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Abstract

Despite being a subject of study for almost three decades, non-invasive brain-
computer interfaces (BCIs) are still trapped in the laboratory. In order to
move into more common use, it is necessary to have systems that can be
reliably used over time with a minimum of retraining. My research focuses
on machine learning methods to minimize necessary retraining, as well as a
data science approach to validate processing pipelines more robustly. Via a
probabilistic transfer learning method that scales well to large amounts of
data in high dimensions it is possible to reduce the amount of calibration
data needed for optimal performance. However, a good model still requires
reliable features that are resistant to recording artifacts. To this end we
have also investigated a novel feature of the electroencephalogram which is
predictive of multiple types of brain-related activity. As cognitive neuro-
science literature suggests, shifts in the peak frequency of a neural oscillation
– hereafter referred to as frequency modulation – can be predictive of activ-
ity in standard BCI tasks, which we validate for the first time in multiple
paradigms. Finally, in order to test the robustness of our techniques, we have
built a codebase for reliable comparison of pipelines across over fifteen open
access EEG datasets.
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Chapter 1

Synopsis

1.1 Introduction

One of the most surprising things about the field of brain-computer inter-
facing (BCI) is that it has been around for almost thirty years now, even
though few outside academia realize it is any more than science fiction. In
some labs, it even manages to work impressively well, once it is set up and
calibrated. The mystery is why it is still almost exclusive to academia. As
researchers, we explain it away by pointing out how difficult a problem it is.
An outsider to the field, however, might see it somewhat differently. If you’re
telling me that we had a system in 1994 to control a cursor on a computer
screen with only your mind, they might ask, then why isn’t it in my iPhone
yet? And they have a point. Many fields we’ve known about for decades now
– brain-based control, muscle-based control – have surfaced once or twice in
the popular imagination but invariably slunk back into the lab, while at the
same time other fields – facial recognition, voice generation – are being de-
ployed in an array of applications. Deep learning was the innovation that
brought image and audio machine learning into widespread use; the question
my doctorate explores is, how can we move towards those advances in BCIs?

It is hard, with two working thumbs and an iPhone, to appreciate the
urgency of this gap in application, but physically abled people are not the
target population for a BCI. A keyboard and mouse may not be the ideal
means of communicating with a computer, but for someone with two func-
tioning hands they serve quite well– the problems begin for those without.
For people with paralysis, as well as for people with various neurological con-
ditions, communicating with the world is not something to be simply taken
for granted. For these people, even a good deal of inconvenience would be
acceptable if it granted them a way of reliably communicating with a min-
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imum of movement. Here, at least, there has been progress: eye-tracking
technology, muscle-based systems, and smart typing systems are used by
hundreds of individuals with severe movement disabilities to communicate
with loved ones and caregivers (and, in some cases, to write famous French
novels or publish famous English theoretical physics papers). Even so, there
remain patients for whom none of this is good enough. At the end stage of
Amyotrophic Lateral Sclerosis (ALS), patients enter the so-called completely
locked-in state, in which every form of muscle activity is extinguished [1].
The only way to ensure that everyone who is not incapable of thought is still
capable of expressing themselves is to have a BCI available. Yet true, reliable
brain-based communication remains out of reach, even for individuals willing
to undergo inconvenience.

For a device to be usable in daily life, it must have the following proper-
ties: It must fulfill a need, it must be reliable, and it must be simple to setup
and use. Even in patient populations, state-of-the-art brain-computer inter-
faces only fulfill the first of these three properties. For people without muscle
control, it is by definition the only way to communicate. However, the relia-
bility and the simplicity represent a difficult tradeoff. For a BCI to translate
thoughts into actions, it must have a model which converts the raw elec-
troencephalogram (EEG) signal into estimates of brain activity. Any model
requires data to be properly fitted to the intended application, and an ideal
model performs reliably under real-life conditions. Unfortunately, no such
ideal model exists, and the best current models for BCI applications require
significant amounts of data from every recording session to perform opti-
mally. Further, transient changes in environmental factors can also strongly
affect the predictive accuracy of current models. What this leads to is a
situation in which models fitted with good data and applied in the lab can
be very effective, but reducing the signal quality or training data size can
often lead to reductions in performance.

In order to overcome these limitations we may consider how image recog-
nition overcame its own problems: better models with bigger data. The field
of BCI does not have models that scale well to large offline datasets, and
so my work has focused on building and validating models which allow the
field to effectively use big data. For this to happen, there are two important
hurdles to be overcome: Models must be able to deal with data from many
(possibly short) recording sessions, and they must be robust to variable data
quality and few recording channels. To explore my contribution to the lit-
erature, the rest of this thesis is structured as follows: First there is a brief
overview of the specific contributions in transfer learning, feature generation,
and offline validation, followed by a section to explore the potential of these
contributions in combination and to look to future experiments.
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1.2 Transfer learning: leveraging many, small

datasets

While effective in lab settings, machine learning in BCIs quickly runs into the
problem of signal non-stationarity. Between two different recording sessions,
the properties of the signal can vary significantly, causing the commonly used
variance features to have different distributions [2], [3]. These factors are
both random, such as the electrical noise in the room and the impedences
of the electrodes, and based on the mental and physical state of the user.
While it can be relatively simple to learn a model to predict certain brain
responses within a single recording session, this model very rarely generalizes
perfectly to new recordings. Because of this, the majority of machine learning
within the realm of BCIs focused on the problem of within-recording-session
machine learning and simply assumed that users would be willing to record
a small calibration dataset at the beginning of each recording session. In the
lab setting this is a reasonable assumption, but for more practical application
the requirement quickly becomes onerous. Having to teach a computer over
and over again what seems – to a human – to be the same thing is a very
frustrating experience. Further, this approach is, from a machine learning
point of view, incredibly wasteful. Ignoring large amounts of data that were
gathered earlier and only using session-specific data forces any model to use
only a small subset of the full possible samples, which necessitates simple
models to avoid overfitting. Furthermore, it makes session usefulness entirely
dependent on the user: If the training data is bad for any reason, even if the
user is normally proficient in the system, then the rest of the session will not
work.

Over the last 20 years of machine learning research there has been a great
deal of progress on suitable models for single-session BCIs. In particular
spatial filtering via common spatial patterns (CSP) showed that the number
of discriminative brain regions during a BCI task is usually much smaller
than the number of recording channels, and that recovering the signals from
exactly these regions is far more robust than using features generated from
the channels themselves [4], [5]. However, this approach suffers greatly from
overfitting to the training data: spatial filters trained on one session are not
likely to transfer to other recording sessions (for a review of the need for
regularization see Lotte et al [5]).

Since BCIs are interactive systems, the difficulty of calibration-free or
plug-and-play BCIs has also been tackled via adaptive fitting. This is an
approach in which an initially poor model is trained through use of the system
online, instead of first requiring a calibration dataset that is recorded without
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feedback to the user. These approaches use sequential supervised samples
to iteratively update the parameters of a linear classifier [6], [7]. Although
this is an effective way of eliminating a calibration session, it still requires
many labelled samples, and a small number of features, for the classifier to
stabilize.

1.2.1 Multi-session approaches

Standard classification or regression models assume a single training and
test set; transfer learning assumes there are also multiple datasets that were
previously recorded. These could either correspond to different subjects or
the same subject at previous points in time, or both. The goal of these
methods is to leverage the previous recordings – with or without data from
the current recording session – to fit a classification model for the current
recording. This has mostly been considered in the multi-subject case, as over
time the assumption was that a single subject would learn to generate data
that corresponds to the initially trained model.

The early approach to the problem was to try pooling all the data and
using a more complicated classification model. As this method was incapable
of taking the statistics of a new recording into account, it was not particularly
successful. These early models were attempted on channel-level features
however, and so many people considered how to use CSP in a multi-subject
context in order to get more stationary and robust features. Since a group
of people doing motor imagery are activating the same area of cortex, albeit
with slightly differing individual anatomies, it is reasonable to expect that the
optimal spatial filters for all of them will be close to each other in some sense.
Starting with Devlaminck et al. [8] and continuing on until the present day [9]
many groups have invented ways of combining offline data when fitting CSP
to a new subject. This has had some success, but also two major drawbacks:
First, it is incapable of selecting features that are not based on variance.
Second, it cannot be done in an adaptive manner, but rather requires a fixed
amount of data from both classes be recorded in each new subject.

New approaches based on the geometry of the covariance matrix manifold
have shown themselves to be more predictable and robust than spatial filter-
ing [10], [11]. This is done by using all the variance information in the EEG,
regardless of whether the underlying source is neural data or a correlated
noise source, leading to better performance at the cost of model introspec-
tion. Particularly in the case of BCIs, however, the ability to determine what
features of the recorded signal are predictive of the desired brain activity is
very important. Invariant features solve the classification problem, but with-
out knowing what part of the signal is predictive there is the danger that
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the learned features do not actually correspond to neural data, but rather
correlated noise sources such as muscles. Though this is mostly harmless in
cases when the system is optimizing for accuracy in healthy subjects, it can
be problematic in patient populations where certain types of features are lost
over disease progression.

In order to get both a cross-subject transfer learning approach and to re-
cover a representation of the variation over individuals, generative modelling
has been used. Generative approaches are approaches that attempt to model
the underlying recorded signals or features, instead of simply attempting to
find a function that reliably predicts class membership. The most typical
way this is done is via covariate shift adaptation [12], in which the most
relevant data points are chosen from the offline pool for each new task based
on their overlap with the data of the new recording. While effective, this ap-
proach has the downside that it requires a reasonably large pool of unlabeled
data from each new task in order to do density fitting. It is also difficult to
faithfully model data distributions in high dimensions, forcing this approach
to limit the number of features the classifier can use. Further approaches
via hierarchial Bayesian modelling of the recorded time-series have also been
done [13]–[15]. These have the advantage of being able to encapsulate the
information from the pool of offline subjects in hyper-priors that can be used
to efficiently find parameters for new tasks. By modelling the projections of
the sources directly, they allow for easy introspection to confirm that sources
are neural in origin. However, the optimization strategy for this approach
requires many independence assumptions in order to be tractable via more
efficient methods such as variational inference. Further, incremental addi-
tions of data, such as those used in the adaptive calibration techniques, is
not possible.

1.2.2 Multi-task learning

Instead of generative Bayesian modelling, our approach was to attempt a
Bayesian treatment of the problem in the discriminative sense, in order to
both efficiently recover a classification function for new subjects and a rep-
resentation of the subject-invariant knowledge. Rather than attempting to
model hidden sources that generated the observed data, we modeled the
classification hyperplane in order to bias the recovered classifier towards the
classifiers that are optimal for previous recordings [16]. The idea behind
this method is reasonably simple: Instead of using a generic regularization
method, such as ridge regression in the case of a linear classifier, with multi-
ple datasets it is possible to determine data-driven regularization parameters.
By modelling a regression vector as a random variable, as seen in Figure 1.1,
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Figure 1.1: Schematic for modelling regression vectors in multi-task learning,
reprinted from Jayaram et al. [17]

it is possible to estimate the parameters of the distribution over regression
vectors and use them to bias the solution in future tasks.

The signals that are recovered by classification models in BCIs are usu-
ally projecting from one or few parts of the brain to the electrodes. Because
of this, it makes little sense to take features computed on all the channels
and simply stack them into one large feature vector. Instead, we determined
that we could treat channels and features-per-channel differently via a bi-
linear model, in which two independent regression vectors are derived and
combined to form the classifier: one which learns a weighting over channels
and one which learns a weighting over features. In this way it is possible
to consider many channels and many features per channel without a multi-
plicative increase in the number of parameters to be fit. This approach is
a marked improvement over standard spatial filtering because it is capable
of taking multiple frequency bands, as well as non-amplitude-based features,
into account easily. It is also possible to visualize the prior distributions over
the features and channels, which can lead to insight on which features are
most important, as seen in Figure 1.2.

One major benefit of our proposed method is its scalability. Most ap-
proaches in BCI decoding are poorly suited to very large datasets, for ex-
ample datasets with more than 100 subjects or recordings. Approaches that
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Figure 1.2: Figure, reprinted from [18], which shows the learned spatial
and spectral prior means for a trained multi-task model on motor imagery
data. The spatial weights are largest around the two motor cortices (a) and
the spectral weights are higher around the frequencies corresponding to the
anatomical α and β bands(b)

pool or that use covariate shift compensation require iterating through the
entire offline pool in order to calibrate a classifier for a new subject, which
causes the computation time to increase for the new recording proportion-
ally to the number of recordings in the current pool. In contrast, multi-task
learning requires an optimization to learn the parameters of the priors, but
once those are fixed the update for a single subject is simply the solution to
a set of linear equations. Further, while other optimizations require all the
data to be loaded into memory at once, this approach is easily parallelized as
each recording is dealt with independently in the maximization step of the
algorithm.

A second consideration with big datasets is the possibility of negative
transfer in the case that some subjects either have poor data or do the task
very differently. This is a problem for most transfer learning techniques as
they have no capacity to tell whether a particular task is good or bad. How-
ever in the context of a probabilistic model, negative transfer can be viewed as
outliers in the samples that are used to build the prior distribution. Because
of this they can be taken care of via standard outlier rejection techniques, or
dealt with in the expectation step of the algorithm directly via the choice of
a prior distribution with a larger tail. This results in the multi-task learning
procedure’s stability as the number of input datasets increases, under the
mild assumption that there are comparatively few bad datasets.

One final benefit to this model, in comparison with generative approaches,
is its compatibility with adaptive training. Since this approach corresponds
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to a linear model with a fixed regularization term, it is possible to use se-
quential labeled data points to adapt both the linear and bilinear models in
real time. This allows it to be used seamlessly in adaptive BCIs such as those
described in Vidaurre et al [7] and Faller et al. [6].

1.3 Frequency modulation: more information

from less electrodes

The vast majority of all data recorded for BCIs was recorded in the confines
of a laboratory, using technicians to set up the equipment. As a result, most
of it is of an appropriately high quality, with low electrode impedences and
a minimum of noise from movement and other artifactual sources. This does
not, however, describe a reasonable use case. Even for locked-in patients, it is
infeasible to spend a half hour setting up electrodes; in the case of consumer
electronics, this becomes even more ridiculous. Home use of BCI systems
requires something that can be used in daily life, and that often means a
minimum in setup time as well as number of electrodes.

Unfortunately, most established methods perform significantly worse with
lower-quality signals and fewer electrodes. An illustrative example of this is
the ongoing debate between dry and wet electrodes. Wet electrodes have
historically been considered a gold standard for EEG signal quality [19], but
must be manually optimized to achieve acceptable signals. In contrast, dry
electrodes do not require gel application, as the name suggests, and therefore
are both faster to apply and can withstand longer recordings, in exchange for
a loss in signal quality and possibly comfort. The unreliability of standard
methods in the face of a lower signal-to-noise ratio is such that making BCI
paradigms work on non-wet systems is sufficiently novel to be published time
and time again [20]–[22].

Another important hurdle in moving BCIs out of the laboratory is the
physical environment. Labs can be set up to minimize possible sources of
electrical noise, and participants are instructed to keep still and blink as little
as possible. Moving into the real world, however, neither of these is easy
to get, especially if one considers a medical environment like a hospital. As
reviewed in Minguillon et al. [23], EEG recorded outside of the lab setting face
many artifacts, and unless one wants to engineer a pipeline of complicated
artifact-removal techniques, it is necessary to look for features that are less
affected by them.

The first section of this thesis detailed a framework for transfer learning
which allows for the effective leveraging of large amounts of offline data.
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However, in order for that framework to be effective, it requires a large
amount of data – which is difficult to attain when one must spend a large
amount of time on ensuring that electrodes and recording conditions are
perfect. In order to obtain enough data to fit robust classifiers, compromises
in signal quality are unavoidable. Therefore, it is important to find features
that can be computed which are more stable to signal quality differences.
Via the bilinear approach detailed in Section 1.2, it is possible to easily add
new channel-wise features to the classification model.

1.3.1 Alpha peak shift

In order to study what new features may be usable in BCI paradigms, one
may begin by looking into the neuroscientific literature on brain rhythms. In
non-invasive recordings, task-related differences in amplitude are best char-
acterized, but invasive neuroscience has long known of many other properties
of neural oscillations that are modulated by activity. One of these properties
is the specific frequency at which a circuit oscillates. Bragin et al. [24] showed
via invasive recordings of the rat hippocampus that while the amplitude of
γ oscillations was tied to the phase of θ oscillations, both of these oscilla-
tions varied significantly in frequency throughout the recording period. This
was further verified in humans in which it was shown that peak frequency
changes could reliably predict working memory loads where amplitude-based
measures were not predictive [25].

Most human studies of frequency shift are centered around the α peak.
In the literature, this has been considered in both a static and dynamic
manner. Studies of the average location of the α peak among individuals
has showed a great deal of variance in frequency, due to both genetic [26],
[27] and environmental factors [28]. These individual differences have been
correlated with measures of intelligence [29], [30]. However, Aurlien et al [31]
showed that the peak location can vary by up to 1Hz within a single recording
session. Looking into the dynamics of this oscillation as recorded via EEG, it
was determined that the α peak location is related to cognitive readiness on a
shorter timescale, and that it can be modulated in a task-dependent manner
in addition to the aforementioned static correlations [32]. More recent work
has also confirmed that the frequency is modulated consciously in the case
of cued and uncued stimulus perception[33]. In addition to these results on
healthy, awake subjects, α peak frequency has been researched in sleep as
well as epilepsy research, which has led to many algorithms to reliably extract
it from the brain [34], [35].

The α peak is also well-known in the BCI literature, though it has only
been viewed through phase or amplitude measures. The spectral power in
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the alpha range is predictive of some mental activities, and this is sufficiently
robust on a single-trial basis to be used within BCI paradigms [36]. More
importantly, however, spectral power was shown to be predictive in ALS
patients across a range of disease severities [37], which offers hope that it
may be predictive into the completely locked-in state as well.

1.3.2 Frequency shifts in BCIs

While extensive, the work on characteristic features of the oscillations in
invasive recordings is rarely used in the non-invasive sphere. Since muscle
activity projects strongly to frequencies above 20Hz, the isolation of gamma
rhythms from the non-invasive EEG is very difficult in practice, causing
phase-amplitude coupling to be difficult to detect. As phase-amplitude cou-
pling is much more well-researched than frequency shifts, it is not surprising
that both are mostly ignored in the EEG literature. Instead, there is a
large amount of work on phase-related measures, both in order to generate
features based on pairwise coupling [38] and in order to refine estimates of
spatial filters [39].

In the space of BCIs, the frequency drift of the EEG signal has been ex-
plored via adaptive filtering, which has been employed in order to improve the
fidelity of amplitude-based measures. The location of the true α frequency
in relation to the passband of the spectral filter is crucial to determining
the signal-to-noise ratio of the power of the bandpassed signal. Therefore,
methods that can resize and shift the passband based on the location of the
central frequency can more reliably estimate the power over time.

While not yet in common use, there are many possible benefits to fre-
quency shift features. The influence of artifacts on the power spectrum is
well-known and, in setups with few channels, very difficult to get rid of.
Transient, high-amplitude artifacts in particular are problematic since they
have a disproportionate effect on the variance of a signal. It may be, however,
that the frequency shift is less affected by this issue. We proposed to look at
the change in peak frequency of the EEG as a feature for a classifier, both
in motor imagery and in a cognitive paradigm [40]. This idea only showed
up once before, and was validated on a small motor imagery dataset [41],
but we were interested in seeing if this is a valid approach across multiple
paradigms.

