
Duality in Computer Science

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von
M. Sc. Silke Czarnetzki

aus Tübingen

Tübingen
2018

Tag der mündlichen Qualifikation: 30.01.2019
Dekan: Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatter: Dr. Andreas Krebs
2. Berichterstatter: Prof. Dr. Klaus-Jörn Lange

Zusammenfassung

Die Brücken zwischen Algebra, Logik und Topologie im Bezug auf Klassen regulärer
Sprachen, sind in vielerlei Hinsicht erforscht worden: Das Blockprodukt verbindet
Algebra und Logik, Strukturen aus der Logik lassen sich durch Transducer auf
Sprachklassen abbilden, Sprachklassen wiederum sind durch Gleichungen zwischen
Elementen eines topologischen Raumes beschreiben, welcher der Projektive Limes
algebraischer Objekte ist. Dieser Auszug spiegelt nur die gröbsten der für die
regulären Sprachen bekannten Zusammenhänge dar. Verlassen wir die regulären
Sprachen, so betreten wir, was das Zusammenspiel zwischen Algebra, Logik und
Topologie anbetrifft, größtenteils unbekanntes Terrain.

Diese Dissertation verfolgt das Ziel, die Beziehungen zwischen Algebra, Logik und
Topologie auch außerhalb der regulären Sprachen besser zu verstehen. Grundlage
hierfür bilden sogenannte Stone-Räume, die topologische Objekte für beliebige
bool’sche Algebren stellen. In der Tat ist dies eine natürliche Erweiterung, da bereits
die topologische Perspektive auf den regulären Sprachen auf Stone-Räumen arbeitet.
Insbesondere lassen sich Konzepte, wie das syntaktische Monoid, auch als Stone-
Räume konstruieren. Die Zusammenhänge, wie sich Algebra und Topologie in dieser
Umgebung vereinen, werden zunächst erläutert.

Auf dieser Grundlage teilt sich die Arbeit in zwei Bereiche: Einen davon bilden
die sogenannten visibly pushdown languages (VPL) – eine den regulären Sprachen
in vielen Eigenschaften sehr verwandte Sprachklasse. Wir etablieren zunächst die
Beziehungen zur Algebra: Hierfür werden adequate algebraische Erkennungsobjekte
für VPL identifiziert, sogenannte Ext-Algebren. Im Gegensatz zu endlichen Monoiden,
verfügen diese nicht ausschließlich über eine binäre Verknüpfung als Multiplikation,
sondern über zusätzliche unäre Operationen, die die Struktur von VPL widerspiegeln.
Im Folgenden wird ein Theorem, ähnlich zu dem von Eilenberg, bewiesen, welches eine
eins-zu-eins Verbindung zwischen pseudo-Varietäten von VPL und pseudo-Varietäten
von Ext-Algebren herstellt.

Für VPL wird die topologische Perspektive ähnlich etabliert, wie in der Konstruktion
für die regulären Sprachen: Unter Verwendung von Ext-Algebren wird eine Metrik
auf einer Teilmenge aller Wörter definiert. Die Vervollständigung des resultierenden
metrischen Raumes ist dann der Stone-Raum der VPL, welcher ebenfalls eine Ext-
Algebra bildet.

Über die Elemente dieses Raumes wird der Begriff der profiniten Gleichung für

Ext-Algebren gebildet. Über diesen Begriff wird es möglich eine Beziehung zwischen
Mengen von Gleichungen und pseudo-Varietäten von Ext-Algebren herzustellen,
welches die Eilnberg-Reiterman-ähnlichen Beziehungen zwischen Algebra und Topolo-
gie für VPL vervollständigt. Abschließend werden konkrete Gleichungen für eine
spezifische pseudo-Varietät von VPL abgeleitet und in Zusammenhang zu den visibly
counter languages (VCL) gesetzt.

Der zweite Bereich beschäftigt sich mit weitaus allgemeineren Klassen nicht-regulärer
Sprachen, um eine Verbindung zu durch Logik definierten Sprachklassen herzustellen.
Aufbauend auf dem Begriff der getypten Monoide gepaart mit sogenannten Stamps,
wird der Begriff der getypten Stamps definiert, für welchen zunächst die Grundla-
gen etabliert werden, wie beispielsweise Spracherkennung und syntaktische getypte
Stamps. Auch hierfür wird die algebraische Perspektive mit der topologischen durch
eine Eilenberg-Reiterman-artige Verbindung verknüpft. Im Unterschied zu VPL
kann diese Verbindung nicht mehr über die Vervollständigung eines metrischen
Raumes hergestellt werden, sondern bedient sich projektiver Limiten. Es wird weiter
gezeigt, dass die entstehenden topologischen Objekte wiederum enge Verbindungen
zu Stone-Räumen aufweisen.

Diese Zusammenhänge lassen sich abschließend verwenden, um zunächst ein Block-
produkt auf getypten Stamps zu definieren, welches enge Verbindungen zu Logik
aufweist, und über die zuvor entwickelten Konstruktionen ein Blockprodukt auf den
topologischen Objekten zu definieren, welches die Zusammenhänge zu Logik erhält.

Abstract

The links between algebra, logic and topology have been examined in various ways
on the case of the regular languages: The block product links algebra and logic,
structures from logic are related to classes of languages via transducers, the classes
of languages themselves are describable via equations on a topological space, who
again is a projective limit of algebraic objects. This excerpt only mirrors the coarsest
of the relations known for the regular languages. When we now leave the terrain
of regularity concerning the interplay between algebra, logic and topology, we are
entering largely unknown terrain.

This thesis intends to help in understanding the relations between algebra, logic and
topology outside the regular languages. So-called Stone spaces, which provide topo-
logical objects for arbitrary Boolean algebras are the foundation of the investigation.
Indeed, regarding Stone spaces provides a natural extension, since already in the case
of the regular languages, the topological perspective works on special instances of
Stone spaces. In particular, concepts like the syntactic monoid also are also derivable
from Stone duality. We start by explaining how algebra and topology unite in this
environment.

Based on that, the work is divided in two forks: One are the visibly pushdown
languages (VPL) – a class that is in many ways still relatively close to the regular
languages. We first establish the relationship to algebra by establishing adequate
algebraic recognising objects, so called Ext-algebras. In contrast to finite monoids,
those do not only have a binary operation that is the multiplication, but also an
additional unary operation, which mirrors the structure of VPL. In the following, we
prove an Eilenberg-like theorem, which establishes a one-to-one relationship between
pseudo-varieties of VPL and pseudo-varieties of Ext-algebras.

For VPL, the topological perspective is established in quite a similar way as for the
regular languages: Using Ext-algebras, we install a metric on a subset of all words.
The completion of the resulting metric space then turns out to be the Stone space of
the VPL, which again is an Ext-algebra.

On the elements of this space, we define the notion of profinite equations for Ext-
algebras. The notion enables us to relate sets of equations and pseudo-varieties
of Ext-algebras completing the Eilenberg-Reiterman-like triangle between algebra,
topology and languages (VPL). Concluding, we derive equations for a concrete
pseudo-variety of VPL and relate them to visibly counter languages.

The second fork is concerned with much more general classes of non-regular languages
and tries to establish a relationship to classes of languages defined by logic. Building
on the notion of typed monoids paired with so-called stamps, we define the notion
of typed stamps, for which we first stablish the basics such as language recognition
and syntactic typed stamps. Here also, we link the algebraic perspective with the
topological one through an Eilenberg-Reiterman-like relationship. In contrast to
VPL, the relationship cannot be obtained through completing a metric space, but
builds on projective limits. We further show, that the resulting topological objects
have close relationships to Stone spaces.

Lastly, those findings are used to define a block product first on typed stamps, which
has close relations to logic and to subsequently extend it to a block product on the
topological objects, preserving the relation to logic.

Preface

Acknowledgments

I would foremost like to thank my advisor Andreas Krebs, who got me interested
into the subject in the first place. I am especially grateful for his incredibly quick
intuition, which delivered fresh ideas and also enabled fluent high-level conversations
about the research. Secondly, I would like to thank my co-advisor Klaus-Jörn Lange
not only for the funding when I started, but also for his willingness to improve the
accessibility of the papers, for the prompt help whenever necessary and for tea.

Many thanks go to Mai Gehrke, who also enabled my various stays in Paris, for the
help in overcoming the barriers to entering the field of duality and for the fruitful
discussions. The papers [CK16] and [BCGK17] are a result of this collaboration.
In the course of my visits to Paris I also would like to thank Jean-Éric Pin for his
insights from various years of working on related subjects and Howard Straubing for
making the derived category theorem more accessible to me.

Next, I would like to thank all the people with whom I got to work with at the
University of Tübingen, including but not limited to: Michael Ludwig, Demen Güler,
Michaël Cadilhac, Charles Paperman, Sebastian Schöner, Ingo Skupin, Thomas
Stüber, . . . and those at the IRIF - especially Daniela Petrisan and Célia Borlido.

Last, but not least, I thank my family and friends for always having my back.

Chapter Notes

This thesis contains part of the research planned within the scope of the DFG-project
“Duality in Circuit Complexity”.

Chapter five contains results on topology and visibly pushdown languages, which
can be found in [CKL18].

Chapters six and seven are based on [BCGK17], which in essence defines transductions
and the block product on so-called Boolean spaces with internal monoids (BiMs),
using an Eilenberg-like theorem and drawing the connection to logic. We diverge
from the notions in there: Chapter four, for instance, contains a definition for the
classes of recognisers, that deviates from the one in the paper. This results in two
different Eilenberg-like theorems. The Reiterman-like theorem and the consideration

of equations are new and not contained in [BCGK17]. Thus, also chapter five is not
concerned with BiMs, but with other profinite objects (we do not require closure
under quotients of the Boolean algebras).

To my father

Immer strebe zum Ganzen,
und kannst du selber kein Ganzes werden,

als dienendes Glied
schließ an ein Ganzes dich an!

Johann Wolfgang von Goethe

Contents

1 Introduction 1

2 Notation and Terminology 7

3 Preliminaries 11
3.1 Algebra . 11

3.2 Logic on Words . 14

3.3 Metric Spaces and Topology . 17

3.4 Projective Limits . 26

4 Algebra Meets Topology 29
4.1 A Review of the Regular Languages 29

4.2 An Intuitive Approach to Stone Spaces 32

4.3 Stone Spaces . 37

4.4 Conclusion . 40

5 Visibly Pushdown Languages 43
5.1 Visibly Pushdown Automata . 43

5.2 VPL in Terms of Algebra . 46

5.3 An Eilenberg Theorem . 54

5.4 The Free Profinite Ext-algebra . 57

5.5 A Reiterman Theorem for VPL . 66

5.6 Concepts in Application . 68

5.7 Summary . 77

5.8 Further Research . 77

6 Typed Stamps and Projective Limits 79
6.1 Typed Stamps . 79

6.2 Streams of Typed Stamps . 87

6.3 Eilenberg for Streams of Typed Stamps 90

6.4 Projective Limits of Streams . 96

6.5 Properties of the Dense Pro-V Stamp 101

6.6 Concrete Dense Stamps Calculated 107

6.7 Equations and Typed Stamps . 109

6.8 Summary . 115

6.9 Further Research . 116

7 The Block Product: Finite and Pro-Finite 117
7.1 Typed Stamps and Decomposition in Logic 117
7.2 Substitution and Transduction on Streams 127
7.3 The Block Product on Dense Stamps 131
7.4 Summary . 137
7.5 Further Research . 138

8 Conclusion 139

Index 145

Bibliography 149

List of Figures

3.1 Cauchy Sequences . 19

4.1 Open Balls on the Free Monoid . 30
4.2 Projective System of the Free Profinite Monoid 31
4.3 Powerset Boolean Algebras and Atoms 34
4.4 Ultrafilters Illustrated . 36

5.1 Height of Well-Matched Words . 45
5.2 Operations on Well-Matched Words Illustrated 46
5.3 Syntactic Ext-algebra of the language {anbncmdm | n,m ∈ N}. 73
5.4 Syntactic Ext-algebra of the Ludwig language. 73
5.5 Syntactic Ext-Algebra of H+ . 74

1

Introduction

In order to solve a problem, it is important to be able to regard it from different
angles, for difficulties arising from one point of view may be solvable from a second
one and vice versa. It is thus that we consider the algebraic and topological treatment
of non-regular languages and the relations between the two subjects.

The algebraic investigation of languages has its origin in the regular languages is
often dated back to Kleene’s theorem [Kle56], relating regular expressions and finite
automata, which in their essence are algebraic objects. Another contribution which
strengthened the algebraic approach was the syntactic monoid, which was defined
1956 by Schützenberger [Sch56], but is also credited to Myhill and Nerode, for
instance in a paper by Rabin and Scott [RS59].

Those notions have led to a series of results on the regular languages.

Results Derived from Algebra

The notion of the syntactic monoid led, in 1964, to a decidable characterisation of
the star-free languages by Schützenberger [Sch64]: A language is star-free if and only
if its syntactic monoid has only trivial subgroups – a property that is verifiable by
an algorithm and thus implies decidability. Alternatively, the equation xω = xω+1

characterises the same property and is read as follows: for each element x in the
syntactic monoid of a star-free language, the idempotent xω it generates is equal to
xω · x. This also gives an algorithm for decidability. It should not stay unmentioned
that this class also has a logical characterisation by McNaughton and Papert [MP71]:
they were able to show that the star-free languages coincide with the languages
definable by first-order formulae with order-predicate. A few years earlier, Büchi
[Büc60], had uncovered the equality of languages describable in monadic second order
logic using the successor predicate and the regular languages.

A second instance, where the algebraic approach was put to use, are the quasi-

2

aperiodic languages. Quasi-aperiodicity is a property related rather to the syntactic
morphism, than to the syntactic monoid: A morphism φ : A∗ → M into a finite
monoid M is quasi-aperiodic if for each n ∈ N, φ(An) contains no non-trivial groups.
The languages recognised by those morphisms are precisely the regular languages
contained in the complexity class AC0 [BCST92]. For instance the language PARITY
does not have a quasi-aperiodic syntactic morphism and is thus not contained in
AC0, as was shown by probabilistic means in the pioneering work of [FSS84]. The
characterisation of the regular languages in AC0 in terms of morphisms was based
mainly on two other results: One stating that AC0 corresponds to languages definable
by first-order formulae with arbitrary predicates [Imm89, GL84] and one by Krohn
and Rhodes [KR65], who provided a decomposition theorem for finite monoids, using
the block product, which relates to the application of quantifiers in terms of logical
formulae. In terms of logic, the regular languages in AC0 correspond to languages
expressible by first-order formulae with regular predicates, which was an intermediate
result of [BCST92].

The previous two classes are showcase examples for how the algebraic approach has
improved our understanding of (subclasses of) the regular languages, but they are
by far not the only ones. For instance, Simon’s theorem [BS73] characterising the
locally testable languages in terms of algebra is also counted amongst one of the
considerably influential contributions.

An abstract characterisation of the relation between classes of finite monoids and
classes of regular languages was found by Eilenberg in his study of pseudo-varieties
[Eil76]. For instance, Schützenberger’s characterisation of the star-free languages or
Simon’s theorem fall under that general relationship. The case of the quasi-aperiodic
languages is a special one, since Eilenberg’s study relates rather to monoids than
to morphisms. The generalisation to so-called pseudo-varieties of stamps in [Str02]
provides a generalisation of Eilenberg’s theorem to classes of morphisms and classes
of languages, which includes the quasi-aperiodic languages.

Since then, there have been many attempts to generalising these findings to even
larger classes. An overview over the achievements of the algebraic approach on
classes of regular languages can be found, for instance, in [RS97]. From the rich
amount of results it is undeniable that algebra has been a central instrument in the
investigation of regular languages, in particular those with a relation to fragments
of logic – a relation that in its most general sense is covered by the block product.
Explanations of the phenomenon can be found in Straubing’s book [Str94] or the
survey of Tesson and Thérien [TT07]. It is in particular to be held responsible for
the many characterisations of regular languages inside circuit complexity classes,
which for instance also led to the characterisation of the regular languages in ACC0

as the languages recognisable by solvable groups [BT88].

It is due to that history of results that the algebraic approach is being extended
beyond the regular languages.

CHAPTER 1. INTRODUCTION 3

Leaving the Cage of Regularity

The notion of syntactic monoid also exists for non-regular languages, but it becomes
quickly evident that the classic sense of recognition is not enough to maintain
information about the languages, since the syntactic monoids of many non-regular
languages contain a free monoid, which allows to encode arbitrary languages. Thus,
concepts introducing additional structure were starting to be considered in the non-
regular case: For instance in [Sak76] by Sakarovitch, who proposed to consider the
syntactic monoid of a language and its syntactic image as a tuple.

A similar attempt to leave the regular languages was made in [KLR05], where an
infinite monoid is equipped with not only one set as in the definition of Sakarovitch,
but with a finite Boolean algebra of sets, the so-called typed monoids. There, the
complexity class TC0 was characterised in terms of typed monoids through the
definition of a block product on typed monoids. They were able to identify TC0 as
the class of languages recognised by iterated block products of typed monoids relying
on the integers equipped with the Boolean algebra generated by the positive integers.
Similar to the characterisations of regular language classes, this proof was based on a
relation between logic and the block product for typed monoids – a characterisation
which was exploited in subsequent papers, to draw a link to majority logic with two
variables and the smaller-predicate [BKR09] or more generally to two-variable logic
and the block product in [BKM13].

Independently of the previously mentioned typed monoids, Gehrke, Griegorieff and
Pin pursued a similar approach to contribute a notion of recognition through the
addition of an ingredient previously successfully employed on the regular languages,
namely topology. Before reviewing their work, we quickly summarise the impact of
topology on the investigation of language classes.

A (Very) Brief History of Topology and Equations

An early contribution that drew a connection between topology and Eilenberg’s
pseudo-varieties of finite monoids, was made by Reiterman [Rei82] (who generalised
a much earlier result by Birkhoff [Bir35]) in 1982. He discovered that each pseudo-
variety of finite monoids is uniquely determined by so-called profinite equations. For
instance, the class of all commutative finite monoids is determined by xy = yx and the
class of all aperiodic monoids by xω = xω+1, where this equation can be interpreted in
exactly the same way as the same equation already described in the part on algebra.
Formally, a profinite equation is an equality of two elements of the projective limit
of all finite monoids – the free profinite monoid, whose elements are called profinite
words. As such, a profinite equation defines a quotient of the free profinite monoid
and each pseudo-variety of monoids has an associated quotient. Those profinite
equations are particularly interesting, since in many cases, a characterisation through
profinite equations already comes with a built-in algorithm for decidability, since
equations, as in the case for xω = xω+1 can effectively be calculated on the syntactic
monoid of a language. For instance, see the survey of Pin [Pin12].

4

Although Reiterman’s theorem guarantees the existence of equations, it is not
necessarily clear how to obtain them. This problem was approached by Almeida and
Weil, using algebra – in particular the block product – in [AW95] where they gave
concrete characterisations of the quotients of the free profinite monoids corresponding
to pseudovarieties generated by block products of monoids. Later, through the derived
category theorem [Til87] (resp. the kernel theorem [RT89]) they also obtained
equations for pseudo-varieties built from block-products [AW98] and thus managed
a first step towards a constructive approach to obtain equations: Given the defining
equations of two pseudo-varieties V and W, they were able to characterise the
equations defining the block product of V and W.

An observation made by Almeida [Alm95] and Pippenger [Pip97] was, that the free
profinite monoid is just a special instance of a duality described by Stone [Sto36].
Stone uncovered that each Boolean algebra is isomorphic to a Boolean algebra
of subsets of certain topological spaces, namely Stone spaces, and Almeida and
Pippenger showed that the free profinite monoid was indeed the Stone space of the
regular languages. In particular Stone duality was one of the main ingredients in
the first paper by Gehrke, Grigorieff and Pin [GGP08], which via Stone duality
drew a direct connection between classes of languages and equations, instead of
doing the detour over finite monoids. In their paper from 2010 [GGP10], they used
the fact that Stone duality is not limited to Boolean algebras of regular languages,
introducing recognisers for arbitrary Boolean algebras of languages based on topology.
In particular, they showed that these recognisers form a monoid if and only if the
underlying Boolean algebra is regular and closed under quotients by words and
that each Boolean algebra of languages also is determined by a set of so-called
ultrafilter equations. A characterisation of a small class of non-regular languages
trough ultrafilter equations was found in [GKP16] and the decidability of the regular
languages therein was proven by translating the ultrafilter equations to profinite
equations through a projection.

Research Uniting Algebra and Topology

On the regular languages, algebra and topology are undoubtedly related and the
possibilities of translating back and forth between the perspective rather well explored.
Outside the regular languages, this connection is not as well-established.

An attempt to obtain ultrafilter equations in a structured way through means of
algebraic decomposition, as in [AW98], was made in [CK16]. This was done using
a translation of a restricted version of the block product for typed monoids on the
language side and resulted in equations for constant-size circuit classes. In [GPR16],
the notion of Boolean space with internal monoids was established obtaining a closer
relation between algebra and topology and the authors managed to derive equations
for the Schützenberger product, which also can be thought of as a restricted version
of the block product, that corresponds to the application of existential quantifiers
on the logic side. Those results were generalised slightly more in [GPR17]. A full
generalisation of the results of [AW95] was achieved in [BCGK17]. In merging the

CHAPTER 1. INTRODUCTION 5

notions of typed monoids, boolean spaces with internal monoids and stamps from
[Str02], it was possible to define a notion of block product which relates to logic and
to characterise its relation to the corresponding topological objects.

A second line of research relating algebra and topology, are forest algebras [BW08],
that are finite algebraic objects for the recognition of trees. There, profinite objects
based on finite forest algebras were considered in [Ali16].

It seems that regarding topological objects, such as Stone spaces, as a natural
extension of finite algebraic objects (for instance finite monoids) might be the key to
a better understanding of non-regular languages.

Structure and Results of the Thesis

The aim of this thesis is to strengthen the understanding of the interplay between
algebra and topology on non-regular languages.

It begins with a short overview over notation, to keep everything documented. After
that, we continue with the preliminaries, in which the necessary basics are reviewed,
such as finite monoids, language recognition and logic on words. An extended review
is dedicated to topology, since the concepts there are central to the thesis and readers
not entirely familiar with them may hopefully profit from it.

The next chapter then aims at clarifying the connections between algebra and
topology when concerned with languages: We first review the construction of the free
profinite monoid and regard it afterwards from the perspective of projective limits
of finite monoids. Leaving the regular languages, we continue with an explanation
for Stone Duality and in particular ultrafilters, since these concepts are – without
any intuition behind them – rather hard to grasp. Whenever it is adequate, we show
where the algebraic perspective plays a role.

Having motivated the most important concepts, we start to extend them to classes of
non-regular languages. The following chapter is concerned with the visibly pushdown
languages, for which we first identify adequate finite algebraic recognisers, extending
the findings of [AKMV05]. As a consequence, we obtain a syntactic object and an
Eilenberg-like theorem, establishing a connection between classes of visibly pushdown
languages and pseudo-varieties of finite algebraic objects. This lays out the necessary
algebraic framework, which enables us then to build the topological framework
on top of. In a similar way as for the regular languages, we define a metric over
the finite recognisers and complete the resulting space. This provides us with a
topological characterisation of the visibly pushdown languages, which we use to obtain
a Reiterman-like theorem, which in turn gives us a notion of equations. The final
section then uses this new notion of equations to give sound sets for two subclasses
of the visibly pushdown languages.

The following chapter now leaves the approach of examining finite algebraic recognisers
and rather uses possibly infinite algebraic objects equipped with a finite structure –
similar to typed monoids [KLR05]. We establish the notion of typed stamps, which
consist of a morphism, a possibly infinite monoid and a finite structure of sets on

6

that monoid. This particular design choice is made, since we are especially interested
in recognisers for certain classes described by fragments of logic. Again, we first
develop the necessary algebraic theory, such as syntactic objects and an Eilenberg-
like theorem providing one-to-one relations between classes of typed stamps and
classes of (arbitrary) non-regular languages. Out of these classes, we then build
a projective system and characterise its projective limit, which now lies in a new
category of recognisers – called dense stamps – generalising typed stamps. One
essential ingredient to this generalisation are Stone spaces, which now replace the
finite structure on typed stamps. We subsequently give a second representation of
the dense stamp which is the projective limit and show that it may also be obtained
purely from the corresponding class of languages. This in particular allows to switch
points of view from the language side to the algebraic side and vice versa, whenever
needed. We use it to develop a Reiterman-like theorem in which we show that each
of the classes of typed stamps is determined by a set of ultrafilter equations.

In the last chapter, we use the topological and algebraic theory developed for typed
stamps and dense stamps, in order to apply them to classes of languages defined by
fragments of logic. For that purpose, we consider the principles of transduction and
substitution (as in Tesson and Thérien [TT07]) and define an appropriate notion of
transduction for typed stamps, which relates to substitution on the logic side. We
then define the block product for typed stamps and via the transductions, prove
that the block product may be used to model variable bindings by quantifiers on
formulae describing languages. These findings are still restricted to single formulae
and respectively single typed stamps, instead of classes. Consequently in the next
section, we raise the notions of block product and substitution to classes of typed
stamps and classes of formulae. By a slight detour over profinite alphabets, we
are also able to show that the languages recognised by typed stamps in the block
product of two classes of typed stamps may be encoded via only one transduction on
a profinite alphabet, defined by a dense stamp. Finally, these notions allow us to
define a block product on dense stamps and, in particular, on the projective limits
of typed stamps – similar to Almeida and Weil for profinite monoids in [AW95] –
and prove that if V and W are classes of typed stamps and V�W is their block
product, then the block product of the dense stamps corresponding to V and W via
projective limits is (almost) equal to the dense stamp corresponding to V�W. This
implies that also the block product on dense stamps is related to logic.

2

Notation and Terminology

We assume the reader is familiar with the following concepts and review the notation
used throughout this document.

Sets

We denote by N the set of natural numbers including 0, by Z the set of integers and
by R the set of real numbers.

We denote the empty set by ∅ and further: union (∪), intersection (∩), comple-
mentation (c), set difference (\), subset (⊆), proper subset (() and membership
(∈).

Union, intersection and complementation are called Boolean operations.

If I is some set, then (Xi)i∈I is a family of sets indexed by I. Direct products of
sets are written as X × Y or if they are indexed by some set as

∏
i∈I Xi and their

elements respectively are tuples (x, y) ∈ X × Y or (xi)i∈I ∈
∏
i∈I Xi.

The powerset of a set X is denoted either by P(X) or by 2X .

Relations

An n-ary relation on a set X is a subset of Xn. If a relation is 1-ary it is called a
unary relation, 2-ary relations are called binary.

If R is a binary relation, we sometimes write it in infix notation, writing xRy instead
of (x, y) ∈ R. A binary relation R is

• reflexive if xRx,

• symmetrical if xRy implies yRx,

8

• transitive if xRy and yRz implies xRz,

• antisymmetric if xRy and yRx implies x = y.

Moreover, R is an equivalence relation, if it is reflexive, symmetrical and transitive
and R is a partial order, if R is reflexive, transitive and antisymmetric.

Functions

Let X,Y be sets. A function f from X to Y is denoted by f : X → Y and we use the
notation f(x) = y or x 7→ y, meaning that f sends x to y. The set of all functions
from X to Y is denoted by Y X .

Let f ∈ Y X . For A ⊆ X, the image of A under f is the set f(A) := {f(a) | a ∈ A}.
The set f(X) is called the image of f , X is called its domain and Y its co-domain.
The function g : A→ Y with g(x) = f(x) is called the restriction of f to A, whereas
the function h : X → f(X) with h(x) = f(x) is called the surjective co-restriction of
f .

Let B ⊆ Y , then f−1(B) := {x ∈ X | f(x) ∈ B}. The set f−1(B) is called the
preimage of B under f . The set {(x1, x2) ∈ X ×X | f(x1) = f(x2)} is called the
kernel of f .

Let Z be a set and g ∈ ZY . The composition of f and g is the function g ◦f : X → Z
and defined by (g◦f)(x) = g(f(x)). We say that g factors through f , if f(x1) = f(x2)
implies g(x1) = g(x2) for all x1, x2 ∈ X. If g factors trough f , then there exists a
function h : Y → Z such that g = h ◦ f .

We say that f is surjective (onto) if for each y ∈ Y there exists a x ∈ X with
f(x) = y, and that it is injective (one-to-one), if f(x) = f(y) implies x = y.

If X is a set and A ⊆ X, we denote by χA : X → {0, 1} the characteristic function
of A, that is

χA(x) =

{
1 if x ∈ A
0 otherwise.

The identity on X is denoted by idX : X → X.

The map πX : X × Y → X with πX(x, y) = x is called the projection on X. If
ι : Y → X is an injective map, then ι is called an embedding and if in addition
Y ⊆ X, then ι is called the inclusion of Y in X.

Comments on Terminology

Varieties: Observe that the term variety originally goes back to Birkhoff and
references structures closed under arbitrary direct products. All classes in this
document carrying the term variety in their name are either classes closed under
finite direct product or classes related to them through recognition. Thus, all those

CHAPTER 2. NOTATION AND TERMINOLOGY 9

are pseudo-varieties in the sense of Eilenberg. We commonly use bold letters, like
V for varieties of algebraic objects and italic letters, like V, for the corresponding
recognised classes of languages.

Equations: In the literature, one can find the terms equation and identity non-
uniformly used for either the same term or to distinguish the two with an equation
sometimes relating to closure under quotients by words. In this document, we use
the term equation and do not assume any additional properties.

Circuit Classes: Whenever we refer to circuit classes, we refer to their non-uniform
versions, that is: AC0 is the class of all constant depth, polynomial size circuits
with Boolean gates, whereas TC0 is the class of all constant depth, polynomial size
circuits with majority gates. In particular, AC0 corresponds to first-order logic
with arbitrary predicates and TC0 to first-order logic with majority quantifiers and
arbitrary predicates.

3

Preliminaries

While the following sections are not meant as a complete introduction to the subjects
at hand and proofs are mainly omitted, we try to present the most important aspects
in a coherent way, to keep this document self-contained. References to appropriate
literature for background-reading are provided at the start of each section.

3.1 Algebra

An in depth-treatment of the connections between algebra and languages can be
found in many books, we refer to Pin [Pin16] or Straubing [Str94]. For Boolean
algebras, we refer to [Alm95].

Monoids

Recall that a monoid is a tuple (M, ·), where M is a set, · : M ×M →M a binary
operation called the multiplication on M , which is associative and M has an identity
element, denoted by 1 or 1M , if it is not clear from the context, which satisfies
1 ·m = m · 1 = m for each m ∈M .

Unless it is necessary, we do not give the tuple and say that M is a monoid. The
size of a monoid is equal to the size of the set M and denoted by |M |.

For m ∈ M , we define inductively m0 = 1 and mk = mk−1 ·m. The element m is
called idempotent, if m2 = m. Recall that in a finite monoid M , for each m ∈ M
there exists a k ∈ N such that mk is idempotent. The element mk is called the
idempotent generated by m and denoted by mω. A monoid is called aperiodic, if for
each m ∈M , mω = mω ·m.

Moreover, if n ·m = m · n for all n,m ∈M , then M is called commutative.

12 3.1. ALGEBRA

If M is a monoid, N ⊆M some subset and m ∈M an element of M , then we let

m−1N = {x ∈M | m · x ∈ N} and m−1N = {x ∈M | x ·m ∈ N}

If M is finite, we often illustrate the multiplication in a table. For instance

· 0 1

0 0 0
1 0 1

reading x · y = T [x, y], where T is the table x marks the row and y the column. We
denote the monoid above by U1.

The monoid Zk = {0, . . . , k − 1} is equipped with the multiplication x · y = x + y
mod k.

Whenever not mentioned otherwise, we assume that both N and Z are equipped with
the usual addition and thus form monoids.

A monoid M is called free on the generators G ⊆ M , if each element in M has a
unique representation as a multiplication of elements of G. For instance N is the free
monoid on the generators {1}.

We call a finite set of symbols A an alphabet and denote the free monoid on generators
A by A∗. The elements of A∗ are called words and represented as concatenations
from A. The identity element of A∗ is denoted by λ and called the empty word.

For any w ∈ A∗, we denote by |w| the length of the word (that is the number of
letters in w), where |λ| = 0. Moreover, for a ∈ A, we let |w|a be the number of as in
w.

Morphisms

Let M,N be monoids. A morphism of monoids is a map ϕ : M → N satisfying
ϕ(x · y) = ϕ(x) · ϕ(y) for all x, y ∈M .

If A is an alphabet, then each function f : A→M extends uniquely to a morphism
f∗ : A∗ → M by letting f∗(a) = f(a) for each a ∈ A and inductively f∗(x · y) =
f∗(x) · f∗(y).

The monoid N is called a quotient of M , if it is the surjective morphic image of
M , that is if there exists a morphism ψ : M → N such that N is the image of ψ. If
N ⊆ M , then N is called a submonoid of M and finally, N divides M if N is the
quotient of a sub- of M .

If the domain of a morphism is the free monoid A∗, we often define it solely on the
generators of A∗. For instance, we let h : A∗ → N be the morphism sending any
letter to 1 or just (a 7→ 1)a∈A for the morphism mapping a word to its length.

CHAPTER 3. PRELIMINARIES 13

Congruences

A congruence on a monoid M is an equivalence relation ∼ on M , which satisfies for
all x, y,m, n ∈M : If m ∼ n, then also

xmy ∼ xny.

The set of all equivalence classes is denoted by M\∼. In particular, the multiplication
[m] · [n] = [m ·n] on M\∼ is well-defined and makes it a monoid with neutral element
[λ]. The projection π∼ sending each element of M to its equivalence class with
respect to ∼ is a monoid morphism. Hence each congruence defines a quotient of M .

Languages

A language over A∗ is a subset L ⊆ A∗. We say that L is recognised by a monoid M
if there exists a morphism ϕ : A∗ →M such that L = ϕ−1(ϕ(L)).

The syntactic congruence of a language L ⊆ A∗ is given by u ∼L v for u, v ∈ A∗ if
and only if for all x, y ∈ A∗

xuy ∈ L⇔ xvy ∈ L.

The syntactic monoid of L is M(L) := A∗\∼ and recognises L via the syntactic
morphism of L, denoted by ηL, which is the canonical projection.

3.1.1 Proposition Syntactic Monoid

A monoid M recognises a language L if and only if the syntactic monoid of L
divides M .

Observe that the syntactic monoid of L recognises v−1L (resp. Lv−1) for all v ∈ A∗.
Whenever C is a class of languages and for each v ∈ A∗, L ∈ C implies v−1L ∈ C and
Lv−1 ∈ C, then we say that C is closed under quotients by words.

The Block Product

The block product is a binary operation, which takes two monoids and generates a
new one out of them. This construction is particularly useful for languages which are
definable in some formalism of logic, since it is possible to model quantifier application
with the block product. This relation is, apart from [Str94], also summarised in the
survey of Tesson and Térien [TT07], which explains the relation of the block product
to logic and subsequent results (on the regular languages).

Let M,N be monoids. We denote the multiplication on M by + and on N by ·
(both need not be commutative, even if the notation with + suggests so). The block

14 3.2. LOGIC ON WORDS

product of M and N , denoted by M�N is the set (MN×N ×N) together with the
multiplication

(f1, n1) · (f1, n2) = (F, n1 · n2),

where f1, f2 ∈ MN×N and n1, n2 ∈ N and where F : N × N → M is the function
given by

F (n′1, n
′
2) = f1(n′1, n2n

′
2) + f2(n′1n1, n

′
2)

for n′1, n
′
2 ∈ N .

Boolean Algebras

A Boolean algebra is a set B with two binary operations ∨ and ∧ on B such that
(B,∨) (resp. (B,∧)) forms a commutative monoid with neutral element 0 (resp. 1)
and for all x, y, z ∈ B

• x∨ (y ∧ z) = (x∨ y)∧ (x∨ z) and x∧ (y ∨ z) = (x∧ y)∨ (x∧ z) (distributivity)

• there exists an ¬x ∈ B such that x ∨ ¬x = 1 and x ∧ ¬x = 0 (existence of
complements).

For instance, if X is a set, then P(X) with ∨ = ∪ and ∧ = ∩ is a Boolean algebra.
Moreover, the set {0, 1} with the operations

∨ 0 1

0 0 1
1 1 1

∧ 0 1

0 0 0
1 0 1

is called the two-element Boolean algebra.

Let B and C be Boolean algebras. A morphism of Boolean algebras is a map f : B → C
such that for all x, y ∈ B: f(x ∨ y) = f(x) ∨ f(y) and f(x ∧ y) = f(x) ∧ f(y). In
particular, any morphism of Boolean algebras satisfies f(0) = 0, f(1) = 1 and
f(¬x) = ¬f(x).

We say that C is a sub of B if C ⊆ B and a quotient of B if there exists a surjective
morphism f : B → C.

3.2 Logic on Words

Logic on words is used to describe properties of words or languages by sentences
in first and higher order logic. For instance the formula ∃ x Qa(x) is true if and
only if there is at least one position in a word containing an a and describes the
language A∗aA∗. We consider only the case of first-order logic, since it is sufficient
to understand the topics treated in this document. For a more in-depth presentation
of the subject, we refer again to [Str94] or [Pin16].

CHAPTER 3. PRELIMINARIES 15

We start by introducing syntax of first-order logic with informal semantics and
continue to define the semantics on words formally. Formulas are built from variables,
letter predicates, numerical predicates, quantifiers and Boolean connectives.

The symbols > and ⊥ also are formulas and stand for the proposition that is always
true (>) or respectively, always false (⊥).

Variables

Positions in words are referenced by variables. We commonly use the symbols
x, y, z, x0, x1, . . . , y0, y1, . . . , z0, z1, . . .

Variables in formulas are called free unless they are bound by a quantifier (see below).

Letter predicates

For a ∈ A, we denote letter predicates by Qa(x) and the predicate is true if and only
if the letter at position x is an a. Each letter predicate is a formula.

Numerical predicates

Numerical predicates are symbols with an arity k ∈ N. For instance, the numerical
predicate< has arity 2. Moreover, each k-ary numerical predicate symbol is associated
with a k-ary numerical relation, which in turn associates to each n ∈ N a subset
of {1, . . . , n}k. For instance, the relation associated to < sends each n to the set
{(i, j) | i, j ∈ {1, . . . , n} and i < j}.

If R denotes a predicate symbol of arity k, then R(x1, . . . , xk) is a formula.

For the sake of readability, we cease to differentiate between the symbol and the
numerical relation and assume that it is understood from the context. For instance let
n ∈ N. We write (i1, . . . , ik) ∈ R(n) meaning that the tuple (i1, . . . , ik) is contained
in the set associated to n by R.

Quantifiers

Let φ be a formula with a free variable x and let Q be a symbol for a quantifier,
then Q x φ(x) is a formula and we say the variable x is bound by Q. A formula with
no free variables is called a sentence. For instance ∃x Qa(x) is a sentence.

Boolean connectives

As usual, we denote by ∧ the logical and, by ∨ the logical or and by ¬ negation. If
φ and ψ are formulae, so are φ ∧ ψ, φ ∨ ψ and ¬φ.

Semantics

We already gave a sloppy interpretation of the semantics of formulae on words. For a
precise definition, we make use of so-called V-structures, which are defined inductively
as follows.

Let A be a finite alphabet and let n ∈ N. Moreover, for i = 1, . . . , n let wi ∈ A.

