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Summary

Global climate change is already impacting Earth’s biodiversity, but we are still struggling to
understand which species will perish and which will thrive. As many species will not tolerate
a rapidly-changing climate nor migrate fast enough to escape it, survival will depend on
whether populations are able to genetically adapt. Some species, however, seem to rapidly
adapt and spread in the new status quo of human-dominated ecosystems. We are just
beginning to understand the genomic footprints of past adaptation to climates and how this
has prepared populations for future rapid adaptation, but many questions still need to be
answered. Furthermore, evolution and adaptation knowledge is rarely integrated into
predictive biodiversity models, even though that would increase the accuracy of predictions
and help design better conservation strategies. Here | aim to tackle those challenges using
the mustard-related plant Arabidopsis thaliana, for which there are public genomic

sequences, geographic information, and seed collections of thousands of individuals.

Chapter One was my first approach to understand how populations of the same
species might respond to climate change. | examined survival of 220 natural Arabidopsis
thaliana lines whose genomes are known to a simulated extreme drought in the
greenhouse. Severe droughts are being forecast as some of the most drastic threats for plant
communities as a consequence of global change. Extending the use of environmental niche
models in combination with genome-wide association techniques, | found the hotspots of
adaptive variants are primarily at the North and South margins of the species’ distribution
range. The populations at those areas, that live in more extreme environments, will perhaps

become reservoirs of adaptive variation under future, more hostile climates.

In Chapter Two, | carried out a large-scale field experiment to directly quantify
climate-driven selection in natural conditions. We planted a global panel of 517 natural A.
thaliana lines in rainfall-manipulated common gardens both in a region with a moderate
climate, in Central Europe, and in a region with a more extreme environment, the

Mediterranean. Using image analysis to estimate reproductive success, | generated close to



25,000 fitness measurements. Combining fitness and genomic data, | could infer massive
changes in genome-wide allele frequencies within one generation, especially under hot
temperatures and reduced precipitation where many Central European genotypes died.
Integrating the theory of local adaptation with machine learning tools, | showed that a
significant portion of natural selection is predictable from the climate at the geographic
areas where genetic variants are found. Following a decrease in rainfall in the future, | then
predicted that the intensity of natural selection will increase the most in transition areas
from the Mediterranean to Central Europe, putting populations at evolutionary risk. This is in
stark contrast to the generally accepted notion that marginal “warming” populations are at

higher risk of extinction than populations at the center of the geographic distribution.

Chapter Three, in contrast to the previous chapters that studied the adaptive value of
pre-existent variants to future climate change, focuses on how novel mutations could
directly contribute to adaptation. Using herbarium samples as genetic snapshots in time, |
studied a 400-year-old lineage of A. thaliana that was isolated in North America. | was able
to identify over 5,000 new mutations, some of which generated novel morphological
differences likely related to adaptation to the newly colonized continent. | concluded that
even large organisms such as plants might evolve and adapt from new mutations in

contemporary timescales.

This work advances our knowledge on how and whether different populations of a
species will genetically adapt to the changing climate. Some of the insights generated here
include (1) that adaptation to climate occurs thanks to hundreds of genetic variants
(polygenic adaptation), (2) that new mutations occur often enough that they could
contribute to rapid adaptation in colonizing populations, and (3) that statistical models that
learn the relationship between current climates and genetic variants can be used to predict
whether populations will have the appropriate genetic makeup to adapt to climate change
or whether they will be at evolutionary risk. All in all, these studies move us one step closer

to address ecological challenges using the genetic theory of evolution.



Zusammenfassung

Der globale Klimawandel beeinflusst schon jetzt die Biodiversitit der Erde. Dennoch
kampfen wir weiterhin damit, zu verstehen, wie Arten reagieren werden. Weil viele Arten ein
sich schnell veranderndes Klima nicht tolerieren werden, oder nicht schnell genug migrieren
kédnnen, um eben jenem zu entrinnen, wird ein Uberleben davon abhingen, ob Populationen
in der Lage sind, sich genetisch anzupassen. Andere Arten aber scheinen sich rasch
anzupassen und zu verbreiten im neuen Status Quo unseres vom Menschen dominierten
Okosystems. Wir beginnen gerade erst damit, die genomischen FuRabdriicke vergangener
Anpassungen ans Klima zu verstehen, und wie diese Populationen fiir zukinftige
Anpassungen vorbereitet haben. Gleichzeitig sind viele Fragen nach wie vor unbeantwortet.
Zudem wird das Wissen um Evolution und Anpassung kaum in Modelle integriert, die
Biodiversitat voraussagen, obwohl eine solche Integration die Genauigkeit der Vorhersagen
steigern sowie helfen wirde, bessere Konservations-Strategien zu entwerfen. In der

vorliegenden Doktorarbeit mochte ich diese Herausforderungen angehen.

Kapitel Eins war mein erster Ansatz, zu verstehen, wie Populationen der gleichen Art auf den
Klimawandel reagieren kénnten. Ich untersuchte das Uberleben von 220 natiirlichen
Arabidopsis thaliana (Ackerschmalwand) Linien unter simulierter extremer Dirre im
Gewachshaus. Strenge Diirren, eine Konsequenz des globalen Wandels, werden als eine der
drastischsten Bedrohungen flr Pflanzengemeinschaften vorhergesagt. Indem ich die
Anwendung von Okologischen Nischenmodellen mit Genomweiten Assoziationstechniken
erweiterte, fand ich, dass eine Reihe adaptiver genetischer Varianten primar an den Randern
des Verbreitungsgebiets von Ackerschmalwand prasent war. Moglicherweise werden diese
Populationen unter zukinftigen, “feindlichen” Klimabedingungen durch ihr momentanes

Dasein in extremeren Umgebungen zu Quellen adaptiver Vielfalt.

In Kapitel Zwei realisierte ich einen groRangelegten Feldversuch, um direkt Klima-gesteuerte
Selektion unter natirlichen Bedingungen zu quantifizieren. Wir pflanzten eine globale

Auswahl von 517 natiirlichen Ackerschmalwand-Linien in einem Regenfall-manipulierten



Common Garden Experiment sowohl in einer Region mit moderatem Klima in Mitteleuropa,
als auch in einer Region mit extremeren Klimabedingungen, im Mittelmeerraum. Mittels
Bildanalysen zum Abschatzen von Samenproduktion/reproduktivem Erfolg erzeugte ich
nahezu 25.000 Fitness-Messungen. Mit diesen Daten konnte ich massive Veranderungen in
genomweiten Allelfrequenzen innerhalb einer Generation ableiten, besonders bei hohen
Temperaturen und verringertem Regenfall, Bedingungen, unter welchen viele
mitteleuropaische Genotypen vertrockneten. Indem ich Theorien zu lokaler Anpassung mit
maschinellem Lernen verknlipfte, zeigte ich, dass ein signifikanter Anteil der vom Klima
gelenkten natirlichen Selektion vorhersagbar ist. Damit, kombiniert mit dem Wissen um
lokale genetische Vielfalt, mache ich die Vorhersage, dass Populationen in den
Ubergangsgebieten zwischen Mittelmeer und Mitteleuropa das héchste evolutionére Risiko
tragen, wenn Regenfall in der Zukunft plétzlich abnimmt. Dies steht in grolem Kontrast zur

Ill

generell akzeptierten Idee, dass marginell “warmere” Populationen einem hoheren Risiko
Auszusterben ausgesetzt sind als solche Populationen, die sich im Zentrum der

geographischen Ausdehnung einer Art befinden.

Kapitel Drei widmet sich, im Gegensatz zu den vorherigen Kapiteln, deren Fokus auf dem
adaptiven Wert bereits existierender genetischer Varianten im Angesicht des Klimawandels
lag, neuen Mutationen, und wie diese zur Anpassung beitragen konnten. Ich nutzte
Herbariumproben als “genetische Schnappschiisse” durch die Zeit, um eine 400 Jahre alte A.
thaliana Linie zu untersuchen, die sich isoliert in Nordamerika befand. Es gelang mir, Gber
5.000 neue Mutationen zu identifizieren, von denen einige neue morphologische
Unterschiede verursachen, die wahrscheinlich mit Anpassung in Verbindung stehen. Ich zog
den Schluss, dass selbst groRe Organismen wie Pflanzen bereits in verhaltnismaRig zeitnahen

Zeitrahmen nur auf der Basis neuer Mutationen evolvieren und sich anpassen kénnten.

Die vorliegende Arbeit treibt unser Wissen darliber voran, wie und ob sich verschiedene
Populationen derselben Art genetisch an das sich wandelnde Klima anpassen werden. Die
hervorgebrachten Einsichten beinhalten unter anderem, dass (1) Anpassung an das Klima
mittels hunderter genetischer Varianten erfolgt (polygenetische Anpassung), (2) neue

Mutationen oft genug auftreten, um zu rascher Anpassung sich neu ansiedlender



Populationen beitragen zu konnen, und (3) dass wir statistische Modelle, die den
Zusammenhang zwischen gegenwartigen Klimabedingungen und genetischen Varianten
lernen, dazu benutzen kénnen um vorherzusagen, ob Populationen die entsprechende
genetische Zusammensetzung fir eine Anpassung an den Klimawandel mitbringen, oder ob
fiir sie ein evolutionares Risiko vorliegt. Summa summarum bringen uns diese Studien dem
Ziel, okologische Herausforderungen mittels der genetischen Evolutionstheorie anzugehen,

einen Schritt naher.
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INTRODUCTION

Humans are dramatically impacting the Earth — its surface, atmosphere and oceans —, and
seriously threaten many of the life forms inhabiting it (Steffen et al. 2015, Newbold et al.
2016). Not only there are reasons to preserve biodiversity because of its intrinsic value and
beauty, but also because it provides the natural resources and ecosystem services to sustain
all human populations (Pearson 2016). In order to preserve biodiversity and ecosystems, we
first need to improve our understanding of how species adapt to the environment, and make
robust predictions of extinction risk. In this thesis, | use the model plant Arabidopsis thaliana
to ask (1) what are the genetic determinants of climate adaptation in plants, (2) where
geographically can we find the most adaptive variation in a species, and (3) how can we
make geographically-explicit predictions of evolutionary risk — the risk of failing to adapt. To
put my work into context, | below introduce some necessary concepts from different
research fields and describe several major breakthroughs in these fields from a chronological
perspective. Section One introduces the main problem of biodiversity loss driven by climate
change, and explains the first ecological approaches used to tackle this problem. As
researchers over time have realized how important it is to account for evolution in
biodiversity projections, | then move in Section Two to describe the foundation of the field
of evolutionary genetics. | specifically review the contributions of this field towards
understanding how species adapt to new environments. In Section Three | discuss two
general areas of interaction between ecology and genetic evolution that | will explore with
my study system, which | describe in Section Four. Finally n Section Five | present the specific

guestions pursued in this thesis.

1. Species fate in the Anthropocene

Replacement of natural ecosystems by human systems is the most important factor leading
to the loss of species on our planet (Vitousek et al. 1997, Urban 2015, Newbold et al. 2016).

This reduction of worldwide species is estimated to be 1000 times faster than the

“background” species loss (i.e. without humans (Pimm et al. 2014)) since the 1900s. Losses
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of native species exceed 40% in many regions of the world (Newbold et al. 2016). This led
Max Planck scientist and Nobel Laureate P. K. Crutzen and colleagues, to name the present
geological era as the Anthropocene (Crutzen 2002), and the current ongoing extinction as
the Anthropocene mass extinction — the 6™ mass extinction in Earth's life history. On the
other hand, counterintuitively, when looking at reduced local geographic scales, the number
of species present is currently increasing in many regions (Newbold et al. 2016). This is
because a minority of species has benefited from hitchhiking along human trading and
traveling routes to spread over many new territories (Tatem 2009, Seebens et al. 2017).
Therefore, the observed local increase of biodiversity is due to the arrival of foreign species,
in some areas thousands of them (van Kleunen et al. 2015a, Seebens et al. 2017). When
these species rapidly spread and increase in abundance, or even harm native ecosystems,
they are called invasive species (Dukes and Mooney 1999, Mooney and Cleland 2001, van
Kleunen et al. 2015b, Seebens et al. 2017). These two human-driven biodiversity alterations,
the extinction of many species and the rapid spread of a human-commensal minority of
species, are a longstanding concern. That is what sparked in 1948 the creation of the
International Union for Conservation of Nature (IUCN). This organization created the red list
of species (www.iucnredlist.org) to monitor biodiversity changes and to provide policy

guidelines to conserve present-day biodiversity and ecosystems.

There are many other human-driven impacts on biodiversity that are more subtle
than those derived from direct habitat destruction. These are caused by the progressive
alteration of Earth’s conditions, prominently, the increase in CO, emissions and the
consequential global warming (Rosenzweig et al. 2008) (others, which | am not discussing
here, are pollution and landscape fragmentation, see (Fahrig 2003, Zalasiewicz et al. 2017)).
In response to rising concern over accumulating evidence for soot and CO, increase in the
atmosphere, researchers in the 1970s started to develop models to project the potential
change in climate. Understandably, the first predictions resulted in heated debates and
controversy over whether there will be a warming trend (via CO,) or a cooling trend (via
air-suspended particles) (Edwards 2011). This confusion was of such magnitude that the U.S.
National Academy of Sciences stated already over 40 years ago (National Academy of
Sciences 1975): "we do not have a good quantitative understanding of our climate [... so] it

does not seem possible to predict climate". This of course has rapidly changed since the
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1980s, because of better data acquisition and monitoring of climate, new mathematical
models, and the commitment of many countries in the formation of the Intergovernmental
Panel For Climate Change in 1988 (IPCC, www.ipcc.ch). These efforts resulted in complex 3D
models of the Earth’s Ocean-Atmosphere systems that already in the 1980s predicted with
reasonable accuracy the climate change we are currently experiencing (Intergovernmental

Panel on Climate Change 2014, Hausfather 2017).

A similar trend is occurring nowadays in the fields of ecology and conservation
biology. There are now very consistent and well-documented responses of many species
specifically to climate change (i.e. not due to habitat destruction). Generally, species are
losing populations at the warm (typically southern) margin of their geographic distribution
(Pimm et al. 2014), while their populations in the cold (typically northern or high altitude)
range margin are migrating northwards (or upwards) and invading new territories (Parmesan
and Yohe 2003, Seebens et al. 2015). Despite this, researchers have warned that we are not
yet able to accurately assess and predict abundance and distribution changes of species
(Pearson and Dawson 2003, 2004, Fordham et al. 2012), what is the necessary first step to
devise effective conservation policies (Dawson et al. 2011). The original attempts to make
predictions of species responses to climate change came from modeling climate tolerance
limits and migration rates of species, but, as described below, it has become increasingly
clear that we must, among others, also take into account the genetic diversity and

evolutionary potential of species.

1.1. Forecasting biodiversity changes

The typical forecast of biodiversity changes driven by climate change is based on
Hutchinson’s classic concept of the ecological niche (1957). The set of environments where a
species successfully survives and reproduces represent the species’ environmental niche,
which is limited due to certain physiological constraints. The so-called “Environmental Niche
Models” (ENMs) (Guisan and Thuiller 2005), infer the environmental niche limits of a species
by overlapping climate maps with maps of sightings of a species (they can also include land
use or other features of the landscape). Both types of data are very abundant nowadays. For

example, worldclim.org provides maps at 1 km? resolution of monthly climate averages from
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1960-1990 (Hijmans et al. 2005). The Global Biodiversity Information Facility, GBIF.org,
contains over 1 billion sightings of over 1 million species. If the sightings-based geographic
limits of a species coincide with the environmental niche (Guisan and Thuiller 2005), ENM
would correctly estimate the tolerance limits of a species, i.e. the environmental ranges
within which it can survive. Once the environmental limits of a species are known,
researchers can explore how the geographic limits of the species distribution would shrink or
move given the IPCC climate map projections to the future (2050—2100, also publicly
available also at worldclim.org). There are two implicit population processes involved in
ENM-based predictions: either migration, where populations expand into previously
unoccupied areas where the new environments come to fit the species’ niche, or local
extinction, where populations experience new environments outside the species’ niche

ultimately leading to geographic distribution shrinkage.

Comprehensive forecasting studies using ENMs with many species suggest that >20%
of vertebrates and >40% of plants will see their distribution shrink in the 215t century
(Warren et al. 2018); putting about 15% of all known species in peril of extinction (Thomas et
al. 2004, Urban 2015). ENMs have also been applied — though not as comprehensively — to
forecast which areas outside a species’ geographic range could be under risk of invasions
(Trethowan et al. 2011, Suarez-Mota et al. 2016, Qiao et al. 2017, Barbet-Massin et al. 2018).
Comprehensive projections of possible invasions would be timely to device preventive
strategies, given that the number of invasive species is increasing exponentially across the
world and they might be facilitated by global change (Dukes and Mooney 1999, Whitney and
Gabler 2008, Seebens et al. 2017).

1.2. Evolving in response to climate change

Apart from their coarse-grained and highly variable predictions (Araujo et al. 2005), ENMs
have been criticized for their many simplistic assumptions (Sinclair et al. 2010). Among the
most unnatural assumptions is the consideration of species as single entities that are neither
evolving nor diverse. In evolutionary genetics, species are described as dynamic ensembles
of populations, with various degrees of genetic diversity, population connectivity and

population-specific adaptations to different environments across the species distribution

16


https://paperpile.com/c/n0dfJj/XHOf
https://paperpile.com/c/n0dfJj/xv5fa
https://paperpile.com/c/n0dfJj/kveJ2
https://paperpile.com/c/n0dfJj/wVwec+QVe9z
https://paperpile.com/c/n0dfJj/wVwec+QVe9z
https://paperpile.com/c/n0dfJj/6I8GP+URHdS+oerlR+vhYO1
https://paperpile.com/c/n0dfJj/O1ghA+ImNKv+bCrhV
https://paperpile.com/c/n0dfJj/O1ghA+ImNKv+bCrhV
https://paperpile.com/c/n0dfJj/yHzAl
https://paperpile.com/c/n0dfJj/m5aZ1

(Leimu and Fischer 2008, Hereford 2009). Geographic and climate heterogeneity, together
with past climate changes of alternate glacial and interglacial periods, have generated such a
legacy of diverse, locally adapted populations in many species (Hewitt 2000, 2004, Davis and
Shaw 2001). This has two intuitive implications: First, that different populations of a species
will have different abilities to evolve and adapt to the exact same environmental change —
although obviously, the magnitude of climate change varies regionally. Second, the more
environments the populations of a species have experienced in the past, the more adaptive
variation the species will have overall, and the more likely it will be that at least some

populations survive future environments (Jump et al. 2008).

It has become clear that many species are indeed evolving and adapting at time
scales that we can directly observe (Gibbs and Grant 1987, Reznick and Ghalambor 2001,
Hairston et al. 2005, Franks et al. 2007, Merilda and Hendry 2014, Bergland et al. 2014,
Messer et al. 2016, Bosse et al. 2017, Nosil et al. 2018). However, building geographic
predictive models that include the process of genetic adaptation involving hundreds to
millions of individuals in a species has proven to be as complex as the challenge that climate
scientists faced in the 1970s (Araujo and Rahbek 2006, Hoffmann and Sgro 2011, Thuiller et
al. 2013, Fordham et al. 2014, Catullo et al. 2015, Bay et al. 2017, Rudman et al. 2018).
Encouragingly, we already know that genetic predictions can, in some cases, be useful and
accurate. In artificial selection during plant and animal breeding — where a specific selection
pressure is deliberately applied to a population where all individuals are genetically
sequenced or pedigreed — quantitative genetic theory has been used very successfully to
predict performance gains (Falconer and Mackay 1996). The lack of generality of some
guantitative genetic models, together with the scarcity of data and more dynamic structures
(Grant and Grant 2002, Nosil et al. 2018), have lead to a contradicting projections in some
wild populations (Merila et al. 2001, Walsh and Blows 2009, Hoffmann et al. 2017, Pujol et
al. 2018). | propose that we first must gather and generate more comprehensive genomic
and fitness datasets of wild populations. We can then use these to validate new theoretical
genetic models that better describe wild populations, and finally predict biodiversity

responses to climate change while accounting for the evolutionary process.
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2. The genetics of evolution and adaptation

2.1. One century of theory

Quantitative and population genetics theory describes mathematically how natural
selection, mutations, and demographic drift, act over genetic variation of populations,
ultimately leading to adaptation. These theories were developed by R. A. Fisher, S. Wright
and J. B. S. Haldane in the 1930s (Fisher 1930, Wright 1931, Haldane 1932), and were the
foundation of the Modern Synthesis of Evolution. The genetic theory of evolution (arguably)
started exactly 100 years ago, with a seminal paper by R.A. Fisher (1918). Fisher
demonstrated that not only discrete traits such as flower color can be explained by the laws
of Mendelian inheritance, but also continuous traits such as fitness (survival and offspring
production). The difference was that the latter were determined by many genetic variants
that individually conformed to Mendel's law (i.e. polygenic architecture). This
groundbreaking work implied that potentially all the diversity of forms and species seen in

nature could be explained by genetics.

A quintessential example of the application of this theory to real populations was the
case of industrial adaptation by the peppered moth Biston betularia. In 1848 in Manchester,
England, 99% of individuals were whitish, and only 1% were blackish. The frequency of the
dark morph increased to about 98% in 1898, as the Birch trees around factories turned black
due to coal burning and the dark morph was less conspicuous to predators on the surface of
blackened trees. Haldane calculated that in order for the black morph to increase in
frequency so rapidly, it need to have a natural selection advantage (selection coefficient) of
30% (Haldane 1924). That is, for every new offspring produced by a white morph moth,
there were three black morph ones. Predictably, the selection coefficient should reverse
with decreasing coal burning, and so indeed the white-colored morph increased again in the
second half 20t century (Clarke et al. 1985, Van’t Hof et al. 2013). In another example for
the application of population genetics to understand wild populations, Wright calculated the
migration rate between Drosophila pseudoobscura populations of North America, as
mutation and selection alone could not explain the frequency of lethal recessive alleles

present in those populations (such alleles were “seen” in the lab based on their phenotypic
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effects, as DNA sequencing did not exist!) (Dobzhansky and Wright 1941, Wright 1943).
Although the two examples mentioned above are very simple, they showcase the predictive

power that genetic models can provide to ecological studies.

2.2. Genome sequencing, standing variation and de novo mutations

Almost a century after the emergence of the field of population genetics, the technical
revolution of genome sequencing allowed researchers to empirically study some of the
classic concepts of population genetics. Apart from the very fact that we now have complete
genome sequences for many species (Lewin et al. 2018), Genome-Wide Association (GWA)
studies have been especially impactful in expanding our knowledge of how genetics
influences organisms (Yu et al. 2006, Yang et al. 2010, Gibson 2011, Burghardt et al. 2017,
Boyle et al. 2017). They have enabled us to verify that the vast majority of both continuous
and discrete traits are heritable, and even to pinpoint genetic variants across the genome
that control them. From height or diabetes in humans to flowering timing in plants, or
burrow digging in mice (Steiner et al. 2007, Yang et al. 2010, 1001 Genomes Consortium
2016). In simple words, GWA provides a measure of whether individuals carrying a specific
genetic variant of interest, are particularly prone to be on one side of the spectrum of a trait.
The overall variation in the trait explained by all genetic effects is called heritability of a trait
(Falconer and Mackay 1996). An exciting application of GWA in the context of adaptation to
climate change is the identification of genetic variants underlying ecologically relevant traits,
which can help to determine the fitness of organisms across environments (Bergelson and
Roux 2010). In GWA, we study pre-existing (or standing) genetic variation of a population,
which has been accrued from new mutations along its history. Ideally, if we identify the
standing variants that dictate the survival and reproduction of the individuals of a species in
any given environment, we could assess the evolutionary risk of its each population under
climate change — the risk of failing to adapt and becoming extinct — and perhaps even
design conservation policies to bring such important genetic variants to local populations to

promote adaptation (Sexton et al. 2011, Aitken and Whitlock 2013).

The process of adaptation discussed above relies on a population having pre-existing

variation, but one could also ask how easily populations can acquire additional mutations
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that will allow them to survive. Our knowledge of new mutations derives mostly from
laboratory experiments, specifically from mutation accumulation lines or long-term
evolution experiments (Halligan and Keightley 2009). Such experiments start with a
population of identical individuals or clones that are propagated over generations. By
exposing populations to different environments, laboratory evolution experiments have
shown that fast-growing organisms, such as Escherichia coli, Saccharomyces cerevisiae,
Chlamydomonas reinhardtii, or Drosophila melanogaster, can adapt rapidly from new
mutations, as they have a short generation times (Papadopoulos et al. 1999, Dunham et al.
2002, Burke et al. 2010, Lagator et al. 2014). In nature, this process has also been observed
for viruses, which have even faster generation times. For example, HIV or influenza virus
adapt rapidly to the selective pressures of the immune system within a single (human) host
thanks to their high rate of mutations (Feder et al. 2016, Hadfield et al. 2017). A powerful
approach to understanding the evolution of organisms over time is by reconstructing their
genealogies. When the individuals sampled separately through time, as is the case of
sampled viruses in patients, these genealogies can be used to calculate the mutation rate of
the species, date when the different lineages of the species separated in time, and
potentially identify which and when adaptive mutations arose (Drummond et al. 2003).
Applying this methodology to viruses such as SIV/HIV, researchers showed that some branch
lineages of the virus acquired a set of mutations before they became pandemic (Rambaut et
al. 2004). Because of their slow generation time, new mutations in multicellular organisms

are not thought to be an effective source for rapid adaptation (Barrett and Schluter 2008).

2.3. The genomic signatures of adaptation

The interplay between mutation rate, standing variation, the size of the population and the
strength and number of variants under natural selection, are all factors that affect the
dynamics of adaptation (Charlesworth and Charlesworth 2010). These dynamics, in turn,
leave signatures in genetic diversity across the genome (Ellegren and Galtier 2016).
Generally, the dynamics of selection over genetic variants has been classified into three
types: “hard sweeps”, “soft sweeps”, and “polygenic adaptation” (also called incomplete or

partial sweeps) (Pritchard et al. 2010, Booker et al. 2017). Hard sweeps occur when very

strong selection favors a specific mutation in the population, increasing its frequency to
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100% over a few generations (Colosimo et al. 2005). During this process, mutations that
were linked to the positively selected mutation get dragged along, or swept, to high
frequency, leaving a conspicuous valley of low genetic diversity of the population in the
selected region in the genome. The fewer outcrossing and recombination events (both of
which are also a function of time), the wider this valley (Neher 2013, Corbett-Detig et al.
2015). Soft sweeps occur in a similar fashion as hard sweeps but, when mutation rate is high,
similar favorable mutations might arise in multiple genome backgrounds, so when they
increase in frequency they drag along multiple background mutations, leaving a much less
appreciable decrease in local diversity. In contrast to hard sweeps, adaptation in the case of
soft sweeps is not limited by mutations. Because of the large population sizes and fast
mutation rate, soft sweeps might be most common in bacteria (Barrick et al. 2009), viruses
(Feder et al. 2016), or insects with short generation times (Karasov et al. 2010). Polygenic
adaptation occurs when selection is not very strong or is acting over many genetic variants
— this is particularly likely when there is plentiful standing variation in the population and
fitness-related traits are complex. Individual advantageous variants rarely reach 100%
frequency. Instead, they smoothly increase in frequency, a subtle footprint that can only be
detected when pooling the signal across many variants and comparing multiple populations
that might have experienced opposite selection (Berg and Coop 2014). One can speculate
that adaptation in plants and animals with long generation times, small population sizes,
more complex genomes and fitness architecture (Boyle et al. 2017) might generally follow
such a polygenic adaptation or partial sweep model (Hernandez et al. 2011, Fournier-Level
et al. 2011, Thurman and Barrett 2016), although direct and comprehensive evidence is

mostly lacking.

3. Evolutionary genetics at the service of ecology

3.1 Evolution at the edge

The realization that evolution can take place in short timescales, previously thought to be
dominated by ecological or demographic processes, has lead to the emergent field of
eco-evolutionary dynamics. In this field, ecological processes such as biotic or climate
changes are studied from the angle of evolutionary adaptation of populations. And vice

versa, evolutionary outcomes such as lethal mutations can lead to changes in ecological
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conditions such as the extinction of an important pollinator species. As the Earth is warming,
populations at the more equatorial margin of a species' distribution are expected to be the
first to manifest a shrinkage. The questions are, therefore: what are the eco-evolutionary
processes that lead to the formation of geographic distribution limits in the past? And can
we extrapolate such knowledge to understand the current distribution shifts in response to
climate change? (Sexton et al. 2009). A first intuition from the ecological niche concept
suggests that geographic limits are formed by physiological limits, but why then are invasive
species expanding their distributions so dramatically? Or why can edge populations not
adapt to the new environment if species have adapted to different climates in the past? To
answer these questions, one probably needs a deeper understanding of the genetic

processes that lead to adaptation and extinction in time and space.

Although simplistic in a number of ways, the explanation of distribution range shifts
by the ecological niche is likely a major contributor to range limits. We can, however,
rebrand this concept with evolutionary genetics thinking. In evolutionary genetics, species
have genetically variable individuals, and natural selection favors the fittest genotype in each
of the environments experienced across the distribution. That is, each genotype has its own
optimal niche that might overlap to some degree with others. Areas that are closest to the
species’ niche limits would only let the genotypes adapted to extreme conditions survive.
This natural selection force would tend to generate highly locally adapted populations at the
edges, so most standing adaptive genetic variants would be found at the margins of the
distribution (Jump and Penuelas 2005, Kawecki 2008). Because natural selection is a
“filtering force”, populations at the edges might become small, what could ultimately
increase drift, putting a limit to adaptation (Willi et al. 2006, Bridle and Vines 2007, Kawecki
2008). In such a scenario, losing warm edge populations as a result of climate change could

be a major loss of important diversity for the species (Hampe and Petit 2005).

The second explanation derives from population genetics theory and explains the
distribution range limits in terms of migration and drift, without the need for
environmental-driven natural selection. Let us imagine a newly formed species that starts
growing and expanding in space. As populations disperse randomly in space from the origin,

small founder effects, inbreeding, and drift generate a concentric pattern of gradual genetic
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differentiation and decreasing diversity. This process also generates a so-called
“isolation-by-distance” pattern (Wright 1943): the genetic distance between two individuals
increases with geographic distance. This scenario of an expanding population already implies
that one reason that geography limits exist is because individuals did not have enough time
to migrate further apart yet. Therefore, all else being equal, the lower the dispersal ability of
a species, the narrower its geographic limits. The second reason comes from the fact that
drift, which increases towards the edges, decreases the efficiency of purifying selection to
remove random deleterious mutations, such that edge populations accumulate more of
these mutations (Lynch et al. 1995, Henry et al. 2015). When the number of detrimental
mutations increases too much, the survival and reproduction of the edge populations
decline below the replacement rate, and a new geographic limit is formed (Henry et al.
2015). These processes are a serious danger for threatened endemic species because of
their very reduced geographic range (Lynch and Gabriel 1990, Lynch et al. 1995). In
summary, the two reasons geographic range limits exist are: (1) limited dispersal ability, and
(2) small founder effects occurring during the migration/expansion process, that increase
drift towards the periphery. The associated consequences lead to local extinction due to

mutational meltdown (Lynch and Gabriel 1990, Lynch et al. 1995).

The two explanations of range limits and local extinctions discussed above, the
“Selectionist” vs “Neutralist” explanations, are not mutually exclusive (in fact there are
others that shared principles with both (Bridle and Vines 2007)). In order to test the
assumptions and emerging patterns of both hypothesis, comprehensive genomic catalogs of

the populations within a species are needed (Sexton et al. 2009).

3.2 The genetic paradox of invasion

An extreme case of geographic distribution expansions is when species migrate over very
long distances and even colonize other continents. As discussed above, population genetics
principles tell us that because migrations occur via a limited number of founder individuals,
there will be a population bottleneck that decreases genetic diversity and increases drift.
Studying the differences in allelic richness and diversity of plants and animals, Dlugosch and

Parker (2008) showed that such a decline in diversity is significant; although perhaps not as

23


https://paperpile.com/c/n0dfJj/k2nDo
https://paperpile.com/c/n0dfJj/OZDXr+I2Sqi
https://paperpile.com/c/n0dfJj/OZDXr
https://paperpile.com/c/n0dfJj/OZDXr
https://paperpile.com/c/n0dfJj/I2Sqi+wHZ0
https://paperpile.com/c/n0dfJj/I2Sqi+wHZ0
https://paperpile.com/c/n0dfJj/kNWB
https://paperpile.com/c/n0dfJj/f8nIw
https://paperpile.com/c/n0dfJj/Ace2C/?noauthor=1

dramatic as complete bottlenecks. Nevertheless, that invasions are accompanied by
adaption is not rare (Lee 2002), raising the question of how populations can adapt to new
environments despite their low diversity as a consequence of a founder effect. This
conundrum was first noticed by the founders of the invasion genetics field, H.G. Baker & G.L.
Sebbins (1965), and was later coined as the “genetic paradox of invasion” (Estoup et al.
2016), and seems to challenge both aforementioned Neutralist and Selectionist hypotheses
of geographic distribution limits. The proposed solutions to this paradox can generally be
separated into scenarios in which adaptation still occurs from standing variation and
scenarios in which adaptation occurs from new mutations. In the first case, there is only
limited depletion of standing variation during colonization, for example, if the founding
population was unusually diverse, if there were recurrent migrations, or if diversity was
increased through introgressions from local relatives (Dlugosch et al. 2015, Whitney et al.
2015). In the second case, the bottleneck is strong or complete, and genetic adaptation can
only occur through new mutations (Colautti et al. 2017). While there is plenty of examples
where adaptation occurred rapidly from standing variation in multicellular and macroscopic
organisms such as animals and plants (Barrett and Schluter 2008), the adaptation from de

novo mutations remains largely undocumented.

4. The plant of 1001 Genomes

My interest in plants derives from their important role on Earth. Living plants make up the
majority of Earth’s biomass, over 80% of the total ~550 Gt of carbon (Bar-On et al. 2018).
Ironically, the combustion of such plant biomass stored in different forms by humans is a
major driver of climate change. Plants are the primary producers of ecosystems, fixing
approximately 50-60 Gt of carbon per year (Melillo et al. 1993, Woodward 2007). Therefore,
any change of such an integral part of ecosystems is likely to cause a cascade of impacts on
all other dependent organisms (Tylianakis et al. 2008). In fact, global patterns of primary
production have already changed since the 1980s as a response to climate change (Nemani
et al. 2003). The world’s plant biodiversity risk assessment (Kew 2016) concluded that one
fifth of the almost 400,000 vascular plant species is threatened with extinction. This is likely

an underestimate given that many more species are likely to be already at risk because they
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have narrow ranges and are therefore less likely to have been identified and formally

described (Pimm and Raven 2017).

The major impacts of climate change on plant species are expected to be increased
variability in precipitation (Schwalm et al. 2017) and droughts (Dai 2012). Plants use multiple
mechanisms to cope with droughts: tolerating dehydration/hydration (as mosses do),
avoiding water loss or absorbing more water (as Mediterranean shrubs do), or escaping
drought periods by timing germination and reproduction to wetter seasons (as annual plants
do) (Ludlow 1989). The utilization of different mechanisms varies across species and within
species, as has been shown in the model plant Arabidopsis thaliana (Franks 2011, Juenger
2013) and its relatives (Bouzid et al. 2018). Variation in magnitude and overall drought
resistance strategy across populations could enable an evolutionary response of the species
to global change, as some of these strategies can pre-adaptat plants to a drier and hotter

future climate (Vasseur et al. 2018).

Arabidopsis thaliana is perhaps the plant with the most comprehensive genomic
catalog to date for a wild species, with over 1,135 genomes sequenced individuals from
worldwide populations (1001 Genomes Consortium 2016). It was first adopted as a model
organism for genetics and molecular biology during the mid-20th century (Laibach 1943) and
became an established model in the late 1980s (Meyerowitz 2001). In 2000, it became the
first plant with a complete reference genome (Arabidopsis Genome Initiative 2000). Soon
after it came to be appreciated as a useful model for ecology (Pigliucci 2003, Tonsor et al.
2005). Its native geographic range is large, ranging from forests in Scandinavia to drylands of
North Africa (Kramer 2015) — although in the South populations they seem to be sparse and
their persistence limited by a minimum rainfall per year (Brennan et al. 2014). In addition, A.
thaliana presents many of the traits of the “perfect weed”, as defined by H. G. Baker (1965),
being an annual herb, self-fertilizing and highly reproductive. Invasive species tend to share
at least some of these traits (Razanajatovo et al. 2016), and A. thaliana has also colonized

multiple continents in historic times (Platt et al. 2010, 1001 Genomes Consortium 2016).

The availability of thousands of genome sequences a broad geographic distribution,

high colonization ability, and variable survival under climate extremes, make A. thaliana a
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fantastic system to study the evolutionary genetics of adaptation to climate and to develop
new environmental models for ecological forecasting (Hancock et al. 2011, Savolainen et al.

2013, Kramer 2015, Weigel and Nordborg 2015).

5. Objectives

Since its inception, the genetic theory of evolution has helped to explain how populations
adapt to their environment. In this thesis, | have applied concepts of evolutionary genetics to
the study of ecological challenges such as adaptation to climate change and invasion biology.
For adaptation to occur, populations must have some standing genetic variation and/or

rapidly accrue new mutations that provide a fitness advantage under the new environment.

In my first dissertation project, | asked whether A. thaliana harbors standing genetic
variation that supports differential survival under an extreme climatic event. And if so, where
are adaptive variants present across the geographic range of the species? To address this
question, | used the 1001 Genomes resource of Arabidopsis thaliana and exposed over 200
natural lines in the greenhouse to a simulated drought. This approach led to the
identification of a large number of adaptive variants that increase survival under severe
drought stress. | applied the concept of environmental niches to genetic variants, to test
whether adaptive variants were more commonly present at the core or at the edge of the
geographic distribution (Exposito-Alonso et al. 2018d). | found that the edges — perhaps

because of their more extreme environments — are hotspots of such adaptive variation.

Next, | determined the strength of selection that future environments will exert over
genetic variants. | also asked what areas across the geographic distribution will suffer the
strongest selection pressures in the future. To approach these questions, | designed
replicated rainfall-controlled field experiments growing over 500 natural lines at two
contrasting locations, one at the core and another at the edge of the geographic distribution
of A. thaliana. This yielded substantial insights into how natural selection is distributed
across the genome, and how much allele frequencies would change as a response to a
climate pressure. Subsequently, | developed new environmental models to project selection

intensity across the geographic range of the species. | concluded that populations in the
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transition from Southern to Central Europe might be under the highest evolutionary risk,
given that they do not have much standing genetic variation that might be adaptive under
the climates they are expected to encounter in the future (Exposito-Alonso et al. 2017,

2018c).

Finally, because adaptation to new environments could occur via new mutations, |
asked whether one can find new mutations of potential adaptive relevance in a new
colonizing population. | addressed this by reconstructing the genealogy of a recent migration
of A. thaliana to the New World with genome sequences from herbarium samples and live
plants. Because | found evidence that selection had acted on new mutations, | concluded
that we should not underestimate evolution from de novo mutations in contemporary plant

invasions (Exposito-Alonso et al. 2018a).

In the discussion, | describe the impact of these studies in the areas of ecology,
evolution, genetics and conservation biology, and propose future directions and
technologies that will be central to advancing the genetic theory of adaptation and

improving eco-evolutionary forecasting.
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CHAPTER ONE

Genomic basis and evolutionary potential for

extreme drought adaptation

The content of this chapter has been published as:

Exposito-Alonso, M., Vasseur, F., Ding, W., Wang, G., Burbano, H.A., Weigel, D., (2018).
Nature Ecology & Evolution, https://doi.org/10.1038/s41559-017-0423-0.
see Thesis Appendix |

Abstract

Because the earth is currently experiencing dramatic climate change, it is of critical interest
to understand how species will respond to it. The chance of a species to withstand climate
change will likely depend on the diversity within the species and, particularly, whether there
are subpopulations that are already adapted to extreme environments. However, most
predictive studies ignore that species comprise genetically diverse individuals. We have
identified genetic variants in Arabidopsis thaliana that are associated with the survival of an
extreme drought event, a major consequence of global warming. Subsequently, we
determined how these variants are distributed across the native range of the species.
Genetic alleles conferring higher drought survival showed signatures of polygenic adaptation
and were more frequently found in Mediterranean and Scandinavian regions. Using
geo-environmental models, we predicted that Central European, but not Mediterranean,
populations might lag behind in adaptation by the end of the 21st century. Further analyses
showed that a population decline could nevertheless be compensated by natural selection
acting efficiently over standing variation or by migration of adapted individuals from
populations at the margins of the species’ distribution. These findings highlight the
importance of within-species genetic heterogeneity in facilitating an evolutionary response

to a changing climate.

Contributions

Conceived and designed the project: MEA. Advised and contributed to image phenotyping:
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GW and FV. Provided additional phenotype data: FV. Performed chromopainter analyses:
MEA and WD. Performed drought experiments, processed image data, carried out statistical
analyses: MEA. Advised and oversaw the project: DW and HAB. Wrote the first draft: MEA.
Wrote the final manuscript: HAB and DW. Commented manuscript: HAB, DW, FV, GW.
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CHAPTER TWO

A map of climate change-driven natural selection

The content of this chapter was published as two preprints. The second is a supplemental appendix

of the first.

Exposito-Alonso, M., 500 Genomes Field Experiment Team, Burbano, H. A., Bossdorf, O.,
Nielsen, R., Weigel, D. (2018). bioRxiv, https://doi.org/10.1101/321133.