In order to isolate the peak frequency on a per-trial basis, we elected
to use the analytic signal. The analytic signal is computed via the Hilbert
transform and leads to a representation of the signal that includes both
amplitude and phase information. By extracting the phase and taking the
difference between every pair of neighboring timepoints, it is possible to
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extract an instantaneous frequency for a given time series at every time point.
Since this estimate of the instantaneous frequency is noisy due both to edge
artifacts and discretization issues, we chose the median of the instantaneous
frequencies within each trial as the estimate of the peak frequency [40]. A
similar approach was used in Cohen et al [42] to show the perceptual relevance
of instantaneous frequency in EEG and artifical network models.

Our results showed that the location of the frequency peak as computed
via the median instantaneous frequency for each trial is a noisy but helpful
predictor in both motor imagery and cognitive paradigms. In particular in
the case of low-channel settings, we show that adding the median instan-
taneous frequency can reliably help classification in a variety of frequency
bands [43]. In reference to the signal processing literature, we refer to this
feature as the FM feature.

While the success in cognitive tasks can be explained by the literature
on alpha peak location, the results on motor imagery are a new finding.
Our results with CSP suggest that neural populations that show event-
related desynchronization also have a shift downwards in their peak alpha
frequency[40], which has not yet been described even in invasive studies.
While work exists in monkeys that shows how waves of activity at different
frequencies propagate across the primary motor cortex [44], there is as of yet
no description of how the frequency of these waves is modulated. It is further
quite interesting to ask why the frequency and power are correlated, as this
may have implications for the circuit properties underlying the α rhythm.

1.4 How to validate? Principled use of open-

access data

It is rarely clear, when developing methods for BCIs, how well these methods
transfer to other labs or hardware. Since there is so much variance in every-
thing from sampling rate to electrode number to dry versus wet electrodes,
positive results on one platform don’t necessarily imply positive results on
another. In extreme cases, results that work on the vast majority of datasets
can still fail for one particular lab, as seen in Figure 1.3. Unfortunately, this
particular question is very difficult to phrase within the field of BCIs. Most
labs have their own preferred setup, developed over generations of doctoral
students, and their own pipeline for processing and saving that data. Trying
to compare across many labs can be quite difficult given these methodological
differences. This has resulted in the condition that there is little incentive for
newly proposed algorithms to be taken up by the community, as even after
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Figure 1.3: Figure, taken from Jayaram et al. [45]. This shows a comparison
of log-variances per channel combined with an SVM versus CSP and LDA as
a method for classifying motor imagery across 13 open-access datasets. Even
though CSP performs significantly better in most datasets, there are still
some–such as Grosse-Wentrup et al. 2009[46] –which go against the trend.
This highlights the need for validation over many hardware types to convince
labs that a new algorithm truly will work better.

the work of implementing them for a lab’s specific setup there is a reasonable
chance that they will not improve performance.

The closest previous attempt to standardize how BCI algorithms are com-
pared is the BCI competitions datasets [47]–[50], which are as of now over 10
years old. Thousands of papers have been written using only these datasets,
which makes it very likely that the results by now are heavily overfitted
to that specific combination of electrodes, paradigm, and sensor number.
Over this same period, however, thousands of hours of BCI data have been
recorded all over the world, and hundreds of those hours are available freely
online – the issue is simply that nobody has spent the time to gather them
and run analyses over all of them. This is the goal of Jayaram et al. [45],
in which we introduce the MOABB, an open-source codebase that allows for
replicable result generation, combined with a statistical procedure in order
to reliably rank compared algorithms. Given the results shown in Figure 1.3,
we hope that offering this codebase to the community will allow for future
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algorithic advances to be better received.
The first analysis with this method is centered around single-recording

classification performance, as that is the field in which the majority of pre-
vious work has been done. By verifying this procedure with well-known
pipelines from the field, done in such a way that anyone can reproduce the
results, we hope to convince the community that the rankings that come out
of our analysis are trustworthy. With trust comes two things: The ability
to conduct further studies, and hopefully also an increase in publically avail-
able data. If our results in a more well-studied subfield of EEG classification
pass peer review, we can continue on to test transfer learning and novel fea-
ture spaces safe in the knowledge that the results thereof are reliable. Ifthe
community is not satisfied with our processing or our statistical analysis,
then there is no point in running more experiments with the same analy-
sis. Further, and more optimistically, we hope that providing a platform
for labs around the world to easily use open-access data makes experimental
labs more willing to share their data, since they will know that groups can
work on it. With more data we could expand beyond questions of algorithm
and ask more interesting questions about how hardware, paradigm, and even
personal characteristics affect the EEG across hundreds of subjects.

1.5 Conclusion: Moving forwards

When looking at how machine learning could help EEG-based BCIs step
out of the lab, two key areas stood out: developing methods for using pools
of offline data, and searching for new features that are robust to less ideal
recording conditions. In order to validate the results of these explorations, we
took advantage of the large amount of open-access data and built a validation
framework for comparing different pipelines. However, although the methods
introduced in this thesis have many interesting properties, comparing them
directly against modern variants of CSP, or modern amplitude estimation
methods, is very likely to show that their performance is worse. This may be
because the ideas they suggest are less effective, but it is equally likely that
it is because so much more work has been expended on the other directions.
Because of this, the remainder of this section will first detail, for the transfer
learning and frequency modulation, technical possibilities for improving these
methods, such that this latter possibility can be dealt with. Finally, a more
unified future outlook will be presented.
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1.5.1 Transfer Learning

Both the bilinear regression model and the choice of a Gaussian distribu-
tion for the probabilities are simplifications that allow for easy inference and
interpretation. As such, these can both be extended into more powerful
approaches, often losing little in terms of simplicity.

A bilinear model as described in Jayaram et al. [18] can equivalently be
thought of as a linear model in the feature space where the regression matrix
is constrained to be of rank 1. As fixed-rank manifolds are not convex, this
means that optimization over them is also non-convex, which is the reason
that a nested iterative approach is described in [18]. Relaxing this constraint
has two major benefits. First, it allows for multiple spatial and feature
weightings. It was determined that in CSP, the optimal number of spatial
filters is six [51], and it is therefore likely that one is not the optimal number
of spatial weightings in this model. By using a rank-based penalty instead of
a rank constraint as used in Farquhar et al. [52], a flexible number of spatial
and feature weightings can be estimated. In order to visualize the individual
pairs as was done in Figure 1.2, a matrix decomposition can be used.

Next, we might consider the Gaussianity assumption on both the task-
specific noise and the prior over the weight vectors. Two ways of extending
this approach are the use of hyper priors and the use of other distributional
forms. One simple example of a hyper prior would be one that assumes
the mean vector comes from a zero-mean, isotropic Gaussian. A downside
of the approach described in Jayaram et al. [18] is that the regularization
penalizes deviation from a mean vector, but the norm of this mean vector
is not penalized. Via a zero-mean prior over the computed mean, this could
be remedied. In addition, the current approach penalizes the Mahalanobis
distance between task weight vectors and the prior; instead of this, we may
want to choose to penalize a difference distance between tasks and the mean,
in order to promote properties such as sparsity in our solution. There is
already work by Argyriou et al. [53] in which a convex multi-task approach
with sparsity is derived, and this can be very easily substituted into the
current algorithm.

Using different distributional assumptions can also be easily done. As-
suming a logistic model, in which a squared loss function is traded for a
cross-entropy loss, has been shown to lead to increases in performance when
compared to a fully linear model [54]. It may also be possible to derive a solu-
tion when the loss function is assumed to be the hinge loss, effectively turning
each task-specific problem into a maximum-margin optimization. Another
approach would be to use different assumptions about the prior, such as a
Laplace distribution, in order to more robustly compute the mean and co-
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variance within each iteration.
A larger concern in relation to this method is that it requires pre-computed

features per channel. As work with ICA and CSP shows, linear filters applied
to the electrodes in the time domain can lead to very predictive features. In-
deed, while we showed that using multi-task learning it was possible to find
an optimal classifier in a fixed feature space with very little data, post-hoc
comparisons with subject-specific CSP showed that a linear model over the
channel-wise features is not ideal for within-session classification. If instead
of pre-computing the features, we were to extend this model to automatically
determine relevant features from the time domain, it would be significantly
more powerful. However, it is not entirely clear how this could be done. One
possibility would be to extend the model from Farquhar et al. [52] with the
probabilistic multi-task approach.

When comparing so many different possible models, the possibility of
overfitting to a single dataset becomes more and more dangerous. Via the
MOABB codebase, comparisons of all these methods can be done with a
minimal risk of overfitting [45].

1.5.2 Frequency Modulation

We validated the idea that neural oscillations change their oscillatory fre-
quency in response to both cognitive tasks and motor ones, and more cru-
cially that this difference is recognizable via the instantaneous frequency per
channel. Ideally, this finding reflects a property of the underlying neural sig-
nals. However, the Hilbert transform of a mixed signal is not well-defined,
in the sense that it is unclear which of the underlying components is being
reflected in the estimated instantaneous phase. If the recovered frequency
and amplitude were independent then this would not be a problem, but
our results showed that they correlate. Therefore, more robust model-based
methods of estimating the instantaneous frequency need to be tested as well,
in order to determine if this is simply an artifact of neural amplitude change
or if the underlying signal is also frequency modulated. Cognitive psychology
has good evidence of this shift in cognitive tasks, but frequency shift has yet
to be described in vivo for motor imagery.

One important goal of the work with frequency modulation is to see if
it is more robust to differences in signal quality than amplitude modulation.
Unfortunately, the current study was done on data recorded under laboratory
conditions with wet electrodes, and so another comparison with a noisier
dataset is required. Re-running the analysis from Jayaram et al. [40] with the
framework provided by the MOABB codebase is a first step in this direction.
Further, while there were no conclusive findings in the analysis of ALS patient
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data, a larger sample size may help account for the confounding effect of
disease progression.

The fact that frequency and amplitude information are correlated in both
of the tested paradigms leads to another interesting question, of whether this
can be used as a way of characterizing neural data. There are few reliable
ways to characterize data that is neural in origin from just a time-series or
spectrum – a problem that has been heavily investigated in the field of ICA
for EEG [55]. If there are reliable amplitude-frequency couplings in neural
signals, and if these are different from muscle or noise signals, this could be
exploited to realize new signal decomposition approaches.

Lastly, it has been shown that feedback on the power in the upper α band
can decrease cognitive impairments in some cases [56]. Giving feedback on
the power in only the upper part of the α band may be equivalent to giving
feedback that pushes the α frequency higher, and it may be that using the
frequency location instead of the half-width bandpower is a more reliable
signal.

1.5.3 Outlook

One of the major problems causing BCIs to remain in the laboratory is their
inconsistency and the frustration of trying to use them habitually. Transfer
learning represents a path towards optimal use of past data, such that ma-
chine learning models perform more stably. In addition, new features may
also be less susceptible to the major sources of noise within the signal. And,
finally, it is very expensive to test new models in a closed-loop BCI in terms of
the manpower involved. Better validation via precollected data allows one to
conduct online experiments with provably robust machine learning, allowing
users and developers to concentrate on the other areas of the system.

Looking out from the work of my doctorate, there are both methodological
and experimental directions to be followed. The model for transfer learning
can be extended in many ways, and with a robust procedure for validating
these ways it is possible to determine the optimal way of using this scheme
to aid in BCI decoding. On the other side, the implications of frequency
modulation in task-based experiments have not yet been explored, and there
is therefore a great deal of room to see what the benefits of using these
features over traditional amplitude features are. In addition to both of these
improvements done independently, however, there is also an obvious question
of what happens when both the transfer learning and frequency modulation
are combined. While a simple idea in theory, in practice this requires a large
pool of subjects doing recordings, ideally longitudinally, and that is still a
difficult proposition in brain-computer interfacing. No low-cost hardware
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has been optimized to the point where such a study is feasible outside a
doctoral project, but the future is bright in this regard. There has already
been some work showing how commercial, low-cost EEG may be suitable
for BCI applications [57], [58]. In combination with some of the innovations
presented here, it may be soon that BCIs finally leave the lab after all.
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Chapter 2

Collected works

2.1 Contributions

1. Vinay Jayaram , Morteza Alamgir, Yasemin Altun, Bernhard Schölkopf,
and Moritz Grosse-Wentrup. Transfer learning in brain-computer in-
terfaces. IEEE Computational Intelligence Magazine 11, no. 1 (2016):
20-31. ©2016 IEEE, reprinted with permission.

The idea of a hierarchial Gaussian model was introduced by Morteza
Alamgir, Yasemin Altun, and Prof. Grosse-Wentrup and published at
a conference in 2010 [16]. I added a task-specific bilinear model and
derived the optimization strategy for this approach. I participated in
one of the recordings for the ALS patient data and did not participate
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Abstract

The performance of brain-computer interfaces (BCIs) improves with the amount of available training data; the statistical distribution

of this data, however, varies across subjects as well as across sessions within individual subjects, limiting the transferability of training

data or trained models between them. In this article, we review current transfer learning techniques in BCIs that exploit shared structure

between training data of multiple subjects and/or sessions to increase performance. We then present a framework for transfer learning in

the context of BCIs that can be applied to any arbitrary feature space, as well as a novel regression estimation method that is specifically

designed for the structure of a system based on the electroencephalogram (EEG). We demonstrate the utility of our framework and

method on subject-to-subject transfer in a motor-imagery paradigm as well as on session-to-session transfer in one patient diagnosed

with amyotrophic lateral sclerosis (ALS), showing that it is able to outperform other comparable methods on an identical dataset.

1 INTRODUCTION

It is often a problem in various fields that one runs into a series of tasks that appear - to a human - to be highly related

to each other, yet applying the optimal machine learning solution of one problem to another results in poor performance.

Specifically in the field of brain-computer interfaces (BCIs), it has long been known that a subject with good classification

of some brain signal today could come into the experimental setup tomorrow and perform terribly using the exact same

classification function. One initial approach to get over this problem was to fix the classification rule beforehand and train

the patient to force brain activity to conform to this rule. For example, Wolpaw et al. in the early 90’s chose weights for

the α and µ rhythms and trained participants to modulate the bandpower in these frequency bands in order to control
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a cursor [1], [2]. Similarly, Birbaumer et al. trained a patient to create large depolarizations of the electroencephalogram

(EEG) over the course of several seconds, using a simple threshold on the bandpassed raw signal [3]. In their time, both

approaches were successful, but took training time on the order of months to master. To overcome this limitation, several

groups introduced machine learning techniques for adapting BCIs to their users [4]–[10]. They successfully managed to

learn decoding rules with high acccuracy using only a fraction of the training trials required by the earlier approaches,

allowing subjects to communicate consistently with a computer in a single session. Unfortunately, a training period had to

be repeated at the beginning of each usage session as the learned discrimination rules were not immediately stable. A naive

solution to this limitation was to pool training data from multiple recordings; however, the statistical distributions of these

data varies across subjects as well as across sessions within individual subjects, giving this approach varying effectiveness.

In recent years, several groups have started explicitly modelling such variations to exploit structure that is shared between

data recorded from multiple subjects and/or sessions. In this article, we provide an overview of previous work on the topic

and present a unifying approach to transfer learning in the field of BCIs. We demonstrate the utility of our framework on

subject-to-subject transfer in a motor-imagery paradigm as well as on session-to-session transfer in one patient diagnosed

with amyotrophic lateral sclerosis (ALS).

1.1 Previous work

Transfer learning describes the procedure of using data recorded in one task to boost performance in another, related task

(for a more exhausive review of the machine learning literature, see [11]). That is to say, we assume a priori that there is

some structure shared by these tasks; the goal, then, is to learn some representation of this structure so further tasks can be

solved more easily. In the context of BCIs, transfer learning is of critical importance - it has long been known that the EEG

signal is not stationary, and so in its strictest sense one can consider every trial a slightly new task. As such, long sessions

of BCI usage present unique problems in terms of consistent classification [12]. The question is how to transfer some sort

of knowledge between them: a question that can be answered in one of two general ways. Either we can attempt to find

some structure in the data that is invariant across datasets or we can find some structure in how the decision rules differ

between different subjects or sessions. We denote these as domain adaptation and rule adaptation respectively (Figure 1).

Looking at the literature, BCI has been almost exclusively dominated by domain adaptation approaches. One popular

feature space in the field is the trial covariance matrices used both in Common Spatial Patterns (CSP) [4], [13] and other

more modern methods [14]. Many transfer learning techniques have been attempted with CSP, mostly relying on an

assumption that there exists a set of linear filters that is invariant across either sessions or subjects. An early example of

session-to-session transfer of spatial filters is the work by Krauledat et al. [15], in which a clustering procedure is employed

to select prototypical spatial filters and classifiers, which are in turn applied to newly recorded data. Using this approach,

the authors demonstrate that calibration time can be greatly reduced with only a slight loss in classification accuracy.

The problem of subject-to-subject transfer of spatial filters is addressed by Fazli et al. [16]: also building upon CSP for

spatial filtering, the authors utilize a large database of pairs of spatial filters and classifiers from 45 subjects to learn a

sparse subset of these pairs that are predictive across subjects. Using a leave-one-subject-out cross-validation procedure,

the authors then demonstrate that this sparse subset of spatial filters and classifiers can be applied to new subjects with

only a moderate performance loss in comparison to subject-specific calibration. Note that in both above approaches transfer
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learning amounts to determining invariant spaces on which to project the data and learning classifiers in these spaces. This

line of work has been further extended by Kang et al. [17], [18], Lotte and Guan [19], and Devlaminck et al. [20]. In these

contributions, the authors demonstrate successful subject-to-subject transfer by regularizing spatial filters derived by CSP

with data from other subjects, which amounts to attempting to find an invariant subspace on which to project the data of

new subjects. Recently, a method of distance measures between trial covariance matrices has also been used to great effect

in both motor imagery [21] and event-related potential paradigms [22] as a domain adaptation tool. Related to the spirit of

the regularized CSP methods described above, they work by trying to find the best projection plane for the trial covariance

matrices, invariant to subjects and sessions, and then run a classification algorithm. Other domain adaptation approaches

include that by Morioka et al. [23], in which an invariant sparse representation of the data is learned using many subjects

and then the transformation into that space is applied to new subjects, and the technique of stationary subspace analysis

[24], [25], which attempts to find a stationary subspace of the data from multiple subjects and/or sessions.

A very related technique to domain adaptation is covariate shift, which has also found use in BCIs. Sugiyama et al. have

used covariate shift adaptation to combine labeled training data with unlabeled test data [26]. Here, it is assumed that

the marginal distribution of the data changes between the subjects and/or sessions, but the decision rule with respect to

this marginal distribution remains constant. This assumption leads to a re-weighting of training data from other subjects

and/or previous sessions based on unlabeled data from the current test set that corrects for covariate shifts–in essence,

correcting for the difference in marginal distributions in the different subjects and/or sessions. In addition to their results,

several other authors have also reported improvements in BCI decoding performance by using similar techniques for

covariate shift adaptation [27]–[29]. Other techniques such as boosting [30] have also used re-labelling of offline data to

increase performance [31].

