ− A f ,TGT (1, r(γ0)) = Σa:1→AU
f a,TGT (1, r(γ0))

t src,σ
− A f ,TGT

0 a x = t src,f a,TGT
0 x

t src,σ
− A f ,TGT

1 a x = t src,f a,TGT
1 x

t tgt,σ
− A f ,TGT

0 a x = t tgt,f a,TGT
0 x

t tgt,σ
− A f ,TGT

1 a x = t tgt,f a,TGT
1 x

tσ
− A f ,TGT

R a x = t f a,TGT
R x

Uσ− A f ,R(1, r(γ0)) = Σa:1→AU
f a,R(1, r(γ0))

t src,σ
− A f ,R

0 a x = t src,f a,R
0 x

t src,σ
− A f ,R

1 a x = t src,f a,R
1 x

tR,σ
− A f ,R

0 a x = tR,f a,R
0 x

tR,σ
− A f ,R

1 a x = tR,f a,R
1 x

tσ
− A f ,R

R a x = t f a,R
R x

For c = δ− A F we define

Uδ− A F,SRC(0, γ0) := ΣG:1→(A⇒U)U
F((t0,t1)◦G),SRC(0, γ0)

t δ
− A F,SRC

0 : Uδ− A F,SRC(0, γ0)→ D(0, γ0)

t δ
− A F,SRC

0 G x = tF((t0,t1)◦G),SRC
0 x

t δ
− A F,SRC

1 G x = tF((t0,t1)◦G),SRC
1 x

Uδ− A F,SRC(1, r(γ0)) := ΣG:1→(A⇒U)U
F((t0,t1)◦G),SRC(1, r(γ0))

t src,δ
− A F,SRC

0 : Uδ− A F,SRC(0, s(r(γ0)))→ D(0, s(r(γ0)))

t src,δ
− A F,SRC

0 G x = t src,F((tsrc0 ,tsrc1 )◦G),SRC
0 x

t src,δ
− A F,SRC

1 G x = t src,F((tsrc0 ,tsrc1 )◦G),SRC
1 x

t tgt,δ
− A F,SRC

0 G x = t tgt,F((ttgt0 ,ttgt1 )◦G),SRC
0 x

t tgt,δ
− A F,SRC

1 G x = t tgt,F((ttgt0 ,ttgt1 )◦G),SRC
1 x

t δ
− A F,SRC
R G x = tF((tsrc0 ,tR)◦G),SRC

R x
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Uδ− A F,TGT (0, γ0) := ΣG:1→(A⇒U)U
F((t0,t1)◦G),TGT (0, γ0)

t δ
− A F,TGT

0 : Uδ− A F,TGT (0, γ0)→ D(0, γ0)

t δ
− A F,TGT

0 G x = tF((t0,t1)◦G),TGT
0 x

t δ
− A F,TGT

1 G x = tF((t0,t1)◦G),TGT
1 x

Uδ− A F,TGT (1, r(γ0)) := ΣG:1→(A⇒U)U
F((t0,t1)◦G),TGT (1, r(γ0))

t src,δ
− A F,TGT

0 : Uδ− A F,TGT (0, s(r(γ0)))→ D(0, s(r(γ0)))

t src,δ
− A F,TGT

0 G x = t src,F((tsrc0 ,tsrc1 )◦G),TGT
0 x

t src,δ
− A F,TGT

1 G x = t src,F((tsrc0 ,tsrc1 )◦G),TGT
1 x

t tgt,δ
− A F,TGT

0 G x = t tgt,F((ttgt0 ,ttgt1 )◦G),TGT
0 x

t tgt,δ
− A F,TGT

1 G x = t tgt,F((ttgt0 ,ttgt1 )◦G),TGT
1 x

t δ
− A F,TGT
R G x = tF((tsrc0 ,tR)◦G),TGT

R x

Uδ− A F,R(1, r(γ0)) := ΣG:1→(A⇒U)U
F((t0,t1)◦G),R(1, r(γ0))

t src,δ
− A F,R

0 : Uδ− A F,R(0, s(r(γ0)))→ D(0, s(r(γ0)))

t src,δ
− A F,R

0 G x = t src,F((tsrc0 ,tsrc1 )◦G),R
0 x

t src,δ
− A F,R

1 G x = t src,F((tsrc0 ,tsrc1 )◦G),R
1 x

tR,δ
− A F,R

0 G x = tR,F((ttgt0 ,ttgt1 )◦G),R
0 x

tR,δ
− A F,R

1 G x = tR,F((ttgt0 ,ttgt1 )◦G),R
1 x

t δ
− A F,R
R G x = tF((tsrc0 ,tR)◦G),R

R x

Definition 7.6.4.7 (Action of decoding on morphisms). Like in the decoding of
DS-codes, also the decoding of LDSM-codes has an action on morphisms Section 3.2.1
which is induced by the universal property of Σ-types. In fact there are two similar cases
we can distinguish: the function describing the action of decoding on a transformation of
a global element, and the action of decoding on a morphism between global elements. We
shall only be interested to fix a notation for the former:

