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ZUSAMMENFASSUNG 

RNA-Bindeproteine der Vigilin Familie stellen eine von Hefe bis zu Säugetieren 

hochkonservierte Proteinfamilie dar. Funktionell konnte in verschiedenen Organismen 

eine Verbindung zwischen Vigilin und einer Vielzahl zellulärer Prozesse gezeigt 

werden. Dies beinhaltet sowohl cytoplasmatische als auch nukleäre Prozesse, zu 

denen unter anderem Ploidiewartung und Bildung von Heterochromatin sowie die 

Regulation der Entstehung von processing bodies, mRNA-Transport, -Translation, 

und -Stabilität zählen. So konnten frühere Arbeiten unserer Forschungsgruppe zeigen, 

dass das Vigilin Homolog von Saccharomyces cerevisiae, Scp160p, die 

Wiederverwendung von tRNAs abhängig von Codonzusammensetzung begünstigt. 

Diese Arbeit erforscht diese Rolle weiter, indem sie untersucht, wie der Verlust von 

Scp160p die Biosynthese von aggregationsanfälligen Polyglutamin (PolyQ)-

Reporterproteinen, welche sich in ihrer Codonverwendugn unterscheiden, beeinflusst. 

Mikroskopie und biochemische Analysen zeigen, dass die Aggregation der PolyQ-

Reporterproteine in Zellen mit deletiertem Scp160p (scp160Δ Zellen) unabhängig von 

der Codonverwendung reduziert ist. Weitergehend wurde dies durch eine 

Kombination an Filter-trap Bindung, welches SDS-resistente aggregierte Proteine 

einfängt, mit quantitativer Massenspektrometrie durch Dimethyl-Labeling, für das 

endogene S. cerevisiae Proteom untersucht. Die Analyse der Daten zeigte, dass die 

Aggregation vieler polyQ- und Glutamin/Asparagin-reicher (Q/N-reicher) Proteine, 

darunter der Transkriptionsfaktor Cyc8p und das RNA-Bindeprotein Nab3p, in 

Abwesenheit von Scp160p reduziert ist.  

Vorläufige Ergebnisse deuten darauf hin, dass der Verlust von Scp160p die 

Translationskinetik stören könnte, wodurch co-translationale Faltung und die 

Wahrscheinlichkeit der Aggregation von Proteinen beeinflusst wird. Durch die 

Modulation der Q/N-vermittelten Proteinaggregation könnte Scp160p somit viele 

zelluläre Prozesse beeinflussen. 
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SUMMARY 

 The vigilin family of RNA-binding proteins are highly conserved from yeast to 

mammals. Work from various organisms have linked vigilin to a multitude of cellular 

processes both in the nucleus and cytoplasm. These processes include ploidy 

maintenance, heterochromatin formation, as well as regulation of processing-body 

formation, mRNA localization, translation, and stability. Our lab has previously 

reported a role for the Saccharomyces cerevisiae vigilin homolog, Scp160p, in 

promoting the reuse of tRNAs in the context of codon composition.  

 This work explores this role further by assessing how loss of Scp160p affects 

biosynthesis of aggregation-prone polyglutamine (polyQ) reporters that differ in their 

codon usage. Microscopy and biochemical analysis show that aggregation of the 

polyQ reporters is reduced in scp160Δ cells, regardless of codon usage. This effect 

on protein aggregation was further assayed for the endogenous S. cerevisiae 

proteome by combining filter-trap binding, to capture SDS-resistant aggregated 

proteins, and quantitative mass spectrometry by dimethyl labelling. Such an analysis 

revealed that aggregation of many polyQ and glutamine/asparagine-rich (Q/N-rich) 

proteins, including the transcription factor Cyc8p and RNA-binding protein Nab3p, 

were reduced in the absence of Scp160p. Additional work preliminarily suggests that 

loss of Scp160p may perturb translation kinetics, thereby influencing co-translational 

folding and likelihood of protein aggregation. In this way, Scp160p may influence many 

cellular processes by modulating Q/N-mediated protein aggregation. 
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1. INTRODUCTION 

1.1 – Regulating gene expression via post-transcriptional mechanisms 

 Post-transcriptional regulation (PTR) is an essential aspect of gene expression 

control occurring at the RNA level. It encompasses all processes of RNA metabolism 

including the nuclear steps of 5’ cap addition, polyadenylation, splicing, and nuclear 

export. In the cytoplasm, mature mRNAs can be regulated on three primary levels 

which impact localization, translation, and/or stability. PTR presents several 

advantages over transcription-based gene expression control. First, PTR occurs 

rapidly and allows cells respond to stimuli in a critical and timely manner. Second, in 

the case of mRNA localization and translation, this regulation is reversible and allows 

efficient restoration of cell functions after stimuli dissipation. Thirdly, the spatial 

restriction of mRNAs facilitates a high rate of local protein production and 

accumulation which prevents potentially detrimental off-site protein function. This is 

especially important for large cells like neurons and for transcriptionally silent cell types 

like enucleated erythrocytes and early embryos. 

PTR is primarily mediated by RNA-binding proteins (RBPs), which bind target 

transcripts via a specific sequence and/or structural element. These RNA elements 

are found largely in mRNA 3’-untranslated regions (UTRs), but also in 5’-UTRs and 

open reading frames. RNA-binding is mediated by RNA-binding domains (RBDs) of 

RBPs, most of which fall into 4 canonical classes: RNA recognition motif (RRM), 

double-stranded RNA-binding domain (dsRBD), hnRNP K-homology (KH) domain, 

and zinc fingers (Cléry and Allain, 2012). However, many proteins have now been 

found to bind RNA without one of these canonical RBDs (Hentze et al., 2018). 

Nevertheless, RNA-binding may be modulated by N- and C-terminal RBD extensions 

and/or cooperativity. As such, RBDs are often present in tandem repeats in RBPs 

(Cléry and Allain, 2012; Lunde et al., 2007; Nicastro et al., 2015). Moreover, multiple 

RBPs may bind a single mRNA to form distinct messenger ribonucleoprotein (mRNP) 

complexes and confer combinatorial regulation (Hogan et al., 2008). 

1.1.1 – Translation control coordinates production 

 Translation initiation of an mRNA involves the assembly of the initiation 

complex (eIF4F) at the mRNA 5’ cap, which includes of the cap-binding eIF4E and the 

scaffold eIF4G (Sonenberg and Hinnebusch, 2009). Since initiation is often rate-
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limiting, it is therefore not surprising that this step is a target for regulation (Pichon et 

al., 2012). One mechanism to block translation initiation is to prevent the assembly of 

eIF4F by binding eIF4E to preclude recruitment of additional eIFs. The Drosophila 

eIF4E-binding protein Cup has been described to function in this capacity in early 

oocytes and embryos (Lasko, 2012; Nelson et al., 2007). Alternatively, eIF4E itself can 

be prevented from binding the 5’ cap by competition from the eIF4E homologous 

protein 4EHP (Jackson et al., 2010).  

Translation of ASH1 mRNA in Saccharomyces cerevisiae (S. cerevisiae) is 

similarly repressed by the RBP Khd1p, which interacts with eIF4G1 (Paquin et al., 

2007). Another RBP Puf6p, acts parallel to Khd1p and blocks another stage of 

initiation by preventing 60S ribosomal subunit joining (Deng et al., 2008). Translation 

repression of ASH1 mRNA at the distal bud tip is relieved by phosphorylation of Khd1p 

and Puf6p, leading to their dissociation from the mRNA (Deng et al., 2008; Paquin et 

al., 2007).  

The step of initiation is also targeted in response to stresses such as amino 

acid starvation, through phosphorylation of eIF2α and inactivation of 43S scanning 

(Sonenberg and Hinnebusch, 2009). In this way, genes whose translation are cap-

independent continue to be expressed during stress despite a global repression of 

cap-dependent translation. 

Translation regulation can also function through the poly(A) tail, which can 

facilitate circularization of mRNAs to promote translation (Sonenberg and Hinnebusch, 

2009). This occurs via poly(A) binding proteins (PABP) on the poly(A) tail which 

mediate a 5’ cap-eIF4E-eIF4G-PABP-poly(A) tail interaction. Circularization is 

dependent on the length of the poly(A) tail and so can be regulated by poly(A) 

shortening or lengthening by deadenylases and poly(A) polymerases, respectively 

(Hinnebusch and Lorsch, 2012; Tadros and Lipshitz, 2005).  

1.1.2 – Regulating mRNA stability to clear unwanted messages 

A more permanent form of PTR acts at the level of mRNA stability, which targets 

the 5’ cap and the 3’ poly(A) tail. Destabilization of an mRNA begins with shortening 

of the poly(A) tail by deadenylases. In S. cerevisiae and Drosophila, they include the 

major and minor cytoplasmic deadenylation complexes, CCR4-NOT and PAN2-PAN3, 

respectively (Parker, 2012). A third deadenylase, PARN, is found in many animals 

including Xenopus (Semotok et al., 2005). It is thought that PAN2-PAN3 mediates 
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initial deadenylation of the poly(A) tail to a length of ~65 nucleotides, after which 

CCR4-NOT takes over (Parker, 2012). Once the poly(A) tail is removed, the mRNA 

can be degraded in the 3’ to 5’ direction by the exosome.  

Alternatively, a sufficiently shortened poly(A) tail (~10-12 nucleotides in S. 

cerevisiae) can become a substrate for binding of the Lsm1-7p complex. This complex 

works in concert with other factors to inhibit translation and stimulate decapping by the 

Dcp1p/Dcp2p complex (Parker, 2012). Loss of the 5’ cap exposes the mRNA to 5’ to 

3’ decay by Xrn1p. Notably during stress, mRNAs associated with decapping factors 

and Xrn1p are localized to processing-bodies (P-bodies), sites of mRNA decay and/or 

storage (Decker and Parker, 2012). In accordance, P-body formation is dependent on 

a self-interacting Yjef-N domain and Q/N-rich region in the decapping activators Edc3p 

and Lsm4p, respectively (Decker et al., 2007). 

1.1.3 –mRNA transport puts things in the right place 

 mRNA localization depends on cis-element(s) in the mRNA called zip-codes or 

localization elements, which determine bound RBPs and thereby destination (Jansen 

and Niessing, 2012). This can lead to active transport, where mRNPs are directed 

along microtubule or actin filaments by motor proteins. In Drosophila oogenesis, the 

major morphogens in body patterning – oskar, bicoid, and gurken mRNAs – are 

transported into the oocyte by the dynein motor protein toward the microtubule minus 

end (Lasko, 2012). Interestingly, transport of oskar mRNA inside the oocytes switches 

to the kinesin motor protein toward the microtubule plus end.  

In contrast, mRNA localization in S. cerevisiae occurs along actin filaments and 

utilizes the myosin motor protein Myo4p (Singer-Krüger and Jansen, 2014). This has 

been well characterized for the localization of ASH1 mRNA to the distal bud tip, where 

its expression suppresses mating type switching in the daughter cell (Jansen et al., 

1996). Moreover, a subset of mRNAs encoding polarity and secretion factors (POLs) 

are co-transported with the cortical endoplasmic reticulum (ER) to the incipient bud 

site or mating projection (Fundakowski et al., 2012; Gelin-Licht et al., 2012). Here, 

association with the membrane is mediated by the RBP of the mRNP and transport by 

Myo4p. 

At their destination, mRNAs are kept in place by anchoring. oskar mRNA at the 

Drosophila posterior pole plasm is held in place by the long isoform of Oskar protein, 

which stimulates endocytosis and rearrangement of the F-actin cytoskeleton (Tanaka 
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et al., 2011; Vanzo and Ephrussi, 2002). Conversely, anchoring of ASH1 mRNA in S. 

cerevisiae to the distal bud tip requires the actin-interacting proteins Bni1p and Bud6p, 

remodeling of the mRNP, and translation activation of the mRNA (Singer-Krüger and 

Jansen, 2014). Anchoring is also important for mRNAs whose localization depends on 

a passive diffusion and capture mechanism (Lasko, 2012). 

1.1.4 – Additional mechanisms to regulate mRNAs 

The translation and stability of mRNAs can be further modulated by non-coding 

RNAs such as microRNAs (miRNA) and long non-coding RNAs (lncRNA) (Bartel, 

2018; Yoon et al., 2013). In the case of miRNA-mediated regulation, the level of base-

complementarity of the miRNA seed region with the mRNA target site determines 

whether the mRNA is translational repressed or degraded (Bartel, 2018). 

Another interesting layer to PTR occurs with modifications of the RNA itself. 

One example of this is m6A RNA methylation, which is a reversible modification 

conserved from bacteria to humans (Yue et al., 2015). m6A methylation is enriched in 

non-coding regions and leads to mRNA translation inhibition and destabilization. 

Another example is A-to-I editing, in which adenosines are deaminated to inosines 

(read as guanosine). This is conserved only in animals and filamentous ascomycetes, 

and is carried out by adenosine-deaminases acting on RNAs (ADAR) proteins (Bian 

et al., 2018). Editing can not only alter the protein product sequence and function, but 

also influence mRNA translation and stability, as well as the miRNA pathway (Licht 

and Jantsch, 2016; Liu et al., 2014a). 

1.2 – The impact of codon usage on gene expression control 

Although the regulation of translation initiation is discussed above, elongation 

can also have a great impact on protein biosynthesis. A major determinant of 

translation elongation kinetics is the codon usage of mRNAs. As there are more 

combinations of nucleotide triplets than standard amino acids (61 different codons for 

20 standard amino acids), a single amino acid may be encoded by more than one 

synonymous codon. Notably, there is a codon usage bias such that codons encoding 

the same amino acid (synonymous codons) are not used equally in coding regions. 

Furthermore, the usage frequency is of a codon is mirrored by the cellular abundance 

of its cognate tRNA (Ikemura, 1985). Finally, because the third nucleotide of a codon 

can engage in non-Watson/Crick base-pairing (to “wobble”), a tRNA species can 
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decode more than one codon (Crick, 1966; Ikemura, 1985). These parameters have 

coevolved and together give rise to codon optimality, a metric for the quality of codons 

in an mRNA (Ikemura, 1985).  

Analyses across organisms have shown that codon usage and optimality vary 

not only between genomes but also within a genome (Bennetzen and Hall, 1982; 

Duret, 2000; Gouy and Gautier, 1982; Ikemura, 1985). Distinct codon usage profiles 

can help coordinate gene expression. In particular, highly expressed genes tend to be 

enriched for optimal codons which are translated faster and with higher fidelity (Bazzini 

et al., 2016; Ikemura, 1985). This is believed to be due to the higher availability of 

cognate and isoaccepting tRNAs (Fluitt et al., 2007; Ikemura, 1985; Spencer et al., 

2012). Moreover, genes that encode components of the same pathway or complex 

also have similar codon usage, which can help match their relative protein production 

(Presnyak et al., 2015). 

Beyond their influence on translation, codon usage and optimality has also 

been shown to impact mRNA stability (Harigaya and Parker, 2017; Presnyak et al., 

2015). Studies in S. cerevisiae have demonstrated a positive correlation between 

codon optimality of an mRNA and its stability (Presnyak et al., 2015; Webster et al., 

2018). Triggered by slow ribosome transit, reporter mRNAs containing non-optimal 

codons were destabilized by Dhh1p-mediated decapping and Caf1p/Pop2p-mediated 

deadenylation (Radhakrishnan et al., 2016; Webster et al., 2018). Accordingly, 

substitution of optimal codons with non-optimal codons reduced half-lives and 

increased deadenylation rates for several mRNAs tested, and vice versa (Presnyak et 

al., 2015). This phenomenon can be extended to embryo development in Xenopus, 

Drosophila, and mice, in which subsets of mRNAs are more efficiently degraded based 

on codon optimality (Bazzini et al., 2016; Mishima and Tomari, 2016). Again, this effect 

is dependent on translation, but also proximity of the non-optimal codons to the 3’ end.  

Codon usage and optimality can also rapidly modulate the cellular gene 

expression program in response to stress. For example, amino acid starvation can 

affect translation elongation of subsets of mRNAs differently based on their codon 

usage (Darnell et al., 2018; Saikia et al., 2016). In HEK293 cells, amino acid 

deprivation downregulated translation of ribosomal protein genes – devoid of non-

optimal codons – while upregulating translation of genes in the protein degradation 

pathway – enriched for non-optimal codons. Moreover, amino acid starvation led to 

the specific reduction of aminoacylation and ribosome occupation of tRNAs cognate 
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for optimal codons (Saikia et al., 2016). In comparison, when deprived of only a single 

amino acid, ribosomes did not pause at every synonymous codon for that amino acid, 

but only specific species (Darnell et al., 2018). Moreover, aminoacylation was reduced 

for the tRNA species cognate to the synonymous codons at which ribosomes paused. 

The physiological significance of this response is highlighted by its conservation in the 

bacteria Escherichia coli (E. coli) (Dittmar et al., 2005; Subramaniam et al., 2014). 

Codon usage and optimality represent an evolutionarily-molded means for 

mRNA to control their own translation. Due to its inherent link to protein production, 

codon-mediated gene regulation allows a rapid adaptation to changing growth 

conditions. In the case of nutrient limitation, codon usage can promote the translation 

of essential response proteins despite an overall decrease in global protein synthesis 

(Saikia et al., 2016; Subramaniam et al., 2014). The complexity of this form of 

regulation is underscored by the finding that tRNAs charged with the same amino acid 

also vary in abundance during cell proliferation and differentiation (Gingold et al., 

2014). Many studies now show the pervasive influence of codon usage on gene 

expression, which will be an interesting aspect of emerging research. 

1.3 – Codon usage influences translation elongation kinetics and protein 
synthesis 

Translation rate over a coding region is not constant and local differences in 

codon optimality can greatly influence elongation kinetics and co-translational folding 

(Rodnina, 2016). A bioinformatics analysis spanning the three domains of life showed, 

using genome sequence and ribosome profiling data, a widespread “ramp” of ~30-50 

non-optimal codons just after translation initiation sites (Tuller et al., 2010). This ramp 

is translated with low efficiency, as observed by higher ribosome density (Ingolia et 

al., 2009), and is proposed to reduce unfavourable ribosome traffic jams at coding 

regions further downstream (Tuller et al., 2010).  

