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 ABSTRACT  

Anthropogenic contaminants are ubiquitous in the environment. These environmental 

pollutants enter the environment via various entry path for example wastewater treatment 

plants or pesticide application in agriculture. Released into the environment some are 

detected in surface waters. The environmental fate of contaminants depends on their 

physicochemical properties and on the local conditions. Contaminants may be transformed 

by biotic or abiotic processes like photo-transformation or hydrolysis. Aquatic organisms are 

exposed to contaminants which are present in water. To analyze trace amounts of 

contaminants in surface waters preconcentration and cleanup techniques are required to 

enable their detection with sensitive methods like mass spectrometry. Especially, the 

analysis of ionic and ionizable compounds is challenging and these compounds come more 

into focus as many metabolites are more polar than the parent compounds. In this thesis, 

electrophoretic techniques were investigated for their ability to fractionate and 

preconcentrate wastewater chemicals. Two different free flow modes were applied to surface 

water samples and an HPLC-MS method was developed for identification and quantification 

of 92 chemicals relevant in wastewater in the low ng/L range. In a second approach the 

impact of experimental conditions on the preconcentration of ionic analytes by 

electrophoretic techniques was investigated.  

Aquatic organism are exposed to chemicals present in surface waters and in case of benthic 

living organisms additionally to sediment bound contaminants. Some of these chemicals are 

taken up by the organisms and may pose adverse effects. Incorporated chemicals might be 

metabolized, accumulated or excreted by the organisms. Bioaccumulation leads to higher 

concentrations in the organisms than in the surrounding water. Therefore, the analysis of 

xenobiotics in organisms is of special interest to detect compounds of concern as well as to 

more precisely predict the environmental behavior of compounds. In this thesis, extraction 

and quantification of the contaminants and their transformation products were achieved 

based on QuEChERS extraction and following analysis by HPLC-MS. The method was 

applied to different organisms from exposure experiments. For the pharmaceutical 

carbamazepine a quantification method was developed to analyze the internal concentration 

in Chironomus riparius larvae and adult midges in the low ng/g range. The method was 

applied to assess the transfer of the pharmaceutical from aquatic to terrestrial stages and 

thus the transfer to the terrestrial ecosystems. Analysis of larvae and midges from 

emergence studies indicated a transfer of 100 % carbamazepine body burden from larvae to 

midges. The developed method for analysis of the neonicotinoid thiacloprid was needed only 

5 Chironomus riparius larvae and enabled quantification with a limit of detection of 12 ng/g 

wet weight. A third procedure was developed to analyze the fungicide propiconazole and 

three of its metabolites in fungi mycelium in the low ng/g range. To assess the impact of 

sorption to nanoparticles on the environmental fate of the chemicals, thiacloprid and 

propiconazole were quantified in larvae and fungi which were exposed to the pesticide in the 

presence of nanoparticles, which were demonstrated to sorb the pesticide. Analysis of 

thiacloprid residues larvae revealed equal concentrations in experiments independent from 

nanoparticles. Reduced transformation of propiconazole in fungi experiments was detected 

depending on the nanoparticle concentration in liquid culture experiments and reduced 

propiconazole uptake in experiments on agar plates. The analysis of different fungi species 

revealed strong inter species differences in and uptake and metabolism of the fungicide. 
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ZUSAMMENFASSUNG 

Anthropogene Verbindungen sind omnipräsent in der Umwelt. Pestizide werden in der 

konventionellen Landwirtschaft im Tonnenmaßstab eingesetzt und gelangen während der 

Anwendung oder durch Starkregenereignisse in Oberflächengewässer. 

Haushaltschemikalien und Arzneimittel gelangen durch einen häufig unvollständigen Abbau 

in Kläranlagen über die Kläranlagenabflüsse in die Umwelt. Das Umweltverhalten der Stoffe 

wird durch ihre physikochemischen Eigenschaften und die lokalen Bedingungen denen sie 

ausgesetzt sind bestimmt. Stoffe sind in Oberflächengewässer biotischen und abiotischen 

Transformationsprozessen unterworfen oder adsorbieren an Partikel wie zum Beispiel 

Sediment- oder Schwebstoffpartikel. Um diese Stoffe, die häufig im Spurenbereich 

vorliegen, nachweisen zu können sind Anreicherungsprozesse vor der Analyse notwendig. 

Im Rahmen dieser Arbeit wurde erstmalig die Anwendungsmöglichkeit der 

Freiflusselektrophorese zur Fraktionierung organischer Spurenstoffe aus 

Oberflächengewässerproben untersucht. In einem anderen Ansatz wurde der Einfluss 

verschiedener Experimentaufbauten auf den Transfer und damit die Möglichkeit zur 

Aufkonzentrierung ionischer und ionisierbarer Verbindungen im elektrischen Feld untersucht. 

Die Anreicherung und Trennung ionischer Verbindung rückt in den Fokus der 

Umweltanalytik, da viele Metabolite polarer sind als ihre Ausgangsverbindungen.  

Aquatische Organismen sind wassergelösten Stoffen ausgesetzt, benthisch lebende 

Organismen zusätzlich Sediment gebundenen Stoffen. Auch in sehr geringen 

Konzentrationen können Umweltchemikalien bereits negative Effekte in Organismen 

hervorrufen. Aufgenommene Stoffe können metabolisiert oder ausgeschieden werden oder 

sich im Gewebe anreichern. Eine Möglichkeit, bioakkumulierende Stoffe zu identifizieren, ist 

die Analyse von Biota aus Umweltproben oder Laborstudien. Im Rahmen dieser Arbeit 

wurden Extraktionsmethoden basieren auf Modifikationen der QuEChERS Extraktion 

entwickelt um organische Spurenstoffe und ihre Metabolite in verschiedenen Organismen 

mittels HPLC-MS zu untersuchen. Es wurde eine Nachweismethode entwickelt, die die 

Analyse des Arzneimittels Carbamazepin in Mückenlarven und Mücken im ng/g Bereich 

ermöglicht. Mittels dieser Methode wurde die interne Carbamazepin Konzentration in Larven 

und den aus den exponierten Larven geschlüpften Mücken untersucht. Die Ergebnisse 

zeigen einen vollständigen Transfer der Belastung vom Larven- in das Mückenstadium und 

damit zugleich  einen Transfer von Schadstoffen aus der aquatischen in die terrestrische 

Umwelt. Mit einer weiteren Quantifizierungsmethode war die Analyse der internen 

Thiacloprid-Belastung bei einer Probengröße von nur 5 Mückenlarven mit einer 

Nachweisgrenze von 12 ng/g möglich. Um den Einfluss der Sorption von Pestiziden an 

Nanopartikel auf Aufnahme und Metabolismus zu untersuchen, wurden mit der entwickelten 

Methode zudem Larven aus Mortalitätsstudien bei Exposition mit dem Neonikotinoid 

Thiacloprid und Nanopartikeln analysiert. In der chemischen Analyse wurden vergleichbare 

Thiacloprid-Konzentrationen unabhängig von der Nanopartikel Konzentration gemessen. In 

ähnlicher Weise wurden Pilzmyzel-Proben aus Expositionsstudien mit dem Fungizid 

Propiconazol und Nanopartikeln untersucht. Die Methode ermöglichte die gleichzeitige 

Extraktion des Fungizides Propiconazol und drei seiner Metabolite. Die Analyse der Myzel-

Proben aus Wachstumshemmstudien zeigte eine deutliche Spezies Abhängigkeit der 

Aufnahme und Metabolisierung des Fungizids in Flüssigkultur. Bei durch Sorption an 

Nanopartikel reduzierten Expositionskonzentrationen wurde eine Änderung der 

Metabolitkonzentration und -zusammensetzung in Flüssigkultur-Medium und 

Pilzmyzelextrakten nachgewiesen, sowie eine reduzierte Aufnahme des Fungizides in 

Experimenten mit Nanopartikeln auf Agarplatten.  
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1  INTRODUCTION 

We use a growing number of chemicals in our day to day life, such as household chemicals, 

pharmaceuticals or pesticides in agriculture. The environmental fate and (eco)toxicological 

relevance of these chemicals is an issue of growing concern. Partially, these chemicals enter 

surface water directly for example via spray drift during pesticide application or they are 

discharged from wastewater treatment plant effluents. Many pharmaceuticals or chemicals 

used in personal care products are detected in treated wastewater, if they are not entirely 

removed.  

Once they have entered surface waters the environmental fate and behavior of these 

chemicals depends on their physicochemical properties. Compounds might sorb to 

sediments or be transformed by abiotic processes like photo transformation and hydrolysis 

or by biotic processes. Aquatic organisms are exposed to chemicals present in the water 

directly via the surrounding water and sediments and possibly indirectly via ingestion of 

particles carrying sorbed chemicals. Incorporated compounds can be excreted, metabolized, 

accumulated and may negatively affect these organisms. To assess the risk of contaminants 

knowing their environmental fate is essential. Therefore, sensitive analytical methods are 

required to detect and quantify environmental contaminants and metabolites at low 

concentrations in surface waters and in biota. 

On the one hand the bioavailability of chemicals can be reduced upon sorption of chemicals 

to sediments or particulate matter in surface waters e.g. by having sediments acting as a 

sink. On the other, hand sediments may act as a source by desorption of chemicals. 

Therefore, different effects have to be accounted for in assessment of the effects of the 

presence of particles: a) strong sorption could lower the bioavailability resulting in reduced 

toxic effects b) altered exposure conditions by particle bound transport into organisms may 

result in enhanced or reduced toxic effects, c) reduced transformation rates due to strong 

sorption may lead to a long-term exposure when desorption is slow. To evaluate these 

effects at environmentally realistic conditions, exposure experiments using the combination 

of particles and chemicals have to be conducted. The first part this thesis focuses on the 

development and application of methods for pollutant extraction from biota and quantification 

of contaminant residues. The developed extraction and quantification methods were applied 

to fungi, midges and midge larvae samples from laboratory exposure studies to combine 

knowledge on biological effects with internal concentrations as well as effects of 

nanoparticles on the bioavailability and transformation of pollutants. In the second part of this 

thesis, the development of separation and preconcentration techniques for ionic or ionizable 

analytes was investigated. These techniques are intended to especially concentrate and 

analyze ionic compounds, a group of contaminants increasingly gaining more attention. For 

a better understanding of their environmental relevance, new analytical techniques are 

required for this group of analytes.  

1.1 ANALYSIS OF ENVIRONMENTAL CONTAMINANTS IN BIOTA  

Organisms in the aquatic environment are exposed to micropollutants present in the water 

for their whole life and incorporate chemicals to a certain extent. Accordingly, organisms can 

be used as bioindicators. Although chemicals might occur at concentrations below the limit 

of detection in water, they potentially accumulate in organisms and may be detectable. 

Therefore, analysis of biota might help to identify compounds of concern and predict their 

environmental fate. Challenges in environmental biota analysis are limited sample amounts 
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available and large numbers of samples to be extracted. To meet these challenges fast, 

straightforward and cheap extraction techniques are required, which cover a broad range of 

physicochemical properties of analytes. Especially, the extraction of metabolites, which are 

often more polar than the parent compound 1 together with the development of multi-

component methods comprising a broad range of physicochemical properties of analytes are 

challenging. The analysis of trace concentrations of analytes incorporated in biota is 

challenging even with sensitive methods due to high matrix load. Analysis by liquid 

chromatography coupled to mass spectrometry allows to separate and detect various 

analytes comprising a broad range of physicochemical properties in the ng/g range, 

however, sample preparation steps are still required to reduce matrix effects.  

An extraction method which caused increasing attention in the last years is QuEChERS 

(Quick Easy Cheap Rugged and Safe) extraction procedure 2. Originally invented for food 

analysis this procedure has spread to environmental analysis recently. The extraction 

method is based on a liquid-liquid extraction between water and acetonitrile phases, often 

followed by a dispersive solid phase extraction (dSPE) cleanup step. In the first chapter of 

this thesis, latest developments concerning applications of the QuEChERS extraction 

technique for pollutant analysis in biota were reviewed (Chapter 2). This first includes a 

summary on analytical aspects such as modifications of the original extraction procedure for 

contaminant analysis in biota are addressed and compared regarding the requirements of 

analytes (e.g. acid or base sensitive compounds and acidic analytes) and the removal of 

matrix components (e.g. extraction of organisms rich in lipid. In addition, examples of 

applications for the developed methods in environmental analysis are summarized. 

Based on the QuEChERS extraction protocol and LC-MS analysis, quantification methods 

were developed for extraction of thiacloprid from midge larvae (Chapter 4), propiconazole 

and its metabolites from fungi mycelium (Chapter 5) and carbamazepine from midges and 

midge larvae (Chapter 3). For quantification of trace amounts of these contaminants 

incorporated by the organisms, different homogenization techniques and cleanup 

procedures were required and optimized depending on the matrix and the physicochemical 

properties of the analytes. 

1.2 ECOTOXICOLOGICAL EFFECTS 

1.2.1 Correlation of internal concentration and exposure concentrations  

Aquatic organisms are exposed to various contaminants, e.g. pharmaceuticals originating 

from wastewater treatment plants or pesticides. These contaminants are often present at low 

aqueous concentrations where no biological effects may be expected. However, these 

contaminants might still be incorporated and accumulate in aquatic organisms. Incorporated 

concentrations of compounds may not always be directly linked to exposure concentrations, 

especially in case of bioaccumulating contaminants. Many organisms have aquatic larval 

stages and terrestrial living adult organisms, e.g. midges. Therefore, the question of transfer 

of these contaminants from larval to adult stages and thus from aquatic to terrestrial systems 

arises. Both are an important source of prey for insectivorous predators in the aquatic and 

terrestrial environment 3 and uptake of contaminants via prey is a relevant exposure route for 

predators 4. Thus, they might act as a vector for bioaccumulating contaminants to terrestrial 

ecosystems. This transfer route has been observed for PCBs 5 and metals 6. To address the 

question of midge larvae as possible vectors for pharmaceutical contaminations, the internal 

carbamazepine concentration in midge larvae and midges hedged from these larvae, which 

were exposed for 28 days, were determined (Chapter 3).  
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The pharmaceutical carbamazepine is used as an anticonvulsant. Due to its low degradation 

rate in wastewater treatment plants by less than 10 % it is used as a marker for wastewater 
7. Biological effects of carbamazepine on midge larvae at environmentally relevant 

concentrations were observed 8-9. The method development of a modified QuEChERS 

extraction procedure and results of the analysis are presented in Section 5 in this thesis. To 

the best of my knowledge, this is the first time that the transfer of a pharmaceutical from 

larvae to midges was investigated. 

In some cases internal concentrations are linked to biological effects more closely than the 

exposure concentration 10-11. To investigate if the biological endpoint mortality of the non-

target organism Chironomus riparius correlates with the internal concentration of the 

neonicotinoid thiacloprid larvae originating from exposure experiments were analyzed. The 

results and method development are shown in Section 2. Thiacloprid is an insecticide 

belonging to the group of neonicotinoids, which are applied due to their activity against 

insects and low toxicity for mammals 12. Still, the EFSA advised to restrict the application of 

three compounds of this compound group, namely imidacloprid, thiametoxam and 

clothianidin in the EU, due to evidence of bee death caused by these compounds. For 

determination of the internal concentration in larvae, a modified QuEChERS extraction 

procedure was developed to analyze thiacloprid in 20 mg larvae, which were exposed in a 

96 h mortality study.  

In the environment not only acute effects are critical but also more sensitive long term effects 

on growth, reproductive and metabolic activity of organisms have to be considered. Fungi 

play an essential role in carbon and nitrogen cycles in soil ecosystems by degradation or 

modification of lignin and lignocellulose in forest soils 13. Some fungi are able to degrade 

certain organic pollutants next to natural molecules 14. They can then be used for soil 

remediation 14. To cover uptake and possible transformation processes, a quantification 

method for propiconazole and three of its metabolites in mycelium was developed and 

applied to mycelium samples from growth inhibition experiments. The fungicide 

propiconazole was expected to reduce the growth rate of fungi mycelium by inhibition of 

natural lanosterol synthesis 15-16. Therefore, a method to determine pesticide concentrations 

in agar plates, used as growth medium, was developed (Chapter 5). Comparison of internal 

concentrations in fungi grown on agar plates and in liquid culture enables to assess the 

impact of growth conditions on the uptake and transformation rate. 

1.2.2 Effects of nanoparticles on pesticide bioavailability and transformation 

Pesticides present in surface waters may interact with naturally born nanoparticles. 

Bioavailability of sediment bound contaminants is an issue of high importance with regard to 

long-term exposure or formation of contaminant sinks. Especially lipophilic contaminants 

tend to sorb to sediments, so that different exposure routes have to be taken into account to 

assess their ecotoxicological relevance. Benthic living organisms are exposed to 

contaminants via the water phase and the sediment 17. Especially filter feeding organisms as 

midge larvae are exposed to sediment-bound particles via ingestion of these particles with 

their food and their pertubating activity 4, 17-18. This might lead to altered physicochemical 

conditions in the gut of these organism which might change sorption/desorption equilibria. 

Nanoparticles are a special case of particles. Their large surface displaying a large reactive 

area 19 leads to higher sorption capacities of nanoparticles compared to larger particles. 

Nanoparticles may serve as sources or sinks of sorbed organic compounds including 

pollutants. Different effects of sorption to particles on the bioavailability were observed (1) 

enhanced bioavailability by carrier effects 20, (2) reduced bioavailability by strong sorption 17 

and (3) reduced transformation rates. 
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To assess the effect of nanoparticles on the bioavailability of the neonicotinoid thiacloprid to 

midge larvae, the internal concentration in larvae exposed to the combination of both was 

determined. The analyzed larvae originated from exposure experiments with different kinds 

of nanoparticles (aluminum oxide and zeolite nanoparticles) and different thiacloprid 

concentrations. Approximately 5 larvae were available for extraction and analysis of 

thiacloprid residues with HPLC-QTOF-MS. Analysis of pollutants in midge larvae is 

challenging due to the small sample amounts available and only one paper, to my 

knowledge, analyzed contaminants in small numbers of midge larvae by nano-HPLC-MS/MS 
21. In this thesis, analysis was performed with HPLC-QTOF-MS in only 20 mg larvae 

homogenate (ca. 5 organisms). 

Sorption to nanoparticles could alter the ability of organism to metabolize xenobiotics due to 

reduced bioavailability of the contaminants. A weak long-term exposure may result. This 

long-term release from sorbed compounds was observed in case of metal ions 22. To assess 

effects of nanoparticles on the bioavailability and metabolic degradation of the pesticide 

propiconazole the internal concentration of propiconazole and three of its metabolites in 

fungi mycelium was analyzed with an optimized extraction procedure. Mycelium from three 

fungi species Amanita muscaria, Cenococcum geophilum and Laccaria bicolor was analyzed 

with a modified QuEChERS extraction procedure (Chapter 5). The fungi samples originated 

from growth inhibition experiments with the fungicide propiconazole and York-shell 

nanoparticles under different growing conditions.  

1.3 APPLICATION OF ELECTROMIGRATIVE TECHNIQUES FOR CONCENTRATION 

OF IONIC AND IONIZABLE CONTAMINANTS 

The second part of the thesis, focuses on the investigation of electromigrative techniques for 

preconcentration and separation of ionic or ionizable compounds in water analysis. Low 

concentrations of chemicals present in surface waters make their analysis challenging, even 

for analysis with sensitive detection methods like mass spectrometry 23. Therefore, 

enrichment techniques are required to concentrate analytes and remove possibly impairing 

matrix components from environmental samples prior to separation and analysis. A common 

concentration technique for water samples is solid phase extraction combined with liquid 

chromatography for separation. However, especially ionic analytes are difficult to separate 

by liquid chromatography 24. An alternative approach for fractionation of ionic analytes by 

electromigrative techniques is presented in Chapter 6 of this thesis: Two different modes of 

free flow electrophoresis (free flow isotachophoresis and free flow interval zone 

electrophoresis) were applied to wastewater and surface water samples. This method, 

commonly applied for biomolecule separation, separates ionic or ionizable compounds in an 

electric field based on the differences in their electrophoretic mobility 25. Continuous 

fractionation of water samples would enable to simultaneously concentrate analytes in 

smaller volumes and obtain fractions and, thus, reduce sample complexity by separation of 

interfering analytes. Therefore, fractionation would lead to higher quantitative precision. To 

assess the applicability of these electromigrative techniques for fractionation of 

micropollutants in wastewater samples, fractionated and raw water samples were analyzed 

with a multi-component HPLC-QTOF-MS method. The method was developed to identify 92 

chemicals relevant in water samples due to input from wastewater treatment plants.  

In a second approach, a methodology based on long term electrokinetic sample injection 

was applied to preconcentrate ionic analytes. Electrokinetic sample injection is used for 

injection of ionic or ionizable compounds into capillaries. The transfer of solely charged 
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analytes at a specific pH value from a sampling to an analysis vessel would simultaneously 

remove non-charged compounds and those being oppositely charged, which remain in the 

sampling vessel, and preconcentrate the analytes of interest if different volumes are applied 

in inlet and outlet vials. An advantage of this electromigrative methodology is that only 

electrolytes are required as buffers and thus, by avoidance of organic solvents, this method 

is environmentally friendly. For electrokinetic sample injection, the migration behavior of 

analytes depends on the effective electric field strength which is determined by electrode 

geometry 26. It can be optimized to ideally cover the sample volume in the inlet vial 

completely. To investigate the influence of pH, temperature, electrode geometry and 

convection on the electromigration behavior, a mixture of 19 analytes was tested in different 

experimental setups to improve analyte transfer in a proof-of-concept study, presented in 

Chapter 7.  
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2 QUECHERS EXTRACTION IN ECOTOXICOLOGY: ANALYTICAL 

PROCEDURE AND APPLICATIONS TO BIOTA - A REVIEW 

2.1 ABSTRACT 

Emerging pollutants are a topic of growing concern. To evaluate associated risks of 

chemicals in the environment the knowledge about the chemicals’ uptake in biota is crucial 

to predict effects and their environmental behavior. Classical extraction procedures such as 

solid phase extraction, mostly developed for target analysis, have several drawbacks such 

as costs and limited analyte coverage. A multi-residue extraction procedure originally 

developed for pesticide analysis in food is the QuEChERS extraction (Quick, Easy, Cheap, 

Effective, Rugged and Safe). Its low solvent consumption, the fast and easy sample 

preparation, the good matrix removal and the broad polarity spectrum of extractable analytes 

make it interesting for environmental analysis. In recent years it has been applied with 

different objectives in environmental analysis. For its use in ecotoxicology, several 

methodological adaptions such as miniaturization and extraction conditions were necessary 

and will be described in this review. However, most of the 33 publications included in this 

review concerning QuEChERS in environmentally relevant biota samples (including edible 

fish and mussels), focus on applications. These include investigating contaminant burden in 

biota from environmental samples to use organisms as bioindicators and assess the 

pollution of aquatic and terrestrial environments. In laboratory experiments, it was used to 

investigate the metabolism of pharmaceuticals and pesticides in organisms. In most 

publications, pesticides are investigated, but the focus currently widens to analysis of 

pharmaceuticals, wastewater chemicals and their metabolites. This review focuses on 

publications concerning examples of QuEChERS extraction for analysis of the body burden 

of chemicals in biota and metabolite studies especially method developments and 

adjustments to different organisms. Specifically extraction conditions of different papers are 

summarized with regard to certain requirements of biota and analytes for extraction and 

cleanup steps. 

2.2 INTRODUCTION  

To evaluate the associated risk of an increasing number of diverse chemicals present in the 

environment, among them pesticides, pharmaceuticals and chemicals from personal care 

products, new and optimized analytical methods, especially multi-residue methods covering 

many micropollutants and their metabolites are required. Analysis of pollutants in water, 

sediment, soil and biota is essential to assess the environmental behavior of chemicals used 

in our day to day life. To analyze high numbers of samples of different origins fast, cheap 

and straightforward extraction procedures for higher throughput are required. Since the first 

publication of QuEChERS extraction procedure in 2003 by Anastassiades this extraction 

method was increasingly applied in food analysis and quickly found its way also to 

environmental analysis 2. QuEChERS extraction is an alternative to pressurized liquid 

extraction (PLE) and Soxhlet-extraction. A variety of kits containing mixtures of different salts 

and dSPE materials are now commercially available for food analysis and will facilitate 

automation and repeatability. The application of this method to the environmental matrices 

water, sediment and soil for analysis of pesticides and organic residues was reviewed by 

Bruzzoniti et al. in 2014 27. The review herein summarizes examples of organic pollutants 
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extraction from biota by QuEChERS extraction with particular focus on different 

modifications of the extraction conditions required by matrix and analyte properties. The first 

part focuses on the extraction conditions and the second part of this review focuses on 

applications of the extraction procedure to environmental samples.     

2.2.1 Ecotoxicological interest 

Organisms are exposed to chemicals via active uptake by food and passive uptake from the 

surrounding medium for example water or soil. Aquatic living organisms tend to accumulate 

pollutants present in water and sediment, therefore they can be used as bioindicators for 

pollutant burden of the ecosystem 28. The analysis of biota samples exposed in the 

environment and analysis of water provides the possibility to assess the bioaccumulation 

and biotransformation potential of chemicals. Lipophilic compounds might occur in low 

concentrations in the environment but due to their eventually high bioaccumulation potential 

they might become enriched in biota even when water concentrations are lower than the limit 

of detection. In addition, biota analysis provides a mid- to long-term information on 

micropollutants compared to analysis of stream water.  

Growing consumption of pesticides and their direct input from fields and of pharmaceuticals 

(both human and stock farming) with direct input or input due to insufficient removal rates of 

these compounds in wastewater treatment plants increases the complexity of the 

micropollutant mixture and effects. To identify the compounds of relevance from the 

thousands of chemicals present in the environment analysis of biota might be a useful tool, 

especially, because pharmaceuticals and insecticides are designed for uptake by organisms. 

To predict the environmental fate of chemicals, their quantification is required at different 

ecotoxicological levels: in sediment, water and biota, in soil and soil living organisms or at 

higher trophic levels in animals and their prey. To analyze large numbers of samples a fast 

and cheap methodology is required to obtain enough data to reach reliable predictions for 

risk assessment for effects on ecosystems.  

2.2.2 Classical methods 

Common extraction procedures in environmental analysis for quantification of pesticide and 

pharmaceutical residues in biota are liquid-liquid extraction (LLE) with different organic 

solvents, Soxhlet-extraction, sonication-assisted extraction, supercritical fluid extraction, 

microwave-assisted extraction (MAE), pressurized liquid extraction (PLE), pulverized liquid 

extraction or matrix solid phase dispersion 29-32. Their applications for analysis of persistent 

organic pollutants in biota were reviewed by Fidalgo-Used 29. Most of them require additional 

cleanup by liquid adsorption chromatography, gel-permeation chromatography or solid-

phase micro-extraction 29. Applications of pesticide analysis in biota mostly by LLE followed 

by SPE were reviewed by Andreu 33.  

2.2.3 QuEChERS extraction procedure  

Recently QuEChERS extraction procedure initially applied in food analysis has been 

increasingly used in environmental analysis. Its use for sediments and soil analysis was 

reviewed covering the years 2010 - 2014 34. The extraction procedure was initially developed 

for pesticide analysis. Therefore, many publication still focus on pesticides and their 

metabolites. As pharmaceuticals are often in a similar polarity range like pesticides, the 

extraction procedure has also been applied for the analysis of pharmaceuticals and 

wastewater chemicals in different organisms. Publications using QuEChERS procedure for 
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extraction of contaminants from biota from field samples or laboratory experiments are 

summarized in Table 2.  

The extraction procedure is based on a single phase LLE between two miscible solvents, 

water and acetonitrile. In the publication by Anastassiades et al. phase separation was 

induced by addition of sodium chloride and anhydrous magnesium sulfate 2. The conditions 

relate to a miscibility gap between water and acetonitrile at these salting out conditions. Its 

applicability for a wide range of analyte polarities 2 stems from the ratios of acetonitrile to 

water or water to acetonitrile in the two phases, which can be influenced by the amount of 

salt added: Saturation of the water phase with (inorganic) salts reduces the acetonitrile 

content in the water phase and decreases the water content in the acetonitrile phase which 

leads to higher recoveries of polar analytes 2. Therefore, multi-residue extraction is possible 
2. This advantage is especially useful for screening methods comprising 100 - 200 

compounds 35-38. The extract is cleaned and simultaneously residual water is removed in a 

dispersive solid phase extraction (dSPE) step by addition of anhydrous magnesium sulfate 

and a sorbent. During this step co-extracted matrix components are removed by mixing the 

acetonitrile phase with the appropriate sorbent. According to the requirements of the 

separation and detection methods, the extract can be analyzed in acetonitrile or the solvent 

changed to a more suitable one e.g. methanol or ethyl acetate in HPLC or GC separation. 

The method was originally developed for pesticide analysis in food and comprised 10 g 

sample extracted with 10 mL acetonitrile and the natural water content of 80 - 95 % for most 

vegetables or fruits was used as water phase 2. For analysis of organic contaminants in 

environmental samples modifications of this procedure are required, mainly to enable 

extracting small sample amounts in the mg range or even single individuals such as 

gammarids or bees. Often, freeze dried samples or samples with low water content are in 

the focus of the work. In the following, different homogenization techniques, the use of 

additional non-polar extraction solvents, substitution of sodium chloride by acetate or citrate 

buffered conditions (for higher stability and recovery of labile metabolites and pesticides) and 

different dSPE materials are compared with respect to the extracted analyte and biota 

characteristics.    

2.3 ANALYTICAL CONSIDERATIONS FOR SAMPLE PREPARATION 

In food analysis the use of multi-component methods like LLE and subsequent SPE cleanup 

prior to the analysis is common 39. Different sorbents used in dSPE and SPE cleanup are 

discussed in Section 2.3.5. Advantages and disadvantages of different extraction procedures 

in comparison to QuEChERS are summarized in Section 2.3.2 30-31, 40. Table 1gives an 

overview on extraction and cleanup conditions used for QuEChERS. Details on 

homogenization, extraction conditions, extraction solvents, matrix removal and the 

implementation of a dSPE step are discussed below.  

Table 1: QuEChERS extraction conditions and cleanup procedures applied for extraction of pharmaceuticals, 
pesticides and wastewater chemicals from biota samples. 

compound QuEChERS extraction cleanup  

46 compounds 70 µL water, 70 µL MeCN none 
41

 

PCBs 10 mL water, 10 mL MeCN 
freeze out,  
dSPE (PSA, C18) 

42
 

boscalid and 
metabolites 

3 mL water, 3 mL heptane, 10 mL 
MeCN/triethylamine 2 %,  
citrate buffer 

freeze out,  
dSPE (C18, PSA) 

43
 

organophosphorus 15 mL MeCN, 12 mL water, freeze out,  
44
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compound QuEChERS extraction cleanup  

insecticides 1 % glacial acetic acid SPE C18 cartridges 

35 emerging pollutants 
0.5 mL water, 0.5 mL MeCN,  
0.2 mL hexane, citrate buffer 

hexane 
21

 

diclofenac and 
metabolites 

5 mL water, 10 mL MeCN, 0.2 mL 
heptane acetate buffer 

heptane 
45

 

hormones 
pharmaceuticals 

10 mL MeCN, 6 mL water,  
3 mL hexane, acetate buffer 

hexane 
dSPE (PSA and C18) 

46
 

fluoxetine, 
carbamazepine 

0.25 mL MeCN, 0.1 mL water,  
0.15 mL hexane, citrate buffer 

hexane 
dSPE (C18, PSA) 

47
 

diclofenac and 
metabolites 

5 mL water, 10 mL MeCN,  
0.2 mL heptane, citrate buffer 

heptane 
48

 

UV filters, musk 
fragrances 

10 mL water, 10 mL MeCN,  
citrate buffer 

heptane, FA 
dSPE (Zsep+, PSA, C18, ) 

49
 

19 pesticides 
10 mL MeCN, 10 mL water,  
3 mL hexane 

hexane,  
dSPE (PSA) 

50
 

VMS 1 mL MeCN 0.4 mL pentane 
28

 

80 pesticides 
10 mL MeCN, 3 mL water,  
3 mL hexane 

hexane 
dSPE (PSA/C18) 

51
 

13 pesticides 5 mL water, 5 mL MeCN 
DMSO, ethyl acetate/ 
cyclohexane, DMF 

52
 

19 neonicotinoids and 
fungicides 

0.4 mL water, 0.5 mL MeCN 
dSPE (PSA, C18, GCB) 
150 µL MeCN/toluene 

53
 

UV-filter 5 mL water, 10 mL MeCN DLLME 
54

 

oxazepam, 
carbamazepine, 
testosterone 

0.5 mL MeCN, 0.5 mL water,  
citrate buffer 

dSPE (PSA, C18) 
55

 

carbamazepine, 
oxcarbazepine 

10 mL water, 10 mL MeCN, 
citrate buffer 

dSPE (PSA, C18, FA) 
31

 

40 pesticides 
8 mL water, 14 mL MeCN,  
1 % FA, citrate buffer 

dSPE (C18, activated 
charcoal) 

56
 

52 pesticides 7.5 mL water, 10 mL MeCN dSPE (C18 + PSA) 
57

 

pesticides, 
pharmaceuticals, 
wastewater chemicals 

2 mL water, 2 mL MeCN,  
1 mL hexane 

dSPE (C18) 
40

 

halogenated  
pesticides pyrethroids 
and azole-fungicides 

1.25 mL MeCN, 1.25 mL water/salt 
solution 

dSPE (C18 + PSA ,  
C18 + PSA + GCB ) 

58
 

diclofenac 
3.5 mL water, 3.5 mL MeCN, 
10 % FA 

dSPE (Z-Sep) 
59

 

9 pesticides 1 mL ethyl acetate dSPE (PSA) 
60

 

16 PAHs 10 mL MeCN dSPE (PSA) 
61

 

neonicotinoids 
1.5 mL MeCN 1 mL water 
acetic acid + citrate buffer,  

dSPE (PSA, C-18) 
62

 

54 pesticides 
1 mL water, 5 mL ethyl acetate 
2 % FA 

 dSPE (C18) 
63

 

26 endocrine 
disrupting chemicals 

2 mL water, 20 mL MeCN SPE (C18, cartridges) 
64

 

200 pesticides and 
metabolites 

10 mL water, 10 mL MeCN 
1 % acetic acid 

dSPE (PSA + Z-Sep+) 
35

 

207 analytes 10 mL MeCN dSPE (Z-Sep) 
36

 

150 pesticides 10 mL MeCN, 5 mL water  dSPE (PSA, C18, GCB) 
37

 

121 pesticides 27 mL MeCN dSPE (PSA, C18) 
38

 

MeCN: acetonitrile, PSA: primary secondary amines, GCB: graphiticed carbon black, FA: formic 
acid, SPE: solid phase extraction, dSPE: dispersive solid phase extraction, PAH: polycyclic 
aromatic hydrocarbons, PCB: polychlorinated biphenyls, VMS: volatile methyl siloxanes, DLLME: 
dispersed liquid-liquid micro extraction  
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2.3.1 Homogenization techniques and sample amounts 

Typical sample sizes in environmental analysis are small compared to food analysis. In order 

to quantify the internal concentration in e.g. insect larvae miniaturization of the classical 

QuEChERS approaches from food analysis is necessary. Therefore, different 

homogenization techniques than chopping, as typically used for vegetables, were applied 

especially for analysis of single individuals of the species of interest. Homogenization has 

two impacts on the extraction procedure: (1) good homogenization and disintegration allow 

more effective and faster extraction of the analyte and thus higher recoveries. (2) However, 

often also increased co-extraction of matrix components may occur, possibly impairing the 

signal-intensity during HPLC-MS measurement 39. Therefore, the applied homogenization 

techniques have to meet the requirements given by the matrix and by the stability of analyte 

binding. From the experience in laboratory, the most critical factor in selection of the 

homogenization technique is the sample amount available for analysis. For fish, samples 

aliquots in the g scale are available and a simple meat grinder was used to homogenize 

freeze-dried samples 30. For samples available in smaller sizes from 0.8 to 5 g blending was 

used for homogenization of frozen matrices without prior freeze-drying for bees 37, 51, 

gammarids 40, fish 52 and mussels 61. 

Freeze drying is a common procedure used before homogenization for samples available in 

g scale e.g. mussels 31, 45, 48-49, 54, 59, fish 30, 56, or bees 50. In freeze-dried samples the water 

content was removed, which is in contrast to classical QuEChERS, where the native water 

content of e.g. vegetables is present for the formation of two phases. Therefore, for freeze-

dried samples, addition of water as second phase during extraction is mandatory and in 

some cases water was added earlier in the sample preparation protocol to rehydrate the 

dried samples and enhance extraction efficiency 31. 

A grinder was used for samples including e.g. 10 fish embryos or 20 daphnids or up to 5 g 

bees. Different kinds of beads for grinding were used: stainless steel beads for boscalid 

extraction from bees 43 or pharmaceuticals from single gammarids 55 and glass beads for fish 

embryos 41. For the extraction of daphnids, beads were not further specified 58 .  

In cases where only smaller sample amounts are available mortar and pestle applied after 

immersing the sample in liquid nitrogen were used to homogenize single snails 47, single 

bumble bees 53 or honey bees 35. This method was also used in our laboratory to 

homogenize midge larvae and midges, but a grinder usable in Eppendorf tubes was used to 

reduce tissue loss during homogenate transfer. For temperature insensitive analytes 

homogenization with mortar and pestle of dried samples is an opportunity for example used 

in pesticide extraction from arthropods 60 and for fungi mycelium in our laboratory. Haroune 

et al. observed higher background noise due to higher contents of co-extracted matrix 

components from insect boluses and thus homogenized frozen samples without liquid 

nitrogen 63. 

Homogenization with ultrasonic or blending devices allows to simultaneously combine 

homogenization and extraction in the same step. This was more closely investigated by 

comparison of the extraction efficiency for contaminants in fish obtained when using a pulse 

vortexer, a vibration shaker or a blender 36. Sapozhnikova et al. observed, that 1 min 

extraction time in the blender was sufficient to obtain reproducible extraction rates, whereas 

10 min were necessary in case of the vibration shaker 36.  

Ultrasonic homogenization was used in one publication to extract neonicotinoids from eagle 

owl blood 62. In this publication blood was extracted, whereas in the other publications 
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discussed in this review, whole organisms were extracted resulting in different challenges for 

sample preparation.   

2.3.2 Comparison of extraction procedures 

Extraction procedures have different impacts on the performance of the following analytical 

methods (e.g. LC or GC-MS). Higher extraction efficiencies for analytes are often 

accompanied by efficient co-extraction of matrix components interfering in MS analysis. In 

some publications, different extraction approaches were compared to find the most suitable 

one (see below). Another critical parameter to be considered is the minimal extraction time 

required to achieve reproducible extraction rates.  

In a comparison of ultrasonic extraction (USE), pressurized liquid extraction (PLE) and 

QuEChERS of pharmaceuticals from fish tissue, highest recoveries and lowest matrix effects 

were observed for PLE, whereas in samples extracted by USE lowest recoveries were 

observed. Recoveries for pharmaceuticals were comparable for PLE and QuEChERS 

extracts 30. Similar observations were made by Bueno et al. for extraction of pharmaceuticals 

from mussels. Comparing QuEChERS and PLE, QuEChERS was advantageous with regard 

to its lower solvent consumption, shorter extraction times and smaller amounts of sample 

that were required for comparable or higher recoveries 31. Equal recoveries were observed in 

comparison of PLE and QuEChERS extraction capabilities for pharmaceuticals from fish 

tissue but less matrix effects and overall higher recoveries were observed by PLE 30.  

Microwave-assisted extraction (MAE) and matrix solid phase dispersion (MSPD) were 

compared to QuEChERS concerning the extraction efficiencies of 54 contaminants from bird 

boluses 63. In this study good recoveries were observed in MSPD extracts only for a small 

number of spiked analytes. For spiked QuEChERS extracts good recoveries for a broad 

range of physicochemical properties of analytes were observed. When the developed 

extraction methods were applied to environmental samples no contaminants were detected 

in QuEChERS extracts of exoskeleton samples, whereas in MAE extracted samples 

contaminants were detected. Therefore, the authors conclude, that MAE is capable of 

extracting analytes bound more tightly to samples, like in this case contaminants bound to 

the exoskeleton of insects 63. 

Wiest et al. compared MSPD, SPE and QuEChERS procedure for extraction of 80 

contaminants with a broad range of physicochemical properties from bees 51. In this study, 

QuEChERS extraction was the only one allowing the extraction of the whole range of 

analytes in a single extraction step. In MSPD extracts poor recoveries were observed for 

most polar compounds and in SPE recovery was strongly depended on the chosen SPE 

material and thus only a part of the analyte polarity range was covered by one extraction 

step 51. 

In comparison of QuEChERS, SPE and solvent extraction with acetone and 

dichloromethane to quantify 52 pesticides in honey bees, the lowest recoveries were 

observed for classical solvent extraction. For SPE and QuEChERS equal recoveries were 

observed 57. Higher recoveries for analytes covering a wide range of physicochemical 

properties from gammarids were observed in QuEChERS extracts compared to SPE by 

Inostroza et al. 40. 

The main advantage of QuEChERS extraction in comparison to other extraction techniques 

is that the simple procedure is less time and solvent consuming and thus more economical, 

especially when analytes of a broad polarity range are of interest and different matrices are 

addressed 57.  
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2.3.3 Extraction solvents 

QuEChERS extraction procedures basically include LLE with two solvents: acetonitrile and 

water. Challenging matrices included those with high lipid content in fish or earthworms or 

waxes in bee samples (see Section 2.3.4). To remove these interfering substances, the 

extraction with acetonitrile and water can be extended by a further un-polar phase, for 

example adding hexane or heptane. This was used for the extraction of earthworm tissue 46 

and gammarids 21, 40 or to remove wax, fatty acids, fatty acid esters and lipids from bee and 

pollen samples 50-51. 

Instead of hexane, the less toxic heptane was used to combine extraction and cleanup in 

one step for the analysis of diclofenac and its transformation products from mussels and fish 

tissue with good results 45, 48. Two extraction steps were required for fish tissue with the first 

extraction step with water/acetonitrile and the second extraction step with ethyl 

acetate/cyclohexane for cleanup and nonpolar pesticide extraction 52. Pentane and 

acetonitrile were used for extraction of volatile methyl siloxanes from animal blood, and in 

this case the pentane phase was analyzed by GC-MS 28. Stöckelhuber et al. used ethyl 

acetate instead of acetonitrile as it is cheaper, less toxic, and higher signal areas were 

achieved for pesticides extracted from arthropods 60. 

Some challenging analytes, for example acidic pesticides or labile compounds, require 

controlled pH conditions during the extraction procedure. To enhance the recovery of 

boscalid and stabilize its metabolites containing an acidic functional group from bee samples 

heptane and triethylamine were added during the extraction process 43.  

For samples of high matrix load, additional cleanup steps may be necessary: Cunha et al. 

added a dispersed liquid-liquid micro extraction (DLLME) step to clean the organic phase 

from QuEChERS extraction and enhance recoveries of UV filters from mussel extracts. For 

this, the acetonitrile phase from QuEChERS extraction was added to a mixture of 

trichloroethylene and water at pH 3 54. An additional extraction step with toluene after dSPE 

with graphitized carbon black (GCB), primary secondary amines (PSA) and C18 allowed to 

elute analytes bound to GCB. The combined extracts were used for analysis which 

enhanced the recovery of planar analytes and maintained the advantage of reduced matrix 

effects due to dSPE of pesticides in bumble bee extracts 53. 

In all extraction procedures, 0.5 - 20 mL of combined solvents were used for extraction, 

except in case of a miniaturized version of the extraction procedure for extraction of 600 µg 

fish embryo samples with only 70 µL water and 70 µL acetonitrile 41. 

2.3.4 Removal of critical matrix components: lipids and waxes  

In QuEChERS extraction the lipid content of analyzed matrix is a critical parameter as 

contents of 1 % lipid already show a significant influence on the extraction results 39. An 

additional hexane phase was shown to remove lipids from QuEChERS extracts, as 

discussed in Section 2.3.3. Also dSPE with C18 or Zsep+ sorbent removes lipids to a certain 

extent. However, freezing out of QuEChERS extracts for 1 - 12 hours, is another simple and 

effective protocol to remove waxes or lipids. This method was applied to clean extracts of 

bees 43 and earthworms 37, 42, 50 for pesticide analysis and for extraction of PCBs from 

earthworms 42. This method has also been used to clean eagle owl blood extracts for 

analysis of neonicotinoids 62.  
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2.3.5 Dispersive solid phase extraction materials 

In this step, different sorbents are added to remove interfering matrix components from the 

extracts. The added sorbent should retain co-extracted matrix components, which otherwise 

impair downstream analytical methods such as GC or LC-MS. Consequently, different 

materials have been applied for different matrices. When using MS for detection, which is 

common given the low concentration in biota, biological co-extracted and co-eluting matrix 

components often impair the ionization process of the analytes in the ion source of the MS 
65. Both signal enhancement or suppression were observed 66. Dilution of samples equally 

dilutes analyte and matrix components. Therefore, less signal-suppression and higher 

analyte signal intensities may occur 67. This was observed for pesticide signals in diluted bee 

extracts 51 comparing different amounts of sample used for extraction. In the range of 0.25 - 

1 g extracted mussel tissue highest recoveries of pharmaceuticals and their transformation 

products were observed in 0.25 g tissue 31. 

Only a few methods were published analyzing the raw extract without further cleanup, e.g. 

for fish embryo extracts, which is a relative simple matrix compared to other organisms like 

bees. Here, the authors wanted to minimalize analyte loss during workup and reproducible 

quantitative results were obtained also for concentrations close to the limits of detection in 

the ng/g range 41. Volatile methyl siloxanes were determined in raw extracts of blood without 

further cleaning steps 28. 

To reduce matrix effects by removal of co-extracted matrix components a dSPE step can be 

implemented. In this step interfering matrix components are removed by transferring the 

acetonitrile phase to a sampling vessel containing the sorbent and dispersing the sorbent in 

the organic solvent. Interfering matrix components eventually bind to the sorbent and can be 

removed. However, it is possible that also analyte is (partially) removed. Therefore, the 

choice of sorbent is essential and has to be optimized with regard to matrix removal and 

prevention of analyte losses. Common dSPE materials often applied in environmental 

analysis are PSA, GCB, aluminum N, Z-sep and Z-sep+ and C18. PSA is used to remove 

high amounts of proteins, organic acids, polar pigments, sugars and fatty acids by interaction 

of acidic functions from compounds and amine functions from PSA in the QuEChERS raw 

extract 35, 48. Z-sep and Z-sep+, zirconium dioxide coated silica sorbents, are especially 

useful for removal of proteins and lipids 35, 68. The interaction of PSA is pH-dependent, as 

compounds are removed by ionic interaction, whereas Zsep and Zsep+ remove compounds 

by hydrophobic interaction independently from the applied pH 35. This was demonstrated, 

when differences in analyte recoveries were observed in PSA removal steps in acetate 

buffered systems compared to citrate buffered systems 35. Aluminum N has similar selectivity 

as PSA and removes matrix components by interaction with H-bonding processes. C18 

selectively retains nonpolar compounds 48 and GCB removes planar compounds like 

pigments or chlorophyll 2, 53. Another sorbent removing polar matrix components is silica 69.  

For most matrices and analytes a single sorbent was sufficient for dSPE (see Table 1). PSA 

was used for analysis of pesticides in bees 50, PAHs in mussels 61 and pesticides in 

arthropods 60. C18 was used for removal of interfering matrix components from extracts of 

insect boluses 63, and C18 cartridges in an SPE step were used to clean bee extracts for 

pesticide analysis 44 or endocrine disruptors from fish 64. Z-sep was used to clean mussel 

extracts to analyze diclofenac 59 and fish extracts to determine pesticide contaminations 36.  

Especially for multi-component analysis the combination of two or more sorbents was 

chosen for sample cleanup. For extraction of pesticides from bees the combination of 

PSA/Z-sep+ was compared to PSA/C18 and PSA/C18/GCB. The removal of lipids and bees 
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wax was more effective by Z-sep+ than by the other tested sorbents but recoveries of 

analytes with acidic functional groups and triazoles were reduced. This effect was overcome 

by combining Z-sep and PSA sorbents in acetate buffered extraction conditions 35. For 

analysis of analytes covering a broad range of polarities the combination of PSA and C18 or 

GCB was often used. In comparison of PSA/GCB and PSA/C18 dSPE of honey bee 

extracts, PSA/GCB retained apolar compounds to a great extent leading to poor recoveries 

and thus, PSA/C18 was chosen for dSPE 51. Higher recoveries were also observed for 

pharmaceuticals extraction from earthworm extracts cleaned by the combination of PSA/C18 

compared to PSA-only cleanup 46. The combination PSA/C18 was used to clean extracts 

from earthworms for analysis of PCBs 42, boscalid and its metabolites in bee extract 43 and 

neonicotinoids from eagle owl blood samples 62. Oxazepam was shown to be completely 

retained by Z-sep 55, whereas the combination of C18/PSA was successful in cleanup of 

gammarid extracts. In comparison of C18/PSA/GCB vs. PSA/C18 (endcapped) dSPE higher 

recoveries from daphnid extracts were observed for azole and pyrethroid insecticides, which 

are molecules with a planar structure 58. The combination of PSA/C18/GCB was used to 

clean bumble bee extracts for pesticide analysis 53 and for the analysis of 150 pesticides in 

bee extracts 37. PSA/C18/activated charcoal was used to clean fish extracts for pesticide 

analysis 56. 

