
Aus der Neurologischen Universitätsklinik Tübingen 

Abteilung Neurologie mit Schwerpunkt neurovaskuläre 

Erkrankungen und Neuroonkologie 

 

The role of C-C motif chemokine ligand 7, C-C motif chemokine 

ligand 11 and interleukin-9 in T helper type 9 cell mediated 

neuronal damage 

 

 

 

Inaugural-Dissertation 

zur Erlangung des Doktorgrades 

der Medizin 

 

 

der Medizinischen Fakultät 

der Eberhard Karls Universität 

zu Tübingen 

 

vorgelegt von 

Nakov, Philipp 

 

 

 

2019 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dekan:   Professor Dr. I. B. Autenrieth 

1. Berichterstatter: Privatdozent Dr. F. Bischof 

2. Berichterstatter:  Professor Dr. K. Ghoreschi 

 

 

Tag der Disputation:   28.11.2018





I 

 

I. Table of Contents  
I. Table of contents .............................................................................................................. I 

II. List of figures ................................................................................................................. V 

III.  List of tables .................................................................................................................. VI 

IV. List of abbreviations ..................................................................................................... VII 

1. Introduction ..................................................................................................................... 1 

1.1 Immune cells and the central nervous system (CNS) .............................................. 1 

1.1.1 T helper cells (Th cells) ..................................................................................... 1 

1.1.2 T helper type 9 (Th9) cells and their signature cytokine Interleukin-9 (IL-9) .... 

  .......................................................................................................................... 2 

1.1.3 The immune privilege of the central nervous system (CNS) ........................... 3 

1.1.4 Interactions of T helper cells (Th cells) and neurons ........................................ 4 

1.1.5 Chemokines: signal mediators between the immune and the nervous system ... 

  .......................................................................................................................... 5 

1.1.5.1 The C-C motif chemokine ligand 7 (CCL7) ................................................. 6 

1.1.5.2 The C-C motif chemokine ligand 11 (CCL11) ............................................. 7 

1.2 T helper cell mediated neuroinflammatory diseases ................................................ 8 

1.2.1 Multiple sclerosis (MS) .................................................................................... 8 

1.2.2 Experimental autoimmune encephalomyelitis (EAE) as a Th cell mediated 

neuroinflammatory disease and the role of excitotoxicity in EAE ................... 9 

1.3 Aim of this work .................................................................................................... 11 

2. Materials and Methods .................................................................................................. 12 

2.1 Animals .................................................................................................................. 12 

2.2 Generation of defined cell cultures for the identification of neuronal toxicity of 

T helper type 9 cells.................................................................................................. 12 

2.2.1 Buffer Preparation .......................................................................................... 12 

2.2.2 Generation of defined T helper type 9 cell cultures ....................................... 13 

2.2.2.1 Preparing of T helper type 9 cell cultures ................................................... 13 

2.2.2.2 Control of T helper type 9 cell cultures ...................................................... 15 

2.2.3 Generation of defined neuronal cultures from embryonic day 16 (E16)   

mouse pups ..................................................................................................... 16 



II 

 

2.2.4 Generation of defined astrocytic-neuronal mixed cultures from postnatal    

day 0 (P0) mouse pups ................................................................................... 17 

2.2.5 Generation of defined pure astrocytic cultures from P2 mouse pups ............. 18 

2.3 Gene expression analysis by quantitative real-time polymerase chain reaction 

(qPCR) ...................................................................................................................... 19 

2.3.1 Treatment of cell cultures with cytokines and glutamate for gene     

expression analysis ......................................................................................... 19 

2.3.2 RNA extraction ............................................................................................... 20 

2.3.3 Reverse transcription into complementary deoxyribonucleic acid (DNA) .... 20 

2.3.4 Quantitative real-time polymerase chain reaction (qPCR) ............................. 21 

2.3.5 Analysis of measured qPCR files ................................................................... 22 

2.4 Ca2+-imaging of neurons ........................................................................................ 22 

2.4.1 Treatment of cells with cytokines ................................................................... 22 

2.4.2 Conditioning of Magnesium free Locke’s buffer (LB) with Th9 cells ........... 23 

2.4.3 Staining of neurons with a fluorescent Ca2+-dye ............................................ 23 

2.4.4 Microscopy of stained neurons ....................................................................... 24 

2.4.5 Analysis of Ca2+-imaging series ..................................................................... 25 

2.4.6 Statistical Analysis ......................................................................................... 26 

2.5 Immunocytochemistry, microscopy and analysis of defined neuronal, astrocyte      

or mixed cultures ...................................................................................................... 26 

2.5.1 Treatment of cells ........................................................................................... 27 

2.5.2 Immunostaining .............................................................................................. 28 

2.5.3 Microscopy of immunostained samples ......................................................... 29 

2.5.4 Analysis of immunostained samples .............................................................. 30 

2.6 Detection of CCL7, CCL11 and IL-9 in an experimental autoimmune 

encephalomyelitis (EAE) mouse model ................................................................... 30 

2.6.1 Induction of EAE ............................................................................................ 30 

2.6.2 Dissection of the spinal cord .......................................................................... 31 

2.6.3 RNA extraction, reverse transcription and qPCR ........................................... 31 

3. Results ........................................................................................................................... 32 

3.1 Analysis of the generation of defined cell cultures ................................................ 32 

3.1.1 Analysis of the generation of defined T helper type 9 cell cultures ............... 32 



III 

 

3.1.2 Analysis of the generation of defined neuronal cultures from E16 mouse 

embryos .......................................................................................................... 33 

3.1.3 Analysis of the generation of defined astrocyte cultures from P0 and P2 

mouse pups ..................................................................................................... 33 

3.2 Identification of the effect of cytokine exposure (CCL7, CCL11, IL-9) on    

cytokine mRNA expression of defined cells ............................................................ 33 

3.2.1 The effect of cytokines on cytokine gene expression in mouse astrocytes .... 34 

3.2.2 The effect of defined cytokines on cytokine gene expression in mouse 

neurons ........................................................................................................... 37 

3.3 The effect of CCL7, CCL11 and IL-9 preincubation on E16 mouse neurons ....... 39 

3.4 Analysis of the effect of defined cytokines and Th9 cell conditioned imaging    

buffer on Ca2+ levels in cultured E16 mouse neurons using Ca2+-imaging .............. 42 

3.4.1 General notes regarding Ca2+-imaging ........................................................... 42 

3.4.2 Direct effect of the application of mouse Th9 cell supernatant on 

Ca2+ levels in E16 mouse neurons .................................................................. 44 

3.4.3 Direct effect of the application of CCL7, CCL11 and IL-9 on Ca2+ levels      

in E16 mouse neurons .................................................................................... 46 

3.4.4 The effect of preincubation of E16 mouse neurons with CCL7, CCL11       

and IL-9 on glutamate-induced Ca2+ influx .................................................... 48 

3.4.4.1 Notes for all samples ................................................................................... 48 

3.4.4.2 The effect of 50 nM CCL7 preincubation on glutamate-induced 

Ca2+ influx in neurons DIV 7 ........................................................................ 49 

3.4.4.3 The effect of 50 nM CCL7 preincubation on glutamate-induced               

Ca2+ influx in neurons DIV 14 ..................................................................... 51 

3.4.4.4 The effect of 5 nM CCL7 preincubation on glutamate-induced                 

Ca2+ influx in neurons DIV 14 ..................................................................... 53 

3.4.4.5 The effect of 50 nM CCL11 preincubation on glutamate-induced             

Ca2+ influx in neurons DIV 7 ....................................................................... 55 

3.4.4.6 The effect of 5 nM IL-9 preincubation on glutamate-induced                   

Ca2+ influx in neurons DIV 7 ....................................................................... 57 

3.4.4.7 The effect of 30 nM IL-9 preincubation on glutamate-induced                 

Ca2+ influx in neurons DIV 14 ..................................................................... 59 

3.4.4.8 The effect of 5 nM IL-9 preincubation on glutamate-induced                   

Ca2+ influx in neurons DIV 14 ..................................................................... 61 



IV 

 

3.5 The effect of CCL7, CCL11 and IL-9 preincubation on glutamate-mediated 

excitotoxicity in neurons .......................................................................................... 63 

3.6 Detection of CCL7, CCL11 and IL-9 in an experimental autoimmune 

encephalomyelitis (EAE) mouse model ................................................................... 68 

3.7 Summary of the results .......................................................................................... 69 

4. Discussion ..................................................................................................................... 71 

4.1 Culturing of neurons and of Th9 cells .................................................................... 71 

4.1.1 Assessment of the Th9 cell cultures ................................................................ 71 

4.1.2 Assessment of the neuronal cultures .............................................................. 71 

4.2 CCL7- and CCL11-mRNA expression in neurons and astrocytes ........................ 73 

4.3 The role of CCL7, CCL11 and IL-9 in neuronal damage ...................................... 74 

4.4 Analysis of neuronal Ca2+ levels............................................................................ 76 

4.4.1 General limitations of the Ca2+-imaging experiments .................................... 76 

4.4.2 The effect of Th9 supernatant on neuronal Ca2+ levels ................................... 78 

4.4.3 The effect of CCL7, CCL11 and IL-9 on neuronal Ca2+ levels ..................... 79 

4.4.4 The enhancement of the glutamate-mediated increase of neuronal              

Ca2+ levels by CCL7 and IL-9 ........................................................................ 80 

4.5 The effect of CCL7, CCL11 and IL-9 on glutamate-mediated excitotoxicity ....... 83 

4.6 Detection of CCL7-, CCL11- and IL-9-mRNA in an EAE mouse model ............ 83 

5. Summary ....................................................................................................................... 86 

6. Summary (native language of the faculty) .................................................................... 87 

7. Literature ....................................................................................................................... 88 

8. Declaration of Authorship ........................................................................................... 102 

9. Danksagung ................................................................................................................. 103 

10. Curriculum Vitae ......................................................................................................... 104 

 

 

 

 

 



V 

 

II. List of figures 
 

Figure 1: IL-9-mRNA expression in a Th9 cell culture. ...................................................... 32 

Figure 2: Effect of IL-9, CCL7 and Ccl11 on CCL7-mRNA expression in astrocytes. ..... 35 

Figure 3: Effect of IL-9, CCL7 and CCL11 on CCL11-mRNA expression in astrocytes.   

 .............................................................................................................................................. 36 

Figure 4: Effect of IL-9, CCL7 and CCL11 on CCL7-mRNA expression in neurons 

DIV 12. ................................................................................................................................. 37 

Figure 5: Effect of IL-9, CCL7 and CCL11 on CCL11-mRNA expression in neurons 

DIV 12. ................................................................................................................................. 38 

Figure 6: Neuronal morphology and apoptosis after incubation with CCL7, CCL11        

and IL-9.  .............................................................................................................................. 41 

Figure 7: Examples of neurons stained with the Ca2+ fluorescent dye Fluo-4AM and     

their reaction to KCl and glutamate.  .................................................................................... 43 

Figure 8: Effect of Th9 conditioned Locke’s Buffer (LB-Th9) on Ca2+ levels in neurons   

and its antagonization by the NMDA-receptor antagonist MK-801. ................................... 45 

Figure 9: Ca2+ levels in neurons (DIV 7 and 14) upon addition of CCL7, CCL11 and      

IL-9.  ..................................................................................................................................... 48 

Figure 10: The effect of 50 nM CCL7 on glutamate-mediated Ca2+ rise in neurons    

DIV 7.  .................................................................................................................................. 50 

Figure 11: The effect of 50 nM CCL7 on glutamate-mediated Ca2+ rise in neurons   

DIV 14.  ................................................................................................................................ 52 

Figure 12: The effect of 5 nM CCL7 on glutamate-mediated Ca2+ rise in neurons    

DIV 14. ................................................................................................................................. 54 

Figure 13: The effect of 50 nM CCL11 on glutamate-mediated Ca2+ rise in neurons      

DIV 7.  .................................................................................................................................. 56 

Figure 14: The effect of 5 nM IL-9 on glutamate-mediated Ca2+ rise in neurons            

DIV 7.    ................................................................................................................................ 58 

Figure 15: The effect of 30 nM IL-9 preincubation on glutamate-mediated Ca2+ rise in 

neurons DIV 14. ................................................................................................................... 60 

Figure 16: The effect of 5 nM IL-9 on glutamate-mediated Ca2+ rise in neurons            

DIV 14.  ................................................................................................................................ 62 

Figure 17: The effect of CCL7 pretreatment on glutamate induced excitotoxicity in 

neurons. ................................................................................................................................ 66 

Figure 18: mRNA expression of CCL7, CCL11 and IL-9 in spinal cords of EAE-mice.... 69 

 

 

 

file:///C:/Users/Philipp/Documents/Doktorarbeit/Laufende%20Arbeiten%203.0/Doktorarbeit%20Philipp%20Nakov%2018.0%20180125%20Times%20New%20Roman.docx%23_Toc505012703
file:///C:/Users/Philipp/Documents/Doktorarbeit/Laufende%20Arbeiten%203.0/Doktorarbeit%20Philipp%20Nakov%2018.0%20180125%20Times%20New%20Roman.docx%23_Toc505012704
file:///C:/Users/Philipp/Documents/Doktorarbeit/Laufende%20Arbeiten%203.0/Doktorarbeit%20Philipp%20Nakov%2018.0%20180125%20Times%20New%20Roman.docx%23_Toc505012705
file:///C:/Users/Philipp/Documents/Doktorarbeit/Laufende%20Arbeiten%203.0/Doktorarbeit%20Philipp%20Nakov%2018.0%20180125%20Times%20New%20Roman.docx%23_Toc505012705
file:///C:/Users/Philipp/Documents/Doktorarbeit/Laufende%20Arbeiten%203.0/Doktorarbeit%20Philipp%20Nakov%2018.0%20180125%20Times%20New%20Roman.docx%23_Toc505012706
file:///C:/Users/Philipp/Documents/Doktorarbeit/Laufende%20Arbeiten%203.0/Doktorarbeit%20Philipp%20Nakov%2018.0%20180125%20Times%20New%20Roman.docx%23_Toc505012706
file:///C:/Users/Philipp/Documents/Doktorarbeit/Laufende%20Arbeiten%203.0/Doktorarbeit%20Philipp%20Nakov%2018.0%20180125%20Times%20New%20Roman.docx%23_Toc505012707
file:///C:/Users/Philipp/Documents/Doktorarbeit/Laufende%20Arbeiten%203.0/Doktorarbeit%20Philipp%20Nakov%2018.0%20180125%20Times%20New%20Roman.docx%23_Toc505012707
file:///C:/Users/Philipp/Documents/Doktorarbeit/Laufende%20Arbeiten%203.0/Doktorarbeit%20Philipp%20Nakov%2018.0%20180125%20Times%20New%20Roman.docx%23_Toc505012708
file:///C:/Users/Philipp/Documents/Doktorarbeit/Laufende%20Arbeiten%203.0/Doktorarbeit%20Philipp%20Nakov%2018.0%20180125%20Times%20New%20Roman.docx%23_Toc505012708
file:///C:/Users/Philipp/Documents/Doktorarbeit/Laufende%20Arbeiten%203.0/Doktorarbeit%20Philipp%20Nakov%2018.0%20180125%20Times%20New%20Roman.docx%23_Toc505012709
file:///C:/Users/Philipp/Documents/Doktorarbeit/Laufende%20Arbeiten%203.0/Doktorarbeit%20Philipp%20Nakov%2018.0%20180125%20Times%20New%20Roman.docx%23_Toc505012709
file:///C:/Users/Philipp/Documents/Doktorarbeit/Laufende%20Arbeiten%203.0/Doktorarbeit%20Philipp%20Nakov%2018.0%20180125%20Times%20New%20Roman.docx%23_Toc505012710
file:///C:/Users/Philipp/Documents/Doktorarbeit/Laufende%20Arbeiten%203.0/Doktorarbeit%20Philipp%20Nakov%2018.0%20180125%20Times%20New%20Roman.docx%23_Toc505012710
file:///C:/Users/Philipp/Documents/Doktorarbeit/Laufende%20Arbeiten%203.0/Doktorarbeit%20Philipp%20Nakov%2018.0%20180125%20Times%20New%20Roman.docx%23_Toc505012714
file:///C:/Users/Philipp/Documents/Doktorarbeit/Laufende%20Arbeiten%203.0/Doktorarbeit%20Philipp%20Nakov%2018.0%20180125%20Times%20New%20Roman.docx%23_Toc505012714
file:///C:/Users/Philipp/Documents/Doktorarbeit/Laufende%20Arbeiten%203.0/Doktorarbeit%20Philipp%20Nakov%2018.0%20180125%20Times%20New%20Roman.docx%23_Toc505012715
file:///C:/Users/Philipp/Documents/Doktorarbeit/Laufende%20Arbeiten%203.0/Doktorarbeit%20Philipp%20Nakov%2018.0%20180125%20Times%20New%20Roman.docx%23_Toc505012715
file:///C:/Users/Philipp/Documents/Doktorarbeit/Laufende%20Arbeiten%203.0/Doktorarbeit%20Philipp%20Nakov%2018.0%20180125%20Times%20New%20Roman.docx%23_Toc505012716
file:///C:/Users/Philipp/Documents/Doktorarbeit/Laufende%20Arbeiten%203.0/Doktorarbeit%20Philipp%20Nakov%2018.0%20180125%20Times%20New%20Roman.docx%23_Toc505012716
file:///C:/Users/Philipp/Documents/Doktorarbeit/Laufende%20Arbeiten%203.0/Doktorarbeit%20Philipp%20Nakov%2018.0%20180125%20Times%20New%20Roman.docx%23_Toc505012717
file:///C:/Users/Philipp/Documents/Doktorarbeit/Laufende%20Arbeiten%203.0/Doktorarbeit%20Philipp%20Nakov%2018.0%20180125%20Times%20New%20Roman.docx%23_Toc505012717
file:///C:/Users/Philipp/Documents/Doktorarbeit/Laufende%20Arbeiten%203.0/Doktorarbeit%20Philipp%20Nakov%2018.0%20180125%20Times%20New%20Roman.docx%23_Toc505012718
file:///C:/Users/Philipp/Documents/Doktorarbeit/Laufende%20Arbeiten%203.0/Doktorarbeit%20Philipp%20Nakov%2018.0%20180125%20Times%20New%20Roman.docx%23_Toc505012718
file:///C:/Users/Philipp/Documents/Doktorarbeit/Laufende%20Arbeiten%203.0/Doktorarbeit%20Philipp%20Nakov%2018.0%20180125%20Times%20New%20Roman.docx%23_Toc505012719
file:///C:/Users/Philipp/Documents/Doktorarbeit/Laufende%20Arbeiten%203.0/Doktorarbeit%20Philipp%20Nakov%2018.0%20180125%20Times%20New%20Roman.docx%23_Toc505012719


VI 

 

III. List of tables 
 

Table 1: Sequences of primers used in qPCR reactions ...................................................... 22 

Table 2: Effect of IL-9, CCL7 and Ccl11 on CCL7-mRNA expression in astrocytes. ....... 35 

Table 3: Effect of IL-9, CCL7 and CCL11 on CCL11-mRNA expression in astrocytes. ... 36 

Table 4: Effect of IL-9, CCL7 and CCL11 on CCL7-mRNA expression in neurons 

DIV 12. ................................................................................................................................. 38 

Table 5: Effect of IL-9, CCL7 and CCL11 on CCL11-mRNA expression in neurons 

DIV 12. ................................................................................................................................. 39 

Table 6: The effect of CCL7 50 nM on glutamate mediated Ca2+ rise in neurons DIV 7. .. 51 

Table 7: The effect of CCL7 50 nM on glutamate mediated Ca2+ rise in neurons DIV 14. 

 .............................................................................................................................................. 53 

Table 8: The effect of CCL7 5 nM on glutamate mediated Ca2+ rise in neurons DIV 14. .. 55 

Table 9: The effect of CCL11 50 nM on glutamate mediated Ca2+ rise in neurons DIV 7. 

 .............................................................................................................................................. 57 

Table 10: The effect of IL-9 5 nM on glutamate mediated Ca2+ rise in neurons DIV 7.. ... 59 

Table 11: The effect of IL-9 30 nM on glutamate mediated Ca2+ rise in neurons DIV 14.  