The covariate shift and other methods presented in the previous paragraph represent a very different assumption about

the tasks than the methods that attempt to find an invariant space to project the data. Instead of assuming that there

exists some space where the data already lives that is invariant for all individuals or across all time, it attempts to model

the variation between individuals and efficiently discover a transformation for new individuals to the known space (in

comparison, an invariant subspace could be seen as applying an identical transform to all individuals). This approach of

attempting to learn a representation of the variability is most naturally attempted in the space of possible rules, since it

often offers a ready-made parametrization of the approximating function. One possibility for such modelling is to treat

the parameters of a decoding model as random variables that are, for each subject and/or session, drawn from the same

distribution. The prior distribution of the model parameters can then be used to link training data across multiple subjects

and/or sessions, and be learned by a simultaneous optimization over previous subjects and/or sessions. Rule adaptation

of this sort has been attempted in Kinderman et al. [32], which attempts to learn a classification prior in the P300 task,

but restricts the covariance to multiples of the identity while it allows the mean to be determined by the distribution of

subject weight vectors. A framework of multitask learning which attempts to learn a full distribution has been introduced

to the field of BCIs by Alamgir et al. [33]. Specifically, the authors treat classification as a linear regression problem and

model the regression weights as a random variable that is drawn from a multivariate Gaussian distribution with unknown

mean and covariance matrix. By jointly estimating the parameters of this distribution and regression weights for multiple

subjects, they demonstrate a substantial improvement in decoding performance in a motor-imagery paradigm. However,
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Domain Adaptation Rule Adaptation

Fig. 1: Given a set of training datasets (top) there are two ways to model the similarities shared by them. Domain adaptation
(left) refers to the strategy of attempting to find a transformation to a data space in which a single decision rule will
classify all samples. Instead of learning a new rule for the new data, data is simply transformed to the invariant space. Rule
adaptation (right) is the strategy of attempting to learn the structure of the classification rules. New datasets are faced with
a much smaller search space of possible rules which allows for much faster learning of novel decision boundaries.

this work suffered from various limitations. In modelling each channel bandpower as a separate feature it became necessary

to employ channel selection in a pre-processing step, and also to attempt to isolate and remove noisy subjects from the

training pool. In this work we extend the previous results of multitask learning with a new technique that is robust both

to subjects who perform poorly and to an extremely high-dimensional feature space.

2 A GENERAL FRAMEWORK FOR TRANSFER LEARNING IN BCIS

In this article, we build upon our prior work on multitask learning [33] to derive a general framework for transfer learning

in BCI, applicable to any spatiotemporal feature space and able to be used on multi-session and multi-subject data equally,

and further introduce a BCI-specific method for reducing the feature space dimension.

2.1 Preliminaries

In this section, we introduce the decoding model used throughout this work. We index multiple subjects or recording

sessions by s = {1, . . . , S} and assume that for each subject/session we are given data from ns trials, Ds = {(xis, yis)}ns
i=1.

Here, xis ∈ Rd refers to the features derived from the recorded brain signals of subject/session s during trial i, with d

denoting the number of features. For the datasets presented in this article, xis consists of EEG log-bandpower estimates

at different scalp locations; however, it is equally applicable to timepoints after event onset if the signal of interest is an

event-related potential. More specifically, if the number of electrodes is E and the number of EEG log-bandpower estimates

is F , the number of features is d = E × F . Variable yis denotes the subject’s stimulus, e.g., motor imagery of either the left
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or right hand in trial i of session s. As we furthermore only deal with two-class paradigms, we let yis ∈ {−1, 1} for all i

and s, though this framework is applicable to regression problems as well.

Assuming our model is linear with a noise term η, we can model our data by a linear function

yis = wT
sx

i
s + η

associated to each subject/session s, where the parameters ws constitute the weights assigned to the individual features

that are used to predict the stimulus for trials in subject/session s. Given a new brain signal x for subject/session s, the

stimulus is predicted by

ŷi+1
s = sign{wT

sx
i+1
s }. (1)

We first investigate training ws for each subject independently in Section 2.2 and extend this formalism to train ws jointly

on multiple subjects/sessions in Section 2.3.

2.2 Training Models for Subjects/Sessions Independently

When faced with some set of data and labels, the goal is to determine the parameters ws that allow for the best prediction

of the labels from the data. Mathematically speaking, for each subject/session s, the parameters ws are determined such

that the number of errors in the dataset of subject/session s, Ds, is small. The choice of how to define ’errors’ for a given

set of predictions can drastically influence both the values of the final parameters and the ease with which they can be

found; in machine learning, this is called a loss function and by finding the minimum of this function we can recover the

parameters that result in the lowest defined error. The most commonly used loss functions to calculate errors are convex

proxies such as log-loss, hinge loss or least squares loss [34]; in this paper, we use least squares loss, which we arrive at

naturally with the assumption that the error term η is distributed as N (0, σ2).

To begin, let us consider a probabilistic interpretation of the problem. Using Bayes Rule, the probability of our

parameters given our data decomposes as follows (note that we ignore the possible dependence of the prior p(ws) on

xis or σ2):

p(ws|yis,xis, σ2) ∝ p(yis|ws,x
i
s, σ

2)p(ws). (2)

With the model from the previous section and the assumption of Gaussian noise, p(yis|ws,x
i
s, σ

2) ∼ N (wT
sx

i
s, σ

2), and

assuming our samples xis are independent, we may derive the negative log likelihood as follows:

p(y1s , ..., y
ns
s |x1s, ..., xns

s ,ws, σ
2) =

ns∏

i=1

N (yis; w
T
sx

i
s, σ

2) (3)

LL(ws;Ds, σ
2) =

1

σ2

ns∑

i=1

(
yis −wT

sx
i
s

)2
, (4)

The negative log likelihood defines a convenient loss function as its value increases with the square of the difference

between our prediction wT
sx

i
s and the true label yis for each data point. For notational convenience, we write the loss in

matrix form by defining the input matrix X = [x1T, . . . ,xnT]T and the output vector y = [y1, . . . , yn]T. Then, the loss for

subject/session s is given by ‖Xsws − ys‖2, where ‖v‖ is the `2 or Euclidean norm. If we ignore the prior and solve for

ws analytically from here, we end up with the equations for regular linear regression.
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It is well known that complex models that are trained without a validation dataset can over-fit, leading to poor

generalization to new data points. A classical technique to control over-fitting is adding a penalty term to the loss function

that reduces the complexity of the model. A common choice for this regularizer is given by the sum of the squares of the

weight parameters,

Ω(ws) =
‖ws‖2

2
. (5)

Addition of Ω(ws) to the optimization problem is equivalent to assuming a Gaussian prior on ws with 0 mean and unit

covariance I and incorporating this prior in the log-scale.1 If the variance of the prior is not assumed to be exactly the

identity matrix but rather some matrix αI then this formulation describes ridge regression.

However, the above assumption is rarely a reasonable one. If there exists some better prior information on the

distribution of the weights that can be represented by a mean µ and covariance Σ, this information can be used instead in

the regularizer by assuming a Gaussian distribution with the corresponding mean and covariance term, N (µ,Σ), as the

prior and defining the regularizer as the negative log prior probability

Ω(ws;µ,Σ) =
1

2

[
(ws − µ)TΣ−1(ws − µ)

]
+

1

2
log det(Σ). (6)

Note that the last term is constant with respect to ws for fixed Σ, and further that Ω(ws; 0, I) is equivalent to (5).

The new loss function can then be derived by taking the negative logarithm of the posterior of ys:

p(yis|ws,x
i
s,µ,Σ, λ) ∝ N (yis; w

T
sx

i, λ)N (ws;µ,Σ) (7)

LP (ws;Ds,µ,Σ, λ) =
1

λ
‖Xsws − ys‖2 + Ω(ws;µ,Σ) + C. (8)

We replace σ2 with λ to emphasize that in the loss function, the variance of the original noise model is equivalent to a

term that controls the ratio of the importance assigned to the prior probability of the learned weight vector versus how

well the learned vector can predict the labels in the training data. Put another way, the higher the variance of the noise in

the model, the less we can trust our training data to lead us to a good solution; moving forwards, it is more convenient

to think of the variable in terms of this trade-off than as purely a noise variance. From this point the actual optimization

problem can be formulated as

min
ws

LP (ws;Ds,µ,Σ, λ). (9)

2.3 Training Models for Subjects/Sessions Jointly

In a standard machine learning setting, there is a single prediction problem or task to model and there is usually no prior

information on the distribution of the model parameters w. However, if there are multiple prediction tasks that are related

to each other, it is possible to use information from all the tasks in order to improve the inferred model of each task. In

particular, if the tasks share a common structure along with some task-specific variations, the shared structure can be used

as the prior information (µ,Σ) in (6) in order to ensure that the solutions to all the tasks are close to each other in some

space.

1Note that LL(ws;Ds, σ2) + Ω(ws) gives the negative log posterior for ws given Ds and the assumed prior.
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In the BCI training problem, we treat each subject/session as one task and the shared structure (µ,Σ) represents the

subject/session-invariant characteristics of stimulus prediction. More precisely, (µ,Σ) are the mean vector and covariance

matrix of features. As such, µ defines an out-of-the-box BCI that can be used to classify data recorded from a novel

subject/session without any subject/session-specific calibration process. The divergence of a subject/session model from

the shared structure, ‖ws − µ‖, represents the subject/session-specific characteristics of the stimulus prediction.

Clearly, the shared structure is unknown in this setting. Our goal is to infer the shared structure, (µ,Σ), from all the

tasks along with the model parameters ws jointly. This can be achieved by combining the optimization problem of all tasks

min
W,µ,Σ

LP (W,µ,Σ;D,λ) = min
W,µ,Σ

1

λ

∑

s

‖Xsws − ys‖2 +
∑

s

Ω(ws;µ,Σ) (10)

where W = [w1, ...,wS ]T, D = {Ds}Ss=1, and d is the dimension of each weight vector. Let us investigate each term of this

optimization problem separately. The first term is the sum of the losses from each session, and by minimizing it we ensure

all the sessions are well fitted. The second term controls the divergence of each subject/session model from the underlying

mean vector µ and penalizes the elements of the residual ŵs = ws − µ scaling with Σ−1. Expanding one of these terms,

ŵT
sΣ

−1ŵs =
∑

i

∑

j

Σ−1
i,j ŵs,iŵs,j ,

we observe that Σ−1
i,j is proportional to the partial correlation between the i-th and j-th components of the weight vector,

which is defined as the correlation between these after all other components have been regressed out. Thus, for a given

matrix Σ−1, this term will be minimized when for each set of components with high partial correlation, the subject/session-

specific weight vectors ws allow only one of these to deviate greatly from the mean of that component. Hence, Σ−1 acts as

an implicit feature selector. The final term, which is a constant in the independent setting of (8), controls the complexity of

the covariance matrix.

We solve the minimization in (10) with respect to W and (µ,Σ) iteratively by alternating holding (µ,Σ) and W

constant. For fixed µ and Σ, optimization over ws decouples across subjects/sessions and hence can be optimized

independently. In each iteration we get the new ws by taking the derivative with respect to ws for all s and equating

to 0. This yields the following closed form update for each ws:

ws =

(
1

λ
XT
sXs + Σ−1

)−1 ( 1

λ
XT
sys + Σ−1µ

)
. (11)

Hence, the model parameters are a combination of the shared model contribution Σ−1µ and the contribution of the

individual subject/session data XT
sys. This combination is scaled with the inverse of covariance term which again comes

from both the data XT
sXs and the shared model Σ−1. In order to avoid inverting Σ, which is a O(d3) operation, we

perform the equivalent update

ws =

(
1

λ
ΣXT

sXs + I

)−1 ( 1

λ
ΣXT

sys + µ

)
. (12)

For fixed W, the updates of µ and Σ are given in Algorithm 1 and derived in the Supplementary Materials.
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Algorithm 1 Multitask BCI training

1: Input: D, λ
2: Set {(µ,Σ)} = (0, I)
3: repeat
4: Update ws using (12)
5: Update µ using µ∗ = 1

S

∑
s ws

6: Update Σ using Σ∗ =
∑

s(ws−µ)(ws−µ)T

Tr(
∑

s(ws−µ)(ws−µ)T) + εI
7: until convergence
8: Output: (µ,Σ)

2.4 Decomposition of Spatial and Spectral Features

The learning method described above can be applied to any feature representation where the features extracted from each

electrode are appended together. Let E be the number of electrodes and F be the number of features extracted from each

electrode. The final feature vector then is size EF , rendering the covariance matrix large and iterative updates expensive. It

also causes the number of features to grow linearly with the number of channels and channel-specific features, an increase

that can be avoided by taking advantage of the structure of the EEG. Specifically, we assume that the contribution of the

features is invariant across electrodes but the importance of each electrode varies. Hence, the weights corresponding to the

feature vector mentioned above can be decomposed into two components: the weight of each electrode α = (α1, . . . , αE)

and the weights of features that are shared across all electrodes w = (w1, . . . , wF ). We note that though in this paper

spectral features are used, there is no reason that temporal features such as ERP timepoints could not be used instead. With

this formulation, the linear regression function is given by

fs(X; ws,αs) = αT
sXws,

where X ∈ RE×F denotes the matrix of features for each channel for a given trial. This causes the number of parameters

in the decoding model to be reduced from EF to E + F .

The new optimization problem is now over W,A,µw,µα,Σw, and Σα, where A = [α1, ...,αS ]T. However, it can

easily be seen that αTXw = αTX̃ , where X̃ = Xw, and thus that y, instead of being a function of the features, can

now be considered a function of the aggregated features for each electrode. As this formulation assumes that α and w are

indepedent, the prior over model parameters can be incorporated as the product of indepedent priors for both w and α.

As such, the same arguments used to define a prior of w can be applied to α to define a new distribution for yis and a

new optimization problem (for readability we define the parameters of the Gaussian priors over w and α as θw and θα

respectively):

p(yis|Xi
s,ws,αs, θw, θα, λ) ∝ N (yis;α

T
sX

i
sws, λ)N (ws; θw)N (αs; θα) (13)

LP (W,A, θw, θα|D,λ) =
1

λ

∑

s

∑

i

‖αT
sX

i
sws − yis‖2 +

∑

s

Ω(ws;µw,Σw) +
∑

s

Ω(αs;µα,Σα) + C (14)

where again, Ω(x;µ,Σ) is the negative log prior probability of the vector x given the Gaussian distribution parametrized

by (µ,Σ). It is easy to see that w and α function identically except for a transpose. The updates for the weights over the

features and the channels are linked, so we first iterate until convergence within each subject/session before continuing on

to update the prior parameters, which leads to the following algorithm (Algorithm 2):
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Algorithm 2 Multitask BCI training with uninformative α

1: Input: D, λ
2: Set {(µw,Σw), (µα,Σα)} = (0, I)
3: Set αs = 1
4: repeat
5: repeat
6: Compute X̃s = [αT

sX
1
s ; . . . ;αT

sX
n
s ]

7: Compute X̂s = [X1
sws, . . . , X

n
s ws]

8: Update ws using w∗
s =

(
1
λΣwX̃T

sX̃s + I
)−1 (

1
λΣwX̃T

sys + µw

)

9: Update αs using α∗
s =

(
1
λΣαX̂sX̂

T
s + I

)−1 (
1
λΣαX̂sys + µα

)

10: until W and A converge for fixed (µ,Σ)
11: Update µw,µα using µ∗

w = 1
S

∑
s ws,µ

∗
α = 1

S

∑
sαs

12: Update Σw,Σα using Σ∗
w =

∑
s(ws−µw)(ws−µw)T

Tr(
∑

s(ws−µw)(ws−µw)T) + εI,Σ∗
α =

∑
s(αs−µα)(αs−µα)T

Tr(
∑

s(αs−µα)(αs−µα)T) + εI
13: until convergence
14: Output: (µw,Σw,µα,Σα)

This reduces the size of the feature space from EF to E + F , which simplifies learning the regression parameters and

also reduces calculation speed. The more degrees of freedom, the more data a model requires to find a good fit, so by

reducing the number of parameters we also reduce the number of necessary training trials. Also for the case of a model

with EF parameters, the matrix inversion necessary to compute a decision rule is O(E3F 3), which is changed for a model

with E+F parameters to O((E+F )3). We also note that the initialization of Algorithm 2 shown above is non-informative.

Our experiments have suggested that the alternative method shown below (Algorithm 3) works more effectively in some

cases.

Algorithm 3 Multitask BCI training with α initialization

1: Input: D, λ
2: Set {(µw,Σw), (µα,Σα)} = (0, I)
3: Concatenate subject data in D into single pooled subject D̂
4: Run ridge regression on D̂ using the feature decomposition regression function
5: Set αs to the ridge regression spatial weights
6: repeat
7: repeat
8: Compute X̃s = [αT

sX
1
s ; . . . ;αT

sX
n
s ]

9: Compute X̂s = [X1
sws, . . . , X

n
s ws]

10: Update ws using ws =
(

1
λΣwX̃T

sX̃s + I
)−1 (

1
λΣwX̃T

sys + µw

)

11: Update αs using αs =
(

1
λΣαX̂sX̂

T
s + I

)−1 (
1
λΣαX̂sys + µα

)

12: until W and A converge for fixed (µ,Σ)
13: Update µw,µα using µ∗

w = 1
S

∑
s ws,µ

∗
α = 1

S

∑
sαs

14: Update Σw,Σα using Σ∗
w =

∑
s(ws−µw)(ws−µw)T

Tr(
∑

s(ws−µw)(ws−µw)T) + εI,Σ∗
α =

∑
s(αs−µα)(αs−µα)T

Tr(
∑

s(αs−µα)(αs−µα)T) + εI
15: until convergence
16: Output: (µw,Σw,µα,Σα)

Online resource for multitask learning

Supplementary materials, appendix, and MATLAB and Python implementations of all three algorithms described here can

be found at http://brain-computer-interfaces.net/.
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2.5 Adaptation to Novel Subjects

In Section 2, we outlined a simple yet effective approach to infer the subject-invariant BCI model, given by learning the

parameters of a Gaussian distribution over the weights. This model can be used successfully on novel subjects immediately

via f(x; θ) = µTx in the case of regular linear regression or f(X; θw, θα) = µT
αXµw in the case of feature decomposition,

though depending on the covariance of the learned priors this can result in poor performance. It is possible to further

improve the performance of this model by adapting to the subject as more subject-specific data becomes available by

simply using the learned priors and considering the problem independently as discussed in Section 2.2. The standard

regression case is discussed there; for the feature decomposition method, we consider n trials Xi, where each Xi ∈ RE×F

is a matrix with columns denoting features and rows denoting electrodes. In this setting the update equations are identical

to the inner loop of Algorithm 2. We emphasize that w and α are linked, so the update steps must be iterated until

convergence. The parameter λ is determined in practice through cross-validation over the training data.

3 EXPERIMENTS

We conducted two experiments with real-world data sets. The first used both the initial multitask learning algorithm as

well as the version with decomposition of spectral and spatial features while the second only used the version with feature

decomposition (hereafter referred to as FD). The first is an example of subject-to-subject transfer with a motor imagery

dataset recorded for ten healthy subjects, and the second is an example of session-to-session transfer for a neurofeedback

paradigm recorded in a single subject with ALS.