For extraction of pharmaceuticals from mussel tissue addition of formic acid (FA) enhanced 

the recovery of carbamazepine and oxcarbamazepine 31. The same was observed for 

recoveries of UV filter from mussel tissue extracts in C18/PSA + FA cleaned extracts 

compared to extracts without addition of acid 49. 

An alternative to remove lipophilic components is the addition of a hexane phase, as 

demonstrated for example for gammarids, bivalves or honey bee tissue 21, 45, 50, as discussed 

in Section 2.3.3. In case of single invertebrates, higher recoveries were achieved for extracts 

cleaned by hexane compared to extracts cleaned by dSPE with PSA/C18, especially for the 

hydrophobic analytes 21, 47. The combination of hexane during extraction plus dSPE with 

PSA for cleanup enabled the quantification of broad range of contaminants 40. A similar 

cleanup strategy was developed for extracts of fish and mussels: In these sample 

preparation methods, hexane and heptane were used for cleanup of QuEChERS extracts. 

Treatment with PSA was described not to affect the recovery of diclofenac but recoveries of 

its more polar transformation products, whose concentrations were reduced during the dSPE 

step 45, 48. 

2.3.6 Acetate and citrate buffered extractions 

In many cases, the addition of sodium chloride and the use of non-buffered conditions 

revealed sufficient selectivity and recoveries for extraction of various analytes e.g. from 

gammarids 40, daphnids 58, mussels 61  and animal blood 28. However, when a defined pH is 

required to ensure stability of compounds which are prone to hydrolysis or when repeatable 

conditions are envisaged, different buffers can be applied during the extraction process. For 

compounds with neutral species at distinct pH values binding effects to dSPE sorbents e.g. 

PSA are possibly enhanced or suppressed. Selection of a buffered or non-buffered 

extraction procedure depends on both analyte and matrix 21. Instead of sodium chloride two 

buffered systems with acetate or citrate were proposed. Because water and acetonitrile are 

miscible a mixture of salts has to be added to promote phase separation and shift the 

partitioning of analytes into the organic phase and eventually reduce the water content in the 

organic phase. In the initial publication sodium chloride and magnesium sulfate were used 2. 

Substitution of sodium chloride by acetate or citrate buffered systems improved the stability 

of pH-sensitive analytes 47. The method for pesticide analysis in food published by AOAC 
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(Association of Official Agricultural Chemists, belonging to the United States Department of 

Agriculture) used 1 % acetic acid and sodium acetate 70. In the European Norm citrate 

buffers are included 71. In case of polar analytes the addition of acetic acid 35, 44, 62 or formic 

acid 56, 59, 63 sometimes enhanced analyte recoveries.  

Citrate salts were added for extraction of environmental contaminants from bee samples 37, 

51, 57, for boscalid and metabolite extraction from bees 43 and for pharmaceuticals and UV 

filters from mussels 31, 54. Acetate buffer extraction was used for pharmaceutical analysis in 

earthworms 46 or extraction of pesticides from bumble bees 53 and bees 44. The more acidic 

acetate extraction was chosen for extraction of triazole and acidic pesticides from bees. At 

these low pH values most acidic pesticides were neutral and thus not retained by PSA 35. 

The choice of the buffering ion is strongly matrix dependent. Thus, for diclofenac higher 

recoveries for the extraction from bivalves were obtained when acetate instead of citrate was 

added for buffering 45. The opposite was observed for extractions from fish 48, whereas for 

mussels addition of formic acid to acetate buffered conditions revealed increased recoveries 

for diclofenac 59. For extraction of UV filters from mussels non-buffered conditions were 

sufficient 54. Similarly, higher recoveries were observed for acetate buffered extraction of 

neonicotinoids from eagle owl blood compared to citrate buffered extraction 62 and for citrate 

buffered extractions (compared to acetate buffered systems) in the analysis of 

pharmaceuticals in invertebrates and snails 21, 47. 

2.3.7 Analytical methods compatible with QuEChERS extracts 

Common separation and detection methods are LC-MS/MS and for less polar compounds 

GC-MS/MS 39. Mass spectrometry provides the sensitivity, selectivity and matrix tolerance 

required for trace analysis of emerging pollutants in environmental samples. Therefore, 

mass spectrometry was used in all publications discussed in this review except for the 

analysis of pyrethroid insecticides in daphnids which were conducted by electron capture 

detection after GC separation 58, see Table 3: Method validation parameters, LOD, LOQ, 

recovery and concentration in samples extracted with optimized method.. In studies 

comprising a broad range of pesticides of different physicochemical properties the 

QuEChERS extracts were analyzed by both GC and HPLC-MS, for example for 

contaminants and pesticides in bees 38, 51. GC has been used for separation of less polar 

contaminants in case of pesticides in bees 37 or pyrethroid pesticides in daphnids 58. 

Silylation was used for derivatization of UV filter compounds in mussel extracts for GC 

separation 54. 

The application of nano-LC-MS/MS systems enabled the quantification of body-burden in 

single individuals. This was used for analysis of emerging pollutants in snails 21 and 

invertebrates 47 or single gammarids 55. Triple quadrupole methods reduced the background 

noise and thus, enhanced limits of detection. However, sample preparation remains a step 

required in environmental analysis (see Section 2.3.5 and Table 1).  

2.4 APPLICATION 

2.4.1 Environmental monitoring  

QuEChERS was used for environmental monitoring purposes or studies on transformation 

and environmental fate of pesticides and wastewater chemicals in terrestrial and aquatic 

organisms. The analysis of neonicotinoid concentrations in bees and bee products but also 
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in birds was of particular interest also due to discussions and following European decision to 

restrict the use of the neonicotinoids imidacloprid, clothianidin and thiamethoxam 72.  

Pesticides 

QuEChERS has been developed for pesticide analysis in food and is thus designed for a 

specific polarity range common to many pesticides. QuEChERS was used to analyze 

concentrations of pesticides in different fish species sampled along the Jucar river to assess 

the environmental behavior and biological effects of these pesticides 56. Lazartigues et al. 

developed a method to quantify pesticides in fish muscle 73. 

More applications were published concerning pesticide analysis in terrestrial organisms than 

in aquatic organisms. Pesticides applied in vine cultivation were analyzed in insects, spiders 

and snails sampled in vineyards 60. Insect boluses from birds were analyzed for residues of 

54 pesticides but only detected after microwave-assisted extraction (MAE) and not in 

QuEChERS extracts 63. The authors assumed a reduced extraction efficiency of QuEChERS 

extraction compared to MAE. The burden of neonicotinoids in eagle owls, representing a 

species of higher trophic level and a predator of insects, was assessed by blood analysis 

with QuEChERS extraction 62.      

With the bee death being a topic of concern several publications used QuEChERS extraction 

for analysis of pesticides in bees collected after poisoning incidents 35, 37, 50 but also in bee 

products like pollen and honey. In addition, bees were investigated as potential bioindicators 

for contaminant burden 38, 51. E.g. the fungicide boscalid and its metabolites were analyzed in 

honey bees 43. Honey bees, bumble bees, honey and pollen were screened for pesticides 

taking advantage of QuEChERS multi-residue capabilities. Screening methods included 19 

to 200 compounds 35, 37-38, 44, 50, 53, 57. Furthermore, with a method comprising 80 veterinary 

drugs and other environmental contaminants honey bees, honey and pollens were analyzed 
51. 

Wastewater chemicals and pharmaceuticals 

Gammarids originating from the river Danube were analyzed with a method comprising 74 

compounds including wastewater chemicals, pharmaceuticals and pesticides 40. Diclofenac 

and some of its metabolites were analyzed in bivalves 45, 59 and fish 48. Carbamazepine and 

its metabolites are another example of pharmaceuticals analyzed in marine mussels as 

bioindicators 31. Carbamazepine and fluoxetine were analyzed in molluscs exposed in 

laboratory experiments 47. Different extraction techniques were compared for pharmaceutical 

extraction from fish tissue 30. A method for quantification of 26 endocrine disruptors in fish 

was developed and applied to zebra fish samples 64. Emerging pollutants were analyzed in 

marine mussels among them UV filters and musk fragrances 49 and in mussels, clam and 

mullet 54. Zebra fish embryos were exposed to 46 volatile organic compounds and the 

uptake was analyzed 41. 35 emerging pollutants were analyzed in gammarids, chironomids 

and snails exposed downstream of a wastewater treatment plant effluent 21. Volatile methyl 

siloxanes were analyzed in the blood of turtles, cormorants and seals from Canada 28. A 

method including 207 contaminants was developed to analyze them in fish and evaluated 

with regard to different extraction techniques 36. PAHs were analyzed in wild bivalves 61.  

Two publications focused on uptake kinetics: The kinetic of bioconcentration of 

carbamazepine, oxazepam and testosterone was investigated in gammarids 55. Likewise, the 

time-dependence of internal azole and pyrethroid concentration in daphnids was determined 
58. 
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For terrestrial organism only PCBs in earthworms and soil were extracted with QuEChERS 

for spiked samples 42. Earthworms were used for the assessment of the bioaccumulation 

potential of hormones and pharmaceuticals 46. 

2.4.2 Analysis of transformation products  

Transformation products are an issue of growing concern, especially for pharmaceuticals. In 

some cases, transformation products are more active than the parent compound or inactive 

compounds are metabolized to active transformation products 1. Metabolites are mostly 

more polar than their parent compound to enhance their excretion 1. To capture metabolites 

and parent compounds in one extraction step a method is required covering a broad range 

of polarity. QuEChERS extraction has been applied to extract diclofenac together with its 

transformation products from fish and 48 mussel tissue 45 and for extraction of pesticides and 

their metabolites 35 as well as of boscalid and its metabolites from bees 43. 

Table 2: Application of QuEChERS extraction procedure in biota with focus on compounds of interest and 
objective of the studies. 

compound organism method objective 
 

pesticides fish HPLC-MS/MS pesticides in water and fish 
56

 

pesticides fish LC-MS/MS 
13 pesticides in sediment, 
water and fish 

52
 

pesticides 
insects, snails, 
spiders 

GC-MS/MS 
micro-QuEChERS of biota 
sampled in vineyards 

60
 

pesticides boluses  HPLC-MS/MS exposure of insects 
63

 

neonicotinoids eagle owl blood HPLC-TOF 
neonicotinoids in free-
ranging birds 

62
 

fungicides and 
metabolites 

honey bees UHPLC-HRMS fungicides in bees 
43

 

pesticides bees HPLC-MS/MS 
comparison of SPE and 
QuEChERS for bees and 
honey 

57
 

pesticides bees 
HPLC- and 
GC -MS/MS  

method development to 
quantify 200 pesticides and 
metabolites in bees 

35
 

pesticides honey bees HPLC-MS/MS 
internal concentration in 
bees from beekeepers 

50
 

neonicotinoids and 
fungicides 

bumble bees 
UHPLC-
MS/MS 

neonicotinoids in single 
bees  

53
 

organophosphor-
insecticides 

bees HPLC-MS/MS 
insecticides in honey bees 
and pollen 

44
 

pesticides bees 
HPLC- and 
GC-MS/MS  

pesticides in the 
environment 

51
 

pesticides bees GC-MS/MS pesticides in bees 
37

 

pesticides bees  
HPLC- and 
GC -MS/MS 

pesticides and metabolites 
in bees 

38
 

pesticides, waste 
water chemicals, 
pharmaceuticals 

gammarids HPLC-MS/MS bioindicators 
40

 

pharmaceuticals 
and metabolites 

bivalves HPLC-MS/MS 
diclofenac and 
transformation products in 
the environment 

45
 

diclofenac  fish HPLC-MS/MS 
diclofenac in the 
environment 

48
 

diclofenac mussels HPLC-MS/MS mussels as bioindicators 
59

 

pharmaceuticals bivalves HPLC-MS pharmaceuticals in aquatic 
31
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carbamazepine 
and metabolites 

organisms 

pharmaceutic molluscs 
nano-HPLC-
MS/MS 

bioaccumulation 
47

 

endocrine 
disruptors 

fish 
UHPLC-
MS/MS 

water and fish 
64

 

UV filters and 
musk fragrances 

bivalves GC-MS/MS sea pollution and biota 
49

 

UV-filters 
bivalves and 
algae 

GC-MS/MS 
personal care products, 
waste water chemicals in 
biota 

54
 

volatile organic 
compounds 

zebrafish embryo 
LVI-GC-
MS/MS 

exposure 
41

 

pollutants 
gammarids, 
snails and midge 
larvae 

nano-HPLC-
MS/MS 

bioaccumulation in cage 
experiments 

21
 

methyl siloxanes 
seal, turtle, 
cormoran, blood 
plasma 

GC-MS 
internal concentration in 
blood of wild animals  

28
 

PCBs, PAHs und 
pesticides 

fish LPGC-MS/MS 
evaluation of extraction 
parameters 

36
 

PAHs bivalves GC-MS/MS edible bivalves 
61

 

pharmaceuticals fish 
UHPLC-
MS/MS 

comparison of extraction 
techniques 

30
  

PCBs earthworms GC-MS method development 
42

 

micropollutants gammarids 
nano-HPLC-
MS/MS 

kinetic of bioconcentration 
55

 

pesticides daphnids GC-ECD 
uptake and kinetics in 
daphnids 

58
 

pharmaceuticals earthworms HPLC-MS/MS 
bioaccumulation in lab 
experiments 

46
 

HPLC: high performance liquid chromatography, GC: gas chromatography, UHPLC: ultra-
high performance liquid chromatography, TOF: time of flight mass spectrometer, HRMS: 
high resolution mass spectrometry, LVI: large volume injection, ECD: electron capture 
detection, PCB: polychlorinated biphenyl, PAH: polycyclic aromatic hydrocarbons, LPGC: 
low pressure gas chromatography  

2.4.3 Quantification strategies  

Different quantification approaches are common in biota analysis. (1) Matrix-matched 

calibration: in this approach extracts are spiked before extraction and matrix effects 

occurring during detection (mainly ion suppression/enhancing effects for MS detection) are 

considered. (2) Using internal standards with stable isotopes (e.g. deuterated forms of the 

analyte of interest) is advantageous for quantification in complex matrices 74. The deuterated 

internal standard has similar physicochemical properties like the analyte and thus, it 

undergoes the same loss during workup and changes in ionization efficiency as the analyte. 

Care has to be taken that no chromatographic separation between analyte and internal 

standard is reached which is less likely using 13C-labeled compounds. (3) External 

calibration: in this approach a calibration curve for standards in a suitable solvent is recorded 

and matrix effects and recovery are assessed in additional experiments.  

The signal intensity of analytes in the final extract is determined by two different factors: 

recovery and matrix effects. The combination of both gives the signal intensity or absolute 

recovery of an analyte. In Figure 1 analyte signal intensities are shown for a mixture of 13 

compounds in a midge larvae extract. Signal intensities in extracts spiked before extraction 
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are in the range of 10 - 50 % compared to the signal area of analyte in methanol at the same 

concentration. 

 

Figure 1: Signal intensities of analytes in midge larvae extracts spiked before QuEChERS extraction with 10 µg/L 
analyte, compared to signals intensities of analytes of the same concentration in MeOH (herein referred to as 
absolute recoveries). For extraction to 20 mg larvae tissue 10 µL standard mixture (c = 100 µg/L) were added 
and the sample extracted with 0.5 mL acetonitrile and 0.5 mL water. Phase separation was induced by addition of 
25 mg NaCl and 75 mg MgSO4 and for cleanup the acetonitrile phase was transferred to a vial containing 25 mg 
sorbent and 70 mg MgSO4. After evaporation of the solvent the residue was redissolved in 0.5 mL MeOH and 
analyzed by HPLC-MS. For more detailed information see Section 2.    

The signal intensities in extracts spiked before analysis range from 48 - 95 %, compared to 

the signal intensities of analytes in methanol (shown in Figure 2). Thus, the matrix effect can 

be calculated as difference in signal area in matrix compared to signal area in solvent, which 

was 5 - 52 % in the example given in Figure 2.  

 

Figure 2: Signal intensities of analytes spiked to midge larvae extracts after extraction and before analysis. Signal 
intensities in % are calculated compared to analyte signals in MeOH at the same concentration.  

The difference between the absolute recovery (Figure 1) and the matrix effect (Figure 2) is 

the relative recovery (Figure 3) or the loss of compound during extraction. This relative 

recovery shows the highest standard deviation ranging from 16 - 65 %, in the example 
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shown in Figure 3. The combination of analyte loss during extraction and matrix effects 

during analysis may result in an underestimation of body-burden. 

 

Figure 3: Relative recoveries of analytes were calculated as the ratio of signal intensity in extracts spiked before 
extraction to signal intensity in extracts spiked before analysis (Figure 1)/(Figure 2). 

Quantification by internal standards can take into account possible analyte loss during 

workup and signal suppression or enhancement during analysis. Matrix matched calibration 

takes signal suppression during analysis into account but losses during recovery have to be 

determined in additional experiments. Most applications used internal standards e.g. for 

quantification of pesticides in bees and fish 37, 44, 50, 52, pharmaceuticals in snails 47, 

carbamazepine, diclofenac and UV filter in mussels 31, 45, 49, 54, 59, PCBs in earthworms 42 and 

VMS in animal blood 28. 

Matrix-matched calibration was used to correct for matrix effects in pesticide analysis in bee 

extracts 51, for pesticide analysis in fish tissue, where matrix effects were below 20 % 56, for 

analysis of contaminants in gammarids 40 and analysis of pesticides in daphnids 58. Two 

different approaches were made by Kurth et al. to analyze contaminants in fish embryos by 

solvent spike calibration and method-matched calibration 41. For method-matched calibration 

QuEChERS was conducted with spiked solvent but without matrix and solvent spiked 

calibration was performed as external calibration.  

2.4.4 Recoveries and limit of detection 

Recoveries were in the range of 70 - 120 % for most analytes in various matrices, from 

pesticides in fish 50 or bees 53 to pharmaceuticals in earthworms 75 or mussels 31, compare 

Table 3. Low recoveries were observed for base sensitive compounds and hydrophobic 

compounds in honey bee extracts 51. Limits of detection were in the ng/g range for all 

analytes in all publications listed in Table 3.  

Table 3: Method validation parameters, LOD, LOQ, recovery and concentration in samples extracted with 
optimized method. 

organism LOD LOQ 
recovery 
[%] 

sample amount 
measured 
concentration  

honey bees 
   

5 g 0.2 - 36.3 ng/g 
43

 

bees  0.3 - 10 ng/g 34 - 96 5 g  
57
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organism LOD LOQ 
recovery 
[%] 

sample amount 
measured 
concentration  

bees 10 ng/g 1 - 100 ng/g 70 - 120 5 g  
35

 

honey bees 0.95 - 25 ng/g 3.4 - 75 ng/g 70 - 120 1 g 4 - 95 ng/g  
50

 

bumble bees 
0.01 - 
0.96 ng/g 

0.04 - 2.9 ng/g 71 - 102 
1 individual (98 ± 
30 mg) 

14 - 67 ng/g 
53

 

honey bees 0.1 – 24 ng/g 3 – 66 ng/g 60 – 120  5 g 30 – 2419 ng/g 
51

 

bees  10 - 500 ng/g 70 - 120  2 g 10 - 4864 ng/g 
37

 

bees  0.1 - 30 ppb  3 g 2 - 13780 ppb 
38

 

bees  
0.02 - 
10.7 ng/g 

86 - 106 3 g 0.3 - 32.7 ng/g ww 
44

 

boluses  0.1 - 3 ng/g 0.4 - 7 ng/g 49 - 106 0.05 g dw 2 - 404 ng/g 
63

 

eagle owl 
blood 

 2 - 10 ng/mL 68 - 134 500 µL blood 3.28 ng/mL 
62

 

seal, turtle 
cormoran 
blood plasma 

0.01 - 0.035 
ng/g 

0.033 - 
0.116 ng/g 

88 - 99 1 g 0.143 - 7.39 ng/g 
28

 

insects, snails 
and spiders 

0.05 - 0.2 ng/g 0.2 - 1 ng/g 84 - 110 500 mg 1.68 ng/g 
60

 

earthworms < 14 ng/g 1,6 - 40 ng/g 44 - 98 250 mg ww 
43 - 195 ng/g  
 

46
 

earthworms 
 

0.01 - 
0.05 ng/g 

70 - 120 5 g n.d. 
42

 

daphnids 
58 - 
168 ng/g ww 

119 - 
571 ng/g ww 

95 - 111 20 individuals 50-114 ng/g ww 
58

 

zebrafish 
embryo 

1 - 25 ng/g  63 - 133  10 embryos 5 - 175 ng/g 
41

 

invertebrates ng/g ng/g 40 - 98 
1 - 12 individuals, 
12 - 20 mg ww 

105 ng/g  
21

 

gammarids  
0.01 - 
2.16 ng/g ww 

 900 mg 0.1 - 4 ng/g 
40

 

gammarids 0.1 - 2.2 ng/g 0.3 - 4.7 ng/g 0.8 20 mg ww 1-5 ng/g 
55

 

molluscs 
16 - 
127 ng/g 

18 ng/g, 128 
ng/g 

> 85 1 gastropod 1 - 6 µg/g 
47

 

bivalves 
0.1 - 0.3 ng/g 
dw 

0.2- 1 ng/g dw 67 - 110 2 g 3.5 ng/g dw
2
 

31
 

bivalves 
0.5 - 50 ng/g 
dw 

0.5 - 
50 ng/g dw 

91 - 112 2 g 833 - 3992 ng/g dw 
49

 

bivalves and 
algae 

2 - 30 ng/g 5 - 100 ng/g 70 - 110 3.5 g dw n.q. 
54

 

bivalves 0.2 ng/g 0.5 µg/g 69 - 99 0.5 g dw  
59

 

bivalves 
0.01 - 
0.99 µg/L 

0.02 - 
2.99 µg/L 

89 - 112  10 g 52.91 ng/g ww 
61

 

bivalves 1 ng/g 1 ng/g 78 - 117 100 mg  6 ng/g 
45

 

fish 0.01 - 5 ng/g 
0.03 - 
11.25 ng/g 

70 - 100 2 g 0.18 - 518.9 ng/g 
56

 

fish 
0.15-0.6 ng/g 
dw 

0.2-1 ng/g dw 76 - 120 200 mg 0.05 - 4.1 µg/L 
48

 

fish 
   

10 g 
 

36
 

fish 
0.01 - 
9.04 ng/g 

0.01 - 
30.12 ng/g 

69 - 120 5 g 5.7 ng/g 
64

 

 
ww = wet weight, 

 
dw = dry weight 
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2.5 DISADVANTAGES AND LIMITATIONS 

QuEChERS extraction was invented for extraction of pesticides from vegetables and fruits. 

Care has to be taken for the transfer of QuEChERS methodology as analytes may not 

always be present in a free form but bound to bio(macro)molecules which may render 

QuEChERS extraction less effective compared to other extraction procedures. This has 

been shown in extraction of contaminants bound to the exoskeleton of insects, where the 

extraction performance of QuEChERS was less efficient in comparison to microwave-

assisted extraction 63. This binding also changes bioavailability to higher organisms and 

possibilities of internal metabolism.   

The extraction has to be optimized for analysis of new combinations of matrix and analytes. 

This labor intensive method development is a drawback, especially if salts used in dSPE and 

for phase separation are weighed in manually. The necessity of manual weighing in 

extraction protocols, where kits are not commercially available, is a further labor intensive 

step. Strong ion suppression in MS analysis occurring in biota experiments is another 

limitation, especially in case of samples rich in lipid or wax 51. Clearly, the development of 

new dSPE materials opens the way to new fields of application by enhanced of more 

efficient removal of interfering matrix components to overcome these limitations.  

QuEChERS is a LLE between at least two phases (water and acetonitrile) this results in an 

equilibrium partitioning of analytes between these two phases. Especially polar compounds 

tend to stay in the more polar aqueous phase so that recoveries are low. A possibility to 

overcome this limitation in food analysis was to use different extraction protocols, e.g. 

QuPPE (Quick Polar Pesticides Extraction) 76. This extraction protocol uses acidified 

methanol and has been applied e.g. for extraction of paraquat and diquat from stark rich 

food such as grain 77. To the best of our knowledge, applications explicitly addressing the 

QuPPE extraction in environmental analysis have not been published yet.  

2.6 CONCLUSION AND FUTURE PERSPECTIVES 

In this review applications of QuEChERS extraction procedure in environmental analysis 

were summarized. Various modifications were described: the introduction of another organic 

solvent (hexane or heptane) for extraction of lipid or wax rich samples like bees or 

earthworms to remove these interfering components during extraction. Acidic conditions 

were used to enhance the recovery of acidic analytes or compounds sensitive to high pH 

values. The high compatibility of QuEChERS extracts to GC and HPLC and the analysis of 

different solvent phases by different separation techniques make the procedure interesting 

for a broad range of chemicals. Coupling to MS allows to quantify substances in trace 

amounts as required for small samples and low micropollutant uptake. 

The advantage of QuEChERS extraction is that it covers a broad range of polarity of 

analytes. This enables the simultaneous extraction of pharmaceuticals or pesticides and 

their metabolites as shown for diclofenac and boscalid. This feature makes QuEChERS 

extraction an interesting sample preparation technique also for screening methods. The 

extraction procedure has been applied for analysis of contaminants in biota sampled after 

poisoning incidents of bees or to determine the pollution of aquatic environments by analysis 

of invertebrates or fish. This demonstrates the broad applicability of QuEChERS to assess 

the contamination of aquatic and terrestrial environments by analysis of a broad range of 

contaminants and their transformation products in biota. Modifications of solvent volumes 

and homogenization procedures allow to analyze individual organisms e.g. bees or 
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gammarids or small numbers of daphnids and fish embryos. This opens the way to analyze 

small numbers of environmental samples or organism from laboratory experiments but also 

from the field. A review of figures of merit in several publications revealed that the extraction 

method has matured and reached acceptable robustness.  
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3 DETERMINATION OF CARBAMAZEPINE TRANSFER FROM 

EXPOSED MIDGE LARVAE TO ADULT MIDGES BY QUECHERS 

EXTRACTION AND HPLC-MS/MS ANALYSIS  

3.1 ABSTRACT 

In this study, the fate of carbamazepine was investigated during the metamorphosis from 

Chironomus riparius larvae to imagines. The aim of this project was the development of a 

method for the quantification of carbamazepine in midge larvae and midges. The developed 

extraction procedure was based on QuEChERS extraction and analysis performed by 

HPLC-MS/MS. Quantification limit for carbamazepine was 5 µg/L in 10 mg extracted tissue 

corresponding to approximately 3 midges or 2 larvae and a concentration of 12 ng 

carbamazepine per g tissue. Quantification based on deuterated internal standard was 

performed with a recovery of 95 ± 15 %. The developed method was applied to samples 

originating from emergence tests. For the first time, quantification of the internal 

concentration in larvae and midges allowed the investigation of pollutant transfer during the 

pupation process. Results indicate a transfer of 100 % body burden from larvae to midges. 

This shows a potential transfer of aquatic trace contaminants to terrestrial ecosystems due 

to uptake in aquatic larvae.  

3.2 INTRODUCTION 

Pharmaceuticals released into surface water from insufficient removal in wastewater 

treatment plants are of growing concern. These compounds exhibit the risk of uptake and 

bioaccumulation by aquatic invertebrates. Possible bioaccumulation in insect larvae give rise 

to the question of transfer along the food chain in terrestrial environments. A comprehensive 

understanding of this transfer has to include an understanding of pollutant fate during 

metamorphosis of for example aquatic living midge larvae to midges, a potential food source 

for terrestrial organisms. Midges, as well as midge larvae, are an important source of prey 

for birds, fish and other insectivorous predators in the aquatic and terrestrial environment 3. 

Therefore, larvae and midges are of interest with respect to contaminant transfer in food 

webs. Effects of pharmaceuticals and pesticides on insect larvae have been studied, but 

their uptake and the internal concentration has been investigated much less. Especially the 

link between body burden and toxicity is not studied intensively. In this study, the internal 

concentration of the pharmaceutical carbamazepine (CBZ) in midge larvae and the transfer 

to midges was investigated.  

3.2.1 Chironomids and contaminant transfer 

Benthic living chironomid larvae are a dominant species in aquatic sediments 6. The 

nonbiting midge Chironomus riparius is established as a model organism for ecotoxicological 

tests in several OECD guidelines to assess the impact of chemicals on aquatic invertebrates 
78-81. The important role in food webs of midge larvae makes them interesting as a vector for 

contaminant burden. The transport via body burden pollutants from the aquatic to the 

terrestrial environment after emergence by holometabolic insects with aquatic larvae and 

terrestrial imagines, has been investigated for trace metals 6 and PCBs 5. 
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Transfer of polychlorinated biphenyls (PCBs) from midge larvae, which were exposed via 

contaminated sediments, to tree swallows was observed in field studies 82. Metamorphosis 

can affect the contaminant concentration in midges in two ways: by increasing or decreasing 

concentrations. For example, 3-fold higher PCB concentrations were detected in adult 

midges compared to concentrations in larvae 5. The biomass of adult midges is 

approximately one third of the biomass of midges and thus the PCB burden changes, when 

calculated to biomass but not when calculated per individual. For polycyclic aromatic 

hydrocarbons and metals, predominantly lower concentrations (2 to 125-fold) were observed 

in midges compared to the one in larvae 83. The impact of midges to work as vectors from 

aquatic to terrestrial ecosystems has been investigated for different metals in Chironomus 

riparius. Trace metals like zinc, copper and cadmium are known to accumulate in larvae, 

with different fate during metamorphosis. In case of copper, the metal was almost completely 

excreted from larvae over pupae to imagines and in case of zinc, the body-burden was 

decreasing from larvae over pupae to imagines 6. For arsenic similar results were observed 

in laboratory experiments. 72 % of the arsenic burden was excreted between larval and adult 

stages 84.  

For pharmaceuticals in midge larvae very little is known in general, especially with regard to 

metamorphosis. In this study, the uptake and transfer of the antiepileptic drug 

carbamazepine were closely investigated by analysis of larvae and midges, exposed in 

emergence studies, conducted by Katharina Heye at the Department of Aquatic 

Ecotoxicology at the University in Frankfurt.   

3.2.2 The pharmaceutical carbamazepine 

Carbamazepine (CBZ) is used in chronic pain therapy and against epilepsy 85, with an 

estimated consumption of 87 tons in Germany in 1999 86. The anticonvulsant acts by 

modulating Na+ channels 87. In humans, it is metabolized in the liver by cytochrome P450 by 

oxidation processes 85. The main metabolites are the oxidized compound 10,11-dihydro-

10,11-epoxycarbamazepine and its products 10,11-dihydro-10,11-dihydroxycarbamazepine 

from further hydroxylation 88. 29% of carbamazepine orally administered by humans is 

excreted unchanged via feces and urine 86. The removal rate of carbamazepine in sewage 

treatment plants can be as low as or even below 10 % 7 . Low removal rates in wastewater 

treatment plants are a result of carbamazepine’s resistance towards biodegradation and low 

sorption rates to sludge 86. Therefore, carbamazepine enters surface waters usually via 

treated wastewater. The high concentrations in surface waters make it a suitable indicator 

for the presence of municipal sewage contaminations 7. In a monitoring study in Northern 

Germany in surface waters and wastewater treatment plant effluents concentrations of 84 - 

790 ng/L were detected 74. Another monitoring study carried out in Poland revealed 

carbamazepine residues in waste water and drinking water samples 89. Presence in surface 

waters might lead to contamination of aquatic living organisms. An influence of 0.2 – 2 µg/L 

carbamazepine on ecosystems by alteration of organic litter degradation rates was observed 

in mesocosm studies 90. In Indian rivers, a change in species abundance was observed with 

increasing carbamazepine concentrations 91. In gammarids sampled in the UK, 

carbamazepine was detected in streams at low ng/g concentrations 32. 

3.2.3 Effects of carbamazepine in chironomids 

The toxicological impact of carbamazepine was under investigation. Carbamazepine was 

shown to cause effects in growth and mortality tests with C. tenans at environmentally 

relevant concentrations 8. In sediment contact tests with C. dilutus, lower toxicity was 

observed, compared to tests without sediment. This was explained by reduced bioavailable 



Chapter 3 
 

34 
 

concentrations due to sorption to sediment particles 17. An impact on hedging rate of C. 

riparius was observed for increasing exposure concentrations of CBZ 9. 

3.2.4 Quantification of carbamazepine in biota 

Carbamazepine residues and uptake rates were analyzed in different aquatic species. 

Bioconcentration factors were investigated in Gammarus pulex and Notonecta glauca based 

on radioactively labeled experiments 92. For extraction of carbamazepine from fish tissue, 

different approaches were made. For example, pulverized liquid extraction with gel 

permeation chromatography for cleanup and analysis by UHPLC-MS/MS 30 or liquid-liquid 

extraction with hexane and ethyl acetate with subsequent analysis by HPLC-MS/MS 87.  

Quantification of pollutants in chironomid larvae is challenging due to limited biomass 

available for analysis. For investigation of matrix effects liquid extraction of carbamazepine 

from chironomids was performed with acetone and samples processed by SPE. In HPLC-

MS analysis the limit of detection for carbamazepine was at 0.86 µg/L in extracts from 9 – 12 

chironomid larvae 65. The extraction method used in this study was based on QuEChERS 

extraction (Quick Easy Cheap Effective Rugged and Safe) and optimized to quantify 

carbamazepine in small numbers of chironomids. QuEChERS extraction procedure was 

originally developed by Anastassiades for pesticide quantification in fruits and vegetables 2 

and has recently been applied to environmental samples and biota including invertebrates. 

E.g. emerging pollutants were extracted from individuals of Potamopyrgus antipodarum, 

Valvata piscinalis, Gammarus fossarum and small numbers of Chironomus riparius larvae 

with this method and subsequently analyzed by Nano-LC-MS/MS 21, 47, 55. QuEChERS was 

applied for detection of carbamazepine in earthworms 46. The developed method required 10 

mg tissue and analysis was performed with HPLC-MS/MS.  

3.3 EXPERIMENTAL 

3.3.1 Reagents, chemicals and consumables 

HPLC solvents methanol hypergrade LC-MS (chromasolv), water hypergrade LC-MS 

(chromasolv), acetonitrile LC-MS grade (chromasolv) and formic acid (98%, eluent additive 

for LC-MS) were purchased by Sigma-Aldrich (Steinheim, Germany). 

Carbamazepine, carbamazepine-13C6, sodium chloride and magnesium sulfate were 

purchased by Sigma-Aldrich (Steinheim Germany). PSA bulk sorbent and C18 bulk sorbent 

were purchased by Agilent Technlogies (Waldbronn, Germany). 

The micro-homogenizer PP was supplied by Carl Roth (Karlsruhe, Germany) and PTFE 

syringe filter 0.45 µm, 3 mm by Macherey-Nagel (Düren, Germany).  

3.3.2 Biological exposure tests 

Biological tests are briefly described here, as test parameters are published elsewhere by 

Heye et al. 93. The emergence test was performed according to OECD Guideline 233 for a 

28 days life cycle test. Fourth instar larvae were used for analysis and adult midges hedged 

from exposed larvae. Samples were frozen in liquid nitrogen and stored at -70 °C until 

workup. Mortality, hedge and fertility were observed as endpoints. More detailed information 

was published elsewhere 93. Larvae were exposed to carbamazepine in nominal 

concentrations of 0.025 - 3.2 mg/L for 28 days. 10 - 15 fourth instar larvae were collected per 

exposure level the day before hatching and stored at -20 °C until analysis. 5 - 30 midges per 
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concentration level from the same exposure studies were collected within 24 hours after 

hatching and stored at -20 °C. Potential sorption of propiconazole to sediment was 

determined by analysis of medium at the beginning of the exposure time after 14 days and at 

the end of the experiment after 28 days.   

3.3.3 Analysis of exposure medium samples 

Exposure medium samples were taken at the beginning of the emergence test, after two 

weeks and at the end of the treatment after 4 weeks. Samples were stored at -20 °C. 

Aliquots of 2 mL were centrifuged for 3 min at 10 000 rpm, filtered and analyzed by HPLC-

MS/MS. 

3.3.4 Extraction procedure of midges and larvae 

25 mg frozen larvae were homogenized in liquid nitrogen with a micro-homogenizer. 

Isotopically labeled internal standard carbamazepine-13C6 in methanol was added resulting 

in a final concentration of 20 µg/L in 0.5 mL extract. After 1 h at room temperature, 0.5 mL 

acetonitrile and 0.5 mL water were added. For extraction, samples were shaken with a 

vortex device for 30 sec and 25 mg sodium chloride and 75 mg anhydrous MgSO4 were 

added and the sample shaken for 30 sec. After 3 min centrifugation at 10 000 rpm 0.4 mL of 

the organic acetonitrile phase was either directly analyzed or cleaned by a dispersed SPE 

(dSPE) step.  

Analysis of raw extracts: The organic layer was evaporated to dryness and the residue 

resolved in 0.25 mL methanol and filtered for analysis.  

Cleanup by dSPE: The organic layer was transferred to an Eppendorf tube containing dSPE 

sorbent for cleanup. For dSPE 1) 12 mg PSA and 90 mg anhydrous MgSO4 or 2) 12 mg C18 

(non-endcapped) and 90 mg anhydrous MgSO4 or 3) 12 mg PSA, 12 mg C18 and 90 mg 

anhydrous MgSO4 were used. The sample was shaken for 30 sec, and after centrifugation 

for 3 min at 10 000 rmp, the acetonitrile phase was evaporated to dryness in a stream of 

nitrogen and the residue was reconstituted in 0.25 mL methanol. After filtration samples 

were analyzed by HPLC-MS/MS.  

For calibration in matrix and method validation samples were spiked after homogenization 

and before extraction with carbamazepine. To investigate signal suppression, samples were 

treated as described above without addition of reference compounds in methanol before the 

extraction. Instead, carbamazepine and internal standard were added to the final extract 

before injection at a final concentration of 20 µg/L.  

3.3.5 Instrumental methods 

For LC-MS/MS analysis, a 1260 Infinity LC system coupled to a 6550 iFunnel QTOF HPLC-

MS/MS system (Agilent Technologies, Waldbronn, Germany) was used. Aliquots of 10 µL 

sample were injected onto a Zorbax Eclipse Plus C18 column (2.1 x 150 mm, 3.5-Micron, 

narrow bore, Agilent Technologies, Waldbronn, Germany) at a column temperature of 40 °C. 

A jet stream electrospray ionization (ESI) source was operated with a nebulizer pressure of 

35 psig, drying gas temperature of 160 °C, at a flow rate of 16 L/min and a fragmentor 

voltage of 360 V. In the positive ionization mode capillary voltage was set to -4000 V, 

skimmer voltage to 65 V and nozzle voltage to -500 V. The mass range was 100-1200 m/z 

with a data acquisition rate of 1 spectrum/s. For MS/MS spectra the acquisition time was set 

to 200 ms/spectrum and the masses (m/z = 243.1236 and 237.1022) were isolated in a 

range of m/z = 4 in a retention time window of 11 ± 1 min. The collision energy was set to 24 
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V and the mass range to 100 – 1000 m/z. The sheath gas temperature was set to 325°C 

with a flow rate of 11 L/min. For internal calibration purine and HP0921 (Agilent 

Technologies, Waldbronn, Germany, m/z = 121.0508, 922.0097) were used. A gradient 

elution at a flow rate of 0.3 mL/min using water, containing 0.1 % formic acid, and methanol 

was used. The initial content of 95 % water was decreased after 1 min to 5 % water over 7 

min and after another 7 min at 5 % increased to 95 % water over 0.5 min. Data analysis was 

performed with MassHunter software (Agilent Technologies, Waldbronn, Germany). 

3.3.6 Data analysis 

MassHunter Workstation software quantitative analysis and qualitative analysis both Version 

B.06.00 (Agilent Technologies, Waldbronn, Germany) were used for analysis. Retention time 

of carbamazepine was 11.2 min in scan mode with target m/z = 237.1022 ± 100 ppm 

(carbamazepine) and m/z = 243.1236 ± 100 ppm (isotopically labeled carbamazepine).  

Measured values were tested for normal distribution by Shapiro-Wilk-test with Origin 9.1.0 

(OriginLab, Northampton, USA) at a 0.05 level. If normal distribution was proven, significant 

differences of variances were tested with one-way ANOVA with the software Origin 9.1 at a 

level of 0.05. The same software was also used for linear regression and fitting.  

3.4 RESULTS AND DISCUSSION 

3.4.1 Method development 

Samples were analyzed with HPLC-MS/MS as described in literature for carbamazepine 

residues in gammarid, fish, earthworm and sediment extracts 30, 46, 55, 65. To account for 

matrix effects and analyte recovery during workup isotopically labeled internal standard 

(ISTD) was used for quantification. Matrix effects can lead to signal suppression or 

enhancement caused by interfering co-eluting matrix components. Analyte and internal 

standard have the same physicochemical properties exhibiting nearly the same retention 

times and signal response during separation and analysis. Molecular structures and labeling 

positions of the internal standard are presented Figure 4. 

 

Figure 4: Molecular structure of the fungicide carbamazepine (C15H12N2O, M = 236.27 g/mol) the isotopically 
labelled internal standard carbamazepine-

13
C6 (

13
C6C9H12N2O, M = 242.22 g/mol). 

Three metabolites known from literature 93-94, structures and exact masses are given in 

Figure 5 were searched in the HPLC-MS data, but neither detected in larvae nor in midge 

samples.  
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Figure 5: Metabolites known from literature 
93-94

, were analyzed but not detected in samples. 

For separation, a C18 column was used and a gradient elution with methanol and water as 

solvent both containing 0.1 % formic acid was optimized (see Section 3.3.5). Extracted ion 

chromatograms of 237.1022 → 194.0971 and 243.1226 → 200.1171 were plotted with an 

extraction window of 0.1 m/z, an example is shown in Figure 6. The retention time for 

carbamazepine was 11.27 ± 0.04 min and for the internal standard 11.27 ± 0.04 min (n = 70 

samples). 

 

Figure 6: Extracted ion chromatograms in the MS/MS mode of carbamazepine 237.1022 → 194.0971 m/z and 
the internal standard 243.1226 → 200.1171 m/z in four measurements at a concentration of 20 µg/L in midge 
larvae extract. 

MS/MS was used in order to enhance selectivity and signal to noise ratio. The MS/MS mode 

of the QTOF was optimized with respect to fragmentation voltage (300 – 400 V), collision 

energy (CE 20 - 40 V), nebulizer voltage (30 – 40 V), nozzle voltage (400 – 500 V) and 

octopole voltage (700 – 800 V). Best results were achieved for CE 24 V and a fragmentation 

voltage of 360 V in the positive ESI mode, the optimized method is described in Section 

3.3.5. With these para meters, the most abundant fragment ion was formed by loss of the 

amide group, Figure 7 Hardly any other fragments were observed with these parameters, 

which is advantageous for limits of detection.  

Masses of analytes and fragments used as quantifier are summarized in Table 4 together 

with retention times. 

Table 4: Parameter for carbamazepine and isotopically labelled internal standard carbamazepin-
13

C6 in MS/MS 
analysis. 

analyte formula [M] [M+H]
+
 tR [min] 

fragment  
[M-CONH2+H]

+
 

carbamazepine  C15H12N2O 236.27 237.1022 11.27 ± 0.04 194.0971 

ISTD 
13

C6C9H12N2O 242.22 243.1236 11.27 ± 0.04 200.1171 
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Figure 7: MS/MS mass spectrum of carbamazepine and its most abundant fragment ion at the retention time of 
11.2 min, with CE 24 V and a fragmentation voltage of 360 V. Further parameters in Section 3.3.5. 

3.4.2 Optimization of QuEChERS extraction procedure 

Extraction was based on a QuEChERS extraction similar to the one applied for 

carbamazepine extraction from earthworms and aquatic invertebrates 21, 46. For method 

development, different dSPE materials were tested for matrix removal after extraction. For 

this purpose, dSPE with C18 non-endcapped, PSA, the combination of both and the raw 

extract were compared. The comparison did not reveal significant differences for the signal 

area of extracts spiked before injection. However, the signal intensity of carbamazepine was 

always 1.18 times the signal intensity of internal standard at the same concentration. This 

effect may occur from different ionization efficiencies of both compounds. This was 

considered in the following measurements by correction of signal areas by this factor for 

calculation of the carbamazepine concentration. Evaluation based on signal intensity 

showed C18 as treatment with highest overall signal intensity and recovery; results are 

presented in Table 5. The relative standard deviation in spiked sample extracts was 2.8 % (n 

= 5) for signal areas. 

Table 5: Comparison of effects of dSPE materials on signal intensity and recovery of carbamazepine in midge 
larvae. Signal area in sample + spike is the area detected in samples spiked before the extraction (this includes 
losses during workup and matrix effects), signal area in extracts + spike are extracts spiked before injection (this 
value only accounts for matrix effects). Signal suppression is calculated by 100 % - extract + spike. Recovery 
was calculated by signal area in extracts to signal area in extracts spiked after the extraction. 

dSPE step 
signal area  
sample + spike [%]  

signal area  
in extract + spike [%] 
 

recovery  
[%] 

signal 
suppression [%] 

PSA 34  78 43 22 

C18 50  77 65 23 

C18 + PSA 39  88 44 12 

raw extract 46  76 61 24 

 

Signal suppression was calculated by signal area of extracts spiked after extraction and 

before injection compared to signal area of standard in methanol at the same concentration.  

Signal suppression [%]  =
area (CBZ in extract)

area (CBZ in MeOH)
 𝑥 100 
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Recovery was calculated by comparison of signal area in extracts spiked before extraction to 

the one in extracts spiked prior to measurement.  

Recovery [%]  =
area (spiked before extraction) 

area (spiked before measurement) 
 𝑥 100 

The greatest signal suppression was observed in raw extracts. Signal suppression is caused 

by interfering matrix components, and therefore this result for the uncleaned extract is likely. 

The highest signal intensity was detected in the extract cleaned with the combination of both 

dSPE materials, simultaneously removing polar and non-polar matrix components. The 

highest signal intensity of 88 % and 78% in the sample cleaned with C18 + PSA and PSA, 

however, were accompanied by the lowest recovery rates of 44 % and 43 % (see Table 5). 

In literature, comparable signal suppression of approximately 20 % was reported for 

carbamazepine signals in invertebrate extracts cleaned by hexane 47, but no effect on 

recovery by PSA/C18 cleanup 47.      

The dSPE step partly removes analyte together with matrix components. Therefore, if 

enhancement of the signal area is greater than analyte loss during the extraction the 

implementation of a cleanup step results in overall higher signal intensities and lower limits 

of detection. In this experiment, the extracts cleaned by C18 revealed the highest overall 

signal intensity followed by the raw extract, although signal suppression was higher than in 

the other treatments. This indicates that interaction of PSA with carbamazepine is greater 

than with non-endcapped C18. In the final method the cleanup with C18 was implemented.    

3.4.3 Method validation 

Method validation for carbamazepine analysis in exposure medium 

HPLC-MS/MS analysis was performed for filtered medium samples without preconcentration 

via SPE with cartridges as described in literature 65. Calibration for carbamazepine in water 

was performed in the range of 0.1 – 32 µg/L with 10 calibration points, with an R² value of 

0.9996 for linear regression, see Figure 8. Measurements revealed a limit of detection of 

0.1 µg/L and a limit of quantification at 0.2 µg/L. Limit of detection was calculated as the 

concentration revealing a signal three times larger than the background noise (S/N = 3) and 

the limit of quantification by the DIN 32645.  
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Figure 8: Calibration curve for the analysis of carbamazepine in medium revealing a limit of detection of 0.1 µg/L 
and limit of quantification of 0.2 µg/L. Calibration was performed in the range of 0 - 32 µg/L with an R² = 0.9996 
analyzed in duplicates.  