1. The word w = (w1, ∅) . . . (wn, ∅) is a ∅-structure.

16 3.2. LOGIC ON WORDS

2. If V is a finite set of first-order variables, w = (w1, S1) . . . (wn, Sn) with Sj ⊆ V
for j = 1, . . . , n is a V-structure and x /∈ V , then for each i = 1, . . . , n the word

wx=i := (w1, S1) . . . (wi, Si ∪ {x}) . . . (wn, Sn)

is a (V ∪ {x})-structure.

Observe that in a V-structure as above, the set V is the disjoint union of the sets Si.
We denote by A∗ ⊗ V the set of all V-structures over the alphabet A.

The semantics can now be defined inductively over the structure of formulae, if we
identify each word w ∈ A∗ with a ∅-structure.

Let φ be a formula and let V be the set of free variables occurring in φ. In addition,
let w be a V-structure. Then we say that w models φ and write w |= φ if

• φ = Qa(x) for some letter a, w = ux=i for some word u ∈ A∗ and ui = a.

• φ = R(x1, . . . , xk) where R is a k-ary numerical predicate, w = ux1=i1,...,xk=ik

for some word u ∈ A∗ and (i1, . . . , ik) ∈ R(|w|).

• φ = φ1 ∧ φ2 for some formulae φ1 and φ2 and both w |= φ1 and w |= φ2 hold.

• φ = φ1 ∨ φ2 for some formulae φ1 and φ2 and one of w |= φ1 or w |= φ2 holds.

• φ = ¬ψ for some formula ψ and w does not model ψ, also written w 6|= ψ.

To define the semantics of quantifiers on words, we use a simplification of monoidal
quantifiers used in [BIS88] or respectively group-quantifiers in [KLR05].

Let φ be a formula with a free variable x and let w be a V-structure, where x /∈ V,
then we let

[wx=i |= φ] =

{
1 if wx=i |= φ

0 otherwise.

Moreover let M be a monoid, T ⊆ M and δ : {0, 1} → M a map. Then we define
the quantifier QT,δ such that w |= QT,δ x φ(x) if and only if

δ([wx=1 |= φ]) · δ([wx=2 |= φ]) · . . . · δ([wx=|w| |= φ]) ∈ T.

We define the following quantifiers:

• The existential quantifier ∃ stands for Q{1},δ, where δ : {0, 1} → U1 maps 0 to
0 and 1 to 1.

• The for-all quantifier ∀ is given dually by ∀ x φ(x) = ¬∃ x ¬φ(x).

• The majority quantifier Maj stands for QT,δ where T = {n ∈ Z | n > 0} and
δ : {0, 1} → Z maps 0 to −1 and 1 to 1.

CHAPTER 3. PRELIMINARIES 17

The language defined by a formula φ over the alphabet A with free variables V, is
the set

Lφ = {w ∈ A∗ ⊗ V | w |= φ}.

If Q is a set of quantifiers and P a set of numerical predicates, then Q[P] denotes the
set of all sentences built from quantifiers from Q and predicates from P . For instance
N denotes the set of all numerical predicates and FO the set of quantifiers {∃, ∀}
hence FO[N] is the set of all formulae using ∃ and ∀ quantification and arbitrary
numerical predicates. The set Maj[N] uses only Maj quantification. It was shown in
[Lan04] that FO+Maj[N] = Maj[N].

3.3 Metric Spaces and Topology

Since topology is one of the key ingredients in this document, we dedicate an extended
review to the basic notions. A condensed overview can also be found in [Pin16]. As
for more detailed reading, there is a huge amount of books available on topology.
In particular one by Eilenberg and Steenrod [ES52], which is probably one of the
closest to the subjects of this document.

Metric Spaces

Metric spaces are a special instance of topological spaces, which will be treated later
in that section. A metric space comes with a notion of distance, called a metric, that
generalises the common notion of distance in three-dimensional space.

3.3.1 Definition Metric, Metric Space

Let X be a set. A metric on X is a map d : X × X → [0,∞) satisfying the
properties that

1. d is positive definite: ∀ x, y ∈ X : d(x, y) = 0⇔ x = y.

2. d is symmetric: ∀ x, y ∈ X : d(x, y) = d(y, x).

3. d satisfies the triangle inequality: ∀ x, y, z ∈ X : d(x, z) ≤ d(x, y)+d(y, z).

The set X together with a metric is a metric space, denoted by (X, d).

If the metric on X is understood, we omit giving the tuple (X, d) and say that X is
a metric space. Otherwise, if both X and Y are metric spaces, we commonly denote
the metric on X by dX and the metric on Y by dY , respectively.

In the rest of the subsection, we assume that X and Y always denote metric spaces.

Examples of metric spaces are:

18 3.3. METRIC SPACES AND TOPOLOGY

• Any set X together with the discrete metric given by

d(x, y) =

{
0 if x = y,

1 otherwise.

• The real numbers R together with the map

d(x, y) = |x− y|.

• If ((Xi, di))
n
i=1 is a (finite) family of metric spaces, then the product metric on

X1 × · · · ×Xn is the metric given by

d(x, y) =
n

max
i=1
{di(x, y)},

making X1 × · · · ×Xn a metric space.

Unless stated otherwise, finite spaces are always assumed to be equipped with the
discrete metric and products always with the product metric.

Sequences are of special importance to metric spaces, in particular those that cluster
around some point or in an area.

3.3.2 Definition Convergence

Let (xn)n∈N be a sequence of points in a metric space X. We say that the
sequence (xn)n∈N converges to a point x ∈ X, if

∀ ε > 0 ∃ n0 ∈ N ∀ n ≥ n0 : d(xn, x) < ε

We say that x is the limit of the sequence (xn)n∈N and write limn→∞ xn = x.

Convergent sequences can be thought of as series of points that get arbitrarily close
to some point in the space and it will often be convenient to describe a point in a
metric space as the limit of some sequence.

3.3.3 Definition Cauchy sequence

A sequence (xn)n∈N in a metric space is a Cauchy sequence, if

∀ ε > 0 ∃ N ∈ N ∀ n,m ≥ N : d(xn, xm) < ε.

Figure 3.1 displays a graphical representation of two Cauchy sequences. Intuitively
speaking, Cauchy sequences are sequences whose points get arbitrarily close, clustering
around some (possibly non-existent and thus more or less imaginary) point.

Observe that every convergent sequence is a Cauchy sequence, but the converse does
not hold in general, as this example illustrates:

CHAPTER 3. PRELIMINARIES 19

ε1 ε2

ε1

ε2

Figure 3.1: The illustration on the left shows the one-dimensional sequence 1
n , where

the ranges ε1 (resp. ε2) indicate the points that have distance ε1 (resp. ε2) to zero. The
illustration on the right shows the sequence (x · cos(x), x · sin(x)), which is Cauchy with
respect to the usual metric on R2.

If we consider the rational numbers Q together with the metric d(x, y) = |x − y|,
then the sequence ((

1 +
1

n

)n)
n∈N

is Cauchy, but does not converge. It does converge in R, however, to Euler’s number
e.

Metric spaces that have the property that every Cauchy sequence converges, are
called complete metric spaces.

An example of a metric space that is not complete are, as the last example indicated,
the rational numbers Q, though the real numbers R, are complete.

The Completion of a Metric Space

In fact, for each metric space X, there exists a complete metric space X̂ that “contains”
X as a metric space. This space is called the completion of X. Before we can treat
it in detail, we need some terminology.

Let X and Y be two metric spaces. An isometry is a map φ : X → Y , such that for
all u, v ∈ X

dX(u, v) = dY (φ(u), φ(v))

Each isometry is automatically injective. Observe that if we are given an isometry
from X to Y , this can be interpreted as X embedding into Y as a metric space. If
an isometry is also surjective, we say it is an isometric isomorphism.

Let D ⊆ X. We say that D is dense in X, if for each x ∈ X, there exists a sequence
(xn)n∈N in D that converges to x.

20 3.3. METRIC SPACES AND TOPOLOGY

3.3.4 Proposition

Let X be a metric space. Then there exists a complete metric space X̂ and an
isometry ι : X → X̂ such that ι(X) is dense in X̂.
The space X̂ is uniquely determined up to isometric isomorphism, that is: If
Y is a complete metric space and ιY : X → Y an isometry such that ιY (X) is
dense in Y , then there exists a unique isometric isomorphism α : X̂ → Y such
that the diagram

X X̂

Y

ι

ιY
α

commutes. The space X̂ is a completion of X.

The property that makes X̂ uniquely determined up isometric isomorphism is also
called the universal property of the completion.

Construction of the Completion

There is a canonical way to construct the completion, which we sketch below. In a
sloppy way, we can say that every point of the completion is the limit of a Cauchy
sequence in X. We do not include a full proof, but give a short overview over the
basic ideas behind the construction, since some of them will be used in later chapters.

Let (xn)n∈N and (yn)n∈N be two Cauchy sequences in X. We say that (xn)n∈N and
(yn)n∈N are equivalent, if the sequence

x0, y0, x1, y1, . . .

is also a Cauchy sequence and write (xn)n∈N ∼ (yn)n∈N.

Observe that this is equivalent to the sequence (d(xn, yn))n∈N converging to zero in
[0,∞) ⊆ R.

We denote by cf(X) the set of all Cauchy sequences on X and define X̂ to be the
set of all equivalence classes of cf(X) with respect to ∼. If (xn)n∈N is a Cauchy
sequence, to avoid a mess of brackets, we denote by [xn] its equivalence class.

The map d̂ : X̂ × X̂ → [0,∞) defined by

d̂(([xn], [yn]) = lim
n→∞

d(xn, yn)

then is a metric on X̂.

Proof Sketch: It is not straight-forward that the limit on the right hand side of the
definition exists. This is a consequence of some considerations on Cauchy sequences

CHAPTER 3. PRELIMINARIES 21

and the fact that R is a complete space. That d̂ is independent from the choice
of representatives follows directly from the triangle inequality of d and that d̂ is a
metric from d being a metric.

Hence, X̂ together with the metric d̂ is a metric space.

3.3.5 Proposition

The space X̂ is complete.

Proof Sketch: Again, this is not trivial to show, but the general idea is to consider
a Cauchy sequence ([xn]k)k∈N of equivalence classes of sequences which, without loss
of generality, satisfies some properties we omit due to their technicality. Then, one
can prove that the equivalence class of the sequence given by yj = xjj is indeed the
limit of the above Cauchy sequence.

3.3.6 Proposition

Let x ∈ X and (xn)n∈N be the constant Cauchy sequence given by xn = x for
each n ∈ N. Then the map

φ : X → X̂

x 7→ [xn]

is an isometry and φ(X) is dense in X̂.

Since in this case, the proof is short, we give it explicitly.

That φ is an isometry follows from

d̂(φ(x), φ(y)) = lim
n→∞

d(xn, yn) = d(x, y).

To see that φ(X) is dense, pick [xn] ∈ X̂ and ε > 0. Then there exists an n0 ∈ N
such that for all n,m ≥ n0 we have d(xn, xm) < ε

2 and hence

d̂(φ(xn0), [xn]) = lim
n→∞

d(xn0 , xn) ≤ ε

2
< ε

Hence, the given construction fulfills all requirements of Proposition 3.3.4 and is a
completion of X.

In particular, any sequence that is ultimately equal to some element x, that is xn = x
for all n ≥ n0 for some n0, is in the same equivalence class as φ(x).

Continuity

Continuity is one important aspect of topology. The continuous functions are
those that behave sufficiently well, to prove general statements, while most of these

22 3.3. METRIC SPACES AND TOPOLOGY

statements are either wrong in general for non-continuous functions or extremely
hard to prove.

3.3.7 Definition Continuity

A function f : X → Y between metric spaces is continuous, if for each convergent
sequence (xn)n∈N,

f
(

lim
n→∞

xn

)
= lim

n→∞
f(xn).

Hence continuous functions are precisely those that preserve limits.

An equivalent characterisation that is also often used as a definition for continuity,
since it is easier to work with, yet less intuitive, is the following.

3.3.8 Proposition

A function f : X → Y between metric spaces is continuous, if and only if for all
x, y ∈ X and all ε > 0, there exists a δ > 0 such that

d(x, y) < δ ⇒ d(f(x), f(y)) < ε

A slightly stronger property is uniform continuity.

3.3.9 Definition Uniform continuity

A function f : X → Y between metric spaces is uniformly continuous, if for all
ε > 0, there exists a δ > 0 such that for all x, y ∈ X

d(x, y) < δ ⇒ d(f(x), f(y)) < ε

It is clear that uniform continuity implies continuity. That the converse direction is
generally wrong becomes evident, when we verify that the function f : (0,∞)→ (0,∞)
given by f(x) = 1

x is continuous but not uniformly continuous.

We will often use that d(f(x), f(y)) ≤ d(x, y) implies uniform continuity.

The following Corollary is a consequence of the universal property of the completion.

3.3.10 Corollary

If Y is a complete metric space and f : X → Y is a uniformly continuous function,
then there exists a unique uniformly continuous function f̂ : X̂ → Y that extends
f . In particular, if E and F are metric spaces, then any uniformly continuous
function g : E → F extends to a unique uniformly continuous function ĝ : Ê → F̂ .

Thus, it is for complete metric spaces often natural to consider uniformly continuous
functions.

CHAPTER 3. PRELIMINARIES 23

Metric Topology

This subsection is primarily to be seen as a motivation and guideline for the following
part on general topology and to illustrate how general topology is an extension of
metric spaces. Some of the properties here will be found later on as definitions for
the same notions extended to topological spaces.

Let r > 0 and x ∈ X, then the set

Br(x) = {y ∈ X | d(x, y) < r}

is called the open ball of radius r centered at x.

A subset U ⊆ X is called open, if for each x ∈ U , there exists an r > 0 such that

Br(x) ⊆ U.

With these definitions, one can show that each open ball of radius r is an open set
and the open sets of X are precisely the unions of open balls.

3.3.11 Proposition

Let Ω be the set of all open sets of X, then

1. ∅, X ∈ Ω

2. if U, V ∈ Ω, then so is U ∩ V

3. if I is some index set and Ai ∈ Ω for each i ∈ I, then the union of all Ai is
also contained in Ω.

To summarise, the open sets of a metric space are closed under finite intersections
and arbitrary unions.

Also continuous functions are determined by their behaviour on open sets:

3.3.12 Proposition

A function between metric spaces f : X → Y is continuous if and only if preimages
of open sets are open, that is: If U is open in Y , then f−1(U) is open in X.

General Topology

We will try to link the definitions from general topology with those of metric topology
to highlight where they connect and to provide examples.

24 3.3. METRIC SPACES AND TOPOLOGY

3.3.13 Definition Topology, Topological Space

Let X be a set. A topology Ω on X is a subset of P(X) whose elements are
called open sets and which

1. contains ∅ and X,

2. is closed under finite intersections and

3. is closed under arbitrary unions.

The set X together with Ω is called a topological space and written (X,Ω).

We assume from now on that X is a topological space and omit mentioning the
topology Ω explicitly, whenever it is not necessary.

Examples of topologies are:

• The discrete topology, which is the full powerset of X. That is, every set is
open.

• The trivial topology, in which only ∅ and X are open.

• The co-finite topology which consists of all sets that are either the empty set or
have finite complement.

Observe that the axioms of a topology are satisfied by the open sets of a metric space
(see Proposition 3.3.11) and hence every metric induces a topology, which contains
precisely the unions of open balls.

We say that a topology Ω on X is generated by some family of subsets G ⊆ P(X) if
Ω is the smallest topology containing G.

A set B of subsets of X with the property that each element of Ω is a union of
arbitrarily many elements of B is called a basis for the topology Ω, if

Hence, the open balls of a metric space form a basis of the topology induced by the
metric.

We consider topologies on products and subsets:

Let (Xi)i∈I be a family of topological spaces. Then their product
∏
i∈I Xi is equipped

with the topology generated by the sets
∏
i∈I Ki, where F ⊆ I is a finite set and Ki

is some open set in Xi, if i ∈ F and otherwise Ki equals Xi. Observe that these sets
form a basis. This topology is called the product topology.

If (Xi)i∈I is a finite family of metric spaces, then the topology induced by the product
metric is precisely the product topology of the topologies on the factors.

If X is a topological space and Y ⊆ X a subset, then Y is equipped with the subset
topology, which is generated by all sets K ∩ Y , where K is open in X.

CHAPTER 3. PRELIMINARIES 25

Important Terms

We list some further terms that are necessary for the topics covered later on:

3.3.14 Definition Closed and Clopen Sets

A set subset C of a topological space is called closed , if its complement in X is
open. If both C and its complement are closed (respectively open), C is called
clopen.

For instance, if X is a metric space, r > 0 and x ∈ X, then the set

Br(x) = {y ∈ X | d(x, y) ≤ r}

is closed.

In general, if A is some subset of a topological space, we denote by A the smallest
closed set containing A – which exists since closed sets are closed under arbitrary
intersections – and call it the topological closure of A.

It is not too hard to see that, Br(x) contains for each converging sequence in Br(x)
also its limit point. This in fact holds for every closed set of a metric space: A
subset C of a metric space X is closed if and only if for every converging subsequence
(xn)n∈N in C, the limit of (xn)n∈N is also contained in C.

Generalising the term dense subset from metric spaces, we say that a subset D of a
topological space X is dense in X if and only if D = X.

3.3.15 Definition Zero-Dimensional

A topological space is called zero-dimensional if it has a basis of clopens, that is
each open set is a union of clopen sets.

For instance, any discrete space is zero-dimensional.

3.3.16 Definition Hausdorff

A topological space X is called hausdorff, if for each two points x, y ∈ X, there
exist disjoint open sets Ox and Oy such that x ∈ Ox and y ∈ Oy.

It is not too hard to see that any two points x, y of a metric space can be separated
by open balls of radius d(x,y)

2 and hence every metric space X is hausdorff.

A topology that is not hausdorff is the co-finite topology on N, since no two sets in
the topology have non-empty intersection.

Similar to the notion of topology itself, where the properties of open sets in a metric
space form the definition of a topology, what was a conclusion about continuous
functions in metric spaces is now definition for topological spaces.

26 3.4. PROJECTIVE LIMITS

3.3.17 Definition Continuity

A function f : X → Y between topological spaces is called continuous, if preim-
ages of open sets are open.

A fact that we will frequently use is the following:

3.3.18 Proposition

If X and Y are topological spaces, Y is hausdorff and D is a dense subset of
X, then any continuous function f : D → Y has a unique continuous extension
f : X → Y .

The next definition is to topological spaces, what continuity is to functions: Compact
spaces provide nice-to-have properties, which simplify proofs and which non-compact
spaces do not have in general. It is also often argued that compact spaces are “the
next best thing to finite spaces”, since many propositions about functions on finite
spaces are true for continuous functions on compact spaces, such as: A continuous
function into a compact space has a minimum and maximum.

3.3.19 Definition Compact

A subset K of a topological space X is called compact, if for each collection of
open sets (Oi)i∈I with K ⊆ ∪i∈IOi, there exists a finite set F ⊆ I such that
K ⊆ ∪i∈FOi.

For instance, each finite space with the discrete topology is compact and any infinite
space with the discrete topology is not compact.

One beautiful aspect also is the possibility to translate from “local” to “global”
properties. If a property of sets is preserved by finite unions, then it suffices to show
that each point in the space has some open neighbourhood with that property, to
show that the whole space has the property.

3.4 Projective Limits

Projective limits occur, for instance, in algebraic number theory: The p-adic numbers
are a projective limit of finite groups. In later chapters, we are also going to
investigate algebraic properties through projective limits. For background reading,
we refer to [ES52] or [Alm95]. In order to define the notion properly, we need some
category-theoretic terminology.

Categories

Recall that a category C consists of a class of objects Obj(C) and a class of morphisms
Hom(C), which are maps between objects of C. Each morphism has a domain and a

CHAPTER 3. PRELIMINARIES 27

co-domain in Obj(C) and we write f : X → Y for a morphism with domain X and
co-domain Y .

Moreover, C admits for a composition of morphisms ◦, such that if f : X → Y and
g : Y → Z are morphisms, then g ◦ f : X → Z is a morphism. Additionally, ◦ is
associative and for each object X, there exists an identity morphism 1X : X → X
which behaves like a neutral element with respect to composition of morphisms.

Partially ordered sets

Recall that a partial order over a set I is a binary relation ≤ on I, that is reflexive,
antisymmetric and transitive. A set I together with a partial order is called partially
ordered set (or poset) . A poset I is directed , if any two elements of I have a common
upper bound, that is for all i, j ∈ I there exists an s ∈ I such that i ≤ s and j ≤ s.

For instance, the set of all finite monoids with division is a directed poset and a
common upper bound of two finite monoids is their product.

Projective Systems and Limits

Let C be a category, I a directed poset and let (Ai)i∈I be a family of objects in C
indexed by I. For each ordered pair i ≤ j, let fij : Aj → Ai be a morphism in C.
The collection (Ai)i∈I together with the morphisms fij is called a projective system,
if it satisfies the following properties:

• For each i ∈ I, the morphism fii : Ai → Ai is the identity on Ai.

• For all i, j, k ∈ I with i ≤ j ≤ k, we have fik = fij ◦ fjk.

Since it is often the case that the family of objects and the directed poset I are
identical, we often say that some directed poset forms a projective system.

Projective systems are also known under the name of inverse limit systems, inverse
systems or cofiltered diagrams. The projective limit (also inverse limit or cofiltered
limit) of a projective system F with objects (Ai)i∈I and morphisms fij , is denoted by
lim←−F and comes with maps πi : lim←−F → Ai that are compatible with the morphisms
fij , that is πj = fji ◦ πi. It is defined by the following universal property:

For each Y with morphisms (ρ)i∈I and ρi : Y → Ai there exists a unique morphism
θ, such that the diagram

28 3.4. PROJECTIVE LIMITS

lim←−F

Y

Aj Ai

πiπj

fij

ρj ρi!θ

commutes. If C is a concrete category, that is a category in which the objects are
essentially sets with additional structure, and in which the infinite product exists, the
inverse limit is the subset (respectively subalgebra) of the product of all Ai, given by

lim←−F =

{
(xi)i∈I ∈

∏
i∈I

Ai

∣∣∣∣∣ ∀ i ≤ j, fij(xj) = xi

}
.

Observe that the projective limit of a projective system in some category is not
necessarily an object in the same category. For instance, the projective limit of the
finite monoids

Si = {1, a, . . . , ai}

with the multiplication an · am = amin{n+m,i} and connection morphisms

fij : Sj → Si

an 7→ amin{n,i}

is the set {a}∗ ∪ {0}, which is not a finite monoid.

If F is a projective system of topological spaces (Ai)i∈I , then the projective limit, as
a subspace of the product

∏
i∈I Ai is equipped with the subspace topology, whereas

the product is as usual equipped with the product topology.

4

Algebra Meets Topology

This chapter is meant as a review on how both algebra and topology are known to
interact on the regular languages and where these results fit into a larger framework,
namely Stone Duality.

4.1 A Review of the Regular Languages

Probably the prime example where algebra and topology are tied together is the
free profinite monoid. We are going to present two possible constructions of the
free profinite monoid: as the completion of a metric and as the projective limit of
finite monoids. For more in-depth reading on the first, we refer to [Pin16] and on
the second to [Alm95].

Recall that the free profinite monoid is the completion of A∗ with respect to a metric
that intrinsically relies on algebra, that is:

A finite monoid M separates two words u, v ∈ A∗, if there exists a morphism
ϕ : A∗ →M such that ϕ(u) 6= ϕ(v). Then, we define

r(u, v) = min{|M | |M is a finite monoid separating u and v}

and the metric on A∗ is given by d(u, v) = 2−r(u,v).

That the topology induced by that metric also keeps algebraic information is illus-
trated in Figure 4.1: Words that cannot be separated by a monoid of size 2 – and thus
have distance less than 1

4 – are indicated in the same color. Since the only monoids
of size two are U1 and Z2, one can observe the change in parity when exchanging one
letter, that Z2 contributes. The two words that are separated by U1 are the ones
consisting of all as or all bs.

30 4.1. A REVIEW OF THE REGULAR LANGUAGES

aaaa aaba

aaab aabb

abaa abba

abab abbb

baaa baba

baab babb

bbaa bbba

bbab bbbb

Figure 4.1: Words of length four that cannot be separated by a monoid of size 2 and
thus have a distance smaller than 2−2 are indicated in the same color.

Recall the topology induced by the metric d is discrete, since if we let u ∈ A∗ and
n ∈ N be the size of the syntactic monoid of {u}, then the open ball of radius 2−n

around u is equal to {u}.

Its completion, the free profinite monoid, however, is not discrete. Elements of the
free profinite monoid also carry algebraic information. For instance, for x ∈ A∗, the
limit of the sequence xn!,

xω = lim
n→∞

xn!

can be thought of as an idempotent in a finite monoid for the following reason: Each
map ϕ : A→ M into a finite monoid M extends uniquely to a continuous monoid
morphism ϕ̂ : Â∗ → M , which maps the limit of xn! to the limit of the sequence
ϕ̂(x)n! in M . Since this sequence is ultimately equal to some idempotent e of M and
M is discrete, the limit of the sequence is also equal to e.

For instance, if

ϕ : A∗ → Z2

w 7→ |w| mod 2

then ϕ̂(xω) = 0 for any x ∈ A∗, since 0 is the only idempotent in Z2.

If m is an element of an aperiodic monoid and mω is the idempotent generated by
m, then mω ·m = mω. This intuitively explains the characterisation of the aperiodic
monoids through the equality

xω = xω+1

where xω+1 := x · xω = xω · x.

Beside the characterisation of the free profinite monoid as the completion of a metric
space, there is a second and less frequently mentioned one. This connection does
not only explain the name of the object, but also opens up a second perspective,

CHAPTER 4. ALGEBRA MEETS TOPOLOGY 31

why topology and algebra interact so closely on it: The free profinite monoid is the
projective limit of a projective system over finite monoids.

Projective Limits and Topology

We review the construction of the free profinite monoid briefly. In order to build the
projective system for the free profinite monoid, we consider so-called A-generated
monoids.

An A-generated monoid is a map µ : A→M into a monoid M such that µ∗ : A∗ →M
is surjective. A morphism from µ : A→ M to the A-generated monoid ν : A→ N
is a (unique) map ψ : M → N , such that (ψ ◦ µ) = ν. Observe that this induces a
partial order on the set of all A-generated monoids by letting ν ≤ µ if and only if
there exists a morphism of A-generated monoids from µ to ν.

We let I be the poset of all finite A-generated monoids, that is those, where the
co-domain of the maps is a finite monoid. Observe that I is a directed poset, where
the common upper bound of µ and ν is the product map sending w to (µ(w), ν(w)).

To each µ ∈ I, we associate a finite monoid Mµ that is the co-domain of µ.

The collection (Mµ)µ∈I forms a projective system, where for any ν ≤ µ, the connection
morphism fνµ : Mµ →Mν is equal to the morphism of monoids induced by the unique
morphism of A-generated monoids ψ from µ to ν.

A∗ Mµ

Mν

. . .

µ

fνµν

Figure 4.2: Part of the projective system visualised, where . . . may be replaced by
any finite A-generated monoid larger than Mµ and Mν or by the projective limit.

In the category of (possibly infinite) monoids the projective limit of the projective
system (Mµ)µ∈I is the submonoid of the direct product of all Mµ

X := lim←−
µ∈I

Mµ =

(xµ)µ∈I ∈
∏
µ∈I

Mµ

∣∣∣∣∣∣ ∀ν, µ ∈ I with ν ≤ µ : fνµ(xµ) = xν

 .

The monoid X contains A∗ via the morphism ι sending x to (µ(x))µ∈I , which is
injective, but not surjective: For instance, for any x ∈ A∗ let xω be the element of
X such that the projection πµ(xω) equals the unique idempotent generated by µ(x).
This element is not in the image of A∗, since for any x ∈ A+, there exists a finite
A-generated monoid µ, such that µ(x) is not idempotent.

32 4.2. AN INTUITIVE APPROACH TO STONE SPACES

From an intuitive point of view, the definition of xω on X is somewhat compatible
with the topological one, as both relate to idempotents. This is no coincidence:

Recall that each finite monoid also may be seen as a discrete topological space and
X has the subspace topology of the product topology. Then, the sequence ι(xn!)
converges to xω ∈ X.

It also follows that the projections πµ : X →Mµ are continuous, and hence any set
of the form π−1

µ (K) with K ⊆Mµ is clopen. In particular on may prove that

π−1
µ (K) = ι(µ∗−1(K)),

since A∗ is dense in X. This observation serves as an intuitive explanation, that the
closures of languages recognised by finite monoids are precisely the clopen sets:

4.1.1 Proposition

Let L ⊆ A∗, then L is regular if and only if L ⊆ X is clopen, where L identifies
the closure of ι(L).

The observation made by Pippenger [Pip97] and Almeida [Alm95] places this fact
about the clopens of the free profinite monoid in a wider context: The free profinite
monoid is the Stone space of the regular languages.

Stone spaces are compact, hausdorff and zero-dimensional spaces – properties one
may verify the free profinite monoid satisfies. In particular, each Boolean algebra
has an associated Stone space.

Since Stone spaces exist for arbitrary Boolean algebras, not only regular ones, they
may well be a key to the better understanding of classes of non-regular languages.

4.2 An Intuitive Approach to Stone Spaces

While readers familiar with Stone duality might want to skip this short interlude, we
hope that the intuitive point of view provides help in grasping the technicalities of
the definitions in the following sections. For a more in-depth presentation, we refer
to [Joh86] or for a presentation condensed to the aspects important to us to [Geh11].

For an introduction, consider the following simple hypothetical situation:

Suppose you were asked whether the powerset Boolean algebra of {1, 2, . . . , 25}
contained the element {2, 23}. Without even thinking (much), your answer would
be “yes” and you would very likely have given it without having considered all 225

elements of the powerset of {1, 2, . . . , 25} beforehand.

Of course, this observation is rather trivial, but it is an application of Stone duality.
It is simple to give the answer to the question above, because we know the atomic
elements the Boolean algebra is made of, which in this example are the singletons, of
which we only need to consider 25, instead of 225 elements of the Boolean algebra.

CHAPTER 4. ALGEBRA MEETS TOPOLOGY 33

This explains the core idea behind Stone duality pretty well: It reduces a Boolean
algebra to its so-to-say building blocks and allows us to answer questions, such as
whether some set belongs to the Boolean algebra, more easily.

In computer science and specifically complexity theory whether some language
belongs to some Boolean algebra of languages is a question frequently asked, but
those Boolean algebras are in general much more complicated than Boolean algebras
which are finite powersets and it is unclear, if atomic elements even exists. The
regular languages, for instance, are not even isomorphic to some powerset algebra.
This can easily be seen, when recalling that each powerset of a finite set is finite, but
of an infinite set is automatically uncountable. The regular languages, however, are
a countable Boolean algebra.

Even worse, there also are Boolean algebras that are uncountable and not isomorphic
to a powerset Boolean algebra – for instance the class of languages recognised by
formulas in FO[N]. That it is uncountable follows from the fact that there are
uncountably many numerical predicates. One may verify that it is not isomorphic to
a powerset Boolean algebra on the facts that it contains every singleton language
but does not contain the language Parity.

We will now try to explain how Stone duality handles arbitrary Boolean algebras
and can be seen as a way of identifying and examining the atomic elements of said
Boolean algebras, starting from finite (powerset) Boolean algebras going to arbitrary
ones.

Discrete Stone Duality

Recall that we use the notation borrowed from lattice theory: ∨ for meet, ∧ for join
and ¬ for complement. The greatest element of the Boolean algebra is denoted by 1
and the least element by 0. The choice of notation is to avoid confusion that the
presented concepts are only viable for Boolean algebras of sets. However, due to
Stones representation theorem, which states that every Boolean algebra is isomorphic
to one of clopen sets, it is sufficient to think of Boolean algebras of sets, replacing ∨
by ∪, ∧ by ∩ and ¬ by c.

In the following, let B be a finite Boolean algebra.

4.2.1 Definition

An element x ∈ B is called an atom, if x 6= 0 and x = y ∨ z for y, z ∈ B implies
y = x or z = x.

For instance, if X is a finite set, then the atoms of P(X) are the singletons and the
set of atoms is thus isomorphic to X.

Atoms exist in every finite Boolean algebra: In particular, an element x is an atom if
and only if it is not the zero element and for each y ∈ B, either x ≤ y or x and y are
disjoint, that is x ∧ y = 0. This implies that any two atoms x, y are disjoint.

34 4.2. AN INTUITIVE APPROACH TO STONE SPACES

Observing that every finite Boolean algebra is generated by its atoms, we obtain the
even more general statement, as illustrated on an example in Figure 4.3:

4.2.2 Proposition

Any finite Boolean algebra is isomorphic to the powerset of its atoms.

Thus and to avoid introducing additional notation, we assume without loss of
generality that we are dealing with finite powerset Boolean algebras for the meantime.
Any finite set X should be thought of as the set of atoms of a finite Boolean algebra
that is isomorphic to P(X).

0

x y z

x ∨ y x ∨ z y ∨ z

x ∨ y ∨ z

1

atoms

0

{x} {y} {z}

{x, y} {x, z} {y, z}

{x, y, z}

1

Figure 4.3: If x, y and z are disjoint, the Boolean algebra generated by them is
isomorphic to the powerset of {x, y, z}.

Assume that X and Y are finite sets, then any map f : X → Y induces a morphism
of Boolean algebras f−1 : P(Y)→ P(X), given by f−1(S) = {x ∈ X | f(x) ∈ S} for
S ⊆ Y .

Conversely given a morphism of Boolean algebras f : P(Y)→ P(X), the function
f−1 : X → Y sends x ∈ X to the unique element y ∈ Y such that x ∈ f({y}). These
two constructions are dual to each other in the sense that (f−1)−1 = f .

To understand them on a concrete example, one may verify that the map f below is
a morphism of Boolean algebras and that f−1 is its dual map.

f : P({1, 2}) → P({1, 2, 3})
∅ 7→ ∅
{1} 7→ {1}
{2} 7→ {2, 3}
{1, 2} 7→ {1, 2, 3}

f−1 : {1, 2, 3} → {1, 2}
1 7→ {1}
2 7→ {2}
3 7→ {2}

CHAPTER 4. ALGEBRA MEETS TOPOLOGY 35

In particular, if ι : B ↪→ P(X) is an inclusion, where B is a subalgebra of P(X), then
the atoms of B induce a partition of X and ι−1 sends x to the unique partition
element P , for which x ∈ P . Observe that, the canonical embedding i : P({1, 2})→
P({1, 2, 3}) is not a morphism of Boolean algebras and thus not an inclusion in the
sense described before.

General Stone Duality

Observe that the previous findings, such as that every finite Boolean algebra is
isomorphic to the powerset of its atoms, do not hold true on infinite Boolean algebras:
The atoms of the regular languages are the singletons {w} for w ∈ A∗. Hence Reg
is not isomorphic to the powerset of its atoms, which is the set of all languages.

Since atoms are not sufficient, we will soon be confronted with a generalisation of
these, which are called ultrafilters, that enable us again to jump back and forth
between ultrafilters and a Boolean algebra, just like we could jump between elements
of a finite set and their powerset. But first, we would like to motivate where the
difference between finite and infinite case is roughly located and how we can draw a
connection from the finite case to solve our problem with the infinite one.

Observe that the atoms for finite Boolean algebras are the smallest non-trivial
elements with respect to inclusion. In the infinite case, these elements do not exist
in general, as the following example illustrates:

4.2.3 Example

Let NCo-Fin be the Boolean algebra over N that consists of all sets that are either
finite or have a finite complement, that is

NCo-Fin = {X ⊆ N | X is finite or N\X is finite.}.

The sets
X≥n = {n, n+ 1, n+ 2, . . . }

form a descending chain of sets X≥1 ⊇ X≥2 ⊇ . . . in NCo-Fin, where all inclusions
are proper.

In the finite case, proper descending chains always lead to the atoms below the
element (see for instance Figure 4.3). Contrary to finite Boolean algebras, in infinite
Boolean algebras there often exist elements that are not a finite Boolean combination
of atoms, but have a proper descending chain of lesser elements not leading to an
atom. The reason why we do not use descending chains to replace atoms is that they
are not unique - even in the finite case, two different chains end up at the same atom.

The equivalent to atoms in the infinite case are ultrafilters. The core idea of ultrafilters
is to generalise the term atom by something that is figuratively speaking alike to a
search for an atom, which may never terminate, since we keep descending without
ever finding an atom. Some searches however do reach an atom. Figure 4.4 may be

36 4.2. AN INTUITIVE APPROACH TO STONE SPACES

taken into account as an illustration of ultrafilters in the finite case, where each one
hits an atom.

4.2.4 Definition

Let B be a Boolean algebra. An ultrafilter µ on B is a collection of elements of
B such that

1. 0 /∈ µ

2. x ∈ µ and y ≥ x, then y ∈ µ

3. x, y ∈ µ, then x ∧ y ∈ µ

4. for each x ∈ B, either x ∈ µ or ¬x ∈ µ

To make the conditions more plausible, we may replace them by some intuitive
explanations from the analogy of a search for an atom: Condition 1. states that our
search may never reach the bottom element – we either find an atom or we keep
searching in lower elements. Condition 2. states, that if we suspect the atom to be
below the element x, then it is also below any element larger than x. Condition 3.
ensures that if we suspect the atom to be below x and below y, then it is also below
x ∧ y and finally condition 4. states that for any element x ∈ B, the atom we are
searching for has to be either below x or below its complement.

4.2.5 Proposition

In a finite Boolean algebra, the set of atoms is isomorphic (as a set: bijective) to
the set of ultrafilters.

0

x y z

x ∨ y x ∨ z y ∨ z

x ∨ y ∨ z

1

0

x y z

x ∨ y x ∨ z y ∨ z

x ∨ y ∨ z

1

0

x y z

x ∨ y x ∨ z y ∨ z

x ∨ y ∨ z

1

Figure 4.4: Ultrafilters searching for x, y and z respectively (left to right).

In Example 4.2.3, the ultrafilter on NCo-Fin containing the chain X≥1 ⊇ X≥2 ⊇ . . .
is the co-finite ultrafilter

ν∞ = {X ∈ NCo-Fin | N\X is finite.}.

CHAPTER 4. ALGEBRA MEETS TOPOLOGY 37

In fact, this ultrafilter is the only one that does not lead to an atom: all other
ultrafilters must contain at least one set that is finite and hence are equal to

νn := {X ∈ NCo-Fin | {n} ∈ X}

for some n ∈ N.

We conclude, that the set of all ultrafilters of NCo-Fin is the set N ∪ {∞}, where ∞
represents the co-finite ultrafilter and the map sending any set X ∈ NCo-Fin to

X̂ := {ν ∈ N ∪ {∞} | X ∈ ν}

is a morphism of Boolean algebras: For instance, let X,Y ∈ NCo-Fin, then by condition
2. the inclusion

{ν ∈ N ∪ {∞} | X ∩ Y ∈ ν}︸ ︷︷ ︸
=X̂∩Y

⊆ {ν ∈ N ∪ {∞} | X ∈ ν and Y ∈ ν}︸ ︷︷ ︸
=X̂∩Ŷ

holds and similarly by condition 3. X̂ ∩ Ŷ ⊆ X̂ ∩ Y . The cases for union and
complementation follow in quite a similar manner. Hence, the structure of the
Boolean algebra NCo-Fin is preserved on the set of ultrafilters via the map associating
X̂ to X ∈ NCo-Fin. We will see that the map sending X to X̂ is the foundation to
generalising the correspondence between atoms and powerset Boolean algebras in
the finite case by topological means.