Exposito-Alonso, M., Rodriguez, R.G., Barragan, C., Capovilla, G., Chae, E., Devos, J., Dogan, E.S.,
Friedemann, C., Gross, C., Lang, P, Lundberg, D., Middendorf, V., Kageyama, J., Karasov, T,,
Kersten, S., Petersen, S., Rabbani, L., Regalado, J., Reinelt, L., Rowan, B., Seymour, D.K,,
Symeonidi, E., Schwab, R., Tran, D.T.N., Venkataramani, K., Van de Weyer, A.-L., Vasseur, F.,
Wang, G., Wedegartner, R., Weiss, F., Wu, R., Xi, W., Zaidem, M., Zhu, W., Garcia-Arenal, F.,
Burbano, H.A., Bossdorf, O., Weigel, D., (2017). bioRxiv, https://doi.org/10.1101/186767.

See Thesis Appendix Il

Abstract

Through the lens of evolution, climate change is an agent of natural selection that forces
populations to change and adapt, or face extinction. Current assessments of the risks
associated with climate change, however, do not typically take into account that natural
selection can dramatically impact the genetic makeup of populations. We made use of
extensive genome information in Arabidopsis thaliana and measured how
rainfall-manipulation affected the fitness of 517 natural lines grown in Spain and Germany.
This allowed us to directly infer selection at the genetic level. Natural selection was
particularly strong in the hot-dry Spanish location, killing 63% of lines and significantly
changing the frequency of ~5% of all genome-wide variants. A significant proportion of this
selection over variants could be predicted from the climate (mis)match between
experimental sites and the geographic areas where variants are found (R2=29-52%).
Field-validated predictions across the species range indicated that Mediterranean and
Western Siberia populations — at the edges of the species' environmental limits — currently
experience the strongest climate-driven selection, and Central Europeans the weakest. With

rapidly increasing droughts and rising temperatures in Europe, we forecast a wave of
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directional selection moving North, putting many native A. thaliana populations at

evolutionary risk.

Contributions

Conceived the project outline: MEA, HAB, and DW. Designed, implemented and coordinated
the project: MEA. Seed Bulking: MEA. Seed aliquoting: MEA, RGR, RW. Field setup: MEA,
RGR, RW. Pictures of plants: MEA, RGR, RW, FW, PL, ES. Sowing Spain: MEA, RGR, HAB.
Sowing Germany: MEA, FV, RW, DL, DS, BR, PL, JK, RW, WX, KV, SK. Thinning seedlings Spain:
RGR.Thinning seedlings Germany: MEA, PL, GC, ES, VM, AVdW, JD, DTNT. Flower monitoring
Spain: RGR. Flower monitoring Germany: MEA, LR, VM, RW, CG. Fruit images Spain: RGR.
Fruit images Germany: MEA, LR, VM, RW, CG. Image processing: MEA. Data curation &
analysis: MEA. Figures: MEA. Statistical analyses: MEA. Statistical advice: RN. Supervision and
discussion of analysis interpretation: RN. HAB, OB, RN, and DW. Writing first draft: MEA.
Writing final manuscript: MEA, HAB, OB, RN, and DW. Commenting: all authors.
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CHAPTER THREE

The rate and effect of de novo mutation in a

colonizing lineage

The content of this chapter has been published as:

Exposito-Alonso, M., Becker, C., Schuenemann, V.J., Reitter, E., Setzer, C., Slovak, R., Brachi, B.,
Hagmann, J., Grimm, D.G., Jiahui, C., Busch, W., Bergelson, J., Ness, R.W., Krause, J., Burbano,
H.A., Weigel, D., (2018). PLOS Genetics, https://doi.org/10.1371/journal.pgen.1007155.

see Thesis Appendix Ill

Abstract

By following the evolution of populations that are initially genetically homogeneous, much
can be learned about core biological principles. For example, it allows for detailed studies of
the rate of emergence of de novo mutations and their change in frequency due to drift and
selection. Unfortunately, in multicellular organisms with generation times of months or
years, it is difficult to set up and carry out such experiments over many generations. An
alternative is provided by “natural evolution experiments” that started from colonizations or
invasions of new habitats by selfing lineages. With limited or missing gene flow from other
lineages, new mutations and their effects can be easily detected. North America has been
colonized in historic times by the plant Arabidopsis thaliana, and although multiple
intercrossing lineages are found today, many of the individuals belong to a single lineage,
HPG1. To determine in this lineage the rate of substitutions — the subset of mutations that
survived natural selection and drift —, we have sequenced genomes from plants collected
between 1863 and 2006. We identified 73 modern and 27 herbarium specimens that
belonged to HPG1. Using the estimated substitution rate, we infer that the last common
HPG1 ancestor lived in the early 17th century, when it was most likely introduced by chance
from Europe. Mutations in coding regions are depleted in frequency compared to those in
other portions of the genome, consistent with purifying selection. Nevertheless, a handful of
mutations is found at high frequency in present-day populations. We link these to detectable

phenotypic variance in traits of known ecological importance, life history, and growth, which
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could reflect their adaptive value. Our work showcases how, by applying genomics methods
to a combination of modern and historic samples from colonizing lineages, we can directly

study new mutations and their potential evolutionary relevance.

Contributions

Conceptualization: MEA, CB, JB, JK, HAB, DW. Data curation: MEA, CB.Formal analysis: MEA,
CB, JH, DGG, RWN, HAB. Funding acquisition: WB, JB, JK, HAB, DW. Investigation: MEA, CB,
VIS, ER, CS, RS, BB, JH, DGG, JC, RWN, HAB. Methodology: MEA, CB, VIS, ER, CS, RS, BB, JH,
DGG, JC, RWN, HAB. Supervision: WB, JB, RWN, JK, HAB, DW. Validation: MEA, CB.
Visualization: MEA, CB. Writing original draft: MEA. Review & editing: MEA, CB, JB, RWN, JK,
HAB, DW.
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DISCUSSION

This dissertation was motivated by my curiosity of how this world, full of diverse life forms,
came to be through evolution, and whether living beings will have the resilience and
adaptability to overcome some of Humanity’s most pernicious actions. Here | leveraged the
extensive information on the geo-climatic distribution of the model plant A. thaliana, its vast
genomic resources, and the ability to experimentally quantify fitness of a large number of
individuals, to gain a number of ecological and evolutionary insights. These include
knowledge of the evolutionary risk caused by climate change and on the adaptive potential
of different populations from both standing genetic variation and new mutations. Below, |

will discuss the broader implications of my doctoral research and future directions.

1. Adaptation at the edges, risk at the center

The extent and consequences of climate change will rarely be identical across the
distribution of a species, rather, they will vary regionally or locally (Giorgi and Lionello 2008,
Dai 2012). Additionally, many populations of a species have probably experienced different
climates and migrations in the past, which endows them with a different legacy of genetic
variants and thus a different adaptive toolset for facing climate change. Evolutionary
ecologists expect the differences in the adaptability of populations to be most dramatic
between core and edge populations, although current theories focus either on drift or
natural selection as the leading drivers of such differences (Kawecki 2008, Henry et al. 2015).
Understanding all the above will have important consequences for how one performs risk
assessments under climate change and what conservation strategies one will recommend.
Below | describe the knowledge gleaned from studying geographic patterns of genetic
diversity in A. thaliana and climate-driven natural selection in multiple field stations across

the species’ distribution.

1.1. The genomic legacy of past climate changes
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To test the emergent genomic patterns predicted by the Selectionist and Neutralist
hypotheses of distribution rage limits, we first need to define the geographic distribution of
A. thaliana and its center and marginal areas (Kramer 2015). We can do this qualitatively
using the Global Biodiversity Information Facility (GBIF,
https://www.gbif.org/species/3052436), which has over one billion digitalized sightings
covering virtually all ecosystems of the world, even in remote regions of the Sahara desert.
Arabidopsis thaliana seems to be most common in Central Europe, where the distribution is
rather continuous with sightings not further apart from each other than a couple of hundred
kilometers. Subsetting the almost 100,000 GBIF geo-referred records to one per 0.1
latitude/longitude degree to avoid sampling effort bias, | calculated that the median

geographic point of A. thaliana’s distribution is in Central Europe. Specifically, between

Cologne and Frankfurt, Germany (50°16'N, 8°00'E), what | then defined as the current center
of the geographic distribution. Human-influenced landscapes with ample, disturbed spaces
(which are considered as conducive to A. thaliana growth), and moderate climates with
abundant rainfall might explain the high density of the species in Central Europe (1001
Genomes Consortium 2016, Lee et al. 2017). The northernmost sightings are in northern
Scandinavia, North of the Arctic circle (>66°N). The southernmost sightings within the native
distribution are the Cape Verde Islands (adjacent to the coast of Senegal), and mountain tops
of Ethiopia and Kenya. However, the geographic distribution of sightings is disjoint from the
Mediterranean coasts of North Africa and southwards. We can then label North Africa and
the Mediterranean as the warm edge of the distribution, where the populations are small,
sparse, and isolated (Brennan et al. 2014, Durvasula et al. 2017, Exposito-Alonso et al.
2018b). In the West, the geographic distribution is truncated by the Atlantic coast of
European. Although A. thaliana is nowadays also found in North America, this area does not
belong to the native geographic range but results from a historical introduction (Platt et al.
2010, Exposito-Alonso et al. 2018a). Towards the East, sighting records begin to be
intermittent from Ukraine onwards, although they are locally present near Moscow, the
Caucasus, the northern plains of India, and the Yangtze River in China (Yin et al. 2010, Zou et

al. 2017).

By studying the 1001 Genomes catalog of A. thaliana (1001 Genomes Consortium

2016), | tested genomic patterns predicted by the Neutralist hypothesis. In summary,
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calculating genome-wide distances between all 1,135 individuals, my colleagues and | found
that there is a significant isolation by distance pattern (1001 Genomes Consortium 2016, Lee
et al. 2017). We also found that individuals at the edge of continuous range in Europe
(Sweden, West Siberia, Spain and the Mediterranean) were the most divergent to all others,
while individuals at the center (Central Europe, United Kingdom, and East Europe) were the
least differentiated, both among each other and compared to all others (1001 Genomes
Consortium 2016, Exposito-Alonso et al. 2018d). These two patterns support the notion that
migration and gene flow are geographically limited throughout the distribution and that
population drift increases towards the edges. However, local genetic diversity was the
highest in the Mediterranean (1001 Genomes Consortium 2016, Exposito-Alonso et al.
2018d), contradicting the Neutralist hypothesis, which would predict Central Europe to be

the most diverse area.

Understanding the climate history of the Quaternary glacial periods in Europe, we
can explain the aforementioned, allegedly puzzling, diversity pattern. During the last glacial
maximum, many areas of Europe and North America were covered by ice. During the
harshest glacial extremes, some population managed to survive in Mediterranean refugia.
These are “relict populations”, and similar populations been identified in other species
(Hampe and Jump 2011). During interglacial periods, recolonization of the North probably
occurred from one or more of these refugia (Hewitt 1999). In A. thaliana, based on genetic
sharing, we have evidence that more than one major colonization occurred (Lee et al. 2017,
Fulgione and Hancock 2018) and that many relict populations survive around the
Mediterranean, where they typically live in habitats largely unaffected by human
interference (1001 Genomes Consortium 2016). Because relict populations are old and had
the chance to accumulate mutations, genetic diversity in the Mediterranean, in general, is
higher than elsewhere. In contrast, because European populations originated from
migrations that carried only a fraction of the species diversity (i.e. suffered a population
bottleneck), they have a lower genetic diversity than their Mediterranean counterparts. It
appears that multiple recolonizations, from lberia, Italy, or the Balkans, are common in many
species, and that Central Europe became a contact zone in which different lineages admixed

(Petit et al. 2003, Eckert et al. 2008). Such a mixing and homogenization of genotypes could
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also explain that Central European population of A. thaliana are not particularly divergent

from any other group, but rather a blend of different groups (Exposito-Alonso et al. 2018d).

Since A. thaliana is a widespread species that re-colonized Europe in post-glacial
times and migrated to America and Australia in historic times, it does not seem that its
geographic limits are dictated by its dispersal ability. The Neutralist hypothesis also puts
forward drift and the consequential accumulation of deleterious mutations as an important
factor shaping the geographic limits of species. | therefore studied the geographic
distribution of nonsynonymous mutations, i.e. mutations that cause amino acid changes in
the encoded proteins and the majority of which is deleterious (Eyre-Walker and Keightley
2007). | found that populations from the warm edge carried more of these mutations
(Exposito-Alonso et al. 2018c). One could mistakenly interpret this result as low efficiency of
purifying selection, resulting in accumulation of deleterious mutations in the marginal and
isolated relict populations (1001 Genomes Consortium 2016). However, the total number of
mutations might also be directly related to the old age of populations. In order to
appropriately compare populations with different levels of diversity, | investigated the ratio
of nonsynonymous to synonymous mutations (K,,/K;) The ratio correlated with latitude, i.e.
the lower the Iatitude, the lower the proportion of nonsynonymous mutations
(Exposito-Alonso et al. 2018c). This indicated that the warm edge populations actually have
experienced highly efficient selection, and conversely, that Central and North European
populations experienced less efficient selection. As the efficiency of natural selection does
not seem to coincide with the limits of the geographic distribution in North Africa, West

Siberia, and northern Sweden, we therefore must reject the Neutralist hypothesis.

Although the arguments for extinction because of genetic drift are sound (Lynch et al.
1995, Frankham 2005), and such scenarios might be very important in mammals (Abascal et
al. 2016), they do not seem to explain the geographic limits of A. thaliana (Exposito-Alonso
et al. 2018a, 2018c). The concepts of genetic drift and bottlenecks are still useful to interpret
diversity patterns in the context of relict and non-relict populations of A. thaliana and have
important applications in conservation biology beyond this species. Analogous to the
Out-of-Africa theory in humans (Excoffier et al. 2008), Central and North European

populations in A. thaliana suffered a bottleneck during the post-glacial recolonization, which
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might have limited the efficiency of selection and led to a high proportion of deleterious
mutations in their genome. On the other hand, relict populations from the warm edge tend
to harbor the most genetic diversity in A. thaliana and deleterious mutations seem to have
been purged more efficiently from their genomes. Based on this, it would be
recommendable that conservation policies should focus on edge populations with high
genetic value, particularly those at glacial refugia (Hampe and Petit 2005, Jump et al. 2008),
rather than those populations from areas of high abundance of the species (Araujo and

Williams 2000, Galetti et al. 2009, Tédonzong Dongmo et al. 2018).

1.2. The landscape of standing variation and natural selection

If none of the Neutralist ideas hold, does natural selection limit and shape the geographic
distribution of A. thaliana? To directly quantify natural selection in the wild, common garden
experiments constitute one of the most powerful and widely accepted approaches. This gold
standard was set by the pioneering work of J. Clausen, D. D. Keck and W. M. Hiesey (1941),
who carried out field experiments across a climate gradient from the Californian coast to the
Sierra Nevada. With a similar spirit, | designed two rainfall-manipulated field experiments
with A. thaliana in Spain and German field stations. | concluded that natural selection was
the strongest in the field station at the warm edge, while it was very weak at the core of the
distribution (Exposito-Alonso et al. 2017, 2018c). Developing a new type of field-validated
environmental models (GWES), | extrapolated my insights into the strength of natural
selection at the genetic level, to all known European populations of A. thaliana using present
climate databases (Hijmans et al. 2005). Expectedly, selection intensity was highest in hot
and dry regions. Taking the median climate of the geographic A. thaliana distribution as the
species' climatic niche center, | calculated Euclidean distances in climate space (defined by
98 climate variables) from this center to all the studied populations (Exposito-Alonso et al.
2018c). Correlating the strength of selection and the environmental distance to the species'
niche center, | confirmed that climate-driven selection increased towards the niche
periphery — which geographically corresponds to the Mediterranean, Western Siberia and
Scandinavia (Spearman’s r=0.42, P<10716). In addition, the local genomes at those areas had
signatures of highly efficient selection (the aforementioned low of K,/K; ratio)

(Exposito-Alonso et al. 2018c). This is perhaps not so surprising as the efficiency of selection
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depends both on population drift but also on the strength of selection. This suggests that
selection driven by past climates could have had a role in removing deleterious A. thaliana’s

genomic diversity.

Altogether, | found multiple lines of support for natural selection limiting the
geographic distribution of A. thaliana, in favor of the evolution-rebranded ecological niche
concept (Exposito-Alonso et al. 2018c). Although we do not have comprehensive genetic
data for other species to study genetic selection coefficients across the distribution, the
Selectionist hypothesis seems to be supported in 77% of the species studied in
meta-analyses of common garden experiments (Lee-Yaw et al. 2016). These results come
from experiments of multiple species grown at the core and at the edge of their distribution.
The experiments repeatedly found that individuals’ survival or fecundity significantly
dropped in common gardens outside the species’ geographic distribution limits (Lee-Yaw et

al. 2016).

1.3. Mind the dry edge

My ultimate aim of studying eco-evolutionary processes across the distribution of a species
was to predict risks that climate change will impose on the survival of species and use the
resulting insights to devise potential conservation policies. Given that | identified climate
variables as the natural selective pressures limiting geographic distributions, the obvious
conclusion is that if natural selection shifts in the future, it could put populations at risk of
local extinction. Specifically, droughts and high temperatures typical of South Europe (Seager
et al. 2007, Giorgi and Lionello 2008) are expected to move northwards (Intergovernmental
Panel on Climate Change 2014). Using the GWES environmental models fitted with present
data, with 2050 climate maps (Intergovernmental Panel on Climate Change 2014), |
predicted an increase in the strength of natural selection moving towards Central Europe

(Exposito-Alonso et al. 2018c).

Whether populations will be able to adapt to this new wave of natural selection will

depend on the local standing genetic variation, i.e. the presence of potentially adaptive

alleles. Growing diverse genotypes under simulated drought conditions in the greenhouse
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and conducting GWA, | found a clear pattern in the geographic distribution of
survival-related genetic variants (Exposito-Alonso et al. 2018d). The identified adaptive
variants were mostly present at the latitudinal edges of the species’ range, Scandinavia and
the Mediterranean regions (Exposito-Alonso et al. 2018d). | believe that the fact that
populations at the Northern edge are also adapted to dry conditions is the result of
cross-stress tolerance between cold and dry environments (Thomashow 1999, Swindell
2006, Exposito-Alonso et al. 2018d). Together, the knowledge of local genetic variation and
increasing selective forces indicate that populations with the highest evolutionary risk are
living in areas in the transition between the Mediterranean and European regions. Although
much emphasis has been put on how rising temperatures might threaten warm edge
populations of species (Southern Europe in our case), our results rather point to drying areas
of Central Europe to have the highest evolutionary risk — a risk that might be more common

in plant than animal communities (Thuiller et al. 2005).

By identifying the locations where specific adaptive variants are currently present
and the areas that might suffer most strongly from climate change-driven selection
pressures, one can propose more effective conservation policies. One example is the use of
assisted gene flow, where one aims to improve or diversify the local gene pool to aid
adaptation to climate change (Sexton et al. 2011, Aitken and Whitlock 2013, Supple et al.
2018). While A. thaliana might not become a globally threatened species, the evolutionary
scenario depicted here might be shared by many other temperate plant species (Thuiller et
al. 2005), especially because many have southern relict populations (Hampe and Jump 2011)
and perhaps even north edge populations also display a cross-adaptation from cold to
drought stresses. In such a scenario, a conservation strategy of transplanting seeds between
different warm edge populations, or from the cold and warm edges to the center, could help

preserve relict as well as Central European populations.

2. Rapid evolution from de novo mutations

2.1. Ancient DNA to study mutational processes in real time

The most extensive recent migration and expansion of A. thaliana has probably occurred in

North America, where an extreme founder effect manifests itself as a massive drop of
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diversity compared to the populations in the native area (Platt et al. 2010). A similarity of N.
American and European climates and the opportunity to hitchhike along human traveling
routes probably facilitated the rapid spread of A. thaliana across thousands of kilometers in
a matter of 400 years (Exposito-Alonso et al. 2018a). | dated the origin of the colonization by
one of the most common lineages in N. America based on genealogies reconstructed with
over 5,000 mutations that the individuals from this colonizing lineage accumulated over
time. | also found evidence that negative purifying selection acted at this timescale, as there
were fewer mutations in coding regions than expected, and those that remained were at a
lower frequency than expected. On the other hand, my results also suggested that positive
selection might have acted on some of the mutations that rose to high frequency and were
responsible for variation in root length and gravitropism, which in turn were correlated with
precipitation at the collection sites. The obvious implication of this research is that invasive
species could evolve and adapt to new environments even when they have to rely only on de

novo mutations, and even in short periods of time (Colautti et al. 2017).

A key feature of our North American A. thaliana study was the use of ancient DNA
(aDNA) to sample mutation accumulation over time. If the series of samples goes sufficiently
back in time, it allows directly calculating substitution rates from the complete genome
sequences. From herbarium specimens, such samples can be obtained as far back as 500
years (Lang et al. 2018), while from archeological remains it can be in the order of thousands
of years (Gutaker et al. 2017, Swarts et al. 2017, Di Donato et al. 2018). The knowledge of
mutation rates in plants could also be used to understand the origins and reservoirs of
noxious species as well as to assess risks that they evolve to bypass alien species control
such as herbicides or biological agents (Kreiner et al. 2017). For example, in a reasonably
well-sized patch of 10,000 plants of A. thaliana, every generation there would be over 8
thousand new mutations (i.e. the product of the per base mutation rate, the genome size,
and the total number of individuals in a population). Most of these mutations would be lost
if they are neutral, but if one provides a 10% in fitness advantage, theory says that the
probability that all individuals of the populations will have the advantageous mutationsin a
few generations is approximately 20% (under a number of assumptions that oversimplify the
calculation) (Patwa and Wahl 2008). The practical consequence is that the evolved

population’s growth rate would be 10% faster than the original one.

41


https://paperpile.com/c/n0dfJj/d68P
https://paperpile.com/c/n0dfJj/3OIV3
https://paperpile.com/c/n0dfJj/bmdba
https://paperpile.com/c/n0dfJj/7nrJv
https://paperpile.com/c/n0dfJj/WHxlR+rslki+etcx
https://paperpile.com/c/n0dfJj/9oAYH
https://paperpile.com/c/n0dfJj/VEQrz

2.2. The impact of polygenicity on invasion genetics

Our findings of multiple new mutations associated with ecologically relevant traits point to a
scenario of polygenic adaptation in North American A. thaliana. This result has important
consequences. Imagine that the distribution of fitness effects of new mutations in an

environment is exponential (Thurman and Barrett 2016, Exposito-Alonso et al. 2018c), with

probability mass function: f(x) = Xe™" This distribution implicitly asserts that there are
more mutations with small effects and fewer with strong effects. The flatter the exponential
distribution is (or the “more polygenic” the architecture; A i), the less biased is the
abundance of mutations with very small effect compared to intermediate or strong effect
ones. This is in opposition to a very steep exponential distribution (or the “more monogenic”
the architecture; A T), where the majority of mutations has virtually zero effects, and only a
minuscule number of mutations has strong effects. An interesting mathematical property of
polygenic-like compared to monogenic-like distributions is that the average effect is overall
higher, as the mean of the exponential distribution is equal to A~!. As a consequence, if the
fitness architecture in a new environment is polygenic, a random mutation would have at
least some effect on average, and natural selection can act upon it. Consequentially in
polygenic adaptation, populations would not need to wait so much time until advantageous
mutations appear, compared to the case of a mono(/oligo)genic mode of adaptation. If the
above theoretical hypothesis holds true, it could further support the solution of the paradox
of invasion that says that new mutations contribute to rapid adaptation during invasions

(Dlugosch et al. 2015, Colautti et al. 2017).

3. Towards a multigenic theory of adaptation

3.1. From Mendel to GWAs

One of the fundamental questions in genetics is which and how genetic factors contribute to
phenotypic variation in species. Mendel focused on traits whose inheritance was simple in
peas but in this dissertation all three GWA studies — whether on root development traits,

survival to extreme drought, or seed production in outdoor conditions — showed that traits

42


https://paperpile.com/c/n0dfJj/DAe6R+lX2J
https://www.codecogs.com/eqnedit.php?latex=%20f(x)%20%3D%20%5Clambda%20e%5E%7B-%5Clambda%20x%7D%20%0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda%20%5Cdownarrow%0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda%20%5Cuparrow%0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda%5E%7B-1%7D%0
https://paperpile.com/c/n0dfJj/bFUcA+bmdba

were polygenic (Exposito-Alonso et al. 2018a, 2018d, 2018c). This is not coincidental. There
are now thousands of GWA studies for all kind of traits in plants and animals (including
humans), and in summary these indicate that the majority of traits have multiple causative
genetic variants (Rasamivelona et al. 1995, Gravois and Bernhardt 2000, Hirschhorn et al.
2002, Marwede et al. 2004, Goddard and Hayes 2009, Atwell et al. 2010, Vink et al. 2014,
Schizophrenia Working Group of the Psychiatric Genomics Consortium 2014, Escott-Price et
al. 2015, Loh et al. 2015, Fan and Song 2016, 1001 Genomes Consortium 2016, Field et al.
2016, Bartoli and Roux 2017, Boyle et al. 2017, Bosse et al. 2017, Martin et al. 2017, Kita et
al. 2017). Of course, many conspicuous examples in the literature present discoveries where
adaptation is seemingly monogenic. Many of these studies, however, only focus on the first
candidates discovered in a GWA (Jones et al. 2012, Bay et al. 2018), or investigate very
charismatic traits such as coloration of mammals or birds, which are particularly prone to be
controlled by one or a few genes (Steiner et al. 2007, Uy et al. 2016, Bourgeois et al. 2017,
Jones et al. 2018) — including the classic peppered moth (Van’t Hof et al. 2013).
Furthermore, although specific traits might be controlled by a few genetic variants with
strong effect, the architecture of fitness might still be polygenic, as it depends on many other
traits. Studies of fitness of wild plants and crops, which depend on physiological, resource
allocation, or metabolic traits, indicate it is indeed a quantitative trait (Holland 2007,
Ingvarsson and Street 2011, Fournier-Level et al. 2011, Anderson et al. 2014, Price et al.
2018). In our rainfall-manipulated experiments, we measured the fitness of multiple
genotypes and empirically quantified contributions of genetic variants to fitness (i.e.
selection coefficients). This showed strong selection affecting thousands of variants that
changed in frequency in different degrees (Exposito-Alonso et al. 2018c). In such a scenario,
despite selection was strong, | predict the dynamics of adaptation to follow a polygenic
adaptation model instead of a selective sweep model. Indeed the per-allele selection
coefficients quantified in the field correlated with smooth geographic allele frequency
gradients across the sampled A. thaliana native populations (Berg and Coop 2014,
Exposito-Alonso et al. 2018c), rather than with genetic diversity valleys in the genome
characteristic of adaptation via hard selective sweeps (Nielsen et al. 2005). Our results
support the notion that polygenic adaptation plays a prominent role in plant adaptation,
which will have consequences in how we predict the demographic dynamics and

evolutionary responses of species to climate change.
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3.2. The classic monogenic vs infinitesimal population models of adaptation

The classic mathematical models of population genetics are almost exclusively developed for
the demographics of (hard) selective sweeps, i.e. fitness depends only on one mutation that
is positively selected. This legacy has continued to dominate in recently-developed models of
genetic adaptation to a new environment called evolutionary rescue models (Bell 2017). The
models begin by assuming that upon environmental change, a population declines with rate

r, as the mean absolute fitness of individuals is 1 — r. If a new mutation provides a fitness

advantage to an individual so that its absolute fitness is: (1—=r)(1+ 3), one can calculate
the frequency increase of the new mutation in every generation, and the probability that the
population would recover through adaptation: P~2Nu (s—1)/r, Intuitively, this
probability depends on the number of new advantageous mutations 2N u and the relative
advantage that the new mutation provides compared to the disadvantage of the old one,
(s—r)/r (Gomulkiewicz and Holt 1995, Orr and Unckless 2014, Bell 2017). The resulting
demographics are characterized by a U shape, i.e. population decreases with the change in

environment and later it recovers thanks to the new advantageous mutation.

A more realistic modeling of fithess and adaptation derives from Fisher’s

I”

“infinitesimal model” (also loosely called polygenic model). The model assumes that if
effectively an infinite number of variants determine a trait, each with infinitesimally small
effects on the trait, it would be sufficient to model the relationship between the total
number of genetic differences between individuals (or genetic variance 99) and the total

phenotypic differences between individuals (phenotypic variance o7). The ratio of these

two is the heritability of a trait: h? = og/0T (Falconer and Mackay 1996). The elegance of
this model is that it deals with traits that are under selection and inherited in some
proportion, circumventing the modeling of many specific genetic variants (Fisher 1918). The
infinitesimal model was extended to adaptation to a new environment by Lynch & Lande

(1993), who defined fitness as the instantaneous rate of population increase, r, which can

_ (2=0)?40c+ay

r="Te 209 , Where 7¢ is the fitness when the mean phenotype is

be written as:

at the optimum for an environment, . The mean population phenotype is z, and the
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phenotypic variance is divided into additive genetic variance, %9, which captures deviations
from the mean of different genotypes, and environmental noise, e, which generates
random deviations of each individual’'s phenotype. The degree of adaptation of the
population is defined by the phenotypic distance from the optimum, z — 6, and the
strength of selection is captured by the steepness of fitness decay from the optimum, os.
The faster the environment changes, the larger will be the lag of adaptation. There is also a
maximum environmental change to which the population can adapt, and it can be calculated
from the strength of selection and the heritability of the trait. To my knowledge, Lynch &
Lande’s (1993) was the first theoretical model that attempted to predict species responses to

an environmental change assuming non-monogenic natural selection.

Although the infinitesimal model revolutionized quantitative genetics thanks to its
ability to model continuous traits, it makes several artificial assumptions for the sake of
mathematical simplicity. These that are unlikely to be met in wild populations (Morrissey et
al. 2010) and they could actually prevent us from accurately predicting evolutionary
responses of populations to climate change (Hoffmann et al. 2017, Pujol et al. 2018). These
assumptions are: (1) Perfect random mating of populations, although it is known that gene
flow is limited in many wild species; particularly those that self-fertilize like A. thaliana and
many other plant species. (2) All genetic variants in the genome are in linkage equilibrium,
although all species show some extent of linkage disequilibrium in the genome
(Corbett-Detig et al. 2015). Notably, this is not specific to self-fertilizing species, where
recombination between different genotypes less often occurs, but it also applies to species
that obligately outcross (such as humans) (Reich et al. 2001). (3) All fitness effects of genetic
variants are additive and of identical magnitude, although genetic variants have dramatically
different (sometimes very large) effects on fitness (Thurman and Barrett 2016), and different
types of epistasis between variants probably contribute to adaptation (Carlborg et al. 2006,
Le Rouzic 2014, Sohail et al. 2017, Hoffmann et al. 2017). Because most species violate these
assumptions to different degrees, leading to substantially different population dynamics
(Neher 2013), | believe there is a need to rethink population genetic models of adaptation
that allow for polygenic architecture, yet at the same time are less constrained by the classic

infinitesimal assumptions.
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3.3. A multigenic rethinking of adaptation

Because of the above limitations, | propose that to accurately make predictions of
population dynamics, we move towards a “multigenic theory of adaptation” (Kirkpatrick et
al. 2002). | use the term multigenic to refer to those cases where a finite, yet large, number
of genetic variants with different effect sizes determines the fitness of an individual (i.e.
polygenic in the broad sense). This is in order to distinguish it from the Fisherian polygenic
model (in the strict sense, synonymous with the infinitesimal model) that is heavily loaded
with the assumptions described above. Most of the extensive GWA literature cited
throughout section 3 arguably falls into this category of multigenic trait architecture. In a
multigenic model of adaptation, selection is described with a vector of selection coefficients
for all P genetic variants involved in fitness. The distribution of selection coefficients can
follow an exponential distribution, allowing some genetic variants to have stronger effects
than others (Exposito-Alonso et al. 2018c). The linkage disequilibrium among variants needs
to be taken into account as well, as co-existence of multiple beneficial mutations in the same
background would generate highly fit genotypes. This can be described by a @ X P genome
matrix X of the different genotypes in a population where alternative and reference alleles

at every polymorphic site are coded as -1 and 1. The fitness of a genotype Wj would be

expressed as [T, (1 + Sii’?jz‘)e, for a multiplicaticative multigenic selection model
(Exposito-Alonso & Nielsen, unpublished). This model overcomes the assumption of additive
effects on fitness, in favor of multiplicative effects (Wade et al. 2001), and also allows for a
non-geometric increase in fitness with adaptive mutations (the e term). Selection
coefficients and other necessary parameters can be estimated from sequencing individuals
of a population and measuring their fitness (Anderson et al. 2014, Price et al. 2018,
Exposito-Alonso et al. 2018c), or from genome-wide allele frequency changes by
re-sequencing population that are evolving over multiple generations (Iranmehr et al. 2017).
Because of the above necessary complexities, it is not possible to directly derive equations
of the persistence of a population as before. However, differently from ZOth-century
geneticists, we can use computers to simulate populations based on the above realistic
multigenic equations under a variety of conditions, in order to study future trajectories
(Messer 2013, Thornton 2014). Knowing that new mutations can arise in historic times and

generate trait variation, simulations can include new mutations at a certain rate drawn from
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a certain probability distribution of fitness effects (Martin and Lenormand 2006,
Exposito-Alonso et al. 2018c). Another direct advantage of computer simulations is that they
can naturally incorporate stochastic processes such as demographic drift by sampling from
statistical distributions (e.g. github.com/MoisesExpositoAlonso/popgensim). | foresee that
the development of such a multigenic theory and robust and flexible platforms for
population genetic simulations will be a requirement to integrate evolutionary processes to

predict species responses under climate change (Fordham et al. 2014, Urban et al. 2016).

4. Conclusion: The future of eco-evolutionary forecast

My work showcases how evolutionary genetics can help to address ecological challenges
that are becoming increasingly urgent in the 215 century. Using over 1,000 genomes and
producing the largest A. thaliana fitness data resource in field experiments to date, | have
been able to describe general patterns of natural selection along the genome and their
interaction with the environment (Exposito-Alonso et al. 2018d, 2018c); contributing to
increase the knowledge on the genomic basis of local adaptation (Hancock et al. 2011,
Fournier-Level et al. 2011). My thesis also substantially contributes to solving the challenge
of incorporating evolution into ecological forecasting under climate change. | moved from
the typical presence/absence modeling of a species’ geographic distributions (Guisan and
Thuiller 2005) to model the geographic distribution of genetic mutations within a species
(Fitzpatrick and Keller 2015, Exposito-Alonso et al. 2018d), and modeling the selective
pressure imposed by climate over local genetic variants across the species’ range
(Exposito-Alonso et al. 2018c). Apart from the discussed multigenic theory of adaptation, |
think there are four central technological advancements that will enable robust
eco-evolutionary predictions in the future: (1) Use of stochastic computer simulations to
further integrate non-genetic biological mechanisms of population dynamics. (2) Leverage
the predictive power of machine learning. (3) Acquire large genetic and demographic data
set for many species. (4) Use hierarchical and network approaches to extend species

predictions to ecosystemic responses.
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The power of stochastic computer simulations is in the details. Differently from
analytical solutions, simulations can increase in complexity with essentially no further cost
on computational resources. For example, they can easily incorporate migration from other
populations that can catalyze local adaptation, given that we have information about
dispersal of the species (Broquet and Petit 2009, Aguilée et al. 2015, Al-Asadi et al. 2018), or
even human trade routes and socioeconomic parameters such as import/export of goods
between countries (Seebens et al. 2015) (freely-available at www.worldbank.org). One can
also define realistic species-specific demographic models that are largely ignored in
analytical population genetics, for example, dormant seed banks (Salguero-Gémez et al.
2015)(Charlesworth 1973) that remain in the soil and buffer genetic changes over time, or
different reproductive systems such as self-fertilizing that decreases the efficiency of
selection (Neher 2013). While this eco-evolutionary simulation framework could be very
powerful in ecological forecasting, it is not yet commonly used (Guillaume and Rougemont

2006, Bocedi et al. 2014, Brown et al. 2016, Rudman et al. 2018).

When large amounts of data are available, machine learning excels at data
integration and prediction in comparison to classic probabilistic statistics (Bzdok et al. 2018).
This can be particularly useful to define the starting parameters of population simulations. In
my thesis, | used present associations between climate variables and selected features from
a few study locations, such as presence/absence of genetic variants or relative fitness of
genotypes, and extrapolated these properties on a spatial grid; and into the future. Machine
learning has generated breakthroughs in the technology industry (Taigman et al. 2014, Silver
et al. 2016), but perhaps due to the small size of datasets, it has generally being
underapplied in ecology and evolution. The evolution of populations is sometimes
considered stochastic and/or chaotic, ultimately unpredictable (Erwin 2006). But some
recent inspiring applications of machine learning and big data tells us differently (Lassig et al.
2017, Reznick and Travis 2018). These include predicting species interactions in communities
(Desjardins-Proulx et al. 2016), predicting population growth and decline from genetic
diversity data (Schrider and Kern 2018), or predicting evolutionary trajectories (Neher et al.

2014, Nosil et al. 2018, Exposito-Alonso et al. 2018c).
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| think that four exponentially improving data acquisition technologies will be central
in gathering sufficient information on species presence and genetics in order to validate
predictive models. First, crowd-sourced data through phone apps allow free, citizen-based,
worldwide “watches” of species that amount to millions of sightings per year
(iNaturalist.org, iSpotnature.org, eBird.org). This could allow instant validation of models for
short-term predictions of extinction of populations or invasion risk. Short-term predictions
might aid immediate actions in conservation biology (Dietze et al. 2018, White et al. 2018).
Second, remote sensor-based technologies continue to make breakthroughs such as the
digital reconstructions of the vegetation in ecosystems and even their health status (Asner et
al. 2004, 2009), or the monitoring of large numbers of animals (Kranstauber et al. 2011).
Third, new portable sequencing technology (such as Oxford Nanopore, nanoporetech.com)
can contribute to the genetic monitoring of populations and species (Parker et al. 2017). This
approach has successfully applied to track outbreaks of Ebola, Flu, or Zika almost in real time
(nextstrain.org). Hopefully, this will also become widespread for animal and plant
populations. Forth, ancient DNA technology that enables sequencing of past populations
(Shapiro and Hofreiter 2014, Orlando et al. 2015), allows us to sample longer time series.
Combining backward-in-time species predictions based on climate records with aDNA, one
can validate the hindcast predictability of eco-evolutionary models to then apply them to
long-term forward-in-time predictions (i.e. forecasting). Comprehensive climate datasets
was a key to the success of the Intergovernmental Panel for Climate Change. Biodiversity
researchers are now hoping for a boost in data production following the foundation of the
analog Intergovernmental science-policy Platform on Biodiversity and Ecosystem Services in

2012 (IPBES http://www.ipbes.net).

Ultimately, we will need to forecast not a single species, but entire ecosystems.
Predicting the intricate meshes of a myriad of individuals and species interacting is also
much more complex than predicting the overall ecosystem services and functions such as
primary production (Nemani et al. 2003, Campbell et al. 2017, Bar-On et al. 2018). A
hierarchical approach based on our knowledge of ecological networks could make a very
positive contribution. No matter how much databases grow, is unlikely that we can monitor
every population of every species. By building networks of all species in an ecosystem,

predictions could focus on keystone or indicator species, which will drive the majority of the
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network connection (Lewinsohn et al. 2006, Bascompte et al. 2006, Tylianakis et al. 2008).
Once predictions are developed for heavily connected species or indicator species, their
predicted presence can serve as predictors for other species. Examples of these species
could be major ecosystem hub species such as the most predominant tree species in a forest
(Iverson and Prasad 1998, Gedney and Valdes 2000, Laliberté and Tylianakis 2010), but also
species flagged as endangered in the IUCN red list, as those are undergoing the earliest

impacts and might be good sensors (Dufrene and Legendre 1997).

Because the rate of climate change, species extinction, and invasive species spread
are not slowing down (Seebens et al. 2017, Brown and Caldeira 2017, Warren et al. 2018),
we will have to become much better at forecasting adaptation and extinction of species to
face present and future global environmental and ecological challenges. And we will. For the

good of both humankind and our planet Earth.
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aDNA technology

Admixture

Architecture, Trait

Polygenic, Trait

Bottleneck

Diversity, Genetic

Diversity, Neutral

Eco-evolutionary
dynamics

ENM

Evapotranspiration

Evolution,
Darwinian

Evolution, Modern
Synthesis of

Fixation

Glossary

A set of molecular techniques to retrieve, process, and analyze DNA sequences
from museum specimens, archaeological findings, fossil remains, and other
unusual sources of DNA such as sediments.

The process of outcrossing of different genotypes from two or more distinct
populations.

Also genetic architecture. It refers to the number of genes or alleles involved in
determining the trait, the distribution of effects or contributions to the trait,
and the relationships of additivity, dominance and/or epistasis among the
involved variants.

A trait, typically continuous, that is determined by small effects of many
genetic variants throughout the genome. Also called complex or quantitative
trait. A Fisherian polygenic trait assumes an infinite number of genetic
variants underlying the trait. Contrast: monogenic (Mendelian) or oligogenic
trait, that is determined by a one or a few genetic variants, respectively.

The sudden reduction of a population size, which has an associated increase in
genetic drift. When related to a migration, it is called founder effect.

The number of genetic variants in a population. In its strict sense, the average
probability that a site differs in two randomly sampled genomes.

The number of genetic variants in a population that are not under natural
selection. Synonym mutations, which do not generate protein changes, are
typically considered approximately neutral.

A term that generally refers to the interplay between ecology and evolution.
For example, a change in environment or ecological context can cause a
change in the population mean of a trait and consequently the frequency of
the underlying causal alleles. On the other hand, the rise of new mutations,
can change ecological relationships, e.g. when a population of commensal
insects in a plant becomes parasitic.

Environmental Niche Model. An environmental niche is an n-dimensional
space that a species occupies. It is typically related to abiotic environments
such as annual precipitation, but potentially could be extended to biotic
environments, e.g. the niche would be all those spaces where another
species already exists. The niches are typically modeled using decision trees.