If ϕ : (U, t)(x, γ)→ (U, t)(x′, γ′), then

(φ)F
σ− A f

: Σa:1→A(U)F
f a

(x, γ)→ Σa:1→A(U)F
f a

(x′, γ′)

(φ)F
(

a, x) = (a, (f)F
f a

)

Lemma 7.6.4.8. The terms ⟪c⟫(1, γ)(∗) and ⟪c⟫(0, γ)(∗) satisfy Eq. (7.14)Eq. (7.15)Eq. (7.16).
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Proof. We mutually defined all terms LcM(x, γ)(∗) in Definition 7.6.4.5 and Definition 7.6.4.6.
This implies that Eq. (7.14)Eq. (7.15)Eq. (7.16) hold. �

Continuing Definition 7.6.4.4, we have the following:

Notation 7.6.4.9 (Evaluation of LFamMLDM⇒ LFamMLDM and projections). 1. We
denote the component of a global element F : 1→ LFamMLDM⇒ LFamMLDM by

F0(0, γ0)(∗) : LFamMD(0, γ0)→ LFamMD(0, γ0)

F1(0, γ0)(∗) : LFamMD(1, r(γ0))→ LFamMD(1, r(γ0))

F0,src(1, γ1)(∗) : LFamMD(0, s(γ1))→ LFamMD(0, s(γ1))

F1,src(1, γ1)(∗) : LFamMD(1, r(s(γ1)))→ LFamMD(1, r(s(γ1)))

F0,tgt(1, γ1)(∗) : LFamMD(0, t(γ1))→ LFamMD(0, t(γ1))

F1,tgt(1, γ1)(∗) : LFamMD(1, r(t(γ1)))→ LFamMD(1, r(t(γ1)))

FR(1, γ1)(∗) : LFamMD(1, γ1)→ LFamMD(1, γ1)

and for a global element x : 1→ LFamMD with components

x (0, γ0)(∗) = (Ux (0, γ0), (t x
0 (0, γ0), t x

1 (0, γ0)))

x (1, γ1)(∗) = (Ux (1, γ1), ((t x
0,src(1, γ1), t x

1,src(1, γ1)), (t x
0,tgt(1, γ1), t x

1,tgt(1, γ1))), t x
R(1, γ1))

where we sometimes suppress the superscripts ’x ’ when they can be inferred from the
context, we denote the components of the global element F x : 1→ LFamMD being
the evaluation of F in x by

F x (0, γ0) = ((Ux )F(0, γ0), ((t x
0 )F(0, γ0), (t x

1 )F(0, γ0)))

F x (1, γ1) =

((Ux )F(1, γ1), (((t x
0,src)

F(1, γ1), (t x
1,src)

F(1, γ1)), ((t x
0,tgt)

F(1, γ1), (t x
1,tgt)

F(1, γ1))), (t x
R)F(1, γ1))

2. We can write F ((x, γ)-component-wise) in two components

Ffst(x, γ) : (1(x, γ)→ LFamMD(x, γ))→ LSetM(x, γ)

Fsnd(x, γ) : (x : 1(x, γ)→ LFamMD)(x, γ)→ (Ffstx ⇒ D)(x, γ)

such that the evaluation of these components in x return component-wise the first-,
respectively second projections, i.e.

(Ffstx )(x, γ)(∗) = (Ux )F(0, γ)(∗)
(Fsndx )(0, γ0) = ((t x

0 )F(0, γ0), (t x
1 )F(0, γ0))

(Fsndx )(1, γ1) = ((((t x
0,src)

F(1, γ1), (t x
1,src)

F(1, γ1)), ((t x
0,tgt)

F(1, γ1), (t x
1,tgt)

F(1, γ1))), (t x
R)F(1, γ1))

154



3. For a code c : 1→ LDSMD, we write F c := ⟪c⟫.
Remark 7.6.4.10. An component F c(x, γ)(∗) : (LFamMD ⇒ LFamMD)(x, γ) is (a pri-
ori) not simply the decoding of a DS D D code since for example the (0, γ0)-instance
F c

1x (0, γ0)(∗) = ((t0)F
c

(0,γ), (t1)F
c

(0,γ)) refers to an (1, r(γ0))-instance — namely (Ux )F
c
(1, r(γ0))

as domain of (t1)F
c ,1

(0,γ0) : (Ux )F
c
(1, r(γ0))→ D(1, r(γ0))— as well.