A similar strategy is used by ER-bound proteins to facilitate their translocation 

by the signal recognition particle (SRP) (Pechmann et al., 2014). SRP recognizes and 

binds nascent peptides of ER-targeted proteins co-translationally via an N-terminal 

hydrophobic signal sequence (SS) or a transmembrane domain (TM). This interaction 

facilitates translocation of the complex to the ER where translation continues 

concurrently with insertion of the translating protein into the ER lumen or membrane 

(Akopian et al., 2013). Bioinformatic analysis revealed a region of non-optimal codons 
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that sits ~40 codons downstream of the SS or TM start, which the authors called an 

mRNA-encoded slowdown of translation (REST) element (Pechmann et al., 2014). 

They proposed that slow ribosome transit through the REST element promotes ER-

targeting by facilitating SRP-recognition of the SS or TM as it emerges from the 

ribosome exit channel. Additional analysis also showed that where two TMs are 

separated by ~32-35 codons/amino acids, the second TM is encoded by non-optimal 

codons and functions as a REST element. In support, optimizing codons in the REST 

element of a reporter decreased ER translocation in vivo.  

Codon-mediated local slowdowns of translation were proposed in 1987, and 

subsequently shown experimentally, to aid co-translational folding of nascent peptides 

and promote native protein folds (Purvis et al., 1987; Quax et al., 2015). Changes in 

protein folding would expectedly affect protein function in vivo. In Neurospora, codon-

optimized versions of the circadian oscillator component frequency (frq) were unable 

to rescue the conidiation rhythm phenotype of frq null mutants (Zhou et al., 2013). 

Similarly, a codon-optimized version of the circadian oscillator component Drosophila 

period (dper) also failed to rescue the circadian clock phenotype of null per0 flies (Fu 

et al., 2016). In both these studies, function of the codon-optimized FRQ and dPER 

proteins were reduced compared to their wild-type versions, despite being more 

abundantly expressed (Fu et al., 2016; Zhou et al., 2013). This was accompanied by 

disruption of the timing of the proteins’ turnover and phosphorylation. Notably, the 

impaired function of codon-optimized FRQ and dPER came as a result of non-native 

protein folds, as observed by altered susceptibility to Trypsin digestion. To corroborate 

the effect of codon-mediated translation speed on co-translational folding and protein 

function, slowing translation in Neurospora (by growth at 18°C) shifted the Trypsin 

susceptibility of codon-optimized FRQ closer to that of wild-type FRQ (Zhou et al., 

2013).  

In mammals, a silent single nucleotide polymorphism (SNP) in the multidrug 

resistance (MDR1) gene – which encodes an efflux pump – decreased the protein’s 

sensitivity to drug inhibitors (Kimchi-Sarfaty et al., 2007). However, unlike the cases in 

Neurospora and Drosophila, this SNP changes the codon to an infrequent 

synonymous codon and decreases its optimality. While this deoptimization did not 

affect mRNA or protein levels, it caused MDR1 to adopt a different fold as shown by a 

conformation-specific antibody as well as a Trypsin susceptibility assay. Moreover, 

changing the affected codon to an even more infrequent codon further decreased 
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inhibitor sensitivity. The effect of this SNP was shown in human and monkey cell lines. 

Thus, perturbation of elongation rates in either direction can have negative 

consequences on co-translational folding and protein function in vivo (Fu et al., 2016; 

Kimchi-Sarfaty et al., 2007; Zhou et al., 2013).  

Beyond codon usage and optimality, the arrangement of codons along an 

mRNA can also impact elongation kinetics and protein biosynthesis (Cannarozzi et al., 

2010). This is called codon autocorrelation and describes the arrangement of codons 

such that successive occurrences of an amino acid can be decoded by the same 

species of tRNA. This reduces the need to switch tRNA species and increases 

translation efficiency by allowing successive ribosomes on an mRNA to reuse tRNAs 

through substrate channeling (Figure 1.3A and Negrutskii and Deutscher, 1991). 

Metabolic labeling showed that codon autocorrelation is able to increase translation 

speed of green fluorescent protein (GFP) by up to 29% (Cannarozzi et al., 2010). Thus, 

codon usage and optimality are powerful ways with which translation and protein 

biosynthesis can be regulated in cis. Aside from its importance for expressing 

recombinant proteins in heterologous organisms, codon usage and optimality will be 

an important aspect to consider in protein quality control and proteostasis, as well as 

disease-related “silent” mutations. 

1.4 – The S. cerevisiae RNA-binding protein Scp160p is involved in enhancing 
translation elongation efficiency in the context of codon arrangement 

Our lab previously reported a role for the S. cerevisiae RBP Scp160p in 

boosting translation efficiency in relation to codon correlation (Hirschmann et al., 

2014). In contrast to substrate channeling, Scp160p acts on tRNAs cognate for 

anticorrelated codons whose arrangement on an mRNA is sparse. Ribosome affinity 

purification and tRNA-specific RT-qPCR was employed to assay potential changes in 

tRNA occupancy at ribosomes upon Scp160p depletion. This analysis showed that in 

the absence of Scp160p, the tRNAs with the greatest drop in occupancy at the 

ribosome were those cognate for anticorrelated codons. Moreover, Scp160p has been 

shown to interact with the eukaryotic elongation factor 1A (eEF1A) (Baum et al., 2004) 

and ribosomal proteins located on both the A- and E-faces of ribosomes (Figure 1.3B 

and Gavin et al., 2006). These observations and results led to a proposed model where 

Scp160p promotes reuse of deacylated-tRNAs for anticorrelated codons by preventing 

their diffusion (Figure 1.3A and Hirschmann et al., 2014). This would be achieved by 
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Scp160p bridging two successive ribosomes on an mRNA and acting as a scaffold for 

the assembly of a tRNA recycling complex. 

 
Figure 1.3 – The proposed role of Scp160p in boosting translation elongation efficiency. A) 
Codon autocorrelation can enhance translation efficiency by allowing tRNAs reuse through subsrate 
channeling. Scp160p is proposed to complement this by limiting the diffusion and/or promoting reuse 
of deacylated-tRNAs cognate for anticorrelated codons. Blue and yellow show synonymous codons that 
can use isoaccepting tRNAs. B) Scp160p interacts with ribosomal proteins (coloured) located on both 
the A- (leading) and E- (trailing) faces of the ribosome. Interaction data used are from Gavin et al., 2006 
and annotated on the Saccharomyces Genome Database. S. cerevisiae 80S ribosome structure is from 
Ben-Shem et al., 2011 (PDB 4V88). 
1.5 – A jack of all trades: The RNA-binding protein vigilin (Review Article: Cheng 
and Jansen, 2017) 

Matthew H.K. Cheng and Ralf-Peter Jansen 

Wiley Interdisciplinary Reviews RNA 8: e1448 

Summary of Review Article (Full-text in Appendix):  

The vigilin family of RBPs is evolutionarily conserved and is characterized by a 

domain architecture of 14-15 nucleic acid-binding hnRNP K-homology (KH) domains. 

2017 marked 30 years since the identification of the human vigilin protein, then named 

high-density lipoprotein binding protein (HDLBP). Subsequently, vigilin homologs have 
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been identified in organisms including chicken, cow, mice, yeasts, Xenopus, 

Drosophila, and zebrafish. Studies in these organisms showed vigilin to be pleiotropic, 

with roles in many cellular processes. The subcellular distributions of the vigilin 

proteins is primarily cytoplasmic, with enrichment at the cytoplasmic face of the rough 

ER where they associate with polysomes. In higher eukaryotes, vigilin can also be 

detected in the nucleus associated with hetero- but not euchromatin. These 

observations suggest both nuclear and cytoplasmic roles for vigilin proteins. 

 Studies from Drosophila and human cell lines have linked vigilin in the nucleus 

to heterochromatin formation, maintenance of DNA fidelity, and gene imprinting. In 

contrast, studies primarily of the S cerevisiae vigilin homolog (Scp160p) have 

demonstrated roles in cytoplasmic processes such as pheromone sensing and mating; 

mRNA localization; as well as the regulation of P-body formation, mRNA stability and 

translation. The role of vigilin in the two compartments are supported by the protein’s 

putative nuclear localization and nuclear export signals. Indeed, the human vigilin can 

shuttle between the nucleus and cytoplasm as part of a tRNA-shuttling complex.  

While studies in different organisms show vigilin’s widespread influence of 

cellular processes, they also provide a disparate view of the proteins’ functions. In the 

review, we presented a brief historical account of vigilin research and a concerted 

summary of the major findings, allowing an easier comparison of the protein’s various 

roles in cell function.  

Addendum to Review Article: 

During the preparation of this review, two studies reported additional roles for 

vigilin in the regulation of stress-induced ligand expression in the human innate 

immune system (Berhani et al., 2017) and in Caenorhabditis elegans larval 

development (Zabinsky et al., 2017). A third study was published shortly after the 

review, which expanded upon the role of vigilin in gene imprinting (Yu et al., 2018). 

The major findings of these studies are summarized in this subsection, to be 

considered in addition to the review (see Appendix, Cheng and Jansen, 2017). 

In the study from Berhani and colleagues (2017), vigilin was found to regulate 

expression of a factor involved in stress-induced activation of natural killer (NK) cells 

in the innate immune system. NK cells are activated during stresses such as viral 

infection, by cell-surface receptors binding of stress-induced ligands (Raulet et al., 

2013). Vigilin was found to bind the 5’-UTR of the mRNA encoding stress-induced 
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ligand MHC Class I-related chain B (MICB) and downregulate protein expression at 

the level of translation but not stability (Berhani et al., 2017). Accordingly, shRNA-

mediated knockdown of vigilin increased NK cell activation. Although regulation of 

MICB expression has been reported to involve many miRNAs and RBP acting on the 

3’-UTR (Raulet et al., 2013), this study uncovered a novel means of MICB regulation 

by vigilin via its 5’-UTR (Berhani et al., 2017). However, it remains unclear what 

mechanism(s) vigilin employs to inhibit MCIB translation. Identification of additional 

proteins which bind or interact with vigilin at the MICB 5’-UTR will provide further 

insight into this question. Furthermore, given the many factors acting through the MICB 

3’-UTR, it will be important to study how they coordinate regulation with vigilin.  

The study from Zabinsky and colleagues (2017) looked for mutations which 

could enhance an L1 larval development arrest phenotype associated with the loss of 

ALG1-interacting protein 2 (AIN-2) function in C. elegans. AIN-2 is one of two GW182 

homologs. The authors found that vigilin loss-of-function (or depletion by RNAi) 

enhanced this phenotype in ain-2 mutants, linking vigilin to the miRISC machinery. In 

support, vigilin loss-of-function was also synergistic with deletion of several miRNA 

families involved in development. Notably, seeding sites for these miRNA families 

were enriched in hundreds of mRNAs that co-immunoprecipitated with GFP-tagged 

vigilin. The relationship between vigilin and the miRISC, although interesting, remain 

unclear. The authors reasoned it to be unlikely that vigilin acts as a co-repressor of 

AIN-2 and the miRISC based on the following observations: 1) They did not observe 

a physical interaction between vigilin and AIN-2 or Dicer-2, and 2) The synergistic 

effect of vigilin loss-of-function with deletions of various miRNA families suggest they 

function in parallel pathways (Zabinsky et al., 2017). Indeed, vigilin’s role in larval 

development may be complementary to that of miRISC and function via another form 

of mRNA regulation like localization. This may be teased apart by analyzing the 

translation, stability, and/or localization of several candidate vigilin mRNAs targets 

identified in this study. 

The third study, from Yu and colleagues (2018), expands upon their previous 

work on the function of vigilin in gene imprinting. Gene imprinting is an epigenetic form 

of gene regulation that results in monoallelic expression from only one parental allele 

(Macdonald, 2012). As outlined in my review, vigilin was found to bind the regulatory 

regions of two imprinted genes, insulin-like growth factor 2 (Igf2) and H19, in a manner 

dependent on the CCCTC-binding factor (CTCF) (Cheng and Jansen, 2017; Liu et al., 
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2014b; Shen et al., 2014). Yu and colleagues now report that knockdown of vigilin or 

CTCF result in the specific upregulation of Igf2 from the imprinted (normally silenced) 

allele (Yu et al., 2018). Furthermore, they report that vigilin domains KH1-7 interacts 

with the zinc-finger domain of CTCF in vitro and that this interaction in vivo is RNA-

dependent. However, RNase A treatment did not completely abolish this interaction 

and they were unable to identify the RNA responsible by RNA immunoprecipitation. 

Nevertheless, the authors reasoned and observed upon shRNA knockdown that the 

vigilin-CTCF interaction is facilitated by the lncRNA H19, whose expression they 

previously shown to be suppressed by vigilin and CTCF (Liu et al., 2014b). It remains 

to be tested whether the vigilin-CTCF-lncRNA H19 complex includes other factors and 

whether the vigilin domains KH1-7 interact with CTCF in vivo. It is also unknown 

whether vigilin binds lncRNA H19 and if its knockdown affects the vigilin-CTCF 

complex directly. 

The studies highlighted here and in Cheng and Jansen (2017) show the 

multifaceted and expanding role of the vigilin proteins. Yet our knowledge of the 

functional mechanisms of this family of RBPs function remain unclear. Despite the 

evidence that vigilin shows specificity for certain RNAs (Berhani et al., 2017; 

Cunningham et al., 2000; Li et al., 2003; Mobin et al., 2016), there lacks a consensus 

binding-motif. This, and the ability of vigilin to bind many classes of RNAs, put into 

question how target RNAs are recognized. Furthermore, given vigilin proteins’ 

abundance of KH domains, it would be interesting to investigate the stoichiometry with 

RNAs. Since vigilin associates with a number of different proteins and mRNP 

complexes (Frey et al., 2001; Kruse et al., 2000; Lang and Fridovich-Keil, 2000; Liu et 

al., 2014b; Lu et al., 2012; Sezen et al., 2009; Wang et al., 2005), it is possible that 

RNA specificity is dictated by interaction partners. In depth structure-function analyses 

of vigilin will shed light on how RNA-binding and regulation is coordinated. 

1.6 – Polyglutamine and low-complexity regions in mediating protein 
aggregation and phase separation 

This work made use of reporters containing a 97-104 residue long glutamine 

repeat (a polyglutamine (polyQ) region), a well-studied example of low-complexity 

regions (LCRs). LCRs are so-called due to their low diversity in overall amino acid 

make-up and are enriched for amino acids like the polar glutamine (Q), asparagine 

(N), and serine (S); the positively charged lysine (K) and arginine (R); the negatively 



13 

charged glutamic acid (E) and aspartic acid (D); the aromatic phenylalanine (F) and 

tyrosine (Y), as well as the non-polar glycine (G) (Brangwynne et al., 2015). These 

amino acids are commonly arranged in tandem repeats in LCRs, forming motifs that 

include F/G- and Q/N-rich regions (Bergeron-Sandoval et al., 2016; Brangwynne et 

al., 2015). These properties of LCRs predisposes the parent proteins to aberrant 

aggregation and amyloid formation and are responsible for a number of diseases.  

1.6.1 – An expanded polyQ region in Huntington’s disease 

Expanded polyQ regions are associated with a number of neurodegenerative 

diseases collectively called repeat expansion disorders. They include Huntington’s 

disease (HD), spinobulbar muscular atrophy, dentatorubral-pallidoylusian atrophy, 

and six variants of spinocerebellar ataxias (type 1, 2, 3, 6, 7, and 17) (Fan et al., 2014; 

Hoffner and Djian, 2014; Scherzinger et al., 1999). Notably, the proteins linked with 

these diseases only become pathogenic when their polyQ regions expand from ~20 

residues to greater than a threshold of ~35. The polyQ reporters used in this work are 

derived from exon 1 of the expanded form of huntingtin protein (mHtt; Htt for the wild-

type unexpanded form) (Fan et al., 2014). 

Molecular studies of mHtt have shown the protein’s propensity to aggregate 

spontaneously into insoluble inclusions (Hoffner and Djian, 2014; Scherzinger et al., 

1999). Thus, pathogenesis comes in part from sequestration of the protein and loss of 

normal Htt functions (Hofer et al., 2018; Schulte and Littleton, 2011). Conversely, the 

aggregated form of mHtt disrupts various cellular processes, resulting in toxic gain of 

functions (Fan et al., 2014; Hofer et al., 2018; Hoffner and Djian, 2014). For example, 

cytoplasmic aggregates of a mHtt reporter were observed to impair nucleocytoplasmic 

transport (Woerner et al., 2016). In mammalian cell lines and mice brains, aggregated 

mHtt caused aberrant mislocalization of the transport factors THOC2, importin α-1, 

and importin α-3 to the cytoplasm. Moreover, mHtt aggregates also caused 

mislocalization and aggregation of nuclear pore complex components (Grima et al., 

2017). Finally, mHtt aggregates in S. cerevisiae and HeLa cells can sequester the 

HSP40 chaperones Sis1p (in S. cerevisiae) and DnaJB1 (in mammals), thereby 

blocking their function in the transport of misfolded client proteins to the nucleus for 

degradation (Park et al., 2013). 

In addition to nucleocytoplasmic transport factors, membrane integrity is also 

disrupted by aggregated expanded polyQ proteins. Aggregated and fibrillary forms of 



14 

synthetic 35Q peptides caused leakage – but not fragmentation – of unilamellar 

vesicles (Ho et al., 2016). Further investigation by atomic force microscopy showed 

that these fibrils disrupted and increased rigidity of supported lipid bilayers. In 

agreement, correlative light and electron microscopy (CLEM) revealed extensive 

interaction between mHtt-based polyQ inclusions and the ER in situ (Bäuerlein et al., 

2017). This caused impaired ER dynamics and ER breakage. Perhaps not surprisingly 

given the ER damage, mHtt can also impair ER-associated degradation (ERAD) and 

the unfolded protein response (UPR) in S. cerevisiae and mammalian neuron-like cells 

(Duennwald and Lindquist, 2008). However, the impairment of these pathways may 

not be membrane-related and is attributed to the entrapment of the ERAD factors 

Cdc48p/p97, Npl4p, and Ufd1p with mHtt inclusions.  