The process by which water is transferred from Earth’s land to the
atmosphere, both through transpiration of plants and direct evaporation.
Potential evapotranspiration is high when the temperature is high; actual
evapotranspiration has an upper limit imposed by water availability. When
the potential is higher than the actual evapotranspiration, the soil dries out.

New species originate by descent with variability and by natural selection,
which is the process whereby some of the offspring are better adapted to
their environment and tend to survive and produce, in turn, more offspring
(Darwin 1859). Also referred to Darwinism.

Integration of Darwinism and Mendel’s laws of inheritance lead by E. Mayr, G.
L. Stebbins and T. Dobzhansky in the second half of 20th century. It is based
on the mathematical breakthroughs of quantitative and population genetics
in the early 20th century by R. A. Fisher, S. Wright, and J. B. S. Haldane.

Said of a mutation when it reaches 100% of frequency in the population.
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Genealogy

Genetic drift

GWA
Heritability
Isolation by

distance

Kn/Ks ratio

LD

Population, Relict

Population, Edge

A representation of ancestral connections between two or more genetic
sequences. Typically called phylogeny when representing species
connections. Also called tree in the broad sense.

A process whereby a population experiences changes in allele frequencies just
due to random sampling error during reproduction, which increases with
smaller numbers. For example, if a population consists only of two
hermaphrodite individuals that produce only two offspring, there is a 0.56
chance that a mutation present as one copy in one of the parents is lost. If
they produce 100 offspring, there is only a 1013 chance that none of the
progeny will inherit that mutation.

Genome-Wide Association. Most commonly, a linear (fixed or mixed) model is
used to estimate the effect that a variant has on a trait of a population of
genotyped individuals.

The proportion or percentage of differences in a trait between the individuals
of a population that can be explained by their genetic differences.

An emerging geographic and genetic pattern of populations that migrate and
progressively become differentiated from each other in their genetic
makeup. The more geographically separated, the more genetically distinct
are two randomly picked individuals.

Also known as K5/Ks or dn/ds. Metric of a genome or a region within a
genome such as a gene. The ratio between the nonsynonymous to
synonymous substitutions, i.e. those that generate a protein change and that
might be subject to natural selection, and those that do not and are
considered quasi-neutral. When Kp/Ks equals 1, sequences evolve only by
the influence of genetic drift. When >1 only occurs when positive selection is
very strong and adaptation is not mutation limited. Most studied species
have Kn/Ks <1; on average nonsynonymous mutations are under purifying
selection.

Linkage Disequilibrium. LD is the nonrandom association of alleles at two or
more loci. In other words, two mutations are in LD when they are both more
likely to be found together in some individuals, and vice versa, both missing
in other individuals. It can be measured as the correlation between the
presence of two mutations in the genome in a population. Contrast: Linkage
Equilibrium.

Effective population size. In population genetics, most models assume an
idealized population where individuals randomly mate, population size is
constant, and generations are non-overlapping. Sometimes also called a
Wright-Fisher or Hardy-Weinberg population. Ng represents the size of the
population in such an idealized population whose drift- and selection-driven
allele frequency dynamics are equivalent as the real population, which
violates some of the above assumptions and has often a very different census
size. For example, the world census size of Arabidopsis thaliana would be
much larger than the effective population size, because the species has
suffered population bottlenecks and expansions, because it only 2% of the
matings are between different individuals, and because the soil seed banks
generate overlapping populations.

Populations of a species that survived last glacial era (115,000 — 11,700 years
ago).

Also called marginal populations. Populations of a species at the periphery of
its geographic distribution. Contrast: populations at the center or core
populations.
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Rate, Mutation

Rate, Substitution

Selection, Natural

Selection,
Coefficient

SNP

The rate of replication error of the DNA of an organism found in the gametes
that give rise to the offspring.

The observed rate of mutation after drift and selection forces have acted upon
mutations. In its strict sense, is the rate of mutations that become fixed in a
species.

The process whereby the individuals best adapted to an environment survive
and reproduce the most, so that their genetic variants are passed on in a
larger proportion than those non-adapted individuals. Those genetic variants
that are favored are said to be under positive selection, those that are
disfavored are under negative, also called purifying, selection. The latter is
thought to be acting continuously in many of the spontaneous new
mutations are detrimental.

The quantification of natural selection over a genetic variant. Expressed as a
fraction or percentage of relative fitness advantage or disadvantage with
respect to a reference. The reference has unit one and is taken as either the
fittest individual or the average individual in a population.

Single Nucleotide Polymorphism. Genetic polymorphism or variant at a specific
position in the genome. Many times biallelic (particularly for GWA), in which
case one allele is considered the reference and the other the alternative.
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rdpidamente a latitudes mas altas, la supervivencia dependera de si se pueden adaptar
genéticamente, es decir, si pueden evolucionar. Otras especies parecen adaptarse
rdpidamente en el nuevo status quo en el cual los humanos dominamos los ecosistemas.
Estamos empezando a entender las huellas que adaptaciones a cambios climdticos pasados
han dejado en los genomas de las poblaciones y cdmo esto las ha podido preparar para
posibles futuras adaptaciones rapidas, pero todavia quedan muchas preguntas por resolver.
Ademas, el conocimiento actual sobre evolucién y adaptacidon raramente se incluye en
modelos predictivos de biodiversidad, aunque obviamente ayudarian a mejorar las
predicciones y a disefiar estrategias de conservacién mas efectivas. Aqui abordo estos retos
usando la planta Arabidopsis thaliana, de la familia de la mostaza, sobre la cual tenemos
informacidén genética, geografica y morfoldgica, de miles de individuos.

En el capitulo uno, estudié cdmo poblaciones de la misma especie podrian responder
de forma mas o menos efectivamente al mismo cambio climdtico. Examiné la supervivencia
de 220 lineas naturales (o variedades) de la planta Arabidopsis thaliana a condiciones de
sequia extrema simuladas en un invernadero. Las sequias severas, consecuencia del cambio
climatico, se espera sean uno de las amenazas mas grandes para las comunidades vegetales.
Usando la técnica de modelos de nicho ambiental en combinacién con asociaciones
gendmicas, pude determinar una serie de variantes genéticas adaptativas, y que
precisamente se encontraban en los margenes de la distribucidon geografica de la especie.
Quizd al haber vivido en ambientes mas extremos, las poblaciones en los bordes de la
distribucidn podrian ser un reservorio de variacién adaptativa en un futuro clima mas hostil.

En el capitulo dos, hice experimentos de campo a gran escala para cuantificar la
seleccidn natural dirigida por el clima en condiciones naturales. Plantamos un panel de 517
lineas naturales de A. thaliana en experimentos de jardines comunes con precipitacion
controlada en una region con clima moderado, en Europa Central, y una region con clima
mas extremo, el Mediterraneo. Usando analisis de imagenes, estimé el éxito reproductivo de
las plantas y generé cerca de 25,000 medidas de fitness. Con estos datos, pude inferir
cambios masivos en frecuencia alélica a lo largo del genoma en una sola generacién, siendo
mas extremo en altas temperaturas y precipitacién reducida, ya que muchos genotipos
centroeuropeos murieron. Integrando teorias de adaptacion local y técnicas de machine
learning, demostré que una parte significativa de la seleccidén natural es predecible. Con
esto, y en combinacidn con el conocimiento de la composicidn genética de poblaciones, hice
predicciones que indican que las dreas entre el Mediterraneo y Europa Central sufriran el
riesgo evolutivo mas alto debido a una reduccién repentina de precipitacién en el futuro.
Estos resultados contrastan con la vision generalmente aceptada que las poblaciones en el
borde ecuatorial, mds cédlido, estan en mayor riesgo de extincién que las poblaciones en el
centro de la distribucion geografica.

En el capitulo tres, estudié el valor adaptativo de nuevas mutaciones, en lugar de
adaptaciones ya existentes como en los capitulos previos. Usando muestras de herbario
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como fotografias en el tiempo, estudié un linaje de A. thaliana que se origind hace 400 anos
tras aislarse durante una migracidon a Norte América. En este linage, identifiqué 5,000 nuevas
mutaciones, algunas de las cuales producian diversidad morfoldgica en las plantas que
podria estar relacionado con la adaptacion al continente recientemente colonizado. Con esto
pude concluir que incluso organismos de gran tamafio como plantas pueden evolucionar en
cortos periodos de tiempo usando sélo nuevas mutaciones.

En general esta tesis doctoral ha avanzado nuestro conocimiento en cémo vy si es
posible que diferentes poblaciones de una especie se adapten genéticamente al cambio
climatico. Algunos de los descubrimientos mas importantes son: (1) que la adaptacion al
clima sucede por la acumulaciones de cientos de variaciones genéticas de forma concertada
(adaptacién poligénica), (2) que nuevas mutaciones aparecen de forma relativamente rapida
con lo que pueden contribuir en la adaptaciéon en tiempo real, por ejemplo en plantas
invasoras, y (3) que modelos que aprenden de la asociacidn entre climas actuales y variantes
genéticas pueden ser usados para predecir si poblaciones estaran en riesgo evolutivo por el
cambio climatico en un futuro. En conjunto, todos estos estudios nos sitian en una nueva
etapa para entender y solucionar retos ecolégicos usando la teoria de la evolucién genética.
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Exposito-Alonso et al. Genetic adaptation to extreme drought in A. thaliana

Because earth is currently experiencing dramatic climate change, it is of critical interest to
understand how species will respond to it. The chance of a species to withstand climate change
will likely depend on the diversity within the species and, particularly, whether there are
subpopulations that are already adapted to extreme environments. However, most predictive
studies ignore that species comprise genetically diverse individuals. We have identified genetic
variants in Arabidopsis thaliana that are associated with survival of an extreme drought event, a
major consequence of global warming. Subsequently, we determined how these variants are
distributed across the native range of the species. Genetic alleles conferring higher drought
survival showed signatures of polygenic adaptation, and were more frequently found in
Mediterranean and Scandinavian regions. Using geo-environmental models, we predicted that
Central European, but not Mediterranean, populations might lag behind in adaptation by the end
of the 21°% century. Further analyses showed that a population decline could nevertheless be
compensated by natural selection acting efficiently over standing variation or by migration of
adapted individuals from populations at the margins of the species’ distribution. These findings
highlight the importance of within-species genetic heterogeneity in facilitating an evolutionary

response to a changing climate.

Ongoing climate change has already shifted latitudinal and altitudinal distributions of many plant
species[1]. Future changes in distributions by local extinctions and migrations are most commonly
inferred from niche models that are based on current climate across species ranges[2,3]. Such
approaches, however, ignore that an adaptive response can occur also in situ if there is sufficient
variation in genes responsible for local adaptation[4—6]. The plant Arabidopsis thaliana is found
under a wide range of contrasting environments, making it distinctively suited for studying
evolutionary adaptation to a changing climate[7-9]. For the next 50 to 100 years, extreme drought
events, potentially one of the strongest climate change-related selective pressures[10], are predicted
to become pervasive across the Eurasian range of A. thaliana[2,11]. An attractive hypothesis is that
populations from the Southern edge of the species’ range[12] provide a reservoir of genetic variants
that can make individuals resistant to future, more extreme, climate conditions[12,13]. To investigate
the potential of A. thaliana to adapt to extreme drought events, we first linked genetic variation to
survival under an experimental extreme-drought treatment. By combining genome-wide association
(GWA) techniques that capture signals of local and/or polygenic adaptation[14] with environmental
niche models[8,15], we then predicted genetic changes of populations under future climate change
scenarios. An unexpected result of our predictions is that populations at both the Northern and
Southern margins of the species’ range will likely more easily adapt to increased extreme drought

events, due to these populations carrying a greater spectrum of drought survival alleles.

Appendix| - 1



Exposito-Alonso et al. Genetic adaptation to extreme drought in A. thaliana

RESULTS AND DISCUSSION

Differential survival to an extreme drought event. We began by exposing a high-quality subset of
211 geo-referenced natural inbred A. thaliana accessions[16] to an experimental extreme drought
event during the vegetative phase, which killed the plants before they could reproduce (Table S1).
After two weeks of normal growth, plants were challenged by a terminal severe drought for over six
weeks and imaged every 2-4 days (Fig. 1A) (see Supplementary Methods section 2). To quantify the
rate of leaf senescence, a polynomial linear mixed model was fit to the time series of green pixels per

pot (Fig. 1B-D, Video S1). The average genotype deviations from the mean quadratic-term in the

model provided the best estimate of this survivorship trait in late stages of drought (Supplementary
Fig. 3, see details in Supplementary Methods), ranging from -5 to +5 x 107 green pixels/dayz. The
most sensitive genotypes survived only about 32 days, while the most resilient plants survived about
15 days longer. Genotype-dependent survival probably reflects both constitutive as well as induced
drought responses, i.e., both environment-dependent and -independent behaviors of the tested
accessions. Additional environments need to be examined in order to disentangle these two types of

responses.
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Figure 1. Terminal drought treatment and phenotyping of 211 accessions.

(A) Soil water content as measured by sensors in three well spaced experimental trays. Vertical lines indicate

Appendix | - 2


https://moisesexpositoalonso.files.wordpress.com/2015/05/f_video_s1.gif?w=1280

Exposito-Alonso et al. Genetic adaptation to extreme drought in A. thaliana

dates of image acquisition. (B) Trajectories of total rosette area of 200 randomly chosen pots (see Video S1).
Color index according to quadratic parameter in (D). (C) Map projection of the environmental niche model
prediction of the quadratic parameter (the drought-survival index) in (D). (D) Decay trajectory modeled with a
polynomial regression, with genotypes as random factors, from the day of maximum number of green pixels

until the end of the experiment. Each line corresponds to one genotype.

The amount of water available during our drought experiment translates to only about 30-40
mm of monthly rainfall, and as expected, accessions with higher survival come from regions with low
precipitation during the warmest season (correlation with climate variable biol8

[www.worldclim.org, ref. [17]]: Pearson correlation, r=-0.19, p=0.005), and specifically with low

precipitation during May and June (r<-0.19, p<0.005) (see Fig. 2A). To further exploit current climatic
data, we used 19 bioclimatic variables and random forest models[18] for environmental niche
modeling (ENM) to predict the geographic distribution of the drought-survival index across Europe
(Fig. 1C). Surprisingly, we found that individuals with higher drought survival were not only likely to
be present around the Mediterranean, but also at the opposite end of the species’ range in
Sweden[19] (Fig. 1C, ENM cross-validation accuracy=89%, Table S10). In contrast to the warm-dry
Mediterranean climate, Scandinavian dry periods occur on average at freezing temperatures
(Supplementary Fig. 12). Consequently, precipitation might occur as snow and soil water content is

frozen, thus water is not accessible to plants, producing a physiological drought response[20].

Survival across geographically structured population lineages. We then studied whether the
different genetic lineages of A. thaliana are locally adapted[6] to low precipitation regimes via
increased drought-survival. Using an extended panel of 762 A. thaliana accessions (Table S1) we
carried out genetic clustering[21] and studied population size trajectories[22] (Fig. 2). This
corroborated the existence of a so-called Mediterranean ‘relict’ group[12] and ten other derived
groups of relictual (e.g. Spanish groups) or other (e.g. Central Europe) origin, as an apparent result of
complex migration and admixture processes[23]. A generalized linear model indicated that genetic
group membership explained a significant amount of drought-survival variance (GLM: R2=12.8%; p=4
X 10'5), with the North (N) Swedish and Northeastern (NE) Spanish groups each having on average
higher survival than the other groups (t-test p<0.01). A population graph estimated by Treemix[24]
suggested a gene flow edge between the Mediterranean and Scandinavian drought-resistant genetic
groups, potentially indicative of historical sharing of drought survival alleles (Fig. 2D). Finally, an ENM
of the genetic group membership with climatic variables from the accession’s geographic origin
confirmed that the most important predictive variable of genetic structure was precipitation during
the warmest quarter (biol8), followed by mean temperature of the driest quarter (bio9), and

minimum temperature of the coldest month (bio6) (ENM accuracy > 95%. Supplementary Fig. 8 and
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Table S10). As our results indicate that the deepest genetic split parallels contrasts in local

precipitation regimes and ability to survive drought, we expect that decline in rainfall could lead to a

future loss of certain genetic groups and/or to turnover of genetic diversity[11] (see Fig.12

Supplementary Fig. 8).
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Figure 2. Population structure and history of 762 high-quality genomes.

(A) Geographic locations and 11 genetic clusters estimated by ADMIXTURE (k=11 having the lowest

Drift parameter
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cross-validation error). Black indicates less than 40 mm of June rainfall (1960 to 1990 average), which

corresponds to the amount of water provided in our drought experiment (Fig. 1). Note areas of very low June

rainfall in the Mediterranean basin and along the coast in Scandinavia (partially obscured by colored circles).

Cape Verde Islands are shown as inset. (B) Principal Component Analysis of genome-wide SNPs. (C) Effective
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population sizes in time estimated from MSMC. (D) Population ancestral graph and the first migration

trajectory from Treemix.

The genomic basis of survival. Because the potential of populations to adapt to drought will
ultimately depend on specific genetic variants and the selected trait architecture, we identified
drought-associated loci with EMMAX[25], a genome-wide association (GWA) method. Although
genotype-associated variance[25] h? was relatively high, 50%, no individual SNP was significantly
associated with drought survival (minimum p~10'7, after FDR or Bonferroni corrections p>0.05)
(Supplementary Fig. 5, Table S3). Significant associations in multiple phenotypes have been detected
in similarly powered A. thaliana experiments[26]. While multiple testing adjustment can over-correct
p-values and obscure true associations, the absence of significant associations may also be due to (i)
polygenic trait architecture, with many small-effect loci[27], and/or (ii) confounding by strong
population structure, consistent with the association of drought survival with genetic group

membership.

Polygenic signal of adaptation. To test for polygenic adaptation, we repeated the GWA analyses with
a model that specifically handles both oligo- and polygenic architectures, BSLMM[28]. BSLMM
estimates, among other parameters, the probability that each SNP comes from a group of
major-effect loci. Around half of the top non-significant EMMAX SNPs were found to have over 99%
probability of belonging to such a major-effect group (Fisher’s exact test of overlap, p:3x10'7; see
Supplementary Methods 3.3). We further tested the polygenic hypothesis using the population
genetic approach of Berg & Coop[14]. The test is based on the principle that if populations diverge in
a specific trait such as drought-survival that is due to many loci, there should be an orchestrated shift
in their allele frequencies. After testing some 60 groups of EMMAX SNP hits of variable size and at
different ranks, we detected the most significant signal of polygenic adaptation with the group that
included the 151 top SNPs (Table S9). The signal was lost for ranks below the top 300-400 EMMAX
SNPs (Table S9). We then compared summary statistics of the top 151 SNPs with background SNPs
matched in frequency to avoid GWA discovery biases. The top 151 SNPs showed high F; values,
consistent with allele frequency differentiation between populations (Supplementary Fig. 5). Tajima'’s
D values were positive (U Mann-Whitney p<0.05), indicating intermediate allele frequencies at the
GWA loci (Supplementary Fig. 5), which could be a result of selection favoring alternative alleles in
different ecological niches of the species[29]. The genomic regions containing the top SNPs did not
show any evidence for precipitous reductions of haplotypic diversity, as would be expected for hard

selective sweeps[30] (Supplementary Fig. 5). Together these patterns fit the expectations of local

Appendix| - 5



Exposito-Alonso et al. Genetic adaptation to extreme drought in A. thaliana

adaptation from a polygenic trait controlled by some hundred loci[31] — a scenario that should

enable a fast response to new environmental shifts.

Ancestry associations suggest a Mediterranean origin of survival alleles. During local adaptation,
the relevant loci diverge due to natural selection across populations, which generates a statistical
correlation with population groups[32]. In this situation, the default correction of population
structure applied in GWA might obscure some of the true associations. There are cases where F;
scans can be useful to identify overly divergent loci that could be involved in local adaptation.
However, in cases of strong population structure, the mean genome-wide Fg is high[32],
complicating outlier detection (Supplementary Fig. 4). One can recover relevant variants that are
deeply divergent across populations and therefore invisible to conventional GWA by first assigning
ancestry to each SNP. Using ChromoPainter[33], which relies on linkage disequilibrium information,
we segmented each genome in question into its different population ancestries (here 11 groups). The
first outcome of this analysis was that individuals from NW and NE Spain and, to a lesser extent, the
Southern Mediterranean (Fig. 2A), have inherited many DNA segments from relictual individuals
(Supplementary Fig. 7). In a generalized linear model framework, we then tested whether the
ancestries of individuals at a SNP coincided with the observed phenotypic differences in
drought-survival. Performing this “ancestry” genome-wide association (aGWA) and using a
permutation correction of p-values (see Supplementary Methods 3.6), we detected 8 distinct peaks
(p<0.001, Fig. 3A) including over 1,000 significant SNPs (70 SNPs after linkage disequilibrium pruning)
(Table S4). The most prominent peak was located on chromosome 5 and explained over 20% of the
variance in drought survival (Table S4). There was no overlap in top SNPs between GWA and aGWA
because they search for different association signals. Our aGWA resembles other admixture mapping
techniques[34], and might be most useful for associations in scenarios of adaptive introgression and
local adaptation. Although we do not know yet whether our observations can be generalized, our
work demonstrates the power of using alternative GWA approaches in situations where adaptive
variation is expected to be tightly linked to population history and structure.

To understand the origin of aGWA-identified SNPs, we constructed trees for all concatenated
aGWA SNPs and for genome-wide background SNPs. Although the individuals from both the warm
(Iberia and relicts) and cold (Scandinavia) edges of the species distribution are far apart in
genome-wide SNPs, they are closely related in drought-associated SNPs (Fig. 3B). Overall, this is
consistent with a common Mediterranean origin of drought-adaptive genetic variants of both
Northern and Southern individuals (Fig. 2D,_Fig. 3B), and highlights the relevance of populations at
the latitudinal extremes of the species range as a possible genetic reservoir for future climate change

adaptation[12].
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Figure 3. Ancestry GWA of drought survival and environmental predictions.

(A) Manhattan plot of SNPs from ancestry GWA (aGWA) after permutation correction of p-values. Dashed lines
indicate significant thresholds at p<0.05, 0.01, and 0.001. (B) Top, Neighbour-joining phylogeny of 1,000
concatenated genome-wide SNPs compared with a phylogeny of all significant aGWA SNPs (ca. 1,000). Colors
indicate population clusters (Fig. 2). Relicts and N. Swedish groups are highlighted. Bottom, genetic distances
for genome-background SNPs or aGWA SNPs. (C) Environmental niche models of 70 top aGWA SNPs (after LD
pruning), trained with climate averages from 1960-1990, and then (D) used to forecast gain or loss of alleles in
2070 under free migration. (E) Discrepancy of alleles that can be gained by 2070 between the geographically

constrained (PCA control) model and the free migration model.

Drought survival is a resilience trait independent on phenology. Drought adaptation can be
accomplished by diverse mechanisms, with cross-stress resistance being pervasive[35]. An annual life
history enables drought survival through an escape strategy based on the acceleration of the life
cycle from germination to flowering and seed production. An alternative strategy, the avoidance
strategy, is employed by many xeric perennials with increased water efficiency[36]. Previous drought
experiments with A. thaliana have shown that both strategies exist, although early flowering, which

is associated with an escape strategy, was more favourable under water-limiting conditions[37,38]. In
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our experiment, drought-survival was not negatively correlated with flowering time in unstressed
conditions[39] (Pearson correlation, r=0.07, p=0.12). Although a correlation was not significant at the
individual ecotype level, the GWA effect sizes of drought-survival for the top 151 SNPs were positively
correlated with the ability of the same SNPs to delay flowering (Pearson correlation, r=0.51,
p=1x10'11, see Supplementary Methods 3.4). Given the described trade-off between escape by
flowering and water use efficiency in A. thaliana[37,40,41], our drought-survival index might be
related to the avoidance strategy, although this needs to be tested with specific physiological
experiments (Supplementary Fig. 11, Table S6). Gene enrichment analysis revealed a weak signal for
membrane transport (see Supplementary Methods 3.7). Adjustment of osmotic balance through cell
membrane transport is a drought avoidance mechanism[42] that might also confer cross-tolerance to
other abiotic stresses[43]. Therefore, it might be of relevance for Scandinavian A. thaliana accessions

or other populations in extreme environments (Supplementary Fig. 12)[19].

Forecast of genetic changes to global warming reveals regional differences in evolutionary
potential. It is expected that populations with increased survival to severe abiotic stresses should
have an evolutionary advantage in face of the predicted increase in drought frequency and intensity
both around the Mediterranean and in Europe, which will constitute a critical hazard for many
plants[2,11], including A. thaliana. Surprisingly, environmental niche models (ENM) of species
distributions, which have been used to predict future changes of species’ ranges [2,3], do not usually
include information of within-species diversity that can lead to adaptation from standing
variation[44—46]. This could in turn lead to overestimates of extinction rates[47—-49]. By fitting ENMs
of current climate with SNP data, using a similar rationale as for the “climate GWA” of Hancock and
colleagues[7], we attempted to forecast the most likely genetic makeup under current and future
climate conditions. We trained one ENM for each of the 151 GWA and 70 aGWA drought-associated
SNPs to predict which allele, either the high or the low survival one, is more likely, given a set of
environmental variables (all ENM 5CV accuracy >92%; Table S3-4, Supplementary Fig. 13-16).
Consequently, from each model, we geographically mapped the potential distribution of the high

survival allele using available environmental datasets (www.worldclim.org, ref. [17]). Finally,

concatenating the resulting 221 maps, we inferred the most likely individual genotype at each
location. At present, individuals from both northern and southern edges of the species’ Eurasian and
N. African range are predicted to harbor more drought-survival alleles than those located in between
(Fig. 3C, Supplementary Fig. 15-16, with the quadratic term in a regression of allele count on latitude
being positive at p=10'3), corroborating our previous observations. Using the trained ENM, we also
forecast the distribution of the 221 drought-survival alleles in 2070 (rpc 8.5, IPCC, www.ipcc.ch, ref.

[17]). While it was expected that populations in the Mediterranean Basin need to become more
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drought resistant[11], our predictions anticipate a greater increase in the total number of
drought-survival alleles for Central Europe (Fig. 3, Supplementary Fig. 14-15). This is because by 2070
rainfall in Central Europe will likely become more similar to that in the Mediterranean[2,11]
(Supplementary Fig. 12).

Because some drought-survival alleles are currently not present in Central Europe, we
speculated that gene migration might be necessary to facilitate adaptation to future conditions[50].
An underlying assumption of the ENM is that alleles will be present wherever required by the
environment, but this assumption of “universal migration” may not be realistic for future predictions
if the presence of alleles is currently geographically restricted. We therefore included two geographic
boundary conditions in the ENM to generate alternative models that were either more or less
“migration-limited” (see Supplementary Methods 4.2). After fitting all possible models and predicting
allele distributions with future climate, we calculated the difference of predicted allele presence per
map grid cell between the naive, free migration ENM and the two geographically constrained ones
(Fig. 3D-E). If an allele has currently a narrow distribution or is specific to a certain genetic
background, its future presence in an area might not be predicted by the constrained models, even
though the climate variables coincide with the SNP’s environmental range. Such a scenario seems to
apply to Central Europe, as the deficit in drought-survival alleles predicted by the free over the
constrained models was 8-30% (18-66 out of 221) (Fig. 3E; with the quadratic term in a regression of
the allele count difference on latitude being negative at p<10'10). Central European populations may
therefore be under threat of lagging adaptation by the end of the 215 century.

In the end, for a population to persist, not only must drought-survival alleles be present
locally, but they also need to increase in frequency[51]. The chance of this occurring will depend on
current local allele frequencies and the strength of natural selection favouring the drought-survival
alleles. Therefore, we studied current allele frequencies at three representative locations with the
highest sampling density in our dataset (40 samples within a 50 kilometer area): Madrid (Spain),
Tubingen (Germany) and Malmo (Sweden), which are near the southern edge, center and northern
edge of the Eurasian and N. African range, respectively. Based on ENM predictions, we calculated
allele frequency changes from present to 2070. Frequencies are predicted to increase significantly
only in the Tubingen population (Student's t test, p<10'16, Table S11), but not in Madrid and Malmg,
indicating that these two populations might already be adapted to the future local climate. Although
not all drought-associated alleles are found in Tlibingen (32 of 70 aGWA SNPs and 136 of 151 GWA
SNPs), increasing the number of the alleles in single genotypes should be feasible, since there are
already single genotypes that have 24 (aGWA) and 123 (GWA) of these alleles (see Supplementary
Methods 4.2). Running 50-generations simulations starting at the present Tubingen frequency of

each of the drought-survival alleles and assuming a range of selection coefficients, we estimated that
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a 1-3% of fitness advantage on average would be necessary to increase frequencies to match those
of the adapted Madrid and Malmo populations (Supplementary Fig. 17, see Supplementary Methods
4.2). Such selection could take place efficiently when populations are large, as is typical for

highly-proliferative weeds[51,52].

Conclusion

Leveraging the genetic resources available for A. thaliana, we have begun to address the
guestion of how climate change will affect biodiversity. We provide evidence for the possibility of
adaptive genetic variation to extreme drought events from standing variation. Specifically, we found
that drought survival in A. thaliana has a polygenic basis and that favorable alleles are more
abundant toward the edges of the species’ distribution range. Extreme adaptation at range edges
might thus be critical for a species’ persistence under climate change. Although many aspects of
future adaptation are not considered here, namely non-drought related or seasonal climate
change[51], biotic interactions, phenotypic plasticity, or novel adaptive mutations, our spatially
explicit analyses emphasize the potential of adaptive evolution from standing variation to mitigate

climate change’s detrimental effects.

METHODS

Study populations. 211 natural inbred lines from the 1001 Genomes project[16] were grown in a
terminal drought experiment, and 762 lines were analyzed for genetic structure and
genome-environment models. These two subsets were selected based on sequence quality and
homogeneity of geographic distribution (see Supplementary Methods 1.1). We retrieved the
genomes corresponding to the above natural lines from

http://1001genomes.org/data/GMI-MPI/releases/v3.1/ and extracted the biallelic SNPs with >95%

calling rate. This resulted in keeping ~4M SNP.

Genetic structure. To understand the genetic structure of Arabidopsis thaliana we ran, on the 762
samples, the software ADMIXTURE v1.2 (ref. [21]) assuming two to 20 groups and using a 5-fold
cross-validation procedure. The number of groups with the smallest cross-validation error was 11
(Fig. 2, Fig. Supplementary Table 1, Supplementary Fig. 8). We computed a genomic PCA using PLINK
v1.9 (ref. [53]). The three first PC axes explained 33.5% of the genomic variance (see Supplementary
Methods 3).

We used genomes with probability >0.9 of assignment to one of the 11 ADMIXTURE groups

to run MSMC v.3 (ref. [22]). This was done in quartets of genomes, i.e. four genomes for
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within-population coalescent mode, and two genomes of each of two populations for the
cross-coalescent mode (Fig. 2, Supplementary Fig. 5). Using the 11 genetic groups as population

lineages, we run Treemix assuming zero to five migration edges[24] (Fig. 2, Supplementary Fig. 5)

Terminal drought experiment. Stratified seeds from the selected 211 natural lines were sown in
greenhouse pots and abundantly watered every three days during two weeks. Thereafter watering
only occurred every three weeks, which dramatically reduced soil water content (Fig. 1,
Supplementary Methods 1.2). Top-view photographs of the potting trays were done at 20 timepoints
during the whole experiment with a high resolution Panasonic DMC-TZ61 digital camera mounted in
a closed black box setting to ensure image consistency (Supplementary Methods 2). Using
customized Python scripts and the module Open Computer Vision, we segmented the green
plant-leave pixels from the brown soil background to monitor plant area over time (Supplementary
Video). Starting from the day with the largest rosettes areas, until the end of the experiment, we
modeled the decay of green area (i.e. # pixels) using a polynomial generalized linear mixed model
with Poisson link as described in the MCMCglmm R package v.2.25 (see Supplementary Methods 2).
The random genotype effects captured the average deviation of each genotype from a general
intercept, slope and quadratic curvature. After calculating the heritability of each of the three
coefficient deviations and their correlation with the genotype’s climate variables of origin, we
understood that it was the quadratic curvature that was the most suitable to use as index of survival

(Supplementary Methods 2).

Genome-Wide Association (GWA). Using the index of survival per genotype as the trait and
the SNPs with a minimum allele frequency > 5% as predictors (n=879,654 SNPs), we carried out
associations using the linear mixed model implemented in EMMAX software[25] to find SNPs that
excessively contributed to the prediction of survival of genotypes (Supplementary Table 3) (see
Supplementary Methods 3.3). To corroborate the identified top SNPs we also performed a Bayesian

Sparse Linear Mixed Model (BSLMM) with GEMMA software[28]. EMMAX fist a model as:
Y =X+ Zu+ €, where Y is the vector of trait values, X is the alternative allele dosage at

SNP i and 1 the allelic effect of SNP i on the trait. Population structure is corrected with a random

genotype term (of 211 levels) represented by u, which follows a Multivariate Normal distribution
2
N(0, AUG), where A is the relationship matrix between all individual genotypes built from SNP

2
information and ¢ is the genotype-associated variance. Different from EMMAX, the BSLMM model
of GEMMA fits a multilocus model such as: ¥ = X3 + €, where all SNPs are fitted at once but

there is a strong prior distribution of the B coefficients. These are constrained to follow a mixture of
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two distributions, one that expects many small effects and another that generates few strong effects.
Because all SNPs are included in the model, the population structure is implicitly accounted for.

To determine whether the top SNPs identified in the GWA might have been subject to
polygenic adaptation, we used the method from Berg & Coop[14]. We did this for several groupings
of top SNPs and reported the group that yielded the strongest signal (see all results in Supplementary
Table 9).

Using painted chromosomes generated using ChromoPainter v. 2.0.7 (ref. [33]), we carried

out another set of associations between the survival trait and the local ancestry category (11 groups)

of a chunk of the genome. We used a linear model, Y=p+Xp+ €, and reported the positions
in the genome with the least mean square error (i.e. highest RZ) (Supplementary Table 4). To
compute p-values, we took an empirical p-value distribution approach based on 1,000 random
permutation runs (see Supplementary Methods 3.6). To understand the ancestry of the associated
genomic positions, we concatenated the SNP genotypes of the top-associated positions, computed
genetic distances between natural lines and generated a Neighbour Joining tree. This tree was

compared with a tree built from an equal number of randomly-picked background SNPs.

Genome-wide diversity and selection summary statistics. We calculated genome-wide Fg; among
the ADMIXTURE-defined groups and Tajima’s D with PLINK v1.9 (ref. [53]) and likelihood of a selective
sweep with SweeD (ref. [30]). We investigated the enrichment of the top SNPs in the upper tail of the
distributions of those statistics by calculating a right-tailed t-test in contrast with genome-background

SNPs with the same frequency values (Supplementary Fig. 4, Supplementary Table 3, rank columns).

Environmental Niche Models. We used classification and regression Random Forest models
implemented in the randomForest R package, available environmental databases

www.worldclim.com v.1.4 (ref. [17], 19 bioclimatic variables at 2.5 arc-minutes resolution), and

geographic locations of GWA-identified alleles, to fit environmental niche models (ENM). To evaluate
model’s predictive ability for each allele, we used a 5-fold cross-validation procedure in which % parts
of the data were used to train the model and % was used to test it. This enabled us to assign a
percentage of successful assighment of an allele given the environmental variables at a location
(Supplementary Tables 3-4). The fitted Random Forest model was used to generate potential
geographic distributions of survival-associated alleles which, all overlapped, provided a geographic
map of density of survival alleles. Using existing predictions of the same 19 bioclimatic variables to
2050 and 2070 under both low (2.6 rcp) and high (8.5 rcp) CO, accumulation scenarios, we

re-predicted the distribution of alleles to the different future scenarios using the previously fitted
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Random Forest models. Because of the implicit assumption of free movement of alleles, we
generated two additional models per SNP: (1) ENM including the latitude and longitude variables in
the Random Forest models and (2) ENM including the three first PC axes geographically modeled
with present day climate (see below). By repeating predictions with future climate data, but keeping
the latitude, longitude and PC components constant, some alleles would not be predicted in areas
where the appropriate environment exists but which are outside of the current geographic
distribution (1) or current local genomic background (2) (see Supplementary Methods 4,
Supplementary Fig. 13-16).

Apart from the potential distribution of putatively adaptive alleles, we also modeled the
geographic distribution of continuous traits, namely the aforementioned PCA components of
population structure or the index of survival under drought itself. In those cases the Random Forest
was of the regression type and the predictive ability was computed for the test data calculating the
squared Pearson’s correlation coefficient between predicted and true values (see Supplementary
Methods 4).

To complement observations of presence and absence of alleles from ENM predictions, we
carried out Wright-Fisher simulations of single biallelic SNPs (for details see Supplementary Methods
4.2.4). We ran simulations for 50 discrete generations. The population size was assumed of 300,000
plants, as inferred from diversity data, and was constant over time. Fitness was only determined by
the selection coefficient of the drought alleles, which varied from 0 to 20% in an array of simulation
runs. The starting frequency of the allele was set equal to the present day frequency of all natural
lines sampled in a given geographic area (e.g., Tubingen). These simulations could be extended in the
future to incorporate joint fitness effects from multiple adaptive mutations and complex

environment-driven demographic processes (Supplementary Methods 4.2.4).

Code availability. Code for the image analysis pipeline available at

http://github.com/MoisesExpositoAlonso/hippo with DOI: https://doi.org/10.5281/zenodo.1039888,

code for ancestryGWA is available at https://github.com/MoisesExpositoAlonso/aGWA with DOI:

https://doi.org/10.5281/zen0d0.1039882, code for Wright-Fisher population simulations at

http://github.com/MoisesExpositoAlonso/popgensim with DOI:

https://doi.org/10.5281/zenodo.1039886.

Data availability. Phenotypic datasets available in the Supplementary Dataset at

https://www.nature.com/articles/s41559-017-0423-0. Processed genome matrices are available at

http://1001genomes.org/data/GMI-MPI/releases/v3.1/. Raw reads are stored in the

www.ncbi.nlm.nih.gov/sra archive under the ID number: SRP056687.
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Additional information

Supplementary information is available for this paper at:

https://www.nature.com/articles/s41559-017-0423-0
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SUPPLEMENTARY METHODS

1. Experimental design and biological material
1.1 Choice of accessions from the 1001 Genomes resource

The 1001 Genomes project has released resequencing data for 1,135 natural inbred lines, also called

accessions or ecotypes (http://1001genomes.org). We applied several filters to select the most

informative, least biased accessions for our experiment. (i) The first filter removed 176 accessions
with low quality genome information, < 10X genome coverage and < 90% congruence of SNPs called
from Max Planck Institute and Gregor Mendel Institute pipelines[1]. (ii) The second filter removed
244 nearly-identical accessions, many from N. America. For this, we calculated pairwise
genome-wide identity-by-state differences using PLINK v1.9 (ref. [2]). When pairs differed in less than
< 0.01 changes per polymorphic site, we randomly removed one member of the pair. The overlap

between (i) and (ii) was 762 accessions (Supplementary Fig. 1, 2, Supplementary Table 1). For

geographic analyses in the native Eurasian and N. African range (e.g. environmental niche models),
we used the 729 accessions that were within 50°W to 100°E longitude (see section 4.2.1). For the
terminal drought experiment, we used 211 of these 729 accessions. The seeds were progeny of 1001

Genomes collection seed stocks obtained from the Arabidopsis Biological Resource Center (CS78942).
1.2 Greenhouse terminal drought experiment

The 211 accessions included both vernalization-requiring, slow-flowering and vernalization-
independent, fast-flowering ones. Because of the difficulties associated with disentangling
drought-induced mortality and reproduction-associated senescence at the end of the plant life cycle,
our study focused on lethal drought stress during the vegetative stage, i.e., before flowering. We did
not apply a vernalization treatment to reduce flowering time variance. (Note that onset of flowering,

or flowering time, was not a confounding factor. See section 2.2.)

Seeds were aliquoted in Eppendorf tubes, suspended in 1% agar solution, stratified in a 42C
dark room for 5 days to promote germination, and then pipetted into pots filled with sifted soil (CL-P,
Einheitserde Werkverband e.V., Deutschland). When multiple seeds germinated per pot, all but one
were removed at random. We sowed 8 replicates per genotype in 49 trays of 8 x 5 cells (5.5 x 5.5 x 10

cm) using a randomized incomplete block design. We excluded corner cells, where edge effects are
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strongest.

During the first two weeks after sowing, from the time point defined as day O, trays were
watered close to soil saturation once every 3 days, with temperature maxima from 20 to 252C under
16 hours natural and supplemental light (the experiment ran during the months of July and August).
The photosynthetic active radiation (PAR, wavelengths from 400 to 700 nm) was on average 5.73
mole m2 day'l, and ranged from 0.1 mole m~2 day'l during the night to a maximum of 15 to 66 mole
m2 day'1 during the day, depending on insolation. After this period, seedlings were challenged with
a terminal drought, with “recovery waterings” after 3 and 6 weeks (see small peaks in Fig. 1), in order
to increase the variance in survival. The overall watering during the drought period (4 | in each tray of
40 x 60 cm), correspond to approximately 33 mm of rainfall (4,000 + 4,000 cm3 water/ 2,400 cm?
surface = 3.3 cm). We monitored water content using moisture sensors (Parrot SA, Paris, France) (see
water content graph in Fig. 1A). We monitored rosette green area by imaging at 20 time points (Fig.

1A) using a customized system (see below).