Method validation for carbamazepine analysis in larvae extract 

Method validation was carried out with 20 mg tissue homogenates of uncontaminated larvae 

spiked with carbamazepine. Concentrations used for calibration were in the range of 1 - 

40 µg/L in the extract to cover the typical concentrations in larvae. 3 replicates for each 

concentration level were extracted and treated with dSPE independently (see Section 3.3.4). 

Samples were spiked with 1, 2, 5, 10, 20 and 40 µg/L and 20 µg/L ISTD.  

 

Figure 9: Calibration of carbamazepine in midge larvae extract performed in three independently treated 
replicates and five concentrations, analysis by HPLC-MS/MS. Linear regression with an R² value of 0.9947 and a 
limit of detection of 1 µg/L and limit of quantification of 5 µg/L, recovery in average was 95 ± 15 %. The detected 
carbamazepine concentration was calculated based on the signal area of isotopically labeled carbamazepine.  

Using isotopically labeled standards has the major advantage, that analytical results can be 

corrected for losses during sample preparation and instrumental analysis, even if signal 
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suppression occurs 77. LOD and LOQ are based on the signal to noise approach. 

Quantification was based on matrix-matched calibration using isotopically labeled internal 

standards. Samples revealed a satisfactory recovery of 95 ± 15 % based on the internal 

standard. Limit of detection and limit of quantification were calculated by S/N = 3 and S/N = 

10. The method exhibited values of 1 µg/L and 5 µg/L, respectively. LOD and LOQ of 

carbamazepine in C. riparius larvae extracts are comparable with the ones reported by 

Dussault et al. They reported a LOD of 1.1 µg/L and a LOQ of 2.8 µg/L in biota 65. 

3.5 APPLICATION 

3.5.1 Analysis of exposure medium 

Carbamazepine concentration in water samples was analyzed according to the method 

described in Section 3.3.3 at the beginning of the experiment at day 0, after two weeks at 

day 14 and four weeks at day 28.  

 

Figure 10: Carbamazepine concentration measured in exposure medium analyzed by HPLC-MS/MS at the 
beginning of the experiment, after 14 days and at the end at day 28.  

The water concentrations at day 0 and day 14 were 63 ± 5 % of the nominal concentrations, 

presumably due to sorption to sediment. At day 28 the concentrations further decreased to 

50 ± 6 % of the nominal concentration, pointing to minor degradation processes. This 

process was pronounced for higher exposure concentrations, especially for 1.6 and 3.2 

mg/L. These findings confirm an almost steady exposure concentration during the treatment. 

3.5.2 Analysis of carbamazepine transfer from larvae to midges during exposure 

studies 

The developed QuEChERS extraction procedure, described above in Section 3.3.4, was 

applied to larvae and midges originating from emergence tests. Only limited numbers of 

individuals (larvae or midges) were available from these tests, therefore the number of 

individuals pooled for analysis differ between exposure concentration levels. Especially at 

high exposure concentrations, only small amounts of midges were available. Midge larvae 

were exposed to 0.025 – 3.2 mg/L carbamazepine in water for 28 days and larvae sampled 
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one day before pupation. Analyzed midges were sampled within 24 hours after hatching. In 

case of midges, 3 – 70 individuals and in case of larvae, 1 -15 individuals, were analyzed per 

replicate. For every exposure concentration organisms were pooled and divided into two 

replicates, which were treated independently during workup and analysis. Carbamazepine 

burden in tissue is given as ng carbamazepine per g wet weight tissue and quantification 

was based on spiked internal standard, Figure 11. Larvae of the negative control did, as 

expected, not contain any carbamazepine contamination. 

With increasing level of exposure an increase in body-burden for larvae and emerged 

midges was observed in all treatment groups. In the exposure range tested, an increasing 

carbamazepine concentration for both midges and larvae was detected. For midges exposed 

to 0.8 mg/L carbamazepine different values for the two replicates were detected. The 

reasons for this are unknown. The signal area of internal standard differed in these 

measurements from other samples.  

 

 

Figure 11: Internal carbamazepine concentration in larvae (average value from n = 4) and midges extracted with 
QuEChERS extraction and analyzed by HPLC-MS/MS. 

The adult midges emerging from exposed larvae had a significantly higher body-burden by 

approximately 3-fold regardless of the exposure concentration. When interpreting the body-

burden of larvae and midges, it has to be considered that biomass reduced by approximately 

70 % during metamorphosis. An average weight of 2 mg was determined for midges and of 

6 mg for larvae. If all carbamazepine taken up by larvae is retained upon metamorphosis, a 

3-fold bioconcentrated burden in midges is expected. An increase by 3-fold has been 

observed in experiments with PCBs 83. 

Exponential fitting showed an acceptable correlation of internal concentration analyzed in 

tissue extracts and exposure concentrations, shown in Figure 12. For larvae, a linear 

increase in incorporated concentrations could also be argued from the data.  
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Figure 12: Exponential fit of internal concentrations in larvae and midge tissue extracts, shown in Figure 11.  

To link the contaminant burden to the individual in contrast to biomass, the internal 

concentration per individual was calculated. An average weight of 2 mg was determined for 

midges and 6 mg for larvae. The data are plotted in Figure 13.  

 

Figure 13: Body burden of carbamazepine in ng per individual larvae and midge, data from Figure 11. Average 
mass of 2 mg (midges) or 6 mg (larvae).  

The results show that at each exposure level, the body-burden in larvae and hedged midges 

was equal when referring to individual insects and their development stage. No significant 

differences were observed. Reduced body weight upon metamorphosis concentrates 

carbamazepine and the body burden correlated to biomass thus increases in dose. This can 

be explained by the larvae lipid content which is in the range of 3 % dry weight 95 or 1.5 % 

wet weight 96 with increasing content for midges of 3 and 3.5 % wet weight for male and 

female midges 96.  
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The results confirm that for C. riparius no reduction in carbamazepine burden occurs during 

metamorphosis, when taking increasing lipid content or lowered weight into account. This 

may be explained by the hydrophobicity of carbamazepine (log Kow = 2.45). This indicates 

that larvae do not have efficient excretory mechanisms for carbamazepine.  

3.5.3 Bioconcentration factor 

The bioconcentration factor (BCF), the relation of exposure concentration to the detected 

concentration in larvae was calculated. Taking into account body weight, the BCF values 

are: 

BCF [
L

kg
]  =

concentration in biota [
mg
kg

] 

concentration in medium [
mg
L

]
  

BCF of carbamazepine was 0.056 ± 0.03 L/kg for larvae and 0.18 ± 0.08 L/kg for midges. 

The internal concentrations for the exposure concentration of 0.025 mg/L were not included 

for BCF calculation, because the internal concentrations were too low in this exposure 

experiment. The factor of 3 in bioaccumulation factors (BAF) between larvae and midges 

results from their 3-fold lower body weight, as shown in Figure 11 and Figure 12.  

3.6 CONCLUSION 

A quantification method for carbamazepine in both stages midge larvae and midges was 

developed. The miniaturized QuEChERS extraction procedure including a dSPE cleanup 

step with C18 enabled the detection of carbamazepine in small numbers of individuals. For 

analysis, only 2 larvae or 3 midges corresponding to approximately 10 mg were required. 

With the optimized method, carbamazepine was detectable at an LOQ of 5 µg/L 

corresponding to 12 ng carbamazepine per g wet weight tissue. Recovery based on ISTD 

was 95 ± 15 %. The method was applied to midges from emergence toxicity studies. The 

findings indicate a quantitative transfer of carbamazepine from larvae to adult C. riparius 

midges, and thus a potential for pollutant transfer from aquatic to terrestrial ecosystems and 

along the food web. 

Due to a lack of literature data concerning micropollutants in chironomids, the results are 

compared to BCF calculated in other organisms: In Gammarus pulex Meredith-Williams et 

al. reported a BCF of 7.1 L/kg 92. For the pharmaceutical formoterol with a log Kow similar to 

that of carbamazepine (2.2 vs. 2.4 for carbamazepine) BCF values ranging from 32 to 42 

L/kg were calculated for gammarids exposed to radiolabeled pharmaceuticals 97. For fish 

Pimephales notatus and Ictalurus punctarus bioaccumulation factors of 2.5 - 3.8 in field 

experiments for carbamazepine were calculated 87. Our results showed internal 

carbamazepine concentrations and thus BCF, which were 10 to 100-fold lower than in higher 

organisms. Hendriks et al. reported decreasing BCF values with increasing size of 

organisms in model calculations assuming on faster elimination rates by vertebrates 98. 

Larvae accumulated considerable amounts of carbamazepine which were transferred to 

midges during metamorphosis. By bioaccumulation due to higher body burden pollutants are 

incorporated into the food web. The results presented here confirm the transfer of 

pharmaceutical wastewater pollutants by bioaccumulation in aquatic organisms to terrestrial 

ecosystems. 
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4 QUANTIFICATION OF THIACLOPRID IN CHIRONOMIDS EXPOSED 

TO THE NEONICOTINOID IN THE PRESENCE OF NANOPARTICLES 

WITH A MINIATURIZED QUECHERS PROCEDURE BY HPLC-MS 

4.1 ABSTRACT 

Toxicity studies often focus on active substances alone whereas in the environment natural 

and artificial nanoparticles are additionally present. This coexistence might lead to changes 

in the substances’ bioavailability and uptake due to sorption processes. The uptake of the 

pesticide thiacloprid by Chironomus riparius larvae simultaneously exposed to the insecticide 

and nanoparticles was investigated. The sorption isotherms allowed the calculation of the 

bioavailable concentration of the pesticide in the exposure medium. In order to study the 

uptake by quantification of thiacloprid in Chironomus riparius larvae, an analytical workflow 

was developed including a miniaturized QuEChERS extraction procedure. The optimized 

method was applied to chironomid larvae from thiacloprid laboratory toxicity studies. 

Quantification was achieved with HPLC-MS. The developed method is based on the 

extraction of approximately 5 larvae and thus enables the quantification in few individuals. 

Thiacloprid concentrations were detected in larvae tissue at low ng/g wet weight range. This 

is the first time internal-concentrations of thiacloprid are directly linked to bioavailability and 

mortality of midge larvae. 

4.2 INTRODUCTION 

Pesticides are ubiquitous in the aquatic environment and might cause effects on non-target 

organisms. Insecticides are applied in conventional agriculture in the range of tons per year. 

In 2014 100 - 250 tones thiacloprid were sold for use in Germany additional 250 – 1000 tons 

were exported 99. Upon application on the field, pesticides may enter surface waters via 

spray drift or runoff, and expose aquatic organisms 100. 

4.2.1 The pesticide thiacloprid 

One class of insecticides are neonicotinoids, which are dominated by the four compounds 

imidacloprid, thiacloprid, clothianidin and thiamethoxam. The use of neonicotinoids is 

strongly rising and they are among the five major classes of insecticides. In 2007 their 

market share comprised 24 % 101. In 2010 256 tons of the active substances were applied in 

Germany, the second most commonly used among them was thiacloprid 102.  

Advantages of neonicotinoids are their easy application and their high selectivity to target 

insects, combined with lower toxicity towards mammals and birds compared to insects. 

Neonicotinoids bind to the nicotinoidic receptor 12. They are used for wood preservation and 

sprayed against sucking and chewing insects. Their neurotoxic effect on insects stems from 

irreversibly blocking the nicotinoidic acetylcholine receptor (nAChRs) and disrupting the 

central nerve-system of the insects 103. The high persistence of these compounds leads to 

long lasting protection of field crops 103. With regard to regulation, all four neonicotinoids are 

potential antagonists to the glucocorticoid receptor due to their molecular structure,  

containing an aromatic ring and bear agonistic groups 104. Therefore and because of its 

endocrine disrupting properties, thiacloprid is a candidate for substitution 105. In February 
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2018 the European Food and Safety Authority confirmed a high risk for honey bees and 

bumble bees by imidacloprid, clothianidin and thiametoxam, considering 1500 studies, and 

thus recommended to prohibit usage of these compounds for seed and soil treatments of 

crops attractive to bees 72. Thiacloprid, the molecular structure is given in Figure 14, is more 

closely investigated in this study.  

 

Figure 14: Molecular structure of the neonicotinoid thiacloprid (C10H9ClN4S, molar mass 252.72 g mol
-1

). 

Disadvantages and ecotoxicological concern of neonicotinoids are their high toxicity towards 

non-target organisms. The problem is further augmented as neonicotinoids are systemic 

pesticides, which means the active substance is in the xylem and in dust and nectar. 

Therefore, bees are exposed to high concentrations during pollen collecting time 100. With 

regard to neonicotinoids’ fate in the environment, different observations have been made: in 

one study neonicotinoids were observed to be mobile in soil 99. In aquatic ecosystems 

thiacloprid sorbs to sediments very fast and in field applications a DT50-value, the time 

during which 50 % of the initial concentration are degraded, up to 1000 days was measured 
100. In literature persistence against photolytic transformation under environmental conditions 

is reported 106 whereas photo-transformation products were detected in laboratory studies 

and vegetables 107-108. Another environmentally relevant transformation path by microbes has 

been observed in soil 109-110. Imidacloprid is the most frequently detected neonicotinoid in 

environmental samples 103. Thiacloprid concentrations up to 4.5 µg/L were measured in 

German rivers in in monitoring studies 111. Monitoring results in biota are discussed below.  

4.2.2 Relevance of nanoparticles in the environment 

Every particle with a size of 1 – 100 nm is characterized as nanoparticle 112. Accordingly, the 

diversity of nanoparticles’ physicochemical characteristics is very high. Natural nanoparticles 

are often biological organic matter like netted biomolecules for example peptides, proteins or 

polysaccharides. Also, nanoparticles from minerals emerge from weathering processes of 

stones 22 and can be found in the environment. In the aquatic environment, various naturally-

born nanoparticles were detected 112. In contrast to naturally-born nanoparticles synthetic 

particles from anthropogenic input are often functionalized, often causing different 

environmental behavior and toxicity compared to natural nanoparticles 113. Their large 

surface is the most important property of nanoparticles, displaying a large reactive area 19. In 

the environment particles undergo alteration processes, which may lead to aggregation of 

nanoparticles to larger particles and thus altered mobility and surface properties. To assess 

the environmental fate and relevance of nanoparticles, these processes have to be taken 

into account 19.  

4.2.3 Effects of nanoparticles 

Due to their small size, nanoparticles can be transported into cells and tissues via passive 

and active pathways 22. Cell walls act as a barrier for nanoparticles or as primary interaction 

site 19. Stable colloidal suspensions of nanoparticles in water can promote the uptake in 

organisms and toxic effects. In pore water in soil, fungi hyphae interact with water and 

compounds solved in the water. Nanoparticles can enter algae and fungi and sorb to organic 

material like polysaccharides and glycoproteins 19. The impact of synthetic and natural-born 
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nanoparticles on organisms and the environmental fate has been investigated in several 

studies in the last years 19, 113. In cells, oxidative stress and cell-membrane damage were 

reported as adverse effects, caused by the interaction of nanoparticles (e.g., different 

modifications of Al2O3) and proteins as well as lipid-saccharides 114. Protection mechanisms 

against engineered nanoparticles are also reported, (e.g. they can act as antioxidants or 

nutrient stock) 19. Effects on the behavioral level were observed in case of feeding and 

reproduction rate of L. variegatus in experiments with Ag nanoparticle concentrations of 1.1 

g/kg 115. 

4.2.4 Ecotoxicological impact of micropollutants bound to nanoparticles 

Due to their high surface to volume ratio nanoparticles may serve as vectors or sinks for 

organic compounds including pollutants. A comprehensive view of the fate of micropollutants 

in the environment has to include particle-facilitated transport. The higher sorption capacities 

of smaller sediment particles in contrast to larger particles has been observed 116. These 

effects observed for sediments can generally be expected to be even stronger in case of 

nanoparticles.    

From an ecotoxicological point of view, sorption not only alters the transport and thus 

possibilities of exposure of micropollutants, but also the bioavailability of compounds may be 

changed significantly. Different ways of altered uptake can be considered for particulate 

matter (both nano- and macro-particles): (1) Nanoparticles could act as a vector when taken 

up by organisms. Filtering invertebrates, for example, ingest particles according to their size 

or carbon content 116. Thus, adsorbed pollutants might be transported into organisms. For 

metal and metal-oxide nanoparticles uptake and distribution in terrestrial and aquatic 

organisms has been investigated 22. The carrier effect has been observed in case of diuron 

bound to carbon nanotubes. In a toxicity study, the photosynthetic activity of algae was 

reduced, although sorption to carbon nanotubes reduced the bioavailable concentration of 

diuron. The higher toxicity was explained by increased local concentrations of diuron bound 

to carbon nanotubes 20. Another example is an incident in a monitoring station, where effects 

on daphnids were observed without correlation to increasing pollutant concentrations in the 

river. In this case, particle-bound exposure was suspected 117. (2) The exposure 

concentration may be lowered due to reduced bioavailability upon strong sorption. (3) A 

reduced bioavailability (internally or externally) could also lead to a reduced metabolism 

inside the organisms or physical or chemical degradation in the environment. These 

changed equilibrium conditions of the sorption processes can lead to chronic exposure as 

demonstrated for metal ions 22. In equilibrium conditions, combined sorption and desorption 

processes resulted in a steady release of metal ions, leading to a chronic exposure to 

aquatic organisms 22. (4) Especially hydrophobic compounds sorb to sediment particles 

rather than staying in the aqueous phase and thus lead to increased uptake and 

bioaccumulation in benthic macroinvertebrates 18. For nonylphenols, it is suggested from 

laboratory experiments with L. variegatus tissues, that the ingestion of sediment plays an 

important role in accumulation and exposure 4. For carbamazepine reduced bioavailability 

caused by sorption to sediment particles and thus reduced toxicity to chironomids was 

observed in exposure studies comparing tests with and without sediment present during 

exposure 17. In this thesis, the bioavailability of the pesticide is investigated in detail in the 

presence of different nanoparticles. Different organisms are then exposed to mixtures of 

nanoparticles and thiacloprid for a deeper investigation of the interplay of toxicological 

effects and bioavailability.  
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4.2.5 Ecotoxicological studies with chironomids 

In aquatic sediments, chironomids are the dominant species 6. They are important for food 

web as prey to higher organisms like fish or birds 3. Bioaccumulated pollutants in prey, for 

example, midge larvae are an important way of exposure for their predators 4. The lipid 

content of organisms is often crucial for bioaccumulation, because lipophilic pollutants tend 

to accumulate in the lipid. Larvae lipid content is in the range of 3 % dry weight 95. 

Incorporation of pollutants can lead to their transfer to higher trophic levels like fish or the 

terrestrial environment by transfer to birds. In case of sediment-bound metals and 

hydrophobic compounds, bioaccumulation in chironomids was reported 18, 118. For this 

reason, chironomids are a model organism for ecotoxicological tests 78-81.  

Chironomids are benthic living organisms and therefore are exposed to pollutants both 

present in water and bound to sediment with an equilibrium between sorption and 

desorption. This combined exposure might lead to higher pollutant concentrations in 

organisms than what may be expected from the pollutant concentration determined in water 
17. Further reasons for higher exposure concentrations are perturbating activities and 

filtration by benthic organisms, enhancing desorption processes and thus increasing 

bioavailability 17. However, also other environmental factors such as presence of organic 

matter have to be considered 10. The burrowing activity of midge larvae, known as 

bioturbation, induces transport of sediment-bound pollutants even from lower sediment 

levels to the water phase 5. Aquatic insect larvae might ingest pesticides adsorbed onto 

sediment as part of their diet 119. 

Pesticides are applied in agriculture and partly enter surface waters via runoff or spray-drift. 

Especially insecticides affect non-target organisms in rivers or streams. To assess the effect, 

laboratory toxicity studies are often carried out, for example, the toxicity of neonicotinoids to 

midge larvae has been investigated in numerous studies in recent years 3, 120-125. In these 

publications, water and sediment concentrations are reported, but internal concentrations of 

neonicotinoids were not analyzed, although the internal concentration might give a better 

indicator of uptake than exposure concentrations 11. Laboratory experiments with C. riparius 

revealed that actual body residues of the investigated compounds correlated more 

accurately with dose-response concentrations than water concentrations 10.  

4.2.6 Analytical aspects of thiacloprid analysis 

Extraction methods  

Very few methods exist for emerging pollutant determination in midge larvae. The main 

disadvantage is their small size, necessitating miniaturization compared to related food 

analysis. To overcome low concentrations per individual, organisms need to be pooled 

(similarly to analysis of fish embryos 41) to increase pollutant concentration in the extract. In 

addition sensitive analytical methods are mandatory. As conducted in this thesis, thiacloprid 

is mostly analyzed using HPLC-MS. To account for the high matrix load from the extraction 

of full organisms, optimized extraction protocols as well as sample cleanup is required. 

Thiacloprid as an insecticide has widely been analyzed in different kinds of vegetables and 

processed food like wine 126-132. All studies used the multi-residue extraction method 

QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe). This is a liquid-liquid 

extraction procedure involving acetonitrile and water, originally invented for polar pesticide 

residue analysis in food by Anastassiades 2.  

In ecotoxicology, neonicotinoids have been analyzed in different organisms and 

environmental matrices in recent years, because they are suspected to have adverse effects 
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on non-target organisms like bees. Depending on matrix complexity different extraction 

methods were used. In case of fish embryos, sonication and methanol extraction were 

sufficient, due to low matrix burden 133. For more complex matrices, QuEChERS was applied 

with its advantage of low solvent and time consumption. Some applications for the analysis 

of neonicotinoids in environmental samples are given in Table 6.  

Table 6: QuEChERS applied to environmental samples to analyze neonicotinoids in aquatic organisms, birds, 
bees and soil. 

matrix extraction detection compound LOD reference 

fish embryos methanol HPLC-MS/MS polar pesticides ng/mL 
133

 

gammarids 
QuEChERS 
Hexane 
dSPE 

HPLC-MS/MS micro pollutants  ng/g 
40

 

eagle owl 
blood 

QuEChERS 
dSPE 

HPLC-MS/MS neonicotinoids ng/mL 
62

 

boluses 
QuEChERS  
dSPE 

HPLC-MS/MS pesticides ng/g 
63

 

bumble bees 
QuEChERS  
dSPE 

UHPLC-
MS/MS 

neonicotinoids 0.02 ng/g 
53

 

honey bees 
QuEChERS 
dSPE 

HPLC-MS/MS pesticides ng/g 
35

 

honey bees 
and honey 

MeCN/EA 
SPE 

HPLC-MS/MS neonicotinoids 100 ng/g 
134

 

bees wax Oxalic acid CE-MS neonicotinoids ng/mL 
135

 

honey 
DLLME and 
QuEChERS 

HPLC-DAD neonicotinoids ng/g 
136

 

bee bread QuEChERS 
UHPLC-
MS/MS 

insecticides pg/g 
137

 

soil 
QuEChERS 
dSPE 

HPLC-DAD 
imidacloprid and 
metabolites 

ng/g 
138

 

dSPE: dispersive solid phase extraction, MeCN: acetonitrile, SPE: solid phase extraction, EA: ethyl 
acetate, DLLME: dispersive liquid-liquid micro-extraction, HPLC: high performance liquid 
chromatography, MS: mass spectrometry, UHPLC: ultrahigh performance liquid chromatography, 
DAD: diode array detector 

 

QuEChERS extraction was applied to analyze thiacloprid in terrestrial and aquatic organisms 

as well as honey and soil. Numerous publications concerning honey bees or bee products 

like honey, pollen or bee bread were published in recent years because neonicotinoids are 

suspected to cause bee death 134-135. QuEChERS has been used in some of these 

publications to analyze individual bees or bumble bees 35, 53, 136-137. To investigate the 

environmental distribution and bioaccumulation in the food chain, boluses and eagle owl 

blood were analyzed for neonicotinoids 62-63. Method detection limits and concentrations 

detected in environmental samples are in the range of ng/g. Neonicotinoids and their 

degradation products have been extracted with the QuEChERS extraction protocol from soil 
138-139 or pharmaceuticals from sewage sludge 140. This technique was also used to 

determine emerging pollutants, among them thiacloprid in gammarids 40.  

The only publication analyzing micropollutants, among them the pesticides diuron and 

spinosad, in midge larvae using QuEChERS extraction procedure with subsequent nano-LC-

MS/MS analysis was published in 2014 by Berlioz-Barbier 21.  

With respect to the limit of detection, different optimization approaches were applied. The 

impact of different extraction devices on extraction efficiency was investigated. Comparing 

the different techniques, vortexing was sufficient for analyte extraction from fish tissue 36. 

Removal of coeluting and interfering matrix components was optimized by addition of a 



Chapter 4 
 

50 
 

dispersive solid phase extraction (dSPE) step after extraction. In this step, different sorbents 

are available for optimization. The sorbent should retain co-extracted matrix components, 

which might cause matrix effects, consequently, different materials are applied to different 

matrices. Common dSPE materials often applied in environmental analysis are PSA (primary 

secondary amines), graphitized carbon black (GCB), aluminum N and C18. PSA removes 

matrix components as fatty acids, organic acids, saccharides and some pigments from the 

QuEChERS raw extract 2. Aluminum N acts comparable to PSA and removes matrix by 

interaction with H-bonding processes. GCB is potent for planar molecules like pigments or 

chlorophyll 2. Another sorbent is silica removing polar matrix components 69. For matrices 

containing lipophilic components addition of a hexane phase was implemented in some 

cases to remove nonpolar substances from gammarid, bivalve or honey bee tissue extracts 
21, 45, 50.  

In this thesis, a method is developed to quantify the internal concentration of thiacloprid in 

midge larvae exposed under laboratory conditions. Aluminum oxide and zeolite 

nanoparticles were used in the acute toxicity experiments with midge larvae.  

4.3 EXPERIMENTAL 

4.3.1 Reagents, chemicals and consumables 

HPLC solvents methanol hypergrade LC-MS (chromasolv), water hypergrade LC-MS 

(chromasolv), acetonitrile LC-MS grade and formic acid (98 %, eluent additive for LC-MS) 

were supplied by Sigma-Aldrich (Steinheim, Germany). Thiacloprid was purchased by Dr. 

Ehrenstorfer GmbH (Augsburg, Germany). Magnesium sulfate, sodium chloride, 

thiacloprid-d4 were purchased by Sigma-Aldrich (Steinheim Germany). PSA bulk sorbent 

was purchased by Agilent Technologies (Waldbronn, Germany). Y30 nanoparticles were 

purchased by Thermo Fisher Scientific (Waltham, USA).  

The micro-homogenizer polypropylene was supplied by Carl Roth (Karlsruhe, Germany) and 

PTFE syringe filter 0.45 µm, 3 mm by Macherey-Nagel (Düren, Germany).  

4.3.2 Nanoparticles and sorption isotherms 

Nano sized zeolite nanoparticles were investigated in sorption studies with different 

thiacloprid concentrations carried out by the Center of Geosciences, University of Tübingen, 

Germany. Free thiacloprid concentrations were reduced in exposure studies by addition of 

5.2, 18.2 and 391.7 mg/L. More detailed information can be found elsewhere 141. Aluminum 

oxide nanoparticles with 410 nm were synthesized and investigated in sorption studies with 

thiacloprid, but no sorption was observed. More detailed information can be found elsewhere 
142.  

4.3.3 Biological exposure tests 

Toxicity tests were performed by the Institute of Evolution and Ecology, University of 

Tübingen, Germany. Briefly, mortality tests with fourth instar Chironomus riparius larvae 

were conducted with thiacloprid and nanoparticles and the combination of both. In zeolite 

experiments, the free thiacloprid concentration was reduced by sorption of thiacloprid to 

zeolite nanoparticles. In experiments with aluminum oxide particles, nanoparticles and 

thiacloprid were present without sorption. Every test vessel contained 30 mg quartz sand 
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and 100 mL test solution. Five fourth-instar larvae were exposed for 96 hours at 21 °C. More 

detailed information can be found elsewhere 141-142.  

4.3.4 Instrumental methods 

For HPLC-MS/MS analysis, a 1260 Infinity LC system coupled to a 6550 iFunnel QTOF 

LC/MS system (Agilent Technologies, Waldbronn, Germany) was used. Aliquots of 10 µL 

sample were injected onto a Zorbax Eclipse Plus C18 column (2.1x150 mm, 3.5-Micron, 

narrow bore, Agilent Technologies, Waldbronn, Germany). A jet-stream electrospray 

ionization (ESI) source was operated with a nebulizer pressure of 35 psig, drying gas 

temperature of 160°C, a flow rate of 16 L/min and a fragmentor voltage of 360 V. In the 

positive ionization mode capillary voltage was set to -4000 V, skimmer voltage to 65 V and a 

nozzle voltage to -500 V. The mass range was 100-1200 m/z with a data acquisition rate of 1 

spectrum/s. The sheath gas temperature was set to 325°C with a flow rate of 11 L/min. For 

internal calibration solutions of purine and HP0921 (Agilent Technologies, Waldbronn, 

Germany, m/z = 121.0508, 922.0097) in methanol/water (95/5) were used and sprayed via a 

reference nebulizer. For HPLC separation, a gradient elution at a flow rate of 0.3 mL/min 

using water, containing 0.1 % formic acid, and methanol was chosen. The initial content of 

95 % water was decreased after 1 min to 5 % water over 7 min and after another 7 min of 5 

% water, it was increased over 5 min to 95 % water again.  

For MS/MS analysis the compounds thiacloprid (m/z = 253.0309) and the deuterated internal 

standard (m/z = 257.0553) were isolated in a mass range of 4 m/z. A collision energy of 24 V 

was applied and a retention time window of 1 min. Spectra were acquired with 

200 ms/spectrum at 50 – 400 m/z.  

4.3.5 Data analysis 

Data analysis was performed with MassHunter Workstation software quantitative analysis 

and qualitative analysis, Versions B.06.00 (Agilent Technologies, Waldbronn, Germany). 

Thiacloprid was characterized by m/z with a mass peak width of 50 ppm and by retention 

time with a window of 1 min.  

Measured values were tested for normal distribution by Shapiro-Wilk-test with Origin 9.1.0 

(OriginLab, Northampton, USA) at a 0.05 level. If normal distribution was proven, significant 

differences of variances were tested with one-way ANOVA with the software Origin 9.1.0 

(OriginLab, Northampton, USA) at a level of 0.05. Not-normally distributed samples were 

tested with Kruskal-Wallis-test for differences with the software R (3.3.1, R Foundation for 

statistical computing). For linear regression in calibration experiments, the software Origin 

9.1.0 (OriginLab, Northampton, USA) was used.  

4.3.6 Sample preparation 

Pre-studies on homogenization and extraction method 

In pre-studies, the homogenization method was optimized using 70 mg frozen larvae as a 

starting point. For extraction and analysis, QuEChERS and HPLC-MS were used.  

A) Homogenization in liquid nitrogen using mortar and pestle: 70 mg frozen larvae were 

homogenized in liquid nitrogen using mortar and pestle and 10 µL isotopically labelled 

standard in methanol was added. Homogenized samples were extracted with 0.5 mL water 

and 0.5 mL acetonitrile. After vortexing for 30 s, 50 mg sodium chloride and 150 mg 

anhydrous MgSO4 were added. After vortexing for 30 s and centrifugation at 10 000 rpm for 
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3 min, the organic phase was transferred to an Eppendorf tube containing 25 mg PSA and 

100 mg anhydrous MgSO4. Samples were vortexed for 30 s and centrifuged for 3 min at 

10 000 rpm. The organic phase was evaporated and the residue reconstituted in 250 µL 

methanol and filtered through 0.45 µm PTFE filters prior to HPLC-MS analysis. 

B) Homogenization in liquid nitrogen using a micro-homogenizer: The same method as in A) 

was used, but homogenization was achieved using a micro-homogenizer (Carl Roth, 

Karlsruhe, Germany) 

C) Homogenization with sand and mortar and pestle: For homogenization with sand 70 mg 

larvae were homogenized with mortar and pestle with addition of 0.5 g sand and 1 g 

Na2SO4. The homogenized sample was transferred to 15 mL Falcon tubes and a) 10 mL 

acetonitrile or b) 5 mL water and 5 mL acetonitrile were added. After vortexing for 30 s 750 

mg anhydrous MgSO4 and 250 mg sodium chloride were added to extract b, containing 5 mL 

water. Both samples were vortexed for another 30 s and centrifuged for 3 min at 10 000 rpm. 

For cleanup the organic layer was transferred to a Falcon tube containing a) 1 g anhydrous 

MgSO4 and 250 mg or b) PSA 500 mg anhydrous MgSO4 and 125 mg PSA. After vortexing 

for 30 s and centrifugation for 3 min at 10 000 rpm the supernatant was transferred, 

evaporated to dryness in a nitrogen stream at room temperature and reconstituted in 250 µL 

methanol, then filtered through a 45 µm PTFE filter prior to HPLC-MS analysis.  

Final protocol for the processing of larvae samples for HPLC-MS analysis 

For the final and optimized protocol using liquid nitrogen and a micro-homogenizer (Carl 

Roth, Karlsruhe, Germany) in Eppendorf tubes 20 mg frozen larvae (ca. 5 larvae in total) 

were needed. After homogenization 10 µL isotopically labeled thiacloprid standard (100 

µg/L) in methanol was added and after evaporation at room temperature for 30 min in 

nitrogen stream, 0.5 mL water and 0.5 mL acetonitrile were added to the homogenized 

larvae. After vortexing for 30 s, 25 mg sodium chloride and 75 mg anhydrous MgSO4 were 

added to induce phase separation. The sample was again vortexed for 1 min and 

centrifuged at 10 000 rpm for 3 min. The organic phase was transferred to an Eppendorf 

tube containing 25 mg PSA and 90 mg anhydrous MgSO4. Samples were vortexed for 30 s 

and centrifuged for 3 min at 10 000 rpm. The acetonitrile supernatant was evaporated to 

dryness in nitrogen stream at room temperature and redissolved in 250 µL methanol. Prior to 

analysis by HPLC-MS the extract was filtered through a PTFE syringe filter.  

Water sample preparation 

For each concentration tested in exposure studies, four replicates, each containing 5 larvae, 

were analyzed. Overlaying water samples were taken at the beginning of the test and after 

96 h of exposure and stored in 2 mL plastic tubes at -8 °C. Prior to analysis, samples were 

centrifuged at 3 000 rpm for 3 min and 1 mL supernatant was filtered through a PTFE 

syringe filter (pore size 0.45 µm, Chromafil) and analyzed by HPLC-MS. 

4.4 RESULTS AND DISCUSSION 

4.4.1 Method development 

An extraction procedure based on QuEChERS extraction with HPLC-MS for analysis was 

developed. Coupling of HPLC and MS provides the sensitivity, selectivity and matrix 
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tolerance required for trace analysis of emerging pollutants in small sample volumes like 

midge larvae extracts.  

HPLC-QTOF-MS method 

 

Figure 15: Extracted ion chromatogram of 50 µg/L thiacloprid (235.0309 in green) and 30 µg/L internal standard 
(257.0553 in red) each extracted with expansion of ± 0.01 m/z in larvae extract. 

Thiacloprid in methanol was detected by HPLC-ESI(+)-QTOF in MS and MS/MS mode. The 

limit of detection (LOD) for both the MS and MS/MS mode was 0.2 µg/L. For quantification, 

deuterated thiacloprid-d4 was used as internal standard (ISTD) to take into account possible 

signal suppression by co-eluting matrix components. 

To avoid mistakes by external calibration and increase precision for extracts a deuterated 

analog of thiacloprid was used as internal standard (ISTD). With this ISTD analyte losses 

during the extraction process and impacts from signal suppression in the measurement can 

be corrected. The use of internal standards for quantification in a complex matrix like 

wastewater analysis is well studied 74. 

 

Figure 16: Signal intensity of thiacloprid precursor ion m/z = 253.0309 and isotopically labeled thiacloprid-d4 m/z 
= 257.0553 and their most abundant fragment ion m/z = 126.0114 in MS/MS mode. 10 µL sample were injected 
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with 10 µg/L thiacloprid in methanol. For fragmentation CE 25 V, precursor m/z = 253.0309 and a fragmentation 
voltage of 360 V were used. The signals of the compounds co-eluted at a retention time of 10.1 min.  

For thiacloprid and ISTD the most intense fragment ion in the MS/MS mode was at m/z = 

126.0105 (Figure 16) and tenfold lower than that of the precursor ion in the MS mode. 

Therefore, signals of thiacloprid and ISTD could not be distinguished in the MS/MS mode, 

other fragments had much lower intensities and their use would have increased the limit of 

detection (LOD). Because of these reasons the MS mode was chosen and optimized for 

analysis in larvae extract. 

Pre-studies on homogenization and extraction methods 

Homogenization has two impacts on the extraction procedure: (1) more effective and faster 

extraction of the analyte and thus higher recovery but (2) often also increased co-extraction 

of matrix components possibly impairing the signal-intensity during HPLC-MS measurement 
39. Three procedures were evaluated for homogenization. Frozen larvae were homogenized 

with A) mortar and pestle in liquid nitrogen, B) a micro-homogenizer directly in the Eppendorf 

vessel where the extraction was carried out later on, and C) with mortar and pestle in 

combination with Na2SO4 as a drying agent and sand 143. The subsequent liquid-liquid 

extraction with water and acetonitrile was carried out according to the method published by 

Anastassiades 2 with some adaptions (see Section 4.3.6).  

 

Figure 17: Relative signal intensities for thiacloprid in chironomid extract, processed following different 
preparation protocols a) homogenized with mortar and pestle or micro-homogenizer and b) extracted with 
acetonitrile or QuEChERS (protocol described in Section 4.3.6).  

Signal intensities of extracts were compared to signal intensities of thiacloprid in methanol in 

the same concentration as the theoretical calculation for the sample injection solution. Figure 

17 shows these relative signal intensities in % for different sample preparation protocols 

given in Section 4.3.6. In extracts homogenized with mortar and pestle and by micro-

homogenizer in liquid nitrogen, relative signal intensities are in the same range of 100 – 

110 %, whereas homogenization with sand leads to significantly reduced relative signal 

intensities below 60 %, Figure 17. The lower signal intensities in the two samples extracted 

with sand can be explained by higher solvent consumption, as in these samples 5 instead of 

0.5 mL were used and 10-fold higher loads of salt, which might have removed analyte. The 

application of sand and anhydrous Na2SO4 required higher solvent volumes in the last 
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extraction protocol compared to other homogenization methods. Reduction of solvent 

consumption might have increased recovery and resulted in comparable results like the 

other protocols. However, due to easier handling, excellent relative signal intensities in the 

range of 100 % and expected small sample volumes in the following, the homogenization by 

micro-homogenizer and liquid-liquid extraction with acetonitrile and water was optimized. 

Sample cleanup by dSPE  

In the first step of QuEChERS extraction analyte is extracted from the matrix. As water and 

acetonitrile are miscible phase separation has to be induced by addition of salts, NaCl and 

MgSO4. In a second step, the organic extract can further be cleaned in a dSPE, 

implemented to remove interfering matrix components. Matrix effects often result in signal-

suppression by changes in the ionization process during the measurement by biological co-

extracted matrix components 65. The effect of co-eluting compounds arising from the matrix 

can result in signal enhancement or suppression 66. Dilution of samples equally dilutes 

analyte and matrix components. Therefore less signal-suppression and higher analyte signal 

intensities may occur 67.  

To investigate the possible signal suppression, samples were spiked before extraction or 

before analysis. Chromatographic signals were then compared to standard measurements 

injected at the same concentration in methanol. PSA was reported in the literature to reduce 

matrix effects in gammarid and honey bee samples analyzed for thiacloprid residues 35, 40. 

Therefore, PSA was chosen for dSPE of larvae extracts.  

 

Figure 18: Signal intensities of thiacloprid m/z = 253.0309 in methanol (green), thiacloprid in PSA cleaned extract 
(brown) and raw extract (blue). Samples extracted as described in Section 4.3.6. 

As shown in Figure 18 signal intensity of thiacloprid in raw extracts was 34 ± 4 % compared 

to thiacloprid injected in methanol. An additional cleanup step with PSA enhanced signal 

intensity to 67 ± 2 %. Thus, cleanup with PSA led to 100 % higher signal intensities, 

compared to measurements of the raw extract. The addition of a cleanup step was 

mandatory to remove interfering co-extracted matrix components and thus enhance signal 

intensities also in other publications. E.g. Kiljanek reported matrix effects for thiacloprid in 

honey bee QuEChERS extracts; after dSPE 2-fold higher signal intensities were achieved 35.  

In all sample measurements, significant signal suppression for the target analyte was 

observed despite the cleanup step with PSA. Further corrections were implemented using 

the ISTD to account for persisting matrix effects and analyte losses during extraction 144.  

The impact of the amount of co-extracted matrix components on signal suppression was 

briefly investigated by measuring extracts with increasing amounts of larvae from 10, 30 to 

50 mg per extracted sample. Each sample was spiked with 10 µg/L thiacloprid after 
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homogenization and before extraction. The concentrations detected in the dilution 

experiment were 11 ± 0.5 µg/L, 8 ± 0.3 µg/L and 10 ± 0.5 µL for 10, 30 and 50 mg tissue, 

respectively. The results show that the method is robust with regard to co-extraction of the 

matrix in the sample range of 10 – 50 mg, as no correlation between matrix amount and 

signal-suppression was observed.  

4.4.2 Method validation 

Precision, recovery and matrix effect 

The inter-day repeatability of the signal area of five measurements at 5 µg/L was 3 % 

without calculation on internal standard. Recovery is defined as the ratio of the measured 

peak-area of thiacloprid to the peak-area of the analyte in spiked samples in %. In this 

thesis, a recovery based on deuterated internal standard (ISTD) was 100 ± 5 % (n = 12). For 

thiacloprid, a retention time of 10.005 ± 0.005 min (n = 12) and for the internal standard of 

10.001 ± 0.007 min (n = 12) was measured with HPLC.  

The matrix effect is quantified via the ratio of the analyte peak intensity of a spiked sample to 

the one of the analyte standard in solvent 145. A matrix effect of 27 ± 2 % signal suppression 

of thiacloprid in matrix compared to methanol was detected. The matrix effect was calculated 

as the ratio of the signal area of thiacloprid in larvae extract, spiked before analysis and after 

the extraction, and signal area of thiacloprid standard in methanol as a reference. 

Limit of detection and linear range 

Determination of LOD and LOQ in matrix were based on external calibration experiments. 

Unburdened larvae material, purchased as fish feed, was spiked with concentrations of 0.5, 

1, 2, 5, 7, 10, 15 and 20 µg/L thiacloprid in triplicates. Sample homogenization, extraction 

and cleanup were performed according to the optimized procedure, described in Section 

4.3.6. Limit of quantification (LOQ) was determined as the analyte concentration producing a 

peak intensity ten times larger than background noise (S/N = 10). The limit of detection was 

determined based on a signal intensity three times larger than background noise (S/N = 3) 

with 0.5 µg/L. Limit of quantification was 1 µg/L corresponding to 12 ng/g wet weight using 

20 mg midge larvae (ca. 6 individuals). This corresponds to a limit of quantification of 1 µg/L 

in a sample volume of 250 µL. 
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Figure 19: Calibration curve of thiacloprid in larvae extract, with R² = 0.98623 and a slope of m = 1.01189. Signal 
areas are corrected based on ISTD. For each concentration, three independent samples were extracted with the 
optimized QuEChERS protocol and cleaned by dSPE with PSA. 

For method linearity, correlation coefficients of R² = 0.98623 were achieved for triplicate 

experiments with spiked matrix in the concentration range of 0.5 – 20 µg/L. The calibration 

curve is shown in Figure 19.  

Table 7: Method validation parameters for thiacloprid in water and larvae extract. 

 water larvae extract 

LOD 0.2 µg/L 0.5 µg/L 
LOQ 0.5 µg/L 1 µg/L 
R² 0.9991 0.98623 
m 201668 1.01189 
linear range 0.2 – 10 µg/L 0.2 – 10 µg/L 
matrix effect  27 ± 2 % 
recovery  100 ± 5 % 

 

Method validation parameters are listed in Table 7. LOD and LOQ are in the order of 

literature values. Berlioz-Barbier et al. analyzed 3 - 4 pooled chironomid larvae and reported 

an LOD in the ng/g range using a nano-LC-MS/MS method. They were able to detect 

concentrations in larvae of 1 - 50 ng/g wet weight (ww) 21. The LODs obtained in this thesis 

are in the same range with 500 ng/L, corresponding to 12 ng/g ww, and the analysis is 

possible with standard equipment by HPLC-ESI-QTOF. Three publications analyzing 

thiacloprid in bees, bumble bees and gammarids reported a LOD in the low ng/g or pg/g 

range, but in these publications 100 - 200 mg sample were consumed 35, 40, 53. Thus 5 to 10 

times more, than in the method developed in this thesis. 

The optimized method was applied to analyze thiacloprid residues in midge larvae and their 

exposure medium from toxicity tests under laboratory conditions.  
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4.5 APPLICATION 

4.5.1 Analysis of exposure medium samples 

For toxicity studies, the bioavailable thiacloprid concentration in water was reduced by 

sorption to nanoparticles. In every test vessel, thiacloprid was added at a concentration of 

5 µg/L in case of aluminum oxide and 1 µg/L in case of zeolite nanoparticle experiments. To 

reduce the bioavailable concentration nanoparticles were added in different concentrations. 

The water concentration was analyzed at the beginning of the test (t0) and end of the test 

after 96 hours (t96). Within test duration, no transformation or degradation processes of 

thiacloprid in water were visible. The vessel contained water, sediment and nominal 

thiacloprid concentrations. The nominal concentrations were calculated for the water phase 

without considering sorption processes to sand. Therefore, reduced water concentrations 

are due to sorption processes of thiacloprid to sediment. Measured thiacloprid 

concentrations are shown in Figure 20.  

 

Figure 20: Detected thiacloprid concentrations in water samples measured in two replicates per concentration. 
Different nominal thiacloprid concentrations were applied (■) or thiacloprid concentrations were reduced by 
addition of nanoparticles from 1 µg/L in zeolite experiments (▲) and 5 µg/L in aluminum oxide experiments.  

The measured concentration in the experiments without nanoparticles was 81 ± 2 % of the 

nominal concentration, most likely due to sorption to sand of about 20 %. In case of 

aluminum nanoparticles, the detected thiacloprid concentration was 74 ± 7 % of the nominal 

concentration. In these experiments the same nanoparticle concentration of 300 mg/L was 

applied to every thiacloprid concentration. The higher sorption rates and higher variability in 

experiments with aluminum oxide nanoparticles might be due to changes in sorption 

behavior of particles and thus altered sorption processes during the experiments. In 

experiments with zeolite nanoparticles, the measured concentration in water was 81 ± 17 % 

of the nominal concentration, so it was in the same range for experiments without 

nanoparticles, indicating that additional sorption to sand is about 20 %. Degradation of 

thiacloprid can be excluded, because degradation products known from literature 146 were 

not detected. Chemical structures of degradation products are shown in Figure 21. 
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Figure 21: Degradation products analyzed in tissue and water extracts, thiacloprid-amide, 4-hydroxy-thiacloprid 
and 6-chloro-nicotinic acid, known from literature 

146
. 

Hydrophobic compounds tend to sorb on sediments and organic material rather than being 

dissolved in the aqueous phase, therefore, in toxicity studies the bioavailable concentration 

in water correlated with organic carbon content 147. In a study with Chironomus riparius 

larvae exposed to herbicides (ioxynil, pendimethalin and bentazone) and sediment with 

different characteristics, particle size and organic content affected the environmental fate of 

the chemicals and the bioaccumulation potential 148. Coarse particles with higher organic 

content led to higher bioaccumulation potential than experiments with sediment containing 

higher inorganic matter e.g. clay 148. 

4.5.2 Toxicity test samples 

Analyzed larvae originated from toxicity studies. Larvae were exposed to different thiacloprid 

concentrations in single substance experiments (only thiacloprid or only nanoparticles) for 

96 h. Midge larvae are filter feeder and filter the water with nanoparticles for food particles. 

Incorporation of nanoparticles was observed for both kinds of particles 141-142. Samples with 

nanoparticles only, showed, as expected, no internal concentration and no interference with 

the analyte during LC-MS analysis. In combination tests, the bioavailable concentration 

(nominal after sorption) of thiacloprid was calculated and reduced by addition of thiacloprid-

sorbing nanoparticles with known sorption isotherms (see Section 4.3.2). Midge larvae were 

exposed in 5 replicates, collected after 96 h and frozen at -20 °C until extraction. For 

analysis, all 5 replicates had to be pooled and were divided in 1 or 2 samples for each 

concentration to obtain the required number of organisms.  

