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Abbreviations and Definitions

APTE “addition de photons par transferts d’énergie”

BCN bicyclo[6.1.0]nonyne

CASSCF complete active space self-consistent field

CD circular dichroism

CET cooperative energy transfer

COSY NMR correlation spectroscopy nuclear magnetic resonance

CPL circularly polarised luminescence

CS contact shift

DCC N,N ’-dicyclohexylcarbodiimide

DCM dichloromethane

DCTB trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile

DDQ 2,3-dichloro-5,6-dicyano-1,4-benzoquinone

DFT density functional theory

DIPEA N,N-diisopropylethylamine

DMF dimethylformamide

DMSO dimethylsulfoxid

DNA deoxyribonucleic acid

DOSY NMR diffusion-ordered spectroscopy nuclear magnetic resonance

DOTA 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid

DPA dipicolinic acid

DS downshifting

DTPA diethylenetriaminepentaacetic acid

EDTA ethylenediaminetetraacetic acid

XII



eq. equivalent(s)

ESA excited state absorption

ESI-MS electrospray ionisation mass spectrometry

FITC fluorescein isothiocyanate

Fmoc fluorenylmethyloxycarbonyl

HATU 2-(1H-7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronoium hexafluorphosphate

hfa 1,1,1,5,5,5-hexafluoropentane-1,4-dione

HOBt hydroxybenzotriazole

HPLC high performance liquid chromatography

ICP-MS inductively coupled plasma mass spectrometry

LDI-MS laser desorption ionisation mass spectrometry

LIS lanthanoid induced shift

Ln lanthanoid

MALDI-MS matrix-assisted laser desorption/ionisation mass spectrometry

mCPBA meta-chloroperbenzoic acid

MOCA metal-organic complex array

mRNA messenger ribonucleic acid

NBS N-bromosuccinimide

NHS N-hydroxysuccinimide

NIR near-infrared

NOE nuclear Overhauser effect

OLED organic light emitting diode

NMR nuclear magnetic resonance

PA photon avalanche

PCR polymerase chain reaction

PCS pseudocontact shift

PE polyethylene

PEG polyethylene glycol
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PHB polyhydroxybutyrate

ppm parts per million

PRE paramagnetic relaxation enhancement

QC quantum cutting

RDC residual dipolar coupling

RNA ribonucleic acid

ROA Raman optical activity

SA-ETU sensitiser-activator energy transfer upconversion

SAP square antiprism

SAS-ETU sensitiser-activator-sensitiser energy transfer upconversion

SOI spectral overlap integral

SMM single-molecule magnet

SPPS solid phase peptide synthesis

THF tetrahydrofuran

TFA trifluoroacetic acid

TLC thin layer chromatography

TSAP twisted square antiprism

UC upconversion

UCNP upconversion nanoparticle

UV ultraviolet

VCD vibrational circular dichroism

Some physical parameters have proven to be very useful for the quantification and the comparison of

the photophysical properties of different lanthanoid complexes. However, the actual definitions of these

parameters are not always consistent and in many studies not clarified, which obviously leads to inconsis-

tencies. During this thesis, the following definitions and correlations will be applied:

• The observable luminescence lifetime ⌧obs describes the experimentally determined time in which

the luminescence of the luminophore can be detected after excitation under certain conditions.

• In contrast, the radiative luminescence lifetime ⌧rad is usually not directly accessible. It describes

the luminescence lifetime of the luminophore in the theoretical case of the absence of any quenching

processes.

XIV



• Consequently, the intrinsic quantum yield �Ln
Ln = ⌧obs

⌧rad
describes the amount of photons which, after

successfully being transferred via the ligand to the lanthanoid, actually are emitted (and did not get

lost due to nonradiative deactivation processes).

• The absolute quantum yield �L
Ln refers to the ratio of photons emitted by the luminophore and

the photons absorbed by the sample. This parameter is of utmost importance for most applications

of lanthanoid luminophores. The absolute quantum yield can be derived experimentally via direct

measurement with the aid of standard compounds with a known quantum yield.

• Finally the sensitisation efficiency ⌘sens = �L
Ln

�Ln
Ln

describes the efficiency of the indirect sensitisation

via the antenna effect. Here, for example, the efficiencies of the internal transitions of the ligand and

the energy gap �E between the triplet state of the ligand and the excited state of the lanthanoid

play an important role.

For the sake of brevity, in this work it will not be explicitly discriminated between the terms “rare-earth

element” and “lanthanoid”. Consequently, for example cryptates containing yttrium will also be termed as

lanthanoid cryptates, though in the strict sense the correct denotation would be rare-earth cryptates.
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1 Introduction

Figure 1.1: Segment of the periodic table of elements showing the lanthanoids.

The term “lanthanoids” describes lanthanum and the following 14 elements of the periodic table (atomic

numbers 57 to 71). These metals share very similar chemical properties and special photophysical and

magnetic properties, which offer huge potential for a broad variety of applications and make these metals

indispensable in modern technologies. The lanthanoids are most stable as trivalent cations LnIII[1] with a

completely filled xenon core [Xe] = 1s22s22p63s23p63d104s24p64d105s25p6 and electronic configurations

[Xe]fx (0 x 14). Consequently all valence electrons are located in f-orbitals, which are gradually filled

throughout the series.[2][3]

5p 

5s 

4f 

Figure 1.2: Radial charge density of some orbitals of PrIII. Modified from reference [4].

The f-orbitals are spatially less extended than the energetically lower lying, filled 5s- and 5p-orbitals (see

Figure 1.2), leading to the unique situation in which the valence shell is shielded by chemically inactive

1



Chapter 1. Introduction

electrons and hindered from interacting with the surrounding of the lanthanoid ion. This peculiarity results

in the similar chemical properties and also some of the fascinating physical properties of the lanthanoids.[5]

Depending on how the valence electrons of a lanthanoid ion are distributed on the different f-orbitals, the

repulsion between the electrons can be higher or lower, resulting in electronic states of different energies.

These states can be described with Russell-Saunders term symbols of the form

2S+1L (1)

where S corresponds to the total spin quantum number, 2S+1 is the spin multiplicity and L is the total

orbital angular momentum quantum number, defined as the sum of all magnetic quantum numbers ml of

the involved electrons.[3][5] The resulting values for L are not given as numbers (0, 1, 2, 3, 4,...) but as

capital letters (S, P, D, F, G,...). For a detailed understanding of the electronic states of the lanthanoids,

also the spin-orbit coupling needs to be considered. This can be accounted for with an additional quantum

number J, which refers to the total angular momentum and can be derived from the quantum numbers L

and S as J = L+S, L+S-1..., |L-S|.
2S+1LJ (2)

Whenever the lanthanoid is surrounded with ligands, the ligand field effects result in further splitting into

2J+1 Stark levels.[2] Different from the situation found for transition metals, the ligand field splitting is small

compared to the spin-orbit splitting and does not always need to be considered in detail. Further splitting

of the Stark levels into two Zeeman levels mj each, can be observed whenever a magnetic field is applied.

With the aid of Hund’s rules the term symbols 2S+1LJ describing the electronic ground states of the free lan-

thanoid ions can easily be identified. The energetic order of the excited states is not that straightforward, but

could be calculated for lanthanoids in crystalline matrices or in aqueous solution (see Figure 1.3).[6][7][8][9][10]

Since the different relative energies of the electronic states of the various lanthanoids are largely indepen-

dent from the actual coordination situation around the metal, the values found for lanthanoids in model

environments are also suitable for describing the electronic situation in more complex lanthanoid com-

pounds.

2



Chapter 1. Introduction

Figure 1.3: Partial energy level diagram for selected trivalent lanthanoid ions. Downward arrows: prominent emitting
levels; double headed arrows: energy gap �E between emitting level and next lower level (in cm-1). Term
symbols 2S+1LJ on the left of the lanthanoid manifolds are aligned in height with the quantum number J,
the ones on the right with their multiplicities 2S+1. Figure adopted from reference [11].
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Chapter 1. Introduction

1.1 Photophysical properties

After population of the excited states of the lanthanoids, the back-transition to the electronic ground state in

many cases coincides with the emission of light. The lanthanoids’ emission spectra can be recorded in the

visible or near-infrared part of the electromagnetic spectrum (see Figure 1.4) and are substantially different

from the spectra typically observed in the case of transition metal complexes. They are highly characteristic

for the respective lanthanoid and largely independent from the actual chemical surrounding of the metal.

Furthermore the transition bands are very narrow, exhibiting only a few nanometers width.[12][5]

Figure 1.4: Typical emission spectra of some lanthanoids. Figure adopted from reference [13].

Both phenomena are a result of the shielding of the f-orbitals from the lanthanoids’ surrounding. Neither are

the excited or ground states of the lanthanoids significantly elevated or lowered in energy by interactions

with the ligand nor are the emission bands broadened by vibronic couplings. Consequently, ligand-field ef-

fects are usually considered to be negligible for the emission spectra of the lanthanoids. In the strict sense

this is not completely true, and indeed some recent studies treated the effects of controlled modifications in

the coordinative situation on the lanthanoid’s emission spectrum in detail.[14][15][16] Nevertheless, generally

the emission spectra of the lanthanoids can be considered to be “fingerprint-like” and can be assigned

to the respective metal unambiguously, offering optimal prerequisites for multiplexing applications. As the

luminescence of the lanthanoids is also intrinsically insensitive to photobleaching, the lanthanoids offer

versatile and robust possibilities for the labeling of molecular or nanoscaled structures, as they are e.g.

needed for the construction of bioassays or for the quantification of functional groups via luminescence.

Generally, the lanthanoids’ photophysical properties are highly beneficial for bioimaging applications and

related fields.[17][18]

All transitions which can be observed in the case of the trivalent lanthanoids are f-f-transitions and as such

Laporte-forbidden, some transitions are also spin-forbidden.[5] This results in very low extinction coefficients

(" below 10 M-1cm-1) and consequently in many cases direct excitation of the lanthanoids is not sufficiently

efficient.[5] After the lanthanoid has been excited, the Laporte-forbidden nature of the f-f-transitions also

makes the back-transition to the ground state slow, resulting in remarkably long luminescence lifetimes.

4



Chapter 1. Introduction

For example in the case of molecular EuIII or TbIII-complexes, lifetimes in the range of milliseconds can be

reached.[19][20] As these luminescence lifetimes significantly exceed the typical lifetimes of the autofluores-

cence of biological samples, lanthanoids are e.g. of outstanding suitability as luminophores for timegated

bioimaging. A typical problem encountered in the field of lanthanoid luminescence is the lanthanoids’ high

susceptibility towards multiphonon quenching processes, which can drastically reduce the luminescence

lifetime and quantum yields of lanthanoid compounds and materials.[20][11]

≈1
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Figure 1.5: Nonradiative deactivation of an excited YbIII ion via interaction with overtones of C-H or C-D oscillators in
the close proximity. Figure adopted from reference [11].

Upon interaction with high-energy, anharmonic oscillators such as O-H, N-H or C-H bonds the energy of

the excited lanthanoid ion can be transferred to the bond. The efficiency of such processes is directly linked

to the spectral overlap of the lanthanoid’s transitions and the overtones of the interfering oscillators[21], in

other words: The energy transfer from the lanthanoid to an oscillator is the more likely the better the reso-

nance between the two involved states is, and is the more likely the lower the involved overtone is.[11] The

most obvious strategy to suppress these multiphonon quenching processes is of course the exclusion of

high-energy oscillators from the close proximity of the lanthanoid, for example by designing the ligand in

a way that allows for a complete encapsulation of the metal by the ligand, and excludes the very efficient

O-H oscillators abundant in solvent molecules from the first coordination sphere around the lanthanoid.

However, in most cases the exclusion of quenching oscillators is not completely possible, as for exam-

ple most ligands used for the preparation of coordination compounds exhibit C-H bonds. In these cases

another strategy can improve the photophysical properties of the compound considerably: Whenever the

lighter atom of a quenching bond is replaced with an atom whose weight is more similar to the one of

the heavier atom, this results in an increase of the reduced mass of the oscillator and consequently in

a reduction of the vibrational frequency.[22][23][24] As shown in Figure 1.5 for C-H and C-D, this leads to a

situation in which a higher overtone is needed to depopulate the excited state of the lanthanoid, which

makes the process considerably less likely to occur. Furthermore, upon deuteration the anharmonicity of
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Chapter 1. Introduction

the oscillator decreases significantly, which makes the oscillator more similar to a harmonic oscillator and

consequently the selection rule for vibrational transitions in the harmonic model (Dn = ±1) more determi-

nant for the situation. Consequently, the overtones necessary for the energy transfer to the quenching

bond are more difficult to populate. Of course this strategy can also be applied to minimise the quenching

effects of solvent molecules, typically lanthanoid complexes are more luminescent in deuterated solvents.

This can also be employed to estimate the number of solvent molecules in the first coordination sphere

q.[25][26][27] Multiphonon quenching is especially problematic for the lanthanoids with transitions in the near-

infrared range of the spectrum. Until quite recently this limited strongly luminescent molecular lanthanoid

compounds to the complexes of EuIII or TbIII, which are quite robust against these processes. But as a con-

sequence of an improved understanding of the underlying processes, the availability of brightly luminescent

molecular compounds of various lanthanoids has considerably improved in the past few years. This results

also in an increased interest in more extraordinary luminescence phenomena exhibited by molecular lan-

thanoid complexes, such as energy transfer processes between lanthanoids[28] (or lanthanoids and d-block

metals[29][30]), aiming for the development of molecular systems for upconversion applications.

1.2 Magnetic properties

The unusual electronic situation found for the lanthanoids does not only lead to special photophysical

properties, but also results in unique magnetic properties, which differ substantially from the ones typically

found for transition metals. In the case of the lanthanoids, where the crystal field effects are too small to

lift the degeneracy of the valence orbitals significantly, the non-vanishing orbital angular momentum of the

electrons results in a large spin-orbit coupling. It leads to the splitting into different J-states and is much

stronger than the spin-orbit coupling usually observed for the transition metals. The ligand field effects do

indeed lead to a crystal-field splitting, but the resulting energetic differences only amount to a few hundred

wavenumbers. So in the case of a quantum mechanical analysis of the situation, the crystal field effects

can be treated as a perturbation of the splitting resulting from the spin-orbit coupling, which is reverse to

the strategy usually applied for a corresponding treatment of the transition metals.[31][3]

Differently to the case of the photophysical properties of the lanthanoids, where the influence of the crystal

field splitting is so small that it usually can be neglected, in the case of the magnetic properties these effects

are the ones which are decisive for the observed phenomena. Upon interaction with the ligand field, every

J-state is splitting into 2J+1 sublevels mJ for even J, and (2J+1)/2 sublevels for uneven J.[34] This situation

gives rise to considerable anisotropies of the magnetic susceptibility of the lanthanoids, which makes them

highly suitable for different applications. By far the most widely established application is the use as contrast

agents in bioimaging, most prominently for MRI.[35][36] But also in different fields such as the construction of

single-molecule magnets (SMMs)[37][32][38] or the use as paramagnetic shifts reagents in NMR[39][40][41][42][43]

lanthanoids have high potential. Since the effects responsible for the actual manifestation of the crystal

field splitting and the resulting magnetic properties are complex, for an exact quantitative treatment of

the situation found in a particular lanthanoid compound, elaborate “complete active space self-consistent
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Figure 1.6: Different interactions and the resulting energy splittings in the case of a TbIII in a cubic symmetrical
coordination environment.[32] Figure adopted from reference [33].

field” (CASSCF) calculations are necessary.[44][45][46] Nevertheless, a qualitative approach based on purely

electrostatic considerations has proven to be surprisingly successful in the rationalisation of the properties

of various paramagnetic lanthanoid compounds.[47] In the simplest version of this model, the basic shapes

of the electron densities of the lowest J states of the different lanthanoids are derived from the orbitals

occupied in the respective situation, which can easily be deduced from Hund’s rules. The resulting shapes

of the f-electron density can be prolate (axially elongated, for example YbIII or ErIII), oblate (equatorially

expanded, for example DyIII or NdIII) or isotropic (spherical) (see Figure 1.7(a)). When in the next step

the coordination symmetry of the ligand scaffold is considered, it is quite easy to estimate if the ligand

will be suitable to stabilise the ground state via repulsive interactions between the electron distribution of

the LnIII and the coordinating ligand. This results in a highly anisotropic situation, as it is targeted for in

the design of single-molecule magnets (see Figure 1.7). Based on these simple considerations it is for

example possible to gain a qualitative understanding of the extraordinary suitability of axially-coordinating

ligand environments to prepare DyIII-based single-molecule magnets.[48][49]

Without losing the general simplicity of this model, it is also possible to explain more specific observations

like the energetic order of the split J states of a lanthanoid compound, simply by considering the anisotropy

of individual states mJ instead of the total electron density distribution.

In NMR experiments, the presence of an unpaired electron of paramagnetic substances leads to charac-

teristic changes in the observed spectra. Some of the underlying effects are the paramagnetic relaxation

enhancement (PRE)[50], residual dipolar couplings (RDC)[51], contact shifts (CS) and pseudocontact shifts

(PCS)[50][52]. In the case of the contact shifts and the pseudocontact shifts, the interaction of the unpaired

electron spin of the paramagnetic center with the probed nuclear spins leads to changes of their resonance

frequency, and consequently to a shift of the corresponding signals.

Paramagnetic shift reagents are an example for a long known application based on these effects, where the
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(a) Schematic representation of the 4f-orbital electron distribution for the LnIII. Figure
adopted from reference [47].

(b) Schematic representation of the interaction of an oblate (left) or a prolate (right) elec-
tron density distribution with crystal fields that typically leads to an energetic stabilisation
of the mJ state. Figure adopted from reference [47].

Figure 1.7: Based on the shape of the electron densities of the f-orbitals occupied in the case of the lowest J states
of the different lanthanoids, the corresponding electron distributions can be derived. In an easy but
surprisingly successful model the magnetic properties can be rationalised based on consideration of the
electrostatic interactions with different crystal field environments.[47]

distribution of the signals of complex organic molecules over a wider ppm range helps to interpret the spec-

tra, or where chiral shift reagents help to determine the ratio of two enantiomeric forms of a compound.[53][54]

For nuclei more than four bonds apart from the paramagnet, the contact shifts �C are usually assumed to

be negligible, so that the observed shift ��obs approximately equals the pseudocontact shifts �PC :

��obs = �C + �PC ⇡ �PC (3)

�PC can be correlated with the position of the nucleus relative to the paramagnetic center. This is usually

expressed in polar coordinates by the distance r and the angles ⇥ and ⌦.

If the anisotropy of the magnetic susceptibility �X (which can be described as tensor consisting of axial

and rhombic components �Xax and �Xrh) is known, the shift of the signals can be correlated with the

position of the nucleus relative to the paramagnetic center. This is usually expressed in polar coordinates
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with the distance r , and angles ⇥ and ⌦ relative to the principal axis of the �X -tensor:[55][56]

�PC =
1

12⇡r 3

h
�Xax

�
3cos2⇥� 1

�
+

3

2
�Xrh

�
sin2⇥cos 2⌦

�i
(4)

Consequently, the paramagnetic shifts observed in NMR spectra can provide valuable structural informa-

tion. A theory for the quantitative analysis of the paramagnetic shifts was introduced by Bleaney in 1972.[57]

Based on some assumptions he concluded that the components �Xax and �Xrh of the anisotropy of the

magnetic susceptibility could be calculated from the second order ligand field parameters B2
0 and B2

2, re-

spectively, and a tabulated parameter describing the lanthanoid under study, the so-called Bleaney constant

CJ :

�Xax = �µ0µ2
BCJB2

0

10 (kBT )2 (5)

�Xrh = �µ0µ2
BCJB2

2

30 (kBT )2 (6)

with the vacuum permeability µ0, Bohr’s magneton µB, the Boltzmann constant kB and the temperature

T . Though the second order ligand field parameters B2
0 and B2

2 are usually not easily accessible in the

case of lanthanoid complexes, at least for isostructural complexes of different lanthanoids Bleaney’s theory

seemingly offers an appealing simplification and is still quite commonly used, though several studies al-

ready showed that drastic deviations from the predicted behaviour can be observed in many cases, as the

assumptions made by Bleaney are often not appropriate.[58][59][60] For example, Bleaney’s theory assumes

the splitting of the crystal field to be small compared to kT (about 204 cm-1 at 293 K)[61], which at room

temperature would lead to a comparable population of all states, completely neglects crystal field terms of

orders higher than two[62] and assumes the ligand field to be independent of the coordinated lanthanoid ion.

To obtain reliable results usually a more careful, analysis and also detailed information about the solution

structure of the compound under study are needed. In many cases such an analysis of the paramagnetic

properties was possible, and this also led to some studies in which lanthanoid tag molecules could e.g. be

used for improving the understanding of biomolecules in solution.[63][64][65]

Since of course the underlying physical phenomena are generally the same for paramagnetic NMR and

single-molecule magnets, the use of the extremely well established NMR spectroscopy could also be help-

ful for research towards improved SMMs. However, exchange between both communities seems to have

been quite limited until now, and there are surprisingly few examples in which NMR data has been used

for a rationalisation of the SMM-behaviour of a lanthanoid coordination compound.[66][67][68][69]

9



Chapter 1. Introduction

1.3 Coordination compounds of the lanthanoids - role of the ligand

The unusual electronic situation, in which the valence electrons are shielded by the filled 5s and 5p or-

bitals from potential interaction partners, is also dominating the coordination chemistry of the trivalent

lanthanoids. Generally, the interaction between lanthanoids and their ligands is considered to be almost

completely electrostatic, since at the encountered situation covalent contributions are almost completely

prevented. As a consequence, the interactions between metal and ligand are non-directional and labile.

Lanthanoid complexes in solution are typically of low stability and readily dissociate, the common strategy

to circumvent or at least reduce this problem is the use of chelating ligands.[70] Even more challenging is

the suppression of conformational rearrangement processes. In solution almost all lanthanoid complexes

are present as a mixture of different interconverting isomers. This leads to severe difficulties in the context

of various potential applications of lanthanoid coordination compounds, and of course also in the design

of experiments for the improvement of the fundamental understanding of the physical properties of the

lanthanoids. The aspects outlined above govern the ligand design for lanthanoid coordination compounds

and make it substantially different to the strategies commonly applied for transition metal complexes.

When the photophysical properties of a lanthanoid coordination compound are to be studied, the ligand in

most cases gains an additional and essential function. As already described in chapter 1.1, the Laporte-

forbidden character of the f-f-transitions makes their extinction coefficients very small (" below 10 M-1cm-1),

and in most cases direct excitation is not feasible or at least not efficient.

energy 

S1 

S0 

T1 

2S‘+1L‘J‘ 

2S+1LJ 

ISC 

ΔE"

organic ligand 

phos. 

lanthanoid 

hν1"

hν2"

Figure 1.8: Indirect excitation of a lanthanoid ion via the so-called “antenna effect”. The organic ligand absorbs
light, which results in the population of the excited singlet state S1, and subsequently via an intersystem
crossing (ISC) the energy is transferred to the excited triplet state T1. The direct depopulation back to the
electronic ground state, which would be attended by the emission of light (phosphorescence, phos.), is
in principle possible, but as it is slow in a competing process a significant fraction of the energy can be
transferred to the coordinated lanthanoid.
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The so called “antenna effect” allows to bypass this problem in an elegant fashion:[71][5][20][72] To do so the

lanthanoid is brought in close proximity to chromophoric (usually aromatic) groups of the ligand, which

can easily and with a conventional light source be excited to a higher electronic level (usually a singlet

state). After internal intersystem crossing (ISC) a triplet state of the ligand is populated. As the direct

transition back to the singlet ground state is forbidden, the triplet state can be relatively long-lived, which

makes an energy transfer to the coordinated lanthanoid feasible. Basically such an energy transfer can

follow two possible mechanisms: the Dexter[73] or the Förster[74] mechanism. Since a Dexter-type energy

transfer includes the exchange of electrons, it does require the overlap of orbitals of donor and acceptor.

Consequently it is not likely to occur between a ligand and a lanthanoid with shielded valence electrons.

The Förster-type energy transfer, in contrast, is a dipole-dipole interaction and as such does not need any

covalent interaction between donor and acceptor. As a result this mechanism can usually be assumed

to be at least the dominant contribution to the energy transfer from the ligand to the lanthanoid. In any

case, as this indirect excitation does not involve f-f-transitions it can be much more efficient than the direct

excitation. After the population of the excited state several scenarios are possible. Firstly, if the energy

gap between the triplet state of the ligand and the excited state of the lanthanoid is too small, thermal

activation can be sufficient to result in a back transfer of the energy to the ligand. As a rule of thumb this

process is negligible whenever the energy gap DE exceeds 2000 cm-1. Secondly, the excited state can be

depopulated via nonradiative deactivation, as described in chapter 1.1, and last but not least the (in most

cases) desired radiative deactivation under emission of light of the characteristic wavelengths can occur.