There is also evidence that cellular toxicity is conferred by the soluble 

oligomeric form of mHtt instead of the insoluble inclusions (Kim et al., 2016; Leitman 

et al., 2013). Leitman et al. (2013) reported that in several mammalian cell lines, ER-

stress is triggered concomitantly with mHtt oligomerization, and precedes the 

appearance of visible insoluble inclusions. Moreover, this is accompanied by 

impairment of ERAD and accumulation of ERAD substrates. While this seems to be in 

disagreement from the report from Duennwald and Lindquist (2008), this discrepancy 

likely results from the different substrates observed in the two studies (ERAD factors 

vs substrate). Therefore, it is possible that ERAD impairment begins with soluble mHtt 

and is maintained by subsequent sequestration of important ERAD factors by insoluble 

mHtt inclusions.  

Further support for soluble mHtt oligomers as the toxic species comes from a 

study of their interactome in mice neuroblastoma cells. The interactome of soluble 

mHtt oligomers was enriched for proteins involved in a variety of cellular processes 

including RNA binding/translation, ribosome biogenesis, DNA binding/transcription, 

intracellular transport, and chaperone function (Kim et al., 2016). These interactions 

were mainly mediated by LCRs. The interaction of these key cellular proteins was 

specific to soluble mHtt oligomers as they are largely excluded from the interactome 

of insoluble mHtt inclusions. Instead, the interactome of insoluble mHtt inclusions was 

enriched for chaperones, which prompted the authors to propose that bulk toxicity is 

conferred by soluble mHtt oligomers and that mHtt inclusions are cytoprotective. In 

support, mHtt is targeted to the insoluble protein deposits (IPOD), a compartment for 

protein quality control and degradation of terminally misfolded proteins (Hofer et al., 
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2018; Kaganovich et al., 2008). Together, these studies demonstrate the adverse 

effects of mHtt on many cellular processes and structures. 

1.6.2 – Low-complexity regions in protein function 

Another class of LCR are the prion-like domains (PrDs), which are generally 

Q/N-rich and defined based on similarity to the aggregation-mediating domains of S. 

cerevisiae prions (Li et al., 2018). Prions are the inheritable self-propagating isoforms 

which certain proteins can spontaneously convert to. One of the best studied prions is 

[PSI+], the converted form of the translation terminator Sup35p in S. cerevisiae (Glover 

et al., 1997; Liebman and Chernoff, 2012). In humans, mutations in PrD-containing 

proteins that cause their aberrant folding, aggregation, and function have been linked 

to neurodegenerative diseases including amyotrophic lateral sclerosis, frontotemporal 

lobar degeneration, Creutzfeldt-Jakob disease, and Alzheimer’s disease (King et al., 

2012). A commonality between expanded polyQ and Q/N-rich regions is their ability to 

facilitate their encompassing proteins to adopt an anti-parallel ß-sheet fold, nucleate 

and self-assemble into amyloid fibrils (Hoffner and Djian, 2014; Liebman and Chernoff, 

2012).  

Despite their potential detriment, polyQ and Q/N-rich regions are common 

features of the eukaryotic proteome (Alexandrov and Ter-Avanesyan, 2013; King et 

al., 2012; Michelitsch and Weissman, 2000; Schaefer et al., 2012). Sequence 

analyses estimate that ~1 and 1.69% of the human and S. cerevisiae proteomes, 

respectively, contain Q/N-rich regions (King et al., 2012; Michelitsch and Weissman, 

2000). In an extreme example, ~14% of the proteome of the slime mold Dictyostelium 

discoideum is predicted to contain Q/N-rich regions (Malinovska et al., 2015). This 

prevalence in eukaryotic proteomes hints at a biological importance of these regions. 

Indeed, polyQ-containing proteins are enriched among human protein complexes and 

the length of the polyQ regions correlate with the number of interaction partners 

(Schaefer et al., 2012). Likewise, prion/prionogenic proteins have a tendency to 

interact with other Q/N-rich proteins in S. cerevisiae (Harbi and Harrison, 2014). Thus, 

in their native unexpanded context, these LCRs may be evolutionarily conserved 

effectors of protein-protein interaction. 

Recently, many studies have demonstrated a role for polyQ, Q/N-rich regions, 

and other LCRs in phase separation. Phase separation is a phenomenon in which 

proteins and nucleic acid de-mix from the cellular milieu into viscous supersaturated 
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liquid-like droplets or membrane-less organelles (Brangwynne et al., 2015). This 

process is driven by intra- and intermolecular electrostatic interactions of the 

proteins/side chains and nucleic acids involved. As such, it can be modulated by post-

translational modifications as well as the ionic properties of the environment 

(Bergeron-Sandoval et al., 2016; Brangwynne et al., 2015). Phase separation has 

been shown to drive the formation of mRNPs like P-bodies, stress granules (SG), 

cellular bodies in oocytes and embryos, as well as modulate protein function in regular 

cellular processes (Boke et al., 2016; Decker et al., 2007; Molliex et al., 2015; 

Rabouille and Alberti, 2017; Reijns et al., 2008). 

Under conditions of stress, S. cerevisiae Lsm4p (a subunit of the Lsm1-7p 

complex) is recruited to P-bodies via its Q/N-rich region (Decker et al., 2007; Reijns et 

al., 2008). Similarly, the pyruvate kinase Cdc19p undergoes LCR-mediated amyloid 

formation and localization into SGs during certain stresses and in stationary phase 

(Saad et al., 2017). Finally, Sup35p phase separates into condensates in S. cerevisiae 

and Schizosaccharomyces pombe (S. pombe) depleted of energy, in a process 

mediated by the protein’s PrD (Franzmann et al., 2018). The importance of LCR-

mediated stress response has also been shown in mammalian cells. Recruitment of 

SG components hnRNPA1 and TIA-1 to SGs is dependent on the proteins’ LCR and 

Q-rich regions, respectively (Gilks et al., 2004; Molliex et al., 2015). Strikingly, the Q-

rich region of TIA-1 can be functionally replaced with the PrD of the S. cerevisiae 

Sup35p, highlighting a conservation of function for these regions (Gilks et al., 2004).  

LCR-mediated protein aggregation is also important outside of stress. PolyQ 

regions have also been shown to promote transcription activity in S. cerevisiae, 

Drosophila, and mammalian cells (Atanesyan et al., 2012). In many cancers, the LCRs 

of the RBPs FUS, EWS, and TAF15 are translocated to various DNA-binding domains. 

Remarkably the LCRs functioned as transcription activator domains in the resulting 

fusion proteins (Kwon et al., 2013). This required the LCR-mediated formation of 

amyloid fibers, which can then interact with the un-phosphorylated C-terminal domain 

of RNA polymerase II.  

In the filamentous multinucleate fungi Ashbya gossypii, the polyQ region of the 

RBP Whi3p is required for its ability to cluster and localize target mRNAs by forming 

phase-separated mRNPs (Lee et al., 2013, 2015). Whi3p localizes the cyclin-encoding 

CLN3 mRNA to distinct nuclei and drives asynchronous nuclear division within a 

syncytium (Lee et al., 2013). Alternatively, Whi3p localizes the formin-encoding BNI1 
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and polarisome-encoding SPA2 mRNAs to sites of polarized growth and facilitates 

asymmetry breaking (Lee et al., 2015). Remarkably, CLN3/Whi3p and 

BNI1/SPA2/Whi3p droplets are prevented from mixing with each other based on the 

inter-RNA interactions and secondary structures of the cargo mRNAs (Langdon et al., 

2018). 

Finally, the Drosophila cytoplasmic polyadenylation element binding protein 

family member Orb2 can functionally as a translation repressor or activator based on 

its amyloid status (Khan et al., 2015). Amyloid formation of Orb2 is dependent on its 

N-terminal Q-rich PrD. Monomeric Orb2 acts as a translation repressor that promotes 

deadenylation and decay of target transcripts while amyloidogenic Orb2 acts as a 

translation activator that stabilizes poly(A) tails and target transcripts. As Orb2 

regulates translation at the synapse this distinction has important ramifications for 

long-term memory formation. 

A wealth of research has shown that the dynamics of these protein 

aggregates/inclusions lie on a spectrum ranging from liquid-like to solid-like amyloids. 

Indeed, LCR aggregates have been observed to transition from liquid- to solid-like 

states over time in vitro and in vivo (Lin et al., 2015; Patel et al., 2015; Peskett et al., 

2018; Zhang et al., 2015). Importantly, these transitions were accompanied by a 

conformational change of these protein aggregates into amyloid fibers (Lin et al., 2015; 

Patel et al., 2015; Peskett et al., 2018; Zhang et al., 2015). Thus, the biological 

functions of LCR-containing proteins lie on a fine balance between their monomeric 

forms and insoluble amyloid formation. The tipping of this system too far in either 

direction can lead to detrimental effects and disease.  
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2. AIMS OF THE PRESENT WORK 

 Our lab has previously reported a role for the S. cerevisiae vigilin homolog, 

Scp160p, in enhancing translation elongation efficiency of a subset of mRNAs in the 

context of codon arrangement (see section 1.4 and Hirschmann et al., 2014)). The aim 

of this work is to further investigate this function of Scp160p and how it might influence 

protein biosynthesis and folding. As local changes in elongation speed mediated by 

codon usage can impact protein folding/aggregation (see section 1.3 and Jacobson 

and Clark, 2016; Pechmann et al., 2014; Yu et al., 2015), I employed three polyQ 

reporters differing in the codon composition of their polyQ-encoding regions (Figure 2) 

and assessed how loss of Scp160p influences the aggregation of these reporters. 

Given the prevalence of polyQ and Q/N-rich regions in eukaryotic proteomes, I also 

probed the potential physiological impact of Scp160p on aggregation of the S. 

cerevisiae proteome using an approach that combined filter-trap binding and 

quantitative mass spectrometry. An on-going question is via what mechanism(s) 

Scp160p influences polyQ- and Q/N-mediated protein aggregation. An additional part 

of my project investigated the functional relationship between Scp160p and Bfr1p in 

ploidy maintenance and expression of the polyQ reporter proteins. 

 

Figure 2 – Schematics of the polyQ reporters used in this study. The reporters used in this study 
are based on exon 1 of the expanded Huntingtin (mHtt) including the proline-rich region (grey). The 
reporters differ in their codon usage in the polyQ-encoding region. In S. cerevisiae, CAA is the frequent 
codon and CAG is the infrequent codon. Note that only the 97Q(CAG)mCh reporter accurately 
represents mHtt at both the nucleic-acid and protein levels. All three reporters have an N-terminal myc 
epitope (hatched) and a C-terminal mCherry tag. 
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3. RESULTS 

3.1 – Loss of the RNA-binding proteins Scp160p and Bfr1p result in increased 
ploidy in S. cerevisiae 

 In S. cerevisiae, Scp160p has been shown to interact and function closely with 

another RBP Bfr1p. Bfr1p is involved in nuclear segregation and the early secretory 

pathway (Jackson and Képès, 1994). It was identified through a multi-copy suppressor 

screen to confer partial resistance to the drug brefeldin A – which acts on the secretory 

pathway – in a sensitized mutant. Interestingly, although Bfr1p has been shown to 

associate with RNAs (Hogan et al., 2008; Kramer et al., 2014; Lapointe et al., 2015), 

structural prediction shows that the protein has no conventional RBDs but instead 

contains three coiled-coil domains (Jackson and Képès, 1994).  

Unlike Scp160p, Bfr1p is only conserved among the Ascomycota phylum 

(unpublished, Srinivas Manchalu), arguing that the relationship between the two RBPs 

is fungal-specific. Nevertheless, several lines of evidence suggest that Scp160p and 

Bfr1p have a close functional relationship. An immunoprecipitation and microarray 

approach found that both proteins are each associated with >1,000 mRNAs, a large 

fraction of which are common targets (Hogan et al., 2008). in vivo studies have also 

shown that Scp160p and Bfr1p have similar subcellular distributions, which are mainly 

cytoplasmic with enrichment at the ER (Lang et al., 2001; Weidner et al., 2014) where 

they interact with P-body components and regulate the formation of P-bodies (Weidner 

et al., 2014). Moreover, Scp160p association with polysomes is dependent on Bfr1p 

and the two RBPs belong to the same polysome-associating mRNP that also includes 

the poly(A)-binding protein Pab1p (Lang and Fridovich-Keil, 2000; Lang et al., 2001). 

Finally, a striking phenotype shared by the scp160Δ and bfr1Δ cells is an increase in 

ploidy or DNA content (Jackson and Képès, 1994; Weber et al., 1997; Wintersberger 

et al., 1995). Although it is unclear whether the two function together in ploidy 

maintenance, one study has shown Scp160p is part of a regulatory complex called 

SESA (Smy2p-Eap1p-Asc1p-Scp160p) which provides a potential link to ploidy 

maintenance (see Appendix, Cheng and Jansen, 2017). SESA downregulates 

translation of POM34, a component of the nuclear pore complex (NPC), in response 

to defects in spindle pole body (SPB) duplication (Sezen et al., 2009). This study also 

reported a possible but untested link between Bfr1p and the SESA network.  



20 

3.1.1 – scp160Δ and bfr1Δ do not show additive effect in ploidy phenotype 

To better understand how Scp160p and Bfr1p contribute to ploidy maintenance, 

and whether they function together in this regard, I generated an scp160Δbfr1Δ double 

deletion strain and assessed DNA content by propidium iodide (PI) staining and flow 

cytometry. As deletion of either SCP160 or BFR1 leads to ploidy increase, subsequent 

deletions of these two genes by standard PCR-based method was not feasible 

(Jackson and Képès, 1994; Longtine et al., 1998; Wintersberger et al., 1995). 

Therefore, the double deletion mutant was generated first by creating a heterozygous 

scp160Δ/SCP160 bfr1Δ/BFR1 diploid strain. Sporulation was induced in the resulting 

heterozygous diploid and the scp160Δbfr1Δ haploid was recovered by tetrad 

dissection and marker selection. The double deletion and resulting mating type were 

confirmed by genomic PCR. Figure 3.1.1 shows that the ploidy of scp160Δbfr1Δ cells 

is increased to a similar extent as the single mutants. This result suggests that 

Scp160p and Bfr1p likely contribute to ploidy maintenance through a common or 

redundant mechanism(s). Alternatively, it may be possible that the deletions affect 

different aspects of ploidy maintenance that nonetheless together result only in a 

doubling in ploidy. 

 
Figure 3.1.1 – scp160Δ and bfr1Δ are not synergistic. Propidium iodide staining and flow cytometry 
show that scp160Δ and bfr1Δ cells have diploid DNA contents. scp160Δbfr1Δ also show a diploid DNA 
content suggesting the two deletions are not synergistic.  
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3.1.2 – KH11-14 are not required for ploidy maintenance 

 Previous studies have shown that loss of Scp160p’s KH14 domain reduces 

polysome association (Li et al., 2004) and truncating KH13 and 14 abolishes binding 

of Scp160p to target mRNAs (Hirschmann et al., 2014). These observations 

demonstrate the importance of the C-terminal KH domains. To investigate whether 

these and other KH domains might also contribute to ploidy maintenance, I generated 

a series of truncations removing successive KH domains from the C-terminus of 

Scp160p. A GFP tag was appended to the C-terminus of the truncated proteins 

allowing their detection. Western blotting shows that all truncations are stable, 

although present with variations in abundance. 

 Flow cytometry of PI-stained cells showed that truncations up to and including 

KH11 had ploidy similar to that observed in wild-type haploid cells (Figure 3.1.2), 

arguing that KH11-14 are not necessary for maintenance of exact ploidy. This 

contrasts with previous observations, in which KH11 and/or 12 were necessary for 

maintaining a haploid DNA content (Baum et al., 2004). This discrepancy may lie in 

the different S. cerevisiae background strains used in the studies (S288C in Baum et 

al., 2004 vs W303 for this study) and method of construct generation. Nevertheless, 

in the W303 background, KH11-14 are not required for ploidy maintenance.  

Strikingly, although the Scp160p(KH1-10)-GFP truncation (in which KH11-14 

are lost) remains haploid, the Scp160p(KH1-11)-GFP truncation (in which only KH12-

14 are lost) shows a diploid profile. Western blot shows that all truncations are 

expressed, albeit at various levels. Additionally, the comparable levels of 

Scp160p(KH1-11)-GFP in comparison to the full-length Scp160p-GFP shows that the 

increased ploidy for the truncation is unlikely due to aberrant folding and/or synthesis. 