 .............................................................................................................................................. 61 

Table 12: The effect of IL-9 5 nM on glutamate mediated Ca2+ rise in neurons DIV 14. .. 63 

 

  



VII 

 

IV. List of abbreviations 
 

- Units of measurement 

%   percent      

°C      degree Celsius  

d      days 

h     hours 

µg      microgram 

µl     microliter      

µm      micrometer     

µM      micromolar 

min      minute 

ml      milliliter 

mM      millimolar 

nM      nanomolar  

ng      nanogram 

IE     Internationale Einheit = International Unit 

s      seconds 

    

- Abbreviations 

AB      antibody 

ACK      ammonium-chloride-potassium lysing 

aDMSO     anhydrous dimethyl sulfoxide 

APC      antigen presenting cell 

AGM      astrocyte growth medium 

AMPA  α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid  

AraC      cytosine β-D-arabinofuranoside 



VIII 

 

βIII-tubulin     neuronal class 3 beta-tubulin  

BBB      blood brain barrier 

BDNF      brain derived neurotrophic factor 

BSA      bovine serum albumin 

Ca2+     calcium 

CaCl2     calcium chloride 

cDNA      complementary deoxyribonucleic acid 

CO2     carbon dioxide 

CCL      C-C motif chemokine ligand 

CCR      C-C motif chemokine receptor 

CD4     cluster of differentiation membrane protein 4 

CNS      central nervous system 

Ct      cycle threshold 

DEPC      diethylpyrocarbonate 

DIV      days in vitro 

DMEM    Dulbecco's Modified Eagle Medium 

DNA      deoxyribonucleic acid 

DRG     dorsal root ganglion 

E     embryonic 

EAE     experimental autoimmune encephalomyelitis 

EBSS      Earl’s balanced salt solution 

EDTA      ethylenediaminetetraacetic acid 

FACS      fluorescence activated cell sorting 

FasL      Fas ligand 

FBS      fetal bovine serum 

Fluo-4      Fluo-4 acetoxymethyl ester 

GABA     γ-aminobutyric acid 



IX 

 

GFAP     glial fibrillary acidic protein 

GnRH      gonadotropin-releasing-hormone 

GPCR      G-protein coupled receptor 

H2O      water 

HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

Ig      Immunoglobulin 

ICAM     intercellular adhesion molecule 

IFA      incomplete Freund’s adjuvant 

IFN      interferon 

IL      interleukin 

KCl      potassium chloride 

KHCO3    potassium bicarbonate 

KH2PO4    potassium dihydrogen phosphate 

LB or Locke’s Buffer   magnesium-free Locke’s Buffer  

LB-Th9 magnesium-free Locke’s Buffer in which Th9 cells 

had been incubated 

LFA      lymphocyte function-associated antigen 

MACS     magnetic activated cell sorting 

MCP-3     monocyte-chemotactic protein 3 

MEA     mast cell growth enhancing activity 

MHC I/II  major histocompatibility complex class I/II proteins 

mGluR     metabotropic glutamate receptors 

MBP      myelin basic protein 

MK-801    dizocilpine 

MOG      myelin oligodendrocyte glycoprotein 

MOG35-55 myelin oligodendrocyte glycoprotein peptide 35-55 

mRNA     messenger ribonucleic acid  



X 

 

MS     multiple sclerosis 

NaCl      sodium chloride 

NaHCO3    sodium hydrogen carbonate 

Na2HPO4    di-sodium hydrogen phosphate 

NaN3     sodium azide 

NBQX  2,3-dihydroxy-6-nitro-7-sulfamoylbenzo (F) 

quinoxaline 

NGM      neuronal growth medium 

NMDA     N-methyl-D-aspartate 

P      postnatal 

PBS      phosphate buffered saline 

PDL      poly-D-lysine 

qPCR      quantitative real-time polymerase chain reaction 

ROI      regions of interest 

RNA      ribonucleic acid 

rpm      rounds per minute 

TBS      tris buffered saline 

TCR      T cell receptor 

TGF-β      transforming growth factor beta 

Th      T helper 

Th9      T helper type 9 

TNF-α     tumor necrosis factor alpha 

VCAM-1    vascular cell adhesion molecul



1 

 

1. Introduction 

1.1 Immune cells and the central nervous system (CNS) 

The central nervous system (CNS) and the immune system interact in many ways. On the 

one hand, neurons need to be protected from excessive inflammation and the subsequent 

damage to the neurons. On the other hand, the immune system protects the CNS from 

pathogens. This work aims at identifying damaging mechanisms of the immune system in 

the CNS. 

1.1.1 T helper cells (Th cells) 

T cells or T lymphocytes are a subtype of lymphocytes. They mature within the thymus and 

play an important role in the adaptive immune system. T cells are characterized by their T 

cell receptor (TCR), which enables the recognition of antigens by T lymphocytes. 

T lymphocytes are divided into subsets such as cytotoxic T cells, T helper cells (Th cells) 

and others. 

Th cells express the cluster of differentiation membrane protein 4 (CD4) and interact with 

major histocompatibility complex class II proteins (MHC II)1. MHC II is expressed by 

professional antigen presenting cells (APCs), namely macrophages, B-lymphocytes and 

dendritic cells. Th cells can recognize antigens presented by these MHC II proteins and are 

then stimulated to divide, differentiate and exert their varying effector functions.  

Originally, two subsets of Th cells were discovered, namely Th1 cells and Th2 cells. 

Th1 cells play an important role in the immune response to intracellular pathogens by 

inducing macrophages to kill pathogenic agents, which persist inside the macrophages. In 

addition, Th1 cells stimulate B cells to produce antibodies against extracellular pathogens. 

Likewise, Th2 cells can stimulate B cells to produce immunoglobulin (Ig) E. One of their 

primary functions is the protection against parasitic infections2. 
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The different subsets of Th cells are characterized by their production of specific cytokines3. 

For example, Th1 cells are defined by their production of interleukin-2 (IL-2) and 

interferon-γ (IFN- γ), Th2 cells by their production of IL-4, IL-5 and IL-13, as well as IL-9 

and IL-103,4,5 (for a review see Vahedi et al.6). This dichotomy of Th cells was expanded 

with the discovery of other types of Th cells, such as Th17 cells and Th9 cells. Since Th9 

cells are of importance to this work, the following paragraph describes them in detail. 

1.1.2 T helper type 9 (Th9) cells and their signature cytokine Interleukin-9 (IL-9) 

Th9 cells are a subset of Th cells, which has been recently identified7,8. Th9 cells can be 

generated from antigen-unexperienced CD4 positive T cells in vitro, by culturing in the 

presence of IL-4 and transforming growth factor beta (TGF-β)7,8. They are characterized by 

the expression of high amounts of IL-9 and IL-10 and by the transcription factor PU.19, 

with IL-9 being their signature cytokine. Since they do not co-express cytokines like IL-4 

or IL-5, Th9 cells are viewed as a distinct subset of Th cells7. 

IL-9 (also called P40 or mast cell growth enhancing activity(MEA)) was discovered much 

earlier than Th9 cells10,11,12,13,14. It is not only produced by Th9 cells, but also by Th2 cells4, 

Th17 cells15,16, mast cells17 and eosinophils18.  

Physiologically, IL-9 has a variety of effects on different cell types, including the 

promotion of mast cell growth12 and regulation of hematopoiesis19. IL-9 influences 

neuronal cells: During the development of the CNS, IL-9 and its receptor protect against 

neuronal, developmental apoptosis20. It also helps in the process of differentiation of Th17 

cells and increases the suppressive effect of regulatory T cells21, as well as enhances the IL-

4 induced production of Ig by B-lymphocytes22. In addition, IL-9 was found to decrease the 

activity of pathogenic Th17 cells in autoimmune gastritis23 and protect against intestinal 

parasites such as Trichuris muris24. Taken together, IL-9 has many beneficial, physiological 

functions in protective immune responses, but in addition, contributes to detrimental self-

directed immunity: 
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Th9 cells were shown to play a significant role in a mouse model disease of allergic asthma. 

In this model, their pathophysiological effect is primarily mediated by IL-9 and 

neutralization of IL-9 ameliorates the course of the disease25. In line with this, the IL-9 

gene was linked to allergic asthma in humans26. Additionally, myelin oligodendrocyte 

glycoprotein (MOG)-specific Th9 cells induce experimental autoimmune encephalomyelitis 

(EAE), an animal model for multiple sclerosis (MS) upon adoptive transfer in mice27. 

1.1.3 The immune privilege of the central nervous system (CNS) 

The interaction between immune cells and neurons is carefully balanced between being 

able to protect the CNS from pathogens and preventing inflammatory damage. Since 

neurons are limited in their regeneration, the brain needs to be protected from excessive 

immune processes. The reduced immune activity of the brain compared to other organs of 

the body is termed immune privilege (for a review see Galea et al.28). The immune privilege 

results mostly from a reduced afference of immunity, a term that indicates that antigen 

presentation within the CNS is delayed or inhibited. There are several mechanisms 

contributing to this reduced immunity in the brain, some of which are explained here: 

1. The brain parenchyma is separated from the blood by the blood brain barrier (BBB). 

Under non-inflammatory conditions, naive Th cells cannot pass this barrier. 

Immunohistochemistry of the human brain showed, that basically no T-lymphocytes 

are in the CNS under physiological conditions29. Activated T cells however, can 

penetrate the BBB30, regardless of their antigen specifity31. However, only activated 

T-lymphocytes with a CNS antigen specificity stay in the CNS or reenter it. The 

retention of T-lymphocytes within the CNS is thus antigen dependent, while the 

entering of the CNS is not31. Different cell types such as astrocytes can influence 

this migration of T-lymphocytes into the CNS32. Migration of lymphocytes across 

the BBB is controlled by a range of distinct chemokines, integrins and 

cytokines33,34.  

2. Few neuronal cells in the CNS have constitutive expression of MHC I and II. 

Originally, it was thought that MHC I is in fact not constitutively expressed in 
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neurons at all35, but can be induced by for example axotomy36 or exposure to 

cytokines37. Later studies revealed that MHC I is expressed constitutively by 

neuronal subsets such as hippocampal pyramidal neurons38. Subsequent studies 

revealed that in addition to its immune function, MHC I directly interacts with CNS 

resident cells. For example, it plays an important role in synaptic plasticity39. 

Although the brain is lacking typical APCs, MHC II is expressed by microglia40 as 

well as astrocytes41. 

3. Once inside the CNS, encephalitogenic T cell activity is inhibited by e.g. neurons42 

or astrocytes43. Neurons were shown to be able to induce differentiation of 

encephalitogenic T cells into regulatory T cells and thus suppress EAE42. Astrocytes 

were shown to inhibit the proliferation and inflammatory cytokine production of 

encephalitogenic T cells during the early phases of CNS-directed immune 

responses. During prolonged inflammation however, astrocytes have the potential to 

exaggerate inflammation43. 

1.1.4 Interactions of T helper cells (Th cells) and neurons 

Activated Th cells can have a major influence on neuronal cells. Activated Th cells secrete a 

diversity of cytokines. IFN-γ, which is produced by Th1 cells amongst others, induces 

neuronal apoptosis mediated via the ionotropic glutamate receptors alphaamino-3-hydroxy-

5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors. Consequently, IFN-γ 

enhances neuronal excitotoxicity mediated by AMPA receptors44.  

Excitotoxicity is a damaging process in the nervous system. An excessive amount of 

extracellular glutamate leading to an activation of glutamate receptors is followed by a 

large intracellular calcium (Ca2+) rise. This in turn, triggers intracellular pathways, which 

result in the destruction of the neuron45. Excitotoxicity plays a major role in a variety of 

diseases, for example stroke46.  

Cytokines in general can serve as attractants to other immunological cell types and can 

disrupt the BBB, thereby facilitating the entry of further inflammatory cells into the CNS47, 

which in turn influence neurons in various ways. 
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It was also discovered that Th cells can make direct cell to cell contact with neurons and 

induce cell death. This cell death can be mediated by the Fas ligand (FasL), lymphocyte 

function-associated antigen 1 (LFA-1) and CD40. It is independent of MHC interaction and 

selectively damages neuronal cells48. Cell death can also be mediated by an increase in 

intracellular Ca2+. This damage can be inhibited by AMPA and N-methyl-D-aspartate 

(NMDA) receptor antagonists49. Additionally, stimulation of the AMPA/kainate receptor 

leads to enhanced expression of MHC I in neurons50 and would thus be able to increase the 

susceptibility to damage induced by cytotoxic T cells, which recognize antigens presented 

by MHC I.  

Th cells also have beneficial functions on neurons. Th1 cells and Th2 cells produce brain 

derived neurotrophic factor (BDNF) upon antigen stimulation, which supports neuronal 

survival in vitro51. Autoimmune T cells specific for myelin basic protein (MBP) have been 

shown to protect neurons of the CNS from secondary degeneration52 and pro-inflammatory 

Th1-conditioned cells have been shown to increase the recovery after spinal cord injury in 

rats53. 

Taken together, Th cells have a diversity of effects on neuronal cells, which can be 

beneficial or detrimental. Intracellular neuronal Ca2+ levels play a pivotal role in some of 

these processes. 

1.1.5 Chemokines: signal mediators between the immune and the nervous system 

  

Chemokines are a family of secreted proteins with chemotactic functions. Their name is a 

combination of the terms “chemotaxis” and “cytokine”. Chemokines are divided into four 

families, depending on the first two NH2-terminal cysteines of their protein structure. In the 

family of the C-X-C chemokines, these cysteines are separated by an amino acid, in the 

family of the C-C chemokines, these cysteines are next to each other. Two smaller families 

include the C family and the C-X-X-X-C family. Chemokines bind to G-protein coupled 

receptors (GPCR) and lead to transient Ca2+ rises in their effector cells. Ten receptors for 
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C-C chemokines have been identified, namely C-C chemokine receptor (CCR) 1-10 (for a 

review see Rollins54).  

Chemokines serve as attractors and activators of leukocytes in physiological and 

inflammatory conditions. Other functions include angiogenesis and hematopoiesis (for a 

review see Rollins54). They have been linked to various inflammatory diseases such as 

EAE55 and MS56. 

Additionally, novel non-immune functions of chemokines were reported. Various 

chemokine receptors are expressed on neurons and astrocytes, notably CCR257. This 

receptor is constitutively expressed, thus having functions independent of 

neuroinflammation, for example playing a role in neurotransmission58. Physiological roles, 

such as the release of glutamate from astrocytes upon CXCR4 activation in 

neuromodulation, has been linked to neurotoxicity, when paired with activated microglia59. 

Hence, the role of chemokines is no longer confined to the chemotaxis of leukocytes, but 

include complex physiological and pathophysiological functions in the CNS, often 

independent of immune cells.   

The following paragraphs explain two C-C chemokines, namely C-C motif chemokine 

ligand (CCL) 7 and 11 in more detail, since these two were investigated in this thesis. They 

were selected, firstly because previous results from our lab showed, they were discovered 

to be upregulated in a neuron culture co-cultivated with Th9 cells (S. Ray, K. Forsberg, 

F. Bischof, unpublished results). Secondly, the gene locus for C-C chemokines has already 

been associated with MS60, making CCL7 and CCL11 possibly relevant for the damaging 

mechanisms of Th9 cells in vivo. 

1.1.5.1 The C-C motif chemokine ligand 7 (CCL7) 

The C-C motif chemokine ligand 7 (CCL7, also called monocyte-chemotactic protein 3, 

MCP-3) was first discovered in 199261 and is produced by a variety of cells including 

monocytes61, smooth muscle cells62 and astrocytes63. Tumor necrosis factor alpha (TNF-α) 

stimulates the CCL7 production in astrocytes63. 
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One of the main functions of CCL7 is chemotaxis. It attracts a broad spectrum of cells such 

as monocytes61, CD4+ and CD8+ T-lymphocytes64 and dendritic cells65. CCL7 also causes 

the release of enzymes in its effector cells. It induces the release of arachidonic acid in 

monocytes66 and granzyme A and N-acetyl-β-D-glucosaminidase in dendritic cells and 

CD8+ T-lymphocytes67. 

The effect of CCL7 on non-immune cells has not yet been extensively investigated. CCL7 

was shown to be produced by a gonadotropin-releasing-hormone (GnRH) producing 

neuronal cell line and to chemotactically attract astrocytes68. Expression of CCL7 is 

induced by TNF-α in cortical neurons69. One recently emerged function of CCL7 is its role 

in CNS development: CCL7 increases the axonal outgrowth during neuronal 

morphogenesis70 and it was linked to dopamine neuron development as well as promoting 

neuritogenesis71. 

Finally, CCL7 has been associated with several diseases: CCL7 expression was detected in 

MS lesions56 and atopy72. 

1.1.5.2 The C-C motif chemokine ligand 11 (CCL11) 

The C-C motif chemokine ligand 11 (CCL11, also called eotaxin-1) was first described in 

an in vivo model of allergic inflammation73. It is produced by endothelial cells and 

epithelial cells upon stimulation with TNF-α, IL-1α and IFN-γ, as well as by eosinophils 

cultured in the presence of IL-374. CCL11 was also detected in lymphocytes, macrophages75 

and in dermal fibroblasts, where it is constitutively expressed. The expression in fibroblasts 

is upregulated by IL-1α and TNF-α76.  

In contrast to CCL7, CCL11 serves as a chemoattractant for a smaller spectrum of cells: 

CCL11 selectively attracts eosinophils, but not neutrophils73,75, lymphocytes75, dendritic 

cells77 or mononuclear cells74. Later studies also revealed a chemoattractant role of CCL11 

for basophils78. 

CCL11 mainly effects immune cells. It activates the respiratory burst in eosinophils79. In 

basophils, CCL11 induces the release of histamine and leukotriene C4
78. Additionally, 
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CCL11 was shown to upregulate the expression of intercellular adhesion molecule 1 

(ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in endothelial cells80. 

As a proinflammatory chemokine, CCL11 has been associated with many inflammatory 

diseases: In asthma, it was shown to contribute to the recruitment of eosinophils to the site 

of inflammation81. It was also associated with allergic rhinitis and non-allergic sinusitis82, 

as well as ulcerative colitis, Crohn’s disease74 and atopic myelitis83. 

Although constitutive expression of CCL11 in the brain was not observed74, newer studies 

revealed the influence of CCL11 in the CNS. CCL11 binds to oligodendrocyte precursor 

cells, thereby being linked to the process of myelination84. Additionally, CCL11 plasma 

levels have been associated with ageing and reduced neurogenesis85. 

Furthermore, CCL11 was shown to be secreted by activated astrocytes. These astrocytes 

thus stimulated microglia, thereby promoting neuronal excitotoxicity86. Finally, a recent 

study showed that CCL11 expression has protective, modulatory functions in an EAE 

model in rats. Here, CCL11 was mainly produced by neurons in the brain and could be 

detected in the cerebrospinal fluid87. 

All in all, recent publications point towards novel roles of chemokines, which were 

classically seen as purely chemoattractant. A variety of non-immune cells exhibit receptors 

for these molecules and their effect on these cells is under investigation.  

1.2 T helper cell mediated neuroinflammatory diseases 

Some neuroinflammatory diseases are viewed as being primarily mediated by Th cells. Two 

of these are introduced below. 

1.2.1 Multiple sclerosis (MS) 

MS is a neuroinflammatory, demyelinating disease of the CNS, mediated through 

immunological processes. Immune cells attack the myelin sheath and lead to the formation 

of inflammatory lesions in the brain and spinal cord. These lesions can emerge at any 
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location inside the CNS and impair the neuronal functions, finally resulting in 

neurodegeneration and scar formation (sclerosis). The cause for MS is still unknown and a 

multifactorial genesis is assumed. Hereby, hereditary, environmental and autoimmune 

mechanisms play a central role in the development of MS88. 

Depending on the location of the inflammatory lesions, a variety of clinical symptoms can 

occur. The most common symptoms include muscular weakness, tingling sensations, ataxia 

and visual impairment88. 

The clinical course of the disease is often characterized by attacks of symptoms with some 

recovery in between, sometimes followed by a secondary progressive course of the 

disease88. 

During the past 15 years, a range of drugs have been approved that allow the efficient 

suppression of inflammatory disease activity and accumulation of neurological deficits 

(Robinson et al. show some examples89). 

1.2.2 Experimental autoimmune encephalomyelitis (EAE) as a Th cell mediated 

neuroinflammatory disease and the role of excitotoxicity in EAE 

EAE is a neuroinflammatory, demyelinating disease of the CNS. It can be induced in 

animals such as rats or mice and shares a lot of clinical and pathological elements with MS. 

Thus, it is considered as an animal model for this disease. The main early clinical symptom 

is a progressive ascending paralysis of the muscles. 

EAE needs to be induced either actively or passively:  

1. In the active induction, mice are immunized with CNS-specific antigens, like MOG, 

and pertussis toxin90. Myelin-specific T-lymphocytes are activated and cross the 

BBB, made permeable by pertussis toxin. The myelin-specific T-lymphocytes are 

reactivated in the CNS and cause inflammation, demyelination and axonal damage.  

2. In the passive induction, myelin-specific T-lymphocytes are isolated from mice 

already actively induced with EAE. The T-lymphocytes are restimulated in vitro 

and transferred into mice, which had not been immunized yet91. This adoptive 
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transfer of Th cells indicates that EAE is a Th cell mediated disease. Ben-Nun et al.92 

were the first to show that MBP-specific T-lymphocytes could passively induce 

EAE. The passive induction of EAE has been demonstrated for a number of 

different Th cells, including Th1 cell93, Th17 cell94, as well as Th9 cells27. Each of 

these inductions lead to a distinct phenotype. 

The ability to passively induce EAE indicates, that Th cells play a crucial role in the 

pathogenesis of EAE. Both the role of Th1 cells and Th17 cells has been elucidated to some 

extent. Experiments suggest that the disease is mainly caused by Th17 cells and Th1 cells. 

Th1 cells facilitate the entry of Th17 cells into the CNS, which in turn damage the CNS95. 