7.6.5 Construction of Initial Algebras

The proof that initial algebras for LDSM-codes exist is just a terminological variation of
the one for DS-codes (see [38]) once we explained (= introduced notation for) how to deal
with families in place of sets. Since we did not repeat this proof in Chapter 4 we spell
out the adaption here. The structure of the proof is also similar to the one we gave in
Section 6.4: first we show (in Lemma 7.6.5.5) that LDSM-functors are κ-continuous under
the assumption that their sets of argument Aux(c, (U, t)) are bounded by Vκ, and then we
show that the initial sequence of a LDSM-functor is a monotone κ-sequence satisfying this
assumption; the existence of initial algebras then follows by the usual argument (see [7]).

7.6.5.0.1 Aux

Definition 7.6.5.1 (Aux). Given a code c : 1 → LDSMD a global element (U, t) of
LFamDM, the set Aux(c, (U, t)) of premises of inductive arguments of c with respect to
(U, t) is defined by induction on c:

Aux(ι− d , (U, t)) = ∅

Aux(σ−A f , (U, t)) =
⋃

x :1→A

Aux(f x , (U, t))

Aux(δ−AF, (U, t)) = {A} ∪
⋃

G:1→A⇒U

Aux(F(t ◦ G)(U, t))

The notation of the previous definition is a compromise between Definition 7.6.4.1 and its
rewrite in terms of global elements Definition 7.6.4.3. The idea is to have one case for
each constructor, but there are different options of how to write the constructors: they
can either each define a family of sets or one set per index. The Agda formalization of
Definition 7.6.4.1 is still different and has constructors e.g. σ0 taking as first argument a
γ0 : Γ0. Clearly these options are all equivalent and irrelevant for the following proof that
initial algebras exist.

Notation 7.6.5.2. If A is a family of reflexive graphs or an indexed set (in this section
the reflexive graph structure is not relevant and only the underlying family of sets matters),
we write A ∈ Vκ for κ an inaccessible, if A(x, γ) ∈ Vκ for all indices (x, γ). Likewise for
families of reflexive graphs or indexed sets A, and B, we write A ⊆ B if A(x, γ) ⊆ B(x, γ)
for all (x, γ) ∈

∫
Γ, and for a set V , we write A ⊆ V if A(x, γ) ⊆ V for all (x, γ) ∈

∫
Γ.

The union
⋃
α<κAα of a family (of sets or reflexive graphs) is understood as a level-wise

union of sets, and likewise for the union A ∪B of two families.
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If we were to fashion Definition 7.6.5.1 in a style corresponding to the component-wise
Definition 7.6.4.1 instead of corresponding to the global-element style of Definition 7.6.4.3,
we would define sets Aux(c, (U, t), (x, γ)), and regard Aux(c, (U, t)) as an indexed family of
sets. We would apply the above notation to this family and the expression Aux(c, (U, t)) ∈
Vκ would still be defined.

7.6.5.0.2 Continuity We now show that if for certain (U, t), all A ∈ Aux(c, (U, t))
are bounded, then F c is κ-continuous for an inaccessible κ < M. And again by Adamek’s
theorem [7] it follows that F c has an initial algebra.

The following is an adaption of the notation below [39, Theorem 8.1].

Definition 7.6.5.3 (≤LFamMD). For (U, t), (U′, t ′) : 1 → LFamMD we define a partial
order. (U, t) ≤LFamMD (U′, t ′) if for all (x, γ) :

∫
Γ

U(x, γ) ⊆ U′(x, γ)

t ′(x, γ) � U(x, γ) = t(x, γ)

where the last line is understood component-wise, i.e. as the set-level restriction of the
maps.

t0
′(0, γ0) � U(0, γ0) = t0(0, γ0)

t1
′(0, γ0) � U(1, r(γ0)) = t1(0, γ0)

t0,src
′(1, γ1) � U(0, s(γ1)) = t0,src(1, s(γ1))

t1,src
′(1, γ1) � U(1, r(s(γ1))) = t1,src(0, γ0)

t0,tgt
′(1, γ1) � U(0, t(γ1)) = t0,tgt(0, γ0)

t1,tgt
′(1, γ1) � U(1, r(t(γ1))) = t1,tgt(1, γ1)

tR′(1, γ1) � U(1, γ1) = tR(1, γ1)

Definition 7.6.5.4 (Monotone κ-sequence). 1. For an inaccessible κ, a sequence
(Uα, tα)α<κ of global elements of LFam(D)M is called a monotone κ-sequence if for
all α < β we have (Uα, tα) ≤LFamMD (Uβ, tβ).

2. We understand the union
⋃
α<κ(U

α, tα) of a monotone κ-sequence pointwise in the
sense of Definition 7.6.5.3. We also use the notation (

⋃
α<κU

α,
⋃
α<κ tα) for the

union.

Lemma 7.6.5.5 (Bounded continuity of LDSM-functors in monotone κ-sequences).
Let κ be inaccessible and (Uα, tα)α<κ be a monotone κ-sequence, let c be a code.