Alternatively, while a relationship between Scp160p dosage and ploidy maintenance 

has not been established, the loss of KH12 may sensitize the cells’ ploidy maintenance 

capabilities to levels of Scp160p. Such a scenario would reconcile the haploid DNA 

content of the Scp160p(KH1-10)-GFP truncation, in which the protein is more 

abundant, with the diploid DNA content of the Scp160p(KH1-11)-GFP truncation.  
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Figure 3.1.2 – KH10-14 is not required for ploidy maintenance. A) A series of Scp160p C-terminal 
truncations was generated and assessed for ploidy. Cells with Scp160p truncations up to and including 
KH11 showed haploid DNA contents. Of note is the diploid DNA content displayed by the Scp160p(KH1-
11)-GFP truncation despite the haploid DNA content of the subsequent Scp160p(KH1-10) truncation. 
B) Western blot against the C-terminal GFP tag of the truncation series show that the truncations are 
expressed and stable, albeit with various abundances.  
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3.2 – The RNA-binding protein Scp160p facilitates aggregation of many Q/N-rich 
proteins (Research Article: Cheng et al., 2018) 

Matthew H.K. Cheng, Patrick C. Hoffmann, Mirita Franz-Wachtel, Carola Sparn, 

Charlotte Seng, Boris Maček, Ralf-Peter Jansen 

Cell Reports 24(1): 20-26 

Summary of Research Article (Full-text in Appendix): 

The RNA-binding protein Scp160p is the yeast homolog of the conserved family 

of vigilin proteins. In studies spanning multiple organisms, vigilin proteins have been 

associated with ploidy maintenance, chromatin remodeling, nucleocytomplasmic 

transport of tRNAs, regulation of P-body formation, localization of mRNAs, stability of 

mRNAs, and translation of mRNAs (Cortés et al., 1999; Cunningham et al., 2000; 

Gelin-Licht et al., 2012; Graham and Oram, 1987; Marsellach et al., 2006; McKnight 

et al., 1992; Mobin et al., 2016; Weidner et al., 2014; Wen et al., 2010; Wintersberger 

et al., 1995). Our lab has previously reported that Scp160p benefits translation of a 

subset of S. cerevisiae mRNAs via recycling of tRNAs cognate to anticorrelated 

codons (see section 1.4 and Hirschmann et al., 2014). In this study, we investigated 

this function further by assessing how loss of Scp160p might influence biosynthesis of 

three polyQ reporters (97QmCh, 97Q(CAG)mCh, and 104Q(CAA)mCh; Figure 2) 

which differ in the codon usage of their polyQ-encoding region.  

We first assessed aggregation of the polyQ reporters by microscopy after 

inducing their expression for 3 and 7 hours and observing the fluorescent signal from 

their C-terminal mCherry tags. Based on the distribution of their mCherry signal, cells 

observed were categorized as showing 1) No Signal, 2) Soluble, 3) Small Aggregates, 

and 4) Large Aggregate(s) (Figure 3.2.1A and Cheng et al., 2018). Taking the 

percentage of cells in each category as an approximation of polyQ aggregation, we 

saw that aggregation was reduced in scp160Δ cells (Figure 3.2.1B-D). This was 

supported biochemically by filter-trap binding (Figure 3.2.1E-G), whereby aggregated 

polyQ proteins can be trapped on a nitrocellulose based on their resistance to 

denaturation by mild SDS treatment. Notably, loss of Scp160p resulted in the reduction 

of polyQ aggregation regardless of codon usage, suggesting the RBP’s role here is 

separate from its role in tRNA reuse during elongation. 
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Figure 3.2.1 – Aggregation of polyQ reporter proteins is reduced in scp160Δ cells. Three polyQ 
reporters differing in the codon usage of their polyQ region were induced in wild-type and scp160Δ 
cells. A) The cells were were observed by microscopy and categorized based on the distribution of the 
reporters’ mCherry signal. The percentage of cells containing aggregated B) 97QmCh, and C) 
104Q(CAA)mCh were reduced in the scp160Δ strain. D) 97Q(CAG)mCh expression in wild-type cells 
were low, making microscopic analysis difficult. Aggregation of E) 97QmCh, F) 104Q(CAA)mCh, and 
G) 97Q(CAG)mCh were assessed by filter-trap binding. The numbers show the average immunosignal 
for myc of scp160Δ cells compared to wild-type cells. SEM is shown for three biological replicates. 

In contrast, toxicity of the three polyQ reporters is codon usage-dependent with 

the 97QmCh and 104Q(CAA)mCh reporters conferring modest toxicity and the 

97Q(CAG)mCh reporter conferring severe toxicity to wild-type cells (Figure 3.2.2A). 

Strikingly, 97Q(CAG)mCh toxicity is suppressed in the absence of Scp160p. 

Furthermore, removal of in-frame start codons of the toxic 97Q(CAG)mCh reporter 

abolished toxicity in wild-type cells (Figure 3.2.2B). Together, this demonstrates that 

codon usage, and not amino acid composition, is a major effector of polyQ-induced 

toxicity, and that Scp160p and translation initiation are both required for toxicity of the 

97Q(CAG)mCh reporter.  
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Figure 3.2.2 – Codon usage is a major determinant in polyQ-induced toxicity. A) Toxicity of 
97QmCh, 104Q(CAA)mCh, and 97Q(CAG)mCh were assayed by serial dilution assay. 97QmCh and 
104Q(CAA)mCh conferred modest toxicity to wild-type and scp160Δ cells. 97Q(CAG)mCh was severely 
toxic to wild-type cells and this toxicity was suppressed in scp160Δ cells. B) Mutation of the start codons 
upstream of the polyCAG repeats in 97Q(CAG)mCh abolished toxicity to wild-type cells. 

To assess the physiological impact of Scp160p’s effect on polyQ-mediated 

protein aggregation, we combined filter-trap binding with quantitative mass 

spectrometry to probe how loss of Scp160p affects the endogenous aggregated 

proteome in S. cerevisiae under normal growth conditions. We observed that 

aggregation of 77 proteins were altered in scp160Δ cells, with 48/77 showing reduced 

aggregation (Figure 3.2.3). Of these 48 proteins, 27 proteins (56.3% of the proteins 

with reduced aggregation) contained Q/N-rich regions or prion-like domains as 

predicted by previous publications (Alberti et al., 2009; Michelitsch and Weissman, 

2000). This represents a 30-fold enrichment for proteins with Q/N-rich regions or prion-

like domains over that in the yeast proteome. Among these proteins are the well-

characterized prions [PSI+] (Sup35p), [OCT+] (Cyc8p), [NU+] (New1p) (Glover et al., 

1997; Liebman and Chernoff, 2012; Patel et al., 2009). 
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Figure 3.2.3 – Aggregation of many Q/N-rich proteins are reduced in scp160Δ cells. Filter-trap 
binding and quantitative mass spectrometry (dimethyl labeling) showed that aggregation of 77 proteins 
are altered in scp160Δ cells under normal growth conditions. Of the 48 proteins whose aggregation was 
decreased in scp160Δ cells, 27 (56.3%) contained a polyQ, polyN, or LCR as determined by manual 
inspection of the protein sequence or bioinformatics search from Alberti et al., 2009 and Michelitsch 
and Weissman, 2000. 

Reduction in aggregation of two Q/N-rich proteins – Cyc8p and Nab3p – was 

validated using conventional filter-trap binding with immunoblotting and microscopy. 

Filter-trap binding showed reduced aggregation of Cyc8p and Nab3p, and western blot 

showed that this was not due to a difference in protein abundance between wild-type 

and scp160Δ cells (Figure 3.2.4A and B). To complement the filter-trap binding, 

aggregation of GFP-tagged Cyc8p and Nab3p were also assessed by microscopy. To 

approximate aggregation, a ratio of maximum/minimum signal intensity (signal 

intensity ratio) was calculated for the GFP-containing area (see Appendix, Cheng et 

al., 2018 for more detail). An evenly distributed signal (suggesting soluble proteins) 

would give a signal intensity ratio close to 1, while foci-containing signal (suggesting 

aggregated proteins among a soluble background) would give a higher signal intensity 

ratio. Our microscopic analysis showed a modest but significant downward shift of the 

Cyc8p-GFP ratio distribution for scp160Δ cells compared to wild-type cells (Figure 

3.2.4C and D). The Nab3p-GFP ratio also showed a modest but insignificant 

downward shift for scp160Δ cells compared to wild-type cells. 
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Figure 3.2.4 – Aggregation of Cyc8p and Nab3p are reduced in scp160Δ cells. Filter-trap binding 
showed that SDS-resistant aggregation of A) Cyc8p and B) Nab3p are reduced in scp160Δ cells and 
that this is not due to changes in protein abundance. The numbers show the average immunosignal for 
GFP (Cyc8p) or myc (Nab3p) of scp160Δ cells compared to wild-type cells. SEM is shown for three 
biological replicates. B-C) Microscopy of GFP-tagged Cyc8p and Nab3p showed reduced aggregation 
in scp160Δ as approximated by calculation of a maximum/minimum signal intensity ratio based on the 
brightest and dimmest pixels in the GFP-containing area. D) Distribution of the signal intensity ratio for 
Cyc8p-GFP and Nab3p-GFP in wild-type vs scp160Δ cells. Significance of the shift in ratios between 
wild-type and scp160Δ cells were tested by Mann-Whitney U test. n=81 for Cyc8p-GFP and n=85 for 
Nab3p-GFP. 

This study demonstrates the widespread effect of Scp160p on protein 

aggregation mediated by Q/N-rich regions and/or low-complexity regions (LCRs). The 

proteins whose aggregation is influenced by Scp160p spans a variety of functions, 

and this may provide a hint to how Scp160p is implicated in many seemingly unrelated 

cellular processes. (Cheng et al., 2018) 
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3.3 – Plasmid-based SCP160 does not rescue aggregation phenotypes 

 To ask whether plasmid-based expression of SCP160 could restore 97QmCh 

aggregation in scp160Δ cells, I transformed either a pRS313-SCP160 or the 

corresponding empty pRS313 plasmid into wild-type and scp160Δ cells that also carry 

the 97QmCh plasmid. The pRS313-SCP160 plasmid includes the endogenous 

SCP160 promoter and terminator sequences. 97QmCh was induced in the resulting 

cells for 3 and 7 hours, and 97QmCh aggregation was observed by microscopy as 

described in the Research Article. Although Scp160p was expressed from the 

pRS313-SCP160 plasmid (Figure 3.3A), this did not increase 97QmCh aggregation in 

the scp160Δ background (Figure 3.3B). While it cannot be ruled out that the plasmid-

based Scp160p is non-functional, the inability of this protein to restore 97QmCh 

aggregation may be due to irreversible changes in cell function incurred by the loss of 

SCP160 which can impact protein biosynthesis. Similarly, plasmid-based expression 

of Scp160p was also unable to rescue the ploidy phenotype of scp160Δ cells 

(Wintersberger et al., 1995). Despite the inability of plasmid-based SCP160 

expression to restore 97QmCh aggregation, I observed a slight increase in 

aggregation in wild-type cells carrying the pRS313-SCP160 plasmid (Figure 3.3B). 

This effect is more consistently observed for cells containing small aggregates after 3 

hours of induction (78.2±2.1% of wild-type cells+pRS313-SCP160 vs 63.2±1.5% of 

wild-type cells+pRS313). After 7 hours of induction, the average percentage of cells 

containing large aggregate(s) is higher when the wild-type cells carried the pRS313-

SCP160 plasmid (36.4±9.1% of wild-type cells+pRS313-SCP160 vs 25.7±3.4% of 

wild-type cells+pRS313). However, this increase is largely attributed to the third of 

three replicates, as the percentages of cells containing large aggregate(s) is more 

comparable when excluding the one replicate (28.6±8.1% of wild-type cells+pRS313-

SCP160 vs 25.9±5.9% of wild-type cells+pRS313; data not shown). Although this 

difference between the wild-type cells carrying the pRS313-SCP160 or empty vector 

is not statistically significant (regardless of the inclusion of the third replicate), the large 

variation introduced by the third replicate warrants additional analyses by microscopy 

and/or filter-trap binding.    
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Figure 3.3 – Plasmid-based SCP160 do not restore 97QmCh aggregation. A) Western blot shows 
Scp160p expression under its endogenous promoter from a plasmid. Scp160p levels were detected at 
0 and 7 hours after induction of the 97QmCh reporter with galactose. B) The percentages of cells 
containing no detectable mCherry signal (white), soluble mCherry (light grey), small aggregates (dark 
grey), and large aggregate(s) (black). See Research Article for more details. Plasmid-based expression 
of Scp160p did not restore or increase the percentage of cells containing aggregated mCherry signal 
after 3 or 7 hours of induction in scp160Δ cells. Interestingly, plasmid-based expression of Scp160p in 
wild-type cells increased the percentage of cells containing aggregated mCherry signal after 3 and 7 
hours of induction. Error bars represent SEM of three biological replicates. 
3.4 – Scp160p does not interact with the 97QmCh reporter protein 

 To ask whether Scp160p might interact with and therefore influence 

aggregation of the 97QmCh reporter protein, I assessed if 97QmCh 

coimmunoprecipitates with Scp160p-GFP. To this end, I immunoprecipitated 

Scp160p-GFP from lysates in which 97QmCh expression was induced for 7 hours. 
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Figure 3.4A shows that although Scp160p-GFP was pulled down, the 97QmCh 

reporter protein did not coimmunoprecipitate. Conversely, pulldown of 97QmCh also 

failed to coimmunoprecipitate Scp160p (Figure 3.4B). Together, these results suggest 

that Scp160p does not stably interact with 97QmCh and that Scp160p’s influence on 

the aggregation of the polyQ reporter proteins is unlikely to come from direct protein-

protein interaction. 

 

Figure 3.4 – Scp160p and 97QmCh does not interact physically. A) Pulldown of GFP-tagged 
Scp160p was unable to coimmunoprecipitate the 97QmCh reporter protein (probed against its N-
terminal myc tag). B) Pulldown of 97QmCh via its N-terminal myc tag was unable to 
coimmunoprecipitate endogenous Scp160p. 

3.5 – KH13-14 domains contribute to polyQ aggregation 

 Domains KH13 and 14 of Scp160p are important for the polysome-associated 

and mRNA-binding functions of Scp160p (Hirschmann et al., 2014; Li et al., 2004), but 

not for ploidy maintenance (see 3.1.4). Therefore, I wanted to test if these domains 

could be involved in facilitating aggregation of the 97QmCh reporter. Using the C-

terminal truncation Scp160p(KH1-12)-GFP described above, I assessed 97QmCh 

aggregation by filter-trap binding. Strikingly, loss of KH13-14 (Scp160p(KH1-12)-GFP) 

reduced aggregation of 97QmCh compared to the full-length protein (Figure 3.5A). 

Western blotting showed that the abundance of 97QmCh reporter protein was 

comparable between Scp160p(KH1-12)-GFP, wild-type, and scp160Δ cells (Figure 

3.5B). Although these observations were made with only two biological replicates, they 

suggest that KH13-14 is involved in the aggregation of 97QmCh. Moreover, given the 

importance of KH13-14 in Scp160p’s association with polysomes, this may link 
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Scp160p’s role in translation with polyQ-mediated protein aggregation. However, it is 

likely that the other KH domains 1-12 also contribute to Scp160p’s role in polyQ-

mediated aggregation as the effect of the Scp160p(KH1-12) truncation is less severe 

than scp160Δ. Finally, since the loss of KH13-14 did not affect ploidy maintenance, 

this observation along with that using the Tet-off SCP160 system (Cheng et al., 2018), 

argue that the aggregation phenotype of scp160Δ cells is independent of the ploidy 

phenotype. 

 

Figure 3.5 – KH13-14 contributes to 97QmCh aggregation. A) Filter-trap binding show that the 
aggregation of 97QmCh is reduced in cells expressing a C-terminally truncated Scp160p(KH1-12)-GFP. 
The numbers show the average immunosignal for myc (97QmCh) of either scp160Δ or Scp160p(KH1-
12)-GFP cells compared to wild-type cells. SEM is shown for two biological replicates. B) Western blot 
shows similar abundance of 97QmCh protein between wild-type, scp160Δ, and Scp160p(KH1-12)-GFP 
cells after 7 hours of induction.   
3.6 – Reduced polyQ aggregation appears independent of protein quality control 

3.6.1 – Cellular levels of many chaperones remain comparable between wild-
type and scp160Δ cells 

Molecular chaperones have been reported to play roles in disaggregation of 

polyQ aggregates (Sakahira et al., 2002). Therefore, I checked whether the steady-

state levels of several chaperones differed between wild-type and scp160Δ cells. The 

protein levels of select chaperones belonging to various families were assayed by 

western blot. These chaperones included the small heat shock proteins (sHSP) 

Hsp26p and Hsp42p, the HSP40 family members Sis1p and Ydj1p, the HSP70 

member Ssa1p, the HSP90 members Hsp82p and Sti1p, and Hsp104p. The levels of 

these chaperones were comparable between wild-type and scp160Δ cells (Figure 
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3.6.1A). Thus, the reduction in Q/N-rich-mediated protein aggregation cannot be 

explained by increased steady-state levels of the chaperones tested. 

 

Figure 3.6.1 – Similar abundance of chaperones in wild-type and scp160Δ cells. A) Protein 
abundance of several chaperone family members are comparable between wild-type and scp160Δ 
cells. B) 97QmCh aggregation is not restored in hsp31Δscp160Δ cells, suggesting that reduced 
aggregation in scp160Δ is unlikely to function via Hsp31p. 
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While analyzing data from the combined filter-trap and quantitative mass 

spectrometry, I noticed that the protein level of Hsp31p in the whole cell lysate was 

approximately 1.78 times more abundant in scp160Δ cells compared to wild-type cells 

(1.73 times in replicate 1 and 1.78 times in replicate 2). Hsp31p is a stress-inducible 

chaperone and member of the conserved DJ-1 superfamily (Aslam and Hazbun, 

2016). Notably, Hsp31p has been reported to function with Hsp104p in S. cerevisiae 

to prevent formation of the [PSI+] prion (Aslam et al., 2016) and disaggregate α-

synuclein fibrils in vitro (Tsai et al., 2014). In order investigate if the change in Hsp31p 

levels might account for the reduced aggregation of 97QmCh in scp160Δ cells, I 

generated an hsp31Δscp160Δ double mutant. 97QmCh expression was induced in 

these cells for 3 and 7 hours, and aggregation was assessed by filter-trap binding. 

This analysis showed that the level of 97QmCh aggregation was comparable between 

scp160Δ and hsp31Δscp160Δ cells (Figure 3.6.1B). The amount of 97QmCh trapped 

on the membrane from scp160Δ lysates was 33.7±4.9% that of wild-type after 3 hours 

of induction and 81.1±2.8% after 7 hours of induction. Similarly, the amount of 

97QmCh trapped from hsp31Δscp160Δ lysate was 36.4±8.3% that of wild-type after 3 

hours of induction and 71.0±13.7% after 7 hours of induction. Although it cannot be 

ruled out that loss of both SCP160 and HSP31 leads to changes in cellular 

homeostasis that include upregulation of other chaperones and protein quality control 

systems, this observation suggests that reduced polyQ aggregation in scp160Δ cells 

does not function through Hsp31p. 