The ligand does not only play a major role in the population of the excited state of the lanthanoid, it is

also of utmost importance for the suppression of nonradiative deactivation processes and to ensure that a

sufficient fraction of the excited lanthanoid ions relaxes under emission of light.[11] This can be accounted

for in several aspects of ligand design. Whenever lanthanoid complexes in solution are studied, solvent

molecules (more precisely: their high-energy, anharmonic oscillators, e.g. O-H bonds) in the first coordina-

tion spheres around the lanthanoid are especially efficient quenchers. An obvious consequence for ligand

design is to exclude solvent molecules as effectively as possible from the close proximity of the lanthanoid.

Unfortunately also the ligands usually possess bonds which can act as highly efficient quenchers, such

as C-H bonds, which cannot be controlled that rigorously as they are an integral component of the ligand.

As already described in chapter 1.1, the detrimental effect of these bonds can be reduced by exchanging

the proton with a heavier atom. Chemically, this results in either halogenation or deuteration of the ligand

scaffold. From a physical perspective (per)halogenation would be more efficient, but this usually cannot

be realised synthetically.[75][76][20] In contrast, deuteration of the ligand does not influence its chemical prop-

erties and is consequently the much more feasible approach to improve the properties of a given ligand

scaffold. Comparative studies of protiated ligands and their deuterated derivatives already proved the high

impact of this strategy and also helped to improve the quantitative understanding of multiphonon quenching

processes.[77][11]

Though the ligand of a lanthanoid coordination compound does not affect the shape of the emission spec-

trum of the lanthanoid strongly, for the reasons outlined above the right choice of the ligand is nevertheless

extremely important for the preparation of highly luminescent lanthanoid complexes. Together with the

general difficulty of the preparation of lanthanoid complexes which are stable in solution (vide supra), this
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results in a situation where only a limited range of ligand scaffolds have proven to be of a broader appli-

cability for the preparation of luminescent lanthanoid complexes. Some ligand scaffolds with typical coor-

dination motifs are shown in Figure 1.9. As a consequence of the lanthanoids’ character as hard Lewis
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Figure 1.9: Representative examples of ligand architectures which have proven to be suitable for the preparation of
lanthanoid coordination compounds. References are given in the text.

acids, nitrogen and oxygen are obvious choices as coordinating heteroatoms in ligands for lanthanoids.
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For example this makes the chelating aminopolycarboxylic acids highly suitable coordination motifs for lan-

thanoids. EDTA[78][79][80] (ethylenediaminetetraacetic acid) and DTPA[81][35] (diethylenetriaminepentaacetic

acid, pentetic acid) are two prominent examples of such compounds, which indeed allow for the preparation

of stable lanthanoid compounds. Whereas Gd-DTPA is a very common contrast reagent for MRI, the lan-

thanoid complexes of EDTA are not so common. But similarly to EDTA, IAM[82][83][84] (chromophoric group:

2-hydroxyisophtalamide) and 1,2-HOPO[85][83][84] (chromophoric group: 1-hydroxy-pyridin-2-one) can be

considered derivatives of ethylene diamine. Compared to EDTA, the acetic acid groups have been re-

placed with more complex functionalities which allow for indirect excitation of the coordinated lanthanoid,

an improved exclusion of solvent molecules from the first coordination sphere, and an overall improved con-

trol over the structure of the complex in solution. A vast group of lanthanoid ligands are the �-diketonates

such as acac, dbm or tfc.[86][87] They are usually prepared as tris complexes, Lewis base adducts of the

tris complexes, or tetrakis complexes and have proven to be of high potential for various applications. The

synthesis of the ligands is relatively easy and a plethora of functionalisations and modifications have al-

ready been realised. Typically the lanthanoid complexes of �-diketonates are kinetically labile and readily

undergo exchange processes in solution.[88] DPA[89][90][91][92] is the parent compound for another class of

versatile ligands for lanthanoids, such as the terpy[93][94][95][96] or BPTA[97][98] scaffolds, which again can

make use of aminopolycarboxylic acid groups for the stable coordination of the lanthanoid. Generally, aro-

matic nitrogen containing heterocycles[99] are a common ligand motif in lanthanoid coordination chemistry

and have proven to be highly suitable chromophores for the indirect excitation via the antenna effect. An

especially prevalent chromophoric group for lanthanoids are the 2-2’-bipyridines[100][101]. For example the

corresponding dicarboxylic acid bpya[100][102][103] is a surprisingly efficient sensitiser for TmIII luminescence,

and also the 2-2’-bipyridine carrying two iminodiacetic acid groups in ortho position were found to be use-

ful scaffolds for the preparation of luminescent compounds of EuIII, TbIII and even SmIII, though SmIII is a

lanthanoid quite susceptible towards multiphonon quenching.[100][96] Often 2-2’-bipyridine units are incor-

porated into more complex ligand structures, such as the glutamic acid derivative Glu-bpy2.[104] Due to

the high structural similarity to 2,2’-bipyridine, it is not so surprising that phenanthroline phen can also

be used as an efficient antenna ligand for the lanthanoids.[105][106] Compared to bpy-based ligands, the

more extended chromophoric system allows for excitation at higher wavelengths. If no additional chelating

ligands are used, the lanthanoid complexes of phen readily dissociate in solution[105], but for example in

combination with additional �-diketonates the stability of the complexes can be significantly improved.[107]

Analogously to the bpy unit, also the phenanthroline unit can be used for the coordination of lanthanoids

as a dicarboxylic acid derivative[108] or as building block in more complex chelating ligands.[109] Complexes

of 8-Quinolinol and its derivatives are well known for their application as OLED emitters[110][111], but they

are also another example for N-heterocyclic building blocks which serve as coordinating and sensitising

units in lanthanoid coordination chemistry. Typically the energy of the triplet states of these chromophores

amounts to around 19000 cm-1, which is not enough energy for the sensitisation of lanthanoids emitting in

the visible region of light, but sufficient in the case of the near-infrared emitting lanthanoids.[112][113][114][115]

An extremely well studied and established group of ligands for lanthanoids are based on the 1,4,7,10-

tetraazacyclododecane-N,N’,N”,N”’-tetraacetic acid (DOTA), which can be seen as a macrocyclic aminopoly-

carboxylic acid. The complexes of DOTA and the lanthanoids are extremely stable against decomplexa-
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tion, and stability constants up to 1028 have been determined.[116][117][118] Since 1989 the corresponding

GdIII complex has been used as MRI contrast agent and is still one of the most prescribed substances for

this purpose. The synthesis of the DOTA-type ligands from the cyclen ring and four pendant arms makes

a wealth of derivatives easily accessible and for example allows for the introduction of different antenna

moieties. A typical issue of lanthanoid coordination compounds which results from the absence of sig-

nificant ligand field effects is the low configurational and conformational stability of these compounds in

solution. The corresponding interconversion processes have been especially well studied in the case of

Figure 1.10: Schematic representation of the rearrangement processes relevant for DOTA-type complexes. The pen-
dant arms can be arranged clockwise (⇤) or counterclockwise (�) and the ring can be arranged with
a clockwise (����) or counterclockwise (����) helicity. This results in the presence of two diaster-
eomers, each being present as an enantiomeric pair, and the presence of two isomers in solution, the
monocapped Square Antiprism (SAP) and the monocapped Twisted Square Antiprism (TSAP). The ratio
of the isomers is dependent on the coordinated lanthanoid ion and the modifications introduced to the
DOTA-scaffold. Figure adopted from reference [119].

the DOTA-based ligands (see Figure 1.10).[120][121] Substantial effort has been invested to modify the lig-

and scaffold in order to suppress these processes, but this was not completely successful until now.[119]

Consequently, whenever a sample of a DOTA-type complex is studied in solution it has to be considered

as a mixture of interconverting isomers. Since the small structural variations resulting from these intercon-

version processes do not significantly affect the emission spectra of the complexes, they are usually not

perceived as a substantial problem for the application as luminophores. But obviously the intrinsic flexibility

of most lanthanoid complexes is a substantial problem for studies targeting an improvement of the basic

understanding of the physics of the lanthanoids, and the strategical improvement of their coordination com-
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pounds. Additionally, there are also some highly interesting applications for which lanthanoid coordination

compounds have enormous potential, but which are drastically hindered by the typical interconversion pro-

cesses outlined above. Important examples for such applications are the use of paramagnetic lanthanoid

complexes for the structural elucidation of biomolecules (see chapter 1.2) or the phenomenon of circularly

polarised luminescence (vide supra). Consequently, there is a general need for lanthanoid coordination

compounds with a more well-defined structure in solution. A ligand scaffold which indeed allows for the

preparation of extremely well-defined compounds in solution are cryptands consisting of three bipyridine

units which are arranged around the coordinated lanthanoid in a macrobicyclic fashion.[122]

Figure 1.11: Evolution of cryptands used for the preparation of lanthanoid coordination complexes. From the macro-
bicyclic crown ether [2.2.1] over the tris-bipyridine bpy3 to the oxidised scaffold bpy3O2 the rigidity of
the corresponding complexes increases, allowing for an improved control over the exact coordination
situation.

Originally, the cryptands were developed as macrobicyclic form of the crown ethers with improved stabili-

ties and selectivities for the corresponding alkali metal complexes.[123][124] Soon these ligands were found

to yield extraordinarily stable complexes with lanthanoids[125] and also the photophysical properties of Eu-

[2.2.1] were studied.[126] But obviously the three-dimensional crown ether [2.2.1] is not a well-suited ligand

for the preparation of luminescent lanthanoid complexes, since the scaffold does not contain any chro-

mophoric groups which may serve as antenna. Furthermore it leaves the coordinated lanthanoid ion quite

accessible for solvent molecules, which for example in water results in a quite efficient nonradiative de-

activation and low luminescence efficiencies. A straightforward improvement was the partial or complete

exchange of ether moieties with aromatic heterocycles, which for example resulted in the development of

the bipyridine based cryptand bpy3.[127] As expected, lanthanoid ions incorporated into this scaffold can be

excited indirectly via the bipyridine moieties and the decent photophysical properties of these compounds

have been studied in detail.[122][128][129]
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(a) Crystal structure of the terbium cryptate Tb-
bpy3 with one chloride anion (large dotted circle)
and one water molecule (oxygen atom: black cir-
cle) as additional ligands coordinated directly to the
lanthanoid. Hydrogen atoms are omitted for clarity.
Figure adopted from reference [130].

(b) 1H NMR spectra (200 MHz, D2O) of the lanthanoid cryptates
Tb-bpy3 (top) and Eu-bpy3 (bottom). Figure adopted from ref-
erence [122].

Figure 1.12: Crystal structure (a) and 1H NMR (b) of the lanthanoid cryptates Ln-bpy3 point towards the presence of
several interconverting conformers in solution. In Figure (a) small white circles represent carbon atoms,
small dotted circles represent nitrogen atoms and the big white circle represents the TbIII cation.

Chemically the three bipyridine units of bpy3 are equivalent, but as the crystal structure of Tb-bpy3
[130]

reveals they are not arranged around the coordinated lanthanoid in a symmetric fashion (see 1.12(a)). In

the presence of chloride as additional anionic ligand, the angle between the adjacent bipyridine moieties

is strongly widened up, with both bipyridine groups in positions A and C pointing away from the chloride.

The third bipyridine is tilted towards the bipyridine in position A, resulting in an distorted T-shape arrange-

ment. Whereas the bipyridines are clearly distinguishable in the crystal structure, the 1H NMR spectra

(see 1.12(b)) consist of only a few signals, which indicates that on the NMR time scale the bipyridines are

seemingly equivalent, and gives evidence of the flexible nature of the ligand bpy3 in solution. Of course

the bipyridine groups are by far more rigid than the ether moieties of the macrobicyclic crown ethers (e.g.

[2.2.1]), but for the preparation of reliably rigid lanthanoid cryptates an additional modification is needed.

A modification which has proven to be especially useful for this purpose is the introduction of N-oxides to

one of the bipyridine units of bpy3. The resulting ligand bpy3O2 (see Figure 1.11)[131][132] allows for the

synthesis of lanthanoid complexes of outstanding stability and rigidity, which have already proven to be

highly suitable for basic research on the lanthanoids and have bright prospect for future applications. A

closer look on the structural properties of the complexes Ln-bpy3O2 reveals the reason for the outstanding

rigidity of these complexes and their unprecedented conformational stability. As documented by structural

data from crystallography and DFT calculations (see Figure 1.13), similarly to the cryptates Ln-bpy3, the
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Figure 1.13: Crystal structure (thermal ellipsoid plots, 50% probability level) of Lu-bpy3O2. Grey: carbon, blue:
nitrogen, red: oxygen, dark green: lanthanoid ion, light green: counter anion. Hydrogen atoms and
external chloride ions are omitted for clarity.[133]

lanthanoid is placed virtually in the center of the cavity surrounded by the three bipyridines. But in this case

the cavity enclosed by the three bipyridines also contains the two N-oxides, which are sterically pushed

apart by the lanthanoid. This results in a distortion of the corresponding pyridines and induces a steric

strain, which rigidifies the whole structure. Since the space in the cavity is limited, the N-oxides are locked

in place, and cannot move to another position, which fixes the complexes in one conformational arrange-

ment. Experimental evidence for the rigidity of the lanthanoid cryptates is given by their NMR spectra,

which typically consist of sharp signals whose numbers reflect the C2-symmetry of the complexes, and do

not show any isomerisation or interconversion processes. The cage-like arrangement of the ligand around

the lanthanoid, and its high rigidity result in an extremely high kinetic stability of these cryptates against

decomposition processes, even under extreme conditions. For example, in earlier experiments a sample of

the europium complex of bpy3O2 in pure TFA did not show significant decomposition even after a month.

This extraordinary stability does not only make the purification of the compounds via HPLC feasible, but

also makes the cryptates lanthanoid coordination compounds of outstanding reliability.

Unlike the oxidised bipyridine, the non-oxidised bipyridines are not orientated perpendicular to the symme-

try axis but slightly tilted, which makes the overall structure helical, gives rise to a stereogenic element and

makes the lanthanoid cryptates chiral.

Typically, the cryptates are assembled as sodium cryptates which are obtained from a macrobicyclisation

reaction of a nitrogen-fused macrocyclus of two bipyridines and the dibromide of the oxidised bipyridine in

the presence of an excess of sodium carbonate (see Figure 1.14). The sodium cation serves as template
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Figure 1.14: Preparation of the sodium cryptates from the corresponding bipyridine building blocks in the presence
of sodium carbonate and subsequent conversion into the lanthanoid cryptates.

ion which makes the macrobicyclisation more favourable than the competing polymerisation reactions. An-

other strategy typically applied for this purpose is the high dilution of the reactants in a large amount of

solvent. After purification, the sodium cryptates can be transformed into the complexes of the various
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Chapter 1. Introduction

lanthanoids and can be purified via recrystallisation or via HPLC. Since the building blocks of the stan-

dard cryptates bpy3O2 are achiral and neither during the macrobicyclisation nor the complexation reaction

any chiral discrimination occurs (see Figure 1.14), the corresponding lanthanoid cryptates are obtained as

racemic mixture. Almost all research on lanthanoid cryptates Ln-bpy3O2 dealt with such racemic mixtures,

except for one study which showed that a strategic modification of the bipyridine-N-oxide moiety subjected

to macrobicyclisation makes the preparation of enantiopure lanthanoid cryptates possible.[134] This allows

for an unprecedented degree of control over the total configuration around the lanthanoid and can become

crucial for the use of cryptate-based molecules in the study of chiral systems e.g. most biomolecules, but

also opens up new possibilities in fascinating fields of research such as circularly polarised luminescence

(CPL).
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Figure 1.15: Typically cryptates Ln-bpy3O2 are obtained from synthesis as racemic mixture, but a modification of one
of the bipyridine units allows for the synthesis of enantiopure derivatives.

As expected for an assembly of bipyridines, the cryptates bpy3O2 are well suited antenna chromophores

for the indirect excitation of lanthanoids (see Figure 1.8). They absorb light of wavelengths between 300

and 320 nm, and after excitation internal conversion and intersystem crossing processes result in the pop-

ulation of a triplet state with an energy of about 20 500 cm-1, which is sufficient for the sensitisation of many

lanthanoids.

Compared to the parent compounds Ln-bpy3, the accessibility of the coordinated lanthanoid for external

ligands, like solvent molecules, is further reduced in the case of the complexes Ln-bpy3O2, which creates

improved conditions for the preparation of highly luminescent complexes. As mentioned above, deuter-

ation is a commonly applied strategy for the improvement of the luminescence properties of lanthanoids

in organic ligand scaffolds (see Figure 1.5) and this has also proven to be very successful in the case

of the lanthanoid cryptates. The stepwise assembly of the cryptates from bipyridine building blocks also

allowed for the preparation of several partly deuterated derivatives, whose comparative characterisation

gave important insights into the fundamental photophysical principles of molecular lanthanoid compounds.

For example, a detailed analysis of the luminescence lifetimes of the complexes led to the calculation of

the individual quenching contributions of different C-H oscillators,[135] and the photophysical data collected

for the SmIII-complexes also showed, that the so-called energy gap law[136][137][138] is not always applica-

ble in the case of molecular lanthanoid complexes.[139] During these studies, especially in the case of

the near-infrared emitting lanthanoids, luminophores with outstanding luminescence lifetimes and absolute
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Chapter 1. Introduction

quantum yields could be realised.[133][140] Principally the use of these complexes is not limited to the fun-

damental research on lanthanoid photophysics but also offers a huge potential for different applications

where stable and reliable luminophores are needed. Even more importantly, the extraordinary rigidity and

the well defined structure of the lanthanoid cryptates are also of high potential for various fields of research

and application, which typically suffer from the usually high structural flexibility of molecular lanthanoid

compounds in solution. An important example is the use of paramagnetic lanthanoid complexes for the

structural elucidation of biomolecules in solution (see chapter 1.2). An ideal tag molecule for such an ap-

plication should allow for exactly one spatial arrangement of the paramagnetic center and the biomolecule

under study, so that only one set of shifted signals is recorded and an unambiguous assignment is possi-

ble. Most molecules actually applied for this purpose are based on intrinsically flexible scaffolds which are

modified aiming to control this flexibility, which results in obvious problems and ambiguities. Tag molecules

based on oxidised cryptates bpy3O2 would allow for a general preclusion of any interconversion processes,

and would consequently provide improved conditions for studies as outlined above. But obviously an appli-

cation for such a purpose (and generally most applications as luminophores e.g. in bioimaging) rely on a

covalent attachment of the lanthanoid complex to other molecules or materials. For such a purpose some

kind of initial functionalisation of the ligand scaffold is necessary. In the case of the more flexible scaffold

bpy3, such modifications have already been implemented successfully some time ago, and even led to

the development of commercially available products based on lanthanoid cryptates. In the case of the

ligand scaffold bpy3O2 this could not be realised until now, which is the major obstacle for highly promis-

ing and interesting applications of the extremely stable and well-defined lanthanoid complexes of the type

Ln-bpy3O2.
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Figure 1.16: Scaffold consisting of two fused cryptates bpy3, allowing for the controlled synthesis of homo- and
heterobimetallic lanthanoid complexes.[141]

Until now the cryptates have been established mainly as scaffolds for the reliable and highly controlled com-

plexation of one lanthanoid ion. But as another recent study showed, a cryptate scaffold can indeed be

extended in a way that it accommodates two lanthanoids in separate but jointed cavities. Though the ligand

scaffold employed for this purpose (see Figure 1.16) is based on the non-oxidised cryptate bpy3, complexes

of decent stability and improved rigidity could be realised and, most importantly, in many cases a purifi-

cation via HPLC is possible. This allows for the highly controlled synthesis of heterobimetallic complexes,

and consequently for the targeted combination of two lanthanoids and their respective special properties in

one molecule. This is highly interesting e.g. in the context of bimodal imaging. Such compounds are also
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Chapter 1. Introduction

very promising for the research on energy transfer processes between lanthanoids. In solid materials and

nanoparticles containing lanthanoids there is a plethora of examples for such processes like upconversion,

quantumcutting or downshifting. The realisation of these photophysical processes in molecular systems

would open up new potentials and, even more importantly, could allow for an improved understanding of

the underlying physics. Differently from e.g. nanoparticles or solid materials, a molecular system can be

designed and realised in a highly controlled fashion, and can allow for the targeted modification of the

parameters influencing the phenomenon under study. Consequently they should allow for a better under-

standing of these complex processes. The well-defined structure of the cryptates, and for example the

fixed distance between both coordinated lanthanoid ions, offers best preconditions for such studies.
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2 Objectives

Cryptates have already proven to be an excellent coordination scaffold for the lanthanoids. The efficient

shielding of the coordinated metals, and the possibility of efficient suppression of nonradiative deactivation

processes make these lanthanoid complexes outstanding luminophores. Due to their rigidity and the inert-

ness of the complexes against decomposition, these complexes are highly reliable and offer best conditions

for a wide range of applications. However, the realisation of such applications has been hampered due to

the non-availability of reactive functionalisations at the periphery sphere of the ligand.
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Figure 2.1: Examples for concrete applications based on the covalent attachment of luminophores, which can benefit
from highly reliable lanthanoid complexes such as the cryptates Ln-bpy3O2.

One of the aims of this work is to overcome this limitation by developing a basis for the versatile functional-

isation of lanthanoid cryptates for various applications which require a covalent and reliable attachment

of the cryptate to another structure or molecule. The range of possible and high potential applications is

vast, including e.g luminescent or paramagnetic tag molecules for biomolecules, or reagents for the quan-

tification of functionalisations on materials. The following steps are necessary to establish a basis for such

applications:

• Preparation of a derivative of the ligand bpy3O2 with an initial functionalisation of versatile reactivity

at the periphery of the scaffold, and preparation of the corresponding lanthanoid cryptates

• Examination of the influence of the initial functionalisation upon the photophysical, magnetic and

general properties of the cryptate scaffold (e.g. as consequence of the influence of the functionali-

sation upon the symmetry of the molecule)

• Development of a general synthetic strategy of broad applicability for the attachment of various

functional groups
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Chapter 2. Objectives

• Preparation and characterisation of lanthanoid cryptates carrying different functionalities

• Utilisation of the functionalised cryptates for different applications e.g. as luminescent tag molecules

Tb Eu Yb Eu Yb 

Eu Tb Tb Yb Yb 

Yb Tb Eu Tb Eu 

Figure 2.2: Concept of a molecular nanocode based on lanthanoid cryptates.

An especially fascinating application would be the development of a molecular nanocode assembled from

highly reliable lanthanoid complexes, functionalised as amino acid. Such molecules would give unprece-

dented possibilities in the field of molecular encoding and the corresponding monomers themselves would

be highly interesting for a variety of biological applications. Based on a successfully realised initial func-

tionalisation (see above) the realisation of a molecular nanocode based on lanthanoid complexes shall be

accomplished with the following steps:

• Preparation of lanthanoid cryptates functionalised with a protected amino acid, ready for SPPS

• Analysis of the potential influence of the functionalisation on the properties of the coordinated lan-

thanoid, e.g. the emissive properties

• Validation of the reactivity of the amino acid being unaffected by the attached lanthanoid cryptate

• Optimisation of the peptide coupling procedures for the new amino acids

• Preparation of a short nanocode

• Validation of the feasibility of the readout of the nanocode

The basic luminescence properties of the lanthanoid cryptates have already been studied thoroughly. The

special properties of these complexes also offers optimal conditions for the fundamental study of more

exotic, yet highly innovative and upcoming phenomena, such as circularly polarised luminescence (CPL)

or energy transfer processes in molecular lanthanoid compounds. In the course of this work the knowledge

about the lanthanoid cryptates shall be broadened into these aspects of photophysics and consequently

pave the way for future applications.