1.2.1 Advantages and disadvantages of the experimental system

Drought experiments are known to be difficult in that different plants might not experience the same
stress depending on their developmental stage and size because they consume the available water at
different rates[3,4]. Therefore, it would be ideal to measure each pot’s water content and adjust the
watering of each pot every day[3,4]. In our experimental design we used over 1,600 pots, thus
pot-specific watering adjustment was not feasible[5]. Automatized setups[6] can be powerful
systems for such accurate watering and physiological studies, but they come with a limitation in the
number of pots used (around 500, ref. [6]) and are difficult to implement in field conditions. In our
design, we compromised pot-specific monitoring and water adjustment for high-throughput and

scalability to field conditions.

Because we were concerned that the aforementioned effect of plant size could dramatically
affect the results, we took several precautions. First, we used pots filled with about 245 cm? of soil (6
x 6 cm surface area x 10 cm depth), which is about twice as much than the more typical 125 cm? soil
(5 x 5 x 5cm) often used in A. thaliana experiments. By using larger pots, we aimed to reduce the
impact of plant differential water consumption relative to the impact of drought treatment. Second,
we designed our experiment as a terminal drought to make sure all plants quickly experienced a
water availability that was below their individual physiological limits. We argue that this approach
should be less sensitive to differential water consumption of plants than if we had only imposed a
moderate drought[5], which may be of more interest when trying to simulate an agricultural setting,

rather than an extreme event in natural settings without supplementing water. Third, if plant size was
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a major contributor to our drought survival index, there ought to be a relationship between plant size

and drought survival. We did not find such a relationship (see section 3.4).

1.3 Validation field experiment

In order to validate the observations of local adaptation to low rainfall regimes from the greenhouse
extreme drought experiment, we carried out a follow-up field experiment utilizing the same
experimental design as for the previous greenhouse experiment. We sowed the same genotypes in
Madrid (Spain) and in Tubingen (Germany)[7]. We grew plants in semi-natural conditions, using the
same industrial soil and trays in both locations, under PVC foil tunnels with openings to the outside.
The plants experienced temperatures and photoperiods very close to natural conditions, while at the
same time we could artificially control the rainfall amounts. We simulated in both locations Spanish
and German average precipitation based on real-time monitoring of rainfall with sensors next to the
foil tunnels. We had in total four treatment combinations of two photo-temperature regimes and
two rainfall regimes. Out of 7 pots per genotype, we counted how many survived until reproduction
(i.e., produced fruits). The drought-survival index measured in the greenhouse correlated with this
field survival variable in the low-precipitation treatment in Madrid (Spearman’s rho=0.17, n=211,
p=0.01) but did not in the high-precipitation treatment in Tibingen (p=0.99), as expected (see

Supplementary Table 1 for genotype values).

We used the same imaging system in the field as for the greenhouse experiment (section
2.1), and thus had exceptional power to validate the robustness of the imaging system. We used
images of the same trays that had been photographed twice on the same day to measure
replicability of the image pipeline (these pairs of pictures included multiple trays at 11 timepoints).
Spearman’s rank correlation of green pixels per pot retrieved from two such images was 0.97
(n=1,508, p<10'16). This high correlation indicates a high replicability of the illumination and
segmentation procedures. The small error would become even more negligible when averaging all

replicates per genotype and modeling trajectories per genotypes.

1.4 Experiment under optimal growing conditions

In a first experiment, we grew the same 211 genotypes under optimal watering and nutrient
conditions and monitored vegetative growth by image analysis[8] (see Supplementary Table 5 for a
description of the 24 traits extracted from the images). This set of traits was used to investigate

whether variation of drought-survival index was correlated with growth under optimal conditions.
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2. Drought phenotyping
2.1 Image analysis pipeline

Plants were imaged using a Panasonic DMC-TZ61 digital camera and a customized closed black box at
a distance of 40 cm from the tray. This produced very consistent images in terms of illumination (only
from in-camera flash) and focal distance to the plants. After benchmarking different camera settings,
we set relative exposure to -% and ISO to 100. White balance was set for flashlight illumination,

which was consistent thanks to the customized black box.

We extracted leaf area per plant over time using the imaging module Open Computer Vision
in Python (ref. [9]) (Video S1), with these steps: (i) 5 pixel mean denoise of the whole-tray image. (ii)
Fixed Hue Saturation Value (HSV) segmentation of “green” values. The threshold values were
determined manually by selecting pixels from plants at five timepoints through the temporal series
to capture the different green values that plants display at different stages of development. (iii)
Cropping of each pot to extract individual plant images. (iv) Counting of green pixels (code available

at http://github.com/MoisesExpositoAlonso/hippo with DOI:

https://doi.org/10.5281/zen0do.1039888). Pots with green pixels but without plants were excluded

after careful visual inspection of all images.
2.2. Drought survival index

After determining the peak of green area for the majority of pots, we modeled the daily
number of green pixels per pot. Several different models, including up to third order polynomial
models, and several error correction factors, either raw or genotype averages, were tested. All
models were ranked based on parameter convergence in an Monte Carlo Markov Chain (MCMC) walk

and AIC values. The final model was a generalized linear mixed model with Poisson link of the form:
Yy =i+ st + qt? +eg +e€gs +€q + €tray + €pos + €

, Where green area, y, was the response variable, and an intercept (i), slope (s), and quadratic
coefficients (g) with time (t) were fitted as fixed effects. Genotypes were treated as random factors
that were allowed to deviate from the main trends, following a normal distribution (0, Iog). Tray block
and position within the tray grid were fitted as random factors also following a normal distribution.
To estimate these parameters, we performed 10,000 iterations in a MCMC and 1,000 burn-in using

the glmmMCMC R package (ref. [10]).

The variance from all genotype-dependent components relative to the total phenotypic

variance was ~10%. Genotype values of the three parameters of interest (intercept, slope, and
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quadratic coefficient) were used for Genome Wide Association (GWA) and downstream analyses.
Additive genetic variance was estimated from linear mixed models using a kinship matrix (see GWA
section (3.3)). The intercept, slope and quadratic deviations had narrow-sense heritabilities (hz, or
kinship-associated variance) of 0%, 0%, and 49%; respectively. We chose the latter as the
drought-survival index. This parameter informed about survival during the late stage of the
experiment, as can be observed from a high correlation between the drought survival index and the

raw green pixels in the final monitored days (Supplementary Fig. 3).

Because the drought-survival index could depend on the developmental stage, size and
subsequent water consumption of the plants when the drought treatment started, we computed the
pixel decay polynomial model with and without a covariate of flowering time, rosette area and
rosette dry mass under optimal conditions (indicative of overall developmental speed; see source of
the phenotype in section 1.3 and phenotypic correlations in section 3.4.1). The model described

above was run three times, each with one of the mentioned phenotypes as random factors to get the

variance explained. The variances explained by each of the test factors (Vfactor/v;otal) were 1.15 x
10 (95% Highest Posterior Probability: 6.74 x 10'9, 1.07 x 10'2) for flowering time, 1.86 x 108 (9.38
X 10'11, 1.60 x 10'5) for rosette dry mass, and 2.67 x 1077 (1.84 x 10'11, 4.53 x 10'2) for rosette area.

To provide an intuitive understanding of the drought survival index, we looked at the
relationship between the index and the last day on which a plant was clearly alive, defined as the last
day with at least 5,000 green pixels left. The relationship between the drought-survival index and the
last living day was highly significant (p < 10'16). The most sensitive plants survived for 32 days, and

the most resistant ones were alive for 15 days longer.
3. Population and quantitative genetics
3.1 Population structure

From the vcf file with SNP calls of the 1001 Genomes project
(http://1001genomes.org/data/GMI-MPI/releases/v3.1/), we identified biallelic SNPs with a

genotype calling rate >95%, which resulted in a genome matrix of ~4 million SNPs x 762 accessions
(section 1.1). We defined genetic clusters with ADMIXTURE v1.2 (ref. [11]) (Supplementary Table 2).
As a model-free alternative to ADMIXTURE, we used PCA implemented in PLINK v1.9 (ref. [2]). The
first three axes explained 16.0%, 9.6% and 7.9% of the total genetic variance. ADMIXTURE clustering
and PCA were used to understand population structure and to relate it to phenotype variables. We
assessed population splits and migrations with a population ancestral graph using TreeMix v. 1.12

(ref. [12]), a tree based on genome-wide allele frequency differences across populations.
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Additionally, we calculated a proxy of local genetic diversity[13] at each of the 762 locations sampled
by computing the genome-wide number of polymorphic sites between such a focal sample and the

geographically closest other sample.

3.1.1 Association of genetic group membership with drought

Using the ADMIXTURE membership probabilities of each genome, we carried out univariate linear
regressions with drought survival index as phenotype. The groups that yielded positive relationships
were NE. Spanish (p<0.05), Mediterranean (p=0.06), and the N. Swedish groups (p<0.001). The
groups negatively associated were Central Europe (p=0.06), Asia (p<0.001), and E. Europe (p<0.001).
This broadly coincided with the map of drought-survival prediction (Fig. 1D, S11). We also carried out

regressions between the drought survival index and the first three axes from a genomic PCA and
found that only PC3 was significantly associated with the drought survival index (GLM R2:0.076;
p=5.15x10'5). The N. Swedish and NE. Spanish groups showed particularly low values in PC3

compared to the rest (Supplementary Fig. 8).

3.2 Coalescent rates over time

Only the accessions with 290% of membership probability in one of the genetic groups were used.

Using MSMC v.3 (ref. [14], http://github.com/stschiff/msmc), we performed within-group coalescent

with four genomes and cross-genetic group coalescent with two genomes for each group. In total,
333 runs were performed, with each genetic group being tested at least 3 times. The results were

summarized using a smoothing generalized additive model in R (Fig. 2C).

3.3 Genome wide association (GWA) analyses

3.3.1 Linear Mixed Models (LMMs) with EMMAX

We used 879,654 biallelic SNPs with a minimum allele frequency (MAF) of 5% for genome wide
association (GWA) using EMMAX (ref. [15]). We carried out GWA for all climatic variables and 11
phenotypes (Supplementary Table 5). The GWA is based on linear mixed models that test, one by
one, each of the SNPs, and correct the results by population structure using a random factor with a
variance/covariance kinship matrix built from genome-wide SNPs. In A. thaliana, which is a selfing

species with geographically confined genetic lineages, this method can correct for coancestry[16].

To rule out the possibility that drought survival measurements were dependent on the
developmental stage of the plant during the experiment, we carried out the GWA with and without a
covariate of flowering time that had been scored in controlled conditions (flowering time being a

proxy of developmental speed; section 1.3). The top SNP hits were the same with or without this

Appendix | - 26


https://docs.google.com/document/d/1gg5mMS0vti4VflNx-ekWfhuDuVFxzu07rrBGOdDQmWE/edit#bookmark=id.1d96cc0
https://docs.google.com/document/d/1gg5mMS0vti4VflNx-ekWfhuDuVFxzu07rrBGOdDQmWE/edit#bookmark=id.3x8tuzt
https://github.com/stschiff/msmc

Exposito-Alonso et al. Genetic adaptation to extreme drought in A. thaliana

covariate, and we only show results without the covariate. To account for familywise error in GWA
we used Bonferroni correction (p value x number of SNPs) and the Benjamini-Hochberg false
discovery rate (FDR) correction[17]. The kinship-associated variance of drought-survival — an
approximation of narrow sense heritability, hz, was 49%. When we fit a kinship calculated from only
the 151 top polygenic GWA SNPs (see section 3.5.2), the estimate of h2 was 52%. This is probably a
better estimate than that from the genome-wide-based kinship matrix, as the putatively causal SNPs

are better “tagged” in the 151 SNP kinship matrix.

3.3.2 Bayesian Sparse Linear Mixed Models (BSMLMMs) with GEMMA

The Bayesian Sparse Linear Mixed model (BSLMM) implemented in GEMMA (ref. [18])
accommodates both poly- and oligogenic architectures in a GWA framework. It models two effect
hyperparameters, a basal effect, alpha, that captures the fact that many SNPs contribute to the
phenotype, and an extra effect, beta, that captures the stronger effect of only a subset of SNPs. The
parameter measuring the probability of having another extra effect, gamma, can be used to prioritize

SNPs (see Reference Manual of GEMMA, http://www.xzlab.org/software.html). Over 40% of the top

151 SNPs from EMMAX were found to have over 99% percentile of the gamma inclusion probability
in GEMMA (Fisher’s exact test odds ratio =17.21, p=3x10'7). The estimate of realized heritability with
BSLMM was 50%, which is in agreement with the EMMAX analyses. The 95% highest posterior
density (95%HPD) from 1,000 MCMC steps ranged from 25-85%.

3.4 Multivariate analyses of phenotypes and GWA summary statistics

For a description and sources of all variables used, see Supplementary Table 5.

3.4.1 Pairwise correlations

We computed all-against-all Pearson product-moment correlation coefficients among accession line
means (n=211 accessions) of phenotypic and climate variables (Supplementary Table 5, 6). To study
genetic correlations, we performed the same analyses with SNP effect sizes (n=151

drought-associated SNPs) estimated from multiple GWA (Supplementary Table 7).

The phenotype correlations (Supplementary Table 6) showed that the drought survival index
was negatively correlated with reproductive allocation and number of seeds (r<-0.16, p<0.02),
suggesting a fitness trade-off between stressful and optimal growth environments. Drought-survival
was not correlated with flowering time (r=0.07, p=0.12) nor plant size (rosette area r=0.11, p=0.1;

and rosette dry mass, r=0.12, p=0.07) (Supplementary Table 6).

Drought survival SNP effects negatively correlated with the SNP effect sizes of most individual
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precipitation variables (r < -0.4; p < 10'8, Supplementary Table 7), indicating that alleles that
increased drought survival were found in more arid geographic regions, i.e. regions with high
temperatures and lower precipitation at different times of the year. Drought survival SNP effects
were also positively correlated with SNP effects of rosette area, dry mass, and flowering time
(Supplementary Table 7). These analyses have two-fold interests: (1) GWA-estimated effects have
been corrected by population structure, thus correlations should not reflect phenotypic differences
caused by drift of populations. (2) SNPs can have pleiotropic effects and this can limit adaptation due

to genetic constraints[19] (see section 4.2.4.3).

3.4.2 Canonical Correlation Analysis (CCA)

We further utilized Canonical Correlation Analysis (CCA) using the CCA R package[20] to decompose
environment-phenotype associations of SNP effects. This was done for all genome-wide SNPs

(n=~800,000) and for the 151 drought-associated SNPs (Supplementary Table 8).

CCA of genome-wide SNPs revealed the first canonical correlation axis (CC1) to be driven by
lower flowering time (T_repro, loading=-0.77), lower rosette dry mass (loading=-0.76) and higher
annual temperature (biol, loading=0.5). CC2 indicates that lower plant photosystem stress (FvFm,
loading=0.60) is related to higher mean temperature of the wettest quarter and higher precipitation
seasonality (bio8, biol5, loadings>0.25). CC3 shows that lower drought survival (loading=-0.58)
effects are related to higher precipitation in the driest (bio17, loading=0.44) and warmest quarters

(bio18, loading=0.35).

CCA of the 151 top GWA SNPs yielded a first canonical correlation coefficient of 0.99, with a
phenotype canonical variate driven by lower drought survival, higher rosette area and dry mass
(loadings >0.75), and a climatic canonical variate dominated by higher precipitation during the

wettest month (bio13) and wettest quarter of year (bio16) (loadings >0.75).
3.5 Polygenic adaptation signal

3.5.1 Classic Q-F¢; comparison

Qqt/F¢ ratios have experimental evidence as appropriate indicators of local adaptation in A.
thaliana[21] and are widely popular in evolutionary ecology studies[22]. Genome-wide F across the
eleven populations was computed from 211 genomes using vcftools v0.1.12b (ref. [23]). We
estimated the mean and confidence intervals based on the standard error of the mean, obtaining a
mean F¢=0.042 (95% cumulative distribution =0.360). We calculated Qg for the drought-survival
index as the between-genetic group variance divided by the total variance. We used the MCMCglmm

package v.2.25 in R (ref. [10]) with a 10,000 step chain, 1,000 burn-in steps, and fitted the genetic
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group as random effect. This resulted in a global Qg = 0.143 (90%HPD=0.052 - 0.338). We also
calculated Fg; and Qg between each pair of subpopulations (Supplementary Table 12) using the same
methods. This revealed that while many median Qg values were above the median Fg, none were

above the 95% percentile of F¢; due to the tail of the distribution of background F¢; being long.

When the variance across populations was calculated using the NE. Spanish and the N.
Sweden population groups (the two groups with highest values of drought survival and thus
putatively locally adapted) against the rest, we obtained Q= 0.377 (0.047 - 0.987). We thus
concluded that a significant Qg > F¢ signal is only observable at the individual level when the
hypothetical populations that underwent local adaptation were used in the calculation of the

variance.

3.5.2 Berg & Coop methodology

We tested for a polygenic adaptation signature following Berg & Coop[24], an extension of the
Qg/Fs; ratio test based on SNP frequency per population and effect sizes as estimated from a GWA
analysis. We used different groups and numbers of ranked SNPs after pruning linked SNPs (r2 > 0.6),
to learn about the robustness of this test and the apparent number of SNPs that contribute to the
signal (Supplementary Table 9). Since this test does not use direct phenotypes but calculates the
average phenotype per population based on allele frequencies of GWA SNPs, we could perform the
test with 762 high quality accessions. Since results did not vary between analyses with 762 and 211
samples, we only report the analyses with 762 genomes (Supplementary Table 9). The median
linkage disequilibrium of the final 151 top SNP set was r2=0.26 (1st quartile: 0.22; 3d quartile: 0.33)

and the median distance between SNPs within the same chromosome was ~119 kb (15 kb, 2.6 Mb).
3.6 ChromoPainter and ancestry GWA

We ran ChromoPainter version 2.0.7 (available at http://paintmychromosomes.com; ref. [25]) on the

762 genomes dataset, after imputing missing genotypes with Beagle version 3.3.2 (ref. [26]) using
default parameters. ChromoPainter analyses require a “training” run to estimate several
hyperparameters. We ran 10 expectation maximization iterations on chromosome 2 (the smallest
chromosome). We informed ChromoPainter with a published recombination map of Arabidopsis

thaliana[27] that we reshaped to our SNP dataset. We used the command:

ChromoPainterv2 -i 10 -in -iM -j -g haplotypefile -r recombinationfile -a 0 0 -t labelfile

We used the output hyperparameters to run ChromoPainter on all chromosomes in an

unsupervised all-to-all genomes mode, with the command:
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ChromoPainterv2 -n 4.737068 -M 0.000421 -j -g haplotypefile -r recombinationfile -a 0 0 -t labelfile

3.6.1 Global proportion of ancestral chromosome segments

To study the ancestry relationships of each of the genetic groups, we counted the number of
chromosomal segments (termed “chunks” in the original ChromoPainter paper[25]) that each
genome “received” from all other genomes. The segment varied in size depending on local
recombination rates and between genomes, but a posteriori analyses indicated that the median size
was in the order of magnitude of kilo and megabases. To make the counts more informative, we

show boxplots per ADMIXTURE group rather than counts per individual (Supplementary Fig. 7 A-K).

This showed, for example, that NW. Spain, NE. Spain and S. Mediterranean (the latter to a lower
degree), were “painted” mostly by relict DNA segments. Next, we tried to infer how well the drought
survival of an individual correlated with the number of segments inherited from a certain ancestry.
This indicated that only N. Sweden and relicts passed DNA segments that were correlated with the

drought-survival index of the receiving individual (Supplementary Fig. 7L). The Pearson correlation

coefficient was calculated excluding the individuals from the same admixture group as the predictor.

3.6.2 aGWA for admixture mapping

If populations are locally adapted, F¢ outlier scans can be used to identify genetic variants under
divergent selection[28,29]. However, when populations become isolated and diverge genetically, as is
the case in Arabidopsis thaliana, F¢ values are shifted to high values across the entire genome even
when subsequent admixture happens, making the identification of outliers difficult[28]

(Supplementary Fig. 4). Thus, we must rely on LD and identity by descent to find DNA segments

characteristic of the different populations. If subsequent but incomplete admixture occurred
between the locally adapted populations, it is expected that the individuals that retained the DNA
segments responsible for local adaptation, would show the largest phenotypic differences with those

that did not retain or never had the DNA segment. This is the principle of admixture mapping[30].

With the above rationale, we developed an admixture mapping technique[30] repurposing
the output of ChromoPainter. The “painted” genome matrix produced by ChromoPainter has 762
states (one per individual in the analysis) and we repainted it into a genome matrix of 11 states (the
genetic groups from ADMIXTURE analysis, which are geographically and environmentally separated).

We then computed a regression of the drought-survival phenotype on the population group specific

toaSNPas: ¥ =+ X0+ €; where Y is a vector of i=1...211 individual’s phenotypes, u is the
mean phenotype, A is the 211 x 11 design sparse matrix of the ancestry states, b is a 1 x 11 vector of

effects that each ancestry has in the mean phenotype, and € is the uncorrelated random residuals
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assumed to be normally distributed. This model was repeated for each SNP in our dataset (~2 million
imputed and ‘painted’ SNPs, see section 3.6). We report R? and p-value of each SNP model
(Supplementary Table 4). Since we already knew that the phenotype is associated with the
membership assigned per individual, we expected that the ADMIXTURE membership of any random
SNP would be on average also associated, because of linkage resulting from common ancestry.
Therefore, we implemented an empirical p-value distribution correction to only detect those SNPs
whose ancestry explained an even larger proportion of variance than the whole-genome ancestry.
The permutation was done within each individual genome, shuffling the SNP states at a distance of
1,000 to 10,000 SNP positions — defined from analysing the typical size of “homogeneously painted

DNA segments” (code is available at https://github.com/MoisesExpositoAlonso/aGWA with DOI

:https://doi.org/10.5281/zen0d0.1039882). We permuted the dataset 1,000 times and repeated this

“aGWA” analysis to build p-value distributions. Since the nature of the associations is very different
from that of a standard GWA analysis, we did not expect and did not find any overlap of top aGWA
SNPs with the top SNPs from conventional GWA. The closest was a conventional GWA SNP that was 8
kb away from an aGWA SNP. The closest gene to both encodes a defensin-like protein; a family of

proteins with broad anti-fungal and anti-bacterial activity[31].

Our approach is conceptually related to admixture mapping in humans, which has focused
on local enrichment of Neandertal- and Denisovan-like variants, and which has led to the
identification of a TLR immunity gene[32] as adaptive. It has also helped to increase the power for
detection of background-dependent disease risk in humans with mixed ancestries, e.g.
African-American individuals[33], or other more complex mixtures[34]. Such approaches constitute a
powerful tool for understanding the genetic basis of local adaptation when complex demographic

scenarios of admixture exist.
Phylogeny of aGWA SNPs

To learn about the distribution and shared ancestries of the drought-related alleles, we computed a
neighbour joining phylogeny of all concatenated SNP hits from aGWA (p<0.001) and compared it with
a genome background phylogeny of 1,000 randomly chosen genome-wide SNPs (Fig 3B). This
revealed that while for genome-wide SNPs the distance between accessions from N. Swedish and
Mediterranean relicts is higher than the average between any random pair of accessions (Student’s t
test, p<2x10'16). However, when the same distances were calculated based on aGWA SNPs, the N.
Swedish and Mediterranean relicts were much closer than the average pair of accessions (Student’s t
test, p<2x10'16) (Fig. 3B). The same analyses showed also higher affinity of N. Swedish and NE.

Spanish populations (Student’s t test, p<10'10).
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3.7 Test for annotation enrichment

Using the TAIR10 gene annotation of  Arabidopsis thaliana  (available at

arabidopsis.org/portals/genAnnotation/functional_annotation/), we tested whether a specific

annotation class was enriched in our GWA and aGWA hits. Among genes overlapping with the 151
top GWA hits were the nitrate transporter gene NRT1.8, which among other functions mediates
cadmium tolerance and is related to ABA transport[35-37], the CATION/CARNITINE TRANSPORTER 4
(OCT4), which mediates homeostasis of metabolites and promotes lateral root formation[38], and
the sugar transporter gene SWEETS8, which is upregulated during salt stress[39]. The strongest peak
unique to the aGWA hits fell inside the CATION EXCHANGER 9, a gene that is important for K, Na*
and Mn** homeostasis and which confers salt tolerance when introduced into yeast[40]. An
empirical distribution test based on random draws of genes showed, however, only marginal
enrichment. The 30 genes defined by the 151 top GWA SNPs were weakly enriched for gene
annotation enrichment of cell membrane transport (6/30; p=0.01), and the 23 genes defined by the
70 top aGWA SNPs were marginally enriched for membrane transport (7/23; p=0.06). Testing for

overrepresentation with PANTHER (www.pantherdb.org) and including genes adjacent to the GWA

and aGWA SNPs revealed weak enrichment of aGWA genes for ferredoxin metabolic processing
(p=0.03) and vesicle-mediated transport (p=0.05), and of GWA genes for growth-related functions
(p=0.0007) and metabolite biosynthetic processes (p=0.0002). It is difficult to know what to conclude
from this, but the most noteworthy finding is probably that there was no link to flowering time, in

contrast to previous QTL and GWA studies of A. thaliana response to drought[41-43].
4. Environmental and forecasting analyses
4.1 Environmental data

The environmental data comprised the Last Glacial Period (LPG, ~22,000 years ago), recent averages
from 1960-1990, and two 2070 climate projections of contrasting socio-economic scenarios, the 2.6
and 8.5 CO, representative concentration pathways[44,45] (rcp). The data were retrieved from

www.worldclim.com v.1.4 (ref. [46]). They consist of 19 bioclimatic variables at 2.5 arc-minutes

geographic resolution (CCSM4).

4.2 Environmental Niche Models (ENM)

We carried out ENMs with a number of response variables (for summary statistics see
Supplementary Table 10), namely the drought-survival phenotype, flowering time, the genomic

principal component axes, the discrete population groups, the local genetic diversity, and the SNPs
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identified in GWA and aGWA analyses.

4.2.1 Geographic areas covered and niche limits

To train ENMs, we removed accessions from Japan and from N. America, as they are considered
recent introductions[47] and their genetics might not reflect long-term climatic adaptation. The
remaining sampled locations used to train the models were within 15 to 632 N latitude and 23°W to
882E longitude, but we only predicted from 34 to 632 N and 10.5°W to 352E, to avoid extrapolation
of data. Predictions for the last glacial maxima were masked in those areas that were likely tundra or
covered by ice sheets at the time (<52C and <02C annual temperature, respectively), as predictions

for such areas would be irrelevant.

Because the sampling in the 1001 Genomes project was not even across the species range,
predictions for underrepresented regions such as N. Africa, the Middle East, or Russia must be taken
with caution. In order to be explicit about for which areas we could make the most robust
predictions, we show the sampling density per 1°x1° latitude x longitude grid, which varies from 1 to

60 individuals (Supplementary Fig. 8D), and plot trends of predicted values against other variables,

such as latitude or climate variables (e.g. Supplementary Fig. 9-11), only at those grid cells where

there is at least one sample.

Finally, it is worth noting that even for the most pessimistic climate change scenario (rcp 8.5),
the values of annual precipitation (biol) and the precipitation during the warmest season (bio18)
were always above the present minimum precipitation values where A. thaliana is currently found

(see Supplementary Fig. 12). Therefore, we expect that transgressive phenotypes are not required to

survive future climates.

4.2.2 Random Forest models

After trying different methods, including generalized linear models, MaxEnt, and linear discriminant
models, we opted for random forest models because they are nonparametric, nonlinear, allow both
continuous and discrete response variables, and are computationally efficient[48]. Additionally, the
implementation of an “importance” parameter of each predictor variable available in the
randomForest R package v.4.6 (ref. [49]) makes ranking of variables straightforward. To mitigate the
overfitting problem typical of machine learning methods, a 5-fold cross validation procedure was
used. We randomly divided the dataset into five parts, used four parts as training dataset and one
part as testing dataset, and repeated this five times. Reported accuracy from cross validation was the
R2 of a linear model between observed and predicted values for continuous variables, and the rate of

successful assignment of categories relative to the total number of observations for discrete
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variables. To build the final forest, a total of 50 classification or regression trees per cross-validation

set were used, and six variables were tested for each classification split.

4.2.3 ENM of genetic groups

We modeled the presence of population structure as a discrete response variable in ENM; either

using eleven genetic groups as states, or the two relict and non-relict states.

In order to formally quantify the relevance of genetic group membership, we calculated the
percentage of map grid cells that each genetic group occupies. For this we only considered areas

where at least one genome per 1°x1° latitude x longitude was observed (Supplementary Fig. 8A) and

where tundra or ice sheet are not expected (important for LGM comparisons).

When we used the present-data trained relict/non-relict ENM with past climate data from
the last glacial maxima, we found that relicts likely occupied almost a quarter of the non-glaciated

areas, compared to less than 2% today (Supplementary Fig. 8D), in agreement with genomic

inferences of higher effective population size in the past (Fig. 2C). The reason that the relicts’
environmental niche is predicted with 100% accuracy under 5-fold cross-validation (5CV) is likely that
the local number of relict individuals is low, 26 accessions out of 762, and because their niche is very

restricted.

Under a future high CO, increase socio-economic scenario, the ENM with 11 genetic groups
predicts that the S. Mediterranean group will expand most dramatically into Central-European areas,

replacing groups currently occupying these areas (Supplementary Fig. 8 C, F). Although these models

are not mechanistic, they illustrate that genetic groups from the Mediterranean and from temperate
areas have contrasting environmental niches and thus might replace each other under future climate

warming.

4.2.4 Genome Environment Models (GEMs)

All 151 GWA and 70 aGWA SNPs were modeled as a bivariate discrete variable (drought-sensitive and
drought-survival allele) in a random forest. The prediction accuracy and the most important predictor

for each model is shown per SNP in Supplementary Table 3 and 4.

After modeling presence/absence of each drought-survival SNP, we projected the present
inferred allele distributions in a map and then summarized all maps by intersecting them. In this way,
we generated a continuous map surface of the total number of drought-resistant alleles in a given
location. Ancestral GWA and conventional GWA models showed overall similar patterns

(Supplementary Fig. 13-14), but the latter seemed to point to drought alleles being more
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concentrated not only in Southern and Northern areas but also Western areas of Europe (e.g. UK,
France). While this might be the case, it could also be due to conventional GWA SNPs suffering from
high-frequency bias, making them more likely to be present in geographic areas with more samples

(Supplementary Fig. 8). After we had trained the models with present data, we used them to predict

allele distributions in 2070 under low and high CO, increase scenarios. While patterns were similar in
both scenarios, for further analyses we used the most “pessimistic” high CO- increase scenario to be

able to show main trends more clearly.
Migration assumptions

For each SNP we trained three models in order to overcome the “universal (or free) migration”
assumption, implicit when using a current climate-trained ENMs with future climate data (e.g. ref.
[50]). Although typically the free-migration model may not be entirely appropriate for predictions, it
might be more realistic for cosmopolitan species with continental-scale migrations in the recent past,
as is the case for A. thaliana[47]. Nevertheless, we designed two additional models to account for
limited migration. The free model includes only the 19 bioclimatic variables as predictors of the
drought-survival alleles. The first geographically-controlled model includes in addition the first three

PC genomic axes as predictors (Supplementary Fig. 8G-J), in an attempt to limit prediction of allele

presence to geographic areas where the genomic background that they reside on is present today.
The second geographically-controlled model, which is even more restrictive, includes latitude and
longitude together with the 19 bioclimatic variables. For all models we not only show the predicted

maps (Supplementary Fig. 13-14) but also provide residuals of predicted vs observed (empirical)

number of alleles in the locations where we have a sample. We also show their relationship with

latitude (Supplementary Fig. 15-16).

Allele frequency change predicted by GEMs

We took 40 individuals approximately within 50 km of each other at three locations with the highest
density of samples in our dataset: Madrid (Spain), Tibingen (Germany) and Malmo (Sweden) (Fig. 3C,

Supplementary Fig. 8). We tested overall future allele frequency changes of all SNPs per population

as well as SNP-specific allele frequency changes.

First, we calculated the mean allele frequency differences between future (rcp 8.5, 2070) and
present predictions. This proved to be significant in most locations and models (Supplementary Table
11), although the direction of change was different between the two edge populations, Madrid and
Malmo, and the Tlubingen population from the center of the range. The former showed a decrease or

a steady state in allele frequency, and the latter showed a highly significant increase in all models and

Appendix | - 35


https://docs.google.com/document/d/1gg5mMS0vti4VflNx-ekWfhuDuVFxzu07rrBGOdDQmWE/edit#bookmark=id.3x8tuzt
https://docs.google.com/document/d/1gg5mMS0vti4VflNx-ekWfhuDuVFxzu07rrBGOdDQmWE/edit#bookmark=id.4anzqyu
https://docs.google.com/document/d/1gg5mMS0vti4VflNx-ekWfhuDuVFxzu07rrBGOdDQmWE/edit#bookmark=id.2pta16n
https://docs.google.com/document/d/1gg5mMS0vti4VflNx-ekWfhuDuVFxzu07rrBGOdDQmWE/edit#bookmark=id.14ykbeg
https://docs.google.com/document/d/1gg5mMS0vti4VflNx-ekWfhuDuVFxzu07rrBGOdDQmWE/edit#bookmark=id.3oy7u29
https://docs.google.com/document/d/1gg5mMS0vti4VflNx-ekWfhuDuVFxzu07rrBGOdDQmWE/edit#bookmark=id.3x8tuzt

Exposito-Alonso et al. Genetic adaptation to extreme drought in A. thaliana

SNP subsets (Supplementary Table 11).

Second, we calculated the differences in frequency (F) between present (pres) and future
(2070) populations per SNP and tested the difference using a Student’s t test and a pooled standard

t — Fsnp 2070—FsNP pres

error (se) of the frequency measurements: %/SEQSNP 2070T5€ENP pres . This not only revealed the

main trend in frequency change, but also the distribution of differences in alleles (see histograms in

Supplementary Fig. 13-14). It corroborated the general trend observed for all SNPs (Supplementary

Table 11) and in addition showed that the global distribution of allele frequency changes in Tubingen

is skewed to the right for some SNPs (increase of drought allele frequency).

Possible genetic trade offs of drought survival and flowering time

Contrary to our expectations, there were areas in the Mediterranean that were predicted to lose

drought-survival alleles under climate change (Supplementary Fig. 9-10). These are areas that already

today suffer from low precipitation (reached zero precipitation in summer, Supplementary Fig. 12)

and will probably not become much drier in future summers. On the other hand, temperatures will
keep increasing, which likely will demand an acceleration of flowering time (for which there is a

trade-off with drought avoidance). Predictions at the phenotypic level (Supplementary Fig. 9-10)

showed this trend: drought-survival will increase only in the transition areas between Mediterranean

and more temperate regions (Supplementary Fig. 9) and might decrease in areas that are already dry

(Supplementary Fig. 11). On the other hand, flowering time was predicted to decrease in the

Mediterranean (Supplementary Fig. 10-11). We note that the SNP effects on drought survival and

flowering time were positively correlated, as disclosed by Canonical Correlation Analyses (section

3.4).

Population genetics simulations

The prediction of an allele in 2070 does not directly inform about the actual possibility of adaptation.
This depends on (i) the frequency of the alleles and haplotypes in the population, (ii) the
recombination rate, and (iii) the strength and efficiency of selection. Indeed, geographic predictions
of alleles are probably not good indicators of future allele frequency because random forest models
tend to predict either presence or absence of alleles (and not co-existence, i.e. intermediate
frequency). That is why we do not compare empirically obtained present allele frequencies with
frequencies calculated from future predicted presence of alleles in the different locations of

Tubingen, Madrid and Malmaé.

To obtain further insights into population dynamics required for adaptation, we simulated
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allele frequency changes in a Wright-Fisher population under a mutation-selection balance with
inbreeding, as Arabidopsis thaliana is a predominant selfer (code available at

http://github.com/MoisesExpositoAlonso/popgensim with DOI:

https://doi.org/10.5281/7en0do.1039886). We started the simulations with the present frequencies

of drought-related alleles of the 221 aGWA/GWA SNPs, with (codominant) selection coefficients (s)
ranging from 0.01 to 20% fitness advantage. We considered SNPs as independent, that is, we did not

include linkage disequilibrium information nor a recombination rate (see next section).

We carried out forward-in-time simulations for 50 generations, the approximate number of
generations of natural populations of A. thaliana from today until 2070 at an average generation time
of around 1.3-1.8 years[51]. We assumed a mutation rate (u) calculated from laboratory mutation
accumulation lines[47,52], although its effect in a few generations might be negligible. We used a
selfing coefficient () of 98%, a conservative lower bound estimate from heterozygosity in individuals
collected from nature[53,54]. The population size (N) was estimated from the genomic diversity in
our dataset: The 40 genomes within the Tibingen area had a genome-wide nucleotide diversity of
0.004 (section 3.1). With the equation: 4Ne x 1 =7, we solved for effective population size (N,)

_ 1 _ 2=
*H—FXN*TXN,

and transformed it into population size following the relationship[55]: Ne
This yielded N = 300,000 plants, which might be reasonable given that we consider an area of 50 km

around Tiibigen, and stands with hundreds or thousands of plants are not uncommon.

After running the simulations, we asked what selection coefficient would be needed to reach
guasi-fixation frequencies of each allele (frequency >0.9) or to match the drought-allele frequencies
in Madrid or Malmd (assuming that those populations are better adapted in comparison with
Tubingen). When the frequency of a specific allele was higher in Tibingen than in Madrid or Malmo,
we assumed selection would not be necessary and the coefficient was assumed to be zero. The
results indicated that selection coefficients should be strong (but see ref. [56]) for alleles to become

fixed (Supplementary Fig. 17). However, the distribution of selection coefficients was centered

around 1-3% fitness advantage for Tibingen allele frequencies to match Malmé or Madrid

(Supplementary Fig. 17) (but see next section 4.2.4.5). We did not simulate different degrees of drift

in our analyses. We reasoned that when the inequality: Nes > 1, holds, the weight of drift relative to

selection is thought to be imperceptible[13].
Considerations regarding recombination

As stated above, assessing whether a population can adapt depends on the frequencies of
drought-resistant individuals and drought-resistance alleles in the population, the rate of realized

recombination, for crossing and reassortment of advantageous alleles, and the strength of selection.
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Simulations that take LD between advantageous SNPs into account could inform about processes

such as the Hill-Robertson effect, hitchhiking, or background selection[57].

In our simulations we did not work with haplotypes of SNPs in LD as they are found in
individuals, but considered SNPs to be independent. This can be seen a priori as a strong assumption.
Of relevance is that even in Tibingen there are already some individuals that have many of the 151
GWA drought-resistant alleles, with one exceptional individual having 123/151 drought-survival
alleles. The three next best individuals have 107, 105, and 99 alleles. Fifteen of the 28
drought-resistance alleles are not present in the Tiibingen population and will have to be imported by
migration. Therefore, to produce a hypothetical “fully adapted haplotype” with 136 alleles from the
current standing variation (123 alleles are 90% of all 136 present alleles), only 13 drought-resistant
alleles would have to be recombined and introgressed into the already advantageous haplotype.
Such introgression events might not be limited by low frequencies of the advantageous alleles, as
some were found at intermediate or at as high as 90-95% frequency. Furthermore, in a scenario with
a haplotype in the population with 123 alleles already present, simple individual-based simulations
show that already with selection coefficients in the order of 0.5% advantage per allele, the 123
alleles haplotype will become completely fixed in the population within 50 generations. Results of
aGWA indicate similar patterns of exceptional individuals with many drought alleles (24 alleles are
63% of all 32 present alleles) but more alleles are missing in the Tlibingen population, as their

frequency is lower and geographic distributions are narrower than for conventional GWA alleles.

We also used a series of approximate calculations to ascertain how many recombination
events are required to generate a hypothetical “fully adapted haplotype”. In A. thaliana, there are on
average 1.4 meiotic crossovers for each of the five chromosomes[58]. Together with independent
segregation of the five chromosomes, the parental haplotypes are rearranged at around 12 positions.
A population of ~300,000 individuals (N) with a lower bound outcrossing rate of 1% (=1-F) over 50
generations (g), could thus undergo around ~2 million recombination events,N X(1—=F)xrx g,
or about 1 event per 50 bp. Note that this could be a conservative estimate as outcrossing events
amount up to 14% of reproduction events in geographically close plants (ref. [54]). This result

suggests that recombination might be less limiting than expected a priori.
GEM limitations

There is a long list of factors that we did not take into account and that will influence future plant

response to climate change. We briefly enumerate them here:

A. We only focus on adaptation to drought, but other environmental stresses could have similar
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detrimental effects such as extremely high temperatures or ecosystem destruction. In
addition, fluctuation in selection gradients and seasonal environmental variation are other
possible consequences of climate change[59,60]. The distribution of pathogens will almost
certainly change under climate change as well, and biotic interactions can also play a relevant
role in population dynamics, which we ignored[61-63].

B. We can only explain ca. 50% of the drought survival variance with 221 SNPs.

C. We evaluated drought survival in a controlled greenhouse experiment, but the extrapolation
to natural conditions may be difficult. This would require field experiments assessing fitness
in situ to confirm that the identified SNPs actually report a fitness advantage[64].

D. Because the high narrow sense heritability suggests a mostly-additive genetic architecture,
we carried out predictions with allele counts. However, we acknowledge that there is
variation of the magnitude of the SNP effects (Supplementary Table 3-4), and epistatic effects
might exist.

E. Although long-term evolution should be driven by genetic adaptation, it is expected that
phenotypic plasticity will partially buffer the detrimental consequences of environmental
change[65].

F. The existence of a seed bank in A. thaliana[51,66] would cause longer generation times and
overlapping generations, and both alter the speed and dynamics of allele frequencies[67].

G. Although our rough calculations suggest that recombination would not be a limitation for
future adaptation in A. thaliana populations, we have not incorporated such processes in our
modeling, as doing so is not a trivial matter[57,68]. This ignores phenomena such as
background selection or hitchhiking effects that could arise from phenotypic trade-offs and
the currently realized composition of haplotypes in the population.