3.1 Subject-to-Subject Transfer

Paradigm

As an initial test of this algorithm, we considered how it performs on the most common paradigm in spectral BCIs: motor

imagery. Specifically, subjects were placed in front of a screen with a centrally displayed fixation cross. Each trial started

with a pause of three seconds. A centrally displayed arrow then instructed subjects to initiate haptic motor imagery of

either the left or right hand, as indicated by the arrow’s direction. After a further seven seconds the arrow was removed

from the screen, marking the end of the trial and informing subjects to cease motor imagery.

Dataset

Ten healthy subjects participated in the study (two females, 25.6 ± 2.5 years old). One subject had already participated

twice in other motor imagery experiments while all others were naı̈ve to motor imagery and BCIs. EEG data was recorded

from 128 channels, placed according to the extended 10-20 system with electrode Cz as reference, and sampled at 500Hz.

BrainAmp amplifiers (BrainProducts, Munich) with a temporal analog high-pass filter with a time constant of 10s were

used for this purpose. A total of 150 trials per class (left/right hand motor imagery) per subject were recorded in

pseudorandomized order, with no feedback provided to the subjects during the experiment.
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Feature Extraction

For feature extraction, recorded EEG data was first spatially filtered using a surface Laplacian setup [35]. We did not

employ more sophisticated methods for spatial filtering, such as CSP or beamforming, in order to keep the spatial filtering

setup data-independent. For each subject, trial and electrode, frequency bands of 2 Hz width, ranging from 7-29 Hz, were

then extracted using a discrete Fourier transform with a Hanning window, computed over the length of the trial. Log-

bandpower within the last seven seconds of each trial for each frequency band then formed the (128 × 12)-dimensional

feature vector.

Classification Performance

Here we show the efficiency of the proposed algorithms by examining the effect of multitask learning and FD on

classification performance. For all algorithms, one subject was successively chosen as the test subject and all other subjects

were then used for training. Test-specific training data of between 10 and 100 trials per condition were then given to each

algorithm, and the remaining trials out of 300 were used for testing. Multitask learning was done using Algorithm 1 and

Algorithm 3 with a cross-validated λ. Note that for all tested algorithms the feature space was the full 128 channels, each

with 12 feature bands.

We looked at two control algorithms to compare with the multitask learning approaches. The first was to consider ridge

regression, which regularizes the regression method only by penalizing the magnitude of the resultant weight vector (see

(5)) and can be seen as using an uninformed prior for the distribution of weight vectors; the second was to consider a

support vector machine (SVM) trained on the same feature space. We further tested both control algorithms two ways:

Once with pooled data and once with only subject-specific data. For the pooled condition, all data from the training

subjects was concatenated to the training trials from the test subject to form a combined training set, on which the control

algorithms were run. For the subject-specific condition, only training data from the test subject was used to train the control

algorithms. All controls were compared to the multitask approaches, where the learned prior mean(s) and covariance(s)

were used to regularize the least-squares regression method.

The following list summarizes the algorithms:

• MT FD: multitask learning with Algorithm 3

• MT: multitask learning with Algorithm 1

• RR: standard ridge regression

• RR FD: ridge regression using the FD regression method

• SVM: SVM with a linear kernel given the full 128× 12 feature space

Results

The results for the pooled sub-condition can be found in Figure 2 and the results for the single-subject sub-condition can

be found in Figure 3. Note that in both graph, the curves for the MT and MT FD algorithms are identical.

The MT FD algorithm consistently outperformed the other algorithms at nearly all levels of test subject data. In the

pooled condition, it equalled the zero-training and low-data accuracy of the pooled data while also managing to more

effectively use subject-specific data, leading to a higher mean accuracy than any other algorithms with 200 training trials.
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Fig. 2: Mean and STD (shaded) for classification accuracy of MT and pooled conditions across the ten subjects. The control
algorithms were trained on data pooled across training subjects, and are compared against classification using Algorithm 1
(MT, solid blue) and Algorithm 3 (MT FD, solid red). Displayed control algorithms are ridge regression using the standard
regression method (RR, dashed blue), ridge regression using the FD regression method (RR FD, dashed red) and SVM
(SVM, solid black). The FD formulation of the multitask learning has comparable performance with few training trials to
pooled regression and both multitask algorithms manage to improve more than the pooled controls given a larger number
of training trials.

Interestingly, the MT algorithm without FD did more poorly than the pooled ridge regression without FD in the zero-

training and low subject-specific trial cases, which we hypothesize is due to the fact that each individual subject had so few

training trials compared to the size of the feature space (300 compared to 1400). Rule adaptation requires learning a rule

for each subject, which is hampered by this low number. However, by concatenating the trials together in ridge regression,

pooling manages to work better. Regardless of this, MT without FD is still able to more effectively use subject-specific data

than any of the pooling algorithms as shown by the higher slope of the classification curve. The single-subject condition

was used to determine whether this regularization could reduce the maximum accuracy: With large training data and no

data from different subjects, the best subject-specific rule can be found, and so we consider the maximum single-subject

accuracy as an approximation of the maximum achievable accuracy with a linear boundary. We find that the MT approaches

at high numbers of trials achieve accuracies nearly identical to those achieved by only subject-specific training, showing

that there is no reduction in maximum achievable accuracy for the MT approach. For subject-specific results please consult

the Supplementary Materials.

To further confirm that our results are classifying on the signal we expect, we considered the mean of the spatial and

spectral priors in the MT FD condition (Figure 4). The learned topography is most strongly weighted around the electrodes

directly over the motor cortices and the different cortices also have opposite signs, which is in agreement with spatial filters

learned in CSP [4], [13] and beamforming [10]. Further, looking at the spectral weights, we see that the most important

weight is on the µ band, which is consistent with previous results on the subject, suggesting that our classification accuracy

is indeed due to training on a brain-derived signal and not any sort of artifact.
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Fig. 3: Mean and STD (shaded) for classification accuracy of MT and single-subject conditions across the ten subjects.
Classification values for the multitask algorithms are identical to those shown in Figure 2. The control algorithms were
trained on data exclusively from the test subject, and are compared against classification using Algorithm 1 (MT, solid
blue) and Algorithm 3 (MT FD, solid red). Displayed control algorithms are ridge regression using the standard regression
method (RR, dashed blue), ridge regression using the FD regression method (RR FD, dashed red) and SVM (SVM, solid
black). The multitask algorithm with FD regression estimation performs better on average regardless of the number of
trials, though single-subject ridge regression with the FD regression method manages to equal its performance at 200
training trials.

3.2 Session-to-Session Transfer

A common issue in BCI paradigms, especially those used with patient populations, is the low number of trials per session.

Given the success of our FD approach on the motor imagery data, we attempted it here on a 30-session dataset where each

session had only ten training and between ten and twenty test trials for each condition.

Data Collection

We trained a patient diagnosed with ALS to modulate the δ-bandpower (1–5 Hz) in the precuneus in thirty sessions over

the course of fifteen months. The patient’s ALS-FRS-R [36] score decreased from 33 to 9 over the course of this time, an

average of 1.6 points per month. The paradigm setup is identical to the setup in [37] except that the frequency band that

received feedback was 1–5 Hz and the target area was changed from the superior parietal cortex to the precuneus. In brief,

however: The subject learned through operant conditioning to modulate power in a beamformed signal pointed at the

precuneus over the course of sixty seconds, deviating either up or down from a session-specific mean. Each minute-long

interval was one trial, and each run was twenty trials (ten up and ten down). For each session, the subject completed

between two and three runs. The first session was used entirely for training.

Throughout all sessions a 121-channel EEG was recorded at a sampling frequency of 500 Hz using actiCAP active

electrodes and a QuickAmp amplifier (both provided by BrainProducts GmbH, Gilching, Germany). Electrodes were

placed according to the extended 10-20 system with electrode Cz as the initial reference. All recordings were converted to

common average reference.
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Fig. 4: (left) Box and whiskers plot of the absolute value of the learned prior means for all 10 leave-one-out executions
of the MT algorithm, showing medians, first quartiles, and 1.5 times the IQR for the learned weights in each frequency
range. The sign of the prior frequency mean is exchangeable with the sign of the spatial mean, and so the absolute value
is used here to correct for that. X-axis shows the starting frequency of each 2 Hz window. Note that the highest weights
are concentrated around the windows of the µ frequency range. (right) Sum of the learned spatial weights over training
subject groups plotted topographically with respect to the head showing a concentration of high-magnitude weights over
the motor cortices.

Feature extraction and training

To eliminate artifacts, independent component analysis (ICA) was performed on each session using the SOBI algorithm [38]

and components corresponding to cortical features [39], [40] were manually chosen. The time-series of these components

were then re-projected to the electrode space. For each trial and electrode, the log-powers in the frequency bands δ =

1-5 Hz, θ = 5-8 Hz, α = 8-12 Hz, β1 = 12-20 Hz, β2 = 20-30 Hz, γ1 = 30-70 Hz, γ2 = 70-90 Hz were computed using a

discrete Fourier transform over the sixty seconds of the trial to create a 121× 7 feature space. The first session was used for

training, after which the first run of each session was used to update the classifier according to Section 2.5 and the updated

weight vectors used to classify the data in the next one or two runs in a pseudo-online fashion. Between sessions Algorithm

2 was re-run with all data of the most recent session included, as we found experimentally that the non-initialized case

performed better on these data. We compare results between the MT, RR, and SVM performance (Figure 5). The spatial

and frequency weights learned by the MT algorithm are shown in Figure 6. Single and pooled were computed similarly to

those presented in Section 3.1 except that instead of subjects we used sessions.

3.2.1 Results

We can see that the multitask and the pooled ridge regression have the highest median (85%) and show more density in

higher classification accuracies. Both are significantly better than the single-session ridge-regression (p < 0.0001, Wilcox

signed-rank test); as the SVM results are clearly bimodal a median comparison is not informative. Between the pooled and

multitask FD conditions the differences are small, which may reflect the fact that inter-session differences are not as large as

inter-subject differences. However, the multitask formulation has a higher minimum classification accuracy (65% vs 60%)

than the pooled accuracy, suggesting that considering the sessions separately still adds a small benefit when attempting to

test on sessions that are outliers for some reason. This may be related to why the SVM distributions are bimodal, as the SVM
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Fig. 5: Density plot of classification accuracy over sessions for each algorithm. MT corresponds to multitask learning
using Algorithm 2 and RR corresponds to ridge regression using the FD regression method. Dashed line corresponds to
median for the distribution and dotted lines show upper and lower quartiles. Classification accuracies using the pooled
FD regression and multitask learning have a higher minimum classification accuracy than any other method.
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Fig. 6: (left) Box and whiskers plot with median, quartiles, and 1.5 times the IQR for frequency weights over 30 test sessions.
Though this ignores the evolution of weights over time the δ range is highly weighted. (right) Sum of learned spatial mean
weights after thirty sessions plotted topographically with respect to the head, showing that the area over the parietal cortex
is emphasized.

either classifies excellently or at chance level in both the single-session and pooled cases. This also suggests that there are

outlier sessions, in which the distribution of data in the feature domain is sufficiently different from past data to cause the

cross-validation over the training data to poorly predict test data classification. Possibly the fact that there is no distinction

made between sessions in the pooled case causes these methods to have lower minimum accuracies. Looking further to

the spatial and spectral weights, we see that the weights are concentrated in the area directly above the precuneus. Instead

of a smooth topography, however, we see that certain channels are strong and nearby channels are not, which is consistent

with the feature selection aspect of the regularization as discussed in Section 2.
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4 DISCUSSION

We have introduced a framework for transfer learning, both across subjects and across sessions, that works across feature

spaces and requires fewer training trials than other state-of-the-art methods for classification, representing an effective

combination of pooled data and single-subject/session training. Previous work in transfer learning for BCI focuses on

transforming the feature space of individual subjects/sessions such that one decision boundary generalizes well across

subjects/sessions, here referred to as ’domain adaptation’. In contrast, our method treats the decision boundary as a

random variable whose distribution is inferred from previous subjects/sessions. As a result, our method is complementary

to domain adaptation methods. Further, we show that applying this formulation with an altered regression method that

takes feature decomposition into account is effective at learning structure between both multiple subjects and multiple

sessions in EEG-based BCI tasks. By assuming that the weights of the channels and the features are independent we are able

to drastically reduce the size of the feature space. This method works better than an SVM trained on an equal feature space

both in the zero-training transfer learning case and after a within-session training period. The prior parameters describing

the distribution of the weight vectors can also be quickly used to see spatial and spectral topographies associated with a

given task.

Though the proposed regression method appears to work well across datasets, it has some undesirable features. One

such characteristic of the proposed regression method is the variable importance of initializing the spatial weights smartly.

In the motor imagery paradigm, a lack of proper initialization resulted in very poor results; conversely, in the other

experiment, using initialization was less effective. While there is no clear rule as to when it might be necessary, we can

easily see a possible explanation for this problem when considering the regression method itself:

ŷ = αTXw = (Cα)TX

(
1

C
w

)
(15)

where C is an arbitrary real number. This symmetry means that the likelihood function is not actually convex, making

the location at which it is initialized in its domain important to the predictivity of the results. When initialized poorly, it

can fail to find predictive features. Further work may determine an appropriate criterion to make the regression method

properly convex. For practical application, however, we found no obvious trend as to which paradigms work better with

a non-informative initialization versus a ridge-regression initialization. Our suggestion with this method would be to test

both empirically and choose the one that works best.

A second problematic result of using the FD regression is the addition of another loop in the algorithm, as now for

each subject/session there must be iteration to determine an appropriate spatial and spectral combination. However, in

practice we found this to run quite smoothly. The other option is to use the regular regression method, which results in a far

larger matrix that has to be inverted for every session. We also found that the convergence in the case of the FD regression

happened orders of magnitude faster than in the non-FD case, possibly due to the far more favorable ratio of training trials

to features. Overall, though there is a second loop in the algorithm, the FD case is actually faster than the non-FD case, in

practice, on high-dimensional datasets. Finally, we note that the restriction of a single spatial weight vector and frequency

weight vector means that a single brain process can be classified at a time. Winning entries in the BCI competition IV

mostly used multiple signals to achieve their high accuracies [41], a possibility that is not possible using this approach as
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they would return conflicting regression weights.

Though ours is the first presentation of inference for the full distribution of weight vectors in BCI, this approach has

been well-studied in the machine learning domain for a variety of different problems [42]. One possible future direction is

to specify our priors as samples from a Dirichlet process and attempt to take advantage of any clustering as the number

of subjects increases [43], as has been shown to be effective in CSP multi-subject learning [44]. It is also interesting to note

that the multitask learning formulation is simply an additive convex term to the loss function, which suggests that it can

be added to any algorithm as a cheap way of learning something about the shared structure of classification rules (though

without some involvement of the shared parameters in the computation of the task-specific rules an iterative procedure

would be impossible). Further work with this approach in SVMs or LDA should prove to be very interesting. Lastly, the

current approach requires that the entire iterative scheme is re-run after the inclusion of any new subjects or sessions, which

quickly becomes inefficient as the number of considered subjects or sessions increases. More research to help streamline

the update rule of the priors would be invaluable in the age of big data.

It is likely that all the methods presented here would perform better if prior knowledge had been incorporated into

choosing the feature space. For example, Alamgir et al. [33] use data only from the electrodes directly over the motor cortex.

Indeed, given a small feature space and a separable problem, it is well known that optimizing the objective function of an

SVM leads to better test classification than simple least-squares loss. The problem is simply that we do not always have

so much prior information; further, in the case of newer paradigms such as the one the ALS patient was trained on, such

information is currently unavailable, a problem that will only continue as more possible paradigms are experimented with.

We hope that the multitask framework presented here will function as a way of quickly judging the efficacy and activation

topography of new BCI paradigms. By training with feature decomposition we are able to get a picture of what channels

and features are important to the task at hand, and can then possibly re-run with the non-FD algorithm in order to better

capture the multitask structure in the smaller feature space. However, there are also instances in which the data has a very

large number of dimensions that do actually contribute to the classification of the task at hand, and we have shown that

multitask learning is robust to these sorts of datasets.

5 CONCLUSION

Previous approaches to transfer learning in BCI have ignored the possibilities of knowledge transfer within the feature

space, constraining themselves mostly to spatial filtering and domain adaptation. Here, we present a method for learning

that transfers knowledge from previous subjects to new ones in any desired spatiotemporal feature space, able to work

both on its own and on top of other paradigms. Testing on both motor imagery and a novel cognitive paradigm, we find

that our proposed methods better deal with both session-to-session and subject-to-subject variability as compared to simple

pooling, achieving accuracies comparable to or better than single-session training with far fewer training trials. Further,

this work presents a framework on top of which other objective functions can be used to determine priors for decision

boundaries that minimize other sorts of error. Any parties interested in trying these algorithms for themselves will find

implementations of all three algorithms in MATLAB at the following website: http://brain-computer-interfaces.net/.
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1.  Introduction

Brain-computer interfaces (BCIs) are moving closer and 
closer to stable use, as evidenced by their increasing preci-
sion [1–3] and their inclusion in events like the Cybathlon 

BCI race [4]. Surprisingly, however, this enormous increase 
in usability has been achieved using only a very small part 
of the entire EEG signal. Neuroscience tells us that neural 
circuits tend to oscillate [5], and these oscillations project to 
the EEG signal where they can be isolated by bandpassing or 
other methods. Further, these oscillations can have different 
spectral locations depending on the makeup of the underlying 
circuits. The neural frequency bands used by the brain are 
well known, and so by taking advantage of the properties of 
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these neural oscillations, modern stimulus-independent BCIs 
have achieved their current performance [6–9]. However, we 
show in this paper that previously unconsidered properties of 
the EEG can easily and reliably be used to improve decoding 
performance.

The two major properties of an oscillation are amplitude 
and phase, both of which have long histories in the realm of 
BCIs. The easiest and most-used property of neural oscilla-
tions in the context of BCIs is the signal amplitude or power 
[10]. The average response of cortical ensembles to tasks, be 
they cognitive or motor, is an increase or decrease in syn-
chrony of neighboring circuits [11], giving rise to a change 
in the measured power at those circuits’ frequency of oscil-
lation—which is a mathematically convenient property to 
calculate given an EEG signal. To borrow a term from signal 
processing, we designate this amplitude modulation (AM) as 
the time-domain amplitude is closely related to the power. 
After being computed, these powers can be used as features 
for standard machine learning algorithms. Over time, many 
fundamental methods in BCIs have been developed using 
task-related differences in spectral power such as CSP [12] 
and the more recent Riemannian approaches [13], both of 
which have led to substantial gains in performance.

Phase-related features, though more recently exploited, 
have also enjoyed great success. Mostly, this has happened 
through measures of phase synchrony, in which two channels 
are compared to see how often the phases are identical in both 
[14]. This value for a given time period is used as a feature 
for a classifier, and has been shown to be useful for BCIs both 
offline [15–17] and online [18]. Outside of identical phases, 
consistent phase differences [19] and the average instanta-
neous phase difference [20] have also been used and shown 
to add new information, allowing for more accurate classifica-
tion of intentions.

As has been known for many years, however, BCIs based 
on these feature spaces simply do not work for some subset 
of even healthy individuals (for a comprehensive review, see 
[21]). Much work has been done on attempting to determine 
a priori who will not be able to use a rhythm-based BCI [22], 
but the existence of such people is simply a given. This is not 
even to consider various patient groups for whom a BCI is 
sometimes the only hope for communication with the world, 
such as amyotrophic lateral sclerosis (ALS) patients. Within 
just this group, traditional features have proved ineffective 
by the end stage of the disease despite over two decades of 
research [23].