To justify that already the finite case has connections to topology: The powerset
of a set of atoms X is precisely the set of clopens on X, when X is equipped with
the discrete topology. In that sense, we may equip the set of ultrafilters with a
topology and obtain that the Boolean algebra is isomorphic to the set of clopens of
said topology.

4.3 Stone Spaces

If we replace the terms from finite sets and finite algebras with those for infinite ones,
we obtain the following picture, whose missing definitions, such as Stone space, we
are going to fill in now.

Stone Space

Finite Set

Boolean Algebra

Finite Boolean Algebra

Clopens

Ultrafilters

Atoms

Subsets

38 4.3. STONE SPACES

4.3.1 Definition Stone Space

The Stone space of a Boolean algebra B, denoted by XB is the set of all ultrafilters
over B together with the topology that is generated by the sets

x̂ := {µ ∈ XB | x ∈ µ}

where x ∈ B.

Remark: Often, the Stone space of a Boolean algebra is also referred to as the dual
space of the Boolean algebra. For readers familiar with dual spaces commonly used
in linear algebra, where the points are linear maps, this name might come as a slight
surprise. However, there are some similarities, if we consider that ultrafilters over B
and morphisms from B into the two element Boolean algebra {0, 1}, are in one-to-one
correspondence in the sense that for each ultrafilter µ, the map associating to each
ultrafilter µ a morphism vµ : B → {0, 1} sending L to 1 if and only if L ∈ µ and the
map associating to each morphism v : B → {0, 1} the ultrafilter v−1({1}), are inverse
to each other.

Observe that for each x ∈ B, the set x̂ is clopen, since

(x̂)c = {µ ∈ XB | x /∈ µ} = {µ ∈ XB | ¬x ∈ µ} = ¬̂x.

In particular, denote by Clopen(XB) the set of clopens of XB, then the map

B → Clopen(XB)

x 7→ x̂

is a morphism of Boolean algebras, which follows, as indicated before, almost imme-
diately from the axioms an ultrafilter satisfies. This isomorphism is precisely the one
used to prove Stones representation theorem:

4.3.2 Theorem Stone (1936)

Every Boolean algebra is isomorphic to a Boolean algebra of sets.

In particular, each Stone space is compact, hausdorff and totally disconnected and
each space having these properties is (isomorphic to) a Stone space.

Dual maps

In particular, Stone spaces preserve the properties that hold in the finite case for
morphisms of Boolean algebras and their duals:

Let B and C be Boolean algebras and f : B → C a morphism of Boolean algebras,
then f induces a continuous function f−1 : XC → XB in the following way: Let x ∈ B
and ν ∈ XC , then

x ∈ f−1(ν)⇔ f(x) ∈ ν.

CHAPTER 4. ALGEBRA MEETS TOPOLOGY 39

Conversely, if g : XC → XB is a continuous function, it induces a morphism of Boolean
algebras

g−1 : Clopen(XB)→ Clopen(XC)

C 7→ {µ ∈ XC | g(µ) ∈ C}.

and since the clopens of XB (resp. XC) are isomorphic to B (resp. C), g−1 is a
morphism from B to C. Again, those constructions are dual to each other in the
sense that (g−1)−1 = g and (f−1)−1 = f .

If f is surjective (resp. injective), then f−1 is injective (resp. surjective). This
implies in particular, that if B is a subalgebra of C, then XB is a quotient of XC (in
the sense that it is a continuous image) and likewise if B is a quotient of C, then XB
is a subspace of XC .

Hence, Stone spaces fully generalise discrete duality.

Stone Spaces and Algebra

As already mentioned, the Stone space of the regular languages is the free profinite
monoid and we may reflect algebraic properties, such as aperiodicity via equations
on the free profinite monoid, as Reiterman was able to prove.

But Stone spaces can also be found in even simpler contexts:

For instance, let L be a regular language and let BL be the Boolean algebra generated
by the sets x−1Ly−1, where x, y ∈ A∗. Then the elements of the Stone space XBL
form a partition of A∗ which is precisely the partition induced by the syntactic
congruence of L. Thus, since L is regular, XBL is finite and equipped with the usual
multiplication on the congruence classes the syntactic monoid of L.

Ultrafilter Equations

In the topological treatment of algebraic properties after Reiterman, equations of
elements of the free profinite monoid play a key role. We have up to now eluded
equations in the context of Stone duality, but in fact, Reiterman’s observations fit
perfectly in the framework. The precise connection is laid out in [GGP08]. Loosely
stated on the example of the star-free languages it boils down to: The free profinite
monoid is the Stone space of the regular languages and the star-free languages are a
subalgebra of the regular languages. Hence, the Stone space of the star-free languages
is a quotient of the free profinite monoid and the equation xω = xω+1 describes
precisely the kernel of said quotient map.

This procedure of describing a Boolean algebra through the kernel of a quotient
map between Stone spaces is possible in a much more general fashion for arbitrary
non-regular Boolean algebras. Therefore, one particular Stone space is of special
importance: the Stone space of the powerset Boolean algebra P(X) for a set X. We
call that space the Stone-Čech-compactification of X and denote it by β(X).

40 4.4. CONCLUSION

In particular, X embeds densely in β(X) via the map ιX : X → β(X) sending x to
the ultrafilter {y ∈ B | x ≤ y}. If B is a Boolean algebra of sets, this is equivalent to
sending x to the ultrafilter {L ∈ B | x ∈ L}.

This space is of such particular importance, since every Boolean algebra B is the
subalgebra of some powerset Boolean algebra P(X) and hence there always exists a
surjective continuous function πB : β(X)→ XB. Describing the kernel of said map
πB describes the Stone space of B.

The elements of the kernel of πB are what is commonly called the equations (or more
precisely ultrafilter equations) for B. That is for µ, ν ∈ β(X), we write [µ↔ ν] and
say that this is an equation for B, if πB(µ) = πB(ν).

According to previous observations, for each x ∈ B the equivalence x ∈ πB(µ) if and
only if π−1

B (x) ∈ µ holds and since πB is the dual of the inclusion, which consequently
makes π−1

B the inclusion, we obtain

πB(µ) = {x ∈ B | x ∈ µ}.

Thus [µ↔ ν] is an equation for B if and only if for all x ∈ B

x ∈ µ⇔ x ∈ ν.

Additionally, X embeds densely in XB through the map πB ◦ ιX .

For instance, if L is a regular language and as before BL is the Boolean algebra
generated by all two-sided quotients of L, then XBL was the syntactic monoid of L
and the embedding πBL ◦ ιA∗ : A∗ → XBL is precisely the syntactic morphism of L.

Apart from providing us with equations, the Stone-Čech-compactification enjoys
some other convenient properties, such as:

If X and Y are sets, then every map f : X → Y induces a continuous map
βf : β(X)→ β(Y) given by the equivalence

L ∈ βf(µ)⇔ f−1(L) ∈ µ

for each L ⊆ Y and µ ∈ β(X). Moreover, the following useful proposition holds:

4.3.3 Proposition

If f : X → K is a function from a set X into a compact space K, then there
exists a unique continuous extension f̂ : β(X)→ K.

4.4 Conclusion

As we have seen, algebra and topology are closely related: On the one hand, the free
profinite monoid, which is widely known as the completion of a metric space also has
tight connections to algebra, be it through the metric that is itself defined via finite
monoids or as the projective limit of finite monoids. On the other hand, it is also a

CHAPTER 4. ALGEBRA MEETS TOPOLOGY 41

Stone dual space: namely that of the regular languages and hence an object that –
in its primal definition – is of mainly topological nature. Similarly, each syntactic
monoid of a regular language also is a Stone space.

Contrary to where the algebraic approach has its origins, in the regular languages,
Stone duality is applicable also outside the regular world to arbitrary non-regular
Boolean algebras.

However, since the algebraic approach was so fruitful, but yet scarcely applicable
outside the regular languages, it seems only natural to enrich it with the topological
perspective and see whether the previous findings on the regular languages, that
relate algebra and topology, could add up to paint a larger picture outside the regular
world.

Further Chapters

Hence the aim of the following chapters is to pursue that goal: On approach targets
the visibly pushdown languages, a class slightly larger than the regular languages,
which is still relatively good-natured in the sense that it forms a Boolean algebra and
the underlying machine model has a decidable equivalence. For those, we diverge
from monoids to finite structures with more operations than multiplication and then
follow the same approach as in the regular languages, by constructing the completion
of a metric space, obtaining the Stone space of the visibly pushdown languages.
The second approach is applicable for arbitrary Boolean algebras of languages, but
the main focus in this document lies on classes corresponding to fragments of logic.
Here, metric spaces are in general not powerful enough, hence we use the more
general concept of projective limits to generate topological objects relying on Stone
duality. We then proceed to examine the block product, which was previously mainly
employed on finite monoids and define it as a generalisation on those topological
objects.

5

Visibly Pushdown Languages

Visibly Pushdown Languages were originally introduced by Alur and Madhusudan
[AM04] as a subclass of the context free languages that enjoys similar good-natured
closure properties, such as the regular languages. In the following, we are going to
review the basic definitions and characterise the Stone space of the visibly pushdown
languages in a similar way as the free profinite monoid is characterised – through
finite algebraic objects.

5.1 Visibly Pushdown Automata

5.1.1 Definition Visibly Pushdown Alphabet

A visible pushdown alphabet is a finite alphabet A, which is partitioned into
three sets AC , AR and AI . Letters in AC are often addressed as call letters, while
letters in AR are called return letters and letters in AI internal letters.

In the following, let A be a visibly pushdown alphabet.

44 5.1. VISIBLY PUSHDOWN AUTOMATA

5.1.2 Definition Visibly pushdown automaton (VPA)

A visibly pushdown automaton is a tuple (A,Q, q0,Γ,#, δ, F), where

• A is a visibly pushdown alphabet,

• Q is a finite set, the set of states,

• q0 ∈ Q is the initial state,

• Γ is a finite alphabet, the stack alphabet,

• # ∈ Γ is the bottom-of-stack symbol,

• δ : A × Q × Γ → Q × Γ∗ is the transition function with the following
restrictions: For q ∈ Q, a ∈ A and

δ(a, q,G) = (q′, G′),

where G ∈ Γ and G′ ∈ Γ∗, it must hold that

– if a ∈ AC , then G′ = G0G, for some G0 ∈ Γ\{#}.
– if a ∈ AR, then G′ = λ .

– if a ∈ AI , then G′ = G.

• and F ⊆ Q is the set of final states.

Intuitively, the restrictions on the transition function can be interpreted as the letters
of the visibly pushdown alphabet controlling the stack behavior. If a visibly pushdown
automaton reads a call letter, it pushes to the stack, if it reads a return letter, it
pops from the stack and reading an internal letter leaves the stack untouched.

5.1.3 Definition Language of a VPA

Let M = (A,Q, q0,Γ,#, δ, F) be a visibly pushdown automaton and let k ∈ N
and Gi ∈ Γ for i = 1, . . . , k. We define the extended transition function, denoted
by δ̂ : A∗ ×Q× Γ∗ → Q× Γ∗, inductively as

• δ̂(λ, q,G0 . . . Gk) = (q,G0 . . . Gk)

• δ̂(aw, q,G0 . . . Gk) = δ̂(w, q′, G′G1 . . . Gk), where (q′, G′) = δ(a, q,G0).

The language accepted by M is the language

L(M) = {w ∈ A∗ | δ̂(w, q0,#) ∈ F × {#}}

Consequently, a language L ⊆ A∗ is a visibly pushdown language (VPL) if it is
accepted by a visibly pushdown automaton.

Let a be a call, b a return and c a neutral letter. Some instances of visibly pushdown
languages are: The language {anbn | n ∈ N}, the Dyck language over any finite set

CHAPTER 5. VISIBLY PUSHDOWN LANGUAGES 45

of parentheses or the language accepted by the grammar with the production rules

S → acSb | aScb | λ,

which we will in the following call the Ludwig language. [Lud18]

Observe that the alphabet controlling the stack behaviour of the automaton and
the condition that the automaton accepts only at stack-height zero, results in the
property that each word in a VPL has a matching between call and return letters, as
illustrated in Figure 5.1. For each call letter pushing a symbol to the stack, there is
a matching return letter removing it from the stack. This is a slight difference from
the original definition of VPA in [AM04].

Word length

Stack height

Figure 5.1: Height profile of a well matched word. Call letters indicated in green,
return letters in red and internal letters in white. The dotted lines indicate the matching.

Independent of any VPA, we define the set of so-called well-matched words over A,
denoted by A4 inductively:

• The empty word λ is well-matched

• Each c ∈ AI is well-matched.

• For a well-matched word w, a ∈ AC and b ∈ AR, the word awb is well-matched.

• If u, v are well-matched, then so is uv.

For instance, let AC = {a, c}, AR = {b, d} and AI = {e}, then the word aacbbed is
well-matched. Note that the return letter matching the call letter a need not always
be the same return letter, but may be any one of the return letters.

If M = (A,Q, q0,Γ,#, δ, F) is a VPA, we denote by πQ : Q× Γ∗ → Q the projection
onto the state. As a generalisation of the previous observation on the stack-behaviour
of well-matched words, we obtain:

46 5.2. VPL IN TERMS OF ALGEBRA

5.1.4 Lemma

Let w ∈ A4 and let M = (A,Q, q0,Γ,#, δ, F) be a VPA. Then

δ̂(w, q,G) = πQ(δ̂(w, q,G))× {G}

The proof is straight-forward.

5.2 VPL in Terms of Algebra

VPL were already characterised in [AKMV05] through finite congruences. We adapt
that result slightly to work with well-matched VPL and enrich it with additional
algebraic structure: For instance, the set of all well-matched words A4 is a submonoid
of A∗ that additionally has an operation sending the word w to awb for a a call and
b a return letter. One may visualise this operation, as an extension in height of the
chain of mountains that is the height profile of a well-matched word.

Figure 5.2: Well-matched word w on the left and awb on the right.

Generalising from that specific instance, we obtain:

5.2.1 Definition

An Ext-algebra is a set R together with a multiplication · and a set O(R) of
unary operations from R to R, such that (R, ·) and (O(R), ◦) are monoids (◦ is
the composition) and the maps x 7→ r ·x and x 7→ x · r are contained in O(R) for
each r ∈ R. We usually omit to mention O(R) and say that R is an Ext-algebra.

Note on forest algebras. Each Ext-algebra (R,O(R)) is a forest algebra as
introduced in [BW08], where the horizontal monoid is R, the vertical monoid O(R)
and the action of O(R) on R is function application. We distinguish them, since we
are investigating languages of words rather than languages of trees. Still, it should be
mentioned that VPL and regular tree languages have very close connections [AM04].

Observe that the set of all well-matched words A4 is an Ext-algebra: For any two
words u, v ∈ A∗ such that uv ∈ A4 and x ∈ A4, let extu,v(x) = uxv. Then we
let O(A4) be the set of all maps extu,v. The left- and right multiplication maps
(x 7→ x · r and x 7→ r · x) are given by extw,λ (resp. extλ,w) for w ∈ A4.

CHAPTER 5. VISIBLY PUSHDOWN LANGUAGES 47

5.2.2 Definition Morphism

Let R and S be Ext-algebras. A morphism from R to S is a tuple of monoid
morphisms (g, h) with g : R→ S and h : O(R)→ O(S) such that for all e ∈ O(R)
and r ∈ R: h(e)(g(r)) = g(e(r)).

Observe that g is implicitly determined by h, since g is monoid morphism and hence
g(1R) = 1S . For r, x ∈ R letting mr(x) = r · x, we obtain

g(r) = g(mr(1R)) = h(mr)(1S).

Hence we cease to distinguish between g and h and say that h : R→ S is a morphism
of Ext-algebras.

In particular, by the inductive definition of the well-matched words, any morphism
h : A4 → R is uniquely determined by its values on exta,b for a ∈ AC and b ∈ AR,
extc,λ and extλ,c for c ∈ AI .

5.2.3 Definition

Let R,S be Ext-algebras. A morphism (g, h) from R to S is called surjective
(resp. injective) if both g : R → S and h : O(R) → O(S) are surjective (resp.
injective).
We say that S is a sub of R, if S ⊆ R and O(S) ⊆ O(R). Similarly S is a
quotient of R, if there exists a surjective morphism from R to S and finally, S
divides R if S is the quotient of a sub of R.

In the following, we often write exta,b for the operation on A4 and also exta,b for an
operation on some Ext-algebra R. This often has its origin in the fact that the exta,b
operation on R is considered the morphic image of exta,b on A4 for some particular
morphism h : A4 → R. We assume that it is understood from the context, which is
which.

By that convention, a morphism h : A4 → R into an Ext-algebra satisfies

h(awb) = exta,b(h(w)).

Apart from the well-matched words A4, all other Ext-algebras we will be regarding
are finite. Multiplication and unary operations are represented as tables, as displayed
on the following example.

48 5.2. VPL IN TERMS OF ALGEBRA

5.2.4 Example

The following tables display an Ext-algebra, where A is divided into AC = {a}
and AR = {b} and AI is empty. The multiplication is displayed on the left and
exta,b operation on the right.

· 1 x 0

1 1 x 0
x x 0 0
0 0 0 0

1 x 0

exta,b x x 0
extab,λ x 0 0
extab,ab 0 0 0

Observe that the names of the operations may be replaced by other representa-
tives. For instance exta,b = extaa,bb and extab,λ = extaabb,λ.

Language Reconition

Similar to recognition of regular languages by monoid morphisms, we can recognise
languages of well-matched words via Ext-algebra morphisms. While the syntactic
monoid of a VPL, such as {anbn | n ∈ N} is in general infinite, our notion of
recognition through algebras instead of monoids and in particular the additional
algebraic structure of Ext-algebras allows us to obtain finite recognising objects
for the non-regular VCL. This leads to the main theorem at the end of the section,
stating that VPL are precisely the languages recognised by finite Ext-algebras.

5.2.5 Definition Language recognition

A language L ⊆ A4 is recognised by an Ext-algebra R, if there is a morphism
h : A4 → R, such that L = h−1(T), for some T ⊆ R. Equivalently L =
h−1(h(L)).

For instance, let a be a call and b a return letter. Then the Ext-algebra from
Example 5.2.4, recognises the language {anbn | n ∈ N}.

5.2.6 Example

The Ludwig language is recognised by the Ext-algebra

· 1 c acb acbc 0

1 1 c acb acbc 0
c c 0 acbc 0 0
acb acb acbc 0 0 0
acbc acbc 0 0 0 0

0 0 0 0 0 0

1 c acb acbc 0

exta,b 0 acb 0 acb 0
extλ,c c 0 acbc 0 0
exta,cb acb 0 acb 0 0
extac,cb 0 0 0 0 0

via the morphism h – which is given by the names of the operations. Then
L = h−1({acb}). Observe that extc,λ = extλ,c.

CHAPTER 5. VISIBLY PUSHDOWN LANGUAGES 49

5.2.7 Example

As a second example, consider the language H+ [Hah15] over the alphabet
A = {a, b}, where a is a call and b a return letter. This language is given by the
production rules

S → aNb | SS | λ, N → aSb | NN | NS | SN.

Intuitively speaking, the language encodes all true Boolean formulae in the
sense that the empty word is considered true, concatenation is conjunction
and enclosing a word by a and b is negation. Then H+ is recognised by the
Ext-algebra RH+ defined below.

· 1 0

1 1 0
0 0 0

1 0

exta,b 0 1
exta2,b2 1 0
extab,λ 0 0
exta2b,b 1 1

As an intermediate step towards the main theorem, in which we prove that languages
recognised by Ext-algebras are precisely the VPL, we show that for each language
of well-matched words, there exists a minimal Ext-algebra recognising it.

We say that an equivalence relation ∼ on an Ext-algebra R is a congruence of
Ext-algebras if and only if for all e ∈ O(R):

x ∼ y ⇔ e(x) ∼ e(y).

In the following, by congruence, we mean congruence of Ext-algebras unless explicitly
stated otherwise.

Observe that the map x 7→ [x], where [x] denotes the equivalence class of x with
respect to ∼ is a morphism of Ext-algebras, in the sense that its image is equipped
with the operations e([x]) = [e(x)] for each e ∈ O(R). We denote that Ext-algebra
by R/∼.

5.2.8 Definition Syntactic congruence

Let L ⊆ A4. We say that two words u, v ∈ A4 are equivalent with respect to L
and write u ∼L v if for all x, y ∈ A4, the equivalence

xuy ∈ L⇔ xvy ∈ L

and for all a ∈ AC and b ∈ AR

exta,b(u) ∈ L⇔ exta,b(v) ∈ L

holds.

50 5.2. VPL IN TERMS OF ALGEBRA

Observe that for well-matched words u and v, this implies that if x ∼L y then the
equivalence extu,v(x) = uxv ∈ L⇔ extu,v(y) = uyv ∈ L holds, but the converse does
not hold in general.

The relation ∼L defines a congruence on A4 and therefore A4/ ∼L is an Ext-algebra
with the canonical operations on the equivalence-classes. We call ∼L the syntactic
congruence of L and A4/ ∼L the syntactic Ext-algebra of L, denoted by Ext(L).

5.2.9 Example

Let a be a call and b a return letter. Then, the syntactic Ext-algebra of (ab)∗ is
given by

· 1 ab 0

1 1 ab 0
ab ab ab 0
0 0 0 0

1 ab 0

exta,b ab 0 0
extab,λ ab ab 0
extλ,ab ab ab 0

One may prove that division defines a partial order on finite Ext-algebras. The proof
of this statement is almost entirely the same as for finite monoids and thus omitted.
Also similar to finite monoids, we show that there exists a smallest recognising object.

5.2.10 Proposition

A language L ⊆ A4 is recognised by an Ext-algebra S, if and only if Ext(L)
divides S.

Proof. Observe that for both directions of the proof, we may assume that S is an
Ext-algebra.

Let us first prove the converse direction and suppose that S is some Ext-algebra
that is divided by Ext(L). Hence there exists a subalgebra T of S and a surjective
morphism π : T → Ext(L). By ηL denote the syntactic morphism of L. We show
the existence of a morphism h : A4 → S such that the following diagram commutes.

A4 S

T

Ext(L)

h

h

ηL

i

π

Define the morphism h : A4 → T , by choosing h(extλ,c) ∈ π−1(ηL(extλ,c)) and
h(exta,b) ∈ π−1(ηL(exta,b)) for all c ∈ AI and a ∈ AC , b ∈ AR. Since π is surjective,

CHAPTER 5. VISIBLY PUSHDOWN LANGUAGES 51

such elements exists. Since T is a subalgebra of S, we can view h as a morphism
from A4 to S. By the choice of h, we have for w ∈ A4

π(h(w)) =

|w|∏
i=1

π(h(wi)) =

|w|∏
i=1

η(wi) = η(w)

and hence, by L = η−1(η(L))

w ∈ L⇔ η(w) ∈ η(L)⇔ π(h(w)) ∈ η(L)⇔ h(w) ∈ π−1(η(L)).

Thus L = h−1(π−1(η(L))) and S recognises L.

Now assume that S is some Ext-algebra that recognises L by the morphism h : A4 →
S. Then the image of h is a subalgebra of S. We show that h(S) has Ext(L) as a
quotient. For that, we prove that η factors through h, that is for any two u, v ∈ A4,
h(u) = h(v) implies η(u) = η(v). If h(u) = h(v), since h is a morphism recognising
L, we obtain xuy ∈ L iff xvy ∈ L and exta,b(u) ∈ L iff exta,b(v) ∈ L and hence
η(u) = η(v). Thus we can define π : h(S) → Ext(L) by letting π(s) = η(h−1(s)).
One can then verify that π is indeed a morphism and thus Ext(L) is a quotient of
S.

5.2.11 Definition

Let R and S be two Ext-algebras, then their direct product is the set R × S
together with the operations for (r, s) ∈ R× S

eR(r, s) = (eR(r), s) for eR ∈ O(R)

and accordingly
eS(r, s) = (r, eS(s)) for eS ∈ O(S)

Just as for the regular languages, where the product of finite monoids recognises
Boolean combinations of the languages recognised by the components of the product,
the same holds for Ext-algebras.

5.2.12 Proposition

Let R and S be two Ext-algebras then the product R× S recognises precisely
the languages that are Boolean combinations of languages recognised by R or S.

The proof is entirely straight-forward and thus omitted.

The following proposition is a translation of the result by Alur et. al. [AKMV05] to
Ext-algebras.

5.2.13 Proposition

A language L ⊆ A4 is VPL, if and only if it is recognised by a finite Ext-algebra.

52 5.2. VPL IN TERMS OF ALGEBRA

Proof. Let L ⊆ A4 be a VPL and let ML = (A,Q, q0,Γ,#, δ, F) be a VPA accepting
L. Recall that by πQ : Q × Γ∗ → Q, we denote the projection to the state. We
will now define an equivalence on well matched words, based on the states of the
automaton ML. Let w ∈ A4, G ∈ Γ and define the function

fw,G : Q→ Q

q 7→ πQ(δ̂(w, q,G)).

Observe that for w1, w2 ∈ A4 the relation

w1 ∼ML
w2 iff for all G ∈ Γ, fw1,G = fw2,G

is an equivalence relation on A4. Note that it is also a congruence on A4, since for
w1, w2, z ∈ A4 with w1 ∼ML

w2 and G ∈ Γ, we have

πQ(δ̂(zw1, q, G)) = πQ(δ̂(w1, δ̂(z, q,G)))

= πQ(δ̂(w1, δ̂(λ, q
′, G))) for some q′, since z is well-matched,

= πQ(δ̂(w1, q
′, G))

= πQ(δ̂(w2, q
′, G)) since fw1,G = fw2,G,

= πQ(δ̂(w2, δ̂(z, q,G)))

= πQ(δ̂(zw2, q, G)).

The case for w1z and w2z follows from Lemma 5.1.4. Combining the two yields
xw1y ∼ML

xw2y for x, y ∈ A4. Moreover

πQ(δ̂(aw1b, q,G)) = πQ(δ̂(w1b, δ(a, q,G)))

= πQ(δ̂(w1b, q
′, GaG)) for some q′ ∈ Q,Ga ∈ Γ,

= πQ(δ̂(b, πQ(δ̂(w1, q
′, Ga)), GaG)) by Lemma 5.1.4,

= πQ(δ̂(b, πQ(δ̂(w2, q
′, Ga)), GaG)) since fw1,Ga = fw2,Ga ,

= πQ(δ̂(w2b, q
′, GaG))

= πQ(δ̂(w2b, δ(a, q,G)))

= πQ(δ̂(exta,b(w2), q, G))

Since Γ is finite and there are |Q||Q| different functions from Q to Q, ∼ML
has at

most |Γ| · |Q||Q| congruence classes and ∼ML
is finite, which also makes A4\∼ML

finite. By construction if w1 ∼ML
w2, then fw1,#(q0) = fw2,#(q0) and hence

w1 ∈ L⇔ πQ(δ̂(w1, q0,#)) ∈ F ⇔ πQ(δ̂(w2, q0,#)) ∈ F ⇔ w2 ∈ L,

which implies that ∼ML
is a refinement of the syntactic congruence, which in turn

implies that the syntactic Ext-algebra of L divides A4/∼ML . Thus L is recognised
by a finite Ext-algebra by Proposition 5.2.10.

CHAPTER 5. VISIBLY PUSHDOWN LANGUAGES 53

For the converse direction, assume that L is recognised by a finite Ext-algebra
R via a morphism h : A4 → R. We construct a visibly pushdown automaton
M = (A,Q, q0,Γ,#, δ, F) recognising L as follows

• Q = R

• q0 = h(λ)

• Γ = {#} ∪ (Q×AC)

• δ : A×Q×Γ→ Q×Γ∗ is defined as follows: Let a, a′ ∈ A and q, q′ ∈ Q. Then

δ(a, q, (q′, a′)) =


(h(λ), (q, a)(q′, a′)) if a ∈ AC ,

(q′ · exta′a(q), λ) if a ∈ AR and

(q · h(a), (q′, a′)) if a ∈ AI

• F = h(L).

We have to show that for each w ∈ A4, πQ(δ̂(w, q0,#)) ∈ F if and only if w ∈ L. We

prove this by showing that δ̂(w, q,G) = (q · h(w), G) for each G ∈ Γ∗ by induction
on the structure of words in A4.

Inductive start: Let w ∈ AI then

δ̂(w, q,G) = δ(w, q,G) = (q · h(w), G).

Inductive step: Let w,w1, w2 ∈ A4 be some words for which the claim holds.
Then

δ̂(w1 · w2, q, G) = δ̂(w2, δ̂(w1, q, G)

= δ̂(w2, q · h(w1), G)

= (q · h(w1) · h(w2), G)

= (q · h(w1 · w2), G)

and

δ̂(awb, q,G) = δ̂(wb, δ(a, q,G))

= δ̂(wb, h(λ), (q, a)G)

= δ̂(b, πQ(δ̂(w, h(λ), (q, a))), G)

= δ̂(b, h(w), (q, a)G)

= δ(b, h(w), (q, a)G)

= (q · exta,b(h(w)), G)

= (q · h(awb), G)

Setting q = q0 = h(λ) proves the claim.

54 5.3. AN EILENBERG THEOREM

5.3 An Eilenberg Theorem

In this section, we show that there is a one-to-one correspondence between classes of
VPL and classes of Ext-algebras with certain closure properties.

Note. To readers familiar with universal algebra, these closure properties should
come as no surprise, see pseudo-varieties in [Alm95]. However, to keep the subject
accessible to a broader community, we refrain from using the slang of universal
algebra. It should however be mentioned, that it might be possible to obtain these
results using category theoretic machinery as, for instance, in [UACM16] or [Boj15].

We define the following operations on well-matched words: If L ⊆ A4 is a language
of well-matched words and u, v ∈ A∗ words such that uv ∈ A4, then

ext−1
u,v(L) = {w ∈ A4 | extu,v(w) ∈ L},

which we call an inverse Ext-operation. Observe that, for instance, ext−1
w,λ(L) for

w ∈ A4 is very similar to what is known under the name of quotients by words for
languages over A∗.

5.3.1 Definition Pseudo-Variety of VPL

A pseudo-variety of visibly pushdown languages is a class V of languages of
well-matched words such that

1. for each visibly pushdown alphabet A, the set V(A) is a Boolean algebra
of VPL over A4,

2. the set V(A) is closed under inverse extend operations, that is for L ∈ V(A)
and u, v ∈ A∗ such that uv ∈ A4, ext−1

u,v(L) is an element of V(A),

3. and V is closed under inverse morphisms, that is if h : A4 → B4 is a
morphism of Ext-algebras, then L ∈ V(B) implies h−1(L) ∈ V(A).

For instance, the set of all languages of the form L ∩A4, where L is some regular
language, forms a pseudo-variety (of VPL) – we drop the additional term, if it is
understandable from the context. The visibly pushdown languages contained in AC0,
however, do not form a pseudo-variety, since the Dyck language D over any set of
parentheses and hence the set of all well-matched words A4 is not in AC0.

5.3.2 Proposition

Let V be a pseudo-variety of VPL, L ∈ V(A) and ηL : A4 → R the syntactic
morphism. Then for each x ∈ R, η−1

L (x) ∈ V(A).

CHAPTER 5. VISIBLY PUSHDOWN LANGUAGES 55

Proof. Let K be the syntactic image of L, that is K = ηL(L). Then L = η−1
L (K).

We prove that we can express x as a Boolean combination of quotients and inverse
extend operations of K. Define the sets

C =
⋂

u,v∈A∗:uv∈A4
x∈ext−1

u,v(K)

ext−1
u,v(K)

and
N =

⋃
u,v∈A∗:uv∈A4

x/∈ext−1
u,v(K)

ext−1
u,v(K).

It is not hard to see, that u ∈ C\N if and only if u ∼L x. Hence

C\N = {x}.

Since η−1
L (K) ∈ V(A) and the preimage of a morphism commutes both with quotients

by words and inverse extend operations, we obtain η−1
L ({x}) ∈ V(A∗).

We now introduce the notion of pseudo-variety of Ext-algebras that is necessary
to obtain an Eilenberg-like one-to-one correspondence between those and pseudo-
varieties of VPL.

5.3.3 Definition

A class V of Ext-algebras is called a pseudo-variety, if it is closed under

1. division and

2. finite direct products.

Since the following proofs do not differ significantly from the ones that give the original
Eilenberg theorem between pseudo-varieties of regular languages and pseudo-varieties
of finite monoids, we keep them short.

5.3.4 Proposition

Let V be a pseudo-variety of Ext-algebras, then the languages recognised by V
form a pseudo-variety of well-matched languages.

Proof. Denote by V(A) the set of all languages over A4 that are recognised by
elements of V. Since V is closed under direct products, it follows that V(A) is a
Boolean algebra.

Let R ∈ V and h : A4 → R a morphism with L = h−1(K) for some K ⊆ R. It is
straight-forward that for any w ∈ A4

w−1L = h−1 ({m ∈ R | h(w)m ∈ K})

56 5.3. AN EILENBERG THEOREM

and hence w−1L ∈ V(A). It follows from a similar argument, that also Lw−1 ∈ V(A)
and ext−1

a,b(L) ∈ V(A).

Also, V is closed under inverse morphisms, for the reason that if h : A4 → R
recognises L, then h ◦ ϕ with ϕ : A4 → B4 recognises ϕ−1(L).

We denote the correspondence sending a pseudo-variety of Ext-algebras to a pseudo-
variety of VPL by V → V, where a pseudo-variety of Ext-algebras maps to the
pseudo-variety of all languages recognised by members of V. If some pseudo-variety
V maps to V via the correspondence, we write V 7→ V.

5.3.5 Proposition

The correspondence V→ V is one-to-one.

Proof. Assume that V and W are two pseudo-varieties of Ext-algebras with V 7→ V
and W 7→ V . For an Ext-algebra R ∈ V and morphism h : A4 → R and any m ∈ R,
define the language Lm = h−1(m). Observe that by 5.2.10, the syntactic monoid
Ext(Lm) is contained in V and W. Also, R divides∏

m∈R
Ext(Lm),

which results in R ∈W. By the symmetry of the argument V = W.

To each pseudo-variety V of VPL, associate the pseudo-variety of Ext-algebras
generated by all syntactic Ext-algebras of languages L ∈ V(A) for some visibly
pushdown alphabet A. Denote that correspondence by V → V. As before, V 7→ V
indicates that V corresponds to V via V → V.

5.3.6 Theorem

The correspondences V → V and V→ V are mutually inverse bijections.

Proof. Let V be a pseudo-variety of VPL with V 7→ V and V 7→ W. We show that
V =W.

Let L ∈ V(A), then the syntactic Ext-algebra of L is contained in V and hence also
L ∈ W(A).

For the converse direction assume that L ∈ W(A). By Proposition 5.2.10 the syntactic
Ext-algebra of L is contained in V. Since V is the pseudo-variety of Ext-algebras
generated by all syntactic Ext-algebras of languages of V, there exist an n ∈ N and
for i = 1, . . . , n visibly pushdown alphabets Ai and languages Li ⊆ Ai

4 such that
Ext(L) divides the product

R :=

n∏
i=1

Ext(Li).

CHAPTER 5. VISIBLY PUSHDOWN LANGUAGES 57

It follows that also R recognises L and we denote the morphism recognising L by
ϕ : A4 → R. Denote by πi : R→ Ext(Li) the projection on the ith component and
by ϕi = πi ◦ ϕ. Then there exist morphisms ψi : A

4 → Ai such that the diagram

A4 Ai
4

R Ext(Li)

ϕ

ψi

ϕi
ηLi

πi

commutes. Observe that since R recognises L, there exists some K ⊆ R such that

L = ϕ−1(K) =
⋃
x∈K

ϕ−1(x)

and letting x = (x1, . . . , xn) we obtain

ϕ−1(x) =
n⋂
i=1

ϕ−1
i (xi).

From the previous diagram, we get ϕi = (ηLi ◦ ψi). We conclude that L ∈ V(A):
Since V(A) is closed under Boolean combinations and inverse morphisms, it suffices
to prove that η−1

Li
(xi) ∈ V(Ai), which follows directly from Proposition 5.3.2.

5.4 The Free Profinite Ext-algebra

This section is structured along the lines of the book of Jean-Éric Pin, in particular
the chapter on profinite words.1

In the following, we assume a and c to be call and b and d to be return letters, unless
indicated otherwise.

We say that an Ext-algebra R separates two well-matched words u, v ∈ A4, if there
is a morphism h : A4 → R such that h(u) 6= h(v). For instance, the Ext algebra

· 1 0

1 1 0
0 0 0

1 0

exta,b 0 1

separates the words ab and aabb.

1Version November 30, 2016: https://www.irif.fr/ jep/PDF/MPRI/MPRI.pdf

58 5.4. THE FREE PROFINITE EXT-ALGEBRA

For n,m ∈ N with n < m, the words anbn and ambm can be separated by an
Ext-algebra R = {0, 1, . . . ,m}, where exta,b(i) = min{i+ 1,m}. If n and m are not
congruent modulo some number i ≤ n, then the two words can even be separated by
an Ext-algebra of size at most i.

It might be tempting to think that any two words u, v ∈ A4 that can be separated
by an Ext-algebra of size n can also be separated by a monoid of size n, since the
last few examples satisfy that property. This is not the case. Let a, c be call and b, d
be return letters, then

a4b2c2d4 and a2b2c2d2

are separated by the algebra

· 1 0

1 1 0
0 0 0

1 0

exta,b, extc,d 1 0
exta,d, extc,b 0 0

since there is only one morphism from A4 to that algebra, which sends the word
a4b2c2d4 to 0 and the word a2b2c2d2 to 1.

However, the two words can not be distinguished by a finite monoid of size 2, since
the only monoids of size 2 are Z2 and U1 and any morphism into these monoids maps
them to the same element. In fact, it is possible to construct well-matched words
for any natural number n, that can be distinguished by the previous Ext-algebra of
size 2, but not by a monoid of size n.

Since any two distinct well-matched words u and v can be separated by the syntactic
morphism of {u}, we obtain:

5.4.1 Lemma

For any u, v ∈ A4 with u 6= v, there exists a finite Ext-algebra that separates u
and v.

Let

r(u, v) = min{|R| | R is a finite Ext-algebra that separates u and v}.

5.4.2 Proposition

The map

d : A4 ×A4 → [0,∞)

(u, v) 7→ 2−r(u,v)

defines a metric on A4 that satisfies the strong triangle inequality: For all
u, v, x ∈ A4

d(u, v) ≤ max{d(u, x), d(x, v)}.

CHAPTER 5. VISIBLY PUSHDOWN LANGUAGES 59

Proof. That d is positive definite follows directly from Lemma 5.4.1. The symmetry
of d is clear, hence the strong triangle inequality remains to be shown.

Assume that R is an Ext-algebra separating u and v. Then R must separate
u and x or v and x, which results in r(u, v) ≥ min{r(u, x), r(x, v)}. And since
d(u, v) = 2−r(u,v), we obtain that the strong triangle inequality holds.

The set A4 is hardly interesting as a metric space, since it is discrete. But, it is not
a complete space: For instance, for any internal letter c, the sequence (cn!)n∈N is
Cauchy, but does not converge.

Its completion, which we denote by Â4 has a few notable algebraic properties, such
as:

5.4.3 Proposition

The following properties hold for Â4:

1. The multiplication · on A4 has a unique and uniformly continuous extension

·̂ on Â4.