H. Finally, on the positive side, our predictions are based on existing diversity, but de novo
mutations are likely to make a contribution as well, especially in species with high
reproduction rate, short generation time, and large population sizes[47,69,70]. In this sense

our approach would be rather conservative.
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SUPPLEMENTARY TABLES

Supplementary tables are available as a Xlsx file at:

https://static-content.springer.com/esm/art%3A10.1038%2Fs41559-017-0423-0/MediaObjects/415

59 2017_423 MOESM3_ESM.xIsx

Supplementary Table 1. Accession information.
1001 Genomes IDs, common names, countries of origin, and geographical and environmental

information.

Supplementary Table 2. ADMIXTURE cross-validation for K= 2 to 20.

Supplementary Table 3. Diversity statistics and annotations of top GWA hits.

Supplementary Table 4. Annotation of top aGWA SNP hits.

Supplementary Table 5. Information on phenotypic and climate traits.

Supplementary Table 6. Climate and phenotype correlations (per accession).

Pearson product-moment correlation coefficients between all phenotype and climate variables of
Supplementary Table 5. Lower triangle shows p-values, upper triangle correlation coefficients. The
drought index parameter of choice (m1d_polqua) negatively correlates with the precipitation in the

driest month and quarter, biol4 and biol8, respectively.

Supplementary Table 7. Climate and phenotype correlations (per SNP).
Pearson product-moment correlation coefficients of GWA effects of a large subset of all phenotype
and climate variables of Supplementary Table 5. Correlations are done only with the top 151 SNPs

identified in the drought survival GWA and tested for polygenic selection.

Supplementary Table 8. Canonical Correlation Analysis (CCA).

CCA between GWA effects on different phenotypes and the SNP associations with climate variables.
Supplementary Table 9. Polygenic model for different top SNP groups.

We applied the Berg & Coop model[71] of polygenic adaptation to different groups of top SNPs and

report the value of Q, statistics.
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Supplementary Table 10. Importance of variables in Random Forest analyses.

For each random forest model, the importance of bioclimatic variables is reported. For classification
random forest, importance is reported as the mean decreased accuracy (MDA) and for regression
random forest, importance is reported as the mean square error (MSE). MDA is the number of
misclassified observations when removing a variable and MSE is the increase of mean square error

produced by removing a variable.

Supplementary Table 11. Allele frequency change.
Student’s t-test results of allele frequency changes in the locations of Madrid, Tibingen and Malmé
under the three forecasting Genome Environment Models: free migration, principal components

control, and geography control.

Supplementary Table 12. Q. F¢; pairwise comparisons.

Mean Qg (95% Highest Posterior Density) and median Fg (95% percentile) for all pairs of genetic
groups.
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SUPPLEMENTARY FIGURES

Supplementary Figure 1. Global Arabidopsis thaliana distribution.

The world map shows ca. 80,000 records from the Global Biodiversity Information Facility (GBIF,
www.gbif.org) (grey), the 762 A. thaliana accessions used for genetic analyses (red), and the 211
accessions used for phenotyping experiments (yellow).
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Supplementary Figure 2. Environmental ranges of Arabidopsis thaliana.

The range in key environmental variables for the three datasets in Supplementary Fig. 1 is shown.
The set of accessions used in our analyses not only covered the range of the species as estimated
from GBIF data, but also revealed that these accessions have a more even distribution throughout
the environmental ranges. The bioclimatic variables are: annual precipitation (bio12), precipitation of

the warmest quarter (bio18), an

nual mean temperature (biol), temperature seasonality (bio4),

maximum temperature of the warmest month (bio5), minimum temperature of the coldest month
(bio6), and mean temperature of the driest quarter (bio9). See Supplementary Table 5 for more

information.
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Supplementary Figure 3. Correlation between rosette areas and model parameters.
Pearson product-moment correlation coefficients between the three drought-index parameters and
the ‘raw’ number of green pixels per pot and per day photographed. Sizes of circles indicate strength

and colors arithmetic signs of association, shown as numbers in the lower triangle.
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Supplementary Figure 4. GWA with drought survival and population genetic statistics.

(A) Manhattan plot of drought survival index GWA, F;, Tajima’s D, and selective sweeps. (B) Violin

and box plots of allele frequency, and (C) F¢, Tajima’s D, and selective sweeps of the top 150 SNPs

(red) vs frequency-matched 150 SNPs from a random genome background (grey). GWA was

calculated using EMMAX. F; across populations (see Fig. 1) and Tajima’s D were calculated using

PLINK. Sweep likelihood was calculated using SWEED software. Median p-values from Wilcoxon tests

with 100 bootstrap replicates are indicated.
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Supplementary Figure 5. Cross-coalescent rates between populations inferred by MSMC.

Joint coalescent rates of each of the 11 ADMIXTURE genetic groups are (see Fig. 1 and Supplementary

Fig. 12) compared to the other groups. Each line is a smoothed loess of 6 replicated runs. Light grey

indicates the extent of the last glacial maxima (100-10 kya) and dark grey the peak of the last

glaciation (22 kya). Note that the N. Swedish group is the first to separate from the relicts.
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Supplementary Figure 6. Treemix with different migration rates.
Maximum likelihood (ML) population trees from Treemix (left). Analyses with zero to five migration
edges are presented. Heatmaps with the residual fit of the ML trees are shown on the right. Note that
the unexpected closeness of NW. Spain and Sweden without migration is resolved with one migration

edge. With this, a more parsimonious tree that adheres to geographic locations is uncovered.
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(A-K) Summary of the number of ChromoPainter chunks inherited from other genomes that had
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been assigned to ADMIXTURE groups. Each graph summarizes the information of all the genomes
from an admixture group. (L) The p-value of the Pearson correlation test between an accession's
drought survival index and the number of chunks received from another genome. The p-value
distributions of genomes from the same ADMIXTURE group are grouped in a box plot. Intuitively this
can be interpreted as how well the number of chunks inherited from a specific donor predicts the
drought survival of the receiver. The black line indicates the 5% significance threshold, which is
passed by most relict and N. Swedish groups. Therefore, chunks that have N. Swedish and/or relict

ancestry explain the drought survival of other individuals well.
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Supplementary Figure 8. Environmental niche model (ENM) of population structure.

(A) Distribution of 762 accessions from the 1001 Genomes project used for environmental niche
modeling of genetic diversity and analysis of population structure. Colors indicate number of
accessions within a 1°x1° latitude x longitude grid. (B) Random forest environment niche models
using estimates of pairwise nucleotide diversity () of each accession with its closest 10 geographic
neighbours. The trained model was used to predict diversity based on environmental data. (C)
Random forest environment model of the 11 genetic groups (see Fig. 1). Locations with accessions
are shown as points filled with the actual genetic group assigned, and are used for model training as
in (B). The trained model was used to predict a raster of environmental variables and is shown in the
background. When the circle is filled with the same color as the background, the model succeeds in
the prediction. The trained models were also used to predict the change in overall area covered by
each genetic group from present to the last glacial maxima (D) and for 2070 under low (E) and high

(F) CO, concentration scenarios (panels in the upper-right corner) (see Fig. 1 for color keys). (G-J) The
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first three genome-wide principal components from Fig. 2 were modeled based on environmental

variables. Later, these were used as covariates of GEMs (Supplementary Fig. 13-14).
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Supplementary Figure 9. Environmental niche model (ENM) of drought survival index.

(A) Present geographic prediction of drought survival index from a random forest ENM trained on
experimentally determined phenotypes for 211 accessions. Note that the highest drought survival
indices are inferred for the Mediterranean as well as N. Sweden. (B) Correlation of phenotypic
change in 2070 under a high CO, scenario with latitude; colors indicate present drought survival
values, lines indicate linear (r2 and p value in figure) or loess models. (C) The trained model is also
used to predict drought survival index under the last glacial maximum, and for two 2070 scenarios of
low and high CO, concentrations. (D) For the three scenarios, the change is shown relative to the

current date prediction for easier comparison.
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Supplementary Figure 10. Environmental niche model (ENM) of flowering time.

Same models as in Supplementary Fig. 9, but for flowering time.
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Supplementary Figure 11. Profile of phenotypic change under climate change.

(A, B) Correlation of precipitation during the warmest quarter today and in 2070 under a high CO,

scenario. Colors indicate current drought survival (A) or flowering time (B), and symbol shapes

indicate increase or decrease in trait values for 2070. (C, D) Regression of the predicted change in

drought survival index (C) and flowering time (D) on the predicted change in precipitation in 2070.

Note that areas with already low precipitation will not have large decreases in precipitation in 2070

(A-B). Note also the linear relationship between decreased precipitation in 2070 and predicted

increase of drought survival in (C). Flowering will be on average faster in 2070 (D), but the

relationship between precipitation reduction and flowering time change is not linear, which suggests

that areas with a moderate reduction in precipitation will have accelerated flowering (rather than

increased drought survival).
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Supplementary Figure 12. Maps of the most important climatic variables.

The bioclimatic variables (www.worldclim.org) that typically had more importance in phenotypic and

genome environmental models are shown as an aid for interpretation of the results from our study.
bioclim variables shown are annual precipitation (bio12), precipitation of the warmest quarter
(bio18), annual mean temperature (biol), temperature seasonality (bio4), maximum temperature of
the warmest month (bio5), minimum temperature of the coldest month (bio6), and mean
temperature of the driest quarter (bio9). The columns show distributions at present, in 2070 under a
scenario of low CO, concentration, and in 2070 under a scenario of high CO, scenario. Except for
bio9, the values for future scenarios were expressed as future-present difference to highlight
geographic areas that will change the most. Note the bimodality of bio9: areas in black are summer
drought (Mediterranean climate) areas, whereas blue areas indicate winter drought. Also note that
biol8 is predicted to change mostly along the transition from Mediterranean to non-Mediterranean
climate. For bio18, areas that will have lower precipitation than any current location of A. thaliana
are shown in black, to highlight that most areas will remain within the range of current precipitation

across the species range.
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Supplementary Figure 13. aGWA Genome Environment Models (GEMs).

(A) We ran GEMs to describe the geographic distribution of alleles at the 70 aGWA top loci.
Concatenating all maps, we produced a map of the count of all drought-survival alleles that a
genotype is expected to have in a given location today. (B) The trained model from (A) was used to
predict distribution of drought survival alleles in the future. The difference to numbers inferred for
today (A) corresponds to the alleles that will have been gained or lost in 2070 in a given location. Two
additional models were trained which included a genome background (PCA) correction and

latitudinal and longitudinal (GEO) correction of the allele distributions. The percentage of gained
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alleles from the “free” model that were not present in the corrected models is shown as a deficit in

percentage. (C) For three highly sampled locations, Madrid (Spain), Tubingen (Germany) and Malmo
(Sweden), we calculated allele frequency differences between today and 2070 (under high CO,) and
calculated a t-statistic to describe the effect size of the change. A skew towards the right (increase) is

observed for Tiibingen only.
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Supplementary Figure 14. GWA Genome Environment Models (GEMs).
See Supplementary Fig. 13 for legend.
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Supplementary Figure 15. aGWA GEM residuals.

For each GEM, we plotted predicted against observed (empirical) number of drought-associated
alleles at each sampled location. Red color indicates overestimation and blue underestimation
(dashed line is the one-to-one relationship; solid line is the true regression). Latitudinal trends of
predicted (grey) and observed (black) are shown (right). Note that variance of predictions is larger

than the empirical observations, probably due to the discrete nature of random forests.
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Supplementary Figure 16. GWA GEM residuals
See Supplementary Fig. 15 for legend.
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Supplementary Figure 17. Population genetics simulations.

We ran Wright-Fisher population simulations of 70 (aGWA) or 151 (GWA) independent loci for 50
generations of evolution under mutation-selection balance, starting with the current allele
frequencies in the Tlbingen population, and repeating each simulation with an array of selection
coefficients from 0.0001 to 0.2 (relative fitness advantage) for each locus. The distributions shown
correspond to the positive selection coefficients that are required for the drought survival alleles to
rise to the frequency at which they are currently found in Malmé (top) or Madrid (center), or to at

least 90% (bottom), which is close to fixation.
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SUPPLEMENTARY VIDEO in Supplementary_Video.gif

19-frames time series of green-segmented images for one exemplary tray is available at:

https://static-content.springer.com/esm/art%3A10.1038%2Fs41559-017-0423-0/MediaObjects/415
59 2017 423 MOESM4 ESM.gif
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Through the lens of evolution, climate change is an agent of natural selection that forces
populations to change and adapt, or face extinction. Current assessments of the biodiversity risks
associated with climate change'’, however, do not typically take into account that natural
selection can dramatically impact the genetic makeup of populations®. We made use of extensive
genome information in Arabidopsis thaliana and measured how rainfall-manipulation affected the
fitness of 517 natural lines grown in Spain and Germany. This allowed us to directly infer selection
at the genetic level’. Natural selection was particularly strong in the hot-dry Spanish location,
killing 63% of lines and significantly changing the frequency of ~5% of all genome-wide variants. A
significant proportion of this selection over variants could be predicted from the climate
(mis)match between experimental sites and the geographic areas where variants are found
(R?=29-52%). Field-validated predictions across the species range indicated that Mediterranean
and Western Siberia populations — at the edges of the species' environmental limits — currently
experience the strongest climate-driven selection, and Central Europeans the weakest. With more
frequent droughts and rising temperatures in Europe®, we forecast an increase in directional
selection moving Northwards from the South range, putting many native A. thaliana populations

at evolutionary risk.

To predict the future impact of climate change on biodiversity, the typical starting point has been
climatic tolerances inferred from the current species distributions. These tolerances are usually
treated as static, and risks are assessed based on whether species’ environmental niches will shrink™?
or shift faster than the species can migrate™®. However, these approaches do not account for
within-species genetic variation, and for natural selection causing species to genetically change and
adapt over time®’. To predict the “evolutionary impact” of climate change on a species, i.e. how
much genetic change is required for adaptation to climate change, we thus need to quantify and
model environment-driven natural selection at the genetic level. Thanks to species-wide genome

11-16

scans®™, as well as genome associations with climate of origin''™'°, we increasingly understand the

genomic basis of past selection and climate adaptation, which has been used to estimate future

“genomic vulnerability” of populations'**?.

Natural selection, however, is only indirectly inferred in the types of analyses discussed
above. The best way to directly quantify selection in a specific environment is provided by field
experiments in which multiple genotypes of a species are grown together in a common
environment'’*°, With such experiments, relative fitness can be directly associated with genetic

4,20-22

variation across populations . Ideally, one would carry out such field experiments at many
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different sites throughout the species range, but this is rarely practical. Nevertheless, an emergent
finding is that individuals are normally locally adapted and that local genotypes are often positively
selected over foreigners in their “home” environment, while negatively selected in their “away”

2324 From this knowledge, it should be possible to derive a metric of how selection

environments
would change in a future home environment that is altered by climate change, and in turn, a metic
of future adaptation deficit of local populations. Here we combine high-throughput associations of
genome and current climate variation with experimentally quantified in situ natural selection in the
plant Arabidopsis thaliana. We exploit these associations to forecast natural selection driven by
future climate change, and how it impacts the genomic variation of a species across its geographic

range — what we interpret as a new metric of evolutionary risk of populations.

To study climate change-driven natural selection in the annual plant A. thaliana, we
performed two common garden experiments for one generation in two climatically distinct field

stations, at the warm edge of the species distribution in Madrid (Spain, 40.408052N -3.835352E), and

at the distribution center in Tibingen (Germany, 48.545809°N 9.0424499E) (for details see

Supplemental Appendix ). At each site, we simulated high precipitation typical of a wet year in

Germany, and low precipitation typical of a dry year in Spain (we used four flooding tables with a

split replicated design of two wet and two dry treatments in each site, see Fig. SIl.2, Table Sll.1). In

fall of 2015 we sowed over 300,000 seeds of 517 natural lines capturing species-wide genomic
diversity”® and randomized within treatment (Dataset 1-2). For each line, we prepared seven pots in
which only a single plant was retained after germination in situ, and five pots with exactly 30 seeds
that were allowed to germinate and grow without intervention throughout the experiment. At the
end of the experiment in June 2016, we had collected data from 23,154 pots, consisting of survival to
the reproductive stage, the number of seeds per surviving plant (fecundity), and lifetime fitness (the
product of survival and individual fecundity) (Dataset 3-4). Heritability of fitness varied across
environments and between survival and fecundity. It was generally highest in the most stressful
environment (H’_, . =0.551; Table SI.3), as defined by reduced survival, i.e., in Spain under low

precipitation and at high plant density. In this environment, only 193 of the 517 accessions survived,

whereas in Germany at least a few plants of each accession reproduced (Table SI.1).

In each experimental environment, we quantified genome-wide selection at the genetic level
based on the difference in relative fitness of lines with the minor and the major allele at each
genomic position (1,353,386 biallelic SNPs across 515 lines with high-quality genome information,

see Supplemental Appendix | section IV). Because A. thaliana is a selfer species with extensive

population structure, our approach quantifies selection both in causal variants, as well as many more
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variants that are in significant linkage disequilibrium (LD) with causal variants***’

— a phenomenon
behind the concepts of background selection or genetic hitchhiking. We use the term total selection
coefficient (s, following the interpretation and methods in Gompert et al. %), to denote the realized
selection affecting each SNP resulting from the combination of selection acting directly on the focal
variant, and the indirect effects due to selection on causal SNPs that are in LD with the focal variant.
This total selection coefficient best reflects the increase or decrease of frequency of a variant after
one generation of selection (see simulations Fig. SI.15). Using a Genome-Wide Association (GWA)
approach with Linear Models (LM-GEMMA, ref. %) to calculate total selection coefficients, we found

a total of 421,962 SNPs below a 0.05 significance threshold (Benjamini & Hochberg FDR correction)

in at least one of the eight environments (Fig. 1) (Table SI.3). Using the more stringent Bonferroni

correction (<7x107), we still detected 6,538 SNPs distributed throughout the genome, suggesting
that the polygenic model of natural selection® prevails in this climate-manipulation experiment (Fig.
1). These high numbers are not surprising, given that we expect to capture many SNPs that are only
indirectly selected. Thinking about our experiment as studying a population of plants with multiple
genotypes, the change of allele frequencies in response to one generation of selection would be up
to 10% in Spain and low precipitation, while it would not exceed 2% in the benign high-precipitation

environment in Germany (Table SI.4, Fig. SI.9, Supplemental Appendix | section IV). While variants

inferred to be under positive or negative selection after Bonferroni-correction were overall more
likely to be located in intergenic regions than in genes (Fisher’s Exact test Odds ratio [Odds]=1.11,
P=7x10?), such variants were enriched for nonsynonymous mutations (Odds=1.05, P=2x10™). The

large number of variants affected by selection implies a strong turnover of variation across the entire

30,31

genome as a response to the environment™>", and a potentially significant demographic decimation

— what Haldane called “the demographic cost of natural selection”*.

Changes in allele frequency are not only determined by the adaptive value of a variant but

also the alleles it is linked to. We therefore improved the detection of direct targets of selection by

27,33

correcting for LD-driven effects using Bayesian Sparse Linear Mixed Model associations with

relative fitness (BSLMM-GEMMA, ref. ), see Supplemental Appendix | section V). This analysis

estimated that the most likely number of causal loci ($Sn\gamma$$) was in the range of 7 to 89,
depending on the experiment (although this hyperparameter tends to be underestimated, see
Gompert et al. /). Because this number was much smaller than the total number of variants that
experience total selection (tens to thousands, Table SI.3), our results indicate that selection must be

mostly indirect, i.e. via linkage disequilibrium®*2%3*,
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Fig. 1 A genome map of total selection coefficients. (A) Manhattan plots of SNPs significantly associated with
relative lifetime fitness in eight different environments. SNPs significant after FDR (black and grey) or
Bonferroni correction (red) are shown. For genome-wide scans of survival and fecundity fitness see Fig. SI.4
and SI.5. (B) Distribution of absolute total selection coefficients |5 per experiment. A\ denotes maximum
likelihood-inferred parameter of an exponential distribution, and m denotes the mean total selection
coefficient. (C, D) Genome-wide Environmental Niche Models for the most significant SNPs in each 0.5 Mb
window of the genome. Color scale indicates the % of the total number of positive alleles locally present. (C)
424 windows had significant SNPs in high-precipitation experiments. (D) 279 windows had significant SNPs in

low-precipitation experiments.

We studied whether alleles selected in one environment were typically selected in other

environments it it was rather different genetic variants that were selected in each environment.
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Alleles that were positively selected under low precipitation tended to be negatively selected under

high precipitation, and vice versa, so-called antagonistic pleiotropy?* (

Fig. 2, Fisher’s exact test Odds
Ratios >1.31, P<4x10?*) — an observation that is particularly clear when comparing the two most
"natural" conditions, low precipitation in Spain and high precipitation in Germany (Odds Ratio=6.72).
In contrast, when we compared the same precipitation condition between the two locations,
selection was either in the same direction (0.23<Pearson’s r<0.51), or there was selection in one
environment and neutrality in the other, displaying conditional neutrality (All Odds ratio<1, P<10™°).
Together, this indicates opposite selection across precipitation but not temperature gradients. This is
an important observation, because it tells us that nature might not be able to select for generalist

genotypes that are successful in a wide range of precipitation environments.

To study whether short-term selection in our experiments aligns with genomic footprints of

past selection (see Supplemental Appendix | section I, V and VI, we searched for selective sweeps®,

for outlier allele frequency differentiation (£s7) between eleven previously defined A. thaliana

1125 "and for climate-genome associations**** (GWA with 1960-1990 climate averages,

genetic groups
worldclim.org, ref. *®*). Comparing frequency-matched background SNPs with Bonferroni-corrected
significant SNPs for total selection coefficients, we found that the latter had higher average Flst
values (0.39 compared to 0.14, Wilcoxon test, P<10™), but were not any more likely to have

experienced a selective sweep (P=0.2) (Fig. 2, Fig. SI.7-8). Absolute values of total selection

coefficients were significantly higher for strongly climate-correlated SNPs (e.g. annual precipitation
[biol] and temperature [bio12]: Spearman’s rho=0.12, p<107). The 1% top hits for climate
associations also had higher Fst values than frequency-matched background SNPs (e.g. biol and
bio12: P<10®), but no differences in sweep likelihood (P=0.9). Implementing genome-wide

environmental niche models’ (see Supplemental Appendix | section V1), we found that alleles

selected in Germany and high precipitation were more likely to come from higher latitudes (Fig. 1C),
while the opposite was true for alleles selected in Spain and low precipitation (Fig. 1D). In
agreement, alleles coming from regions with precipitation regimes to the experimental site, tended
to be positively selected (Fig. 2D). All in all, the fact that there is a genome-wide signal of
correlations between total selection coefficients with allele frequency shifts across population
lineages and climate regions is most easily reconciled with a polygenic model of natural selection

rather than with a selective sweep model®°.
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Fig. 2 Selection trade-offs and the signal of environmental local adaptation. (A) 5% extreme tails of total
selection coefficients across two contrasting environments; Spain with low precipitation and high population
density, and Germany with high precipitation and low population density. In light grey are conditionally neutral
alleles for either environment (CN, n=265436), in black are alleles behaving as antagonistic pleiotropic (AP,
n=20503), and in dark grey are alleles non-antagonistic pleiotropic (nAP, n=9681). (B) Mean annual
precipitation and precipitation seasonality in the geographic areas of origin of SNPs (n=1,353,386 SNPs). Black
circles indicate the average climate values of Spain (left) and Germany (right). (C) Relationship between field
absolute total selection coefficients and £'s7 values across 11 lineages, and (D) the likelihood ratio of selective

sweeps (n=1,353,386 SNPs).

We finally aimed to build an environmental model that can predict total selection
coefficients based on the climate and diversity patterns. We used a regression with decision trees
using Random Forests to build what we call Genome-wide Environment Selection (GWES) models.
The response variable was total selection coefficients, and we used as predictors the per-allele
associations with climate of origin from multiple climatic GWAs (05cim), the local climate at the
experimental facility (£ciim ), the signatures of past selection at each SNP (Fst, m, and sweep

likelihood ratio LRs), and their genome annotation (An). Our model thus learned the function:
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s = f(Betims Ectim> Fst, ™, LRs, An)  pJ| predictors were derived from public databases

(worldclim.org, 1001genomes.org, arabidopsis.org) (see Supplemental Appendix | section VII).

Conceptually, GWES models are similar to Environmental Niche Models (ENMs), but instead of

1112 \we trained them with our

training them with presence/absence data of a genetic variant
measured total selection coefficients. This provided a means to predict whether alleles should
increase/decrease in frequency in a certain climate, instead of merely an indication of whether
alleles are likely to be present, which is the indirect ENMs’ version **. By training models on total
selection coefficients in Spain and Germany (10,000 SNPs), testing the accuracy of models using
cross-validation (i.e. 10,000 other SNPs) and the confidence intervals with bootstrapping (100
samples of 100 SNPs), we confirmed that total selection coefficients were correctly predicted, with a
high correlation accuracy (0.56 < Pearson’s r_, < 0.7) and explaining a large proportion of variance

(R®.,= 29—52%) (Fig. 3A, for variable importance see Table SI.7) (further details in Supplemental

Appendix | section VIl). To further cross-validate the predictive accuracy of our models in other

unknown environments, we made use of published fitness data for partially-overlapping sets of
natural lines that had been grown at different locations in Spain, Germany and England®”%. Using
these data and GWES predictions based on the climate at those locations, we confirmed moderate

predictability (7%<R’ <36%) (Fig. 3A, Table SI.8) (for further discussion on null expectations and

cases of apparently low predictability, see Fig. SI.11, SI.12, and Supplemental Appendix | section VIII).
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Fig. 3 A geographic map of climate-driven selection and its predictability. (A) Genome-wide Environment
Selection (GWES) models trained and tested with different combinations of our data from Germany and Spain,
or previously published field experiments (accuracy was estimated using cross-validation and the 95%

confidence intervals using bootstrap, see Supplemental Appendix | section VII). (B-C) Mean GWES-predicted

total selection coefficients (“selection intensity”; n= 10,752 SNPs, one random SNP per 10 kb windows) in
known locations of A. thaliana populations in relationship to latitude and evapotranspiration in summer (ref.
%). (D) Predicted changes in selection intensity using climate projections to 2050 as a proxy of a sudden climate
change (2050 MP rcp 8.5, ref. ). (E) Relationship between selection intensity and synonymous and

nonsynonymous polymorphisms present at each location. (F) Relationship between selection intensity and
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interannual variation in precipitation from 1958-2017 (ref. 3°). (G) Number of local alleles (of the total 10,752
SNPs) whose selection is predicted to positively or negative change >5% in relative fitness in 2050 across the

latitudinal range.

Using the trained GWES models, we then predicted genetic natural selection at hundreds of
locations, simulating field experiments in which the same set of diverse natural lines is challenged by
different local climates (Fig. 3). The intensity of selection, i.e. genome-wide average total selection
coefficients, was strongest towards the environmental limits of the species, i.e. in hot (annual
temperature, Spearman’s rank correlation rho=0.62, P<10), dry (annual precipitation, rho=-0.457,
P=107%), and high evapotranspiration locations (actual evapotranspiration in August, rho=0.86,

P<107°) (Fig. 3B-C, Table SI.11). High selection intensity coincided with locations where natural lines

have a lower-than-average ratio of nonsynonymous to synonymous polymorphisms (Fig. 3E,
r=-0.276, 3x10™°, Fig. SI.14), high local genetic diversity 7 (rho=0.187, P=2.63x10°) and elevated
Tajima’s D (rho=0.161, P=3x10"). Various demographic scenarios could partially explain some of
these patterns in isolation, i.e. bottlenecks can reduce the nonsynonymous polymorphisms due to
they are typically at low frequency or high diversity might be found in old, large populations. These
patterns are, however, congruent with stronger selection having acted more efficiently over
nonsynonymous mutations. In addition, high diversity could also be driven by strong natural
selection fluctuating over time, with alternative polymorphisms having been selected in each
period®. To test that we inspected precipitation data®® from 1958 to 2017 revealed that locations
where we had inferred strong selection, low nonsynonymous substitutions and high diversity also
suffered from highly variable climate (rho=0.22, P<8x107; Fig. 3F). The overlap of temporal climate
stochasticity and climate extremes has a number of evolutionary consequences, namely the
interruption of adaptive walks towards theoretical optimums®*, the maintenance of multiple
genotypes per population?’, and the evolution of bet-hedging strategies*’. Therefore these findings
also highlight the importance of temporal resolution in climate databases for ecological predictive
models. All in all, we did not find evidences that the warm edge of the geographic distribution of A.
thaliana is limited by an increase in drift that causes lowly diverse small populations to accumulate
nonsynonymous deleterious mutations, as some theories propose®. Rather, our observations and
predictions (Fig. 3 C, E and F) indicate that a the species’ warm geographic limit is primarily defined
by the environmental tolerance limits, where climate-driven natural selection is the limiting factor
for the survival of individuals and populations outside their range edges™.

A sudden change in climate and increased climate variability*>*®

will obviously increase the
magnitude of natural selection. Using climate projections of 2050 as a proxy for potentially abrupt

changes in local climate (Intergovernmental Panel on Climate Change, www.ipcc.ch, ref. >%*), we
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predict that selection intensity will likely increase in much of Southern-Central Europe, with an

expected decrease in annual precipitation and increase in annual temperatures (Fig. 3D, Fig. SI.3,

SI.10). To enable comparability across locations, our metric of selection intensity is by design
standardized based on the same reference set of 515 accessions representing the whole species
diversity. Therefore, it can be interpreted as the fraction of the species diversity suitable for survival
and reproduction in a given environment, or as the magnitude of allele frequency changes and allele
fixations in response to a single generation of selection (Fig. 3C-D, for a discussion on pitfalls and

interpretations see Supplemental Appendix | section VII.3). Local populations, however, typically

consist of more closely related lines that harbor only a subset of genetic variants, which may put
these populations either in a better or worse position to respond to future climate than our global
set of more diverse lines. We therefore looked for SNPs predicted to change most strongly in
selection under the 2050’s projected climate (fitness advantage or disadvantage changed over 5%),
and evaluated whether the allele positively changing in selection is the one locally present or rather
the opposite. We found that most local alleles will become more negatively selected if climate would

suddenly change (Fig. 3G, Fig. SI.13). We therefore predict that many native populations —

specifically those in transition zone from the Mediterranean to Temperate regions*’ — could suffer a
negative demographic impact due to a diminished degree of local adaptation and an increased
intensity of natural selection. As Southern Mediterranean populations are already locally adapted to
low precipitation regimes, gene flow from those could catalyze evolutionary rescue of more

vulnerable, central populations®.

Conclusion

The expected changes in climate during the 21* century will threaten the survival of many species.
Because the distribution of genetic diversity is so well characterized in A. thaliana, we have used it to
address the challenge of predicting the effects of climate-driven natural selection over genomic
variation across a species’ range. Integration of genome-climate associations with direct fitness
observations allowed us to build models that predict selection at the genetic level rather than mere
probability of presence/absence of variants. This information enabled us to infer range-wide
evolutionary risk in the face of rapid climate change. The first two steps in our project, assembling a
worldwide collection and genome sequencing of diverse lines, are in reach for many species of
plants. A greater challenge is generating fitness data, but this can be partially solved by identifying
particularly informative field sites — as we have done in our study —and by exploiting the immense
technological progress in grassland, forest, or farm monitoring at different scales***°. Combining
such observations with our new genome-wide environment modeling approach will help us to fully

incorporate evolution into predicting the impacts of climate change on biodiversity.
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SUPPLEMENTAL APPENDIX |I: Extended statistical
methods for “A map of climate-change driven natural

selection in Arabidopsis thaliana”

Moises Exposito-Alonso?, 500 Genomes Field Experiment Team?, Herndn A. Burbano?, Oliver

Bossdorf*, Rasmus Nielsen®, Detlef Weigel*’

'Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tiibingen,
Germany. * See author contributions section. *Research Group of Ancient Genomics and Evolution,
Max Planck Institute for Developmental Biology, 72076 Tiibingen, Germany. *Institute of Evolution
and Ecology, University of Tiibingen, 72076 Tiibingen, Germany. *Departments of Integrative Biology
and Statistics, University of California Berkeley, Berkeley, CA 94720, USA. Natural History Museum of
Denmark, @ster Voldgade 5-7, 1350 Kgbenhavn K, Denmark.

I. 1001 Genomes Project data

We used VCFtools v.0.1.12b (ref. *!) to subset and filter the 1001 Genomes VCFv4.1 (available at:
http://1001genomes.org/data/GMI-MPI/releases/v3.1/). We used vcftools with the flags: --maf 0.01

--max-alleles 2 --min-alleles 2 --max-missing 0.95. The resulting high-quality dataset was a genome
matrix of 515 individuals by 1,353,386 variants for which we did not impute the small number of

missing data points.
We annotated the 1001 Genomes VCF using the package SnpEff 4.3p (ref. *?). We then

manually curated a set of eight categories of variants: intergenic, intron, UTR3, UTR5, exon,

synonymous, honsynonymous, exon noncoding.

Il. F, and selective sweep signatures from polymorphism data

We used the genetic groups previously defined for the same accessions'* and computed Fs7 using
PLINK version 1.9 (ref. >*). We also used PLINK to calculate 7 and Tajima’s D using PLINK in windows

of 100 SNPs across the genome.
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We used SweepFinder2 (ref. *) to scan the genome for deviations of the Site Frequency
Spectrum (SFS) that might be caused by selective sweeps. We used all 11,769,920 biallelic SNPs from
the 1001 Genomes Project (without the filters of 1% MAF and maximum missing data of 5%, which

were applied to generate the variants used in the GWA [see section V]).

1.1 Geographic proxies of diversity metrics

In order to estimate 7 and a proxy of Tajima’s D at a regional scale, we used the 4 closest
neighbouring accessions in our set (same patterns were observed with different sets of neighbours
within a geographic area of 5° latitude-longitude radius), and computed the total number of
polymorphisms P in the subset and the sum of all pairwise Hamming differences, H. Then we

calculated f, 7 and the proxy of D as:

S H Npa
6 x G Nall
P Niun

0 p—
1.8666 x G Na”

D=n—-0
Where G is the genome size, Ny are all SNPs with full information that were used to
count polymorphisms and distances, and Na: are all SNPs of the genome matrix. In the
denominators, 6 is the number of pairwise comparisons of four genomes, and 1.8666 is the
harmonic number of 4. Although D is normally divided by the standard error, we only wanted to rank

our natural lines so we used the difference between 7 and 6 as a proxy of D.
lll. Heritability of fitness

To estimate how much variance in fitness is related to the genotypes of the lines, we used
generalized linear mixed models using the R package MCMCglmm (ref. **). We used fitness estimates
per replicate and, appart from including the natural line ID, we controlled for block (growing tray)
and position within the block (longitudinal, latitudinal, and the interaction). As this is a Bayesian
approach, we used flat priors, we used 10,000 MCMC steps, a burnin of 10%, and confirmed that this
was sufficient for convergence of the chain. For survival proportion we used a Binomial link, for
number of seeds we used a Poisson link, and for the combined lifetime relative fitness we used a
Gaussian link. The mode and 95% Highest Posterior Density of the posterior distribution of each

random effect were extracted (Table SI.3).
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IV. The special case of fitness GWA and the consequences of natural selection in

allele frequencies

IV.1 Natural selection on correlated genotypes

Genome-Wide Association (GWA) approaches were first used in the quantitative genetics field to
study common human diseases, with the main aim to determine a limited number of most
important loci that ultimately would have clinical or other utility — strongly favouring true positives

and neglecting false negatives®’.

Genome-Wide Association (GWA) approaches, which were first developed by quantitative
geneticists to identify loci responsible for human diseases®, have been applied in recent years in
other disciplines such as functional ecological genomics. This, for example, helped identifying
important loci controlling ecologically relevant traits such as animal coat color or flowering time in
plants®®*’. For a number of organisms, it is also possible to directly measure lifetime fitness of an
individual. This opens an opportunity of linking quantitative genetics, where the focus is the
identification of the most important genetic players of a phenotype, with population genetics, where
the focus is understanding how populations genetically change over time. The link here is because
variation in fitness cannot be treated as a nuisance of developmental noise, but, if heritable, it all has
consequences in changing the allele frequencies of the population. Recently, in a seminal paper,
Gompert and colleagues *’ discussed how one can borrow methodological advances in linear model
and statistical software used in GWA to carry out genome-wide scans of selection when individual
fitness is available, and discuss thoroughly the subtle differences in interpretation of GWA estimates

in contrast to phenotypic GWA effects.

In their paper, Gompert et al. begin by comparing fitness—SNPs with fitness—phenotype
associations, as a large body of theory already exists to understand the different aspects of
phenotypic natural selection. The most used approach to quantify natural selection on multiple
phenotypes comes from Arnold & Lande's classic Evolution paper "The Measurement of Selection on

Correlated Characters"*®. From their manuscript, the formulation of total selection over a trait zi is

represented by: $ = Covlw, Zﬂ; where w is the relative fitness (absolute lifetime fitness divided by
the mean fitness of the population). Because other phenotypic traits can covary with 27, one cannot

be sure from this approach that all the selection experienced by z: is from direct effects, but a sum
- oo s=> " Covlzi, 2j]| 3; -
of indirects effects from n other traits: j=1 ? 7; where 5 represents the direct

. _ pl . . . . .
selection and can be calculated as 8 =P S, where P is the n-dimensional variance-covariance
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matrix. Gompert et al discuss that the same approach can be applied to genetic loci instead of
phenotypes. This framework is interesting, as it is often the case that alleles of multiple SNPs in the

genome are also correlated, that is, they are in linkage disequilibrium.

Gompert et al. discuss that different GWA models might also allow to calculate total and
direct effects of selection over SNPs (although this requires solving some additional problems as the
large amount of SNPs to compute associations with, which can be solved with advanced GWA
approaches). We can consider the most simple case, where there are two SNPs, 1 and Z2. For
mathematical convenience we assume that the response variable fitness, ¥, as well as the
predictors, are mean centered and variance scaled. From the univariate approach, where the effect
of a SNP 21 is estimated marginally or independently from 22, the total effect in selection would be:

cov(x1,y)
var(xy)

/611 =

The same calculation would be repeated for SNP Z2. In a multivariate regression framework,

the regression coefficient, called conditional or partial coefficient, B*, is corrected by the correlative
indirect effect of the other predictor, 7=:1z2. In this way, effects driven by linkage disequilibrium to
another loci are removed from 5, so that only direct effects are measured. The formula would be

as:

/83)1 - rwlzg X ﬁzg

V=520 -52)

Ba =
1‘1_

Sensu Gompert et al., 5 would capture the “total selection” and thus can be called a “total
selection coefficient”, as it is in essence SS\beta ~ s = w_11 - w_00SS, where SSw_11$S and
SSw_00SS represent the true (noise-free) fitness of a plant carrying an alternative allele at the giving
SNP. On the other hand, 5* corrects out indirect (or linked) effects, thus can be called “direct

selection coefficient”.

Gompert et al. use the statistical GWA package GEMMA (ref. *), to being able to compute

the above coefficients efficiently for thousands to millions of SNPs.

GEMMA implements a single-marker marginal linear models GWA (LM) of the form:

y=p+ Bix; + €; This provided us with allele effects, 3, on relative fitness per SNP. We also run in

GEMMA a Bayesian Sparse Linear Mixed model GWA (BSLMM), to calculate direct accurately

pinpoint casual positions. This model accommodates both poly- and oligogenic architectures and by

jointly fitting all SNPs (n=1,353,386) it statistically corrects for LD arising from population structure
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and/or low recombination. It models two effect hyperparameters, a basal effect, «, that captures
the fact that many SNPs contribute to the phenotype, and an extra effect, 5, that captures the
stronger effect of only a subset of SNPs. An internal parameter measuring the probability of having
another extra effect,”, can be used to prioritize SNPs. In BSLMM the overall effect of an allele is
=a+ 706, which in the simplistic example above corresponds to the B*. The full model
specification is:
y=1lyp+ X8+ Xa+e,;
Bi ~ 7N, 057 1) 4+ (1 —7)do
a; ~ N(0,03/(p7));
e~ MVN,0,77'I,)
The BSLMM model is also used to calculate the proportion of variance explained (PVE or
‘chip heritability’). To do this, we used the last 1,000 samples of the MCMC chain and calculated the
95% Highest Posterior Density Interval (95% HPD), for which we report the median and the 2.5% and

97.5% percentiles. The BSLMM model is an improvement over the classic GBLUP or kinship-based

(population structure correction) GWA, a form of linear mixed model where one corrects-out

population structure or general relatedness between individuals by having the © random effect term
with a given covariance structure that is the kinship matrix K, therefore the calculated 5 is
conditioned on genomic background effects:
y=1lpp+ XB+ Zu+e;
u~ MVN(0,02K)

The two estimates above, the direct (or conditional) effect 5%, and the total effect 5 (or s), provide
thus differently useful insights on the nature of selection. As already argued in Gompert et al. and
othres, it is the total selection coefficient, s, that best predicts the change in population allele
frequency in one generation as a response to selection. We show this with simulations in the next

section.

IV.2 Proof-of-concept simulations on the importance of total selection coefficients

To illustrate the differences of GBLUP (population structure corrected) GWA or marginal GWA when
using fitness, we carried out simulations (Fig. SI.15) (for step-by-step code and intermediate plots

see https://github.com/MoisesExpositoAlonso/selectioncorrelatedgenotypes).