One thing that ties phase and amplitude-based features 
together is that they are both restricted by one thing: the fre-
quency. For all the methods above, a frequency range needs 
to be assumed to compute the AM or phase features. There 
is, unfortunately, no good range that works for all people. 
Differences in the spectral location of neural frequency bands 
have been attributed to many factors. In the particular case of 
the μ band, i.e. oscillations in sensorimotor areas that range 
from 8 to 13 Hz, it has been shown to vary with age [24], 
genetics [25, 26], and psychological factors [27]. For the pari-
etal α, Haegens et al [28] determined that even within an indi-
vidual and a single recording session the peak frequency of 

the α band can vary by up to one Hertz [28], and is related 
to such factors as cognitive load [28, 29]. These more tran-
sient changes in the location of neural peaks are nearly always 
dealt with as reasons to shift the spectral window for further 
processing, indeed the general recommendation for motor 
imagery is to always use a subject-specific μ frequency 
window [30, 31].

Neurophysiological research has given us ample evidence 
to believe that neural frequency peaks shift both location and 
size in response to tasks as well as innate factors. As BCI 
researchers, our natural question is then to ask whether this 
shift can be quantified and used as a feature for classification. 
Outside the field of BCI, this average frequency feature has 
already been attempted in LFP recordings [32, 33] as well as 
with EEG for non-BCI usage [34, 35]. Within the field, this 
has been dealt with by two works. Wu et al [36] showed that 
the frequency location of the trialwise empirical modes can 
be a robust feature for classification, but they did not look at 
task-induced frequency shifts. Rather, they used an SSVEP 
paradigm to induce the frequency shifts externally. A paper 
by Medl et al [37] did look at intrinsic, task-related frequency 
shifts over 25 years ago, in a visionary work that considered 
the instantaneous frequency and envelope as possible features 
for a BCI. However this work was never expanded past an 
exploratory analysis, an expansion which we attempt here. 
As we believe that the location of the neural oscillations in 
the frequency domain may be a feature for classification, we 
rechristen this approach frequency modulation (FM), as it 
measures the change in location of spectral peak.

In this paper we review a basic method for extracting the 
average peak frequency for a given BCI trial and show that 
this feature can be used across BCI paradigms as well as fre-
quency bands to increase accuracy when added to traditional 
bandpower-based feature spaces.

1.1.  Related work

The average frequency of a trial is equivalent to the average 
slope of the unwrapped phases at every point. Phase features 
are well-described in the BCI literature; however, they are 
exclusively related to phase synchronicity, and have never 
been considered in this way. The closest in BCIs is [20] that 
looks at the instantaneous phase difference, but between two 
different channels. The approach of analytic CSP [38] takes 
advantage of the phase values at every point in time, but uses 
them in a similar way to the synchrony measures used above. 
While the Hilbert transform does allow them to look at instan-
taneous phase, they compute the imaginary covariance matrix, 
which explicitly ignores the time dependencies in the phase 
which make up the average frequency.

Outside of BCIs but still in the realm of neurophysiology, 
the instantaneous frequency has in the last decade begun to 
come into use. In invasive recordings the instantaneous fre-
quency has been estimated by AR modelling and used in local 
field potentials [32, 33]. In EEG, AR-based frequency estima-
tion has been done in auditory ERP for clinical purposes [35] 
and also to detect sleep spindles [34]. Within the field, this 
has been dealt with by three works. Wu et al [36] showed that 
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the frequency location of the trialwise empirical modes can 
be a robust feature for classification, but they did not look at 
task-induced frequency shifts. Rather, they used an SSVEP 
paradigm to induce the frequency shifts externally. Park et al 
[39] also use a variant of empirical mode decomposition and 
the Hilbert transform to show that a version of instantaneous 
frequency can be used in motor imagery as well. However, 
they only attempt the Hilbert transform on the intrinsic modes 
themselves; we here show that it is unnecessary to use the 
decomposition first. Last, a paper by Medl et al [37] did look 
at intrinsic, task-related frequency shifts over 25 years ago, in 
a visionary work that considered the instantaneous frequency 
and envelope as possible features for a BCI. However this 
work was never expanded past an exploratory analysis, an 
expansion which we attempt here.

2.  Methods

2.1.  Datasets

To test whether FM features are useful across experimental 
paradigms, we use two datasets from different paradigms. 
The first is a motor imagery paradigm: subjects were placed 
in front of a screen with a centrally displayed fixation cross. 
Each trial started with a pause of three seconds. A centrally 
displayed arrow then instructed subjects to initiate haptic 
motor imagery of either the left or right hand, as indicated 
by the arrow’s direction. After a further seven seconds the 
arrow was removed from the screen, marking the end of the 
trial and informing subjects to cease motor imagery. Ten 
healthy subjects participated in the study (eight males, two 
females, 25.6 ± 2.5 years old). One subject had already par-
ticipated twice in other motor imagery experiments while 
all others were naïve to motor imagery and BCIs. EEG data 
was recorded from 128 channels, placed according to the 
extended 10–20 system with electrode Cz as reference, and 
sampled at 500 Hz. BrainAmp amplifiers (BrainProducts, 
Gilching, Germany) with a temporal analog high-pass filter at 
0.1 Hz were used for recording. A total of 150 trials per class  
(left/right hand motor imagery) per subject were recorded in 
pseudorandomized order, with no feedback provided to the 
subjects during the experiment.

The second paradigm is a cognitive paradigm introduced 
by Hohmann et  al [40]: Eleven healthy subjects (6 female, 
mean age 28 ± 7.5 years) as well as five ALS patients (demo-
graphics and ALS-FRS-R scores given in table  1) were 
instructed to either activate self-referential memories by 

thinking of a positive memory, or to focus on a mental sub-
traction task. Trials were 35 s long with a 5.5 ± 0.5 pause in 
between. Each healthy subject completed 60 trials without 
feedback, while the number of trials varied for ALS patients 
based on their ability to participate. Patients managed between 
30 and 40 trials. EEG was recorded from 124 channels placed 
according to the extended 10–20 system with identical sam-
pling and amplification to the previous task.

2.2.  Pre-processing

To investigate whether the usefulness of FM features is robust 
with respect to various pre-processing steps, we tested three dif-
ferent types of spatial filtering: No spatial filtering, Laplacian 
spatial filtering [42], and common spatial patterns (CSP) [43]. 
In order to limit the variance when estimating classification 
accuracy in section 2.4, we designed each pre-processing step 
to give us a small, two-dimensional feature space. For no spa-
tial filtering, we chose two channels above the left and right 
motor cortices (C3 and C4) and over frontal and parietal areas 
(Fz and Pz) for the motor imagery and the cognitive para-
digm, respectively. For spatial filtering, we chose to limit our 
analysis to the motor imagery dataset, as the literature on BCI 
performance and neurophysiological interpretations of spatial 
filtering are more extensive for this paradigm. We chose one 
data-dependent and one data-independent filtering method: 
Laplace filtering and CSP. For the Laplace filtering we took 
the four closest channels in the extended 10-20 setup to com-
pute the Laplace filter for channels C3 and C4 over left and 
right motor cortices, respectively. For CSP we used 10-fold 
cross-validation to ensure the filters were never applied to the 
same data used to generate them. No regularization aside from 
a small epsilon to ensure positive-definiteness were used for 
the computation. Two spatial filters were used for each subject 
corresponding to the two most extreme eigenvalues.

2.3.  Feature extraction

The neural bands used in this analysis are the standard 
accepted ranges: 4–8 Hz for θ, 8–13 Hz for α (and μ), and 
13–30 Hz for β. In our experience and within the data, the 
α range of the ALS patients varied (especially for late-stage 
patients) drastically and so, exclusively for these subjects, all 
frequency information was calculated using subject-specific 
bands. In order to ensure the features were compared as fairly 
as possible, we employed identical preprocessing to generate 
both AM and FM features within each subject. In all cases 
the signal was initially bandpassed offline with a 3rd order 
Butterworth filter, between the low and high values of the 
various bands of interest. To preserve phase, this was done 
once forwards and once backwards on the full data from each 
continuous recording.

2.3.1.  Amplitude modulation.  It is well known in the field of 
BCIs that the bandpower within certain bands of interest is 
linked to activity within the brain. From Parseval’s theorem, 
we can compute this power by restricting frequencies in the 

Table 1.  ALS patient data.

Subject Age Sex ALSFRS-Ra

1 59 F 0
2 75 M 42
3 54 M 48
4 N/A M 33
5 51 F 12

aRevised amyotrophic lateral sclerosis functional rating scale [41]. The 
rating scale was filled out after the recording session by the experimenter.
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signal to those of interest and taking the variance of the result. 
As a result we can compute the bandpower, given a signal 
x(t), by using a bandpass filter and then performing the fol-
lowing calculation:

AM(x(t)) = E
[
(x(t)− x̄)2].� (1)

2.3.2.  Frequency modulation.  To calculate the average fre-
quency location for each trial, we used the analytic signal. The 
analytic signal is a complex-valued signal which has zero neg-
ative frequency components, constructed from a real-valued 
signal x(t) and its Hilbert transform:

xa(t) = x(t) + iH[x(t)].� (2)

This can equivalently be written in its polar form, 
xa(t) = A(t)e jφ(t), in which A(t) denotes the amplitude of 
the signal at time t and φ(t) denotes the phase. In previous 
BCI applications, both of these have been used as features for 
a classifier [20, 44, 45]. However, as with [37], we are not 
interested in the phase, but rather the instantaneous frequency. 
This can be computed in general as the derivative of the phase, 
though for discrete signals we can use the difference operator 
as follows:

IF[n] =
φ[n]− φ[n − 1]

2
.� (3)

This leads, for a time series with n samples, to n − 1 values. 
As these values are individually quite noisy, we opt to take the 
median of them as our FM feature for each trial to best correct 
for the influence of outliers.

2.3.3.  Joint feature space.  For both paradigms and all types 
of pre-processing, we wanted to compare purely AM and 
FM features as well as the combination of them. To do this 
we simply concatenated the two-dimensional feature spaces 
of each feature type to create a joint four-dimensional fea-
ture space. One could also think of this as simply computing 
two features per channel per trial. As the number of trials is 
so much higher than the dimensionality of this joint feature 
space it is very unlikely that the concatenation described here 
affected results negatively.

2.4.  Classification

In order to test the usefulness of the FM feature in comparison 
to the AM feature, we used a simple binary classification tool 
widely employed in BCIs: linear discriminant analysis (LDA). 
While more complicated methods could possibly get far better 
performance, LDA allows us to test how separable the data 
is in multiple dimensions under the most basic assumptions 
of homogeneous Gaussianity. In the single-feature cases each 
trial was represented by a two-dimensional vector and for 
the joint feature space each trial was represented by a four-
dimensional vector. Accuracies were calculated by 10-fold 
cross-validation within each subject over paradigms and spa-
tial filtering choices. However, for ALS patients it was slightly 
more complicated as the number of trials varied among 

subjects. To ensure all subjects could be included, we downs-
ampled to the minimum number of 30. A stratified random 
split was implemented: 30 trials were chosen randomly with 
equal classes and a cross-validated accuracy was computed 
for this subset. This random split was iterated 1000 times and 
the average of these accuracies was used for each subject.

2.5.  Statistical analyses

To test statistical significance of differences between condi-
tions (AM, FM, or joint feature spaces) within a paradigm, 
a permutation test was used. We wanted to test two hypoth-
eses: (1) that subject accuracies using only the FM features 
are significantly different on average from AM features, and 
(2) that the joint feature accuracies are significantly higher, 
on average, than the AM only accuracies. This corresponds 
to a two-tailed test for hypothesis (1) and a one-tailed test for 
hypothesis (2), as it should not be possible for the accuracy to 
decrease with a larger feature space. For both of these we took 
a pair of values from each subject (AM accuracy/FM accuracy 
or AM accuracy/joint accuracy) and computed the pairwise 
t-statistic over the subjects within a paradigm. We then shuf-
fled the pairings 1000 times and computed the t-statistics for 
these to generate the empirical t-statistic null distribution. The 
computed p-value is the proportion of t-statistics from the null 
distribution higher than the t-statistic generated with the true 
feature set-accuracy pairings. In the case of the two-tailed test, 
instead of looking for the percentage of the null distribution 
that was larger we looked for the percentage that was more 
extreme.

3.  Experiments

In all the different pre-processing and paradigm cases 
explained above, we conducted the same experiment: within 
each subject, we computed the accuracy using only AM fea-
tures, only FM features, and with the joint feature space. We 
then compared these different methods across subjects within 
each experiment. In motor imagery the μ and β bands are 
both well-known for carrying discriminative information, and 
so we conducted one experiment in each band for the data 
without pre-processing.

Next, we investigated the effects of spatial filtering on 
these feature spaces. We limited our analysis for these experi-
ments to only the μ band, and processed the data after spatial 
filtering identically to the analysis without spatial filtering.

For the cognitive paradigm data in the healthy subjects, lit-
erature shows the α and θ bands as being predictive for these 
tasks [27, 40, 46], and so we did the experiment within the α 
and θ bands. For the ALS patients, it was impossible to find a 
θ rhythm for some subjects and the α rhythms varied dramati-
cally, and so we show only results in the subject-specific α. 
This was identified by recording two 5-minute resting state 
recordings, one with eyes open and one with eyes closed, 
and then using the established observation that α power is 
increased in the eyes closed state [27] to determine the extent 
of the α band.
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4.  Results

Figure 1 shows the results of the experiments on the motor 
imagery data without pre-processing in both frequency 
bands. While the FM only features do worse than the AM 
only features in the β band (average 58.0% versus 63.7%, 
p = 0.02), there was no significant difference in the μ band 
(64.3% versus 64.0%, p = 0.91). The joint space was sig-
nificantly better than the AM only features in the μ band 
(68.7% versus 64.0%, p = 0.01) but not the β band (65.8% 
versus 63.7%, p = 0.15). Figure 2 shows the results in the 
μ band for the two spatially pre-processed experiments. The 
FM only features were less predictive on average than the 
AM only features, though not significantly so (Laplacian: 
65.4% versus 71.3%, p = 0.18, CSP: 68.5% versus 70.2%, 
p = 0.42). The joint space continued to improve on the AM 
only results with both a Laplacian filter (74% versus 71.3%, 
p = 0.04) and CSP filters (73% versus 70%, p < 0.001). 
Curiously, in half of the subjects Laplacian filtering actually 

decreased cross-validated accuracies using only FM features 
(subjects 2, 5, 6, 8, 9) at the same time as it increased accu-
racies using AM alone (80% of subjects). Conversely, using 
CSP the FM and AM accuracies both increased as compared 
to without spatial filtering.

Figures 3 and 4 both concern the results on the cognitive 
task. Figure 3 shows results on experiments in two frequency 
bands for the cognitive paradigm in healthy subjects. In the 
α band the FM only features are significantly worse than the 
AM only features (72.7% versus 78.9%, p = 0.01) and the 
joint space does not out-perform the AM only features (79.4% 
versus 78.9%, p = 0.39). In the θ band the FM only features 
and AM only features do not differ significantly (77.1% 
versus 78.8%, p = 0.47), but the joint space significantly 
out-performs the AM only features (83.3% versus 78.8%, 
p = 0.01), showing that this effect is not isolated to the α 
band. Unfortunately, this result does not carry over to the ALS 
patients in figure 4, for whom the mean accuracy of the joint 
space is actually worse (67.4% versus 71.6%).

(A)

(B)

Figure 1.  Comparison of cross-validated accuracies for different feature sets in the motor imagery data. Channels selected were C3 and 
C4. Blue shows accuracies using only AM features, green shows accuracies using only the FM features, and gold shows accuracies using 
the combined feature space. The left plot shows the per-subject cross-validated accuracies and the right plot shows a box-and-whiskers 
plot with the mean (diamond), median (line) and upper and lower quartiles over subjects; outliers are shown as small black diamonds; *: 
p < 0.05. (A) Accuracies computed in the μ band from 8–13 Hz. FM only and AM only do not significantly differ while the joint space is 
significantly better than AM (average 68.7% versus 64.0%, p = 0.01). (B) Accuracies computed in the β band from 13–30 Hz. FM only is 
significantly worse than AM only (58.0% versus 63.7%, p = 0.02) while the joint space is not significantly better (65.8% versus 63.7%, 
p = 0.15).
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While the joint feature space does not significantly out-per-
form AM in some cases, notably the motor β and the cognitive 
α, it still has a higher average accuracy than the AM feature 
space even in those cases, suggesting that while results are 
not significantly better there is at the very least no detriment. 
The only case in which it fails to out-perform is the case of 
the ALS patients-but given the low number of trials and the 
heterogeneity of the disease stages shown here, it is still too 
early to be sure that this feature is not of use.

These results show that the FM feature is surprisingly 
robust. In order to better understand the magnitude and vari-
ance of the feature across subjects, we plotted the two-dimen-
sional feature space to see the separation within subjects for 
both paradigms. FM features were computed for all trials and 
de-meaned within subjects to control for different peak loca-
tions, then overlayed in order to see how much conditions dif-
fered on average. The one-dimensional projections are plotted 
on the side and top. In motor imagery (figure 5) we find that 
the frequency features for C3 and C4 are not very correlated 
across subjects (ρ = 0.28) and that the peak shift is relatively 
slight compared to the variance within channels. To check 

the spatial correlation we plot the correlation of the feature 
in channels C3 and C4 with the other 127 channels, averaged 
over classes and subjects (figure 5). The result shows a clear 
drop-off of correlation with distance on the scalp, which is 
consistent with the projections of the motor cortex.

In the cognitive paradigm, the frequency scatter plot  
(figure 6) shows a strong correlation between Fz and Pz 
(ρ = 0.59), which is interesting given how far apart they are 
on the head. When the correlations are plotted (figure 6) it can 
be seen that these two channels are, in general, more spatially 
correlated than C3 and C4. However, this correlation is more 
anteroposterior than it is lateral, which is consistent with the 
projection of fronto-parietal networks [47, 48].

In the ALS patients, however, the correlation structure is 
quite different (figure 7). In comparison with healthy subjects 
the separation between condition-specific median frequencies 
is quite pronounced in both channels, and further the chan-
nels appear comparatively less correlated (ρ = 0.45). This 
suggests that despite the lack of significant improvement in 
decoding accuracy, this feature is still quite robust in ALS 
patients. When we plot the correlations of the FM feature 

(A)

(B)

Figure 2.  Comparison of cross-validated accuracies across different sorts of spatial filtering. The left plot shows the per-subject  
cross-validated accuracies and the right plot shows a box-and-whiskers plot with the mean (diamond), median (line) and upper and 
lower quartiles over subjects; outliers are shown as small black diamonds; *: p < 0.05, **: p < 0.01. (A) For Laplace filtering a discrete 
Laplacian filter for electrodes C3 and C4 was computed using the four closest electrodes to each. The joint space is significantly better than 
AM (74% versus 71.3%, p = 0.04). For CSP (B), two spatial filters were kept per subject. The joint space is significantly better than AM 
(73% versus 70%, p < 0.01). In both cases, the FM only accuracies do not differ significantly from the AM only accuracies.
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(A)

(B)

Figure 3.  Comparison of cross-validated accuracies for different feature sets in the cognitive paradigm data. Channels selected were Fz 
and Pz. Data is plotted identically to figures 1 and 2; *: p < 0.05. (A) Accuracies computed in the α band from 8–13 Hz. FM only is 
significantly worse (72.7% versus 78.9% , p = 0.02) than AM only while the joint accuracy is not significantly better (79.4% versus  
78.9% , p = 0.39). (B) Accuracies computed in the θ band from 4–8 Hz. There is no significant difference between the FM only and AM 
only results, and the joint space is significantly better than AM (83.3% versus 78.8%, p = 0.01).