2. For all u, v ∈ A∗ with uv ∈ A4, the maps extu,v have unique uniformly

continuous extensions êxtu,v : Â4 → Â4.

Proof. To show that the concatenation · : A4 × A4 → A4 sending (u, v) to u · v,
is uniformly continuous, it suffices to prove d(uv, u′v′) ≤ d((u, v), (u′, v′)), where
the metric on the right is that of the product. Observe that by the strong triangle
inequality, for all u, v, u′v′ ∈ A4

d(uv, u′v′) ≤ max{d(uv, uv′), d(uv′, u′v′)}

and, since an Ext-algebra separating uv and uv′ (respectively uv′ and u′v′) also has
to separate v and v′ (respectively u and u′) we obtain

d(uv, u′v′) ≤ max{d(uv, uv′), d(uv′, u′v′)} ≤ max{d(v, v′), d(u, u′)}.

Hence the concatenation is uniformly continuous with respect to the product metric
on A4 ×A4.

Let x, y ∈ A∗ such that xy ∈ A4. To see that extx,y is uniformly continuous, observe
that if an Ext-algebra separates extx,y(u) and extx,y(v), then it must also separate
u and v and hence

d(extx,y(u), extx,y(v)) ≤ d(u, v),

which implies the uniform continuity of extx,y.

By Corollary 3.3.10, concatenation and extx,y have unique uniformly continuous
extensions.

60 5.4. THE FREE PROFINITE EXT-ALGEBRA

However, apart from the maps êxtu,v : Â4 → Â4, it is possible to derive further

maps from Â4 to Â4 from elements of O(A4) in a more general fashion.

5.4.4 Proposition

Let (en)n∈N be a sequence of elements in O(A4), such that (en(x))n∈N is Cauchy
for each x ∈ A4. Then the sequence (en)n∈N uniquely determines a uniformly

continuous map e : Â4 → Â4.

Proof. Since (en(x))n∈N is Cauchy for each x ∈ A4, the map e sending x to

limn→∞ en(x) is a well-defined map from A4 to Â4. Moreover, it is uniformly
continuous, since an Ext-algebra that does not separate two well-matched words x, y
does also not separate en(x) and en(y) for each n ∈ N. Hence d(e(x), e(y)) ≤ d(x, y),
which implies uniform continuity and thus there exists a uniformly continuous exten-

sion ê : Â4 → Â4.

The space Â4 becomes an Ext-algebra, with the uniformly continuous extension ·̂
of the multiplication on A4 as multiplication on Â4 and the set O(Â4) is the set of

all maps e : Â4 → Â4 obtained in the fashion of Proposition 5.4.4.

Observe that O(Â4) indeed is a monoid, since if the element e (resp. f) in O(Â4)
is determined by the sequence (en)n∈N (resp. (fn)n∈N)), then e ◦ f is determined by
(en ◦ fn)n∈N.

By sloppiness, we write · instead of ·̂ and exta,b instead of êxta,b and assume that it
is understood from the context, if we are referring to the extensions.

5.4.5 Proposition

The space Â4 is the free profinite Ext-algebra. That is, any uniformly continuous

morphism from Â4 is uniquely determined by its values on extc,λ and exta,b for
a ∈ AC , b ∈ AR and c ∈ AI .

Proof. Since any morphism from A4 is uniquely determined by those values, it
suffices to show that any morphism ϕ : A4 → E is uniformly continuous – the
completeness of E as a discrete metric space, where

dE(x, y) =

{
1 if x 6= y

0 otherwise.

ensures the existence of a unique uniformly continuous extension.

Let u, v ∈ A4, then d(u, v) < 2−|E| implies that u and v cannot be separated by
E and thus dE(ϕ(u), ϕ(v)) = 0, which shows that ϕ is uniformly continuous. By

Corollary 3.3.10, there exists a unique uniformly continuous extension ϕ̂ : Â4 → E.

CHAPTER 5. VISIBLY PUSHDOWN LANGUAGES 61

It remains to be shown, that ϕ̂ is a morphism on Â4. To see that, we prove that the
set

H = {(u, v) ∈ Â4 × Â4 | ϕ̂(u · v) = ϕ̂(u) · ϕ̂(v)}

is equal to Â4 × Â4 and that

Hab = {u ∈ Â4 | ϕ̂(exta,b(u)) = exta,b(ϕ̂(u))}

is equal to Â4. Since ϕ̂ is an extension of ϕ, which is a morphism, A4 × A4 is

contained in H and A4 is contained in Hab and since A4 is dense in Â4, it suffices
to show that both H and Hab are closed.

Observe that the equality

Hab =
⋃
x∈E

(
(ϕ̂ ◦ exta,b)

−1({x}) ∩ (exta,b ◦ ϕ̂)−1({x})
)

holds and since each singleton {x} is a closed set of E and both exta,b and ϕ̂ are
uniformly continuous, Hab is a finite union of closed sets, which is again closed.

The argument for H is along the same lines. It suffices to recall that the multiplication

is a uniformly continuous function m̂ : Â4 × Â4 → Â4. Then

ϕ̂(u · v) = (ϕ̂ ◦ m̂)(u, v) and ϕ̂(u) · ϕ̂(v) = (m̂ ◦ (ϕ̂× ϕ̂))(u, v)

and by a similar argument as before, H is closed. Thus, ϕ̂ is a morphism and Â4 is
the free profinite Ext-algebra.

Observe that there exist morphisms which are not continuous: The morphism

ϕ : Â4 → E into an Ext-algebra with U1 as monoid component, given by

ϕ(w) =

{
1 if w ∈ A∗I ,
0 otherwise

is not continuous and does not have a unique extension. It is possible to extend

the morphism sending w ∈ Â4\A∗I either to 0 or to 1. Both choices contribute
non-continuous morphisms. The continuous extension of the restriction of ϕ to A4

is the morphism equal to the constant morphism 1.

Elements of the Free Profinite Ext-algebra

Imitating the term “profinite words” for elements of the free profinite monoid, we

propose to call elements of Â4 profinite well-matched words.

There are uncountably many profinite well-matched words, independent of the alpha-

bet we choose, but some elements of Â4 have relatively concrete characterisations.

For instance, for x ∈ Â4, the sequence xn! is a Cauchy sequence. The proof is exactly

62 5.4. THE FREE PROFINITE EXT-ALGEBRA

the same as in the profinite case, since it operates entirely on the monoid component
of Ext-algebras. Borrowed from profinite words, we use the notation

lim
n→∞

xn! = xω.

Also, xω is an idempotent with respect to the multiplication on Â4. In a similar
fashion, we obtain for the exta,b operations:

5.4.6 Proposition

For x ∈ Â4, the sequence extn!
a,b(x) is a Cauchy sequence.

Proof. Let n,m,N ∈ N . We show that for any n,m ≥ N , the profinite well-
matched words extn!

a,b(x) and extm!
a,b(x) cannot be separated by an Ext-algebra

of size at most N . Assume that ϕ : Â4 → E is a morphism, where E is an
Ext-algebra with |E| ≤ N . Since E is finite, there exists an r ∈ N such that
extra,b(x) = extra,b(extra,b(x)) = ext2r

a,b(x), with r ≤ N . Since m,n ≥ N , r divides both

n! and m! and hence extn!
a,b(x) = extra,b(x) = extm!

a,b(x). This shows that extn!
a,b(x) and

extm!
a,b(x) cannot be separated by an Ext-algebra of size at most N and hence the

sequence extn!
a,b(x) is a Cauchy-sequence.

Hence the limit of the sequence extn!
a,b(x) exists in Â4 and we define

lim
n→∞

extn!
a,b(x) = extωab(x).

From a first glance, since the well-matched words are a subset of A∗, it might seem
convenient to write extωa,b(x) = aωxbω. But this notation is very misleading for the
following reason:

The profinite word aω is an idempotent in Â∗ and thus it holds that

aωaωbωcωdωdω = aωbωcωdω

in Â∗. But in Â4

extωad(extωab(λ)extωcd(λ)) 6= extωab(λ)extωcd(λ),

since a morphism into the Ext-algebra

· 1 ab cd abcd

1 1 ab cd abcd
ab ab 0 abcd 0
cd cd 0 0 0
abcd abcd 0 0 0

1 ab cd abcd

exta,b ab ab 0 0
extc,d cd 0 cd 0
exta,d 0 0 0 0
extc,b 0 0 0 0

CHAPTER 5. VISIBLY PUSHDOWN LANGUAGES 63

sends the left side of the equation to 0 and the right side to abcd.

In fact, extωab(x) has little to do with idempotents of words, but should be thought of
as an idempotent in the monoid that is generated by the maps extωab with composition
as multiplication.

It is straight-forward to see, that d(extωab(x), extωab(y)) ≤ d(x, y) and it thus holds
that:

5.4.7 Proposition

The map extωa,b with x 7→ extωab(x) is uniformly continuous.

Then, we obtain that for any morphism h : Â4 → E into a finite Ext-algebra E,

h(extωab(x)) = extωab(h(x))

where extωab is indeed the idempotent generated by exta,b in the monoid of maps from
E to E. This also implies extωab ◦ extωab = extωab.

One may also prove that the sequence of maps (extωab)
n! converges to extωab, when the

set of all maps from Â4 to Â4 is identified with the product of Â4 and equipped
with the product topology.

The Stone Space of the Visibly Pushdown Languages

While Stone spaces in general are not necessarily equipped with algebraic structure,
such as a multiplication, we will now show that the free profinite Ext-algebra is
isomorphic to the Stone space of the visibly pushdown languages over A.

5.4.8 Proposition

The space Â4 is compact.

Proof. For u, v ∈ Â4, define the relation ∼n by u ∼n v, if u and v cannot be
separated by an Ext-algebra of size at most n. It is evident that u ∼n v is reflexive
and symmetrical. Let x ∈ A4 with u ∼n x and x ∼n v. Since any monoid separating
u and v must separate u and x or v and x, transitivity follows and ∼n is an equivalence
relation. More precisely, it is also of finite index, since there are only finitely many
Ext algebras of size at most n. Since, the equivalence class of u is precisely the open
ball B2−n(u) on A4, it is covered by finitely many open balls of radius 2−n. Since

the open balls form a basis of the topology, Â4 is compact.

In the same way in which we defined the syntactic Ext-algebra of a language L ⊆ A4
we define the syntactic Ext-algebra of a subset R ⊆ A4, that is the quotient induced

by the congruence on Â4 given by u ∼R v if for all e ∈ O(Â4) it holds that
u ∈ e−1(R)⇔ v ∈ e−1(R).

64 5.4. THE FREE PROFINITE EXT-ALGEBRA

5.4.9 Proposition

Let R ⊆ Â4 and let Ext(R) be its syntactic Ext-algebra. Then the following
conditions are equivalent

1. R is clopen,

2. the syntactic congruence of R is a clopen subset of Â4 × Â4

3. Ext(R) is finite and the syntactic morphism of R is a continuous map.

Proof. 1. to 2.: Let R be a clopen subset of Â4. Define the set

X =
⋂

e∈O(Â4)

((e−1(R)× e−1(R)) ∪ (e−1(Rc)× e−1(Rc)))

Then X is the syntactic congruence ∼R of R.

We prove that X is closed. Observe that since R is clopen and by definition of O(Â4),
each e is a continuous map, each of the sets e−1(R) is closed and so is e−1(Rc). Since

Â4 × Â4 has the product topology and arbitrary intersections of closed sets are
closed, X is closed.

We prove that ∼cR is closed, by showing that the limit of any convergent sequence in
∼cR is contained in it. Let ((sn, tn))n∈N be a convergent sequence in ∼cR with limit

(s, t). Since sn and tn are not equivalent, there exists a sequence en ∈ O(Â4) such
that, without loss of generality, en(sn) ∈ R and en(tn) /∈ R.

Because Â4 is compact, so is its product Â4×Â4 and hence (en)n∈N has a convergent

subsequence (eij)j∈N with limit e ∈ O(Â4). Since R is clopen and each eij is
continuous, eij (sn) converges to e(s) ∈ R and eij (tn) converges to e(t) /∈ R. Thus
(s, t) ∈∼cR, which shows that it is closed. Thus ∼R is open.

2. to 3.: We show that for any x ∈ Â4, the equivalence class of x with respect
to ∼R is open. It holds that for each x ∈ A4, (x, x) ∈∼R. Since ∼R is open, there

exists an open set U ⊆ Â4 such that (x, x) ∈ U ×U ⊂∼R. Moreover U must be fully
contained in the equivalence class of x, since otherwise there exist two non-equivalent
elements u, v ∈ U with (u, v) ∈ U ×U , which is a contradiction to U ×U ⊂∼R. Since
x was arbitrary, this implies that the x-classes of ∼R are open and thus form an

open partition of Â4.

By compactness of Â4 this partition is finite, which implies that Ext(R) is finite
and the syntactic morphism is continuous by the observation that each x-class is the
preimage of a singleton in Ext(R) and open.

3. to 1.: Let ηR : Â4 → Ext(R) be the syntactic morphism of R. Since Ext(R) is
finite, it is discrete and each subset of Ext(R) is clopen and since η−1

R (ηR(R)) = R,
and ηR is continuous, R is clopen.

CHAPTER 5. VISIBLY PUSHDOWN LANGUAGES 65

5.4.10 Proposition

If L ⊆ A4 is a language, then L = L ∩ A4 and the following conditions are
equivalent:

1. L is a VPL

2. L = K ∩A4 for some clopen set K ⊆ Â4

3. L is clopen in Â4

4. L is recognised by a continuous morphism ϕ : Â4 → E, where E is a finite
Ext-algebra.

Proof. 1. to 2.: Let L be a VPL, then by Proposition 5.2.13, there exists a finite
Ext-algebra recognising L. Let ϕ : A4 → E be the morphism recognising L, that is
L = ϕ−1(ϕ(L)). Moreover, let K = ϕ̂−1(ϕ(L)). Since E is discrete, ϕ(L) is a clopen
set and since ϕ̂ is continuous, K is clopen. Then ϕ(w) = ϕ̂(w) for w ∈ A4, implies
L = ϕ̂−1(ϕ(L)) ∩A4 = K ∩A4.

2. to 3.: Assume that L = K ∩ A4 for some clopen set K ⊆ Â4. Since A4 is

dense in Â4, and since K is open, it follows that K ∩ A4 is dense in K. Thus
K ∩A4 = K = L is clopen.

3. to 4.: See Proposition 5.4.9

4. to 1.: Assume that L is recognised by a morphism ϕ : Â4 → E into a finite
Ext-algebra E. Then L = ϕ−1(R) for some R ⊆ E. Let ϕA4 : A4 → E be the
restriction of ϕ to A4. Then

L = L ∩A4 = ϕ−1(R) ∩A4 = ϕ−1
A4

(R)

and by Proposition 5.2.13, L is a VPL.

The statements of the next Proposition characterise the topological closures of VPLs.
This Proposition in particular proves that algebra and topology are extremely closely
related on the free profinite Ext-algebra – the Stone spaces of the VPLs.

5.4.11 Proposition

Let L ⊆ A4 be a VPL and let u ∈ Â4. Then the following conditions are
equivalent:

1. u ∈ L

2. ϕ̂(u) ∈ ϕ(L), for all morphisms ϕ from A4 into a finite Ext-algebra.

3. η̂(u) ∈ η(L), where η is the syntactic morphism of L.

4. ϕ̂(u) ∈ ϕ(L), for some morphism ϕ from A4 into a finite Ext-algebra
recognising L.

66 5.5. A REITERMAN THEOREM FOR VPL

Proof. 1. to 2.: Suppose u ∈ L and let ϕ : A4 → R be a morphism into a finite
Ext-algebra R. Since ϕ̂ is continuous and R is discrete we have

ϕ̂(L) = ϕ̂(L) = ϕ̂(L) = ϕ(L).

2. to 3. and 3. to 4.: Is trivial.

4. to 1.: Let ϕ : A4 → R be a morphism into a finite Ext-algebra R. If R recognises
L, then L = ϕ−1(ϕ(L)), which together with continuity of ϕ̂ and discreteness of R
implies

L = ϕ−1(ϕ(L)) = ϕ̂−1(ϕ̂(L)) = ϕ̂−1(ϕ(L)).

The following theorem is a conclusion from the previous propositions, in particular
5.4.10.

Denote by VPL(A) the set of visibly pushdown languages over the visibly pushdown

alphabet A and by Clopen(Â4) the set of all clopen sets of Â4.

5.4.12 Theorem

The maps

VPL(A)→ Clopen(Â4)

L 7→ L

and Clopen(Â4)→ VPL(A)

K 7→ A4 ∩K

are morphisms of Boolean algebras and inverse to each other.

Proof. That both maps are inverse to each other, follows directly from Proposition
5.4.10. It remains to be shown that both are morphisms of Boolean algebras, which
is straight-forward for the map K 7→ A4 ∩K. That L 7→ L is a morphism can be
derived from the observation that L = η̂−1(η(L)), where η is the syntactic morphism
of L and the fact that closure and union commute.

5.5 A Reiterman Theorem for VPL

Pseudo-varieties of VPL can, just like pseudo-varieties of regular languages, be
characterised through sets of equations which are now tuples of elements of the
free profinite Ext-algebra. We introduce the appropriate notions and prove a
Reiterman-like theorem.

Let u, v ∈ Â4 be two profinite well-matched words. We say that a VPL L satisfies
the equation [u↔ v] if and only if

u ∈ L⇔ v ∈ L

CHAPTER 5. VISIBLY PUSHDOWN LANGUAGES 67

and similarly we say that an Ext-algebra R satisfies the equation [u ↔ v] if and
only if for each morphism ϕ : A4 → R

ϕ̂(u) = ϕ̂(v).

The following Corollary is a direct consequence of Proposition 5.4.11.

5.5.1 Corollary

Let L ⊆ A4 be a VPL and let u, v ∈ Â4, then the following statements are
equivalent:

1. L satisfies the equation [u↔ v].

2. the syntactic Ext-algebra of L satisfies [u↔ v].

3. each Ext-algebra recognising L satisfies [u↔ v].

Let E be a set of equations over Â4. We define the set [[E]] to be the set of all
Ext-algebras satisfying all the equations in E and the set L([[E]]) all languages
satisfying all equations in E. From the previous Corollary, we obtain that the
languages recognised by [[E]] are precisely the languages in L([[E]]), which justifies
the notation.

5.5.2 Proposition

If E is a set of equations over Â4, then [[E]] is a pseudo-variety of Ext-algebras
and L([[E]]) is the corresponding pseudo-variety of languages.

Proof. First of all, observe that the intersection of pseudo-varieties is a pseudo-variety
and that thus, without loss of generality, it suffices to show that [[u↔ v]] for some

u, v ∈ Â4 forms a variety.

In the following, we omit the details since they are utterly straight-forward once
written down. That quotients and direct products preserve equations, results in
[[u↔ v]] being a pseudo-variety of Ext-algebras and by the observation that L([[u↔
v]]) are the languages recognised by [[u↔ v]] the claim follows.

5.5.3 Theorem

A class of Ext-algebras (resp. of VPL) is a pseudo-variety if and only if it can
be defined by a set of identities.

Proof. One direction of the proof follows directly from Proposition 5.5.2. For the
other direction, let V be a pseudo-variety of Ext-algebras and let E be the set of
equations that are satisfied by all elements of V. Now, it is evident that V ⊆ [[E]].

68 5.6. CONCEPTS IN APPLICATION

We prove that the inclusion [[E]] ⊆ V holds. Let R ∈ [[E]] and ϕ : Â4 → R be a
morphism. For an element S ∈ V and a morphism h : A4 → S, we define the set

Nh = {(u, v) ∈ Â4 × Â4 | ĥ(u) 6= ĥ(v)}.

This set is open, since ĥ is continuous and Nh is the preimage of the complement
of the diagonal of S × S, which is open. Formally, we also identify E with a subset

of Â4 × Â4, that is the set of all (u, v) such that [u↔ v] is an equation in E. We
observe that if a tuple (u, v) is not contained in any set Nh for some morphism h,
then (u, v) must be in E. Denote by F the set of all morphisms from A4 into an
Ext-algebra of V. It follows that

E ∪
⋃
h∈F

Nh

is a cover of Â4 × Â4. Define the set

Eϕ = {(u, v) ∈ Â4 × Â4 | ϕ̂(u) = ϕ̂(v)}.

Clearly E ⊆ Eϕ and Eϕ is open. By the previous argumentation,

Eϕ ∪
⋃
h∈F

Nh

is an open cover of Â4 × Â4 an hence there exists a finite subcover for some finite
subset F ⊆ F

Eϕ ∪
⋃
h∈F

Nh.

In particular, if ĥ(u) = ĥ(v) for all h ∈ F , then also (u, v) /∈ Nh for all h ∈ F and
hence (u, v) ∈ Eϕ, which implies ϕ̂(u) = ϕ̂(v). Hence ϕ̂ factors through the product

of all ĥ, that is the morphism sending u ∈ Â4 to (ĥ(u))h∈F . This implies that R is a

quotient of the product
∏
h∈F ĥ(Â4) and since the morphisms h ∈ F have elements

of V as co-domains and V is closed under subs and finite products,
∏
h∈F ĥ(Â4) is

an element of V. Thus, R is also in V.

5.6 Concepts in Application

This section serves not only as a proof of concept for the developed theory, but
also to investigate equations for two subclasses of visibly pushdown languages: The
set of languages of the form A4 ∩ K, where K is a regular language and, since
these languages are precisely the visibly counter languages with threshold zero,
subsequently also the visibly counter languages (with arbitrary threshold). We start
by approaching the former set of languages from an algebraic point of view.

CHAPTER 5. VISIBLY PUSHDOWN LANGUAGES 69

Monoidal Ext-algebras

Let A be a visibly pushdown alphabet and let h : A∗ → M be a morphism into a
finite monoid M . Then the set R := h(A4) ⊆M together with the multiplication
from M and the generating operations

exta,b : R→ R

x 7→ h(a) · x · h(b)

is an Ext-algebra. It is clear that since M is finite, also R is finite and hence only
recognises VPL, but the finiteness of M is just a sufficient and not a necessary
condition for the finiteness of R.

For instance, let M be the syntactic monoid of the language {anbn | n ∈ N} and let
η : {a, b}∗ →M be its syntactic morphism. Then the Ext-algebra generated in the
way described above also is finite, in fact R = {1, ab, 0}, where 1 is the equivalence
class of the empty word and 0 the equivalence class of abab. This is precisely the
syntactic Ext-algebra of {anbn | n ∈ N}.

In fact, construction is possible for every VPL and it follows, that the proposition

5.6.1 Proposition

Let L be a VPL. Then the syntactic Ext-algebra of L is isomorphic to the
Ext-algebra generated by the syntactic (monoid) morphism of L.

holds. Since the proof is straight-forward, we omit it.

A more interesting question to ask is: Which Ext-algebras can be obtained from
finite monoids? For instance, the syntactic monoid of a∗b∗ generates the syntactic
Ext-algebra of {anbn | n ∈ N}. We try to approach this question through the
developed topological and algebraic methods. The decidability of the question was
shown in [BLS06] via visibly counter automata.

5.6.2 Definition

We say that a finite Ext-algebra R is monoidal, if there exists a morphism
h : A∗ → M into a finite monoid M , such that R is isomorphic to the Ext-
algebra h(A4) with the generators of operations exta,b(x) = h(a) · x · h(b) and
left- and right multiplication.

Observe that in the following, we omit to mention the left and right multiplication
x 7→ r · x and x 7→ x · r, for x, r ∈ R when we say the operations are generated by
exta,b(x) = h(a) · x · h(b), since we assume that it is understood they are included.

For instance, the syntactic Ext-algebras of the languages {a2nb2n | n ∈ N} or (ab)∗

are monoidal. Equivalently, an Ext-algebra is monoidal, if it is isomorphic to an

70 5.6. CONCEPTS IN APPLICATION

Ext-algebra that is the submonoid of some finite monoid M with operations given
by e(x) = xa · x · xb for some elements xa, xb ∈M .

By MExt, we denote the class of all monoidal Ext-algebras.

5.6.3 Proposition

The class MExt is a pseudo-variety.

Proof. We prove that MExt is closed under quotients, taking subalgebras and finite
direct products.

Let R ∈ MExt and let M be the monoid and h : A∗ → M be the morphism
generating R. Without loss of generality, we assume that h is surjective, since
otherwise we restrict to the image of h. Then R is generated by the set h(AI) and
the monoid of operations O(R) is generated by exta,b for a ∈ AC and b ∈ AR.

Let S be a quotient of R. Then there exists a surjective morphism (of Ext-algebras)
ϕ : R→ S.

Define the relation

∼ϕ:= {(h(u), h(v)) | u, v ∈ A4 with ϕ(h(u)) = ϕ(h(v))}

on M and let ≡ϕ be the congruence relation on M generated by ∼ϕ. Define the
monoid N := M\≡ϕ and let ψ : M → N be the canonical morphism induced by the
congruence. It follows from the finiteness of M that also N is finite. Then ϕ and ψ
coincide by definition on images of well-matched words and since ψ is a morphism of
monoids, for any x ∈M the equality

ϕ(exta,b)(ϕ(x)) = ϕ(exta,b(x)) = ϕ(h(a) · x · h(b)) = ψ(h(a)) · x · ψ(h(b))

holds. Since moreover ϕ is surjective, S is generated by ψ ◦ h : A∗ → N and thus
MExt is closed under quotients.

Let S be a subalgebra of R. Then there exists an n ≤ |AI | and words w1, . . . , wn ∈ A4
and a k ≤ |AC | = |AR| and words u1, . . . , uk ∈ A∗, v1, . . . , vk ∈ A∗ with uivi ∈ A4
for i = 1, . . . , k such that S is generated by h(w1), . . . , h(wn) and the monoid of
operations on S by extui,vi . Choose some enumeration of the call-, return- and
internal letters and define the morphism of monoids g : A∗ →M by sending the ith
letter of AC (resp. AR, AI) to h(ui) (resp. h(vi), h(wi)), if i does not exceed k (resp.
n) and to the neutral element of M otherwise. By construction, g generates S and
hence S ∈MExt.

The closure under product is clear: If S and R are monoidal, then S×R is generated
by the product-morphism generating S and R.

By MExt denote the corresponding pseudo-variety of VPL. It follows immediately
that a language belongs to MExt if and only if its syntactic Ext-algebra belongs
to MExt.

CHAPTER 5. VISIBLY PUSHDOWN LANGUAGES 71

5.6.4 Proposition

Let L ⊆ A4 be a language. Then L belongs toMExt if and only if there exists
a regular language K such that

L = A4 ∩K.

Proof. Suppose that L ⊆ A4 is in MExt and let Ext(L) be its syntactic Ext-
algebra and ηL its syntactic morphism. Then there exists a finite monoid M such
that Ext(L) is isomorphic to a submonoid of M with exta,b(x) = xa · x · xb for some
xa, xb ∈ M . Define the morphism h : A∗ → M by sending any internal letter c to
ηL(c), a call letter a to its respective element xa and similarly b ∈ AR to xb. Define
K = h−1(h(L)). Since M is finite, K is a regular languages and it follows from the
definition of h, that it coincides with ηL on well-matched words, which proves one
direction of the claim.

Let K be a regular language and let L = A4 ∩ K. By MK denote the syntactic
monoid of K and by ηK : A∗ → MK its syntactic morphism. Then ηK generates
an Ext-algebra R ⊆MK and the morphism ϕ : A4 → R induced by ηK recognises
L = ϕ−1(ϕ(L)). Since MK is finite, it follows that L ∈MExt.

A consequence of these considerations, which is not surprising is

5.6.5 Corollary

If K is a regular language over A∗, then A4 ∩K is visibly pushdown.

Equations

Having made sure that MExt is a pseudo-variety, we know that it is characterised
by a set of equations over well-matched words. We are now going to derive a set of
equations which is sound in the sense that every language in MExt satisfies the
equations. Since we are dealing with VPL inherently connected to monoids, we
begin by drawing a connection between the free profinite monoid over A and the free
profinite Ext-algebra.

5.6.6 Proposition

The inclusion ι : A4 → A∗ is uniformly continuous.

Proof. Let u, v ∈ A4. We show that d(ι(u), ι(v)) ≤ d(u, v). Assume that u and
v are separated by a monoid M . Then, there exists a morphism h : A∗ → M
such that h(u) 6= h(v) and the Ext-algebra h(A4) with the multiplication of M
and exta,b(x) = h(a) · x · h(b) separates u and v. Since |h(A4)| ≤ |M |, we obtain
r(u, v) ≤ r(ι(u), ι(v)) and conclude d(ι(u), ι(v)) ≤ d(u, v), which proves the claim.

72 5.6. CONCEPTS IN APPLICATION

It follows that ι has a unique uniformly continuous extension ι̂. For instance, the
profinite well-matched word extωab(w) maps under ι̂ to aωwbω. This observation can
be connected with equations in the following way:

5.6.7 Proposition

Let u, v ∈ Â4. Then MExt satisfies the equation [u ↔ v] if and only if
ι̂(u) = ι̂(v).

Proof. The direction stating that MExt satisfies [u ↔ v] implies that ι̂(u) = ι̂(v)
follows directly from the uniform continuity of ι.

For the converse direction, let M be a finite monoid and R ∈MExt, such that R is
isomorphic to some submonoid of M and the operations on R can be represented
as usual by multiplication in M . Now it is clear, that if ι̂(u) = ι̂(v), then ĥ(ι̂(u)) =
ĥ(ι̂(v)) for any morphism h : A∗ → M . Since any morphism g : A4 → R is of the
form h ◦ ι for some morphism h and hence ĝ = ĥ ◦ ι̂, we obtain ĝ(u) = ĝ(v).

We are now ready to state some sound equations for the pseudo-variety of monoidal
Ext-algebras. Observe that equations are transitive in the sense that if a language
satisfies [u↔ v] and [v ↔ w] then it satisfies [u↔ w]. We thus use the short notation
[u↔ v ↔ w].

5.6.8 Proposition

For each x, y, z ∈ Â4 and u, v, u′, v′ ∈ A∗ such that uv, uv′, u′v, u′v′ ∈ A4, the
variety MExt satisfies the equations

[extωu,v(extωu,v′(x) · y · extωu′,v(z))↔ extωu.v′(x) · y · extωu′,v(z)] (5.1)

[extωu,v(extωu′,v′(x))↔ extωu,v(extωu,v′(extωu′,v′(x))) (5.2)

↔ extωu,v(extωu′,v(extωu′,v′(x)))] (5.3)

Proof. By Proposition 5.6.7, MExt satisfies the equation

[extωu,v(extωu,v′(x) · y · extωu′,v(z))↔ extωu,v′(x) · y · extωu′,v(z)].

if and only if

uωuωxv′ωyu′ωuvωvω = uωxv′ωyu′ωzvω.

Since uω is an idempotent in Â∗ and hence uωuω = uω, the equality holds.

Similarly

uωuωu′ωv′ωv′ωvω = uωu′ωv′ωvω = uωu′ωu′ωv′ωvωvω

which proves the validity of equations 5.2 and 5.3 for MExt.

CHAPTER 5. VISIBLY PUSHDOWN LANGUAGES 73

Application of Equations for Concrete Languages

In the following, we use the equations for MExt to prove that some VPL are not
monoidal. For instance, a simple example, which does not satisfy the first equation,
is the language

{anbncmdm | n,m ∈ N}

over the alphabet A = {a, b, c, d} where a, c are call and b, d are return letters. The
syntactic Ext-algebra of that language is displayed in Figure 5.3. There we obtain

0 = extωa,d(extωa,b(1) · extωc,d(1)) 6= extωa,b(1) · extωc,d(1) = abcd.

· 1 ab cd abcd

1 1 ab cd abcd
ab ab abcd 0 0
cd cd 0 0 0
abcd abcd 0 0 0

· 1 ab cd abcd

exta,b ab ab 0 0
exta,d 0 0 0 0
extc,b 0 0 0 0
extc,d cd 0 cd 0

Figure 5.3: Syntactic Ext-algebra of the language {anbncmdm | n,m ∈ N}.

The second equation is not satisfied by the Ludwig language over the alphabet
A = {a, b, c} where a is a call, b a return and c an internal letter, which we recall is
given by the production rules

S → aScb | acSb | λ.

Also recall that its syntactic Ext-algebra is the one displayed in Figure 5.4 We

· 1 c acb acbc 0

1 1 c acb acbc 0
c c 0 acbc 0 0
acb acb acbc 0 0 0
acbc acbc 0 0 0 0

0 0 0 0 0 0

1 c acb acbc 0

exta,b 0 acb 0 acb 0
extλ,c c 0 acbc 0 0
exta,cb acb 0 acb 0 0
extac,b acb 0 acb 0 0
extac,cb 0 0 0 0 0

Figure 5.4: Syntactic Ext-algebra of the Ludwig language.

obtain that

acb = extωac,b(extωa,cb(1)) 6= extωac,b(extωac,cb(extωa,cb(1))) = 0.

As a last example, consider the language H+ over A = {a, b} which was given by the
production rules

S → aNb | SS | λ, N → aSb | NN | NS | SN,

where a is a call and b a return letter.

74 5.6. CONCEPTS IN APPLICATION

It is an instance of a language, where it is less trivial to find representatives for the
Ext-operations in order to see that an equation is violated.

Then, H+ is recognised by the Ext-algebra

· 1 0

1 1 0
0 0 0

1 0

exta,b 0 1
*exta2,b2 1 0
*exta2b,b 1 1

*exta2ab,b2 0 0

Figure 5.5: The syntactic Ext-algebra of H+ with complete monoid of operations.
The idempotent operations are marked by stars.

Evidently extu,v = exta2,b2 is the identity, since it corresponds to double negation, and
as such is idempotent. Hence extu,v = extωu,v. Moreover, extu′,v = ext2

a2b,b and exta2b,b

is the constant map 1, since multiplication by ab corresponds to conjunction with
false and exta,b corresponds to negation. In particular extu′,v is also idempotent,
which results in extu′,v = extωu′,v. By a similar argument extu,v′ = exta2,abb2 is the
constant map 0. We obtain that thus independently of the choice of x:

0 = extωu,v(extωu′,v(extωu′,v′(x))) 6= extωu,v(extωu,v′(extωu′,v′(x))) = 1

or more explicitly

extωa2,b2(extωa2ba2b,b2(extωa2ba2b,abb2(x))) 6= extωa2,b2(extωa2,abb2(extωa2ba2b,abb2(x))).

Thus, neither the Ludwig Language not H+ are in MExt. We prove now, that the
equation both languages violate even implies a stronger statement: Both languages
are not visibly counter languages (VCL). The language {anbncmdm | n,m ∈ N}
however is a VCL.

Visibly counter languages

We already mentioned that the decidability of membership to MExt was shown
in [BLS06] via visibly counter automata. In fact, equations 5.2 and 5.3 relate to
visibly counter automata. We prove that any visibly counter language satisfies the
equations.

CHAPTER 5. VISIBLY PUSHDOWN LANGUAGES 75

5.6.9 Definition

A visibly counter automaton (VCA) over a visibly pushdown alphabet A with
threshold m is a tuple (A,Q, q0, F, δ0, . . . , δm) where

• A is a visibly pushdown alphabet

• Q is a finite set of states

• q0 ∈ Q is the initial state

• F ⊆ Q is the set of final states

• δi : A×Q→ Q for i = 1, . . . ,m are the transition functions

We define the stack-height of a word w ∈ A∗, denoted by ‖w‖ inductively:

• If w ∈ AC then ‖w‖ = 1,

• if w ∈ AR then ‖w‖ = −1,

• if w ∈ AI then ‖w‖ = 0, and

• if w = w1 . . . wn with wi ∈ A, then ‖w‖ =
∑n

i=1 ‖wi‖.

Observe that a word w of length n is well-matched, if ‖w‖ = 0 and for each i ≤ n,
the condition ‖w<i‖ ≥ 0 holds.

A configuration of a VCA A is a tuple in Q × N and we say that there exists an
a-transition from (q, i) to (p, j), writing (q, i)

a−→ (p, j) if j = i+ ‖a‖ and p = δi(a, q).
The run of a VCA A on a word w ∈ A4 of length n is the sequence of tuples

(q1, i1)(q2, i2) . . . (qn, in) with (qj , ij)
wj−→ (qj+1, ij+1) and q1 = q0.

A run is accepting, if qn ∈ F and the language accepted by A is the set of all words
w ∈ A4 such that the run of A on w is accepting. Observe that we only consider
well-matched words and it is hence not necessary to require in = 0 for an accepting
run.

5.6.10 Proposition

If a language L is VCL, it satisfies equation 5.2.

Proof. Recall that equation 5.2 is satisfied by a language L if and only if for all
u, v, u′, v′ ∈ A∗ such that uv, u′v′, u′v, uv′ ∈ A4 the equality

extωu,v(extωu′,v′(x)) = extωu,v(extωu,v′(extωu′,v′(x)))

= extωu,v(extωu′,v(extωu′,v′(x)))

holds in the syntactic Ext-algebra of L.

76 5.6. CONCEPTS IN APPLICATION

Assume that L is recognised by a VCA A with threshold m. For any u ∈ A∗ and
i ∈ N such that i+ ‖u‖ ≥ 0, we define the function

ru,i : Q→ Q where ru,i(q) = p iff (q, i)
u−→ (p, i+ ‖u‖).

Since A is a VCA with threshold m, for any two i, j ≥ m, we have ru,i = ru,j . We
show that if ‖u‖ > 0, then there exists an s ∈ N such that rus,i = ru2s,i for all i ∈ N.
Observe that it suffices to prove that for each i = 0, . . . ,m there exists an si with
the property rusi ,i = ru2si ,i and we obtain s as their least common multiple. Hence
let i ∈ N be arbitrary but fixed and observe that

ru2,i = ru,i+‖u‖ ◦ ru,i

which implies that for n ∈ N such that n · ‖u‖ < m ≤ (n + 1) · ‖u‖ and l > 0 the
equality

run+l,i = ru,m ◦ · · · ◦ ru,m︸ ︷︷ ︸
l times

◦ru,i+n‖u‖ ◦ · · · ◦ ru,i+‖u‖ ◦ ru,i

holds. Since the functions from Q to Q form a finite monoid, ru,m generates an
idempotent such that for appropriate l we obtain

run+l,i = run+2l,i.

Letting s = n · l proves that claim. Similarly, if ‖u‖ < 0, then there also exists an
s ∈ N such that rus,i = ru2s,i for all i ≥

∥∥u2n
∥∥ and also the case for ‖u‖ = 0 follows

in the same fashion.

Let u, v, u′, v′ ∈ A∗ such that they can be inserted in the equation above and let s be
their common exponent, in the sense that rxs,i = rx2s,i for x ∈ {u, u′, v, v′} and all
i ∈ N. This exponent exists, since we can again choose the least common multiple of
all single exponents.

We observe that now for all x ∈ A4

rusxvs,i = ru2sxv2s,i

where rusxvs,0(q0) is a final state, if and only if the run of A on usxvs is accepting
and hence

usxvs ∈ L⇔ u2sxv2s ∈ L
Since the exponent s was chosen independent of i we may even derive that the two
words are syntactically equivalent with respect to L. Hence we obtain that the
syntactic image of usxvs is extωu,v(x).

Moreover, we derive that

rusu′sxv′svs,i = ru2su′sxv′2svs,i = rusu′2sxv′sv2s ,

which results in the syntactic equivalence of those words and by the previous obser-
vation in the validity of equation 5.2.