Appendix Il - 22


https://www.codecogs.com/eqnedit.php?latex=%5Calpha%0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta%0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma%0
https://www.codecogs.com/eqnedit.php?latex=%3D%20%5Calpha%20%2B%20%5Cgamma%20%5Cbeta%0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta%5E*%0
https://www.codecogs.com/eqnedit.php?latex=y%20%3D%201_%7Bn%7D%20%5Cmu%20%2B%20X%5Cbeta%20%2B%20X%5Calpha%20%2B%20%5Cepsilon%0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_i%20%5Csim%20%5Cpi%20N(0%2C%20%5Csigma%5E2_%7Ba%7D%20%5Ctau%5E%7B-1%7D)%20%2B%20(1-%5Cpi)%20%5Cdelta_0%20%0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha_i%20%5Csim%20N(0%2C%20%5Csigma%5E2_b%20%2F%20(p%20%5Ctau))%0
https://www.codecogs.com/eqnedit.php?latex=%5Cepsilon%20%5Csim%20MVN_n(0%2C%5Ctau%5E%7B-1%7D%20I_n)%20%0
https://www.codecogs.com/eqnedit.php?latex=u%0
https://www.codecogs.com/eqnedit.php?latex=K%0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta%0
https://www.codecogs.com/eqnedit.php?latex=y%20%3D%201_%7Bn%7D%20%5Cmu%20%2B%20X%5Cbeta%20%2B%20Zu%20%2B%20%5Cepsilon%0
https://www.codecogs.com/eqnedit.php?latex=u%20%5Csim%20MVN(0%2C%20%5Csigma%5E2_a%20K)%0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta%5E*%0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta%0
https://www.codecogs.com/eqnedit.php?latex=s%0
https://www.codecogs.com/eqnedit.php?latex=s%0
https://github.com/MoisesExpositoAlonso/selectioncorrelatedgenotypes

Exposito-Alonso et al. A map of climate change-driven natural selection

We began by subsetting our dataset of 515 genomes of A. thaliana to 1000 SNPs from
chromosome 1 (to keep intact the linkage structure. Note: results also hold simulating a genome
matrix with random linkage). We then simulated 1000 selection coefficients following a Normal

distribution with mean zero and standard deviation 0.1. To get the fitness of a plant of genotype J,

1000
we sum selection coefficients along the genome as: 21 SiTij; where Tij would indicate whether

the haplotype has the reference (0) or alternative allele (1) in the given ¢ SNP (we generated some
artificial noise so heritability would be 0.9; conclusions hold the same with intermediate heritability).

We then inferred total selection coefficients using marginal GWA and direct selection coefficients

using GBLUP GWAs. Our results comparing true and estimated effects show how even when we

attempt to estimate true (direct) selection coefficients by the GBLUP method that tries to correct by

background effects, we largely fail (Fig. SI.15A). It is also important to notice that the estimates from
GBLUP GWA are one order of magnitude smaller than the true values. Because the architecture of
fitness here is rather polygenic and SNPs are in linkage, most of the fitness variation is assigned to

the kinship term in the GBLUP GWA rather than to specific SNPs. In agreement with this the

kinship-based random effect accumulates 99% of the true heritability (VQ/VQ + Ve = 0.89). In our
field experiment, we also saw high values of kinship-based heritability (our median h* was 0.7; Table

SL.2).

As discussed earlier, if interest is in the consequences of natural selection in allele

frequencies rather than true (direct) selection coefficients, total selection coefficient are the

adequate approach. To show this, we run a individual-based simulation, drawing genotypes
proportionally to their relative fitness to generate the population of offspring one generation after
selection (with constant population size). We then compared the change in frequency in the
simulated population with the marginal GWA and GBLUP GWA estimates. Because allele frequency
changes are driven by both direct and indirect selection pressures, the marginal GWA estimates
correlate best with the changes of frequency in one generation (Fig. SI.15B). In fact, we can try to
predict directly the change in frequency in one generation (A4q) if we not only use inferrred

selection coefficients but also the original starting frequency, as the change is proportional also on

how frequent is an allele originally: Ag=s(1—-p)p, Plugging in the marginal GWA and GBLUP
GWA estimates into the equation we show that marginal GWA estimates allow prediction of allele

frequency change with accuracy of R>=0.97, while GBLUP GWA estimates perform poorly, R>=0.08
(Fig. SI.15C).

A theoretical concern of studying total selection coefficients rather than direct selection

coefficients is that the first are thought to be contingent on the specific allele frequency and linkage
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structure of the population of analyzed; something that is allegedly ameliorated if one corrects by
population structure with GBLUP GWA. Therefore, it is common to think that GBLUP GWA estimates
are more informative if one aims to extrapolate findings across populations. Purposedly, our
experimental population of 515 accessions (subset of the 1001 Genomes Project) aimed to maximize
geographic as well as genetic coverage of the species so interpolations to smaller, less diverse

subpopulations, would be possible.

We then studied to what degree measurements of natural selection hold across populations,
we selected 50 Spanish genotypes out of the 515. Spanish are known to belong to very distinct
lineages. We then run the one-generation individual-based simulation to compute allele frequency

changes in the 50 Spanish accessions. We then plugged again the marginal and GBLUP GWA

estimates calculated in the 515 genomes into the equation Aq = s(1 —p)p and correlated them
with the simulations (Fig. SI.15C). We showed that marginal GWA effects calculated in the 515
genomes panel also predict well the frequency changes after selection in the 50 genomes subset
(R?*=0.85; for GBLUP GWA R?=0.04) (We also confirmed our conclusion with other subset

populations, such as 10 Spanish accessions or 10 low diverse USA accessions).

IV.3 Further notes on the interpretation of population structure in wild species

Much of the discussion in the previous section is about the special interpretation of fitness marginal
GWA estimates as total selection coefficients, which have the property of predicting allele frequency
changes. Oppositely, there is not much insight gained from marginal GWA estimates for phenotypes,
where we advocate some type of population structure or linkage disequilibrium aware GWA
approach (e.g. refs. %), Nevertheless, it is worth pointing out that there are two other reasons in
favour of applying kinship-correction in GWA studies in humans and breeding with no clear analogy

or interest for wild species:

1) Human genome-wide association are based on data collected typically in different countries,
where individuals were born and rise in different health systems, cultures, and or other
environmental inputs. Because those inputs are correlated with spatial location and genetic
ancestry of human populations, the population structure correction also corrects for this
structured environmental confounder. In experimentally-tractable wild species, such
confounders are avoided by controlled experiments and replication; otherwise, if data
comes directly from field observations as in humans, population structure correction is

paramount.
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2) In crop and animal breeding, correcting for family or population structure in associations is
also highly interesting to avoid pleiotropic effects of markers during marker-assisted
breeding. As in clinical cases, the aim for GWA here is to prioritize a small subset of true
positive, unlinked markers. Because different breeds or varieties might differ in a variety of
traits, genetic variants associated to breed or variety background are not reliable for
breeding. In wild species, this case might apply if one wants to follow up a GWA hit for

molecular characterization and genetic engineering with no side-effect phenotypes.

In wild species, there might be cases when population history and differentiation coincides with
historical events of adaptation. This can challenge the use of population structure correction to
correctly identify valuable SNPs, as much of the true positive SNPs will be positively correlated with
historic population lineages and thus a lot (if not most) of the important variation will be assigned to
the kinship factor. In those cases, it is up to the researcher to decide what is the best method in a
case-specific manner. Some approaches such as the BSLMM approach tries to solve background
effect confounders more elegantly than the kinship approach. Another potentially useful approach
when a trait is expected to be directly associated with a population ancestry is admixture

11,60

mapping

IV.4 Trade-offs of selection

1V.1.1 Across field experiments

In order to test the two most prevalent hypothesis of local adaptation driven by selection trade off,

213761 \we do pairwise comparisons of total selection

conditional neutrality vs antagonistic pleiotropy
coefficients in two environments. We devised two tests: The first test discriminates between
pleiotropy (selected either in the same direction or in different directions) and conditional neutrality
(only selected in one environment). We use the extreme 5% selection coefficients at each tail, similar

following Anderson et al. ®! to generate the contingency table:

Not selected Selected in Spain
(5% left and 5% right tails)

Selected in Germany Selected in both environments
(5% left and 5% right tails) | (both 5% left and 5% right tails)

Because this test does not distinguish between those pleiotropic variants that are selected in

opposite directions (antagonistic pleiotropy) or in the same direction (non-antagonistic or synergistic
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pleiotropy), we do another test only for the direction of those variants selected in both

environments:

Negative in Spain Positive in Spain
Negative in Germany Negative in Germany
Negative in Spain Positive in Spain
Positive in Germany Positive in Germany

We report the Odds Ratio for both tests (Table SI.5) as well as the Spearman’s rho correlation

between each pair of environments (Table SI.6).

IV.1.1 Across life history stages

Calculating total selection coefficients for survival and fecundity separately, we found no correlation
between survival-only and fecundity-only estimates (r<0.07, Fig. SI.4-5), consistent with different

stages of a plant being differentially affected by environmentally imposed selection®*®,

IV.5 Intensity of selection

The distribution of absolute total selection coefficients, |5‘, has a shape resembling that of an
exponential function. We calculated the expected rate using Maximum Likelihood optimization in R,

which can also can be approximated as the inverse of the mean:

. n
A= ———
Z?:I‘Ti.

For this, we use )\ or the mean of || as a metric of the overall intensity of selection (Fig. 1B,

Fig. 3D).

V. Climate Genome-Wide Association
Similarly to our GWA with relative fitness, we run a GWA with each climate variable m (see Section
VII.1) as response variable ¥m in a LM model using GEMMA (ref. *3, see Section V):

Ym = b+ Biw; +€;

This B coefficient for SNP i, which reflects the correlation of the alternative allele’s
presence and a climate variable, was used later in our predictive models (Section VIII). As this is a
raw correlation between allele presence and climate variables, it will capture both past signatures of
climate adaptation and historic population migration and differentiation, and is only used to capture

how environmentally separated are typically found the two alleles of a SNP.
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VI. Climate and modeling

VI.1. Climate layers

We used the classic bioclim variables (n=19), plus monthly data of minimum and maximum
temperature, and precipitation (n=12 x 3) (worldclim.org). From these we estimated monthly
evapotranspiration rates using the R package EcoHydRology v. 0.4.12 (ref. **) and actual monthly
evapotranspiration using a bucket model ® (n=12 x 2). Based on ref. ** we calculated whether A.
thaliana can grow in a given month based on temperature and precipitation (n=12), and derived
from this the length of the potential growing season (n=1). Over the potential growing season, we
calculated minimum and maximum temperature, and total precipitation (n=3). Finally, using the
mean and variance flowering time (=lifespan) across all our field experiments per accession, and
based on their climate of origin using the above variables, we used an environmental niche model to
generate a map surface of the most likely plant lifespan (n=2). This provides an estimate of the
actual growing season, which we subtracted from the potential growing season to generate one
more composite variable (n=1). Each variable is further described in Table SI.9. A total of 98 raster
layers are available as .gri/.grd files (native R format) from:

github.com/MoisesExpositoAlonso/araenv, with doi:.

VI.2. Environmental Niche Models

Genome-wide Environmental Niche Models (GEMs) were fit using decision trees with
presence/absence of SNPs as response variable and the climate variables described in the previous
section and latitude and longitude as predictors as described previously'’. To fit the models we used
an Stochastic Gradient Boosting approach with the R package caret (ref. °®®). The parameters used to
fit the model were: 50 decision trees, an interaction depth of 2, a shrinkage of 0.1, and a minimum of
observations at end nodes of 10. This set of parameters was determined after running our GEMs for
some exemplary SNPs and confirming that this set was typically optimal for reducing residual-mean

squared error in a Repeated Cross-Validation approach.

We used these models to predict from raster maps of the climate layers a probability
between 0 and 1 that the alternative allele was in a map cell. We judge this as a more appropriate
output than a discrete 0/1 outcomes, as sometimes alleles were widespread or at intermediate

frequencies in many regions and thus their environment niche was not strictly defined.

Areas outside the high-density areas of A. thaliana (Fig S.1.1) were excluded from the GEM

training and projections, as our information of populations, for instance, from Siberia is limited.
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Nevertheless, the few samples there had a relatively high fitness in Spain and low precipitation

(Dataset 3).

VI.3. Climate variability
To study spatial climate variability, for each A. thaliana natural line, we extracted the 19 bioclim
variables (Table SI.9) in a 50 Km buffer where they were originally collected from and calculated the
coefficient of variation (CV) across grid cells.

To study temporal variability, we used climate data® from 1958-2017 to calculate annual

precipitation values for each population, from which we in turn derived the inter-annual CV..

VII. Predictions of total selection coefficients from sequence features and

environment of origin

Vil.1 The model

We used a decision tree approach with Random Forest using the R package randomForest (ref. ©”%)
to predict the vector (n=1,353,386) of GWA results with relative fitness in one environment, which
we call total selection coefficients s, from a 1,353,386 x 98 matrix of GWA associations with climate

variables, Beim (Table S1.9, section V). We also included as predictors a 1,353,386 x 5 matrix, /, of

genetic diversity and frequency metrics: minimum allele frequency, 7 diversity, Tajima’s D, selective
sweep likelihood ratio, and selective sweep alpha value (section ll). In addition, we included as
predictors a 1,353,386 x 8 matrix 6 of non mutually exclusive variables taking values of 0 or 1
indicating genomic annotations: intergenic, intron, UTR3, UTR5, exon, synonymous,
nonsynonymous, exon noncoding (section 1). A total of 112 variables were thus used as predictors:

s = f(Betims 11, 0) , In the cases where we trained models with two environments, we also included

the 2 x 98 Zuim climate variables at our field stations: $ = f(xclinw Betim s Iy 9).

VIl.2 Genome-wide cross-validation

Because training a Random Forest with the full dataset would be computationally expensive, we only
trained with 10,000 observations (with smaller and larger SNP sets, we had determined that training
with more than 10,000 observations did not improve predictions). To test accuracy and bias we used
a different set of 10,000 SNPs, divided into 100 bootstrap samples, and we report the intervals of the
95% bootstrap distribution. The results presented in Fig. 3 were produced with 10,000 randomly
drawn SNPs across the genome. To confirm that there was no confounding from non-independent

samples in the training and testing SNPs, we repeated all analyses, training with 10,000 random SNPs
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from chromosome 1 and testing with 10,000 random SNPs from the four other chromosomes. There

were no substantial changes in predictability.

Several combinations of training and testing were performed to validate the predictions of

“unobserved” environments (Table SI.8).

VII.3 Note on interpretations and limitations of GWES

As in any predictive exercise, our geographic projections of intensity of selection have limitations
(discussed below). We nevertheless firmly believe that they are indispensable to move forward in
the field of forecasting climate impacts. Models such as ours are tremendously useful for subsequent
experimental validation (as we are currently doing through an experimental evolution network:
GrENE-net.org) or with in situ observations collected as we move into the future (e.g. iNaturalist.org,
iSpot.org). This iterative prediction ¢ validation process will be key to advancing the complex field of

predicting the effects of climate change on biodiversity.

Below we discuss a list of points describing potential pitfalls of the GWES, and what is their

interpretation.

A. Selection is a “relative force”. The selection of an allele depends on the other alternative
allele, and at what frequency both are found. Thus, the exact value of total selection
coefficients might vary depending on the GWA panel. A reductio ad absurdum case would be
that of a GWA panel where many specific positions in the genome allegedly under selection
in other population, are invariant. Therefore, in such a case one could not calculate total
selection coefficients for that invariant site, although that does not mean the population is
not under natural selection, which could lead to extinction if only disadvantageous alleles
present. As we discuss in Section IV.2 and show with simulations in Fig. SI.15D, by using a
diverse reference GWA panel to calculate total selection coefficients, we can interpolate to
subset populations. Therefore the GWES projections are useful for relative trends of
selection in the species across its geographic range.

B. Our GWES projections are not long-term population projections.

C. Short-term total selection coefficients (over one generation, ecological times) do not
necessarily reflect long-term selection coefficients (i.e. over evolutionary times), which are

an integration of selection events over time.
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D. Over longer timescales, immigration of genotypes, admixture, and recombination, can alter
the efficiency of selection.

E. Demographic dynamics are ultimately determined both by natural selection and stochastic
demographic forces (drift). Therefore, the knowledge of total selection coefficients in a
generation is necessary but not sufficient to determine the fate of a population over multiple
generations. To do so, explicit demographic models are needed which also take into account
nuances such as bet-hedging strategies like seedbanks, and overlapping generations.

F.  We used climate projections of 2050 (of different CO, scenarios and years) to feed into the
GWES models only as proxies of plausible magnitudes of climate change. Demographic
processes year to year will interact with the local gradual or stochastic changes in climate
and ultimately determine the extinction or persistence of populations. A useful way to think
of our climate projections from models trained in the warm edge (Spain) and the distribution
center (Germany), is to think how climate change might put German populations under

similar selection pressures to Spain.

VIII. Re-analysis of published data from common garden experiments

VIIl.1 Environment cross-validation

In order to cross-validate our model on independent environments, we re-analyzed published data.
This approach is an environmental cross-validation on top of cross-validation of SNPs. That is, we
train in a subset of 10,000 SNPs in Spain and Germany, and test our model in another subset of
10,000 SNPs using the previously-published experiments of Spain, Germany and England®’*. For a
conceptual diagram of predictability (and extrapolability) validation with external common garden
experimental datasets, see Fig. SI.11. Note that a partial overlap of natural lines and genomic data is
required for the following re-analysis (predictions on common gardens with recombinant inbred

lines or non-overlapping natural lines would require further adjustments in our approach).

VIIl.2 Manzano-Piedras et al. 2014

Manzano-Piedras and colleagues® planted exactly 60 seeds per line in pots. They monitored how
many plants established at the rosette stage and later on became reproductive adults (survival
proportion). From these, they counted the number of fruits per pot and divided them by the number
of reproductive adults (reproduction, seed set). We computed lifetime fitness as the product of

survival and reproduction.
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VIII.3 Fournier-Level et al. 2011

Fournier-Level and colleagues®” germinated seeds in greenhouses, and two weeks after germination
(established seedling stage), they transplanted seedlings to outdoor field stations where one plant
was transplanted in one pot. They counted how many transplanted seedlings survived to
reproduction (partial survival proportion), and the number of fruits per plant (reproduction, seed

set). We again computed lifetime fitness as the product of partial survival and reproduction.

We excluded the experiment in Finland in downstream analyses because only 58 natural
lines were planted there in the original publication®” and because later we verified the imputation

accuracy was very low (Pearson’s r<0.008).

VIII.4 1001 Genomes x RegMap panel phenotype imputation

The 1001 Genomes panel (http://1001genomes.org/, ref. %) includes 1,135 natural lines with

11,769,222 biallelic SNPs from llumina sequencing. The RegMap panel

(http://arabidopsis.gmi.oeaw.ac.at:5000/DisplayResults, ref. °) included 1,307 natural lines with

214,051 biallelic SNPs from array hybridization. The two populations shared 413 lines. Of these, 185

were shared with the 515 lines used in the field experiments.

Of the 157 accessions of Fournier-Level et al., all were part of the RegMap panel, 89 were
part of the 1001 Genomes, and 50 overlapped with our lines. Of the 279 accessions of
Manzano-Piedras et al., 150 were part of the 1001 Genomes, and 131 overlapped with our field

lines.

Because fitness is heritable, we tried to impute missing data based on the overall genomic
relationships among all of the 2,029 natural lines belonging to 1001 Genomes and RegMap panels.
After downloading and transforming the RegMap dataset to PLINK format, we overlapped
genome-wide SNPs and filtered them for a genotyping rate of 95%, which yielded 154,090 biallelic
SNPs. Given the linkage disequilibrium and genome size of A. thaliana, this easily suffices for
generating a relationship matrix A (related to a kinship matrix), which we computed using the R
package rrBLUP (ref. ®). The data of survival, reproduction, and lifetime fitness was an average per
genotype, so we fit a classic GBLUP: ¥ = Zg + €; where ¥ is the fitness trait of interest, Z is a
design matrix of genotypes and 9 is a random effect factor with covariance matrix equal to the

MVN(0,Ac?)

relationship matrix 9 ™ . Heritability of traits and imputation accuracy from the

Manzano et al. and Fournier-Level et al. experiments is given in Table SI.10.

Appendix Il - 31


http://1001genomes.org/
http://arabidopsis.gmi.oeaw.ac.at:5000/DisplayResults
https://www.codecogs.com/eqnedit.php?latex=A%0
https://www.codecogs.com/eqnedit.php?latex=y%20%3D%20Zg%20%2B%20%5Cepsilon%0
https://www.codecogs.com/eqnedit.php?latex=y%0
https://www.codecogs.com/eqnedit.php?latex=Z%0
https://www.codecogs.com/eqnedit.php?latex=g%0
https://www.codecogs.com/eqnedit.php?latex=g%20%5Csim%20MVN%20(0%2C%20A%20%5Csigma%5E2_g)%0

Exposito-Alonso et al. A map of climate change-driven natural selection

VIIL5 Sanity checks for imputation and geographic predictions

We carried out sanity checks to ensure that the imputed fitness from other experiments was not just
an artifactual phenotype with the same structure as the relationship matrix. This would mislead us to
think there is predictability, as we would expect that total selection coefficient calculated in such
artifactual phenotype would depend on population structure and thus would likely be predictable

from climate structure alone.

We shuffled the genotype identities from Fournier-Level et al. and Manzano-Piedras et al.
with their fitness values. Then we repeated the GBLUP analysis with 50 rounds of shuffling and
computed heritabilities and prediction accuracies. We confirmed that heritability with shuffled data
was negligible (1x10°<h’<1.6%) and so was the accuracy of imputation (-0.047< r <0.070). This
indicated that in the absence of true heritable variation, imputation of fitness would be random and

not an artifact of the relationship matrix.

We also were concerned that geographic predictions could be driven by some underlying
bias in our analyses, i.e. bias inherent to geographic sampling, population history of genotypes
chosen, etc. In other words, we were concerned that the null expectation of predictability would be
non-zero. As before, we randomized fitness values with genotypes for all six environments
(Fournier-Level et al., Manzano-Piedras et al., and ours). Then, we repeated the GWA to estimate
total selection coefficients (as Fig. 1), and trained different combinations of GWES models to
re-predict total selection coefficients at each location based on climate (as Fig. 3). We confirmed

that, differently from the analyses of real data presented in Fig. 3, there was no significant

predictability (Fig. SI.12).

VIII.6 An explanation for “inverse predictability”

We noticed that using only our two experiments for model training, there was “inverse
predictability” for the three experiments from ref. *’. While the sign of inferred total selection
coefficients was the opposite of the observed values (-0.33<r_<-0.51, P<0.001), the magnitude of
selection was correctly inferred (15%<R?,<25%, Fig. 3A). Such a phenomenon could arise for several
reasons and has already been observed in studies with evolving Drosophila populations where
seasonal environments vary from year to year’®, as well as in timema insects’’. In our case, the
worldclim.org climate averages (1960-1990) at 2.5 arc-minutes resolution might strongly deviate

from the truly experienced environmental conditions in the years the experiments were conducted.
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Such climate variability can exert opposite selection in different years’>. Second, differences in
experimental design could lead to different lifetime fitness estimates. In the Fournier-level et al.
experiments, early survival of seedlings was not measured at all, as only seedlings that had survived
for two weeks in the greenhouse were transplanted into the field. In the Southern Spain experiment

from Manzano-Piedras et al. 3

, seeds were sown directly in the field, as in our own experiments, and
accordingly, we had “positive predictability” (r=0.24, Bootstrap Cl=0.09—0.41). In further support of
this experimental design confounder, when we trained GWES models with only reproduction-based
total selection coefficients in our experiment of high precipitation in Southern Germany, i.e.,
excluding early survival from lifetime fitness, we correctly predicted the sign of total selection
coefficients in Fournier’s Northern Germany experiment (r=0.392, Bootstrap Cl= 0.20—0.57) (for null

expectations see Supplemental Methods IX.4).

The differences in predictions between two- and six-environment-trained models did not
yield differences in downstream conclusions from Fig. 3 (correlation between predictions, r=0.56,
P<10®), but predictability increased with the number of experiments included in the training set (6

environments, r= 0.746 [Bootstrap Cl= 0.667— 0.800], R*= 0.517 [0.445—0.640]).
We preferred to show geographic predictions (Fig. 3) with GWES trained with our two

environments so we only rely on highly-replicated fitness estimates from over 500 accessions that

were grown in carefully controlled precipitation and temperature environments.
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SUPPLEMENTAL FIGURES |

Figure SI.1. Map of abundance of Arabidopsis samples
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Points indicate the locations where the 517 A. thaliana accessions were collected. The color gradient
is the density of samples from our study in squares of approximately 200 km x 200 km. The limits of
the colored area were determined using a combined density grid from gbif.org and 1001 Genomes
records. The density was generated in a grid of 125 min resolution and by applying a bilinear and
then Gaussian smoothing. The threshold was chosen to be the 50% of the upper distribution, which
roughly corresponds to 10 records per 200 km x 200 km square. Regions outside the colored were
excluded from future climate change predictions, as we prefer to make predictions only in regions
where the presence of A. thaliana is rather likely and continuous (Fig. 1).
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Figure SI.2. Environment ranges
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(A) Classic biplot of precipitation vs. temperature of origin of accessions (black dots) and field
experiment of Spain (sepia) and Germany (green). Grey box indicates locations where precipitation
was at least 70% of Spain and no more than 130% of Germany, and where temperature was no less
than 70% of Germany and no more than 130% of Spain. (B) Areas that would be within the grey box

in (A). Colored population groups based on previously calculated genetic clusters.
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Figure SI.3. Map of predicted precipitation change

170

“w - - L1470

Precipitation during the warmest quarter (bio18, left), and its change predicted for 2070 (rcp 8.5)
(right) (worldclim.org). Black areas indicate regions where precipitation will be lower than any area

where A. thaliana has been currently sampled (black dots, left).
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Figure SI.4. Genome maps of survival
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Same as Fig. 1, but only using the survival component of fitness. [Abbreviations: The three characters
of the codes: MLI, MLP, MHI, MHP, TLI, TLP, THI, TLP; indicate M=Madrid (Spain), T=Tlbingen
(Germany), L=Low precipitation, H=High precipitation, I=Individual replicates (one plant per pot),
P=Population replicates (up to 30 plants per pot)].
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Figure SI.5. Genome maps of fecundity
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Same as Fig. 1, but only using the fecundity component of fitness. [Abbreviations: The three
characters of the codes: MLI, MLP, MHI, MHP, TLI, TLP, THI, TLP; indicate M=Madrid (Spain),
T=Tubingen (Germany), L=Low precipitation, H=High precipitation, I=Individual replicates (one plant
per pot), P=Population replicates (up to 30 plants per pot)].
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Figure SI.6. Trade-offs in survival and fecundity
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(Fig. S6 continued)
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Comparisons of total selection coefficients computed only with the survival component, only with
the fecundity component, and with lifetime fitness. All environment combinations are plotted:
Madrid (Spain) and Tibingen (Germany), high and low precipitation treatments, and high and low
plant density treatments.
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Figure SI.7. F, and empirical selection
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(Fig. SI.7 continued)

rrItnEss_rn 5 " rEuvival_inil_Ih @ rEgeds_hi =
. 2 l 28 2 . q
B =
LR oo @
=
(=}
2
Q.
m
=
w
-
-~
-0.15 - N
0.00 0.25 0.50 0.7 ' 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 (o]
iFiiness thp Burvival_frull_thp Soads_thp =.
0.41 ©
-
m
[a]
—
54
-
— 2
o =
| o
o =
m
=
w
—
wvi q
&
& e
E 000 025 0560 075 000 025 050 075 000 025 050 075 o
-
3] thilnese U tSurvival il i rdends i =1
:'?: 0.504 0.4 0.3 » i'.;
<N 3
L
o 0,254
=
0,004 (=]
=2
Q.
m
-0.251 =
w
7| g
. - E
0.00 025 050 075 000 025 050 075 000 025 050 075 -
rFitness_tin réurdival_ril_lip rhugdy_lp 3
06 0,
B,
[ad
]
-
— =]
g =]
Q.
m
=
w
—
-+
<
>
0.00 025 050 075 0.00 025 050 075 000 025 050 075
Fst acrass populations Fst acrass populations Fst across populations

As Fig. 2C, for all environments: Madrid (Spain) and Tibingen (Germany), high and low precipitation

treatments, and high and low plant density treatments.
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Figure SI.8. Sweeps and empirical selection
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(Fig. S8 continued)
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As Fig. 2D, for all environments: Madrid (Spain) and Tlibingen (Germany), high and low precipitation

treatments, and high and low plant density treatments.
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Figure SI.9. Allele frequency and empirical selection
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(Fig. S9 continued)
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Relationships between relative fitness effect, relative fitness effect size, and P-values (calculated

from GWA with relative fitness) and minor allele frequency of alleles for all environments: Madrid

(Spain) and Tubingen (Germany), high and low precipitation treatments, and high and low plant

density treatments.
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Figure SI.10. Future change in selection for different climate change scenarios
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Same as Fig. 3G, but for different climate change scenarios. The higher the predicted CO, emissions

(rcp, representative concentration pathway), the stronger the predicted increase in selection

intensity.
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Figure SI.11. Field validation conceptual chart
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Conceptual workflow on field validation procedure with data from published experiments (section

).
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Figure SI.12. Null expectation of predictability
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Same as Fig. 3, but with randomized fitness values associated to genotypes (section VIII). We could
not find any model combination that had non-zero predictability (95% bootstrap confidence overlaps
with zero). This proof of concept indicates that the predictability we find must have a biological
basis, in which the combination of climate of origin for a genetic variant and the local climate allows

to infer selection over such a variant.
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Figure SI.13. Change in selection relative to local diversity
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Same as Fig. 3D, but counting the number of local alleles increasing or decreasing in selection (total
n=10,752 SNPs). Only changes with more than 5% advantage/disadvantage were considered (defined

a posteriori from Bonferroni-significant alleles, which generated at least 5% effect in fitness).
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Figure SI.14. Deleterious and neutral mutations across space
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Fraction of all genome-wide nonsynonymous (A) and synonymous (B) mutations present in the local
genotype. (C) Ratio of nonsynonymous and synonymous fraction, i.e. KnKs. Correlation of KnKs with

degrees longitude, latitude, and precipitation in July (associated to selection intensity in Fig. 3)
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Figure SI.15. GWA model comparison in a simulation study of selection
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We simulated fitness of 515 plants that differ in 1000 SNPs (subset of the original 1,353,386 genome
matrix used throughout the manuscript) with selection coefficients drawn from a normal distribution
around zero (more details and code are available at

https://github.com/MoisesExpositoAlonso/selectioncorrelatedgenotypes/, with DOI:

https://doi.org/10.5281/zen0do0.1408095). (A) Comparison of simulated (true) values of selection

coefficients and estimates from marginal GWA and GBLUP-based GWA. In the main text, these are
called “total selection coefficients” and “direct selection coefficients”, respectively. (B) Genotypes
were sampled based on their relative fitness values to produce a population one generation after
selection. Genome-wide allele frequency changes from generation zero (p,) to one generation after
selection (p,) are compared to marginal and GBLUP GWA estimates. (C) We plug in GWA estimates

into the theoretical equation of allele frequency change based on selection coefficients,

Ap=p(1 - P)S, and compare the theoretical and the simulated allele frequency changes in one
generation. (D) In order to demonstrate extrapolability, we repeated (C) but instead of running the
one-generation simulation of allele frequency with the 515 genotypes, we do so with only 50
Spanish genotypes. We repeat again the comparison of theoretical frequency changes based on
GWA estimates with 515 genotypes, with the simulated allele frequency changes with 50 genotypes.
All in all, the comparisons above indicate that marginal GWA estimates are appropriate to
understand the consequences of selection in changing allele frequencies, even when extrapolating

to other populations with slightly different allele frequencies and linkage.
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SUPPLEMENTAL TABLES |

Supplemental tables are available in the online version of the paper x. And are also deposited at

Figshare wit doi: https://doi.org/10.6084/m9.figshare.6756836.

Table SI.1. Summary of fitness data

Average survival, fecundity, and lifetime fitness. Total number of genotypes with at least one
surviving replicate per experiment.

[Abbreviations: The three characters of the codes: MLI, MLP, MHI, MHP, TLI, TLP, THI, TLP; indicate M=Madrid
(Spain), T=Tubingen (Germany), L=Low precipitation, H=High precipitation, I=Individual replicates (one plant

per pot), P=Population replicates (up to 30 plants per pot)].

Table SI.2. Heritability of fitness

Broad sense heritability and the 95% Highest Posterior Density Interval per trait (variance explained
by line genotype), as calculated from a generalized linear mixed model using MCMCglmm, is
reported as: Og/0Total, The proportion of variance explained by nuisance factors such as block (tray),
position of the tray within a treatment block, and position of plant within a tray are reported in the
same way. Proportion of Variance Explained (chip-heritability) and the 95% Highest Posterior Density
Interval per trait, as calculated from a Bayesian Sparse Linear Mixed Model (BSLMM-GEMMA) using
genotype means per trait and using a kinship/relationship matrix.

[Abbreviations: The three characters of the codes: MLI, MLP, MHI, MHP, TLI, TLP, THI, TLP; indicate M=Madrid
(Spain), T=Tubingen (Germany), L=Low precipitation, H=High precipitation, I=Individual replicates (one plant

per pot), P=Population replicates (up to 30 plants per pot)].

Table SI.3. Number of SNPs with significant total selection coefficients
All significant variants from marginal GWA after FDR and Bonferroni correction and all variants with
non-zero probability of inclusion from conditional GWA, and sharing of significant variants across

experiments.

Table S1.4. Expected allele frequency changes in response to selection

Summaries of allele frequency changes per experiment.
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Table SI.5. Odds ratio of pleiotropic selection and conditional neutrality

Table SI.6. Correlation of total selection coefficients across environments

Table SI.7. Variable importance of predictive models

Sharing of significant variants across experiments.

Table SI.8. Predictability of environmental models

After training GWES models with a set of experiments, we inferred total selection coefficients on
another set of experiments and compared those with the real total selection coefficients. We
calculated Pearson’s product-moment correlation r_, and percentage of variance explained R’ , using
a regression. 95% confidence intervals were calculated with 100 bootstrap replicates.

[Abbreviations: ml= Central Spain and low precipitation (both high and low plant density treatments
combined); th= South Germany and high precipitation (both high and low plant density treatments combined),
Andalucia= South Spain from Manzano-Piedras et al. (2014), Germany= North Germany from Fournier-Level et
al. (2011), Spain= South East Spain from from Fournier-Level et al. (2011), UnitedKingdom= East England from
Fournier-Level et al. (2011)].

Table SI.9. Description of climate variables

Climate variables used for environmental models are described and their sources reported.

Table S1.10. GBLUP heritability and imputation accuracy of published field data
We used GBLUP to impute fitness from Fournier-Level et al. (2011) and Manzano-Piedras et al.
(2014) into our 517 global accessions. We report heritability, Pearson’s r between GBLUP predicted

fitness and real fitness, and the significance of the correlation test.

Table SI.11. Correlation between inferred natural selection intensity and other variables

Spearman’s rho between selection intensity and diversity metrics or climate metrics is given.
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SUPPLEMENTAL APPENDIX II: A rainfall-manipulation

experiment with 517 Arabidopsis thaliana accessions

Moises Exposito-Alonso’, Rocio Gémez Rodriguez?, Cristina Barragan®, Giovanna Capovilla!, Eunyoung
Chae', Jane Devos', Ezgi S. Dogan', Claudia Friedemann', Caspar Gross', Patricia Lang', Derek
Lundberg?, Vera Middendorf’, Jorge Kageyama®, Talia Karasov', Sonja Kersten®, Sebastian Petersen’,
Leily Rabbani®, Julian Regalado', Lukas Reinelt’, Beth Rowan®, Danelle K. Seymour!, Efthymia
Symeonidi', Rebecca Schwab', Diep Thi Ngoc Tran', Kavita Venkataramani’, Anna-Lena Van de
Weyer?!, Francois Vasseur®, George Wang', Ronja Wedegirtner®, Frank Weiss', Rui Wu*, Wanyan Xi’,
Maricris Zaidem', Wangsheng Zhu?, Fernando Garcia-Arenal?, Hernan A. Burbano?, Oliver Bossdorf?,

Detlef Weigel'.

! Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tiibingen,
Germany. ? Center for Plant Biotechnology and Genomics, Technical University of Madrid, Pozuelo de

Alarcén, Spain. ? Institute of Ecology and Evolution, University of Tiibingen, Tiibingen, Germany.

I. Background & Summary

The gold standard for studying natural selection and adaptation in the wild is to quantify lifetime
fitness of individuals from natural populations that have been grown together in a common garden,
or that have been reciprocally transplanted. Natural selection over morphological, physiological or

17237374 ysing observational and

other traits has been studied in a wide range of organisms
experimental fitness measurements of multiple individuals in field conditions. However, studies that
combine such measurements with knowledge on genome-wide variation are, in comparison, very
rare®?®*', This is surprising, given that they would enable the translation of selection to the genetic

level and thus ultimately help us to understand whether traits will evolve over generations.

With climate change, the study of adaptation to the environment has acquired new
importance. Predictions of climate change indicate not only that temperature will rise, but that also
precipitation regimes will be altered, leading to more frequent and extreme droughts’ and seriously
threaten the persistence of plant communities®’®. Field experiments where climate variables such as

rainfall are manipulated can be used to address this question”’.
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Here we present a high-throughput field experiment with 517 whole-genome sequenced
natural lines of Arabidopsis thaliana®. This experiment was designed to be of a sufficiently large scale
to enable powerful genome-wide association analyses’® and to maximize the replicability of
species-wide patterns, which has been shown to increase with the diversity of genotypes included in

an experiment’

. The experiments were conducted in two field stations with contrasting climate, in
the Mediterranean (Spain) and in Central Europe (Germany), where we built rainout shelters and
simulated high and low rainfall. Using custom image analysis we quantified fitness- and
phenology-related traits for 23,154 pots, which contained about 14,500 plants growing
independently, and over 310,000 plants growing in small populations (max. 30 plants per pot). Three
measurements of fitness were produced: survival from seed to reproductive adult (proportion 0—1)
and the average fecundity per reproductive adult (inflorescence skeleton lengths ranged from 18,400
to 1,622,000 pixels, which approximately corresponds to 1 to 6,127 seeds per plant). Fecundity was
only measured for plants with at least one fruit. We finally calculated an integrated lifetime fitness
value by multiplying the survival proportion to adulthood with the total offspring produced. This
dataset will be invaluable for the study of natural selection and adaptation in the context of global
climate change at the genetic level, building on the genetic catalog of the 1001 Genomes Project®
and complementing the already published extensive set of traits measured in controlled growth

chamber or greenhouse conditions®#,

Il. Selection of accessions from the 1001 Genomes Project

The 1001 Genomes (1001G) Project® has provided information on 1,135 natural lines or accessions
and 11,769,920 SNPs and small indels called after re-sequencing. To select the most genetically and
geographically informative 1001G lines, we applied several filters: (1) First we removed the
accessions with the lowest genome quality. We discarded those with < 10X genome coverage of
lllumina sequencing reads and < 90% congruence of SNPs called from MPI and GMI pipelines®. (2)
We removed near-identical individuals. Using Plink software>® we computed identity by state across
the 1,135 accessions. For pairs of accessions with < 0.01 differences per SNP (<100,000 variants
approx.), we randomly selected one accession to include in our study. (3) Finally, we reduced
geographic sampling ascertainment bias, as the sampling for 1001G was performed in neither a
random nor a regularly structured scheme. Some laboratories provided several lines per location
whereas others provided lines that were collected at least several hundred kilometres apart. Using
each accession's collection location, we computed Euclidean distances across the 1,135 accessions
and identified all pairs that were apart less than 0.0001 Euclidean distance in degrees latitude and

longitude (<< 100 meters). From such pairs, we randomly selected one accession to remain. After
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applying criteria (1), (2), and (3), we obtained a final set of 523 accessions (Datasets 1 and 2). To bulk

seeds for our rainfall-manipulation experiment and control for maternal effects, we first propagated
accessions in controlled conditions. We stratified the seeds one week at 4°C, we sowed them in trays
with industrial soil (CL-P, Einheitserde Werkverband e. V., Sinntal-Altengronau Germany) and placed
them in a growth room with 16 h light and 23°C for one week. Trays were vernalized for 60 days at
4°C and 8 h daylength. After vernalization, trays were moved back to 16 h light and 23°C for final
growth and reproduction. This generated sufficient seeds for 517 accessions, which were later grown
in the field in two locations (Fig. Sll.1). Seeds originating from the same parents can be ordered from

the 1001G seed stock at the Arabidopsis Biological Resource Center (CS78942).

Ill. Field experiment design

11l.1 Rainout shelter, watering, and block design

We built two 30 m x 6 m tunnels of PVC plastic foil to fully exclude rainfall in Madrid (Spain,
40.40805°2N -3.835352E) and in TUbingen (Germany, 48.5458092N 9.042449¢9E) (Fig. SII.2A-B). The foil

tunnels are different from a regular greenhouse in that they are completely open on two sides. Thus,
ambient temperatures vary virtually as much as outside the foil shelter (see Environmental sensors
section). In each location, we supplied artificial watering in two contrasting regimes: abundant
watering and reduced watering. Inside each tunnel, we created a 4% slope, and four flooding tables
(two for high and two for low precipitation) (1 m x 25 m, Hellmuth Bahrs GmbH & Co KG, Briiggen,
Germany) covered with soaking mats (4 |/m? Girtnereinkauf Miinchingen GmbH, Miinchingen,
Germany). The flooding tables were placed on the ground in parallel to the slope. Water was able to
drain at the lower end of the flooding table (Fig. SIl.2A-B). A watering gun was used to manually

simulate rainfall from the top.

Our experimental design is a split-plot design (Fig. SII.2C), with precipitation treatments
replicated twice in each location and the genotypes randomized within precipitation treatment in a
total of 8 spatial blocks. This ensured that all genotypes would be equally evenly distributed within
the foil tunnel, and that we could robustly measure consistent fitness responses to water deprivation

across precipitation replicates.