The intrinsically low stability of lanthanoid complexes is a major obstacle in the preparation of enantiopure

lanthanoid complexes. The rigid, well defined structure of the lanthanoid cryptates in solution offers best

prerequisites for the preparation of enantiopure derivatives which, after the following steps, will allow for

an improved understanding of the intrinsic properties of the lanthanoid cryptates Ln-bpy3O2 and open up

new possibilities for innovative applications:
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• Initial study of the properties of luminescent lanthanoid complexes of a cryptate scaffold which is

prepared in an enantiopure fashion

• Separation of lanthanoid cryptates prepared as racemic mixture into pure enantiomers

• Characterisation and study of the enantiopure samples with chiroptical techniques such as circular

dichroism and circularly polarised luminescence

If a lanthanoid is “functionalised” with another lanthanoid in the close vicinity, energy transfer processes

such as upconversion can become observable. While such processes can easily be observed e.g. in

lanthanoid nanoparticles, there is only a very limited number of examples for molecular architectures

in solution. Some time ago a lanthanoid cryptate “functionalised” with another lanthanoid cryptate was

reported[141], such a dicryptate offers best prerequisites for the study of these phenomena. In order to

provide a basis for a systematic study upon the feasibility of energy transfer processes in cryptate based

ligand scaffolds, the following steps have to be accomplished:

• Improvement of the accessibility of the dicryptate ligand scaffold

• Preparation of dicryptates with promising combinations of lanthanoids

• Development of strategies for an efficient search for less obvious, yet promising combinations of

lanthanoids

• Modification of the ligand towards new multimetallic cryptate derivatives
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3 Lanthanoid Cryptates as Covalently

Attached Tag-Molecules

3.1 Introduction

Many of the applications for which the lanthanoids and their special physical properties offer optimal pre-

requisites rely on a covalent attachment of the lanthanoid to additional functionalities or materials. Some

examples where this is of obvious importance are fluorescence immunoassays, protein localisation or

tracking studies, and the structural elucidation of biomolecules via paramagnetic NMR. A variety of reliable

reactions has been well established for similar purposes, Figure 3.1 shows some examples.
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Figure 3.1: Well established conjugation reactions. Differently to the other examples depicted herein, the interaction
of biotin and avidin is not covalent. Yet it is extremely strong, so that in many cases this interaction can
be considered to be of comparable reliability.
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Chapter 3. Lanthanoid Cryptates as Covalently Attached Tag-Molecules

Many of these reactions target functional groups which can be found in residues of amino-acids, for exam-

ple the primary amine of lysine (reactions A to C) or the thiol of cysteine (reactions D and E). This makes

the corresponding reactions highly suitable for the covalent modification of proteins. Another important ex-

ample is the so-called click-reaction between azides and alkynes (reaction F). Apart from these relatively

simple organic reactions, there are also many more biochemical strategies to obtain a reliable connection,

like for example the SNAP-tagging[142] (reaction G), based on the special reactivity of an artificial derivative

of the O6-alkylguanine alkyltransferase, or the non-covalent but extremely stable attachment of biotin to

avidin (reaction H).

Figure 3.2 shows examples of lanthanoid complexes modified with an attached application-specific func-

tionalisation. The phenanthroline-derivative BCPDA[143] (tag a) combines an efficient antenna ligand with

two chlorosulfonyl groups which readily react with primary amines of proteins. As such, Eu-BCPDA was

the first example of a luminescent lanthanoid label for immunoassays and an important improvement com-

pared to the DELFIA® system. The DELFIA® system employs non-luminescent lanthanoid labels, and after

the immunoreaction the lanthanoids are cleaved from the tag-molecules and transformed into luminescent

complexes which can then be quantified. This makes the procedure more tedious compared to the direct

quantification, and the whole process more susceptible towards inaccuracies caused by contamination of

EuIII.[144] Cryptates have also been applied as luminescent tag molecules in immunoassays, for example as

biotin functionalised complexes (tag b).[145] As a more specialised example, functionalised cryptates have

also been commercialised as HTRF® kits for the study of protein/protein interactions. For this purpose indi-

vidually functionalised EuIII and TbIII cryptates are combined and the Förster energy transfer between the

tags, attached to different proteins, is monitored. In example c, modified EDTA complexes with lanthanoids

were used to distinguish between two variations of the thiopurine S-methyltransferase gene, which differ

in one nucleotide of the encoding DNA sequence (“single nucleotide polymorphism”).[146] Via a phosphate

ester a short oligodesoxyribonucleotide conjugate was attached to the EDTA moiety, which was either de-

signed to complement the wild type (in the case of the TbIII-complex) or the mutant (in the case of the EuIII-

complex) of the DNA sequence. Similarly a phenanthroline was attached to an oligodesoxyribonucleotide

conjugate, which complements the next 15 bases of the gene. When all three labels are added to a sample

of the gene under study, only the lanthanoid complex with the fitting oligodesoxyribonucleotide conjugate

will be bound to the DNA, hence be in close proximity to the phenanthroline antenna (which in any case will

be bound to the DNA), and consequently will be luminescent. Their special photophysical properties make

the lanthanoids highly suitable for cellular imaging, example d shows one of the molecules developed for

this purpose.[147][148] The complex is based on a macrotricyclic derivative of the IAM ligand[149] (see Fig-

ure 1.9), which is modified with a disulfide to carry two functional units.[150] Via a peptide bond a short PEG

carrying a recognition structure, such as a benzyl guanine, is attached in a robust fashion. Additionally,

via a disulfide a cell penetrating peptide (in this case nonaarginine) is bound, which delivers the complex

into the cell and is then cleaved. In the cell the luminophore labels the proteins carrying the corresponding

target structure, which can be confirmed via FRET measurements. Another lanthanoid complex used for

cellular imaging is molecule e, which is an example for a zinc-sensitive luminescent chemosensor.[151] In

the form shown in Figure 3.2, the DTPA-derivative is only moderately luminescent, with a quantum yield of

below 1%. But if ZnII is added, the coordination of ZnII by the attached quinoline-containing second binding
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CPP: cell penetrating peptide
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Figure 3.2: Examples for lanthanoid complexes with covalently attached functionalisations for various applications.
References are given in the text. The protonation of the ligands is depicted as presented in the original
publications. For the sake of clarity not all Ln-L bonds are shown.

pocket leads to an improvement of the antenna characteristics of the overall ligand, and consequently to

a significant amplification of the luminescence and a resulting quantum yield of 7.4%. Apart from the in
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general beneficial characteristics of lanthanoid complexes, the reversibility of the luminescence enhance-

ment, the insensitivity of the complex to changes of the pH and the relatively high excitation wavelength of

340 nm offer best prerequisites for biological applications. Another field of applications which can greatly

benefit from the special properties of the lanthanoids are mass spectrometry based quantifications of large

biologically relevant molecules, such as proteins or specific DNA sequences in cellular samples. The high

chemical similarity of the lanthanoids allows for the preparation of sets of mass spectrometry labels which

show identical chemical behaviour and will only differ in their mass, therefore offering best prerequisites for

the simultaneous quantification of different target molecules in one sample. For the actual quantification of

the labeled molecules, ICP-MS (inductively coupled plasma mass spectrometry) is often the best choice,

since it is a method which shows extremely high sensitivities for the lanthanoids. Molecule f was developed

for such applications and was used for the quantification of DNA.[152][153] The maleimide group attached to

the DOTA scaffold allows for a covalent attachment to thiol-modified oligonucleotides, complementing the

DNA sequence under study. Together with an oligonucleotide carrying an avidin-group, which is designed

for the hybridisation to another part of the sequence, the Tb-labeled DNA target can be quantified directly

as a sandwich hybridisation assay or after an additional step of ligation mediated amplification. Example

g is a tag molecule for the structural elucidation of proteins in solution.[154] Two of the pendant arms of the

DOTA-type ligand carry disulfide groups which can react with thiol groups of the protein under study, as for

example found in cysteine groups. For such studies typically amino acids in suitable areas of the protein

are replaced with cysteines to bind the tag molecule. The twofold attachment improves the selectivity for

the designed binding position over naturally occurring cysteines in the protein, and also makes the spatial

arrangement of the tag molecule relative to the biomolecule more well-defined. The two remaining pendant

arms of the ligand carry oxidised pyridines. Compared to the corresponding derivative with two carboxylic

groups in this position, these groups suppress the tendency of the complex to undergo the isomerisation

processes which are typical for DOTA compounds. Furthermore, the pyridine-N-oxides serve as antenna

and allow for luminescence based localisation of the tag molecules.

Apart from examples c and e, where a change in the first coordination sphere around the lanthanoid

leads to variations of the photophysical properties which are actually monitored, all of the applications out-

lined above could benefit from the enormous kinetic and coordinative stability of the oxidised lanthanoid

cryptates bpy3O2. Though the selection of the examples presented herein is somewhat arbitrary, it does

indeed reflect the fact that the application of luminescent lanthanoids until now is still pretty much limited to

the strongly luminescent lanthanoids EuIII and TbIII. Since the oxidised lanthanoid cryptates have already

proven to be highly suitable scaffolds for the enhancement of the still underrepresented lanthanoids which

are more susceptible towards multiphonon quenching, they are promising candidates for overcoming this

limitation.

The only fundamental hindrance for the use of the highly beneficial properties of the oxidised bipyridine

cryptates for various applications is the obvious lack of any reactive functionalisation at the outer sphere

of the ligand, which is precondition for the introduction of further functional groups. The nature of the ini-

tial functionalisation is not critical, as long as the group is sufficiently reactive to attach linkers or different

functionalities. In contrast, the position of the functionalisation can have a crucial impact onto the overall

properties of the lanthanoid complexes, and consequently has to be chosen with care.
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Figure 3.3: Symmetry of the cryptates bpy3O2: the C2-symmetry axis converts pairs of equivalent pyridines into each
other. The coordinated metal ion is omitted for clarity.
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Figure 3.4: Resulting cryptates obtained from macrobicyclisation and complexation of the lanthanoid depending on
the choice of the pyridine, to which the initial functionalisation is introduced. If the functionalisation is
introduced to the macrocyclic building block (top, strategy A), several diastereomers will be obtained,
whereas the functionalisation at the dibromide of the oxidised bipyridine (bottom, strategy B) will only
yield one pair of enantiomers, which cannot be distinguished in the absence of additional chiral elements.

From a synthetic point of view, the introduction of an initial functionalisation in 4-position of one of the

pyridines is most straightforward. As outlined in chapter 1.3, the cryptates bpy3O2 are C2-symmetric (see

Figure 3.3) and exhibit axial chirality. Necessarily such a modification will lower the overall symmetry of

the scaffold, but with regards to the chirality of the system, the choice of the pyridine which is modified will

have a drastic impact upon the properties of the final product (see Figure 3.4). If the functionalisation is

introduced to one of the four pyridines of the macrocyclic component (strategy A), upon macrobicyclisation

29



Chapter 3. Lanthanoid Cryptates as Covalently Attached Tag-Molecules

four distinguishable arrangements of the building blocks will result in the formation of an equal number

of products. Importantly, there will be several diastereomers which can have distinctly different chemical

properties and for example will have different NMR spectra. This would at least in part compensate the

well-defined nature of the core scaffold bpy3O2, and make the corresponding compounds of only very lim-

ited interest for any application in the context of biological samples, where additional stereogenic elements

will further complicate the situation. In contrast to that, if the functionalisation is introduced to the dibromide

of the oxidised bipyridine (strategy B), only a pair of enantiomers will result and consequently this is the ad-

vantageous choice. The characterisation of the resulting cryptates will be by far more straightforward, and

for example will offer better conditions for the study of the general influence of the functionalisation (e.g.

the decrease of symmetry) on the properties of the lanthanoid cryptates. Many applications in the analysis

of biomolecules or related fields would strongly benefit from the use of enantiopure tag molecules. In this

case the whole potential of the well-defined structure of the cryptates bpy3O2 can be utilised. Indeed, the

preparation of enantiopure derivatives of these cryptates is possible, and fortunately the synthetic strategy

applied for this purpose generally also allows for the modification of the methyl groups at the periphery of

the scaffold.[134] In the resulting enantiopure tag molecules (see Figure 3.5) the C2-symmetry of the core

structure would be retained and the dual functionalisation would allow for a highly reliable and well-defined

attachment to the target structure. The properties which can be expected for such a compound make it an

ideal tag molecule e.g. for the structural elucidation of proteins via paramagnetic NMR. Despite the high

potential of such a tag molecule no corresponding ligand could be realised until now.
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Figure 3.5: A twofold functionalised version of the already known enantiopure cryptates[134] would open up potential
for especially interesting applications.

As outlined in section 1.2, the magnetic properties, such as the anisotropy of the magnetic susceptibility, of

a lanthanoid coordination compound are by far more sensitive towards subtle changes in the exact spatial

arrangement of the coordinating atoms around the lanthanoid center, than the photophysical properties are.

Consequently, analytical methods which probe these properties are very valuable when the influence of

modifications introduced to a ligand scaffold are to be studied. Especially accessible and well established

are of course NMR experiments, which can give valuable information about the overall magnetic situation.

Studying the magnetic properties of a lanthanoid coordination compound with these techniques has two

additional benefits. Firstly, though the fundamental principles of magnetism are rather complicated, in the

case of an NMR-based analysis they can be discussed in a framework which is familiar to most chemists.

Secondly, and more importantly, a corresponding analysis is very similar to the process applied for the

structural elucidation of biomolecules via paramagnetic NMR. Consequently, such an analysis can directly

give valuable information on the applicability of a given lanthanoid complex as a tag molecule for such

purposes. The information collected during the detailed analysis of the NMR spectra of the complex could
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directly be used in the case of such an application.

From the different paramagnetic effects which can be observed in an NMR spectrum, the pseudocontact

shifts (PCS, see chapter 1.2) can be considered to allow for the most straightforward analysis, at least

in the case of lanthanoid coordination compounds.[155] Since they take effect through space, their impact

upon the observed overall shift is dependent on the spatial arrangement between the paramagnetic cen-

ter and the nucleus whose NMR signal is under study. Another effect, namely the contact shift, also has

an influence upon the chemical shifts (see equation 3). The contact shift operates through bonds, which

limits its operation range to nuclei quite close to the paramagnetic center. Similarly to the pseudocontact

shifts, also the contact shifts contain structural information, but they are less often used to obtain structural

constraint for the structure under study.[156] Usually the contact shift is assumed to be negligible for nuclei

which are more than four bonds apart from the paramagnetic center and for some lanthanoids the contact

contributions are known to be generally small. So indeed in many cases it is a reasonable approximation

to neglect the contact shifts �C and to treat the observed change of the chemical shifts ��obs as purely

caused by the pseudocontact shift �PC :

��obs = �C + �PC ⇡ �PC (3)

The pseudocontact shift �PC can generally be calculated from the atomic coordinates of the nuclei under

study, and parameters describing the tensor of the anisotropy of the magnetic susceptibility. Depending on

the choice of the form in which the coordinates are used and how the tensor is parameterised the used

equation used can differ.[56] When the parameters describing the anisotropy of the magnetic susceptibility

are known, with any of these equations for any point in space the corresponding pseudocontact shift can

be calculated. A quite commonly used form, which is valid in the principal magnetic axis system, is shown

in equation 4. Here the coordinates of the nuclei are given in polar coordinates r , ⇥, ⌦ and the tensor is

described with its axial and rhombic components �Xax and �Xrh, respectively:

�PC =
1

12⇡r 3

h
�Xax

�
3cos2⇥� 1

�
+

3

2
�Xrh

�
sin2⇥cos 2⌦

�i
(4)

Bleaney’s theory offers one approach for the calculation of the tensor of the anisotropy of the magnetic

susceptibility. But as stated in section 1.2, to do so some assumptions which are not universally applicable

are necessary. If possible, a direct extraction of these values from experimental data is clearly preferential.

Prerequisite to do so is a sufficiently accurate structural model of the molecule under study. In a first step

the pseudocontact shifts, extracted with the aid of a diamagnetic reference compound, are assigned to

the nuclei of the molecule, and for every nucleus an individual equation according to (4) is set up. Subse-

quently, in a global fit the parameters for the tensor can be extracted. Finally, a theoretic NMR spectrum

can be calculated from the coordinates and the tensor parameters to verify that they are suitable to repro-

duce the experimental data, which means that they are describing the magnetic properties of the complex

properly.

This strategy has already proven to be highly suitable for the analysis of lanthanoid cryptates bpy3O2 and
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very helpful for studies covering different aspects of their special properties.[135][134][157] Again, the well-

defined structure of the compounds is highly beneficial and allows for a relatively straightforward assign-

ment of the signals to the different nuclei and allows for the preparation of a suitable diamagnetic reference

compound.
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3.2 Conception of the Project
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The necessary prerequisite for the utilisation of the cryptates Ln-bpy3O2 as covalently attached tag mole-

cules is the realisation of a cryptate scaffold carrying a reactive functionality at the periphery of the

ligand. In order to maintain the beneficial properties of the parent system, the functionalisation should be

introduced in a way that the symmetry related properties are affected as little as possible. Starting from

this key intermediate the following steps will be:

• Investigation of the influence of the initial modification at the periphery of the ligand on the

photophysical and magnetic properties of the coordinated lanthanoid

In order to study in how far the properties of the coordinated lanthanoid are affected by the peripheral func-

tionalisation, several lanthanoid complexes of this new ligand will be prepared and investigated thoroughly.

Apart from the luminescence properties a special focus will be laid on NMR studies of paramagnetic com-

plexes, since these compounds allow for a deeper understanding of the solution structure of these com-

pounds. Furthermore such results may pave the way for future applications in the structural elucidation of

biomolecules.

• Development of a general synthetic strategy of broad applicability for the attachment of var-

ious functional groups

If the highly beneficial properties of the lanthanoid cryptates can be proven to be unaffected by the external

functionalisation, the next step is to find a flexible and adaptable strategy to introduce diverse functionali-

sations to the scaffold, targeting for different applications.

• Synthesis of a new difunctionalised and enantiopure lanthanoid cryptate

As already mentioned, especially for application in the field of the structural elucidation of biomolecules

via paramagnetic tag molecules, the use of difunctionalised and, even more importantly, enantiopure com-

plexes would be highly beneficial. Another aim of this project is the realisation of a scaffold which meets

these requirements.
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3.3 Results and Discussion

3.3.1 Synthesis and characterisation of amino-functionalised lanthanoid

cryptates

A significant proportion of the work presented herein will be concerned with the preparation of lanthanoid

cryptates carrying various functionalities. As starting point for these studies a cryptate carrying some kind

of initial functionalisation is needed. While the nature of the initial functionality is of secondary importance,

the positioning is enormously important to maintain as many of the beneficial properties of the unfunction-

alised cryptates Ln-bpy2O2 (as already illustrated in Figure 3.4). To do so, the functionalisation should be

introduced at the oxidised bipyridine moiety, which is used for assembly of the cryptate as dibromide of the

N,N ’-dioxide (see Figure 3.6).
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Figure 3.6: General retrosynthetic approach for the preparation of functionalised cryptates bpy3O2.

Upon macrobicyclisation and during preparation of the dibromide of the N,N ’-dioxide, the functionalisation

needs to be protected with a suitable group. In this case a methyl ester of a carboxylic acid was chosen

as protected functionality. Methyl esters can be expected to tolerate the reaction conditions necessary for

the preparation of the cryptate scaffold and the cleavage conditions typically applied for these groups (e.g.

saponification with hydroxides in methanol) should be compatible with the assembled cryptate. The result-

ing key building block of the synthesis of a functionalised cryptate scaffold (see Figure 3.7), the methyl-ester

of the 6,6’-dimethyl-2,2’-bipyridine-4-carboxylic acid can be prepared by a Stille coupling reaction.[158] Due

to an improved purification procedure this could be done conveniently in large scale with 70% yield. Us-

ing mCPBA the bipyridine can be oxidised to give the corresponding N,N ’-dioxide in 84% yield, and can

then be transformed into the dibromide using a modified Boekelheide rearrangement (66% yield). The last

step towards the dibromide of the N,N ’-dioxide is another oxidation, which was performed in analogy to

a method developed for the oxidation of electron deficient pyridines by Caron et al.[159] (78% yield). Sub-
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sequently the macrobicyclisation with the macrocyclus consisting of two bipyridines could be performed

to yield the methyl ester-functionalised sodium cryptate. A cleavage of the methyl ester using NaOH in

CH3OH is indeed possible, yet initial studies showed that the resulting carboxy-functionalised cryptate is

a very sluggish reactant.[160] At the same time some kind of linker between the cryptate core scaffold and

the reactive functionality might become beneficial for further uses. After a number of unsuccessful trials

the methyl ester-functionalised cryptate was found to undergo a substitution reaction in the presence of an

excess of neat ethylene diamine, and after subsequent column-chromatography the amino-functionalised

derivative Na-1 could be obtained.
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Figure 3.7: Schematic representation of the synthesis of the amino-functionalised sodium cryptate Na-bpy3O2-en
(Na-1).[161]

The amino-functionalised sodium cryptate Na-bpy3O2-en (Na-1) is a highly suitable starting point for open-

ing up possibilities in various fields which could benefit from covalently attached lanthanoid cryptates. The

initial functionalisation as a primary amine allows for various and versatile transformations which are well-
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established in organic synthesis and biochemistry and is often used in conjugation chemistry. Of practical

interest is of course also the relatively good availability of Na-1. Apart from the macrobicyclisation reac-

tion, which is inherently problematic, all steps proceed with yields above 65% and preparation of Na-1 on a

multigram scale is possible. This makes Na-1 a solid basis for the development of functionalised lanthanoid

cryptates for various applications. As the functionalisation is placed at the oxidised bipyridine unit, the effect

of the functionalisation upon the general geometric properties of the scaffold is minimised and no diastere-

omers are formed during synthesis (see Figure 3.4). Nevertheless, the lowering of the symmetry from C2

to C1 can of course have an impact on the overall properties of the ligand and its lanthanoid complexes.

A comparative study of the lanthanoid complexes Ln-1 and the parent compounds Ln-bpy3O2 is the most

direct and easiest way to access whether the peripheral functionalisation and the loss of symmetry have

an impact on the properties of the lanthanoid complexes.
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Figure 3.8: Schematic representation of the preparation of the amino-functionalised lanthanoid cryptates Ln-bpy3O2-
en (Ln-1).

In preliminary studies during my master thesis[162] I could show that the lanthanoid complexes Ln-1 can be

prepared in close analogy to the unfunctionalised complexes (Figure 3.8). In principle, these reactions can

be performed in CH3OH or CH3CN, whereby the solubility of the starting compounds is typically lower in

CH3CN, so that under the conditions commonly applied the reaction mixture is not a clear solution. This

might be considered detrimental, but as the lanthanoid complexes obtained from the reaction are typically

even less soluble in this solvent and precipitate from the reaction mixture, this does not have a negative

impact on the reaction. At the same time CH3CN itself is a less suitable ligand for LnIII than CH3OH,

so the solvation shell formed by CH3CN around a LnIII will be easier to remove, which makes the com-

plexation reaction faster and CH3CN the better choice for the solvent. Compared to the formation of the

unfunctionalised cryptates Ln-bpy3O2, slightly higher equivalents of the lanthanoid salt were used herein

to compensate for the fact that also the amino-group might coordinate LnIII and thereby hinder the ex-

change of the lanthanoid for Na+. For purification lanthanoid cryptates can be recrystallised from CH3OH.
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To do so the crude product is dissolved in a minimum of the solvent, filtered over cotton and overlayered

with Et2O. Typically the material isolated from this procedure has three chloride anions as counter ions, but

also the coordination of complex anions of the type [Ln(Cl)5(H2O)x] could be observed.[135] An alternative

purification, which allows for better control over the coordinating ions, is reversed phase HPLC, during

which the initially bound anions are reliably replaced with TFA-. This allows for a better control over the

exact composition of the isolated material and is favourable if different compounds are to be compared, as

it is the case in this study. Following these considerations complexes of five different lanthanoids and the

amino-functionalised ligand scaffold were prepared, purified and studied. Fortunately the HPLC method

already established for the purification of complexes Ln-bpy3O2 was found to be suitable also for the com-

plexes Ln-1. The different lanthanoids were chosen in a way that different important aspects of the overall

properties of the complexes Ln-1 can be studied. EuIII and TbIII are lanthanoids typically employed for

luminescence applications. As a lanthanoid which emits in the visible and in the near-infrared part of the

electromagnetic spectrum, also the luminescence of SmIII is highly interesting. It is studied less frequently,

as SmIII complexes are prone to undergo nonradiative deactivation processes and are typically only weakly

or not luminescent. However, cryptates have already proven to allow to circumvent this problem.[139] YbIII

can be considered to be the best established near-infrared emitting lanthanoid. Apart from that, due to their

specific paramagnetic character, YbIII complexes are also of special potential for the structural elucidation

via NMR spectroscopy. The LuIII complex was chosen as reference compound for both, the photophysical

and the paramagnetic properties. In Table 3.1 representative experiments performed for the synthesis of

the different complexes Ln-1 are summarised.

Table 3.1: Representative experiments performed for the synthesis of Ln-1. All analytical HPLC runs were performed
with program A. In the course of this project subsequently two different HPLC setups A and B were avail-
able.

Ln(X)3 n(Na-1) V(MeCN) reaction time yield
Rf, analytical HPLC

[µmol] [mL] [h] [%] setup A[1] setup B[1]

Sm-1 SmCl3 · 6 H2O 13.0 15 65 42 11.8 min -

Eu-1 EuCl3 · 6 H2O 44.0 17 70 23 11.7 min -

Tb-1 TbCl3 · 6 H2O 37.7 17 40 27 11.4 min -

Yb-1 YbCl3 · 6 H2O 37.7 15 186 26 11.4 min 12.7 min

Lu-1 Lu(OTf)3 25.0 15 168 51 - 12.6 min
[1] see page 208 for details.

The yields were found to be fluctuating between 8% to 42% from experiment to experiment. In tendency

they are lower than for the parent system Ln-bpy3O2, where typically yields between 60 and 70% can

be realised after HPLC purification. The preparative HPLC runs indicate that in many cases the crude

reaction mixture contained a relatively big fraction of unreacted Na-1, even after elongated reaction times.
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Attempts were made to monitor the progress of the reaction by taking samples from one reaction mixture

after different periods of time, but due to the inhomogeneity of the reaction mixture it was not possible

to obtain representative samples. Noteworthy the highest yields were obtained in the case of the experi-

ment in which the sodium cryptate was reacted with Lu(OTf)3. Perhaps trifluoromethanesulfonates of the

lanthanoids generally allow for better yields from this reaction, this could be a starting point for a more

systematic improvement. Until now this was not necessary due to the relatively good availability of Na-1.