Assume for some α0 < κ that

Aux(c, (Uα, tα)) ⊆ Vκ (7.17)
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for all α0 ≤ α < κ. Then F c
fst(U, t) is κ-continuous in (U, t), i.e.

F c
fst(
⋃
α<κ

Uα,
⋃
α<κ

Tα) =
⋃
α<κ

F c
fst(U

α, Tα) .

where the union
⋃
α<κ(U

α, tα) is understood pointwise in the sense of Definition 7.6.5.3.

Proof. The direction ⊇ follows from Lemma 7.6.5.6. We prove ⊆ by induction over c:

• If c = ι− d , then

F ι− d
fst

⋃
α<κ

(Uα, tα) =
⋃
α<κ

Uα =
⋃
α<κ

F ι− d
fst (Uα, tα) .

• If c = σ−A f , the statement follows simply by induction like in case of DS.

• If c = δ−AF, the statement follows like for DS as well: we have to show that there
exists an α < κ such that for all (x, γ) ∈

∫
Γ, and all9

a : F δ− AF
fst

⋃
α<κ

(Uα, tα)(x, γ)

we have
a : F δ− AF

fst (Uα, tα)(x, γ) .

Indeed, we have a = (G, x ) where

G : (A⇒
⋃
α<κ

Uα)(x, γ)

x : (FF((
⋃
α<κ tα)◦G)

fst

⋃
α<κ

(Uα, tα))(x, γ) .

By assumption Eq. (7.17) A ∈ Vκ, and since κ is inaccessible there exists a β < κ
such that G : (A ⇒

⋃
α<β U

α)(x, γ): to see this, we apply Lemma 1.1.0.13 to the
component functions: for an index of the form (0, γ0), we have G = (G0,G1) where

G0 : A(0, γ0)→
⋃
α<κ

Uα(0, γ0)

G1 : A(1, r(γ0))→
⋃
α<κ

Uα(1, r(γ0)) ,

and in each case Lemma 1.1.0.13 gives us β0 < κ, respectively β1 < κ such that G0,
respectively G1 restrict to

G0 : A(0, γ0)→
⋃
α<β0

Uα(0, γ0)

G1 : A(1, r(γ0))→
⋃
α<β1

Uα(1, r(γ0)) ,

9Notice that we can here (and in similar situations in the following) not argue with global elements

(e.g. assuming a : 1→ Fδ− AF
fst

⋃
α<κ(Uα, tα)) since RGΓ is not in general a wellpointed topos.
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and we chose β := max{β0, β1}. Likewise for an index of the form (1, γ1), Lemma 1.1.0.13
gives us β0.src, β1.src, β0.tgt, β1.tgt, βR < κ, and we choose β to be the maximum of
these. So, in particular G : (A ⇒ Uβ)(x, γ), and F((

⋃
α<κ tα) ◦ G = F((tβ) ◦ G.

Without loss of generality α0 ≤ β ( otherwise go on with β := α0) and we are
again in the situation to apply the assumption: i.e. β ≤ α < κ implies that
Aux(F(tα ◦ G), (Uα, tα)) ∈ Vκ and by inductive hypothesis there exists β′ < κ such

that x : (FF(tα◦G)
fst (Uβ′ , tβ′))(x, γ). In total, we get

a = (G, x ) : (F δ− A F
fst (Uα, tα))(x, γ)

as desired by taking α to be the maximum of β, and β′.

Lemma 7.6.5.6. Let c : 1→ LDSMD, and (U, t) ≤LFamMD (U′, t ′). Then

1. F cfst(U, t) ⊆ F cfst(U′, t ′), and

2. F csnd(U′, t ′) � F cfst(U, t) = F csnd(U, t).

Proof. The proof follows by induction and monotonicity in a way analogous to the case of
DS by arguing pointwise.

We want to apply Lemma 7.6.5.5 to the initial sequence of the corresponding functor:

Definition 7.6.5.7. For c : LDSMD we define the initial sequence of F c by

U0 = ∅ t 0 x = ∅
Uα+1 = F cfst(Uα, tα) tα+1 x = F csnd(Uα, Tα) x

Uλ =
⋃
β<λ

Uβ tλ x = tβx where x : 1→ Uβ

Lemma 7.6.5.8. Let c be a code and (Uα, tα)α∈Ord the initial sequence of the associated
functor F c. If α < β then Uα ⊆ Uβ and tβ � Uα = tα.

Proof. Induction on α, β, using Lemma 7.6.5.6 for the limit cases.

We now prove that the assumption of Lemma 7.6.5.5 holds. This proof is the only occasion
where the Mahlo property of M is used.

Lemma 7.6.5.9. Let c be a code and (Uα, tα)α the initial sequence of the associated
functor F c. There exists an inaccessible κ such that Aux(c, (Uα, tα)) ⊆ Vκ for all α < κ.