Different cytokines produced by Th cells or cytokines effecting Th cells, have been shown 

to increase the severity of EAE symptoms. IL-23 is critical for the development of EAE. 

IL-23 deficient mice are resistant to EAE96. Neutralization of IL-9 using monoclonal 

antibodies led to a decrease in EAE severity by inhibition of the generation of MOG-

specific Th cells15,97. Both IL-2394 and IL-921 effect Th17 cells by promoting the generation 

of these cells. Through this, Th17 cells are considered as one of the main contributors in 

EAE pathophysiology. 

Although it is assumed that EAE is a demyelinating disease, axonal and neuronal damage 

seem to play a central part in EAE as well as in MS pathology98. Excitotoxicity has been 

shown to be one reason for this neuronal damage. The AMPA receptor antagonist 2,3-

dihydroxy-6-nitro-7-sulfamoylbenzo (F) quinoxaline (NBQX)99 ameliorates the EAE 

disease, thereby affecting the tissue inflammation, but functioning solely by inhibiting 

excitotoxicity100,101. Siffrin et al.102 showed that Th17 cells directly contact neurons by 

forming immune synapses and induce fluctuations of intracellular Ca2+ in neurons, as well 

as neuronal cell death in an antigen independent way. These Ca2+ fluctuations were partly 

reversible by blocking the NMDA receptor102, thereby linking excitotoxicity with Th17 

cells. 

The study of EAE has revealed many fundamental mechanisms of neuroinflammation in 

general and MS in particular. Many MS therapies are based on the EAE model such as the 
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α4-integrin antibody (AB) Natalizumab103. However, there are differences between MS and 

EAE and this model has certain limitations (for a review see Gold et al.104). In line with 

this, some therapies which were shown to be efficient in EAE105 failed to show beneficial 

effects in MS patients106. 

1.3 Aim of this work 

Previous experiments in our lab (S. Ray, K. Forsberg, F. Bischof, unpublished results) on 

primary mouse cell cultures showed that Th9 cells lead to neuronal deterioration, both when 

only co-culturing Th9 cells and neurons and when exposing neurons to Th9 cell supernatant. 

This damage could be ameliorated by pre-treating the neurons with the glutamate receptor 

antagonists dizocilpine (MK-801), which is an antagonist for NMDA receptors, and 

NBQX, which is an antagonist for AMPA receptors. A whole genome analysis was 

performed on neurons exposed to Th9-supernatant and revealed an upregulation of several 

genes, including the chemokines CCL7 and CCL11. 

This work aims at elucidating the role of the two chemokines CCL7 and CCL11, as well as 

of the cytokine IL-9, in this damaging process. 

Firstly, the gene regulation of these cytokines was analysed in neurons and astrocytes. 

Secondly, the damaging potential of each cytokine in neurons was investigated and the 

influence of these cytokines on neuronal Ca2+ levels was examined. Thereby the direct 

effect of each cytokine on neurons was observed, as well as the sensitization of neurons to 

glutamate-mediated Ca2+ rise by these cytokines. Thirdly, the influence on glutamate-

mediated excitotoxicity was analysed. All of these experiments intend to determine, 

whether these cytokines can damage neurons either directly or by enhancing excitotoxicity.  

Finally, we tried to detect CCL7, CCL11 and IL-9 in an EAE mouse model. These 

experiments intend to explore a novel role for CCL7, CCL11 and IL-9 in neuronal damage 

and link them to neuroinflammation in vivo.  

  



12 

 

2. Materials and Methods 

2.1 Animals 

For the primary cell cultures female mice of the C57BL/6N strain were used. All 

experiments were conducted in accordance with the German ‘Law on Protecting Animals’ 

(§ 4/03 Tierschutzgesetz) as well as the regulations set by the Universitätsklinikum 

Tübingen (“Mitteilung nach §4 vom 04.06.2014”). Pregnant mice, necessary for neuronal 

und astrocyte cultures, were determined by plug check or ordered at a specific gestational 

age. 

2.2 Generation of defined cell cultures for the identification of neuronal 

toxicity of T helper type 9 cells 

2.2.1 Buffer Preparation 

Several buffers were prepared in the laboratory. The protocols for these are listed below. 

- Phosphate buffered saline (PBS), pH to 7.4: 

o 137 mM Sodium chloride (NaCl, Merck, #1.06404.1000) 

o 2.7 mM Potassium chloride (KCl, Merck, #1049360250) 

o 10 mM di-Sodium hydrogen phosphate (Na2HPO4, Merck, #1065860500) 

o 1 mM Potassium dihydrogen phosphate (KH2PO4, Merck, #1048730250) all 

in water (H2O) 

- Tris buffered saline (TBS), pH to 7,5:  

o 50 mM TRIS-hydrochlorid (ROTH, #9090.3) 

o 150 mM NaCl all in H2O 

- Magnetic activated cell sorting (MACS) buffer, stored at 2-8 °C: 

o 0,5 % Bovine serum albumin (BSA, Sigma-Aldrich, #A7906-100g) 

o 2 mM Ethylenediaminetetraacetic acid (EDTA, Merck, #1084181000) all in 

PBS 
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- Magnesium-free Locke’s Buffer (Locke’s Buffer or LB), stored at 2-8 °C, 

pH to 7.4: 

o 154 mM NaCl 

o 5.6 mM KCl (Merck, #1049360250) 

o 3.6 mM Sodium hydrogen carbonate (NaHCO3, ROTH, #8551.1) 

o 1.3 mM Calcium chloride (CaCl2, ROTH, #1023780500) 

o 5.6 mM alpha-D(+)-Glucose-Monohydrat (ROTH, #6780.1)  

o 5 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, ROTH, 

#9105.2) all in H2O 

- Fluorescence activated cell sorting (FACS) buffer, stored at 2-8 °C: 

o 2 % Fetal bovine serum (FBS, Sigma-Aldrich, #12003C) 

o 2 mM EDTA 

o 0,02 % Sodium azide (NaN3, ROTH, #K305.1) all in PBS    

- Ammonium-chloride-potassium lysing (ACK) buffer, pH to 7,3: 

o 150 mM Ammonium chloride (NH4Cl, ROTH, #5470.1) 

o 10 mM Potassium bicarbonate (KHCO3, ROTH, #P748.1) 

o 0,1 mM EDTA all in H2O 

2.2.2 Generation of defined T helper type 9 cell cultures 

2.2.2.1 Preparing of T helper type 9 cell cultures 

For preparation, 96-well flat bottom plates (Greiner Bio One, #655161) were coated with 

2 μg/ml anti-mouse CD3 (Biolegend, #100314) and 2 μg/ml anti-mouse CD28 (Biolegend, 

#102112) in PBS and left at 4 °C in the fridge overnight. Before usage, the plates were 

washed with PBS once and then dried shortly. 

8-16 week-old female mice were killed using carbon dioxide (CO2). The abdomen was then 

cut open and the spleen was removed. For one culture, approximately ten spleens were 

taken, washed with PBS and pushed through a 40 μm cell strainer (Corning Life Sciences, 

#352340) using a plunger (BD, #309646), all the time rinsing the cells with PBS. 

Subsequently, the cell suspension was centrifuged at 1400 rounds per minute (rpm) for 
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5 min at 4 °C in a Heraeus Multifuge 35-R (Thermo Scientific) and the supernatant was 

discarded. The cells were suspended in 5 ml of ACK buffer and incubated for up to one 

minute.  

Next, the solution was centrifuged again at 1400 rpm for 5 min at room temperature. The 

supernatant was discarded and the cells suspended in 10 ml of PBS. This step was repeated 

once more.  Finally, the cells were suspended in PBS and counted under a microscope 

(Nikon Eclipse TS100, Nikon), first diluting it 1:1 with Trypan blue (Sigma Aldrich, 

#T8154-100ML) to sort out dead cells. 

Magnetic activated cell sorting (MACS) of CD4 positive (CD4+) cells was performed 

using CD4 (L3T4) MicroBeads (Miltenyi Biotec, #130-049-201) and LS Columns (Miltenyi 

Biotec, #130-042-401) following the instructions of Miltenyi Biotech. 

After the separation, the cells were counted again and dissolved in T cell-growth medium 

consisting of ~94 % Iscove’s Modified Dulbecco’s Medium (Life Technologies, 

#11960-044), 5 % heat inactivated FBS (Life Technologies, #10500-064), 1 % Penicillin-

Streptomycin (Life Technologies, #15140-122), 50 nM 2-Mercaptoethanol (Life 

Technologies, #31350-010) at a concentration of one million cells per ml. For the CD4+ 

cells to differentiate into Th9 cells, recombinant murine IL-4 (Tebu, #214-14) and 

recombinant murine TGF-β (eBioscience, #14-8342-62) were added at a concentration of 

10 ng/ml and 1 ng/ml respectively. The cells were then plated at 350*10^3 cells per well 

onto the coated 96-well flat bottom plates already prepared and subsequently incubated at 

37 °C and 5 % CO2. 

In the following steps, the cells were always counted under the microscope using Trypan 

blue and then centrifuged at 1400 rpm for 5 min at room temperature. Between steps, the 

cells were put in the incubator at 37 °C and 5 % CO2. 

Three days (d) after the first stimulation, the cells were collected, counted and centrifuged. 

The supernatant was carefully removed and kept for later use. The cells were then 

suspended at a concentration of 1 million cells per ml in resting medium, consisting of 

growth medium and the differentiation medium collected earlier at a ratio of 1:1. Next, 
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5 IE/ml recombinant human IL-2 (Miltenyi, #130-097-743) was added. The cells were 

seeded on uncoated 24-well flat bottom plates (Greiner Bio-One, #662160) at 2*10^6 cells 

per well and kept in the incubator. They were monitored daily. In case of a change in pH, 

indicated by the color indicator of the medium, the cells were recollected and reseeded 

again at 2*10^6 cells per well. 

After another five to seven days, the cells were collected again, spun down, counted and 

suspended in growth medium at a concentration of 1 million cells per ml. As in the first 

stimulation, IL-4 and TGF-β were added in the concentrations mentioned above. Cells were 

seeded on 96-well flat bottom plates coated with 2 μg/ml anti-mouse CD3 and 2 μg/ml anti-

mouse CD28 again and put in the incubator. 

Finally, the cells were ready to be used for experiments three days after the second 

stimulation. 

2.2.2.2 Control of T helper type 9 cell cultures 

Th9 cultures were analyzed twice for their purity, once after magnetic separation and a 

second time directly before use in further experiments. FACS was used for analysis after 

MACS. The final analysis was performed with quantitative real-time polymerase chain 

reaction (qPCR, see 2.3). After MACS, the cells were controlled for CD4 positivity by flow 

cytometry. In addition, the purity of Th9 cell cultures was determined by flow cytometry 

after intracellular staining for the Th9 signature cytokine IL-9.  

Before and after magnetic separation, about 2 *200*10^3 cells were set aside in 96-well 

round bottom plates (Greiner Bio-One, #650 101) and then stained for CD4: The cells were 

centrifuged at 1400 rpm for 5 min at 4 °C. This setting was used for all subsequent 

centrifugation steps. The supernatant was discarded and the cells were suspended in 25 μl 

Fc- Block (1:1000 CD16/32, BD Biosciences, #553141). They were incubated at 4 °C for 

5 min. Without washing, 20 μl of FACS buffer was added in each of the four wells. Anti-

mouse CD4-FITC (BD Biosciences, #561835) 1:100 in 5 μl of FACS buffer was added to 
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the cells set aside before and after the MACS. In the remaining two wells, another 5 μl of 

FACS buffer was added. The cells were now incubated for 20 min at 4 °C.  

The cells were then centrifuged, the supernatant was discarded and the cells were 

suspended in 150 μl of FACS buffer. This step was repeated twice. The solution was finally 

transferred into tubes and stored protected from light until the analysis with CyAnADP 

FACS (Beckman Coulter) and Summit software (DakoCytomation).  

First, gates were set for forward and side scatter to sort out dead cells. Unstained cells were 

used to adjust PMT voltages and then the single stainings were run. Usually, the yield of 

CD4+ cells after MACS was above 90 %. If the yield was below 90 %, the culturing was 

not continued. 

The final control for Th9 cell yield is usually done using flow cytometry, which allows 

exact distinctions between Th9 cells and other types of Th cells for each single cell. In our 

experiments, the Th9 cell yield was assessed by qPCR (see 3.1.1 and 4.1.1). 

Here, total ribonucleic acid (RNA) was isolated and compared for their IL-9 expression. An 

older Th9 cell culture, which had been analyzed by FACS and had consisted of 90 % Th9 

cells, served as a reference. The method of RNA isolation and qPCR is described in 2.3. 

2.2.3 Generation of defined neuronal cultures from embryonic day 16 (E16) 

mouse pups 

One day prior to the preparation of the culture, plates were coated with Poly-D-Lysine 

(PDL, Sigma Aldrich, #P6407), at a concentration of 50 μg/ml in H2O and incubated 

overnight at 37 °C and 5 % CO2. Afterwards, plates were washed once with sterile H2O and 

dried subsequently. For Ca2+-imaging, coverslips (VWR®, #631-0169) treated with UV-

radiation were put in wells of a 48-well flat bottom plate (Greiner Bio-One, #677 180) 

coated as above. 

For the pure neuronal culture, 16 d old embryos (E16) were dissected. Pregnant mice from 

the C57BL/6N strain were killed using CO2. The abdomen was cut open using sterile 
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scissors. The embryos were removed from the amniotic sac and placed in Earl’s Balanced 

Salt Solution (EBSS, Sigma Aldrich, #E2888).  

Mouse cortices were dissected following the protocol from Beaudoin et al107. In contrast to 

the protocol, the hippocampi were not removed. The cortices and hippocampi were then 

dissociated using a Papain Dissociation Kit (Worthington Biochemical Corporation, 

#LK003150) according to the protocol supplied therein. The cells were counted and placed 

in neuronal growth medium (NGM) consisting of Neurobasal® Medium (Life Technologies, 

#21103-049) containing 2 % of B-27 Supplement (Life Technologies, #17504-044), 1 % 

Penicillin-Streptomycin and 2 mM L-Glutamine (Life Technologies, #25030-024). Then, 

the cells were seeded on 96-well-F-bottom plates at a density of 40*10^3  cells per well for 

immunostainings, on 48-well-F-bottom plates with coverslips at a density of 120*10^3 

cells per well for Ca2+-imaging and on 6-well-F-bottom plates (Greiner Bio-One, #657 160) 

at a density of 1*10^6 cells per well for RNA extraction. 

The cells were cultured for approximately two weeks in the incubator at 37 °C and 

5 % CO2.  After two days of culturing, E16 neurons were treated with 2 μM cytosine β-D-

arabinofuranoside (AraC, Sigma-Aldrich, #C1768) to prevent the growth of glial cells. The 

AraC medium was removed completely on days in vitro 4 (DIV 4) and fresh NGM was 

placed in the wells. Some cultures were not treated with AraC. If a culture was not treated 

with AraC, non-AraC is mentioned next to the age of the neurons. 

One third of the medium was changed twice a week. At DIV 7 and DIV 14 

immunostainings for astrocyte contamination were made (see 2.5.2), and neurons were used 

for experiments from DIV 7 onwards. 

2.2.4 Generation of defined astrocytic-neuronal mixed cultures from postnatal day 0 

(P0) mouse pups 

Mixed cultures were made from newborn P0 pups of the C57BL/6N strain. P0 mouse pups 

were used on the same day they were born (postnatal day 0; P0). Following quick 

decapitation of the newborn mice, the rest of the procedure was as described in the 
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generation of E16 pure neuronal cultures (see 2.2.3). As the survival rate of the neurons in 

cultures from neurons of postnatal mouse pups is lower compared to embryonic neurons, 

the initial seeding density was adjusted to 1.5*10^6 cells per well on 6-well plates, 

240*10^3 cells per well on 48-well plates and 80*10^3 cells per well on 96-well plates. 

Cells were cultured at 37 °C and 5 % CO2. 

In contrast to E16 cultures, P0 cultures were not treated with AraC on DIV 2 in order to not 

inhibit the astrocyte growth. The subsequent medium change was identical to the change 

described in 2.2.3. Mixed cultures were used for experiments on DIV 7 and DIV 10. 

Mixed cultures were controlled for the growth of microglia by immunocytochemistry (see 

2.5.2) on DIV 7.  

2.2.5 Generation of defined pure astrocytic cultures from P2 mouse pups 

For pure astrocyte cultures, P2 mouse pups were used. The procedure was the same as in 

astrocytic-neuronal mixed culture described in 2.2.4. Pure astrocyte cultures were placed in 

astrocyte growth medium (AGM) consisting of 10 % FBS and 1 % Penicillin-Streptomycin 

in high glucose Dulbecco's Modified Eagle Medium (DMEM, Life Technologies, 

#11965-92) in a PDL-coated 175cm^2 cell culture flask (Corning Life Sciences, #431466) 

at a density of 1.25*10^6 cells in 50 ml AGM.  

When the cells reached confluence after approximately one week of culturing, cells were 

shaken at 180 rpm for 30 min in a Certomat M0II (Braun Biotech Int) at 37 °C to remove 

microglia. Afterwards, the medium containing the now detached microglia was removed, 

and fresh AGM was put into the flask. The shaking was then continued for another 6 h at 

240 rpm in the Certomat M0II at 37 °C to remove oligodendrocyte precursor cells. 

Subsequently, the flask was shaken vigorously by hand for 1 min. The medium was 

removed completely and the flask rinsed with PBS. The PBS was removed.  

Next, 0.25 % trypsin-EDTA (ThermoFisher Scientific, #25200072) was added to detach the 

astrocytes for 3-5 min at 37 °C and 5 % CO2. Finally, the flask was hit manually to improve 

the detachment and controlled for detachment of all cells under the microscope. Detached 

https://www.thermofisher.com/order/catalog/product/25200072
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astrocytes were collected by rinsing the flask with AGM, putting the AGM now containing 

the astrocytes into a 50 ml tube (Cellstar Greiner, #227261) and spinning it down at 

750 rpm for 5 min at 20 °C. The cells were suspended in fresh medium and put on fresh 

PDL coated flasks again at a density of 1.25*10^6 cells in 50 ml AGM. 

The astrocytes were monitored until they reached confluence again. They were then 

detached with 0.25 % trypsin-EDTA as before (see above) and put on PDL-coated plates at 

a density of 25*10^3 cells per well for 96-well plates, 60*10^3 cells per well for 48-well 

plates or 350*10^3 cells per well for 6-well plates. One to two days after this procedure, the 

cells were ready to be used for experiments. If cultivation for prolonged periods was 

warranted, the astrocytes were put in coated flasks again at the mentioned density. If 

necessary, this cycle was repeated when the cells reached confluence again. 

Astrocyte culture medium was changed once a week during all these steps, by replacing 

half of the medium. Control stainings for microglia contamination were made each time a 

culture was used for experiments (see 2.5.2). 

2.3 Gene expression analysis by quantitative real-time polymerase chain 

reaction (qPCR) 

2.3.1 Treatment of cell cultures with cytokines and glutamate for gene expression 

analysis 

For gene expression analysis, neuronal and mixed cultures were taken at DIV 7 or DIV 14. 

Recombinant murine IL-9 (Peprotech, #219-19) at a concentration of 5 nM or 30 nM, 

recombinant mouse CCL11 (BioLegend, #582902) at a concentration of 10 nM or 50 nM, 

or recombinant mouse CCL7 (BioLegend, #586102) at a concentration of 10 nM or 50 nM 

were diluted in warm NGM, the volume being one third of the volume contained in one 

well. The same amount of medium was then carefully removed from one well and the 

cytokine dilution carefully added alongside the wall of the well. In control samples, the 

medium was changed without adding cytokines. Cell cultures in 6-well flat bottom plates 
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were used. After 24h, messenger ribonucleic acid (mRNA) was extracted as described 

below. 

2.3.2 RNA extraction 

RNA was extracted from pure neuronal, pure astrocytic and mixed cultures, as well as 

spinal cord tissue samples using peqGOLD Trifast (peqlab, #30-2010), following the 

manufacturer’s protocol. For homogenization of tissue samples, the tissue was pulled 

several times through 21G and 27G needles (Becton Dickinson, #304432 and #302200). 

Heating was performed using a PTC-2000 Peltier Thermal Cycler (MJ Research). The 

other reagents, not supplied with the Trifast, were chloroform (MERCK, #1.02445.0250), 

isopropanol (MERCK, #109634,2511), ethanol and diethylpyrocarbonate (DEPC) treated 

water, which was supplied with a DNAse I, Amplification Grade kit (Life Technologies, 

#18068-015). Each was used according to the manufacturer’s instructions. In order to 

prevent RNA degradation, all steps were performed with RNAse free equipment including 

safe seal filter-tips 10 µl, 100 µl and 1000 µl (Biozym, #770010, #770100, #770400 

respectively). The samples were transferred to RNase-free 200 µl tubes (Biozym, #711030) 

with caps (Biozym, #621816) after redissolving the RNA. Previously, Eppendorf cups 

(Eppendorf AG, #D159102R) were used.  

Having finished the extraction and re-dissolved the RNA in 10 μl of DEPC-water, the 

concentration of the extracted RNA using the Peqlab ND1000 Spectrophotometer (PeqLab) 

was measured.  