It follows that neither the Ludwig language nor H+ are VCLs. Moreover {anbncmdm |
n,m ∈ N}, satisfies the equation and it is not hard to construct a VCA recognising
it.

CHAPTER 5. VISIBLY PUSHDOWN LANGUAGES 77

5.7 Summary

This chapter was dedicated to finding a topological and algebraic theory for the
visibly pushdown languages. We began by examining the structure of well-matched
words and deriving of that structure a notion of recognition for languages of well-
matched words: Ext-algebras. Subsequently, we derived the notion of morphisms
between Ext-algebras and a notion of syntactic Ext-algebra. Together with these
tools, it was possible to identify Ext-algebras as the adequate recognisers for visibly
pushdown languages, that is, that a language is recognised by such an algebra if and
only if it is visibly pushdown.

This realisation led to an Eilenberg-like theorem for the visibly pushdown languages:
Classes of VPL with natural closure properties (pseudo-varieties) are in one-to-one
correspondence with so called pseudo-varieties of Ext-algebras.

The topological perspective was then added, using a similar approach as that for
the free profinite monoid, where it is defined via the completion of A∗ as a metric
space: We defined a metric on the set of well-matched words. In fact, it was possible
to show that the completion of that space is the free profinite Ext-algebra in the
sense that it also is equipped with operations of an Ext-algebra and as such also
the Stone space of the visibly pushdown languages.

As a consequence, we were able to prove a Reiterman-like theorem for VPL, which
states that each pseudo-variety of Ext-algebras is uniquely determined by a set of
equations on the free profinite Ext-algebra.

Concluding this chapter, we gave a set of equations which is sound for a subclass of
the visibly pushdown languages, namely the visibly counter languages and by adding
additional equations, a set of equations that is sound for the languages that are an
intersection of a regular language with the set of well-matched words MExt.

5.8 Further Research

While the results of this chapter, such as the construction of the free profinite Ext-
algebra were proven very much from scratch, it should be considered whether they
could not also be achieved using some of the heavier category-theoretical machinery,
as for instance used in [UACM17] or the book of Almeida [Alm95].

That it is decidable whether, given a visibly pushdown automaton, its recognised
language is equal to an intersection of a regular language with the set of well-matched
words was shown by Löding et al. in [BLS06]. Finding a finite basis of equations
that is complete for MExt would automatically imply decidability of the previous
problem and thus present an algebraic reproof of the result of Löding et al., also
improving the runtime of the decision algorithm.

An intermediate result that (to the best current knowledge of the author) seems
very probable, is that the set of equations given for the visibly counter languages, is

78 5.8. FURTHER RESEARCH

already complete. If this conjecture should be true, it should be of help in reproving
[BLS06].

A second direction of research would be the investigation of VPL in certain circuit-
classes (or fragments of logic). This is motivated by the well-known characterisation of
the regular languages in the class AC0 through the profinite equation (xω−1y)ω+1 =
(xω−1y)ω for words x, y of equal length. Since the set of well-matched words is
TC0-hard, this class seems to be a natural candidate for understanding the visibly
pushdown languages contained in it. Understanding those languages, as in the case
for the regular languages in AC0, may contribute to a better understanding of the
class itself.

6

Typed Stamps and Projective
Limits

To approach arbitrary Boolean algebras from a perspective of algebra and topology,
we introduce the notion of typed stamps:

It is derived from typed monoids, which were originally introduced in [KLR05]
to capture circuit classes and algebraic recognition of non-regular languages. The
original definition included a monoid equipped with a finite Boolean algebra of
subsets of the monoid. We replaced the finite Boolean algebra by a function from the
monoid into a finite set. This definition is equivalent, saves some notation induced
trouble and is more adapt from a topological perspective, which we develop and
elaborate in later sections.

6.1 Typed Stamps

6.1.1 Definition

A typed stamp is a tuple R = (A,µ,M, p,X), where A is a finite alphabet, M is
a monoid, µ : A∗ →M is a monoid morphism, X is a finite set, and p : M → X
is a function.

A language L ⊆ A∗ is recognised by a typed stamp R = (A,µ,M, p,X) if there is a
subset C ⊆ X, such that L = (p ◦ µ)−1(C). To abbreviate notation slightly, we let

ιR = (p ◦ µ).

The set of languages recognised by R is denoted by L(R). Observe that L(R)
always forms a finite Boolean algebra. Also, if R recognises a language L, then
L = ι−1

R (ιR(L)).

80 6.1. TYPED STAMPS

A Reason for Typed Stamps

The reasons for endowing some infinite monoid with the additional structure of
a morphism and a finite set of – figuratively speaking – accepting types, lie in
complexity theory.

Fixing the morphism µ : A∗ → M is justified by a classical example, which was
already mentioned in [PS05] as a reason to study stamps.

The language
Leven = {w ∈ {a, b}∗ | |w| is even.}

is recognised by the typed stamp

R = ({a, b}∗, a7→1
b 7→1,Z2, id,Z2).

Any typed stamp recognising that language contains a copy of Z2 in the monoid
component. But the monoid Z2 also recognises the language

Lparity = {w ∈ {a, b}∗ | w contains an even number of a’s.}

via the morphism that sends b to 0 and a to 1. It is a well-known result of [FSS84],
that the languages recognised by FO[N] (or equivalently AC0) do not contain Lparity,
but do contain Leven, which justifies the necessity of fixing the morphism.

The finite set X and function p : M → X serve the purpose of restricting the
expressive power of the monoid, by limiting the recognised languages. Why it is
necessary in the non-regular case to enforce that restriction, if we aim at capturing
natural classes of languages algebraically, is illustrated in the following example.

Let
LEq = {w ∈ {a, b}∗ | |w|a = |w|b},

which is recognised by the typed stamp

R = ({a, b}, a7→1
b7→−1,Z, χ{0}, {0, 1})

Then LEq = ι−1
R ({1}). Note that the typed stamp R recognises finitely many

languages: ∅, LEq,LcEq and {a, b}∗. Compare that to classical recognition: The
monoid Z recognises any unary language L over {a}∗, since

L = h−1 ({|w| | w ∈ L})

where h is the morphism sending a to 1. Since Z is the syntactic monoid of LEq

and the morphism sending a to 1 and b to −1 is its syntactic morphism, any typed
stamp recognising that language must, in the monoid component, contain a free
monoid on one generator, that is generated by the image of a. Now, the class Maj[<]
(a subclass of TC0) for instance, contains LEq, but it does not contain any unary
encoding of an undecidable language. Hence the restriction of the accepting sets.

In their full generality, typed stamps can recognise very complex languages, such as

LPrime = {w ∈ {a}∗ | |w| is prime.}.

CHAPTER 6. TYPED STAMPS AND PROJECTIVE LIMITS 81

which is recognised by the typed stamp

R = ({a}, a 7→ 1,N, χP , {0, 1}),

where P ⊆ N is the set of all prime numbers. Then LPrime = ι−1
R ({1}).

Typed Stamps and Recognition

It is a well known and extremely useful characterisation, that a finite monoid M
recognises some language L if and only if the syntactic monoid of L divides M . To
establish a similar relationship between typed stamps and languages – or rather sets
of languages – we introduce the notions of morphism and division of typed stamps.

Let R = (A,µ,M, p,X) be a typed stamp. The surjective restriction of R is the
typed stamp

R(R) = (A,µ, µ(A∗), p, ιR(A∗)).

If R is equal to R(R), we say that R is restricted.

Remark: One could have required that in a typed stamp R = (A,µ,M, p,X), both µ
and p are surjective. For language recognition, this requirement makes no difference,
but it is sometimes convenient to talk about a larger monoid without the morphism
having to be surjective – for instance in the block product, which will be treated
later. For proofs however, this is rather cumbersome, which is why we often assume
the typed stamps to be restricted.

6.1.2 Definition

Let R and S be typed stamps with

R(R) = (A,µ,M, p,X) and R(S) = (B, ν,N, q, Y).

A morphism of typed stamps Ψ: R→ S consists of a triple

Ψ = (h, φ, f),

where h : A∗ → B∗ and φ : M → N are monoid morphisms and f : X → Y is a
surjective function such that the diagram

A∗ M

B∗ N

X

Y

h φ f

µ

ν

p

q

commutes. By abuse of notation, we often omit mentioning the tuple explicitly
and write, for instance, Ψ: M → N instead of φ : M → N .

For instance, the triple idR = (idA∗ , idM , idX) is a morphism idR : R → R – the
identity morphism. Together with the composition of morphisms, which is the
component wise composition, typed stamps contribute a category.

82 6.1. TYPED STAMPS

Remark: Observe that if morphisms were not defined on their surjective restrictions,
then there would not exist a morphism from the typed stamp (A, a 7→ 1,Z2 ∪
{x}, idZ2 ,Z2), where x is an absorbing element, to (A, a 7→ 1,Z2, idZ2 ,Z2), although
they are almost the same and recognise the same languages.

6.1.3 Definition

Let R and S be typed stamps.

• S factors through R, if S and R are restricted and there exists a morphism
of typed stamps Ψ: R→ S with Ψ = (idA∗ , φ, f), such that φ is a quotient
morphism and f is surjective. We call Ψ the factoring morphism.

• S divides R, if R(S) factors through R(R). We write S ≺ R.

6.1.4 Example

The typed stamp
S = ({a}, a 7→ 1,Z2, χ{1}, {0, 1}),

divides the typed stamp

R = ({a}, a 7→ 1,Z, p, {e, o}),

where p(x) = e if and only if x is even, since S factors through

R(R) = ({a}, a 7→ 1,N, p, {e, o}),

where the quotient morphism φ : N → Z2 sends even numbers to 0 and odd
numbers to 1 and f : {e, o} → {0, 1} maps e to 0 and o to 1.

Restriction is to typed stamps, what submonoids are to monoids: When concerned
with language recognition in finite monoids, we may always consider the submonoid
induced by the recognising morphism. For typed stamps, we can assume that the
typed stamp is restricted. Hence also division for typed stamps is similar to division
of finite monoids: A typed stamp divides another, if it is the surjective morphic
image of a sub.

6.1.5 Proposition

Let L be a language and R a typed stamp, then R recognises L if and only if
R(R) recognises L.

The proof is clear and thus omitted.

Unlike finite monoids, where two monoids recognise the same set of languages if and
only if they are isomorphic, typed stamps come with some technical peculiarities:
Two typed stamps might recognise the same languages even without being divisionally
comparable.

CHAPTER 6. TYPED STAMPS AND PROJECTIVE LIMITS 83

6.1.6 Example

Let R = (A,µ,M, p,X) be a typed stamp. Moreover, define the morphisms

µ2 : A∗ →M × Z2

w 7→ (µ(w), 1)

and µ3 : A∗ →M × Z3

w 7→ (µ(w), 1)

and let π1 be the projection onto the first component. Then the typed stamps

(A∗, µ2,M × Z2, (p ◦ π1), X) and (A∗, µ3,M × Z3, (p ◦ π1), X)

recognise the same languages as R, but do not divide each other.

We observe that in this example, the two typed stamps have unnecessarily big monoid
components and the recognised languages are actually only dependent on M and X.

6.1.7 Definition

A typed stamp R is a trivial extension of another typed stamp S, if S divides R,
where Ψ = (idA∗ , φ, f) is the factoring morphism Ψ: R(R) → R(S) and f is a
bijection. We write S ≤T R.

For instance, the two typed stamps from the previous Example 6.1.6 are trivial
extensions of R.

Also, the typed stamp R from Example 6.1.4 is a trivial extension of S. Both recognise
the languages

Leven = {w ∈ {a}∗ | |w| is even.} and Lodd = {w ∈ {a}∗ | |w| is odd.}.

Even though trivial extensions might posses extremely powerful monoid components
they do not increase the expressive power of the typed stamp.

6.1.8 Proposition

Let R and S be typed stamps, then S ≤T R implies L(R) = L(S).

Proof. Without loss of generality, assume that R is restricted with R = (A,µ,M, p,X)
and S = (B, ν,N, q, Y). Since S ≤T R, there exist a morphism Ψ: R → S with
Ψ = (idA∗ , φ, f), such that f is a bijection. Let CY ⊆ Y , then

ι−1
S (CY) = (f ◦ ιR)−1(CY),

which results in L(S) ⊆ L(R). Let CX ⊆ X and denote by f−1 : Y → X the inverse
map of f . Since (f ◦ ιR) = ιS implies ιR = (f−1 ◦ ιS), we obtain

ι−1
R (CX) = (f−1 ◦ ιS)−1(CX)

and hence L(S) = L(R).

84 6.1. TYPED STAMPS

Observe that Example 6.1.6 implies that the converse direction of the previous
proposition is in general not true.

We introduce the notion of a syntactic typed stamp, with a slight alteration from the
case known from finite monoids, since typed stamps are more adapt to recognising
Boolean algebras, than to recognising single languages. For instance, the language
L = {w ∈ A∗ | |w| ≡ 1 mod 4} is recognised by the typed stamps

(A∗, ηL,Z4, χ{1}, {0, 1}) and (A∗, ηL,Z4, idZ4 ,Z4),

where ηL is the syntactic morphism of L. But the first recognises the Boolean algebra
{∅, L, Lc, A∗} and the second the Boolean algebra generated by L and all its quotients
by words.

6.1.9 Proposition

Let B be a finite Boolean algebra and let u, v ∈ A∗. The relation given by

u ∼B v ⇔ ∀L ∈ B ∀x, y ∈ A∗ (xuy ∈ L⇔ xvy ∈ L)

is a congruence on A∗.

The proof is entirely unsurprising and thus omitted. We call

MB := A∗\∼B
the syntactic monoid of B and the canonical quotient morphism ηB : A∗ →MB the
syntactic morphism of B.

Remark: Let R be a typed stamp with R(R) = (A,µ,M, p,X). Then the atoms
of L(R) are precisely the languages of the form ι−1

R (x) for x ∈ X and thus X is
isomorphic to the Stone space of L(R). We sometimes identify atoms from L(R)
and elements of X and write xL ∈ X, meaning the unique element of X such that
L = ι−1

R (xL).

6.1.10 Definition

Let B ⊆ P(A∗) be a finite Boolean algebra. Then the syntactic typed stamp of B
is

R(B) = (A, ηB,MB, pB, XB)

where MB is the syntactic monoid and XB is the Stone space of B. The map ηB
is the syntactic morphism of B and the map pB is given by

∀ xL ∈ XB : pB(m) = xL ⇔ m ∈ ηL(L)

It follows that
ιR(B)(w) = xL ⇔ w ∈ L.

The syntactic typed stamp of a Boolean algebra B is the divisionally smallest typed
stamp recognising B.

CHAPTER 6. TYPED STAMPS AND PROJECTIVE LIMITS 85

6.1.11 Proposition

A typed stamp R recognises a Boolean algebra B over A∗ if and only if the
syntactic stamp of B divides R.

Proof. Without loss of generality, assume that R = (A,µ,M, p,X) is restricted. Let
B ⊆ P(A∗) such that R recognises B. That is, there exists a Boolean algebra BX of
subsets of X, such that B = {ι−1

R (C) | C ∈ BX}. Conversely, since R recognises B,
BX = {ιR(L) | L ∈ B}.

We claim that there exists a quotient morphism φ : M → MB and a function
f : X → XB such that Ψ = (idA∗ , φ, f) is a factoring morphism Ψ: R→ R(B).

We prove that ηB factors through µ. Let u, v ∈ A∗ such that µ(u) = µ(v), which
implies µ(xuy) = µ(xvy) for all x, y ∈ A∗ and hence also ιR(xuy) = ιR(xvy). We
obtain, since R recognises B, that for each L ∈ B

xuy ∈ L⇔ xvy ∈ L.

Hence the syntactic morphism ηB factors through µ and there exists a morphism
φ : M →MB such that ηB = φ ◦ µ.

Since BX is isomorphic to B as a Boolean algebra XB is isomorphic to XBX and
there exists a function f : X → XB, which is the dual of the inclusion BX ⊆ P(X).
In particular, this implies that

∀ xL ∈ XB : (f ◦ ιR)(w) = xL ⇔ w ∈ L,

which proves that (f ◦ ιR) = ιR(B).

Since µ and ηB are surjective, this implies that Ψ = (idA∗ , φ, f) is a factoring
morphism, which proves one direction of the claim.

For the converse direction, assume that R(B) factors through R, that is there exists
a morphism Ψ = (idA∗ , φ, f) with Ψ: R→ R(B). Let L ∈ B, then

L = ι−1
R(B)(ιR(B)(L)) = ι−1

R (f−1(ιR(B)(L))),

which proves that R recognises L.

If we want to characterise recognition of single languages rather than whole Boolean
algebras, we define the syntactic typed stamp of a language L ⊆ A∗ to be the
syntactic typed stamp of {∅, L, Lc, A∗}, which is isomorphic to

R(L) := (A∗, ηL,ML, χηL(L), {0, 1})

where ηL is the syntactic morphism and ML the syntactic monoid of L.

We obtain as a Corollary:

6.1.12 Corollary

A typed stamp R recognises a language L if and only if the syntactic typed stamp
of L divides R.

86 6.1. TYPED STAMPS

We define the product only for typed stamps over the same alphabet. This is sufficient
for our purposes and preserves the property that the product recognises Boolean
combinations of languages, as stated in the following proposition.

6.1.13 Definition Product of Typed Stamps

Let R1 = (A,µ,M, p,X) and S = (A, ν,N, q, Y) be two typed stamps. The
product of R and S, is the typed stamp

R× S := (A, φ,M ×N, p× q,X × Y)

where φ : A∗ →M ×N is the morphism sending w to (µ(w), ν(w)).

6.1.14 Proposition

Let R and S be two typed stamps. The languages recognised by R × S are
precisely the Boolean combinations of languages in L(R) and L(S).

Proof. Let R = (A,µ,M, p,X) and S = (A, ν,N, q, Y). Note that since X and Y are
finite, any subset C ⊆ X × Y is of the form

⋃n
i=1CX,i × CY,i where CX,i ⊆ X and

CY,i ⊆ Y . It follows that, if L = (ιR×S)−1(C), then

L =
n⋃
i=1

(ιR×S)−1(CX,i × CY,i)

=
n⋃
i=1

ι−1
R (CX,i) ∩ ι−1

S (CY,i).

Hence every language recognised by the direct product R × S is a Boolean combi-
nation of languages recognised by R and S. To show that it recognises all Boolean
combinations, suppose LX = ι−1

R (CX) and LY = ι−1
S (CY), then

LX ∪ LY = (ιR×S)−1((CX × Y) ∪ (X × CY))

and
LX ∩ LY = (ιR×S)−1(CX × CY).

That R× S recognises complements of languages in L(R) and L(S) follows directly
from the previous observation and the fact that both L(R) and L(S) are Boolean
algebras.

6.1.15 Corollary

Let R1,R2 and S1,S2 be typed stamps, then L(R1) = L(R2) and L(S1) = L(S2)
implies L(R1 × R2) = L(S1 × S2).

We can now give an exact dependence between trivial extensions and recognition of
languages.

CHAPTER 6. TYPED STAMPS AND PROJECTIVE LIMITS 87

6.1.16 Proposition

Let R and S be typed stamps, then L(R) = L(S) if and only if there exists a
typed stamp T such that T ≤T S and T ≤T R.

Proof. If there exists a typed stamp with T ≤T S and T ≤T R, then L(S) = L(R)
follows immediately from Proposition 6.1.8.

For the converse direction, let B = L(R) = L(S).

We prove that R is a trivial extension of the syntactic typed stamp R(B). Without
loss of generality, assume that R = (A,µ,M, p,X) is restricted. By Proposition
6.1.11, R(B) divides R and since R is restricted, there exists a factoring morphism
Ψ: R→ RB with Ψ = (idA∗ , φ, f).

Since both typed stamps recognise precisely the same languages, f must be a bijection.
Hence R(B) ≤T R.

Replacing R by S gives that R(B) ≤T S, which proves the claim.

6.2 Streams of Typed Stamps

As illustrated before, whether a language is recognised by a formula in FO[N]
depends rather on the syntactic morphism of a language than on its syntactic
monoid. It is thus, that we study classes of typed stamps whose monoid morphisms
belong to certain classes of morphisms. When regarding classes of languages, it
becomes important to be able to switch alphabets, which is mostly done via (inverse)
morphisms between free monoids. However, in some cases, we may not regard all
morphisms between free monoids, since for instance

{w ∈ {a, b}∗ | |w|a ≡ 0 mod 2} = φ−1({w ∈ {0, 1}∗ | |w| ≡ 0 mod 2})

where φ : {a, b}∗ → {0, 1}∗ is the morphism sending b to λ and a to 1. The language
consisting of all words with an even number of as is not contained in L(FO[N]), but
the language consisting of all words of even length is. With that in mind, we consider
classes of morphisms C between free monoids having the following properties:

1. C is closed under composition: If A,B and C are finite alphabets and h : A∗ →
B∗ and g : B∗ → C∗ are morphisms in C, then (g ◦ h) ∈ C.

2. C contains all length-preserving morphisms, where a morphism h : A∗ → B∗ is
said to be length-preserving, if |h(a)| = 1 for each a ∈ A.

In particular, the identity is always contained in C. While the necessity of the second
requirement is not immediately clear, it is already justified in [PS05] for smoothing
out some difficulties – for instance, it ensures the identity is always contained – and

88 6.2. STREAMS OF TYPED STAMPS

does not pose a significant restriction, as up to now, all known interesting classes are
closed under inverse length-preserving morphisms.

The class of all morphisms between free monoids is denoted by all and the class of
all length-preserving morphisms by lp.

Further instances of classes of morphisms that satisfy the requirements above are

• the class of non-erasing morphisms, short ne: A morphism h : A∗ → B∗ is
called non-erasing, if h(a) 6= λ for all a ∈ A.

• the length-multiplying morphisms, short lm: A morphism h : A∗ → B∗ is called
length-multiplying, if |h(a)| = k for all a ∈ A.

Any morphism of free monoids induces a morphism of typed stamps in the following
way:

6.2.1 Definition

Let ϕ : A∗ → B∗ be a morphism in C and let S = (B, ν,N, q, Y) be a typed
stamp. Then, we denote by S · ϕ the typed stamp

(A, ν ◦ ϕ,N, q, Y).

We say that S · ϕ is a C-transformation of S.

In particular, ϕ induces a morphism of typed stamps Ψϕ : S · ϕ → S with Ψϕ =
(ϕ, idN , idY).

Let V be a class of typed stamps and A a finite alphabet. Then V(A) is the class of
all typed stamps R ∈ V over the alphabet A, that is the class of typed stamps of the
form R = (A,µ,M, p,X) in V.

6.2.2 Definition Stream of Typed Stamps

A class of typed stamps V is a C-stream of typed stamps, if V is closed under

1. division: if R ∈ V and S ≺ R, then S ∈ V,

2. finite direct products: if R,S ∈ V, then R× S ∈ V,

3. C-transformations: if R ∈ V(A) and ϕ : B∗ → A∗ is a C-morphism, then
R · ϕ ∈ V

4. and trivial extensions: if R ∈ V and R ≤T S, then S ∈ V.

Observe that any set of typed stamps generates a C-stream of typed stamps, by
closing under the operations above.

CHAPTER 6. TYPED STAMPS AND PROJECTIVE LIMITS 89

6.2.3 Example

One may verify that the typed stamps (A,µ,M, idM ,M), where A is some
arbitrary alphabet and M is a finite monoid, generate an all-stream of typed
stamps.
This all-stream consists of the typed stamps (A,µ,M, p,X) where A is some
alphabet, M a monoid, X is a finite monoid and p is a monoid morphism.

This stream in particular has additional structure. Observe that the class of languages
recognised by the element of that all-stream are precisely the regular languages,
which are closed under quotients by words. This structure is mirrored on the side of
typed stamps as follows:

For a monoid M , a set X, some element m ∈ M and a function p : M → X, we
define the functions (m · p) : M → X and (p ·m) : M → X by letting

(m · p)(x) = p(m · x) and (p ·m)(x) = p(x ·m).

6.2.4 Definition

Let R = (A,µ,M, p,X) be a typed stamp, then we define the typed stamps

a−1R := (A,µ,M, µ(a) · p,X),

and
Ra−1 := (A,µ,M, p · µ(a), X).

6.2.5 Proposition

Let R be a typed stamp recognising a language L, then a−1L (resp. La−1) is
recognised by the typed stamp a−1R (resp. Ra−1).

Proof. Suppose that L is recognised by R = (A,µ,M, p,X). Then, L = ι−1
R (C) for

some C ⊆ X. Recall that, for a ∈ A and a subset N ⊆M , we defined

µ(a)−1N = {m ∈M | µ(a)m ∈ N}

and thus

a−1L = {w ∈ A∗ | aw ∈ L}
= {w ∈ A∗ | aw ∈ ι−1

R (C)}
= {w ∈ A∗ | µ(a)µ(w) ∈ p−1(C)}
= {w ∈ A∗ | µ(w) ∈ µ(a)−1p−1(C)}
= µ−1(µ(a)−1p−1(C))

In a similar fashion, it follows that

µ(a)−1p−1(C) = (µ(a) · p)−1(C).

90 6.3. EILENBERG FOR STREAMS OF TYPED STAMPS

Hence a−1L = ((µ(a) ·p)◦µ)−1(C) = ι−1
a−1R

(C). The case for La−1 follows accordingly
and hence the claim holds.

It follows from Proposition 6.2.5, that L(a−1R) = {a−1L | L ∈ L(R)}.

6.2.6 Definition Pseudo-Variety of Typed Stamps

A C-stream of typed stamps V is called a C-pseudo-variety of typed stamps, if
for each finite alphabet A, each R ∈ V(A) and each a ∈ A, we have

a−1R ∈ V(A) and Ra−1 ∈ V(A).

For instance, the all-stream from Example 6.2.3 is also an all-pseudo-variety.

6.3 Eilenberg for Streams of Typed Stamps

The proofs in this section are often adaptions of the proofs in [Str02] (Eilenberg for
stamps) or [Pin16] (Eilenberg for finite monoids), which were modified to work for
typed stamps.

We prove that each C-stream of typed stamps V corresponds to a class of languages
V with certain closure properties.

6.3.1 Definition C-Stream of Languages

A C-stream of languages V is a mapping such that for each finite alphabet A,

1. V(A) is a Boolean algebra of languages over A∗ and

2. V is closed under inverse C-morphisms, that is if B is a finite alphabet and
ϕ : A∗ → B∗ is a C-morphism, then L ∈ V(B) implies ϕ−1(L) ∈ V(A).

We define the correspondence V→ V as follows: Given a C-stream of typed stamps
V, we let V be the class of languages recognised by members of V and write V 7→ V .

6.3.2 Proposition

If V 7→ V, then V is a C-stream of languages.

Proof. Let A be a finite alphabet. Since V is closed under finite direct products, it
follows from Proposition 6.1.14 and the definition of V as the class of all elements
recognised by members of V, that V(A) is a Boolean algebra.

To show that if ϕ : A∗ → B∗ is a C-morphism and L ∈ V(B), then ϕ−1(L) ∈ V(A),
it suffices to see that if L is recognised by S then S · ϕ recognises ϕ−1(L).

CHAPTER 6. TYPED STAMPS AND PROJECTIVE LIMITS 91

6.3.3 Proposition

The correspondence V→ V is one-to-one: If V 7→ V and W 7→ W , then V = W
if and only if V =W.

Proof. Assume that V = W, then it follows by definition that V =W.

For the converse direction, assume that V ⊆ W. We show that this implies V ⊆W.

Let R ∈ V with R = (A,µ,M, p,X) and let X = {x1, . . . , xk} for k ∈ N. Moreover,
let Li = ι−1

R ({xi}) for i = 1, . . . , k. It follows from Proposition 6.1.14, that

L(R) = L (R(L1)× · · · × R(Lk)) .

By Proposition 6.1.16, this implies that there exists a typed stamp T such that both
the product and R are trivial extensions of T.

Observe that since Li ∈ V(A), we have Li ∈ W(A) and hence there exists a typed
stamp in W which recognises Li. Since W is closed under division, by Proposition
6.1.11, we obtain R(Li) ∈ W and since W is closed under finite direct products,
R(L1)× · · · × R(Lk) ∈W.

Then T is in W since it divides the product and W is closed under division and
hence R is also in W, since it is a trivial extension of T and W is closed under trivial
extension.

The equality follows by symmetry of the argument.

The correspondence V → V is defined in the following way: Given a C-stream of
languages V, we let V be the stream of typed stamps generated by the syntactic
typed stamps of languages in V, that is, the smallest class of typed stamps, that
contains all syntactic typed stamps and is closed under division, finite direct products,
C-transformations and trivial extension. We write V 7→ V.

6.3.4 Theorem

The correspondences V → V and V → V are mutually inverse bijective corre-
spondences between C-streams of typed stamps and C-streams of languages.

Proof. We first prove that V 7→ V and V 7→ W implies V =W.

Let V be a C-stream of languages such that V 7→ V and V 7→ W. If L ∈ V(A),
then the syntactic typed stamp of L is contained in V and since W(A) consists of
all languages recognised by some typed stamp in V(A), L ∈ W(A), which proves
V(A) ⊆ W(A) for each finite alphabet A.

To prove the inclusion W(A) ⊆ V(A), assume that L ∈ W(A). Then, by definition
of W(A), L is recognised by some typed stamp in V(A).

Before we can proceed, we need the following Lemma.

92 6.3. EILENBERG FOR STREAMS OF TYPED STAMPS

6.3.5 Lemma

Let L ⊆ A∗ and let R, RT , S, ST T, and TT be typed stamps over A such
that R ≤T RT , S ≤T ST and T ≤T TT . Moreover let B be an alphabet and
ϕ : B∗ → A∗ be a morphism. Then the implications

• R(L) ≺ RT ⇒ R(L) ≺ R,

• R(L) ≺ RT × ST ⇒ R(L) ≺ R× S, and

• R(L) ≺ TT · ϕ⇒ R(L) ≺ T · ϕ.

hold.

Proof. Follows immediately from Proposition 6.1.15 and 6.1.8 and the observation
that L(TT · ϕ) = L(T · ϕ).

Now by definition of V as the smallest C-stream generated by the syntactic monoids
of languages in V and Lemma 6.3.5, there exists an n ∈ N, finite alphabets Ai,
C-morphisms ϕi : A

∗ → A∗i and languages Li ∈ V(Ai) for i ∈ {1, . . . , n} such that
R(L) divides the direct product

R(L1) · ϕ1 × · · · × R(Ln) · ϕn (6.1)

Note that it is due to Lemma 6.3.5, that we do not need to consider trivial extensions.
We let R = (A∗, µ,M, p,X) be the restriction of the typed stamp in (6.1). Then,
since R(L) divides R, there exists a set C ⊆ X such that L = ι−1

R (C) and since C is
finite

L =
⋃
x∈C

ι−1
R (x)

To show that L ∈ V(A), it thus suffices to show that for each x ∈ X, it holds that
ι−1
R ({x}) ∈ V(A). Denote by πi : X → {0, 1} the ith projection sending (x1, . . . , xn)

to xi – recall that xi ∈ {0, 1}. Then the diagram

A∗

A∗i

MLi

M X

{0, 1}

µ p

ϕi

ηLi pi

πi

commutes.

Since each x ∈ X is of the form x = (x1, . . . , xn), where xi ∈ {0, 1} for i ∈ {1, . . . , n},
we get {x} =

⋂n
i=1 π

−1
i (xi) and hence

ι−1
R (x) =

n⋂
i=1

(πi ◦ ιR)−1(xi) =

n⋂
i=1

(ιR(Li) ◦ ϕi)
−1(xi)

CHAPTER 6. TYPED STAMPS AND PROJECTIVE LIMITS 93

Now V(A) is a C-stream of languages and hence it suffices to show that ι−1
R(Li)

(xi)

is in V(Ai). But since ι−1
R(Li)

(xi) is either Li or Lci depending on whether xi = 0 or

xi = 1 that claim holds and it follows that L ∈ V(A), which proves V =W.

To see that V 7→ V and V 7→W, implies V = W, observe that if

V 7→ V 7→W 7→ W

then the previous observation shows V =W and by Proposition 6.3.3, V = W.

If a stream of typed stamps V corresponds to a stream of languages V, we write
V↔ V.

6.3.6 Proposition

Let V ↔ V, then V is a C-stream closed under quotients if and only if V is a
C-pseudo-variety.

Proof. Suppose that L ∈ V and V is a C-pseudo-variety. Then, there exists a typed
stamp R ∈ V recognising L. It follows from Proposition 6.2.5 that a−1R recognises
a−1L and since V is a C-pseudo-variety, a−1R ∈ V.

For the converse direction, suppose V is a C-stream closed under quotients. We first
show that R(L) ∈ V implies a−1R(L) ∈ V.

Suppose that R(L) ∈ V, then L ∈ V and since V is closed under quotients, R(a−1L)
is in V. It is not hard to see, that R(a−1L) and a−1R(L) recognise the same set of
languages, that is the Boolean algebra generated by a−1L.

Proposition 6.1.16 implies that there exists a typed stamp T, such that T ≤T a−1R(L)
and T ≤T R(a−1L). Since R(a−1L) ∈ V, T is contained in V by closure under
quotients and a−1R(L) is thus contained in V by closure under trivial extension.

Now let R ∈ V be a typed stamp. We claim that a−1R ∈ V. Observe that if x ∈ X,
then ι−1

R (x) = L implies ι−1
a−1R

(x) = a−1L. Since L 7→ a−1L distributes over Boolean
operations, we obtain

L(a−1R) = {a−1L | L ∈ L(R)}

Let X = {x1, . . . , xk} and Li = ι−1
R (xi) for i ∈ {1, . . . , n}. Then

L(R) = L(R(L1)× · · · × R(Lk))

by Proposition 6.1.14 and

L(a−1R) = L(a−1R(L1)× · · · × a−1R(Lk)).

Since R(Li) ∈ V, we obtain a−1R(Li) ∈ V for each i ∈ {1, . . . , k} and thus their
direct product is also in V. Again by 6.1.16 and closure under quotients and trivial
extensions, a−1R is thus in V, which proves the claim.

94 6.3. EILENBERG FOR STREAMS OF TYPED STAMPS

Inherent Classes of Typed Stamps

Consider the following example:

6.3.7 Example

We say that a language L ⊆ A∗ is symmetrical, if for any word w ∈ L, any
permutation of the letters in w also contributes a word in L. For instance, if
abba ∈ L, then also abab, bbaa, . . . ∈ L. For a finite alphabet A, denote by V(A)
the set of all symmetrical languages. Then the class V is an all-stream, which
also contains non-regular languages, such as

LEq = {w ∈ {a, b}∗ | |w|a = |w|b}.

The corresponding all -stream of typed stamps contains, for instance, the typed
stamp

R = ({a, b}∗, id, {a, b}∗, χLEq
, {0, 1})

The syntactic monoids of the languages in V(A), however, all are commutative.

By trivial extension, a lot of unnecessarily large monoids are introduced in the
C-stream. This is unavoidable, if we want to keep the property, that any set of typed
stamps generates a C-stream. Also, being able to consider a monoid, that is just a
little too large – for instance in the direct product – is sometimes rather convenient.
It is however evident, that a lot of these large monoid components contribute in
general little to the algebraic understanding of the languages. We will thus consider
typed stamps that are minimal with respect to trivial extension in the following
sense:

6.3.8 Proposition

Let V be a C-stream of languages. Then division and trivial extension are partial
orders on V.

Proof. Let R = (A,µ,M, p,X) and S = (A, ν,N, q, Y) be typed stamps. We prove
that division is a partial order on V. Recall that S ≺ R if and only if R(S) factors
through R(R). We assume without loss of generality, that R and S are restricted.

It follows immediately that ≺ is reflexive, since R factors through R with the identity
being the factoring morphism.

To show that it is antisymmetric, assume that S ≺ R and R ≺ S that is, there exist
morphisms Ψ: S → R and Φ: R → S, with Ψ = (idA∗ , ψ, g) and Φ = (idA∗ , φ, f).
Summarising the situation in a commutative diagram, we have:

CHAPTER 6. TYPED STAMPS AND PROJECTIVE LIMITS 95

A∗
M

N

X

Y

φψ fg

µ

ν

p

q

We prove that Ψ ◦ Φ = idS and Ψ ◦ Φ = idR, by proving that the components are
mutually inverse bijections.

Let m ∈M and n ∈ N . From the commutativity of the diagram, we obtain

m = (µ ◦ ν−1 ◦ φ)(m) = (ψ ◦ φ)(m)

and
n = (ν ◦ µ−1 ◦ ψ)(n) = (φ ◦ ψ)(n).

Thus φ and ψ are inverse to each other.

Similarly, f and g are inverse to each other and we conclude that since M and N
and X and Y are isomorphic, that (modulo isomorphism) µ = ν and f = g and thus
S = R.

Transitivity follows immediately from composing the factoring morphisms.

Since R ≤T S requires that R ≺ S and all arguments above still hold, if f and g are
required to be bijections, it follows that trivial extension defines a partial order on
V.

Observe that the minimal elements of a C-stream V with respect to division are not
very interesting, since the trivial typed stamp

R = (A∗, (a 7→ 1)a∈A, 1M , χ{1}, {1}),

where 1M is the trivial monoid, divides every typed stamp.

There is an exact characterisation of the typed stamps in V minimal with respect to
trivial extension.

6.3.9 Proposition

Let V be a C-stream of typed stamps and R ∈ V. Then R is minimal with
respect to trivial extension if and only if R is the syntactic typed stamp of L(R).

Proof. Let B = L(R).

Assume that R is minimal with respect to trivial extension, then R(B) divides R and
since they recognise the same set of languages R(B) ≤T R which implies that they
are equal, since R is minimal.

For the other direction, assume that R is the syntactic typed stamp of B and that
there exists a typed stamp S with S ≤T R. Then L(S) = B and by Proposition 6.1.11
also R ≤T S, which implies R = S, hence R is minimal.

96 6.4. PROJECTIVE LIMITS OF STREAMS

6.3.10 Definition

Let V be a C-stream of typed stamps and define

I(V) = {R ∈ V | R is minimal with respect to trivial extension.}.

and IA(V) := I(V) ∩V(A). We call I(V) the inherent class of V.

As a direct consequence of the previous proposition, we can characterise IA(V) in
terms of languages as follows:

6.3.11 Corollary

Let A be a finite alphabet and V a C-stream of typed stamps with V↔ V , then

IA(V) = {R(B) | B is a finite Boolean subalgebra of V(A).}

We can now state as a consequence of the Eilenberg theorem for C-streams of typed
stamps an Eilenberg theorem for inherent classes of typed stamps.

6.3.12 Corollary

There is a one-to-one correspondence between C-streams of languages and inherent
classes of C-streams of typed stamps.

Proof. Let V and W be C-streams of typed stamps. We prove that

V = W⇔ I(V) = I(W).

The direction from left to right is obvious. For the converse direction, observe
that by Corollary 6.3.11 the class of languages recognised by I(V) (resp. I(W)) is
precisely the stream of languages corresponding to V (resp. W) and hence V = W
by Theorem 6.3.4.

6.4 Projective Limits of Streams

To achieve a Reiterman-like characterisation of streams of typed stamps, we make
use of projective limits. Since trivial extensions have some undesirable properties –
like insufficient algebraic information about the languages – that the projective limit
of a C-stream would inevitably inherit, we are going to define it via inherent varieties.