Proof. We define an increasing function f : Ord→ Ord, that will send an ordinal β to the
rank f(β) of the Aux-set of the value of the application of the functor F c to an initial
sequence of rank β; i.e. β and its value f(β) will stand in the relation:

for all β′ < M (if Uβ′ ⊆ Vβ then Uβ′+1 ∪ Aux(c,Uβ′ , tβ
′
)) ⊆ Vf(β)) . (7.18)
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More formally, we define f by transfinite recursion by:

f(β) = min{α |(∀β′ < β)
(
f(β′) < α

)
∧

(∀β′ < M)
(
Uβ′ ⊆ Vβ =⇒ Uβ′+1 ∪ Aux(c, (Uβ′ , tβ

′
)) ⊆ Vα

)
}

The first conjunct ascertains that f is increasing, and the second makes (7.18) true.

Since in our model all sets are (supposed to be) of rank at most M, we are interested in
the restriction of f to M. In fact we chose M precisely to find an inaccessible κ as desired
in the statement of the lemma we are proving. Again, since all sets in our model shall be
of rank at most M, we want to show now, that also the image of f is contained in M; we
use for this function the same letter f : M→ M.

Finally we show Aux(ϕ, (Uα, tα)) ⊆ Vκ by induction on α, using (7.18).

Claim: f : M→ M.
Proof of this claim. Let β < M and note that

f(β) = min{α |(∀β′ < β)
(
f(β′) < α

)
∧

(∀β′ ∈ {β′ ∈ M | Uβ′ ⊆ Vβ})
(
Uβ′+1 ∪ Aux(c, (Uβ′ , tβ

′
)) ⊆ Vα

)
} ,

further that B := {β′ ∈ M | Uβ′ ⊆ Vβ} ∈ Vβ+1 ⊆ VM so that |B| < M. For each β′ ∈ B, we
have Uβ′+1 ∪ Aux(γ, (Uβ′ , tβ′)) ⊆ VM and hence Uβ′+1 ∪ Aux(c, (Uβ′ , tβ′)) ⊆ Vαβ′ for some
αβ′ < M since M is inaccessible. Thus f(β) ≤ supβ′ αβ′ < M by the regularity of M. �

We finally would like to construct a candidate κ as desired in the statement of the lemma
as an inaccessible fixed point of f which (by definition) entails that all further iterations of
F c have the same rank κ. To this end, we want to use the Mahlo property stating exactly
that every increasing normal (see Definition 1.1.0.16) endofunction f : M → M has an
inaccessible fixed point. However, f is —albeit increasing— not necessarily continuous,
and thus not necessarily normal. We thus apply “Newton’s fixed-point method” and
derive the new function

θ : Ord→ Ord

θ(α) = fα(0)

which is continuous by construction, and increasing since f is, and thus normal10. So,
even if our wish that f have an inaccessible fixed point is not fulfilled, we get a fixed
point of θ, and since we start the iteration of F c in the empty set, this still matches the
intuitive proof idea.

But we still have to take care of that we need this fixed point to be < M, i.e. we have to
recover that:

Claim: θ : M→ M
Proof of this claim. We prove that θ(α) < M for α < M by transfinite induction over α.

10Newton’s original fixed-point method which is formulated for real numbers would now go on to argue
that if the sequence x0 := 0, xn+1 := f(xn) (there are no limit steps in the original version) converges to
an x, and f is continuous, then x is a fixed point of f .

159



The base case and successor case are clear, since f : M → M. If λ < M is a limit, the
statement follows from the conjunction of regularity of M, and continuity of θ: we have
for λ = limξ→λ γξ that θ(limξ→λ γξ) = limξ→λ θ(γξ) by continuity of θ. Assume θ(λ) ≥ M,
then since M = cf(M) = min{β | ∃ increasing β-sequence in M (αξ)ξ<β, limξ→β αξ = M} it
follows λ ≥ M, contradiction. �

Hence by the Mahlo property, θ has an inaccessible fixed point κ < M which we use in
the last few steps to infer the actual statement of the lemma.

Claim: f : κ→ κ.
Proof of this claim. Assume α < κ. Since κ is inaccessible, α < α+ 1 < (α + 1) + 1 < κ
Thus

f(α) < f(α + 1) ≤ f(θ(α + 1)) = f(fα+1(0)) = θ((α + 1) + 1) < θ(κ) = κ

i.e. f : κ→ κ. �

This combined with (7.18) implies:

if Uβ′ ⊆ Vβ then Uβ′+1 ∪ Aux(c, (Uβ′ , tβ
′
)) ⊆ Vκ (7.19)

for all β < κ (since f(β) < κ implies Vf(β) ⊆ Vκ).

Claim: Uα ⊆ Vκ for all α < κ.
Proof of this claim. The proof is by induction on α:

• If α = 0, then U0 = ∅ ⊆ Vκ.