The retention times of the complexes Ln-1 during analytic HPLC do not show a systematic shift com-

pared to the unfunctionalised analogues. The complexes Ln-1 were subsequently analysed via NMR

spectroscopy and mass spectrometry (MALDI-MS and high resolution ESI-MS, see page 232 and the fol-

lowing). The 1H NMR spectra of Lu-1, Sm-1, Eu-1 and Tb-1 are shown in Figure 3.9 to Figure 3.12. The
1H NMR spectrum of Yb-1 will be discussed in chapter 3.3.4. Though LuIII is diamagnetic the spectrum

of the corresponding amino-functionalised cryptate is rather complicated to interpret. Since many of the

protons of the molecule are very similar in terms of their chemical and magnetic properties, many signals

are grouped in three extended multiplets. In the two multiplets between 4.2 to 3.9 ppm and 3.9 to 3.6 ppm

doublets with coupling constants characteristic for the benzylic protons of lanthanoid cryptates can be

identified. The signals of the CH2-groups of the linker can be identified quite easily. One of the signals is

observed as a triplet at 3.23 ppm, the other one can be observed at about 3.75 ppm as part of one of the

multiplets.

Figure 3.9: 1H NMR spectrum (400 MHz, CD3CN) of the amino-functionalised lutetium cryptate Lu-1. Unambiguously
identified solvent signals are marked with an asterisk.

SmIII is only slightly paramagnetic, yet the effects upon the 1H NMR spectrum are significant. Since they

are closer to the paramagnetic center, the signals of the benzylic protons experience a stronger shift than

the ones of the aromatic protons and can here be found shifted more downfield. Compared to the spectrum

of Lu-1 the signals are better separated from each other, and despite the paramagnetism of SmIII they are

very sharp, so that an integration of the signals is more straightforward in this case. The C1-symmetry is

nicely reflected in the signals of the benzylic protons now typically being observable as pairs of two similar

doublets (corresponding to one proton each), which are close by or even overlapping. Again the signals of
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the ethylene linker can easily be identified. As expected they do not experience a strong shift compared to

the diamagnetic analogue and can be observed at 3.66 and 3.15 ppm, respectively.

Figure 3.10: 1H NMR spectrum (400 MHz, CD3OD) of the amino-functionalised samarium cryptate Sm-1. Unam-
biguously identified solvent signals are marked with an asterisk.

In the 1H NMR spectrum of Eu-1 the signals of the benzylic protons are now even more separated from

the middle region of the spectrum and experience a considerable broadening. In the case of the very

paramagnetic Tb-1 the signals of the 1H NMR spectrum are distributed between 230 and -330 ppm and

the signals at extreme shifts are so broad that a reliable integration is no longer possible.

Figure 3.11: 1H NMR spectrum (400 MHz, CD3OD) of the amino-functionalised europium cryptate Eu-1. Unambigu-
ously identified solvent signals are marked with an asterisk.
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Figure 3.12: 1H NMR spectrum (500 MHz, CD3OD) of the amino-functionalised terbium cryptate Tb-1. Unambigu-
ously identified solvent signals are marked with an asterisk.

Figure 3.13: 19F NMR spectra (376 MHz, CD3OD) of amino-functionalised lanthanoid cryptates Ln-1: Sm-1 (top),
Eu-1 (middle) and Tb-1 (bottom).

The 19F NMR spectra of the complexes Sm-1, Eu-1 and Tb-1 are shown in Figure 3.13. They all show

broadened signals, which strongly points towards the coordination of TFA- anions directly to the LnIII. The
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broadening of the signal correlates to the paramagnetism of the lanthanoid. Upon standing, an additional

sharp signal was emerging which might be caused by the presence of an ester formed from TFA and the

solvent (CD3OD).
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3.3.2 Photophysical properties

As outlined in chapter 1.3, the ligand around the coordinated lanthanoid is of critical importance for the

preparation of luminescent molecular lanthanoid compounds. The most important aspect is the utilisation

of the ligand as antenna for the indirect sensitisation of the lanthanoid. Two characteristics of the ligand

are especially important in this context: The spectral absorption of the ligand and the energy of the ex-

cited triplet state from which the energy can be transferred onto the lanthanoid. The spectral absorption

behaviour of the ligand can easily be studied by a simple UV/Vis experiment. Since the absorption co-

efficients of the lanthanoids are so very small, the UV/Vis spectra are effectively independent from the

coordinated lanthanoid. In principle any lanthanoid complex of the ligand under study can be used for such

an experiment. In contrast to that, for the study of the triplet state a complex of a lanthanoid which cannot

accept the energy from the triplet state should be used, commonly a good choice (as reference for small

lanthanoids) is the photoinactive LuIII.

(a) Normalised UV/Vis spectra of Eu-1 (black, solid line)
and Eu-bpy3O2 (red, dotted line) in CD3OD.

(b) Normalised low-temperature steady state emission
spectrum (�exc = 315 nm, T = 77 K) of Lu-1 in a glassy
CH3OH/EtOH matrix (1:1, v/v). Figure modified from ref-
erence [160].

Figure 3.14: Ligand-centered photophysical properties of the amino-functionalised cryptates Ln-1.

Figure 3.14(a) shows the UV/Vis spectrum of the europium complex of the amino-functionalised ligand

under study together with the UV/Vis spectrum of the unfunctionalised analogue, further UV/Vis spectra of

studied complexes Ln-1 can be found in the appendix (see Figure 9.1, page 259). Comparison of the spec-

tra reveals the virtually identical absorption behaviour of both complexes. For both complexes the maximum

of the absorption can be observed at 305 nm and a shoulder can be observed at around 319 nm. Based

on these results, just as it is the case for the complexes Ln-bpy3O2, the amino-functionalised derivatives

can be expected to be efficiently sensitised at wavelengths between 305 and 320 nm.

From the low-temperature steady state emission spectrum of Lu-1 (Figure 3.14(b)) an estimate for the

zero-phonon T1!S0-transition E(T1) of around 20400 cm-1 could be obtained, which coincides with the re-

spective value obtained for Lu-bpy3O2. Consequently, the amino-functionalised antenna can be expected

to be able to indirectly excite all LnIII for which the unfunctionalised analogue has been found suitable. In
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conclusion, the analysis of the ligand-centered photophysical properties of the complexes Ln-1 reveals no

significant influence of the introduced peripheral functionalisation.

Figure 3.15: Normalised high resolution steady state emission spectrum of Eu-1 (CD3OD, �exc = 320 nm). Insert:
Magnification of the range between 570 and 600 nm.

In the next step the lanthanoid-centered emissive properties of the complexes were studied. The spectrum

of the EuIII complex is especially interesting, as the special electronic structure of this lanthanoid allows for

a more detailed interpretation than it is the case for other lanthanoids.[163] The 5D0 ! 7F0-transition is parity

and spin forbidden and can only be detected for EuIII compounds of low symmetry. As it can typically be

observed for C2-symmetric cryptates, it could be expected that it can also be observed for C1-symmetric

derivatives, which indeed is the case. Since neither the 5D0- nor the 7F0-level are degenerate, for any

europium species a maximum of one 5D0 ! 7F0-transition is possible. Consequently the existence of two

of these transitions, as it was found for Eu-1 (see Figure 3.15), strongly points to the presence of two

at least slightly different EuIII complexes in the sample. This can be explained e.g. by different possible

hydration states or different anions coordinating to the lanthanoid as external ligand. Analogously for the
5D0 ! 7F1-transition a maximum of three subtransitions is expected (resulting from a maximum of three

sublevels of 7F1 in the absence of any crystal field degeneracies). In this case four subtransitions are per-

ceptible, which is in line with the interpretation of the 5D0 ! 7F0-transition. Figure 3.16 (page 44) shows

the emission spectra of Sm-1, Yb-1 and Tb-1. All of them show the characteristic transitions expected for

the respective lanthanoids.

Apart from the indirect sensitisation, another important role of the ligand around the lanthanoid is to protect

the excited ion against nonradiative deactivation processes, which will shorten the luminescence lifetime.

Consequently, the observable luminescence lifetime ⌧ obs is a valuable measure for the ability of the ligand to

shield the lanthanoid from solvent molecules in the first coordination sphere. In Table 3.2 the luminescence

lifetimes for the luminescent complexes Ln-1 in CD3OD are summarised. Unfortunately due to technical

problems for Eu-1 no luminescence lifetime could be determined. For Sm-1 and Tb-1 a biexponential de-
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(a) Normalised steady state emission spectrum of Sm-1
(CD3OD, �exc = 310 nm).

(b) Normalised steady state emission spectrum of Tb-1
(CD3OD, �exc = 305 nm, excitation path: long pass filter
LP399).

(c) Normalised steady state emission spectrum of Yb-1
(CD3OD, �exc = 305 nm, emission path: long pass filter
RG780. Modified from Reference [160]).

Figure 3.16: Steady state emission spectra of Ln-1.

Table 3.2: Luminescence lifetimes ⌧ obs determined for cryptates Ln-1 in CD3OD.

observed transition ⌧ obs in CD3OD

Sm-1 4G5/2!6H9/2
[b] 43.1µs (47.8%) + 12.0µs (52.2%)

Tb-1 5D4!7F5
[c] 1.43 ms (81.7%) + 0.30 ms (18.3%)

Yb-1 2F5/2!2F7/2
[d] 10.8µs[160]

[b] �em = 597 nm, �exc = 320 nm. [c] �em = 540 nm, �exc = 305 nm. [d] �em = 970 nm,
�exc = 305 nm.
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cay was found. This is in congruence with the interpretation of the steady state emission spectrum of Eu-1

and points towards the presence of two species which are equivalent on the NMR time scale but differ on

the luminescence time scale. Most probably for the two species different external ligands are bound to the

additional coordination site of the LnIII, which is not saturated by the cryptate. The longer component of

the lifetime determined for Sm-1 is quite similar to the value determined for the unfunctionalised parent

compound Sm-bpy2O3 in CD3CN (30µs[139]). The longer component of the lifetimes detected for Tb-1

(1.43 ms) is surprisingly long. Due to the mismatch between the energies of the excited state of TbIII and

the triplet state of the bpy3O2 scaffold, these ligands are typically considered to be inefficient sensitisers for

TbII and only few values determined for comparable systems can be found in literature. For the unoxidised

terbium cryptate Tb-bpy3 in D2O a monoexponential decay with a lifetime of 0.43 ms was reported.[164] For

Yb-1 a monoexponential decay was found, in the range of experimental error the value determined herein

is identical to the one found for the unfunctionalised analogue Yb-bpy2O3 (12.3µs[165]). Indeed, if the lan-

thanoids less susceptible towards nonradiative deactivation by quenching oscillators show a biexponential

decay, a monoexponential decay for the NIR-emitting YbIII complex is counterintuitive. The reasons for this

behaviour are unclear until now.

A possible reason for the observation of biexponential decays might be the presence of several N-H oscil-

lators in close vicinity of the lanthanoid. A first step towards the closer study of this phenomenon would be

the repetition of the measurements in CH3OH.[25] Since the main components of the determined lifetimes

are not critically shorter than the ones of unfunctionalised cryptates, the biexponential decay will not be

problematic for further applications of the complexes studied.

In summary the results from the study of the photophysical properties of the amino-functionalised lan-

thanoid cryptates show, that the peripheral functionalisation does not have a negative impact on the highly

useful photophysical properties of the oxidised lanthanoid cryptate scaffolds bpy3O2. Hence it is a very

useful starting point for the introduction of further functionalities, which will allow for concrete applications.
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3.3.3 Preparation and characterisation of luminescent lanthanoid tags for

different applications

Various fields of research and technology can benefit from highly reliable, covalently attached lanthanoid

luminophores. As it was shown in the previous chapter, the amino-functionalised lanthanoid cryptates Ln-1

combine the highly beneficial properties of the oxidised bipyridine cryptates with a peripheral functional-

isation and therefore offer an ideal starting point for the development of such tag molecules. The aim

of this chapter is to develop a general strategy for the simple preparation of such molecules for various

applications. The approach followed for this purpose is shown schematically in Figure 3.17.
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Linker 

Application-
specific 

functionalisation 

Figure 3.17: Concept for the preparation of tailor-made luminescent cryptates based on Ln-1.

Depending on the desired conjugation reaction, luminescent tags with different functionalisations have to be

prepared. Another characteristic of the tag molecule which can become critical is the rigidity of the overall

tag, it can be modulated with the length of the linker between the lanthanoid cryptate and the functional

group. For this exemplary study PEG-linkers were chosen. They are available in different lengths and can

be supposed to have a beneficial effect upon the overall solubility of the complete molecule. Furthermore,

PEGs with various symmetric and unsymmetric terminal functionalisations are commercially available.

In principle two different synthetic strategies can be followed for the preparation of such tag molecules (see

Figure 3.18). To ensure high purity of the material reversed phase HPLC should be performed at some

step of the synthesis after the complexation reaction. When the functional group introduced for the targeted

application is sufficiently stable, it is of course beneficial to perform the purification as the very last step

of the synthesis (early stage functionalisation, strategy A). However, many functionalisations will not be

compatible with the harsh conditions applied herein, in this case the functionalisation has to be introduced

after the purification of the lanthanoid cryptate (late stage functionalisation, strategy B).

As the cryptates of EuIII are typically the most luminescent, this lanthanoid was chosen for the preparation

of the tag molecules which will be described in the following. Due to the extreme chemical similarity

of the lanthanoids and the nature of the core scaffold bpy3O2, the respective tag molecules of different

lanthanoids can be expected to be accessible completely analogously.
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Strategy A: Early stage functionalisation 
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Figure 3.18: Depending on the stability of the functional group which is to be introduced, an early stage or a late
stage functionalisation should be applied.

3.3.3.1 Synthesis and characterisation of an azide-functionalised europium tag

The azide-alkyne Huisgen cycloaddition is maybe the best established representative of the highly reli-

able and typically biocompatible so-called “click reactions”. With an azide-functionalised europium tag this

chemistry can be used to e.g. prepare luminescent bioconjugates, or to quantify the alkyne functionalisa-

tion upon some kind of material or particles which shall be used for bioconjugation.

Since organic azides are relatively stable in acidic aqueous media, purification of the functionalised cryptate

via HPLC appears feasible and synthesis strategy A was applied. Accordingly, in a first step the azide-

functionalised sodium cryptate Na-2 was prepared from the amino-functionalised sodium cryptate Na-1

and a commercially available NHS ester of an azide-functionalised PEG in the presence of slight excess of

a sterically hindered base. The reaction was performed in a mixture of DMF and CH3CN to ensure that all

components of the reaction stay in solution, and due to the thermal instability of the azide it was performed

at room temperature. After column-chromatography the azide-functionalised sodium cryptate could be ob-
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Figure 3.19: Synthesis of the azide-functionalised europium cryptate Eu-2 from the amino-functionalised sodium
cryptate Na-1 in two steps.

tained in moderate yield (40%) and be characterised via ESI-MS, 1H NMR and 13C NMR spectroscopy

(see page 227 for details). Subsequently the sodium cryptate could be transferred into the corresponding

europium cryptate. Compared to the standard conditions for the preparation of lanthanoid cryptates from

sodium cryptates only slight modifications were necessary. Since the PEG-linker itself can function as lig-

and for lanthanoids the amount of EuCl3 · 6 H2O was increased to 2.5 equivalents. For this reaction heat-

ing to reflux temperature is necessary. Because of the potentially explosive nature of the organic azide the

reaction was placed behind a blast shield. The HPLC protocol established for the purification of unfunction-

alised lanthanoid cryptates Ln-bpy2O3 was found to be also suitable for the azide-functionalised compound

Eu-2 and yielded the product Eu-2 in 65% yield. Under analytical HPLC conditions Eu-2 (Rf = 13.9 min)

was found to have a slightly longer retention time than Eu-1. After purification the complex could be char-
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acterised with MALDI-MS, 1H NMR and 19F NMR spectroscopy.

Figure 3.20: 1H NMR spectrum (400 MHz, CD3OD) of the azide-functionalised europium cryptate Eu-2. Unambigu-
ously identified solvent signals are marked with an asterisk.

As expected, the 1H NMR spectrum (see Figure 3.20) is very similar to the one of the amino-functionalised

europium cryptate Eu-1. The strongly shifted signals of the ligand core remain virtually unaffected by the

attachment of the PEG-derivative, and the only significant change is the appearance of the signals repre-

senting the protons of the PEG-linker. They can be found between 4.0 and 2.3 ppm. In the case of the

only slightly paramagnetic EuIII no strong paramagnetic shifts are expected for protons at this distance

from the paramagnetic center. Again the presence of coordinating TFA- could be revealed via 19F NMR,

whereby the resonance frequencies are almost identical for Eu-2 and Eu-1. The photophysical properties

of the azide-functionalised cryptate Eu-2 are currently under study in cooperation with Dr. Ute Resch-

Genger (Bundesanstalt für Materialforschung und -prüfung (BAM)) where also the conjugation of the tag

molecules to alkyne-functionalised nanoparticles is studied.

3.3.3.2 Synthesis and characterisation of an NHS-functionalised europium tag

Another functionalisation of versatile applicability is the NHS ester group. As deprotonated N-hydroxy-

succinimide is a very good leaving group such esters can be considered to be activated carboxylic acids,

which are highly reactive. In principle any nucleophile can react with an NHS ester, typical reaction partners

are carboxylic acids or amines. Despite their high reactivity, NHS esters are more stable than for example

acid chlorides. A storage of these compounds at low temperature in the absence of water is usually possi-

ble for reasonable periods of time, which makes the use of NHS-functionalised reagents quite convenient

and a lanthanoid tag with a respective functionalisation a highly interesting target compound.

Under the strongly acidic conditions typically applied for the HPLC-purification of lanthanoid cryptates NHS

esters will readily undergo hydrolysis. Consequently the synthesis of the NHS-functionalised europium tag

Eu-3 has to be done following strategy B (Figure 3.18). For the preparation of the azide-functionalised

derivative Eu-2 the reaction of the amino-functionalised cryptate and the NHS-functionalised terminus
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of the PEG successfully yielded the conjugated product. In analogy for the preparation of the NHS-

functionalised tag molecule a doubly NHS-functionalised PEG was chosen. To suppress the formation

of double cryptate-substituted PEGs the synthesis has to be designed with care. For the solution of such

a problem one might consider adding the amino-functionalised cryptate slowly to an excess of the PEG-

reagent. But because it is unlikely that a separation of the excess of reagent from the product would

be possible, and since a contamination with unreacted PEG-linker would be strongly detrimental for any

application of the substance, this is not a good choice in this case. In some cases it is also possible to

perform such reactions in a solvent from which the mono-substituted, desired product precipitates. Due

to the nature of the PEG-linker this is no promising approach for this concrete problem either. Instead

the reaction was performed under high dilution conditions: equimolar amounts of the amino-functionalised

europium cryptate Eu-1 and the NHS-functionalised PEG were dissolved in high amounts of solvents. A

slight excess of a sterically hindered base was added to the solution of the cryptate, which was then added

dropwise via a Teflon tube to the solution of the PEG (for experimental details see page 238). If the tube is

thin enough the dropping rate can be controlled precisely by the relative heights of the ends of the tube, so

that a very slow addition over several weeks is possible. At the beginning of the reaction these conditions

are similar to the use of a high excess of the PEG linker described above, at the end of the reaction the

high dilution prevents the formation of local maxima of the concentration of the cryptate.
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Figure 3.21: Synthesis of the NHS-functionalised europium cryptate Eu-3 from the amino-functionalised europium
cryptate Eu-1.

After completion of the reaction the solvent was removed in vacuo and the resulting solid was dried thor-

oughly to remove residues of the added base. Due to the high reactivity of the NHS ester it was re-
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frained from undertaking attempts to purify the material isolated. The substance was analysed via ESI-MS

whereby all detected signals point towards the successful formation of the desired 1:1 conjugation product

(see appendix, page 276). A small amount of the material was analysed via analytical HPLC. To prevent

the material from undergoing decomposition during the process (which would make the chromatogram dif-

ficult to interpret) the sample was left standing in a solution similar to the mobile phase used for the HPLC

method, to ensure a completion of the decomposition prior to the analysis. At the retention time typically

observed for the starting material Eu-1 only small intensities were observed. The main component (most

likely the hydrolysed Eu-3) is eluted at a retention time of 12.4 min, followed by three minor species.

Figure 3.22: Chromatogram from the analytical HPLC (program A, setup A) of the crude product obtained from
synthesis of Eu-3.

Figure 3.23: 1H NMR spectrum (500 MHz, CD3CN) of material isolated from the synthesis of the NHS-functionalised
europium cryptate Eu-3.

Since for the 1H NMR measurement (see Figure 3.23) the complete amount obtained from synthesis was
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used, to minimise the risk of hydrolysis in this case CD3CN was used as solvent. This limits the compara-

bility of the spectrum to the ones obtained for the related europium cryptates. Due to the crude nature of

the substance studied, the spectrum is generally difficult to interpret, but some typical signals of europium

cryptates can be identified unambiguously between 27 and 24 ppm. Interestingly, at even higher chemical

shifts some signals with small integrals can be observed. These might originate from some kind of small

organic molecule bound as external anion to the EuIII, for example deprotonated N-hydroxysuccinimide.

However, based on the 19F NMR spectrum of the sample also a TFA- anion could be bound. Unfortunately

the 19F NMR spectra of these samples in CD3CN are hardly comparable to the ones in CD3OD.

As it is the case for Eu-2, also Eu-3 is currently studied with respect to its photophysical properties and

its conjugation chemistry in cooperation with Dr. Ute Resch-Genger (Bundesanstalt für Materialforschung

und -prüfung (BAM)).

3.3.3.3 Synthesis and characterisation of a BCN-functionalised europium tag

The azide-alkyne Huisgen cycloaddition, for which the azide-functionalised tag Eu-2 was developed, is

typically copper catalysed. This is not always compatible with applications in biological systems, in these

cases the copper-free variation of this reaction is a valuable alternative. Here instead of a terminal alkyne

a cyclooctyne derivative is used, whose ring strain is the driving force of the reaction with the organic

azide.[166][167] As third example of a functionalised europium cryptate such a tag molecule Eu-4 carrying a

bicyclononyne (BCN) was prepared.
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Figure 3.24: Synthesis of the BCN-functionalised europium cryptate Eu-4 from the amino-functionalised europium
cryptate Eu-1.

Bicyclononynes can be expected to be less susceptible to hydrolysis than NHS esters, but nevertheless a
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HPLC purification of the completely assembled tag molecule did not seem feasible. Consequently synthe-

sis strategy B (Figure 3.18) was chosen. In contrast to the synthesis of the NHS-functionalised derivative,

in this case purification via recrystallisation from CH3OH, as established for lanthanoid cryptates, seemed

to be a potential alternative. To improve chances for such a purification in this case no PEG linker was

used. This also gives the possibility of probing if a direct attachment of a functional group without a flexible

linker is possible. The reaction between the amino-functionalised europium cryptate Eu-1 and the bicy-

clononyne NHS ester was performed in CH3CN at room temperature. To ensure complete conversion of

the cryptate 1.5 equivalents of the bicyclononyne reagent were used, and an equimolar amount of a ster-

ically hindered base was added. Unfortunately, the crude product obtained after removal of the solvents

and excess base in vacuo could not be purified by recrystallisation. The crude product was taken up in a

minimum amount of CH3OH and overlayered with Et2O, but even after elongated storage at 4°C no solid

precipitated. Consequently in the following the crude material was studied.

Upon analytical HPLC no unreacted starting material Eu-1 could be detected (see Figure 3.25), instead

two main components of the substance with retention times of 14.3 and 16.0 minutes were observed.

Figure 3.25: Chromatogram from the analytical HPLC (program A, setup A) of the crude product obtained upon
synthesis of Eu-4.

The signals detected in the MALDI-MS spectrum strongly point towards the formation of the desired prod-

uct, with one of the signals indicating that a DIPEA molecule is attached to the detected species. The 1H

NMR spectrum of the isolated compound is shown in Figure 3.26. The characteristic signals of the cryptate

scaffold can be identified unambiguously. In this spectrum very clearly the presence of additional paramag-

netically shifted signals can be observed, due to the crude nature of the sample it is difficult to assign these

signals. They might originate from anions bound to the lanthanoid, from the bound BCN group (bended

towards the lanthanoid) or from external, unreacted BCN-NHS. A more detailed study should be performed

with a pure sample of Eu-4, which might be accessible by reacting the starting materials in a 1:1 ratio.

Maybe also purification via HPLC is feasible, since the analytical HPLC did not show any decomposition

processes. Further attempts in this regard will be undertaken after initial studies upon the conjugation of
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Figure 3.26: 1H NMR spectrum (400 MHz, CD3OD) of the material isolated from the synthesis of the BCN-
functionalised europium cryptate Eu-4. Unambiguously identified solvent signals are marked with an
asterisk.