Larvae exposed to thiacloprid  

Midge larvae were exposed to solely thiacloprid at concentrations ranging from 0.03 – 

5 µg/L. After 96 h of exposure, all living larvae were pooled and divided in duplicates. These 

duplicates for each concentration, were possible as only 20 mg sample were required for the 

method. In case of 1 and 5 µg/L high mortality did not allow to split the sample.  
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Figure 22: Internal thiacloprid concentrations in QuEChERS extract originating from midge larvae which were 
exposed to different thiacloprid concentrations. Thiacloprid concentrations were calculated depending on the 
signal area of internal standard and extracted following the developed protocol described in Section 4.4.1. 
Thiacloprid was analyzed by HPLC-MS in 10 µL sample volume with the method described in Section 4.3.5.  

Larvae exposed to 0.4 – 5 µg/L thiacloprid showed no difference in the internal-

concentration with 47 ± 7 ng/g wet weight larvae. Only larvae exposed to a nominal 

concentration of 0.03 µg/L thiacloprid showed a significantly (F = 113, p = 0.05) lower 

internal concentration of 12 ± 0.5 ng/g, data given in Figure 22. 

These results can be explained by the fact that larvae were gained from a mortality test. 

Mortality is a harsh endpoint, which is observed at the relatively high exposure 

concentrations used. The doses calculated via the internal concentrations might not lead to 

differences in the response for an endpoint like mortality. In the second lowest concentration 

of 0.4 µg/L, which is more than 10-fold higher than the lowest concentration, already 30 % 

mortality was observed. This indicates that the experiments were carried out in a 

concentration range, where all larvae cope with the same internal concentration. Sublethal 

effects might occur at lower concentrations, and the internal concentration might be of 

relevance for lower exposure concentrations. To further support the hypothesis of 

differences in uptake and thus bioaccumulation at lower concentrations and a maximum 

internal concentration of ca. 50 ng/g, further investigations at lower exposure concentrations 

are required.  

Larvae exposed to thiacloprid and zeolite nanoparticles 

In contrast to exposure studies with thiacloprid only (Figure 22) exposure experiments with 

nanoparticles revealed the same internal concentration for all samples (see Figure 23). The 

analyzed internal concentration varied between the treatments from 36 - 53 ng/g wet weight, 

but the mean values correlated well with the results from exposure studies without 

nanoparticles. Within duplicates corresponding to one exposure concentration, the variability 

of detected internal concentrations was 0.5 – 3 % for zeolite experiments.  

For the lowest exposure concentration this finding might be due to the incorporation of 

nanoparticles by the larvae, followed by desorption processes of thiacloprid in the body. 

Another possibility is that nanoparticles incorporated by the larvae kept thiacloprid sorbed in 

the gut, but the extraction conditions with acetonitrile and water led to desorption of 
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thiacloprid from the zeolite particles and detection in HPLC-MS. Incorporation of zeolite 

nanoparticles was observed in the toxicity experiment 141. 

 

Figure 23: Internal concentration of thiacloprid in larvae exposed to zeolite nanoparticles and thiacloprid (black) 
and different thiacloprid concentrations without nanoparticles (grey) as reference. Bioavailable thiacloprid 
concentrations were reduced from 1 µg/L by addition of zeolite nanoparticles at concentrations of 5.2, 18.2 and 
391.7 mg/L resulting in 0.03, 0.4 and 0.7 µg/L free thiacloprid, respectively.  

Nanoparticles with a higher affinity to organic matter than water rather tend to stay in the 

larvae gut than to be excreted. In order to verify this hypothesis, larvae were placed in new 

vessels after exposure with thiacloprid and zeolite nanoparticles for 96 h and were exposed 

to pure water for further 24 h with the expectation of excretion of nanoparticles. However, 

after 24 hours in thiacloprid free medium, the nanoparticles were still present, which was 

proven by microscope analysis 141.  

Larvae exposed to thiacloprid and aluminum oxide nanoparticles 

The analysis of larvae originating from exposure studies for 96 h to aluminum oxide 

nanoparticles and thiacloprid showed similar results as in the previous experiments with 

zeolite nanoparticles. Comparison of data of the experiment with nanoparticles and without 

nanoparticles are shown in Figure 24. 
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Figure 24: Internal thiacloprid concentration of larvae exposed to 300 mg/L Al2O3 nanoparticles and thiacloprid 
(black) and thiacloprid solely (grey) as reference. Larvae were pooled and analyzed in duplicates corresponding 
to the same exposure concentration. Samples were analyzed with the developed extraction procedure and 
quantification based on internal standard.    

The internal concentration in larvae exposed to the lowest nominal thiacloprid concentration 

of 0.5 µg/L showed slightly lower internal concentrations of 26 ng/g in average than larvae 

exposed to higher thiacloprid concentrations. In experiments with aluminum oxide 

nanoparticles in average thiacloprid concentrations of 53 ± 4 ng/g within a range of 26 - 

76 ng/g were detected in larvae. The variability within duplicates of 7 - 19 ng/g is greater 

than in experiments with zeolite nanoparticles. This might be due to higher exposure 

concentrations, because the variability in experiments without nanoparticles is also higher at 

higher thiacloprid concentrations. Another reason could be, that the variability in detected 

exposure concentrations compared to nominal concentrations expected by calculation 

according to sorption isotherms, was higher than in the zeolite nanoparticle experiment (see 

Section 4.5.1).  

Analysis of larvae died during exposure experiments 

To find the lethal internal concentration of thiacloprid to chironomids, larvae which died 

during the exposure experiments were analyzed. Most analyzed larvae died between 72 and 

96 hours of exposure. Samples originating from all three treatments, without nanoparticles, 

with zeolite and with aluminum oxide nanoparticles were analyzed. Results are presented in 

Figure 25. The average internal concentration overall larvae was 54 ± 11 ng/g wet weight, 

independent of the treatment during exposure.  
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Figure 25: Internal concentration of thiacloprid in larvae which died during the 96 h exposure time. Exposure to 
different nanoparticles and thiacloprid solely (■ thiacloprid solely, ▲ thiacloprid and zeolite nanoparticles, 
● thiacloprid and aluminum oxide nanoparticles, black 96 h, grey 72 h, light grey 48 h. 

The internal concentration in dead larvae was in the range of the one in larvae from the 

exposure studies. This indicates that the internal concentration of approximately 50 ng/g 

corresponds to the lethal concentration of thiacloprid to Chironomus riparius.  

4.5.3 Bioconcentration factor for ecotoxicological assessment 

The ratio between an analyte concentration in water and the incorporated concentration in 

organisms is defined as bioconcentration factor (BCF). It is calculated by the concentration 

in exposure medium and the concentration in organisms at a steady state.  

𝐵𝐶𝐹 =  
concentration in larvae

concentration in water
 

In kinetic models estimating the bioaccumulation potential, of a compound calculation is 

often based on hydrophobicity and the main uptake route taken into account is passive 

sorption. Therefore, the bioaccumulation potential for active substances like pharmaceuticals 

which follow partially active uptake mechanisms might be underestimated 32. For 

bioaccumulation, uptake via food and other uptake routes as well as toxicokinetics are taken 

into account, which are not considered in the bioconcentration. Bioconcentration includes 

passive uptake of contaminants through the body surface from the water. The second 

uptake route of contaminants is via dietary uptake from food and sediment. In 

bioaccumulation, both processes are taken into account 119. For midges, the uptake via food 

has been shown to be predominant, contributing 86 – 87 % to the uptake of hydrophobic 

contaminants 119.    

Lipophilicity is expressed by the octanol-water partitioning coefficient (log Kow). A low log Kow 

value indicates high water solubility and thus a low bioconcentration potential. This model 

gives good results for example in case of atrazine and chlorpyrifos uptake in Lumbriculus 

variegatus. In a toxicity study with sediments spiked with both compounds chlorpyrifos (log 

Kow = 4.96) revealed a higher bioconcentration potential than atrazine (log Kow = 2.61). With 

a log Kow of 1.26 thiacloprid has a low potential for bioconcentration 105. The estimated BCF 

for thiacloprid, calculated based on log P data, is 2. Nevertheless, bioaccumulation 
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experiments with sediments spiked with Cd indicated, that Chironomus riparius are able to 

mobilize sediment-bound Cd, because bioaccumulation increased in correlation to bound Cd 

but not in correlation to the Cd concentration in overlying water 149. This indicates, that active 

uptake via food and simultaneous ingestion of these particles, is a major uptake route 

compared to passive uptake from the water. Therefore, bioaccumulation is more accurate to 

predict thiacloprid fate in sediment-water tests than bioconcentration. Bioconcentration and 

bioaccumulation of different pesticides in aquatic insect larvae have been reviewed by 

Katagi and Tanaka 119. Comparing BCF (bioconcentration factor), BAF (bioaccumulation 

factor) and BSAF (biota-soil accumulation factor) values for pesticides in different aquatic 

insects, a high diversity was found between insect species and different pesticides 119. 

In kinetic studies with herbicides and uptake in L. variegatus, a steady state was achieved 

for many cases within 72 h 148. The stable internal concentration observed in this study within 

three treatments and different exposure concentrations indicates a fast equilibrium, present 

within the 96 h of acute toxicity test, for thiacloprid in C. riparius larvae. For calculation of 

BCF, the lowest exposure concentration resulting in the average internal concentration was 

used. The calculated BCF from experiments is 70 ± 10 L/kg.  

The results from this study, however, reveal a bioaccumulation potential for thiacloprid in 

midge larvae. It is suggested, that uptake is not only based on hydrophobicity taking mainly 

passive partitioning into account but also on active uptake processes and particle-bound 

analytes as food. For insecticides and insects, uptake mechanisms might be more specific, 

resulting in higher uptake rates than estimated. For Chironomus riparius larvae no studies 

are reported to my knowledge. 

4.6 CONCLUSION 

In this project, an extraction and quantification method of thiacloprid in midge larvae was 

developed and applied to samples from exposure studies. The extraction procedure is based 

on QuEChERS extraction with an additional cleanup step with PSA in a miniaturized format 

using only 0.5 mL water and 0.5 mL acetonitrile. The LOD by HPLC-MS was determined to 

be 0.5 µg/L in 250 µL extract requiring 20 mg sample or approximately 5 larvae and the LOQ 

was determined to be 1 µg/L corresponding to 12 ng/g wet weight. Quantification was based 

on deuterated internal standard with a recovery of 100 ± 5 %. The method offers the 

possibility to quantify thiacloprid residues in the low ng/g range in small amounts of 3 - 5 

larvae, which makes it interesting also for field studies.  

With the applied procedure the internal concentration of thiacloprid in Chironomus riparius 

larvae was analyzed, showing a significantly lower internal concentration at the lowest 

exposure concentration in experiments with solely thiacloprid comparted to samples from 

higher exposure concentrations. In experiments with nanoparticles, the internal 

concentration was the same in all larvae. This might be caused by higher concentrations 

required in mortality tests compared to studies investigating sublethal effects. The developed 

method can be used to assess the internal concentration in midge larvae serving as an 

indicator organism.   
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5 DETERMINATION OF PROPICONAZOLE AND METABOLITES IN 

MYCELIUM FROM DIFFERENT FUNGI SPECIES FROM EXPOSURE 

STUDIES IN THE PRESENCE OF NANOPARTICLES BY HPLC-MS 

5.1 ABSTRACT 

In toxicological studies the interaction of possible toxic substances with nanoparticles is only 

rarely considered, although in soil natural and artificial particles are present, which might 

alter the bioavailability of fungicides in pore-water and soil upon sorption. The objectives of 

this study were (1) to develop a quantification method for propiconazole in fungi mycelium 

and exposure medium, (2) to determine the bioaccumulation and metabolic fate by analysis 

of the parent compound propiconazole and its metabolites in mycelium and medium and (3) 

to investigate differences in uptake and metabolism between different fungi species. The 

applied fungicide was propiconazole, which is used as biocide and pesticide. Analyzed 

samples originated from growing studies in liquid culture and on agar plates with 

propiconazole and York-shell nanoparticles reducing the bioavailable concentration by 

sorption. The developed method was based on a miniaturized QuEChERS extraction 

procedure, requiring only 20 mg mycelium per extraction. A method detection limit of 1 µg/L 

and a limit of quantification of 2 µg/L allowed quantification at a concentration of 20 ng 

propiconazole per g dried fungi mycelium. In extraction of mycelium originating from agar 

plates a limit of quantification of 5 ng/g was achieved. In exposure studies the impact of 

nanoparticle sorption on biodegradability of propiconazole and distinct inter-species 

differences in metabolism were observed. Bioconcentration factors ranged from 5 to 56 L/kg 

for different species. A clear influence of growing conditions on the uptake and metabolism 

of propiconazole in Laccaria bicolor was observed with a bioconcentration factor of 56 L/kg 

in liquid culture experiments and with a bioconcentration factor of 4600 L/kg in agar plate 

experiments. To my knowledge this is the first time the influence of nanoparticle sorption and 

the differences in metabolism of propiconazole in different fungi species and growing 

conditions were investigated.    

5.2 INTRODUCTION 

5.2.1 Fungi species in ecosystems 

The interaction of plants with mycorrhizal fungi is fundamental for sustainable plant 

productivity with vital functions in the carbon and nitrogen cycles 13. Fungi play a key role in 

ecosystems for degradation, soil formation, soil aggregation and resistance to stress, 

drought or heavy metals 150. The ability to degrade or modify lignin and lignocellulose is 

essential for carbon, nitrogen and phosphate recycling in forests 151. Mycorrhizal fungi form a 

symbiosis with plants, by provision of mineral elements and water in exchange of up to 20 % 

of the plants’ photosynthetic products 152-153. For plants growing next to fungi also interaction 

with surrounding bacteria between the fungus, microbes and plants are essential, e.g. for 

nutrient provision 154-155. Microbial biomass contains up to one third ectomycorrhizal 

mycelium 156. In agriculturally used soil, the occurrence of ectomycorrhizal fungi is reduced in 

contrast to forest soil. This is due to heavy fertilization, cultivation of non-mycorrhiza crops 

and soil disturbance 150. Ectomycorrhizal fungi are a significant component of forest 

ecosystems 157 and the three dominant divisions are basidiomycetes, ascomycetes and 



Chapter 5 
 

66 
 

zygomycetes 158. Fungi are not only able to degrade natural organic compounds, but even 

some organic pollutants and pesticides. The degradation potential of fungi for remediation of 

contaminated soil has been reviewed by Meharg and Cairney 14.  

Fungi used in this study are Laccaria bicolor, Amanita muscaria and Cenococcum 

geophilum. L. bicolor and A. muscaria belong to the basidiomycetes and C. geophilum to the 

ascomycetes. C. geophilum is not host-specific and grows in symbioses with a wide range of 

tree species worldwide 159 for example, Picea abies 160 or Pinus sylvestris. In experiments on 

the sensitivity of different forest fungi towards the fungicide propiconazole C. geophilum was 

observed to be one of the more sensitive mycorrhizal fungi 161. The ability of C. geophilum to 

degrade different PCBs was observed 14. A. muscaria is famous for its poisoning syndromes 

when consumed by humans 162. A. Muscaria was observed to be able to degrade 

phenanthrene, anthracene, fluoranthene and pyrene 14. L. bicolor has been used in several 

laboratory experiments and its genome is completely sequenced 13 163-164 . Therefore, this 

fungus was used in experiments to give the opportunity to link internal concentration and 

growth inhibition to genetic changes. Laccaria bicolor forms symbioses with different trees 

among them Picea mariana and Pseudotsuga menziesii 13, 165. Degradation of phenolic 

compounds produced by plants and thereby detoxification of soil was observed for L. bicolor, 

which used degraded products as carbon source 165. Wood degrading fungi excrete 

extracellular enzymes into the surrounding soil to degrade large biomolecules like 

lignincellulose 166-167.  

5.2.2 Activity of the fungicide propiconazole 

The fungicide propiconazole is applied in agriculture and for wood preservation as a mixture 

of four biocidally active isomers 168. The molecular structure is shown in Figure 26. It is used 

in agriculture as pesticide and in house paint and wood oil in outdoor applications as biocide 
169. In experiments with ectomycorrhizal fungi a strong inhibitory effect of propiconazole was 

observed for 64 fungi species 161. It is applied in forests against Gremmeniella abietina and 

Lophodermim seditiosum in concentrations of 0.125 kg/ha 161. 75 % degradation of 

propiconazole by fungi in treated wood was observed within 21 days 170. Degradation was 

also observed by bacteria isolated from fungi mycelium 171-172.  

 

Figure 26: Molecular structure of the fungicide propiconazole, stereo centers marked with *, applied as mixture of 
four biocidally active isomers as pesticide and biocide (C15H17Cl2N3O2 m/z = 342.0771).  

Propiconazole activity consists in the inhibition of ergosterol biosynthesis by inhibition of C-

14 demethylation of lanosterol 15-16. Ergosterol belongs to the vitamin D2 compounds and is 

structurally related to cholesterol, which is present in mammals. Ergosterol is part of cell 

membrane in fungi and can reach up to 0.2 – 8 mg/kg dry weight. 60 – 70 % of sterols in 

fungi are ergosterol 173. In vertebrates triazole fungicides inhibit Cytochrome P450 

depending mono-oxygenases 174. Therefore, propiconazole is suspected to be an endocrine 

disruptor. In experiments estrogenic and anti-androgenic activity, as well as influence on the 

aromatase activity, were observed 175-176.  
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Propiconazole, a prioritized substance in Germany 177, was monitored in surface water and 

groundwater 169. In 2017 the compound was declared as sufficiently monitored, and without 

further evidence considered not relevant for ecosystems by the German environmental 

agency 178.  

5.2.3 Analysis of pesticides in fungi mycelium 

Most published analytical methods concerning xenobiotics in fungi are about pesticides in 

edible fungi 179. Mycelium was seldomly analyzed for contaminants. Extraction methods 

depend on physical and chemical properties of the analytes. Polar compounds like flame 

retardants were extracted from fungi mycelium with methanol 180. In contrast DDT, a non-

polar pesticide, and its metabolites were extracted with hexane from mycelium and medium 

and analyzed by GC-MS 181. More polar pesticides like phenylurea herbicides and their 

metabolites were extracted from the medium with acetate/hexane and subsequently 

analyzed by HPLC-UV 182. In most toxicity studies metabolite and analyte concentrations 

were determined in the medium, rather than in mycelium. For example, degradation of the 

pesticides terbuthylazine, difenoconazole and pendimethalin by fungi grown in liquid culture 

were assessed by analysis of medium 183. Metolachlor analysis to assess degradation and 

metabolism of the pesticide in acclimated field soil was tested by analysis of medium, 

extracted with hexane and ethyl acetate 184. Degradation of fluorenes by fungi grown in liquid 

culture was investigated and concentrations in fungi and media analyzed by liquid-liquid 

extraction with ethyl acetate and HPLC-UV detection 185.  

In pesticide analysis of fruits and vegetables QuEChERS (Quick Easy Cheap Effective 

Rugged and Safe) extraction, developed by Anasstasiades is widely used 2, and has been 

applied to edible fungi 179, 186. QuEChERS extract buffers are required ion is a liquid-liquid 

extraction with water and acetonitrile. In case of some ionic pesticides buffers are required 

for the pH depending QuEChERS extraction to extract at certain pH ranges and enhance 

recovery of acidic labile or ionic pesticides. For propiconazole it was shown, that addition of 

buffer or pH changes are not necessary 27. The method has, to the best of my knowledge, 

not yet been applied to extract fungi mycelium.  

5.2.4 Nanoparticles 

Investigated York-shell nanoparticles were synthesized in the group of Prof. Anwander at the 

Institute of Inorganic Chemistry at the University of Tübingen, according to published 

protocolls 187-188. The thioether-bridged mesoporous nanoparticles with organo-silica 

framework (York-shell nanoparticles) were used in toxicity studies of propiconazole with 

different fungi in liquid culture and agar plate experiments. In all experiments described in 

this study, the applied York-shell nanoparticle concentrations to reduce the bioavailable 

fraction of propiconazole in medium were calculated using data from adsorption isotherms. 

Growth inhibition effects were investigated for propiconazole and nanoparticles solely and 

reduced bioavailable propiconazole concentrations due to sorption of propiconazole to 

nanoparticles with their combination.    

5.3 EXPERIMENTAL 

5.3.1 Reagents, chemicals and consumables 

HPLC solvents methanol hypergrade LC-MS (chromasolv), water hypergrade LC-MS 

(chromasolv), acetonitrile LC-MS grade (Sigma Aldrich) and formic acid (98%, eluent 
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additive for LC-MS) were supplied by Sigma-Aldrich (Steinheim, Germany). Ethyl acetate 

analytical reagent grade was purchased by Fisher Scientific (Loughborough, UK).  

Propiconazol was purchased by Dr. Ehrenstorfer GmbH (Augsburg, Germany), 

propiconazole-d3, ergosterol, picolinic acid, pyridine, triethylamine, 2-methyl-6-nitrobenzoic 

acid anhydride, 4-dimethylaminopyridine, sodium chloride, magnesium sulfate and 

potassium hydroxide were purchased from Sigma Aldrich (Steinheim, Germany). PSA bulk 

sorbent and C18 bulk sorbent were purchased by Agilent Technologies (Waldbronn, 

Germany).  

3 mm PTFE syringe filter (0.45 µm) were supplied by Macherey-Nagel (Düren Germany).  

5.3.2 Agar plate experiment with nanoparticles 

Experiments with fungi grown on 25 mL agar plates were conducted by Elisabeth Früh, 

Institute of Evolution and Ecology at the University of Tübingen, Germany, and mycelium 

samples and agar plates provided for analysis. Experiments were performed at an exposure 

concentration of 100 µg/L propiconazole and York-shell nanoparticles in concentrations of A) 

0.017, 0.098 and 0.577 g/L resulting in 80, 50 and 20 µg/L propiconazole concentration in 

the medium or B) 0.03, 0.129 and 0.517 g/L resulting in 85, 50 and 15 µg/L propiconazole 

concentration in the medium. Agar plates contained 1.8 % agar and 0.5 % glucose. Agar 

plates and mycelium were stored at -20 °C until analysis.  

5.3.3 Liquid culture experiments with nanoparticles 

Experiments with fungi grown in 20 mL liquid culture medium were conducted by Elisabeth 

Früh and dried mycelium samples and medium provided for analysis. 1.5 mL liquid medium 

was extracted by Leyla Guluzada, Center for Applied Geosciences at the University of 

Tübingen, Germany, and extracts provided for analysis. In 20 mL liquid culture medium A. 

muscaria was exposed to 5 mg/L propiconazole and 0.03, 0.129 and 0.517 g/L nanoparticles 

resulting in nominal 4, 2.5 and 1 mg/L propiconazole. L. bicolor was exposed to 0.1 mg/L in 

liquid culture and C. geophilum to 2 mg/L. Mycelium samples were dried at 60 °C after 

seven days of exposure and dried samples stored at -20 °C until analysis.  

5.3.4 Quantification of propiconazole in fungi mycelium grown on agar plates 

20 – 50 mg frozen fungi mycelium originating from agar plate experiments were 

homogenized with mortar and pestle in liquid nitrogen. The pulverized sample was 

transferred to Eppendorf tubes and deuterated internal standard was added. Different 

extraction protocols were tested. 

1) 1 mL ethyl acetate was added to the sample and the suspension was subsequently 

shaken for 2 min. After 1 h incubation at room temperature the sample was centrifuged at 

10 000 rpm for 2 min and the supernatant transferred to a vial. The solvent was evaporated 

under nitrogen stream at room temperature and the residue was redissolved in methanol 

and deuterated internal standard was added to reach a final concentration of 8 µg/L. After 

filtration with a 45 µm PTFE filter the sample was analyzed by HPLC-MS.  

2) 1.5 mL methanol were added and the sample vortexed for 2 min. After 1 h incubation at 

room temperature the sample was centrifuged at 10 000 rpm for 2 min and split in two. a) 

0.25 mL were transferred to a vial and evaporated to dryness. The residue was resolved in 

490 µL methanol and 10 µL internal standard (c = 100 µg/L), filtered through a 0.45 µm 

PTFE filter and analyzed by HPLC-MS. b) 1 mL sample was transferred to a vial and 120 mg 
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KOH were added. The sample was then heated to 60 °C for 1 h. 500 µL hexane were added 

and the sample was extracted twice with additional 500 µL hexane. Combined organic 

phases were evaporated to dryness under a nitrogen stream and the residue was 

redissolved in 590 µL methanol and 10 µL internal standard (c = 100 µg/L). After filtration 

with 0.45 µm PTFE filters the sample was analyzed by HPLC-MS.  

3) 0.75 mL water and 0.75 mL acetonitrile were added for QuEChERS extraction. 

Subsequently, the sample was shaken with a vortex device for 1 min. Afterwards, 90 mg 

anhydrous MgSO4 and 40 mg sodium chloride were added and the sample was vortexed for 

1 min. After centrifugation at 10 000 rpm for 3 min the organic layer was either analyzed as 

raw extract or cleaned by a dispersive solid phase extraction (dSPE) step: 

a) Analysis of raw extract: the organic phase was evaporated to dryness and the residue 

redissolved in 0.46 mL methanol and 40 µL deuterated internal standard (c = 100 µg/L) 

resulting in a final concentration of 8 µg/L, and analyzed by HPLC-MS after filtration.  

b) dSPE cleanup: For dSPE cleanup the organic phase was transferred to another 

Eppendorf tube containing the dSPE sorbent. For cleanup 15 mg PSA, 15 mg C18 or 15 mg 

of each mixed with 120 mg anhydrous MgSO4 were used. The tube was vortexed for 1 min. 

After centrifugation at 10 000 rpm for 3 min the organic layer was evaporated to dryness, the 

residue redissolved in 0.46 mL methanol and 40 µL deuterated internal standard (c = 

100 µg/L) was added resulting in a final concentration of 8 µg/L. The sample was analyzed 

by HPLC-MS after filtration with 0.45 µm PTFE filter. 

5.3.5 Quantification of propiconazole in fungi mycelium grown in liquid culture 

20 mg fungi mycelium grown in liquid culture were dried at 60 °C until dryness and 

homogenized with mortar and pestle by addition of 10 mg sodium chloride. The pulverized 

sample was transferred to Eppendorf tubes and 40 µL deuterated internal standard (c = 100 

µg/L) was added. 0.75 mL water and 0.75 mL acetonitrile were added and the sample was 

subsequently vortexed for 1 min. Afterwards 90 mg anhydrous MgSO4 and 20 mg sodium 

chloride were added and the sample was vortexed for 1 min. After centrifugation at 

10 000 rpm for 3 min the organic layer was either analyzed as raw extract or cleaned by a 

dSPE step: 

a) Analysis of raw extract: the organic phase was evaporated to dryness and redissolved in 

0.5 mL methanol and after filtration samples were diluted 1/10 with methanol and analyzed 

by HPLC-MS. 

b) dSPE cleanup: For dSPE cleanup the organic phase was transferred to another 

Eppendorf tube containing 15 mg PSA, 15 mg C18 or 15 mg of each in their mixture together 

with 120 mg anhydrous MgSO4. The tube was vortexed for 1 min, and centrifuged at 

10 000 rpm for 3 min. The organic layer was separated and evaporated to dryness. Samples 

were redissolved in 0.5 mL methanol, filtered with PTFE syringe filter, diluted with methanol 

1/10 and analyzed by HPLC-MS. 

5.3.6 Quantification of propiconazole in agar plates 

Agar plates were dried at 60 °C in the dark for 24 h and homogenized with mortar and 

pestle. 40 mg pulverized agar were transferred to Eppendorf tubes and extracted. For 

method development different extraction solvents were used: a) 1.5 mL acetonitrile, b) 

0.75 mL acetonitrile and 0.75 mL water with 20 mg sodium chloride, c) 1.5 mL methanol, d) 

1.5 mL ethyl acetate, and e) 0.75 mL ethyl acetate and 0.75 mL water. The organic layer 



Chapter 5 
 

70 
 

was transferred and the solvent evaporated. 225 µL methanol and 25 µL internal standard 

solution in methanol (c = 100 µg/L) were added resulting in a final concentration of 10 µg/L 

deuterated propiconazole-d3. Samples were filtered with 0.45 µm PTFE filters and analyzed 

by HPLC-MS.  

The final extraction was carried out with 80 mg dried agar and 1.5 mL ethyl acetate. After 4 h 

incubation at room temperature samples were centrifuged at 10 000 rpm for 3 min and 

evaporated to dryness. Residues were reconstituted in 450 µL methanol and 50 µL 

deuterated propiconazole (c = 100 µg/L) were added resulting in a concentration of 10 µg/L 

of the internal standard in the final extract. Samples were filtered through 0.45 µm PTFE 

filters and analyzed by HPLC-MS. 

5.3.7 Quantification of propiconazole and transformation products in liquid culture 

medium 

1.5 mL liquid medium samples were extracted with ethyl acetate (3 x 1.5 mL). Organic 

phases were combined, the solvent removed and the residue redissolved in 1 mL methanol. 

10 µL of the extract were injected and analyzed by HPLC-MS.  

5.3.8 Instrumental methods 

For LC-MS analysis of propiconazole and metabolites, a 1260 Infinity LC system coupled to 

a 6550 iFunnel QTOF LC/MS system (Agilent Technologies, Waldbronn, Germany) was 

used. Aliquots of 10 µL sample were injected onto a Zorbax Eclipse Plus C18 column (2.1 x 

150 mm, 3.5-Micron, narrow bore, Agilent Technologies, Waldbronn, Germany) at 40 °C. A 

jet stream electrospray ionization (ESI) source was operated in the positive ionization mode 

with a nebulizer pressure of 35 psig, drying gas temperature of 160 °C, a flow rate of 16 

L/min and a fragmentor voltage of 360 V. In the positive ionization mode capillary voltage 

was set to -4000 V, skimmer voltage to 65 V and a nozzle voltage to -500 V. The mass 

range was 100 – 1200 m/z with a data acquisition rate of 1 spectrum/s. The sheath gas 

temperature was set to 325 °C with a flow rate of 11 L/min. For internal calibration purine 

and HP0921 (Agilent Technologies, Waldbronn, Germany, m/z = 121.0508, 922.0097) were 

used. A gradient elution at a flow rate of 0.3 mL/min using water and methanol, both 

containing 0.1 % formic acid, was used. The initial content of 95 % water was decreased 

after 1 min to 5 % water over 7 min and after another 7 min at 5 % increased to 95 % water 

over 0.5 min. Data analysis was performed with MassHunter Workstation software Version 

B.06.00 (Agilent Technologies, Waldbronn, Germany).  

The mass range for MS/MS spectra was 100 – 1700 m/z and isolated masses were m/z = 

256.0039, 258.0195, 358.072, 342.0771 and 345.0964 at an isolation range of 4 m/z and a 

retention time window of 2 min. Collision energy was set to 24 V and the acquisition time for 

MS/MS spectra was 200 ms/spectrum and the mass range 50 – 400 m/z.  

5.3.9 Photochemical transformation 

Propiconazole standard in acetonitrile (c = 10 mM) was diluted with water to 10 µM and a 

volume of 10 mL was irradiated with 220 - 250 nm at 200 watt for 60 min with a SUV DC 

Lumatec (Munich, Germany) in glass Petri dishes. 20 µL samples were taken every minute 

for 10 min and afterwards every 10 min until 1 h irradiation was reached. Samples were 

stored at -20 °C till analysis by CE-MS, see Section 5.3.12.   
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5.3.10 Ergosterol derivatization 

Ergosterol standard in methanol used for calibration or the hexane phase of samples were 

evaporated to dryness and 170 µL derivatization solution were added. The ergosterol 

derivatization was carried out according to literature 189. The derivatization solution contained 

100 mg 2-methyl-6-nitro-benzoicanhydride (1.1 eq, 0.29 mmol), 80 mg picolinic acid (2.5 eq, 

0.65 mmol), 30 mg 4-dimethylaminopyridine (1 eq, 0.25 mmol), 1.5 mL pyridine and 200 µL 

trimethylamine. Extract and solution were incubated at 80 °C for 60 min. After addition of 

1 mL hexane the sample was vortexed for 20 sec and centrifuged at 10 000 rpm min for 

3 min. The supernatant was transferred to a vial and the solvent removed to dryness. The 

residue was redissolved in 250 µL acetonitrile, filtered with PTFE syringe filters and 

analyzed by HPLC-MS.  

5.3.11 Desorption of propiconazole from nanoparticles 

1.3 mg York-shell nanoparticles were spiked with 10 µL propiconazole in methanol (c = 

5 mg/L). The solvent was completely evaporated under a stream of nitrogen. Spiked 

nanoparticles were extracted with a) 10 mL ethyl acetate, b) 10 mL acetonitrile, c) 5 mL 

acetonitrile and 5 mL water or d) 5 mL ethyl acetate and 5 mL water. Samples were 

centrifuged at 10 000 rpm for 3 min. From each sample 2 mL of the organic phase were 

transferred to an LC vial and evaporated to dryness. The supernatant was resolved in 

0.5 mL methanol and filtered with a PTFE 0.45 µm filter and analyzed by HPLC-MS.  

5.3.12 Analysis of photo-transformation products 

Samples were stored at -20 °C for 8 weeks until they were analyzed. Analysis was 

performed using a CE 7100 (Agilent Technologies, Waldbronn, Germany) coupled to a 6550 

iFunnel mass spectrometer QTOF (Agilent Technologies, Waldbronn, Germany) as an 

autosampler and delivery system. Undiluted samples in water/acetonitrile (1/100) were 

injected hydrodynamically at 100 mbar for 15 sec and flushed to the MS with water at 1 bar 

for 30 sec using a bare fused silica capillary (50 µm diameter, 64.5 cm length). The mass 

spectrometer was run by an ESI source in the positive ionization mode at 3500 V. Gas 

temperature and flow rate were set to 150 °C and 11 L/min and nebulizer pressure 5 psig. 

Data were analyzed by MassHunter Qualitative software (Agilent Technologies, Waldbronn, 

Germany). Sum formula were calculated from exact masses by the software.  

5.3.13 Statistics 

Measured values were tested for normal distribution by Shapiro-Wilk-test with Origin 9.1.0 

(OriginLab, Northampton, USA) at a 0.05 level. If normal distribution was proven, significant 

differences of variances were tested with one-way ANOVA with the software Origin 9.1.0 

(OriginLab, Northampton, USA) at a level of 0.05. Non-normal distributed samples were 

tested with Kruskal-Wallis-test for differences with the software R (3.3.1, R Foundation for 

Statistical Computing). For linear regression in calibration experiments the software Origin 

9.1.0 (OriginLab, Northampton, USA) was used.  

5.4 RESULTS AND DISCUSSION 

Blank matrices, corresponding to uncontaminated samples, were used for optimization steps 

including cleanup, detection and quantification levels of the method.  
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5.4.1 Method development 

Separation and detection of propiconazole 

Separation was performed with an eluent made of methanol/water and a C18 column using 

gradient elution. Retention time for propiconazole was 13.2 min. Quantification was based 

on the deuterated internal standard propiconazole-d3. The fragment ion with the highest 

signal intensity was the triazole fragment Figure 27. As the isotopic labeling was at the 

aromatic ring, the fragment ion was the same for propiconazole and the internal standard 

propiconazole-d3 (compare Figure 27). Therefore, quantification was carried out in the MS 

mode without fragmentation. 

 

Figure 27: MS/MS spectra of propiconazole (red) (m/z [M+H]
+
: 342.0771) and isotopically labeled internal 

standard propiconazole-d3 (black) (m/z [M+H]
+
: 345.0964) and the two most abundant fragment ions the azole 

1H-1,2,4-triazole (m/z [C2H4N3]
+
: 69.0697) and the aromatic fragment 2,4-dichloro-1-methylbenzene-3,5,6-d3 m/z 

[C6H5Cl]
+
: 158.9759 (m/z [C6H2D3Cl]

+
: 160.9755) at the retention time 13.2 min, LOQ = 0.2 µg/L and LOD = 

0.1 µg/L, CE 24 V and a fragmentation voltage of 360 V. 

Measured MS/MS fragment ions of propiconazole corroborate literature data 190. The limit of 

detection (LOD) was below 0.1 µg/L for both compounds, determined by the concentration 

producing a signal three times larger than background noise (S/N = 3). The limit of 

quantification (LOQ) was 0.2 µg/L based on a signal to noise ratio of ten (S/N = 10). In 

comparison with literature the LOD determined in this study was higher than reported for 

wastewater samples with an LOD of 15 ng/L 191.  

Quantification of propiconazole in mycelium grown on agar plate experiments 

Extraction method development 

For mycelium grown on agar plates, different extraction methods were compared. To 

analyze signal suppression by interfering matrix components and the extraction efficiency of 

different solvents four extraction procedures, listed in Table 8, were compared based on 

relative signal intensities calculated as the percentage of peak areas of propiconazole and 
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spiked samples vs. standards at the spiked concentrations in methanol as reference. 

QuEChERS extraction (water + acetonitrile) was performed for raw extracts and with dSPE 

cleanup as commonly applied in food analysis 179. Ethyl acetate and methanol were used for 

liquid extraction. To simultaneously determine ergosterol and propiconazole content samples 

were extracted a) with methanol or b) methanol followed by subsequent acidic hydrolysis 

following published procedures 192. Every extraction method was performed with one sample 

spiked before extraction, to determine the recovery and with one sample spiked after 

extraction and before analysis to determine signal suppression by interfering matrix 

components. 

Table 8: Extraction procedures applied for fungi mycelium grown on agar plate to assess propiconazole content 
in wet weight mycelium. Signal intensities of samples spiked before (sample + spike) and after extraction (extract 
+ spike) to compare recovery and matrix effect are presented. 

extraction solvent sample signal area [%] 

water + acetonitrile sample + spike 21  

 extract + spike 41  

ethyl acetate sample + spike 11  

 extract + spike 18  

methanol sample + spike 9  

methanol + acidic hydrolysis sample + spike 6  

 

Signal areas of propiconazole in samples extracted with water and acetonitrile were 6 to 4-

fold higher than in the other extracts. Especially the extraction followed by subsequent acidic 

hydrolysis revealed signal areas of propiconazole below 10 % compared to reference 

material in methanol. Extraction with methanol and ethyl acetate showed comparable signal 

areas of propiconazole, but in both cases approximately 4-fold lower than in the QuEChERS 

extract.  Therefore, liquid-liquid extraction with water and acetonitrile was further optimized.  

Optimization of QuEChERS extraction 

Signal area of propiconazole was reduced in QuEChERS extract by 59 % and in the ethyl 

acetate extract by 82 % in extraction experiments, data shown in Table 8. Therefore, the 

implementation of a cleanup step in QuEChERS extraction was tested to increase signal 

intensity by removal of interfering matrix components. For cleanup PSA (primary secondary 

amines) was used, which removes fatty acids, organic acids, saccharides and some 

pigments from the QuEChERS raw extract by interaction with basic amino-groups 2. PSA 

and raw extract analysis was performed at three spiked concentrations of 0.5, 1 and 2 µg/L 

for two separate replicates. Quantification of propiconazole was achieved by external 

calibration. For each concentration two samples were spiked before and after the extraction 

prior to analysis. Results are presented in Figure 28.  
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Figure 28: Propiconazole concentration in fungi mycelium samples grown on agar plates, spiked before 
extraction (sample + spike) (grey and dark grey) and spiked before analysis (extract + spike) (light grey and 
black), for comparison cleaned extracts (grey and dark grey) and raw extracts (light grey and black) were 
analyzed at three concentrations 0.5, 1 and 2 µg/L (n = 2).  

The comparison of propiconazole signal areas with and without PSA cleanup clearly 

indicated that PSA treatment was not beneficial.  

Table 9: Comparison of dSPE cleaned extract and raw extract of fungi mycelium grown on agar plates. Recovery 
was calculated from samples spiked before extraction and matrix effect in samples spiked after extraction, the 
relative recovery is based on the absolute recovery corrected for matrix effects. For details of the calculation see 
text.  

 0.5 [µg/L] 1 [µg/L] 2 [µg/L] 

recovery (+PSA) 58 % 53 % 46 % 

recovery (-) 70 % 53 % 91 % 

matrix effect (+PSA) 37 % 28 % 32 % 

matrix effect (-) 30 % 37 % 41 % 

rel. recovery (+PSA) 93 % 74 %  68 % 

rel. recovery (-) 100 % 83 % 155 % 

 

Recovery was calculated based on the ratio of the peak area of propiconazole in the sample 

spiked before extraction to the peak area of a reference solution in methanol of the same 

concentration. The matrix effect was calculated by the ratio of the peak area of sample 

spiked after extraction and before analysis (extract + spike) to the peak area of a reference 

solution at like nominal concentration. To determine losses during extraction without signal 

suppression relative recovery was calculated as the ratio of peak area of sample spiked 

before extraction (sample + spike) to the peak area of the sample spiked after extraction 

(extract + spike). Average signal intensities of 66 ± 6 % were achieved for extracts cleaned 

with dSPE and 62 ± 7 % in raw extracts (Table 9). As no significant signal enhancing effect 

was observed and to keep sample preparation as simple as possible further method 

validation was performed using the raw extracts.   

Method validation 

Method validation was accomplished using mycelium samples to best reflect possible matrix 

effects. Calibration was performed with mycelium grown without propiconazole on agar 

plates. Samples were spiked at five concentrations 0.1, 0.2, 0.5, 1 and 2 µg/L in two 

independently treated samples (shown in Figure 29).  
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Figure 29: External calibration of propiconazole in mycelium grown on agar plates at five concentrations, (R² = 
0.99377, n = 2) and LOD = 0.1 µg/L and LOQ = 0.2 µg/L, 20 mg wet weight mycelium were used.  

Calibration data for mycelium grown on agar plates revealed an LOQ of 0.2 µg/L and an 

LOD below 0.1 µg/L for extraction of 20 mg frozen mycelium in 0.5 mL methanol. This 

corresponds to a method quantification limit of 5 ng propiconazole per g fungi wet weight. 

The calibration graph was linear over the whole range investigated (R² = 0.99377). 

Quantification of propiconazole in fungi mycelium grown in liquid culture  

Optimization of QuEChERS extraction  

Mycelium grown in liquid culture was dried at 60 °C and homogenized with mortar and pestle 

by addition of 25 mg sodium chloride to avoid electrostatic effects. Consequently, in the 

following QuEChERS extraction only anhydrous MgSO4 was added in the salting out step. 

To optimize QuEChERS extraction the implementation of cleanup by dSPE (dispersive solid 

phase extraction) was investigated by addition of different sorbents. Propiconazole peak 

areas in the raw extract, in extracts treated with non-endcapped C18, PSA cleaned extracts 

or, a combination of non-endcapped C18 and PSA, were compared. Non-endcapped C18 is 

a sorbent attracting nonpolar matrix components with its groups functionalized with 

octadecylsilane and polar basic compounds with non-endcapped silanol-groups 193. 

Recoveries and peak areas were calculated via peak area of propiconazole in the sample 

and in a methanolic reference solution and are given in Table 10. 

Table 10: Method validation parameters for propiconazole in fungi mycelium grown in liquid culture after 
QuEChERS extraction with different dSPE sorbents. Recovery is based on peak area of propiconazole in 
samples spiked before extraction and peak area is based on peak area of extracts spiked after extraction (see 
main text) (n = 2). 

 recovery [%] peak area [%] rel. recovery [%] 

raw 104 124 84 

PSA 107 126 85 

C18 133 134 100 

PSA+C18 110 101 109 
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Recovery of analyte in the raw extract was in the range of 104 ± 10 %. As revealed by one-

way ANOVA, only the treatment using C18 and PSA + C18 showed a significant difference 

to the results for the raw extract regarding recovery. Addition of a cleanup step led to 

recoveries with more than 100 %, especially for C18 cleanup. This fact might be due to 

signal enhancing effects of matrix components 194. With the good results for the most simple 

sample preparation, I continued work and validation using raw extracts.   

Method validation 

Linear range and detection limits were determined via calibration curves in matrix, for all 

three fungi species grown in liquid culture (Figure 30). Extraction was performed with the 

optimized QuEChERS extraction (see Section 5.3.5) with 20 mg mycelium for each sample. 

Six concentrations in three replicates were used for calibration in the range of 0 - 80 µg/L, 

results of linear regression are presented in Table 11.  

Table 11: Parameter of the linear regression (y = a + bx) used for external calibration for propiconazole in dried 
mycelium from different fungi species grown in liquid culture and extracted with QuEChERS by analysis of raw 
extracts for six spiked concentrations in the range 0 – 80 µg/L (n = 3). 

 a b r² LOD LOQ recovery 

A. muscaria -390000 276000 0.99926 < 1 µg/L < 1 µg/L 85 ± 6 % 

L. bicolor -409000 293000 0.99839 < 1 µg/L < 1 µg/L 93 ± 11 % 

C. geophilum -489000 262000 0.99762 < 1 µg/L < 1 µg/L 85 ± 12 % 

 

The sensitivity, determined as slopes b of the linear regression, was very similar for all three 

species, ranging from 276000 to 293000. The largest increase in peak area was detected for 

L. bicolor and the smallest for C. geophilum. R² values were greater than 0.99 for the 

concentration range of 0 – 80 µg/L and limits of quantification and detection were below 

1 µg/L for the three analyzed species. Differences in the calibration curves can be explained 

by different type and concentrations of co-extracted matrix components, resulting in different 

signal suppression during MS analysis. Therefore, individual external calibrations were 

required for each fungi species. 

 

Figure 30: Calibration curves for propiconazole measured in dried fungi mycelium grown in liquid culture for three 
fungi species. 
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Recoveries were significantly higher for mycelium grown on agar plates vs. in liquid culture. 

This is due to higher matrix load in 20 mg dried samples originating from liquid culture 

experiments compared to 20 mg wet weight mycelium from agar plate experiments. 

Mycelium samples grown on agar plates were extracted without drying and thus, 

concentrations are based on wet weight, whereas liquid culture mycelium was dried at 60 °C 

and internal concentrations are calculated based on dry weight. The high water content of 

mycelium results in higher concentrations based on dry weight vs. wet weight.  

Analysis of ergosterol in mycelium samples 

Ergosterol is used in environmental and food chemistry as an indicator for fungal 

contamination of food or construction materials, for example in barley or malt 195 or 

processed food like ketchup 196 or treated wood 197. To assess the inhibitory effect on 

ergosterol biosynthesis by propiconazole, ergosterol quantification was envisaged. It was 

hypothesized, that the ergosterol concentration in fungi decreases with increasing internal 

propiconazole concentration. Thus, quantification of ergosterol could be used as a 

bioindicator for ergosterol inhibitor burden for example in soil, like it is used as indicator for 

fungal contamination in building materials 197. Quantification methods of ergosterol were 

published for edible fungi 198. 

A significant fraction of ergosterol in fungi is bound to the cell wall via ester-bonds. Thus, 

ergosterol quantification may discriminate three fractions of ergosterol: Free, total free and 

absolute ergosterol content, which can be distinguished by appropriate extraction 

procedures. Total free ergosterol is obtained by alkaline hydrolysis with potassium hydroxide 

in methanol after extraction. Absolute ergosterol is determined after alkaline hydrolysis 

during extraction and free ergosterol without alkaline hydrolysis. Extraction is carried out with 

methanol and alkaline hydrolysis with potassium hydroxide. Partitioning of ergosterol into the 

hexane phase used for analysis is achieved by subsequent liquid-liquid extraction 195. 

Ultrasonic extraction is not possible due to decomposition of ergosterol molecules and thus 

reduced extraction of intact ergosterol 199. As most steroids, ergosterol has a low ionization 

potential in ESI-MS and is preferably ionized by APCI (atmospheric pressure chemical 

ionization) instead of ESI (electrospray ionization) or has to be derivatized as picolinyl ester 

to be suitable for ESI 200. This derivatization method has not yet been applied to 

environmental samples. For quantification in human blood samples 201 ergosterol was 

derivatized to the picolinyl ester with picolinic acid, pyridine and triethylamine with the use of 

2-methyl-6-nitrobenzoic anhydride and 4-dimethylaminopyridine at 80 °C 189. In this work 

ergosterol was extracted from fungi mycelium and derivatized to quantify the ergosterol 

content according to the procedure described in Section 5.3.10. However, the resulting 

ergosterol-derivatives could not be detected by ESI-source despite its higher polarity than 

ergosterol itself.  

Optimization of extraction conditions for agar plates extraction and liquid culture 

medium  

To assess the exposure concentration during experiments, the propiconazole content was 

quantified in the exposure media, these were, liquid culture medium and agar plates. 

Whereas for the liquid culture medium the analysis was straight forward by using liquid-liquid 

extraction with ethyl acetate, extraction from agar plates was more difficult. First agar plate 

extraction was performed according to literature for extraction of natural products 202. Frozen 

agar plates were thawed and solids separated from water by filtration. The water phases 

differed in volume for different biological samples from 0.5 to 3 mL for three agar plates. 

Thus, liquid-liquid extraction with ethyl acetate did not deliver reproducible results. Direct 
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extraction of agar plates with acetone or ethyl acetate after thawing did not give reproducible 

results either.  