• If α = β + 1, then Uβ ⊆ Vκ by the induction hypothesis, and the case follows by
(7.19).

• If α = λ limit, then Uλ =
⋃
β<λU

β ⊆ Vκ since the Uβ ⊆ Vκ by the inductive
hypothesis, and κ is inaccessible. �

The previous claim and (7.19) entail Aux(ϕ, (Uα, tα)) ⊆ Vκ as desired which completes
the proof. �

By combining Lemma 6.4.2.4 and Lemma 6.4.2.7, we get:

Theorem 7.6.5.10. In ZFC + M + I, all functors F c associated to a code c : 1→ LDSMD
have initial algebras.

Proof. By Lemma 6.4.2.4 —using Lemma 7.6.5.8, and Lemma 7.6.5.9— we obtain

F c
fst(
⋃
α<κ

Uα,
⋃
α<κ

tα) =
⋃
α<κ

F c
fst(U

α, tα)

=
⋃
α<κ

Uα+1

=
⋃
α<κ

Uα .

By Lemma 7.6.5.8, F c
snd(
⋃
α<κU

α,
⋃
α<κ tα) =

⋃
α<κ tα, so that the initial sequence con-

verges after κ steps. By Adamek’s Theorem [7, Thm 3.1.4], F c has an initial algebra.
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7.7 Unary-Relational Parametricity for DS

As shown by [120], n-ary parametricity for all n : N can be dealt with in terms of
considering only the cases n = 1, and n = 2. Moreover, if we model parametricity via
reflexive graphs, we can express the n = 1 case as a degenerate case of n = 2. In this
section we will only define the appropriate category of presheaves for this degenerate
unary case.

Definition 7.7.0.1 (SR). We define the following category

SR = {0, 1, r : 0→ 1, s : 1→ 0 | s ◦ r = id} ⊆ SR× SR .

The category SR = SRop → Set is the category of presheaves of subsets equipped with a
specified retraction.

Remark 7.7.0.2 (Sub(Set)). Obviously SR equipped with the relation

{(A,B) | A(0) = B(0), ∃ k : A(1)→ B(1), B(s) ◦ k = A(s)}

factored by isomorphisms (i.e. those instances where the k above is an isomorphism) is
a full subcategory of Sub(Set) (the category of subobjects of sets) where SR consists of
exactly those objects of Sub(Set) which are split monomorphisms. Sub(Set) is of central
interest in classical texts on logical relations, see e.g. [67]
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8.1 Summary

The main focus of this thesis has been the question of compositionality of codes for
inductive-recursive definitions. First we addressed the question of compositionlity of
classical Dybjer-Setzer codes.

While this question is still open, we developed a characterization of compositionality for
these codes which lets us believe that it is unlikely that DS-codes are composable.

Based on the insights that the conjunction of powers of codes by sets and a monad
structure —or at least a bind operation— on the system of codes plays a crucial role
in defining composition of codes, we defined two new systems UF, and PN of codes for
induction-recursion which relate by semantics preserving inclusions UF ↪→ DS ↪→ PN. The
constructors of the three systms are displayed in the following table:

UF DS PN

ιUF: Uni D
σUF:

(
c : Uni D

)
→ (Info c→ Set)→ Uni D

δUF:
(
c : Uni D

)
→ (Info c→ Set)→ Uni D

ιDS : E → DS D E
σDS :

(
A : Set

)
→ (A→ DS D E)→ DS D E

δDS :
(
A : Set

)
→ ((A→ D)→ DS D E)→ DS D E

idPN : Poly D
con : (A : Set)→ Poly D
sigma : (S : Poly D)→ (Info S→ Poly D)→ Poly D
pi : (A : Set)→ (A→ Poly D)→ Poly D

Info ιUF = 1
Info (σUF c A) =

(
Σγ : Info c

)
(A γ)

Info (δUF c A) =
(
Σγ : Info c

)
(A γ → D)

Info idPN = D
Info (con A) = A
Info (sigma S F) =

(
Σx : Info S

)
(Info (F x))

Info (pi A F) =
(
x : A

)
→ (Info (F x))

The sub-system of UF consisting of codes with a more uniform structure than that of
DS-codes facilitating compositionality. UF has powers of codes by sets but it has no
monad structure and only a ’combined power-and-bind operation’ can be defined on it.
Consistency of UF is implied by including it in the existing model of DS.

The super-system PN of polynomial codes —which we called this way since they are
’constructed from sums and products’ like polynomials has powers of codes by sets and a
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monad structure. Consistency of PN is shown providing a model in ZFC supplemented by
a Mahlo cardinal and a 1-inaccessible cardinal I containiing M; this model is similar to
the existing model of DS but (among other differences) that the latter has the slightly
weaker requirement of I to be 0-inaccessible.