Projective Systems

Let V be a C-stream of stamps. Since division is a partial order on V, the inherent
C-stream I(V) inherits this order, which makes it a poset.

CHAPTER 6. TYPED STAMPS AND PROJECTIVE LIMITS 97

We make frequent use of a property, which is not particularly hard to verify: If
S,R ∈ IA(V), then S ≺ R if and only if S factors through R, in particular the
factoring morphism Ψ: R→ S is uniquely determined.

6.4.1 Proposition

Let V be a C-stream of typed stamps, then IA(V) is a directed poset.

Proof. Let R1,R2 ∈ IA(V) and let V be the C-stream of languages corresponding to
V. Then, by Corollary 6.3.11, there exist finite Boolean sub-algebras B1 and B2 of
V(A) such that R1 = R(B1) and R2 = R(B2).

Let B be the Boolean algebra generated by B1 and B2, then B is a subalgebra of
V(A) and hence R(B) ∈ IA(V) recognises both B1 and B2. It follows that both R1

and R2 divide R(B). Thus R(B) is an upper bound and IA(V) is directed.

To adapt to the usual notation for projective limits, we let IA(V) = (R)i∈I , where I
is some appropriate index set, such that i ≤ j if and only if Ri ≺ Rj . The (uniquely
determined) factoring morphisms are denoted by Ψij : Rj → Ri.

6.4.2 Proposition

Let V be a C-stream of typed stamps, then the set IA(V) forms a projective
system.

Proof. Let i, j ∈ I with i ≤ j. The connection morphisms are the morphisms
Ψij : Rj → Ri.

Obviously, for each i ∈ I, Ψii : Ri → Ri is the identity.

Let i, j, k ∈ I such that i ≤ j ≤ k. Since i ≤ k implies that there exists exists exactly
one morphism Ψik between Rk and Ri, we conclude that Ψij ◦Ψjk = Ψik.

Just like the projective limit of a variety of finite monoids is in general not a finite
monoid anymore, the projective limit of an inherent C-stream does also in general
not exist in the category of typed stamps:

Let V be the all-stream of all regular languages and V the corresponding all-stream of
typed stamps – this is precisely the stream considered in Example 6.2.3. Then for any
two words u, v ∈ A∗, there exists a typed stamps R ∈ I(V) such that ιR(u) 6= ιR(v),
but there exists no typed stamp T such that ιT(u) 6= ιT(v) for all u, v ∈ A∗. Hence
there exists no typed stamp T with projection morphisms ΠR : T → R for each
R ∈ IA(V). Which proves that IA(V) does not have a projective limit in the
category of typed stamps.

98 6.4. PROJECTIVE LIMITS OF STREAMS

Projective Limits and Dense Stamps

In order to characterise in which category the projective limit of IA(V) exists, we
briefly consider typed stamps as topological objects and derive therefrom a natural
extension to a more general category.

Let R = (A,µ,M, p,X) ∈ IA(V), then X is the Stone space of L(R) and as such a
finite, discrete topological space and p : M → X is a map with dense image, since
it is surjective. Moreover, if also S ∈ IA(V) and Ψ: R → S is a morphism with
Ψ = (idA∗ , φ, f), then f is a continuous function between discrete topological spaces.

From these observation, we consider the projective limit in the category of dense
stamps.

6.4.3 Definition

A dense stamp R is a tuple (A,µ,M, p,X), where A is an alphabet, M a monoid,
µ : A∗ →M a monoid morphism, X a Stone space and p : M → X a map with
dense image.

6.4.4 Definition

Let R = (A,µ,M, p,X) and S = (B, ν,N, q, Y) be dense stamps. A morphism
of dense stamps Ψ: R → S is a triple Ψ = (h, φ, f) where h : A∗ → B∗ and
φ : µ(A∗)→ N are monoid morphisms and f : X → Y is a continuous function
such that the diagram

A∗ µ(A∗)

B∗ ν(A∗)

X

Y

h φ f

µ

ν

p

q

commutes.

Observe that if R = (A,µ,M, p,X) is a typed stamp, then X is a discrete space and
hence p as a surjective function has dense image. In addition, every morphism of
typed stamps is a morphism of dense stamps. Hence, each typed stamp in IA(V)
also is a dense stamp and we prove that in this category, the projective limit exists
and exhibits some interesting properties.

Recall that, if (Xi)i∈I is a family of finite discrete spaces, we consider
∏
i∈I Xi to be

equipped with the product topology and any subset X ⊆
∏
i∈I Xi is equipped with

the subspace topology.

CHAPTER 6. TYPED STAMPS AND PROJECTIVE LIMITS 99

6.4.5 Proposition

Let V be a C-stream of typed stamps. Then the projective limit of the inherent
class IA(V) = (Ri)i∈I with Ri = (A,µi,Mi, pi, Xi) is the dense stamp

R̂A(V) = (A,µ,M, p,X)

where

• M ⊆
∏
i∈IMi is the set {(µi(w))i∈I | w ∈ A∗},

• the map µ sends w to (µi(w))i∈I ,

• X ⊆
∏
i∈I Xi is the topological closure of the set {(ιRi(w))i∈I | w ∈ A∗},

• for each (mi)i∈I ∈M , the map p is defined by p((mi)i∈I) = (pi(mi))i∈I

Proof. We first observe that the defined object is indeed a dense stamp: Since X is
a closed subset of a Stone space, it is – equipped with the subspace topology – also a
Stone space. The map p is dense, since each (mi)i∈I is equal to (µi(w))i∈I for some
w ∈ A∗ and hence p(M) = {(ιRi(w))i∈I | w ∈ A∗}, which is dense in X by definition,
as X is the topological closure of that set.

We now show that for each typed stamp Ri ∈ IA(V), there exists a morphism of
dense stamps Πi : R̂A(V)→ Ri commuting with the connection morphisms.

For each i ∈ I, let

πMi : M →Mi

(mi)i∈I 7→ mi

be the projection onto the ith component and similarly let πXi : ιR̂A(V)
(A∗)→ Xi be

the map sending (xi)i∈I ∈ ιR̂A(V)
(A∗) to ith component xi.

By definition, ι
R̂A(V)

(A∗) is dense in X. Hence there exists a unique continuous

extension π̂Xi : X → Xi and the projection morphisms Πi : R̂A(V)→ Ri are given by
the triples

Πi = (idA∗ , πMi , π̂Xi).

Let Ri,Rj ∈ IA(V) such that j ≥ i and let Ψji : Rj → Ri with Ψij = (idA∗ , ψji, fji)
denote the connection morphism. Then the diagram

A∗ Mj

Mi

Xj

Xi

ψij fij

µj

µi

pj

pi

commutes. From this diagram, it is not hard to verify that the projections commute
with the connection morphisms in the sense, that the diagram below also commutes.

100 6.4. PROJECTIVE LIMITS OF STREAMS

R̂A(V)

Rj Ri
Ψij

ΠiΠj

It now remains to be shown that R̂A(V) together with the projection morphisms Πi

is the projective limit. We prove that it satisfies the universal property.

Let S = (A, ν,N, q, Y) be a dense stamp such that for each i ∈ I there exist morphisms
Φi : S→ Ri with Φi = (idA∗ , φi, gi) that commute with the connection morphisms.

We construct a morphism of dense stamps θ : S→ R̂A(V), such that the diagram

R̂A(V)

S

Rj Ri

ΠiΠj

Ψij

Φj Φi
θ

commutes.

Since Φi is a morphism the diagram below ensures that for any n ∈ ν(A∗) ⊆ N ,
(φi(n))i∈I is an element of M and also that for each y ∈ ιS(A∗), (gi(y))i∈I is an
element of X.

A∗ N

Mi

Y

Xi

φi gi

ν

µi

q

pi

Define ϕ : ν(A∗) → M as the map sending n to (φi(n))i∈I). This, by the previous
observation is well-defined. From the diagram above, we obtain in particular that

µ(w) = (µi(w))i∈I = (φi ◦ ν(w))i∈I = ϕ ◦ ν(w).

Hence ϕ(ν(A∗)) = M .

Since each of the maps gi : Y → Xi are continuous, also the map f : Y →
∏
i∈I Xi

which sends y to (gi(y))i∈I is continuous. This is a straight forward consequence of∏
i∈I Xi being equipped with the product topology. In the same fashion as for ϕ, we

obtain
ι
R̂A(V)

(w) = f ◦ ιS(w),

which implies that ι
R̂A(V)

(A∗) = f(ιS(A∗)) and since ιS(A∗) is dense in Y and f
continuous

f(Y) = f(ιS(A∗)) = f(ιS(A∗)) = ι
R̂A(V)

(A∗) = X.

CHAPTER 6. TYPED STAMPS AND PROJECTIVE LIMITS 101

Hence f is a continuous map from Y to X and summarising, θ = (idA∗ , ϕ, f) is a
morphism of dense stamps from S to R̂A(V).

If V is a C-stream of typed stamps, then we call R̂A(V) the dense pro-V stamp over
A.

6.5 Properties of the Dense Pro-V Stamp

While the definition through profinite limits is rather technical, the dense pro-V
stamp enjoys some useful properties.

Notation: In order to avoid redundancies, we fix some notation for this section. Let
V be a stream of typed stamps, then

R̂A(V) = (A,µ,M, p,X).

The inherent class IA(V) is the family (Ri)i∈I where

Ri = (A,µi,Mi, pi, Xi).

Denote by Πi : R̂A(V)→ Ri the projections, with Πi = (idA∗ , πMi , π̂Xi), where π̂Xi is
the unique continuous extension of the map sending (ιRi(w))i∈I ∈ X to ιRi(w) ∈ Xi.

6.5.1 Proposition

Let V be a stream of typed stamps, V be the associated stream of languages
and R̂A(V) be the dense pro-V stamp over A. Then

1. M is the syntactic monoid of V(A) and

2. µ is the syntactic morphism of V(A).

Proof. We show that for any u, v ∈ A∗, µ(u) = µ(v) implies u ∼V(A) v, where ∼V(A)

for the infinite Boolean algebra V(A) is defined in the same way as the syntactic
congruence for finite Boolean algebras. Let x, y ∈ A∗. Then

µ(xuy) = µ(xvy)⇒ ∀i ∈ I µi(xuy) = µi(xvy)

⇒ ∀i ∈ I ∀C ⊆ Xi (ιRi(xuy) ∈ C ⇔ ιRi(xvy) ∈ C)

⇒ ∀i ∈ I ∀C ⊆ Xi (xuy ∈ ι−1
Ri

(C)⇔ xvy ∈ ι−1
Ri

(C))

⇒ ∀L ∈ V(A) (xuy ∈ L⇔ xvy ∈ L)

since the languages recognised by members in IA(V) are precisely the languages in
V(A).

For the converse direction assume that µ(u) 6= µ(v). Then there exists an i ∈ I and
a typed stamp Ri such that µi(u) 6= µi(v). By Corollary 6.3.11, Ri is the syntactic

102 6.5. PROPERTIES OF THE DENSE PRO-V STAMP

typed stamp of some finite Boolean algebra B ⊆ V(A) and hence there exist x, y ∈ A∗
and a language L ∈ B ⊆ V(A) such that

xuy ∈ L and xvy /∈ L.

This proves that u 6∼V(A) v. Hence µ is the syntactic morphism of V(A) and since M
is the image of µ, it is (isomorphic to) the syntactic monoid of V(A).

6.5.2 Lemma

Let V be a stream of typed stamps, V be the associated stream of languages
and R̂A(V) be the dense pro-V stamp over A. For L ∈ V(A) let

L̂ = ι
R̂A(V)

(L).

Then L̂ is clopen in X and L = ι−1

R̂A(V)
(L̂).

Proof. Let L ∈ V(A). Then there exists an i ∈ I such that Ri recognises L and the
diagram

A∗ X

Xi

ι
R̂A(V)

π̂XiιRi

commutes. From the continuity of π̂Xi and the fact that Xi is discrete as a space,
we obtain

π̂Xi
−1(ιRi(L)) = π̂Xi

−1(ιRi(L))

= π̂Xi
−1 ◦ ιRi(L)

= ι
R̂A(V)

(L)

= L̂

Since Xi is a discrete space, ιRi(L) is clopen and hence also L̂. In particular, since
L = ι−1

Ri
(ιRi(L)), we obtain by applying ι−1

R̂A(V)
to both sides of the previous equality

and using commutativity of the above diagram

ι−1

R̂A(V)
(L̂) = ι−1

R̂A(V)
(π̂Xi

−1(ιRi(L))) = ι−1
Ri

(ιRi(L)) = L.

Recall that for any topological space X, the set Clopen(X) is the set of clopens of X.

CHAPTER 6. TYPED STAMPS AND PROJECTIVE LIMITS 103

6.5.3 Lemma

Let V be a stream of typed stamps, V be the associated stream of languages
and R̂A(V) be the dense pro-V stamp over A. The map

σ : V(A)→ Clopen(X)

L 7→ L̂.

is an isomorphism of Boolean algebras.

Proof. We first prove that σ is a morphism of Boolean algebras. For any language
L ∈ V(A) and typed stamp Ri ∈ IA(V) recognising L, the diagram

A∗ X

Xi

ι
R̂A(V)

π̂XiιRi

commutes and
L̂ = π̂Xi

−1 ◦ ιRi(L).

Now let L,K ∈ V(A) and Ri ∈ IA(V) be a typed stamp recognising both. Then ιRi
induces a morphism of Boolean algebras from L(Ri) to the powerset of Xi and hence

L̂ ∩K = π̂Xi
−1 ◦ ιRi(L ∩K)

= π̂Xi
−1 ◦ ιRi(L) ∩ π̂Xi

−1 ◦ ιRi(K)

= L̂ ∩ K̂.

The cases for intersection and complementation are completely analogous. It remains
to be shown that σ is in fact an isomorphism of Boolean algebras.

That σ is surjective follows immediately from X being equipped with the product
topology of the sets Xi and hence each clopen is a Boolean combination of sets
π̂Xi
−1 ◦ ιRi(L), where L is some language in V(A).

To prove that σ is injective, let L,K ∈ V(A) such that L 6= K and let Ri ∈ IA(V)
be a typed stamp recognising both L and K. Then ιRi(L) 6= ιRi(K), which implies

π̂Xi(L̂) = ιRi(L) 6= ιRi(K) = π̂Xi(K̂).

Since π̂Xi is surjective, we conclude by applying π̂Xi
−1 to each of the (in-)equalities

above that
L̂ = π̂Xi

−1 ◦ ιRi(L) 6= π̂Xi
−1 ◦ ιRi(K) = K̂.

Hence σ is an isomorphism of Boolean algebras.

104 6.5. PROPERTIES OF THE DENSE PRO-V STAMP

This already suffices to see that X is the Stone space of V(A), since Stone spaces are
uniquely determined by their clopens. The next proposition also characterises the
map ι

R̂A(V)
more precisely.

6.5.4 Proposition

Let V be a stream of typed stamps, V be the associated stream of languages
and R̂A(V) be the dense pro-V stamp over A. Then

1. X is isomorphic to the Stone space of V(A),

2. the map ι
R̂A(V)

is (modulo isomorphism) the canonical inclusion of A∗ in

the Stone space of V(A).

Proof. Since R̂A(V) is a dense stamp, X is a Stone space and since Stone spaces
are uniquely determined by their clopens, it suffices to show that there exists an
isomorphism of Boolean algebras between the clopens of X and the clopens of XV(A).

Recall that we may include A∗ in XV(A) via the map

ι : A∗ → XV(A)

w 7→ {w ∈ V(A) | w ∈ L}

and hence any language L ∈ V(A) has an embedding ι(L) ⊆ XV(A). Moreover,
remember that there is a one-to-one correspondence between clopens of XV(A) and
languages in V(A) via the map sending L ∈ V(A) to the closure of its inclusion
L = {µ ∈ XV(A) | L ∈ µ}. Hence we identify each clopen of XV(A) with such a set.

By Lemma 6.5.2, for each L ∈ V(A), the set L̂ = ι
R̂A(V)

(L) is clopen and we let

σ : Clopen(XV(A))→ Clopen(X)

L 7→ L̂.

where Clopen(XV(A)) is the set of clopens of XV(A) and respectively Clopen(X) the
set of clopens of X.

By Lemma 6.5.3, the map sending L ∈ V(A) to L̂ is an isomorphism of Boolean
algebras and since L 7→ L also is an isomorphism, so is σ, which makes X the Stone
spaces of V(A) and proves the first claim.

For the second claim, observe that for L ∈ V(A), we have ι−1(L) = L and by Lemma
6.5.2, ι−1

R̂A(V)
(L̂) = L. Hence the diagram

V(A∗)

Clopen(X)Clopen(XV(A))

ι−1

R̂A(V)ι−1

σ : L 7→ L̂

CHAPTER 6. TYPED STAMPS AND PROJECTIVE LIMITS 105

commutes and by duality also the diagram

A∗

XXV(A)

ι
R̂A(V)ι

σ−1

commutes. Which proves that ι
R̂A(V)

is the canonical inclusion of A∗ in XV(A) modulo

isomorphism.

Recognition on Dense Stamps

Regarding the previous findings, we may now generalise concepts like recognition
to dense stamps. To be able to talk about a dense stamp recognising some set of
languages makes the terminology a tad more light-weight in some places.

6.5.5 Definition

A dense stamp R = (A,µ,M, p,X) recognises some language L ⊆ A∗, if there
exists a clopen C ⊆ X such that L = ι−1

R (C). We write L(R) for the set of all
languages recognised by R.

Hence, by Lemma 6.5.2, we obtain the following Corollary.

6.5.6 Corollary

Let V be a stream of typed stamps and V its associated stream of languages.
Then a language is in V(A) if and only if it is recognised by R̂A(V).

Similarly to typed stamps, we may define the notion of syntactic typed stamp of a
Boolean algebra.

6.5.7 Definition

Let B be a Boolean algebra of languages over A∗. Then the syntactic dense
stamp is the tuple

(A∗, ηB,MB, pB, XB)

where MB is the syntactic monoid of B, ηB is the syntactic morphism, XB the
Stone space of B and the map pB uniquely determined by the embedding

ιR(w) = {µ ∈ XB | w ∈ µ}.

106 6.5. PROPERTIES OF THE DENSE PRO-V STAMP

As such, it is clear that R̂A(V) is the syntactic dense stamp of V(A) and we obtain
the following useful properties, that hold just like for typed stamps.

6.5.8 Definition

Let R = (A,µ,M, p,X) and S = (A, ν,N, q, Y) be two dense stamps. Then S
factors through R if there exists a morphism of dense stamps Ψ: R→ S such that
Ψ = (idA∗ , φ, f) where φ and f are quotient maps. We say that R is a trivial
extension of S, if S factors through R and f is an isomorphism.

6.5.9 Proposition

A dense stamp R recognises a Boolean algebra B if and only if the syntactic
dense stamp factors through R.

Proof. Let B be a Boolean algebra of languages over A∗ and let R(B) be its syntactic
dense stamp. Moreover let R = (A,µ,M, p,X) be a dense stamp recognising B. We
claim that there exists a quotient morphism φ : M →MB and a continuous function
f : X → XB such that Ψ = (idA∗ , φ, f) is a morphism Ψ: R→ R(B).

We prove that ηB factors through µ. Let u, v ∈ A∗ such that µ(u) = µ(v), which
implies µ(xuy) = µ(xvy) for all x, y ∈ A∗ and hence also ιR(xuy) = ιR(xvy). We
obtain, since R recognises B, that for each L ∈ B

xuy ∈ L⇔ xvy ∈ L.

Hence µ factors through the syntactic morphism ηB and there exists a morphism
φ : M →MB such that ηB = φ ◦ µ.

Since X is a Stone space and R recognises B, X has a Boolean subalgebra of clopens
isomorphic to B and hence there exists a continuous quotient f : X → XB such that
f ◦ ιR = ιR(B). This implies that Ψ = (idA∗ , φ, f) is a morphism, which proves one
direction of the claim.

For the converse direction, assume that R(B) factors through R, that is there exists
a morphism Ψ = (idA∗ , φ, f) with Ψ: R→ R(B). Let L ∈ B, then

L = ι−1
R(B)(ιR(B)(L)) = ι−1

R (f−1(ιR(B)(L))),

which proves that R recognises L.

6.5.10 Proposition

Let R and S be two dense stamps. Then L(R) = L(S) if and only if there exists
a dense stamp T such that R and S are trivial extensions of T.

Proof. If there exists a dense stamp T such that S and R are trivial extensions of T,
then it follows immediately from the fact that there exist morphisms Φ: S→ T and

CHAPTER 6. TYPED STAMPS AND PROJECTIVE LIMITS 107

Ψ: R→ T for which the last component is an isomorphism, that they recognise the
same languages.

For the converse direction, let B = L(R) = L(S). We prove that R is a trivial
extension of the syntactic dense stamp R(B). By Proposition 6.5.9, R(B) factors
through R where Ψ: R→ R(B) is the morphism with Ψ = (idA∗ , φ, f). Since both
recognise the same languages, their Stone spaces are isomorphic and hence f must
be an isomorphism.

Replacing R by S gives the same result.

6.6 Concrete Dense Stamps Calculated

We now use the previous characterisations to determine the dense pro-V stamp for
some concrete C-streams.

The Finite Co-Finite Algebra

The set of all languages over A∗ that are either finite or have finite complement form
a Boolean algebra. If we consider any non-erasing morphism ϕ : B∗ → A∗, then if L
is either finite or has finite complement also ϕ−1(L) is finite or has finite complement.

Remark: Observe that this is in general not the case, if ϕ may erase letters. If
ϕ : {a, b}∗ → {b}∗ sends a to λ and b to b, then both ϕ−1({b}) and ϕ−1({b})c are
infinite.

Hence the class VCo-Fin associating to each alphabet A the Boolean algebra of all
finite or co-finite languages, is an ne-stream and as such has an associated ne-stream
of typed stamps VCo-Fin.

We will now have a closer look at the dense pro-VCo-Fin stamp over A

R̂A(VCo-Fin) = (A,µ,M, p,X).

Observe that for each w ∈ A∗, the singleton language {w} is in VCo-Fin and hence
M , as the syntactic monoid of VCo-Fin is equal to A∗ and µ equal to idA∗ . Thus

R̂A(VCo-Fin) = (A∗, idA∗ , A
∗, p,X).

A bit more interesting in this case is X. We continue by determining a suitable
representation for X, which is the Stone space of VCo-Fin(A).

An ultrafilter over VCo-Fin contains either a singleton {w} or, if it does not, it is the
ultrafilter consisting entirely of co-finite languages. We represent that ultrafilter by
∞ and all singleton-containing filters by their respective singleton w.

Hence X as a set is equal to A∗ ∪ {∞}. Since the topology on X is generated by
the sets L = {µ ∈ XVCo-Fin

| L ∈ µ} and VCo-Fin(A) is generated by the finite and

108 6.6. CONCRETE DENSE STAMPS CALCULATED

co-finite sets, we obtain as generators for the topology

L =

{
L if L is finite

L ∪ {∞} if L is co-finite.

One may recognise this as the one-point-compactification of A∗ as a discrete space.

Since ι
R̂A(VCo-Fin)

(w) = {L ∈ VCo-Fin(A) | w ∈ L} = w, the map p : A∗ → A∗ ∪ {∞}
is the inclusion iA∗ and hence

R̂A(VCo-Fin) = (A∗, idA∗ , A
∗, iA∗ , A

∗ ∪ {∞}).

In this case, since the Boolean algebra itself carries little algebraic information,
neither does the syntactic monoid and all the information about it is contained in
the topology on X. Observe that we cannot recognise any languages apart from the
finite or co-finite ones due to the topology, where the only clopen sets are the finite
ones or the co-finite ones united with ∞.

A Non-Regular Boolean algebra

As the title indicates, we now consider a stream of languages which consists in
contrast to the previous examples, of non-regular languages.

To illustrate that the monoid-component is not always negligible, as in the previous
Example, we will consider a stream of languages for which the topological component
of its syntactic dense stamp is essentially the same as in the finite co-finite case, but
the monoid differs significantly.

We consider the lp-stream of languages VΛ generated by the set

Λ := {anbn | a, b ∈ A,n ∈ N}

and the sets n := {anbn | a, b ∈ A} for n ∈ N.

Remark: To prevent confusion in the first place, since it may be overlooked: Λ
contains both akbk and bkak for k ∈ N.

Consider the Boolean algebra those sets generate: It is immediately clear that it
contains the finite co-finite algebra relative to Λ, that is all sets that are either
finite subsets of Λ or complements thereof. The remaining sets are unions of the
complement of Λ and some element of the finite co-finite algebra relative to Λ.

Since we are only interested in the lp-stream generated by Λ and n and length-
preserving morphisms only replace letters, we may quickly verify that inverse mor-
phisms contribute no new elements to the Boolean algebra.

Having clarified the structure of the lp-stream, we now consider the dense pro-VΛ

stamp
R̂A(VΛ) = (A,µ,M, p,X).

We identify the syntactic monoid of VΛ(A): Observe that two words of the form aibj

and cndm, where a, b, c, d ∈ A and i, j, n,m ∈ N can not syntactically be separated

CHAPTER 6. TYPED STAMPS AND PROJECTIVE LIMITS 109

by some language in VΛ(A) if and only if i− j = n−m and a = c, b = d, since for all
x, y ∈ A∗, the words xaibjy and xcndmy are either in the same set l for some l ∈ N
or elements of Λc. If w is some word that is not of the form aibj , then xwy ∈ Λc for
all x, y ∈ A∗.

Hence the syntactic monoid of VΛ(A) is the set

M = {[aibj] | a, b ∈ A and i, j ∈ N} ∪ {0}

where [aibj] = [cndm], if and only if i−j = n−m and a = c, b = d. The multiplication
is given by

[aibj] · [cndm] =


[aibj+m] if n = 0 and d = b

[ai+nbm] if j = 0 and a = c

0 otherwise.

where 0 is an absorbing element.

The syntactic morphism µ sends any word of the form aibj to [aibj] and all other
words to 0.

We now consider the Stone space X of VΛ: Just as in the previous example, an
ultrafilter contains either a set n or if it does not, it may be one out of two remaining
ultrafilters:

Observe that each ultrafilter contains either Λ or Λc, hence in the case that it contains
Λ, it must be the co-finite filter which consists of all co-finite subsets of Λ. If it
contains Λc, it is the ultrafilter which consists of all supersets of Λc in VΛ.

We identify each ultrafilter containing a singleton with the corresponding natural
number n, the co-finite ultrafilter is again denoted by∞ and the ultrafilter containing
Λc by −1. Thus

X = N ∪ {−1,∞}.

Again, the topology is generated by the sets L = {µ ∈ XVΛ(A) | L ∈ µ} and hence
we obtain for the generators of the Boolean algebra (and thus the generators of the
topology):

L =


PL if L ⊆ Λ and L is finite

PL ∪ {∞} if L ⊆ Λ and L is co-finite

−1 if Λc ⊆ L.

where PL is the set of all n ∈ N such that anbn ∈ L.

One may observe that the topology itself contains little more than the finite co-finite
information that already the previous example contained. The algebraic structure of
the language is maintained in the monoid, not in the topological space.

6.7 Equations and Typed Stamps

In this section, we give a Reiterman-like characterisation for streams of typed stamps.
Using duality and in particular ultrafilters, we start by deriving an interpretation of

110 6.7. EQUATIONS AND TYPED STAMPS

ultrafilter equations on typed stamps.

Consider a typed stamp R = (A,µ,M, p,X). Then, since X is a finite discrete space
and hence also compact, the map ιR : A∗ → X has a unique continuous extension

ι̂R : β(A∗)→ X.

Recall that for any ultrafilter γ ∈ β(A∗), the extension maps γ to some element
x ∈ X if and only if ι−1

R (x) ∈ γ.

6.7.1 Definition

Let R = (A,µ,M, p,X) be a typed stamp.

• Let γ1, γ2 ∈ β(A∗). We say that R satisfies the equation [γ1 ↔ γ2] if and
only if ι̂R(γ1) = ι̂R(γ2).

• Let B be an alphabet with γ1, γ2 ∈ β(B∗). We say that R satisfies the
equation [γ1 ↔ γ2] with respect to the morphism h : B∗ → A∗, if and only
if R satisfies [βh(γ1)↔ βh(γ2)].

6.7.2 Lemma

Let R be a typed stamp over the alphabet A, let B be a second alphabet,
h : B∗ → A∗ a morphism and γ1, γ2 ∈ β(B∗). Then the following statements are
equivalent:

1. R · h satisfies [γ1 ↔ γ2].

2. R satisfies [γ2 ↔ γ2] with respect to h.

Proof. Let R = (A,µ,M, p,X) be a typed stamp and h : B∗ → A∗ be a morphism.
We show that ι̂R·h = ι̂R ◦ βh. Let γ ∈ β(B∗) and x ∈ X. Then

ι̂R·h(γ) = x⇔ ι−1
R·h(x) ∈ γ

⇔ (ιR ◦ h)−1(x) ∈ γ
⇔ h−1(ι−1

R (x)) ∈ γ
⇔ ι−1

R (x) ∈ βh(γ)

⇔ ι̂R(βh(γ)) = x.

This proves the claim.

CHAPTER 6. TYPED STAMPS AND PROJECTIVE LIMITS 111

6.7.3 Definition

Let C be a class of morphisms and let γ1, γ2 ∈ β(B∗), for some alphabet B.

• Let R be a typed stamp over A. We say that R satisfies the equation
[γ1 ↔ γ2] with respect to C, if it satisfies the equation with respect to each
C-morphism h : B∗ → A∗.

• Let V be a C-stream of typed stamps. We say that V satisfies the equation
[γ1 ↔ γ2], if each typed stamp in V satisfies it with respect to C.

Recall that typed stamps are actually just “discrete dense stamps” and hence,
similarly to typed stamps, if R = (A,µ,M, p,X) is a dense stamp and X is a compact
space then ιR has a unique continuous extension ι̂R : β(A∗)→ X which is defined by

L ∈ ι̂R(γ)⇔ ι−1
R (L) ∈ γ.

Observe that if R = (A,µ,M, p,X) and S = (A, ν,N, q, Y) are dense stamps and
Ψ: R→ S is a morphism, then

Ψ ◦ ι̂R(γ) = ι̂S(γ)

since for each w ∈ A∗, the equality Ψ ◦ ιR(w) = ιS(w) holds, ιR(A∗) is dense in X
and Ψ: X → Y is continuous.

6.7.4 Proposition

Let V be a C-stream of typed stamps and let γ1, γ2 ∈ β(A∗). Then the following
statements are equivalent:

1. Each R ∈ V satisfies the equation [γ1 ↔ γ2] with respect to C.

2. The dense pro-V stamp over A satisfies ι̂
R̂A(V)

(γ1) = ι̂
R̂A(V)

(γ2).

Proof. Assume that γ1, γ2 ∈ β(A∗) such that

ι̂
R̂A(V)

(γ1) = ι̂
R̂A(V)

(γ2)

holds. We prove that 1. holds by going inductively from members of IA(V) to
general members of V.

If R ∈ IA(V), by definition of R̂A(V), there exists a morphism of dense stamps
Ψ: R̂A(V)→ R such that

ι̂R(γ1) = Ψ ◦ ι̂
R̂A(V)

(γ1) = Ψ ◦ ι̂
R̂A(V)

(γ2) = ι̂R(γ2).

Which proves the claim for each element of IA(V).

If R ∈ V(A), we recall that R is a trivial extension of some typed stamp S ∈ IA(V),
where R = (A,µ,M, p,X) and S = (A, ν,N, q, Y). Hence there exists a morphism

112 6.7. EQUATIONS AND TYPED STAMPS

Ψ: R→ S, such that Ψ: X → Y is a bijection with inverse Ψ−1 and since ι̂S(γ1) =
ι̂S(γ2), we also have

ι̂R(γ1) = Ψ−1 ◦ ι̂S(γ1) = Ψ−1 ◦ ι̂S(γ2) = ι̂R(γ2).

Hence the claim holds for all R ∈ V(A).

If R ∈ V is a typed stamp over the alphabet B, then for each C-morphism h : A∗ → B∗,
the typed stamp R · h is in V(A), hence

ι̂R·h(γ1) = ι̂R·h(γ2).

By Lemma 6.7.2, R satisfies [γ1 ↔ γ2] with respect to C, which proves one direction
of the claim.

For the converse direction, recall that the dense pro-V stamp R̂A(V) is the projective
limit of the system IA(V) and hence for any u, v ∈ A∗, it holds that ι

R̂A(V)
(u) 6=

ι
R̂A(V)

(v) if and only if there exists a typed stamp R ∈ IA(V) such that ιR(u) 6= ιR(v).

Hence the same property holds for the continuous extensions, in the sense that

ι̂
R̂A(V)

(γ1) 6= ι̂
R̂A(V)

(γ2)⇔ ∃ R ∈ IA(V) : ι̂R(γ1) 6= ι̂R(γ2).

Since 1. implies in particular that ι̂R(γ1) = ι̂R(γ2) for all R ∈ IA(V), 2. holds.

6.7.5 Definition

Given a set of equations E, we denote the class of all typed stamps satisfying all
equations from E with respect to C by [[E]]C .

6.7.6 Proposition

If E is a set of equations, then [[E]]C is a C-stream of typed stamps.

Proof. It is straight forward to see, that the intersection of C-streams of typed stamps
is a C-stream of typed stamps. Hence it suffices to verify that for any γ1, γ2 ∈ β(A∗),
where A is some alphabet, the class [[γ1 ↔ γ2]]C is a C-stream of typed stamps. Assume
without loss of generality that all typed stamps in consideration are restricted.

Recall that by Lemma 6.7.2, a typed stamp over the alphabet B satisfies [γ1 ↔ γ2]
with respect to C if and only if for all C-morphisms h : A∗ → B∗, it satisfies
[βh(γ1)↔ βh(γ2)]. Hence we assume that the typed stamps are defined over A
in the first place. The cases for arbitrary B follow completely analogously, replacing
γ1 (resp. γ2) by βh(γ1) (resp. βh(γ2)).

Suppose that R = (A,µ,M, p,X) satisfies [γ1 ↔ γ2] with respect to C. Moreover
let S = (A, ν,N, q, Y). We verify that [[γ1 ↔ γ2]]C is closed under division, trivial
extension, finite direct products and C-transformations.

Suppose S divides R. Then there exists a morphism Ψ: R→ S such that Ψ ◦ ι̂R = ι̂S.
Hence ι̂S(γ1) = ι̂S(γ2) and the class [[γ1 ↔ γ2]]C is closed under division.

CHAPTER 6. TYPED STAMPS AND PROJECTIVE LIMITS 113

Suppose S is a trivial extension of R. Then there exists a morphism Ψ: S→ R with
Ψ: X → Y a bijection with inverse Ψ−1 and thus

ι̂S(γ1) = Ψ−1 ◦ ι̂R(γ1) = Ψ−1 ◦ ι̂R(γ2) = ι̂S(γ2).

Thus [[γ1 ↔ γ2]]C is closed under trivial extension.

Suppose also S satisfies [γ1 ↔ γ2] with respect to C. Let γ ∈ β(A∗). Then, for each
(x, y) ∈ X × Y , it holds that

ι̂R×S(γ) = (x, y)⇔ ι−1
R×S(x, y) ∈ γ ⇔ ι−1

R (x) ∩ ι−1
S (y) ∈ γ.

Since ultrafilters are closed under supersets and intersection, we have that ι−1
R (x) ∩

ι−1
S (y) ∈ γ if and only if ι−1

R (x) ∈ γ (equiv. ι̂R(γ) = x) and ι−1
S (y) ∈ γ (equiv.

ι̂S(γ) = y). Combining those observations, it follows that

ι̂R×S(γ) = (ι̂R(γ), ι̂S(γ)),

which implies that R× S satisfies the equation [γ1 ↔ γ2]. Hence [[γ1 ↔ γ2]]C is closed
under finite direct products.

Finally, let h : B∗ → A∗ be a C-morphism. We claim that T = R ·h satisfies [γ1 ↔ γ2].
Let ϕ : A∗ → B∗ be a C-morphism, then

ι̂T·ϕ = ̂ιR·(h◦ϕ).

Since C-morphisms are closed under composition, h ◦ ϕ is a C-morphism and since R
satisfies the equation, we have ι̂R·g(γ1) = ι̂R·g(γ2) for each C-morphism g : A∗ → A∗,
in particular for g = h ◦ ϕ. Hence also T satisfies [γ1 ↔ γ2] with respect to C and
thus [[γ1 ↔ γ2]]C is a C-stream.

We say that a C-stream of typed stamps V is defined by a set of equations E, if
V = [[γ1 ↔ γ2]]C .

6.7.7 Theorem

A class of typed stamps V is a C-stream of typed stamps if and only if it is
defined by a set of equations with respect to C.

Proof. By Proposition 6.7.6 if follows, that any class of typed stamps defined by a
set of equations with respect to C forms a C-stream of typed stamps.

For the converse direction, let V be a C-stream of typed stamps and let EV be the
class of equations that are satisfied by each element of V with respect to C. We
show that these equations already define V as a C-variety: Let W = [[EV]]C, then
obviously V ⊆W.

We can assume without loss of generality, that each equation in EV is of the form
[γ1 ↔ γ2] for some γ1, γ2 ∈ β(A∗). For if this is not that case and γ1, γ2 ∈ β(B∗), we

114 6.7. EQUATIONS AND TYPED STAMPS

replace [γ1 ↔ γ2] by the set of equations [βh(γ1)↔ βh(γ2)], where h : B∗ → A∗ is a
C-morphism (this is all right, since EV needs not to be finite).

To prove the inclusion V ⊇W, we show that IA(V) ⊇ IA(W). Let S ∈ IA(W).

It follows from Proposition 6.7.4, that for any γ1, γ2 ∈ β(A∗)

[γ1 ↔ γ2] ∈ EV if and only if ι̂
R̂A(V)

(γ1) = ι̂
R̂A(V)

(γ2).

In particular, since S ∈ IA(W) ⊆ [[EV]]C

ι̂
R̂A(V)

(γ1) = ι̂
R̂A(V)

(γ2)⇒ ι̂S(γ1) = ι̂S(γ2)

and thus ι̂S factors through ι̂
R̂A(V)

. Hence there exists a continuous function f such

that ιS = f ◦ ι
R̂A(V)

. We conclude that each language recognised by S is also a

language recognised by R̂A(V) and hence the languages recognised by S form a finite
Boolean subalgebra B of V(A). Since S ∈ IA(W) we obtain that S is the syntactic
typed stamps of B and since B ⊆ V(A), we have that S ∈ IA(V), which proves the
claim.

Concrete Equations Calculated

We are now going to determine the characterising equations for the streams of typed
stamps V from the previous section, in which we identified their dense pro-V stamps.

Observe that Proposition 6.7.4 states that characterising the equations that define a
stream of typed stamps V is equivalent to characterising the kernel of ι̂

R̂A(V)
. In fact,

the equations are the kernel. We will thus first examine the continuous extension of
ι
R̂A(V)

and then describe the kernel of the extension.

The Finite Co-Finite Boolean Algebra

Recall that the dense pro-VCo-Fin stamp was given by

R̂A(VCo-Fin) = (A∗, idA∗ , A
∗, iA∗ , A

∗ ∪ {∞})

where iA∗ is the inclusion of A∗, which results in

ι
R̂A(VCo-Fin)

(w) = {L ∈ VCo-Fin(A) | w ∈ L} = w.