Figure 4.  Comparison of cross-validated accuracies for different feature sets in the cognitive paradigm data for ALS patients. Channels 
selected were Fz and Pz. Blue shows accuracies using only AM features, green shows accuracies using only the FM features, and gold 
shows accuracies using the combined feature space. The left plot shows the per-subject cross-validated accuracies and the right plot shows 
the distribution over subjects. Neither FM (65.4% on average) nor the joint space (67.6%) was significantly different from the AM features 
alone (71.7%).

J. Neural Eng. 14 (2017) 056015



V Jayaram et al

8

with the other channels, the clear pattern we see in the healthy 
subjects on average is repeated, although the anteroposterior 
trend appears to be lessened.

5.  Discussion

We extend the results of [37] with these experiments and show 
that the location of a neural frequency peak on the frequency 
axis can be used as a reliable feature for BCI decoding across 
paradigms and neural frequency bands, and further that it is 
stable to standard spatial filtering approaches. We found that 
across both paradigms, and independent of standard spatial 
filtering approaches, the joint feature space substantially 
increases the cross-validated accuracy over healthy subjects. 
Further, we find this effect is not limited to the obvious α peak 
but generalizes to less visually separable peaks such as the θ. 

Especially for studies with few electrodes, this has the poten-
tial to markedly improve performance by allowing another 
useful feature to be extracted without increasing the hardware; 
furthermore, this opens a new avenue for theoretical study, as 
processing techniques (whether in terms of temporal or spatial 
filtering) to find task-related frequency modulation in mixed 
signals do not, to our knowledge, exist.

Algorithmically, the method we use to compute the average 
frequency also leads to many questions. Most previous 
approaches to using instantaneous frequency, or even average 
frequency, have relied on autoregressive models and computed 
instantaneous frequency and amplitude from there [32, 33].  
These require a separate optimization and must be given 
model orders in advance; we have shown that using a simple 
transform like the Hilbert is sufficient to get features for clas-
sification. However, that is not to say this is the only simple 

(A) (B)

Figure 5.  Characteristics of FM features in motor imagery. (A) Scatter plot of frequency figure in channels C3 and C4, plotted for all 
subjects after mean subtraction. (B) Plot of the correlation across trials of the frequency feature at channels C3 and C4 with the other 127 
channels, averaged over subjects.

(A) (B)

Figure 6.  Characteristics of FM features in a cognitive paradigm for healthy subjects. (A) Scatter plot of frequency feature in channels Fz 
and Pz, plotted for all subjects after mean subtraction. (B) Plot of the correlation across trials of the frequency feature at channels Pz and Fz 
with the other 123 channels, averaged over subjects. Note that the colors go from 0.2 to 1 to emphasize the structure of the correlations.
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option. The Hilbert transform on a bandpassed signal, and the 
median we use beyond it, were chosen for their stability to 
outliers of the instantaneous frequency within a trial. It is very 
likely that there are more stable approaches to determining the 
peak frequency yet to be discovered. It is further intriguing 
that the phase of a mixed signal is not a well-defined concept. 
What exactly does it mean that taking the Hilbert transform 
of a linearly mixed signal gives us a property of one of the 
component signals? How is this related to the frequency range 
or the number of signals being mixed?

Aside from such concerns, it is unclear how higher-level 
choices, like the location of the frequency band or the length 
of the mental task periods, affect the results. Standards for 
both of these were only set using AM features. As a pre-
liminary a posteriori test of the influence of the range of the 
bandpass filter, we tested many different bandpasses for both 
features to determine which range performs best on average 
on the motor imagery data without spatial pre-processing. 
For both AM and FM features, we varied the frequency band 
between 6 and 17 Hz in 1 Hz steps for each subject. We then 
computed the cross-validated accuracy using the same proce-
dure as explained in section 2 and averaged across subjects. 
The results can be seen in figure 8. As can be seen, the average 
best frequency band location is quite different for AM and FM 
features. AM features tend to prefer high bandpasses, while 
the FM features have their best average performance closer to 
the standard μ range. This could be due to many factors, but 
one to consider is that the β range is also predictive in motor 
imagery and begins, traditionally, at 13 Hz; perhaps, given the 
imperfections inherent in any discrete time bandpassing pro-
cedure, the AM features benefit from this bleeding over of the 
β range. Next, we tested how different trial lengths affected 
performance. Using the standard α band and varying the trial 
length between 1 and 7 s, we compared cross-validated per-
formance on the same dataset, for which the results are shown 
in figure 9. Both feature spaces do better with longer trials, 

suggesting that the longer period of brain activity is helpful 
in finding the true median frequency as well as the true ERD.

It is also important to ask ourselves whether these results 
may be influenced by artifacts, and not represent features spe-
cifically coming from the brain. Looking at figures 5, 6 and 7 
shows that the features from the chosen electrodes are almost 
uncorrelated with the FM features from frontal and peripheral 
channels that would be dominated by ocular or muscular arti-
facts, respectively. While such a group level analysis cannot 
guarantee that certain subjects were influenced by artifacts, it 
can make us very confident that at the group level, this anal-
ysis shows FM features to indeed be related to the brain, and 
slightly if at all to some sort of artifact.

Next, in a neuroscientific light, these findings are quite 
curious. The unique information that the FM feature appears 
to carry suggests that either it comes from the same neural 
source but has a different noise profile, or that it is generated 
from a different circuit than the one that generates task-related 
bandpower differences. Based on our preliminary CSP-based 
analysis, it appears to be the case that the same circuit gener-
ates both, at least some of the time, by optimizing spatial fil-
ters for power differences between conditions, we also see an 
increase in the FM feature predictability. Moreover, we find 
that optimizing for power differences actually causes the FM 
to become even more predictive than the AM in some cases. 
However, the fact that Laplacian filtering can sometimes 
change the ratio of the predictivity of FM versus AM features 
suggests that this is not the full story. Perhaps the robustness 
of FM features is due to the fact that they are generated by 
the same neural ensembles that generate AM features but also 
by other ensembles, as while the Laplace filter is well-known 
for narrowing the sensitivity of the electrode to the locations 
directly perpendicular to it, CSP filters have more freedom in 
how they optimize.

A major question for FM features is how robust they are 
to neurological disease. Patients represent the group most 

(A) (B)

Figure 7.  Characteristics of FM features in a cognitive paradigm in ALS patients. (A) Scatter plot of frequency feature in channels Fz and 
Pz, plotted for all subjects after mean subtraction. (B) Plot of the correlation across trials of the frequency feature at channels Pz and Fz 
with the other 123 channels, averaged over subjects.
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in need of the opportunities BCI offers, and so determining 
whether this feature is more or less robust for non-neurotyp-
ical individuals is a pressing question. The data we have pre-
sented does not show that FM is more robust than AM for ALS 
patients, but it also suggests that more research is required. 
All accuracies for ALS patients were computed using only 
30 trials, half that of the healthy subjects, which makes the 
accuracy estimation particularly noisy. What we can see, 

however, is that in some patients the FM feature is quite pre-
dictive. Looking at the ALS-FRS-R scores of those patients, 
this includes one who is completely locked-in and one who is 
still in very early stages, suggesting that this feature at least 
needs to be looked into more. Given the amount of variance 
across healthy participants, attempting to average across both 
people and disease stages with five participants can give us a 
preliminary look at best.

Figure 8.  Cross-validated accuracy for the motor imagery data set using channels C3 and C4 for frequency bands of varying spectral 
location and size. The vertical axis shows ending frequency and the horizontal axis shows starting frequency for both AM (left) and FM 
(right) features. The colorbar shows the average cross-validated accuracy over all ten participants. Between bandpower and frequency 
features, the best band varies in both location and size.

Figure 9.  Cross-validated accuracy for the motor imagery data set using channels C3 and C4 for trial lengths between 1 and 7 s. The 
vertical axis shows cross-validated accuracy and the horizontal axis shows the length of the trial for AM (blue) and FM (green) features. 
Box plots are identically labelled to figures 1 and 2. For both feature spaces, average accuracy over subjects increases with trial length.
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Finally, and somewhat crucially, one might ask what the 
benefit of attempting to find a single feature type that is pre-
dictive across many tasks is, as most tasks in BCIs use very 
unique features to achieve optimum performance. However, 
this sort of task-specific feature engineering is limiting, in that 
it only allows for new paradigms to be discovered simulta-
neous with new feature development. The results shown here, 
as well as previous results in bandpower-related BCIs, are 
strong evidence to support the idea that there are common 
feature spaces across tasks. While it is probable that current 
optimal performance for a single subject on a single task 
requires specialized feature computation, the lack of scal-
ability means the search for a generic method of computation 
is crucial to the development of BCIs in the future, leaving the 
task of optimizing for individual performance to more intel-
ligent machine learning on these common feature spaces.

6.  Conclusion

Our goal was to test whether FM features are usable for clas-
sification in a very simple way, and not to over-optimize. Given 
that we have shown this to be the case, the space for optim
ization is enormous. The projection of muscle and eye artifacts 
into the spectral power of measured signals is well known, but 
whether they have a similar task-related change in peak loca-
tion is not yet studied. Perhaps FM features are more robust 
to artifacts than AM features, which would be a crucial step 
forward in the quest for more stable ways of reading the brain. 
Further, the cross-session and online reliability of these fea-
tures must be shown.
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Abstract—BCI algorithm development has long been ham-
pered by two major issues: Small sample sets and a lack of
reproducibility. We offer a solution to both of these problems
via a software suite that streamlines both the issues of finding
and preprocessing data in a reliable manner, as well as that
of using a consistent interface for machine learning methods.
By building on recent advances in software for signal analysis
implemented in the MNE toolkit, and the unified framework for
machine learning offered by the scikit-learn project, we offer
a system that can improve BCI algorithm development. This
system is fully open-source under the BSD licence and available
at https://github.com/NeuroTechX/moabb. To validate our efforts,
we analyze a set of state-of-the-art decoding algorithms across
12 open access datasets, with over 250 subjects. Our analysis
confirms that different datasets can result in very different
results for identical processing pipelines, highlighting the need
for trustworthy algorithm benchmarking in the field of BCIs, and
further that many previously validated methods do not hold up
when applied across different datasets, which has wide-reaching
implications for practical BCIs.

I. INTRODUCTION

Brain-computer interfaces (BCIs) have long presented the
neuroscience methods community with a unique challenge.
Unlike in vision research, where one has a database of images
and labels, a BCI is defined by a signal recorded from the
brain and fed into a computer, which can be influenced in any
number of ways both by the subject and by the experimenter.
As a result, validating approaches has always been a difficult
task. Number of channels, requested task, physical setup, and
many other features vary between the numerous publically
available datasets online, not to mention issues of convenience
such as file format and documentation. Because of this, the
BCI methods community has long done one of two things to
validate an new approach: Recorded a new dataset, or used
one of few well-known, tried-and-true datasets.

Recording a new dataset, the ideal way to show that a
proposed method works in practice, presents problems for
post-hoc analysis. Without making data public, it is impossible
to know whether offline classification results are convincing
or due to some coding issue or recording artifact. Further, it
is well-known that differences in hardware [21, 28], paradigm
[2], and subject [2] can have large differences in the outcome
of a BCI task, making it very difficult to generalize findings
from any single dataset.

Over the years many datasets have been published online,
and serve as an attractive option when time or hardware do
not permit recording a new one. In the last year and a half,
over a thousand journal and conference submissions have
been written on the BCI Competition III [5, 27] and IV [32]
datasets. Considering that these datasets have been available
publically for over a decade, the true number of papers which
validate results against them is likely much higher. While it is
impossible to deny the impact these two datasets have had on
the field, relying so heavily on a small number of datasets –
with less than 50 subjects total – exposes the field to several
important issues. In particular, overfitting to the setups offered
there is likely.

Lastly, and possibly most problematically, the scarcity of
available code for BCI algorithms old and new puts the
onus on each individual lab to reproduce the code for all
other competing methods in order to make a claim to be
comparable with the ’state-of-the-art’ (SOA). As a result,
the vast majority of novel BCI algorithm papers compare
either against other work from the same lab, or old, easily
implementable standards such as CSP [19] or channel-level
variances combined with a classifier of choice [12].

Computer vision has solved this problem with enormous
datasets like Imagenet [10] bundled with machine learning
packages (Tensorflow[1], PyTorch, and Theano[23]). However,
generating BCI data is often a very taxing process both physi-
cally and mentally, and so it is not reasonable to create datasets
of such size. Rather, the field requires many different people
recording data in many contexts in order to create an ap-
propriate benchmark. We propose our platform, the MOABB
(Mother Of All BCI Benchmarks) Project, as a candidate for
this application. The MOABB project consists of the aggre-
gation of many publicly available EEG datasets, converted to
a common format and bundled in the software package, as
well as a collection of SOA algorithms. Using this system
researchers can to automatically benchmark those algorithms
and run an automated statistical analysis, making the process
of validating new algorithms painless and reproducible. The
source code is written in Python and publically available under
the BSD licence at https://github.com/NeuroTechX/moabb.

As an initial validation of this project, we present results
on the constrained task of binary classification in two-class
imagined motor imagery, as that is the most widely used motor
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imagery paradigm and allows us to demonstrate the process
across the largest number of datasets. However, we note that
this is only the first question we attempt to answer in this
field. The format allows for many other questions, including
different channel types (EEG, fNIRS, or other), multi-class
paradigms, and also transfer learning scenarios as described
in [17].

II. METHODS

Any BCI analysis is defined by three elements: A dataset,
a context, and a pipeline. Here we describe how all of these
components are dealt with within our framework, and how
specifically we set the options for the initial analyses presented
here.

A. Datasets

Public BCI datasets exist for a wide range of user paradigms
and recording conditions, from continuous usage to single-
session to multiple-sessions-per-subject. Within the current
MOABB project, we have unified the access to many datasets,
described in Table I.

Adding new open-source datasets is also simple via the
MNE toolkit [14, 15], which is used for all preprocessing and
channel selection. Any dataset that can be made compatible
with their framework can quickly be added to the set of data
offered by this project. In addition, the project offers test
functions to ensure candidate code conforms to the software
interface.

B. Context

A context is the set of characteristics that defines the
preprocessing and validation procedure. To go from a recorded
EEG time-series to a pipeline performance value for a given
subject or recording session, many parameters must be defined.
First, trials need to be cut out of the continuous signal and
pre-processed, which is possible in many different ways when
taking into account parameters such as trial overlap, trial
length, imagery type, and more. Once the continuous data is
processed into trials, and these trials are fed into a pipeline,
the next question of how to create training and test sets, and
how to report performance, comes into play. We separate these
two notions in our software and call them the paradigm and
the evaluation respectively.

1) Paradigm: A paradigm defines how one goes from con-
tinuous data to trials for a standard machine learning pipeline
to deal with. While not an issue in image processing, as each
trial is just one image, it is crucial in EEG and biosignals
processing because most datasets do not have exactly the same
events defined in the continuous data. For example, many
datasets with two-class motor imagery use left versus right
hand, while some use hands versus feet; there are also many
possible non-motor imageries. For any reasonable analysis the
specific sort of imagery or ERP must be controlled for, as
they all have different characteristics in the data and further
are variably effective across subjects [2, 26]. After choosing
which events or imageries are valid, the question comes to

pre-processing of the continuous data, in the form of ICA
cleaning, bandpass filtering, and so on. These must also be
identical for valid comparisons across algorithm or datasets.
Lastly, there are questions of how to cut the data into trials:
What is the trial length and overlap; or, in the case of ERP
paradigms, how long before and after the event marker do we
use? The answers to all these questions are summed up in the
paradigm object.

2) Evaluation: Once the data is split into trials and a
pipeline is fixed, there are many ways to train and test this
pipeline to minimize overfitting. For datasets with multiple
subjects recorded on multiple days, we may want to determine
which algorithm functions best in multi-day classification. Or,
we may want to determine which algorithm is best for small
amounts of training data. It is easy to see that there are
many possibilities for splitting data into train and test sets
depending on the question to be answered, and these must
be fixed identically for a given analysis. Furthermore, there
is the question of how to report results. Multiclass problems
cannot use metrics like the ROC-AUC which provide unbiased
estimates of classifier goodness in binary cases; depending on
things like the class balance, various other metrics have their
own benefits and pitfalls. Therefore this must also be fixed
across all datasets, contingent on the class of predictions the
pipelines attempt to make. We define this as our evaluation.

C. Pipeline

We define a pipeline as the processing that takes one from
raw trial-wise data into labels, taking both spatial filtering and
classification model fitting into account. A convenient API
for dealing with this kind of processing is defined by scikit-
learn [24], which allows for easily definable dimensionality
reduction, feature generation, and model fitting. To maximize
reproducibility we allow pipelines to be defined either by yaml
files or through python files that generate the objects, but
force all machine learning models to follow the scikit-learn
interface.

In essence, the MOABB combines the preceding compo-
nents into a procedure that takes a list of algorithms and
datasets and trains each pipeline to each subject or recording
session independently in order to generate goodness-of-fit
scores such as accuracy or ROC-AUC. These scores can then
be visualized and used for statistical testing.

III. STATISTICAL ANALYSIS

At the end of the MOABB procedure there are scores for
every subject in every dataset with every pipeline. The goal
of this project is to synthesize these numbers into an estimate
of how likely it is that each pipeline out-performs the other
pipelines. However, even if imagery type and channel number
were held constant, differences in trial amount, sampling rate,
and even location and hardware mean that we cannot expect
subjects across datasets to be naively comparable. Therefore,
we run independent statistical tests within each dataset and
combine the p-values afterwards. A secondary problem is that
the difference distribution for two algorithms within a given
dataset is very unlikely to be Gaussian. It is well-known that
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Name Imagery # Channels # Trials # Sessions # Subjects Epoch Citations
Cho et al. 2017 Right, left hand 64 200 1 49 0-3s [9]
Physionet Right, left hand 64 40-60 1 109 1-3s [13, 25]
Shin et al. 2017 Right, left hand 25 60 3 29 0-10s [6, 29]
BNCI 2014-001 Right, left hand 22 144 2 9 2-6s [32]
BNCI 2014-002 Right hand, feet 15 160 1 14 3-8s [30]
BNCI 2014-004 Right, left hand 3 120-160 5 9 3-7.5s [20]
BNCI 2015-001 Right hand, feet 13 200 2/3 13 3-8s [11]
BNCI 2015-004 Right hand, feet 30 70-80 2 10 3-10s [26]
Alexandre Motor Imagery Right hand, feet 16 40 1 9 0-3s [3]
Yi et al. 2014 Right, left hand 60 160 1 10 3-7s [33]
Zhou et al. 2016 Right, left hand 14 100 3 4 1-6s [35]
Grosse-Wentrup et al. 2009 Right, left hand 128 300 1 10 3-10s [16]
Total: 275

TABLE I: Dataset attributes

some subjects are BCI illiterate [2], which implies that no
pipeline can reliably out-predict another one on that subset of
subjects. Therefore, for large enough datasets, the distribution
of differences in pipeline scores is very likely to be at least
bimodal.