Since the fact that one constructor of the system PN generates powers of codes invites the
question about further differences between the systems DS and PN, we defined two further
systems PN−piContbt ↪→ PN−piCont such that DS ↪→ PN−piContbt ↪→ PN−piCont ↪→ PN, where PN−piCont is

PN with the constructor for powers removed, and PN−piContbt is an annotated uniform version

of PN−piCont. We could give a translation PN−piContbt → DS but it is still unclear whether PN−piCont

can be translated into DS as well.

Finally (and unrelated to compositionality), we returend to the original system DS and
its model to address the question whether the latter can be extended to a relationally
parametric model. This question is motivated by the idea to use relational parametricity
to show that all definable DS-codes are uniform; this application is however not covered
in this thesis and is left for future work.

8.2 Conclusion

To conclude, we want to give a more conceptual explanation of what is difference between
Dybjer-Setzer’s IR systems and the new ones. Asking what might be not be present
in Dybjer-Setzer’s system to facilitate composition, we need to refer to semantics of
induction-recursion. As we already mentioned, strict positivity is a characterization for
inductive definitions that can to some extend be considered to be a semantical one since
it is informed by universal properties of set-operations in the intended model.

The term ’strict positivity’ can be characterized by the property of being definable by a
certain choice of operations. The eponymous operation, namely the constructor −→ for
exponentials that needs to be constrained to have an inductive argument only in strictly
positive position, i.e. to the right of an arrow and a constant (set) to the left —thus
becoming an operator forming powers and not exponentials— is only one of them.

In case of induction-recursion, we can thus consider the operations on families that can be
arranged for by the different axiomatizations we want to compare. One difference between
sets and families is that powering might change the indexing set1 and this becomes a
problem e.g. in case of a constructor

−→ : (A : Set)→ DS D E → DS D (A→ E)

(with the preponderant ’(A → E)’) that we needed —or at least used— to realize
compositionality. So, while the term ’strict positivity’ focuses attention on the problematic
operation −→ and suggests as solution to put the inductive argument in the right position,

1If X : Fam D, then (A −→Fam X) : Fam (A → D) and these types are obviously identical only if
D = 1, i.e. if Fam D ' Set.
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in case of families also this solution is not available if the family operations one is willing
to admit must not change the (large) set D indexing families Fam(D). A similar disparity
appears for the operation × forming binary products since Set1 is closed under it while
Fam(D) is not in general closed under it. Thus, to talk about ’strict positivity for families’
is misleading.

Another viewpoint on this is that if c : DS D E is code, then all its subcodes of c are of
the same type DS D E while in the system PN we have defined, the second argument ’E’
need not be E for every subcode of a code PN D E. Not insisting in this strict regiment
on subcodes apparently gives more flexibility that can be used to define codes.

A categorical view on this is that while the categories Fam(D) are usually not well endowed
with limits, the comma category i/Set1 —where i : Set→ Set1 is the inclusion (induced
by cumulativity)— which is equivalent to the category ΣD:Set1Fam(D) (with morphisms
appropriately defined) is always a topos and as such (by locally cartesian closedness) has
exponentials and powers. We did not explore the possibility to define a version of IR
decoding to an endomorphism of the codomain fibration i/Set1 → Set1.

8.3 Future Work

It is still unclear whether the systems of induction-recursion we have seen are really
different and if so what the nature of their difference is. At the end of Section 4.1 we
have presented a class of candidate codes which we believe cannot be definable in the
system DS but even if we had by coincidence found an instantiation of one of these codes
and a proof that no family defined by DS can be isomorphic to the family defined by this
code, it would still be unclear what the intuitive difference between families defined by the
different versions of IR is since e.g. uniformity is a property of codes — not necessarily of
what they define.

Questions that are closely related or even equivalent to that whether the systems differ
are whether DS + π is functorial (in its second argument), and if yes, if it is additionally
monadic.

Regarding the system UF there is moreover a slight mismatch between the intuition we
have of uniform codes and their technical realization: we motivated uniform codes as DS
codes in which all branches have the same length. In the formalization however branch
length does not explicitly occur but the motivating property is only implied by it. One
can try to to approach this by defining a system equivalent to UF by annotating DS codes
by their branch length.

Since the motivating example for induction-recursion is universes, it would be interesting
to find kinds of universes that are characteristic to the different versions of IR.

As for developing the semantic theory of IR, we mentioned in Remark 3.2.1.17 that the
absence of morphisms of codes might be an obstacle. As mentioned there, this might be
interesting for applications of induction-recursion to higher category theory.
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Berlin Heidelberg, 2006, pp. 521–540. doi: 10.1007/11780274_27. url: https:
//doi.org/10.1007/11780274_27 (cit. on p. 44).