3.6.2 – 97Q(CAG)mCh unlikely to be subject to ribosome-associated quality 
control 

 In addition to the cellular chaperones such as the heat shock proteins, the 

ribosome is also a site for monitoring mRNA and protein quality known as ribosome-

associated quality control (RQC) (Brandman and Hegde, 2016). Stalling of the 

ribosome due to mRNA secondary structures or truncation, as well as limited cognate 

tRNAs can trigger ribosome-associated quality control pathways like no-go decay 

(NGD) and non-stop decay (NSD) (Brandman and Hegde, 2016; Matsuda et al., 2014; 

Shoemaker and Green, 2012). These pathways release the stalled ribosomes and 

target the aberrant mRNA and its nascent peptidyl-tRNA for degradation, thereby 

protecting the cell from potentially damaging protein products (Matsuda et al., 2014). 

In S. cerevisiae the Dom34p-Hbs1p complex has been reported to trigger NGD and 
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NSD by splitting the stalled ribosomes, and Dom34p has been proposed as the 

endonuclease which cleaves the mRNA at the stall site (Brandman and Hegde, 2016; 

Doma and Parker, 2006). 

The polyQ-encoding region of the 97Q(CAG)mCh reporter is a long CAG 

trinucleotide repeat, which is able to form a long stem-loop by self-complementation 

(Nalavade et al., 2013). Moreover in S. cerevisiae, CAG is the infrequent glutamine-

encoding codon and its cognate tRNA is expressed in low-copy number. These two 

attributes related to the 97Q(CAG)mCh reporter makes it a potential target for RQC. 

Indeed, during my analyses, I noticed that the protein abundance of 97Q(CAG)mCh 

was much lower in wild-type cells compared to scp160Δ cells (Figure 3.6.2A and 

Research Article), which could reflect its targeting by RQC. To investigate whether the 

97Q(CAG)mCh mRNA may be subject to NGD, I assessed the steady-state levels 

97Q(CAG)mCh mRNA at 3, 5, and 7 hours after induction in wild-type, scp160Δ and 

dom34Δ cells (Figure 3.6.2B). If 97Q(CAG)mCh is subject to NGD in wild-type cells, I 

should observe an increase in steady-state mRNA levels in dom34Δ cells.  

In scp160Δ cells, 97Q(CAG)mCh mRNA was induced to much greater (but not 

statistically significant, due to high variance between samples) levels after just 3 hours 

of induction compared to wild-type cells. After 5 and 7 hours of induction the level of 

97Q(CAG)mCh was significantly higher in scp160Δ cells than wild-type cells (7.0±1.5 

fold and 7.4±0.9 fold over wild-type). Interestingly, the induction of 97Q(CAG)mCh 

mRNA in dom34Δ cells had a different kinetic than wild-type and scp160Δ cells. 

97Q(CAG)mCh mRNA level in dom34Δ cells displayed an initial (not statistically 

significant) increase over wild-type cells, like that of scp160Δ cells, after 3 hours of 

induction. However, the levels of steady-state level mRNA after 5 and 7 hours of 

induction in dom34Δ cells were only 1.5±0.2 fold and 1.6±0.2 fold over that in wild-

type cells. These observations suggest that the difference in 97Q(CAG)mCh mRNA 

levels between wild-type and scp160Δ cells cannot be solely explained by NGD. In 

support, western blot showed that the 97Q(CAG)mCh reporter protein is much less 

abundant in both wild-type and dom34Δ cells as compared to scp160Δ cells (Figure 

3.6.2A). 
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Figure 3.6.2 – 97Q(CAG)mCh mRNA is more abundant in scp160Δ cells. A) Western blot shows 
that 97Q(CAG)mCh protein levels are more abundant in scp160Δ cells. 97Q(CAG)mCh protein levels 
are modestly higher in dom34Δ cells compared to wild-type cells, but do not reach levels observed in 
scp160Δ cells. B) RT-qPCR show that 97Q(CAG)mCh mRNA is more abundant in scp160Δ cells 
compared to wild-type cells. 97Q(CAG)mCh mRNA levels are also modestly increased over wild-type 
in dom34Δ cells. Error bars represent SEM of three biological replicates. * p<0.05, *** p<0.005. 
3.6.3 – Loss of the RQC component Ltn1p has little effect on 97QmCh 
aggregation 

 After the splitting of stalled ribosomes by Dom34p-Hbs1 in RQC, the aberrant 

nascent peptidyl-tRNA-60S complex is targeted for proteasomal degradation by the 

concerted action of Rqc2p, Ltn1p, Rqc1p, and Cdc48p (Brandman and Hegde, 2016; 

Brandman et al., 2012; Ikeuchi and Inada, 2016). Together, nascent peptides from 

stalled ribosomes are marked by non-templated addition of C-terminal adenines and 

threonines (CAT-tails) and poly-ubiquitination (Brandman and Hegde, 2016; Shen et 

al., 2015). Poly-ubiquitination is mediated by Ltn1p at the exit-tunnel of the 60S 

ribosomal subunit (Brandman and Hegde, 2016). Recently, it was reported that 

collision of ribosomes on the mRNA caused by stalling can trigger NGD (Simms et al., 
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2017). Our lab has proposed a model for Scp160p in which it facilitates recycling of 

tRNAs by spanning subsequent ribosomes on an mRNA (see section 1.4). In such a 

scenario, loss of Scp160p might also increase ribosome collision and trigger NGD. As 

such, I wanted to explore this possibility and ask whether the reduced aggregation of 

my 97QmCh reporter protein in scp160Δ cells might reflect greater Ltn1p-mediated 

poly-ubiquitination and subsequent clearance of 97QmCh. Indeed, loss of Ltn1p has 

been reported to disrupt RQC resulting in increased aggregation of polybasic nascent-

chains and of non-stop mRNAs (Choe et al., 2016). To this end, I assessed 97QmCh 

protein levels and aggregation in ltn1Δ and scp160Δltn1Δ cells. 

 
Figure 3.6.3 – 97QmCh is further reduced in an scp160Δltn1Δ strain. A) Filter-trap binding shows 
that the level of 97QmCh aggregation is negligibly affected in ltn1Δ cells but is further reduced in 
scp160Δltn1Δ cells. The numbers show the average immunosignal for myc (97QmCh) of either 
scp160Δ, ltn1Δ, or scp160Δltn1Δ cells compared to wild-type cells. SEM is shown for three biological 
replicates. B) Western blot shows similar abundance of 97QmCh protein between wild-type, scp160Δ, 
and ltn1Δ cells after 7 hours of induction. The accumulation of 97QmCh is slower in scp160Δltn1Δ cells. 

Consistent with previous observations by filter-trap binding, 97QmCh 

aggregation was reduced in scp160Δ cells (15.9±1.6% and 74.5±6.3% of wild-type 

after 3 and 7 hours induction, respectively). In ltn1Δ cells, 97QmCh was aggregated 

to a similar degree as in wild-type cells (93.1±4.1% and 107.2±11.9% of wild-type after 

3 and 7 hours induction, respectively) (Figure 3.6.3A). It should be noted that this 

quantification may underestimate the level of aggregation of 97QmCh in ltn1Δ cells as 

western blot shows that the abundance of the monomeric reporter protein (in the 
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separating gel) is lower than in wild-type cells while the amount of aggregated material 

that remains trapped in the loading pocket is higher (Figure 3.6.3B). This is in 

agreement with the role of Ltn1p in polyubiquitinating aberrant proteins in RQC. 

Strikingly, 97QmCh aggregation is drastically reduced in the scp160Δltn1Δ cells 

(9.9±6.1% and 36.8±10.6% of wild-type after 3 and 7 hours of induction, respectively) 

(Figure 3.6.3A). Western blot shows that the relative abundance of the 97QmCh 

protein is lower in the scp160Δltn1Δ cells compared to the other cell types. This is 

especially noticeable after 3 hours of induction (Figure 3.6.3B). Together, these 

observations suggest that despite the interacting effects of deleting SCP160 and 

LTN1, the reduction of 97QmCh aggregation upon loss of Scp160p functions 

separately from Ltn1p. 

3.7 – Reduced polyQ aggregation may be associated with aberrant translation 
elongation speed 

 In vitro and in vivo studies have demonstrated that codon usage and, by 

extension, translation elongation kinetics can impact co-translational folding and 

ultimately function of the nascent peptide (Buhr et al., 2016; Fu et al., 2016; Pechmann 

et al., 2014). Although the data presented above suggests that polyQ-mediated protein 

aggregation is reduced in scp160Δ cells regardless of codon usage, it remains a 

possibility that loss of Scp160p perturbs elongation kinetics of Q/N-rich regions that 

could alter aggregation. Indeed, the proposed role for Scp160p in facilitating the reuse 

of tRNAs cognate to anticorrelated codons suggests that elongation speed could be 

negatively influenced in Scp160p’s absence. To ask if polyQ-mediated aggregation 

can be reduced by slowing translation elongation, I treated wild-type and scp160Δ 

cells with a mild dose (30ng/mL) of cycloheximide and assessed 97QmCh aggregation 

by microscopy and filter-trap binding. Cycloheximide is a commonly used antibiotic 

that inhibits translation elongation by blocking the translocation step (McKeehan and 

Hardesty, 1969; Schneider-Poetsch et al., 2010). Importantly, mild cycloheximide 

treatment has been shown to be able to slow (but not completely inhibit) protein 

synthesis and promote proper protein folding (Meriin et al., 2012; Simms et al., 2017). 

During the culturing and induction period, I noticed that although this dosage of 

cycloheximide did slow growth modestly, the populations remained viable.  



38 

 

Figure 3.7 – Mild cycloheximide treatment reduces 97QmCh aggregation. A) The percentages of 
cells containing no detectable mCherry signal (white), soluble mCherry (light grey), small aggregates 
(dark grey), and large aggregate(s) (black). See Research Article for more details. Error bars represent 
SEM of three biological replicates. B) Filter-trap binding shows that perturbation of translation 
elongation by treatment with 30ng/mL cycloheximide lead to the reduction of a 97QmCh. Numbers listed 
in the row “% of –CHX” show the average immunosignal of the cycloheximide-treated cells as a 
percentage of the corresponding untreated cells. Numbers listed in the row “% of Wild-type –CHX” show 
the average immunosignal of the scp160Δ cells (treated and untreated) as a percentage of the 
corresponding untreated wild-type cells. SEM of three biological replicates are shown. C) Western blot 
shows that the overall protein abundance of 97QmCh is not affected by the mild cycloheximide 
treatment.  

Microscopy showed that mild cycloheximide treatment modestly reduce the 

percentage of cells with small aggregates after 3 hours of induction (2 hours 

cycloheximide treatment) (Figure 3.7A). The effect was stronger after 7 hours of 

induction (6 hours of cycloheximide treatment) with a reduction of treated cells 

containing large aggregate(s) (in wild-type cells, 19.8±2.3% untreated vs 6.9±1.05% 

treated). Notably, the percentage of treated wild-type cells that contain large 

aggregate(s) at 7 hours of induction approached the percent of untreated scp160Δ 

cells (6.9±1.5% vs 3.3±1.3%). The treatment of scp160Δ cells with cycloheximide also 
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led to a reduction in the percentage of cells with large aggregate(s) (3.3±1.3% 

untreated vs 0.6±0.3% treated) and small aggregates (67.3±4.6% untreated vs 

59.4±1.7% treated) after 7 hours of induction. 

This data is consistent with previous studies in which perturbation of elongation 

rate can reduce stress-induced polyQ aggregation in C. elegans (Kim and Strange, 

2013) and formation of aggresomes in HeLa cells . However, attempts to assess 

Cyc8p-GFP aggregation under mild cycloheximide treatment has yielded variable 

effects, making it difficult to draw a conclusion. The variability in this regard may lie in 

the relatively low abundance of endogenous Cyc8p and/or reflect a need to further 

optimize cycloheximide treatment conditions. 

3.8 – Loss of Bfr1p influences polyQ reporters differently than loss of Scp160p 

3.8.1 – All three polyQ reporters are toxic to bfr1Δ cells  

Due to the close functional relation between Scp160p and Bfr1p, I investigated 

in parallel how loss of Bfr1p might influence the three polyQ reporters described above 

(Figure 2). In contrast to scp160Δ cells, all three polyQ reporters conferred severe 

toxicity to bfr1Δ cells, with the 97QmCh and 104Q(CAA)mCh reporters similarly toxic 

to bfr1Δ mutants as the 97Q(CAG)mCh reporter (Figure 3.8.1). This difference in 

toxicity of the reporters between scp160Δ and bfr1Δ mutants suggests Scp160p and 

Bfr1p likely play different roles in polyQ-induced toxicity 

.  

Figure 3.8.1 – All three polyQ reporter are toxic to bfr1Δ cells. Serial dilution assays show that the 
induction of the polyQ reporter proteins confer severe toxicity to bfr1Δ cells regardless of codon usage. 
This contrasts with scp160Δ cells in which only the 97Q(CAG)mCh reporter conferred severe toxicity. 

3.8.2 – Induction of 97QmCh reporter mRNA is poor in bfr1Δ mutants 

 To assess how polyQ-mediated aggregation might be affected in bfr1Δ cells, I 

followed 97QmCh aggregation by microscopy and filter-trap binding. I chose to 
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observe 97QmCh because it is well expressed and a good candidate for preliminary 

analysis given its mixed codon usage, but also because its expression conferred a 

high level of toxicity in bfr1Δ cells that was not observed in wild-type and scp160Δ 

cells. Microscopic analysis was performed as described in Cheng et al., 2018, in which 

cells were categorized into 4 classes based on the distribution of the mCherry signal. 

Strikingly, even after 15 hours induction about half the amount of bfr1Δ cells displayed 

no detectable mCherry signal (62.7±5.8% after 3 hours induction, 66.9±3.6% after 7 

hours induction, and 54.9±6.6% after 15 hours induction) (Figure 3.8.2A). This is in 

stark contrast to wild-type and scp160Δ cells, in which only a small percentage of cells 

showed no detectable mCherry signal (9.3±4.7% after 3 hours induction, 14.8%±4.7% 

after 7 hours induction, and 12.1±1.2% after 15 hours induction in wild-type cells; 

20.3±2.9% after 3 hours induction, 5.3±1.4% after 7 hours induction, and 3.3±1.8% 

after 15 hours induction in scp160Δ cells). This made it difficult to analyze 97QmCh 

aggregation by microscopy. 

 As a complementary assay, 97QmCh aggregation was assayed by filter-trap 

binding with lysates from wild-type, scp160Δ, and bfr1Δ cells in which reporter 

expression was induced for 3, 7, and 15 hours. Quantification of the resulting 

immunosignals showed the amount of trapped 97QmCh from bfr1Δ lysates is lower 

than that from wild-type and scp160Δ lysates at each corresponding time point (Figure 

3.8.2B). However, western blot of the lysates showed that in the case of bfr1Δ mutants, 

the reduced 97QmCh immunosignal is due to reduced expression of the reporter 

protein and not reduced aggregation (Figure 3.8.2C). 

 Since Bfr1p is a part of a polysome-associated mRNP complex (Lang et al., 

2001), the low level of 97QmCh reporter protein in bfr1Δ cells may be caused by 

aberrant translation, mRNA stability, or transcription. To investigate these possibilities, 

the steady-state mRNA of 97QmCh was assessed by RT-qPCR in wild-type, scp160Δ, 

and bfr1Δ cells after 0, 3, 7, and 15 hours of induction. 97QmCh mRNA levels were 

checked using primers that targeted the mCherry-encoding nucleotide sequence. 

mRNA abundance relative to the level before induction was calculated using the ΔΔCt 

method using 18S (Figure 3.8.2D) and ACT1 (data not shown) as loading controls. 

RT-qPCR analyses showed that the steady-state mRNA level of 97QmCh in bfr1Δ 

cells was significantly lower than wild-type and scp160Δ cells at the corresponding 

time points (unpaired two-tailed t-test, p<0.01). While it cannot be ruled out that the 

97QmCh reporter is more efficiently targeted for degradation in bfr1Δ cells, the RT-
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qPCR analysis suggests that the low abundance of 97QmCh protein in these cells is 

not primarily due to aberrant translation. 

 
Figure 3.8.2 – Induction of polyQ reporters is poor in bfr1Δ cells. A) The percentages of cells 
containing no detectable mCherry signal (white), soluble mCherry (light grey), small aggregates (dark 
grey), and large aggregate(s) (black). See Research Article for more details. Unlike wild-type and 
scp160Δ cells, no signal was detected in the majority of bfr1Δ cells. Error bars represent SEM of three 
biological replicates. B) Filter-trap binding revealed that 97QmCh aggregation appears to be lower in 
bfr1Δ cells compared to wild-type and scp160Δ cells. The numbers show the average and SEM of three 
biological replicates. C) Western blot shows that the abundance of the 97QmCh reporter protein in 
bfr1Δ is much lower than that in wild-type and scp160Δ cells. D) RT-qPCR against the reporter’s 
mCherry-encoding sequence show a significantly lower steady-state amount of 97QmCh mRNA in all 
three induction time points for bfr1Δ cells compared to wild-type cells. Error bars represent SEM of 
three biological replicates and * indicates p<0.01. Steady-state levels of 97QmCh mRNA at all three 
time points for scp160Δ cells were not significantly different from that of wild-type cells. 
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4. DISCUSSION 

4.1 – Functional relationship between Scp160p and Bfr1p 

4.1.1 – Scp160p and Bfr1p in ploidy maintenance 

The RBPs Scp160p and Bfr1p in S. cerevisiae share a close functional 

relationship (Hogan et al., 2008; Jackson and Képès, 1994; Lang et al., 2001; Sezen 

et al., 2009; Weidner et al., 2014; Wintersberger et al., 1995). One of the more striking 

phenotype associated with scp160Δ and bfr1Δ cells is an increase in ploidy (Jackson 

and Képès, 1994; Wintersberger et al., 1995). In this study, I explored the relationship 

of Scp160p and Bfr1p in ploidy maintenance as well as protein biosynthesis of the 

polyQ reporters. The loss of both SCP160 and BFR1 did not lead to a more severe 

ploidy phenotype than the single deletion strains, suggesting that the two RBPs 

function together in ploidy maintenance. This is consistent with the roles of Scp160p 

and Bfr1p as translation regulators in the SESA network, which has been linked to 

SPB duplication (Sezen et al., 2009). However, it remains unclear how Scp160p and 

Bfr1p function in the SESA network in sensing SPB duplication defects and the 

selective translation repression of POM34. Furthermore, given the involvement of the 

Drosophila vigilin in heterochromatin formation and DNA fidelity (Huertas et al., 2004; 

Wang et al., 2005; Zhou et al., 2008), Scp160p and Bfr1p may play additional roles 

unrelated to the SESA network in ploidy maintenance.  