The RNA was stored at -80 °C until usage. 

2.3.3 Reverse transcription into complementary deoxyribonucleic acid (DNA) 

First, deoxyribonucleic acid (DNA) was degraded using DNAse I, Amplification Grade 

(Life Technologies, #18068-015). All steps were performed following the manufacturer’s 

protocol. Next, mRNA was reverse transcribed to generate cDNA using SuperScript II 

Reverse Transcriptase (Life Technologies, #18064-022), again following the manufacturer’s 
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instructions. Other reagents used were Oligo-dT12-18 Primer (Life Technologies, #18418-

020), dNTP Mix (Life Technologies, #R0192) and Ribolock RNAse Inhibitor (Thermo 

Scientific, #E00381). The heater and the centrifuge were the same as in 2.3.2 . All steps 

were performed using RNAse and DNAse free equipment. 

cDNA was stored at -20°C until usage. 

2.3.4 Quantitative real-time polymerase chain reaction (qPCR) 

qPCR was used to analyze gene expression of defined samples. Therefore, mRNA was 

extracted from the samples to be analyzed as described above. In general, each sample was 

pipetted in triplicates to account for and rule out inaccuracy of pipetting and sample 

variation. Additionally, one negative control was run, which did not contain any sample in 

order to exclude contamination of primers, SYBR green or water. 

For qPCR, Micro Amp fast optical 96-well Reaction plates (Life technologies, #4346906) 

were used. Each well was filled with 10 μl of SYBR green Absolute QPCR Mix (Life 

Technologies, #AB-1322/B), 0.5 μl of 10 µM Forward and 0.5 μl of 10 µM Reverse Primer 

and 8 μl of DEPC-water. Primer Sequences used are listed in Table 1. The Primers were 

dissolved in DEPC-water to obtain a concentration of 100 μM. Working dilutions were 

further diluted to a final concentration of 10 μM. 

These reagents were mixed directly prior to addition to the plate. Finally, 5 μl of sample, 

diluted 1:25 with water from the original cDNA, was added to each well. The plate was 

then covered with optically clear adhesive seal sheets (Thermo Scientific, #AB-1170) and 

centrifuged at 1000 rpm for 20 min at 4 °C, all the time taking care not to soil the bottom of 

the plate. Plates were measured using Applied Biosciences 7500 Fast Real-Time PCR 

System. One run consisted of 15 min at 95 °C, followed by 40 cycles, each composed of 

15 s at 95 °C and 1 min at 60 °C.  
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Table 1: Sequences of primers used in qPCR reactions 

Gene Direction Sequence 

β-Actin Forward CCACCATGTACCCAGGCATT 

 Reverse CGGACTCATCGTACTCCTGC 

IL-9  Forward CACATGGGGCATCAGAGACA 
 

Reverse AGAGACACAAGCAGCTGGTC 

CCL7 Forward ACCAGTAGTCGGTGTCCCTG 
 

Reverse AGGCTTTGGAGTTGGGGTTT 

CCL11 Forward GCTCACGGTCACTTCCTTCA 
 

Reverse AGGGTGCATCTGTTGTTGGT 

 

2.3.5 Analysis of measured qPCR files  

Results were analyzed using Microsoft Excel with the ΔΔCt-method108. β-Actin was used 

as the reference gene. Statistical analysis was performed using statistical tools provided by 

Microsoft Excel. Standard deviations were calculated based on the technical replicates, if 

no biological replicates were present. Otherwise, biological replicates were used for the 

calculation. A two-tailed paired student’s t-test was performed to assess statistical 

significance with p<0.05 being significant. Again, biological replicates were tested. If none 

were present, technical replicates were used. 

2.4 Ca2+-imaging of neurons 

2.4.1 Treatment of cells with cytokines 

Two different approaches were used: First, the direct effect of cytokines and Th9 cell 

secreted factors on neuronal Ca2+ levels was determined, which did not require any 

pretreatment of the cells. The second approach can show a sensitization to glutamate-

mediated Ca2+ influx in neurons. Neuronal cells were treated with cytokines two days prior 

to the imaging experiments as in 2.3.1. 
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2.4.2 Conditioning of Magnesium free Locke’s buffer (LB) with Th9 cells 

In order to see the reaction of neurons to the secreted molecules of Th9 cells in Ca2+-

imaging, these molecules needed to be secreted in LB. Normal T cell growth medium 

contained glutamate and was thus not suitable for the imaging experiment. LB in contrast 

does not excite the neurons by itself. Th9 cells were spun down at 1200 rpm at room 

temperature, counted and suspended in LB at 5 million cells/ml. This step was repeated 

twice to wash off all of the T cell growth medium. The Th9 cells were then kept in the LB 

for 30 min at 37 °C and 5 % CO2. Finally, the cells were spun down again and the 

supernatant was carefully removed without any cells. The LB conditioned with Th9 cells 

(LB-Th9) was now ready to be used for Ca2+-imaging experiments or be kept at -80 °C until 

use. 

2.4.3 Staining of neurons with a fluorescent Ca2+-dye 

For preparation, Fluo-4 acetoxymethyl ester (Fluo-4 AM, Life Technologies, #F-14201) 

was dissolved in anhydrous dimethyl sulfoxide (aDMSO, Sigma Aldrich, #276855) in order 

to gain a concentration of 2 mM for storage, which was further diluted 1:1000 to a 2 μM 

working dilution on the day of usage. This dilution was kept at room temperature and 

protected from light. It was used for all samples measured that day. Fluo-4 AM is a cell 

permeable fluorescent dye. It can increase its light emission upon binding to Ca2+. 

Cover slips containing neurons were carefully removed with forceps and put in a 24-well 

flat bottom plate filled with LB, taking care to put the side containing the neurons on top. 

The buffer was removed and 200 μl of 2 μM Fluo-4 AM were added. The cells were 

incubated for 20 min at room temperature protected from light. The well was subsequently 

washed 4 times with LB with the last 2 washes lasting 3 min and transferred to 200 μl of 

LB. The cells were incubated again for 25 min at room temperature and protected from 

light, ready to use for Ca2+-imaging. If neurons were to be pretreated with glutamate 

antagonists, the NMDA-receptor antagonist MK-801 (Sigma Aldrich, #M107) was added to 

the LB for the last 25 min of the incubation at a concentration of 10 µM. 
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2.4.4 Microscopy of stained neurons 

The principles of microscopy of both approaches are identical.  

The microscope used was an Axio Observer.Z1 microscope with an AxioCam HRc camera, 

a HXP 120 Illuminator, an EC Plan-Neofluar 10x/0.3 Ph1 objective and the AxioVision 4.8 

software at 10x magnification. The fluorescent dye Fluo-4 AM was excited with 488 nM 

and the wavelength of the emission measured was 516 nM. 

The plate was fitted in the microscope frame tightly in order to fixate it. An area of cells, 

which contained a moderate cell density and few to no astrocytes, was focused to evaluate 

the Ca2+ levels in single cells and to minimize overlapping cell bodies and neurites. The 

exposure time was adjusted for the cells to be just bright enough to see the neuronal cell 

bodies. If the exposure time was set too high, further increase of brightness upon glutamate 

challenge would not be detectable. The usual exposure time was set between 500 ms and 

1 s. It was kept the same during samples, which were going to be compared in the analysis. 

One picture series was taken for 12 to 30 min, depending on whether we wanted to see an 

early or a late reaction to the additions. Pictures were taken every 2 s automatically. 

For the first approach, LB-Th9 or the cytokines CCL7, CCL11 and IL-9 were added in 

varying concentrations between 5 nM and 100 nM after 3 min, taking care not to shift the 

plate as this would make an analysis of the cellular Ca2+ levels impossible. They were 

added in 100 μl dropwise. 60 mM KCl was added as a positive control in 300 μl 8 min after 

starting the picture series. The increase in extracellular K+ by KCl leads to a depolarization 

of the neuronal membrane and opens voltage gated Ca2+ channels, ultimately leading to 

Ca2+ influx. Even if the neurons would not react to the cytokines, their general ability to 

generate action potentials could be shown through their reaction to KCl. Also, the 

functionality of the Ca2+ indicator could be shown. Neurons, which were already dead or 

died during the experiment, were thus sorted out. The cells not reacting to KCl were not 

considered in the later analysis. 

In the second approach, glutamate (Sigma-Aldrich, #G8415-100g) was added instead of the 

cytokines. The concentrations were 0.5 μM, 1 μM and 10 μM. These concentrations just led 
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to a slight increase in Ca2+ levels (0.5 μM) or led to a big increase in Ca2+ levels but did not 

saturate the dye (10 μM). Tests for the most suitable glutamate concentration have been 

conducted prior to the other experiments. The reaction to glutamate served as the positive 

control. The cells not reacting to glutamate were eliminated from later analysis.   

Each approach sometimes contained addition of the glutamate antagonist MK-801 at later 

time points in a volume of 100 µl. KCl was then scaled up accordingly to 400 µl. Time 

points used for this addition were usually 5 or 6 min. 

During subsequent measurements, the fluorescence of the Ca2+ dye decreased, resulting in a 

decrease in fluorescence intensity of the neurons before and after the glutamate addition. To 

account for this decrease in fluorescence, the control sample was always measured right 

before its corresponding treated sample. This prevents the decrease of dye fluorescence 

from interference with the results. An increase in Ca2+ influx thus cannot be attributed to 

higher fluorescence of Fluo-4 AM at earlier time points.  

2.4.5 Analysis of Ca2+-imaging series 

Ca2+-imaging series were analyzed using ImageJ V1.48. First, the background was 

subtracted, using a Rolling Ball Radius set at 100 pixels (Process→Subtract Background). 

Next, regions of interest (ROI) of all neurons were selected. This was done automatically 

by duplicating an image of the series through Image→Duplicate first and selecting the 

image required. Mostly an image directly after glutamate or KCl addition was used, since 

only the cells reacting to these stimuli were relevant to our analysis. By the selection of this 

image, cells not reacting to this positive control could be excluded directly. Another reason 

for choosing this image is, that some cells were detected sufficiently only after this 

stimulation. 

Subsequently, the threshold was adjusted by Image→Adjust→Threshold to have all 

neurons visible but not converging into another. Next, converged neurons were divided by 

Process→Binary→Convert to mask and Process→Binary→Watershed. Finally, the images 

were analyzed through Analyze→Analyze Particles excluding cells on edges and marking 
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Add to manager. ROIs not corresponding to a neuron and ROIs containing several cells at 

once were manually excluded. All ROIs were now in the manager and could be selected 

and used to analyze the mean grey values of every single cell in the image. Additionally, 

the total number of cells was determined this way. 

In the final step, ROIs were selected and the mean grey values of the ROIs of the full 

imaging series were analyzed through Analyze→Analyze Particles. The results were now in 

an Excel sheet and could be further evaluated. 

2.4.6 Statistical Analysis 

Two approaches were applied:  

1. The “absolute difference” as the difference of the mean intensity value relative to 

the baseline of a treated sample and the corresponding control sample. 

2. The “relative difference” at the time point 300 s as the mean intensity value relative 

to the baseline of the treated sample relative to its corresponding control. 

In the calculation for the absolute difference, for every single cell the mean baseline was 

determined by calculating the average of the grey values of the first 3 min of the 

measurement. This baseline was set as 100 %. All the following grey values were 

calculated as percent of the baseline by dividing the grey value by the baseline value and 

multiplying the result with 100 %. Next, the averages out of this percentage of all cells of a 

single time point and the standard deviation were calculated. These final values were 

plotted on a timeline. Values, which showed an increase in fluorescence intensity of less 

than 50 % of the baseline (values < 150 %) upon glutamate or KCl addition, were excluded 

from the analysis. 

Furthermore, the average of samples, which were treated equally, was determined by 

calculating the average out of every value at corresponding time points of each single 

sample. Standard deviations were calculated by using the Gaussian propagation of error 

law. 
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In the calculation of the relative difference, values of the time point at 300 s of the control 

sample were set as 100 %. The corresponding treated sample is shown relative to this 

control sample: The values of the treated samples were divided by the control and the result 

was multiplied by 100 %. These results are called the change in percent of the control value 

at its peak and presented in the tables in 3.4.4. 

2.5 Immunocytochemistry, microscopy and analysis of defined neuronal, 

astrocyte or mixed cultures 

2.5.1 Treatment of cells 

The immunocytochemistry was performed using two different approaches. 

In the first approach, the effect of the cytokines CCL7, CCL11 and IL-9 on neurons was to 

be identified. CCL7, CCL11 and IL-9 were added to neuronal cell cultures in 96-well flat 

bottom plates at a concentration of 5 nM, 30 nM, 50 nM, 100 nM, 500 nM or 1 µM (see 

2.3.1). The cell damage was analyzed by immunostaining after 24h.  

In the second approach, the influence of CCL7, CCL11 and IL-9 on glutamate-mediated 

excitotoxicity in neurons was to be detected. As in the first approach, neurons in 96-well 

flat bottom plates were treated with cytokines for 3 h to 2 d (see 2.3.1) at the concentrations 

mentioned above. Subsequently, the cells were treated with glutamate at a concentration of 

0.5 μM or 10 μM to cause excitotoxic neuronal deterioration. 0.5 μM of glutamate just 

slightly damaged neurons, 10 µM of glutamate caused severe neuronal deterioration. 

Accordingly, enhancement or reduction of glutamate mediated excitotoxicity could be 

analyzed. The glutamate was added in neuronal growth of one third of the total volume of 

one well. After various time points ranging from 6 h to 2 d, cells were fixed and stained. 

Additionally, the glutamate addition of this second approach was conducted in another 

variation in order to remove factors previously secreted by the neurons: Glutamate was 

diluted in LB instead of neuronal growth medium. The growth medium from one well was 

completely removed and kept for later use. The glutamate dilution was added quickly to 
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ensure that the cells would not be left dry for too long. The cells were then incubated for 

5 min, 10 min or 30 min and subsequently washed with fresh growth medium twice, again 

taking care to not let the cells dry out between removing and adding the fresh growth 

medium. At last, the cells were placed in their own growth medium again.    

2.5.2 Immunostaining 

All the following steps were conducted at room temperature. The growth medium was 

carefully removed from one well at a time, taking care not to damage the neuronal cell 

layer at the bottom of the well. The wells were quickly and gently rinsed with PBS and the 

PBS was removed again. Next, the cells were fixed with 4 % Paraformaldehyde (MERCK, 

#1040051000) in PBS for 15 min. The cells were washed with PBS for 5 min and 

subsequently permeabilized with 0.3 % Triton X-100 (Sigma-Aldrich, #X100) in PBS for 

5 min. In order to block non-specific binding of the ABs, which were added in the 

following steps, the cells were put in 8 % BSA (Sigma-Aldrich, #A7906-100g) in TBS for 

1 h. All ABs were diluted in 2 % BSA/ 0.3 % Tx100 in TBS overnight at 4 oC.  The 

primary ABs used next depended on the type of cells stained:  

- Astrocytic cell cultures were stained with anti-glial fibrillary acidic protein (anti-

GFAP, rabbit polyclonal) (Millipore, #AB5804), diluted at a ratio of 1:1000 and rat 

anti-mouse CD11b (AbD Serotec, #MCA711GT), diluted at a ratio of 1:400, for the 

evaluation of microglia contamination.  

- Neuronal cell cultures were stained with neuronal class 3 beta-tubulin (βIII-tubulin, 

TUJ1) mouse monoclonal AB purified (Covance, #MMS-435P-250), diluted at a 

ratio of 1:2000, cleaved caspase 3 (D175) rabbit AB (Cell Signaling Technology, 

#9661S), diluted at a ratio of 1:400, and anti-GFAP, rabbit polyclonal, for the 

evaluation of astrocyte contamination. 

Following this incubation, the cells were washed with 0.1 % Tween® 20 (ROTH, #9127,1) 

in TBS three times for 6 min each. Afterwards, the secondary fluorescent ABs were added, 

each depending on the primary AB:  
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- Goat anti-rabbit IgG (H+L) secondary AB, Alexa Fluor® 568 conjugate (Life 

Technologies, #A-11011),  

- Goat anti-mouse IgG (H+L) secondary AB, Alexa Fluor® 488 conjugate (Life 

Technologies, #A-11029) 

- Goat anti-rat IgG (H+L) secondary AB, Alexa Fluor® 568 conjugate (Life 

Technologies, #A-11077).  

ABs were diluted 1:2000 in 2 % BSA/ 0.3 % Tx100 in TBS. Due to the light sensitivity of 

the secondary ABs, all consecutive steps were conducted protected from light. The plates 

were incubated for 1 h at room temperature and subsequently washed with TBS/ 0.1 % 

Tween for 6 min each. Eventually, the nuclei were stained with 1 μg/ml Hoechst 33342 

(Life Technologies, #H3570) in TBS for 1 min, rinsed once with PBS and kept in PBS from 

here on at 4 oC until further use. 

2.5.3 Microscopy of immunostained samples 

Stained cells were observed with an Axiovert 200M microscope equipped with an 

AxioCam MRm camera at 10x magnification using AxioVision 4.8 software (Zeiss). The 

excitation wavelength depended on the stainings used. 358 nM was used for the Hoechst 

staining, 490 nM for the Alexa Fluor® 488 conjugate and 578 nM for the Alexa Fluor® 568 

conjugate. The emission of light was 461 nM for the Hoechst staining, 525 nM for the 

Alexa Fluor® 488 conjugate and 603 nM for the Alexa Fluor® 568 conjugate. 

The cells were observed under the microscope. Samples were eliminated based on signs of 

contamination of the cells or signs of excessive neuronal damage, which could not be 

contributed to the previous treatment of the cells. The samples of different treatment 

conditions were compared and an overview of each sample was established.  

In a second step, five images per sample were taken blindly at set positions of the well: one 

each in the middle, on the right, at the top, on the left and at the bottom. 
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2.5.4 Analysis of immunostained samples 

Samples were analyzed for the general appearance of the neurites and cell bodies, thereby 

comparing different treatment groups in a descriptive way. The total number of nuclei 

present was determined as described in 2.4.5. 

Cells positive for cleaved caspase 3 or CD11b were counted manually using the ImageJ cell 

counter plugin and calculated as percent of the total number of nuclei using the statistical 

tools provided by Microsoft Excel. Averages and the standard deviation of the five images 

taken for each sample were calculated.  

In general, only the samples of the same cell culture and age could be compared as the 

neurons of different cultures and different ages would often differ from one another.   

2.6 Detection of CCL7, CCL11 and IL-9 in an experimental autoimmune 

encephalomyelitis (EAE) mouse model 

2.6.1 Induction of EAE 

For the induction of EAE in one mouse, an emulsion of 60 µg myelin oligodendrocyte 

glycoproteine peptide 35-55 (MOG35-55), dissolved in 100 µg PBS (PAA Laboratories, 

Pasching, Austria) and 100 µl incomplete Freund’s adjuvant (IFA) (Sigma-Aldrich, 

Steinheim, Germany) containing 400 µg Mycobacterium tuberculosis (Difco Laboratories, 

Detroit, MI, USA) was prepared using a syringe.  

10-week-old female C57BL/6N mice were injected subcutaneously with the emulsion in 

several areas around the back using a 1 ml syringe (Braun, #4600177) and a 27G needle. 

On the day of the immunization as well as two days after, 200 ng Bordetella pertussis toxin 

(MERCK, Darmstadt, Germany) was injected subcutaneously. Four mice were immunized 

in total and dissected. Another four control mice were not treated but only dissected. 

The mice were monitored daily and scored according to the score described in Miller et 

al109. At a score of one (“limp tail or hind limp weakness but not both”), the mice were 

sacrificed. 
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2.6.2 Dissection of the spinal cord 

Mice were euthanized using CO2. The skin as well as all the abdominal and thoracic organs 

and muscles were removed completely in order to reach the spine. The carcass was pinned 

onto styrofoam and the mouse was decapitated using scissors. From the cranial opening of 

the spine downwards, each vertebral arc was clipped on both sides using small scissors. The 

corpus vertebrae was removed to expose the spinal cord. When reaching the conus 

medullaris, the spinal cord was carefully removed, whilst severing the spinal nerves. The 

cord was frozen using liquid nitrogen and stored at -80 °C.  

2.6.3 RNA extraction, reverse transcription and qPCR 

These steps were conducted as already described in 2.3. 
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3. Results 

Based on previous results from this laboratory, which revealed neuronal damage, when 

neurons were co-cultured with Th9 cells (S. Ray, K. Forsberg, F. Bischof, unpublished 

results), the following experiments were designed. Further results revealed an upregulation 

of CCL7 and CCL11 in this co-culture. Here, we analyzed the neuron-damaging capacity of 

CCL7, CCL11 and IL-9. 

3.1  Analysis of the generation of defined cell cultures 

Cell cultures were assessed by flow cytometry and qPCR in the case of Th9 cell cultures 

and by immunocytochemistry in the case of neuronal and astrocyte cultures, in order to 

identify possible contaminations of the cultures and the purity of the cells. 