Therefore, an extraction procedure based on dried agar plates instead of frozen agar plates 

was developed. Agar plates were dried at 60 °C for 24 h and homogenized with mortar and 

pestle before extraction.  

Different solvents were compared for liquid-liquid extraction (for details, see Section 5.3.6): 

1) ethyl acetate or ethyl acetate/water as used in liquid culture extraction, 2) methanol and 

3) acetonitrile/water according to mycelium extraction. Method development was performed 

with aliquots of 40 mg agar of one agar plate, containing 100 µg/L propiconazole. 

Recoveries and extracted concentrations, for two replicates of each procedure are given in 

Figure 31. For recovery experiments, internal standard was added prior to extraction and 

signal areas of internal standard in spiked samples were compared to the signal area of 

reference material in methanol (Figure 31). Recovery thus takes analyte losses during 

workup and matrix effects in MS analysis into account. 

Extraction procedures showed comparable recoveries between 20 and 30 % and 

propiconazole concentrations between 55 and 65 µg/L for the different treatments. The 

highest recovery was achieved for ethyl acetate extraction (29 ± 1 %), however, with slightly 

lower relative propiconazole concentrations (56 ± 0.2 µg/L) compared to extraction with 

other solvents. The lowest relative standard deviation (RSD) of recovery was achieved for 

ethyl acetate and ethyl acetate/water extraction (both 1.1 % RSD). Methanol extraction had 

an RSD of 2.4 % and acetonitrile/water of 1.8 %. The highest variability of 3.9 % for recovery 

was detected for pure acetonitrile extraction. This procedure showed best extraction 

performance of 66 µg/L but also the lowest recovery of 15 % in the same extract. 

 

 

Figure 31: Propiconazole concentration in samples originating from the same agar plate extracted with different 
solvents. Recovery was calculated based on spiked isotopically labelled propiconazole-d3 (light grey). The 
propiconazole concentration corresponds to nominal 100 µg/L. EA: ethyl acetate, MeCN: acetonitrile.  

Comparison of extraction with acetonitrile vs. extraction with ethyl acetate revealed better 

extraction (+ 8 µg/L) but lower recoveries (- 10 %) for acetonitrile as extraction solvent. This 

indicates better extraction properties of acetonitrile, which might be due to the higher polarity 
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and higher dipole moment of acetonitrile. The lower recovery might indicate interaction 

between the solvent and the pulverized agar, which lead to adsorption of internal standard to 

agar matrix or extraction of MS interfering matrix components to a higher extent.  

For further agar extraction ethyl acetate was used as solvent. This is advantageous as both 

extraction protocols for agar plates and liquid culture medium could be carried out with ethyl 

acetate. From the exposure experiment with 730 mg dried agar suspended in a final 

aqueous solution of 25 mL, only 80 mg of dried material were sufficient for quantification also 

when nanoparticles were added to the plates. Extraction of liquid culture medium was 

carried out with ethyl acetate (1/1) three times.  

Proof for co-extraction of propiconazole from nanoparticles in exposure experiments 

Nanoparticles were incubated with 5 µg/L propiconazole in methanol for 2 hours. After 

evaporation of the methanol nanoparticles were extracted with different solvents to assess 

the impact of different solvents on propiconazole desorption from nanoparticles. Solely 

nanoparticle samples were extracted with acetonitrile, ethyl acetate, acetonitrile/water (1/1) 

or ethyl acetate/water (1/1) (for details, see Section 5.3.11). Results showed reduced 

recoveries in extractions containing water, but comparable desorption efficiency of 

acetonitrile and ethyl acetate, as shown in Figure 32. This indicates that differences in 

propiconazole concentrations detected in fungi mycelium and exposure medium extracts are 

not due to differences in desorption efficiencies of different solvents used in the different 

extraction protocols but rather to different matrix effects.  

 

Figure 32: Propiconazole concentration in nanoparticle extracts. Nanoparticles were extracted with different 
solvents (see Section 5.3.11) and recovery was calculated by comparison of the signal area of propiconazole in 
extracts to the signal area of propiconazole standard in methanol. EA: ethyl acetate. 

5.4.2 Identification of propiconazole transformation products  

To assess the fate of propiconazole during the experiments beside sorption and uptake, the 

parent compound and its biotic and abiotic transformation products were analyzed in 

mycelium and growth medium. 
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Detected biotransformation products of propiconazole 

Biotransformation products of propiconazole were investigated in transformation studies with 

rainbow trouts 203 and gammarids 204. Rösch et al. detected two main metabolites, the first 

one resulting from hydroxylation and the second one by ether cleavage from propiconazole 
204. Published molecular structures of metabolites and propiconazole 205 are shown in Figure 

33, with structural isomers denoted BTP 2.1 - 2.3. 

 

Figure 33: Molecular structures of propiconazole and five biotransformation products (BTP), among them three 
isomeric forms (BTP 2.1-2.3). Chemical names of the metabolites are 2.1 3-(2-((1H-1,2,4-triazol-1-yl)methyl)-2-
(2,4-dichlorophenyl)-1,3-dioxolan-4-yl)propane-1-ol, BTP 2.2 1-(2-((1H-1,2,4-triazole-1-yl)methyl)-2-(2,4-
dichlorophenyl)-1,3-dioxolan-4-yl)propane-2-ol, BTP 2.3 1-(2-((1H-1,2,4-triazole-1-yl)methyl)-2-(2,4-
dichlorophenyl)-1,3-dioxolan-4-yl)propane-1-ol, BTP 3 1-(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethane-1-
one and BTP 4 1-(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethane-1-ol. 

The metabolites known from literature were analyzed by HPLC with high-resolution MS and 

MS/MS. Five metabolites were found consistent with those given in Figure 33, three of them 

being stereoisomers BTP 2.1 - 2.3. An HPLC-MS/MS method was developed to separate 

and analyze all metabolites in mycelium and medium extracts. For separation, a C18 column 

and gradient elution with methanol and water was used (see Section 5.3.8). The three 

stereoisomers had very similar retention times, but were visible as shoulders. The extracted 

ion chromatograms of five metabolites in fungi extracts are shown in Figure 34. 

 

Figure 34: Extracted ion chromatograms of metabolites in fungi extract, BTP 3 (green), BTP 4 (purple) and the 
partially separated 3 isomeric metabolites BTP 2.1 - 2.3 (blue). 

All three metabolites were detected in fungi mycelium and medium extracts (see Section 

5.5.3 and Section 5.5.4). Compound identification was confirmed by MS/MS analysis and 

absolute mass as well as retention time, data listed in Table 12.  
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Table 12: Identification criteria for metabolites of propiconazole, exact masses and retention time as well as 
major fragment ions obtained at CE 24 V and fragmentation voltage 360 V.  

metabolite  [M+H]
+
 tR [min] formula fragment 

BTP 3  256.0039 11.04 C10H7Cl2N3O 69.07 

BTP 4  258.0195 11.24 C10H9Cl2N3O 69.07 

BTP 2.1 - 2.3  358.0720 11.6 – 12.6 C15H17Cl2N3O3 256.004 + 203.034 

 

Reference material for metabolites was not commercially available and thus qualitative 

evaluation via signal intensities was performed for exposure experiments. In the following 

signal areas are always given relative to the signal area of isotopically labelled 

propiconazole-d3. 

Photo-transformation experiments of propiconazole 

Photo-transformation experiments were carried out for 60 min with irradiation at 220 –

 250 nm (see Section 5.3.9). Aliquots of the irradiated propiconazole solution were sampled 

and injected to the MS via a capillary electrophoresis autosampler and capillary. The 

products were not purified or isolated, thus, signal areas of transformation products are 

given in % of propiconazole, assuming that ionization efficiencies are similar to 

propiconazole. Photo-transformation products were identified according to literature 205-206. 

Kinetics of the photo-degradation processes were not considered and would have 

necessitated longer reaction times. 

Five transformation products could be identified by their exact masses (Figure 35), three of 

them are known from literature (PTP 2, PTP 3, PTP 5) 206. The most abundant signal was 

obtained for m/z = 324.11, corresponding to the calculated molecular formula C15H18ClN3O3, 

relating to compound PTP 5.  

Extracted ion chromatograms (EICs) were plotted for the transformation products in 

mycelium samples analyzed by HPLC-MS. Only transformation product C10H7Cl2N3O, 

compound PTP 2, was detected in fungi mycelium extracts, this compound is identical to 

BTP 3 originating also from metabolic transformation processes (see Figure 33). Therefore, 

it is likely that only biotic processes are relevant during the exposure experiments.   

 

Figure 35: Molecular structure of propiconazole and photo transformation products PTP, changes highlighted in 
red. PTP 2 1-(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethane-1-one, PTP 3 9-chloro-4'-propyl-5H-
spiro[[1,2,4]triazolo[5,1-a]isoquinoline-6,2'-[1,3]dioxolane], PTP 4 9-chloro-[1,2,4]triazole[5,1-a]isoquinoline-
6(5H)-one, PTP 5 4-hydroxybutyl 4-chloro-2-(1-methyl-1H-1,2,4-triazol-5-yl)benzoate and PTP 6 4-chloro-2-(1-
methyl-1H-1,2,4-triazole-5-yl)benzoic acid.  
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The time dependence of the formation of photo-transformation product PTP 5 is shown in 

Figure 36. With a small induction period visible below 5 min, it is likely that it is a secondary 

product and a daughter of a short-lived species. The compound is formed by hydrolysis of 

the dechlorinated cyclic ketal PTP 3 resulting in the side chain connected via ester bonding 

and methylation of the triazole ring. At the end of the experiment at 60 min, the signal area of 

compound PTP 5 was in the range of 3 x 107 and thus one order of magnitude below the 

initial propiconazole concentration of a peak area of 3 x 108. This concentration makes 

compound PTP 5 the main transformation product of propiconazole formed by irradiation. 

 

Figure 36: Kinetic of photo-transformation product PTP 5. 

The time dependence of the formation of photo-transformation product C15H16ClN3O2, 

compound PTP 3, is exponential. After about 35 min or PTP 3 further degrades in a 

secondary reaction and its concentration diminishes again, most likely because secondary 

products PTP 4 - 6 are formed (Figure 37). Vialaton et al. predicted HCl elimination followed 

by photo-cyclization as the first step and the major pathway of propiconazole photo-

degradation 206. Compound PTP 3 as precursor for products PTP 4 to 6 explains the kinetic 

shown in Figure 37 in grey ▲. Assuming similar ionization efficiencies, the concentrations of 

PTP 5 and PTP 6 exceed the concentration of PTP 3 at 60 min leading to drastically 

decreasing concentrations of the precursor compound. Compound PTP 5 is detected after 

4 minutes after an induction period with increasing concentrations. PTP 3 is detected from 

minute 20 on in correlation with the kinetics of PTP 3.  
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Figure 37: Kinetic of photo-transformation product PTP 3 and PTP 6.  

The reaction product PTP 6 is formed from PTP 5 by hydrolysis of the ester bound in the 

side chain and possesses a benzoic acidic functional group. The exponential kinetic (Figure 

37) can be explained, because formation of PTP 6 depends on the concentration of 

precursor PTP 5. Reaction product PTP 6 reaches a signal area approximately 25 % of the 

one of precursor PTP 5. 

Photo-transformation product C15H18ClN3O3, compound PTP 2, is formed following a zero 

order linear kinetic, the secondary product PTP 6, compound C10H8ClN3O2, is formed in a 

first order exponential kinetic. Both photoproducts are detected in increasing concentrations 

starting already 1 min after starting the irradiation. Vialaton predicted PTP 2 as formed by 

hydrolysis of the cyclic photo-product PTP 4 206. PTP 2 is formed by hydrolysis of the ketal 

resulting in the metabolite with a keto functional group, the kinetic is shown in Figure 38. 

This compound is also formed in biotic transformation. Compared to the other photo-

transformation products, compound PTP 2 has the lowest signal area, resulting in the lowest 

concentration of 0.3 % of the initial propiconazole concentration, whereas it is one of the 

most abundant metabolites in biotic transformation processes 204.  

At 20 min the photo-transformation product C10H6ClN3O (PTP 4) is formed with linearly 

increasing concentration (Figure 38). Cleavage of the ketal in PTP 3 results in PTP 4 

containing a tricyclic system with a keto functional group at the photo-cyclized ring.    
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Figure 38: Kinetic of PTP 2 and PTP 4 formed by irradiation within 60 min. 

All photo-transformation product kinetics start with a slower initiating phase, indicating that, 

they are secondary products. Propiconazole was degraded in water at 269 nm by direct 

photolysis as well as indirectly photodegraded by photo-induced reaction of dissolved 

organic matter leading e.g. to radicals 206. Product formation depends on the wavelength. At 

short wavelength the photo-cyclization (PTP 3) was the major pathway, at longer wavelength 

like sunlight oxidation processes occurred 206. The main products found by Vialaton et al. are 

PTP 5 and PTP 3 like in the experimental results shown here. Vialaton et al. confirmed the 

transformation products and their stereochemistry by independent synthesis 206. 

To exclude abiotic transformation processes as a reason for decreasing propiconazole 

concentrations, photo-transformation products known from literature were analyzed 205-206. 

Both photo- and oxidative transformation processes are known to be relevant for 

propiconazole 207 208.  The impact of UV light for photo-degradation of propiconazole was 

observed to play a minor role under field conditions 207.  

Photo-transformation products were neither detected in fungi sample extracts originating 

from agar plate and liquid culture experiments nor in liquid culture medium and agar plates. 

As both treatments were carried out without daylight, that seems likely. The only mass, 

which was detected, correlating to photo-transformation product PTP 5 is known to be also 

formed in biological processes (BTP 2 - 4) 204. 

5.4.3 Evaluation of analytical procedures with regard to literature methods 

The developed method enables the analysis of extracts from 20 mg dried mycelium grown in 

liquid culture and 20 mg fungi mycelium grown on agar plates with the same extraction 

protocol based on QuEChERS extraction procedure. To my knowledge, this is the first time 

that this extraction method is applied to fungi mycelium. With the developed method 

propiconazole and metabolites are detectable in the same extract without further extraction 

or cleanup steps. The analysis by HPLC-MS allows detection of propiconazole in fungi 

grown on agar plates at 0.1 µg/L and quantification at 0.2 µg/L corresponding to 25 ng per g 

wet weight mycelium with recoveries of 66 ± 6 %. For mycelium sample in liquid culture the 

developed method is applicable to different fungi species tested and comprises a limit of 

detection and quantification below 1 µg/L in fungi extract from 20 mg dried mycelium. 
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Recoveries of 104 ± 10 % were achieved based on deuterated internal standard. The 

developed agar extraction procedure of dried agar plates provides a robust protocol to 

analyze the propiconazole content of agar plates. 

5.5 APPLICATION 

The developed method was applied to fungi samples grown on agar plates and in liquid 

culture exposure experiments. Fungi were exposed to the fungicide propiconazole and to the 

combination of propiconazole and York-shell nanoparticles to evaluate the effect of 

nanoparticle sorption on uptake and transformation of the fungicide. Sorption experiments of 

nanoparticles and propiconazole were conducted and nominal exposure concentrations 

were calculated based on sorption isotherms. In comparison of both experiments the impact 

on a) the uptake rate of propiconazole by the fungi, b) the metabolic transformation rate of 

the fungi and c) the inhibition of growth was investigated.  

L. bicolor was used in agar plate experiments. In these experiments the propiconazole 

content in agar plates and fungi mycelium grown on these plates exposed to the combination 

of different nanoparticle concentrations and 100 µg/L propiconazole was analyzed. 

Experiments in liquid culture were performed with three fungi species and propiconazole 

concentrations according to the sensitivity of the fungi. A. muscaria, L. bicolor and C. 

geophilum were exposed to 5 mg/L propiconazole without nanoparticles. In this experiment 

fungi mycelium and liquid culture medium were analyzed with the developed method.  

To assess the impact of nanoparticles in liquid culture A. muscaria was exposed to different 

propiconazole concentrations without nanoparticles and to 5 mg/L propiconazole and 

different nanoparticle concentrations resulting in the same nominal propiconazole exposure 

concentrations after sorption equilibrium. In these experiments the medium and dried fungi 

mycelium were analyzed with the developed method.  

5.5.1 Sorption of propiconazole to nanoparticles 

Leyla Guluzada and Stefan Haderlein Center of Geosciences, University of Tübingen, 

conducted batch experiments for sorption of propiconazole to York-shell nanoparticles. 

Freundlich/Langmuir isotherms were obtained with a Kd value of 7735.562 and in the 

experiment on agar plates a Kd value of 10164. From these isotherms, bioavailable 

concentrations of propiconazole were calculated for different amounts of nanoparticles 

added to the exposure experiments. Bioavailable concentrations were set to 0.085, 0.05 and 

0.015 mg/L reduced from 0.1 mg/L in agar plate experiments and to 1, 2.5 and 4 mg/L 

reduced from 5 mg/L in liquid culture experiments.  

5.5.2 Analysis of exposure medium  

Control of propiconazole exposure concentrations in agar plates 

In agar plate experiments 1.2, 3.7 and 6.4 mg/L nanoparticles were added to a mixture of 

agar containing 100 µg/L propiconazole. According to the calculated sorption isotherms, the 

added nanoparticles were expected to sorb propiconazole. In equilibrium bioavailable 

concentrations were not sorbed. The bioavailable propiconazole concentrations were 0.015, 

0.05 and 0.085 µg/L. The highest exposure concentration was without nanoparticles.  
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Fungicide concentration was measured in agar in order to verify the calculated bioavailable 

concentrations in the presence of nanoparticles. The propiconazole concentration was 

analyzed at the end of exposure experiments in 80 mg dried agar with two independently 

treated samples per agar plate and three agar plates for each tested concentration. 

Extraction was carried out with ethyl acetate as described in Section 5.3.6. Calculations 

included corrections via recoveries (see Section 5.3.6). 

 

Figure 39: Measured propiconazole concentration in agar extracts at the end of the experiment (n = 6, 3 
biological replicates per concentration, and two analytical replicates). Bioavailable propiconazole concentrations 
were reduced from 100 µg/L to 85, 50 and 15 µg/L by addition of appropriate amounts of nanoparticles, 
calculated via adsorption isotherms. 

For all samples, the measured propiconazole concentration decreased with increasing 

nanoparticle concentrations (Figure 39). In all experiments 100 µg/L propiconazole and 0, 

0.03, 0.129 and 0.517 g/L York-shell nanoparticles were present, leading to a sorption of 15, 

50 and 85 %. As expected the available propiconazole concentration was reduced due to 

sorption to added nanoparticles. Biotic and abiotic transformation products were not 

detected in agar plate extracts with fungi present.  

The amount of available agar differed after drying for the treatments. On average for all 6 

treatments, 661 ± 105 mg dried agar were obtained, with differences between the treatments 

according to added nanoparticle concentrations: in treatments without nanoparticles 

720 ± 27 mg were obtained after drying, for samples with 15 % and 50 % sorption nearly the 

same amount with 680 ± 24 and 684 ± 30 mg was obtained. The lowest amount of agar (549 

± 154 mg) was obtained for the samples with the highest nanoparticle concentration. 

Addition of nanoparticles might lead to modification of agar but further replicates would be 

needed for verification of this hypothesis.  

Analysis of agar plate extracts prove, that propiconazole concentrations were reduced by 

sorption to nanoparticles as calculated from adsorption isotherms. In the agar plates neither 

biotic nor abiotic transformation products were detected at the end of the treatment. 

Therefore, the exposure concentration during the experiment was assumed to be stable.  

Control of propiconazole exposure concentration in liquid culture medium 

In the same way as for agar plate cultivation, the exposure concentration of propiconazole 

was monitored for liquid culture medium. For this, samples of the medium were taken at the 
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beginning of experiment day (0) and the last day (7) for different nominal propiconazole 

concentrations of 1 to 5 mg/L. To exclude competing non biological degradation processes 

with metabolism, samples were analyzed for propiconazole and transformation products 

(see Section 5.3.5 and Section 5.3.7). In all samples except 2.5 mg/L the concentration was 

stable in flasks without fungi (Figure 40). In every flask 5 mg/L propiconazole and different 

nanoparticle concentrations reducing the bioavailable fungicide concentration to 1, 2.5 and 

5 mg/L as well as glucose were present. For nominal concentrations of 1 and 5 mg/L no 

changes in the propiconazole concentration were observed (see Figure 40). In the exposure 

experiment with 2.5 mg/L a fungal contamination was observed, which can explain formation 

of the metabolite BTP 4. The measured concentrations were higher than the calculated 

concentrations in experiments with 2.5 and 4 mg/L. This might be explained by desorption 

processes of propiconazole from nanoparticles in the presence of medium components.  

 

Figure 40: Propiconazole concentration in medium without fungi with reduced fungicide concentrations by 
sorption to nanoparticles from 5 mg/L to 4, 2.5 and 1 mg/L at the beginning of the experiment day (0) and end of 
the experiment after one week day (7). Two samples were analyzed per concentration. BTP 4, see Figure 33. 

Analysis of liquid medium extracts prove that propiconazole concentrations were reduced by 

sorption to nanoparticles as calculated from adsorption isotherms. Medium extracts were 

tested for biotic and abiotic transformation products. In medium extracts from liquid culture 

experiments only in one contaminated sample biotic transformation products were observed 

in the other samples neither biotic nor abiotic transformation products were detected. 

Propiconazole concentrations were in the same range for day (0) and day (7). Therefore, the 

exposure concentration during the experiment was assumed to be stable.  

5.5.3 Uptake and metabolism of propiconazole in L. bicolor grown on agar plates in 

the presence of nanoparticles 

Exposure experiment 

For growing and uptake experiments with agar plates Laccaria bicolor was grown for 2 

weeks on agar plates in the presence of nanoparticles and propiconazole (see Section 5.3.4 

and Section 5.3.6). Propiconazole concentrations in agar were reduced from 100 µg/L by 

addition of 0, 0.032, 0.129 and 0.517 g/L York-shell nanoparticles to nominal propiconazole 

concentrations of 80, 50 and 20 µg/L. The nominal concentrations were calculated based on 
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adsorption isotherms (see Section 5.5.1). For each concentration three biological replicates 

were used.  

Propiconazole uptake 

The propiconazole concentration in L. bicolor mycelium after exposure to different 

bioavailable propiconazole concentrations was quantified using QuEChERS extraction as 

described in Section 5.3.4. For each exposure experiment (4 concentrations, 3 biological 

replicates) two independent workups were conducted using 20 mg of homogenized 

mycelium each. The internal concentration was calculated based on wet weight fungus using 

internal standard (see Section 5.3.4). 

 

Figure 41: Propiconazole concentration in Laccaria bicolor mycelium extracts grown on agar plates when 
exposed to propiconazole. Nominal propiconazole concentrations were calculated from sorption isotherms for 
propiconazole on organo silica nanoparticles. The bioavailable concentrations were reduced from 100 µg/L by 
addition of nanoparticles to 80, 50 and 20 µg/L. Quantification was based on peak area of propiconazole in ratio 
to ISTD in QuEChERS extracts. Concentrations are given on a µg/g scale based on the wet weight of the 
mycelium. For every exposure concentration three biological replicates were conducted, two samples of at least 
10 mg were taken per replicate followed by independent workup and analysis. 

Figure 41 shows the internal concentration of propiconazole in mycelium plotted against the 

nominal concentration calculated via adsorption isotherms (see Section 5.5.1). Clearly, the 

uptake increased with increasing bioavailable exposure concentrations. Low variance was 

observed for biological replicates with 0.2 ± 0.1, 1 ± 0.2, 2 ± 0.3 and 7 ± 2 µg/g. The results 

demonstrate that the addition of sorbing nanoparticles reduces the bioavailable 

concentration of propiconazole and leads to lowered internal concentrations. The non-linear 

dependence of internal concentration on the nominal concentration, may be explained by 

propiconazole’s effect on fungal growth: Fungal biomass can be used as an indicator for the 

effects of the fungicide, because propiconazole decreases mycelium growth by inhibition of 

ergosterol synthesis. Consequently, internal concentrations were plotted against the mass of 

the fungi from different exposure experiments (Figure 42). The reduced growth at higher 

bioavailable exposure concentrations indicates the inhibitory effect of the fungicide on 

ergosterol biosynthesis and thus reduced growth due to a lowered cell wall stability. 

Treatments can be clearly distinguished one from another.  
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Figure 42: Correlation of mycelium mass and internal concentration of incorporated propiconazole. Fitting with a 
two-phase exponential association equation model reveals R² = 0.98741.  

Fitting confirms an exponential correlation between growth and propiconazole exposure 

concentration. This may be explained by a combined effect of higher uptake rates and 

increased inhibition of growth at higher exposure concentrations.   

Propiconazole transformation by Laccaria bicolor 

To analyze the metabolism of propiconazole all metabolites (BTP 2.1 - 2.3 as combination, 

because signal were not resolved, BTP 3 and BTP 4) identified in Section 5.4.2 were 

analyzed in mycelium extracts, according to the procedure described in Section 5.4.2. Due 

to the lack of commercial availability of metabolite standards, data were evaluated only 

qualitatively. Results are given in Figure 43. 

 

Figure 43: Metabolites in L. bicolor mycelium grown on agar plates exposed to propiconazole at reduced 
bioavailable concentrations by sorption to nanoparticles (see Section 5.5.1). Signal areas of the metabolites are 
given. For every exposure concentration three biological replicates with two independent extractions per replicate 
were analyzed.  
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In the extract according to the lowest exposure concentration no metabolites were detected, 

maybe metabolite concentrations were below the limit of detection. The internal 

concentration of metabolites increases with increasing propiconazole concentration. All 

signal areas of the metabolites were 10-fold lower compared to propiconazole (Figure 41). 

Assuming similar ionization efficiencies, a low degree of metabolism was present. Of all 

metabolites detected in mycelium extracts, BTP 3 revealed the lowest signal intensity of 

about one third of the one of BTP 2 and 4, regardless of the nominal exposure concentration 

of propiconazole. Peak intensities of BTP 2 and 4 were in the same order of magnitude.  

Metabolites concentrations in mycelium show a metabolic activity of the fungus towards 

propiconazole and the capability to metabolize the fungicide at exposure concentrations up 

to 100 µg/L in agar plates. The detection of the metabolites in signal areas 10-fold lower 

than the one of propiconazole (Figure 41 and Figure 43) and high amounts of propiconazole 

remaining in the agar (Figure 39) indicates a slow metabolism or reduced availability due to 

sorption to agar or diffusion limitation. For the different exposure concentrations different 

mycelium amounts were available for analysis: 2 ± 2, 4 ± 2, 20 ± 14 and 30 ± 14 mg for 100, 

80, 50 and 20 µg/L, respectively. Taking the amount of extracted sample into account the 

detected concentration of metabolites increases with increasing available propiconazole 

concentrations. This shows, that sorption to nanoparticles prevents propiconazole from 

degradation. The lower propiconazole content at lower exposure concentrations indicates a 

reduced uptake of the fungicide correlating with lower metabolite abundancies. To answer 

the question, if sorption to nanoparticles leads to a stable exposure concentration due to 

desorption processes from the nanoparticles, more experiments are required.  

5.5.4 Liquid culture experiments 

Fungi in liquid culture experiments were grown in 20 mL medium with 500 mg fungi 

mycelium as starting material for 1 week. In these exposure experiments three fungi species 

L. bicolor, A. muscaria and C. geophilum were exposed to propiconazole at 5 mg/L. 

geophilum to 2 mg/L. According to their sensitivity towards the fungicide, exposure 

concentrations were chosen to induce a growth inhibition of 70 %. Samples were provided 

by Elisabeth Früh. Five biological replicates per exposure concentration were analyzed in 

two independent extractions, according to the developed procedure, described in Section 

5.3.5. 

Propiconazole uptake by different fungi species without nanoparticles 

Quantification or propiconazole in mycelium 

Mycelium samples were dried and two independent extractions carried out per biological 

replicate with the optimized QuEChERS extraction procedure as described in Section 5.3.5. 

To determine the propiconazole content in mycelia 7 - 42 mg were taken per biological 

sample. In addition, the liquid medium was analyzed as described in Section 5.5.2. Results 

are given in Figure 44 with propiconazole concentration in µg/g dried mycelium. Clearly, the 

detected internal concentration differs significantly between the three species (Figure 44).  

The highest internal content of 785 ± 47 µg/g was detected in C. geophilum. In A. muscaria 

the content was only 33 ± 21 µg/g and thus lower by a factor of 24. Propiconazole content 

was intermediate (284 ± 80 µg/g) in L. bicolor, but here, the highest standard deviations 

were observed. The fungi with the highest internal concentration in the A. muscaria 

experiment was excluded from statistical analysis: Without this outlier the measured values 

in all three species are normally distributed and with significant differences (F = 1.6E-7, F = 

2.5E-12, p > 0.05).  
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Figure 44: Comparison of the internal content of propiconazole in three fungi species grown in liquid culture, 
exposed to 5 mg/L propiconazole for 7 days. Five biological replicates per fungi species each divided into two 
analytical replicates were analyzed. Samples were extracted by QuEChERS extraction. Quantification was based 
on external calibration, see Section 5.4.1.  

The mycelium mass analyzed was 42 ± 3 mg for C. geophilum, 12 ± 2 mg L. bicolor and 7 ± 

2 mg for A. muscaria. Results reveal, that the internal concentration is inversely correlated to 

biomass. This indicates different metabolic activities of the different species. Except for the 

medium for L. bicolor, at the end of the experiment no propiconazole was observed in the 

medium. This indicates that propiconazole was fully metabolized by the fungi. These finding 

corroborate literature observations. In experiments on agar plates A. muscaria and C. 

geophilum were able to tolerate up to 0.1 ppm propiconazole and one strain of C. geophilum 

was even stimulated in growth 161. In the study presented here, C. geophilum showed the 

highest increase in biomass combined with the highest concentration of incorporated 

fungicide. For L. bicolor and A. muscaria distinct differences in glucose transport were 

observed 209. Glucose was taken up at maximal speed from the beginning of the experiment 

by L. bicolor whereas A. muscaria exceeded this uptake rate by a factor of seven at the end 

of experiment 209 163 210. The higher metabolic activity of A. muscaria could explain the lower 

incorporated fungicide concentration. If propiconazole is metabolized faster in A. muscaria 

than in the other species, this would lead to a lower internal concentration although the 

uptake rate is higher.  

These results clearly show strong inter-species differences for the tested fungi. Thus, the 

transfer of results from one species to another and the assessment of a general impact on 

fungi is difficult, as results of this study indicate that metabolism in different fungi species 

tends to differ to a great extent. Results provide evidence for bioaccumulation of 

propiconazole in some of the treated fungi species.  

Propiconazole transformation in liquid culture medium by different fungi species 

Metabolites were not detectable in mycelium extracts. Still they might be present but at lower 

concentrations than the limit of detection, or released to growing medium.  

The exchange between fungi and liquid medium is fast for nutrient provision. In addition, 

there are many extracellular enzymes secreted by the fungi. Therefore, the medium was 

analyzed for differences in metabolic activity between the fungi species to explain the 

different propiconazole concentrations after 7 days of exposure. Three biological replicates 
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were analyzed for each fungus. The analytical methodology is described in Section 5.3.8. 

Metabolites BTP 2 - 4 were identified by HPLC-MS and their signal area is given in Figure 45 

together with the signal area of propiconazole, where detected. In samples from L. bicolor all 

analytes were detected. In C. geophilum, BTP 2 - 4 but not propiconazole were detected and 

samples of A. muscaria did not reveal any of the compounds. 

 

Figure 45: Propiconazole and metabolite concentrations in liquid culture medium after 7 days of exposure to 
different fungi species. Peak area of metabolites and propiconazole are given. Three biological replicates were 
analyzed for every fungi species.  

Detected metabolite concentrations clearly differ between species. In case of A. muscaria 

levels below the limit of detection were observed for all metabolites and thus significantly 

lower than in L. bicolor and C. geophilum (p > 0.05). Obviously, A. muscaria is capable of 

metabolizing propiconazole faster than the other two fungi species (excluding abiotic 

transformation, see Section 5.5.2). In C. geophilum BTP 4 was the most abundant 

metabolite and propiconazole were not detectable after 7 days. Propiconazole was only 

detected in the experiments with L. bicolor at the end of exposure time. Here, all metabolites 

showed similar peak areas and thus presumably similar concentrations. BTP 3 had the 

lowest concentration, which is in accordance with the findings from growing studies on agar 

plates, where it is the least abundant metabolite (see Section 5.5.3 and Figure 43). The 

results indicate that all investigated fungi species are able to metabolize propiconazole at 

concentrations of 5, 2 and 0.1 mg/L in liquid culture for A. muscaria, C. geophilum and L. 

bicolor, respectively.  

In case of A. muscaria and C. geophilum at the end of the exposure experiment 

propiconazole was not detectable in the medium, although these experiments were 

conducted at higher exposure concentrations. C. geophilium showed the highest increase in 

biomass with 42 mg present at the end of the experiment and the highest propiconazole 

content in mycelium at a medium exposure concentration of 2 mg/L. A. muscaria had the 

lowest increase by 7 mg at the end of the experiment and the lowest propiconazole content 

in mycelium at the highest exposure concentration of 5 mg/L. These findings show, that the 

incorporated propiconazole concentration was not reflected by inhibition of growth between 

the different species. A. muscaria seems to transform propiconazole, as only low 

concentrations were incorporated and no propiconazole was present in the medium, but the 
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growth rate is reduced, whereas C. geophilum seems to incorporate propiconazole and 

transform it to mainly one metabolite, the growth rate was reduced to a lower extent.   

To summarize the different patterns of propiconazole and metabolite composition and 

concentrations observed in the extracts indicate differences in metabolic activity among the 

species and growing conditions studied. Differences in metabolic activity may at least 

partially explain the observed propiconazole concentrations resulting in different 

bioaccumulation patterns.  

Comparing agar plate and liquid culture experiments the propiconazole content in mycelium 

grown on agar plate was 30 fold lower at the same exposure concentration of 100 µg/L for L. 

bicolor samples. In case of agar plate experiment the internal concentration is wet weight 

whereas in liquid culture mycelium it is based on dry weight. Data of the range of mass 

reduction during drying were not available. With assuming a reduction of mass by 

approximately 90 %, the accumulation potential of the fungus would be in the same range for 

both growing conditions. In agar plate experiments metabolites were detected in mycelium in 

10-fold lower concentrations compared to the detected propiconazole concentrations. In 

liquid culture experiments metabolites were not detected in mycelium extracts and at 10-fold 

lower concentrations in medium than the remaining propiconazole concentration. This 

indicates a faster metabolic activity in liquid culture than in agar plate experiments. The 

higher transformation rate in liquid culture medium may be explained by a higher metabolic 

activity of the fungus in liquid culture, where nutrients and propiconazole are more easily 

accessible than in agar plates. The higher amount of mycelium available at the end of the 

exposure time supports this hypothesis.  

In some cases metabolites are more active than the parent compound. To investigate the 

toxicity of propiconazole metabolites experiments with isolated metabolites are required. But 

the higher growing rate in liquid culture medium experiments in the presence of metabolites 

indicates a reduced toxicity of the metabolites compared to the parent compound.  

Changes in propiconazole uptake by Amanita muscaria grown in liquid culture by the 

addition of sorbing nanoparticles 

The impact of nanoparticles on toxicity of propiconazole towards fungi was investigated in 

experiments with A. muscaria in liquid culture using five biological replicates per exposure 

concentration. For reference, a first exposure experiment used concentrations of 1, 2.5, 4 

and 5 mg/L propiconazole without nanoparticles to assess the impact of the fungicide (see 

Figure 46). In a second step, nanoparticles were added to the liquid medium containing 

5 mg/L propiconazole in to order sorb propiconazole to a certain extent. The nanoparticle 

content was chosen from isotherm data to give rise to a nominal concentration in the 

medium of 2.5 mg/L. Exposure experiments were conducted for seven days. Biological 

replicates were divided in duplicates of each 3 - 11 mg. They were processed with 

QuEChERS extraction procedure according to Section 5.3.5 and analyzed for propiconazole 

as described in Section 5.3.8. 

Uptake of propiconazole by mycelium in the presence of nanoparticles 

The incorporated concentrations in this experiment were in the same order of magnitude like 

the concentration detected in A. muscaria mycelium from the previous experiment where 

fungi were exposed to 5 mg/L propiconazole (see Section 5.5.3 and Figure 44) corroborating 

the robustness of the methodology used. An increasing internal concentration with 

increasing exposure concentration of propiconazole was detected (Figure 46). The internal 
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concentration was significantly different for samples with nominal concentrations 1 vs. 

4 mg/L (p = 0.00038) and 1 vs. 5 mg/L (p = 5.9E-5), and for 2.5 vs. 5 mg/L (p = 0.00011).  

 

Figure 46: Propiconazole concentration in A. muscaria grown in liquid culture exposed to different fungicide 
concentrations. For each exposure concentration five biological replicates were analyzed in two independently 
extracted aliquots. Average values for the two extracts are given. Quantification is based on peak area calculated 
based on peak area of internal standard. 

One set of samples was exposed to 2.5 mg/L propiconazole directly and the other one in an 

experiment, where the original propiconazole concentration of 5 mg/L was reduced by 

addition of nanoparticles sorbing propiconazole to yield a nominal bioavailable concentration 

of 2.5 mg/L as calculated by sorption isotherms. The difference in propiconazole 

concentration in mycelium from these two exposure experiments were highly significant with 

(p = 2.75E-9) (see Figure 47).  

 

Figure 47: Propiconazole concentration in QuEChERS extracts from A. muscaria mycelium exposed to 1, 2.5, 4 
and 5 mg/L propiconazole as well as exposed to a medium with 5 mg/L propiconazole and nanoparticles 
reducing the bioavailable concentration by sorption to 2.5 mg/L (calculated by sorption isotherms). For each 
exposure concentration 5 biological replicates were analyzed each in two independently extracted aliquots (n = 
2). Quantification is based on deuterated internal standard.  
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The higher concentration in the fungi exposed to the combination of nanoparticles and 

propiconazole gives rise to the suspicion of a pool of propiconazole being sorbed to the 

nanoparticles. This pool is not bioavailable and protected from being metabolized by the 

fungus (compare Section 5.5.4). Therefore, it would still be detectable at the end of the 

experiment. This hypothesis is further supported by the difference in the mass of mycelium 

(dry weight) present after 7 days of exposure shown in Table 13.  

Table 13: Available fungi mycelium mass (dry weight) grown after 7 days at different exposure concentrations of 
propiconazole with and without addition of nanoparticles (NP). 

      

exposure 
concentration [mg/L] 

1 2.5 4 5 5 + NP (2.5 nominal) 

mycelium mass [mg] 13 ± 5 14 ± 1 11 ± 4 9 ± 2 18 ± 1 

 

With increasing propiconazole concentration, growth is inhibited, which is reflected in the 

mycelium mass present at the end of the experiment decreasing from 13 to 9 mg. In the 

exposure experiment with nanoparticles, a medium nominal concentration of 2.5 mg/L was 

defined. In this experiment, the highest mycelium mass was observed. Different explanations 

can be given: It might indicate that nanoparticles (absolute amount in the medium was 6 mg) 

sorb to mycelium surface and are included in QuEChERS extraction and remain in 

QuEChERS extracts. 0.129 g/L nanoparticles were added in samples 2.5 NP with 20 mL 

medium resulting in 6 mg absolute nanoparticles and a bioavailable concentration of 

2.5 mg/L propiconazole. A co-extraction of propiconazole from nanoparticles is unlikely, 

because desorption experiments gave no hint to different solvation properties of acetonitrile 

and ethyl acetate (see Section 5.3.11 and Figure 32). Experiments with nanoparticles and 

without propiconazole did not affect the increase of biomass. 

When nanoparticles were added to the liquid culture medium containing 5 mg/L fungicide, 

the internal concentration was up to five times higher compared to all further experiments 

without nanoparticles. To better evaluate the effect of nanoparticles, exposure experiments 

with different propiconazole concentrations are compared to exposure experiments 

conducted at 5 mg/L propiconazole and different nanoparticle concentrations reducing the 

bioavailable propiconazole concentration to the same nominal concentrations used in the 

experiment without nanoparticles. 

Internal propiconazole concentration in Amanita muscaria exposed in the presence of 

different amounts of nanoparticles  

Exposure experiment 

A. muscaria was exposed to different propiconazole concentrations as in the previous 

experiment. In this experiment the same nominal concentrations were reached by addition of 

nanoparticles reducing the bioavailable concentration due to sorption of propiconazole to 

nanoparticles. The nominal (bioavailable) propiconazole concentration was reduced from 

5 mg/L propiconazole by addition of different concentrations of York-shell nanoparticles, 

calculated via adsorption isotherms. Fungi were treated as in the previous experiments and 

exposed for one week in liquid culture medium. Dried mycelium (at least 10 mg) from five 

biological replicates was extracted in independently treated duplicates and analyzed with the 

optimized HPLC-MS method described in Section 5.3.5. Nanoparticle concentrations were 

0.03 g/L resulting in 4 mg/L bioavailable propiconazole, 0.129 g/L resulting in 2.5 mg/L 

propiconazole and 0.517 g/L nanoparticles resulting in 1 mg/L nominal propiconazole as 

exposure concentration. 
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Uptake of propiconazole at reduced bioavailable concentrations 

As shown in Figure 48, the highest propiconazole concentrations were detected in mycelium 

exposed to nominal propiconazole concentrations of 1 and 2.5 mg/L with 7 ± 1 and 9 ± 

3 µg/g. The five biological replicates exposed to 4 mg/L propiconazole showed a high 

variation of 2 ± 1 µg/g for three fungi and 9 ± 2 µg/L for two fungi. The lowest propiconazole 

content was detected in fungi exposed to the highest concentration of 5 mg/L without 

addition of nanoparticles with a content in mycelium of 1 ± 0.5 µg/g. The analysis of 

mycelium showed an increasing propiconazole concentration with higher nanoparticle 

concentrations, correlating with lower nominal propiconazole concentrations. The detected 

concentration in the sample exposed to 5 mg/L was five times lower compared to the sample 

without nanoparticles and the concentration detected in the sample exposed to 2.5 mg/L was 

three times lower. The analyzed concentrations are in the same order of magnitude and 

standard deviation of concentrations within one experiment was lower especially for samples 

exposed at the same concentration. This shows the robustness of the method but 

differences between experiments. These differences may be due to different laboratory 

conditions during exposure time.   

The high variability in samples exposed to 4 mg/L bioavailable propiconazole agrees with a 

high variability of propiconazole concentration detected in reference medium samples at this 

concentration (Figure 40), the reasons for this are unknown.  

The results reveal strong differences of the propiconazole concentration in mycelium 

exposed when nanoparticles were added compared to exposure experiments with only 

propiconazole (Figure 46). Fungi grown in the highest exposure concentration of 

propiconazole-only extracts showed the lowest internal concentration, whereas at high 

nanoparticle concentrations and thus at the second lowest bioavailable concentrations the 

highest internal concentrations were measured (Figure 48).  

 

Figure 48: A. muscaria mycelium grown in liquid culture exposed to 5 mg/L propiconazole and different 
concentrations of nanoparticles reducing the bioavailable concentration to nominal concentration of 1, 2.5 and 
4 mg/L propiconazole. For each exposure concentration 5 biological replicates were analyzed each in two 
independently extracted aliquots. Quantification is based on deuterated internal standard. To reduce the 
bioavailable propiconazole concentration 0.032, 0.129 and 0.517 g/L nanoparticles were present in 20 mL 
medium. 
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Higher detected propiconazole concentrations in experiments including nanoparticles might 

be due to reduced degradation by the fungi of sorbed and thus non-bioavailable 

propiconazole as discussed in the previous section. The real propiconazole concentration 

may be lower than expected from the experimental design. During the extraction procedure 

propiconazole may desorb from nanoparticles themselves. Real propiconazole 

concentrations may differ from nominal ones by bio transformation, see Section 5.5.4. These 

may sorb to fungi mycelium by higher affinity to organic material than to water. 

Consequently, propiconazole concentration may not fully reflect internal concentrations.  

In previous experiments with different fungi species (Figure 44 and Section 5.5.4) metabolic 

activity was observed by detection of metabolites in the medium (Figure 45) and in fungi 

mycelium grown on agar plates (Figure 43). Another indication for metabolic activity of the 

fungus is the decreasing concentration of propiconazole during exposure time. At the end of 

the experiment no propiconazole was detected in the exposure medium (Figure 45). If A. 

muscaria is able to quickly metabolize propiconazole, sorption of the fungicide to 

nanoparticles would inhibit this degradation processes and only bioavailable fungicide is 

degraded. As organic nanoparticles might sorb to organic material like mycelium rather than 

being dissolved in medium, during the extraction procedure propiconazole would partially 

desorb from nanoparticles and be detected in addition to the internal concentration in fungi. 

To prove this hypothesis mycelium and medium were analyzed for metabolite 

concentrations. 

Identification of metabolites in mycelium 

Chromatograms were re-evaluated for metabolites. The mycelium extracts contained the 

metabolites BTP 2 - 4, see (Figure 49). Metabolites were quantified relative to 

propiconazole-d3 signal area. The most abundant metabolite in all samples was BTP 4, 

detected in higher concentrations than propiconazole, followed by BTP 2 in about 10-fold 

lower amount assuming similar ionization efficiencies. All samples reveal very similar ratios 

in metabolic composition. Surprisingly, all analytes showed decreasing concentrations at 

higher nominal initial propiconazole concentrations. In the previous experiment with different 

fungi species (Section 5.5.4) metabolites were not detected nether in the A. muscaria 

mycelium (Figure 44) nor in medium (Figure 45), this indicates fast complete degradation of 

propiconazole. In the experiment with nanoparticles propiconazole and metabolites were 

detected at the end of the exposure time in medium and mycelium. This shows an effect of 

nanoparticle sorption to the degradation of propiconazole by the fungus.  
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Figure 49: Peak area of propiconazole and of three metabolites in A. muscaria mycelium grown in liquid culture 
for seven days exposed to propiconazole in the presence of nanoparticles reducing the bioavailable 
concentration from 5 mg/L by sorption processes. Samples were extracted with ethyl acetate and analyzed by 
HPLC-MS.   

The metabolite composition shown in in Figure 49 was different from the one observed in 

exposure experiments with L. bicolor, grown on agar plates (Figure 43), where BTP 4 signal 

area was in the same order of magnitude but BTP 3 signal area was one third of its intensity. 

In contrast, in A. muscaria the BTP 4 was the most abundant metabolite with 10-fold higher 

intensities than the other metabolites. The concentration of BTP 2 was close to the limit of 

detection in samples exposed at high concentrations. This indicates differences in metabolic 

activity between fungi species. 

Concentration of propiconazole and metabolites in liquid culture medium 

Liquid culture medium was analyzed for metabolite and propiconazole content, given as 

signal area. After 7 days propiconazole was not detectable at the highest fungicide 

concentration without nanoparticles (5 mg/L) and with increasing concentrations in samples 

with nominal 4 and 2.5 mg/L propiconazole (Figure 51). This increasing propiconazole 

concentration correlates with an increasing nanoparticle content present in the samples. At 

the lowest nominal exposure concentration, a low concentration of propiconazole was 

detected. In reference medium the concentration was stable over the exposure period, thus 

abiotic transformation can be excluded (Figure 40).  
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Figure 50: Metabolite concentrations in medium from A. muscaria exposed in liquid culture to propiconazole for 7 
days with nanoparticle concentrations reducing the nominal propiconazole concentration. Two samples were 
analyzed per exposure concentration.   

In the medium BTP 4 was the most abundant metabolite (Figure 50), in accordance with the 

metabolite composition detected in mycelium extracts (Figure 49). In case of BTP 4 the 

concentration in medium was increasing with increasing exposure concentration.  

Metabolite composition between analysis of medium and mycelium differed. In both sample 

types the metabolite BTP 4 was the most abundant but with different intensities. Metabolites 

BTP 2 and 3 were at the limit of detection in mycelium extracts but at quantifiable 

concentrations in medium extracts. The differences in metabolite concentrations and 

composition show, that for a comprehensive assessment medium and mycelium have to be 

analyzed, although analysis of medium is less time consuming. The different metabolite 

compositions may be explained by extracelluar enzymes excreted form the fungus into the 

medium, as observed in soil 166-167.  

In this example two different effects occur. Higher exposure concentrations result in 

increased propiconazole uptake and higher nanoparticle concentrations lead to a reduced 

metabolic transformation rate and reduced metabolite concentrations. The combination of 

both effects results in a maximal propiconazole concentration for a medium nominal 

propiconazole exposure concentration.  
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Figure 51: Propiconazole and metabolite concentrations without BTP 4 concentrations in liquid culture, same 
data as Figure 50. 