Eu-4 to DNA conjugates, which are currently underway in cooperation with the group of Prof. Dr. Bauke

Albada (Wageningen University). An initial study of the photophysical properties of Eu-4 did not reveal any

significant variations compared to the amino-functionalised parent compound. The steady state emission

spectrum points towards the presence of two species in solution (see Figure 3.27(a)) and so does also the

determined biexponential decay of the lifetime (1.11 ms (52.3%) + 0.72 ms (47.7%)). The UV/Vis spectrum

of the compound is virtually identical to the one measured for Eu-1 (see Figure 3.27(b)).

(a) Normalised steady state emission spectrum of Eu-4
(CD3OD, �exc = 320 nm).

(b) Normalised UV/Vis spectrum of Eu-4 in CD3OD.

Figure 3.27: Photophysical properties of the BCN-functionalised europium cryptate Eu-4.
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3.3.4 Structure in solution and magnetic anisotropy

Due to the typically low conformational stability of lanthanoid complexes in solution, the understanding

of their structures is often limited to crystallographic data. Necessarily this leads to at least inaccuracies

when properties of the complexes in solution are correlated with the resulting structural models. The high

stability and the high rigidity of the cryptates bpy3O2 are two of their most outstanding properties. They

indeed allow for an elucidation of the exact structure of these complexes in solution, and consequently for a

more in-depth interpretation of their e.g. photophysical properties in solution. For the cryptate Yb-bpy3O2

the structure in solution could already be resolved in a combined NMR/DFT study some time ago.[135] The

strategy employed herein is based on the lanthanoid-induced paramagnetic shifts which can be observed

in the 1H NMR spectrum of the complex. As already outlined before, the paramagnetic shift �para a nucleus

experiences is highly specific for its point in space relative to the paramagnetic center (see page 30 and

following). It can be derived from the experimentally accessible shift �obs with the aid of a diamagnetic

reference compound:

��obs = �para = �obs � �dia (7)

Generally higher shifts and broader signals can be expected for nuclei closer to the paramagnetic center,

which allows for an initial assignment of groups of signals to groups of protons. Based on an initial struc-

tural model (for example a DFT-optimised structure) now in a global fit the assignment of the protons can

be optimised.[168][169] Therefore the paramagnetic shift �para is assumed to be purely caused by the pseu-

docontact shift �PC (see equation 3, page 8) which is a reasonable assumption in the case of YbIII.[170]

�para can be expressed as linear combination of five components of the magnetic susceptibility tensor �:[171]
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with

r =
p

x2 + y2 + z2 (9)

and x, y, z being the Cartesian coordinates of the observed nuclei relative to the paramagnetic ion (which

is placed at the origin). In the principal magnetic axis system � is diagonalised, so that �xy =�xz =�yz = 0,

which reduces the problem to a five-parameter least-square search. Thereby (�zz - (1/3)Tr�), (�zz -�yy)

and a set of Euler angles that relate the principal magnetic axis system to the molecular coordinate system

are varied, to minimise the difference between the experimental paramagnetic shifts �para and the calcu-

lated paramagnetic shifts which result from � and x, y, z of the respective nucleus.

Such analysis, which proved to be successful for the unfunctionalised ytterbium cryptate, is especially in-

teresting for the amino-functionalised cryptates Ln-1. It will allow for a detailed comparison of the solution

structure of the complexes of both ligands and reveal in how far the loss of symmetry upon functionalisation
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affects the geometry of the core scaffold. An analysis as outlined above is in principle based on the very

specific magnetic properties of the lanthanoid ion in the complex under study. The magnetic properties

(which result in the specific manifestation of the magnetic susceptibility tensor �) of a lanthanoid complex

are by far more sensitive for subtle changes in the coordination geometry (see chapter 1.2). Consequently,

this will also allow for a more in-depth comparison of the electronic situation of the YbIII ion as it is pos-

sible by photophysical methods. Last but not least such a study will provide valuable information for a

potential application of the functionalised lanthanoid cryptates in the field of the structural elucidation of

biomolecules in solution.

180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100
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b

Figure 3.28: 1H NMR spectra of a) unfunctionalised Yb-bpy3O2 with chloride in the inner coordination sphere
(CD3OD, 400 MHz) and b) amino-functionalised Yb-1 with TFA- bound to the lanthanoid (CD3CN,
500 MHz). Due to the overlap with the intense signals of the solvent molecules the protons of the
ethylene diamine group could not be identified unambiguously. Adopted from reference [160].

A simple comparison of the 1H NMR spectra of Yb-bpy3O2 and Yb-1 (see Figure 3.28) already reveals

some important information. In principle upon functionalisation the symmetry changes drastically and the

formerly pairwise symmetry related protons could now in principle be observed at different shifts. But in the

case of Yb-1 the resulting difference of chemical shifts (which can be seen as a measure for the deviation

from the C2-symmetry of the parent system) is surprisingly small. In two cases the signals could not even

be resolved from each other, for the other signals signals they are only separated by less than 3.5 ppm and
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can unambiguously be assigned to the respective signal of Yb-bpy2O2.

Again, the experimental findings show only a very small effect of the introduced peripheral functionalisation

on the properties of the core ligand scaffold. This is not only a promising first result of the analysis of the

NMR data obtained for Yb-bpy2O2, but also makes the next step of the analysis of the magnetic anisotropy

straight forward, which is the initial assignment of the signals to the different protons of the complex under

study. The subsequent analysis was performed in cooperation with Carlos Platas-Iglesias, Universidade da

Coruña. In a first step, independently from the NMR data, DFT calculations (TPSSh/LCRECP(6-31G(d,p))

level) were used to optimise the structure in CH3CN. The anions were omitted to reduce the computational

costs of this in any case demanding calculation, instead a water molecule was bound to the lanthanoid. As

expected the structure is very similar to the one of the unfunctionalised Yb-bpy3O2. In line with the NMR

data obtained for Yb-1, the direct coordination environment around the metal ion has a virtually undistorted

C2-symmetry.

Figure 3.29: DFT optimised structure of Yb-1 in CH3CN (TPSSh/LCRECP/6-31g(d,p)) with the bond distances of
the direct coordination environment. Grey: carbon, blue: nitrogen, red: oxygen, green: YbIII, white:
hydrogen. The coordinates of the atoms can be found in the appendix (see page 308).

In analogy to the analysis performed on Yb-bpy3O2 now signals and protons were assigned. Since the

actual geometry of the complex is so close to C2-symmetry, pairs of symmetry related protons were as-

signed to average shifts of pairs of signals. The paramagnetic shifts were extracted from the experimentally

observed shifts according to equation 7, whereby Lu-bpy2O3 was used as diamagnetic reference. Subse-

quently they were analysed as described above with a five-parameter least-squares search using equation

8, minimising the difference between the experimental and calculated pseudocontact shifts.

The experimental and calculated 1H NMR shifts are summarised in Table 3.3. Using the agreement factor

AF a very good agreement of the experimental and calculated shifts could be found (AF = 0.0321):

AF =

vuut
P

i

�
�obs,i � �calc,i

�2

P
i

�
�obs,i

�2 (10)
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Table 3.3: Comparison of experimental (�obs), averaged experimental (�avg
obs ) and calculated (�avg

calc) 1H NMR shifts of
Yb-1 in CD3CN. See Figure 3.30 for the numbering scheme of the protons.

proton �obs �avg
obs �avg

calc

H1o -69.35 / -65.97 -67.66 -68.4

H2o 21.63 / 22.55 22.09 25.89

H3o 12.79 / 10.88 11.84 12.73

H4o 0.02 0.02 2.11

H5o -13.19 / 14.55 13.87 -13.96

H1b 153.49 153.49 148.05

H2b 61.82 / 61.35 61.59 63.50

H3b -3.18 / -4.07 -3.63 -2.65

H4b -12.82 / -13.72 -13.27 -11.88

H5b -15.59 / -15.85 -15.72 -15.06

H6b 12.04 / 11.97 12.01 10.63

H7b 34.09 / 33.97 34.01 33.32

H8b 69.10 / 68.99 69.05 68.81

H9b 113.22 113.22 114.63

H10b 135.27 / 133.96 134.62 137.96

Figure 3.30: Numbering scheme applied for the lanthanoid induced shift analysis of Yb-1. Figure adopted from
reference [160].

This becomes more graphic in Figure 3.31(b), where the experimentally found chemical shifts are plot-

ted together with the calculated ones. As indicated by the green line there is an excellent agreement

between them. Consequently, the description of the tensor of the magnetic susceptibility � developed in

the least-square fit can reproduce the experimental NMR shifts accurately and successfully describes the
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magnetic anisotropy of Yb-1. This also suggests that the bound TFA-anion, which was exchanged for a

water molecule for the purpose of this study, is not critical for the magnetic anisotropy of the system.

(a) Numbering scheme applied for the lanthanoid
induced shift analysis of Yb-1.

(b) Experimental 1H NMR spectrum (CD3CN, 500 MHz) of Yb-1
with plot of the calculated shifts of the compound.

Figure 3.31: Comparison of the experimentally found and calculated 1H NMR shifts of Yb-1. Figures adopted from
reference [160].

From the fit the parameters describing � are obtained as (�zz - (1/3)Tr�) = 2740 ± 62 ppm Å3 and (�zz -

�yy) = -8601 ± 138 ppm Å3. Together with equation 8 these values were used to calculate and plot pseu-

docontact shift surfaces of the tensor. For this purpose a mayavi2[172]/python script was coded whose

source code can be found in the appendix (see page 278). Such a representation allows for a much more

vivid understanding of � of a given paramagnetic compound. In Figure 3.32(a) compound Yb-1 is shown

schematically together with two pseudocontact shift surfaces (for +12 ppm and -12 ppm, respectively). The

green line represents the effective C2-symmetry axis of the molecule, which is perpendicular to the symme-

try axis of the surfaces. Such representations are also extremely helpful for a comparison of the magnetic

anisotropies of different paramagnetic complexes. In Figure 3.32(b) pseudocontact shift surfaces of Yb-1

and Yb-bpy3O2 are shown. Both complexes are closely related but differ in terms of two characteristics

which in principle can have an immense influence on the magnetic properties: the symmetry and the

species bound at the additional coordination site of the lanthanoid (water in the model used for Yb-1, Cl-

in the case of Yb-bpy3O2). Yet the pseudocontact shift isosurfaces which directly result from the underly-

ing tensors are almost indistinguishable and show only very small differences in size and virtually none in

terms of orientation. Obviously � of these complexes under study are remarkably tolerant for changes in

the inner coordination sphere and at the periphery of the ligand. From these results it can be extrapolated

that the attachment of further groups to the primary amine, or changes in the media in which the NMR

experiment is performed, also will not critically affect the susceptibility of the magnetic anisotropy. This

is a precondition for the use of paramagnetic complexes for the structural elucidation of biomolecules via

paramagnetic NMR.
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(a) Representation of Yb-1 (without the bound water
molecule) and two pseudocontact shift surfaces (light
green: +12 ppm and dark green: -12 ppm) derived from
the susceptibility of the magnetic anisotropy tensor �.
The green line illustrates the effective C2-symmetry axis
of the complex.

(b) Size and orientations of the pseudocontact shift iso-
surfaces of the functionalised (Yb-1, left) and unfunction-
alised (Yb-bpy3O2, right) cryptate along the three differ-
ent Cartesian coordinate axes. In the middle the isosur-
faces of both compounds are overlayed.

Figure 3.32: Representations of the susceptibility of the magnetic anisotropy tensor � of Yb-1 and Yb-bpy3O2. Fig-
ures adopted from reference [160].
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3.3.5 Towards an enantiopure, twofold functionalised tag molecule for the

structural elucidation of biomolecules

The classical method for the structural characterisation of large biomolecules is X-ray crystallography. Such

studies have allowed for a substantial understanding of many important principles of biochemistry, but se-

vere limitations arise from the fact that typically biomolecules are active in solution, where their structure

can largely differ from the one in the solid state. NMR techniques are obviously an excellent choice to

circumvent this problem and many different ones have been employed for this purpose. Maybe the most

established and best known example is the utilisation of the nuclear Overhauser effect (NOE), but indeed

a variety of complementary techniques is used. The attachment of paramagnetic tag molecules and the

interpretation of resulting pseudocontact shifts of the biomolecule is one of them. In principle such analysis

is quite similar to the one describe for the complex Yb-1 in the previous chapter, but due to the enormously

higher complexity of most biomolecules, for these molecules such studies are of course more complicated.

In order to obtain analysable data special care has to be taken for the design of the paramagnetic tag

molecule. Generally paramagnetic lanthanoid complexes are considered to be a very good choice for this

purpose, e.g due to the availability of diamagnetic but chemically virtually identical reference compounds.

But since the paramagnetic shift of the signals of the biomolecule under study depend on the very exact

geometric arrangement of the nuclei and the paramagnetic center, again the low coordinative stability of

most lanthanoid complexes becomes a major problem. In light of this, a tag molecule based on a rigid and

well-defined cryptate Ln-bpy3O2 is a target structure of enormous potential. The analysis of the magnetic

anisotropy of Yb-1 can be seen as a promising first result towards this. However, for several reasons the

cryptates Ln-1 do not have ideal properties for such an application and fundamental modifications of the

ligand design are reasonable. In order to provide a stable alignment of tag molecule and biomolecule a

dual, rigid attachment is preferential. Even more importantly the used tag molecules should be achiral or

enantiopure, since otherwise the attachment to chiral biomolecules will lead to the formation of diastere-

omers and consequently to the observation of a doubled set of signals. Furthermore the placement of

the ethylene diamine group of Yb-1 relative to the pseudocontact shift surfaces, as they can be seen in

Figure 3.32(a), is not optimal. In this area of space relative to the paramagnetic center only small shifts are

expected, which would at least complicate the study of smaller biomolecules (like they would be chosen for

initial experiments).

A variation of the oxidised cryptates, whose core structure allows to meet all these requirements, had

already been published some time ago: The attachment of an enantiopure tether to one of the bipyridine

building blocks leads to a prearrangement of its pyridine rings and upon macrobicyclisation the formation of

only one enantiomer (see page 18 and Figure 3.33).[134] Conceptually the transformation of Ln-bpy3O2-SS-

(Me)2 into a dually functionalised tag molecule is straightforward, the methyl-groups need to be substituted

for some kind of group carrying a reactive functionalisation. An enlargement of the peripheral groups at

the eightmembered ring should rather have a positive than a negative impact upon the prearrangement of

the rings. An adverse effect upon e.g. the macrobicyclisation reaction is not likely, either. The nature of

the initial reactive function at the desired tag molecule is also not critical, since in any case some kind of

linker would be used for the attachment to the biomolecule. But what is indeed critical is the choice of the
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Figure 3.33: Enantiopure cryptates can be synthesised when the relative arrangement of the pyridines of the oxidised
bipyridine building block is fixed in one of the atropisomeric forms.[134]

protecting group which is attached to the functional groups during assembly of the cryptate. The protecting

group has to be stable under a variety of conditions, especially the conditions in the two oxidation steps

are challenging. At the same time there should be a reliable and clean, yet mild cleavage reaction for the

removal of the protecting groups. Of course this is always desirable, but in this case it is especially impor-

tant since the multistep synthesis of cryptates limits the accessibility of these compounds and the options

for the purification of cryptates are also limited. A group for which all these requirements can be expected

to be fulfilled are benzyl ethers protected hydroxy-groups. Benzyl ethers are considered to be one of the

most robust protecting groups. They are invariant to many challenging reaction conditions, e.g. a wide

range of basic and acidic conditions, most metal hydrides and (mild) oxidising agents.[173] Deprotection is

typically achieved via Pd-catalysed hydrogenation at relatively mild conditions and with good to excellent

yields, and many variations or alternative deprotection strategies have been published.[173][174]
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Figure 3.34: Retrosynthetic approach for the preparation of a diol-functionalised, enantiopure cryptate Na-5.

Based on these considerations, and in analogy to the synthesis of Ln-bpy3O2-SS-(Me)2
[134], for the syn-

thesis of the diol-functionalised enantiopure cryptate Na-5 the retrosynthetic plan shown in Figure 3.34

was developed. The hydroxy-groups can disturb most reaction steps necessary for the construction of the

62



Chapter 3. Lanthanoid Cryptates as Covalently Attached Tag-Molecules

cryptate scaffold, including the macrobicyclisation itself. Consequently the protecting groups should be

maintained until completion of the very last step of ligand synthesis, in which the protected cryptate Na-6

is assembled. In the course of my master thesis (where also the experimental details can be found[162]) I

could already establish the synthesis of Na-6.

O O

HO OH 1. NaH
2. PhCH2Br

O O

O O

HO OH

BnO OBnHCl

Figure 3.35: Synthesis of (2S,3S)-1,4-bis(benzyloxy)butane-2,3-diol from an enantiopure, acetonid-protected threitol-
derivative as published by Mash et al.[175]

Starting point for the synthesis of Ln-bpy3O2-SS-(Me)2 was the commercially available (R,R)-2,3-butane-

diol. Fortunately, the synthesis of an equivalent building block for the preparation of Na-6 was already

published by Mash et al. (see Figure 3.35).[175] For the preparation of the bipyridine key building block 7 ini-

tially the hydroxy-groups are activated as sulfonic acid esters. Since triflate is a very good leaving group, in

the subsequent step the introduction of the pyridines can easily be archived by a nucleophilic substitution.

For this reaction, in which an inversion of the stereocenters occurs, 3-hydroxy-2-iodo-6-methylpyridine is

deprotonated with sodium hydride and subsequently added to the sulfonic acid esters (see Figure 3.36).[176]

HO OH

BnO OBn (CF3SO2)2O
pyridine

O O

BnO OBn

SO2CF3F3CO2S NaH

N

OH
I

O O

BnO OBn

NIN IN N

O O

OBnBnO

NiCl2 · 6 H2O
PPh3, Zn

7

Figure 3.36: Preparation of bipyridine 7 from (2S,3S)-1,4-bis(benzyloxy)butane-2,3-diol.

The subsequent steps for the preparation of the benzyl-protected sodium cryptate Na-6 could be realised

with reactions typically used for the preparation of cryptates (see Figure 3.37). Initially bipyridine 7 is ox-

idised with mCPBA, which in this case could be realised with 80% yield. The N-oxide is cleaved in the

subsequent modified Boekelheide rearrangement which was used to brominate the methyl groups. Hereby

addition of trifluoroacetic anhydride is followed by lithium bromide, which reacts in a nucleophilic substi-

tution with the trifluoroacetylated intermediate. The relatively low yield of 55% can be explained by the

relative thermal instability of the bromide. Higher yields might be possible when additional care is taken
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concerning this. For the following oxidation step for the preparation of different cryptates the use of an

adduct of urea and hydrogen peroxide had already been found beneficial to the oxidation with mCPBA. In

line with these findings the corresponding reaction was found to proceed with very high yield (98%) in this

case. Unfortunately, yet not surprisingly, the following macrobicyclisation reaction could only be realised

with a low yield of 17%.

N
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H N

N H
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N
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2. (CF3CO)2O
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Figure 3.37: Preparation of the protected diol-functionalised sodium cryptate Na-6 from bipyridine 7.

Due to the limited availability of Na-6, prior to deprotection of the cryptate to yield Na-5, the deprotection

reaction should be optimised with the bipyridine 7. This compound is by far more accessible and with the

oxygen-containing eightmembered ring already possesses the structural motif which is the most likely to

lead to problems during deprotection. Unfortunately it turned out to be surprisingly difficult to remove the

protecting groups at all, and a variety of reaction conditions had to be tested until a successful one could

be identified. The reactions known from literature whose conditions were tried to be applied onto this de-

protection problem are shown in Figure 3.38 and Figure 3.39.

Pd-catalysed hydrogenolysis is the typical and most established method to remove benzyl protecting

groups. Indeed, Stavrakov et al. published a successful hydrogenolytic cleavage of the benzyl protect-

ing groups of a highly related system (see Figure 3.38).[177] The reaction was performed in EtOAc with

Pd(OH)2 (10% on carbon) at atmospheric pressure of H2 to yield the diol in 79% yield after 2 hours. Sur-

prisingly, in the case of the bipyridine 7 even after 24 hours at these reaction conditions no reaction could

be detected. After filtration the isolated substance could be identified as the starting material via 1H NMR

spectroscopy. The same result was found after the reaction was repeated with 4 bar H2 pressure. The

most relevant difference between the molecule studied by Stavrakov et al. and bipyridine 7 is the presence
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Method A: Pd-catalysed hydrogenolysis
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Figure 3.38: OBn-deprotection reactions successfully applied to molecules with structural similarity to 7. References
are given in the text.

of the nitrogen atoms of the pyridine rings, which might indeed hinder the reaction by complexation of PdII.

To prevent the bipyridine from deactivating the metal ion, the reaction was also repeated in the presence

of 2.4 equivalents of acetic acid. Under these conditions the nitrogen atoms should be protonated and

consequently complexation of PdII is not possible any longer, still no reaction could be observed. After-

wards some more experiments were performed, varying solvents and reaction conditions. In neither of

these experiments, not even partial deprotection of 7 could be observed. Consequently, different synthetic

approaches which could already successfully be realised on molecules with related structural motifs were

searched. For example Klemer et al. presented two related methods for the cleavage of benzyl ethers from

sugar molecules.[178] General principle is to substitute the benzyl ether with an in situ prepared trimethylsilyl

iodide, which is subsequently hydrolysed. Both methods basically only differ in the in situ preparation of
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the trimethylsilyl iodide, both were applied to 7. In the case of the first variation, where trimethylsilyl iodide

is prepared from NaI and ClSiMe3, the precipitation of a colourless solid indicated that the formation of

the trimethylsilyl iodide was successful. For this experiment, the reaction time was prolonged compared

to the example from literature. Unfortunately the changes observed in the 1H NMR spectrum of the reac-

tion mixture after aqueous work up point towards decomposition of 7. In the case of the second variation

of the reaction, where trimethylsilyl iodide is prepared from I2 and Si2Me6, two experiments with 7 were

conducted. The first with only a few minutes reaction time (as described in literature), the second with two

hours of reaction time. In both cases the characteristic dark violet mixture of reagents discoloured upon

addition to the protected starting material, but no further changes could be observed until the reaction mix-

ture was subjected to an aqueous work up. The 1H NMR spectra of both isolated crude products indicate

that some kind of reaction had taken place, but the desired deprotection could not be observed.

As another promising strategy the photolytic reaction of N-bromosuccinimide with the CH2-groups of the

benzyl ether followed by basic hydrolysis was identified. This is another example for a strategy used

in sugar chemistry[179] and was described by Giuliano et al. for the molecule shown in Figure 3.38.[180]

For this molecule deprotection could be achieved in 70% yield by irradiating a degassed mixture of the

protected starting material, 1.4 equivalents NBS, 4.4 equivalents CaCO3 and H2O in CCl4 for 30 minutes,

followed by stirring the crude product obtained after filtration and complete evaporation of the organic phase

for 18 hours in a methanolic solution of potassium hydroxide. In an initial experiment the same reaction

conditions with a slightly elongated radiation time (40 minutes) were applied to the protected bipyridine 7.

The 1H NMR spectrum of the isolated crude product after this experiment again showed some interesting

changes compared to the starting material, and an intense smell of benzaldehyde also indicated that the

benzyl ether groups might have been cleaved during the reaction. But after column-chromatography no

clear evidence for the isolation of the deprotected compound could be given via NMR spectroscopy, only

the study via mass spectrometry indicated that the desired compounds might at least be component of

some of the fractions isolated. After these quite promising results the reaction was repeated with different

reaction times and conditions for the hydrolysis step (details are given in reference [162]), but unfortunately

in neither of the experiments it was possible to isolate the partly or completely deprotected bipyridine. From

the analytical data collected during these experiments it is quite likely that under these condition the benzyl

ether is indeed cleaved, but also a decomposition of 7 occurs.

Another typical method for the cleavage of benzyl ethers is the use of Lewis acids such as ferric chloride.

For example Park et al. successfully performed such reactions on monosaccharides by addition of 2.0

equivalents of anhydrous FeCl3 in dry CH2Cl2, with reaction times of only a few minutes and subsequent

quenching with H2O (see Figure 3.39).[181] Initial attempts to use these conditions showed no promising

outcome and the paramagnetic nature of the iron species involved complicated the analysis of the ob-

tained crude products. Before a final decision concerning the feasibility of such a reaction in the case of

7 was made, another reaction brought positive results. In the light of the predominance of hydrogenolysis

as cleavage method for benzyl ethers it seems counterintuitive, but also oxidative methods can be em-

ployed for this purpose. A reagent which can be used for such reactions is 2,3-dichloro-5,6-dicyano-1,4-

benzoquinone (DDQ), which is typically used as dehydrogenation or oxidation reagent.[182] As deprotection

reagent it is used more often in the case of the more electron-rich p-methoxybenzyl ethers,[183] but e.g. in
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Figure 3.39: Continuation: OBn-deprotection reactions successfully applied to molecules with structural similarity to
7. OBn = OCH2Ph. References are given in the text.

an example by Nakajima et al. DDQ was used to cleave the p-methoxybenzyl ether and the benzyl ether

in the last step of a total synthesis of pikronolide (see Figure 3.39).[184] They used 10.0 equivalents of DDQ

in a 20:1 (v/v) mixture of CH2Cl2 and H2O at room temperature and could isolate the complex product after

16 hours with 81% yield. For an initial attempt to use these reaction conditions for the cleavage of the

protecting groups of 7, the used amount of DDQ was increased to 20.0 equivalents and the reaction time

to 24 hours (at room temperature). In the course of the reaction a large amount of solids precipitated with

different colours ranging from yellow, orange to almost black. The crude mixture obtained after filtration

smelled intensively of benzaldehyde and in a 1H NMR spectrum of the crude mixture in CD2Cl2 character-

istic signals of benzaldehyde could be observed. The 1H NMR of the components of the mixture soluble

in CD3CN showed a set of signals pointing towards the formation of the desired completely deprotected 8,

and some large signals which most likely correspond to species which result from the reduction of DDQ.