3.1.1 Analysis of the generation of defined T helper type 9 cell cultures 

Th9 cell cultures were analyzed for their yield of Th9 cells by qPCR. After magnetic 

separation, cells were analyzed for their yield of CD4+-cells. Thus, it could be determined 

whether the culturing and differentiation of the Th9 cells could be continued.  

In addition, the final cell analysis, after the differentiation of the Th9 cells, was carried out 

using qPCR.  An old Th9 cell culture containing over 80 % Th9 cells (analyzed by FACS) 

was used as a reference. IL-9-mRNA was used as the parameter for Th9 cell yield. 

 

 

 

 

 

 

 

 

Figure 1: IL-9-mRNA expression in a Th9 cell 

culture. cDNA gained from these cells was used 

for a qPCR for the target IL-9 in technical 

triplicates. Averages of these triplicates are shown 

as the fold-change of the sample culture compared 

to a reference culture (ΔΔCt-method). Error bars 

represent the positive and negative errors derived 

from the standard deviation. *** p<0.001, ** 

p<0.01, * p<0,05, n.s.=non-significant, determined 

by student’s t-test. 0
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The quantity of IL-9 mRNA was comparable to the reference culture (Figure 1), with a 

fold-change of 1.4. The significance of the fold-change shows the accuracy of the 

measurement. This implies a high percentage of IL-9 producing cells, Th9 cells being the 

biggest producer of this protein. However, contamination with other cell types cannot be 

ruled out (see 4.1.1). 

3.1.2 Analysis of the generation of defined neuronal cultures from E16 mouse 

embryos 

Pure neuronal cultures were analyzed for their grade of contamination with astrocytes. This 

analysis was performed by immunocytochemistry for GFAP, a signature molecule for 

astrocytes. Three cultures treated with AraC and three cultures were not treated with AraC 

were analyzed. 

The percentage of astrocytes in the total number of cells present was below 1 % in cultures 

treated with AraC and below 20 % in cultures not treated with AraC.  

3.1.3 Analysis of the generation of defined astrocyte cultures from P0 and P2 mouse 

pups 

Neuronal and astrocytic mixed cultures, as well as pure astrocyte cultures, were stained for 

microglia by immunocytochemistry for CD11b to ensure their purity. Two cultures were 

analyzed. 

The percentage of microglia in the total number of cells present was below 5 %.  

3.2 Identification of the effect of cytokine exposure (CCL7, 

CCL11, IL-9) on cytokine mRNA expression of defined cells 

Parallel to the following experiments, gene expression of neuronal and astrocyte cultures 

was analyzed. Here, the regulation of the studied cytokines by the studied cytokines 

themselves was determined. Neuronal and astrocyte cultures were exposed to the cytokines 

in question, namely CCL7, CCL11 and IL-9. Previous work has shown that CCL7-mRNA 
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in astrocytes is upregulated by exposure of astrocytes to Th9 cells (S. Ray, K. Forsberg, F. 

Bischof, unpublished results). The following experiment was performed in order to 

determine whether IL-9, as the Th9 cell signature cytokine, is responsible for this 

upregulation. Additionally, it could determine cross regulation between the cytokines 

CCL7, CCL11 and IL-9 in astrocytes. 

3.2.1 The effect of cytokines on cytokine gene expression in mouse astrocytes 

Analysis of qPCR results targeting CCL7 in astrocytes treated with different cytokines 

(Figure 2) shows that CCL7-mRNA is upregulated 1.5 – 4.5-fold by 5 nM and 30 nM IL-9. 

The fold-changes vary in between samples, however CCL7-mRNA is consistently 

upregulated by IL-9. This indicates that despite the variance of results, IL-9 has an 

upregulating effect on CCL7 gene expression in astrocytes. CCL7 and CCL11 did not alter 

CCL7-mRNA expression in astrocytes significantly. In Table 2, the average cycle threshold 

(Ct) -values of the same samples are listed.  High Ct-values indicate low mRNA expression. 

With around 28, these values show that the mRNA expression of CCL7 is moderate to low 

in astrocytes. 

A similar analysis of CCL11-mRNA expression in astrocytes (Figure 3) demonstrates a 

non-significant effect of CCL7, CCL11 or IL-9 on CCL11-mRNA expression. 

Ct-values in the CCL11 target group were higher than in the CCL7 group (33.5 vs 29 in 

control samples respectively, see Table 3 and Table 2 respectively) demonstrating a low 

expression of CCL11-mRNA in astrocytes. Additionally, this very low expression of 

CCL11-mRNA leads to inaccurate measurements, as seen in the large error bars of the IL-9 

treated sample (Figure 3). 
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Table 2: Effect of IL-9, CCL7 and CCL11 on CCL7-mRNA expression in astrocytes. Astrocytes were exposed to 

cytokines for 24 h at the concentrations indicated. Subsequently, cDNA gained from these cells was used for a qPCR for 

the target CCL7 in technical triplicates. Averages of the Ct-values of the technical replicates of all samples are shown. 

 

 

 

 

 

 

Sample Ct-Value 

Control 28,92578761 

IL-9 5 nM 28,67501 

IL-9 30 nM 1 29,6910629 

IL-9 30 nM 2 28,0316639 

CCL7 50 nM 28,1976242 

CCL11 50 nM 28,2468643 

Figure 2: Effect of IL-9, CCL7 and CCL11 on CCL7-mRNA expression in astrocytes. Astrocytes were exposed to 

cytokines for 24 h at the concentrations indicated. Subsequently, cDNA gained from these cells was used for a qPCR 

for the target CCL7 in technical triplicates. Averages of these triplicates are shown as the fold-change of treated 

samples versus control samples normalized to actin (ΔΔCt-method). N=1 for CCL7 and CCL11 treated samples, N=1 

for 5 nM IL-9, N=2 for 30 nM IL-9, all samples are shown. Error bars represent the positive and negative errors 

derived from the standard deviation. *** p<0.001, ** p<0.01, * p<0,05, n.s.=non-significant, determined by student’s 

t-test. 
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Table 3: Effect of IL-9, CCL7 and CCL11 on CCL11-mRNA expression in astrocytes. Astrocytes were exposed to 

cytokines for 24 h at the concentrations indicated. Subsequently, cDNA gained from these cells was used for a qPCR for 

the target CCL11 in technical triplicates. Averages of the Ct-values of the technical replicates of the samples are shown. 

 

 

 

 

 

 

 

 

Sample Ct-Value 

Control 33,2500089 

IL-9 30 nM 32,4406617 

CCL7 50 nM 32,0818977 

CCL11 50 nM 33,2824796 

Figure 3: Effect of IL-9, CCL7 and CCL11 on CCL11-mRNA expression in astrocytes. Astrocytes were exposed to 

cytokines for 24 h at the concentrations indicated. Subsequently, cDNA gained from these cells was used for a qPCR for 

the target CCL11 in technical triplicates. Averages of these triplicates are shown as the fold-change of treated samples 

versus control samples normalized to actin (ΔΔCt-method). N=1, all samples are shown. Error bars represent the positive 

and negative errors derived from the standard deviation. *** p<0.001, ** p<0.01, * p<0,05, n.s.=non-significant, 

determined by student’s t-test.  
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3.2.2 The effect of defined cytokines on cytokine gene expression in mouse neurons 

Previous work has shown that CCL11-mRNA in neurons is upregulated by exposure of 

neurons to Th9 cells (S. Ray, K. Forsberg, F. Bischof, unpublished results). The following 

experiment was performed in order to determine whether IL-9, as the Th9 cell signature 

cytokine, is responsible for this upregulation. Additionally, cross regulation between the 

cytokines CCL7, CCL11 and IL-9 in neurons was determined. 

Quantitative PCR analysis of CCL7-mRNA expression in neurons (Figure 4) revealed that 

IL-9, CCL7 and CCL11 downregulate CCL7-mRNA. The Ct-values are around 31 (Table 

4). As in 3.2.1, this indicates a very low expression of CCL7-mRNA in neurons. 

The CCL11-mRNA expression in neurons (Figure 5) was not significantly altered by 

CCL7, CCL11 or IL-9. 

Figure 4: Effect of IL-9, CCL7 and CCL11 on CCL7-mRNA expression in neurons DIV 12. Neurons were exposed 

to cytokines for 24 h at the concentrations indicated. Subsequently, cDNA gained from these cells was used for a qPCR 

for the target CCL7 in technical triplicates. Averages of these triplicates are shown as the fold-change of treated samples 

versus control samples normalized to actin (ΔΔCt-method). N=1, all samples are shown. Error bars represent the 

positive and negative errors derived from the standard deviation. *** p<0.01, * p<0,05, n.s.=non-significant, determined 

by student’s t-test. 
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Table 4: Effect of IL-9, CCL7 and CCL11 on CCL7-mRNA expression in neurons DIV 12. Neurons were exposed to 

cytokines for 24 h at the concentrations indicated. Subsequently, cDNA gained from these cells was used for a qPCR for 

the target CCL7 in technical triplicates. Averages of the Ct-values of the technical replicates of the samples are shown. 

 

 

 

 

 

 

 

 

Sample Ct-Value 

Control 31,12078094 

IL-9 5 nM 31,410553 

IL-9 30 nM 31,1217321 

CCL7 50 nM 30,7899526 

CCL11 50 nM 31,3494212 

Figure 5: Effect of IL-9, CCL7 and CCL11 on CCL11-mRNA expression in neurons DIV 12. Neurons were exposed 

to cytokines for 24 h at the concentrations indicated. Subsequently, cDNA gained from these cells was used for a qPCR for 

the target CCL11 in technical triplicates. Averages of these triplicates are shown as the fold-change of treated samples 

versus control samples normalized to actin (ΔΔCt-method). N=2, all samples are shown. Error bars represent the positive 

and negative errors derived from the standard deviation. *** p<0.001, ** p<0.01, * p<0,05, n.s.=non-significant, 

determined by student’s t-test. 
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Table 5: Effect of IL-9, CCL7 and CCL11 on CCL11-mRNA expression in neurons DIV 12. Neurons were exposed 

to cytokines for 24 h at the concentrations indicated. Subsequently, cDNA gained from these cells was used for a qPCR 

for the target CCL11 in technical triplicates. Averages of the Ct-values of technical replicates of the samples are shown. 

 

 

 

 

 

 

 

 

The Ct-values (Table 5) range from 26 to 32 in different neuronal cultures, as indicated by 

the numbering of the samples. This points to a moderate to low expression of CCL11-

mRNA in neurons. 

In summary, CCL7-mRNA is upregulated in astrocytes by IL-9. IL-9, CCL7 and CCL11 

downregulate CCL7-mRNA in neurons. None of the other treatments revealed a consistent 

effect on CCL7- or CCL11-mRNA in neurons or astrocytes. Finally, CCL7-mRNA is 

mainly expressed in astrocytes (see 3.2.1), all other samples revealed lower expression 

levels in astrocytes and neurons on average (see 3.2.1 and 4.2). 

3.3 The effect of CCL7, CCL11 and IL-9 preincubation on E16 

mouse neurons 

In a first step in identifying the damaging potential of CCL7, CCL11 and IL-9, neurons 

were exposed to these cytokines and then stained for their DNA, cytoskeleton and cleaved 

caspase 3 (Figure 6). As a correlation of neuronal damage, two parameters were analyzed: 

neuronal morphology in form of cytoskeletal deterioration and neuronal apoptosis as 

Sample Ct-Value 

Control 28,8649089 

IL-9 5 nM 1 27,7887707 

IL-9 5 nM 2 31,8713633 

IL-9 30 nM 1 27,5251509 

CCL7 50 nM 1 26,7588266 

CCL7 50 nM 2 32,4702212 

CCL11 50 nM 1 27,6568375 

CCL11 50 nM 2 31,2757654 
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indicated by expression of cleaved caspase 3. For each condition five pictures were taken. 

A small part of one picture is presented in the figure to ensure a better visualization of 

neurites and nuclei on a single cell level. 

There were no differences between the treated and the control samples with respect to the 

cellular morphology (Figure 6 a, βIII-tubulin staining). Particularly the neurites were well 

preserved in all conditions. Samples treated with other concentrations of the mentioned 

cytokines (5 nM, 50 nM and 500 nM CCL7 and CCL11, 5 nM and 30 nM IL-9, samples 

not shown) did not show any damage induced by CCL7, CCL11 or IL-9. 

The cleaved caspase 3 positivity was very low, with almost no cells positive (see Figure 6). 

This is in line with the morphological analysis, which showed no neuronal deterioration. 

Taken together, the neurons appeared very healthy in all conditions, indicating that the 

studied cytokines do not directly damage neurons.  
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Figure 6: Neuronal morphology and apoptosis after incubation with CCL7, CCL11 and IL-9. Neurons E12 treated 

with AraC were incubated for 24 h with the cytokines at the indicated concentrations. The cells were then immunostained 

for their DNA (blue), neuronal βIII-tubulin (green) and cleaved caspase 3 (red). 5 images per condition were taken. Only 

a part of a single image is shown for better demonstration of the morphology of a single neuron. Neurites were compared 

between treated and control samples. No difference was detected. Cleaved caspase 3 stainings did not show any 

positivity. N= 1 nonAraC + 2 AraC for CCL7; n= 1 nonAraC + 2 AraC for CCL11 and n= 1 nonAraC + 1 AraC for IL-9. 

Additionally, the concentrations of 5nM, 50 nM and 500 nM (CCL7 and CCL11) and 5 nM and 30 nM (IL-9) were 

analyzed and demonstrated no difference in cell damage.  
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3.4 Analysis of the effect of defined cytokines and Th9 cell 

conditioned imaging buffer on Ca2+ levels in cultured E16 

mouse neurons using Ca2+-imaging 

3.4.1 General notes regarding Ca2+-imaging 

The following experiments were conducted using Ca2+-imaging. Neurons were stained with 

the Ca2+ fluorescent dye Fluo-4 AM. An increase in intracellular Ca2+ concentration is 

reflected by an increase in Fluo-4 AM fluorescence. Figure 7 shows examples of this 

increase in fluorescence in response to KCl or glutamate. Both lead to a depolarization in 

neurons. The reaction to these substances is very heterogeneous. While some neurons are 

already bright before the addition of a depolarizing agent (Figure 7, blue arrows), others are 

only bright after the addition (Figure 7, yellow arrows), with others not reacting at all or 

only slightly with an increase in fluorescence intensity (Figure 7, white arrows). In the 

analysis of the following experiments only neurons reacting to these stimulating substances 

with an increase in fluorescence of at least 50 % of baseline are included. Additionally, to 

account for the heterogeneous reactions, a large number of neurons is included in each 

analysis ranging from 50 to 300. 

 

 



43 

 

 

 

Figure 7: Examples of neurons stained with the Ca2+ fluorescent dye Fluo-4AM and their reaction to KCl 

and glutamate. Neurons DIV 14 were stained with Fluo-4AM. a) Neurons stained are shown before and after the 

addition of 30 mM KCl. Fluorescence intensity increases after the addition. The blue arrow marks a neuron 

already bright before the KCl addition. b) Neurons stained are shown before and after the addition of 10 µM 

glutamate. Fluorescence intensity increases after the addition. The yellow arrow marks a neuron reacting after the 

glutamate addition. The white arrow marks a neuron reacting only slightly to the glutamate addition. 

Before glutamate After glutamate 10 µM 

50 µm50 µm

50 µm50 µm

a) 

b) 

Before KCl After 30 mM KCl 
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3.4.2 Direct effect of the application of mouse Th9 cell supernatant on Ca2+ levels in 

E16 mouse neurons 

In order to analyze the hypothesis that Th9 cells damage neurons via glutamate-mediated 

excitotoxicity, the Ca2+ levels of neurons were assessed upon exposure to Locke’s Buffer in 

which Th9 cells had been incubated (LB-Th9).  

The addition of the LB-Th9 at approximately 3 min leads to a sharp increase in neuronal 

fluorescence intensity up to 3 times of the baseline levels (Figure 8 a, b and c). Blockage of 

the NMDA-receptor with MK-801 after this increase in fluorescence intensity leads to a 

sharp decrease in fluorescence intensity (Figure 8 c). The application of MK-801 before the 

recordings leads to no alteration of fluorescence intensity upon LB-Th9 addition (Figure 

8 b). 

Two samples showed an increase in fluorescence upon KCl addition (Figure 8 b, c). This 

glutamate receptor independent depolarization served as a positive control. It indicates the 

functionality of the neurons used. One sample did not react to KCl but reacted to LB-Th9 

with an increase in fluorescence intensity (Figure 8 a). 

The Th9 cell culture was analyzed for its IL-9 production (see 3.1.1). The qPCR analysis for 

the culture used for Figure 8 is shown in 3.1.1. 

Taken together, LB-Th9 leads to an increase in Ca2+ levels of neurons DIV 14. This 

response can be blocked by the NMDA-receptor antagonist MK-801. Experiments were 

only conducted with two Th9-cultures in total (one not shown, see 3.1.1 and 4.1.1). 
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Figure 8: Effect of Th9 conditioned Locke’s Buffer (LB-Th9) on Ca2+ levels in neurons and its antagonization 

by the NMDA-receptor antagonist MK-801. Fluorescence intensity over time is shown. The baseline fluorescence 

intensity was recorded from 0 s to 180 s and the fluorescence intensity is shown relative to the baseline. a) LB-Th9 

was added at 180 s and 30 mM KCL at 660 s to neurons DIV 14. An increase in fluorescence intensity is visible upon 

LB- Th9 addition. b) Neurons DIV 14 were pretreated with 10 µM MK-801 for 25 min.  LB-Th9 was added at 180 s 

and 30 mM KCl at 660 s. An increase in fluorescence intensity is visible only upon KCl addition. c) LB-Th9 was 

added at 180 s, 10 µM MK-801 was added at 300 s and 30 mM KCl at 660 s to neurons DIV 14. An increase in 

fluorescence intensity is visible upon LB-Th9 addition and upon KCl addition. A decrease in fluorescence intensity is 

visible upon MK-801 addition. N=1 for all experiments. 
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3.4.3 Direct effect of the application of CCL7, CCL11 and IL-9 on Ca2+ levels in E16 

mouse neurons 

After having established that CCL7, CCL11 and IL-9 do not directly damage neurons, the 

effect of these cytokines on intracellular Ca2+ levels was further investigated. Ca2+ is 

believed to play a role in Th9 cell mediated neuronal damage, since previous data showed 

that neuronal damage is decreased by treating neuronal cells with the glutamate receptor 

antagonists MK-801 and NBQX (S. Ray, K. Forsberg, F. Bischof, unpublished results). 

Glutamate-induced excitotoxicity is discussed as the primary cause of this neuronal 

damage. In the following experiment, neuronal cells were stained with a Ca2+ sensitive dye 

and the effect of adding CCL7, CCL11 and IL-9 on intracellular Ca2+ levels was observed. 

Neither CCL7, nor CCL11 or IL-9 have any direct effect on the fluorescence intensity in 

neurons DIV 7 or 14 in the concentrations applied (Figure 9). Small, sharp decreases in 

Ca2+ levels (Figure 9 c and e) are due to the LB itself or small shifts of the plate containing 

the neurons. Otherwise no changes in Ca2+ levels can be observed. The increase in 

fluorescence intensity upon KCl addition shows, that the neurons are still excitable and the 

non-reaction to the cytokines is not due to their inability to increase their Ca2+ levels. The 

imaging for IL-9 was only conducted for neurons DIV 7 (Figure 9 e). 

In conclusion, none of the studied cytokines had any effect on short-term neuronal Ca2+ 

homoeostasis, when adding it directly to the neurons. 
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Figure 9: Ca2+ levels in neurons (DIV 7 and 14) upon addition of CCL7, CCL11 and IL-9. Fluorescence intensity 

over time is shown. Baseline fluorescence intensity was recorded from 0 s to 180 s and the fluorescence intensity is shown 

relative to the baseline a) 50 nM CCL7 was added at 180 s and 30 mM KCl at 420 s to neurons DIV 7, AraC treated, n=3, 

one sample is shown. b) 50 nM CCL7 was added at 180 s and 30 mM KCl at 420 s to neurons DIV 14, AraC treated, n=8, 

one sample is shown. c) 50 nM CCL11 was added at 180 s and 30 mM KCl at 420 s to neurons DIV 7, AraC treated, n=3, 

one sample is shown. d) 50 nM CCL11 was added at 180 s and 30 mM KCl at 420 s to neurons DIV 14, AraC treated, 

n=2, one sample is shown. e) 50 nM CCL7 was added at 180 s and 30 mM KCl at 420 s to neurons DIV 7, AraC treated, 

n=2, one sample is shown. All samples show no increase in fluorescence intensity upon addition of the cytokines. All 

samples react to KCl with an increase in fluorescence intensity.  

3.4.4 The effect of preincubation of E16 mouse neurons with CCL7, CCL11 and IL-9 

on glutamate-induced Ca2+ influx 

Next, the impact of the cytokines CCL7, CCL11 and IL-9 on glutamate-induced Ca2+-

influx was assessed. This represents an indirect approach to the experiments demonstrated 

in 3.4.3, where the direct impact of CCL7, CCL11 and IL-9 on intracellular Ca2+ levels was 

assessed. 