On top of the flooding tables, we used potting trays with 8x5 cells (5.5 cm x 5.5 cm x 10 cm
size) and industrial soil (CL-P, Einheitserde Werkverband e.V., Sinntal-Altengronau Germany). Each
cell would correspond to a genotype, excluding corner cells, to avoid extreme edge effects. We grew

a total of 12 replicates per genotype per treatment: Five replicates were grown at high density, with
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30 seeds per cell and without further intervention (“population replicate”). The remaining seven
replicates were at low density (ca. 10 seeds) and one seedling was selected at random after
germination (“individual replicate”). Excess individuals were culled. While the population replicates
should more faithfully reflect survival from seed to reproduction, the individual replicates were

useful to more accurately monitor flowering time and seed set.

11l.2 Environmental sensors

Environmental variables — air temperature, photosynthetically active radiation (PAR) and soil water
content — were monitored every 15 minutes for the entire duration of the experiment using
multi-purpose sensors (Flower Power, Parrot SA, Paris, France). This enabled us to adjust watering
depending on the degree of local evapotranspiration during the course the experiment. The sensors
outside of the tunnel in Madrid (i.e. only natural rainfall) showed an interquartile range between 1%
and 17% soil water content. This overlapped with the range of 10 to 22% water content of the
drought treatment that we artificially imposed inside the tunnels in Madrid and Tiibingen. The lower
range of measurements in Madrid (outside sensor) is due to a lack of natural rainfall during the first

two months of the experiment (Fig. SII.2E, Table Sll.1). In contrast, the sensor outside the tunnel in

Tubingen recorded an interquartile range of soil water content percentage of 22 to 27%, which was
comparable to the high watering treatments in Tlbingen and Madrid (from 20 to 33%) (Fig. SII.2E,
Table Sll.1). These values confirmed that our low and high watering treatment were not only
different, but also that they mimicked natural soil water content at the two contrasting locations.
Mean daily air temperatures (measured by the sensors at 5-10 cm above the soil surface every 15
minutes) were overall higher in Madrid (8-10°C) than in Tubingen (5-6°C), and the difference in
temperature between the sensors inside and outside the tunnels was in both locations on average

only 1°C (Fig. SII.2F, Table Sll.1). The photosynthetically active radiation (PAR, wavelengths from 400

to 700 nm) had a median of 0.1 mol m? day™ at night for all experiments. At mid-day (11:00-13.00
hrs), the median PAR in Madrid was 57.8 mol m? day™ outside, and 45.7 mol m™ day™ inside the

tunnel. In Tibingen, the median values were 29.0 outside, and 30.9 mol m? dayinside the tunnel.

[1l.3 Sowing and quality control

During sowing, contamination of neighboring pots with adjacent genotypes can occur for multiple
reasons. In order to avoid such contamination, we chose a day with no wind and sowed seeds at 1-2
cm height from the soil. Additionally, we took care during the first days to be particularly gentle
when using the watering gun to avoid seed-carryover (bottom watering by flooding was done

regularly). We also tried to remove human error during sowing by preparing and randomizing 2 ml
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plastic tubes containing the seeds to be sown in the same layouts (5x8) as the destination trays.
During sowing, each experimenter took a box at random and went to the corresponding labeled and
arranged tray in the field (Fig. SII.2). This reduced the possibility of sowing errors. Sowing occurred on
November 16 2015 in Madrid and on October 22 2015 in Tiibingen. During vegetative growth, we
could identify seedlings that resembled their neighbors or were located in the border between two
pots and removed such plants as potential contaminants. We also used the homogeneity of flowering
within a pot in the population replicates as a further indicator for contamination (Fig. SIl.3A). When a
plant had a completely different flowering timing or vegetative phenotypes did not coincide with the
majority of plants in the pot, this plant was removed. After sowing and quality control, the total

number of pots was 24,747 instead of the original 24,816 pots (99.7%) (Dataset 3).

IV. Field monitoring

1V.1 Image analysis of vegetative rosettes

Top-view images were acquired every four to five days (median in both sites) with a Panasonic
DMC-TZ61 digital camera and a customized closed dark box, the “Fotomatdon” (Fig. SIl.3A), at a
distance of 40 cm from each tray. In total, we imaged each tray at 20 timepoints throughout
vegetative growth. The implemented segmentation was the same as in Exposito-Alonso et al.’,
which relies on the Open CV Python library®. We began by transforming images from RGB to HSV
channels. We applied a hard segmentation threshold of HSV values as (H=30-65, S=65-255,
V=20-220). The threshold was defined after manually screening 10 different plants in order to
capture the full spectrum of greens both of different accessions and of different developmental
stages. This was followed by several iterations of morphology transformations based on erosion and

dilation. For each of the resulting binary images we counted the number of green pixels.

During field monitoring, we noticed that some pots were empty because seeds had not
germinated. In these cases, we left a red marker in the corresponding pots (Fig. Sll.3A), which could
be detected in a similar way as the presence of green pixels (with threshold H=150-179, S=100-255,
V=100-255). These pots were excluded from survival analysis as they did not contain any plants (Fig.
Sll.3A). The resulting raw data consist of green and red pixel counts per pot (Fig. SI.3B). In order to
detect the red markers automatically, we performed an analysis of variance between pots above and
below a threshold of red pixels and finding the threshold that maximized this separation (Fig. SI.3C).
This provided us with the threshold of red pixels above which a pot had a red marker (indicating an
empty pot). As expected, the distribution of pixels was bimodal, making this identification

straightforward.
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We estimated germination timing by analysing trajectories (Fig. SII.3B) of green pixels per
pot, and identifying the first day that over 1,000 green pixels were observed in a pot (corresponding

to a plant size of ~ 10 mm?, Fig. SlII.3) (Datasets 3). The final dataset contained data for 22,779 pots —

after the removal of pots with red labels — with a time series of green pixel counts.

1V.2 Manual recording of flowering time

We visited the experimental sites every 1-2 days and manually recorded the pots with flowering
plants. Flowering time was measured as the day when the first white petals could be observed with
the unaided eye. This criterion was chosen as sufficiently objective to reduce experimenter error. To
keep track of previous visits and avoid errors, we labeled the pots where flowering had already been
recorded with blue pins. To calculate flowering time, we counted the number of days from the date
of sowing to the recorded flowering date (we did not use the inferred day of germination to avoid
introducing modeling errors in the flowering time metric). Fig. SIL.4A shows the raw flowering time
data per pot in the original spatial distribution and the distribution of flowering time per treatment
combination. Note that grey boxes are pots with plants that did not survive until flowering. In total,

we gathered data for 16,858 pots with flowering plants (Datasets 3).

IV.3 Image analysis of reproductive plants

Once the first dry fruits were observed, we harvested them and took a final 'studio photograph' of
the rosette and the inflorescence (Fig. SIL.5A). In total, we took 13,849 photographs. The camera
settings were the same as for the vegetative monitoring, but here we included an 18% grey card
approximately in the same location for each picture in case a posteriori white balance adjustments
would be needed. We first used a cycle of morphological transformations of erode-and-dilate to
produce the segmented image (Fig. SII.5C). This generated a segmented white/black image without
white noise. Then, we used the thin (erode cycles) algorithm from the Mahotas Python library® to
generate a binary picture reduced to single-pixel paths — a process called skeletonisation (Fig.
SII.5C). Finally, to detect the branching points in the skeletonised image we used a hit-or-miss
algorithm. We used customized structural elements to maximize the branch and end point detection
(Fig._SILL5C). This resulted in four variables per image: total segmented inflorescence area, total
length of the skeleton path, number of branching points, and number of end points (Fig. SIl.5C)
(Datasets 3-4).
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IV.4 Estimation of fruit and seed number

Although the study of natural selection is based on studying relative fitness, and total reproductive
area might provide a good relative estimate, sometimes it is useful to have a proxy of the absolute
fitness. In order to provide an approximate number of how many seeds each plant had produced, we
generated two allometric relationships by visual counting of fruits per plant and seeds per fruit. In
order to be sure that the counts corresponded to single plants, we counted fruits and seeds of only

individual replicates of accessions, not the population replicates (see Field experiment design

section). Because a strong relationship had already been validated between inflorescence size and

the number of fruits in a number of studies with A. thaliana®%

, we decided that counting a few
inflorescences of three sizes, reflecting the broad size spectrum, would be sufficient to establish a
first allometric relationship with the four image-acquired variables (n=11 inflorescences, R’=0.97,
P=4x107*, Fig. SII.5B). To express fecundity as the number of seeds, we counted all seeds inside one
fruit for each of the inflorescences used for the first allometric relationship (n=11 fruits), aiming for a
wide range of fruit sizes. The mean was 28.3 seeds per fruit and the standard deviation was 11.2
seeds. The two aforementioned allometric relationships were used to predict, first, the number of

fruits per inflorescence using the four image analysis variables, and second, the number of seeds

corresponding to the number of fruits per inflorescence (Datasets 3-4).

V. Technical validations

Data processing

All images, from where fruits and leaf area were estimated, are backed up and stored at the Max
Planck Institute for Developmental Biology and available through ftp transfer (ca. 2Tb) upon request

to weigel@weigelworld.org. The Max Planck Society requires storage of publication-relevant data for

a minimum of 10 years. The Python modules to process images for green area segmentation and

inflorescence analyses are available at http://github.com/MoisesExpositoAlonso/hippo and

http://github.com/MoisesExpositoAlonso/hitfruit, along with example datasets.

To document our data curation we <created the R package dryAR

(http://github.com/MoisesExpositoAlonso/dryAR with doi:).

Replicability of image processing

After testing different camera parameters, we used an exposure of -2/3 and an ISO of 100. White
balance was set for flashlight. We used a dark box with all sides closed, so the flashlight was the only

source of illumination. This ensured that the white balance and illumination were virtually consistent
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from picture to picture, as shown before''. Photos were saved both in .jpeg and .raw to allow for a
posteriori adjustments if needed. Using a calibration board with 1.3 cm x 1.3 cm white and dark
squares, we examined the error between the inferred area from image analysis and the real 1.3
cm-side squares across the tray. This provided us with a median resolution estimate of 101.5 pixels
mm™. The deviations from the true area were minimal, with a median of 2.7% and values of 1.4% /
4.2% for the 1% and 3™ quartile. The maximum area deviations were of 8 to 9% in the extreme
corners of the tray, where we did not sow any seeds. We are confident that such small variation in

retrieved area is compensated by the randomized locations of genotypes within the trays.

To further verify that our camera settings and segmentation pipeline produced replicable
extractions of plant green area, we used images of trays that were photographed twice on the same
day by mistake. In total there were 1,508 such pots distributed across 11 timepoints and different
trays. By comparing the area of the same pot of two different camera shots and segmentation
analyses, we could verify that the Spearman’s rho of rank correlation was very high (r=0.97, n=1508,

P<10*®), confirming high replicability.

Because we ran the same segmentation and skeletonization software on both rosette and
inflorescence images, we could leverage the clearly different image patterns that rosettes and
inflorescences have to identify labeling errors (i.e. mistakes in manually inputting sample information
of the pictures). To do this, we first trained a random forest model to predict the manually labeled
“rosette” or “inflorescence” by the four image variables (Fig. SII.5). By fitting a Random Forest with all
images, we find that the leave-one-out accuracy was 92.1%, i.e. ca. 2,000 images were incorrectly
labeled by the algorithm. We manually checked whether these were mislabeled or rather whether
they “looked similar” in terms of area or landmark points in the photo, e.g. when both rosette or
inflorescences were diminute. We found that only 2.5% were incorrectly mislabeled (and corrected

them) and are thus confident that the labeling error must be below 2.5%.

Experimental validation

Although repeating experiments in climatically-similar locations would be impractical, we could verify
that survival in Madrid and low precipitation correlated with a preliminary drought experiment in the
greenhouse® (Spearman’s rho=0.17, n=211, P=0.01). On the other hand, reproductive allocation
measured under optimal conditions in the greenhouse correlated with total seed output in the most

similar field experiments, Tiibingen high precipitation (Spearman’s rho=0.27, n=211, P=5x10°)**.
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SUPPLEMENTAL FIGURES Il

Figure SIl.1. Geographic distribution of accessions

Locations of Arabidopsis thaliana accessions used in this experiment (red), 1001G accessions (blue), and all

sightings of the species in gbif.org (grey).
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Figure SIlI.2. Field experiment design
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(A) Aerial view of foil tunnel settings in Madrid and (B) view inside the foil tunnel in Tibingen. (C) Spatial
distribution of blocks and replicates and (D) experimental design. (E) Soil water content and (F) soil surface

temperature from the 34 sensors monitoring each experimental block and conditions outside the tunnel.
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Figure Sll.3. Rosette monitoring
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(A) Customized dark box (“Fotomatén”) for image acquisition and example tray with the corresponding green
and red segmentation. (B) Trajectories of number of green pixels per pot, indicating rosette area, for Madrid
and Tubingen. (C) Distribution of the sum of red pixels per pot over all time frames. The red vertical line

indicates the heuristically chosen threshold to define whether the pot actually had a red marker.
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Figure Sll.4. Flowering time distributions
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(A) Flowering times per pot in the same spatial arrangement as in each tunnel (see Fig. SllI.2). (B) Distribution of

germination times. (C) Distribution of flowering times.
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Figure SII.5. Inflorescence and seed set estimation
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(A) Representative inflorescence picture. (B) Regression between the fruits of a few manually counted
inflorescences and the inflorescence size calculated based on image processing. The four variables inferred in
(C) accurately predicted the visually counted inflorescences as example (R?>=0.97, n=11, P=10"). (C) Resulting
variables from image processing of (A): total segmented area (upper-left), skeletonized inflorescence
(upper-right), branching points (lower-left), and endpoints (lower-right). Distribution of survival to reproduction

(D) and fruits per plant (E) in the four environments.
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SUPPLEMENTAL TABLES Il

Table SIl.1 Summaries of environmental sensor measurements

A total of 34 sensors were placed in the different treatment blocks (low/high) as well as outside (out) of the foil

tunnels. The median (interquartile) values of all sensors per treatment and location are shown.

Site Rainfall Soil water content (%) Air temperature (2C)
Madrid out 14.5 (1.09, 17.46) 8.5 (5.34, 12.39)
Madrid low 16.1(11.38, 22.51) 10.0 (6.95, 15.13)
Tuebingen low 14.7 (10.76, 20.09) 6.6 (3.27, 10.78)
Tuebingen out 27.7 (22.82, 30.50) 5.6 (2.44,9.54)
Tuebingen high 24.6 (20.73, 29.02) 6.6 (3.27, 10.78)
Madrid high 27.8(22.62, 33.00) 9.8 (6.82,15.13)
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Table SII.2 Variable descriptions

Variable names and their descriptions and units are reported (see Datasets). All datasets share a common

accession identification number.

Dataset

D1&D2&
D3&D4
D1&D2

D1&D2
D1&D2
D1&D2
D1&D2
D1&D2
D1&D2
D1&D2
D1&D2
D1&D2
D1&D2
D1&D2
D1&D2
D3&D4
D3&D4
D3&D4

D3&D4

D3&D4
D3&D4
D3&D4
D3&D4
D3&D4
D3&D4
D3&D4
D3&D4

D3&D4

D3&D4

D3&D4
D3&D4
D3&D4
D3&D4
D3&D4
D3&D4

Variable
id

name

country
sitename
latitude
longitude
collector
collectiondate
CS_number
Q_SNPcongruency
Q_geneticsdist
Q_geodist
is_relict
finalset

site

water

indpop
gpblock

ap

ap_x
ap_y
pos

rep
trayid
potindex

Germination_time
Green
Red

Survival_flowering
Flowering_date
Flowering_time
Inflorescence_size
Survival_num

Survival_fruit

Information

Unique numeric ID assigned to the accessions included in the 1001 Genomes
Project
Classic accession name assigned by original collector

Country of collection

Toponym of the location of collection

Degrees North of the location of origin (°N)

Degrees East of the location of origin (°E)

Original researcher that collected the accession

Calendar date of collection

Stock number in the Arabidopsis Biological Resource Center (abrc.osu.edu)
Pass/no pass of thresholds for genome quality and SNP calling congruency
Pass/no pass of the filter for almost identical accessions

Pass/no pass of filter for geographically close accessions

Belongs to the Mediterranean "relict" lineage

Included in the final 517 set for the field experiment

Field station site. m=Madrid(Spain), t=TlUbingen(Germany)
Rainfall/watering treatment. h=high rainfall, I=low rainfall

Density of plants per pot. i=single plant selected after germination,
p=population of 30 seeds growing undisturbed

Identification number of quickpot (tray) within treatment block (rainfall row x
replicate block )

Identification number of quickpot tray in the whole experiment

Pot position in x axis within the quickpot tray

Pot position in y axis within the quickpot tray

Pot x,y coordinate within the quickpot tray

Replicate number

Identification of the tray combining block and treatments
Identification of pot combining site, tray, and position within the tray

Inference of germination time based on the day that rosette area was over
1,000 pixels size (days after sowing)

Sum of all green areas per pot throughout the experiment (# pixels). This
helps to identify successfully growing pots.

Sum of all red areas per pot throughout the experiment (# pixels). This helps
to identify red tags placed on pots that failed throughout the experiment
Survival until reproduction (i.e. production of flowers)

Date that the first flowers had developed

Time from sowing until the date of flowering (days)

Area of inflorescence (#pixels)

Number of surviving plants until fruit set. Only applies to "population" pots.

Survival until fruit set (i.e. produced fruits)
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D3&D4

D3&D4

D3&D4

D3&D4

D3&D4

D3&D4

Fruits

Seeds
Infloresncence_byind
Fruits_byind
Seeds_byind

Fitness

Number of fruits inferred from the function between visually counted fruits
and inflorescence area, total path, branching points, and ending points.
Number of seeds inferred from the average number of seeds per fruit and
number of fruits.

Area of inflorescence (#pixels) divided by total number of plants per pot. Only
applies to "population" pots.

Number of fruits divided by total number of plants per pot. Only applies to
"population" pots.

Number of seeds divided by total number of plants per pot. Only applies to
"population" pots.

Lifetime fitness (number of seeds / seed planted). This metric integrates
survivorship and reproduction.
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DATASETS

Supplemental datasets are available in the online version of the paper x and are also deposited at

Figshare with doi: https://doi.org/10.6084/m9.figshare.6480599. A detailed descriptions of each

Dataset’s columns can be found in Table SlII.2.

Dataset 1 Quality-based selection of the original 1,135 accessions

We report the 1001 Genome identification numbers, the quality filters that each accession passed

during the selection of the 517 set.

Dataset 2 Description of the 517 accessions

We report the final set of 517 accessions that were used in the field experiment.

Dataset 3 All traits measured per replicate

For each pot replicate, we report all raw data as well as composite variables.

Dataset 4 Curated means per accession

For each accession, we report averages of all data as well as composite variables.
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ABSTRACT

By following the evolution of populations that are initially genetically homogeneous, much can be
learned about core biological principles. For example, it allows for detailed studies of the rate of
emergence of de novo mutations and their change in frequency due to drift and selection.
Unfortunately, in multicellular organisms with generation times of months or years, it is difficult to
set up and carry out such experiments over many generations. An alternative is provided by
“natural evolution experiments” that started from colonizations or invasions of new habitats by
selfing lineages. With limited or missing gene flow from other lineages, new mutations and their
effects can be easily detected. North America has been colonized in historic times by the plant
Arabidopsis thaliana, and although multiple intercrossing lineages are found today, many of the
individuals belong to a single lineage, HPG1. To determine in this lineage the rate of substitutions -
the subset of mutations that survived natural selection and drift —, we have sequenced genomes
from plants collected between 1863 and 2006. We identified 73 modern and 27 herbarium
specimens that belonged to HPG1. Using the estimated substitution rate, we infer that the last
common HPG1 ancestor lived in the early 17th century, when it was most likely introduced by
chance from Europe. Mutations in coding regions are depleted in frequency compared to those in
other portions of the genome, consistent with purifying selection. Nevertheless, a handful of
mutations is found at high frequency in present-day populations. We link these to detectable
phenotypic variance in traits of known ecological importance, life history and growth, which could
reflect their adaptive value. Our work showcases how, by applying genomics methods to a
combination of modern and historic samples from colonizing lineages, we can directly study new

mutations and their potential evolutionary relevance.

SUMMARY

A consequence of an increasingly interconnected world is the spread of species outside their native
range — a phenomenon with potentially dramatic impacts on ecosystem services. Using population
genomics, we can robustly infer dynamics of colonization and successful population establishment.
We have compared hundred genomes of a single Arabidopsis thaliana lineage in North America,

gth century herbarium specimens. These

including genomes of contemporary individuals as well as 1
differ by an average of about 200 mutations, and calculation of the nuclear evolutionary rate enabled
the dating of the initial colonization event to about 400 years ago. We also found mutations
associated with differences in traits among modern individuals, suggesting a role of new mutations in

recent adaptive evolution.
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INTRODUCTION

Colonizing or invasive populations sampled through time [1,2] constitute “natural experiments”
where it is possible to study evolutionary processes in action [3]. Colonizations, which are
dramatically increasing in number [4,5], sometimes are characterized by strong bottlenecks and
genetic isolation [6,7], and thus greatly facilitate the observation of new mutations and potentially
their effects under natural population dynamics and selection [8]. Colonizations thus offer a
complementary approach to other studies of new mutations, which often minimize natural selection,
for example in laboratory mutation accumulation experiments [9] and parent-offspring comparisons
[10]. The study of colonizations is also complementary to the investigation of genetic divergence over
long time scales, e.g., between distant species [11], where the results are largely independent of
short-term demographic fluctuations. There is broad interest in understanding how genetic diversity
is generated [12], and how new mutations can provide a path for rapid adaptive evolution [13—15].
Additionally, accurate evolutionary rates permit dating historic population splits, which is

fundamental to the study of population history [16].

The analysis of colonizing populations can also contribute to resolving the “genetic paradox
of invasion” [17]. This paradox comes from the observation that colonizing populations can be
surprisingly successful and spread very widely even when strongly bottlenecked, suggesting some
level of adaptation to new environments that goes beyond the exploitation of unoccupied ecological
niches [17]. Much of the work in plant ecology and evolution has focused on evidence that
populations can rapidly adapt from standing variation [18]. In invasive lineages, initial standing
variation may originate from incomplete bottlenecks, multiple introductions, or admixture with local
relatives [19]. Much less work has been done with respect to the role of de novo mutations as a
solution to the genetic paradox of invasion, although this has been proposed as an alternative

explanation for rapid adaptation by colonizing lineages [3,17,20].

The self-fertilizing plant Arabidopsis thaliana is native to Africa and Eurasia [21,22] but has
recently colonized N. America, where it likely experienced a strong founder effect [23]. At nearly half
of N. American sites sampled during the 1990s and early 2000s, more than 80% of plants belong to a
single haplogroup, HPG1, as inferred from genotyping with 149 intermediate-frequency markers
evenly spread throughout the genome [23]. The HPG1 lineage has been reported from many sites
along the East Coast and in the Midwest as well as at a few sites in the West [23] (Figure 1, Table S1).

The great ubiquity of HPG1 in comparison to any other haplogroup could be due to either some
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adaptive advantage, or, more parsimoniously, be the result of HPG1 being derived from one of the

first arrivals of A. thaliana in the continent.

Here, we focus on 100 HPG1 individuals that do not show any evidence of outcrossing with
other lineages. We combine genomes from herbarium specimens and live individuals, collectively
covering the time span from 1863 to 2006, to infer mutation rates, to date the birth of the HPG1
lineage, and to investigate the evolutionary forces that shape genetic diversity. Our analyses of this
lineage serves as a model for future studies of similar colonizing or otherwise recently bottlenecked
plant populations, in order to better understand how diversity is generated and to which extent it

contributes to adaptation in nature.

RESULTS AND DISCUSSION

Historic and modern genomes

In a self-fertilizing species, a single individual can give rise to an entire lineage of millions of offspring,
which then diversify through new mutations and eventually intra-lineage recombination. If
self-fertilization is much more common than outcrossing, the founder is likely to have been
homozygous throughout almost the entire genome. Because it is so wide spread, HPG1 presents an
opportunity to sample many natural populations that have been potentially derived from a common,
very recent ancestor with such characteristics. In the best possible case, this would allow for new
mutations to be directly observed through time. To test these assumptions and to better understand
the evolution of HPG1, we sequenced two different groups of plants. The first group were live
descendants of 87 plants that had been collected between 1993 and 2006 (Fig. 1; Table S1), and
which had been identified as likely members of the HPG1 lineage with 149 genome-wide markers
spaced at roughly 1-Mb-intervals [23]. We aimed for broad geographic representation, with at least
two accessions per collection site, where available. The second group comprised 36 herbarium
specimens, collected between 1863 and 1993, for which we had no a priori information whether
they may or may not belong to the HPG1 lineage, but which were selected from the herbarium
records to cover the full historical geographic range and overlap with modern samples when possible

(Fig. 1).

The DNA from the herbarium specimens showed biochemical features typical of ancient DNA
(aDNA) from plants, which we have previously described in detail [24]. Such DNA damage included a
median fragment length of 60 bp, an excess of C-to-T substitutions of about 2.5% at the first base of

sequencing reads and a 1.5 to 1.8 fold enrichment of purines at DNA breakpoints (Fig. S1,
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Supplementary Text 2). The reads of repaired |libraries are available at
https://www.ebi.ac.uk/ena/data/view/PRJEB24619. To remove aDNA associated damage and
produce high-quality genomes, chemically-repaired libraries (see Methods) were later sequenced.
These reads were mapped against an HPG1 pseudo-reference genome [25], focusing on single
nucleotide polymorphisms (SNPs) because the short sequence reads of herbarium samples preclude
accurate calling of structural variants. Genome sequences were of high quality, with herbarium
samples covering 96.8-107.2 Mb of the 119 Mb reference, and modern samples covering

108.0-108.3 Mb (Table S1).
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Figure 1. Geographic location and temporal distribution of HPG1 samples.
(A) Sampling locations of herbarium (blue) and modern individuals (green). (B) Temporal distribution of
samples (random vertical jitter for visualization purposes). (C) Linear regression of latitude and longitude as a

function of collection year (p-value of the slope and Pearson correlation coefficient are indicated)

Genetic diversity of HPG1 and delineation from other lineages

We visualized the relationships between the sequenced historic and modern plants building a

neighbor joining tree of all 123 samples and confirmed that the majority fell within a almost-identical
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clade, the HPG1 (Fig. 2A) [23]. Because any degree of introgression from other non-HPG1 lineages
would confound the discovery of new mutations downstream, we removed all divergent samples and
built a neighbour joining tree (n=103 samples), which revealed that the HPG1 samples were very
similar to each other, with very little within-population structure (Fig. 2B). A parsimony network was
used to detect recombinant genomes within this HPG1 clade (Fig. 2C), which led us to remove three
potential intra-lineage recombinants. Repeating the parsimony network cleared all previously
inferred reticulations due to recombinations (Fig. 2D). After such stringent filtering, we kept 27 of the
35 herbarium samples, and 73 of the 87 modern samples (Table S1). These constitute a set of

non-admixed, non-recombined and quasi-identical HPG1 individuals.

Pairs of HPG1 herbarium genomes differed by 28-207 SNPs genome-wide, pairs of HPG1
modern genomes by 2-259 SNPs, and pairs of historiccmodern HPG1 genomes by 56-244 SNPs. That
is, whole-genome identity was at least 99.9997% in any pairwise comparison. Of the approximately
five to six thousand segregating SNPs in the HPG1 population, the vast majority, about 95%
(Supplementary Text 3), have not been reported outside of this lineage [21]. Importantly, the density
of SNPs along the genome was low and evenly distributed (typically fewer than 20 SNPs / 100 kb)
with no peaks of much higher frequency, which makes us confident that chunks of introgressions
from other lineages do not exist in this putatively pure HPG1 set (Fig. 4). For comparison, random
pairs of A. thaliana accessions from the native range or pairs of non-HPG1 typically differ by about

500 SNPs / 100 kb [21] (see scale in Fig. 2A).
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Figure 2. Relationship among herbarium and modern samples.

(A) Neighbor joining tree with all 123 samples (dots) and rooted with the most distant sample. The black clade
of almost-identical samples is the HPG1 lineage. Scale line shows the equivalent branch length of over 25,000
nucleotide changes. (B) Neighbor joining tree only with the HPG1 black clade from (A). Colors represent
herbarium (blue) and modern individuals (green). Scale line shows the equivalent branch length of 80
nucleotide changes. Note that no outgroup was included. (C, D) Network of samples using the parsimony splits
algorithm, before (C) and after (D) removing three intra-HPG1 recombinants (in red). Note that the network
algorithm returns in (D) a network devoid of any reticulation, which indicates absence of intra-haplogroup

recombination.

There were no SNPs in mitochondrial nor chloroplast genomes, which already suggested a
recent common origin, and genome-wide nuclear diversity (m = 0.000002, 6,y = 0.00001, with 5,013
full informative segregating sites) was two orders of magnitude lower than in the native range of the
species (Byy = 0.007) [21] (Table S1) (Supplementary Text 6). The population recombination
parameter was also four orders of magnitude lower (4N r = p = 3.0x10% cm bp‘l) than in the native
range (p = 7.5x1072 cM bp'l) [26] (Supplementary Text 6). While recombination occurs in every
generation, regardless of self-fertilization or outcrossing, it is only observable after outcrossing
between genetically non-identical individuals. We must stress that because A. thaliana can outcross
at rates of several percent per generation [23,27], but because the HPG1 population is genetically so

homogeneous, we are mostly “blind” to the consequences of outcrossing in this special case. The
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lack of “observable recombination” in the genome is important, as it allows for the use of
straightforward phylogenetic methods to calculate a mutation rate. The enrichment of low frequency
variants in the site frequency spectrum (Tajima’s D = -2.84; species mean =-2.04, [21]) and low levels
of polymorphism are consistent with a recent bottleneck followed by population expansion (Fig. 3).
The obvious explanation is that the strong bottleneck corresponds to a colonization founder event,

likely by few closely related individuals or perhaps even a single plant.

Altogether these patterns indicate that the collection of HPG1 plants we investigated
constitute a quasi-clonal and quasi-identical set of individual genomes, mostly devoid of observable
recombination and population structure, and thus eminently suited for the study of naturally arising

de novo mutations.

The genome-wide substitution rate

It is important to distinguish between the mutation rate, which is the rate at which genomes change
due to DNA damage, faulty repair, gene conversion and replication errors, and substitution rate,
which is the rate at which mutations survive and accumulate under the influence of demographic
processes and natural selection [28,29]. Under neutral evolution, mutation and substitution rates
should be equal [29]. The simple evolutionary history of the HPG1 population enables direct
estimates of substitution rates, and the comparison of theses between different genome
annotations, as well as with mutation rates from controlled conditions experiments, could reveal the

role played by both demographic and selective forces.

To estimate the substitution rate in the HPG1 lineage, we used distance- and
phylogeny-based methods that take advantage of the known collection dates (Supplementary Text 7).
The distance method is independent of recombination and has been previously applied to viruses
[30] and humans [31]. The substitution rate is calculated from correlation between differences in
collection time in historic-modern sample pairs, and the number of nucleotide differences between
those pairs relative to a reference (Fig. 3C), scaled to the size of the genome accessible to Illumina
sequencing. This method resulted in an estimated rate of 2.11x107 substitutions site™ year'1 (95%
bootstrap Confidence Interval [CI]: 1.88—2.33x10'9) using rigorous SNP calling quality thresholds.
Relaxing the thresholds for base calling and minimum genotyped rate affects both the number of
called SNPs and the length of the interrogated reference sequence [32]. These largely cancelled each
other out, and the adjusted estimates were relatively stable, between 2.1-3.2x1072 substitutions

site’ year'1 (Table S3, Supplementary Text 3).
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Figure 3. Substitution rates.

(A) Bayesian phylogenetic analyses employing tip-calibration. A total of 10,000 trees were superimposed as
transparent lines, and the most common topology was plotted solidly. Tree branches were calibrated with their
corresponding collection dates. (B) Maximum Clade Credibility (MCC) tree summarizing the trees in (A). Note
the scale line shows the equivalent branch length of 50 nucleotide changes. The grey transparent bar indicates
the 95% Highest Posterior Probability of the root date. (C) Regression between pairwise net genetic and time
distances. The slope of the linear regression line corresponds to the genome substitution rate per year. (D)
Substitution spectra in HPG1 samples, compared to greenhouse-grown mutation accumulation (MA) lines. (E)
Comparison of genome-wide, intergenic, intronic, and genic substitution rates in HPG1 and mutation rates in

greenhouse-grown MA lines. Substitution rates for HPG1 were re-scaled to a per generation basis assuming
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different generation times. Confidence intervals in HPG1 substitution rates were obtained from 95% confidence

intervals of the slope from 1,000 bootstraps (Table S4 for actual values).

The second method, a Bayesian phylogenetic approach, uses the collection years for
tip-calibration and assumes a relaxed molecular clock. It summarizes thousands of plausible
coalescent trees, and it has been extensively used to calculate evolutionary rates in various
organisms [33—35]. This method yielded a substitution rate of 4.0x10'9, with confidence ranges

overlapping the above estimates (95% Highest Posterior Probability Density [HPPD]: 3.2—4.7x10'9).

Based on the similar results obtained with two very different methods, we can confidently

say that the substitution rate in the wild populations of HPG1 is between 2 and 5 x107 site’1 year'l.

To date the colonization of N. America by HPG1 A. thaliana and to improve the description
of intra-HPG1 relationships compared to that from a NJ tree, we further used a Bayesian phylogeny.
At first sight, the 73 modern samples appeared separated from the herbarium samples (Fig. 3B), but
the superimposition of thousands of possible trees showed that the apparent separation of samples
was less clear near the root (Fig. 3A). Long terminal branches reflected that the majority of the

variants are singletons, typical of populations that expand after bottlenecks.

The mean estimate of the last common HPG1 ancestor, the average tree root, was the year
1597 (HPPD 95%: 1519-1660) (Fig. 3A, B), and an alternative non-phylogenetic method gave a similar

estimate, 1625. Both estimates are older than a previously suggested date in the 19th

century, using
a laboratory mutation rate estimate and having no information from herbarium samples [25].
Because HPG1 appears to have been the most abundant lineage in N. America since the 1860s, we
believe it could have been one of the first, if not the first colonizer that could establish itself in N.
America. If that is true, the time of coalescence of the HPG1 diversity could be close to the time of
HPG1 introduction to N. America. During the colonial period, many European immigrants settled on
the East coast, consistent with N. American A. thaliana lineages being genetically closest to British
and coastal West European populations [21]. Coincidently, the oldest herbarium samples (12 out of
the 27) were HPG1 and came from the East Coast, and we found a significant correlation between
collection date and both latitude and longitude (Fig. 1C). This could indicate that after the
colonization they moved from the East Coast to the Midwest — the other main area of the
distribution that experienced an agricultural expansion in the 19th century [36]. Still, these
conclusions need to be treated with caution, since regardless of the robustness of the results and our
attempts to sample evenly from available collections, there could be unknown biases in the 19th

century herbaria.
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Mutation spectra across genome annotations

Although for dating divergence events a substitution rate expressed in years is ideal, in order to
compare substitution and mutation rates, both need to be expressed per generation. While A.
thaliana is an annual plant, seed bank dynamics generate a delay of average generation time at the
population scale. A comprehensive study of multiple A. thaliana populations in Scandinavia found
that dormant seeds could wait for longer than a year in the seed bank, generating overlapping
generations and an delayed average generation time of 1.3 years [37] with a notable variance across
populations. Multiplication by the mean generation time led to an adjusted rate of 2.7x107°
substitutions site™! genera‘tion'1 (95% ClI 2.4-3.0x10'9) (Fig. 3E). To be able to compare this rate with a
reference, we also re-sequenced mutation accumulation (MA) lines in the Col-0 reference
background grown under controlled conditions in the greenhouse that had been analyzed before
with less advanced short read sequencing technology [38]. From the new re-sequencing data, we
obtained an updated rate of 7.1x10° mutations site™ genera’cion'1 (95% Cl 6.3—7.9x10'9) (Tables S2,
S3, Supplementary Text 4 and 7). This mutation rate is two- to three-fold higher than the
per-generation substitution rate estimate in the wild, but within the same order of magnitude. The
same holds for rates in different genome annotations, i.e. genic, intronic and intergenic regions, but

the confidence intervals overlapped in many cases (Table S3).

Differences in per-generation rates between laboratory and wild populations could stem
from both methodological as well as biological causes. For instance, if the true average generation
time was actually over 3 years / generation, the differences would cancel out (Fig. 3E). Limitations in
mapping structural variation in non-reference samples could lower the substitution rate, which may
explain why we calculated an atypically low substitution rate in regions with transposable elements
(see Supplementary Text 7.2.1). Environmentally-driven effects that are not yet well understood, such
as variable methylation status of cytosines, account for much of the variation in local substitution

rates [39], and could increase or decrease the rate (see Supplementary Text 7.2.3, Fig. S4).

An alternative evolutionary explanation to the aforementioned laboratory and wild
populations’ rates differences is that purifying selection in the wild would slow down the
accumulation of mutations by removing deleterious mutations (Fig. 3E). This has been observed
before and is one of the accepted causes of the discrepancy between the so called long- and

short-term substitution rates in a range of organisms [40].

In order to provide evidence for negative purifying selection acting in the wild, we performed
three types of analyses involving comparisons across genomic annotations within the HPG1 dataset.

Firstly, by calculating contingency tables and computing a Fisher’s exact test, we compared the
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deviation of expected and observed SNPs between coding regions (more likely under purifying
selection), with intergenic regions, intronic regions, and all non-coding regions of genome. All three
pairwise comparisons showed a depletion of coding SNPs and an enrichment of intergenic, intronic
and non-coding SNPs (odds ratio>2, p<10'16). An obvious explanation is that in genome annotations
where a mutation is more likely to be deleterious, i.e. coding regions, the number of observed
variants should be lower due to selection having removed them from the population before we could

sequence them.

Secondly, we studied the Site Frequency Spectrum (SFS) of genetic variants. The rationale
was that because purifying natural selection is more efficient at removing intermediate-frequency
variants, variants that tend to be deleterious or slightly deleterious should be found at lower
frequency than those that only suffer neutral drift [41]. We built contingency tables of coding,
intergenic, intronic and non-coding variants segregating above and and below the conventional
frequency cutoff of 5% to separate low- and intermediate-frequency variants [42]. We found that
SNPs in coding regions were more likely to be at low frequency than those in intergenic (odds
ratio=2.34, p=3.09x10'11), intronic (odds ratio=1.48, p=0.02), and all non-coding regions (odds
ratio=2.05, p:1.29x10'8). We carried out the same analysis using nonsynonymous and synonymous
SNPs, which are easily interpretable in terms of the selection regimes under which they evolve. We
did not find an enrichment (p=0.67), perhaps due to an insufficient number of testable mutations

(Table S3).

Thirdly, to verify that the full frequency spectrum of coding SNPs was shifted to lower
frequencies (i.e. the results were not dependent on the arbitrary 5% frequency cutoff), we used the
nonparametric Kolmogorov-Smirnov test for two samples. We found that the cumulative distribution
of the site frequency spectrum (CDgpg) of coding regions is above (i.e., the frequency distribution is
overall skewed to lower values) both the intergenic CDgpg (p=3.25x10'6) and the non-coding regions
CDgrs (p=0.001), but not the intronic CDggg (p=0.60) (Fig. S5). As in our previous analysis, the
comparison between the nonsynonymous and synonymous CDgfs yielded, likely for similar reasons,

no differences (p=0.53).

All in all, these results support that purifying selection is a force shaping to some degree the
diversity across the HPG1 genome and might therefore as well contribute to the differences between

HPG1 and MA rates.

Potentially advantageous de novo mutations

Finally, having discovered over 5,000 de novo mutations in the HPG1 lineage, we wondered whether

there is any evidence for an adaptive role of these de novo mutations in the colonization of N.
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America by HPG1. We noted that some new mutations had risen to intermediate or even high
frequencies in the HPG1 samples. This might have been the consequence of drift from stochastic
demographic processes, or it could have been caused by positive natural selection. To find direct
evidence for the latter, we grew the modern accessions in a common garden and studied phenotypes
of known importance in ecology of invasions [43], namely flowering time and root traits (see
Supplementary Text 8). Using linear mixed models, we calculated the proportion of variance
explained (also called narrow sense heritability, hz) with a kinship matrix of all SNPs that had become
common (>5%, n=391). We found significant heritable variation for multiple traits including the
growth rate in length (h2=0.64) and the average root gravitropic direction (h2=0.54). As in our study
mutations are the main source of genetic variants, these mutations — or mutations linked to them —
should be responsible for significant quantitative variation in several traits (Table S4, Supplementary
Text 10). The existence of mutation-driven phenotypic variation at least indicates that natural

selection could have acted upon such phenotypic variation.
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Figure 4. Density of SNPs along all chromosomes and location of GWAS hits
Black line shows number of SNPs per 100 kb window. Centromere locations are indicated by grey shading.
Vertical lines indicate SNPs associated with root phenotypes (red) and climatic variables (blue) (Table 1 and

Table S5).