Also ESI-MS indicated the successful formation of the product. Separation of the byproducts from 8 turned

out to be quite difficult. In this initial experiment after work up with a diluted aqueous solution of NaHCO3

(pH 9) and subsequent column-chromatography with basic Al2O3 as solid phase only 17% of 8 could be

isolated. With elevated temperatures (37°C), only 9.0 equivalents of DDQ (added in portions), and two con-

secutive column-chromatographies (first SiO2, than basic Al2O3 as solid phase, see page 215 for details)

higher yields (48%) could be realised. In analogy to a report by Rahim et al. it was also tried to perform the

reaction under photoirradiation at room temperature with 3.0 equivalents of DDQ.[185] After aqueous work

up (with saturated aqueous NaHCO3) and column-chromatography (SiO2) the product could be isolated

with only 11% yield, and consequently this strategy was not pursued further.

Comparison of the 1H NMR spectra of 7 and 8 (see Figure 3.41) reveals characteristic changes as they

would be expected for the deprotection of 7. The less structured component of the multiplet observed

between 7.5 and 7.0 ppm in the spectrum of 7 has disappeared, as it is also the case for the multiplet ob-
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Figure 3.40: Successful cleavage of the benzyl ether protecting groups of 7 using DDQ and 20:1 (v/v) DCM/H2O as
solvent yielded the deprotected bipyridine 8.

served at around 4.5 ppm. Both signals correspond to the aromatic and benzylic protons of the protecting

groups, respectively. Upon deprotection the complex multiplet of the two CH-groups of the tether attached

to the bipyridine experiences an upfield shift of about 0.2 ppm, while the multiplet representing the four

neighbouring CH2-protons remains virtually unshifted. The signal of the protons of the methyl groups also

experiences a slight upfield shift.
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Figure 3.41: 1H NMR spectra of the deprotected bipyridine 8 (top, 400 MHz, CD3CN) and the protected 7 (top,
200 MHz, CD2Cl2). Unambiguously identified solvent signals are marked with an asterisk.

Fortunately, the conditions found suitable for the deprotection of 7 could be transferred to the deprotec-

tion of Na-6, so that finally the difunctionalised enantiopure sodium cryptate Na-5 could be prepared. At

first the reaction was carried out on a small scale with 12.8 mg of the starting material Na-6 in a total

of 10.5 mL solvent. Again, a total of nine equivalents of DDQ was added in portions and subsequently

heated to 37°C bath temperature. The reaction was monitored via TLC and stopped when after 22 hours
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no starting material could be detected any longer. Due to the low Rf observed during TLC (0.12 upon SiO2

with CH2Cl2/CH3OH 1:1) and the general problem that column-chromatography of sodium cryptates can

result in significant loss of product, in this case no dual column-chromatography was performed. Instead

the crude material was purified with a work up with saturated, aqueous NaHCO3 and afterwards subjected

to column-chromatography with a relatively short column of basic Al2O3. In the previous experiments the

column-chromatography with basic Al2O3 was typically found to be the more efficient step for the removal

of DDQ-related byproducts. A complete removal of these impurities from the isolated Na-5 (45% yield) was

not possible using this approach (see NMR in Figure 3.43), but since these contaminations are not likely

to affect the subsequent reaction steps and most likely will be easily removable in the following purification

procedures, this can be rated as less problematic.

Upscaling of the reaction turned out to be not completely straightforward. Due to the limited solubility of

DDQ in CH2Cl2 the amount of solvent used was scaled with the amount of starting material. For bigger

volumes of the solvent mixture it is more difficult to obtain a thorough mixing of the organic and the aque-

ous phase. After 22 hours under the reaction conditions described above no turnover could be detected.

In the following the amount of water in the solvent mixture was doubled and CH3CN was added to provide

a component in which CH2Cl2 and H2O are soluble. Furthermore 20.0 equivalents of DDQ were used.

After 24 hours of reaction time and after 48 hours of reaction time further 5.0 equivalents of DDQ were

added, and the reaction was stopped after a total of 66 hours. After purification (analogous to the proce-

dure described above) the compound could be isolated with a lower yield of 30% compared to the reaction

performed on a smaller scale. If a larger amount of Na-5 shall be prepared, some further modifications of

the reaction conditions (e.g. use of a KPG stirrer) or the simultaneous performance of several small scale

reactions and combination of the crude products for a single work up procedure will be reasonable.
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Figure 3.42: Successful cleavage of the benzyl ether protecting groups of Na-6 using DDQ and 20:1 (v/v) DCM/H2O
as solvent yielded the deprotected cryptate Na-5.

Comparison of the 1H NMR spectra of Na-6 and Na-5 (see Figure 3.43) reveals characteristic changes

very similar to the ones observed upon deprotection of the bipyridine 7. The characteristic signal of the

aromatic protons of the benzyl ethers disappears and so does also the signal corresponding to the benzylic

protons of the protecting groups, which could be observed at about 4.5 ppm in the case of the 1H NMR

spectrum of Na-6. The remaining signals experience more pronounced changes as it was the case for the

deprotection of 7, which is not surprising in the light of the higher complexity of the molecule.

A partial assignment of the signals corresponding to the benzylic protons of the cryptate and the protons of

69



Chapter 3. Lanthanoid Cryptates as Covalently Attached Tag-Molecules

10 9 8 7 6 5 4 3 2 1 0

10 9 8 7 6 5 4 3 2 1 0

chemical shift [ppm]

*

**

Figure 3.43: 1H NMR spectra of the deprotected enantiopure sodium cryptate Na-5 (top, 400 MHz, CD3OH) and
the protected enantiopure sodium cryptate Na-6 (bottom, 200 MHz, CD2Cl2). Unambiguously identified
solvent signals are marked with an asterisk.

the tether observed between 4.3 and 3.3 ppm was possible with the aid of a 1H-1H COSY NMR spectrum

(see Figure 3.44). The shape of the multiplets found between 3.95-3.82 ppm (integral equivalent to six pro-

tons) and 3.50-3.39 ppm (integral equivalent to four protons) indicates that different signals are overlayered

in this area, the coupling scheme revealed by the 1H-1H COSY supports this interpretation. The doublet

observed at 4.26 ppm and the doublet observed at 3.58 ppm, with integrals equivalent to two protons each,

resemble the typical shape of signals of benzylic protons of sodium cryptates. The signal at 4.26 ppm

exhibits a coupling to the multiplet observed at 3.50-3.39 ppm, while the signal at 3.58 ppm couples to the

multiplet at 3.95-3.82 ppm. Additionally, a coupling between both multiplets can be observed. Also the mul-

tiplets show some similarity to the shape observed for the signals of the benzylic protons. Considering the

symmetry of the molecule and the fact that a coupling of the benzylic protons to the protons of the tether

is unlikely to be observed in a 1H-1H COSY experiment, an assignment of four benzylic protons to both

of the multiplets is reasonable. Due to the complex shape of the multiplet, and in analogy to the 1H NMR

spectrum of 8, the signal observed between 4.15 and 4.08 ppm is very likely to represent the protons of

the two neighbouring CH-groups of the tether. The signal shows a weak coupling to the multiplet observed

between 3.75 and 3.66 ppm and an even weaker coupling to the multiplet at 3.95-3.82 ppm. In contrast

there is a strong coupling between the two later multiplets, which leads to the interpretation that the signal

between 3.75 and 3.66 ppm (with an integral equivalent to two protons) and a component of the signal at

3.95-3.82 ppm (equivalent to the two remaining protons represented by this signal, which had not been
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Figure 3.44: Detail of the 1H-1H COSY NMR spectrum (400 MHz, CD3OD) of the deprotected enantiopure sodium
cryptate Na-5. The complete spectrum is shown on page 266.

assigned until now) correspond to the two CH2-groups of the tether.

The sodium cryptate Na-5 can be seen as the enantiopure, difunctionalised analogue of Na-1, which over-

comes two limitations of this ligand which would be especially problematic for a potential application in the

structural elucidation of biomolecules via paramagnetic NMR. For such an application the right choice of

the final functionalisation will be crucial. In the case of proteins, a commonly applied strategy for the at-

tachment of such tag molecules to specific sites of the molecule under study is the use of disulfide bonds,

which connect the tag molecule to cysteines introduced using site-directed mutagenesis. For this purpose

the tag molecules are typically functionalised as methanesulfonothioates.[186][154][50][187] The reactive group

has to be attached with some kind of linker, whose length and flexibility should ideally be adapted to the

very specific biomolecule under study, and which is reliably connected to the actual paramagnetic unit

of the tag molecule. For the proof-of-principle study in which the general feasibility of the preparation of

such molecules based on Na-5 should be shown, as final functionalisation a carbamate-attached ethyl-

methanesulfonothioate was chosen (see Figure 3.45).

Isocyanates like reagent 10, which is needed for the realisation of the approach shown in Figure 3.45, typi-

cally can be prepared from the corresponding primary amines or their hydrobromides. A suitable precursor

for the preparation of 10 is commercially available but quite expensive, and can easily be prepared from

very affordable compounds.

A nucleophilic substitution of the chloride of methanesulfonyl chloride with sodium sulfide in H2O yields
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Figure 3.45: Retrosynthetic approach for the preparation of the paramagnetic tag molecule Ln-9 from the diol-
functionalised enantiopure cryptate Na-5.
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Figure 3.46: Preparation of 10 from affordable precursors.[188][189]

sodium methane-thiosulfonate (11) in moderate yields after recrystallisation.[188] The next step is another

nucleophilic substitution in which the thiosulfonate reacts with 2-bromoethylamine hydrobromide to give the

disulfide-functionalised ethylamine derivative 12.[189] After recrystallisation a yield of 65% was determined,

but presumably higher yields are possible when the mother liquor is recrystallised another time. In the last

step the hydrobromide is activated for the attachment to hydroxy groups. In the presence of 2.42 equiv-

alents of DIPEA the starting material was initially deprotonated and then reacted with triphosgene to give

the isocyanate 10 with 47% yield. The reactive compound can be purified with an aqueous work up and

be stored for a limited period of time. Though in most cases it will be beneficial to prepare the compound

fresh shortly before use.

The 1H NMR spectrum of compound 10 (obtained after aqueous work up) shows two triplets corresponding

to the two CH2-groups, of which the one observed more upfield is overlapping with the signal correspond-

ing to the protons of the methyl groups. In the 13C NMR spectrum the resonance of the carbon atom of the

isocyanate-group can be observed at 123.7 ppm.
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Figure 3.47: 1H NMR spectrum (400 MHz, CDCl3) of the isocyanate-activated linker 10. Unambiguously identified
solvent signals are marked with an asterisk.
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Figure 3.48: Preparation of the disulfide-functionalised bipyridine 13 from the deprotected bipyridine 8 and isocyanate
10.

As preliminary test isocyanate 10 was reacted with the deprotected bipyridine 8. For this experiment the

isocyanate 10 was prepared directly prior to the reaction, subjected to fast aqueous work up and briefly

analysed via 1H NMR spectroscopy. Since the preparation of the isocyanate will not proceed quantitatively

and losses due to the work up can be expected, a 2.5 fold excess of 12 with respect to 8 was used. In order

to allow for reaction control via 1H NMR spectroscopy, the subsequent reaction of 8 and 10 was performed

in CDCl3. 19 hours after mixing of the reactants, a portion of the reaction mixture was analysed with this

technique, the resulting spectrum pointed towards the presence of mainly one C2-symmetric species with

signals of the bipyridine being slightly shifted compared to the starting compound. After complete evapo-

ration of the solvents further 1H NMR experiments were performed in CDCl3 and CD2Cl2, but the resulting
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spectra were less clear and pointed towards the presence of several species. The crude product could be

purified via column-chromatography using SiO2 as solid phase. In the 1H NMR spectrum of the product

(see Figure 3.49), the signals of the attached disulfide experience a shift to the upfield compared to the

starting material. The signal found between 3.59 and 3.51 ppm is no longer observed as a triplet but has a

structure which resembles of a quartet. This might be due to a coupling to the proton of the neighbouring

secondary amine. Compared to the deprotected bipyridine 8 the signals of the aromatic protons remain

virtually unshifted for the purified 13, while the signal of the protons of the CH2-groups of the tether expe-

rience a significant downfield shift. The signals of the neighbouring CH-groups can now be observed at

4.12 ppm, which corresponds to a downfield shift compared to 8 and is almost identical to the resonance

frequency of these protons observed for the protected bipyridine 7. The successful preparation of 13 was

also supported by 13C NMR spectroscopy and ESI-MS.

Figure 3.49: 1H NMR spectrum (400 MHz, CD2Cl2) of the disulfide-functionalised bipyridine 13. Unambiguously
identified solvent signals are marked with an asterisk, signals corresponding to a contamination with
3,6-bis(chloromethyl)pyridazine are marked with an hash.

After these promising results the attachment of the isocyanate linker as successfully executed for the model

compound 8 was transferred upon the diol-functionalised, enantiopure sodium cryptate Na-5 to yield the

completely assembled sodium precursor Na-9.

The reaction was conducted on a small scale in analogy to the preparation of the disulfide-functionalised

bipyridine 13. The isocyanate was prepared a few hours before use. Again the crude product could be

purified via column-chromatography. In short succession after another the desired difunctionalised sodium

cryptate Na-9 and the monofunctionalised derivative were eluted. Unfortunately the amounts isolated were

too small to determine reliable yields, and the solutions studied via 1H NMR spectroscopy were not concen-

trated enough to obtain spectra which can reliably be discussed in detail (the spectra are shown on page

267). The identity of the compounds isolated could be established via ESI-MS and the 1H NMR spectra

are in line with the assignment.

Due to the limited availability of Na-5, and as the used isocyanate-functionalised linker 10 not necessarily

has the optimal length and rigidity for a potential application, no further experiments for the preparation of
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Figure 3.50: Preparation of the twofold disulfide-functionalised sodium cryptate Na-9 from the deprotected sodium
cryptate Na-5 and isocyanate 10.

Na-9 were performed after it could be demonstrated that the reaction is in principle feasible. Preliminary

experiments towards the preparation of the corresponding lanthanoid cryptates Ln-9 had promising results.

The preparation of Na-9 (see Figure 3.50) corresponds to an early stage functionalisation (see Figure 3.18,

page 47). But for the preparation of a paramagnetic tag molecule based on lanthanoid cryptates a late

stage functionalisation, which includes the preparation of the diol-functionalised lanthanoid cryptate and a

subsequent attachment of the linker might be preferential. Unlike it is the case for the completely assem-

bled tag molecule Ln-9, for the diol-functionalised lanthanoid cryptates decomposition processes during

HPLC purification are not to be expected. This approach would also allow for the preparation of differently

functionalised tag molecules without individual HPLC purifications.

For first experiments following a late stage functionalisation strategy TbIII was chosen as lanthanoid. Com-

pared to YbIII it leads to stronger paramagnetic shifts of the nuclei in the vicinity, which can be beneficial in

the study of large biomolecules. Furthermore terbium cryptates are luminescent, which can be helpful in

the preparation of bioconjugates. Again, the replacement of the sodium cation with the lanthanoid cation

could be realised using standard conditions. For recrystallisation the crude material was dissolved in a

minimum amount of CH3OH, filtered over cotton and overlayered with Et2O. After storage at 4°C overnight

the terbium cryptate could be isolated in 99% yield. Evidence of the identity of the complex isolated could

be given via high resolution ESI-MS.

A characteristic part of the 1H NMR spectrum of the complex is shown in Figure 3.52. The signals are

distributed over a wide ppm-range, and further signals can be expected at shifts even more apart from

the center of the spectrum. Since the signals typically are getting broader when they experience a strong

paramagnetic shift, unambiguous identification is difficult and needs special care during measurement and

processing of the data. Unfortunately in this case not enough material of the complex was available to do

so. Between 115 and -400 ppm fifteen signals of roughly identical integrals can be observed which strongly
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Figure 3.51: Preparation of the diol-functionalised terbium cryptate Tb-5 from the respective sodium cryptate Na-5
and subsequent HPLC purification.

Figure 3.52: Part of the 1H NMR spectrum (500 MHz, CD3OD) of the diol-functionalised terbium cryptate Tb-5 ob-
tained after recrystallisation.

indicates the presence of one TbIII complex in the sample. The complex was found to show surprisingly

strong luminescence. Different from what is typically observed for terbium cryptates, already relatively di-

lute samples show the characteristic green emission visible to the naked eye under excitation with 302 nm.

The normalised steady state emission spectrum is shown in Figure 3.53.
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Figure 3.53: Normalised steady state emission spectrum of Tb-5 (CD3OD, �exc = 320 nm).

Figure 3.54 shows an analytical HPLC chromatogram of the material isolated after recrystallisation. The

main component was eluted after 11.4 minutes, which is very similar to the value observed for the amino-

functionalised lanthanoid cryptates Ln-1.

Figure 3.54: Chromatogram from the analytical HPLC (program A, setup A) of the terbium cryptate Tb-5 as obtained
after recrystallisation.

A portion of the diol-functionalised terbium cryptate Tb-5 was subjected to semi-preparative reversed-

phase HPLC under the conditions established for lanthanoid cryptates. The compound isolated afterwards

(Rf = 11.4 minutes) was again studied via NMR spectroscopy. The 19F NMR spectrum shows a signal at

-77.1 ppm, which most likely corresponds to the TFA- bound after HPLC purification. The material was

also studied via 1H NMR spectroscopy, but due to the even smaller amount of material available the mea-

surement was further complicated compared to the case of the material obtained from recrystallisation.
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Figure 3.55 shows the middle region of the spectrum, for which a processing of the raw data was rea-

sonable. Interestingly the spectrum shows some characteristic changes compared to the one from the

complex obtained after recrystallisation. Several aspects could be responsible for that phenomenon, for

example there might be some kind of concentration-dependency, or the exchange of the counter anion (Cl-

for TFA-) could affect the structural arrangement of the ligand around the metal or the exact nature of the

tensor of susceptibility of the magnetic anisotropy �.

Figure 3.55: Middle region of the 1H NMR spectrum (400 MHz, CD3OD) of the diol-functionalised terbium cryptate
Tb-5 obtained after reversed-phase HPLC.

While this may be objective of further studies, until now it could be shown that the preparation of the

diol-functionalised enantiopure lanthanoid cryptates Ln-5 and their purification via reversed-phase HPLC

analogously to established methods is possible and can become starting point for the actual application of

this scaffold for the preparation of paramagnetic tag molecules.
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3.4 Conclusion

The aim of this project was to provide a basis for the utilisation of rigidified lanthanoid cryptates Ln-bpy3O2

for any kind of application based on a covalent attachment of lanthanoid complexes. The prerequisite

for such applications is a reactive functionalisation at the periphery of the core scaffold. With the amino-

functionalised cryptates Ln-1 the first examples of such cryptates could be prepared.
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Figure 3.56: Structure of the amino-functionalised lanthanoid cryptates Ln-1 which combine the rigidified lanthanoid
cryptates Ln-bpy3O2 with a peripheral functionalisation.

The study of the ligand-centered and lanthanoid-centered photophysical properties of these complexes re-

vealed that the beneficial emissive properties are not significantly affected and that the amino-functionalised

cryptates Ln-1 will allow the use of the photophysical properties of the well-studied cryptates Ln-bpy3O2

in new contexts.

(a) Representation of Yb-1 and two pseudocontact shift
surfaces derived from the susceptibility of the magnetic
anisotropy tensor �. The green line illustrates the effec-
tive C2-symmetry axis of the complex.

(b) Size and orientations of the pseudocontact shift iso-
surfaces of the functionalised (Yb-1, left) and unfunction-
alised (Yb-bpy3O2, right).

Figure 3.57: Representations of the susceptibility of the magnetic anisotropy tensor � of Yb-1 and Yb-bpy3O2. Fig-
ures adopted from reference [160].
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For a deeper understanding of the effect of the functionalisation on the effective coordination geometry

around the lanthanoid and on the crystal field, a detailed analysis of the lanthanoid induced shifts was per-

formed. In line with the results from the analysis of the photophysical properties, it could be shown that the

influence of the functionalisation (and the resulting decrease of the overall symmetry) on the arrangement

of the coordinating atoms around the lanthanoid is minimal.

Following two different functionalisation strategies, three derivatives of Eu-1 with final functionalisations

targeting specific applications were prepared and characterised. Depending on the chemical stability of

the target functionalisation the sequence of reaction and purification steps was adapted, and the reaction

with NHS ester-functionalised PEGs was found to be a versatile and quick strategy to introduce a variety

of different functionalisations. All three prepared europium tags are now in use for different applications by

cooperation partners.
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Figure 3.58: Structures of the prepared europium tags with different functionalisations targeting for versatile applica-
tions.

To extend the toolbox of cryptates carrying a reactive functionalisation at the periphery, the enantiopure
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diol-functionalised cryptate Na-5 was developed. The enantiopurity of these compounds can be critical for

different applications e.g. applications based on NMR techniques. Together with the possibility of a dual,

especially rigid attachment this ligand scaffold offers best prerequisites for the development of innovative

paramagnetic tags for the structural elucidation of biomolecules.
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Figure 3.59: Structure of the enantiopure diol-functionalised cryptate Na-5.

Inspired by tag molecules which are already used for such applications, the enantiopure diol-functionalised

cryptate Na-5 was decorated with linkers carrying a disulfide, targeting for cysteine groups of the protein

under study and providing a reliable attachment of the tag.
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Figure 3.60: Structure of the enantiopure disulfide-functionalised cryptate Na-9.

In the case of both scaffolds Na-1 and Na-5, the initial introduction of a reactive peripheral group was syn-

thetically challenging. In contrast, the transformation into further derivatives was found to be very straight

forward and a variety of lanthanoid cryptate derivatives will be accessible now, making the outstanding

properties of the lanthanoid cryptates Ln-bpy3O2 accessible for various fields of research.
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4 Construction of a Molecular Nanocode

4.1 Introduction

Since the digital revolution led to the transformation of the industrial age to the information age, the need

for computational resources and data storage steadily increases. With Moore’s law reaching its limita-

tions, the need for new strategies and approaches to these problems becomes obvious. Apart from efforts

to further miniaturise the conventional architectures which are the basis of current computing, genuinely

new ideas turn towards molecules as the smallest units of innovative data storage and processing. Con-

cerning the processing of information, concepts such as the quantum computer[190], “molecular information

processing”[191][192] or “molecular electronics”[193] and research towards their realisation already led to some

highly interesting molecular systems, but are still far away from the actual construction of a universally appli-

cable computer from such building blocks. In the case of the storage of information the situation is different.

Indeed the oldest known methods for the storage of any information are based on molecules, namely the

RNA and the DNA. At the same time the DNA is superior to any man made data storage device with

respect to important parameters such as the density of information and the durability of information.[194]

The fact that the basis of the complete physical existence of any living being on earth is encoded in its

DNA gives remarkable evidence of the enormous reliability, the small error-proneness, and the fascinating

self-healing abilities of this molecular data storage system. Nature has developed an elegant and highly

sophisticated biochemical apparatus to prepare the proteins whose building plans are encoded in the DNA

(see Figure 4.1), but in principle any kind of information can be encoded in DNA molecules and later on be

decoded with the aid of the polymerase chain reaction (PCR) and sequencing.

In the last few years different strategies for the use of DNA for this purpose were developed and impressive

examples could be reported.[196][197][198][199] A clever design of the encoding and decoding processes allows

for a combination of the extremely high information density and a good reliability, also in an artificial sys-

tem. Generally, for the decoding a replication of the DNA strands is necessary, which makes the readout

process several orders of magnitudes slower than the readout of information from magnetic or digital data

storage devices. But for many interesting potential applications of a molecular nanocode a fast and easy

access of the encoded information is necessary. Examples are the anti-counterfeiting labeling of drugs,

the homogeneous labeling of medical samples, multiplexing assays[200] or applications in the field of com-

binatorial chemistry.