3.4.4.1 Notes for all samples 

For each experiment, treated samples and their controls were matched in pairs. As already 

mentioned in 2.4.4, the fluorescence of the dye decreased during the day. Only samples 

taken at approximately the same time points can be compared. Each sample and its 

corresponding control are presented in the following tables. 

Two different approaches to the analysis of the following experiments were performed: The 

absolute difference as the difference of the mean intensity values relative to the baseline of 

a treated sample and the corresponding control sample was calculated. Secondly, the 

relative difference at the time point 300 s is shown. Here, the mean intensity value relative 

to the baseline of the treated sample is shown relative to its corresponding control. In the 

following paragraphs these differences are abbreviated as the absolute and relative 

difference.  

Additionally, due to the heterogeneity of the neuronal reactions to glutamate (see Figure 7) 

and the difference in between neuronal cultures, the standard deviations are very large. 
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Calculations of the significance have been performed on samples, which showed an 

increase or decrease of fluorescence intensity compared to the control after glutamate 

addition. 

3.4.4.2 The effect of 50 nM CCL7 preincubation on glutamate-induced Ca2+ influx in 

neurons DIV 7 

Exposure of neurons DIV7 to 50 nM CCL7 for 48 h and subsequent addition of glutamate 

does not lead to a change of the glutamate-mediated increase of intracellular Ca2+ levels 

compared to neurons not treated with CCL7. This is indicated by the lack of increase in 

fluorescence intensity relative to the baseline, recorded before glutamate addition, in Figure 

10 compared to the control. The fluorescence intensity of both samples peaks at roughly 

350 % of the baseline (Figure 10 a). 

Figure 10 b) shows a single measurement at one time point after the glutamate addition. As 

already seen in Figure 10 a), neurons treated with CCL7 and control neurons show a similar 

reaction to glutamate. The large extent of the standard deviation is due to the variability of 

neuronal reactions to glutamate in our cultures (see 3.4.1 and 4.4.1). 

In Table 6, all the measurements are listed separately, instead of determining the mean of 

all measurements as in Figure 10. This results in an average absolute difference of 0 % and 

an average relative difference of 12 %. Additionally, the difference in between single 

samples is rather small, ranging from -16 % to 11 % relative difference, with on outlier at 

65 %. Therefore, both the absolute and the relative difference show no change in 

fluorescence intensity. The 50 nM CCL7 pretreatment of neurons DIV 7 appears to have no 

effect on the neuronal excitability through glutamate.  
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Figure 10: The effect of 50 nM CCL7 on glutamate-mediated Ca2+ rise in neurons DIV 7. Neurons DIV 7 were 

incubated with 50 nM CCL7 for 48 h and their Ca2+ levels were measured using Fluo-4 AM. a) Fluorescence intensity 

relative to the baseline, recorded from 0 to 180 s, over time is shown. 10 µM glutamate was added at 180 s. Averages of 

all samples and corresponding controls are shown, n=4 for each control and sample. No difference between CCL7 treated 

neurons and the control can be seen. b) Fluorescence intensity relative to the baseline of the time point 300 s is shown. 

Two samples are shown as the mean out of all cells measured in one trial. Error bars represent the standard deviation. 

n.s.=non-significant (p>0,05) as determined by student’s t-test. 
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Table 6: The effect of 50 nM CCL7 on glutamate-mediated Ca2+ rise in neurons DIV 7. Neurons DIV 7 were 

incubated with 50 nM CCL7 for 48 h and their Ca2+ levels were measured using Fluo-4 AM. Fluorescence intensity 

relative to the baseline, recorded from 0 to 180 s, is shown at the time point 300 s. The absolute difference between the 

fluorescence intensity relative to the baseline of treated neurons and control neurons was calculated. The relative 

difference was calculated with the fluorescence intensity relative to the baseline of the control set as 100 % and with the 

fluorescence intensity of the treated sample, relative to the control. The first cypher of the numbering indicates the 

neuronal culture, the second indicates the sample number of this culture. Both the absolute and the relative difference 

between the CCL7 treated and control samples are very small. 

 

3.4.4.3 The effect of 50 nM CCL7 preincubation on glutamate-induced Ca2+ influx in 

neurons DIV 14 

Pretreatment of neurons DIV 14 with 50 nM CCL7 leads to an enhanced intracellular Ca2+ 

rise upon glutamate addition compared to control samples (Figure 11 a), as indicated by the 

fluorescence intensity measured. Thereby, the increase in fluorescence intensity was 

roughly 140 % higher in CCL7 treated neurons. The difference in increase relative to the 

control value amounts to 42 % on average (Table 7).  

 

 

 

 

 

 
Control [%] CCL7 50 nM 

[%] 

Absolut 

difference in 

percent of the 

baseline [%] 

Relative difference in 

percent of the control 

value at its peak [%] 

1.1 488 412 -76  ~-16  

2.1 460 398 -62  ~-13  

3.1 249 277 28  ~11  

3.2 168 277 109  ~65  

Average of all 

samples 

341,25 341 -0,25  ~12  
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Figure 11: The effect of 50 nM CCL7 on glutamate-mediated Ca2+ rise in neurons DIV 14. Neurons DIV 14 were 

incubated with 50 nM CCL7 for 48 h and their Ca2+ levels were measured using Fluo-4 AM. a) Fluorescence intensity 

relative to the baseline, recorded from 0 to 180 s, over time is shown. 10 µM glutamate was added at 180 s. Averages of 

all samples and corresponding controls are shown, n=5 for each control and sample.  b) Fluorescence intensity relative to 

the baseline of the time point 300 s is shown. One sample only is shown as the mean out of all cells measured in one trial. 

Error bars represent the standard deviation. n.s.=non-significant (p>0,05) as determined by student’s t-test.   

This increase is nonsignificant, see Figure 11 b). Here, a single measurement is shown at 

one time point after the glutamate addition. The standard deviation is very large, due to the 

very heterogenous reactions of the neurons to glutamate (see 3.4.1 and 4.4.1). 

In Table 7, all the measurements are listed separately, instead of determining the mean of 

all measurements as in Figure 11. Out of 5 different samples with cells derived from 3 

different cell cultures only one showed a slightly lower Ca2+ level after glutamate addition 

compared to its control. All other samples demonstrated an increase in fluorescence 

intensity higher than the corresponding control. The relative difference ranges from 33 % to 

88 %.  

All in all, the results show a consistent, albeit nonsignificant, increase in Ca2+ levels in 

CCL7 treated samples compared to controls. This indicates that 50 nM CCL7 pretreatment 

enhances the glutamate-mediated Ca2+ rise in neurons DIV 14. 
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Table 7: The effect of 50 nM CCL7 on glutamate-mediated Ca2+ rise in neurons DIV 14. Neurons DIV 14 were 

incubated with 50 nM CCL7 for 48 h and their Ca2+ levels were measured using Fluo-4 AM. Fluorescence intensity 

relative to the baseline, recorded from 0 to 180 s, is shown at the time point 300 s. The absolute difference between the 

fluorescence intensity relative to the baseline of treated neurons and control neurons was calculated. The relative 

difference was calculated with the fluorescence intensity relative to the baseline of the control set as 100 % and with the 

fluorescence intensity of the treated sample shown relative to the control. The first cypher of the numbering indicates the 

neuronal culture, the second indicates the sample number of this culture. Both the absolute and the relative difference 

between the CCL7 treated and control samples show a bigger increase in fluorescence intensity by CCL7 pretreatment. 

 

3.4.4.4 The effect of 5 nM CCL7 preincubation on glutamate-induced Ca2+ influx in 

neurons DIV 14 

Exposure of neurons DIV 14 to 5 nM CCL7 for 48 h and subsequent addition of glutamate 

does not lead to changes in the glutamate-mediated increase of intracellular Ca2+ levels 

compared to control samples (Figure 12 a), as indicated by the fluorescence intensity. Both 

the CCL7 treated sample and the control show roughly the same increase in fluorescence 

intensity after glutamate addition up to about 480 % of the baseline. 

 

 
Control [%] CCL7 

50 nM [%] 

Absolute difference 

in percent of the 

baseline [%] 

Relative difference in 

percent of the control 

value at its peak [%] 

1.1 368 693 325 ~88  

2.1 331 547 216  ~66  

2.2 361 481 120  ~33  

3.1 383 516 133  ~34  

3.2 340 306 -34  ~-10  

Average of 

all samples 

356 509 153  ~42  
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Figure 12 b) shows a single measurement at one time point after the glutamate addition. In 

both samples the standard deviation is very large (see 3.4.1 and 4.4.1). The difference 

between the CCL7 treated sample and control is non-significant. 

In Table 8, all the measurements are listed separately, instead of determining the mean of 

all measurements as in Figure 12. The relative changes in comparison between one control 

and one treated sample are small, ranging from 1 % to 15 %. This results in an average 

absolute difference of 42 % and an average relative difference of 8 %. Especially when 

considering the relative difference, this difference is negligible. Also, the absolute 

difference is rather small when comparing it with values seen in 50 nM CCL7 pretreatment 

(Table 7) of 150 % on average. 

The results indicate that 5 nM CCL7 pretreatment does not enhance or reduce 

glutamate-mediated Ca2+ rise in neurons DIV 14. 

Figure 12: The effect of 5 nM CCL7 on glutamate-mediated Ca2+ rise in neurons DIV 14. Neurons DIV 14 were 

incubated with 5 nM CCL7 for 48 h and their Ca2+ levels were measured using Fluo-4 AM. a) Fluorescence intensity 

relative to the baseline, recorded from 0 to 180 s, over time is shown. 10 µM glutamate was added at 180 s. Averages of 

all samples and corresponding controls are shown, n=2 for each control and sample b) Fluorescence intensity relative to 

the baseline of the time point 300 s is shown. One sample only is shown as the out of all cells measured in one trial. Error 

bars represent the standard deviation. n.s.=non-significant (p>0,05) as determined by student’s t-test.  
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Table 8: The effect of 5 nM CCL7 on glutamate-mediated Ca2+ rise in neurons DIV 14. Neurons DIV 14 were 

incubated with 5 nM CCL7 for 48 h and their Ca2+ levels were measured using Fluo-4 AM. Fluorescence intensity relative 

to the baseline, recorded from 0 to 180 s, is shown at the time point 300 s. The absolute difference between the 

fluorescence intensity relative to the baseline of treated neurons and control neurons was calculated. The relative 

difference was calculated with the fluorescence intensity relative to the baseline of the control set as 100 % and with the 

fluorescence intensity of the treated sample shown relative to the control. The first cypher of the numbering indicates the 

neuronal culture, the second indicates the sample number of this culture. Both the absolute and the relative difference 

between the CCL7 treated and control samples are very small. 

 
Control 

[%] 

CCL7 

5 nM [%] 

Absolute difference 

in percent of the 

baseline [%] 

Relative difference in 

percent of the control 

value at its peak [%] 

1.1 368 374 6  ~1 

2.1 529 606 77 ~15 

Average of all 

samples 

448 490 42 ~8 

 

3.4.4.5 The effect of 50 nM CCL11 preincubation on glutamate-induced Ca2+ influx 

in neurons DIV 7 

Pretreatment of neurons DIV 7 with 50 nM CCL11 for 48 h and subsequent exposure to 

glutamate does not lead to changes in the glutamate-induced increase of intracellular Ca2+ 

levels compared to control samples (Figure 13 a), as indicated by the fluorescence intensity. 

Both the CCL11 treated and the control sample show roughly the same increase in 

fluorescence intensity after glutamate addition up to about 200 % of the baseline. The 

average of the control samples is slightly higher at 210 %. 
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Figure 13 b) shows a single measurement at one time point after the glutamate addition. 

The CCL11 treated sample is about 40 % higher and the standard deviation is very large 

(see 3.4.1 and 4.4.1). The difference between CCL11 treated sample and control is non-

significant. 

In Table 9, all the measurements are listed separately, instead of determining the mean of 

all measurements as in Figure 13 a). The relative difference between one control and one 

treated sample is rather small, ranging from -30 % to 21 %. This results in an average 

absolute difference of -19 % and an average relative difference of -5 %. Similar to Figure 

12 and Table 8, this difference is negligible.  

The results indicate that 50 nM CCL11 pretreatment does not enhance or reduce 

glutamate-mediated Ca2+ rise in neurons DIV 7. 

 

Figure 13: The effect of 50 nM CCL11 on glutamate-mediated Ca2+ rise in neurons DIV 7. Neurons DIV 7 were 

incubated with 50 nM CCL11 for 48 h and their Ca2+ levels were measured using Fluo-4 AM. a) Fluorescence 

intensity relative to the baseline, recorded from 0 to 180 s, over time is shown. 10 µM glutamate was added at 180 s. 

Averages of all samples and corresponding controls are shown, n=2 for each control and sample. b) Fluorescence 

intensity relative to the baseline of the time point 300 s is shown. One sample only is shown as the mean out of all cells 

measured in one trial. Error bars represent the standard deviation. n.s.=non-significant as determined by student’s t-test. 

0

50

100

150

200

250

0 180 360 540 720

fl
u

o
re

sc
en

t 
in

te
n

si
ty

 r
el

at
iv

e 
to

 t
h

e 

b
as

el
in

e 
[%

]

time [s]

Average Controls Average CCL11 50nM

0

50

100

150

200

250

300

Control 2 Ccl11

50nM 2

fl
u

o
re

sc
en

t 
in

te
n

si
ty

 r
el

at
iv

e 
to

 t
h

e 

b
as

el
in

e 
[%

]

a) b) Gluta

mate n.s. 



57 

 

Table 9: The effect of 50 nM CCL11 on glutamate-mediated Ca2+ rise in neurons DIV 7. Neurons DIV 7 were 

incubated with 50 nM CCL11 for 48 h and their Ca2+ levels were measured using Fluo-4 AM. Fluorescence intensity 

relative to the baseline, recorded from 0 to 180 s, is shown at the time point 300 s. The absolute difference between the 

fluorescence intensity relative to the baseline of treated neurons and control neurons was calculated. The relative 

difference was calculated with the fluorescence intensity relative to the baseline of the control set as 100 % and with the 

fluorescence intensity of the treated sample shown relative to the control. The first cypher of the numbering indicates the 

neuronal culture, the second indicates the sample number of this culture. The results are varying between an increase or a 

decrease of glutamate-induced Ca2+ rise. 

 

3.4.4.6 The effect of 5 nM IL-9 preincubation on glutamate-induced Ca2+ influx in 

neurons DIV 7 

Exposure of neurons DIV 7 to 5 nM IL-9 for 48 h and subsequent addition of glutamate 

shows inconclusive results, when comparing the increase of intracellular Ca2+ levels 

compared to the control (Figure 14 a) as indicated by the fluorescence intensity.  

The control average shows an increase in Ca2+ levels after glutamate addition up to about 

200 % of the baseline, with IL-9 treated samples being about 40 % higher.  

 
Control 

[%] 

CCL11 

50 nM [%] 

Absolute difference 

in percent of the 

baseline [%] 

Relative difference in 

percent of the control 

value at its peak [%] 

1.1 249 174 -75 ~-30 

1.2 169 204 35 ~21 

Average of all 

samples 

209 189 -19 ~-5 
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Figure 14 b) shows a single measurement at one time point after the glutamate addition. 

The IL-9 treated sample is about 50 % higher than the control sample. The difference 

between the IL-9 treated sample and the control is non-significant due to the very large 

standard deviation (see 3.4.1 and 4.4.1). 

In Table 10, all measurements are listed separately, instead of determining the mean of all 

measurements as in Figure 14 a). The fluorescence intensity increase relative to the control 

value differs, when comparing both samples. This results in an average absolute difference 

of 37 % and an average relative difference of 22 %.  

Only two samples were analyzed. Both results differ by a large amount, one showing 

basically no increase, the other showing a larger increase of IL-9 treated neurons compared 

to control neurons. No conclusions can be drawn, whether 5 nM IL-9 pretreatment 

enhances or reduces glutamate-mediated Ca2+ rise in neurons DIV 7. 

 

Figure 14: The effect of 5 nM IL-9 on glutamate-mediated Ca2+ rise in neurons DIV 7. Neurons DIV 7 were incubated 

with 5 nM IL-9 for 48 h and their Ca2+ levels were measured using Fluo-4 AM. a) Fluorescence intensity relative to the 

baseline, recorded from 0 to 180 s, over time is shown. 10 µM glutamate was added at 180 s. Averages of all samples and 

corresponding controls are shown, n=2 for each control and sample. b) Fluorescence intensity relative to the baseline of 

the time point 300 s is shown. One sample only is shown as the mean out of all cells measured in one trial. Error bars 

represent the standard deviation. n.s.=non-significant (p>0,05) as, determined by student’s t-test. 
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Table 10: The effect of 5 nM IL-9 on glutamate-mediated Ca2+ rise in neurons DIV 7. Neurons DIV 7 were incubated 

with 5 nM IL-9 for 48 h and their Ca2+ levels were measured using Fluo-4 AM. Fluorescence intensity relative to the 

baseline, recorded from 0 to 180 s, is shown at the time point 300 s. The absolute difference between the fluorescence 

intensity relative to the baseline of treated neurons and control neurons was calculated. The relative difference was 

calculated with the fluorescence intensity relative to the baseline of the control set as 100 % and with the fluorescence 

intensity of the treated sample shown relative to the control. The first cypher of the numbering indicates the neuronal 

culture, the second indicates the sample number of this culture. The results are inconclusive. 

 

3.4.4.7 The effect of 30 nM IL-9 preincubation on glutamate-induced Ca2+ influx in 

neurons DIV 14 

Pretreatment of neurons DIV 14 with 30 nM IL-9 for 48 h and subsequent exposure to 

glutamate does not lead to an enhanced rise of intracellular Ca2+ levels compared to control 

samples (Figure 15 a), as indicated by the increase in fluorescence intensity. The average of 

the control neurons shows an increase in Ca2+ levels after glutamate addition of about 

350 % of the baseline, with IL-9 treated samples being roughly the same. 

Figure 15 b) shows a single measurement at one time point after the glutamate addition. 

Both treated sample and control show about the same amount of fluorescence intensity 

increase. No significant increase or decrease was calculated. The standard deviation is very 

large (see 3.4.1 and 4.4.1). 

 
Control 

[%] 

IL-9 5nM 

[%] 

Absolute difference 

in percent of the 

baseline [%] 

Relative difference in 

percent of the control 

value at its peak [%] 

1.1 169 228 59  ~35  

1.2 193 209 16  ~8  

Average of all 

samples 

181 218 37  ~22  
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In Table 11, all the measurements are listed separately, instead of determining the mean of 

all measurements as in Figure 15 a). The relative changes in comparison between one 

control and one treated sample are varying, ranging from -15 % to 38 %. This results in an 

average absolute difference of 32 % and an average relative difference of 9 %. Similar to 

Figure 12 and Table 8, this difference is negligible.  

This indicates, that 30 nM IL-9 pretreatment does not enhance or reduce the 

glutamate-mediated Ca2+ rise in neurons DIV 14. 

 

 

 

Figure 15: The effect of 30 nM IL-9 preincubation on glutamate-mediated Ca2+ rise in neurons DIV 14. Neurons 

DIV 14 were incubated with 30 nM IL-9 for 48 h and their Ca2+ levels were measured using Fluo-4 AM. 

a) Fluorescence intensity relative to the baseline, recorded from 0 to 180 s, over time is shown. 10 µM glutamate was 

added at 180 s. Averages of all samples and corresponding controls are shown, n=3 for each control and sample. 

b) Fluorescence intensity relative to the baseline of the time point 300 s is shown. One sample only is shown as the 

mean out of all cells measured in one trial. Error bars represent the standard deviation. n.s.=non-significant (p>0,05) as 

determined by student’s t-test.  
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Table 11: The effect of 30 nM IL-9 on glutamate-mediated Ca2+ rise in neurons DIV 14. Neurons DIV 14 were 

incubated with 30 nM IL-9 for 48 h and their Ca2+ levels were measured using Fluo-4 AM. Fluorescence intensity relative 

to the baseline, recorded from 0 to 180 s, is shown at the time point 300 s. The absolute difference between the 

fluorescence intensity relative to the baseline of treated neurons and control neurons was calculated. The relative 

difference was calculated with the fluorescence intensity relative to the baseline of the control set as 100 % and with the 

fluorescence intensity of the treated sample shown relative to the control. The first cypher of the numbering indicates the 

neuronal culture, the second indicates the sample number of this culture. On average, only a slight increase in 

glutamate-mediated Ca2+ rise in IL-9 treated samples can be observed.  

 

3.4.4.8 The effect of 5 nM IL-9 preincubation on glutamate-induced Ca2+ influx in 

neurons DIV 14 

Exposure of neurons DIV 14 to 5 nM IL-9 for 48 h and subsequent addition of glutamate 

leads to an enhanced increase of intracellular Ca2+ levels compared to the control (Figure 16 

a), as indicated by the increase in fluorescence intensity.  

The control average shows an increase in Ca2+ levels after glutamate addition up to about 

360 % of the baseline. IL-9 treated samples show an increase which is 70 % higher.  