To deal with this issue while also keeping the framework
running fast enough to execute on a normal desktop, we use a
mixture of permutation and non-parametric tests. Within each
dataset, either a one-tailed permutation-based paired t-test (for
datasets with less than 20 subjects) or a Wilcoxon signed-rank
test is run for each pair of pipelines, generating a p-value for
the hypothesis that pipeline a is bigger than pipeline b for each
pair of pipelines. These p-values are combined via Stouffer’s
method[31], with a weighting given by the square root of the
number of subjects as suggested in [7], to return a final p-value
for each hypothesis. Since each score is compared against
Npipelines−1 other scores for the same subject, we also apply
Bonferroni correction to protect against false positives. In
order to determine effect size, we computed the standardized
mean difference within datasets and combined them using the
same weighting as was given to Stouffer’s method.

IV. EXPERIMENT

To show off the possibilities of this framework, we ran
various well-known BCI pipelines from across many papers
in order to conduct the first big-data, side-by-side analysis of
the state of the art in motor imagery BCIs.

A. Context

For the paradigm, we choose to look at datasets including
motor imagery. Motor imagery is the most-studied sort of
imagery for BCIs [34], and we further limit ourselves to the
binary case as this has not yet been solved. For evaluations,
we choose within-session cross-validation, as this represents
the best-case scenario for any pipeline, with minimal non-
stationarity.

1) Paradigm: As there are many methods that show that
multiple frequency bands can lead to improved BCI perfor-
mance[18], and further that discriminative data is concentrated
in the anatomical frequency bands, we test two preprocessing
pipelines: A single bandpass containing both the alpha and
beta ranges, from 8 − 35Hz, and another from 8 − 35Hz in
4Hz increments. All data was also subsampled to 128Hz, as
the memory requirements became prohibitive otherwise.

2) Evaluation: The evaluation was chosen to be within-
session, as that minimizes the effect of non-stationarity. As
this is a binary classification task, the ROC-AUC score was
chosen as the metric to score 5-fold cross validation (the splits
were kept identical for all pipelines in a given subject). In
comparison with the more interpretable classification accuracy,
the ROC-AUC is less sensitive to imbalanced classes, which
is important in this case where the datasets vary heavily. In
order to return a single score per subject, the scores from each
session were averaged when multiple sessions were present.

B. Pipelines

We implement a selection of pipelines from the BCI liter-
ature, as well as the well-known standards of CSP + LDA
and channel-level variances + SVM. Specific implemented
pipelines are in Table II; all hyperparameters were set via
cross-validation.

V. RESULTS

Figure 1 shows all the results generated by this entire
processing chain. Surprisingly, perhaps, the pipelines do not
clearly cluster on the dataset level, making it unclear which
ones perform best from simply this plot. What is very clear,
however, is that different datasets have very different average
scores independent of pipeline. This is particularly true when
one considers the case of [35] versus [13]: Zhou et al [35] had
pre-trained subjects, which compared to the naive sample in
the Physionet database makes a drastic difference.

Figure 2 shows the difference between CSP and the channel
log-variance and tangent space methods, as these are all well-
known approaches and have been compared against each other
often in the past. Based on this meta-analysis, CSP reliably
out-performs channel log-variances across datasets – however,
there are datasets such as [16] and [26] in which the opposite
trend is shown. Similarly, while the tangent space projection
method normally out-performs CSP, that is also not true for
half of the sampled datasets. The confidence intervals also
show why this is likely the case – for studies with very few
subjects, such as [35], the confidence intervals make even very
strong standardized effects quite untrustworthy.

Figure 3 compares CSP against commonly used variants.
Here, the difference is heavily dependent on dataset and no
clear trend is visible. It is interesting to note that in the
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Name Preprocessing Classifier Introduced in
CSP + LDA Trial covariances estimated via maximum-likelihood

with unregularized common spatial patterns (CSP).
Features were log variance of the filters belonging
to the 6 most diverging eigenvalues

Linear Discriminant Analysis (LDA) [19]

DLCSPauto + shLDA Trial covariances estimated by OAS [8] followed by
unregularized CSP. Features were log variance on the
6 top filters.

LDA with Ledoit-Wolf shrinkage of the covariance
term

[22]

TRCSP + LDA CSP with Tikhonov regularization, features were log
variance on the 3 best filters for each class

LDA [22]

FBCSP + optSVM Filter bank of 6 bands between 8 and 35 Hz followed
by OAS covariance estimation and unregularized
CSP. Log variance from each of the 4 top filters from
each sub-band were pooled and the top 10 features
chosen by mutual information were used.

A linear support vector machine was trained with
its regularization hyperparameter set by a cross-
validated grid-search from [0.01100].

[18]

TS + optSVM Trial covariances estimated via OAS then projected
into the Riemannian tangent space to obtain features

Linear SVM with identical grid-search [4]

AM + optSVM Log variance in each channel Linear SVM with grid-search N/A

TABLE II: Processing pipelines

case of filter-bank CSP, the BNCI 2014 datasets (which are
included in the BCI Competition datasets used in [18]) show
FBCSP to out-perform regular CSP while the opposite is true
for others such as Physionet. We further confirm the result
from [22] that regularizing the covariance estimates does not
improve the results of CSP. However, somewhat surprisingly,
the finding that Tikhonov weighting increases performance
was not validated in this analysis.

The meta-effects shown in Figures 2 and 3 are summed
up in Figure 4, which displays the meta-effect size in cases
that the algorithm on the y-axis significantly out-performed the
algorithm on the x-axis according to the statistical procedure
outlined in Section III, as well as the significance denoted
by the stars under the meta-effect size. Here we can see that
all other algorithms out-performed log-variance features on
average (though with significant variance over datasets as seen
in the other figures) and that among CSP and its variants,
tangent space projection is better.

VI. DISCUSSION

We present a system for reliably comparing BCI pipelines
that is both easily extended to incorporate new datasets and
equipped with an automated statistical procedure for determin-
ing which pipelines perform best. Furthermore, this system
defines a simple interface for submitting and validating new
BCI pipelines, which could serve to unify the many methods
that exist so far. To test that system, we present results using
standard pipelines in contexts that have wide relevance to the
BCI community. By looking across multiple, large datasets, it
is possible to make statements about how BCIs perform on
average, without any sort of expert tuning of the processing
chain, and further to see where the major pitfalls still lie.

The results of this analysis suggest that many well-known
methods do not reliably out-perform simpler ones, despite
the small-scale studies done years ago to validate them. In
particular, the world of CSP regularization literature does not
appear to have the effect that was originally claimed. Rather,
the major difference in BCI classification isn’t actually the
algorithm, as of now, but the recording and human paradigm
characteristics. The two most clear findings to come out of this
are that log variances on the channel level are almost never

better than CSP or Riemannian methods, and that the tangent
space classification pipeline is the best of the tested models
for single-session classification.

In particular in the cases of FBCSP and the regularized
approaches presented here, the results presented here are
surprising finding as they go against the results reported in the
original papers. In the case of FBCSP, we perform similarly
to the results shown in [18]. BNCI 2014-001 and 2014-004
are originally from the BCI competitions and were used in
the original paper, and our finding is that on these datasets
FBCSP indeed out-performed regular CSP. In the case of the
regularized variants DLCSPauto and TRCSP, our results on
the BCI competition data do not actually follow the originally
reported trend. Some possible for reasons are the following:
our use of single-session recordings ignores the initial training
and test distinctions given within the competition, and we also
used the AUC-ROC instead of the accuracy that was reported
in the initial analysis. The full code to replicate these results
is available publically, and so we hope we can at least rule
out improper coding as a source of error.

Looking at these findings, it is particularly interesting to
look at the case of filter-bank CSP versus CSP, as in this
analysis the significance goes in both directions depending on
the dataset. Since datasets vary in many characteristics, such
as channel number, imagery type, and trial time, it is hard to
determine what exactly underlies this diverging performance
– but it is likely that this is not purely by chance. With
increasing numbers of available datasets, however, the answers
to such differences become possible. If we have many different
situations in which to test algorithms, we can determine what
factors contribute to the differences in performance between
them. It is also important to emphasize that the results shown
here must be taken in context. All results were generated by
cross-validation within single recording sessions, which limits
the possible non-stationarity. Because of this, regularization is
at its least useful – which means that it would be inappropriate
to dismiss regularization in the case of CSP out of hand.
Rather, this same analysis should be re-run in the case of
cross-session classification, a task that is currently infeasible
due to the number of multi-session datasets.
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Fig. 2: Meta-analysis style plots showing the performance of log variance features (A) and tangent space features (B) both
compared against CSP. The effect sizes shown are standardized mean differences, with p-values corresponding to the one-
tailed Wilcoxon signed-rank test for the hypothesis given at the top of the plot and 95% interval denoted by the grey bar.
Stars correspond to ***=p<0.001, **=p<0.01, *=p<0.05. The meta-effect is shown at the bottom of the plot. While there is a
significant amount of variance between datasets–variance that could give contradictory results if these datasets were evaluated
in isolation–the overall trend shows that CSP is on average better than channel log-variances and worse than tangent space
projection.
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Fig. 3: Meta-analysis style plots showing the performance of CSP versus CSP variants: DLCSPauto(A), TRCSP (B), and
filter-bank CSP (C). The effect sizes shown are standardized mean differences, with p-values corresponding to the one-tailed
Wilcoxon signed-rank test for the hypothesis given at the top of the plot and 95% interval denoted by the grey bar. Stars
correspond to ***=p<0.001, **=p<0.01, *=p<0.05. The meta-effect is shown at the bottom of the plot. While there is a
significant amount of variance between datasets–variance that could give contradictory results if these datasets were evaluated
in isolation–the overall trend shows that CSP out-performs the other algorithms in this setting.

VII. CONCLUSION

Meta-analysis is a well-described tool in other scientific
fields to attempt to synthesize the effects of many different
studies that all bear on the same, or very similar hypotheses.
Though its use in BCIs has been hampered by the difficulties
involved in gathering the data and algorithms in a single place,
the MOABB project has the potential to offer a solution to
this problem. The analysis here, though done with over 250
subjects, is still only a fraction of the number of subjects
recorded for BCI publications over the years. With more
papers that describe more varied setups, the power of this
system can only grow, and what this analysis shows most
clearly is that the sample size problem in BCIs is bigger than
we might have expected. By gathering the data and offering

a system for testing algorithms, we hope that this platform in
the coming years can help to solve it.
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Abstract—A Brain-Computer Interface (BCI) is used to enable
communication between humans and machines by decoding
elicited brain activity patterns. However, these patterns have
been found to vary greatly across subjects or even for the same
subject across sessions. Such problems render the performance of
a BCI highly specific to subjects, requiring expensive and time-
consuming individual calibration sessions to adapt BCI systems
to new subjects.

This work tackles the aforementioned problem in a Bayesian
multi-task learning (MTL) framework to transfer common
knowledge across subjects and sessions for the adaptation of
a BCI to new subjects. In particular, a novel framework from
previous work that is able to exploit structure of multi-channel
Electroencephalography (EEG) will be extended by a Bayesian
hierarchical logistic regression decoder for probabilistic binary
classification. As such, the derived model will be able to explicitly
learn spatial and spectral features in a paradigm that makes it
further applicable for identification, analysis and evaluation of
paradigm characteristics without relying on expert knowledge in
this matter. The new decoder shows a significant improvement in
performance on calibration-free decoding compared to previous
MTL approaches for rule adaptation and uninformed models
while also outperforming them as soon as subject-specific data
becomes available. We will further demonstrate the ability of the
model to identify relevant topographies along with signal band-
power features that agree with neurophysiological properties of
a common sensorimotor rhythm paradigm in BCIs.

I. INTRODUCTION

Second only to brain signal acquisition, the decoding of sub-
ject intention is fundamental to the practice of practical brain-
computer interfaces (BCIs). Introduction of machine learning
techniques for signal decoding shifted from extensively train-
ing subjects to control a BCI (e.g. [1]–[4]) into BCIs that are
able to adapt to their users (e.g. [5]–[7]). Combining adaptive
BCIs with the mobility of noninvasive electroencephalography
(EEG) hardware to measure brain activity further enables
research towards practical out-of-the-box applications in non-
laboratory environments.

However, state-of-the-art BCIs suffer from high perfor-
mance variations between subjects and even across sessions
within the same subject [8], [9]. A calibration session with the
subject prior to actual BCI usage is therefore still necessary,
which poses a major hindrance to out-of-the-box applications.
On top of that, machine learning based decoders have to
deal with rather few data points gained from the calibration
phase making them prone to overfitting and requiring very
low dimensional feature spaces. Only a hand full of carefully
selected features using expert knowledge of the paradigm are
usually used to train decoders that generalize well to upcoming
sessions [10]–[13].

Approaches to solve the problem of such performance
variations in the past years have been dominated by domain
adaptation techniques. These techniques use data acquired
from different subjects and sessions to train decoders on
invariant feature spaces, most commonly by preprocessing
signals with common spatial patterns [14]–[16]. While domain
adaptation is able to drastically reduced calibration time for
new subjects and sessions with only slight performance losses,
subject-specific variations are modeled exclusively by a fixed
feature space. This makes it difficult to adapt BCIs to new
subjects when calibration data becomes available. A more
natural approach to this problem is given by rule adaptation
techniques, which encode variations directly into the decision
rule of decoding models.

Recent work in this area incorporate data fusion methods
[17] and a Bayesian multi-task learning (MTL) framework
first proposed by Alamgir et al. [18]. Being able to use more
available data, Jayaram et al. generalized the framework to a
Bayesian hierarchy with a novel feature space to decompose
EEG structure into a spatial and frequency or time domain
[19], [20]. This approach did not only enable the authors to
transfer knowledge between subject and sessions, but further
drop the need of expert knowledge by learning topographic



and broad-band features of the paradigm. In particular, they
regarded the prediction problem of each subject and session as
an individual task and assumed a common statistical distribu-
tion underlying the variations between tasks. In doing so, they
developed a MTL algorithm to train prior distributions for the
spatial and spectral parameter dimension of linear regression
models that capture shared structure in different tasks and
can be later used for task-specific adaptation. The resulting
framework quickly produced reliable decoders (classification
accuracies above 70%) based on a two-class sensorimotor
rhythm (SMR) paradigm for new subjects using no or only few
calibration trials while outperforming models trained solely
from pooled or subject-specific data when calibration data was
available.

However, linear regression models as used for decod-
ing brain states in the above-mentioned framework assume
Gaussian noise on the dependent variables. This may be a
reasonable assumption for quantitative outcomes (i.e. regres-
sion problems), but BCI decoders usually state classification
problems with categorical classes to represent different brain
conditions. This work extends the proposed MTL framework
for transfer learning by a more suitable assumption on binary
dependent variables with a probabilistic model for two-class
classification. Exploiting EEG structure for dimensionality
reduction yields a bilinear logistic regression model that is
able to learn relevant topographic and band-specific features
itself instead of relying on a small set of manually selected
features.

The rest of this paper is structured as follows. Section II will
introduce the notation used throughout this work and derive a
logistic regression model within a Bayesian MTL framework
from previous work. The model is then extended for bilinear
feature decomposition (FD) exploiting the structure of multi-
channel EEG signals and the final learning algorithms are
presented. After describing the SMR based experimental setup
used to evaluate the models, section III will present the results
and show that the derived model outperforms comparable
models in calibration free decoding as well as in subject-
adaptation. Section IV concludes this work with a summary,
discussion on the results and future work.

II. METHODS

A. Notation

Throughout this paper we will denote scalars with lower
case, vectors with bold lowercase, matrices with uppercase
letters and sets with calligraphic uppercase letters. We will
regard the decoding problem for each subject or session as an
individual task and denote the data set of m tasks with T ={
D(t)

}m
t=1

. As we will work with binary dependent variables,
each task data set D(t) ∈ T is formalized with

D(t) =
{(
x
(t)
i , y

(t)
i

)}nt

i=1
⊂ Rd × {C1, C2}

consisting of nt data points with d-dimensional feature vectors
extracted from EEG signals. The corresponding binary class
label C1 or C2 represents one of two brain conditions of

interest. In case of FD, each feature vector x(t)
i is replaced by

the corresponding feature matrix X(t)
i ∈ Rd×k that organizes

d band-power features from k channels. Matrix calculus will
follow denominator-layout notation.

B. Multi-task Logistic Regression

A very popular method for simple binary classification using
probabilistic predictions is to pass the linear model through the
logistic sigmoid activation. The hypothesis model is then given
by

h(x;w) =
(
1 + exp

(
wTx

))−1 ∈ ]0, 1[ (1)

where x ∈ Rd is an input feature and w ∈ Rd is the parameter
vector of the model family. In our setting, the output of (1)
can be interpreted as the probability p (C1 | x) = h(x;w)
of feature x belonging to brain condition C1. Likewise,
the probability of x belonging to class C2 is given by the
complementary event p (C2 | x) = 1− h(x).

Assume that we have gathered a set T of m tasks. Fol-
lowing the MTL framework we will model each task with
an individual hypothesis from (1). Hence, we get to train
a set of m weight vectors W =

{
w(t)

}m
t=1

from the cor-
responding task data sets in T . By representing the classes
with {C1, C2} = {0, 1} and assume they follow a Bernoulli
distribution parameterized with our hypothesis, we can define
the likelihood of all our data (assuming iid feature samples)
through

p (T | W) =
m∏

t=1

nt∏

i=1

Ber
(
y
(t)
i | h

(
x
(t)
i ;w(t)

))
(2)

where Ber (y | h (x,w)) = h (x,w)
y

(1− h (x,w))
1−y . Us-

ing Bayes rule we can further state the posterior distribution

p (W | T ) =
p (T | W) p(W)

p (T )
(3)

over the weights given the task data sets based on the
likelihood in (2), a prior distribution p(W) and the evidence
p(T ). This posterior is the entry point for the Bayesian MTL
framework, were we assume that variations between tasks
underly a common statistical distribution. In particular, we can
capture common structure between the related tasks in a shared
prior p(W). Statistics of p(W) can be used afterwards for out-
of-the-box decoding on new subjects or improving decoders by
combining shared knowledge with subject-specific data. The
question remains how to obtain such a prior?

Following the MTL framework, we will model the shared
prior with a general multivariate Gaussian density function
p(w) = N (µw,Σw) parameterized by a mean µw ∈ Rd and
covariance matrix Σw ∈ Rd×d. Hence, assuming that the task
weights in W are iid, the prior for our posterior reads

p(W) =

m∏

t=1

p
(
w(t)

)
=

m∏

t=1

N
(
w(t) | µw,Σw

)
(4)



Plugging (2) and (4) into (3) results in a parameterized
model for the posterior distribution which yields

p (W | T ) ∝
m∏

t=1

nt∏

i=1

Ber
(
y
(t)
i | h

(
x
(t)
i ;w(t)

))

m∏

t=1

N
(
w(t) | µw,Σw

)
.