In contrast to metabolite ratios in mycelium, in the medium BTP 2 with its three isomeric 

forms of the mono oxidized propiconazole and BTP 3, bearing a keto functional group were 

detected equally concentrated and independent from the exposure concentration. The fact, 

that metabolites were detected in mycelium and liquid culture medium samples confirms the 

hypothesis of mineralization of bioavailable propiconazole by A. muscaria. 

In medium analysis equal metabolite concentrations were detected independently from the 

exposure concentration. Furthermore in mycelium extracts higher concentrations were 

detected at lower nominal concentrations. This finding may be explained by equilibrium 

exposure conditions. The propiconazole concentration during the experiment was not 

monitored but sorbed propiconazole could desorb from the nanoparticles at decreasing 

propiconazole concentrations resulting in a long term exposure. This would lead to relatively 

higher metabolite concentrations at lower exposure concentrations, if propiconazole is 

constantly desorbed after bioavailable propiconazole is metabolized. At higher exposure 

concentrations the metabolism would be faster as propiconazole is available from the 

beginning of the experiment on. The potential toxicity of the formed metabolites was not 

investigated in this study. To assess the toxicity, experiments with isolated metabolites are 

required. The observation, that metabolites were detected in higher concentrations than the 

parent compound, makes this question an interesting topic.  

5.5.5 Mass balance 

To assess the sorption, uptake and transformation of propiconazole and thus discuss also its 

environmental fate, mass balance was calculated for one agar plate experiment and for one 

liquid culture experiment both with nanoparticles present. 

Agar plate experiment with L. bicolor 

In the agar plate experiment with L. bicolor 25 – 52% of the initial propiconazole 

concentration was detected in the agar plates (Figure 39). Only a minor part was taken up by 

the fungus (1 -12 %) (Figure 41). The major part remained in the agar as propiconazole. 

Metabolites were not detected in agar plates and only in concentrations lower than the one 
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of propiconazole in mycelium extracts. Therefore, in case of agar plate experiments the 

metabolism was negligible. 

Liquid culture experiment with A. muscaria 

In the liquid culture experiment with A. muscaria the mass balance was below 5 % compared 

to the initial concentration in medium. For calculation, the concentration of propiconazole 

and its metabolites in mycelium and liquid culture medium were taken into account. In the 

medium propiconazole was not detectable at the end of the experiment (Figure 50). The 

complete amount of residual propiconazole was present in mycelium. Due to strong 

biodegradation only minor concentrations of propiconazole were detected in the mycelium of 

A. muscaria (Figure 46). Assuming the metabolite ionization efficiency being equal to 

propiconazole (enabling a quantification based on the labeled internal standard) metabolites 

in liquid culture experiments would contribute with additionally 1 - 14 % in case of liquid 

culture experiments. Degradation is thus the most important way for decreasing 

propiconazole concentrations. Whether complete mineralization or formation of further 

metabolites, not taken into consideration, occurred has to be investigated in further 

experiments. Other explanations could be, that metabolites sorb to the nanoparticles or 

surfaces of equipment and extraction of metabolites was not in complete.  

Discussion of mass balance 

In this study the most important path for decreasing propiconazole concentrations in liquid 

culture experiments with A. muscaria was mineralization. Assuming that growth in liquid 

culture promotes higher metabolic rates by easier access to nutrients than in agar plate 

experiments, uptake and degradation was faster in these experiments compared to agar 

plate experiments. This hypothesis would agree with the finding of different uptake rates of 

monosaccharides by different fungi species and the different uptake rates of propiconazole 

for different species tested 163. In contrast to literature, in this study metabolites contributed 

to the overall exposure especially in liquid culture experiments. In the EU assessment report 

for propiconazole metabolites are counted as not relevant, as they were below 10 % of 

parent compound concentrations  168, like in case of agar plate experiments. However, in 

experiments with Gammarus pulex metabolite concentrations were only three times lower 

than the one of propiconazole parent compound 204. This is in agreement with results of 

liquid culture experiments presented here. In this study, especially for liquid culture 

experiments metabolite concentrations exceeded the propiconazole concentration in 

mycelium as well as in liquid culture. The high metabolite concentrations in the medium 

indicate that metabolism, which is a major excretion part of xenobiotics for organisms, works 

in case of propiconazole and fungi in liquid culture or propiconazole is metabolized in the 

medium by excreted enzymatic degradation of the fungus.  

Addition of nanoparticles resulted in higher detected propiconazole concentrations in liquid 

culture experiments, whereas in agar plate experiments the propiconazole content 

decreased with higher nanoparticle concentrations. This shows that in case of agar plate 

experiments sorption to nanoparticles reduced the bioavailable concentration of 

propiconazole whereas in liquid culture bioavailable propiconazole was metabolized and 

sorbed propiconazole was available during the exposure experiment most likely due to 

equilibration processes. In this case nanoparticles reduced the transformation of 

propiconazole and this might lead to a long term exposure, if propiconazole is desorbed in 

equilibrium conditions.  
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5.5.6 Bioconcentration factor 

One parameter to assess the bioaccumulation potential of compounds is the 

bioconcentration factor (BCF). It is calculated by the ratio of propiconazole concentration in 

fungi mycelium compared to the concentration in medium. The bioaccumulation factor also 

takes metabolic activity into account. 

𝐵𝐶𝐹 =
𝑐 (𝑓𝑢𝑛𝑔𝑖)

𝑐 (𝑚𝑒𝑑𝑖𝑢𝑚)
 

BCF can only be calculated for the equilibrium state. A measured BCF greater than 100 is 

used as indication for a potential bioaccumulating property of a substance 211. In the 

experiments reported in this thesis only the internal concentration at one point, the end of 

experiment, was determined. However, experimental BCFs were calculated from laboratory 

experiments without nanoparticles for liquid culture and with nanoparticles in case of agar 

plate experiments. Values (Table 14) are calculated as average of all incorporated 

concentrations in relation to bioavailable exposure concentration. 

Table 14: Calculated bioaccumulation factors for different fungi species exposed to propiconazole at different 
growing conditions.  

fungi BCF condition 

A. muscaria  5 ± 2 L/kg liquid culture 

C. geophilum 157 L/kg liquid culture 

L. bicolor 56 L/kg liquid culture 

L. bicolor 4600 ± 1600 L/kg agar plate 

 

In literature, not much data is available on propiconazole uptake in organisms. The results of 

this study for fungi, thus have to be compared to uptake by other organism. In bluegill fish, 

the BCF was 180 L/kg 168. This value is in the range of the calculated BCF for C. geophilum. 

Comparison of calculated values is complicated, because the variability between fungi 

species as well as between different growing conditions is high (e.g. a factor of 80 

comparing agar plate vs. liquid culture conditions). This differences for both treatments in 

case of L. bicolor can be explained by different metabolic activity due to availability of 

nutrients but it has to be considered that in liquid culture experiments dried mycelium was 

analyzed and in agar plate experiments wet weight mycelium.  

5.6 CONCLUSION 

The presented data show differences in uptake rate and metabolic activity between fungi 

species and growing conditions and the presence of nanoparticles. For all tested species the 

ability to metabolize propiconazole was observed. Based on QuEChERS extraction a 

miniaturized extraction procedure was developed for quantification of propiconazole in fungi 

grown in different exposure conditions. For the first time propiconazole and three metabolites 

were analyzed in different fungi species and fungi grown on agar plates and in liquid culture. 

The method using 0.75 mL water and 0.75 mL acetonitrile allowed the analysis of 

propiconazole and its three main metabolites. In agar plate the limit of detection was 

0.1 µg/L and the limit of quantification 0.2 µg/L corresponding to 5 ng propiconazole per g 

wet weight fungi mycelium. In extracts of dried mycelium samples a limit of quantification of 

1 µg/L corresponding to 25 ng/g was achieved. Quantification based on deuterated internal 

standard revealed recoveries of 100 ± 7 % for agar plate experiments and 85 ± 6 % to 93 ± 
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7 % for liquid culture experiments of three different fungi species. The developed method 

was well suited to determine the propiconazole content in agar plates. A strong correlation 

between growth inhibition and the internal concentration was found for fungi mycelium grown 

on agar plates. Results of liquid culture experiments indicate the ability of investigated fungi 

to quickly metabolize propiconazole. Differences between the fungi species and growing 

conditions with respect to uptake and metabolism were observed. The results clearly 

indicate a bioaccumulation potential of propiconazole, as it was detected in every fungi 

mycelium analyzed at bioconcentration factors of 5 to 157 L/kg. Experiments with the 

combination of propiconazole and nanoparticles revealed different effects of sorption. In 

case of agar plate experiments the bioavailable concentration was reduced and lower 

propiconazole content in mycelium was detected. In liquid culture experiments sorbed 

propiconazole was not metabolized but slowly released to the medium when sorption 

equilibrium changed and thus higher propiconazole concentrations were detected at the end 

of the exposure time. The environmental fate of propiconazole may be strongly different 

depending upon whether it is sorbed to particles or bioavailable. 
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6 ANALYSIS OF WASTEWATER AND SURFACE WATER SAMPLES 

FRACTIONATED BY DIFFERENT FREE FLOW ELECTROPHORETIC 

TECHNIQUES 

6.1 ABSTRACT 

In this project, free flow electrophoresis was used to preconcentrate and fractionate ionic 

compounds, mostly organic micropollutants in surface water and wastewater samples. 

Continuous separation by FFE provides the possibility to remove interfering matrix 

components and simultaneously concentrate compounds. Fractions were analyzed by 

HPLC-ESI-QTOF-MS via screening for 92 micropollutants. Two fractionation techniques 

were used for separation: free flow isotachophoresis and free flow interval zone 

electrophoresis in pH mode. Ionogenic compounds from water samples were separated 

according to their electrophoretic mobility or isoelectric point in up to 96 fractions. 

Absorbance at 260 nm indicated enrichment in the fractions compared to the raw water 

samples. Fractions with high UV activity were analyzed with the optimized HPLC-MS method 

in full scan mode. The results show the ability of FFE to separate and enrich wastewater 

contaminants.  

6.2 INTRODUCTION 

6.2.1 Wastewater analysis 

Multi-component detection techniques by HPLC-MS represent a powerful tool for tackling 

analytical challenges of trace analysis in surface waters. The increasing number of 

chemicals on the market and their metabolites give rise to concerns about pollution of 

surface and drinking water. Chemicals might enter surface waters via numerous ways. 

Pharmaceuticals and personal care products are released into surface waters via 

wastewater treatment plant effluents if they are not sufficiently removed. Pesticides applied 

in agriculture enter surface waters via diffuse entry pathways. The EU water framework 

commits the Member States to monitor micropollutants in surface waters. For prioritized 

compounds limits were defined 212-213.  Concerning the complexity of the samples (number 

and physicochemical characteristics of compounds) and the low compound concentrations in 

water samples new separation and preconcentration techniques are required. The number of 

emerging pollutants not covered by environmental legislation brought water analysis, 

particularly non-target screening and analytical methods comprising several hundred 

compounds in one run, into the focus of research. Beside the high coverage of different 

sample components, advantages of multi-component methods include faster analysis and 

higher cost-efficiency compared to target analysis of single substances. In addition, 

retrospective analysis may become possible. For environmental analysis of intermediate 

polar compound in surface water samples, HPLC-MS is used as separation and detection 

method. An overview of screening methods for the analysis of micropollutants in 

environmental samples was published by Krauss et al. 214 and a review on non-target water 

analysis by Schymanski et al. 215. Three different screening approaches are distinguished by 



Chapter 6 
 

105 
 

the authors target analysis based on reference material, screening for suspected analytes 

without reference standard and screening for unknowns 214.  

High-resolution mass spectrometry (HRMS) by Orbitrap or QTOF in full scan mode is 

gaining more and more popularity due to the advantage, that - theoretically - an unlimited 

number of compounds is detectable 23. The use of a triple quadrupole MS for detection limits 

the number of compounds by the MS/MS capabilities of the instrument 216. In screening 

methods, identification of compounds detected in samples is often performed with compound 

databases comprising retention time, accurate mass and insource fragmentation 194, 217. In 

this study, a multi-component method based on HPLC-QTOF-MS target analysis was 

developed and identification based on retention time and exact mass of reference material.  

Low concentrations of emerging pollutants present in surface waters as well as interfering 

matrix components in MS analysis are one of the greatest challenges in water analysis. 

Detection of contaminants in drinking water in concentrations below 0.1 µg/L, which is the 

allowed concentration limit for pollutants in the European Union, requires preconcentration of 

organic trace pollutants like pharmaceuticals or personal care products, even when very 

sensitive quantification methods are used 23. In multi-component analysis of water and 

wastewater samples, offline or online solid phase extraction (SPE) is often applied for 

preconcentration of trace contaminants 191, 194, 217-218. In SPE, a large sample volume is 

filtered through the SPE cartridge and pollutants are retained by the sorbent material, 

whereas interfering compounds like salts pass through. In the elution step pollutants are 

desorbed by a smaller volume of a suitable organic solvent, resulting in preconcentrated 

samples and often a partial removal of unwanted matrix components. The limit of detection 

in water samples enriched by SPE and analyzed by TOF-MS is usually in the ng/L range for 

wastewater chemicals 194. Interfering matrix components can both enhance and reduce 

signal intensities of analytes during the ionization step in MS analysis 194. In one case during 

an analysis of 400 compounds in wastewater samples, 43 % of the compounds were 

affected by matrix effects by more than 25 % 194. Two methods analyzing 539 and 72 

compounds in the µg/L range in drinking water observed signal suppression higher than 20 

% for 60 % or 8 % of all compounds 23, 218. These data demonstrate the importance of 

sample pretreatment to eliminate unwanted matrix components and increase pollutant 

concentrations for their trace analysis in water. In this project, free flow electrophoresis was 

applied to surface and wastewater samples to investigate the potential to fractionate and 

simultaneously preconcentrate ionizable or ionic compounds and remove interfering matrix 

components.  

A general challenge in wastewater analysis is the detection of ionic and highly polar 

compounds, even when using hydrophilic interaction chromatography (HILIC) and reversed 

phase liquid chromatography (RPLC) 24. This often includes metabolites or transformation 

products as these are mostly more polar than their parent compounds 1. In RPLC polar 

compounds are not retarded by the column material and therefore, elute in the dead volume 

without separation. HILIC methods were developed, though they have the great 

disadvantage that the aqueous sample has to be diluted to about 80 % acetonitrile before 

injection. FFE fractionation rises the possibility to obtain fractions compatible with 

appropriate further separation techniques such as liquid chromatography or capillary 

electrophoresis. Moreover, the combination of electromigrative and chromatographic 

separation techniques increases selectivity and peak capacity and come along with a more 
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effective elimination of interfering matrix components. Quantification reliability is enhanced 

by the reduction of interfering matrix components or coeluting/comigrating analytes.  

6.2.2 Electromigrative separation techniques 

In this study, preparative FFE was used to reduce the complexity of surface water samples 

by fractionation for simplified subsequent chromatographic separation steps by HPLC. Raw 

water and fractionated samples were analyzed by HPLC-MS to evaluate the complexity of 

substance mixtures and to preconcentrate pollutants to reach the desired detection limits. 

Two different techniques were evaluated for applicability: free flow isotachophoresis (FFITP) 

and free flow interval zone electrophoresis (FFIZE-pH). In the fractionation step, ionic 

interfering compounds were expected to be separated from the ionic compounds of interest 

and thus fractions were made accessible for following LC-MS analysis. The focus was on 

compounds with acidic functional groups to include phenols, often encountered upon 

microbial transformation.   

Ion migration in the electric field 

In electromigrative separation techniques, ionic or ionizable species in solution are 

accelerated by an applied electric field. An ionic compound in solution will move in the 

direction parallel to the applied electric field and experiences friction upon migration. The 

velocity (νi) of the ion is based on the electrophoretic mobility (μi) and the electric field 

strength (E) 219.  

νi = μi E 

The electrophoretic mobility of an ion (μi) is given by the charge of the ion (zi), the 

elementary charge e0 (1.6022 x 10-19 C), the viscosity of the solution (η) and the 

hydrodynamic radius of the ion (ri) by 

μi = zi e0 /6 π η ri 

assuming a spherical shape. Every substance has a unique charge-to-size-ratio and 

therefore, a particular electrophoretic mobility 219. The differences in electrophoretic mobility 

are the principles of separation by capillary electrophoresis. Capillary electrophoresis has 

successfully been applied as analytical separation technique in pesticide and pharmaceutical 

analysis especially for separation of polar analytes with acidic or basic functional groups 220-

224.  

Free flow electrophoresis 

FFE is a continuous preparative isolation and purification technique based on 

electromigrative processes 25. It provides the possibility to fractionate a sample in continuous 

flow mode compared to batch procedures as for example solid phase extraction, liquid 

chromatography or gel permeation chromatography 219 which allows processing large 

sample volumes. The instrumental setup is schematically shown in Figure 52. Separation 

medium flow and electric field are perpendicular to each other with the sample being 

continuously injected into the carrier flow as a narrow band 25. The electrodes are spatially 

separated from the cell by a membrane to reduce flow perturbation, gas bubbles or 

electrochemical reactions 225. Ionic compounds are deflected along their way down the 

separation chamber and sample into channels according to their effective electrophoretic 

mobility 225. The charged analytes migrate perpendicular to the direction of hydrodynamic 
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buffer flow 226. The original narrow sample zone thus spreads according to the differences in 

the effective electrophoretic mobilities of analytes. The separated sample streams are then 

continuously collected in fraction outlets 25.  

 

Figure 52: Schematic experimental setup of a free flow electrophoretic cell. 
25

 

Free flow electrophoresis is frequently used to separate biomolecules on a preparative 

scale. An advantage is that mild conditions of separation buffers can be used 227. This 

enables separation without denaturation of biomolecules which keep their native functions 
225. FFE has been successfully applied to separate enzymes 227, microorganisms 228, amino 

acids 219, proteins 229 and viruses 230. FFIEF exhibits the possibility to fractionate proteins 

with differences in the isoelectric point (pI) by less than 0.5 pH units 226, 231. In this project, 

the applicability of FFE to preconcentrate and fractionate small organic ionizable pollutants 

was investigated. Common sample volumes are 10 mL for one run 225. The idea was 

therefore, to fractionate water samples by FFE.  

Modes of FFE 

Four modes of FFE are commonly used: ZE (zone electrophoresis), IEF (isoelectric 

focusing), ITP (isotachophoresis) and SFE (step-field electrophoresis) 232. These four modes 

are determined by the particular buffer composition used as separation medium 219.  

Free flow isotachophoresis (FFITP) 

In ITP three zones are present: a leading zone containing an electrolyte with a coion of high 

effective electrophoretic mobility, an analyte zone containing the sample and a terminating 

zone comprising a coion of low effective electrophoretic mobility 219. The ions arrange 

according to their ionic mobilities by the Kohlrausch regulation function in steady-state zones 

which are in direct contact 25, 219. These zones experience self-sharpening 25. For proteins 

enrichment factors of 10 or even higher were observed 25. Fractionation can be facilitated 

when spacers migrating between the zones of interest are added. For example, Good’s 

buffers can be applied, resulting in diluted mixed zones of analyte and spacer 25.  

Free flow isoelectric focusing (FFIEF) 

Amphoteric compounds like amino acids have a characteristic pH point, where the overall 

charge is neutral. This point is called the isoelectric point (pI). In a cell with a pH gradient, 

the amphoteric compound will stop migrating when the surrounding pH equals to the 

isoelectric point and the net charge is zero 219. This effect is used in isoelectric focusing 

(IEF). In this method again, the sample flow is perpendicular to the applied electric field but 
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compounds are separated and focused according to their isoelectric point 25, 225. By 

application of an electric field, a pH gradient along the chamber is induced due to electrolysis 

of water or by an appropriate choice of anolyte and catholyte at the electrodes and 

ampholyte buffer for separation 219, 225. Compounds migrate until they reach the pH when 

they are neutral, for ampholytes the pH would equal their pI, for basic or acidic molecules, 

full protonation or deprotonation would be reached 219. Amphoteric compounds are 

refocused by a focusing effect, as compounds may diffuse into regions of higher/lower pH 

where again a net charge is induced and forces the analyte to migrate back into the zone 225.  

Free flow interval zone electrophoresis (FFIZE) 

In zone electrophoresis (ZE) fractionation is carried out at a uniform pH and conductivity 

across the chamber and separation is based on the electrophoretic mobility of analytes 219. 

With the interval mode, a higher resolution can be reached. The sample is then injected 

batch-wise instead of continuously. 

Free flow interval zone electrophoresis in pH mode (FFIZE-pH-mode) 

In this free flow mode several pH steps are introduced to form band sharpening during the 

interval zone electrophoresis. The method is similar to FFIEF, however, only few discrete pH 

steps are introduced with a small number of ampholytes in the separation medium. This 

technique was developed by FFE-Services and was applied to water samples analyzed in 

this study.  

Migration zone broadening 

Different phenomena cause broadening in FFE 233. Signal-broadening is caused by 

hydrodynamic, electrodynamic and electrohydrodynamic processes and diffusion. Another 

limiting factor is the width of the initial injection zone 25. In the cell, a laminar flow velocity 

profile for buffer and sample solution evolves. This leads to different migration times of 

charged compounds in the cell. Compounds in the center of the cell are transported faster 

than compounds near the cell wall. This effect, named electrohydrodynamic distortion, 

causes band broadening 25. Joule heating, the heat produced by friction forces from electric 

current inside the buffer system is another effect that causes band broadening by 

thermoconvection 234. Application of higher voltages improves separation but causes Joule 

heating 225, 232. The produced heat is dissipated via the cell walls and therefore a temperature 

gradient occurs within the cell. In two-side cooling cells, the gradient is towards both cell 

walls with a maximum in temperature in the middle 25. A change of 1 °C causes an increase 

in electrophoretic mobility by about 2 % due to viscosity changes 25. Application of media 

with high conductivity reduces zone broadening by electromigration dispersion and thus 

allows a higher sample throughput 226. A last aspect to be considered is adsorption to cell 

walls.   

6.2.3 Project  

In this project, instrumental development was combined with environmental application. An 

HPLC-QTOF-MS method was developed for determination of 92 pollutants in water samples 

after preconcentration by FFE. The developed method was applied to surface water 

samples. The workflow of this project, combining sampling, fractionation and 

preconcentration and subsequent analysis by HPLC-MS is shown in Figure 53. 
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Figure 53: Workflow of waste and surface water sampling, fractionation and preconcentration by different FFE 
techniques (FFITP and FFIZE-pH) and analysis of fractions and raw water samples by HPLC-MS. 

To fractionate and preconcentrate analytes in surface and wastewater samples, two FFE 

techniques were investigated: FFITP and FFIZE-pH. In the fractionation step a reduction of 

the sample complexity was expected to allow better quantification possibilities due to fewer 

coeluting compounds and less quenching effects in the HPLC-MS step. The combination of 

both techniques leads to the high separation capacity of ionic compounds by 

electromigrative separation with the high sensitivity and further selectivity of HPLC-MS 

analysis.  

6.3 EXPERIMENTAL 

6.3.1 FFE-Experiments 

Fractionation experiments were conducted by FFE Services München, Germany in Octopus 

universal apparatus (Dr. Weber GmbH, Kirchheim, Germany). Raw and fractionated water 

samples were provided by FFE Services.  

FFITP  

An Isar surface water sample was fractionated in a separation module of 500 x 100 x 

0.4 mm with 96 fractionation outlets. The cell was built with spacers of 0.4 mm. Filter paper 

of 0.6 mm with a 200 µm membrane in a cell volume of 22.4 mL were used. For anode 

electrode solution (leader) 150 mM HCl, 300 mM NH3 and for cathode solution (terminator) 

100 mM KOH and 40 mM Ba(OH)2 were used. Fractionation was carried out at 10 °C with 

Orafol foil. The sample was injected with 168 mL/h medium and 800 µL/h sample at Fraction 

58. The pH gradient forming in the ITP zones in the cell was pH 9.4 - 12.9. Separation was 

carried out in the cell for 7 min at 850 V and 700 V in Experiment 1 and 2.  Volumes of 2 mL 

per fraction were sampled from the continuous free flow system and stored at -20 °C until 

analysis. Samples were filtered with PTFE syringe filter (0.45 µm, 3 mm supplied by 

Macherey-Nagel (Düren, Germany)) before analysis by HPLC-MS.  

FFIZE-pH 

A wastewater sample was fractionated in HAc/NH3 buffer and a pH gradient of pH 5 - 9. Cell 

dimensions were 500 x 100 x 0.2 mm and cell temperature was 8 °C. For anode solvent 

150 mM HAc, 300 mM NH3, 9.2/13660 was used and for cathode solvent 150 mM HAc, 

300 mM NH3. Further parameters: LF = 5870 µS membrane PP60, cell-foil-type Ora, spacer 

0.2 mm and filter paper 0.3 mm, cell volume 11.2 mL and a 0.44 mm diameter tube was 

used for sampling and 75 mL/h buffer. The water sample was injected at fraction 71 - 85. 

Optical density (OD) was measured at 260 nm. Samples were filtered with PTFE syringe 

filter 0.45 µm, 3 mm supplied by Macherey-Nagel (Düren, Germany) before analysis by 

HPLC-MS.  
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6.3.2 Data analysis 

For method development a standard mixture containing 270 compounds, provided by 

Zweckverband Landeswasserversorgung Langenau, Germany, was used. Samples were 

analyzed by HPLC-QTOF-MS (Agilent Technologies, Waldbronn, Germany) and data 

analysis performed by MassHunter software. Results were compared to results from 

Langenau. 

For LC-MS/MS analysis, a 1260 Infinity LC system coupled to a 6550 iFunnel QTOF LC/MS 

system (Agilent Technologies, Waldbronn, Germany) was used. Aliquots of 10 µL sample 

were injected onto a Zorbax Eclipse Plus C18 column (2.1 x 150 mm, 3.5-Micron, narrow 

bore, Agilent Technologies, Waldbronn, Germany). A jet stream electrospray ionization (ESI) 

source was operated with a nebulizer pressure of 35 psig, drying gas temperature of 160 °C, 

a flow rate of 16 L/min and a fragmentor voltage of 360 V. In the positive ionization mode 

capillary voltage was set to -4000 V, skimmer voltage to 65 V and a nozzle voltage to -500 

V. The mass range was 80 - 1200 m/z with a data acquisition rate of 1 spectrum/s. The 

sheath gas temperature was set to 325 °C with a flow rate of 11 L/min. For internal 

calibration purine and HP0921 (Agilent Technologies, Waldbronn, Germany, m/z = 

121.0508, 922.0097) were used. A gradient elution at a flow rate of 0.3 mL/min using water 

and acetonitrile, both eluents containing 0.1 % formic acid, was used. The initial content of 

98 % water was decreased after 2 min to 80 % water over 2 min and to 2 % over 14.5 min 

and after another 11 min at 2 % increased to 98 % water over 0.5 min and 98 % water 

applied for 10 min.  

Data analysis was performed with MassHunter Workstation software Version B.06.00 

(Agilent Technologies, Waldbronn, Germany). Retention time window of ± 1 min and m/z 

extraction window of ± 100 ppm were criteria for identification based on reference 

compounds in methanol. pI and pKa values were calculated with ChemAxon software 

(Cambridge, USA). Further physicochemical parameters of analytes were taken from the 

databases DrugBank (University of Alberta, Canada), PubChem (National Center for 

Biotechnology Information, USA) and PPDB (University of Hertfordshire, UK).  

6.4 RESULTS AND DISCUSSION 

6.4.1 Development of target analysis method by HPLC-ESI-QTOF-MS 

For separation of a reference material mixture containing 92 wastewater chemicals, a C18 

column was used with gradient elution by acetonitrile and water. C18 columns are commonly 

used in water analysis for separation by liquid chromatography due to their ability to 

separate pollutants in a broad polarity range from medium polar to nonpolar 194, 216-217. 

Detection was carried out with ESI-QTOF-MS in the positive ionization mode. The 

separation and detection method enables the analysis of 92 pollutants relevant in 

wastewater analysis in 20 min, the extracted ion chromatograms of all compounds are 

shown in Figure 54. 
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Figure 54: Extracted ion chromatograms of 92 compounds in the reference mixture at a concentration of 5 µg/L 
analyzed by HPLC-QTOF-MS in the positive ionization mode within 20 min. Further parameters see text. 

For quantification of analytes in water samples the reference mixture was analyzed in three 

concentration steps: 5, 10 and 20 µg/L. Confirmation of compounds was carried out by two 

identification criteria: retention time and exact mass. The retention time window was set to 

1 min and for exact mass a range of 100 ppm was used. The developed method comprises 

substances of different compound categories, including pharmaceuticals, lifestyle products 

and pesticides.  The developed method was applied to raw water and fractionated 

wastewater samples.  

Table 15: Identification criteria for pollutants in water separated by HPLC and detected with ESI-QTOF-MS.  

compound [M+H]
+
 tR [min] compound [M+H]

+
 tR [min] 

1,2,3-Benzotriazole 120.0556 8.1 Metamitron 203.0927 8.8 

2-Aminobenzothiazole 151.0325 7.2 Metazachlor 278.1055 13.2 

2-Hydroxy-
benzothiazole 

152.0165 10.1 Metformin 130.1087 2 

8-Hydroxychinoline 146.0600 6.7 
Methabenz-
thiazuron 

222.0696 11.8 

Acebutolol 337.2122 8 Metolachlor 284.1412 15.6 

Acridin 180.0808 7.811 Metolacarb  166.0863 10.9 

Amantadine 152.1434 7.6 Metoprolol 268.1907 7.6 

Amisulpride 370.1795 7.7 Metoprolol acid 268.1543 7.2 

Atenolol 267.1703 6.8 Metoxuron 229.0738 10.5 

Atrazine 216.1011 12.3 Monocrotophos 224.0682 7.7 

Azoxystrobin 404.1241 14.5 Monuron 199.0633 10.9 

Betaxolol 308.2220 9.5 
N,N-Diethyl-
toluamide (DEET) 

192.1383 12.4 

Bisoprolol 326.2326 8.9 
N-Acetyl-4-
aminoantipyrind 

246.1237 7.6 

Bupirimate 317.1642 13.2 Nadolol 310.2013 7.3 

Caffeine 195.0877 7.6 Naphazoline 211.1230 8.1 

Candesartan 441.167 11.8 Nicotine 163.1230 2.4 

Carbamazepine-10,11-
epoxid 

253.0972 10.5 
N-Methyl-2-
pyrrolidone (NMP) 

100.0757 6.3 

Carbamazepine 237.1022 11.1 Norflurazon 304.0459 12.8 

Chloridazon 222.0429 9.14 N-Oxide-Tramadol 280.1907 8.4 

Chlorotoluron 213.0789 9.9 Penconazole 284.0716 15.2 

Cyprodinil 226.1339 13.2 Phenanthridinon 196.0757 11.4 
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compound [M+H]
+
 tR [min] compound [M+H]

+
 tR [min] 

Diazinon 305.1083 16.8 Phenazone 189.1022 8.4 

Difenoconazole 406.0720 16.3 Phenylalanine 166.0863 6.2 

Dihydrocodeine 302.1751 7.1 Phosphamidon 300.0762 10.4 

Disulfoton-sulfoxide 291.0307 12.0 Picoxystrobin 368.1104 16.7 

Diuron 233.0243 12.5 Piperophos 354.1321 17.4 

Epoxiconazole 330.0804 14.5 Pirimicarb 239.1503 8.4 

Ethoprophos 243.0637 14.8 Pirimiphos-ethyl 334.1349 18.5 

Fenamiphos-sulfone 336.1029 11.4 Pirimiphos-methyl 306.1036 16.7 

Fenpropidin 274.2529 11.3 Pregabalin 160.1332 7.0 

Fenpropimorph 304.2635 11.4 Prochloraz 376.0381 13.5 

Fenuron 165.1022 9.0 Prometon 226.1662 9.5 

Flecainide 415.1451 9.9 Propyphenazone 231.1492 11.7 

Flurtamone 334.1049 14.0 Quinoxyfen 308.0040 17.6 

Gabapentine 172.1332 7.1 Ritalinic acid  220.1332 7.7 

Gabapentine-Lactam 154.1226 9.8 Sitagliptin 408.1254 8.6 

Imazalil 297.0556 10.3 Spiroxamine 298.2741 11.4 

Imazapyr 262.1186 8.3 Sulpiride 342.1482 6.9 

Imazaquin 312.1343 11.0 Sulpiride N-Oxide 358.1431 7.1 

Iomeprol 777.8614 6.7 Tebutam 234.1852 15.5 

Lamotrigine 256.0151 7.4 Telmisartan 515.2442 10.6 

Levocarnitine 162.1125 1.5 Terbutryn 242.1434 11.7 

Mecarbam 330.0593 13.9 Tramadol 264.1958 8.2 

Melamin 127.0727 1.7 Tyrosine 182.0811 5.0 

Mephosfolan 270.0382 10.7 Valsartan 436.2343 13.4 

Mepronil 270.1489 15.2 Xanthon 197.0597 14.2 

6.4.2 Application  

For identification of pollutants, the target method comprising 92 substances was applied, 

witg identification criteria listed in Section 6.4.1. In water samples analyzed by HPLC-MS, 

substances were identified by comparison of retention time and exact masses of compounds 

in the water samples to the ones of reference material analyzed with the same method. 25 

known wastewater pollutants, structures are given in Figure 55, and two metabolites were 

identified in water samples.  
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Figure 55: Compounds detected in waste water samples fractionated by different FFE techniques and identified 
with the developed target method.  

Retention time on C18 columns correlates with the polarity of analytes. Therefore, it can be 

used as an indicator for polarity. Compounds with lower polarity should be more strongly 

retained by the column material. These compounds eluted later in the chromatogram, at a 

higher content of organic solvent as eluent, resulting in longer retention times. For 

confirmation of the retention time as polarity criteria, retention times and octanol-water 

coefficient (log Pow) values of all detected compounds are plotted in Figure 56.  
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Figure 56: Correlation between retention time and log Pow for all compounds detected in waste water samples R
2 

= 0.771 for all compound except the ones with tR < 3 min.  

Three compounds show a different behavior (log Pow, tR): nicotine (1.17 and 2.4 min), 

metformin (-0.5 and 1.7 min) and melamine (-1.4 and 1.7 min). All these compounds are 

detected with a retention time below 2 min in the so called “dead volume” of the 

chromatographic method. This means these compounds are not retained by the column 

material. Therefore, retention time is not a criterion correlating with the log Pow. Polar 

compounds are usually detected in the first minutes of RPLC separation due to low or 

missing interaction with the column material.  

Free flow isotachophoresis (FFITP) I 

Non-target analysis 

To test the preparative preconcentration capacity of free flow electrophoresis for 

micropollutants, two Isar surface water samples were fractionated in ITP mode. A selection 

of fractions to be analyzed later was made based on absorbance at 260 nm. Only fractions 

with high UV activity, indicating high concentrations of pollutants, were analyzed by HPLC-

MS. In this fractionation experiment an anionic ITP system with Cl- and OH- at pH 9 - 13 as 

leader and terminator was used. These conditions result in one of the broadest mobility 

windows possible to give broadest coverage of micropollutants. In isotachophoresis the 

analytes arrange themselves according to their order of ionic mobility in steady-state zones 

between the leader and the terminator.  

For an overview of the preconcentration and fractionation process, base peak 

chromatograms (BPCs) were extracted from the analyzed fractions and the raw water 

sample analyzed by HPLC-MS in the positive ionization mode: results are shown in Figure 

57. For extraction mass range was set from 80 to 1200 ± 0.01 m/z. These chromatograms 

clearly show changes in the number of signals and their retention times for different 

fractions, which are not present in the raw water sample.  
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Figure 57: Base peak chromatogram of raw water sample (grey) and fractions (colored), extracted in the mass 
range of 80 - 1200 ± 0.01 m/z and detected in the positive ionization mode. HPLC-MS conditions as described in 
Section 6.3.1. The water sample was injected at fraction 58 and an anionic ITP system covering the pH range 
from pH 9 at fraction 1 to pH 13 at fraction 96 was used.  

Exact masses and retention times of selected signals with elevated intensity, in at least one 

fraction compared to the raw water sample, are listed in Table 16. Chemical formula 

prediction by MassHunter software with a difference smaller than 5 ppm did not reveal any 

reasonable compounds. A signal at m/z = 214.919 was only detected in the raw water 

sample.  

Table 16: Mass and retention time of selected compounds apparent in the base peak chromatograms, analyzed 
in the positive ionization mode with higher signal intensities in fractions’ chromatograms compared to the raw 
water sample. The fraction with the highest signal intensity of an analyte detected in several subsequent fractions 
are highlighted as max.  

fraction m/z tR [min] 
fraction with highest 
signal intensity  

raw water 214.919 1.4  

every 250.178 12.5  

27 - 32 102.128 2.2 28 

27 - 38 185.115 9.3  

31 - 33 338.217 6.9  

30 + 33 320.207 7.3  

30 + 33 412.209 8.4  

30 - 32 330.265 8.9 31 

30 - 32 335.219 15.7 31 

33 343.173 9.2  

33 435.176 11.0  

33 325.1620 11.9  

33 + 36 417.165 14.0  

The compound at 250.178 m/z was detected in every sample including the raw water sample 

with the same intensity, this might indicate a contamination of sampling vials. A compound at 
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102.128 m/z was detected in fractions 27 – 32 with the highest intensity in fraction 28. 

Similarly, fractions 31- 33 revealed a signal at 388.217 m/z and fractions 30 - 32 compounds 

with 330.265 m/z and 335.219 m/z with highest intensities in fraction 31. In fraction 33 four 

signals were detected, 343.173, 435.176, 325.162 and 417.165 m/z, which were not 

detected in any other fraction. A signal at m/z 417.165 m/z was detected in fractions 33 and 

36. This clearly indicates a fractionation and preconcentration effect. The signal at 185.115 

m/z was detected in every fraction except the raw water sample. This might be explained by 

a process contamination during fractionation or transformation due to electrophoretic 

conditions. A double signal at 320.207 m/z and a signal at 412.209 m/z were detected in 

fraction 30 and 33, but not in the fractions in between. Therefore, this signals might stem 

from two different compounds coeluting in LC but with different electrophoretic mobilities.  

The compounds detected in consecutive fractions with the highest concentration in the 

middle fraction indicate a concentration and fractionation of these substances by FFITP 

(338.2 m/z in fraction 31 - 33, 102.1 m/z in fraction 27 - 32 and 330.2 m/z and 335.2 m/z in 

fraction 30 - 32). Further work is necessary to broaden the analysis including compound 

identification.   

Target analysis 

Samples were analyzed with the developed HPLC-MS method described above and 

compounds were quantified by calibration over 3 concentration steps as described in Section 

6.3.2, when their signal to noise ratio was five times greater than the background noise (S/N 

> 5). The limit of detection was set at S/N = 3. Results of the analysis indicate a transient ITP 

of analytes in the water sample, shown in Figure 58. 

 

Figure 58: Results of analysis of water fractionation by ITP with the developed target HPLC-MS method. The raw 
water sample is labeled as 0 and shwon for comparison. Fractions 27 – 40 from FFITP were analyzed by HPLC-
MS. Compounds below the limit of quantification but above the limit of detection are shown as squares.  
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All compounds were detected in the 15 analyzed fractions with the highest UV activity. Some 

of them were not expected to be anionic at the high pH value chosen. This may indicate 

diffusion processes, carryover effects or cotransport by anionic matrix components, e.g. 

humic acids. Iomeprol, N-acetyl-aminoantipyridin and lamotrigine were only detected in raw 

water sample but not in fractionated samples which is likely, given that these compounds are 

neutral at the given pH value. 

Phenylalanine was detected in all samples but only in samples with high pollutant 

concentrations 29 - 34 in quantifiable concentrations. The fact that phenylalanine was 

detected in every sample might be due to contamination during workup or storage or 

carryover effects. Gabapentin, 1,2,3-benzotriazole, melamine and metoprolol-acid were 

detected in raw water sample and fractions 29/30 – 33/34. Gabapentine, 1,2,3-benzotriazole 

and metoprolol acid were detected in higher concentrations in various fractions than in raw 

water sample. Substances were detected in concentrations up to 470 % higher than in the 

raw water sample e.g. gabapentin and metoprolol acid in fraction 31 or up to 160 % for 

benzotriazole in fraction 30. Metoprolol acid was detected in fraction 30 at a concentration 

30 % higher than in raw water sample. Melamine and metformin were detected in raw water 

sample and at least one fraction but at reduced concentrations. These compounds are 

neutral or cationic at the chosen pH and a cotransport is likely. It is interesting to note that 

the metabolite of metaprolol, metaprolol-acid, was detected but not the parent compound. 

Pregablin, NMP, telmisartan and tyrosine were detected in 1 - 7 fractions with highest 

concentrations in fraction 30 - 32 in case of pregablin, telmisartan and tyrosine and in case 

of NMP in fractions 27 - 29. These four compounds were not detected in raw water sample. 

This might indicate a preconcentration.  

The pKa and log Pow values of compounds detected in wastewater samples and fractions are 

listed in Table 17. In case of metoprolol acid and N-acetyl-4-aminoantipyridine, both 

metabolites, chemical properties were not available. Fractions of occurrence did not 

correlate to the listed physicochemical parameters of the analytes.  

Table 17: Compounds identified in raw waste water sample and samples fractionated by FFITP, application and 
physicochemical parameters. 

 compound  pollutant family pKa
1
 pKa

2
 log Pow tR [min] fraction 

1,2,3-
Benzotriazol 

chelating agent 8.37  1.44 8.1 0, 28 - 34 

Gabapentin pharmaceutical 3.68 10.7 -1.1 7.1 0, 30 - 33 

Iomeprol pharmaceutical 2.53 5.65 -1.8 6.6 0 

Lamotrigin pharmaceutical 8.53 9.21 2.5 8.1 0 

Melamin monomer    -1.37 1.7 0, 30 - 34, 38 

Metformin pharmaceutical 12.4   -0.5 1.7 0, 29 

NMP bulk chemical     -0.38 6.4 27 - 29 

Telmisartan pharmaceutical 3.65 6.13 6.6 10.6 31 

Pregabalin pharmaceutical 4.2 10.6 -1.4 7.1 30 - 32 

Phenylalanine amino acid 2.47 9.45 1.24 6.3 29 - 34 

Tyrosine amino acid 2 9.21 -2.4 3.1 27 - 33 

 

In this fractionation experiment the terminator was not detected in any fraction, indicating 

that the ITP stacking process was not completed by the time of entering the fractionation 

vials. The flow time was only 7 min, which was too short. Further optimization is necessary. 

However, already the preliminary results described here, indicate the potential of the 

methodology for preconcentration of ionic analytes.  
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FF-ITP II 

A second surface water sample was fractionated by anionic FFITP in a similar fractionation 

system. In this experiment, higher voltage was applied to optimize the separation efficiency. 

The base peak chromatograms are shown in Figure 59. They clearly show higher 

abundances of several signals comparing raw water and different fractions as also observed 

in the previous experiment.  

 

Figure 59: Base peak chromatograms in the range of 80 - 1200 m/z detected in the positive ioniziaton mode, raw 
water sample and fractions. Further conditions, see Section 6.3.2. 

Compared to the previous experiment fewer signals were detected in baseline peak 

chromatogram analysis in this experiment. Retention time, exact mass and fraction of 

occurrence of selected masses are listed in Table 15. The raw water BPC showed similar 

signals at the same retention times, as in the previous experiment (Table 16).  

Table 18: Exact mass and retention time of selected compounds detected in base peak chromatograms of a 
water sample fractionated by FFITP. 

fraction m/z tR [min] 

raw water 214.919 1.4 

raw water 250.178 12.5 

28 - 40 185.115 9.3 

31 + 38 320.207 7.3 

31 412.209 8.4 

30 - 31 330.265 8.9 

30 - 31 335.219 15.7 

31 334.212 5.9 

 

The compound with 185.115 m/z was detected in every fraction except in the raw water 

sample as in the previous experiment. The signal at 320.207 m/z was detected in fractions 

31 and 38. The compounds 330.265 m/z and 335.219 m/z were detected in fractions 30 – 31 

with the highest concentration in fraction 31. Two compounds 412.209 m/z and 334.212 m/z 

were only detected in fraction 31. Chemical formula calculation by MassHunter software with 
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a difference smaller than 5 ppm did not reveal any reasonable compounds and signal 

properties could not be matched to target analytes.  

Target analysis by HPLC-MS 

Fractions with high UV activity were analyzed with the developed target method of 92 

wastewater chemicals by HPLC-MS in the positive ionization mode. Six compounds were 

detected, three of them in raw water sample and fractions. Tyrosine and phenylalanine were 

detected in every sample analyzed and may be an impurity from previous experiments. 

Chemical structures of the four compounds fenpropimorph, benzotriazole, melamine and 

metformin detected in fractions are given Figure 60. 

 

Figure 60: Analytes detected and quantified in a water sample fractionated by FFITP. The raw water sample is 
labeled as 0. Further parameters are given in Section 6.3.1. Tyrosine and phenylalanine were detected in every 
sample in 10 to 100-fold higher concentrations than the other analytes and are not shown in the diagram.  

Metformin was detected in the raw water sample and in reduced concentrations in three 

subsequent fractions 29 - 31. Melamine was detected in the raw water and in fractions 33 - 

36 and fractions 39 - 40. Most concentrations were at the LOD and thus melamine might be 

present in all samples in very low concentrations, except fraction 34 with a 270 % higher 

concentration than in the raw water sample. Fenpropimorph was detected in three fractions 

below LOQ and benzotriazole was detected in two subsequent samples but not in the raw 

water sample.  

 

Figure 61: Chemical structures of compounds detected in fractions in FFITP experiment.  
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The expected enhancement of fractionation efficiency via a higher field strength with sharper 

fraction boundaries was not achieved. Even with the longest possible separation time the 

ITP stacking was not complete as described above. The separation is limited in ITP systems 

to few fractions according to the applied leader and terminator in the range of potential 5 - 10 

fractions. However, with the large number of compounds in the sample, more time for an 

efficient stacking and formation of ITP zones would be required, which is not possible with 

the available instrumentation.  

Free flow interval zone electrophoresis with pH steps (FFIZE-pH)   

To investigate the concentration ability of FFIZE to focus and preconcentrate 

micropollutants, a wastewater sample was fractionated by intervall zone electrophoresis into 

96 fractions. In this experiment, a pH gradient of pH 5 - 9 was applied in five steps (pH 5, 6, 

7, 8 and 9) each step covering 10 - 15 fractions. The pH profile is given in Figure 62. 

Analytes were expected to migrate along the pH gradient until they reach a pH step, where 

they have no effective electrophoretic mobility due to being neutral or reaching their pI. 

Several analytes can then be expected in each well defined fraction. The advantage 

compared to ITP experiments lies in the lower time limitation as the migration of analytes 

does not depend on the number of charged components in the sample.  

 

Figure 62: pH profile along the 96 fractions of F-IZE-pH experiment with a waste water sample. Figure provided 
by FFE Service GmbH.  

HPLC-MS analysis was performed only for fractions showing the highest UV absorbance at 

260 nm including fractions 11, 12, 24 - 26, 31, 41, 42, 51 - 55, 57, 60, 69 and 75. Therefore, 

the pH range from 5.0 to 8.9 was covered and detected compounds had pKa values in the 

range of 1 to 14.  

The base peak chromatograms of the raw water sample and analyzed fractions are shown in 

Figure 63. Comparison of BPCs revealed increased signal intensities of various unknown 

compounds in different fractions. Exact masses and retention times of selected compounds 

are given in Table 19. Detected features did not correspond to any of the 92 compounds in 

the standard mixture used for method development. Thus, the target method has to be 

extended, possibly after identifying the signals summarized in Table 19 from nontarget 

screening, for further investigations. 
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Figure 63: Base peak chromatogram of FFIZE separated samples, BPCs in the range of 80 - 1200 ± 0.01 m/z 
analyzed by HPLC-QTOF-MS in the positive ionization mode. A pH gradient of pH 5 at fraction 19 - 30 to pH 9 at 
fraction 83 - 94 was applied and the sample injected at fraction 71 - 85.  Further parameters, see Section 6.3.1. 

The signal at 102.130 m/z (Figure 63) was detected with increasing signal intensity from 

fractions 11 - 12 but not in the raw water sample, presumably due to preconcentration. The 

compound with 217.105 m/z was the most abundant signal among all analyzed fractions and 

was only detected in fraction 11 and not detected in raw water sample. This indicates a 

strong concentration of the compound in this fraction with a stacking at a pH step boundary. 