This increase is non-significant however. Figure 16 b) shows a single measurement at one 

time point right after the glutamate addition. The IL-9 treated sample is higher than the 

control with 420 % compared to 370 % increase in fluorescence intensity.  The standard 

deviation is very large (see 3.4.1 and 4.4.1). 

 

 
Control 

[%] 

IL-9 30nM 

[%] 

Absolute difference 

in percent of the 

baseline [%] 

Relative difference in 

percent of the control 

value at its peak [%] 

1.1 331 457 126  ~38  

2.1 383 324 -59  ~-15  

2.2 340 367 27  ~8  

Average of 

all samples 

351 383 32  ~16  
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In Table 12, all measurements are listed separately. The fluorescence intensity increase 

relative to the control value in comparison between one control and one treated sample is 

similar in all samples compared, ranging from 17 % to 21 %. 

This indicates that 5 nM IL-9 pretreatment enhances glutamate-mediated Ca2+ rise in 

neurons DIV 14 non-significantly. 

 

 

 

 

Figure 16: The effect of 5 nM IL-9 on glutamate-mediated Ca2+ rise in neurons DIV 14. Neurons DIV 14 

were incubated with 5 nM IL-9 for 48 h and their Ca2+ levels were measured using Fluo-4 AM. a) Fluorescence 

intensity relative to the baseline, recorded from 0 to 180 s, over time is shown. 10 µM glutamate was added at 180 s. 

Averages of all samples and corresponding controls are shown, n=3 for each control and sample. b) Fluorescence 

intensity relative to the baseline of the time point 300 s is shown. One sample only is shown as the mean out of all 

cells measured in one trial. Error bars represent the standard deviation. n.s.=non-significant (p>0,05) as determined by 

student’s t-test. 
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Table 12: The effect of 5 nM IL-9 on glutamate-mediated Ca2+ rise in neurons DIV 14. Neurons DIV 14 were 

incubated with 5 nM IL-9 for 48 h and their Ca2+ levels were measured using Fluo-4 AM. Fluorescence intensity relative 

to the baseline, recorded from 0 to 180 s, is shown at the time point 300 s. The absolute difference between the 

fluorescence intensity relative to the baseline between treated neurons and control neurons was calculated. The relative 

difference was calculated with the fluorescence intensity relative to the baseline of the control set as 100 % and with the 

fluorescence intensity of the treated sample shown relative to the control. The first cypher of the numbering indicates the 

neuronal culture, the second indicates the sample number of this culture. An increase in glutamate-mediated Ca2+ rise in 

IL-9 treated samples can be observed in both the absolute and relative difference. 

 

3.5 The effect of CCL7, CCL11 and IL-9 preincubation on 

glutamate-mediated excitotoxicity in neurons 

Since previous results showed that CCL7 and IL-9 pretreatment alters glutamate-mediated 

Ca2+ influx in neurons (see 3.4.4.3 and 3.4.4.8 respectively), we needed to determine, 

whether this alteration in Ca2+ influx was also accompanied by an alteration of glutamate-

induced neuronal damage. Therefore, neurons were incubated with CCL7, CCL11 and IL-9 

and then exposed to glutamate assessing their morphology and apoptosis thereafter. 

 

 

 

 
Control 

[%] 

IL-9 5nM 

[%] 

Absolute difference 

in percent of the 

baseline [%] 

Relative difference in 

percent of the control 

value at its peak [%] 

1.1 361 432 71 % ~20  

2.1 383 448 65 % ~17  

2.2 340 412 72 % ~21  

Average of all 

samples 

361 431 68 % ~19  
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Figure 17: The effect of CCL7 pretreatment on glutamate induced excitotoxicity in neurons. Neurons E16, DIV 15 

were incubated with 50 nM CCL7 for 24 h and then exposed to glutamate for 24 h. The cells were subsequently fixed and 

stained for DNA (blue) and βIII-tubulin (green). 5 images per condition were taken at set locations in each well. Only a part 

of a single image is shown for better demonstration of the morphology of single neurons. Single stainings and the 

combined stainings are shown in each column. The same experiment was conducted several times with different cytokines 

and different concentrations of these cytokines: n=3 for 50 nM CCL7, n=1 for CCL7 250 nM, n= 1 for 2,5 nM and 25nM 

CCL11, n=2 for 5 nM IL-9 and n=1 for250 nM IL-9.  a) Neurons were treated with 0.5 µM glutamate or no glutamate. b) 

Neurons were treated with 10 µM glutamate. White arrows mark examples of intact neurites, red arrows mark examples of 

fragmented neurites. c) Neurons were treated with 25 µM glutamate. No difference between CCL7 treated samples and 

controls can be seen, while increasing amounts of glutamate lead to increased neuronal deterioration. 
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Neurons were incubated with CCL7 for 24 h and subsequently incubated with glutamate for 

another 24 h. They were then stained for DNA and cytoskeletal markers (Figure 17). As a 

correlation of neuronal damage, neuronal morphology in form of cytoskeletal deterioration 

was analyzed. Cleaved caspase 3 stainings showed no positivity even when neurites were 

heavily fragmented (see Figure 17 c, cleaved caspase 3 not shown). For each condition five 

pictures were taken and only small parts of one picture are presented in this figure. This 

ensures better visualization of neurites and nuclei on a singular cell level. 

When comparing the morphology (Figure 17 a-c, βIII-tubulin staining), clear differences can 

be seen between conditions treated with different concentrations of glutamate. White 

arrows in the βIII-tubulin staining show examples of these intact neurites (see Figure 17 b). 

Damaged neurites can be distinguished by their fragmentation, marked with red arrows in 

Figure 17 b. In the samples treated with no glutamate or 0.5 µM glutamate, neurites are 

mostly well preserved with few signs of bright green cell fragments. In the samples treated 

with 10 µM glutamate the neurites are mostly fragmented. Still, some healthy neurites can 

be observed in this treatment group. Neurons treated with 25 µM glutamate show no 

remaining intact neurites.  

However, there were no differences in cell morphology observable between samples treated 

with CCL7 and control samples. The damage was always attributed to the glutamate 

exposure. 

The same experiment was also conducted with 250 nM CCL7, 2.5 nM and 25 nM CCL11, 

as well as 5 nM and 250 nM IL-9. All experiments revealed the same results as described 

above. 

All in all, glutamate induces neuronal damage with increasing concentrations. However, 

CCL7 and IL-9 do not alter neuronal damage induced by glutamate, despite altering 

glutamate-mediated Ca2+ influx in neurons. 
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3.6 Detection of CCL7, CCL11 and IL-9 in an experimental 

autoimmune encephalomyelitis (EAE) mouse model 

Finally, we wanted to identify, whether the observed cytokines are also existent in the most 

commonly used EAE mouse model. The mRNA of the spinal cord of mice induced with 

EAE was analyzed by qPCR with special regards to the Th9 cell signature cytokine IL-9. 

An increase in IL-9-mRNA expression would suggest an increase of Th9 cells in EAE mice. 

This could indicate a relevance for MS disease.  

When comparing the mRNA expression of CCL7, CCL11 and IL-9 in an EAE mouse 

model (Figure 18) with control mice not infected with EAE, one can see a significant 

(p<0,01) increase in CCL7-mRNA expression in EAE mice. CCL11 does not show any 

difference between EAE and control and IL-9-mRNA is even lower in EAE mice compared 

to the control. This difference is not significant however. 

Since no elevation of IL-9 was found, we refrained from further immunohistochemistry. 
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Figure 18: mRNA expression of CCL7, CCL11 and IL-9 in spinal cords of EAE-mice. EAE was induced in mice and 

at the first sign of EAE-specific symptoms, mice were sacrificed and their spinal cord dissected. cDNA was obtained from 

these spinal cords. qPCR was performed in triplicates for the targets CCL7, CCL11 and IL-9. Fold-changes of treated 

samples versus control samples normalized to actin (ΔΔCt-method) are shown. Data is presented in form of a patch panel: 

The lower part of the graph is represented by the secondary y-axis in order to better distinguish between low fold-changes. 

Error bars represent the positive and negative errors derived from the standard deviation. N=4 for control mice, n=3 for 

EAE mice. *** p<0.001, ** p<0.01, * p<0,05, n.s.=non-significant, determined by student’s t-test. 

 

3.7 Summary of the results 

In summary, we determined the damaging potential of the cytokines CCL7, CCL11 and 

IL-9. None of these cytokines was found to damage the cultured neurons by itself. 

Similarly, none of the cytokines had any direct effect on neuronal Ca2+ levels upon 

addition, while Th9 cell supernatant was found to increase neuronal Ca2+ levels upon 

addition. To observe long-term effect and modulation of existing changes in Ca2+ levels by 

these cytokines, neurons were treated with CCL7, CCL11 and IL-9 und subsequently 

exposed to glutamate. Thereby, 50 nM CCL7 and 5 nM IL-9 enhanced glutamate-mediated 
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Ca2+ rises in neurons DIV 14. However, none of the cytokines enhanced or reduced 

glutamate-mediated excitotoxicity.  

Parallel to these experiments, mRNA of neuronal and astrocyte cultures was analysed. 

There, IL-9 treatment induced a CCL7-mRNA upregulation in astrocytes and a CCL7-

mRNA downregulation in neurons. The general expression levels of CCL7 were higher in 

astrocytes than in neurons, but overall rather low. Finally, the mRNA expression of these 

cytokines was detected in an EAE mouse model. Here, CCL7 was strongly upregulated, 

CCL11 only slightly and IL-9 not at all. 
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4. Discussion 

4.1 Culturing of neurons and of Th9 cells 

4.1.1 Assessment of the Th9 cell cultures 

As already mentioned in 3.1.1, Th9-cultures were analysed for their purity with qPCR 

instead of FACS. Th cells are characterized by their production of cytokines and Th9 cells in 

particular are characterized by the production of their signature cytokine IL-97.  Other Th 

cells such as Th17 cells have the ability to produce IL-9 as well21. Importantly, Th9 cells do 

not co-stain with any other cytokines typical for different Th cell subsets, for example IL-4 

for Th2 cells or IL-17A for Th17 cells7. Our qPCR controls of the cell culture only detect 

IL-9 gene expression of all cells combined (see 3.1.1). This IL-9 expression is not unique to 

Th9 cells and can therefore not affirm, that the cells analysed are indeed of the Th9 

phenotype. Co-expression with other cytokines cannot be analysed by qPCR. FACS on the 

other hand, can stain cells on a singular cell level and thus determine co-expression of IL-9 

with other cytokines of each cell. Exact percentages can be given of Th9 cells, producing 

only IL-9, as well as exact percentages of other cell types, producing IL-9 as well as other 

cytokines. 

As FACS analysis was not possible in our experiments due to problems with the machine 

and the staining, the qPCR data gathered has certain limitations: The results indicate that 

there are a high number of IL-9 producing cells, since the reference culture, which had been 

analysed with FACS, expressed less IL-9. However, our cells are not confirmed to be Th9 

cells. Nonetheless, since Th9 cells are the main producers of IL-9 and the qPCR shows a 

high expression of IL-9, these results indicate that the cells analysed are in fact Th9 cells. 

4.1.2 Assessment of the neuronal cultures 

The neuronal cultures used were analysed for their purity, as well as for cell damage by 

immunocytochemistry. Cultures were assessed for their morphology and rejected, if they 

were already damaged prior to any treatments. Neuronal morphology can both be applied 



72 

 

for assessment of a single sample as well as for comparison between two samples. Damage 

usually starts with the neurites and spreads to the soma later110. The analysis of the 

morphology though is only qualitative, not quantitative. 

A quantitative analysis of neuronal damage could be performed by analyzing pyknotic 

nuclei and cleaved caspase 3 positivity. However, pyknotic nuclei count is not a viable 

method for neuronal damage analysis, since even in healthy cultures, a high amount of 

nuclei is classified as pyknotic107. 

This unusual number of pyknotic nuclei can be due to small dividing non-neuronal cells107 

present in neuronal cell cultures. AraC treatment as used in our cultures results in the death 

of these cells und pyknotic nuclei. Additionally, fragments of nuclei of cells that died 

during the preparation of the culture are still stained by DAPI107. Taken together, this leads 

to a larger number of counted pyknotic nuclei than actual apoptotic neurons. It needs to be 

noted, that these non-neuronal cells do not have a correlating neuronal cell body. 

Accordingly, we used a morphological analysis of neuronal cell bodies stained for βIII-

tubulin (see 2.5.2) as a means to assess neuronal cell death.  

Cleaved caspase 3 is commonly used to evaluate apoptosis in neurons (see for example 

Kim at al.111). Cleaved caspase 3 stainings did not reveal any positivity in our neuronal 

cultures, both when the cells looked morphologically very healthy (see 3.3) and when the 

staining of the neuronal cytoskeleton revealed heavy neurite fragmentation (see 3.5). This 

indicates, that in our experiments cleaved caspase 3 staining is also not a reliable way to 

assess neuronal damage.  

Thus, both quantitative methods could not be used for our analysis. Nonetheless, the 

analysis of the neuronal morphology allows for a qualitative assessment of our neuron 

cultures. The fragmentation of neurites allowed for an assessment already at early stages of 

neuronal damage, as well as heavy cell damage.  
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4.2 CCL7- and CCL11-mRNA expression in neurons and 

astrocytes 

The CCL7- and CCL11-mRNA expression was measured in astrocytes and neurons, which 

had been exposed to CCL7, CCL11 and IL-9, to determine cross regulation between these 

cytokines. Our results indicate that IL-9 upregulates CCL7-mRNA expression in astrocytes 

(see 3.2.1). 

Recent studies revealed that CCL7 and CCL11 are not just expressed by immune cells, but 

are expressed in non-immune cells as well. Especially, after they were stimulated with 

certain cytokines. Expression of CCL7 has already been shown in cortical neurons upon 

TNF-α stimulation and in a GnRH producing neuronal cell line68,69. CCL7 production by 

astrocytes was demonstrated as well. The production was constitutive and increased upon 

TNF-α stimulation63,112.  

CCL11 was shown to be secreted by activated astrocytes86 and by neurons in the brain113.  

However, the induction of CCL7- and CCL11-mRNA expression in neurons or astrocytes 

by CCL7, CCL11 or IL-9 has never been demonstrated. Our results are in line with a study 

from Luo et al.114, which shows a C-C chemokine dependant chemokine production in 

astrocytes. Additionally, IL-9 receptors were revealed to be highly expressed in astrocytes 

and upregulated during EAE. IL-9 could thus induce chemokine expression in astrocytes115. 

Our results now confirm these observations, by showing that CCL7-mRNA is expressed in 

astrocytes and is upregulated by IL-9. This implies that Th9 cells can influence astrocytes 

by secreting IL-9 and thereby stimulating CCL7 expression. This in turn could attract 

further inflammatory cells and aggravate inflammation due to the chemotactic effect of 

CCL7. Additionally, CCL7 can directly influence CNS resident cell, which is discussed in 

the following pages (see 4.4.4 as well as 1.1.5.1).  

A limitation to our results is the low fold-change, ranging from 1.5 to 4.5. Ding et al.115 

observed similar fold-changes ranging up to 6, when inducing CCL20 and CXCL9 in 

mouse astrocytes with IL-9. 
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Further results include the downregulation of CCL7-mRNA expression in neurons by IL-9 

and the upregulation of CCL11-mRNA expression in astrocytes. Both results have a very 

low expression in general with Ct-values >31 (see Table 4 and Table 3 respectively). This 

leads to very accident-sensitive measurements. As seen in Figure 3, none of the results is 

statistically significant. This might be due to this accident-sensitivity. Additionally, the low 

expression points out, that the amount of chemokine expression is very low and might not 

be relevant in vivo. Nonetheless, a downregulation of CCL7 in neurons (as seen Figure 4) 

could present a neuroprotective mechanism. Neurons have already been shown to have the 

ability to suppress neuroinflammation as shown in EAE42.  

Finally, the CCL11-mRNA expression in neurons was analysed. Here, the results are very 

heterogeneous and do not allow for any conclusions. 

All in all, these results indicate a novel induction of CCL7-mRNA expression by IL-9 in 

astrocytes. It points out the role of astrocytes in aggravating existing neuroinflammation43.  

4.3 The role of CCL7, CCL11 and IL-9 in neuronal damage 

Neurons were treated with CCL7, CCL11 or IL-9 and the effect on their morphology was 

assessed. No neuronal damage after treatment with these cytokines could be observed (3.3). 

With the discovery of the presence of chemokine receptors on neuronal cells in the brain, 

questions regarding the functional implications of these receptors arose. CCR2, which is 

mainly activated by CCL2 but also by CCL7, was shown to be constitutively expressed in 

neurons. CCL2 led to a transient Ca2+ rise in neurons upon stimulation58. Since CCR are 

GPCRs, which can invoke an intracellular Ca2+ rise (for a review see Rollins54), this 

indicates a direct effect of these chemokines on neurons.  

Other experiments revealed chemokines to be neurotoxic or even neuroprotective: CXCL10 

induces apoptosis via the activation of caspase 3 in cultured neurons116. CCR2 deficient 

mice were shown to develop a milder course of a viral neurological disease compared to 

their controls. Thereby CCL7-mRNA next to the mRNA of other chemokines was 

upregulated, but no infiltration of immune cells into the brain could be detected117. This 
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indicates a role of chemokines in neuronal pathogenesis independent of their effect on 

immune cells. In contrast to these experiments, other results showed that CCL2, secreted by 

astrocytes, has neuroprotective properties. It reduced both the release of glutamate from 

neurons as well as the damage mediated by oxygen-glucose deprivation118. Additionally, 

CCL2 was associated with neuroprotection in experimental glaucoma119. 

CCL7 and CCL11 have not been studied as extensively as CCL2. CCL11 has already been 

associated with protection against neuroinflammation in rats87. This process however, is 

seen in the context of a tighter BBB and thus decreased recruitment of immune cells into 

the brain87. Also, CCL11 was shown to be neurotoxic via the production of reactive oxygen 

species in microglia86. CCL7 has not been associated with neurotoxicity directly. Since it 

binds to the same receptor as CCL2 however, CCL7 might display similar characteristics as 

CCL2 regarding neuronal damage or neuroprotection. 

IL-9 has not been associated with directly damaging neurons either. Generally regarded as 

an inflammatory cytokine, possible deterioration of neurons can be achieved through 

inflammatory mechanisms by IL-9. Patkai et al120 found that IL-9 exacerbates excitotoxic 

brain lesions. In contrast, IL-9 was shown to protect neurons against developmental 

apoptosis20. 

Our results show no neuronal damage in our primary neuron cultures after exposure to 

CCL7, CCL11 and IL-9 (see 3.3). The concentrations of these cytokines ranged up to 

1 µM. Effective concentrations of these cytokines in other experiments are far below that 

amount. CCL2 was shown to already lead to Ca2+ rises in neurons at 10 nM58. It is unlikely, 

that the lack of neurotoxicity is due to an insufficient amount of cytokines added. 

Possible explanations for the lack of neuronal damage after exposure to CCL7, CCL11 and 

IL-9 are firstly, that these cytokines simply are not able to induce neuronal damage. In line 

with our results, Giulani et al.48 showed that CCL7 did not induce neuronal damage. In 

contrast though, their T cell supernatant did not induce neuronal damage either, while 

previous experiments in our lab (S. Ray, K. Forsberg, F. Bischof, unpublished results) 

detected a neurotoxic effect of Th9 cell supernatant. 
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Secondly, the neurotoxic properties of certain cytokines discovered are often studied in 

animal models of inflammatory diseases or in cell cultures containing microglia and 

astrocytes in addition to neurons86,116,117,118,119. Our cell cultures contained mostly neurons 

with very few astrocytes (see 3.1.2). Damaging mechanisms functioning via astrocytes or 

microglia could thus not work. Since we wanted to show the direct interaction of neurons 

with these cytokines, this experimental setup was selected on purpose. Nevertheless, this 

might explain the lack of damage, when comparing our results with other publications such 

as Parajuli et al.86. 

Thirdly, chemokine receptors are often upregulated by inflammatory stimuli121. Additional 

inflammatory stimuli might be necessary to induce a receptor upregulation, which is 

sufficient for our chemokines to unfold their damaging potential. Synergistic effects of 

different cytokines might be necessary to impair neuronal cells. In our experimental setup, 

only single cytokines were tested. In vivo there are always a multitude of inflammatory and 

regulatory cytokines working together. Thus, further experiments could determine, whether 

the cytokines we studied can damage neurons under inflammatory conditions or when 

adding a proinflammatory cytokine together with CCL7, CCL11 or IL-9. 

Altogether, our results show no direct damage induced by either CCL7, CCL11 or IL-9. 

This does not mean that these cytokines are not damaging, but rather that under non-

inflammatory conditions, these cytokines alone do not cause neurotoxicity. 

4.4 Analysis of neuronal Ca2+ levels 

4.4.1 General limitations of the Ca2+-imaging experiments 

Since none of the studied cytokines had a neuro-damaging effect in the previous 

experiments, the effects of these cytokines on neuronal intracellular Ca2+ levels were 

observed. The method used for these experiments was Ca2+-imaging using a Ca2+ 

dependant fluorescent dye, namely Fluo-4 AM122. Due to the setup of the experiment, only 

the relative Ca2+ levels over time could be observed, instead of the absolute concentration. 