Observe that since ι
R̂A(VCo-Fin)

is the canonical inclusion of A∗ in the Stone space of

VCo-Fin(A), its continuous extension is the quotient map from β(A∗) to XVCo-Fin(A)

and hence for γ ∈ β(A∗), we obtain

̂ι
R̂A(VCo-Fin)

(γ) = {L ∈ VCo-Fin(A) | L ∈ γ}

which consequently results in

̂ι
R̂A(VCo-Fin)

(γ) =

{
w if {w} ∈ γ
∞ otherwise.

CHAPTER 6. TYPED STAMPS AND PROJECTIVE LIMITS 115

Let γ1, γ2 ∈ β(A∗). Regarding the kernel of ̂ι
R̂A(VCo-Fin)

provides us with the defining

equations of the ne-stream VCo-Fin, where [γ1 ↔ γ2] is an equation for VCo-Fin, if
for all w ∈ A∗

{w} ∈ γ1 ⇔ {w} ∈ γ2.

The Non-Regular Boolean Algebra

Recall that the Boolean algebra VΛ(A) was generated by the finite sets n = {anbn |
a, b ∈ A} for n ∈ N and the set Λ = {anbn | n ∈ N, a, b ∈ A} and its Stone space is
the set N∪ {−1,∞}, where N corresponds to the ultrafilters containing the set n, ∞
is the ultrafilter of co-finite sets relative to Λ and −1 the ultrafilter consisting of all
supersets of Λc. Hence, in a similar fashion as in the previous example, we obtain

̂ι
R̂A(VΛ)

(γ) =


n if {anbn | a, b ∈ A} ∈ γ
−1 if Λc ∈ γ,

∞ otherwise.

Which determines the equations in quite the same fashion as above.

6.8 Summary

Based on typed monoids, we introduced the notion of typed stamps for the recognition
of (Boolean algebras of) non-regular languages. Subsequently, we defined the notions
usually necessary for treating recognition of languages, such as morphisms of typed
stamps (6.1.2) and the syntactic typed stamp (6.1.10), which is the smallest typed
stamp recognising a finite Boolean algebra of languages. Already here it became
evident that typed stamps and Stone spaces are closely related, since the last
component of a typed stamp is isomorphic to the Stone space of the recognised
languages.

With the final goal in mind to characterise classes of languages described by fragments
of logic, which form Boolean algebras and usually are only closed under certain inverse
morphisms (for instance, length preserving or non-erasing ones), we introduced C-
streams of typed stamps (6.2.2). Those proved to have an Eilenberg-like relationship
(6.3.4) to C-streams of languages.

To obtain a profinite object, as the free profinite monoid for the regular languages
(or the free profinite Ext-algebra of the previous chapter), it was necessary to cut
our focus down to smaller classes of typed stamps, since C-streams of typed stamps
contain also typed stamps with a monoid component so unnecessarily big that it
results in the loss of all algebraic information.

Those classes (called the inherent class of a C-stream (6.3.10)), also provide and
Eilenberg-like relationship to C-streams of languages and were shown to form a
projective system and to have a projective limit in a larger category, the category of

116 6.9. FURTHER RESEARCH

dense stamps (6.4.3). In this category, we were able to first describe the projective
limit in a rather technical manner and to then prove that with the aid of the
Eilenberg-like correspondence it may also be characterised in a more accessible way:
For instance, the monoid-component is actually the syntactic monoid of the associated
C-stream of languages (6.5.1) and the topological-space-component is isomorphic to
the Stone space of the associated C-stream of languages (6.5.4).

In particular, it was possible to identify projective limits of C-streams of typed stamps
as appropriate recognisers for the corresponding (possibly infinite) Boolean algebras
of languages.

Using these characterisations, we calculated two small examples for two concrete
C-streams of languages.

Moreover, we were able to prove a Reiterman-like theorem for C-streams of typed
stamps, showing that each C-stream of typed stamps is uniquely determined by a
set of ultrafilter equations. These equations were subsequently calculated for the
previously considered two C-streams.

6.9 Further Research

A considerably simple yet interesting case study would be to consider equations for
fragments of logic with quantifier depth one, as for instance in [GKP16]. Equations
for such classes hopefully, with the contents of the following chapter, provide an
inductive base for finding equations for classes of greater quantifier depth.

An obvious direction of research would be to apply these results to concrete C-streams
of languages such as FO[N] or classes that are comparably easier to understand,
such as the languages recognised by polynomial size circuits with modulo gates of
depth two, and to find equations for them. In fact, the following chapter aims at
building a framework for capturing classes described by fragments of logic.

Also, the framework could be extended to work with lattices instead of just Boolean
algebras. Lattices are similar to Boolean algebras, but not closed under comple-
mentation. For instance, all languages of well-matched words relative to A∗ form a
lattice. For those, one could consider ordered typed stamps - ordered monoids were
considered by Pin [Pin12] to study lattices of regular languages.

7

The Block Product: Finite and
Pro-Finite

In this chapter, we use the decomposition principles of substitution and transduction,
which intuitively describe the nesting of quantifiers and predicates in logical formulae
and translate them to typed stamps in the following sense: For each quantifier Q
and typed stamp R (which has a certain relation to that quantifier) and for each
predicate and typed stamp S (which in turn is in some relation to the predicate), we
may build a new typed stamp from R and S that recognises the same languages as
the formula binding a variable in the predicate by the quantifier.

In particular, we view these principles in the light of duality. This enables us to
formulate said principle also for dense stamps (in particular projective limits of typed
stamps) and give a relation to logic, which exceeds the necessity of finiteness (in the
sense the we may now consider not only one predicate and one quantifier, but also
infinitely many).

7.1 Typed Stamps and Decomposition in Logic

Before drawing a connection between typed stamps and languages described by
logical formulae, we need to make some assumptions to avoid notational clutter.
The main reason for that is that the concepts we are treating to understand logical
formulae work on formulae with multiple free variables, but are applied one variable
at a time, which makes it extremely cumbersome to always specify the current set of
free variables and the distinguished free variable in consideration, especially when
applied multiple times. We thus use the following simplification:

Let X be a set of free variables and let x be a distinguished free variable, not contained
in X . Moreover let φ be a formula over the alphabet A whose free variables are
contained in X ∪{x}. If x occurs free in φ, then we treat φ as a formula with precisely

118 7.1. TYPED STAMPS AND DECOMPOSITION IN LOGIC

one free variable x and assume the rest of the variables in X to be encoded in the
alphabet in the sense that φ defines a {x}-structure language over (A× 2X)∗ ⊗ {x}.
Otherwise, that is if φ does not contain x as a free variable, then we treat φ as a
sentence over (A× 2X)∗.

The benefit of this lies in the fact that we can now, without loss of generality, consider
formulae with at most one free variable, which prevents us from having to specify
the variable under consideration and the set of remaining free variables. Remarks
are provided at appropriate points, to illustrate how this principle is being used.

Notation

Let R be a typed stamp over the marked alphabet (A×2{x})∗. We say that R recognises
a language Lx ⊆ A∗ ⊗ {x} if Lx = S ∩ (A∗ ⊗ {x}) for some S ∈ L(R) and that R
recognises a language L ⊆ A∗, if R · iA∗ recognises L, where iA∗ : A∗ → (A× 2{x})∗

is the morphism sending a to (a, ∅).

Moreover, we write L[x](R) for the set of languages over A∗ ⊗ {x} recognised by R
and L[∅](R) for the set of languages over A∗ recognised by R. By XR[x] we denote
the set ιR(A∗ ⊗ {x}).

Let S be a Boolean algebra over the alphabet A containing formulae with at most
one free variable x. Then we denote by S[x] the Boolean subalgebra of S containing
only formulae in which x occurs free and by S[∅] the Boolean subalgebra of sentences
of S.

We say that R recognises L(S), if it recognises each language in L(S[x]) and each
language in L(S[∅]).

Transductions and Substitutions

Decomposition of logical formulae is a natural way to understand the evaluation of a
sentence in some logical formalism on a word. For instance, let φ be a formula with
a free variable x and say we are interested whether the word w = w1 . . . wn satisfies
the sentence Maj x φ(x). The intuitive approach to solve this issue is to evaluate
for each position i = 1, . . . , n, whether wx=i models φ(x), keep those values in mind
and then check whether the majority of them was true. In this case, the sentence is
decomposed into quantifier and subformula.

The concepts of substitution and transduction, which we will be treating in the
following, are precisely the formalisations of the procedure we just described, to
understand logical formulae on words. In order to make the formal definitions more
accessible, we illustrate them on one further example.

As before, we consider the formula Maj x φ(x) and let w = w1 . . . wn ∈ A∗. The
transduction induced by φ(x) is a map τφ : A∗ → ({φ,¬φ})∗ such that τφ(w) is the

CHAPTER 7. THE BLOCK PRODUCT: FINITE AND PRO-FINITE 119

word v1 . . . vn with

vi =

{
φ if wx=i |= φ(x)

¬φ otherwise.

Applying the transduction amounts to the step of evaluating for each i = 1, . . . , n
whether wx=i models φ(x) and keeping the information encoded in the new alphabet.
In particular

w |= Maj x φ(x)⇔ τφ(w) |= Maj x Qφ(x).

This equivalence describes precisely that after the previous evaluation of the single
values for each position, it is no longer necessary to consider φ(x), since we only need
to check whether the majority of the values now encoded in the alphabet, is true.

Replacing the formula Maj x Qφ(x) by Maj x φ(x) is the counterpart to the trans-
duction induced by φ and called the substitution σφ induced by φ.

All together, we obtain

τφ(w) |= Maj x Qφ(x)⇔ w |= σφ(Maj x Qφ(x)).

Transduction and Substitutions: Local Versions

In the following, we assume that all formulae are part of some common fragment of
logic Q[N].

Substitution

We now formally define substitution and transduction for Boolean algebras of formulae
and subsequently consider their connections to typed stamps.

7.1.1 Definition

Let S be a finite Boolean algebra of formulae over A with at most one free
variable x. Moreover, let R be a finite Boolean algebra of sentences over the
alphabet XS[x]. A substitution is a map

σS : R → QA[N],

that sends any formula in φ ∈ R to the formula obtained, when replacing each
occurrence of Qψ(y) in φ by ψ(x := y), which is the formula ψ when renaming
each occurrence of x in ψ to y.

Observe that by renaming variables, we may assume that the variables in S and R
are distinct, and in particular that x does not appear as a bound variable in any
formula of R.

We let
R ◦ S = σS(R) ∪ S[∅].

120 7.1. TYPED STAMPS AND DECOMPOSITION IN LOGIC

For instance, if S = {>, φ,¬φ,⊥}, where x occurs free in φ, then Maj y Qφ(y) is
mapped by σS to Maj y φ(y).

Illustration on multiple free variables: As indicated before, we are able to use
substitution on formulae with multiple free variables, but do not state it explicitly
due to technical reasons. For instance, let φ(x, y) = x < y. Then the substitution
mapping ∃ z Qx<y(z) to ∃ z z < y, needs to specify that x is being substituted,
not y. By considering φ(x, y) = x < y as a formula with one free variable over the
alphabet (A× 2{y})∗, this problem is avoided. In particular, if the formulae in S had
free variables in some set X ∪ {x}, then the formulae in R ◦ S have free variables in
X and define languages over the common alphabet (A× 2X).

7.1.2 Proposition

Let S be a finite Boolean algebra of formulae over A with at most one free
variable x and let R be a finite Boolean algebra of sentences over the alphabet
XS[x]. Then

σS : R → R ◦ S

is a morphism of Boolean algebras.

Proof sketch: It suffices to observe that by definition, substitution distributes over
Boolean connectives. The rest of the proof is a straight-forward induction over the
structure of formulae and thus omitted.

Transductions

As a counterpart to substitutions, we define the transduction induced by an appro-
priate Boolean algebra of formulae S:

7.1.3 Definition

Let S be a finite Boolean algebra of formulae over A with at most one free
variable x. The transduction induced by S is the map τS : A∗ → X∗S[x] defined
by

τS(w) = κS(wx=1) · · ·κS(wx=|w|)

where κS : A∗ ⊗ {x} → XS[x] is the map sending wx=i to the unique element
φ ∈ XS[x] for which wx=i |= φ.

Observe that the map κS is precisely the dual map to the inclusion

iS : S ↪→ P(A∗ ⊗ {x})
φ 7→ Lφ,

since iS(φ) = {wx=i ∈ A∗ ⊗ {x} | wx=i |= φ} = κ−1
S (φ).

CHAPTER 7. THE BLOCK PRODUCT: FINITE AND PRO-FINITE 121

7.1.4 Proposition

Let S be a finite Boolean algebra of formulae over A with at most one free
variable x. Moreover, let R be a finite Boolean algebra of sentences over the
alphabet XS[x]. Then for each φ ∈ R and w ∈ A∗ the equivalence

w ∈ LσS(φ) ⇔ τS(w) ∈ Lφ

holds.

Proof sketch: Let ψ ∈ XS[x]. Observe that τS(w)x=i |= Qψ(x) if and only if
(τS(w))i = ψ, which, by definition of τS is the case if and only if wx=i |= ψ. Since σS
replaces each occurrence of Qψ(x) in φ by ψ(x) and a quantifier depends only on
the truth values for each position, a simple induction over the structure of formulae
proves the claim.

Remark: Transductions and substitutions are related very closely by duality. Since
σS is a morphism from R to R ◦ S, it induces a morphism of Boolean algebras of
languages from L(R) to L(R ◦ S) by sending Lφ, to LσS(φ). This morphism has a

dual map σ−1
S : XL(R◦S) → XL(R). Since R consists of formulae over the alphabet

XS[x], the set of languages L(R) forms subalgebra of P(X∗S[x]) and since S is consists

of formulae over A∗, L(R ◦ S) is a subalgebra of P(A∗). Hence there exist maps

ιX∗S[x]
: X∗S[x] → XL(R) and ιA∗ : A∗ → XL(R◦S)

with dense image. And the diagram

A∗

XL(R◦S)

X∗S[x]

XL(R)

ιA∗ ιX∗S[x]

τS

σ−1
S

commutes. As such, the transduction is the restriction to A∗ of the dual of the
substitution σS : L(R)→ L(R ◦ S).

As a consequence of Proposition 7.1.4, we may characterise the languages in L(R◦S).

7.1.5 Corollary

Let S be a finite Boolean algebra of formulae over A with at most one free
variable x and let R be a finite Boolean algebra of sentences over the alphabet
XS[x].
Then, a language belongs to L(R ◦ S) if and only if it is a Boolean combination
of languages in L(S[∅]) and languages of the form τ−1

S (L), where L ∈ L(R).

Up to now, transductions and substitutions have been defined purely on the logic side.
We now translate these principles to languages and successively to typed stamps.

122 7.1. TYPED STAMPS AND DECOMPOSITION IN LOGIC

7.1.6 Definition

Let L be a finite Boolean algebra of languages over A∗ ⊗ {x}. The transduction
induced by L is the map τL : A∗ → X∗L defined by

τL(w) = κL(wx=1) · · · · · κL(wx=|w|)

where κL : A∗ ⊗ {x} → XL is the map sending wx=i to the unique element
L ∈ XL for which wx=i ∈ L.

If S is a finite Boolean algebra of formulae with at most one free variable x, then XS[x]

and XL(S[x]) are isomorphic as sets and κL(S[x]) = κS[x] modulo that isomorphism,
which in turn provides that

τL(S) = τS .

Similarly, any typed stamp over a marked alphabet induces a transduction in the
following way:

7.1.7 Definition

Let S be a typed stamp over A∗ × 2{x}. The transduction induced by S is the
map τS : A∗ → X∗S[x] defined by

τS(w) = ιS(wx=1) . . . ιS(wx=|w|).

In a similar fashion as before, XS[x] and the Stone space of L[x](S) are isomorphic
and thus

τS = τL[x](S).

Summarising those observations, we obtain

7.1.8 Proposition

Let S be a typed stamp over the alphabet (A× 2{x})∗ and S a Boolean algebra
of formulae with at most one free variable such that L(S[x]) = L(S[x]). Then
XL(S[x]) and XL[x](S) are isomorphic as sets and modulo isomorphism

τS = τL(S[x]) = τS.

The proof of the three equalities is straight forward together with the rough sketches
given previously.

CHAPTER 7. THE BLOCK PRODUCT: FINITE AND PRO-FINITE 123

7.1.9 Corollary

Let S be a typed stamp over the alphabet (A×2{x})∗ and S a Boolean algebra of
formulae with at most one free variable x such that L(S[x]) = L(S[x]). Moreover
let R be a typed stamp over XS[x] and R a Boolean algebra of sentences over the
same alphabet such that L(R) = L(R). Then L(R ◦ S) is the Boolean algebra
generated by all sets τ−1

S (L) where L ∈ L(R) and the sets L[∅](S).

Hence we may mirror the nesting of quantifiers on logical formulae through transduc-
tions on typed stamps. While substitution and transduction are dual to each other,
we are now going to concern ourselves with a direct translation of substitution to
typed stamps.

The Block Product

What substitution is to formulae, the block product is to typed stamps: We show
that given any two Boolean algebras of adequate formulae S,R such that R ◦ S is
defined, then if R is a typed stamp recognising L(R) and S a typed stamp recognising
L(S), the block product R�S is a typed stamp that recognises L(R ◦ S).

Let R = (XS[x], µ,M, p,X) and S = (A× 2{x}, ν,N, q, Y) be typed stamps. For each
a ∈ A, define the function

fa : N ×N →M

(n1, n2) 7→ µ(q(n1ν(a, {x})n2)).

Observe that this is well-defined since XS[x] ⊆ Y .

7.1.10 Definition

The block product of R = (XS[x], µ,M, p,X) and S = (A× 2{x}, ν,N, q, Y) is the
typed stamp

R�S := (A,µ�ν,M�N, p�q,X × Y)

where

• M�N is the usual block product of monoids ,

• µ�ν is the morphism sending a to (fa, ν(a)), and

• p�q sends the tuple (f, n) to ((p ◦ f)(1, 1), q(n)).

Remark: To the reader familiar with the block product for finite monoids, re-
stricting the block product to typed stamps with matching alphabets might seem
rather strong. The main reason for that restriction is that typed stamps force us
to state the morphism. Thus, what is possible for finite monoids, namely to pick
the “correct” morphism for the recognition of languages recognised by formulae, is

124 7.1. TYPED STAMPS AND DECOMPOSITION IN LOGIC

not immediately possible for typed stamps. In particular, the appropriate morphism
here is part of the definition.

In the following, we assume that S is always a typed stamp over a marked alphabet
and R is over the alphabet XS[x].

7.1.11 Proposition

Let R and S be typed stamps. The languages recognised by R�S are precisely
the languages over A∗ that are Boolean combinations of languages of the form
τ−1
S (L), where L ⊆ XS[x] is recognised by R and languages in L[∅](S).

Proof. Let R = (XS[x], µ,M, p,X) and let S = ((A × 2{x})∗, ν,N, q, Y). As usual,

we denote by iA : A∗ → (A × 2{x})∗ the inclusion. Then the languages L[∅](S) are
precisely the languages recognised by S · iA.

Let L be a language recognised by R�S, such that

L = ι−1
R�S({(tX , tY)})

for some tX ∈ X and tY ∈ Y . Since each language recognised by R�S is a Boolean
combination of such languages, we can make this assumption without loss of generality.
We define the languages

LX = ι−1
R (tX) and LY = ι−1

S·iA(tY)

and claim that L = τ−1
S (LX) ∩ LY . Let w ∈ A∗ and µ�ν(w) = (fw, ν(w)). By

definition of the block product

ιR�S(w) = (tX , tY)⇔ p ◦ fw(1, 1) = tX and ιS(w) = tY . (7.1)

By definition of fw, we obtain

fw(1, 1) = fw1(1, ν(w>1)) + · · ·+ fwi(ν(w<i), ν(w>i)) + · · ·+ fw|w|(ν(w<|w|), 1)

where fwi(ν(w<i), ν(w>i)) = µ(q ◦ ν(w<i(wi, x)w>i)) = µ(ιS(wx=i)). In particular,
since µ is a morphism

fw(1, 1) = µ(ιS(wx=1) . . . ιS(wx=i) . . . ιS(wx=|w|)) = µ ◦ τS(w)

and hence
p ◦ fw(1, 1) = p ◦ µ ◦ τS(w) = ιR ◦ τS(w). (7.2)

Since w ∈ A∗, ιS(w) = ιS·iA(w) and by Equation 7.1

w ∈ L⇔ ιR ◦ τS(w) = tX and ιS(w) = tY

⇔ τS(w) ∈ LX and w ∈ LY
⇔ w ∈ τ−1

S (LX) ∩ LY ,

CHAPTER 7. THE BLOCK PRODUCT: FINITE AND PRO-FINITE 125

which proves one direction of the claim.

The converse direction is completely analogous. Let LX = ι−1
R ({tX}) be a language

recognised by R and LY = ι−1
S·iA({tY }) a language in L[∅](S), where tX ∈ X and

tY ∈ Y . As before, it is without loss of generality possible to assume that both
languages are of that form.

By Equations 7.1 and 7.2, we obtain

w ∈ ι−1
R�S({(tX , tY)})⇔ ιR ◦ τS(w) = tX and ιS(w) = tY

⇔ τS(w) ∈ LX and w ∈ LY
⇔ w ∈ τ−1

S (LX) ∩ LY ,

and hence that R�S recognises all Boolean combinations of such languages.

7.1.12 Corollary Block Product Principle

Let S be a finite Boolean algebra of formulae over A with at most one free
variable x and let S be a typed stamp over A × 2{x} such that L(S) = L(S).
Moreover, let R be a finite Boolean algebra of sentences over the alphabet XS[x]

and let R be a typed stamp over XS[x] with L(R) = L(R). Then

L(R ◦ S) = L(R�S).

This is a direct consequence of Corollary 7.1.9 and the previous Proposition.

We conclude this section with an example, in which we build a typed stamp recognising
the language defined by the formula

Maj y Maj x x < y

over the alphabet A, using the block product principle from Corollary 7.1.12. While
the typed stamp we will be constructing is significantly larger then the syntactic typed
stamp of the language, it illustrates the basic concept: By constructing a recogniser
for the innermost formulae and applying the block product with an appropriate
typed stamp to simulate quantifier application, it is in general possible to inductively
build typed stamps recognising languages defined by large formulae.

By abuse of notation, in this example we use a as a placeholder to represent that it
may stand for any letter a ∈ A. To recognise the {x, y}-structure language defined
by the predicate <, we define the typed stamp

R< := ((A× 2{y})× 2{x}, µ<,M<, idM< ,M<).

Observe that the alphabet is not written as (A× 2{x,y}), since in the next step, we
consider only x for substitution and view y not as a free variable, but as part of the
alphabet. The monoid M< is given by the multiplication table on the left and µ< is
the morphism defined by the map on the right

126 7.1. TYPED STAMPS AND DECOMPOSITION IN LOGIC

· 1 x y + −
1 1 x y + −
x x − + − −
y y − − − −
+ + − − − −
− − − − − −

((A× 2{y})× 2{x}) →M<

((a, ∅), {x}) 7→ x
((a, {y}), ∅) 7→ y
((a, {y}), {x}) 7→ −
((a, ∅), ∅) 7→ 1

The {x, y}-structure language defined by < is precisely the set {wx=i,y=j | i < j},
which is equal to ι−1

R<
({+}). We now use substitution to apply one Maj-quantifier.

As indicated before, we encode the variables not considered for substitution – in this
case y – in the alphabet. Hence the typed stamp, which we use in the block product,
is defined over the alphabet XR<[x] = ιR<((A× 2{y})∗ ⊗ {x}) = {+,−, x}.

Let

RMaj := ({+,−, x}, µMaj,Z, p>0, {+,−}),

where the morphism µMaj sends + to 1 and − to −1 and x to 0. Moreover p>0 maps
any number larger than 0 to + and otherwise to −. Since RMaj is defined over an
appropriate alphabet, the block product of RMaj and R< exists and we have

RMaj�R< = (A× 2{y}, µMaj�µ<,Z�M<, p>0�idM< , {+,−} ×M<).

Since the morphism µMaj�µ< maps a {y}-structure wy=j to a tuple, where the first
component is a function from M< ×M< → Z whose value on (1, 1) determines
whether ιRMaj�R< maps wy=j to + or − in the first component, we consider this
function, denoted by fwy=j . According to the multiplication on the block product,
we have

fwy=j (1, 1) = f(w1,∅)(1, y)+ . . .

· · ·+f(wj−1,∅)(1, y) + f(wj ,{y})(1, 1) + f(wj+1,∅)(y, 1) + . . .

· · ·+f(w|w|,∅)(y, 1).

Recall that the values of the functions fwi(l, r), where wi ∈ A× 2{y} and l, r ∈M<,
are precisely the values µMaj(l · µ<(wi, {x}) · r) and we thus obtain that

f(a,∅)(1, y) = µMaj(1 · x · y) = µMaj(+) = 1

f(a,∅)(y, 1) = −1

f(a,{y})(1, 1) = µMaj(1 · − · 1) = −1

Since π1(ιRMaj�R<(wy=j)) = p>0 ◦ fwy=j (1, 1) = + if and only if fwy=i(1, 1) is
greater than 0, inserting the values above in the equation for fwy=j (1, 1) proves

that π1(ιRMaj�R<(wy=j)) = + if and only if j < |w|
2 . Which results in

A∗ ⊗ {y} ∩ ι−1
RMaj�R<

({+} ×M<) =

{
wy=j | j <

|w|
2

}

CHAPTER 7. THE BLOCK PRODUCT: FINITE AND PRO-FINITE 127

and shows that RMaj�R< recognises the {y}-structure language defined by Maj x x <
y.

It now remains to use the block product principle to obtain a recogniser for the
language defined by Maj y Maj x x < y. Due to the technicality of the matter and the
similarity to the previous step, we omit the details of the third step and provide only a
rough intuition. To apply the block product once more, the typed stamp which is being
added needs to be defined over the alphabet X(RMaj�R<)[y] = ιRMaj�R<(A∗ ⊗ {y}) =
{+,−} × {y}. Since the right side containing y provides no additional information,
we identify the alphabet with {+,−} and consider RMaj�(RMaj�R<). Again, the
function fw simulates for all positions at which y may occur, whether it belongs to
{wy=j | j < |w|

2 }, which is possible since the right hand since of the block product
recognises that language, and outputs 1 if it does and −1 if it does not. It follows in
a similar fashion, as the previous step, that

L(Maj y Maj x x < y) = ι−1
RMaj�(RMaj�R<)({+} × ({+,−} ×M<))

7.2 Substitution and Transduction on Streams

In the last section, we introduced substitutions, transductions and the block product,
all of them for finite objects, such as finite Boolean algebras of formulae or typed
stamps, which are finite also in the sense that they recognise only finite Boolean
algebras of languages. We now extend these principles to possibly infinite classes of
logic formulae and the most general C-streams of typed stamps: lp-streams of typed
stamps. We thus restrict ourselves to classes of formulae that define an lp-stream of
languages, which in turn has a corresponding lp-stream of typed stamps.

We introduce the notion of logic class. Intuitively, one can think of a logic class as
any common fragment of logic, such as FO,MOD or Maj with any set of predicates,
but also subclasses of these, such as FO[=] formulae of depth k.

Let A and B be finite alphabets. Then, each map r : A → B induces a map
ρr : QB[N]→ QA[N] by replacing any occurrence of the letter predicate Qb(x) for
b ∈ B by ∨

r(a)=b

Qa(x).

We call this map a letter substitution and it is not hard to verify, that if B is a
Boolean algebra of formulae over B, then ρr(B) is a Boolean algebra of formulae
over A. Denote by r∗ : A∗ → B∗ the extension of r to a morphism, then

r∗(w)x=i |= Qb(x)⇔ wx=i |=
∨

r(a)=b

Qa(x)

and for any formula φ over B, it follows that w ∈ Lρr(φ) ⇔ w ∈ r∗−1(Lφ).

128 7.2. SUBSTITUTION AND TRANSDUCTION ON STREAMS

7.2.1 Definition

A logic class Γ is a map that associates to each finite alphabet A a set of formulae
ΓA satisfying the following properties:

1. For each finite alphabet A, the set ΓA is a Boolean algebra.

2. For all finite alphabets A and B, Γ is closed under letter substitutions, in
the sense that if φ ∈ ΓB and r : A→ B is a map, then ρr(φ) ∈ ΓA.

We define the set of languages described by Γ over the alphabet A by

LA(Γ) = {Lφ | φ ∈ ΓA and φ is a sentence.}.

By L(Γ) we denote the class associating to each alphabet A, the Boolean algebra of
languages LA(Γ). Observe that if r : A → B is a map between finite alphabets, it
induces an lp-morphism r∗ and by the previous observation that Lρr(φ) = r∗−1(Lφ),
the closure under letter substitutions of Γ ensures that L(Γ) is an lp-stream of
languages.

Remark: As before, we use the twist of encoding all but one free variable in the
alphabet. We thus only consider logic classes in which for each alphabet, ΓA consists
only of formulae with at most one free variable. Observe that letter substitution
does in this case not affect the encoding of the variables, but only the part concerned
with the “actual” alphabet.

By “Γ is a logic class of sentences”, we mean that for each alphabet A, ΓA consists
only of sentences and by “Λ is a logic class with at most one free variable”, that each
formula in ΛA has at most one free variable.

7.2.2 Definition Subsitution Product

Let Γ be a logic class of sentences and Λ a logic class with at most one free
variable x. Define the class Γ ◦ Λ, that associates to each finite alphabet A
the Boolean algebra generated by all formulae φ ∈ R ◦ S, where S is a finite
subalgebra of ΛA and R is a finite subalgebra of ΓXS[x]

.

The following Lemma is needed to show that Γ ◦Λ is closed under letter substitution.

7.2.3 Lemma

Let Γ be a logic class of sentences, Λ a logic class with at most one free variable
x and let A and B be finite alphabets, where r : A→ B is a map. Moreover let
S be a finite subalgebra of ΛB and R a finite subalgebra of ΓXS[x]

. Then there
exists a map s : Xρr(S)[x] → XS[x] such that

ρr ◦ σS(ψ) = σρr(S) ◦ ρs(ψ)

for all ψ ∈ R.

CHAPTER 7. THE BLOCK PRODUCT: FINITE AND PRO-FINITE 129

Proof. It is clear from the definition of ρr, that it induces a Boolean algebra morphism
from S to its image ρr(S). In particular, ρr(S[x]) = ρr(S)[x]. As a morphism of
Boolean algebras, ρr has a dual, denoted by ρ−1

r : Xρr(S) → XS . We let s : Xρr(S)[x] →
XS[x] be the restriction of ρ−1

r to Xρr(S)[x].

Recall that for any two formulae φ ∈ Xρr(S) and ψ ∈ XS the dual ρ−1
r is defined by

ρ−1
r (φ) = ψ ⇔ φ = ρr(ψ).

Each formula in R is defined over the alphabet XS[x]. Assume that ψ ∈ XS[x]. Since
by definition ρs replaces each occurrence of Qψ(x) by the conjunction over all Qφ(x)
such that ρs(φ) = ρ−1

r (φ) = ψ, the previous equivalence implies that ρs maps Qψ(x)
to Qρr(ψ)(x). Hence σρr(S) ◦ ρs replaces Qψ with ρr(ψ) and since σS replaces Qψ
with ψ, ρr ◦ σS coincides with σρr(S) ◦ ρs for every formula in R.

7.2.4 Proposition

Let Γ and Λ be logic classes, then Γ ◦ Λ is also a logic class.

Proof. Let A be a finite alphabet. That (Γ◦Λ)A is a Boolean algebra follows directly
from the fact that for any two finite subalgebras S ⊆ ΛA and R ⊆ ΓXS[x]

, R ◦ S is
again a Boolean algebra.

It remains to be shown that Γ ◦ Λ is closed under letter substitution. Let B be
a second finite alphabet and r : A → B a map. Moreover, let φ ∈ (Γ ◦ Λ)B, that
is φ ∈ R ◦ S for some finite Boolean subalgebras S ⊆ ΛB and R ⊆ ΓXS[x]

. We
distinguish two cases:

In the first case, φ is a sentence in S. Then, since S ⊆ ΛB and ΛB is closed under
letter substitutions, it follows that ρr(φ) is a sentence in ΛA and thus contained in
(Γ ◦ Λ)A.

In the second case, φ is of the form σS(ψ) for some ψ ∈ R. Then, by Lemma 7.2.3,
there exists a letter substitution s : Xρr(S)[x] → XS[x] such that

ρr(σS(ψ)) = ρr(φ) = σρr(S)(ρs(ψ)).

Since Γ is a logic class, it is closed under letter substitution and hence ρs(ψ) ∈
ΓXρr(S)[x]

. Also ρr(S) is a finite Boolean subalgebra of ΛA. It follows immediately
from the definition of Γ ◦ Λ, that ρr(φ) is contained in (Γ ◦ Λ)A.

Hence, Γ ◦ Λ is a logic class.

We are now ready to state the block product principle for lp-streams of typed stamps.
We define the block product of two lp-streams of typed stamps as follows: Let V and
W be lp-streams of typed stamps. Then V�W is the lp-stream of typed stamps
generated by all typed stamps R�S, where S ∈W(A× 2{x}) and R ∈ V(XS[x]) and
A is some finite alphabet.

130 7.2. SUBSTITUTION AND TRANSDUCTION ON STREAMS

Moreover let V and W be the lp-streams of languages corresponding to V and
respectively W. Then we denote by V�W the lp-stream of languages corresponding
to V�W.

7.2.5 Proposition

Let V and W be lp-streams of typed stamps. Then for each alphabet A, the
languages in V�W(A) are Boolean combinations of languages recognised by
typed stamps of the form R�S, where R ∈ V(XS[x]) and S ∈W(A× 2{x}).

Proof. We need to show that by generating an lp-stream out of all typed stamps
R�S, that is closing under division, trivial extension, finite direct products and lp-
transformations, we only generate typed stamps that recognise Boolean combinations
of the languages recognised by the block products.

Indeed, if ϕ : A∗ → B∗ is an lp-morphism, that is, it is a morphism generated by
a function r : A→ B and S is a typed stamp over A× 2{x} and R over XS[x], then

(R�S) ·ϕ is isomorphic to the block product of a typed stamp T ∈W(B × 2{x}) and
a typed stamp in V(XT[x]). We omit the details, since the techniques are essentially
the same as in the proof of Lemma 7.2.3.

Thus, lp-transformations do not contribute additional languages, nor do division
nor trivial extension. The Boolean combinations then are recognised by finite direct
products, which proves the claim.

7.2.6 Theorem

Let V and W be lp-streams of typed stamps. Then for each alphabet A, the
languages in V�W(A) are Boolean combinations of languages in W(A) and
languages of the form τ−1

S (L), where τS is a transduction defined by some
S ∈W(A× 2{x}) and L ∈ V(XS[x]).

The proof follows directly from the previous Proposition and Proposition 7.1.11.

We conclude this section by stating a connection between the block product of
lp-streams of typed stamps and the substitution product of logic classes.

7.2.7 Corollary

Let V and W be lp-streams of typed stamps and Γ and Λ be logic classes such
that the corresponding lp-streams satisfy L(V) = L(Γ) and L(W) = L(Λ) then

L(V�W) = L(Γ ◦ Λ)

CHAPTER 7. THE BLOCK PRODUCT: FINITE AND PRO-FINITE 131

7.3 The Block Product on Dense Stamps

In the previous sections, we were able to define the block product for typed stamps
R = (XS[x], µ,M, p,X) and S = (A× 2{x}, ν,N, q, Y). In the definition, it is essential
that the Stone space of S[x], XS[x] as a subset of Y is still finite and thus may be
used as the alphabet for R.

The goal of this section is to characterise the dense pro-V�W stamp. It is tempting
to hope that if V and W are lp-streams of typed stamps, then the dense pro-V�W
stamp over some finite alphabet A should be isomorphic to a block product of the
dense pro-V stamp and the dense pro-W stamp for appropriate alphabets.

We are going to prove a slightly weaker statement, that is: There exists a block
product for dense stamps such that the block product of the dense pro-V and the
dense pro-W stamp is a trivial extension of the dense pro-V�W stamp. This weaker
statement is not entirely surprising, since the dense pro-V�W stamp is a syntactic
object, whereas the block product rarely gives a syntactic object, already in the case
of monoids.

To define said block-product on dense stamps, what seems a reasonable approach is
to consider the dense pro-W stamp R := R̂A×2{x}(W) and the dense pro-V stamp
over XR[x] and to then use the current definition of block product. A problem that
arises is that XR[x] is in general not a finite alphabet.

However, as a Stone space, XR[x] is profinite as a projective limit over all its finite
continuous quotients (see for instance [Joh86]). We are thus going to introduce dense
stamps over profinite alphabets in a coherent way, such that we may generalise the
block product.

Dense Stamps over Profinite Alphabets

We say that an alphabet is profinite, if it is the projective limit of finite alphabets.
Since each Stone space is a profinite set and finite sets may be seen as finite alphabets,
each Stone space is a profinite alphabet (and vice versa).

A dense stamp over a profinite alphabet is a tuple (X,µ,M, p, Y), where X may be
a profinite alphabet – all other requirements remain the same as for dense stamps,
that is µ : X∗ →M is a morphism and so on.

We now prove that for each profinite alphabet X and each C-variety of typed stamps
V, we may derive the notion of dense pro-V stamp over the profinite alphabet X
from all dense pro-V stamps over finite quotients of X.

Let X be a profinite alphabet and let

Fin(X) = {A | A is a finite continuous quotient of X}.

be the set of continuous finite quotients of X. Moreover, let I be the index set of all
projections πi : X → Ai, where Ai ∈ Fin(X) for i ∈ I. Then we may reconstruct the
projective limit system underlying X in the following way.

132 7.3. THE BLOCK PRODUCT ON DENSE STAMPS

7.3.1 Proposition

Let X be a profinite alphabet. The set (Ai)i∈I , where Ai ∈ Fin(X) forms a
projective limit system together with the connection maps hi,j : Ai → Aj such
that hi,j is a quotient map and commutes with the projections πj = hi,j ◦ πi. Its
projective limit is X.

The proof is entirely straight-forward and thus omitted.

Observe that each of the quotient morphisms hi,j : Ai → Aj induces a length preserv-
ing morphism h∗i,j : A∗i → A∗j . Let V be a C-stream of typed stamps and let V be its
corresponding stream of languages. Then, since hi,j is a quotient and V closed under
inverse length-preserving morphisms, the map

(h∗i,j)
−1 : V(Aj)→ V(Ai)

L 7→ (h∗i,j)
−1(L)

is well-defined and an embedding. Hence, its dual is a continuous quotient map
fi,j : XV(Ai) → XV(Aj) and the quotient morphism φi,j : MV(Ai) → MV(Aj), where
MV(Ai) (respectively MV(Aj)) is the syntactic monoid of V(Ai) (respectively V(Aj))
maps the equivalence class of w ∈ A∗i , [w] to [hi,j(w)]. Together with Proposition
6.5.1 and Proposition 6.5.4, we obtain that the triple

Φi,j = (hi,j , φi,j , fi,j)

is a morphism of dense stamps from R̂Ai(V) to R̂Aj (V). In particular, together with

the morphisms Φi,j , the family (R̂Ai(V))i∈I contributes a projective system.

7.3.2 Proposition

Let X be a profinite alphabet and V a C-stream of typed stamps. Then the
projective limit of the system (R̂Ai(V))i∈I exists.