[56] I.H. Grant. Philosophies of Nature after Schelling. Transversals: New Directions
in Philosophy. Bloomsbury Publishing, 2008. isbn: 9781441147301. url: https:
//books.google.co.uk/books?id=lSIdCgAAQBAJ (cit. on p. 31).

[57] H. Grassmann. Lehrbuch der Arithmetik für höhere Lehranstalten. Lehrbuch der
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pp. 257–279. isbn: 978-3-7643-8653-5. doi: 10.1007/978-3-7643-8653-5_16.
url: https://doi.org/10.1007/978-3-7643-8653-5_16 (cit. on p. 59).

[115] Anton Setzer. “Proof theory and Martin-Löf Type Theory”. In: One Hundred
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Subcode of DS-Codes, 67
Subcode of a UF-Code, 98
Uniform Code, 89

Coinduction, 38
Composition, 8

Composition and Initial Algebras, 56
Composition for Containers, 55

Composition of containers, 55
Computability Predicate, 70
Consistency

Consistency of UF, 99
Constructive Set Theory, 48
Constructor, 35
Container, 6, 9, 10, 23, 106
Context, 33
Cumulative Hierarchy, 115
Cumulative Hierarchy of Universes, 42
Currying, 25

Decoding
Categorical Explanation of DS Decoding,

77
Decoding of DS-Codes, 63
Decoding of Codes for Inductive Defini-

tions, 53
Monotonicity of Decoding, 66

Dependency, 33
Dependent Elimination, 39
Differential Calculus, 125
DS-Functor, 70
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Elimination
Elimination for DS-codes, 72

Embedding
Embedding of UF into DS, 99

Equality, 34
Equational Reasoning, 43
Errett Bishop, 60
Evaluation of Exponential Objects, 20
Extension System, 25
Extensional Equality, 45

Fin, 67
Finiteness, 47
Fixed Point, 115
Free Category, 70

Generalized Continuum Hypothesis, 111
Girard’s Paradox, 40
Graph, 70
Grounding, 61
Gödel, 43

Half Positivity, 56
Henri Poincaré, 60
Higher Order Logic, 33

Immanuel Kant, 31
Inaccessible Cardinal, 113
Induction Recursion

DS+π, 85
Induction-Recursion

DS′, 77
PN−piCont, 119
UF, 89
UF+, 94

Inductive
Inductive Family, 58
Inductive Set, 58

Inductive Definition, 50, 52
Inductive Type, 49
Initial Algebra, 50, 111, 113
Initial Sequence, 115

Judgemental Equality, see Equality

Kleene, 48
Kleisli Extension, 25

L. E. J. Brouwer, 31

Lambek’s Theorem, 21, 52
Large Cardinal, 17
Law of Excluded Middle, 32
lem:Function Extensionality, 45
Levitation, 107, 119
List Monad, 26
Logical Framework, 39

MLTT, 32
Monad, 25
Monad Structure

DS as a Free Monad, 75
Monad Structure on DS, 75
Monad Structure on Fam, 27

Monotone Sequence, 113, 115
Morphisms Between Codes, 72
Motif, 39

Natural Deduction, 32
Natural Number, 60
Newton’s fixed-point method, 159
Non-Dependent Elimination, see Dependent

Elimination
Normal Form

Normal Form for Inductive Definitions,
50

Normal Function, 116
Number

Constructive Number Classes, 47

Ordinal, 15
Ordinal Notation System, 124

Padding of a DS-code, 69
Parametric Right Adjoint, 70
Partial Order, 27
Positive Induction Recursion, see Morphisms

Between Codes
Power Object, 20

Powers of Families, 28, 55, 82
Power Series, 85
Predicativity, 60
Product, 69
Proof Theory, 59

Ramified Type Theory, 40
Realizability, 70
Recursion
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Primitive Recursion, 58
Reflection Principle, 43, 77
Reflection Principles, 79
Regular Cardinal, 116
Rule

Computation Rule, 35
Elimination Rule, 35
Formation Rule, 35
Introduction Rule, 35

Russel’s Paradox, 40

Strict Positivity, 52
Strict Positivity for Families, 62

Term
Generic Term, 34
Specific Term, 34

Term Model, 136
Transfinite Recursion, 115
Translation

between DS and DS ′, 79
Translation between Ind and Cont, 53

Tree, 23
tree, 89
Type, 33

Identity Type, 43
Inductive Type, 45, 66
Negative Type Definition, 36
Negatively Defined Type, 38
Pi Type, 38
Positive Type Definition, 35
Positively Defined Type, 38
Sigma Type, 37
Transfinite Type, 48
Type of Inductive Definitions, 53
Universe, 40
W Type, 46, 68

Type Definition, 50
Type Dependency, see Dependency

Unbounded Subset of an Ordinal, 19
Universe, 68

PN-Code for a Tarski Universe, 110

W Type
DS D E as W Type, 66

Wellfounded, 33
Wellordering, 31
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