To investigate if Scp160p and Bfr1p might act on other steps in ploidy 

maintenance, it would be of interest to monitor DNA segregation and the onset of 

ploidy increase upon depletion these RBPs. Such analyses would be possible by 

combining fluorescent protein-based chromosome labelling (described in Kitamura et 

al., 2007 and in a Master’s thesis by Dennis Clement) and an auxin-based inducible 

protein depletion system (described in Nishimura and Kanemaki, 2014 and 

established in a Master’s project module by Lisa Heinold). A comparison of the onset 

of ploidy (measured for example by number of divisions after protein depletion) 

increase upon depletion of Scp160p, Bfr1p, or both RBPs would provide insight into 

the hierarchical function of these proteins. Moreover, by tracking the movement of the 

labelled chromosomes, it may be possible to determine if the ploidy phenotype of 

scp160Δ and bfr1Δ cells occurs due to unchecked DNA replication and/or defective 

nuclear segregation. Notably, the ploidy analysis described in this work shows that 

KH11-14 – shown to be important for polysome-association and binding of many 
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mRNAs (Hirschmann et al., 2014; Li et al., 2004) – are not required to maintain exact 

ploidy. Identification of proteins that interact with Scp160p’s KH1-10 by co-

immunoprecipitation or proximity-labelling will provide clues to Scp160p’s function in 

ploidy maintenance. The full-length Scp160p control in such an approach could also 

help map certain roles of the protein to either KH1-10 or KH11-14. Interestingly, none 

of the mutants observed by flow cytometry showed DNA content beyond diploid, which 

could suggest the activation of additional ploidy maintenance checkpoints at 

diploidization or that higher ploidy is not viable in the mutants.  

A third tempting explanation for the ploidy phenotype in scp160Δ cells is 

nondisjunction events due to aberrant chromatin structure, given the role of 

Scp160p/vigilin in heterochromatin formation and silencing of telomeres and the 

mating locus (see Review Article). However, this is scenario is unlikely as the silencing 

of telomeric regions was shown to be independent of ploidy in scp160Δ cells 

(Marsellach et al., 2006). To assay telomeric silencing, Marsellach and colleagues 

inserted the URA3 gene (encoding an enzyme that catalyses a step in the uracil 

synthesis pathway) into the normally silenced telomeric region. When silencing is lost 

and URA3 is expressed, the resulting enzyme leads to cell death in the presence of 

5-fluoroorotic acid (5-FOA) as Ura3p catalyses the compound into the toxic 5-

fluorouracil (Boeke et al., 1987). Performing such an experiment with the 

Scp160p(KH1-10) truncation would allow further mapping of the KH domains which 

are involved in mediating heterochromatin formation and silencing. Moreover, 

chromatin-IP (ChIP) analysis showed that deposition of the silencing protein Sir3p at 

telomeric regions is reduced in scp160Δ cells (Marsellach et al., 2006), and it would 

be of interest to investigate whether this also occurs in a strain expressing the 

Scp160p(KH1-10) truncation. Strikingly, this study in S. cerevisiae contrasts 

observations in Drosophila S2 cells in which heterochromatin was destabilized when 

KH13-14 of the Drosophila vigilin homolog DDP1 was expressed in addition to the full-

length protein (Zhou et al., 2008). The authors of the Drosophila study reasoned that 

KH13-14 are involved in mediating heterochromatin formation and that its ectopic 

expression sequesters important factors in this process. However, the authors did not 

test whether heterochromatin formation was lost with a DDP1(KH1-12) truncation and 

ectopic expression of a KH10-14 fragment did not show heterochromatin 

destabilization (Zhou et al., 2008). Alternatively, this may reflect a difference in the 

structure-function coordination of the various vigilin homologs. In support, loss of the 
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S. pombe vigilin homolog Vgl1 had no effect on silencing at telomeres and the mating-

type locus as assayed by the URA3 method described above.  

4.1.2 – Separation of Scp160p and Bfr1p function in polyQ toxicity and 
biosynthesis  

In contrast to ploidy maintenance, analyses of the polyQ reporters showed a 

separation of Scp160p and Bfr1p function. Whereas loss of Scp160p suppressed the 

toxicity of the 97Q(CAG)mCh reporter, loss of Bfr1p instead resulted in severe toxicity 

from all three polyQ reporters, including 97QmCh and 104Q(CAA)mCh which were 

only slightly toxic in wild-type cells. This observation would suggest that the toxicity 

conferred to scp160Δ cells is primarily dependent on codon usage and may occur in 

a translation elongation-related manner (see section 4.3). In contrast, the toxic effect 

of the polyQ reporters in bfr1Δ cells is likely to depend primarily on the amino acid 

sequence/protein. As Bfr1p has been implicated in ER-to-Golgi and intra-Golgi 

transport (Jackson and Képès, 1994), the toxicity of the polyQ reporter proteins may 

result from perturbed vacuolar transport and the secretory pathway. Indeed, 

expression of expanded polyQ and other aggregation-prone reporter proteins in S. 

cerevisiae have been reported to induce ER stress by overloading the protein-folding 

capacity of the ER (Duennwald and Lindquist, 2008; Leitman et al., 2013; Low et al., 

2014), which activates the UPR pathways (Travers et al., 2000). One consequence of 

UPR activation is the Ire1p-mediated up-regulation of a number of genes of the 

secretory pathway, which is believed to alleviate ER load by promoting anterograde 

transport of secreted and membrane proteins (Kimata et al., 2006; Travers et al., 2000; 

Walter and Ron, 2011). Notably, BFR1 is among the genes up-regulated upon 

activation of the UPR (Kimata et al., 2006; Travers et al., 2000), and Bfr1p levels are 

elevated upon elevated ER stress (Low et al., 2014). 

Strikingly, the toxicity of the polyQ reporter proteins to bfr1Δ cells is in contrast 

to two genomic screens in which the bfr1Δ was found to suppress polyQ-induced 

toxicity (Giorgini et al., 2005; Kaiser et al., 2013). This discrepancy could lie in the 

genetic background of the yeasts used in the screens (BY4741, as part of the yeast 

deletion library) and this study (W303a). In support of this possibility, Serpionov et al. 

reported recently that expanded polyQ induces toxicity differently among two different 

S. cerevisiae backgrounds (BY4742, differing from BY4741 in mating type vs 74-

D694). Additionally, differences in experimental approach (high-throughput screen vs 
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serial dilution assay) and construction of the polyQ reporter can also influence the 

toxicity (Duennwald et al., 2006; Hofer et al., 2018). Consistent with this scenario, the 

reporter used in the screen by Giorgini and colleagues carry a FLAG epitope, whose 

presence anywhere on a polyQ reporter (even for one containing 25Q’s, a number 

below the pathogenic threshold in humans) has been shown to confer toxicity not 

observed with an HA epitope (Duennwald et al., 2006). Similarly, one of the polyQ 

reporters used by Kaiser and colleagues consisted only of 56Q’s and a C-terminal 

YFP and the other reporter was the same one used by Giorgini and colleagues.  

The difference in polyQ-induced toxicity between scp160Δ and bfr1Δ cells 

suggest that the effect occurs at various stages of protein synthesis and lifespan. 

While the conserved nature of Scp160p/vigilin is exciting in the context of Huntington’s 

and other polyQ-expansion diseases (see also section 4.4), the restriction of Bfr1p to 

Ascomycetes means its role may be fungal-specific. Alternatively, given the role of 

Bfr1p in anterograde vesicle transport and its link to the UPR, these processes and 

pathways represent an interesting and on-going area of research in polyQ-expansion 

diseases. 

4.2 – Scp160p may impact many cellular processes via Q/N-rich-mediated 
protein aggregation (related to Cheng et al., 2018) 

Scp160p, the S. cerevisiae homolog of vigilin, was previously reported by our 

lab to enhance translation elongation efficiency of many mRNA in a manner dependent 

on codon correlation (see section 1.4 and Hirschmann et al., 2014). In Cheng et al., 

2018 (full-text in Appendix), I investigated this function further using three polyQ 

reporters that differ in the codon usage of their polyQ-encoding region. Strikingly, while 

all three reporters encode the same protein sequence based on exon 1 of mHtt (the 

additional 7 Q’s in 104Q(CAA)mCh had a negligible impact; Cheng et al., 2018), codon 

usage was a major determinant in polyQ-induced toxicity. Furthermore, as all three 

reporter proteins aggregated in wild-type cells, polyQ-induced toxicity is separate from 

aggregation. It is interesting to note that the severely toxic variant – 97Q(CAG)mCh – 

also accurately constitutes mHtt at the nucleic acid level. Moreover, the toxicity 

conferred by 97Q(CAG)mCh required an in-frame start codon upstream of the polyQ-

encoding (CAG-repeat) sequence and was suppressed by the loss of Scp160p. 

Together, these results argue that in our experimental system, polyQ-induced toxicity 

occurs at the level of translation of the mRNA. However, the mechanism(s) through 
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which 97Q(CAG)mCh confers toxicity in wild-type cells, and how this toxicity is 

suppressed in scp160Δ cells remains to be investigated. Unfortunately, analyses of 

this reporter are made difficult by the low abundance of 97Q(CAG)mCh mRNA and 

protein in wild-type cells. For example, it is as-yet unknown if this reflects increased 

mRNA degradation or poorer transcription in wild-type cells compared to scp160Δ 

cells. Yet, the preliminary RT-qPCR data on 97Q(CAG)mCh mRNA level in dom34Δ 

cells suggests that the high abundance of the mRNA in scp160Δ cells results from 

more than just escape from the RQC. Comparing the half-life of 97Q(CAG)mCh in 

wild-type and scp160Δ cells will be one step toward answering this question. In 

parallel, the abundance of 97Q(CAG)mCh mRNA may be assessed in xrn1Δ or skiΔ 

cells to probe whether the mRNA is targeted by these RNA decay machineries. 

Moreover, identification of factors that bind 97Q(CAG)mCh in wild-type and scp160Δ 

cells (in an xrn1Δ or a skiΔ background to stabilize mRNAs (Parker, 2012)) would 

highlight the potential changes in regulation of the mRNA upon loss of Scp160p. 

A second striking observation of the polyQ reporter proteins in this work is their 

reduced aggregation in scp160Δ cells. Importantly, this effect was independent of the 

reporters’ codon usage, suggesting that Scp160p’s role in polyQ-mediated 

aggregation is not related to its role in codon-related translation. A combined filter-trap 

binding and quantitative mass spectrometry approach also revealed that the 

aggregation of many endogenous Q/N-rich proteins is reduced in scp160Δ cells under 

normal growth conditions. Although the codon usage of the proteins identified by our 

approach has not been analyzed, the fact that a mixture of both glutamine-encoding 

codons – CAA and CAG – encodes polyQ regions of many proteins in S. cerevisiae 

(Mar Albà et al., 1999) is consistent with the idea that Scp160p’s influence on Q/N-

mediated protein aggregation is independent of its role in codon-related translation. 

Analysis of the “cellular component” Gene Ontology (GO) terms associated with the 

Q/N-rich proteins with reduced aggregation in scp160Δ cells showed enrichment for 

“Nuclear pore central transport channel” (p-value=5.16E-05), “Cytoplasmic stress 

granule” (p-value=4.04E-06), and “Mating projection tip” (p-value=1.90E-04) 

(PANTHER Classification System, Mi et al., 2017). Interestingly, these GO terms 

aligns with some of Scp160p’s proposed role in P-body formation (Weidner et al., 

2014) and mating (Aronov et al., 2007; Gelin-Licht et al., 2012). Most notably, the 

number and functional variation (Saccharomyces Genome Database) of the affected 



47 

Q/N-rich proteins demonstrates a potential for Scp160p to influence many processes 

and protein interaction networks in this manner. 

Two of the proteins from the mass spectrometry approach which we validated 

were Cyc8p and Nab3p, whose polyQ regions have been reported to be biologically 

important (Figure 4.2 and Gemayel et al., 2015; O’Rourke and Reines, 2016). Cyc8p 

is a conserved transcription repressor complex regulating >150 S. cerevisiae genes 

involved in flocculation, glucose repression, mating type, and sporulation (Gemayel et 

al., 2015; Smith and Johnson, 2000; Varanasi et al., 1996). It’s regulatory activity is 

affected by the protein’s propensity to aggregate, which in turn is determined by the 

length of the QA-repeat and polyQ-regions (together named TR2) in the middle of the 

protein (Gemayel et al., 2015). Notably, the expression of 27 genes changed in 

response to TR2 length in glucose-rich media (by RNA-Seq; Gemayel et al., 2015), of 

which 6 were observed to be downregulated and 1 to be upregulated in response to 

depletion of Scp160p in a previous unpublished study (by microarray; Schreck, 2010).  

 
Figure 4.2 – Schematic of the Q/N-rich proteins Cyc8p and Nab3p. Glutamine (Q) residues are 
represented in red and asparagine (N) in blue. 

Nab3p is an RBP involved in the transcription termination and 3’ processing of 

a variety of RNA species including mRNA, cryptic unstable transcripts, small nuclear 

RNA (snRNA), and small nucleolar RNA (snoRNA) (Porrua and Libri, 2015; Webb et 

al., 2014). In vitro studies have shown that a C-terminal fragment of Nab3p containing 

a polyQ-region/LCR can form hydrogels and self-assemble into amyloids, and that this 

region was required for viability in vivo. Specifically, it was the polyQ-richness of this 

fragment which was important, as substitution of every second glutamine in this region 

to glutamic acid also disrupted amyloid formation in vitro and lead to inviability in vivo 

(Loya et al., 2013; O’Rourke and Reines, 2016). 

The result of the mass spectrometry approach presents a tempting explanation 

to reconcile the many phenotypes associated with scp160Δ, that Scp160p can 

facilitate the Q/N-mediated aggregation important for the biological function of many 
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proteins. Given the prevalence of polyQ- and LCR-regions in transcription factors and 

RBPs, and the role of aggregation in their function, this represents the potential to 

have widespread downstream effects on gene expression and cell function. However, 

further work will be required to investigate how Scp160p facilitates the aggregation of 

these proteins (see section 4.3) and what determines Scp160p’s specificity towards 

them. 

4.3 – Possible mechanism(s) of Scp160p function in protein aggregation 

4.3.1 – Altered protein quality control 

A major finding of this work is the role of Scp160p in polyQ- and Q/N-mediated 

protein aggregation, an ongoing direction of study stemming from this work will be the 

mechanism(s) behind this involvement. As this work first assayed of three 

overexpressed aggregation-prone reporter variants, I asked whether the effect might 

have stemmed from changes in protein quality control. Molecular chaperones are 

major factors in maintaining protein quality and have the ability to modulate 

aggregation of prions, expanded polyQ-, and misfolded proteins (Ciechanover and 

Kwon, 2017; Duennwald et al., 2012; Sakahira et al., 2002; Walters et al., 2015). One 

possibility is that the loss of Scp160p altered chaperone expression and thereby 

reduced polyQ- and Q/N-mediated protein aggregation. Indeed, unpublished work 

from our lab has shown by microarray that depletion of Scp160p resulted in the 

downregulation of several HSP genes (Schreck, 2010). However, the work presented 

here does not support this scenario since: 1) a preliminary screen of select molecular 

chaperones by western blot showed no significant changes in protein abundance 

between wild-type and scp160Δ cells (Figure 3.6.1A), 2) quantitative mass 

spectrometry of the WCL showed negligible changes in relative protein abundance of 

these chaperones, and 3) combining an hsp31Δ (the HSP with the greatest increase 

in protein abundance) with an scp160Δ did not restore 97QmCh aggregation (Figure 

3.6.1B). Interestingly, the quantitative mass spectrometry of the WCL (this work) 

showed that the mitochondrial-matrix chaperone Hsp78p was 1.51 times more 

abundant in scp160Δ cells compared to wild-type (although only detected in one of 

two mass spectrometry replicates). However, this is in contrast to the microarray 

observation that HSP78 transcript levels were decreased upon Scp160p-depletion to 

0.31-fold that of a no depletion (Schreck, 2010). 
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The DJ-1 superfamily member Hsp31p has been shown to deter [PSI+] prion 

formation as well as α-synuclein and polyQ reporter aggregation. Therefore, it was a 

promising candidate to test as an effector of reduced 97QmCh aggregation 

downstream of the scp160Δ. The failure of an hsp31Δscp160Δ strain to restore 

97QmCh aggregation suggests that reduced aggregation in scp160Δ does not 

function through Hsp31p. However, it cannot be ruled out that loss of Hsp31p in an 

scp160Δ background results in compensatory upregulation of other chaperone 

members, especially those of the DJ-1 family. Indeed, Hsp31p is one of four DJ-1 

homologs in S. cerevisiae, the others being Hsp32p, Hsp33p, and Hsp34p (Aslam and 

Hazbun, 2016). This scenario could be tested by RT-qPCR to assess if HSP32, 

HSP33, and/or HSP34 expression are increased in hsp31Δ and hsp31Δscp160Δ cells. 