With an intermediate retention time of 6.7 min in HPLC, the compound can be assumed to 

become protonated at pH 5 in FFIZE but is uncharged in the HPLC eluent. Its molar mass 

points to a small organic molecule. The signal at 245.078 m/z was detected in fractions 11 

and 12 with equal intensity. In fraction 12, two more compounds were detected at high HPLC 

retention times of 18.4 and 18.8 min with 345.237 and 321.235 m/z. These were the highest 

retention times detected for compounds in base peak chromatograms. The high retention 

times and occurrence in a high pH fraction of FFIZE corresponding to a basic pH value of 9 

might be explained by molecules which are uncharged under the acidic conditions of HPLC 

separation including 0.01 % formic acid. In fractions 24 – 69 a double peak was detected at 

357.114 m/z with an intensity maximum in fraction 26. In fraction 25 two signals were 

detected, which were not present in fractions 24 and 26, at 325.162 and 417.164 m/z. This 

indicates a sharp focusing of these compounds, possibly at a pH step boundary. In fractions 

41 and 42 a new signal at 114.092 m/z was detected with increasing intensity. At HPLC 

retention times of 1.5 – 4 min, in the base peak chromatograms a higher noise was detected 

compared to the base peak chromatograms of previous fractions. The reason for this is 

remains unclear. In fractions 52 – 57, two signals with the highest intensity at fraction 54 

were detected at 417.164 and 325.161 m/z.  
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Table 19: Mass and retention time of selected compounds with higher concentrations in fractions compared to 
raw water sample. Signals from Figure 63. 

fraction m/z tR [min] max 

11 - 12 102.130 2.1 12 

11 217.105 6.7  

11 - 12 245.078 13.8  

12 345.237 18.4  

12 321.235 18.8  

24 - 69 357.114 10.9 26 

25 325.162 12.0  

25 417.164 14.2  

41 - 42 114.092 7.3 42 

52 - 57 417.164 14.1 54 

52 - 57 325.161 11.9 54 

 

Comparison of the base peak chromatograms reveals new signals and signals with higher 

intensities than present in the raw water sample. Identification by any of the previously 

mentioned criteria was impossible, see Section 6.4.1. 

Target screening 

The same procedure used to analyze FFITP fractions was applied to FFIZE-pH fractions. 

Quantification was based on external calibration with reference material in methanol. Results 

of the analysis are shown in Figure 64. 24 compounds were detected in the samples.  

 

Figure 64: Concentration of compounds detected in raw water and fractions separated by FFIZE-pH. Analytes 
below the LOQ but above the LOD are indicated by squares.  
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Seven compounds were detected in the raw water sample and 13 compounds in the 

analyzed fractions. The detected compounds are listed accompanied by their retention time, 

fraction of occurrence and classification according to use in Table 20. 50 % of the 

compounds (9 out of 18) were only detected in one fraction. Compounds detected in the raw 

water sample were elevated in fractions. 4 out of 8 compounds were only detected in the raw 

water sample. Gabapentin and DEET are neutral at the chosen pH range and are thus not 

expected to be affected by electrophoresis. On the other hand, 10 out of 18 compounds 

were detected in fractions but not in the raw water sample. This could be due to efficient 

migration and concentration processes. Three compounds imazalil, NMP and phenylalanine 

were detected in 6 respectively 4 successive fractions. Melamine and nicotine were detected 

in fraction 11 and 75, both fractions with pH 8.9. Some of these compounds, if identified 

correctly, need a cotransport phenomenon to be transported in the electric field.  

Table 20: Fraction of occurrence, application and retention time of compounds detected in the water sample 
fractionated by IZE-pH and analyzed by the developed HPLC-MS method.  

 compound  pollutant class tR [min] fraction 

1,2,3-Benzotriazol chelating agent 8.1 0, 31 - 75 

2-Hydroxy-benzotriazol metabolite 10.1 11 

Amisulpride pharmaceutical 7.7 55 

Atenolol pharmaceutical 6.7 55 

Candesartan pharmaceutical 11.8 11 - 60 

Caffeine waste water  7.5 11 

DEET insecticide 12.4 0 

Gabapentin pharmaceutical 7.1 0 

Imazalil fungicide 10.3 31 - 57 

Lamotrigine pharmaceutical 8.1 0 

Levocarnitine metabolite  1.6 11 

Melamine monomer 1.7 11, 75, 0 

Metoprolol  pharmaceutical 8.1 0, 55 

Nicotine waste water  2.4 11, 75 

NMP bulk chemical 6.4 31 - 57 

Phenylalanine amino acid 6.3 11, 12, 57 - 69 

Sitagliptine pharmaceutical 8.6 0 

Phenazone pharmaceutical 8.4 0 

 

Overall, no clear pattern for a fractionation process was observed. Physicochemical 

properties of detected compounds are listed in Table 21. Among these compounds, 7 

substances contain an acidic functional group, which are candesartan, the amino acid 

phenylalanine, gabapentin, pregabalin, telmisartan, atenolol and levocarnitine. Benzotriazole 

was detected in fractions 31 - 75 and in the raw water sample like in the previous two 

experiments. As benzotriazole is uncharged in the applied pH range no concentration at a 

certain pH was expected. Its transport may be mediated by humic acids. Phenylalanine was 

also detected in every FFE separated fraction. Therefore, these compounds are expected to 

represent impurities. DEET, gabapentin, sitagliptine, lamotrigine and phenazone are neutral 

or cationic at the chosen pH and are hence detected only in the raw water sample.  

The detection of neutral or positively charged compounds in several fractions indicates 

transport phenomena by matrix components. To investigate these phenomena, in further 

experiments a closer analysis of the raw water sample is required. Candesartan was 

detected in fraction 11 - 60 and it is a negatively charged compound in the applied pH range.  
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Table 21: Physicochemical properties of compounds detected in water samples. pKa
1
 strongest acidic pKa value 

and pKa
2
 strongest basic pKa value.  

 Compound pKa
1 

pKa
2 

pI log Pow 

1,2,3-Benzotriazole 8.37 0.6 4.60 1.44 

2-Hydroxy-benzotriazole  5.38  -1.73 -   

Amisulpride 14.03 7.05 4.31 1.1 

Atenolol 14.08  9.67 11.87 0.16 

Candesartan 3.51 1.5 2.5 6.1 

Caffeine 
 

-1.16 - 0.07 

DEET   -0.95 - 2.02 

Gabapentin 4.63 9.91 7.42 -1.1 

Imazalil 6.53  - 3.82 

Lamotrigine 14.98 5.89 10.93 2.5 

Levocarnitine 4.2   - -5.48 

Melamine   9.56 12.62 -1.37 

Metoprolol  9.67 14.09 11.88 1.76 

Nicotine 
 

8.58 - 1.17 

NMP    -1.7 - -0.38 

Phenylalanine 2.47 9.45 5.96 1.24 

Sitagliptine  8.78 - 1.5 

Phenazone 1.4  - 1.22 

 

The correlation of retention time as an indicator of polarity to the fraction number is 

presented in Figure 65. A correlation of retention time and fractions was clearly not given. 

This demonstrates the orthogonality of the two separation mechanism, which may 

advantageous to enhance selectivity in the offline 2D configuration.  

 

Figure 65: Correlation between retention time and fraction of compounds detected in raw water and FFIZE-pH 
fractions.  

In FFIZE-pH, sample components are separated according to their electrophoretic mobility 

and their point of no charge, marked by the pI. Amphoteric compounds migrate until they 

reach a pH regime equaling their pI. Only two detected compounds are amphoteric with a pI 

in the analyzed range and these are gabapentin, which was only detected in the raw water 

sample, and phenylalanine, which was a contaminant in these measurements. Therefore, 
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further experiments conducted in the pH range suitable for the compounds of interest are 

required to answer the question of the ability of FFIZE-pH for preparative separation of 

wastewater contaminants. Many open questions can be addressed using standards with 

broad distribution of pKa values and electrophoretic mobilities in further experiments.  

6.5 CONCLUSION AND OUTLOOK 

An HPLC-MS multi-component method was developed for identification of wastewater 

pollutants by retention time and exact mass comprising 92 substances in the low µg/L range. 

This method was applied to surface water samples to assess the ability of free flow 

electromigrative techniques to fractionate and concentrate small molecules. The detection of 

some compounds like pregabalin in some consecutive fractions indicates the ability of 

micropollutant fractionation. The detection of pregabalin in fractions but not in the raw water 

sample points to the concentration ability of the fractionation technique. Both hypotheses 

should be further investigated in a simpler model experiment containing a small number of 

compounds with known physicochemical properties and defined concentrations. The 

preliminary results shown in this study indicate the applicability of FFIZE-pH and FFITP to 

fractionate smaller molecules similar to bio-macromolecules usually fractionated by these 

techniques. Results indicate FFE to be a promising strategy for fractionation and 

preconcentration for ionic compounds. Different dwell times and buffer conditions, as well as 

electric field strength, are parameters to optimize the method. Another opportunity to 

increase the separation efficiency could be to combine different electrophoretic separation 

techniques and thus pre-separate water samples in a first step and fractionate analytes 

covering a smaller pKa range by ITP. This project combines the advantages of ion 

separation by electrophoresis with classical and orthogonal chromatographic separation to 

give a higher coverage of pollutants and their transformation products. 
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7 INVESTIGATION OF THE INFLUENCE OF ELECTRODE GEOMETRY, 

TEMPERATURE AND CONVECTION ON THE TRANSFER OF IONIC 

ANALYTES BY ELECTROMIGRATIVE ENRICHMENT PROCESSES  

7.1 ABSTRACT 

Analysis and especially enrichment of ionic compounds in wastewater analysis is 

challenging. In this study, enrichment experiments were performed aiming at 

preconcentrating ionic and ionizable analytes from water samples into small volumes with 

subsequent analysis by HPLC-MS. To achieve this an experimental setup was optimized to 

transfer charged analytes from a starting volume of 30 mL to a sampling volume of 300 µL 

via electromigration by application of voltage. Transferring solely charged compounds 

eliminates neutral (including sample solvent) and oppositely charged matrix components, 

which remain in the starting vessel during the enrichment procedure. This method only 

requires simple electrolytes as buffers which makes it environmentally friendly. First proof of 

principle experiments were performed to evaluate the applicability of electromigration 

through capillaries for large volume preconcentration. According to the pKa regime of the 

analytes of interest an appropriate pH value was adjusted by the buffer and the influence of 

electrode configuration, temperature, convection and capillary surface on analyte migration 

behavior was investigated. Four compounds (metformin, terbutryn, clarithromycin and 

naphazoline) being cationic at pH 2 were proven to be enriched in the electric field at pH 2 

within 2 hours. The optimized conditions were elevated temperature of 50 °C, a straight 

electrode and no convection in the starting vessel. Enrichment factors of 1.3 in case of 

terbutryn, 1.6 for naphazoline and 3.6 in case of metformin were achieved. However, after 

22 hours of voltage applications, in total less than 63% of the analytes were recovered. To 

assess if electrochemical degradation was the reason for the reduced recoveries of analytes, 

electrochemical transformation experiments were conducted in an electrochemical cell.        

7.2 INTRODUCTION 

7.2.1 Preconcentration  

Trace pollutant concentrations in environmental samples make preconcentration of analytes 

mandatory. Common concentration techniques like liquid-liquid extractions are suitable for 

nonpolar compounds 235, but the consumption of organic solvent can be high. Solid phase 

extraction requires less organic solvents to elute the analytes of interest, but they still require 

organic solvents. In contrast, the method for ionic compounds tested here, would be 

environmentally friendly as only aqueous buffers are required as solvent. Therefore, herein 

the first attempts are reported to use electromigrative techniques for preparative 

preconcentration of ionizable compounds in water samples. Related strategies were 

reported in literature: electromembrane extraction is a preconcentration technique used for 

ionic analytes, which was applied to concentrate fungicides from water samples 221. This 

technique is based on migration of analytes from an aqueous donor to an acceptor solution 

accelerated by an electrical potential difference. The solutions are separated by an 

immiscible artificial liquid membrane 236. Different analytical preconcentration techniques in 

electrophoresis, among them field-amplified sample stacking, transient ITP or membrane 
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filtration were reviewed by Breadmore 237. Electrokinetic injection followed by 

isotachophoresis is used for inline preconcentration in capillary electrophoresis. This 

strategy has successfully been applied to concentrate wastewater chemicals in water 

samples in capillaries 238. However, these attempts are limited by band broadening at too 

high injection volumes.  

In classical electrokinetic sample injection, analyte molecules migrate into the capillary by 

the action of the effective electric field applied in the sample vial. For short injections, this 

process is limited by the effective electric field rather than diffusion. Simulations showed, that 

diffusion plays a minor role compared to electrode geometry and thus the effective electric 

field in the vial 26. The distance between electrode and capillary inlet determines the volume 

covered by the effective electric field. The greater the distance, the larger the volume 

sampled by the effective electric field, and thus the amount of analyte injected by 

electrophoretic migration 26. These effects were proven for metal ions 239. Breadmore 

reported an unlimited-volume stacking by application of a stationary isotachophoresis for 60 

min at -20 kV 240. In this process, analytes are continuously injected at one end and 

accumulate in the capillary volume between the ITP boundaries allowing a potentially 

unlimited injection. 

In this study electrokinetic sample injection was used to transfer ionic analytes and 

simultaneously concentrate them by volume differences between the starting and the 

sampling vessel. To investigate the impact of electrode geometry on preparative 

preconcentration via permanent electrokinetic injection, two electrode configurations were 

used in this study. In addition, two other important conditions playing a role for the efficiency 

of electrokinetic injection were investigated: temperature and convection. Heating was 

shown to enhance the amount of analyte introduced into the capillary whereas stirring 

reduced it 26. Replacing the sampling vial by one with a larger volume was reported to 

improve the amount of analyte loading by covering a larger volume by the effective electric 

field for electrokinetic injection 239.  

7.2.2 Experimental setup 

In the experimental setup a volume of 30 mL filled with starting solution was used and a 

sampling vessel with only 300 µL buffer. In theory, a complete electromigrative analyte 

transfer would lead to an enrichment by a factor of 100. Electrolytes were chosen in a way 

that the buffering coion (coion to analytes) was OH- or H+ for the enrichment of anions or 

cations. Both solutions were adjusted to the appropriate pH value and connected via a 50 - 

65 cm capillary filled with buffer. In the sampling vessel a straight electrode was installed 

whereas in the starting vessel different electrode configurations were applied to investigate 

the influence of electrode geometry on the transfer process. The starting vessel was 

equipped with a magnetic-heating-stirrer enabling the investigation of the contribution of 

convection and temperature to the enrichment process. Schematically the instrumental setup 

is presented Figure 66. 
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Figure 66: Instrumental setup for the enrichment experiment with starting vessel containing 30 mL with 
changeable electrode and a sampling vessel of 300 µL both connected via a capillary. For the enrichment of 
cationic or anionic analytes 20 or -20 kV were applied at pH 2 or pH 9, respectively. The starting vessel was 
equipped with a magnetic-heating-stirrer to assess the influence of temperature and convection on the injection 
process.  

The influence of electrode configuration was investigated by using different geometries of 

the Pt wire electrodes in the starting vessel. A straight and a twisted electrode were used, 

both configurations are shown in Figure 67. A parallel configuration of capillary and electrode 

was used in case of the straight electrode, and in case of the twisted configuration the 

capillary was surrounded by the electrode. As reported in literature only analytes present in 

the effective electric field may be introduced into the capillary 26. In both modes the distance 

between capillary ending and electrode ending was approximately 0.5 cm, with the capillary 

being slightly longer than the electrode. Experiments were conducted with a special focus on 

influence of electrode configuration, temperature and convection on the effective electric 

field.  

 

Figure 67: Straight and twisted electrode geometries to broaden the effective electric field in the sampling vessel. 
The capillary was in parallel to the straight Pt-electrode or in the center of the twisted Pt-electrode in the 30 mL 
starting vessel.  

7.2.3 Experimental design 

19 compounds, used in wastewater monitoring as lead substances to evaluate wastewater 

treatment efficiency 241 were chosen to characterize a preconcentration method based on 

the electrophoretic mobility of ionic/ionizable compounds. The mixture applied in 

preconcentration experiments contained anionic, cationic and neutral substances at the pH 

chosen for buffering. The experiments were conducted at pH 2, with metformin, terbutryn, 
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naphazoline and clarithromycin being cationic, and at pH 9 with diclofenac, ibuprofen and 2-

methyl-4-chlorophenoxyacetic acid (MCPA) being negatively charged. The neutral 

compounds being uncharged at pH 2 were carbamazepine, irbesartan, benzotriazole, 

sulfamethoxazole, chloridazon, 2,4-dichlorophenoxyacetic acid (2,4-D), iohexol, 

epoxiconazole, thiacloprid, propiconazole, imidacloprid and clothianidin. The chemical 

structures of all analyzed compounds are given in Figure 68.  

 

Figure 68: Molecular structures of compounds used in enrichment and electrochemical transformation 
experiments.  

At pH 2 (no electroosmotic flow (EOF) is present in bare fused capillaries) the four cationic 

compounds and at pH 9 the five anionic compounds were expected to migrate to the 

sampling vessel, whereas the neutral and oppositely charged compounds were supposed to 

remain in the starting vessel. At pH 9, the EOF had to be eliminated (see below). The 

concentrating effect was aimed to be reached by using a larger starting volume and a 

smaller sampling volume (300 µL vs. 3 mL, thus an ideally 100-fold enrichment). For a 

quantitative transfer of ionic analytes a voltage of + or -20 kV was applied for 2 - 22 h. 

Analyte concentrations were monitored in the starting solution, both vessels and the capillary 
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at different times. The inner volume of the capillary was sampled by rinsing with buffer into 

an empty sampling vial until 300 µL were collected. For EOF elimination the anionic 

concentration experiments at pH 9 were conducted with an AAEE coated capillary, 

developed in our working group 242. Analysis was conducted by HPLC-MS (see Section 

7.3.4). To my knowledge, this experimental strategy is used for the first time for 

preconcentration of ionizable analytes. The pharmaceuticals clarithromycin, metformin and 

naphazoline were successfully separated by CE 224, 243-244. But, to my knowledge, a CE 

method for the pesticide terbutryn, which is treated as priority substance in the European 

Union 245, has not yet been reported. 

7.2.4 Electrochemical cell 

To consider electrochemical degradation or hydrolysis, processes likely to occur in these 

experiments, electrochemical transformation studies were conducted with an 

electrochemical cell (EC). Electrochemical cells allow the analytical or preparative synthesis 

of electrochemical transformation products, which might be generated in wastewater 

treatment by different processes in oxidative or reductive mode. EC is used as screening 

method for identification of possible transformation products 246. For example, metabolites of 

metoprolol and diclofenac prepared in electrochemical cells, could be detected in treated 

wastewater samples 247. An advantage of electrochemical transformation studies is the 

possibility to directly couple EC with HRMS, and thus analyze transformation products 

without the need for sample workup to remove interfering matrix components. In contrast, in 

cell culture experiments traditionally used to simulate Phase I metabolism, removal of matrix 

is often challenging 248. The knowledge about possible transformation products can be used 

analytically for the identification of metabolites in drug development but also in a preparative 

manner to isolate transformation products which might be difficult to extract from matrix or 

whose lab synthesis is too complicated 249. Knowledge of transformation products formed in 

living organisms is crucial for a thorough understanding of biodegradation processes and a 

better assessment of contaminants fate in the environment and in biota 250. Although EC is 

only capable of simulating a limited number of processes compared to the ones occurring in 

organisms, it is still a useful tool to address metabolic routes. In Phase I metabolism, 

enzymatic processes might form different transformation products than those formed in EC 

experiments. The metabolites are to some extent further processed in Phase II metabolism 

by conjugation of the functionalized compounds to sugars or proteins for excretion 248, 250-251. 

In the following paragraphs, the transformation routes by cytochrome P450 (CYP450) and 

electrochemistry are compared.  

The main path of Phase I metabolism is functionalization by the enzyme CYP450. The 

underlying reactions include hydroxylation, alkene-epoxidation, dehydrogenation, aromatic 

hydroxylation, dehydration, N-, S- and O-desalkylation, N-hydroxylation, N- and S-oxidation 

and oxidative des-amination 1. These reactions can partially be induced in electrochemical 

cells to simulate CYP450 oxidation processes 248. The oxidation takes place at the iron in the 

porphyrin ring of CYP450 enzyme 252. Cytochrome P enzymes are ubiquitous in nature, they 

are found in mammals, plants, bacteria, yeast and insects. These membrane-bound 

enzymes transform a large variety of xenobiotics. The transformation often leads to more 

polar compounds, which can be excreted more easily as they are more water soluble 1. In 

some cases, however, inactive compounds become activated instead of detoxificated. This 

is sometimes used in drug development (where a pre-form may be more stable or easier to 

administer), but might sometimes also lead to carcinogenic activity of the transformation 

products 1. Hydroxylation and oxidation processes are the main chemical transformation 

processes in the liver and are also often formed in electrochemical experiments 252.  
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Other possibilities to simulate CYP450 processes are Fenton chemistry and the use of 

synthetic metal-porphyrins 246, 249. Reactions observed in electrochemical cells are limited to 

oxidation and reduction processes induced by single electron transfers 253. Benzylic 

hydroxylation, hydroxylation at aromatic rings and electron donating groups, N-dealkylation, 

S-oxidation, dehydrogenation and in some cases N-oxidation and O-dealkylation are 

reactions often observed in oxidative EC experiments 249. Products requiring a prior proton 

abstraction like aliphatic hydroxylation, N-oxidation, O-dealkylation or hydroxylation at 

unsubstituted aromatic compounds are not formed 251. Continuous flow cells, used in 

medical drug development, are capable of transformations in the 10 – 100 mg scale 252. 

Some pharmaceuticals are widely examined for electrochemical transformation products, for 

example carbamazepine was examined by reductive 254 and oxidative treatment 250. 

The volume to surface ratio is important in electrochemical cells as the reaction takes place 

at the electrode surfaces 252. Different electrode materials are used in oxidation and 

reduction processes. A common electrode material is the boron-doped diamond electrode 

(BDDE) used as working electrode. BDD electrodes generate hydroxyl radicals very 

effectively by water oxidation. The hydroxyl radicals interact (oxidatively) with the analytes. 

Advantages of BDD electrodes are the broad working range and minimal side-reactions 

compared to other electrodes 255. BDDE electrodes allow application of higher potentials 

compared to glassy carbon electrodes 251. An advantage of BDDE electrodes is the reduced 

adsorption of analytes on the electrode surface, especially in case of aromatic and 

hydrophobic compounds, compared to glassy carbon electrodes 255. BDDE electrodes are 

so-called non-active electrodes and thus are more suitable for hydroxyl radical formation 

compared to active electrodes like platinum 247. Hydroxylation of alkanes and alkenes was 

performed by platinum electrodes 256. Diamond is an insulation material but introducing 

impurities with sp3
 hybridization makes diamond conductive. Mostly aromatic hydroxylation is 

induced by hydroxyl radicals 255. Activated electrodes like glassy carbon electrodes allow 

surface reactions whereas non-active electrodes like diamond electrodes allow reactions 

with hydroxyl radicals in solution 254. Graphite electrodes are used in Fenton reactions 253. 

Common solvents are acetonitrile/water 248 and methanol/water mixtures 250 to enhance the 

analytes’ solubility. Common acetonitrile concentrations range from 1 to 50 % 248. Another 

advantage is that acetonitrile prevents compounds from being adsorbed by the cell surface 
247. Most oxidation reactions are pH depending 253. Thus, application of different pH 

conditions (acidic, basic and neutral) reveals different types and ratios of oxidation products 
248-249.  

7.3 EXPERIMENTAL 

7.3.1 Reagents, chemicals and consumables 

HPLC solvents methanol hypergrade LC-MS (chromasolv), water hypergrade LC-MS 

(chromasolv) and formic acid (98%, eluent additive for LC-MS) were supplied by Sigma-

Aldrich (Steinheim, Germany). Propiconazole, thiacloprid, epoxiconazole and imidacloprid 

were purchased by Dr. Ehrenstorfer GmbH (Augsburg, Germany). Terbutryn, naphazoline, 

clarithromycin, iohexol, 2,4-dichlorophenoxyacetic acid, MCPA, chloridazon, benzotriazole, 

irbesartan, sulfamethoxazole, ibuprofen, metformin and carbamazepine were purchased 

from Sigma-Aldrich (Steinheim, Germany). PTFE syringe filter 0.45 µm, 3 mm were supplied 

by Macherey-Nagel (Düren, Germany). Platinum wire (0.5 mm, 99.9 % trace metal basis) 

was purchased by Sigma-Aldrich (Steinheim, Germany).  
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7.3.2 Enrichment Experiments 

With acetic acid buffer at pH 2.3 experiments were carried out at room temperature using a 

bare fused silica capillary (Agilent Technologies, Waldbronn, Germany) with 100 µm inner 

diameter in a CE instrument (Prince Technologies, Emmen, the Netherlands). Capillaries 

were conditioned by rinsing with water (3 min, 1000 mbar), sodium hydroxide (1 mol/L, 3 

min, 1000 mbar), hydrochloric acid (1 mol/L, 3 min, 1000 bar), water (3 min, 1000 mbar) and 

buffer (3 min, 1000 mbar). The starting vessel contained 30 mL acetic acid buffer (750 

mmol/L) with a mixture of the analyte at a concentration of 100 nM (terbutryn, naphazoline, 

clarithromycin, metformin, thiacloprid, propiconazole, sulfamethoxazole, imidacloprid, 

epoxiconazole, diclofenac, clothianidin, chloridazon, carbamazepine and benzotriazole). The 

sampling vessel contained 300 µL buffer. To induce electromigration, -20 kV were applied 

for 2 to 22 h. The capillary was flushed with 300 µL buffer to analyze the capillary content 

after application of voltage. All samples were filtered through 0.45 µm PTFE filters and 

subsequently analyzed by HPLC-MS.  

To conduct anion enrichment experiments AAEE coated capillaries were used. An 

ammonium formate buffer (c = 100 mmol/L formic acid titrated to pH 9 using aqueous 

ammonia) was used for separation. The analyte mixture and concentration were the same 

as described for experiments at low pH. The applied voltage was 20 kV for 2 hours.  

7.3.3 Electrochemical transformation by EC 

For each compound tested a 50 µmol/L solution was prepared in acetonitrile/buffer (1/1) 

solution. Ammonium formate was used to prepare buffers at pH 9 and 7 and formic acid to 

prepare buffers at pH 2.8.  Electrochemical experiments were carried out using a µPrep Cell 

2.0 and a µPrep Cell (Antec Scientific, Zoeterwoude, the Netherlands) with two 100 µm 

spacer. The µPrep Cell 2.0 was equipped with GC/BDD electrode and the µPrep Cell with Ti 

electrode. For oxidation experiments a BDD electrode or a BDD glassy carbon electrode 

were used and for reductive experiments a WE TiBlue µPC 2.0 electrode produced by 

Antec. The counter electrode was Pd/H2. The potentiostat was a Pontus 2 potentiostat by 

MK and the software Autopotus developed by AK Karst University of Münster. 

Massvoltammograms were obtained by direct injection with a flow rate of 20 µL/min and a 

microTOF (Bruker) equipped with an electrospray ionization (ESI) source in the positive 

ionization mode. The MS data acquisition took 7 minutes after applying voltage. For 250 sec 

a voltage ramp was applied starting at 0 mV and ending at 2500 mV with a rate of 10 mV per 

second in steps of 5 mV. For reductive experiments a voltage of 0 – 2500 mV was applied. 

The flow rate was 20 µL/min. For data analysis Origin 9.1.0 (OriginLab, Northampton, USA) 

was used.  

7.3.4 Instrumental methods 

HPLC-MS 

For HPLC-MS analysis, a 1260 Infinity LC system coupled to a 6550 iFunnel QTOF LC/MS 

system (Agilent Technologies, Waldbronn, Germany) was used. Aliquots of 10 µL sample 

were injected onto a Zorbax Eclipse Plus C18 column (2.1 x 150 mm, 3.5-Micron, narrow 

bore, Agilent Technologies, Waldbronn, Germany) at 40 °C. A jet stream electrospray 

ionization (ESI) source was operated with a nebulizer pressure of 35 psig, drying gas 

temperature was set to 160 °C and the gas flow rate to 16 L/min and the fragmentor voltage 

to 360 V. In the positive ionization mode capillary voltage was set to -4000 V, skimmer 

voltage to 65 V and a nozzle voltage to -500 V. The mass range was 80 - 1200 m/z with a 



Chapter 7 
 

133 
 

data acquisition rate of 1 spectrum/s. The sheath gas temperature was set to 325 °C with a 

flow rate of 11 L/min. For internal calibration purine and HP0921 (Agilent Technologies, 

Waldbronn, Germany, m/z = 121.0508 and 922.0097) were used. A gradient elution at a flow 

rate of 0.3 mL/min using water containing 0.1 % formic acid and methanol was used. The 

initial content of 95 % water was decreased after 1 min to 5 % water over 7 min and after 

another 7 min at 5 % increased to 95 % water over 0.5 min. Data analysis was performed 

with MassHunter software (Agilent Technologies, Waldbronn, Germany).  

CE-MS 

Analysis was performed using a CE 7100 (Agilent Technologies, Waldbronn, Germany) 

coupled to a 6550 iFunnel mass spectrometer QTOF (Agilent Technologies, Waldbronn, 

Germany) as an autosampler and delivery system. Undiluted samples were injected 

hydrodynamically at 100 mbar for 20 sec and flushed with water at 1 bar for 30 sec using a 

bare fused silica capillary (50 µm diameter, 64.5 cm length) and transported through the 

capillary by 100 mbar for 3 min. The mass spectrometer was run by an ESI source in the 

positive ionization mode at 3500 V. A sheath liquid interface from Agilent Technologies was 

used with a mixture of isopropanol/water (1/1) containing 0.1 % formic acid with a flow rate 

of 0.5 mL/min. Gas temperature and flow rate was set to 150 °C and 11 L/min and nebulizer 

pressure to 5 psig. Data were analyzed by MassHunter Qualitative software (Agilent 

Technologies, Waldbronn, Germany). Sum formula of transformation products were 

calculated from exact masses by the software.  

7.3.5 Data analysis 

Data analysis was performed with Quantitative MassHunter Workstation software Version 

B.06.00 (Agilent Technologies, Waldbronn, Germany). Graphs and massvoltammograms 

were created with Origin. 9.1.0 (OriginLab, Northampton, USA). The retention time window 

was set to 1 min and mass range to 0.01 m/z for extraction of ion chromatograms. 

7.4 RESULTS AND DISCUSSION 

7.4.1 Influence of pH 

Experiments at pH 9 were performed with coated capillaries to prevent EOF. During 

measurement however, a strong EOF was observed in experiments with AAEE coated 

capillaries. AAEE capillaries were coated following the protocol developed in our working 

group 242. The EOF caused a transfer of the starting solution from one vessel to the other, 

making preconcentration experiments at pH 9 impossible. Here, further work has to 

concentrate on optimization of the coating procedure. In experiments carried out at pH 2 with 

a bare fused silica capillary no EOF was observed, resulting in unchanged volumes in both 

vessels at the end of experiment. From a practical point of view and for proof of principle, the 

following experiments focused on pH 2. It was expected, that cationic analytes near the 

capillary-end enter the channel and migrate towards the cathode. Counter ions, in this case 

hydroxide from the buffer, migrate to the anode as a consequence of electroneutrality. 

During this process, the pH was expected to increase locally 26, but a stable pH was 

determined during the experiment in both vessels. 
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7.4.2 Assessment of experimental time and optimization strategy  

To assess the transfer rate of cationic analytes (naphazoline, metformin, clarithromycin and 

terbutryn), voltage was applied and analyte concentrations were determined at the beginning 

and after 2 and 19 hours of voltage application. Exemplarily, the chromatograms for 

metformin and naphazoline recorded for the starting solution (standard), for the starting 

vessel solution (30 mL, inlet) and for the sampling vessel solution (300 µL, outlet) are shown 

in Figure 69.  

 

Figure 69: Extracted ion chromatograms for metformin (m/z = 130.1087) and naphazoline (m/z = 211.123), 
detected in the starting mixture (standard), starting vessel (inlet, 30 mL) and sampling vessel (outlet, 300 µL) 
after 2 and 19 hours at -20 kV, analyzed by HPLC-MS.  

With pH 2 after 2 hours of voltage application only slight concentration changes were 

detected. Therefore, the experimental time was prolonged to 19 hours. After 19 hours of 

voltage application no concentration increase in the vessel was detected compared to the 

shorter experiment but the concentration in the starting vessel slightly decreased. This may 

be due to of limited injection capability for electrokinetic injection into capillaries, which was 

shown to be independent from injection time in a simulation by Karim et al. 26. An equilibrium 

of concentrations between sampling, starting vessel and capillary might be an explanation 

for the observation that the concentration in the sampling vessel did not increase between 2 

and 22 hours. The reduced overall recovery may be explained by electrochemical 

degradation of analytes (see Section 7.3.2).  

Overall, the main fraction of the analyte remained in the starting vessel. To overcome this 

limitation different experimental setups were investigated. The first hypothesis was that the 

effective electric field lines do not cover the whole starting vessel and thus only analyte 

molecules present near the capillary are affected by the electric field and migrate into the 

capillary. Further injection would then only be possible upon diffusion of analyte into the 

effective electric field near the capillary inlet. Therefore, a twisted electrode was applied to 

extend the area covered by the electric field. The second hypothesis was that heating might 

accelerate the diffusion process. Therefore, the experiment was carried out at room 

temperature and at elevated temperature to compare both conditions. The third hypothesis 
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was that analytes close to the capillary inlet migrate into the capillary leading to a zone of 

lower analyte concentration around the capillary inlet which equilibrates by diffusion to the 

surrounding medium. Diffusion of analytes at such low concentrations might be slow 26. 

Therefore, stirring of sample would lead to convection and analyte transfer would not be 

diffusion-controlled anymore.  

Insertion of a water plug into the capillary between buffer and sample reduces the 

conductivity at the capillary inlet and increases the electric field at the capillary ending. This 

will lead to a stacking process in the capillary 257 and eliminates the formation of a high 

conductivity zone directly at the inlet which would prevent further injection. This process has 

successfully been applied in on-line preconcentration experiments 258. Following the idea of 

conductivity enhancement, in a first approach a water plug of 5 sec was injected 

hydrodynamically before the experiment was started. In comparison of the experiment with 

water plug and the one without water, no differences were observed. In order to test the 

other hypotheses the influence of the described modifications on the migration behavior of 

analytes was investigated. 

7.4.3 Influence of electrode geometry, convection and temperature  

To determine the influence of the electric field spanned by the electrode, the experiment was 

performed with straight and twisted electrodes in the starting vessel, as shown in Figure 67. 

A larger volume was expected to be covered by field lines and thus a better transport of 

analytes into the capillary was expected. To assess the influence of temperature on diffusion 

controlled migration of analytes, experiments were performed at room temperature and at 50 

°C. The last parameter investigated was convection via rigorous stirring. The results for 

these strategies were applied to the cationic compounds as above (clarithromycin, 

naphazoline, terbutryn and metformin) with a buffer of pH 2. The results are shown in Figure 

70 to Figure 73. In all treatments less than 65 % of the initial compound concentration was 

detected after 22 hours of voltage application. Concentration factors differed between the 

analytes from 0 to 3.6-fold.  

  

Figure 70: Clarithromycin concentrations detected in starting vessel (30 mL), sampling vessel (300 µL) and 
capillary (300 µL) by HPLC-MS (left) and recoveries calculated by amount of substance compared to the 
concentration in the initial solution of 100 nM (right) in samples enriched under different conditions and designs 
(S = straight electrode, T =  twisted electrode, C = convection). 

For clarithromycin, recoveries ranged between 5 and 52 % with the highest recovery in the 

experiment with the twisted electrode and the lowest recovery in the experiment with a 

straight electrode and elevated temperature. In every experimental condition in the sampling 
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vessel lower concentrations were detected than in the initial mixture. The only experimental 

condition under which clarithromycin was detectable in the capillary (1.6-fold higher 

concentrated) was the same conditions under which the lowest overall recoveries were 

detected. This finding indicates a stacking phenomenon in this experiment.  

 

Figure 71: Metformin concentrations detected in starting vessel (30 mL), sampling vessel (300 µL) and capillary 
(300 µL) by HPLC-MS (left) and recoveries calculated by amount of substance compared to the concentration in 
the initial solution of 100 nM (right) in samples enriched under different conditions and designs (S = straight 
electrode, T =  twisted electrode, C = convection). 

Metformin showed a different behavior than clarithromycin. Under five of the eight 

experimental conditions a higher analyte concentration in the sampling vessel was detected 

than the concentration in the initial mixture. The highest enrichment factor of 3.6 was 

achieved in the experiment with higher temperature and a straight electrode. In addition, this 

was the only experiment in which analyte was detectable in the capillary in 2.1-fold higher 

concentration compared to the initial mixture. The higher enrichment can be related to the 

high electrophoretic mobility of metformin being small and a strong base. The total 

recoveries ranged from 0.4 to 60 %. In every experiment with convection and the one with 

higher temperature and a twisted electrode the recovery was below 2 %. At a higher stirring 

rate than migration rate convection could lead to a reduced migration rate of analytes into 

the capillary. But in this case the recovery should be higher in experiments with convection. 

Therefore, results indicate a higher transformation rate of metformin in experiments with 

convection 

  

Figure 72: Naphazoline concentrations detected in starting vessel (30 mL), sampling vessel (300 µL) and 
capillary (300 µL) by HPLC-MS (left) and recoveries calculated by amount of substance compared to the 
concentration in the initial solution of 100 nM (right) in samples enriched under different conditions and desings 
(S = straight electrode, T =  twisted electrode, C = convection). 
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The results in experiments with naphazoline were similar to those with metformin. 

Recoveries were in the range of 0.3 - 49 %. Recoveries below 1 % were observed in 

experiments with convection during the enrichment time and the one with higher temperature 

and a twisted electrode. As seen before, the only experimental condition with a higher 

analyte concentration detected in the sampling vessel by 1.6-fold and in the capillary by 1.4-

fold than in the initial mixture was with straight electrode and elevated temperature.  

  

Figure 73: Terbutryn concentrations detected in starting vessel (30 mL), sampling vessel (300 µL) and capillary 
(300 µL) by HPLC-MS (left) and recoveries calculated by amount of substance compared to the concentration in 
the initial solution of 100 nM (right) in samples enriched under different conditions and designs (S = straight 
electrode, T =  twisted electrode, C = convection). 

The highest recoveries were determined for terbutryn, ranging from 6 to 65 %. The only 

experiment in which analyte was detected in the capillary in 1.5-fold higher concentration 

than in the initial mixture was the experiment with straight electrode and higher temperature. 

In every experiment with convection and in the experiment with the twisted electrode and 

elevated temperature recoveries were below 20 %. The higher overall recoveries indicate 

that terbutryn is more stable to electrochemical degradation than the other test compounds. 

Summary: Under every condition tested the largest fraction of the analytes was detected in 

the starting vessel compared to the one in the capillary and in the sampling vessel even after 

22 h of voltage application. However, the 100 times smaller volume in the sampling vessel 

causes a concentration effect already for an analyte transfer rate greater than 1 % from the 

starting to the sampling vessel. A transfer equal to 1 % or greater was observed for 

metformin in five experiments, for naphazoline in three and for terbutryn in one experiment 

but never for clarithromycin. The most striking observation was, that in most experiments 

only small fractions of analyte were detectable at the end of experiments, a large fraction 

was lost. Electrochemical degradation as reason for this observation is discussed later in this 

work.  

Effects by changes in electrode geometry from straight to helical depended on the analyte. 

In experiments with metformin and naphazoline a decreased concentration in the starting 

vessel was observed for experiments with a helical electrode compared to a straight 

electrode. For clarithromycin, a higher concentration was detected in the starting vessel in 

experiments with a helical electrode compared to those conducted with a straight electrode. 

For terbutryn only negligible concentration changes were observed in the starting vessel 

regardless of the two electrode geometries. Considering all experiments the impact of 

electrode geometry seemed to be lower than the other tested parameters, temperature and 

convection. In the experiments with the helical electrode tendentially lower analyte 

recoveries were observed than in experiments with the straight electrode. To understand the 

reasons further investigations are necessary. Possible effects might by electrochemical 
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transformation, hydrolysis as well as adsorption phenomena. All effects are influenced by the 

effective electric field geometry with both the volume covered but also the strength. Thus, 

the hypothesis to obtain higher enrichment efficiencies by a more effective analyte injection 

cannot be proven regarding the results presented. Hirokawa et al. simulated a significant 

impact of electrode geometry on the effectivity of short-term electrokinetic sample injection, 

using a cylindrical electrode surrounding the vessel compared to a hollow electrode with the 

capillary inserted 26. 

Application of heating (using a straight electrode) resulted in a higher concentration of 

analytes in the capillary. This finding corroborates published studies investigating the 

influence of temperature on electrokinetic sample injection 26. Elevated temperature 

combined with a straight electrode geometry were the only parameters, where a significant 

analyte concentration was detectable in the capillary inner volume. This indicates an 

enhanced injection of analytes into the capillary, but no further or only very slow 

electrophoretic migration to the sampling vessel. In experiments with the helical electrode 

and elevated temperature, less than 10 % of the analyte were detectable after 22 h for all 

compounds. This indicates a faster transformation process induced by the helical electrode 

geometry. These results correlate with the findings discussed before.  

Convection led to reduced terbutryn and clarithromycin recoveries and in case of metformin 

and naphazoline to nearly complete loss of analyte. The substance least affected by 

convection was terbutryn. This finding was independent from the electrode geometry. In 

comparison to the three investigated parameters convection showed the highest impact on 

substance recovery. In every experimental condition implying convection the recovery was 

drastically reduced. This shows that convection enhances the migration rate of analytes into 

the capillary, but in the same way facilitates degradation and desorption processes. Xu et al. 

simulated, that convection might increase the sample diffusion and thus accelerate the 

analyte supply to the effective electric field 259. 

Xu et al. reported an increased amount of injected sample by heating to 75 °C, stirring and 

extending the sample volume 259, with a higher impact of heating compared to stirring. 

Comparing Figure 70 to Figure 73 shows that in this study, the combination of temperature 

and convection obviously led to lower analyte recoveries, independent of substance and 

electrode geometry. This indicates that the combination of both enhances degradation 

processes or the preconditions leading to degradation. To investigate if electrochemical 

degradation was the reason for reduced recoveries, transformation studies were conducted, 

explained in Section 7.3.3.  

7.4.4 Experiment with straight electrode and elevated temperature 

The highest analyte concentrations in the starting vessel, in the capillary and highest 

recoveries were detected for the following conditions: elevated temperature of 50 °C, straight 

electrode and no convection. In Figure 74 the relative analyte amounts detected and the 

concentrations in starting vessel, sampling vessel and capillary are shown for these 

conditions. 
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Figure 74: Concentrations in the starting vessel (30 mL), sampling vessel (300 µL) and capillary (300 µL) (left) 
and recoveries relative to initial analyte amount (right) detected in samples enriched at 50 °C with straight 
electrode and without convection. 

For three of the four investigated compounds a higher concentration in the sampling vessel 

of 1.3-for terbutryn, 1.6-fold for naphazoline and 3.6-fold for metformin was detected 

compared to the initial mixture of 100 nM in 30 mL. Analyte was detected in 300 µL capillary 

rinsing solution in 1.5-fold to 2.1-fold concentrations of all four compounds. Obviously, under 

these conditions, more efficient injection and probably slower degradation processes occur. 

Possibly, the elevated temperature also reduces adsorption phenomena to glass vials and 

capillary. Thus, these are the most promising conditions for further investigations. 

Taking all experimental conditions and substances into account, the lowest recoveries were 

observed in experiments with naphazoline followed by metformin. Higher recoveries in total 

were observed for terbutryn and clarithromycin, but for both compounds mostly in the 

starting vessel. The first two compounds are smaller and thus have a larger effective 

electrophoretic mobility. Clarithromycin is less stable and thus might be degraded faster than 

the other molecules if transferred to the sampling vessel. Terbutryn might be in the middle 

with respect to stability and electrophoretic mobility.  

7.4.5 Transformation experiments 

Electrochemical processes induced in an electrochemical cell are commonly oxidation 

processes 249. Electrochemical oxidation normally involves one electron processes like 

oxidation at the aromatic ring or N-oxidation 253. In order to show possible degradation 

processes, transformation products were investigated using an electrochemical cell (see 

Section 7.3.3). As shown below, the analyzed compounds were stable at the applied 

conditions up to a potential of 2 V. Alteration of pH, electrode material and reductive as well 

as oxidative conditions did not yield transformation products. For terbutryn oxidation of the 

thiol-group is likely to happen 248-249, but was not observed in the electrochemical cell 

experiments. Metformin and naphazoline bearing activated groups might need harsher 

conditions to be oxidized. A possibility to obtain electrochemical transformation products 

would be the use of Fenton chemistry as in these experiments radicals are generated, which 

tend to react also with stable compounds as shown by Bischoff and Bruins 253, 255.  

7.4.6 Electrochemical transformation in literature 

Transformation products are published in literature for all compounds except for 

naphazoline. Mass spectra detected in QTOF-MS measurements were analyzed for exact 

masses of transformation products known from literature. Chemical formulas of detected 

transformation products of terbutryn and metformin are given in Figure 75. 
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Figure 75: Transformation products of terbutryn detected in enrichment samples with retention time and exact 
mass 

260
 
261

. TP(T)-1 N2-(tert-butyl)-N4-ethyl-1,3,5-triazine-2,4-diamine, TP(T)-2 N2-(tert-butyl)-1,3,5-triazine-2,4-
diamine and TP(T)-3 4-(tert-butylamino)-6-(ethylamino)-1,3,5-triazine-2-ol. Transformation product 1-
methylbiguanide and metformin 

262
.  

An HPLC-MS method was developed to analyze these transformation products in the 

samples generated under different experimental conditions in order to investigate the 

hypothesis of electrochemical degradation in the enrichment experiments. The extracted ion 

chromatograms of parent compounds and the transformation products identified via exact 

mass are shown in Figure 76. Parameters used for compound identification are summarized 

in Table 22. 

 

Figure 76: Extracted ion chromatograms of terbutryn (dark blue), TP(T)-1 (light blue), TP(T)-3 (purple) and 
metformin (dark green) and its metabolite TP(M)-1 (light green) analyzed in the sampling vessel solution after 
22 h of voltage application with a straight electrode and without convection  by HPLC-MS. 

Table 22: Analytical parameters for HPLC-MS analysis of terbutryn with three metabolites and metformin with 
one metabolite detected in samples, with retention time and exact mass. 

compound formula [M+H]
+
 tR [min] 

terbutryn C10H19N5S 242.1434 11.7 

TP(T)-1 C9H17N5 196.1558 9.8 

TP(T)-2 C7H13N5 168.1228 not detected 

TP(T)-3 C9H17N5O 212.1516 9.4 

metformin C4H11N5 130.1087 1.2 

TP(M)-1 C3H9N5 116.0930 1.5 

 

The metformin transformation product TP(M)-1 was only detected in two samples among all 

samples from all experimental condition, both from enrichment experiments run at 50 °C 

(independent from electrode geometry). The signal area of the metabolite signal was 6 and 

20 % compared to the metformin signal area in the same sampling vessel. After 22 hours 

several transformation products of terbutryn, known from literature 260-261, were detected. The 

relative signal areas of the transformation product peaks did not correlate to the signal area 

of the terbutryn peak in each sample, compare Figure 77. This might be due to fast 

mineralization of the transformation products or adsorption processes of transformation 

products. 
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Figure 77: Signal areas in the starting vessel (blue), the sampling vessel (green) and the capillary (grey) for 
terbutryn (left) and two metabolites (right), measured by HPLC-MS after 22 h enrichment experiment with 
different conditions applied.  

Terbutryn’s transformation product TP(T)-2 was not detected in any sample. TP(T)-1 was 

detected in every sampling vessel in similar low concentrations as the parent compound, 

assuming similar ionization efficiency of terbutryn and the transformation product. TP(T)-3 

was detected in every starting vessel and every sampling vessel except the one with the 

straight electrode (room temperature, without convection), but in this experiment the 

concentration in the starting vessel was lower than in all other samples and the 

concentration in the sampling vessel might have been below the limit of detection. 

Concentrations in the sampling vessel and the starting vessel were similar with slightly 

higher concentrations in the starting vessel. The thioether might be cleaved at acidic 

conditions in both vessels by hydrolysis. The triazine herbicide terbutryn might be 

electrochemically degraded as observed for conazole fungicides. These fungicides and 

triazole fungicides were completely mineralized to CO2 by electrochemical treatment within 

120 min at different pH values from 3 to 10 with a BDD electrode 16, 263. 

Published transformation products of clarithromycin could not be detected in this study 94. 