Strategy of the combinatorial chemistry is the simultaneous synthesis of many related but different mole-

cules, for example in search of a new pharmaceutical ingredient. An example for a synthetic strategy used

for this purpose is the so-called “Split & Mix”-technique, where the separate synthesis processes take place
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(a) Protein biosynthesis generally consists of two main steps.
During the first step (transcription), the DNA is used to prepare
the messenger RNA (mRNA). In the subsequent step (trans-
lation) the ribosomes assemble amino acids in the sequence
given by the mRNA.

(b) Groups of three subsequent monomers of the mRNA
form a codon which is encoding a specific amino acid or
the command to stop the translation.

Figure 4.1: The natural process in which the information encoded in the DNA is used to prepare the corresponding
proteins is highly complex and relies on a machinery of aiding biomolecules, such as the RNA poly-
merases or the ribosomes. Figures adopted from reference [195].

in shared reaction vessels but immobilised on an individual particle (“Bead”). After every reaction step the

particles are mixed and redistributed among the reaction vessels with individual reaction conditions. This

leads to the fast preparation of a library of different molecules, which is then tested for the desired reactivity

or medical activity. Only for promising candidates the exact chemical structure is determined subsequently.

Often this is done in an indirect fashion via the reconstruction of the synthesis path the particle has run

through. To track the individual particles during synthesis they can be tagged with some kind of code,

which can either be done by a stepwise construction of the code during synthesis, or by giving every parti-

cle a unique code prior to synthesis and monitoring the course of every single particle for every step. Since

reliable coding and identification are critical for these approaches, in the context of the combinatorial chem-

istry a variety of different nanocodes has been developed and applied. Several reviews give an overview

of the concrete techniques used.[201][202]

As already implied earlier, the critical point in the design of a nanocode is the readout or decoding pro-

cess, which should be fast and reliable. A variety of well established spectroscopic methods is in principle

applicable for the identification or decoding of a nanocode, particularly suitable are mass spectrometric

methods.[203] They belong to the most sensitive analytical methods known and very small amounts of the

nanocode substance are sufficient for a reliable analysis. Also an evaluation based on optical properties

of a nanocode offers a very promising approach. The corresponding methods have moderate apparative
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costs, are relatively simple and non-invasive. In this case, in order to allow for the preparation a sufficiently

large amount of possible codes, several chromophores have to be combined so that the information can

be encoded in the ratio of the chromophores in the nanocode, and measured as the ratio of the respective

luminescence intensities.

Figure 4.2: Comparison of a typical emission spectrum of an organic chromophore (quinine) and a lanthanoid com-
plex (Ln = TbIII). Since the transition bands of the lanthanoids are much more narrow than the ones found
for organic chromophores, they offer by far better possibilities for multiplexing and related applications,
e.g. in the construction of luminescent nanocodes.

Based on organic chromophores only quite a small number of such codes would be realisable, since the

emission spectra of such dyes are typically broad and tend to overlap, which drastically hinders an un-

ambiguous quantification. Furthermore organic fluorophores are prone to undergo photobleaching, and

in many cases several excitation wavelengths would be necessary for the excitation of the combined flu-

orophores. This would make the read-out process considerably more complex. By the use of lanthanoid-

based chromophores all these problems can be circumvented in an elegant fashion. Typically lanthanoid

luminophores do not undergo photobleaching and due to the use of an antenna chromophore typically all

luminescent lanthanoid complexes of one ligand can be excited at the same wavelength. Most importantly,

as outlined in chapter 1.1 and visualised in Figure 1.4 and Figure 4.2, lanthanoid complexes exhibit highly

characteristic and sharp emission bands. At the same time the lanthanoids are also well suited for an eval-

uation based on ICP-MS (inductively coupled plasma mass spectrometry), which is a mass spectrometric

method of especially high accuracy and in principle even allows for an absolute quantification of some

elements.[204][205]

In fact there have already been some examples for nanoparticles with some kind of coding functional-

ity based on lanthanoids.[206][207] For the development of such nanoparticle-based nanocodes it could be

made use of the extensive body of work already published about lanthanoid nanoparticles in general. But

a problem which is typical in the field of the preparation of nanoparticles becomes critical in the context

of nanocoding: The exact composition of a nanoparticle can neither be controlled during synthesis nor be

reproduced reliably. Consequently such approaches do not allow for the targeted preparation of a specific

code, and a relational coding is not realisable based on usual nanoparticles.
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(a) Nanocode-plates prepared from dif-
ferent lanthanoid-nanocrystals embed-
ded in a carrier substance. Figure
adopted from reference [208].

(b) Preparation of two-coloured hexagonal-phase NaYF4-
nanorods via epitaxial end-on growth. Figure adopted
from reference [209].

Figure 4.3: Examples of nanoparticles prepared for nanocoding following the approach of controlled spatial separa-
tion of different emissive properties.

Some examples in literature (mainly based on different luminophores than lanthanoids) aim to circumvent

this problem by giving the particles some kind of substructure which allows for the combination of regions

of different properties and subsequently facilitates the somewhat targeted preparation of distinguishable

particles.[200] For example, Lee et al. presented a lithographic method which was used to prepare pho-

topolymerized 200 µm short barcode-like plates from laminar streams of lanthanoid nanocrystals in a

carrier substance (see Figure 4.3(a)).[208] With a related approach Zhang et al. prepared nanorods of

hexagonal-phase NaYF4 with different dopants in the tips and central regions, which results in different

emissive properties (see Figure 4.3(b)).[209] Such techniques indeed allow for the preparation of versatile

and tailor-made nano- or microcodes applicable for many purposes, but at the same time the preparation

becomes quite tedious and needs specialised equipment. Furthermore, the general problem of the low

reproducibility of the used nanomaterials is in principle not solved.

Further problems which are inherently connected with the use of nanoparticles can only be circumvented

by the use of molecular compounds. Only molecular codes allow for the preparation of monodisperse sam-

ples and only for molecular codes full control over the exact composition of the nanocode is possible. A

purely organic nanocode is quite complicated to decode when limited to generally available tools and with-

out a sophisticated and highly specialised system as nature’s strategy for the synthesis of proteins from

the DNA. Nevertheless some efforts towards the development of such codes, often referred to as “digital

polymers” were reported.[210][211]

Conceptually it is by far more straightforward to combine the desirable properties of molecular compounds

outlined above with the highly characteristic and readily identifiable properties of metals which allow for a
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decoding based on mass spectrometric or optical techniques.

Covalent connection
between the
monomers

Figure 4.4: Schematic representation of a molecular nanocode based on covalently connected metal complexes.

As visualised in Figure 4.4 such a nanocode could be designed as a polymer of reliably attached building

blocks, whereby the information is encoded in the ratio or the sequence of the used monomers. In order to

make them identifiable with an optical or mass spectrometric method, each monomer should carry some

kind of reporter unit. For this purpose metal ions incorporated into a coordination compound are generally

highly suitable, and for the reasons outlined above the lanthanoids offer especially good prospects. An-

other necessary condition for the preparation of such a nanocode is a highly reliable connection between

the different monomers, as it is only possible with a covalent (organic) bond. With the amino acids nature

offers a class of building blocks which offer best prerequisites for this purpose.

The twofold reactive functionalisation of the amino acids allows for the connection via amide bonds yielding

a very stable backbone of the resulting polymer. Since the development of solid phase peptide synthesis[212]

(see Figure 4.5), the synthesis of peptides in the laboratory became an easy, fast and well-established

technique which can even be automated. Furthermore the process is compatible with a variety of different

residues attached to the amino acid, and is not limited to naturally occurring amino acids. This makes

the covalent attachment of additional groups with special chemical or physical properties easily feasible,

e.g. via the well established click-chemistry.[213] Obviously this offers enormous potential in various fields

of research connected with biological systems, for example in the targeted molecular imaging[214] or for

the development of innovative drugs.[215][216] Apart from that also completely innovative materials based on

peptides are accessible.[217]

Examples for such peptide-based materials which do indeed include covalently connected metal com-

plexes were presented by Tashiro et al.[218][219][220][221] They fused different metal complexes to amino acids

and used up to six of these monomers in a modified solid phase peptide synthesis for the preparation

of “metal-organic complex arrays” (MOCAs) (see Figure 4.6), and subsequently the short polymers could

also be assembled to bigger linear or branched structures. The 1H NMR and mass spectrometric prop-

erties of the resulting compounds were studied and also the self-assembly behaviour, but unfortunately

the optical properties of the monomers or polymers were not described. Molecular compounds with (dif-

ferent) covalently attached lanthanoids which could generally be applicable as nanocodes are not known

until now, neither based on amino acids nor on any other toolkit of modular organic synthesis. Despite the

highly beneficial physical properties of the lanthanoids this is not really surprising, because their chemical
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Figure 4.5: General principle of solid phase peptide synthesis (SPPS), following the Fmoc-strategy. In most cases
a suitable peptide synthesis resin is commercially available with the first, Fmoc-protected amino acid of
the desired sequence already attached via a linker. After an initial deprotection step the next amino acid
is activated in situ and added to the resin, whereby an amide bond is formed between the first and the
second amino acid. Subsequent deprotection and coupling steps lead to the formation of the desired
peptide, covalently attached to the peptide resin until the linker is cleaved and the peptide is released into
the solution.

properties are indeed problematic for the realisation of a molecular nanocode. An obvious condition for the

preparation of a molecular nanocode with a general structure as shown in Figure 4.4 is the accessibility of

stable and reliable complexes of the used metals. For the lanthanoids the preparation of such complexes

is by far more complicated as for e.g. transition metals. For example DOTA-type complexes (which are

usually considered to be very stable) would readily undergo decomplexation under the conditions typically

applied during peptide synthesis, and consequently are definitely not suitable for the construction of such

codes. In contrast the cage like structure of the cryptates bpy3O2 allows for the preparation of complexes

which even under extreme conditions, such as the storage in pure TFA, do not undergo decomposition.

Such complexes are very likely to withstand the conditions applied during peptide synthesis and also a

huge variety of conditions the prepared nanocode may be exposed to. The results from chapter 3 showed

that it is indeed possible to prepare cryptates carrying a reactive functionalisation without diminishing the

outstanding overall properties as a coordination scaffold. Consequently, a ligand structure which is suit-

able for the preparation of amino acids carrying a stable lanthanoid complex as a residue finally became

available, and subsequently the preparation of a peptide-based lanthanoid nanocode comes into reach.

Such a compound (see Figure 4.7) would allow for unprecedented possibilities in the field of nanocoding

which result from the absolute control over the sequence and ratio of monomers connected during solid
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phase peptide synthesis, the exquisite suitability of lanthanoids as reporter units in a nanocode, and the

molecular nature of the code which will allow for the preparation of homogeneous samples.

Tb Eu Yb Eu Yb 

Eu Tb Tb Yb Yb 

Yb Tb Eu Tb Eu 

Figure 4.7: A peptide-based conjugate of highly reliable lanthanoid cryptates, assembled in a fully controlled fashion,
allows for the preparation of barcode-like molecular nanocodes. These structures would allow for the
encoding of information in the sequence and/or ratio of different lanthanoids, which can be decoded with
well-established and highly reliable methods such as luminescence spectroscopy or mass spectrometry.
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4.2 Conception of the Project

After it could be established that the general properties of the cryptates Ln-bpy3O2 are not affected by an

initial peripheral functionalisation, the amino-functionalised building block Na-bpy3O2-en shall be used for

the construction of a molecular nanocode based on lanthanoid cryptates connected as a peptide. In order

to do so the following steps are to be carried out:

• Preparation and characterisation of lanthanoid cryptates functionalised with an Fmoc-protec-

ted amino acid

Initially the monomers of the nanocode have to be prepared by introducing an amino acid functionality to

the cryptate. Ideally the functionality should be introduced to the sodium cryptate which can afterwards

be transformed into the various lanthanoid complexes. An efficient route for the purification of these com-

pounds has to be found and the photophysical properties of the monomers shall be characterised.

• Validation of the amino acids’ characteristic reactivity

Peptide synthesis is known to be robust and to tolerate various side chains carried by the amino acid. Yet

such bulky and highly charged residuals are uncommon and the reactivity of both functional groups, the

carboxylic acid and the (deprotected) amine, should be tested.

• Connection of several lanthanoid-functionalised amino acids to short peptides and first ex-

periments towards the readout of the nanocodes

In the last step, as a proof of concept the amino acid-functionalised cryptates shall be connected to short

nanocodes via solid phase peptide synthesis. The subsequent characterisation of the compounds should

focus on techniques which will also be of use for the readout of the nanocodes, and consequently will give

evidence of their applicability to do so.

89



Chapter 4. Construction of a Molecular Nanocode

4.3 Results and Discussion

4.3.1 Development of a cryptate-based amino acid-functionalised ligand for

lanthanoids

Peptide synthesis is an extremely well established technique. Furthermore, the general properties e.g. the

high stability of lanthanoid cryptates Ln-bpy3O2 can be expected to be compatible with the conditions ap-

plied during solid phase peptide synthesis. Consequently the most critical part of this project is to provide

a ligand scaffold which allows to connect both aspects necessary for the construction of a peptide-based

nanocode from lanthanoid cryptates. The essential property of such a ligand scaffold is of course a func-

tionalisation as amino acid. The amino-functionalised cryptates 1 provide an excellent starting point for

the preparation of such a molecule. As it could be shown in the previous chapter, the initial peripheral

functionalisation does not affect the beneficial properties of the core ligand bpy3O2. A variety of further

functionalisations could already be attached to the amino-group of Na-1 or Eu-1 which also had no neg-

ative influence. The good availability of Na-1 is also relevant, since it provides a reliable starting point for

further developments.

Na-1

∗∗ OH
O

R
HN Fmoc

N

N

N

N

N
N

N
N
H

O
NH2

Na
N

O
O

+

Br-

N

N

N

N

N
N

N
N
H

O H
N

Na
N

O
O

+

Br-

R
∗∗

HN Fmoc
OH

O
+

Figure 4.8: General retrosynthetic approach for the preparation of an amino acid-functionalised cryptate starting from
the amino-functionalised cryptate Na-1. Fmoc = fluorenylmethyloxycarbonyl.

An obvious strategy for the preparation of an amino acid-functionalised cryptate from the amino-function-

alised cryptate Na-1 is the attachment of a complete amino acid to the amino group. In principle any amino

acid carrying a reactive group in its side chain is potentially suitable to do so. As these compounds are

building blocks of any peptide synthesis, they are often commercially available in different variations and

with different protecting groups, depending on which peptide synthesis approach is to be followed (Fmoc

or Boc stategy). For this project the Fmoc-strategy was chosen since the conditions applied herein are

typically considered to be milder and, more importantly, this strategy has developed to be the better estab-

lished one.[222]
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Ideally the reaction outlined in Figure 4.8 would be carried out with enantiopure lanthanoid cryptates to

prevent the formation of diastereomers. However, this would make the preparation of the starting material

more tedious. At the same time it is unlikely that the use of diastereomeric mixtures of the amino acid-

functionalised lanthanoid cryptates will have a significant negative impact upon the targeted application in

solid phase peptide synthesis. Consequently for this proof of concept study the better available racemic

lanthanoid cryptates were used.

Importantly, and as already indicated by Figure 4.8, for the preparation of amino acid-functionalised lan-

thanoid cryptates an early stage functionalisation (see Figure 3.18, page 47) is preferred, so that a larger

amount of the amino acid-functionalised sodium cryptate is prepared as precursor and then transformed

into the complexes of the different lanthanoids. This also minimises necessary HPLC purifications and at

the same times allows for high purity of the amino acid-functionalised lanthanoid cryptates.
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Figure 4.9: Early stage functionalisation approach for the preparation of amino acid-functionalised lanthanoid
cryptates. Charges of the metal ions and counter anions are omitted for clarity.

From the many different amino acids which come into question for the realisation of the retrosynthetic ap-

proach shown in Figure 4.8, glutamic acid is especially promising. With the side chain carrying a terminal

carboxylic acid, attachment to Na-1 via an amide bond is possible, and the C2H4-unit of the side chain

would give some flexibility to the assembled cryptate. For the formation of the amide bond, the toolbox

of peptide chemistry offers many useful possibilities. Indeed with reaction conditions typically applied in

peptide synthesis I was already able to prepare a glutamic acid-functionalised sodium cryptate during pre-

liminary studies (see Figure 4.10).[162]

Typically coupling reagents are used for the formation of peptide bonds between amino acids and oligopep-

tides. A variety of these reagents have been developed with slightly different properties, and different ca-

pabilities to circumvent characteristic problems which can occur during peptide bond formation.[222][223] Of

course short reaction times and high efficiencies are needed, and e.g. in most cases a coupling reagent

which helps to suppress racemisation of the amino acids is chosen. For most coupling reagents, the exper-

imental procedure is quite similar. Typically the coupling reagents are added to the carboxylic acid directly

prior to the coupling step, since the high reactivity of the active esters precludes purification or isolation.
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The glutamic acid-functionalised sodium cryptate could be prepared with two different coupling reagents.

HATU (hexafluorophosphate azabenzotriazole tetramethyl uronium) is typically considered to be the best

coupling reagent for difficult coupling reactions. It provides fast and efficient amide bond formation and ef-

ficiently suppresses racemisation. Its potentially explosive nature and its high price are disadvantageous,

but typically not problematic for reactions on a rather small scale. An alternative coupling reagent is DCC

(dicyclohexylcarbodiimide), which is typically used together with additives such as HOBt (1-hydroxybenzo-

triazole). When DCC is used, racemisation processes can become problematic but since the adjacent car-

bon atom of the carboxylic acid group which is to be activated in this case is non-stereogenic this should

not lead to problems. Both coupling reagents were found to be in principle suitable for the preparation of

the glutamic acid-functionalised sodium cryptate. Yet the yields were low (in all experiments below 25%)

and could not reliably be reproduced. Furthermore the work up procedures developed to purify the crude

product were quite tedious and these reactions did not provide a suitable basis for further developments.
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Figure 4.10: Preparation of a glutamic acid-functionalised sodium cryptate from the amino-functionalised sodium
cryptate Na-1 under different conditions.[162]

While the in situ preparation of the activated carboxylic acid is of course convenient in many cases, it

becomes rather problematic when the reaction is not proceeding as desired, as it hinders attempts to

strategically optimise the reaction. Furthermore in the light of the limited availability of Na-1 it would be

beneficial to utilise this building block in a subsequent reaction step under more controlled conditions.

Indeed there are reagents which allow for the preparation of activated carboxylic acids which are highly

reactive, yet stable enough to be purified, analysed and stored. Examples are N-hydroxysuccinimide or

2-mercaptothiazoline which can be added to a freshly prepared mixture of a carboxylic acids and a peptide

coupling reagent, like the ones mentioned above, and thereby transform the active ester into an isolable

reagent. Compared to N-hydroxysuccinimide, 2-mercaptothiazoline has a special characteristic which al-

lows for a detailed monitoring of the reaction and purification of the intermediate. Since its amides forms
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with carboxylic acids are brightly yellow (like the active esters HATU forms), the successful formation of the

amide and its substitution with the primary amine in the subsequent reaction step can easily be observed.
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Figure 4.11: Retrosynthetic approach for the preparation of the glutamic acid-functionalised cryptate starting from the
amino-functionalised cryptate Na-1 and using a 2-mercaptothiazoline-activated glutamic acid.

In an initial experiment for the preparation of the 2-mercaptothiazoline-activated glutamic acid, the pro-

tected glutamic acid was dissolved in dry DMF and 1.2 equivalents HATU together with 2.5 equivalents

DIPEA were added. After a few seconds the mixture turned yellow, which indicates the formation of the

active ester of the carboxylic acid and HATU. After the mixture had been stirred for a few minutes, 1.1

equivalents of 2-mercaptothiazoline (dissolved in dry DMF) were added, upon which no further changes of

the colour could be observed. The solution was stirred for 18 hours at room temperature before the solvent

was removed in vacuo whereby the solution was warmed to 40°C. The resulting pale yellow to slightly

brownish residue was subjected to column-chromatography (SiO2, CH2Cl2/CH3OH 100:1), the fractions

which were eluted as a yellow solution were collected. TLC of these fractions indicated that they contained

two components. The 1H NMR spectrum of the material isolated shows signals which are characteristic

for the glutamic acid, and signals characteristic for derivatives of 2-mercaptothiazoline, yet the ratio of the

integrals indicates that the structural motifs are not present in the desired 1:1 ratio. Furthermore a closer

look at the signals of 2-mercaptothiazoline revealed that indeed two closely related molecules were in the

sample. To test the reactivity of the isolated material a small portion of it was dissolved in CHCl3. Upon

addition of ethylamine the solution rapidly decoloured, as it is expected for 2-mercaptothiazoline-activated

carboxylic acids. Based on these results it was concluded that the isolated material is a mixture of the

desired product and unreacted 2-mercaptothiazoline.
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Attempts to separate both components with another column-chromatography (SiO2, Hexanes/EtOAc 5:1)

were not successful. Afterwards no substance whose 1H NMR spectrum was promising could be iso-

late, the analysis was complicated by the small amounts of substance left and an unfavourable sep-

aration during column-chromatography. In two subsequent experiments with decreased equivalents of

2-mercaptothiazoline and prolonged reaction times (0.9 equivalents and 23 hours or 1.0 equivalents and

72 hours at 40°C bath temperature) the moderately promising results after the first column-chromatography

of the first experiment could not be reproduced, and consequently this approach was not pursued any fur-

ther.

After the attempts to prepare the amino acid-functionalised sodium cryptates with techniques established

from peptide synthesis did not lead to the desired results, a different approach was developed. The funda-

mental synthetic problem which had to be resolved is the covalent and reliable attachment of the side chain

of any amino acid to the amino-functionalised sodium cryptate Na-1. While the exact nature of the covalent

bond is almost arbitrary, the efficiency of the reaction with respect to the cryptate starting material is crucial.

Similar problem sets are e.g. relevant in the labeling of biomolecules, where small amounts of biomolecules

have to be labeled with high efficiencies, whereby a high excess of the used labeling reagent (and a higher

price or tedious preparation of it) is tolerable. Such a labeling reagent which allows for an efficient label-

ing of amino-groups with a fluorescent dye is fluorescein isothiocyanate (FITC).[224] Upon reaction with a

primary amine a thiourea-derivative is formed, which reliably connects the biomolecule and the fluores-

cent dye. In order to transfer this successful strategy to the preparation of an amino acid-functionalised

sodium cryptate, an amino acid functionalised with an isothiocyanate is needed. Such a compound can

be prepared from an amino acid whose side chain is carrying an additional amino-group, like it is the case

for lysine. A typical method for the preparation of isothiocyanates from primary amines is the reaction

with a small excess of thiophosgene in the presence of a base, typically CaCO3.[225] Under elimination of

one equivalent HCl in a first step a thiocarbamide acid chloride is formed which subsequently undergoes

decomposition, whereby another equivalent of HCl is eliminated and the isothiocyanate is formed. Isoth-

iocyanates are significantly more stable against hydrolysis than the corresponding isocyanates so that the

reaction can be performed in aqueous solution. When an aliphatic primary amine is to be transformed into

the corresponding isothiocyanate, the amine can initially be dissolved in diluted hydrochloric acid which

is then added to a solution of the thiophosgene with a base in a suitable solvent.[226] Since the Fmoc-

protected lysine-derivative 14, which is the best choice as starting material in this case, is barely soluble in

organic solvents or water, at first this strategy was pursued. With 1.1 equivalents of HCl the lysine deriva-

tive dissolves quickly in water and a clear solution is obtained which was added dropwise to a warmed

suspension of 1.0 equivalents thiophosgene and 2.2 equivalents CaCO3 in CH3CN. Initially due to the tox-

icity of thiophosgene it was refrained from the use of an excess of the reagent, and instead the reaction

was performed in high dilution to prevent the reaction of the formed isothiocyanate with another equivalent

of the lysine derivative to give the symmetric thiourea-derivative. After 3 hours another 1.1 equivalents of

HCl were added to the reaction mixture and the solution was extracted with CH2Cl2 to separate the product

from residual starting material and CaCO3. With this method the isocyanate-functionalised lysine derivative

15 could be isolated in moderate yields (32% to 44%). Due to the high dilution an upscaling of this reaction

was not practicable, furthermore the procedure was relatively tedious. In order to make the preparation of
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a large amount of 15 feasible another strategy for the preparation of the important reagent was developed.
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Figure 4.12: Synthesis of the isothiocyanate-functionalised lysine-derivative 15 from the Fmoc-protected lysine-
derivative 14 following two different methods.

From the experiments following method A (see Figure 4.12) it was known that the product of the reaction 15

in contrast to the starting material 14 is highly soluble in CH2Cl2, and it was observed that the residual thio-

phosgene can easily be removed in vacuo from the crude product, so that handling of the material becomes

unproblematic. Based on these observations, as alternative synthesis strategy the Fmoc-protected lysine-

derivative 14 was added directly as solid to a mixture of 1.5 equivalents thiophosgene and 1.1 equivalents

CaCO3 in CH2Cl2. To provide a partial solution of the base in the organic solvent, the suspension of both

was stirred for 30 minutes before thiophosgene was added, directly followed by 14. Over the course of the

reaction the Fmoc-protected lysine-derivative is dissolved and transformed into the well-soluble product 15.