Although linkage disequilibrium (LD) among SNPs is high, the fact that HPG1 genomes differ
in very few SNPs greatly reduces the list of candidate loci that might generate the observed
phenotypic variation (Fig. S7) [44]. With this reasoning in mind and understanding the limitations
imposed by LD, we carried out a genome-wide association (GWA) analysis and found 79 SNPs
associated with one or more root traits, mostly growth and directionality (Fig. 4). Twelve SNPs were
in coding regions and seven resulted in nonsynonymous changes — some producing
non-conservative amino-acid changes and thus likely to affect protein structure and/or function
(Table 1, based on transition scores from [45]). Due to the aforementioned LD, in some cases the
results of associations could not be confidently assigned to a specific SNP and thus we report the

number of other associated mutations with r2 > 0.5 (Table 1, Fig. S7). We note thatFor other cases,
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we were able to pinpoint clear candidates that were not in LD with other SNPs and whose functional
annotation had a strong connection to the phenotype (Table 1, Fig. S7). For example, one SNP
associated with root gravitropism was not linked to any other SNP hit and it was found at 40%
frequency (top 3% percentile). This SNP produces a cysteine to tryptophan change in AT5G19330,
which is involved in abscisic acid response and confers salt tolerance when overexpressed [46].
Another nonsynonymous SNP associated with root growth is located in AT2G38910, which encodes a
calcium-dependent kinase that is a factor regulating root hydraulic conductivity and phytohormone

response in vitro [47,48].

Table 1. Genic SNPs associated with different traits.

For nonsynonymous SNPs, the amino acid change and the Grantham score (ranging from 0 to 215), which
measures the physico-chemical properties of the amino acids, are reported. All SNPs in the table were
significant (p < 0.05) after raw p-values were corrected by an empirical p-value distribution from a permutation
procedure. * highlights those that also passed a double Bonferroni threshold, correcting by number of SNPs
and number of phenotypes (p < 0.0001). LD corresponds to how many other SNP hits are in high linkage
(r2>0.5). Table S5 contains information on all significant SNPs and Table S4 for details on phenotypes and

climatic variables.

Trait' Location Gene Anno- Protein aa change LD Bonf.
(chr-bp) tation

G 1-958,948 AT1G03810 nonsyn Oligonucleotide binding A>P, 27 53
D 1-13,994,958 AT1G36933 transposon Copia 49
S 1-20,324,050  AT1G54440 intronic RRP6-LIKE 1 11 *
D 1-23,648,407 AT1G63740 nonsyn TIR-NLR family Y>S, 144 46
G 2-358,395 AT2G01820 syn RLK family 43 *
G 2-585,918 AT2G02220 syn PSKR1 42 *
G 2-6,034,545 AT2G14247 syn Expressed protein 38 &
G 2-7,047,529 AT2G16270 nonsyn Unknown protein P>A, 27 37 *
G 2-7,186,220 AT2G16580 intronic SAUR8 36 *
G 2-10,495,275 AT2G24680 intronic B3 family 34 *
G 2-12,415,084 AT2G28900 intronic OEP16 32
S 2-16,039,488 AT2G38290 3'UTR AMT2 8 *
S 2-16,247,290  AT2G38910 nonsyn CPK20 A>G, 60 7 *
G 2-16,333,662 AT2G39160 nonsyn Unknown protein A>G, 60 29
G 3-2,500,258 AT3G07830 syn PGA3 28 *
G 3-3,629,794 AT3G11530 intronic VPS55 26 *
G 3-4,269,626 AT3G13229 5'UTR DUF868 domain 25 *
D 3-11,873,293 AT3G30219 transposon Gypsy 0

G&D 4-4,228,138 AT4G07440 transposon Oligonucleotide binding 19
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G&D 4-9,046,942 AT4G15960 nonsyn Alpha/beta-hydrolase A>Q, 24 18
G&D  4-15,646,341 AT4G32410 syn ANY1 15
G 4-15,845,001 AT4G32840 3'UTR PFK6 14
D 5-4,245,213 AT5G13260 syn Unknown protein 12
D 5-4,500,202 AT5G13950 nonsyn Unknown protein A>G, 60 11
G 5-4,797,923 AT5G14830 transposon Retrotransposon 10
G 5-6,508,329 AT5G19330 nonsyn ARIA Cc>W, 215 0
G 5-11,090,365 AT5G29037 transposon Gypsy 4
G 5-12,312,975 AT5G32630 pseudogene - 3
G 5-12,358,159 AT5G32825 transposon CACTA 2
S 5-16,024,197 AT5G40020 intronic Thaumatin superfamily 2

Mraits with significant associations were root gravitropism (G), size (S), or low summer precipitation.

Nineteen other SNPs were associated with climate variables after correction for latitude and

longitude (www.worldclim.org, Table S4), and generally tended to coincide with top root-associated

SNPs (odds ratio = 3.9, Fisher’s Exact test p = 0.002; Fig. 4, and Table S5). Specifically, this means that
alleles increasing root length and gravitropic growth were present in areas with lower precipitation,
and vice versa (Pearson’s correlation r=0.85, p=0.003). This indicates that phenotypic variation
generated by mutations coincides with environmental (and not geographic) gradients along the
colonized areas. Compared to other mutations with matched allele frequencies, root-associated
mutations are first found in older herbarium samples nearer to Lake Michigan (Fig. S6), the area in N.
America that seems to be most densely populated by A. thaliana [21]. A moreThis could be explained
by natural selection having maintained mutations with phenotypic effect for a longer time than
neutral mutations or perhaps that these mutations were selected for in a new environment. All in all,
our results are compatible with natural positive selection having already acted on root morphology
variation that was generated by de novo mutations in this colonizing lineage. To confirm such
hypotheses of local adaptation by de novo mutations, it will be necessary to grow collections of
divergent HPG1 individuals in multiple contrasting locations over several years, and ideally revive

historical specimens to compare performance [49].

Conclusions

In summary, we have exploited whole-genome information from historic and contemporary
collections of a herbaceous plant to empirically characterize evolutionary forces during a recent
colonization. With this natural time series experiment we could directly estimate the nuclear
substitution rate in wild A. thaliana populations — a parameter difficult to characterize experimentally

[9]. This allowed us to date the colonization time and spread of HPG1 in N. America. We provide
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evidence that purifying selection has already changed the site frequency spectrum in the course of
just a few centuries. Finally, we discovered that a small number of de novo mutations that rose to
intermediate frequency can together explain quantitative variation in root traits across
environments. This strengthens the hypothesis that some de novo variation could have had an
adaptive value during the colonization and expansion process, a hypothesis that has been put
forward as one of the possible solutions to the genetic paradox of invasion in plants [17]. This
process might be more relevant in self-fertilizing plants, which typically have less diversity than
outcrossing ones [50], but have higher growth rates [43] and account for the majority of successful
plant colonizers [5]. While A. thaliana HPG1 is not an invasive, i.e. harmful, species, it can teach us
about fundamental evolutionary processes behind successful colonizations and adaptation to new
environments. Our work should encourage others to search for similar natural experiments and to

unlock the potential of herbarium specimens to study “evolution in action”.

METHODS

Sample collection and DNA sequencing

Modern A. thaliana accessions were from the collection described by Platt and colleagues [23], who
identified HPG1 candidates based on 149 genome-wide SNPs (Table S1, Supplementary Text 1).
Herbarium specimens were directly sampled by Max Planck colleagues Jane Devos and Gautam
Shirsekar, or sent to us by collection curators from various herbaria (Table S1, Supplementary Text 1).
Among the substantial number of specimens in the herbaria of the University of Connecticut, the
Chicago Field Museum and the New York Botanical Garden, we selected herbarium specimens
spaced in time so there was at least one sample per decade starting from the oldest record (1863).
The differences in geographic biases of herbarium and modern collections are difficult to know [2],
thus we did choose both historic and modern samples that were as regularly distributed in space as
possible, and sample overlapping locations wherever possible. DNA from herbarium specimens was
extracted as described [51] in a clean room facility at the University of Tibingen. Two sequencing
libraries with sample-specific barcodes were prepared following established protocols, with and
without repair of deaminated sites using uracil-DNA glycosylase and endonuclease VIII (refs. [52-54])
(Supplementary Text 2). We also investigated patterns of DNA fragmentation and damage typical of
ancient DNA [24] (Supplementary Text 2). DNA from modern individuals was extracted from pools of
eight siblings using the DNeasy plant mini kit (Qiagen, Hilgendorf, Germany). Genomic DNA libraries
were prepared using the TruSeq DNA Sample or TruSeq Nano DNA sample prep kits (Illumina, San
Diego, CA), and sequenced on lllumina HiSeq 2000, HiSeq 2500 or MiSeq instruments. Paired-end

reads from modern samples were trimmed and quality filtered before mapping using the SHORE

Appendix lll - 17



Exposito-Alonso, Becker et al. de novo mutation rate in A. thaliana

pipeline v0.9.0 [25,55]. Because ancient DNA fragments are short (Fig. S1) we merged forward and
reverse reads for herbarium samples after trimming, requiring a minimum of 11 bp overlap [51], and
treated the resulting as single-end reads. Reads were mapped with GenomeMapper v0.4.5s [56]
against an HPG1 pseudo-reference genome [25], and against the Col-0 reference genome, and SNPs
were called with SHORE for the HPG1 pseudo-reference genome mappings [25,57] using different
thresholds (Supplementary Text 3). Average coverage depth, number of covered genome positions,
and number of SNPs identified per accession relative to HPG1 are reported in Table S1. We also
re-sequenced the genomes of twelve Col-0 MA lines [57,58] (Table S2) (Supplementary text 4) to
recalculate and update the laboratory mutation rate from Ossowski et al. [38] with the newer

sequencing technologies.

Phylogenetic methods and genome-wide statistics

We used the Pegas, Ape and Adegenet packages in R [59—61] to manipulate and visualize the genetic
distances of all samples as well as the HPG1 subset (Supplementary Text 7). We constructed
parsimony networks using SplitsTree v.4.12.3 [62], with confidence values calculated with 1,000
bootstrap iterations. We built Maximum Clade Credibility Trees using the Bayesian phylogenetic tools

implemented in BEAST v.1.8 [63] (see below).

Transforming the variant sites into a FASTA format, we estimated genetic diversity as
Watterson’s 6 [64] and nucleotide diversity i, and the difference between these two statistics as
Tajimas’s D [65] using DnaSP v5 [66]. Then we re-scaled the estimates using the
sequencing-accessible genome sizes (Table S3). We estimated pairwise linkage disequilibrium (LD)
between all possible combinations of informative sites, ignoring singletons, by computing rz, D and
D’ statistics using DnaSP v5 [66]. For the modern individuals, we calculated the recombination

parameter rho (4N,r) also using DnaSP v5 [66].

Substitution and mutation rate analyses

Similarly as in Fu et al. [67], we used genome-wide nuclear SNPs to calculate pairwise “net” genetic
distances using the equation D' = D;c-Djc, where D'; is the net distance between a modern sample i
and a herbarium sample j; D;. the distance between the modern sample i and the reference genome
¢; and Djc is the distance between a modern sample (j) and the reference genome (c). We calculated
a pairwise time distance in years between the collection times, T'ij, and calculated the linear
regression: D' = a+bT'. The slope coefficient b describes the number of substitution changes per year.

We used either all SNPs or subsets of SNPs at different annotations (genic, intergenic etc.)

appropriately scaled by accessible genome length. Because the points used to calculate the
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regression are non-independent, a bootstrap has been recommended to overcome to a certain

extent the anti-conservative confidence intervals [30] (Supplementary Text 7 and Fig. S3).

To fully account for the non-independence of points, we need to work with phylogenies. The
Bayesian phylogenetics approach we used is implemented in BEAST v1.8 [63] and is called
tip-calibration, and calculates a substitution rate along the phylogeny. Our analysis optimized
simultaneously and in an iterative fashion using a Monte Carlo Markov Chain (MCMC) a tree
topology, branch length, substitution rate, and a demographic Skygrid model (Supplementary Text 7).
The demographic model is a Bayesian nonparametric one that is optimized for multiple loci and that
allows for complex demographic trajectories by estimating population sizes in time bins across the
tree based on the number of coalescent - branching - events per bin [68]. We also performed a
second analysis run using a fixed prior for substitution rate of 3x1072 substitutions site™! year'1 based
on our previous net distance estimate to confirm that the MCMC had the same parameter

convergence, e.g. tree topology, as in the first “estimate-all-parameters” run.

Having a substitution rate per year we can estimate the time to the most common recent
ancestor L solving d = 2L x u where d is the average pairwise genetic distance between our samples
and u is the calculated substitution rate from the distance method. This yielded 363 years, which
subtracted to the average collection date of the samples, produced a point estimate of 1615. We

compare this estimate with the inferred phylogeny root from the BEAST analysis.

Inference of genome-wide selection

We separately analyzed sequences at different annotations, since as they might be under different
selection regimes (i.e. evolutionary constraints). We computed, using the HPG1 dataset, one-tailed
Fisher’s exact test using the base stats package in R [69] on contingency tables of the total number of
base pairs against the number of SNPs, and those separated by positions being annotated as a coding
against non-coding (intergenic, intronic, all other noncoding). The test returned whether coding
regions have a lower number of SNPs than other reference annotation (intronic, interenic, all
non-coding regions), as expected by the total number of positions in the genome annotated as such.
We also constructed contingency tables to test whether SNPs annotated as coding compared to
those annotated as non-coding were more likely to be found at low (<5%) or intermediate (52%)

frequency.

Finally, we calculated the unfolded Site Frequency Spectrum (SFS) based on the order of
appearance of genetic variants in the herbarium dataset. We then used the Kolmogorov—Smirnov
two-samples test and 10,000 bootstrap resampling using the R package Matching v. 4.9-2 (ref. [70])

to calculate whether the frequency spectrum was lower for coding SNPs than for other SNPs.
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Additionally, we also repeated these analyses comparing nonsynonymous and synonymous

mutations instead of coding and non-coding regions.

Association analysis

We collected flowering, seed and root morphology phenotypes for 63 accessions (Supplementary
Text 8). For associations with climate parameters, we followed a similar rationale as previously
described [71]. We extracted information from the bioclim database

(http://www.worldclim.org/bioclim) at a 2.5 degrees resolution raster and intersected it with

geographic locations of HPG1 samples (n = 100). We performed association analyses under several
models and p-value corrections using the R package GeneABEL [72] (Supplementary Text 8.2). To
calculate the variance of the trait explained by all genetic variants, we used a linear mixed model: y =
Xb + Zu + € ; where y is the phenotype or climate variable, X is the genotype states at a given SNP, b is
the fixed phenotypic effect of such SNP, Z is the design matrix of genome identities, u is the random
genome background effect informed by the kinship matrix and distributed as MVN (O, ogA), and s
the random error term. The ratio of Og / o is commonly called narrow sense heritability, “chip”
heritability, or proportion of variance explained by genotype [73]. Only SNPs with MAF>5% (n=391)
were used to build a kinship or relationship matrix A. Note that the differences between any two
genotypes were of the order of one or few dozens of SNPs. While this approach is appropriate to
calculate a chip heritability, it would not be very useful to detect significant SNP, as the random factor
accumulates all the available variation (Table S4). We therefore run a regular GWA model without
kinship matrix: y = Xb + € ; but generated a p-value empirical null distribution based on running such
model over 1,000 permuted datasets, which lead to conservative significance calculation (Fig. S7,
Data Appendix S1). The p-values from running the association in the real data that were below the
5% tail in the empirical distribution could be considered significant. However, we also established a
conservative “double” Bonferroni correction, where the significant threshold was lowered to 0.01%
(= 5% / [number of SNPs + number of phenotypes tested]). All significant SNPs are shown in Table S5,
and a subset in Table 1. Although many phenotypic traits did not have significant SNPs, we show all
the QQ plots in the Data Appendix S1 file.

Accession numbers. Short reads have been deposited in the European Nucleotide Archive under the

accession number https://www.ebi.ac.uk/ena/data/view/PRJEB24619.

Online Content This article contains supplementary information including data sets, extended

methods and supplementary figures at https://doi.org/10.1371/journal.pgen.1007155.
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Text S1: Detailed methods and analyses

1. Sample collection and preparation
Seeds from modern accessions (Table S1) were bulked at the University of Chicago. Progeny for DNA
extraction was grown at the Max Planck Institute for Developmental Biology. We used 2 to 8 mm?Z of

dried tissue for destructive sampling from the herbarium specimens (Table S1).

2. Authenticity of aDNA

First, unrepaired sequencing herbarium libraries were screened for authenticity by sequencing at low
coverage on lllumina HiSeq 2500 or MiSeq instruments. To verify the DNA retrieved from historical
samples of A. thaliana was authentic, we checked the percentage of endogenous DNA of the sample
(Fig. S1A) as well as typical postmortem DNA damages: high fragmentation of DNA (Fig. S1B),
enrichment of substitution from C to T at the first base pair (Fig. S1C) as well as purine enrichment at
breakpoints of DNA fragments (Fig. S1D) (for details see [1]). Sequencing to produce the final
genomes (101 bp paired end) was carried out on an Illlumina HiSeq 2000 instrument after DNA repair
by uracil-DNA glycosylase [2—4]. For a detailed analysis of authenticity in a fraction of our samples,

see Weiss et al. [1].

3. SNP calling thresholds

To assess the effect of SNP calling thresholds on the mutation rate, we employed three different
SHORE v0.9.0 quality thresholds following previous work (see Table S4 from [5]): allowing at most
one intermediate penalty in all strains (most stringent threshold; “32-32"”); requesting that at least
one strain had at most one intermediate penalty, while all others were allowed up to two high and
one intermediate penalties (intermediate stringency, “32-15"); and finally allowing one high and one
intermediate penalty for all strains (most lenient stringency, “24-24"). On top of that, we would
either allow missing information per SNP in up to 50% of accessions, or request complete
information (0% missing rate). Thus, the most rigorous case would be 32-32 quality and 0% missing
rate, and the most relaxed 24-24 quality and 50% maximum missing rate. Substitution rate
calculations (section 7.2) were done for datasets from all combinations of these quality parameters
(Fig. S3), and we chose the regular 32_15 quality threshold and complete information for the final

estimate (Fig 3 C, E).

4. Resequencing of Col-0 Mutation Accumulation lines
We also sequenced the genomes of twelve greenhouse-grown mutation accumulation (MA) lines,

including ten that had been sequenced at lower coverage before [5,6] (Table S2). We called SNPs,
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indels and structural variants (SVs), following the workflow and parameters described [7], but
without iterations. This procedure resulted in 2,203 polymorphisms shared by all lines, indicating
errors in the reference sequence (12% of variants replaced N's in the TAIR9 genome) or genetic
differences in the founder plant of the MA population compared to the Col-0 reference genome. In
addition, we identified 388 segregating variants across the twelve lines (Table S2), of which 350 were
singletons. This analysis revealed on average 25.5 SNPs, 4.9 deletions and 3.2 insertions per MA line
at the 315t generation (Table S2), compared to 19.6 SNPs, 2.4 deletions and 1.0 insertions previously
detected in the 30t generation with shorter read length and lower read depth [8]. The genome
length accessed in this sequencing effort, 115,954,227 bp, was used to scale the number of point

mutations to a rate of 7.1 x 10™ mutations site™ ! genera‘tion'1 (Table S3, Fig. 3E).

5. Identification of bona fide HPG1 accessions and mutations
5.1 HPG1 and other haplogroups in North America
The modern samples had been originally selected based on previous genotyping efforts of about
2,000 N. American accessions with for 149 nuclear, intermediate-frequency SNPs. This work had
pointed to there being a single haplogroup, HPG1, that was invariant at these 149 markers and that
accounted for about half of N. American individuals genotyped [9]. We extracted from the 123
genomes we had completely sequenced the same 149 SNPs and built a neighbour joining tree (Fig.
S1A). We also built the same tree with the whole-genome sequences (Fig. S1B), which was mostly in
agreement with the 149 SNP tree.

The previous work had identified several other haplogroup in N. America [9]. Not
surprisingly, HPG1 individuals outcross with other lineages, and this accounts for some of the
individuals which we later removed, because they did not agree completely in all 149 markers with

the HPG1 consensus.

5.2 North american private diversity
Having identified these bona fide HPG1 individuals, we wanted to confirm that the diversity has a
legitimate origin from de novo mutations. For that we used the 1001 Genomes resource

(www.1001genomes.org), which covers a sampling of populations from the native Eurasian and

African range. Subsetting the genomes from this resource to only European accessions, and limiting
the SNP set to those with 21% frequency of alternative alleles and a maximum of 50% missing data
(the same quality rate as our HPG1 SNP call), there were 300 variants out of all 5,181 HPG1 variants
that were also found in Europe or Asia (5.7%). Changing the maximum missing data to 10% we get a

more conservative estimate of 1.8% overlap, while increasing the maximum missing data to 90%, we
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get the anti-conservative estimate of 6.5% overlap. Only one of the reported SNPs associated with
phenotypes (see Section 8) was among these shared variants.

There are several scenarios that can explain these shared SNPs. One is simply that there was
not a single founding seed, but a few of closely related individuals coming from the native range.
Other explanations are that parallel mutations occurred in North America and Eurasia, that HPG1
individuals were reintroduced to Europe, or that reversion-mutation occurred in some HPG1
individuals. The latter is not implausible given the large population size of the species and the fact
that about 10% of all sites in the genome are SNPs in the 1001 Genomes collection. As explained in
the main text, SNP sharing due to admixture with other lineages is extremely unlikely, as such cases
should be evident as blocks of high SNP diversity along the genome (Fig. 4).

Finally, regarding chloroplast diversity, we did not find any SNP in the chloroplast of HPG1
individuals. This is probably because chloroplast mutation rates are much slower [10] and because
the founder colonizers actually came from a small batch of seeds from an identical mother

(chloroplast diversity in the native range is of 2,842 SNPs [11]).

6. Extent of linkage disequilibrium and recombination

We estimated pairwise linkage disequilibrium (LD) between all possible combinations of informative
sites, ignoring singletons, by computing r2, D and D’ statistics. LD decay was estimated using a linear
regression approach. Linkage disequilibrium parameter |D’| did not decay with physical distance
(intercept = 0.99, slope = 0.00) among all SNP pairs. Indeed 99.975% of pairwise SNP comparisons
had |D’|=1 meaning that 99.975% of those comparisons only three out of the four possible gametes
(ab, aB, Ab, AB) are found and thus mutation alone can explain their existence without the need of
invoking recombination. In other words, such three gametes can be represented in a tree structure.

LD and recombination related statistics were determined using DnaSP v5 [12].

7. Substitution and mutation rate analyses

7.1 Greenhouse grown MA lines

Mutation rates were estimated for each 31°% generation greenhouse-grown MA line [5] as the
number of mutations divided by the total bp length of the genome (or a given annotation) and by 31
generations (the two MA lines with only three generations were excluded from this analysis). Mean
and confidence intervals across lines are reported (Table S3). The genome length was determined as
all base pairs with coverage higher or equal to 3, and a SHORE mapping quality score of at least 32 in

one sample (Table S2).
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7.2 Natural populations of HPG1

7.2.1 Net distances

For the “net genetic distances” method, we computed confidence intervals of the b regression slope
coefficient (D' = a+bT') using a bootstrap with replacement of 1,000 samples to avoid over-confident
confidence intervals due to lack of independence of points [13]. We used either all SNPs or SNPs at
specific annotations to calculate different substitution rates and scaled the slope into a per-base rate
using all positions (of the given annotation) that passed alternative or reference call quality
thresholds rather than using a single value of genome length (Table S3). For all annotations we
calculated substitution rates with three quality thresholds and either full information per SNP or
allowing a maximum of 50% missing accessions per SNP (see Section 3 and Fig. S1C).

For some annotations substitution rates were not reliable. For instance, in 3’ and 5" UTR
regions, we did not have enough mutations (on average ~1 SNP difference between any pair), and
thus do not report these regions’ rates. We could also have less power to discover SNPs in
annotations with extensive structural variation such as active transposable elements [14].
Transposons, which comprise ~8% of the genome and ~19% of all the SNPs in greenhouse MA lines,
had fewer SNPs called than expected in HPG1. This would explain the atypically low transposon

substitution rate (Table S3). Therefore, transposon substitution rates in HPG1 cannot be trusted.

7.2.2 Bayesian tip-calibration

For the second approach to estimate a substitution rate, the Bayesian phylogenetics tip-calibration
approach, we performed systematic runs and chain convergence assessments of different
demographic and molecular clock models. We found the Skygrid demographic model [15] and the
lognormal relaxed molecular clock [16] the most appropriate models. Under a relaxed molecular
clock, the substitution rate is allowed to vary across branches with a lognormal distribution. The prior
used for molecular clock was a Continuous-Time Markov Chain (CTMC) [15,17]. The analysis was
carried out remotely at CIPRES PORTAL (v3.1 www.phylo.org) using uninformative priors. The run
took about 1,344 CPU hours and performed 1,000 million steps in a Monte Carlo Markov Chain
(MCMC), sampling every 100,000 steps. Burn-in was adjusted to 10% of the steps. To visualize the
tree output we produced a Maximum Clade Credibility (MCC) tree with a minimum posterior
probability threshold of 0.8 and a 10% burn-in using TreeAnnotator (part of BEAST package), and
visualized the MCC tree using FigTree (tree.bio.ed.ac.uk/software/figtree/) (Fig. 3B). Additionally, we

used DensiTree [18] to simultaneously draw the 10,000 BEAST trees with the highest posterior
probability (Fig. 3A). Since all trees were drawn transparently, agreements in both topology and

branch lengths appear as densely colored regions, while areas with little agreement appear lighter.
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7.2.3 Methylation status of mutated sites

As in many other species, the spectrum of de novo mutations in the greenhouse-grown A. thaliana
MA lines is biased towards G:C->A:T transitions [8], leading to an inflated transition-to-transversion
ratio (Ts/Tv). This bias is less pronounced in recent mutations in a Eurasian collection of natural
accessions (Fig. 5A of [19] and in HPG1 accessions (Fig. 3D). A recent multigenerational salt stress
experiment in the greenhouse also showed a more balanced Ts/Tv [20]. These findings indicate that
less benign conditions might promote a lower Ts/Tv, and one possible cause are methylation
patterns, known to change under different environments [21].

We interrogated the potential evolutionary role of cytosine methylation in the mutability of
cytosine bases in the HPG1 accessions. For reference DNA methylation data, we used previously
generated bisulfite-sequencing data of HPG1 strains [7] and of Col-0 MA lines [5], respectively. For
both datasets, methylation status was calculated as the fraction of reads with methylated cytosines
by the total number of reads at a certain cytosine position in the genome. Our rationale was that if
methylation affected mutability, the degree of methylation at positions were we find a new mutation
should be higher. To be sure that a given site in HPG1 was a new mutation, we only considered
positions for which we could determine that state by alignment to the A. lyrata genome [22]. The
“tested sites” were positions in HPG1 that had a mutation both from A. lyrata and A. thaliana Col-0.
These positions can be of two kinds, “fixed” if all HPG1 individuals carry the alternative, or
“segregating” if both reference and alternative alleles exist in HPG1. As control, “control set”, we
used cytosine positions that did not vary across HPG1, A. lyrata and A. thaliana. To produce the
methylation distribution of the control set we randomly chose 1,000 invariant cytosine positions. For
the test sets, we averaged the methylation degree and compared it with the control distribution.

Ancestral cytosines with higher methylation in both A. thaliana Col-0 reference and HPG1
pseudo-reference methylome datasets were more likely to mutate to thymines in HPG1 (Fig. S2 A-D).
Additionally, the methylation degree at substitutions inside genes was higher in the HPG1 methylome
(Fig. S2 B,D). While some C->T changes could be explained by higher spontaneous deaminations
known to happen more often at methylated cytosines, also C->A/G substitutions were more likely to
have been methylated. If this process is common enough, the Ts/Tv ratio should decrease. We are far
from understanding differences in Ts/Tv in natural and controlled conditions, but definitely

methylation status seems to have a strong statistical connection with mutability.
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8. Phenotypic association analyses and dating of newly arisen mutations

8.1. Phenotyping

8.1.1 Root
Fifteen root phenotypes were scored for 2 10 replicates per genotype over a time-series experiment
at the Gregor Mendel Institute in Vienna, using image analysis as described in detail elsewhere [23].

We used the means per genotypes and per time series for association analyses.

8.1.2 Seed size

We spread the seeds of given genotypes on separate plastic square 12 x 12 cm Petri dishes. For faster
image acquisition we used a cluster of eight Epson V600 scanners. The scanner cluster was operated
by the BRAT Multiscan image acquisition tool

(www.gmi.oeaw.ac.at/research-groups/wolfgang-busch/resources/brat/). The resulting 1600 dpi

images were analyzed in Fiji software. Scans were converted to 8-bit binary images, thresholded
(parameters: setAutoThreshold("Default dark”); setThreshold(20, 255)) and particles analyzed
(inclusion parameters: size=0.04-0.25 circularity=0.70-1.00). The 2D seed size was measured in
square millimeters (parameters: distance=1600 known=25.4 pixel=1 unit=mm) for 2 plants per

genotype, > 500 seeds per plant.

8.1.3 Flowering in the growth chamber

We estimated the flowering time in growth chambers under four vernalization treatments (0, 14, 28
and 63 days of vernalization). We grew 6 replicates per accession divided between two complete
randomized blocks for each treatment. Seeds were sown on a 1:1 mixture of Premier Pro-Mix and
MetroMix and cold stratified for 6 days (6°C, no light). We then let plants germinate and grow at
18°C, 14 hours of light, 65% humidity. After 3 weeks, we transferred the plants to vernalization
conditions (6°C, 8 hours of light, 65% humidity). After vernalization, plants were transferred back to
long day conditions. Trays were rotated around the growth chambers every other day throughout the
experiment, under both vernalization and ambient conditions. Germination, bolting and flowering
dates were recorded every other day until all plants had flowered. Days till flowering or bolting times
were calculated from the germination date until the first flower opened and until the first flower bud
was developed, respectively. The average flowering time and bolting time per genotype were used

for association analyses.
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8.1.4 Fecundity in the field

To investigate variation in fecundity in natural conditions, we grew three replicates of each accession
in a field experiment following a completely randomized block design. Seeds were sown from
09/20/2012 to 09/22/2012 in 66-well trays (well diameter = 4 cm) on soil from the field site where
plants were to be transplanted. The trays were cold stratified for seven days before being placed in a
cold frame at the University of Chicago (outdoors, no additional light or heat, but watered as needed
and protected from precipitation). Seedlings were transplanted directly into tilled ground at the
Warren Wood field station (41.84° N., 86.63° W.), Michigan, USA on 10/13/2012 and 10/14/2012.
Seedlings were watered-in and left to overwinter without further intervention. Upon maturation of
all fruits, stems were harvested and stored between sheets of newsprint paper. To estimate the
fecundity, stems were photographed on a black background and the size of each plant was estimated
as the number of pixels occupied by the plant on the image. This measure correlates well with the
total length of siliques produced, a classical estimator of fecundity in A. thaliana (Spearman’s

rho=0.84, p-value<0.001, data not shown).

8.2 Quantitative genetic analyses

For 63 modern accessions, we measured time to bolting and flowering, seeds per plant, seed size,
and 15 root phenotypes in common chamber or common garden settings. For all 100 accessions,

climatic information from the bioclim database (www.worldclim.org/bioclim) was extracted using

their geographic coordinates. For historic samples, some locations were only known by county name.

In this case we assigned the geographic coordinate location of the centroid of the county.

8.2.1 Heritability

We performed association analyses using the R package GenABEL [24], with measured phenotypes (p
= 25) and climatic variables (c = 18) as response variables and SNPs as explanatory variables. A
Minimum Allele Frequency (MAF) cutoff of 5% was used. The number of assessed SNPs was 391 in a
dataset of only modern samples but with imputed genotypes for missing data using Beagle v4.0 [25],
and 456 SNPs with a dataset of modern and historic samples, without imputation. For all
associations, at least 63 individuals were genotyped for a specific SNP. We first investigated broad
sense heritability (Hz) of each trait using ANOVA partition of variance between and within lines using
replicates (Table S4). Significance was obtained by common F test in ANOVA. Secondly we used the
polygenic_hglm function to fit a genome wide kinship matrix to calculate a narrow sense heritability
estimate (hz). This fits a model of the type y = Zu + £ (see Main text Methods). Significance was
calculated employing a likelihood ratio test comparing with a null model. In principle, h? is a

component of HZ, then its values should theoretically be h? < H2. That is not our case. Our result
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cannot be interpreted in this framework, since the calculation of both was not done with the same
samples: for the h? calculation we employed genotype means whereas for the H? we used multiple
replicated measurements per genotype. The averaging of replicates per genotype in h? reduced
environmental and developmental noise and thus we would expect h?>H?. We did this so the
climatic estimates of hz, for which we only have one value per genotype, would be comparable with

the phenotypic h2 ones (Table S4).

8.2.2 Linear Models

For association analyses we first employed a linear mixed model that fitted the kinship matrix using
the mmscore function. This model is of the type: y = Xb + Zu + € (see Main text Methods) [26]. Only
three significant SNP hits were discovered using a 5% significance threshold after False Discovery
Rate correction (FDR). This was expected since we have few variants and these would have originated
in an approximated phylogeny structure. We concluded that fitting the kinship matrix in our model
was not appropriate since there would be no residual variation for association with specific SNPs.
With this rationale we employed a fixed effects linear model using the gtscore function [27]. This
model is of the type: y = Xb + £ ; where no random effect of genome background is fit. To reduce the
risk of having false-positives, we took a conservative permutation strategy by carrying out association
with over 1,000 randomized datasets (permuting phenotypes across individuals) and used the
resulting empirical p-value distribution to correct p-values estimated with the original dataset. SNPs
with p-values below 5% in the empirical p-value distribution should be considered significant (but see
next section). In climatic models, we included longitude and latitude as covariates to correct for any
spurious association between SNPs and climate gradients created by the migratory pattern of

isolation by distance.

8.2.3 Evaluation of significance

Significant SNPs were interspersed throughout the genome (Fig. 4) and their p-values and phenotypic
effects did not correlate with the minimum age of the SNPs nor with their allele frequency,
something that could have indicated that the significance was merely driven by the higher statistical
power of intermediate frequency variants. Using QQ plots to assess inflation or deflation of p-values,
we observed generally that permutation corrected p-values were deflated — another evidence of our
conservative strategy. Straight horizontal series of points in QQ plots indicate that multiple SNPs have
identical p-values, a pattern that we attributed to long range LD, i.e. lack of independence (see Text

S2 for trait distributions and QQ plots from each association analysis).
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To further ensure that we avoided false positive results, we also prioritized SNPs whose
empirical p-value was not below 5% only but also below 5% / (hnumber of SNPs + number of traits) =

0.01%. This “double” Bonferroni correction was very conservative (Table 1, Table S5).

8.2.4 Context of de novo mutations associated with phenotypes

For each SNP in our dataset, we determined the ancestral and derived states, by identifying which
allele was found in the oldest herbarium samples. We compared the time of emergence and the
centroid of geographic distribution of the alternative alleles of SNP hits to random draws of SNPs

with the same MAF filtering (5%) (Fig. S1).

8.2.5 Functional information

On top of phenotypic and climatic associations of SNP hits, we also provide a likely functional effect
employing a commonly used amino acid matrix of biochemical effects [28]. Functional information of
gene name and ontology categorization of SNP hits was obtained from

www.arabidopsis.org/portals/genAnnotation/gene_structural_annotation/annotation_data.jsp and

www.arabidopsis.org/tools/bulk/go/ (Table 1 and Table S5).

8.2.6 Proof of concept examples
We argue that the power of our association approach relies on the fact that HPG1 lines resemble
Near Isogenic Lines (NILs) produced by experimental crosses [29] (Fig. S2A). Similar to genome-wide
association studies (GWA), power depends on many factors, namely the noise of phenotype under
study, architecture of phenotypic trait, quality of genotyping, population structure, sample diversity,
sample size, allele frequency, and recombination. On one hand, association analyses in NILs suffer
from large linkage blocks, but confident results can be achieved due to accurate measurement of
phenotypes, limited genetic differences between any two lines, and high quality genotypes. In
common GWA studies such as in humans, there are multiple confounding effects. Among the
confounders are (1) that any two samples differ in hundreds of thousands of SNPs, and (2) that
historical and geographic stratification produce non-random correlations among those SNP
differences. This considerably complicates the identification of phenotypic effects at specific genes,
and power relies greatly on large sample sizes to achieve the sufficient number of recombination
between markers.

To provide support for the non-synonymous SNP on chromosome 5, at position 6,508,329 in
AT5G19330, we looked for pairs of lines that carry the ancestral and the derived allele, but that differ
in few (or no other) SNPs in the genome. When considering all genic substitutions with a minimum

allele frequency of 5% (Fig. S2A), we identified 20 pairs of lines differing only in the AT5G19330 SNP
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and another linked SNP (located on a different chromosome, association p-value > 0.4). The
phenotypic differences in mean gravitropic score of these almost-identical pairs were significantly
higher than phenotypic differences among all pairs of HPG1 lines, and genetically identical pairs
attending to substitutions inside genes (Fig. S2A). Furthermore, this SNP was not in complete linkage
with any other SNP hit (r2 < 0.5) (Fig. S2D). The same approach was used to examine the SNPs in
AT1G54440 (Fig. S2E) and AT2G16580 (Fig. S2F), which represent an intermediate and a high LD

example.
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Text S2

For each trait employed in association analyses, we report the histogram

distribution and the QQ plot of p-values to ensure that no trait departs exaggeratedly from the
normal distribution, and that no inflation of p-values is observed (when lambda < 1, there is no
inflation of false positives).

https://doi.org/10.1371/journal.pgen.1007155.s002
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SUPPLEMENTARY TABLES

Table S1. HPG1 sample information.
https://doi.org/10.1371/journal.pgen.1007155.s003

Table S2. Sample information for Col-0 mutation accumulation lines.

https://doi.org/10.1371/journal.pgen.1007155.5004

Table S3. Mutation rate estimates for different annotations in HPG1 and mutation accumulation
lines.

https://doi.org/10.1371/journal.pgen.1007155.s005

Table S4. Description of phenotypic and climatic variables for association mapping analyses.

https://doi.org/10.1371/journal.pgen.1007155.5006

Table S5. SNP hits from association analyses and several descriptors.

https://doi.org/10.1371/journal.pgen.1007155.s007
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Fig S1. Ancient-DNA characteristics of unrepaired herbarium libraries.

(A) Fraction of A. thaliana DNA in sample. (B) Median length of merged reads. (C) Fraction of
cytosine to thymine (C-to-T) substitutions at first base (5’ end). (D) Relative enrichment of purines
(adenine and guanine) at 5’ end breaking points. Position -1 is compared with position -5 (negative

numbers indicate genomic context before upstream reads’ 5’ end).
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B

= HPG-1
- non HPG-1

Fig S2. Separation between HPG1 and other North American lineages.

(A) Neighbor-joining tree built using lllumina-based SNP calls at the 149 genotyping markers
originally used to identify HPG1 candidates. HPG1 accessions are shown in black, whereas other
North American lineages are depicted in red (see explanation below for four HPG1-like accessions).
(B) Neighbor-joining tree based on genome-wide SNPs. Accessions colored as in (A). Note that three
accessions originally classified as HPG1 based on 149 SNPs (A) are placed outside this clade. A further

accession (BRR7) within the HPG1 main branch was a recombinant removed from the analysis.
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Fig S3. Substitution spectrum and rates.

(A) Site frequency spectrum for all transitions and transversions. (B) Distributions of “net” pairwise
genetic distances between historic and modern samples used to calculate mutation rates per
genomic annotation (from quality 32_15 and complete information per site). UTRs were excluded

because of the small number of SNPs. (C) Mutation rates calculated for different genomic
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annotations and quality thresholds (32_32, 32_15, 24_24) and missing values (NA50: maximum 50%

missing data per SNP; COMPL: missing data 0%). Mean and 95% confidence intervals are shown.
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Fig S4. Relationship between methylation and substitutions.

(A, B) Fraction of methylation of cytosines in HPG1 pseudo-reference[7] at intergenic (A) or coding
regions (B). (C, D) Fraction of methylation of cytosines in Col-0 reference genome[5] at intergenic (C)
or coding regions (D). In each of the four comparisons, a grey histogram represents distribution of
methylation of 1,000 random sets of invariant cytosines. Lines represent average methylation degree

at those sites in HPG1 that changed from cytosine to thymine (red). We differentiate those
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substitutions that are shared - fixed - across all individuals (light red) or whose allele are present at
an intermediate - segregating - frequency (dark red). Likewise, average methylation is shown for sites
that changed from cytosine to adenine (blue) that that are fixed (light blue) or segregating (dark
blue). The fact that the average methylation is higher in new substitutions than in invariant positions

supports a connection between methylation and mutability of sites.
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Fig S5. Comparison of Site Frequency Spectra across genomic annotations.
Cumulative empirical distribution, at different genomic annotations, of the unfolded Site Frequency
Spectrum of SNPs oriented based on the order of appearance of alleles in the herbarium genomes.

Note the steep slope at low frequency indicating large numbers of such variants.
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Fig S6. Spatial and temporal emergence of root-associated mutations.

(A) Age distribution of derived SNPs with a significant trait association (the herbarium sample in

which they were first recorded) (red), compared with genome-wide SNPs with at least 5% minor

allele frequency (grey), or without frequency cutoff (black). (B) Spatial centroid of all samples

carrying a derived allele. Since it is an average location, centroids can be in a body of water. Ten

random draws of 50 SNPs for each category were used to produce the density lines in (A) and points

in (B).
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Fig S7. Linkage disequilibrium of significant SNPs.
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(A-F) Linkage disequilibrium between SNPs with significant trait associations. Histogram of genetic

distances (A) between samples when evaluating only coding regions at 5% minimum allele frequency.

Linkage disequilibrium between SNP hits measured as r2 (B) and D’ (C). Three significant SNPs were

further studied to exemplify the power of association analyses with HPG1. For each, phenotypic

differences between accessions that differ in the focal SNP and that are otherwise virtually

genetically identical are compared both with all pairs of accessions and with pairs of accessions

completely identical for coding regions. Below each violin plot is the histogram of linkage

disequilibrium of the focal SNP with all other SNP hits. The three focal SNPs evaluated are located in

AT5G19330 (D), AT1G54440 (E) and AT2G16580 (F).
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