This might be explained by hydrolysis of clarithromycin and subsequent further 

mineralization at the applied experimental conditions of 22 hours at pH 2 and -20 kV. In 

water purification, electrochemical methods are applied to mineralize poorly biodegradable 

contaminants such as pharmaceuticals 264. Anodic oxidation is the most common technique 

in wastewater treatment 265. In these systems hydroxyl radicals are generated at the anode 

from water and organic pollutants are destroyed via reaction with hydroxyl radicals. Low 

hydroxyl radical concentrations led to only partial mineralization 266. Another reason for the 

absence of transformation products may be adsorption to glassware or capillary inner 

surfaces.  

To reduce possible degradation processes the addition of a sacrificial compounds being 

degraded instead of the analyte would be an opportunity or to spatially separate sampling 

analyte and electrode from one another as performed in electromembrane extraction 221.  

7.5 CONCLUSION  

Electromigrative enrichment experiments were conducted to investigate the applicability of 

electromigrative techniques for preparative preconcentration of ionizable analytes from water 

samples. The influence of pH value, electrode geometry, temperature and stirring on the 

migration behavior were investigated. For pH 9 the electroosmotic flow was shown to have a 
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high impact even in coated capillaries and further experiments were carried out at pH 2. For 

metformin, enrichment of 3.6-fold was achieved. The enhancing influence of convection and 

temperature on electrochemical decomposition were shown and a minor influence of 

electrode geometry. Overall, the developed approach demonstrates the ability of 

electromigrative techniques to enrich ionic compounds. Simultaneously, neutral or oppositely 

charged compounds are removed. Further work has to focus on a more complete transfer of 

analytes of interest in the electric field and avoidance of their degradation. 
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8 DISCUSSION AND CONCLUSION 

The objectives of this thesis were divided into two major parts. The first part was the 

development of analytical methods and their application to analyze residues of the 

pharmaceutical carbamazepine and the neonicotinoid thiacloprid in midge larvae and the 

fungicide propiconazole in fungi mycelium, thus, to increase the understanding of their 

environmental impact. This was achieved by optimization of extraction as well as 

quantification methods to determine the pollutant burden in different organisms and then to 

apply these methods to samples from exposure studies. In environmental analysis methods 

are required to determine trace amounts of contaminants in surface waters. Therefore, in the 

second part, first steps were made towards the application of different electromigrative 

methods to preconcentrate ionic and ionizable analytes in wastewater samples.  

8.1 ANALYTICAL DEVELOPMENTS FOR POLLUTANT ANALYSIS IN BIOTA  

Although several extraction techniques were described in literature that are suitable to apply 

on different type of biota samples and contaminants, screening methods covering a broad 

range of compounds (parent compounds as well as their metabolites) are of interest. 

However, analysis of trace amounts of contaminants, especially, in small amount biota 

samples is still challenging. To analyze small amounts of biota samples suitable 

homogenization techniques are a crucial factors as well as removal of interfering matrix 

components and sensitive detection methods.   

Generally, the initial step in sample preparation is sample homogenization. The suitable 

homogenization technique depends on different factors such as the type of sample matrix 

(e.g. rich in lipids or water content) and the available sample amount. Therefore, different 

homogenization techniques described in literature were compared. Different techniques 

were found suitable for homogenization of midge larvae and for fungi mycelium in this thesis.  

Basic requirements for the extraction method were a simple and fast extraction procedure 

applicable to analyze a broad range of pollutants including their metabolites in a small 

number of individuals originating from various organisms. These criteria are generally 

fulfilled by the QuEChERS extraction 2 after miniaturization. Therefore, the QuEChERS 

extraction procedure was modified concerning the requirements of the samples and 

analytes. Different approaches for acid or base sensitive compounds and acidic analytes 

were described in Chapter 2. A crucial step during or after the extraction procedure is the 

application of different dispersed solid phase extraction (dSPE) sorbents to remove 

interfering matrix components. Considering to the requirements of the matrix and the 

physicochemical properties of the analytes different sorbents were used, in this thesis. 

Modified QuEChERS extractions were applied for analysis of thiacloprid in midge larvae 

(Chapter 4), carbamazepine in midges and midge larvae (Chapter 3) and propiconazole and 

its metabolites in fungi mycelium (Chapter 5) in this thesis. Further, details on 

homogenization and cleanup procedures are discussed in Section 8.1.2. 

For separation and detection of these chemicals, HPLC coupled to ESI-QTOF was chosen. 

The extraction procedure was shown to cover a broad range of analyte polarity to enable 

simultaneous extraction of metabolites and parent compounds in a single extraction step. 

Care was taken to adapt the extraction procedure with respect to the applied 

homogenization technique. Cleanup steps including dSPE were implemented and optimized 

with regard to enhance both, the recoveries and the limits of quantification.  
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8.1.1 Method validation parameter of the HPLC-MS quantification methods 

Extracts were separated and analyzed with HPLC coupled to MS. This instrumental 

application is well-known to enable the sensitivity, selectivity and matrix tolerance required 

for trace analysis of organic compounds in biota extracts. Thiacloprid and propiconazole 

were analyzed in the MS-only mode, due to identical quantifier fragmentation ions of analyte 

and isotopically labeled analyte. For carbamazepine and the isotopically labelled internal 

standard a MS/MS method was developed. The method validation parameters are shown in 

Table 23. 

Table 23: HPLC-MS method parameters of thiacloprid, propiconazole and carbamazepine analysis of analytical 
standard material in methanol. 

analyte tR [min] LOD [µg/L] LOQ [µg/L] 

thiacloprid 10.1 0.2  0.5  

propiconazole 13.2 0.1  0.2  

carbamazepine 11.3 0.1  0.2  

 

The three analytes were separated on a C18 column with retention times of 10 - 13 minutes, 

limits of detection of 0.1 - 0.2 µg/L and limits of quantification of 0.2 - 0.5 µg/L. The limit of 

detection was calculated based on a signal to noise ratio of 3 (S/N = 3) and the limit of 

quantification by a signal to noise ratio of 10 (S/N = 10). Internal standards are widely used 

in analysis of contaminant residues 31, 37, 44-45, 47, 50, 52, 54, 59. During workup and ionization the 

isotopically labeled compounds experience the same loss during workup and impairments of 

ionization efficiency during analysis. The quantification methods developed in this thesis, 

were based on isotopically labelled standards as they are known to account for recovery and 

matrix effects of analytes particularly in complex matrices.  

8.1.2 Quantification of pesticides and pharmaceuticals in different matrices 

Extraction and cleanup procedures 

The QuEChERS extraction procedure is based on a liquid-liquid extraction step with 

acetonitrile and water, followed by addition of salts to induce phase separation. If acquired a 

dSPE cleanup step can be implemented. For this, different sorbents are applicable. The 

applied methods were optimized with regard to the homogenization technique and the 

sorbent used in the cleanup step.   

Choice of homogenization methods of different biota samples  

Homogenization has two main impacts on the extraction procedure: 1) a more effective and 

faster extraction of analytes is aimed at achievement of higher and reproducible recoveries, 

and 2) a simultaneous effective co-extraction of matrix components, which potentially could 

interfere in MS analysis. For all samples approximately 20 mg biota sample were analyzed 

with different homogenization techniques, listed in Table 24. 

Table 24: Homogenization techniques for the different samples and analytes. 

matrix condition analyte homogenization conditions 

3 -5 midge larvae frozen thiacloprid micro-homogenizator liquid nitrogen 

20 mg mycelium dried propiconazole mortar and pestle addition of NaCl 

20 mg mycelium frozen propiconazole mortar and pestle liquid nitrogen 

10 mg midge larvae frozen carbamazepine micro-homogenizator liquid nitrogen 

10 mg midges  frozen carbamazepine micro-homogenizator liquid nitrogen 
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3 - 5 midge larvae were homogenized for quantification of thiacloprid and 10 mg larvae or 

midges were homogenized in case of quantification of carbamazepine. Frozen larvae and 

midges were homogenized in liquid nitrogen with a micro-homogenizator directly in the 

extraction vessel, which minimalized tissue loss as no transfer to another extraction vessel 

was required. 20 mg wet weight frozen mycelium from fungi experiments on agar plates 

were homogenized with mortar and pestle in liquid nitrogen, which is common for biota 

analysis 35, 47, 53. Mycelium was more difficult to homogenize than larvae samples due to 

texture and higher sample amounts. Therefore, mortar and pestle were chosen instead of 

the micro-homogenizator approach used for the larvae and midges samples. 20 mg dried 

mycelium samples from liquid culture experiments were homogenized with mortar and pestle 

after addition of sodium chloride to avoid electrostatic effects. Liquid nitrogen was not used 

here. Direct homogenization of dried samples was considered due to propiconazoles 

temperature stabile properties as proven in previous experiments. For fungi, between 3 and 

50 mg mycelium were homogenized covering a broader range of matrix amount compared to 

midge larvae samples (10 - 20 mg) and thus the mortar and pestle approach was chosen. In 

all three optimized extraction procedures analyte signal intensities in the raw extract were in 

the range of 34 - 70 % compared to the signal intensity of the standard in methanol at the 

same concentrations. To enhance these signal intensities by reduction of interfering matrix 

components different dSPE materials were evaluated.  

Choice of dSPE materials 

A possibility to remove interfering matrix components, and thus reduce the matrix effect 

during analysis is the implementation of a dSPE step. Different sorbent materials are 

available according to the physicochemical properties of analyte and sample matrix. The 

sorbent should retain co-extracted matrix components while ideally not removing analyte. 

Common dSPE materials are PSA and C18. PSA removes fatty acids and organic acids 2. 

C18 (non-endcapped) removes nonpolar matrix components by its functionalized 

octadecylsilane groups and polar basic compounds with non-endcapped silanol groups 193. 

The different extracts were cleaned with PSA and C18 (non-endcapped) and the signal 

intensities of analytes were compared in cleaned and raw extracts. The dSPE materials 

applied in the optimized method and method validation parameters are shown in Table 25. 

Table 25: Applied dSPE material and quantification method validation parameters: recovery, limit of quantification 
and matrix effect calculated from spiked extract samples. 

matrix analyte dSPE recovery matrix effect LOQ mass 

midge larvae thiacloprid PSA 100 ± 5 % 27 % 12 ng/g 20 mg 

dried 
mycelium 

propiconazole none 100 ± 7 % 20 % 25 ng/g dw 20 mg  

frozen 
mycelium 

propiconazole none 
85 ± 6 -  
93 ± 7 % 

36 % 5 ng/g ww 20 mg 

midge larvae carbamazepine C18 95 ± 15 % 23 % 12 ng/g 10 mg  

 

For mycelium extracts, implementation of the cleanup was not beneficial to enhance the 

signal intensity. In agar plate experiments, the signal intensity of propiconazole was 66 ± 

6 % in dSPE cleaned extracts compared to 62 ± 7 % in raw extracts. Considering that an 

additional step during sample processing could lead to loss of chemicals and that the 

recoveries were not significantly increased, the use of dSPE was not beneficial. Hence, 

quantification of propiconazole was achieved in raw extracts. For thiacloprid extraction from 

midge larvae dSPE cleanup with PSA enhanced signal intensities to 67 ± 2 % compared to 

34 ± 4 % in the raw extract, resulting in a matrix effect with 27 ± 2 % signal suppression in 

the cleaned extract. For carbamazepine extraction from midge larvae and midges cleanup 
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with C18 enhanced signal intensities to 50 % and reduced the matrix effect to 23 % 

compared to signal intensities in the raw extract (recovery 46 %, matrix effect 24 %). PSA 

cleaned extracts showed a similar matrix effects of 22 % but reduced recoveries of 34 % 

compared to C18 cleaned extracts. This indicates that interaction of PSA with 

carbamazepine is greater than with non-endcapped C18. To assess analyte losses during 

workup and matrix effects, quantification was based on isotopically labeled internal 

standards.  

Method validation parameters of quantification methods in biota tissue  

The method validation parameters of the four methods are summarized in Table 25. For 

fungi from liquid culture medium experiments, 1 µg/L was the limit of detection and 2 µg/L 

the limit of quantification for 20 mg dried fungi mycelium corresponding to 25 ng/g dry 

weight. The limit of quantification for propiconazole in extract of mycelium from agar plates 

was 0.2 µg/L corresponding to 5 ng propiconazole per g wet weight mycelium. Recovery in 

agar plate experiments was 100 ± 7 % and in liquid culture experiments 85 ± 6 % to 93 ± 

7 % based on deuterated propiconazole as internal standard. 

The recovery for thiacloprid in midge larvae extract was 100 ± 5 % based on internal 

standard and the limit of detection 1 µg/L. The limit of quantification is in accordance with 

applications of QuEChERS extraction for thiacloprid from bumble bees 53, honey bees 35 and 

gammarids 40 , where the limit of quantification was in the low ng/g range. The method 

developed in this thesis required 20 mg matrix, whereas in the mentioned publications 100 - 

200 mg matrix were consumed. Compared to a nano-LC-MS method published by Berlioz-

Barbier et al. to analyze diuron and spinosad in 3 - 4 chironomid larvae with limits of 

quantification of 1 - 50 ng/g wet weight 21, the method developed here reveals comparable 

values.  

Detection limit for carbamazepine was 5 µg/L in 10 mg extracted tissue corresponding to 

approximately 3 midges or 2 larvae and 12 ng/g wet weight. Quantification based on 

deuterated internal standard was performed with a recovery of 95 ± 15 %. The method 

validation parameters are in accordance with literature. Miller et al. analyzed carbamazepine 

in 100 mg freeze dried gammarids with a limit of quantification of 6 ng/g and Dussault et al. 

investigated matrix effects in extracts of 9 - 12 spiked chironomids while achieving a limit of 

quantification of 2.9 µg/L 65.  

Overall, the developed methods allowed the analysis of pollutants in very small amounts of 

sample (10 - 20 mg), which were provided from laboratory exposure studies. The limits of 

quantification were in the ng/g range (5 - 25 ng/g), and therefore uptake at environmentally 

relevant concentrations (ng/L - µg/L) is quantifiable with the developed methods. The results 

demonstrate that the miniaturization of QuEChERS is possible for various sample types but 

requires the adaption of the methodology to the analyte and organism of interest.  

Analysis of metabolites 

To know the fate of chemicals, analysis of their metabolites is crucial. In some cases 

metabolites of compounds are more active to organisms than their parent compounds or 

inactive compounds are activated during transformation 1. To extract metabolites, which are 

often more polar than the parent compounds 1 together with the parent compound using the 

same extraction procedure, a method covering a broad range of polarity is required. The 

ability of the QuEChERS extraction to extract parent compound and metabolites was shown 

for the fungicide boscalid from honey bees 43 and diclofenac from mussel 45  and fish 48. The 

method developed in this thesis for extraction of propiconazole from fungi mycelium 

comprised the extraction of three of its main metabolites, details are presented in Chapter 5. 
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Extracts of midge larvae were analyzed for transformation products of thiacloprid and 

carbamazepine, however, they were not detected. This could be due to concentrations of the 

transformation products in the investigated organisms below the limit of detection or to an 

insufficient capacity of the extraction method. Synthesis, electrochemical production or 

photolysis followed by purification would be required to obtain standards of transformation 

products for a more detailed investigation of the extraction efficiency.  

8.2 ECOTOXICOLOGICAL EFFECTS 

The optimized quantification methods were applied to determine the internal pesticide and 

pharmaceutical concentrations in organisms from exposure studies. These analyses were 

performed to understand (1) the correlation of internal and exposure concentration, (2) the 

effects of nanoparticles on pollutant transformation, (3) the uptake rate and transformation of 

pollutants, (4) the effects of nanoparticles on the bioavailability, and (5) the transfer of 

incorporated compounds from larvae to midges and thus between ecosystems. 

8.2.1 Correlation of internal concentration and exposure concentration  

The internal pollutant concentration in biota from exposure experiments was analyzed to test 

the hypothesis that the internal concentration reflects biological effects more closely than 

nominal exposure concentrations. In experiments with nonylphenol, the internal 

concentration correlated more accurately to dose-response concentrations than water 

concentrations 10. Therefore, samples from different exposure experiments were analyzed: 

(1) larvae exposed to thiacloprid, (2) fungi exposed to propiconazole and (3) larvae and 

midges exposed to carbamazepine. 

 

(1) The internal thiacloprid concentration in midge larvae from mortality studies was 

analyzed. In these experiments, only for the lowest exposure concentration of 0.03 µg/L 

thiacloprid a reduced internal concentration of 12 ± 5 ng/g in larvae after 96 h was observed. 

Higher exposure concentrations always resulted in internal concentrations of 47 ± 7 ng/g. 

The concentration in larvae which died during the exposure time was independent of 

exposure time, and determined to be in the range of 54 ± 11 ng/g. This concentration is only 

slightly higher than the one found in larvae which survived the treatment, and thus, possibly 

represents the lethal thiacloprid concentration for chironomids.  

(2) The concentration of propiconazole and three of its metabolites were analyzed in 

mycelium from different fungi species and in the medium. Mycelium samples originated from 

experiments on agar plates with L. bicolor and in liquid culture A. muscaria at different 

exposure concentrations. In a second approach samples originated from experiments with 

three different fungi species (A. muscaria, L. bicolor and C. geophilum) which were exposed 

to different propiconazole concentrations (0.1, 2 and 5 mg/L) in liquid culture. 

In agar plate experiments with L. bicolor and reduced bioavailable propiconazole 

concentrations by addition of nanoparticles the detected internal propiconazole 

concentration clearly increased with the bioavailable fungicide concentration. The internal 

concentration increased from 0.2 to 7 µg/g ww mycelium for an exposure range of 20 - 

100 µg/L. The internal concentration showed a strong correlation to the endpoint of reduced 

growth of mycelium. In samples exposed to 20 µg/L 40 ± 7 mg mycelium were available at 

the end of exposure time whereas for an exposure at 100 µg/L a mycelium amount of only 2 

± 1 mg was available (for details see Chapter 5). An increase in fungal growth was expected, 
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because propiconazole is an inhibitor of lanosterol biosynthesis by inhibiting C-14 

demethylation of lanosterol 15-16. 

In liquid culture experiments with different fungi species significantly different internal 

concentrations were observed between species. Likewise, the inhibition of growth differed 

between the tested species. In A. muscaria mycelium, which was exposed to the highest 

concentration of 5 mg/L, the lowest internal concentration of 33 ± 21 µg/g was detected 

combined with the strongest growth inhibition with 7 ± 2 mg available. In L. bicolor exposed 

to the lowest concentration of 100 µg/L the detected internal concentration was intermediate 

with 284 ± 80 µg/g. Here, the growth inhibition was observed with 12 ± 5 mg mycelium 

available. In C. geophilum exposed to a medium concentration of 2 mg/L the highest internal 

concentration of 785 ± 47 µg/g was detected, correlating with the lowest inhibition of growth 

with 42 ± 3 mg mycelium being present at the end of exposure time. In these experiments 

the internal concentration inversely correlated to growth inhibition. On the first glimpse, the 

hypothesis on a correlation of internal concentration and effect, may be rejected. However, 

the differences may be better explained by different metabolic activity, which is discussed in 

Section 5.5.4. 

In liquid culture experiments with A. muscaria exposed to 1 - 5 mg propiconazole an 

increasing internal concentration of 1 ± 0.6 µg/g to 5 ± 1 µg/g was detected. These internal 

concentrations were not reflected in reduced growth, because at the lowest exposure 

concentration 6 ± 2 mg fungi mycelium were available and at the highest exposure 

concentration 5 ± 1 mg.  

3) The internal carbamazepine concentration in midge larvae and midges from an 

emergence test was quantified. With increasing concentration levels for exposure an 

increase in body-burden for larvae and emerged midges was observed in all treatment 

groups. In the exposure range of 0.025 - 3.2 mg/L the internal concentration in larvae 

increased from 8 ± 2 to 96 ± 30 ng/g in larvae and in midges from 19 ± 4 to 204 ± 10 ng/g.  

Internal propiconazole concentrations in fungi correlated well to the exposure concentrations 

in experiment on agar plates and in liquid culture. In the liquid culture experiments an 

increase in the internal concentration was observed. In experiments with agar plates 

inhibition of growth and internal concentration correlated very well. In mortality studies with 

chironomids larvae exposed to thiacloprid, only in larvae exposed to the lowest thiacloprid 

concentration a reduced internal concentration was detected. This indicates the sensitivity of 

analysis of the internal concentration in a range, where mortality was not observed but the 

toxic load was present. For chironomid larvae exposed to carbamazepine in an emergence 

test an increase in body-burden was observed over the whole test concentration range. 

These observations revealed that in emergence studies, investigating a more sensitive 

endpoint than mortality, even at lower concentrations a marked difference in internal 

concentrations was observed. The results indicate that the internal concentration in biota 

may correspond to sublethal or chronic effects more precisely than to acute endpoints. 

Calculated concentration factors between exposure concentration and determined internal 

concentration in fungi mycelium ranged from 5 L/kg (A. muscaria in liquid to culture) to 

400 L/kg (C. geophilum in liquid culture) and approximately 3000 L/kg (L. bicolor 56 L/kg in 

agar plate experiments and 4600 ± 1600 L/kg in liquid culture experiments). This shows the 

bioaccumulation potential of the fungicide propiconazole and that bioconcentration factors 

highly depend on the analyzed species. In experiments with midge larvae an accumulation 

factor of 70 ± 10 L/kg was observed for thiacloprid between exposure medium and midge 

larvae whereas the ratio between the carbamazepine exposure concentration and the 
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internal concentration in larvae and midges was below 1. However, even at the low 

carbamazepine exposure concentration a strong correlation between internal and exposure 

concentration was observed.  

8.2.2  Metabolism of pesticides 

The ability of fungi to degrade biomolecules is essential for the carbon cycle in forests 151. 

Due to their ability to degrade not only biological but also anthropogenic organic compounds 

(co-metabolism) fungi are used in remediation of contaminated soil 14. To degrade large 

biomolecules fungi excrete extracellular enzymes into the soil 166-167. This shows, that for 

fungi two metabolic routes have to considered, metabolism in the fungi to excrete 

compounds and metabolism by external enzymes to take up metabolites for nutrition. 

Therefore, different metabolite profiles between fungi mycelium extracts and medium 

extracts may evolve and different effects may be expected with regard to the fungi’s reaction 

to pesticides. The objective was to investigate differences in uptake and the metabolic 

transformation rate of propiconazole by different fungi species and to determine the 

bioaccumulation and metabolic fate of propiconazole in fungi by analysis of propiconazole 

and three of its metabolites. Biotransformation products of propiconazole are known in 

literature from transformation studies with rainbow trouts 203 and gammarids 204. Rösch et al. 

detected two main metabolites in gammarids, the first one resulting from hydroxylation and 

the second one by ether cleavage from propiconazole 204. 

In analysis of L. bicolor mycelium grown on agar plates, signal areas of the metabolites were 

10-fold lower compared to the ones of propiconazole. The observation of metabolites in 

mycelium shows a metabolic activity of the fungus towards propiconazole and its capability 

to metabolize the fungicide at exposure concentrations up to 100 µg/L in agar plates. In the 

analysis of agar plate extracts propiconazole was detectable but no metabolites.   

The analysis of mycelium extracts of fungi grown in liquid culture revealed no metabolites. In 

contrast metabolites were detected in the liquid culture medium of the same three fungi 

species except for the medium of L. bicolor. For L. bicolor, no propiconazole was observed 

in the medium at the end of the experiment. This indicates that propiconazole was fully 

metabolized or incorporated by the fungi. These findings corroborate literature observations: 

In experiments on agar plates A. muscaria and C. geophilum were able to tolerate up to 0.1 

ppm propiconazole and one strain of C. geophilum was even stimulated in growth 161. In 

medium samples from L. bicolor all analytes were detected. In C. geophilum, three 

metabolites but not propiconazole were detected and samples of A. muscaria did not reveal 

any of the compounds. Detected metabolite concentrations clearly differed between species. 

Therefore, taking the species sensitivity into account is relevant in effect based exposure 

studies. In case of A. muscaria, concentration levels were below the limit of detection for all 

metabolites and thus significantly lower than in L. bicolor and C. geophilum (p > 0.05). 

Obviously, A. muscaria is capable of metabolizing propiconazole faster than the other two 

fungi species (excluding abiotic transformation, see Section 5.5.2).  

8.2.3 Effects of nanoparticles 

In toxicity studies, the effects of active substances are investigated to assess their risk 

imposed on the environment. Laboratory based exposure studies with mostly investigating 

only single substance experiments, do not fully reflect environmental exposure conditions as 

mixtures of compounds and particulate matter are present and might lead to combined 

effects. Although in soil and surface waters natural and artificial nanoparticles are known to 

be present in significant amounts, the interaction of possible toxic substances with them is 
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rarely considered. Sorption processes of compounds to particles might alter their 

bioavailability. Nanoparticles are characterized by their size of 1 - 100 nm 112. Due to this 

definition, only by size the physicochemical properties of nanoparticles are very diverse. The 

most important general property is the large surface of these particles, displaying a large 

reactive interfacial area 19. This leads to relatively higher sorption capacities of nanoparticles 

compared to larger particles. Benthic living organisms are strongly exposed to both, 

contaminants bound to sediment and to contaminants dissolved in the water phase. Thus, 

stronger effects than expected from just pollutant concentrations detected in water can be 

anticipated 17. Pertubating activities and filtering of sediments might release bound 

contaminants upon changes of sorption equilibria, and therefore, enhance the exposure 

concentration 17. Especially, hydrophobic compounds sorb to sediments and an uptake by 

benthic invertebrates was observed although 99.99 % of the investigated hydrophobic 

compounds were bound to particles 18. Uptake via ingestion of particulate matter was also 

observed as an important uptake route for other sediment bound contaminants 4. 

Nanoparticles may serve as vectors or sinks for various organic compounds including 

pollutants. Accordingly, different effects of nanoparticles on the bioavailability were observed 

(1) enhanced bioavailability by transfer process, (2) reduced bioavailability by strong 

sorption, and (3) reduced transformation rates.  

(1) Bioavailability of pollutants in the presence of nanoparticles 

Nanoparticles can act as vectors and transport pollutants and possibly aid uptake, when they 

are taken up by organisms. For example filtering invertebrates ingest particles depending on 

their size and carbon content 116. Aquatic insect larvae might ingest pesticides adsorbed to 

sediment as part of their diet 119. By this, adsorbed pollutants might be transported into 

organisms. These carrier effects have been observed in experiments with diuron sorbed to 

carbon nanotubes and algae 20. A reduced photosynthetic activity was observed at reduced 

bioavailable diuron concentrations. This was explained by locally enhanced concentrations 

of diuron bound to nanotubes, and higher concentrations of these nanotubes near the algae. 

In the chironomids mortality experiments presented in this thesis nanoparticles were present 

in the larvae at the end of the 96 h experiment. Nanoparticles remained in the larvae after 

keeping them in water without nanoparticles for 24 h. This indicates the vector properties of 

nanoparticles. But mortality was still reduced in comparison to experiments without 

nanoparticles 141-142. This shows that the high sorption capacity of zeolite nanoparticles for 

thiacloprid reduced the bioavailability of the insecticide concentration.  

In experiments with solely thiacloprid, only for the lowest exposure concentration of 

0.03 µg/L a reduced internal concentration of 12 ± 5 ng/g was observed compared to higher 

exposure concentrations resulting in internal concentrations of 47 ± 7 ng/g. In experiments 

with nanoparticles, the detected concentration was in the same range with 36 - 53 ng/g.  

However, when adding nanoparticles to the exposure medium even at the lowest exposure 

concentration, an internal concentration of 42 ± 1 ng/g was detected. It has to be stressed, 

that the concentration of directly incorporated thiacloprid could not be distinguished from 

particle bound thiacloprid which may desorb during the extraction process with the applied 

method. Therefore, the higher internal thiacloprid concentration detected in the experiment 

at 0.03 µg/L, bioavailable thiacloprid concentration could (partly) stem from incorporated 

nanoparticles, which would underline the property of nanoparticles serving as a vector. 

Further methodological work is necessary to discriminate between the two uptake 

processes. The mortality decreased in experiments with zeolite nanoparticles indicating a 

reduced bioavailability of thiacloprid upon sorption, which emphasizes the hypothesis of 

vector-based uptake 141. Similarly, a reduced toxicity by reduced bioavailability upon sorption 
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of carbamazepine to sediment was observed in a study with chironomids in comparison of 

tests with and without sediment 17.  

In agar plate experiments with fungi clearly lower internal concentrations were observed in 

the presence of nanoparticles resulting from lower bioavailable concentrations due to 

sorption processes. The concentration of propiconazole and three of its metabolites was 

analyzed in fungi mycelium and medium. The fungi were exposed to propiconazole and 

nanoparticles. The influence of nanoparticles on the uptake by different fungi species and 

their ability to metabolize the fungicide were investigated under different growing conditions. 

In agar plate experiments L. bicolor was exposed to 100 µg/L propiconazole and different 

nanoparticle concentrations reducing the bioavailable propiconazole concentration. In the 

analyzed mycelium the propiconazole uptake clearly decreased from 7 ± 2 to 0.2 ± 0.1 µg/g 

wet weight with increasing nanoparticle concentrations. This shows a strong effect of 

sorption to nanoparticles on the bioavailability of propiconazole.  

In contrast, the results from liquid culture experiments revealed a different aspect of reduced 

bioavailability upon sorption to nanoparticles: In liquid culture experiments A. muscaria was 

exposed to 5 mg/L propiconazole and different nanoparticle concentrations, which reduced 

the bioavailable propiconazole concentration. Compared to experiments without 

nanoparticles in these experiments higher propiconazole concentrations were detected at 

the end of exposure time. Furthermore, the detected propiconazole concentration increased 

with increasing nanoparticle concentrations. When nanoparticles were added to the liquid 

culture medium containing 5 mg/L fungicide, the internal concentration was up to five times 

higher compared to experiments without any nanoparticles. Experiments with A. muscaria 

exposed to solely propiconazole indicated a strong ability of A. muscaria to degrade 

propiconazole in liquid culture. Therefore, the higher detected concentrations at the end of 

exposure time in experiments with nanoparticles point towards a reduced transformation of 

propiconazole due to reduced bioavailability upon sorption to nanoparticles. The metabolic 

activity of these experiments is discussed in Section 5.5.4. 

(2) Effects on uptake and transformation of contaminants in the presence of nanoparticles 

Sorption of pollutants to nanoparticles may result in reduced bioavailability and this reduces 

the metabolism in the organisms or physical and chemical degradation in the environment. 

Persistence of several pollutants can be explained by sorption. For ecotoxicological studies, 

the reduced transformation in the environment has to taken into account as it may result in 

changes in equilibrium conditions and lead to chronic exposure scenarios. This effect was 

demonstrated for metal ions, where combined sorption and desorption processes resulted in 

a steady release of metal ions, leading to a chronic exposure of aquatic organisms 22. The 

propiconazole concentrations detected in liquid culture experiments analyzed in this thesis 

indicate similar processes. 

In liquid culture experiments with nanoparticles, the most abundant metabolite in all samples 

was metabolite BTP 4, detected at higher concentrations than propiconazole, followed by 

metabolite BTP 2 in about 10-fold lower amount assuming similar ionization efficiencies. All 

samples revealed very similar ratios in metabolic composition. Surprisingly, all analytes 

showed decreasing concentrations at higher nominal initial propiconazole concentrations. 

Metabolites BTP 2 and 3 were at the limit of detection in mycelium extracts, however, at 

quantifiable concentrations in exposure medium. In the previous experiment with different 

fungi species metabolites were detected neither in the A. muscaria mycelium nor in the 

medium. The calculated propiconazole concentration detected in mycelium was less than 

10 % of the initial concentration. This indicates fast degradation of propiconazole. In the 

experiment with nanoparticles, propiconazole and metabolites were detected at the end of 
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the exposure time in medium and mycelium. Clearly, nanoparticle sorption inhibits the 

degradation of propiconazole by the fungus.  

The propiconazole concentration during the experiment was not monitored. But it can be 

speculated that propiconazole desorbed from the nanoparticles at decreasing propiconazole 

concentrations resulting in an almost steady propiconazole exposure concentration over a 

long time. This would lead to relatively higher metabolite concentrations at lower exposure 

concentrations, if propiconazole is constantly desorbed after bioavailable propiconazole is 

metabolized. At higher exposure concentrations the metabolism would be faster as 

propiconazole is available already at the start of the experiment. The potential toxicity of the 

formed metabolites was not investigated in this study. As metabolites were detected at 

higher concentrations than the parent compound, further experiments with isolated 

metabolites are required to assess their toxicity.  

Overall, different effects of pollutant sorption to nanoparticles were observed in the samples 

analyzed in this thesis. In experiments with the neonicotinoid, thiacloprid, and zeolite 

nanoparticles, reduced mortality was observed but the nanoparticles were still present in the 

gut of the larvae at the end of experiment 141. This shows the ability of nanoparticles to be a 

vector for contaminants. Thus, the bioavailability of the contaminants sorbed to particles 

depends on the conditions in the organisms’ gut. In agar plate experiments, a reduced 

bioavailability upon sorption to nanoparticles was observed which resulted in a significantly 

reduced incorporated propiconazole concentration in L. bicolor mycelium. In liquid culture 

experiment A. muscaria was able to degrade propiconazole during the exposure time. This 

ability was reduced in experiments with nanoparticles due to a reduced bioavailability of the 

fungicide. This reduced degradation rate resulted in higher propiconazole concentrations 

being present at the end of the experiment. Exposure was therefore, at lower concentrations 

but over a prolonged time. 

These observations show that prediction of the effects of nanoparticles are challenging as 

they depend on (i) the analyte and nanoparticle sorption capacity as shown for midge larvae 

and different nanoparticle, and (ii) on the organisms metabolic activity as observed in 

experiments with fungi and the environmental conditions reflected by agar plate and liquid 

culture experiments.  

8.2.4 Transfer of incorporated contaminants from aquatic to the terrestrial 

environment 

Midge larvae and midges are an important source of prey for insectivorous predators in the 

aquatic and terrestrial environment 3. Bioaccumulated contaminants in prey represent an 

important way of exposure for their predators 4, thus, through the foodweb. The transport of 

pollutants via body burden from the aquatic to the terrestrial environment after emergence by 

holometabolic insects with aquatic larvae and terrestrial imagines, has been investigated for 

trace metals 6 and polychlorinated biphenyls (PCBs) 5. Furthermore, the transfer of PCBs 

from contaminated midge larvae to tree swallows has been researched in field studies 82. 

Metamorphosis can affect the internal contaminant concentration of midges in two ways: by 

increasing or decreasing concentrations. For example, 3-fold higher PCB concentrations 

were detected in adult midges compared to concentrations in larvae 5. The biomass of adult 

midges is approximately one third of the biomass of midges, therefore, the PCB burden 

changes, however, only if normalized based on biomass but not when calculated per 

individual. For polycyclic aromatic hydrocarbons and metals, predominantly lower 

concentrations (2 to 125-fold) were observed in midges compared to the one in larvae 83. 

The impact of midges to work as vectors from aquatic to terrestrial ecosystems has been 
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investigated for different metals in Chironomus riparius. Trace metals among them zinc, 

copper and cadmium, are known to accumulate in larvae but have a different fate upon 

metamorphosis. In case of copper, the metal was almost completely excreted from larvae 

over pupae to imagines. In case of zinc, the body-burden decreased from larvae over pupae 

to imagines 6. For arsenic similar results were observed in laboratory experiments. For 

instance, 72% of the arsenic burden was excreted between larval and adult stages 84.   

In this thesis larvae and midges from exposure studies with carbamazepine were analyzed 

to assess the transfer of incorporated pharmaceutical burden from larvae to midges during 

the pupation process. The removal rate of carbamazepine in sewage treatment plants can 

be as low as or even below 10 % 7. The internal concentrations were determined in midge 

larvae and midges originating from an emergence study with different carbamazepine 

concentrations, to investigate the fate of carbamazepine during the metamorphosis from 

Chironomus riparius larvae to imagines.  

The results showed, that larvae accumulated considerable amounts of carbamazepine and 

these were transferred to midges during metamorphosis. In the exposure range of 0.025 - 

3.2 mg/L the internal concentration in larvae increased from 8 ± 2 to 96 ± 30 ng/g in larvae 

and in midges from 19 ± 4 to 204 ± 10 ng/g. This indicates that larvae do not have efficient 

excretory mechanisms for carbamazepine. The adult midges emerging from exposed larvae 

had a significantly approximately 3-fold higher body-burden regardless of the exposure 

concentration. When interpreting the body-burden of larvae and midges, it has to be 

considered that biomass reduces by approximately 70 % during metamorphosis. An average 

weight of 2 mg and 6 mg were determined for midges and larvae, respectively. If all 

carbamazepine taken up by larvae is retained upon metamorphosis, a 3-fold 

bioconcentrated burden in midges is expected and was observed in the experiments. This 

finding is in accordance with published studies, where an increase by 3-fold has been 

observed in experiments with PCBs 83 as discussed above. Results indicate a transfer of 

100 % body burden from larvae to midges and indicate that this route is relevant for 

exposure of predators, and thus incorporation into the food web. Overall, the results 

demonstrate a transfer of aquatic pharmaceutical trace contaminants to terrestrial 

ecosystems due to uptake in aquatic larvae. The results presented here, show that the 

transfer route from aquatic living larvae to terrestrial imagines has to be considered in case 

of bioaccumulating contaminants, like in this case carbamazepine which is only partly 

removed in wastewater treatment plants. 

8.3 PRECONCENTRATION AND FRACTIONATION OF IONIC AND IONIZABLE 

ANALYTES BY ELECTROMIGRATIVE TECHNIQUES 

8.3.1 Water analysis and concentration 

The growing number of chemicals on the market and their presence in surface waters give 

rise to concerns about their environmental fate and behavior. The occurrence of these 

contaminants at trace amounts in surface waters make analysis challenging and enrichment 

steps necessary. Chapter 6 and 7 of this thesis focus on sample preparation techniques for 

ionic and ionizable analytes. The detection of ionic and highly polar compounds is of special 

interest as these often include metabolites or transformation products, which are mostly 

more polar than their parent compounds 1. In this thesis, the applicability of two approaches 

was investigated to fractionate (Chapter 6) and preconcentrate (Chapter 7) ionic and 

ionizable compounds by electromigrative techniques. The methods investigated can be 
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considered environmentally friendly as only simple aqueous electrolytes are required. The 

idea is to transfer solely charged compounds from the sample to an injection solution. 

Therefore, neutral and oppositely charged matrix components at given pH including sample 

solvents and interfering matrix components are eliminated simultaneously. These water 

samples preparation steps are expected to enhance the reliability of ionic and highly polar 

contaminant quantification as classical RPLC-MS experiences strong quenching effects with 

compounds elution close to the void volume.  

8.3.2 Water analysis 

In order to analyze several contaminants relevant in wastewater effluents a multi-component 

method comprising 92 substances was developed, with identification based on the criteria 

retention time and exact mass. With the developed method identification and quantification 

of analytes in the low µg/L was possible by HPLC-MS. For further information see Chapter 6.  

8.3.3 Investigation of effects on the electromigrative behavior of charged analytes 

The electromigrative enrichment experiments were intended to investigate the applicability of 

long term electrokinetic injection on preconcentration of ionizable analytes from water 

samples. To achieve the most suitable conditions, the influence of pH value, electrode 

geometry, temperature and stirring on the migration behavior were investigated. 

The process of analyte transfer was observed to be largely time-independent and maximal 

transfer was achieved already within 2 hours. This finding corroborates simulations from 

Karim et al. for electrokinetic injection into capillaries 26. However, after 22 hours of voltage 

application, on total less than 63 % of the analytes were recovered and different approaches 

were made to investigate the limiting processes for the ion transfer. Three hypothesis were 

tested with different experimental setups to enhance analyte transfer: electrode geometry, 

temperature and convection. In literature it was shown, that only analytes present in the 

effective electric field may be introduced into the capillary 26. Therefore, different electrode 

geometries (straight and helical) were used to extend the effective electric field. If the 

injection is limited by diffusion processes heating and stirring would accelerate the diffusion 

process leading to a higher analyte transfer. Thus, the influence of these conditions was also 

investigated.  

In each experimental setup, the highest concentration of analyte was detected in the starting 

vessel, although they were significantly lower than the initial concentration. Electrochemical 

transformation, adsorption phenomena and hydrolysis are possible processes to explain the 

reduced overall analyte concentrations in starting and accepting vessels as well as in the 

capillary. The impact of electrode geometry was lower than stirring and heating. Elevated 

temperature combined with a straight electrode resulted in significant analyte concentrations 

in the capillary inner volume, whereas combination with a helical electrode resulted in less 

than 10 % analyte recovery. In experiments where the starting vessel was stirred, the 

recovery was drastically reduced independently from other experimental parameters. Similar 

observations were reported by Hirokawa et al. for electrokinetic injection 26. The results 

indicate that the effect of the helical electrode on the effective electric field and of convection 

on the diffusion process, led to enhanced degradation processes or conditions leading to 

degradation, e.g. hydrolysis. The analysis of transformation products revealed the presence 

of one metabolite of metformin and of two transformation products of terbutryn. With the 

optimized conditions (elevated temperature of 50 °C, a straight electrode and no convection 

in the starting vessel) enrichment factors of 1.3 in case of terbutryn, 1.6 for naphazoline and 

3.6 in case of metformin were achieved. The developed approach demonstrates the ability of 
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electromigrative techniques to enrich ionic compounds. To overcome degradation processes 

of analytes, further work has to focus on analyte stability and a more complete transfer of 

analytes of interest. 

8.3.4 Electromigrative fractionation and preconcentration techniques   

Free flow electrophoresis is a continuous preparative isolation and purification technique 

based on electromigrative processes, which is commonly applied to fractionate large 

biomolecules 25. In this thesis, to my knowledge this technique was applied the first time to 

fractionate micro-pollutants in surface water samples downstream to wastewater treatment 

plants. Fractionation by free flow electrophoresis rises the possibility to obtain fractions 

compatible with appropriate further separation techniques such as liquid chromatography or 

capillary electrophoresis. The combination of both techniques brings together the high 

separation capacity of ionic compounds by electromigrative separation with the high 

sensitivity and further selectivity of HPLC-MS analysis. Combining these two orthogonal 

separation techniques (electrophoretic fractionation based on the electrophoretic mobility of 

analytes, and liquid chromatography, based on the polarity of analytes) would enhance the 

overall capacity and selectivity of analysis. To combine these advantages and investigate 

the suitability of this technique wastewater samples were fractionated with free flow 

isotachophoresis and free flow interval zone electrophoresis and analyzed for contaminants 

by HPLC-MS. The advantages of fractionation of water samples by free flow electrophoresis 

would be the simultaneous concentration of analytes in smaller fraction volumes, the 

reduction of sample complexity, and the possibility to work in a continuous mode. Analytes 

are separated according to their electrophoretic mobility (FFITP) or isoelectric point (FFIZE 

pH) in up to 96 fractions. The fractions were further analyzed by HPLC-ESI-QTOF-MS via 

screening for 92 micropollutants. 

In the ITP system fractionation was carried out with Cl- and OH- at pH 9.3 as leader and 

terminator, resulting in one of the broadest mobility windows possible to give the broadest 

coverage of micropollutants being anions at this pH. The results showed that the 

experimental time of 7 min, which was the longest separation time available at the 

instrumentation, was not enough to complete the separation processes. However, higher 

peak areas of compounds in fractions compared to raw water samples observed in base 

peak chromatograms indicate the potential of the methodology for preconcentration of ionic 

analytes. A disadvantage of ITP is that the separation depends on the number and 

concentration of compounds present in the sample. To overcome this limitation, FFIZE-pH 

was applied for fractionation. 

In the experiment with FFIZE-pH a pH gradient of pH 5 - 9 was implemented. Amphoteric 

analytes were expected to migrate until reaching a zone with a pH at their point while, other 

analytes would migrate until reaching a zone where neutralization occurs. Due to the limited 

number of analytes comprised in the multi-component method, only two compounds which 

are amphoteric in the applied pH range were identified. These were either detected in the 

raw water sample (gabapentin) or in every sample (phenylalanine). To fully judge the 

applicability of this system for fractionation of wastewater contaminants, further experiments 

are required using standards with a broad distribution of pKa values and electrophoretic 

mobilities. However, the preliminary results indicate the ability of FFE to fractionate ionic and 

ionizable wastewater contaminants. 
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8.4 CONCLUSION 

In this thesis three extraction protocols were developed based on a modified QuEChERS 

extraction in order to determine pesticide and pharmaceutical residues in biota samples. The 

extraction procedures were optimized with regard to homogenization and cleanup of extracts 

by different sorbents if required by matrix and analytes. The optimized methods enabled to 

extract the contaminants and in case of propiconazole the simultaneous extraction of three 

of its metabolites. Limits of quantification by HPLC-MS in extracts from approximately 20 mg 

tissue were achieved in the low ng/g wet or dry weight range. The developed methods show 

the suitability of the extraction procedure coupled to sensitive detection methods for 

quantification of trace levels of organic contaminants and their metabolites in small amounts 

of biota. 

The optimized methods were then applied to biota samples from exposure studies with the 

purpose to assess the ecotoxicological relevance of contaminants regarding different 

aspects of their environmental behavior: the bioavailability of contaminants in the presence 

of nanoparticles, the possibility of a transfer of pollutants during metamorphosis from midge 

larvae to midges and the metabolic transformation of analytes. The method was shown to be 

suitable to quantify carbamazepine and thiacloprid residues in midge larvae and midges. 

The complete transfer of incorporated carbamazepine from larvae to midges was observed. 

In experiments with nanoparticles reduced uptake from agar plates due to sorption of 

propiconazole to nanoparticles and a reduced metabolic transformation rate in liquid culture 

experiments with fungi were observed. These results cover different aspects of the 

nvironmental fate of contaminants depending on their physicochemical properties and thus 

give rise to a more complete understanding of the interplay of pollutants and particulate 

matter with regard to ecotoxicology.  

The investigation of electromigrative techniques was intended to preconcentrate ionic 

analytes, reduce wastewater sample complexity for further analysis by HPLC-MS and 

enhance overall selectivity and capacity. The results indicated that electromigrative 

methodologies are a suitable alternative for preconcentration and fractionation of ionic or 

ionizable micro-pollutants. The work thus addresses those highly polar and charged 

micropollutants difficult to analyze with classical techniques.  
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 ABBREVIATIONS 

abbreviation  

2,4-D 2,4-dichlorophenoxyacetic acid  

AAEE N-acryloylamido-ethoxyethanol 

ANOVA analysis of variance 

APCI atmospheric pressure chemical ionization 

BAF bioaccumulation factor 

BCF bioconcentration factor  

BDDE boron-doped diamond electrode  

BPC base peak chromatogram 

BSAF biota-soil accumulation factor 

BTP bio-transformation product 

CBZ carbamazepine 

CE capillary electrophoresis 

CYP450 cytochrome P450  

DEET N,N-diethyl-toluamide  

DLLME dispersed liquid-liquid micro extraction  

dSPE dispersive solid phase extraction  

dw  dry weight 

EA ethyl acetate 

EC electrochemical cell 

EIC extracted ion chromatograms  

EOF electroosmotic flow  

ESI electrospray ionization 

FA formic acid 

FFE free flow electrophoresis 

FFITP free flow isotachophoresis 

FFIZE free flow interval zone electrophoresis 

GC gas chromatography 

GCB graphiticed carbon black 

HILIC hydrophilic interaction chromatography  

HPLC high performance liquid chromatography 

HRMS high-resolution mass spectrometry 

IEF isoelectric focusing 

ISTD internal standard  

LC liquid chromatography 

LOD limit of detection  

LOQ limit of quantification  

MAE microwave-assisted extraction 

MCPA 2-methyl-4-chlorophenoxyacetic acid 

MeCN acetonitrile 

MeOH methanol 

MS mass spectrometry 

MSPD matrix solid phase dispersion  
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abbreviation  

NMP N-methyl-2-pyrrolidone  

NP nanoparticle 

OD optical density 

PAH polycyclic aromatic hydrocarbon 

PCB polychlorinated biphenyl 

pI isoelectric point  

PLE pressurized liquid extraction 

Pow octanol-water coefficient 
PSA primary secondary amines 

PTP photo-transformation product 

QuEChERS Quick Easy Cheap Rugged and Safe 

QuPPE Quick Polar Pesticides Extraction 

RPLC reversed phase liquid chromatography 

rpm rounds per minute 

S/N signal to noise 

SFE step-field electrophoresis 

SI signal intensity 

SPE solid phase extraction 

TOF time of flight 

tR retention time 

UHPLC ultra HPLC 

USE ultrasonic extraction  

VMS volatile methyl siloxanes 

ww wet weight 
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