Alternatively, 97QmCh aggregation could be scored in strains carrying the scp160Δ in 

combination with hsp31Δ and other DJ-1 family members. It should be noted that due 

to a 99% identity between Hsp32p, Hsp33p, and Hsp34p (Wilson, 2014), assessing 

their protein abundance by western blot could prove difficult. 

In addition to the action of molecular chaperones such as the HSPs, misfolded 

and aggregated proteins can be targeted to three spatially separated quality control 

compartments: the intra-nuclear quality control compartment (INQ, formerly 

juxtanuclear quality control compartment JUNQ), the insoluble protein deposit (IPOD), 

and the cytosolic quality control compartment (CytoQ)  (Kaganovich et al., 2008; Miller 

et al., 2015; Mogk and Bukau, 2017). These quality control compartments allow 

refolding or degradation of multiple misfolded proteins at once. Unlike the INQ and 

CytoQ, which are induced under stresses like heat-shock, the IPOD is a destination 

for misfolded amyloid proteins under non-stress conditions, where they are degraded 

via autophagy (Kaganovich et al., 2008; Miller et al., 2015). Interestingly, aggregated 

forms of mHtt-based reporters were deposited in or adjacent to the IPOD but not the 

INQ (Kaganovich et al., 2008; Yang et al., 2016). Thus, it could be that the higher 

aggregation of polyQ reporters in wild-type cells observed in this work represent more 

efficient recognition and sequestration of these proteins into the IPOD. However, this 

scenario does not reconcile with the suppression of 97Q(CAG)mCh-mediated toxicity 

in scp160Δ cells. Alternatively, it may be that IPOD-sequestered polyQ reporters are 

more efficiently degraded in scp160Δ cells, resulting in less observed aggregates at 

steady state. To distinguish between these two scenarios, 97QmCh aggregates can 

be assayed for colocalization with a fluorescently-tagged IPOD markers such as 
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Rnq1p (Kaganovich et al., 2008; Kayatekin et al., 2014). Greater colocalization of 

97QmCh with Rnq1p would argue for more efficient IPOD-targeting in wild-type cells. 

Another assay that would address these scenarios is to induce 97QmCh protein 

expression and follow its stability after repressing its expression by addition of glucose 

to the culture medium. If 97QmCh is less stable in scp160Δ cells than wild-type cells, 

this would support the scenario where IPOD-sequestered polyQ proteins are degraded 

more efficiently in the deletion. 

Finally, ribosome-associated quality control is another means to ensure protein 

quality in the cell. Part of this work asked whether translation elongation in scp160Δ 

cells may be exacerbated by the biosynthesis of the aggregation-prone 97QmCh 

reporter protein and trigger RQC. Strikingly, 97QmCh protein accumulation and 

aggregation were further reduced in ltn1Δscp160Δ cells compared to scp160Δ cells. 

Western blot analysis of 97QmCh probed against its N-terminal myc-epitope showed 

that the protein runs slightly smaller in ltn1Δ cells compared to wild-type, scp160Δ, 

and even ltn1Δscp160Δ cells. Given the role of Ltn1p in poly-ubiquitination of stalled 

nascent peptides, it is tempting to reason the downshift of 97QmCh is due to the loss 

of Ltn1p-mediated ubiquitination in ltn1Δ cells. However, this downshift is not observed 

in ltn1Δscp160Δ cells. Nevertheless, the ubiquitylation-status of 97QmCh in wild-type, 

scp160Δ, ltn1Δ, and ltn1Δscp160Δ cells may be assessed by IP of 97QmCh (via its 

N-terminal myc-epitope) followed by immunoblotting against ubiquitin. In parallel, 

treatment of lysates with a recombinant deubiquitintating enzyme Usp2 would also 

allow assessment of ubiquitylation status (Yonashiro et al., 2016).  

4.3.2 – Aberrant translation elongation kinetics 

An alternative mechanism to explain the reduced polyQ- and Q/N-mediated 

protein aggregation in scp160Δ cells would be altered translation elongation kinetics. 

As described in section 1.3, the elongation kinetics of a nascent peptide can have a 

great impact on the co-translational folding, ultimate conformation, and functionality of 

the protein product. In support, slowing down elongation with a mild dose of translation 

inhibitors or growth at low temperatures have been shown to influence protein folding 

and to promote native folds and protein function (Meriin et al., 2012; Sherman and 

Qian, 2013; Zhou et al., 2013). Furthermore, it has been speculated for wild-type 

unexpanded huntington protein that translation of the proline-rich region (PRR), which 

occurs slowly, promotes co-translational binding of chaperones to the N-terminal 17 
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amino acids which facilitate proper folding and processing (Nissley and O’Brien, 2016). 

Importantly, the PRR – and thus elongation slowdown – should be spaced less than 

35 amino acids (the threshold number of Q’s before pathogenesis) so as to facilitate 

this process as the N-terminal 17 amino acids emerge from the ribosome exit tunnel. 

Given Scp160p’s role in enhancing translation efficiency, it is possible that the 

absence of Scp160p slows elongation of the polyQ reporters and thereby facilitate 

their folding and/or processing to a less aggregation-prone conformation. It is notable 

that aggregation of the polyQ reporters are not abolished – only reduced – in scp160Δ 

cells, which may reflect the inherent nature of polyQ regions to form coiled-coils that 

facilitate protein-protein interaction and their spontaneity to aggregate (Fiumara et al., 

2010; Schaefer et al., 2012).  

In support of this, treating S. cerevisiae cultures with a mild dose of CHX 

(30ng/μL) reduced aggregation – but not abundance – of the 97QmCh reporter protein 

(see section 3.7). However, it will have to be investigated in greater detail whether loss 

of Scp160p indeed reduces polyQ aggregation by slowing down translation 

elongation. Attempts to assess Cyc8p-GFP aggregation by mild CHX were 

inconclusive, likely owing to the relative low abundance of the endogenous protein 

(Saccharomyces Genome Database: 

https://www.yeastgenome.org/locus/S000000316/protein). Further optimization of 

CHX dosage will be required to better assess its effect on Cyc8p-GFP. As an 

alternative to mild CHX treatment, it may also be possible to slow elongation by 

growing S. cerevisiae cultures at a lower temperature (e.g. 18˚C). In parallel to such 

translation elongation slowdown assays, it would be prudent to assess how the fold-

conformation of 97QmCh and Cyc8p-GFP changes between wild-type and scp160Δ 

cells, as well as in the presence and absence of elongation slowdown. This could be 

tested by assaying sensitivity to proteases, whose access to cleavage sites would be 

affected by the target protein’s fold and conformation. Differences in protease 

sensitivity would add support to the hypothesis that elongation slowdown in the 

absence of Scp160p can shift the fold of polyQ-containing and Q/N-rich proteins to 

ones that are less aggregation-prone. However, when considering such an assay, one 

should separate the soluble polyQ-containing and Q/N-rich proteins from the 

aggregated forms, which may be done by differential centrifugation (Meriin et al., 

2003).  
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Finally, the reduction of polyQ reporter aggregation in scp160Δ cells may reflect 

a difference in the conformation of the aggregates itself. To this end, the conformation 

of 97QmCh, 97Q(CAG)mCh, and 104Q(CAA)mCh aggregates in wild-type and 

scp160Δ cells can be compared by CLEM. This technique allows the observation of 

ultra-structures of fluorescently-labeled entities (de Boer et al., 2015). Observation of 

GFP-tagged polyQ reporters in HeLa and S. cerevisiae cells revealed that the 

aggregates can adopt different ultra-structures that correlate with their dynamic 

properties (Peskett et al., 2018). CLEM comparison of polyQ aggregates in wild-type 

and scp160Δ cells can thus also be complemented by testing the molecular dynamics 

within the aggregates via fluorescence recovery after photobleaching (FRAP).  

In addition to probing protein fold and aggregate conformation, it would also be 

important to assay elongation rate of the polyQ reporters and Q/N-rich proteins. For 

example, elongation rate of 97QmCh in wild-type and scp160Δ cells may be compared 

by metabolic labeling. In this case, de novo 97QmCh are labeled and followed at 

specified time points using a pulse of radioactive [35S]-methionine. A comparison of 

the amount of [35S]-methionine incorporated into 97QmCh in wild-type and scp160Δ 

cells at each time point can provide a measure for the rate of translation. Such a 

method will require optimization of both the length of the [35S]-methionine pulse as well 

as the efficiency and specificity of immunoprecipitation for the protein of interest. 

These optimization steps are currently underway (by Jonathan Feicht in collaboration 

with Dr. Tobias Jores and Prof. Dr. Doron Rapaport). If [35S]-methionine incorporation 

into 97QmCh occurs slower in scp160Δ cells, this would support the hypothesis that 

polyQ-mediated aggregation is negatively influenced by perturbed elongation kinetics 

in the absence of Scp160p. In such a scenario, the elongation rates of the other two 

polyQ reporters (97Q(CAG)mCh and 104Q(CAA)mCh) and/or endogenous Q/N-rich 

proteins may also be assayed. 

Another powerful method to probe genome-wide in vivo elongation rates, with 

nucleotide-resolution, is ribosome profiling (Ingolia et al., 2009). This technique 

exploits the protection of ribosome-occupied mRNA fragments from ribonucleases, 

which are then deep-sequenced. Alignment of the sequenced mRNA fragments 

provides a snapshot of the distribution of ribosomes over the transcriptome. Since the 

time spent by ribosomes at a codon or region relates to ribosome transit speed, 

ribosome footprint densities can also reveal co-translational events such as ribosome 

slowdown or stalling (Ingolia et al., 2012). Comparing the ribosome footprint densities 
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for the same gene in two conditions or strains can provide information on changes in 

elongation speeds. Therefore, ribosome profiling is an ideal method to investigate how 

loss of Scp160p can influence elongation rate of the transcriptome, and more 

importantly, if there are certain genes and/or sequences (e.g. LCRs or Q/N-rich 

regions) which are more affected by the loss. 

By combining ribosome profiling with the mass spectrometry data in this work, 

it would be possible to compare the elongation kinetics of those specific Q/N-rich 

genes whose aggregation is reduced in scp160Δ cells. If ribosome footprint densities 

are higher in the scp160Δ translatome at corresponding regions within transcripts of 

interest, it would argue that elongation efficiency is perturbed in the absence of 

Scp160p. Such an observation would also be consistent with the hypothesis that 

lowered elongation rate in scp160Δ cells can promote co-translational folding and 

adoption of less aggregation-prone conformations by Q/N-rich proteins. If ribosome 

transit is slowed for Q/N-rich protein-encoding genes in scp160Δ cells, it will be of 

interest to analyze at which regions/sequences this occurs. Does loss of Scp160p 

result in slowdown of translation over the entire transcript, at Q/N-rich or LCR-

encoding regions, or the region(s) adjacent? Such information would shed light on how 

elongation kinetics, and Scp160p, affects co-translational folding and protein 

biosynthesis.  

Recently, selective ribosome profiling has also been performed in which 

addition of an immunoprecipitation step allows a view of a subset of ribosomes and/or 

ribosome-nascent chain complexes. Such a method has been employed to study 

binding of chaperones to nascent chains, as well as to determine the order of co-

translational protein complex assembly (Becker et al., 2013; Shiber et al., 2018). This 

method may also be used to study Scp160p-associated ribosomes and provide 

information on the transcripts – and sequences within – that are specifically regulated 

by Scp160p. Scp160p-specific ribosome profiling would be a great complement to the 

analysis of the whole wild-type and scp160Δ translatomes. 

Provided here are possible scenarios to link Scp160p with polyQ- and Q/N-

mediated protein aggregation. While these avenues are worth pursuing, the previously 

published involvement of Scp160p in enhancing translation efficiency makes the 

elongation kinetics and co-translational folding hypothesis a particularly attractive one 

to test. Due to the importance of polyQ and Q/N-rich regions in protein aggregation, it 

will be important to investigate how Scp160p affects this process. Our understanding 
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of this can identify Scp160p has an important factor in protein biosynthesis. Finally, 

given the variety of functions associated with Q/N-rich proteins, this area of research 

can shed light on the distinct phenotypes associated with loss of Scp160p. 

4.4 – Implications of Scp160p/Vigilin in Q/N-rich protein aggregation for higher 
organisms 

 The work presented here have shown a role for the S. cerevisiae homolog of 

the vigilin family of RBP, Scp160p, in facilitating aggregation of polyQ- and Q/N-rich 

proteins. Given the highly conserved nature of the vigilin proteins, this work could have 

implications in higher eukaryotes. In particular, polyQ- and Q/N-mediated protein 

aggregation are important areas of research in higher eurkaryotes due to their link to 

both neurodegenerative diseases as well as mediation of normal protein function and 

interactions (see section 1.6). The polyQ reporters used in this study were derived 

from the pathogenic expanded huntingtin protein, which causes HD in humans (Fan 

et al., 2014), thereby making vigilin an interesting target for future research in HD 

pathogenesis. However, care must be taken when undertaking such translationary 

studies due to differences between S. cerevisiae and mammalian systems. Perhaps 

the biggest factor to consider is the endogenous context of the HTT gene. S. cerevisiae 

is a great isolated system in which to study mHtt protein aggregation and toxicity, due 

to the absence of HTT gene. However, wild-type HTT is endogenous to mammalian 

systems and plays an important role, which adds a layer of complexity to 

understanding mHtt aggregation and pathogenesis. Therefore, although Scp160p acts 

on the mHtt-derived reporter, this may not be representative of vigilin and mHtt in a 

mammalian context where mHtt biosynthesis and pathogenicity may depend on other 

mammalian-specific factors. Accordingly, the ability of the expanded CAG trinucleotide 

repeat in mHTT to self-complement into a stem has been reported to contribute to 

pathogenesis by sequestering the splicing factor muscleblind-like 1 (MBNL1) into 

nuclear foci in human fibroblasts derived from HD patients (de Mezer et al., 2011). 

Although the existence of a similar factor that binds CAG-stems cannot be ruled out, 

no S. cerevisiae homolog of MBNL1 can be found by homology search.  

 In addition to the mHtt-derived polyQ reporters, the present work also showed 

the influence of Scp160p on the aggregation of many endogenous unexpanded Q/N-

rich proteins in a native non-disease context. As emerging research demonstrate the 

biological importance of Q/N-mediated aggregation and interaction on protein function, 
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the potential impact of vigilin on Q/N-mediated protein aggregation in higher 

eukaryotes will be an interesting aspect to study. Notably, the vigilin-interaction partner 

heterochromatin protein 1 (HP1) (Cheng and Jansen, 2017) has been shown to 

mediate heterochromatin formation in Drosophila and humans by undergoing phase 

separation (Larson et al., 2017; Strom et al., 2017).  

The highly conserved nature of the vigilin RBPs make translational studies in 

higher eukaryotes exciting, both in the context of repeat expansion diseases and in 

normal Q/N-rich protein function. However, as alluded to earlier, differences between 

the unicellular S. cerevisiae and multicellular mammalian systems is a major caveat 

to consider. In the case of protein biosynthesis and pathogenesis in repeat expansion 

diseases, the proper cell type must be used. Although huntingtin and vigilin proteins 

are reportedly expressed in many cell types (Hofer et al., 2018; Uhlén et al., 2015), 

the cells used should reflect and allow assay of processes affected in 

neurodegeneration. Moreover, given the codon context of Scp160p’s role in 

translation, the difference in codon usage profile between S. cerevisiae and mammals 

might also make an impact. For example, in S. cerevisiae CAG is the infrequent 

glutamine-encoding codon and CAA is the frequent codon, which is opposite to that in 

mammals (Athey et al., 2017; Sharp and Li, 1987). Despite these differences, many 

studies have demonstrated a level of transferability and mechanistic conservation from 

S. cerevisiae to mammalian cells in protein aggregation and pathogenesis associated 

with repeat expansion diseases. The potential influence of vigilin in disease-related 

polyQ-, as well as normal Q/N-mediated protein aggregation in mammalian systems 

will be an interesting avenue for future research.  
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5. MATERIALS AND EXPERIMENTAL PROCEDURES 

5.1 – OIigonucleotides used in this study 

Name Sequence 
(5’ to 3’) 

Database 
Number 
(RJO) 

scp160_ko_HIS3MX6 
fw S1 

TAAAATATACTTCCCACACCCCCTCCTTCCATTAT
AACTGCACGTACGCTGCAGGTCGAC 2509 

scp160_ko_HIS3MX6 
rev S2 

GCCAAAATCTATATTGAAAAAAATTGGTTTCAAAG
AGCTTGTATCGATGAATTCGAGCTC 2510 

SCP160 3’-UTR rev GTTCGTGTTACTTCAACTTCA 2511 
Scp160_ko_check_1 GCTTCAGCAGTTCCTTGTTCA 2581 
Scp160_ko_check_2 GCAGCTACACCAGAAACCAAAAAG 2582 
BamHI_Scp160_1 CGCAAAGGATCCATGTCTGAAGAACAAACCGC 2583 

Scp160_PstI_2 CGCAAACTGCAGCTATCTTCTTAAGGATTTCAAAA
CC 2584 

Scp160_seq1 TCCTCGGAAGAAGTTGGTGC 2665 
Scp160_seq2 CGGAGTCTGCGTTAGGAATATC 2666 
Scp160_seq3 AAGTACCGTGTGGACCAATC 2667 
Scp160_seq4 AGGTGGCCTTCTTGTTCAG 2668 
Scp160_seq5 AGATTTTTGGCATGGGTCAG 2671 
Scp160_seq6 CACCCTCATCGGAGGCAAAC 2672 
Scp160_seq7 TCACGAATAGTTCTACCACCTG 2673 
Scp160_ORF_EcoRI_
rev GCTCGATGGAGAATTCAAAATAG 2702 