This entails some limitations. Naturally, no conclusions on the absolute intracellular Ca2+ 
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concentrations can be drawn. Next, it is difficult to compare different samples, since the 

absolute fluorescence intensity is dependent on many different factors, such as the type of 

neurons present, the dilution of the dye and the photobleaching during subsequent uses 

among others122.  

This was no problem for the experiments in 3.4.2 and 3.4.3, where only the relative Ca2+ 

changes of a single sample were relevant. 

However, the experiments in 3.4.4 did depend on a comparison between sample and 

control. Here, the relative changes of the increase of intracellular Ca2+ after glutamate 

addition were compared between several samples. This allows for a quantification in form 

of the amount of the relative increase even without a measurement of the absolute Ca2+ 

concentration. 

In order to minimize the disturbance factors mentioned above, samples, which were going 

to be compared, were always measured with the same dilution of the dye. Photobleaching 

of the dye led to a decrease in fluorescence during subsequent experiments and could result 

in samples measured previously to others showing a higher fluorescence intensity. Also, the 

relative difference could be affected. For that reason, samples, which we expected to have 

an increase in fluorescence intensity compared to the controls, were always measured right 

after the controls. This ensured, that any observable effect of an increase in fluorescence 

after cytokine pretreatment would not be due to the photobleaching of the dye. 

Another limitation of our experiments is the heterogeneous neuronal reaction to Ca2+. This 

heterogeneity is even greater, when comparing samples of different primary neuronal 

cultures. This is partly due to the difference in neurons present in the mouse cortex, which 

we used for our experiments. Different neuronal subtypes express different receptors. For 

example, the NMDA receptor was shown to not be equally distributed across all cortical 

layers123 and the number of NMDA receptors was shown to differ between cortical 

neurons124. This disparity in glutamate receptors leads to a disparity in reactions to 

glutamate. Another reason for these heterogenous reactions, is due to unequal loading of 

the neurons with the cell permeable dye122, which depends on the distribution of cells in the 



78 

 

well amongst other reasons. Additionally, stages of neuronal development are not 

completely equal in one culture125. The heterogeneity leads to large standard deviations of 

our measurements (see for example Figure 10).  

Finally, experiments showed that astrocytes express functional NMDA receptors126 and 

react to glutamate with an intracellular Ca2+ rise127. The number of astrocytes in our cell 

cultures was very low (see 3.1.2), but might have influenced the results. 

4.4.2 The effect of Th9 supernatant on neuronal Ca2+ levels 

The results from 3.4.2 showed an increase in neuronal intracellular Ca2+ upon addition of 

LB-Th9. All cells reacted to KCl, thus showing they are able to have an increase in Ca2+ 

levels, except for one sample (see Figure 8 a). This could be due to the large Ca2+ increase 

upon LB-Th9 addition, which could have led to cell death. Additionally, the dye might have 

already been at its saturation. At the saturation of the dye, further increase in Ca2+ cannot be 

expressed in an increase in fluorescence intensity. 

This increase in fluorescence upon LB-Th9 addition could be inhibited by pre-treatment 

with the NMDA receptor antagonist MK-801 or reversed by adding MK-801 after adding 

LB-Th9 (see Figure 8). NMDA receptors are activated by glutamate and can be modulated 

by glycine128. These results indicate that glutamate is secreted by Th9 cells. Thus, the 

supernatant leads to the Ca2+ increase in neuronal cells. This mechanism is independent of 

cell to cell contacts between T cells and neurons, since only the supernatant of Th9 cells 

induced the Ca2+ rise in our experiments. Cell to cell contacts have already been 

demonstrated to induce Ca2+ oscillations in neurons as well as neuronal cell death in a 

glutamate dependant way49,102. 

Secretion of glutamate has already been demonstrated for T cells in general129 and Th1 and 

Th17 in particular102, but never for Th9 cells. These results present a mechanism for Th9 

mediated neuronal damage through excitotoxicity. Blockage of the glutamate receptor 

AMPA, which can mediate excitotoxicity, in EAE mice led to an amelioration of the 

disease100,101. Thereby, the degree of inflammation was not affected, but the 
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oligodendrocytes and neurons were influenced. Blockage of NMDA receptor in EAE mice 

also led to an amelioration of EAE. Here, the proposed mechanism was disruption of the 

BBB by NMDA receptor mediated mechanisms130. In MS, it was shown that enhanced 

glutamate production in brain lesions correlated with increased axonal damage131. 

Taken together, excitotoxicity is an important pathophysiological process in EAE and MS. 

Our experiment suggests a Th9 mediated, neurodamaging mechanism in form of the 

secretion of glutamate. Previous results in our lab (S. Ray, K. Forsberg, F. Bischof 

unpublished results) showed that the supernatant of Th9 cells is able to damage neurons. 

Glutamate as indicated in our experiments (see 3.4.2), is most likely one of the mediators of 

this damage. This mechanism could also play a role in vivo in diseases such as MS. 

Further experiments might include the measurement of the secreted glutamate by Th9 cells. 

Finally, the limitation of our Th9 cell culture needs to be noted, as already discussed in 

4.1.1. 

4.4.3 The effect of CCL7, CCL11 and IL-9 on neuronal Ca2+ levels 

Our experiments did not reveal any increase of intracellular Ca2+ by CCL7, CCL11 or IL-9. 

Chemokines bind to GPCRs and can invoke intracellular Ca2+ rise by the mobilization of 

Ca2+ from intracellular stores (for a review see Bokoch132). Transient intracellular Ca2+ rises 

have been shown to be induced by chemokines such as CCL2 and CCL11 in cerebellar 

neurons133 and dorsal root ganglia (DRGs)134 in cultures derived from neonatal rats. CCL2-

induction of an intracellular Ca2+ rise has also been demonstrated in a variety of neuronal 

cells such as neurons from the cortex, hypothalamus, hippocampus and mesencephalon58. 

There, the Ca2+ increased directly after the addition of the chemokines and lasted less than a 

minute. Thus, it was connected to the direct activation of neuronal chemokine receptors. 

CXCL10 was shown to induce neuronal apoptosis via the induction of intracellular Ca2+ 

increases135.  
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IL-9 has not been connected to induction of Ca2+ rise in neurons, but CCL11 has been 

shown to (see above). There are several explanations for the lack of effect in our 

experiments: 

The lack of reaction could be explained by a lack of functional receptors on our neuronal 

cells. This could be due to the very low expression of these receptors in our cultures under 

non-inflammatory conditions as already described in 4.3. Additionally, Gillard et al.133 as 

well as Oh et al.134 used neuronal cultures different from the ones we used. Gillard et al.133 

already described that only a small percentage of all the cells reacted to the chemokines 

added. Maybe the cortical neurons from our experiments contained none of the neuron 

types expressing the receptors necessary for an activation by CCL11. Finally, although 

CCL2 has been shown by several groups to invoke a transient intracellular Ca2+ rise58,133,134, 

another group failed to show this Ca2+ response using differentiated neurons, derived from 

undifferentiated human teratocarcinoma cells (NT2.N)136. This again highlights the 

difference of either using rat, human or mouse cells. In line with our findings, Coughlan et 

al136 reported no rise in intracellular Ca2+, when adding CCL7. 

Another explanation for the lack of effect might be the experimental setup. The imaging 

lasted for a maximum of 25 minutes after the addition of the cytokines. Long-term effects 

such as gene transcription of Ca2+ channels need a longer time. Especially IL-9 is known to 

activate the JAK-STAT pathway amongst others and influence transcriptional processes137. 

Extending the imaging process might solve this problem. 

4.4.4 The enhancement of the glutamate-mediated increase of neuronal Ca2+ levels by 

CCL7 and IL-9 

Pretreatment of neurons with CCL7 and IL-9 led to an enhancement of a glutamate 

mediated Ca2+-rise (see 3.4.4.3 and 3.4.4.8). This enhancement was non-significant. Other 

samples did not show an effect. The non-significance due to neuronal heterogeneity has 

already been discussed in 4.4.1.  

A modulation of glutamate-mediated intracellular Ca2+ rise in neurons has not been shown 

for any of the cytokines we studied. However, IL-9 was demonstrated to increase Ca2+ 
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transients induced by cholecystokinine-8 in interstitial cells of Cajal138. Similar to our 

experiments, IL-9 does not induce an intracellular Ca2+ rise by itself, but enhances the Ca2+ 

rise induced by another agent.  

Other cytokines have been associated with the modulation of Ca2+ dynamics in cultured 

neurons. The C-C chemokine CCL2 was shown to enhance the Ca2+ response mediated by 

an agonist of a metabotropic glutamate receptor (mGluR)139 at a concentration of 25 nM. 

Higher and lower concentrations of CCL2 did not evoke this enhanced Ca2+ response. Our 

results yielded similar observations. While CCL7 did not reveal any effect at a 

concentration of 5 nM, it showed an effect at 50 nM. Similarly, IL-9 revealed an effect at a 

concentration of 5 nM, but not at 30 nM. In reverse, this indicates that the other samples, 

which did not reveal any enhance or decrease, might need to be tested with a broader range 

of cytokine concentrations. Some effects might not have been detected, due to the small 

range of cytokine concentrations used. 

Another implication of the findings of Van Gassen et al.139 is based on the usage of agonists 

of a mGluR. In our experimental setup, we used glutamate and thus we could not 

distinguish, which receptors are the ones that led to our results. Glutamate binds to a variety 

of receptors. The activation of many of those results in an increase in intracellular Ca2+, 

either by functioning as an ion channel (NMDA, AMPA/kainate) or by influencing 

intracellular pathways via GPCRs such as mGluRs. For example, mGluRs can lead to an 

activation of phospholipase C and a release of Ca2+ from intracellular stores140. 

Chemokines bind to GPCRs as well. Interactions between GPCRs and their pathways were 

shown to lead to increased Ca2+ responses compared to only activating a single receptor 

(for a review see Werry et al.141). In transfer to our results, this means an activation of the 

chemokine receptor by CCL7 could lead to an activation of phospholipase C142. This 

synergizes with the phospholipase C activation by glutamate via a mGluR such as 

mGluR1143. Thus, the Ca2+ release from intracellular stores, such as the endoplasmic 

reticulum, could be increased.  

Also, other receptors could be influenced. IL-6 was shown to enhance NMDA mediated 

Ca2+ rise in neurons144. In line with our experiments, IL-6 was applied for several days 
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before measuring the intracellular Ca2+. This enables a long-term regulation of glutamate 

receptors. For example, CCL7 or IL-9 might upregulate the NMDA receptor expression, 

consequently leading to increased Ca2+ responses.  

A short-term regulation is also possible. CCL2 was shown to inhibit γ-aminobutyric acid 

(GABA)-induced currents in rat neurons, after being applied together with GABA145. This 

indicates a modulatory effect of a C-C chemokine on ion channels. Furthermore, short-term 

CCL2 application increased the NMDA and AMPA receptor activity in DRG mouse 

neurons146. Both experiments additionally demonstrated the CCR2 receptor expression on 

their neurons. Since CCL7 also binds to CCR2, our effect could be attributed to a short-

term modulation of NMDA or AMPA receptors. Considering our cultures contained almost 

exclusively neurons, our observed effect indicates a CCL7 receptor expression on neurons. 

Our experiments could not detect the absolute Ca2+ concentrations, but only the relative 

increases or decreases of each sample. Changes of basal Ca2+ levels could not be detected. 

Additionally, the origin of the increase in intracellular Ca2+ could not be shown. Further 

experiments might include the usage of a setup, which allows for an exact quantification of 

intracellular Ca2+. Antagonists for single glutamate receptors could be used to determine, 

which receptor mediates the effect of CCL7 and IL-9. A shorter incubation time for CCL7 

could be utilized or both glutamate and CCL7 could be applied at the same time in order to 

show, whether the effect results from a short-term modulation of glutamate receptors or a 

long-term one. Finally, a broader range of cytokine concentrations could be adopted, maybe 

even together with an inflammatory cytokine, to further test the effects of CCL7, CCL11 

and IL-9. 

Since the detection of this increase in Ca2+ does not necessarily correlate with an increase 

in excitotoxicity, further experiments were conducted to test this hypothesis (see 3.5). 

Nonetheless, our experiments indicate the influences of CCL7 and IL-9 on neuronal Ca2+ 

levels. Ca2+ is an important second messenger inside of cells and modulates a variety of 

processes including receptor modulation and metabolic pathways147. 
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In conclusion, our results show that CCL7 and IL-9 influence Ca2+ levels in neurons after 

glutamate addition. Possible mechanisms of this increase include the modulation of NMDA 

receptors or the co-activation of GPCRs. 

4.5 The effect of CCL7, CCL11 and IL-9 on glutamate-mediated 

excitotoxicity 

Pre-treatment of neuronal cells with CCL7, CCL11 or IL-9 did not lead to increased or 

decreased excitotoxicity upon application of glutamate (see 3.5) even though CCL7 and 

IL-9 increased glutamergic excitation in our experiments (see 3.4.4.3 and 3.4.4.8). CCL11 

has already been shown to possess neuroprotective properties113. However, Adzemovic et 

al.113 attributed these properties largely to the effect of CCL11 on immune cells. IL-9 and 

CCL7 have not been connected to excitotoxicity. Nevertheless, other ILs such as IL-6 were 

shown to be neuroprotective148. 

Possible explanations for this lack of effect include a lack of receptors on our neurons 

under non-inflammatory conditions amongst others. They were already discussed in 4.3. 

However, in 4.4.4 we showed that CCL7 and IL-9 do effect neurons, so at least some 

functional receptors for CCL7 and IL-9 must be present. Nonetheless, neither CCL7 nor 

IL-9 are sufficient to exacerbate or ameliorate excitotoxicity on their own, but they might 

enhance it in addition to other cytokines. For all three cytokines studied, future experiments 

could include the pre-treatment of neurons with several cytokines together or the induction 

of inflammatory conditions, prior to the application of the cytokines. 

4.6 Detection of CCL7-, CCL11- and IL-9-mRNA in an EAE 

mouse model 

Having shown that IL-9 induces the mRNA expression of CCL7 in astrocytes, we wanted 

to investigate the localisation of these cytokines in a neuroinflammatory model in vivo, as 

well as determine the role of Th9 cells in this model. The contribution of this relatively new 

Th subtype to EAE has not been studied much. However, it was discovered that this cell 
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type can induce EAE upon adoptive transfer27. Th9 cells were also recently connected with 

MS disease149. 

IL-9 has been studied more extensively. IL-9 deficient mice were resistant to EAE150 and 

neutralization of IL-9 led to an amelioration of EAE97. Both studies connected the 

inhibition of IL-9 to a reduction in IL-17. In contrast, recent studies, determining the role of 

IL-9 in MS disease, associated elevated levels of IL-9 in the cerebrospinal fluid and serum 

with remission from relapse remitting MS149,151,152. As opposed to the EAE model, in MS 

IL-9 reduces the expression of IL-17 in Th17 cells, suggesting a protective role for IL-9149. 

This highlights the difference between EAE and MS as well as the ambiguity of IL-9, 

functioning both as an inflammatory and an anti-inflammatory cytokine21. 

Our results showed no significant change in IL-9-mRNA expression in EAE mice 

compared to the controls (see 3.6). This is in line with the reports of reduced IL-9 levels in 

MS patients, but stands in contrast to the EAE studies as explained above. However, these 

results do not contradict the presence of Th9 cells in our EAE model. First of all, the whole 

spinal cord was analysed. At the early stage of disease mice were sacrificed at, only a part 

of the spinal cord is affected by the inflammation. IL-9 could still be upregulated in this 

part of the spinal cord, while being downregulated in the rest, resulting effectively in no 

fold change visible in our graph. Secondly, IL-9 is produced by a variety of cells (see 

1.1.2). Again, downregulation of IL-9 in some cell types could conceal an increase of IL-9 

by an increase in Th9 cells. Nonetheless, we refrained from further immunohistochemistry: 

While there was no definite indication of Th9 cells not contributing to EAE, there was no 

indication of Th9 cells contributing either. 

Finally, CCL7-mRNA was increased in EAE mice significantly, while CCL11 was elevated 

non-significantly (see 3.6). Both CCL7153 and CCL11113 have been detected in an EAE 

mouse model. Our results are in line with these observations. It is not surprising that these 

chemokines are upregulated, since they are needed to recruit inflammatory cells to the sites 

of inflammation in the early stages of the disease. In this experimental setup, the producers 

of these cytokines could not be detected and we could not connect the results of our 
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induction of CCL7 by IL-9 in astrocytes (see 3.2.1) of our in vitro experiments to the 

in vivo model. 
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5. Summary 

Neuroinflammatory mechanisms play a crucial part in various diseases such as multiple 

sclerosis and stroke. Interactions of neuronal and immune cells result in impairment of the 

nervous system. A better understanding of these interactions could serve as the basis for 

better treatments of various neuroinflammatory disorders. T cells in general and T helper 

cells (Th) in particular, contribute to this damaging process. One particular subset of IL-9 

producing Th cells, namely T helper type 9 (Th9) cells has been recently characterized as a 

distinct subset of Th cells7,8 and was found to cause neuronal deterioration in a Th9 cell 

neuronal co-culture (S. Ray, K. Forsberg, F. Bischof, unpublished results). Thereby, a 

diversity of cytokines is upregulated in this co-culture including the C-C chemokines CCL7 

and CCL11. 

This work aims at identifying the potential roles of the cytokines CCL7, CCL11 and IL-9 in 

this Th9 cell mediated neuronal damage. Primary neurons derived from embryonic or 

postnatal mice were cultured. Neuronal damage was assessed in form of cytoskeletal 

deterioration in an immunostaining and calcium (Ca2+) levels of neurons were measured 

with a Ca2+ dependent fluorescent dye.  

The results reveal that none of the studied cytokines damaged neurons by itself when 

exposing neurons to these cytokines. Also, none of the cytokines enhanced or decreased 

neuronal Ca2+ levels upon addition. However, CCL7 and IL-9 were observed to increase the 

glutamate-mediated Ca2+ rise in neurons after incubation for 48 h. Intracellular Ca2+ rise 

and overstimulation of neurons can lead to excitotoxicity and cell45 death. However, neither 

CCL7 and CCL11 nor IL-9 were found to increase glutamate-mediated excitotoxicity. 

All in all, these results show the potential of CCL7 and IL-9 to play a part in 

neurodamaging processes, while not being able to damage neurons on their own. 
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6. Summary (native language of the faculty) 

Neuroinflammatorische Mechanismen spielen eine Schlüsselrolle in der Pathophysiologie 

verschiedener Krankheiten wie z.B. Multiple Sklerose oder Schlaganfall. Interaktionen 

zwischen neuronalen und Immunzellen führen zu einer Schädigung des Nervensystems. Ein 

besseres Verständnis dieser Interaktionen kann als Basis neuartiger Therapiemöglichkeiten 

dieser Krankheiten dienen. T-Zellen und speziell T-Helferzellen (Th) tragen zu diesen 

schädigenden Mechanismen bei. Es wurde gezeigt, dass T-Helferzellen Typ 9 (Th9), ein 

IL-9 produzierender Subtyp von Th der kürzlich charakterisiert wurde7,8, zu neuronaler 

Schädigung in einer Co-Kultur, bestehend aus Neuronen und Th9 Zellen, führen (S. Ray, 

K. Forsberg, F. Bischof, unpublished results). Hierbei wurden die Gene diverser Zytokine 

hochreguliert, unter anderem die C-C Chemokine CCL7 und CCL11. 

Die vorliegende Arbeit hat das Ziel die potentielle Rolle der Zytokine CCL7, CCL11 und 

IL-9 im Rahmen des Th9 Zell-verursachten, neuronalen Schadens zu identifizieren. Hierfür 

wurden primäre Mausneuronen aus embryonalen und postnatalen Mäusen kultiviert. 

Neuronaler Schaden wurde mithilfe einer Immunfärbung des Zytoskeletts beurteilt. 

Zusätzlich wurden intrazelluläre, neuronale Calcium (Ca2+)-Level gemessen, mithilfe eines 

Ca2+-abhängigen, fluoreszenten Farbstoffs. 

Die Ergebnisse ergaben, dass keines der untersuchten Zytokine Neurone schädigt, wenn 

diese den Zytokinen ausgesetzt wurden. Ebenfalls führte keines der Zytokine zu einem 

Ca2+-Einstrom in Neuronen. Weitere Ergebnisse zeigten einen Anstieg des Glutamat-

induzierten Ca2+-Einstroms durch Vorbehandlung mit CCL7 und IL-9 für 48 h. Ein Anstieg 

von intrazellulärem Ca2+, in Form einer Überstimulation, kann zu Exzitotoxizität und 

Zelltod führen45. Jedoch verursachten weder CCL7, noch CCL11 oder IL-9 eine Zunahme 

der durch Glutamat ausgelösten Exzitotoxizität 

Zusammenfassend demonstrieren die vorliegenden Ergebnisse das Potential von CCL7 und 

IL-9 eine Rolle in Prozessen der neuronalen Schädigung zu spielen, auch wenn sie nicht in 

der Lage sind Neuronen selbst zu schädigen. 
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