(5)

Our goal is to maximize p (W | T ) w.r.t. the weights in
W and the prior parameters µw and Σw. Notice that in-
stead of maximizing p (W | T ) we can equivalently minimize
− log p (W | T ) without loss of generalization. In fact, using
(5), applying the negative logarithm and going through the
math yields a loss minimization objective of the form

L(W,µw,Σw) =−
m∑

t=1

nt∑

i=1

Ece

(
w(t);x

(t)
i , y

(t)
i

)

+
1

2

m∑

t=1

Ω
(
w(t),µw,Σw

) (6)

where Ece is the point-wise cross-entropy error function

Ece (w;x, y) = y log h (x;w) + (1− y) log (1− h (x;w))

derived from the likelihood of the data and Ω is a regulariza-
tion term

Ω (w,µw,Σw) = (w − µw)
T

Σ−1w (w − µw) + log |Σw|
arising from the prior distribution. Notice that Ω reduces to
the same regularizer as for the Gaussian prior on the linear
model presented in the previous work, and so we can interpret
the minimization process of (6) in the same way: Ω penalizes
weights that deviate too far from the prior mean while the
covariance scaling acts as an implicit feature selector [19].
However, the squared error in the loss objective of the linear
model switched with a more suitable error measurement for
binary classification, namely the cross-entropy loss [21].

In order to train a prior model to capture common task
knowledge, we want to minimize (6) w.r.t. the prior parameters
µw and Σw. It turns out that L is minimized by computing
corresponding standard sample estimates of the Gaussian
statistics from the optimal weights in W , i.e. the mean is
estimated with the average over all task weights

mean(W) =
1

m

m∑

t=1

w(t) (7)

and the covariates are estimated with the sample covariance
matrix or some numerically more stable version like

cov(W;µ) =

∑m
t=1

(
w(t) − µ

) (
w(t) − µ

)T

Tr
(∑m

t=1

(
w(t) − µ

) (
w(t) − µ

)T) + εI,

(8)
where an appropriate ε > 0 ensures practicable condition num-
bers on the estimate. Unfortunately, the maximum a-posteriori
(MAP) estimates for the optimal weights has to minimize
the cross-entropy error term in L that has no closed form

Algorithm 1: Multi-task Logistic Regression
Data: Training sets T from m related tasks
Result: µw, Σw

1 Initialize µw = 0 and Σw = I ;
2 Arbitrary initialize W =

{
w(t)

}m
t=1

;
3 while µw and Σw not converged do
4 for w(t) ∈ W do
5 Compute the MAP estimate for w(t) by

minimizing (6) w.r.t. w(t) holding µw and Σw

fixed (e.g. b) ;

6 Update µw = mean(W) using (7);
7 Update Σw = cov(W;µw) using (8);

Fig. 1. MTL Logistic Regression algorithm to train a Gaussian prior based
on a set of different task data sets.

solution. However, L is differentiable w.r.t. each individual
weight w(t) ∈ W yielding the gradient

∇L
(
w(t);µw,Σw

)
=

nt∑

i=1

(
h
(
x
(t)
i ;w(t)

)
− y(t)i

)
x
(t)
i

+ Σ−1w

(
w(t) − µw

)
.

(9)
This vector can be used in gradient based optimization pro-
cedures (e.g. [22], [23]) to obtain optimal weight estimates
given the prior parameters. The algorithm to learn the Gaussian
prior is based on the observation that by fixing either the task
weights in W or the prior parameters µw and Σw the cyclic
dependency between them is broken. By repeatedly computing
MAP estimates of the weights simultaneously given the prior
and updating the prior parameters afterwards with Gaussian
sample estimates from the task weights eventually converges to
a solution for µw and Σw. The learning procedure is outlined
in Fig. 1

C. Spatio-spectral Feature Decomposition

EEG signals are recorded with k electrodes placed at
specific locations on the scalp. A very popular method to train
decoders in BCI is to use band power features in d frequency
bands of the signal, making up a general feature space of kd
dimensions. Because expert knowledge of neurophysiological
and -psychological properties of the paradigm are used to
determine the relevant electrodes and frequency bands, a
subset of the full kd features is chosen and therefore applicable
to smaller data sets obtained from calibration sessions in BCIs.

In order to not rely on expert knowledge of the paradigm,
we have to use many more electrodes to cover the scalp and
small frequency bins over a broad spectral range. In this case,
the feature space of kd dimensions easily exceeds the number
of available data samples and decoders are often no longer
able to rely on feature statistics. Hence, BCI research has to
keep relying heavily on expert knowledge.

Jayaram et al. [19] proposed FD as a spatio-spectral feature
space for EEG signals that significantly reduces the feature



dimensionality from kd to k + d. In particular, the authors
assumed that the spectral feature importance is independent
from the spatial topography of each electrode. The MTL
logistic regression model presented in this work is applicable
to this assumption in the same way as the authors did for linear
regression. Hence, instead of using (1) to predict the classes,
we will use a bilinear hyperplane as the decision boundary
that yields the model

h(X;w,a) =
(
1 + exp

(
aTXw

))−1 ∈ ]0, 1[ (10)

where X ∈ Rk×d is an input feature, w ∈ Rd is the parameter
vector weighting the spectral features and a ∈ Rk is the
parameter vector weighting the spatial features.

Notice that we only changed the model from h(x;w) to
h(X;w,a), hence, the MTL derivation is analogous to the
previously presented non-FD case, except that we have decom-
posed the original weights into a spectral and a spatial part.
We therefore incorporate two Gaussian priors N (µa,Σa) and
N (µw,Σw) multiplicatively into the posterior in (5) with
spectral task weights W = {wt}mt=1 ⊂ Rd and spatial task
weights A = {at}mt=1 ⊂ Rk. The loss objective for the FD
case then becomes

L(W,A,µw,Σw,µa,Σa) =

−
m∑

t=1

nt∑

i=1

Ece

(
w(t);X

(t)
i , y

(t)
i

)

+
1

2

m∑

t=1

Ω
(
w(t),µw,Σw

)
+ Ω

(
a(t),µa,Σa

)
(11)

where Ece and Ω are defined accordingly as in (6). Minimizing
(11) is done equivalently to minimizing (6), i.e. we can use
gradient based numerical optimization. The gradient w.r.t. a
spectral task weight w(t) ∈ W reads

∇L
(
w(t);a(t),µw,Σw

)
=

nt∑

i=1

(
h
(
X

(t)
i ;w(t),a(t)

)
− y(t)i

)
X

(t)
i

T
a(t)

+ Σ−1w

(
w(t) − µw

)
(12)

and similarly the gradient w.r.t. a spatial task weight a(t) ∈ A

∇L
(
a(t);w(t),µa,Σa

)
=

nt∑

i=1

(
h
(
X

(t)
i ;w(t),a(t)

)
− y(t)i

)
X

(t)
i w

(t)

+ Σ−1a

(
a(t) − µa

)
.

(13)

As the gradient for the spectral weights depend on the spatial
parameters and vice versa we have to alternatingly fix one set
of weights to compute the MAP estimate of the others. Apart
from that, the learning algorithm is similar to the non-FD case
but may be computationally a bit more expensive. In Fig.2 a
FD learning procedure based on gradient descent is depicted.

Algorithm 2: FD Multi-task Logistic Regression
Data: Training sets T from m related tasks
Result: µw, Σw, µa, Σa

1 Initialize µw = 0 and Σw = I ;
2 Initialize µa = 1√

k
1 and Σa = I ;

3 Arbitrary initialize W =
{
w(t)

}t
t=1

and A =
{
a(t)

}m
t=1

;
4 while µw, Σw, µa and Σa not converged do
5 for w(t) ∈ W and a(t) ∈ A do
6 while w(t) and a(t) not converged do
7 Choose some learning rate η ∈ ]0,∞];
8 Set w(t) = w(t) − η∇L

(
w(t);a(t),µw,Σw

)
;

9 Set a(t) = a(t) − η∇L
(
a(t);w(t),µa,Σa

)
;

10 Update µw = mean(W) using (7);
11 Update Σw = cov(W;µw) using (8);

Fig. 2. Gradient based MTL logistic regression algorithm to train a Gaussian
prior based on a set of different task data sets in FD space.

D. Subject-specific Adaptation

Once we have trained the prior parameters using MTL we
can immediately use the mean weight vector for prediction.
When given a new feature x, we only need to compute
h (x;µw) for an out-of-the-box prediction of the class prob-
ability. When decoding brain states for a new subject, we are
faced with a new task that has subject-specific variations. As
more data for the new tasks becomes available (e.g. from a
calibration phase), those variations will be captured by the
task-specific data set and decoders trained from this set will
eventually outperform the plain prior. The Bayesian framework
naturally copes with this case; we have to just compute the
MAP estimate of the adapted weights using (6) based on the
new data set.

However, we do not know how much belief we should
put into the prior to optimally trade-off between task-specific
variations and shared task knowledge. This concept can be
captured formally by introducing an additional regularization
factor λ ∈ [0,∞] into the cross-entropy objective for subject
adaptation. Given we denote our new task data with D =
{(xi, yi)}ni=1 ⊂ Rd×{C1, C2} we obtain adapted weights by
minimizing

Lλ(w) = −
nt∑

i=1

Ece (w;xi, yi) +
λ

2
Ω (w,µw,Σw) (14)

w.r.t. to the weights w. This can be done again with numerical
gradient based optimization techniques, where the gradient is
analytically given by

∇Lλ (w) =

nt∑

i=1

(h (xi;w)− yi)xi + λΣ−1w (w − µw) .

(15)
An regularization factor λ to find the optimal trade-off be-
tween prior and task adaptation can be obtained using model
selection methods (e.g. cross-validation).



E. Experimental Setup

Evaluation of the model was conducted on real EEG signals
recorded from 10 healthy subjects (two female, eight male,
22-28 years old, nine subjects were naı̈ve to BCIs and one
participated twice in BCI experiments) using a two-class
sensorimotor rhythm paradigm, namely haptic motor imagery
of left or right hand movements.

Each subject sat in a comfortable chair in front of a
screen and performed 300 trials in the experiment (150 per
condition of the binary paradigm, stimuli were presented in
pseudorandom order and no feedback on the performance was
provided). Each trial consisted of an initial pause of three
second, followed by an imagery phase lasting seven seconds
in which a centrally displayed arrow pointing to the left or
right informed the subject to perform haptic left or right hand
motor imagery, respectively.

Brain activity during the experiment was recorded using
EEG with 128 electrodes positioned according to the extended
10-20 system (referenced at Cz). The signals were sampled
at 500Hz using BrainAmp amplifiers1 and a temporal analog
high-pass filter with 10 seconds time constant.

After the experiment was conducted, data preprocessing
solely consisted of spatially filtering the signals with a surface
Laplace [24] to keep the results unbiased for evaluation. FD
feature matrices were formed by applying the discrete Fourier
transform with a Hann window to the motor imagery phase
of each trial in order to extract equidistant log-band power
features of 2Hz width within the frequency range from 7Hz
to 31Hz from all electrodes. Hence, the FD space was spanned
by 128× 12-dimensional features.

III. EXPERIMENTAL RESULTS

A. Classification Performance

The performance of MTL logistic regression on the real-
world BCI paradigm was evaluated by comparing classifi-
cation accuracies when different amount of subject-specific
data is available. In particular, one out of the ten data sets
corresponding to each subject was taken out to be regarded
as subject-specific calibration data. Three models where used
for comparison: FD MTL Logistic Regression with Gaussian
prior trained using the algorithm shown in Fig.2, standard FD
Logistic Regression with L2 regularization (i.e. uninformed
prior) and finally FD MTL Linear Regression with a Gaussian
prior trained as presented in the previous framework (with
maximum-likelihood estimates for the variance hyperparame-
ter). Two out of the ten subjects were performing near chance
and were taken out from prior training (i.e. priors were finally
trained from seven task data sets).

After obtaining priors for the models, the 300 samples
from the subject-specific data were randomly divided into
a training set (200 samples) and a test set (100 samples).
Each model was successively trained on an increasing sub-
set of the training set using a step size of 50 and 5-
fold cross-validation to select a regularization hyperparameter

1BrainProducts GmbH, Gilching, Germany
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Fig. 3. Mean accuracy with shaded standard deviation on the test set over an
increasing amount of subject-specific calibration data provided for training.
The mean was taken over all 10 subjects using 100 runs with random splits of
200 training and 100 test samples. All models improve with increasing amount
of calibration data and eventually converge to the same performance level. The
accuracy development suggest that MTL logistic regression outperforms MTL
linear regression and both MTL algorithms outperform uninformed logistic
regression.

from {exp(−10), exp(−9), . . . , exp(9), exp(10)}. The trained
models were then evaluated on the test set to compute their
accuracy. The whole procedure was conducted for each sub-
ject using 100 runs where the data was randomly split into
training and test set. The mean accuracy development over all
subjects and runs is shown in Fig.3. Further, the development
of the prior bias (mean regularization factor obtained from
cross-validation) over the runs to trade off between subject
adaptation and prior is visualized in Fig.4.

The results show that the performance gap between the
models keeps getting smaller with increasing size of the
training set and finally converge to a common performance
level. However, MTL logistic regression with prior information
outperforms the MTL model from the previous framework
as well as standard logistic regression with uniformed prior.
Remarkably, without using any subject-specific data for cal-
ibration the out-of-the box classification rate of the model
prior from this work reaches the 70% mark (considered as the
minimum requirement for reliable communication in BCIs).
Development of the regularization factor over the runs and
subjects shows a decreasing trend over increasing amount of
calibration data from the new subjects. This indicates that the
decoder is deviating from the prior in order to learn more
task-specific structure, which is in fact a plausible statistical
behavior; we expect that with more data from a problem
the underlying structures will emerge stronger which can be
captured by the model to improve on the subject-specific
variations.
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Fig. 4. Mean regularization value of MTL logistic regression (gathered
through 5-fold cross-validation) for subject adaptation over all subjects and
100 runs (see Fig.3). Initial high regularization towards the prior for few
calibration trials demonstrates that the model is relying stronger on the prior
instead of the calibration data. As more subject-specific data is added to
the training set, regularization drops and incorporates more exposed structure
specific to the new subject.

B. Spatial and Spectral Prior

Trained models using the FD features have weight vectors
for the spatial topography and the spectral frequency bins that
indicate relevance of individual dimensions that are used by
the model for prediction. In order to compare findings of the
MTL algorithm with domain knowledge of the SMR paradigm,
Gaussian prior parameters for the FD space were trained from
all eight subjects (leaving out the two near chance performing
subjects) using the algorithm in Fig.2. A visualization of the
resulting priors is shown in Fig.5.

The trained prior identifies spatial relevance on electrodes
placed above the left and right sensorimotor cortex. Those
topographic features agree with domain knowledge of the
neurophysiological characteristics known for this paradigm
and indicate that indeed neural activity is used to predict
the corresponding brain condition instead of artifacts. Further-
more, the model puts highest priority on the frequency bin for
11-13Hz in its prior mean, which corresponds to the µ-rhythm
and agrees with the band-power modulation characteristics of
the paradigm, too. Implicit feature selection used by the model
for subject adaptation is likewise consistent as shown in the
spectral covariance where we can see high covariates between
the α-rhythm (9-13Hz) and β-rhythm (19-23Hz and 27-29Hz).

C. Null Hypothesis Pairwise Permutation Test

In III-A we compared the mean accuracies over each subject
with increasing amount of calibration data in 100 runs. Here,
we will perform a statistical test to examine if there is
a significant difference in performance of the three tested
models. In particular, a pairwise permutation test [25] between
two models was conducted under the null hypothesis that
their true mean performance is equal. The test was setup as
follows: The mean accuracy over the 100 runs of each of the
10 subjects and three models were took for one calibration set
size. Let Pa = {a1, a2, . . . , a10} be the performance samples
from FD MTL logistic regression, Pb = {b1, b2, . . . , b10}
the samples from FD mutli-task linear regression and Pc =
{c1, c2, . . . , c10} from standard L2 logistic regression in FD
space. Further, let µa, µb and µc denote the true mean
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Fig. 5. The first plot shows the topography of the spatial weight prior trained
by MTL logistic regression over eight subjects. The prior indicates relevant
activity above the left and right sensorimotor cortex on electrodes C3 and C4.
The second plot shows a bar chart of the trained spectral weight prior. They
show high relevance on the frequency bin for 11-13Hz and its surrounding
bins corresponding to the µ-rhythm, as well as moderate relevance within the
β-range in 19-29Hz. The final third plot visualizes the spectral covariance
prior trained by the algorithm. High positive covariates for spectral weights
can be found within the α- and β-frequencies while negative covariates show
up between those bands.

performance from which the samples Pa, Pb and Pc were
drawn, respectively. We tested two null hypotheses, the first
was H∗0 : µa = µb (i.e. MTL logistic and linear regression
have the same performance) and the second H∗∗0 : µa = µc
(i.e. logistic regression with MTL prior and standard logistic
regression with uninformed prior perform equally well). Using
the test statistic T (Px,Py) = mean(Px) −mean(Py) where
x and y are substitutes for a, b or c the ρ-value was computed
by

ρ =

∑n
i=1

[
T
(
P(i)
x ,P(i)

y

)
≥ T (Px,Py)

]

n

where P(i)
x and P(i)

y are pseudorandomly generated pairwise
permutations of Px and Py . This means that each pair of
samples (xt, yt) for the same subject t appears in P(i)

x and
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Fig. 6. ρ-value over an increasing amount of subject-specific calibration data
using a pairwise permutation test for the null hypotheses H∗

0 (MTL logistic
and linear regression have same performance) and H∗∗

0 (MTL logistic and
standard logistic regression have same performance). For up to 50 calibration
trials there is strong evidence against H∗

0 and H∗∗
0 at a 5% significance level.

For up to 100 trials only H∗
0 can be rejected. For up to 150 trials the ρ-value

for H∗
0 is marginal and for more trials no hypotheses can be rejected.

P(i)
y again, but with a chance of 50% that the positions

have switched to (yt, xt). The results for the ρ-value using
n = 100000 permutations over different amounts of calibration
data are shown in Fig.6.

The results show that without any or few subject-specific
calibration data both H∗0 and H∗∗0 are rejected at a 5% sig-
nificance level. Hence, together with the classification results
from Fig.5, we can indeed observe a statistically significant
improvement of MTL logistic regression over the MTL model
from the previous framework and uninformed logistic regres-
sion in case of out-of-the-box decoding and short calibration
phases (up to 50 trials). For moderate calibration sessions (up
to 100 trials), we can only reject H∗0 and observe a significant
improvement of MTL logistic regression over MTL linear
regression.

IV. DISCUSSION

This work extended a general framework from previous
work used for MTL of linear regression models in BCIs by a
logistic regression model with more suitable assumptions on
the distribution of the dependent variable in case of binary
classification. We demonstrated a significant improvement in
classification accuracy of the new model over comparable
models for calibration-free decoding and subject-specific adap-
tation with few calibration trials. The new model was able
to learn spatially important locations on the scalp as well es
relevant spectral frequency bands, both consistent with expert
knowledge of the paradigm.

Besides an improved performance over the model used in
the previous framework, logistic regression has the advantage
of predicting class probabilities instead of direct classes, thus
naturally incorporating mathematical uncertainty about the
prediction. Adjusting the threshold at which we assign classes
from the probability renders the model further optimizable

for usage of well established methods like Receiver Operat-
ing Characteristic curves and other statistics. However, other
models used throughout BCI research that turned out to work
well may be examined for the generalized MTL approach
and compared to each other. Prominent examples on which
current work is in progress are derivations of Support Vector
Machines and Linear Discriminant Analysis within the frame-
work. Further approaches by using different prior structures or
loss functions, as well as hybrid techniques of MTL together
with advanced spatial filters are to be investigated and may
further improve performance.
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