Scp160_ORF_EcoRI_
for CTATTTTGAATTCTCCATCGAGC 2703 

Act1_qPCR_1_for TCAGAGCCCCAGAAGCTTTG 2920 
Act1_qPCR_1_rev TTGGTCAATACCGGCAGATTC 2921 
PGK1-RT_F GAACGGTCCACCAGGTGTT 4132 
PGK1-RT_R GACGGTGTTACCAGCAGCAG 4133 
18S_F TCAACACGGGGAAACTCACC 4139 
18S_R CTAAGAACGGCCATGCACCA 4148 

dBFR1_S1 AACGTAATAGCATATTTTCTAACAACACAGCCATT
GCCATGCGTACGCTGCAGGTCGA 4853 

dBFR1_S2 GAAGAAAGATCAGGAGAAAAATTTTTTTCTACTTC
AGGTTTAATCGATGAATTCGAGCTCG 4854 

Bfr1_cds_f GTGATGATGTCAAGATCACCG 4875 
Bfr1_3utr_r TCATCGTCACACCCTATTGAC 4876 
His3_cas_f AGCACGAAGGGAGTGTTGTAA 4877 
bfr1_genomic_del_f TAACTGATCTCGACGACGTTG 4918 
bfr1_genomic_del_r GAGGAAAGAATTGGCTGGTAAG 4919 
N-term mCherry fw GAGTTCATGCGCTTCAAGGT 4926 
N-term mCherry rv GTCTGGGTGCCCTCGTAG 4927 

dom34_S1 CGTTGTCATTTTGTTCAATTATCGCATTCCTATCA
TAGCAAAAATCGTACGCTGCAGGTCGA 5120 

dom34_S2 GTTGCAAATTTTATGTGTACATTACTTTTTTCTTAC
ATAGTAAATATCGATGAATTCGAGCTCG 5121 
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dom34del_chk_f GATGGACTCCGTAGAGAGCAAT 5122 
dom34del_chk_r TGCACGTGACTAACTAGAACC 5123 

cyc8tag_fw GAAAATGTAGTAAGGCAAGTGGAAGAAGATGAAA
ACTACGACGACCGTACGCTGCAGGTCGA 5153 

cyc8tag_rv TCGTTGATTATAAATTAGTAGATTAATTTTTTGAAT
GCAAACTTTATCGATGAATTCGAGCTCG 5154 

cyc83utr_rv GGATTCAACAAGGGAAACCG 5155 

scp160del_kh1to6_f TCTTTGAACAAGGCCAATGAGTCATTAAACTCTCT
ACGTACTAAACGTACGCTGCAGGTCGAC 5346 

scp160del_kh1to7_f AAAGCTGCTAACAAAATTTTTGAATCTATTTTGAA
TTCTCCATCGCGTACGCTGCAGGTCGAC 5347 

scp160del_kh1to8_f AACTTGACTCATGCCAAGAAATATTTGGCTGCCG
AAGCCAAAAAACGTACGCTGCAGGTCGAC 5348 

scp160del_kh1to9_f AATAAAGCTCATGAAGAATTGAAAGCTCTGTTAGA
TTTTGAAATGCGTACGCTGCAGGTCGAC 5366 

scp160del_kh1to10_f AACATAAAAGATGCCGCCAAACGTGTGGAATCCATTGTTGCCGAAGCCCGTACGCTGCAGGTCGAC 5367 

scp160del_kh1to11_f GTCAAAAAGGTTGTCGAGGAAATTAACAAGATTGTCAAGGATGCTCGTACGCTGCAGGTCGAC 5368 

TR2check_f TCAATGGTACAACAACAGCATCCTGCTCAA 6213 
TR2check_r TATGGTTGCCCTTGTTGAGGATTTAACATT 6214 
TR1check_f AGACTAGTACTACAACTACAACAGCA 6215 
TR1check_r GTTTCTGCCAAAGAAGCAAT 6216 

ltn1_del_f ATCTGCTAAGCCATCAAAAAAAGTTCAAGCAATA
GTTGGTTCTTACGTACGCTGCAGGTCGAC 6273 

ltn1_del_r GTTTAAAAAATGTAGTACATTTATATGAAATTTATA
TGCGATAGTATCGATGAATTCGAGCTCG 6274 

ltn1_5UTR_f CAATACTGAAGAAGTCCTTCTTA 6275 
ltn1_3UTR_r GGTATAGGGCTGGATTGTATAA 6276 
ltn1_orf_f GCCTACGAGCCTAGCTTTAGCACC 6277 
Nab3_Q1_f ACAAACTATTACCAGGGTTACAGT 6457 
Nab3_Q1_r TGGTGGCATCCCATAATTACC 6458 
Nab3_Q2_f ACGTTGTATCGAATTTGCTTTCA 6459 
Nab3_Q2_r AGGATGAGTTCATAGAGGAATATCC 6460 
Nab3_Q3_f GGTTTAATACAATCAATGCAAGGC 6461 
Nab3_Q3_r GACTTTGAACATTATTGCCAGC 6462 
 
5.2 – Plasmids used in this study 

Name Description Database 
Number (RJP) Reference 

pFA6a-HIS3MX6 - 135 (Longtine et al., 
1998) 

pYM3 6xHA::klTRP1 277  

pYM5 3xmyc::HIS3MX6 279 (Knop et al., 
1999) 
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pRS313 pRS313::HIS3MX6 721 - 

pYM44 yeGFP::HIS3MX6 1243 (Janke et al., 
2004) 

pFA6a-KANMX6 - 1347 (Longtine et al., 
1998) 

Tet-off-SCP160 pCM182-SCP160::klTRP1 1463 (Hirschmann et 
al., 2014) 

97QmCh pYES2-97QmCh::URA3 1920 (Park et al., 
2013) 

97Q(CAG) pMS-RQ-97Q-CAG 1935 GeneArt AG 

104Q(CAA) pMS-RQ-104Q-CAA 1936 GeneArt AG 

97Q(CAG)mCh pYES2-
97Q(CAG)mCh::URA3 1937 This study 

104Q(CAA)mCh pYES2-
104Q(CAA)mCh::URA3 1938 This study 

(-)ATG-
97Q(CAG)mCh 

pYES2-(-)ATG-
97Q(CAG)mCh::URA3 2055 This study 

92Q(CAA)mCh pYES2-
92Q(CAA)mCh::URA3 2163 This study 

92Q(CAA) pMS-RQ-92Q-CAA 2164 GeneArt AG 

pRS313-
SCP160 

pRS313-
SCP160::HIS3MX6 2179 This study 

 

5.3 – Yeast strains used in this study 

Name Relevant Genotype Reference 

W303a MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 
his3-11,15 - 

W303a/α 
MATa/MATα leu2-3,112/leu2-3,112 trp1-1/trp1-1 
can1-100/can1-100 ura3-1/ura3-1 ade2-1/ade2-1 
his3-11,15/his3-11,15 

- 

RPY497 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 
his3-11,15 scp160::klTRP1 

(Hirschmann et 
al., 2014) 

RPY3178 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 scp160::HIS3MX6 
(Hirschmann et 
al., 2014) 
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RPY3925 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 SCP160-GFP::HIS3MX6 This study 

RPY4584 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 pYES-97QmCh::URA3 This study 

RPY4588 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 scp160::klTRP1 pYES-97QmCh::URA3 This study 

RPY4709 

MATa/MATα leu2-3,112/leu2-3,112 trp1-1/trp1-1 
can1-100/can1-100 ura3-1/ura3-1 ade2-1/ade2-1 
his3-11,15/his3-11,15 scp160::HIS3MX6/SCP160 
bfr1::klTRP1/BFR1 

This study 

RPY4749 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 pYES-97Q(CAG)mCh::URA3 This study 

RPY4750 
MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 
his3-11,15 scp160::klTRP1 pYES-
97Q(CAG)mCh::URA3 

This study 

RPY4754 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 pYES-104Q(CAA)mCh::URA3 This study 

RPY4755 
MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 
his3-11,15 scp160::klTRP1 pYES-
104Q(CAA)mCh::URA3 

This study 

RPY4778 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 scp160::HIS3MX6 bfr1::klTRP1 This study 

RPY4814 
MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 
his3-11,15 scp160::HIS3MX6 pTet-off-
SCP160::klTRP1 pYES-97QmCh::URA3 

This study 

RPY4816 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 scp160::HIS3MX6 This study 

RPY4825 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 bfr1::HIS3MX6 pYES-97QmCh::URA3 This study 

RPY4867 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 CYC8-GFP::HIS3MX6 This study 

RPY4874 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 scp160::klTRP1 CYC8-GFP::HIS3MX6 This study 

RPY4890 
MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 
his3-11,15 SCP160-GFP::HIS3MX6 pYES-
97QmCh::URA3 

This study 
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RPY4896 
MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 
his3-11,15 scp160::klTRP1 pYES-97QmCh::URA3 
pUG34-GFP-SCP160 

This study 

RPY4916 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 SCP160KH1-12-GFP::HIS3MX6 This study 

RPY4919 
MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 
his3-11,15 SCP160KH1-12-GFP::HIS3MX6 pYES-
97QmCh 

This study 

RPY4960 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 SCP160KH1-6-GFP::HIS3MX6 This study 

RPY4961 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 SCP160KH1-7-GFP::HIS3MX6 This study 

RPY4962 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 SCP160KH1-8-GFP::HIS3MX6 This study 

RPY4980 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 SCP160KH1-9-GFP::HIS3MX6 This study 

RPY4981 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 SCP160KH1-10-GFP::HIS3MX6 This study 

RPY4982 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 SCP160KH1-11-GFP::HIS3MX6 This study 

RPY4983 
MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 
his3-11,15 SCP160KH1-9-GFP::HIS3MX6 pYES-
97QmCh 

This study 

RPY4984 
MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 
his3-11,15 SCP160KH1-10-GFP::HIS3MX6 pYES-
97QmCh 

This study 

RPY4985 
MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 
his3-11,15 SCP160KH1-11-GFP::HIS3MX6 pYES-
97QmCh 

This study 

RPY4990 
MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 
his3-11,15 scp160::klTRP1 pYES-97QmCh::URA3 
pUG34-GFP 

This study 

RPY4993 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 NAB3-GFP::HIS3MX6 This study 

RPY4994 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 pYES-97QmCh::URA3 pUG34-GFP This study 

RPY5000 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 scp160::klTRP1 NAB3-GFP::HIS3MX6 This study 
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RPY5072 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 NAB3-3xmyc::HIS3MX6 This study 

RPY5131 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 pYES-(-)ATG-97Q(CAG)mCh::URA3 This study 

RPY5132 
MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 
his3-11,15 scp160::klTRP1 pYES-(-)ATG-
97Q(CAG)mCh::URA3 

This study 

RPY5180 
MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 
his3-11,15 scp160::KANMX6 NAB3-
3xmyc::HIS3MX6 

This study 

RPY5221 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 pYES-97QmCh::URA3 pRS313-SCP160 This study 

RPY5222 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 pYES-97QmCh::URA3 pRS313-SCP160 This study 

RPY5223 
MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 
his3-11,15 scp160::klTRP1 pYES-97QmCh::URA3 
pRS313-SCP160 

This study 

RPY5224 
MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 
his3-11,15 scp160::klTRP1 pYES-97QmCh::URA3 
pRS313 

This study 

RPY5226 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 ltn1::HIS3MX6 pYES-97QmCh::URA3 This study 

RPY5229 
MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 
his3-11,15 scp160::klTRP1 ltn1::HIS3MX6 pYES-
97QmCh::URA3 

This study 

RPY5271 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 pYES-92Q(CAA)mCh::URA3 This study 

RPY5272 
MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 
his3-11,15 scp160::klTRP1 pYES-
92Q(CAA)mCh::URA3 

This study 

 

5.4 – Experimental procedures 

Experimental procedures for yeast work, induction of polyQ reporters, serial 

dilution assays, filter-trap binding, Scp160p depletion by Tet-off system, and mass 

spectrometry are described in the Research Article. 
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5.4.1 – Ploidy analysis by propidium iodide and flow cytometry 

 To collect cells for flow cytometry, yeast cultures were inoculated in YEPD to 

an OD600 of approximately 0.20 and grown at 30°C for 24 hours with aeration. After 24 

hours of growth, 2OD units of cells were collected, washed twice with 50mM Tris-HCl 

pH 8.0, fixed for 1hr at room temperature in 1mL 50mM Tris-HCl pH 8.0 containing 

70% ethanol, and stored at 4°C for up to one week before subsequent steps. 100uL 

of the fixed cells were pelleted by centrifugation for 10min at 17,115xg and washed 

twice with 1mL 50mM Tris-HCl pH 8.0. Cell pellets were resuspended in 0.5mL 50mM 

Tris-HCl pH 8.0 containing 20μg/mL heat-treated RNase A at 50°C for 2hr with gentle 

shaking. 20μL of Proteinase K (20mg/mL, Thermo Fischer Scientific #EO0491) at 

50°C for 1hr. Cells were pelleted by centrifugation at 17,115xg for 10min, washed 3x 

with 1mL FACS buffer (200mM Tris-HCl pH 7.5, 211mM NaCl, 78mM MgCl2), and 

stored at 4°C in FACS buffer. 500μL aliquots of the cells were pelleted by 

centrifugation at 17,115xg for 10min and resuspended in FACS-PI buffer (180mM Tris-

HCl pH 7.5, 190mM NaCl, 70mM MgCl2, 100μg/mL propidium iodide) and stained for 

1-2hrs at room temperature on a wheel in the dark. Samples were vortexed before 

acquisitions were made on the flow cytometer. 

 Acquisitions were made on a Beckmann Coulter CytoFLEX S flow cytometer 

equipped with 488nm, 638nm, 405nm, and 561nm lasers, and BP 510/20 GFP, BP 

515/20 eGFP, BP 595/20 DsRed, BP 585/15 dTomato, and BP 610/20 mCherry filters. 

Propidium iodide signal was measured using the ECD channel (638nm laser with BP 

610/20 mCherry filter) with a gain of 163. Signal was recorded for 30,000 events or 

10min at a flow rate of 30μL/min. Cell debris was excluded from analysis by gating 

from an FSC vs SSC density plot (P1). Cell clumps and doublets were further excluded 

from analysis by gating the P1 population using an ECD-Width (x-axis) vs ECD-Area 

(y-axis) density plot (P2). 

5.4.2 – Protein work and co-immunoprecipitation 

 Protein lysates were made from logarithmically growing cells by glass bead 

lysis. The appropriate OD600 unit of cells were collected by centrifugation at 1,258xg 

for 5min at room temperature. The cell pellets were washed with sterile water and flash 

frozen in liquid nitrogen. To lyse, cell pellets were resuspended in 15µL/OD600 lysis 

buffer (25mM Tris-HCl pH 7.5, 50mM KCl, 10mM MgCl2, 1mM EDTA, 5% glycerol, 

0.5% triton X-100, 1x protease inhibitors (Roche cOmplete, EDTA-free tablets)) and 



63 

lysed with glass beads by vortexing for 6x 2min cycles with 1min rest on ice in 

between. Glass beads and cell debris were separated from the lysate by centrifugation 

at 1,200xg for 2min at 4°C. Protein concentrations were determined by Bradford assay 

and lysates were stored at -20°C until use. 

 Methods for western blotting and filter-trap binding were performed according 

to standard methods and have been described in the Research Article. For 

immunoprecipitation experiments, 200-240µg of lysates were incubated with GFP-

Trap magnetic agarose beads (ChromoTek) according to manufacturer’s protocol. 

Briefly, 12-25µL of bead slurry was equilibrated by addition to 500µL dilution/wash 

buffer (10mM Tris-HCl pH 7.5, 150mM NaCl, 0.5mM EDTA). The beads were 

magnetically separated and washed twice more with dilution/wash buffer. Lysates 

diluted to 500µL in dilution/wash buffer were added to equilibrated beads. Binding 

proceeded for at least 1 hour at 4°C with end-over-end mixing. After binding, beads 

were magnetically separated and washed twice. Bound proteins were eluted from the 

beads by boiling at 95°C for 5min in 50µL of 1x Laemmli buffer. 

5.4.3 – RNA extraction and RT-qPCR 

To extract total RNA, cell pellets were re-suspended in lysis buffer (0.3M NaCl, 

10mM Tris-HCl pH 7.5, 1mM EDTA, 0.2% SDS) and lysed by glass beads in the 

presence of phenol/chloroform. Lysis was carried out at 4°C by vortexing for 10min. 

RNA was precipitated from the aqueous phase with the addition of RNase-free 

ethanol. Pelleted RNAs were re-suspended in DEPC treated water and stored at -

20°C. 

For RT-qPCR, 1μg of RNA was treated with RQ1 DNase (Promega) according 

to manufacturer’s protocol. DNase treated RNAs were subsequently used for cDNA 

synthesis using the High-Capacity cDNA Reverse Transcription Kit (Thermofisher). 

qPCR was performed in a OneStepPlus Real-Time PCR system with Fast SYBR 

Green Master Mix (Applied Biosystems). The polyQ reporter mRNAs were detected 

using primers targeting the mCherry-encoding nucleotide sequence. Relative RNA 

abundance was calculated using the ΔΔCt method with 18S or ACT1 as endogenous 

controls.  
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5.4.4 – Mild cycloheximide treatment 

To perturb translation, cultures were treated with a low dose of cycloheximide. 

The concentration of cycloheximide used (30ng/mL or 15ng/mL) was in the range 

reported to induce ribosome collision (Simms et al., 2017) and additionally determined 

by testing (data not shown). For the 97QmCh experiments, saturated overnight 

cultures in selective media + 2% glucose were inoculated into selective media + 1% 

raffinose and allowed to recover at 30°C for 1 hour with aeration. 97QmCh expression 

was induced by addition of galactose to a final concentration of 2%. After 1 hour of 

induction, cycloheximide was added to the cultures to a final concentration of 30ng/mL. 

Cells were collected at 3 hours after induction (= 2 hours after cycloheximide addition) 

and 7 hours after induction (= 6 hours after cycloheximide addition). Cells were 

collected as described above. 
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