Proof. Let R̂Ai(V) = (Ai, µi,Mi, pi, Yi).

Since the morphisms Φi,j = (hi,j , φi,j , fi,j) contribute a projective system, also the
monoids (Mi)i∈I with connection morphisms φi,j and the Stone spaces (Yi)i∈I with
connection morphisms fi,j are a projective system. The fact that both monoids
and Stone spaces admit for projective limits in their category provides that (Mi)i∈I
(respectively (Yi)i∈I) has a projective limit which we denote by M (respectively
Y) and that there exists a map p : M → Y with dense image commuting with the
projections in the sense that the diagram

M

Mi

Y

Yi

p

pi

πMi πYi

CHAPTER 7. THE BLOCK PRODUCT: FINITE AND PRO-FINITE 133

commutes, where πMi and πYi are the respective projections. In a similar fashion, we
obtain that there exists a morphism µ : X∗ →M such that

X∗

A∗i

M

Mi

µ

µi

πMiπ∗i

commutes. Here, π∗i denotes as usual the extension of the map πi : X → Ai to a
monoid morphism of free monoids.

Hence, the projective limit of the system (R̂Ai(V))i∈I is the tuple (X,µ,M, p, Y).

7.3.3 Definition

Let X be a profinite alphabet. The dense pro-V stamp over X is the projective
limit of the system (R̂Ai(V))i∈I and denoted by R̂X(V). By V(X), we denote

the set of all languages over X∗ recognised by R̂X(V).

In particular, we extract from the proof of Proposition 7.3.1, that in R̂X(V) =
(X,µ,M, p, Y), if R̂Ai(V) = (Ai, µi,Mi, pi, Yi), then µ is the projective limit of the
morphisms µi, M the projective limit of Mi and so forth.

The Block Product on Dense Stamps

We are now ready to state the block product for dense stamps using profinite
alphabets and to characterise its relation to the dense pro-V�W stamp.

7.3.4 Definition

Let A be a finite alphabet and let S = (A× 2{x}, ν,N, q, Y) be a dense stamp.
Moreover, let R = (XS[x], µ,M, p,X) be a dense stamp over the profinite alphabet
XS[x]. The block product of R and S is the dense stamp

R�S = (A,µ�ν,M�N, p�q,X × Y)

where

• M�N is the block product of monoids

• µ�ν is the morphism sending a to (fa, ν(a)), and

• p�q sends the tuple (f, n) to (p ◦ f(1, 1), q(n)).

Comparing the definition to the block product for typed stamps shows that the two
notions are compatible in the sense that if we consider a typed stamp as a (discrete)

134 7.3. THE BLOCK PRODUCT ON DENSE STAMPS

dense stamp, then applying the block product for dense stamps yields the same result
as the block product for typed stamps.

In the following, we consider lp-streams of typed stamps V and W and let W =
R̂A×2{x}(W) and V = R̂XW[x]

(V). As usual, we assume V ↔ V and W ↔W. In a
similar fashion as for typed stamps, we derive a block product principle through the
notion of transduction. Hence we define the transduction induced by W as the map

τW : A∗ → X∗W[x]

w 7→ ιW(wx=1) · · · · · ιW(wx=|w|)

7.3.5 Proposition

Let V and W be lp-streams of typed stamps, where W = R̂A×2{x}(W) and

V = R̂XW[x]
(V). Then each language recognised by the block product V�W is a

Boolean combination of languages in W(A) and languages of the form τ−1
W (L),

where L ∈ V(XW[x]).

Proof. The proof is essentially the same as the one of Proposition 7.1.11 and is
thus presented in a condensed version. We denote by iA : A∗ → (A × 2{x})∗ the
inclusion. Let V = (XW[x], µ,M, p,X) and let W = ((A × 2{x}), ν,N, q, Y). Since
W is closed under lp-transformations, W · iA is an element of W and thus every
language recognised by it is an element of W(A).

Recall that a language is recognised by V�W if and only if it is of the form ι−1
V�W(C),

where C is a clopen of X × Y . As a topological space X × Y is equipped with the
product topology and the clopen sets are Boolean combinations of the sets CX × Y ,
where CX is a clopen of X and X × CY , where CY is a clopen of Y .

Hence, we assume without loss of generality that L is a language recognised by V�W
of the form

L = ι−1
V�W(CX × CY)

for some clopen CX ⊆ X and some clopen CY ⊆ Y . Letting LX = ι−1
V (CX) and

LY = ι−1
W·iA(CY), we claim that L = τ−1

W (LX) ∩ LY .

As in the proof of Proposition 7.1.11, we let µ�ν(w) = (fw, ν(w)) and obtain
that p ◦ fw(1, 1) = ιV ◦ τW(w). Moreover ιV�W(w) ∈ CX × CY if and only if
p ◦ fw(1, 1) ∈ CX and ιW(w) ∈ CY . We can thus conclude for w ∈ A∗, that since
ιW = ιW·iA(w), the equality

w ∈ L⇔ ιV ◦ τW(w) ∈ CX and ιW(w) ∈ CY
⇔ w ∈ τ−1

W (LX) ∩ LY

holds.

The converse direction follows along the same lines.

The following two propositions exploit the fact that we are actually working on pro-
jective limits of dense stamps and those are uniquely determined by their projections.

CHAPTER 7. THE BLOCK PRODUCT: FINITE AND PRO-FINITE 135

7.3.6 Proposition

Let W be an lp-stream of typed stamps and let W = R̂A×2{x}(W). Then for each

typed stamp S ∈W(A× 2{x}) and language L ⊆ X∗S[x], there exists a language
K ⊆ X∗W[x] such that

τ−1
S (L) = τ−1

W (K).

Proof. Let W = ((A × 2{x}), µ,m, p,X) and S = ((A × 2{x}), ν,N, q, Y). Observe
that without loss of generality, we may assume that S is minimal with respect to
trivial extension, since if S were a trivial extensions of some typed stamp R over
A× 2{x}, then XS[x] and XR[x] are isomorphic.

It follows from the definition of W that S is a quotient of W. Let π : X → Y be the
map defined by the projection morphism Π: W→ S. Then ιS = π ◦ ιW. In particular,
π restricts to a map πx : XW[x] → XS[x] such that πx ◦ ιW restricted to A∗ ⊗ {x}
coincides with the restriction of ιS to A∗ ⊗ {x}. Hence for w ∈ A∗ the equality

ιS(wx=1) · · · · · ιS(wx=|w|) = πx ◦ ιW(wx=1) · · · · · πx ◦ ιW(wx=|w|)

holds and by extending πx to a morphism π∗x : X∗W[x] → X∗S[x]

τS(w) = π∗x ◦ τW(w).

Hence for LS ⊆ X∗S[x], setting K = (π∗x)−1(L) provides us with

w ∈ τ−1
S (L)⇔ τS(w) ∈ L

⇔ π∗x ◦ τW(w) ∈ L
⇔ τW(w) ∈ (π∗x)−1(L)

⇔ w ∈ K

and thus proves the claim.

7.3.7 Proposition

Let V and W be lp-streams of typed stamps, where W = R̂A×2{x}(W) and

V = R̂XW[x]
(V). Moreover let V ↔ V. Then for each language L ∈ V(XW[x]),

there exists a typed stamp S ∈W and a language K ∈ V(XS[x]) such that

τ−1
W (L) = τ−1

S (K).

Proof. Let W = (A × 2{x}, ν,N, q, Y) and V = (XW[x], µ,M, p,X). Since V is the
projective limit of the system{

R̂XR[x]
(V) | R is a finite quotient of W

}
,

for each R ∈W, there exists a projection ΠR : V → R̂XR[x]
(V), where we let ΠR =

(rR, φR, πR) and
VR := R̂XR[x]

(V) = (XR[x], µ
R,MR, pR, XR).

Summarising the situation in a diagram, we obtain that

136 7.3. THE BLOCK PRODUCT ON DENSE STAMPS

X∗W[x]

X∗R[x]

X

XR

ιV

ιVR

rR πR

commutes.

Let L ∈ V(XW[x]) be a language. Since L ∈ V(XW[x]), there exists a clopen C ⊆ X
such that L = ι−1

V (C) and in particular, since C is clopen, there exists an n ∈ N and
for each i = 1, . . . , n, a typed stamp Si ∈ W and a set CSi ⊆ XSi such that C is a

(finite) Boolean combination of the sets (πSi)
−1

(CSi). Observe that this is true, since
X itself is the projective limit of the spaces XR for R ∈W and as such equipped
with the product topology.

Let S be the product S1 × · · · × Sn. Then, for each i = 1, . . . , n there exist quotient
morphisms rSi : XS[x] → XSi[x] and each rSi extends to a morphism from X∗S[x] to

X∗Si[x]. We denote by πSi : XS → XSi the projections. Summarising again in a
diagram, we have

X∗W[x]

X∗S[x]

X∗Si[x]

X

XS

XSi

ιV

ιVS

ιVSi

rS πS

rSi πSi

Let

K = ι−1
VS

(
n⋂
i=1

(πSi)−1(CSi)

)
.

Then K ∈ V(XS[x]) and since the diagram above commutes, L = (rS)−1(K). Recall

that rS is precisely the monoid morphism induced by the last component of the
quotient morphism from W to S, which implies rS ◦ ιW = ιS. We obtain

τW(w) ∈ L⇔ ιW(wx=1) · · · · · ιW(wx=|w|) ∈ L
⇔ rS(ιW(wx=1) · · · · · ιW(wx=|w|)) ∈ K
⇔ rS ◦ ιW(wx=1) · · · · · rS ◦ ιW(wx=|w|) ∈ K
⇔ ιS(wx=1) · · · · · ιS(wx=|w|) ∈ K
⇔ τS(w) ∈ K

which proves the claim.

CHAPTER 7. THE BLOCK PRODUCT: FINITE AND PRO-FINITE 137

As a consequence of the previous observations, we now obtain a precise relationship,
between the languages recognised by V�W and those recognised by V�W.

7.3.8 Theorem

Let V and W be lp-streams of typed stamps, where W = R̂A×2{x}(W) and

V = R̂XW[x]
(V). Then

V�W(A) = L(V�W).

Proof. By Proposition 7.3.5, each language recognised by V�W is a Boolean combi-
nation of languages inW(A) and languages of the form τ−1

W (L), where L is recognised
by V.

Hence, Proposition 7.3.6 implies that V�W(A) ⊆ L(V�W). The converse inclusion
follows from Proposition 7.3.7.

7.3.9 Theorem

Let V and W be lp-streams of typed stamps, where W = R̂A×2{x}(W) and

V = R̂XW[x]
(V). Then the block product V�W is a trivial extension of R̂A(V�W).

Proof. By Theorem 7.3.8, V�W and R̂A(V�W) recognise the same languages, hence
they have isomorphic Stone spaces. Since the monoid component of R̂A(V�W) is
the syntactic monoid of V�W(A), the claim follows.

Finally, reformulating our observations again, such that they match the perspective
from logic, we obtain as a Corollary from Theorem 7.3.8.

7.3.10 Corollary

Let V and W be lp-streams of typed stamps, where W = R̂A×2{x}(W) and

V = R̂XW[x]
(V) and let Γ and Λ be logic classes such that L(V) = L(Γ) and

L(W) = L(Λ). Then
L(Γ ◦ Λ) = L(V�W).

7.4 Summary

We used substitution and transduction, which in the first place work purely on
logical formulae and defined a notion of transduction on typed stamps, such that the
transduction defined by the (finitely many) formulae coincided with the transduction
of the typed stamp, if both recognise the same languages (Corollary 7.1.9). We
then defined the block product for typed stamps (Definition 7.1.10) and, using the
previous relation, showed that the block product and substitution stand in relation
(Corollary 7.1.12).

138 7.5. FURTHER RESEARCH

Leaving the local world, where we worked on single typed stamps, we introduced
the notion of logic class, in order to be able to set C-streams of typed stamps and
Boolean algebras of logical formulae in relation. That generalisation also served
to characterise the languages recognised by the block product of two C-streams of
typed stamps, which again is a C-stream of typed stamps, in terms of logic (Corollary
7.2.7).

The final goal was then to characterise, for two C-streams of typed stamps V and
W, the dense pro V�W-stamp of the block product. This was done in terms of
a generalisation of the block product of typed stamps to dense stamps. However,
it had to be adjusted to also work for profinite alphabets, which we unavoidably
encounter, if we want to define an analogue of substitution and transduction for
possibly infinite Boolean algebras of formulae.

Finally, we were able to show that the block product of the dense pro-V and the
dense pro-W stamp recognises the same languages as the dense pro-V�W stamp
and thus gave a more constructive characterisation of the dense pro-V�W stamp.

7.5 Further Research

An instance on which the now established theory could be tried out was considered in
[BKR09], where it was possible to show that majority logic with the <-predicate and
two variables (Maj2[<]) is not capable of recognising non-solvable group languages,
as for instance A5. The arguments presented in that paper seem to be of topological
nature, since the authors consider sequences of words, where it is important that
the length of the words grows with the index. More precisely the elements of these
sequences at index n give rise to a pair of words which cannot be distinguished by
any formula in said fragment of logic with at most n majority quantifiers. We aim
at a topological reproof, using the block product, deriving equations inductively for
quantifier depth n+ 1 in dependence of the equations for depth n. Although there
are equations for the regular languages inside Maj2[<], since they form a pseudo-
variety, it may still be necessary to consider ultrafilter equations in the process of
the induction.

But already equations for Maj[<] of depth 2, which coincides with Maj2[<] of depth
two, could be interesting on their own, to consider a reproof of the separation of
Maj[<] depth 3 by equations.

8

Conclusion

We investigated the ties between algebra and topology outside of the regular languages,
dividing the work in two forks: The investigation of visibly pushdown languages and
of classes which are related to logic.

For the visibly pushdown languages, we were able to prove that they admit for finite
algebraic recognising objects – Ext-algebras. Here, the additional algebraic structure
played a key role in defining finite structures for these non-regular languages. These
prepared the ground for the construction of the topological perspective for the visibly
pushdown languages. Quite similarly to the regular languages, it was possible to
construct a topological space via the completion of a metric space, which turned out
to be the free profinite Ext-algebra and the Stone space of the visibly pushdown
languages. In [GGP10], it was shown that the Stone space of a Boolean algebra of
languages (relative to A∗) is a monoid, if and only if the Boolean algebra consists
of regular languages. Here, we show that if a Boolean algebra of languages (now
relative to A4) is a subset of all VPLs, then its Stone space is an Ext-algebra. In
order to prove the converse direction – in the style of [GGP10] – one would have
to consider a notion of recogniser for arbitrary Boolean algebras relative to A4 –
choosing the Stone space should, to the best of the authors knowledge, then result in
“The Stone space of a Boolean algebra relative to A4 is an Ext-algebra if and only if
the Boolean algebra consists only of VPL”.

The developed algebraic and topological notions contributed to form an Eilenberg-
Reiterman-like relationship in the sense that each pseudo-variety of Ext-algebras
corresponds uniquely to a pseudo-variety of VPL and both of these are uniquely
determined by a set of equations over the free profinite Ext-algebra. These equations
now differ from the well-known equations over profinite words (on Â∗) in the sense,
that they also admit for so-to-say profinite operations, such as extωu,v, which is a map

from Â4 to Â4.

To employ these algebraic and topological findings, we subsequently chose a subclass
of the visibly pushdown languages for examination: The class MExt consisting

140

of all languages that are the intersection of a regular language with the set of all
well-matched words. The decidability whether a VPL belongs to MExt was part
of the work in [BLS06]. After showing that this class forms a pseudo-variety and
hence has a defining set of equations, we gave sound equations for MExt. Through
these equations, it was possible to prove in a rather straight-forward way, for some
languages, that they do not belong to MExt. In particular, we were able to show
that one of the equations is sound for VCL and conjecture that it might already be
complete for it.

Evidently, for the case of VPL, algebra and topology are quite as neatly tied as in
the case of the regular languages.

The second fork of the work was concerned with more general concepts of algebraic
recognisers for non-regular language classes and their ties to topology. The introduced
recognisers – typed stamps – were specifically motivated by classes of languages
definable in fragments of logic. Hence, we included the morphism in typed stamps
to be able to capture the peculiarities of for instance, the quasi-aperiodic languages
and other classes mainly defined by logic. Typed stamps were derived from typed
monoids [KLR05].

Due to their additional set-component, typed stamps are rather adapt to recognise
(finite) Boolean algebras instead of languages. While the first few section were purely
algebraical, already at the introduction of syntactic typed stamps, it became evident,
that these are strongly tied to discrete topological objects, since the set-component
of the syntactic typed stamp of a Boolean algebra B had the Stone space of B as set-
component. Staying on the algebraic side, it was possible to derive an Eilenberg-like
theorem for C-streams of typed stamps and C-streams of languages. These C-streams
of typed stamps come with the advantage that any set of typed stamps may generate
a C-stream but with the disadvantage that some of the typed stamps have – through
trivial extension – incredibly large monoid components. In order to be able to build
a meaningful notion of topological objects corresponding to a C-stream it was hence
necessary to restrict to slightly smaller classes, so-called inherent classes. These
also come with a one-to-one correspondence between C-streams of typed stamps and
languages, but do not contain trivial extensions. However, we cannot say that any
set of typed stamps (explicitly) generates such an inherent class.

The superordinate goal was to build one topological object from a class of typed
stamps, which we can in later chapters use, to define a block product on, much
like in [AW95]. Via a projective limit system over an inherent class of a C-stream
V, it was possible to construct such a topological object – the dense pro-V stamp,
now in the category of dense stamps, in which typed stamps may be seen as the
discrete topological objects. It was then possible to show that the dense pro-V stamp
also has a characterisation purely on the language side – a characterisation which
makes the objects slightly more accessible and helps in grasping the connections to
languages recognised by block products in later chapters. Finally, we were able to
prove a Reiterman-like theorem, completing the triad between algebra, languages
and topology and calculated two easy examples.

Having established all the necessary tools to tackle the block product topologically

CHAPTER 8. CONCLUSION 141

in the fashion of [AW95], we first uncoiled the relations between substitution, trans-
ductions and typed stamps and defined a block product for typed stamps mirroring
substitution on the side of logic. We then gradually increased complexity, first raising
substitution to classes of formulae and the block product to C-streams of typed
stamps, to finally raise the block product to dense stamps.

A necessary complication there was to introduce profinite alphabets – which already
was done similarly for the regular case in [AW95]. Using profinite alphabets, a
block product principle connecting the block product for dense stamps and profinite
transductions made it possible to describe the links between classes definable by logic
and the block product of the respective dense stamps of these classes.

Further Research

At the end of each chapter, we gave directions for possible further research – we refer
to those for more concrete problems. Here, we give a broader and more long-term
directed overview.

Decidability for Visibly Pushdown Languages by Equations?

Recall that a VPL L satisfies an equation of profinite well-matched words [u↔ v],
if the unique uniformly continuous extension of a morphism ϕ into an Ext-algebra
recognising L maps both words u, v to the same element, that is ϕ̂(u) = ϕ̂(v). The
decisive advantage of having a notion of equation that has an interpretation on finite
recognising objects is that in many cases, whether [u ↔ v] holds can effectively
computed. In fact, if u is the limit of the sequence of well-matched words un and v
of vn, then the sequence ϕ(un) becomes stationary and equal to ϕ̂(u) after finitely
many steps.

Hence there is an algorithm deciding whether an equation holds for any VPL,
whenever the profinite well-matched words in the equation are constructively given as
the limits of sequences. This is, for instance, the case for extωab(x), which is the limit
of extn!

a,b(x). More concretely, if the VPL is given by a VPA, we may convert it to an
Ext-algebra via the procedure given in Proposition 5.2.13. On this Ext-algebra it
is possible to evaluate the equation as described above.

Evidently, since the free profinite Ext-algebra contains uncountably many elements,
not all converging sequences are finitely representable and consequently having a
complete and sound set of equations does not automatically imply decidability. This
raises a cascade of questions:
Which subclasses of VPL admit for a description through such well-behaving equations
(for which the algorithm above is applicable)? For instance, in the regular languages,
most known classes are expressible through ω-terms, which do imply decidability by a
similar argument over monoids. Does it hold for VPL, that most naturally emerging
classes are representable by equations over extωab-terms or is it already for apparently
simple classes the case that in terms of equations, more complex constructs are

142

needed? If so - how are these represented and do they still imply decidability, as
they are limits of finitely representable sequences?

These questions are still relatively vague. More concretely, we already mentioned
that examining VPL contained in complexity classes could provide interesting results.
This is particularly interesting when talking about decidability: Taking a step back
to results achieved for regular languages, it was shown in [GKP16], for a fragment of
logic, that by finding equations for the fragment of logic, equations for the regular
languages therein may be obtained, which then imply decidability. This naturally
raises the question, whether the same procedure is possible for VPL. This might
prove a tad more difficult than in [GKP16], since these result intrinsically rely on the
fact that the free profinite monoid is a quotient of the Stone-Čech compactification,
over which the equations for the fragment of logic were formed. Thus, it is possible to
obtain equations for regular languages via projection. The free profinite Ext-algebra
is not a quotient of the Stone-Čech compactification and hence this technique is in
general not possible. However, since the free Ext-algebra A4 may be understood as
a subset of the free monoid A∗, this gives rise to the assumption that we may interpret

Â4 as a subset of β(A∗) and that equations for circuit classes (or fragments of logic)
might via some sort of transitive closure over those equations lead to equations for
VPL nonetheless.

Equations for Circuits Through Typed Stamps

Equations are a ray of hope for proving separations, since in theory it suffices to find
just one equation that is violated by some language in order to prove a separation.
For instance, it would not even be necessary to find a complete set of equations
for AC0 – just one equation that holds for it but is violated by Parity would be
enough to reprove [FSS84]. Consequently the hard part is finding the equations.
In general, they are highly non-constructive. Here, we hope to be able to use an
inductive approach for the construction of equations using typed stamps and the
block product: First, consider fragments of logic (resp. circuit classes) with constant
and small quantifier depth, for instance depth one or two, and find equations for
them. Then use the block product and in particular the information we gained on
the Stone space of the block product, to derive equations for higher depth fragments.

Already the first step, in which we wish to examine classes of considerably small
depth, has interesting problems on its own, for instance it is unknown whether CC0

can compute 1∗ and it is also unknown whether it is equal to NP. Quite similarly,
TC0 depth 3 and 4 are not yet separated. Here, calculating the dense pro-V stamps
(where V is the respective class) and using them to derive equations should be of its
own interest.

For the inductive step, one could then use the block product for dense stamps to
obtain equations for larger classes. We mentioned previously that majority logic
with two variables and the <-predicate is a strong candidate to reprove the results
of [BKR09] as a sanity check for the framework. An obvious second candidate,
which should however prove much harder, is FO[N] (or equivalently AC0). A non-

CHAPTER 8. CONCLUSION 143

probabilistic reproof [FSS84] would be a major breakthrough for the topological
approach. However, it is to be suspected that to obtain precisely this, a lot of
preprocessing is necessary. For instance in the regular case, Almeida and Weil
[AW98] were able to derive equations for block products of pseudo-varieties of finite
monoids, using a similar strategy going over profinite alphabets and - in addition
- the derived category theorem [Til87] (a one-sided version of the Kernel theorem
by Rohdes and Tilson [RT89]). It might thus be a wise choice to first establish a
kernel-theorem for typed stamps and use this result and the results of the previous
chapter in the fashion of Almeida and Weil, to obtain equations for large logic classes.

As a slight simplification, one could consider weak block-products instead of block
products in full generality. Weak block products were, for instance, considered in
[BKM13], where it was proven that iterated weak block products have connections to
linear-size circuit classes. An advantage is that for an iterated weak block product,
in contrast to iterated block products in general, the transduction for each iteration
step is the same. Hence, in examining the transduction, on could probably derive
equations in a much more constructive fashion for linear-size circuit classes. To then
draw conclusions for polynomial-size circuits, padding (e.g. artificially transforming a
polynomial-size circuit to a linear size one by increasing the input size with sufficiently
many 1’s) could be of use – one could show that the padded language violates the
equation for linear size circuits and hence the original language cannot be accepted
by circuits of polynomial size. This approach particularly lives of having equations
for non-regular languages, since padded languages are in general not regular.

145

Index

Symbols
A4 see also well-matched words

a−1R . 89

β(X) . 39

[[E]]C . 112

Ext(L) see also syntactic
Ext-algebra

[γ1 ↔ γ2] . 110

Γ ◦ Λ . . see also substitution product

H+ . 73

I(V), IA(V) . . see also inherent class

ιR . 79

λ see also empty word

LA(Γ), LA(Λ) .128

L[x](R), L∅(R) 118

MExt . 70

MExt . 70

R̂A(V) . . see also dense pro-V stamp

R�S see also block product

ρr see also letter substitution

R ◦ S . 119

ΣS see also substitution

S · ϕ see also C-transformation

S[x],S[∅] . 118

τL . . . see also transduction languages

τS see also transduction logic

τS see also transduction typed stamps

[u↔ v] . 66

V�W . 129

V�W . 130

xω . 11, 30

XB see also Stone space

XR[x] . 118

Zk .12

A
alphabet .12
atom . 33

B
block product
C-stream of typed stamps . . . 129
dense stamps 133
typed stamps123

block product principle 125
Boolean algebra 14

morphism . 14
quotient . 14
sub . 14

C
C-pseudovariety of typed stamps . . 90
C-stream of languages 90
C-stream of typed stamps 88
C-transformation 88
category . 26
clopen . 25
closed . 25
commutative .11
compact . 26
continuity .23, 26

metric . 22
uniform . 22

continuous extension26

D
dense pro-V stamp 99
dense stamp . 98
dense stamp over profinite alphabet

131
dense subset

146 INDEX

metric space 19

topological space 25

dual map 34, 38–39

E
empty word . 12

Ext-algebra . 46

F
free profinite monoid 29–32

H
hausdorff . 25

I
idempotent . 11

inherent class . 96

isometry . 19

L
language .13

recognition by monoid 13

letter substitution 127

logic class . 128

Ludwig language 45

M
metric . 17

discrete . 18

product . 18

metric space . 17

complete . 19

completion 20

monoid . 11

aperiodic . 11

block product 14

congruence 13

division . 12

free . 12

morphism . 12

quotient . 12

sub .12

monoidal Ext-algebra 69

morphism of Ext-algebras47

morphism of dense stamps 98

morphism of typed stamps 81

O
open . 23
open ball . 23
open set . 24

P
partial order . 27
partially ordered set . . .see also poset
poset . 27

directed . 27
product of Ext-algebras 51
product of typed stamps 86
profinite alphabet131
projective limit 27
projective system 27
pseudo-variety of Ext-algebras . . . 55
pseudo-variety of VPL 54

S
sequence

Cauchy . 18
converging .18

stack height . 75
Stone representation theorem 38
Stone space .38
substitution . 119
substitution product 128
syntactic Ext-algebra 50
syntactic congruence13
syntactic monoid 13
syntactic morphism 13
syntactic typed stamp 84

T
topological closure 25
topological space 24
topology . 24

basis . 24
co-finite . 24
discrete .24
product . 24
trivial . 24

transduction
languages 122
logic . 120
typed stamps122

trivial extension 83

INDEX 147

two-element Boolean algebra14

typed stamp . 79

typed stamps

restricted . 81

U
ultimately equal 21

ultrafilter . 36

ultrafilter equations 39–40

upper bound .27

V
visibly counter automaton 75
visibly pushdown alphabet 43
visibly pushdown automaton 44
visibly pushdown language 44

W
well-matched words 45

Z
zero-dimensional 25

149

Bibliography

[AKMV05] Rajeev Alur, Viraj Kumar, Parthasarathy Madhusudan, and Mahesh
Viswanathan. Congruences for visibly pushdown languages. In Automata,
Languages and Programming, 32nd International Colloquium, ICALP
2005, Lisbon, Portugal, July 11-15, 2005, Proceedings, pages 1102–1114,
2005.

[Ali16] Saeid Alirezazadeh. On pseudovarieties of forest algebras. Int. J. Found.
Comput. Sci., 27(8):909–942, 2016.

[Alm95] Jorge Almeida. Finite Semigroups and Universal Algebra. World Scientific
Publishing Co. Inc., Singapore, 1995.

[AM04] Rajeev Alur and Parthasarathy Madhusudan. Visibly pushdown lan-
guages. In Proceedings of the 36th Annual ACM Symposium on Theory
of Computing, Chicago, IL, USA, June 13-16, 2004, pages 202–211, 2004.

[AW95] Jorge Almeida and Pascal Weil. Free profinite semigroups over semidirect
products. Russian Mathem., 39:1–28, 1995.

[AW98] Jorge Almeida and Pascal Weil. Profinite categories and semidirect
products. Journal of Pure and Applied Algebra, 123:1–50, 1998.

[BCGK17] Célia Borlido, Silke Czarnetzki, Mai Gehrke, and Andreas Krebs. Stone
duality and the substitution principle. In 26th EACSL Annual Conference
on Computer Science Logic, CSL 2017, August 20-24, 2017, Stockholm,
Sweden, pages 13:1–13:20, 2017.

[BCST92] David A. Mix Barrington, Kevin J. Compton, Howard Straubing, and De-
nis Thérien. Regular languages in NC1. J. Comput. Syst. Sci., 44(3):478–
499, 1992.

[Bir35] Garrett Birkhoff. On the structure of abstract algebras. Proceedings of
the Cambridge Philosophical Society, 31:433–454, 1935.

[BIS88] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On
uniformity within NC1. In Proceedings: Third Annual Structure in
Complexity Theory Conference, Georgetown University, Washington, D.
C., USA, June 14-17, 1988, pages 47–59, 1988.

150 BIBLIOGRAPHY

[BKM13] Christoph Behle, Andreas Krebs, and Mark Mercer. Linear circuits,
two-variable logic and weakly blocked monoids. Theor. Comput. Sci.,
501:20–33, 2013.

[BKR09] Christoph Behle, Andreas Krebs, and Stephanie Reifferscheid. Regular
languages definable by majority quantifiers with two variables. In Devel-
opments in Language Theory, 13th International Conference, DLT 2009,
Stuttgart, Germany, June 30 - July 3, 2009. Proceedings, pages 91–102,
2009.

[BLS06] Vince Bárány, Christof Löding, and Olivier Serre. Regularity problems for
visibly pushdown languages. In STACS 2006, 23rd Annual Symposium
on Theoretical Aspects of Computer Science, Marseille, France, February
23-25, 2006, Proceedings, pages 420–431, 2006.

[Boj15] Miko laj Bojańczyk. Recognisable languages over monads. CoRR,
abs/1502.04898, 2015.

[BS73] Janusz A. Brzozowski and Imre Simon. Characterizations of locally
testable events. Discrete Mathematics, 4(3):243–271, 1973.

[BT88] David A. Mix Barrington and Denis Thérien. Finite monoids and the
fine structure of NC1. J. ACM, 35(4):941–952, 1988.

[Büc60] Julius Richard Büchi. Weak second-order arithmetic and finite automata.
Mathematical Logic Quarterly, 6(16):66–92, 1960.

[BW08] Miko laj Bojańczyk and Igor Walukiewicz. Forest algebras. In Logic and
Automata: History and Perspectives [in Honor of Wolfgang Thomas].,
pages 107–132, 2008.

[CK16] Silke Czarnetzki and Andreas Krebs. Using duality in circuit complexity.
In Language and Automata Theory and Applications - 10th International
Conference, LATA 2016, Prague, Czech Republic, March 14-18, 2016,
Proceedings, pages 283–294, 2016.

[CKL18] Silke Czarnetzki, Andreas Krebs, and Klaus-Jörn Lange. Visibly push-
down languages and free profinite monoids. CoRR, abs/1810.12731,
2018.

[Eil76] Samuel Eilenberg. Automata, languages, and machines. Vol. B. Academic
Press [Harcourt Brace Jovanovich Publishers], New York, 1976.

[ES52] Samuel Eilenberg and Norman Earl Steenrod. Foundations of Algebraic
Topology. Princeton University Press, 1952.

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and
the polynomial-time hierarchy. Mathematical Systems Theory, 17(1):13–
27, 1984.

BIBLIOGRAPHY 151

[Geh11] Mai Gehrke. Duality and recognition. In Mathematical Foundations of
Computer Science 2011 - 36th International Symposium, MFCS 2011,
Warsaw, Poland, August 22-26, 2011. Proceedings, pages 3–18, 2011.

[GGP08] Mai Gehrke, Serge Grigorieff, and Jean-Éric Pin. Duality and equational
theory of regular languages. In Automata, Languages and Programming,
35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July
7-11, 2008, Proceedings, pages 246–257, 2008.

[GGP10] Mai Gehrke, Serge Grigorieff, and Jean-Éric Pin. A topological approach
to recognition. In Automata, Languages and Programming, volume 6199
of Lecture Notes in Computer Science, pages 151–162. Springer Berlin
Heidelberg, 2010.

[GKP16] Mai Gehrke, Andreas Krebs, and Jean-Éric Pin. Ultrafilters on words
for a fragment of logic. Theor. Comput. Sci., 610:37–58, 2016.

[GL84] Yuri Gurevich and Harry R. Lewis. A logic for constant-depth circuits.
Information and Control, 61(1):65–74, 1984.

[GPR16] Mai Gehrke, Daniela Petrisan, and Luca Reggio. The schützenberger
product for syntactic spaces. In 43rd International Colloquium on Au-
tomata, Languages, and Programming, ICALP 2016, July 11-15, 2016,
Rome, Italy, pages 112:1–112:14, 2016.

[GPR17] Mai Gehrke, Daniela Petrisan, and Luca Reggio. Quantifiers on languages
and codensity monads. In 32nd Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017,
pages 1–12, 2017.

[Hah15] Michael Hahn. An algebraic perspective on visibly pushdown languages.
Master’s thesis at the University of Tübingen, 2015.

[Imm89] Neil Immerman. Expressibility and parallel complexity. SIAM Journal
on Computing, 18:625–638, 1989.

[Joh86] Peter T. Johnstone. Stone Spaces. Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 1986.

[Kle56] Stephen Cole Kleene. Representation of events in nerve nets and finite
automata. In Automata studies, pages 3–41. Princeton University Press,
Princeton, N. J., 1956.

[KLR05] Andreas Krebs, Klaus-Jörn Lange, and Stephanie Reifferscheid. Charac-
terizing TC0 in terms of infinite groups. In STACS 2005, 22nd Annual
Symposium on Theoretical Aspects of Computer Science, Stuttgart, Ger-
many, February 24-26, 2005, Proceedings, pages 496–507, 2005.

[KR65] Kenneth Krohn and John Rhodes. The Algebraic Theory of Machines I.
Transactions of the American Mathematical Society, 116:450–464, 1965.

152 BIBLIOGRAPHY

[Lan04] Klaus-Jörn Lange. Some results on majority quantifiers over words.
In 19th Annual IEEE Conference on Computational Complexity (CCC
2004), 21-24 June 2004, Amherst, MA, USA, pages 123–129, 2004.

[Lud18] Michael Ludwig. Tree-structured problems and parallel computation.
PhD thesis at the University of Tübingen, 2018.

[MP71] Robert McNaughton and Seymour Papert. Counter-free automata. M.I.T.
Press Cambridge, Mass, 1971.

[Pin12] Jean-Éric Pin. Equational descriptions of languages. Int. J. Found.
Comput. Sci., 23(6):1227–1240, 2012.

[Pin16] Jean-Éric Pin. Mathematical foundations of automata theory, 2016.

[Pip97] Nicholas Pippenger. Regular languages and stone duality. Theory Comput.
Syst., 30(2):121–134, 1997.

[PS05] Jean-Éric Pin and Howard Straubing. Some results on C-varieties. ITA,
39(1):239–262, 2005.

[Rei82] Jan Reiterman. The Birkhoff theorem for finite algebras. Algebra
Universalis, 14:1–10, 1982.

[RS59] Michael O. Rabin and Dana S. Scott. Finite automata and their decision
problems. IBM Journal of Research and Development, 3(2):114–125,
1959.

[RS97] Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal
Languages, Vol. 1: Word, Language, Grammar. Springer-Verlag, Berlin,
Heidelberg, 1997.

[RT89] John Rhodes and Bret Tilson. The kernel of monoid morphisms. Journal
of Pure and Applied Algebra, 62(3):227 – 268, 1989.

[Sak76] Jacques Sakarovitch. An algebraic framework for the study of the
syntactic monoids application to the group languages. In Mathematical
Foundations of Computer Science 1976, 5th Symposium, Gdansk, Poland,
September 6-10, 1976, Proceedings, pages 510–516, 1976.

[Sch56] Marcel Paul Schützenberger. Une théorie algébrique du codage. Séminaire
Dubreil. Algèbre et théorie des nombres, 9:1–24, 1955-1956.

[Sch64] Marcel Paul Schützenberger. On the synchronizing properties of certain
prefix codes. Information and Control, 7(1):23–36, 1964.

[Sto36] Marshall H. Stone. The theory of representations for boolean algebras.
Transactions of the American Mathematical Society, 40(1):37–111, 1936.

[Str94] Howard Straubing. Finite Automata, Formal Logic, and Circuit Com-
plexity. Birkhäuser, Boston, Basel, Switzerland, 1994.

BIBLIOGRAPHY 153

[Str02] Howard Straubing. On logical descriptions of regular languages. In
LATIN 2002: Theoretical Informatics, 5th Latin American Symposium,
Cancun, Mexico, April 3-6, 2002, Proceedings, pages 528–538, 2002.

[Til87] Bret Tilson. Categories as algebra: An essential ingredient in the theory
of monoids. Journal of Pure and Applied Algebra, 48(1):83 – 198, 1987.

[TT07] Pascal Tesson and Denis Thérien. Logic meets algebra: the case of
regular languages. Logical Methods in Computer Science, 3(1), 2007.

[UACM16] Henning Urbat, Jiŕı Adámek, Liang-Ting Chen, and Stefan Milius. One
eilenberg theorem to rule them all. CoRR, abs/1602.05831, 2016.

[UACM17] Henning Urbat, Jiŕı Adámek, Liang-Ting Chen, and Stefan Milius. Eilen-
berg theorems for free. In 42nd International Symposium on Mathematical
Foundations of Computer Science, MFCS 2017, August 21-25, 2017 -
Aalborg, Denmark, pages 43:1–43:15, 2017.

	Introduction
	Notation and Terminology
	Preliminaries
	Algebra
	Logic on Words
	Metric Spaces and Topology
	Projective Limits

	Algebra Meets Topology
	A Review of the Regular Languages
	An Intuitive Approach to Stone Spaces
	Stone Spaces
	Conclusion

	Visibly Pushdown Languages
	Visibly Pushdown Automata
	VPL in Terms of Algebra
	An Eilenberg Theorem
	The Free Profinite Ext-algebra
	A Reiterman Theorem for VPL
	Concepts in Application
	Summary
	Further Research

	Typed Stamps and Projective Limits
	Typed Stamps
	Streams of Typed Stamps
	Eilenberg for Streams of Typed Stamps
	Projective Limits of Streams
	Properties of the Dense Pro-V Stamp
	Concrete Dense Stamps Calculated
	Equations and Typed Stamps
	Summary
	Further Research

	The Block Product: Finite and Pro-Finite
	Typed Stamps and Decomposition in Logic
	Substitution and Transduction on Streams
	The Block Product on Dense Stamps
	Summary
	Further Research

	Conclusion
	Index
	Bibliography