After 24 hours a slightly turbid reaction mixture is obtained and upon addition of 1.1 equivalents of diluted

HCl, the insoluble components of the mixture accumulate in the aqueous phase, and the crude product

can be obtained from the organic phase in good purity according to 1H NMR spectroscopy. Unfortunately

in vacuo residual thiophosgene cannot be removed completely from the material obtained. This is indeed

critical, since in subsequent reaction steps with primary amines the residual thiophosgene can transform

them into isothiocyanates, so that an attachment of the activated amino acid is no longer possible. To

solve this problem the crude isothiocyanate 15 was purified via column-chromatography. No decompo-

sition of the reagent was observed during this and the fractions containing the thiophosgene can easily

be identified via TLC. A complete separation of both compounds could not be achieved, typically some

fractions containing both are obtained. Yet following this strategy a yield of up to 47% could be realised.

Since the yields for the experiments performed following method A were determined without purification

via column-chromatography, method B can be concluded to be more efficient. In any case method B is

less tedious and can easily be scaled up as long as the necessary precautions considering the toxicity of

thiophosgene are taken. Figure 4.13 shows the 1H NMR spectrum of the substance isolated after column-
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chromatography. In the range between 7.8 and 7.2 ppm three multiplets which are characteristic for the

eight aromatic protons of the Fmoc-group can be observed. Another signal characteristic for this group

is the triplet observed at 4.2 ppm (corresponding to one proton) and the doublet at 4.4 ppm (equivalent to

two protons) which in this case is overlapping with the signal of the ↵-proton of the amino acid and con-

sequently cannot be integrated separately. The multiplet between 3.59 and 3.47 ppm which resembles a

triplet corresponds to the two protons of the CH2-groups next to the isothiocyanate-group, and the signals

of the other six protons of the aliphatic chain of the lysine are observed as three multiplets between 2.0

and 1.3 ppm.

Figure 4.13: 1H NMR spectrum (400 MHz, CD2Cl2) of the isothiocyanate-activated lysine derivative 15.

Evidence for the successful preparation of 15 could also be given via 13C NMR spectroscopy and ESI-MS.

Via 1H NMR spectroscopy neither after storage in CD2Cl2 at room temperature nor after storage over sev-

eral weeks in the solid state at -30°C any decomposition of the isothiocyanate 15 could be observed. Still

there are indices that subsequent reaction steps proceed cleaner and with higher yields when 15 had not

been stored for an prolonged period of time prior to use. Furthermore the lysine derivative 15 shows a

high affinity towards solvents. To remove traces of the solvent and to obtain the reagent as glossy solid,

which can be scraped from the glass vessel, the material isolated after column-chromatography was dried

in vacuo overnight, otherwise it remains a sticky oil which is rather difficult to handle.

The reactivity of the isothiocyanate 15 was tested directly with the amino-functionalised sodium cryptate

Na-1. In a first preliminary experiment equimolar amounts of both compounds were stirred at room tem-

perature in dry DMF. In an ESI-MS of the crude product obtained after evaporation of the volatiles already

a signal which points towards a partly formation of the desired lysine-functionalised sodium cryptate Na-16

could be detected. In order to improve the efficiency of the reaction with respect to the amino-functionalised

sodium cryptate Na-1, the employed equivalents of the isothiocyanate-functionalised lysine-derivative 15

were increased and the reaction was performed in basic solution. Importantly the pH should not be too

high since otherwise the base-labile Fmoc protecting group might be cleaved. The best results obtained

so far were realised with 3.0 equivalents of the lysine-derivative 15 at 40°C in dry DMF in the presence of

1.5 equivalents NaHCO3 and a reaction time of 17.5 hours. Purification of the lysine-functionalised sodium
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cryptate Na-16 via column-chromatography is possible, yet relatively tedious and significantly decreases

the yield of the reaction (51% after column-chromatography). The mass spectrometric characterisation of

the crude product points towards a rather clean progression of the reaction, so the more promising strategy

to make larger amounts of Na-16 accessible might be an optimisation of the reaction conditions until no

further purification is needed. Since the isothiocyanate 15 can conveniently be prepared on a large scale,

a possible approach could be to gradually add a large excess of 15 to the reaction mixture until a complete

conversion of Na-1 is reached. Removal of the residual isocyanate from the dried crude product should be

easily realisable by washing the material with CH2Cl2, since in contrast to the product Na-16 the reagent is

highly soluble in this solvent.
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Figure 4.14: Synthesis of the lysine-functionalised sodium cryptate Na-16 from the amino-functionalised sodium
cryptate Na-1 and the isothiocyanate-functionalised lysine 15.

Generally the lysine-functionalised sodium cryptate Na-16 is only slightly soluble in (nonpolar) organic sol-

vents. This is not uncommon for sodium cryptates and in this case the Fmoc-group can be expected to di-

minish the solubility in solvents like methanol, which are typically relatively good choices for the NMR spec-

troscopic characterisation of sodium cryptates. The low solubility of Na-16 hinders the NMR spectroscopic

characterisation of the compound. Best result were obtained after the sample was initially suspended in

CD3OD followed by the dropwise addition of CD2Cl2 until the solid was partially dissolved. Interestingly,

also after evaporation of CD2Cl2 under air the compound remained dissolved. The 1H NMR spectrum ob-

tained after preparation of the sample in such a mixture of solvents is shown in Figure 4.15 together with

the 1H NMR spectrum of the starting materials Na-1 and 15. Due to the overlapping and the low intensity

of the signals no reliable integration was possible. Yet the presence of characteristic motifs of both starting

compounds together with some slight changes strongly points towards the successful preparation of the

lysine-functionalised sodium cryptate Na-16, and overall the spectrum is in compliance with expectations.
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Figure 4.15: 1H NMR spectra of the isothiocyanate-activated lysine derivative 15 (top, 400 MHz, CD2Cl2), the
lysine-functionalised sodium cryptate Na-16 (middle, 500 MHz, CD3OD + CD2Cl2), and the amino-
functionalised sodium cryptate Na-1 (bottom, 250 MHz, CD3OD). Unambiguously identified solvent sig-
nals are marked with an asterisk.

Figure 4.16: Magnifications of parts of the 1H NMR spectrum (500 MHz, CD3OD + CD2Cl2) of the lysine-
functionalised sodium cryptate Na-16.

Unfortunately, also the 1H-1H COSY NMR spectrum recorded from the sample could only partially resolve

this problem (see Figure 4.17 and page 270 of the appendix). Two crosspeaks at (4.04, 1.65) ppm and

(3.57, 1.72) ppm allowed for the identification of the signals corresponding to the ↵-proton of the amino
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acid and the signals of the two protons of the CH2-groups next to the isothiocyanate. This facilitated a

rough integration of the signals, which again was in line with the structure of Na-16.
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Figure 4.17: Part of the 1H-1H COSY NMR spectrum (500 MHz, CD3OD + CD2Cl2) of the lysine-functionalised
sodium cryptate Na-16. The complete spectrum can be found in the appendix (page 270).

ESI-MS was found to be the more straightforward technique for the unambiguous identification of the lysine-

functionalised sodium cryptate Na-16 (m/z = 1125.2). Typically also ESI mass spectra of the crude product

show only signals corresponding to the product and the amino-functionalised sodium cryptate Na-1. Since

sodium cryptates generally can be detected easily with this method this points to a clean progression of

the reaction without the formation of sodium cryptate byproducts.
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4.3.2 Preparation and characterisation of the monomers

Since the trivalent lanthanoid cryptates are typically much more soluble in polar solvents such as CH3OH

or CH3CN than the corresponding sodium cryptates are, the low solubility of Na-16 in these solvents which

are typically used for the complexation reactions is not necessarily problematic. Consequently despite the

low solubility of Na-16 attempts for the preparation of the corresponding lanthanoid cryptates from this

complex were undertaken.

N

N

N

N

N
N

N
N
H

O H
N

Ln
N

O
O

3
+

(X-)3

Ln-16

H
N

S
COOH

HN Fmoc

N

N

N

N

N
N

N
N
H

O H
N

Na
N

O
O

+

Br-

Na-16

H
N

S
COOH

HN Fmoc

Figure 4.18: Retrosynthetic approach for the preparation of the lysine-functionalised lanthanoid cryptates Ln-16 from
the corresponding sodium cryptates Na-16.

For these experiments YbIII was chosen as lanthanoid. Due to the distinct paramagnetic nature of YbIII and

the resulting shifts in NMR spectra it is easy to distinguish the signals of a YbIII cryptate from the signals

of the corresponding sodium cryptate. Consequently and because the 1H NMR spectrum of Yb-1 was

already analysed and described thoroughly (see section 3.3.4), reaction control via 1H NMR spectroscopy

should be straightforward in this case.

As already described above (see page 36), in most cases for these reactions CH3CN is the better choice

compared to CH3OH and allows for shorter reaction times. Consequently in a first experiment the sodium

cryptate Na-16 and 1.5 equivalents YbCl3 · 6 H2O were heated to reflux temperature in CH3CN for 64 hours.

After evaporation of the solvents a mixture of different solvents (CD3CN, CD3OD and CD2Cl2) was nec-

essary to prepare a sample for 1H NMR spectroscopy of the crude material. The resulting spectrum is

difficult to interpret, which might be due to the inhomogeneity of the sample, and the use of a (different)

mixture of solvents further complicated the comparison to the spectra of the sodium cryptates Na-1 and

Na-16. Still the absence of paramagnetically shifted signals of the cryptate strongly points towards the ab-
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sence of the expected YbIII cryptate in the sample. The material isolated after evaporation of the solvents

was suspended in a mixture of CH3CN with 10 vol.-% CH3OH, but after 120 hours of stirring the mixture at

reflux temperature again no paramagnetically shifted signals of a cryptate could be observed via 1H NMR

spectroscopy. Subsequently the content of CH3OH in the solvent mixture was gradually increased, also

with addition of small amounts of CH2Cl2, but at neither of these conditions the starting material dissolved.

Finally it was heated to reflux temperature in pure CH3OH for 72 hours and subsequently a sample of the

material was analysed via MALDI-MS and via ESI-MS, trying to detect traces of the lanthanoid cryptate

which might have been formed. In the MALDI-MS spectrum only signals which arise from the matrix mate-

rial used (DHB) were detected, in the ESI-MS spectrum a signal with m/z = 338.4 could be observed, but

the isotope pattern of the signal is not in line with the presence of YbIII in the observed species. During the

attempts to perform the complexation reaction several samples for analysis via reversed-phase HPLC were

taken. To do so the solid was suspended in CH3CN/H2O 1:1 (v/v) and filtered over a nylon filter. Some of

the samples prepared were slightly yellow which pointed towards a partial dissolvation of the solid, but with

the HPLC program established for the HPLC analysis of cryptates no substance could be detected. The

retention time of the amino-functionalised YbIII cryptate under these conditions is known, and in order to

estimate if the target compound would be eluted from the column under the used conditions also an ana-

lytical HPLC run of the Fmoc-protected lysine derivative 14 was performed. The compound was detected

as a sharp signal after 15.3 minutes. Since both compounds have rather similar retention times it is quite

likely that also the lysine-functionalised ytterbium complex Yb-16 assembled from both molecules should

be detectable under these conditions.

In conclusion, the observations made during the experiments for the preparation of a lysin-functionalised

lanthanoid cryptate Ln-1 following the strategy outlined in Figure 4.18 strongly point towards the interpre-

tation that these compounds are not accessible with this approach, probably because the solubility of the

lysine-functionalised sodium cryptate in solvents which can be used for the metal exchange reaction is just

too low.

Retrospectively, the poor solubility of Na-16 is not very surprising. The introduction of Fmoc-protecting

groups is known to have a potentially large impact upon the solubility of a molecule. Fmoc-groups tend to

undergo ⇡-stacking and can drastically hinder solvation in polar solvents. The observation that the addi-

tions of small portions of halogenated solvents improved the solubility of Na-16 is in line with that, since

these solvents are known to be helpful to break up these interaction. In case of the covalent attachment of

an Fmoc-protected amino acid to a sodium cryptate it comes to an unfortunate interplay of the limited sol-

ubilities of both components, which results in the product being insoluble in solvents which could be used

for the subsequent complexation reaction. The same behaviour can be expected for any reaction product

of the amino-functionalised sodium cryptate Na-1 and an Fmoc-protected amino acid as long as no special

modifications for an improvement of the solubility are included, such as for example the use of a PEG

linker. Also the earlier attempts to prepare an amino acid-functionalised sodium cryptate might have been

hindered due to similar solubility problems. Nonetheless there is strong evidence that the amino group of

the correspondingly functionalised cryptates shows a strong reactivity towards the isothiocyanate function-

alised lysine 15. Since also the availability of this reagent is quite good it was reasonable to maintain it -

and to change the functionalisation strategy to a late stage functionalisation instead (see Figure 4.19).
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Figure 4.19: Late stage functionalisation approach for the preparation of amino acid-functionalised lanthanoid
cryptates. Charges of the metal ions and counter anions are omitted for clarity.

Following this approach the amino-functionalised sodium cryptate Na-1 is at first transformed into the lan-

thanoid cryptates Ln-1. After purification the complexes are individually reacted with the isothiocyanate 15

to give the amino acid-functionalised derivatives Ln-16. For these compounds improved solubility in polar

solvents such as CH3OH can be expected due to their higher charge. Apart from that, the reaction steps

which have to be performed with the amino acid-functionalised derivatives Ln-16 to prepare a molecular

nanocode should be performed in DMF, in which Na-16 is soluble and for which no problems concerning

the solubility of the corresponding lanthanoid complexes have to be expected.

The reaction between Ln-1 and 15 was found to be feasible quite easily in a mixture of CH3OH and CH2Cl2
in the presence of DIPEA. Under optimised conditions the lanthanoid cryptate was initially dissolved in a

small amount of CH3OH. Since the complexes Ln-1 are obtained from HPLC as TFA salts (see Figure 4.20)

initially 1.5 equivalents of DIPEA were added to deprotonate the primary amine. Due to the small amount

of substance typically handled in these experiments for this purpose a 0.1 M solution of DIPEA in CH3OH

was prepared. Prior to the addition of a first portion of isothiocyanate 15 (under optimised conditions 1.5

equivalents) an equimolar amount of DIPEA was added to ensure neutralisation of the protons which are

released during the reaction of the primary amine and the isothiocyanate. The isothiocyanate itself was

added to the starting material dissolved in a 1:1 (v/v) mixture of CH3OH and CH2Cl2. After 30 minutes of

reaction time another 1.5 equivalents of DIPEA and 15 were added analogously. Afterwards the reaction

mixture was stirred for at least 14 more hours before the solvents were removed and the residual solid was

dried to remove excess DIPEA. Reduction of the equivalents of 15 (under adjustment of the added amount

of DIPEA) to two portions of 1.0 equivalents was not found to have a drastic influence on the yields of the
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Figure 4.20: Synthesis of the amino acid-functionalised lanthanoid cryptates Ln-16 from the amino-functionalised
lanthanoid cryptates Ln-1 and the isothiocyanate 15.

reaction, but since the availability of isothiocyanate 15 is so much better than the one of the complexes

Ln-1, also slightly improved yields justify the use of significantly higher equivalents. Surprisingly in an ex-

periment with addition of a single portion of 2.1 equivalents of 15 no product formation could be observed,

while a continuous addition of a relatively dilute solution of 15 was found to be a possible variation, yet not

beneficial. For the purification of the crude complexes Ln-16 via HPLC a modified strategy was necessary.

In the 1:1 (v/v) mixture of CH3CN and H2O typically used for preparation of the solution which is subjected

to HPLC, the material isolated was usually not sufficiently soluble. Best results were obtained when instead

a 1:1 (v/v) mixture of CH3CN and 1 vol.-% TFA in H2O was used and the mixture was treated in a ultra-

sonic bath before filtration. Also the HPLC method utilised had to be modified. When the usually applied

method was used any product fraction isolated after the first run was contaminated with a species with

significantly longer retention times. After these HPLC procedures, during the end runs performed to bring

the column to storage conditions, quite large amounts of unidentified species were eluted. This points to

the presence of a species in the crude mixture which is not eluted from the column during a single run and

will instead contaminate the subsequent runs. The HPLC method was consequently varied in a way that

during every single run the storage conditions are reached and the remaining impurities are washed from

the column, which was indeed suitable to solve the problem. Starting from the HPLC purified complexes

Ln-1 the amino acid-functionalised cryptates Ln-16 could be obtained in yields from 20% to 54%. Typ-

ically also unreacted amino-functionalised lanthanoid complex Ln-1 could be isolated from HPLC. While

the initial amino-functionalisation of the cryptates did not affect the retention time observed during HPLC

significantly, the functionalisation as Fmoc-protected lysine lead to considerably longer retention times (see

Table 4.1) and consequently the cryptates Ln-1 and Ln-16 can easily be separated from each other.

The need for two HPLC purifications during the preparation of Ln-16 from Na-1 in two individual steps
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was soon identified to be quite problematic for the preparation of larger amounts of Ln-16. Consequently

an alternative synthesis strategy was developed, which circumvents this problem by simply omitting the

HPLC purification after the complexation reaction and instead using the crude material obtained from the

synthesis of Ln-1 for the reaction with isothiocyanate 15 (see Figure 4.20).
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Figure 4.21: Synthesis of the amino acid-functionalised lanthanoid cryptates Ln-16 from the crude amino-
functionalised lanthanoid cryptates Ln-1 and the isothiocyanate 15.

Since the complexation reaction transforming Na-1 into Ln-1 does not proceed completely, the resulting

crude mixtures can be assumed to contain a maximum of 30-50% of Ln-1. Furthermore the composition

of Ln-1 prior to the reaction with 15 will be slightly different. The amino group will not be protonated and

instead of the TFA- anions most likely Cl- will be bound. For the reactions performed with the crude Ln-1

the initial addition of DIPEA for deprotonation of the starting material was omitted, despite from that the

reaction was performed analogously to the procedure described above. In some cases also an excess of

DIPEA was used (the first portion of 15 was dissolved in the 0.1 M solution of DIPEA in CH3OH instead

of the mixture of CH3OH and CH2Cl2), but this was not found to have significant effect on the reaction.

When the reaction was performed with the crude Ln-1 shortly after addition of the first portion of 15 the

precipitation of a solid could be observed. Most likely this correlates to the formation of insoluble Na-16

from the remaining Na-1 in the starting material.

Since the exact composition of the starting material is not known, for these reactions no yield was deter-

mined. Interestingly, the HPLC traces recorded during purification of the product did not show the presence

of any Ln-1, which could point towards the reaction being more efficient if performed with unprotonated

Ln-1. In any case this is the more convenient route when large amounts of Ln-16 have to be prepared.

The amino acid-functionalised lanthanoid cryptates of SmIII, EuIII, TbIII and YbIII were prepared and studied

via MALDI-MS, high resolution ESI-MS and with 1H and 19F NMR spectroscopy.
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Table 4.1: Representative yields of experiments performed for the synthesis of Ln-16 and retention times of the
complexes. All analytical HPLC runs were performed with program A.

yield
Rf, analytical HPLC

[%] setup A

Sm-1 24 17.1 min

Eu-1 20 17.1 min

Tb-1 40 17.1 min

Yb-1 58 16.9 min

Figure 4.22: 1H NMR spectrum (400 MHz, CD3OD) of the amino acid-functionalised samarium cryptate Sm-16. Un-
ambiguously identified solvent signals are marked with an asterisk.

Figure 4.23: 1H NMR spectrum (400 MHz, CD3OD) of the amino acid-functionalised europium cryptate Eu-16. Un-
ambiguously identified solvent signals are marked with an asterisk.

The 1H NMR spectra of Sm-16, Eu-16, Tb-16 and Yb-16 are shown in Figure 4.22 to Figure 4.25. A com-
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parison to the 1H NMR spectra of the amino-functionalised cryptates Ln-1 is most straightforward for the

slightly paramagnetic SmIII complexes. The signals of the attached lysine are not significantly shifted com-

pared to the isothiocyanate 15 and can easily be identified as additional signals in the 1H NMR spectrum

of Sm-16. As discussed above, since the cryptates bpy3O2 are used as racemic mixture, upon reaction

with the chiral isothiocyanate 15 a pair of diastereomers is formed. The presence of two diastereomers

becomes especially perceptible in the spectrum of the SmIII complex, where several signals which were

well defined in the case of the amino-functionalised cryptate now can be observed as multiplets consisting

of two overlapping signals (e.g. between 9.5 and 9.0 ppm or between 3.0 and 2.9 ppm). Also in the range

between 90 and 30 ppm of the spectrum of the TbIII complex overlapping signals of the diastereomers can

clearly be identified.

Figure 4.24: 1H NMR spectrum (500 MHz, CD3OD) of the amino acid-functionalised terbium cryptate Tb-16. Unam-
biguously identified solvent signals are marked with an asterisk.

Figure 4.25: 1H NMR spectrum (500 MHz, CD3CN) of the amino acid-functionalised ytterbium cryptate Yb-16. Un-
ambiguously identified solvent signals are marked with an asterisk.

106



Chapter 4. Construction of a Molecular Nanocode

Yet for all lanthanoids studied the general appearance and structure of the 1H NMR spectrum is not sig-

nificantly affected by the attachment of the amino acid, so there is no evidence that the solution structure

or the tensor of the susceptibility of the magnetic anisotropy change. This interpretation is supported by

the 19F NMR spectra of the complexes (see Figure 4.26 for representative examples), which are virtually

identical to the ones of the amino-functionalised analogues. Again, shift and width of the signals correlate

with the paramagnetism of the lanthanoid.

Figure 4.26: 19F NMR spectra (376 MHz, CD3OD) of the amino-functionalised lanthanoid cryptates Ln-16: Sm-16
(top), Eu-16 (middle) and Tb-16 (bottom).

However, for the ligand-centered photophysical properties of the complexes some interesting changes

compared to Ln-1 were found. Figure 4.27(a) shows the UV/Vis spectrum of Sm-16, together with the one

of the amino-functionalised parent compound. For the amino acid-derivative the absorption maximum is

shifted to slightly shorter wavelengths and can be observed at 301 nm. At lower wavelengths the shape of

the spectrum is different to the ones typically observed for cryptates Ln-bpy3O2. Most likely the additional

features observed herein corresponds to Fmoc-centered absorbance, and the observed shift of the max-

imum of the absorbance is not a genuine shift of the cryptate-centered absorbance. To further study this

phenomenon the YbIII-complex was excited with light of wavelengths of 265 nm and 300 nm, the resulting

emission spectra are shown in Figure 4.27(b). Since ytterbium is only emitting in the near-infrared part

of the electromagnetic spectrum any emission of a YbIII complex observed in the visible part of the elec-
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tromagnetic spectrum has to be ligand-centered. Indeed the broad signals which were detected are very

similar to the characteristic emission spectrum of Fmoc-groups.

(a) Normalised UV/Vis spectra of Sm-16 (black, solid
line) and Sm-1 (red, dotted line) in CD3OD.

(b) Normalised steady state emission spectrum of Yb-16
under excitation with �exc = 265 nm (black, solid line) and
�exc = 300 nm (red, dotted line).

Figure 4.27: Ligand-centered photophysical properties of the amino acid-functionalised cryptates Ln-16.

Finally also the lanthanoid-centered emission of the complexes was studied. As expected, the steady state

emission spectra of the complexes (see Figure 4.28) do not significantly differ to the ones obtained for

the amino-functionalised complexes. Again the spectrum recorded for Eu-16 points towards the presence

of two EuIII species as it was already discussed for Eu-1 (see Figure 3.15, page 43). The luminescence

lifetimes ⌧ obs are summarised in Table 4.2, for all complexes studied biexponential decays were found.

In tendency the values are a bit lower than the ones found for the corresponding amino-functionalised

cryptates, but since the expected errors for these measurements are quite high they should rather be

interpreted in terms of orders of magnitudes, which again meet the expectations.

Table 4.2: Luminescence lifetimes ⌧ obs determined for cryptates Ln-16 in CD3OD.

observed transition ⌧ obs in CD3OD

Eu-16 5D0!7F2 1.19 ms (67.0%) + 0.71 ms (33.0%)[a]

Sm-16 4G5/2!6H9/2
[b] 35.1µs (40.9%) + 11.8µs (59.1%)

Tb-16 5D4!7F5
[c] 1.35 ms (83.6%) + 0.21 ms (16.4%)

[a] preliminary result. A repetition of the measurement was not possible until now
due to technical problems. [b] �em = 597 nm, �exc = 310 nm. [c] �em = 541 nm,
�exc = 305 nm.
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(a) Normalised steady state emission spectrum of Eu-16
(CD3OD, �exc = 320 nm).

(b) Normalised steady state emission spectrum of Sm-
16 (CD3OD, �exc = 310 nm).

(c) Normalised steady state emission spectrum of Tb-16
(CD3OD, �exc = 305 nm, excitation path: long pass filter
LP399).

(d) Normalised steady state emission spectrum of Yb-16
(CD3OD, �exc = 300 nm, emission path: long pass filter
RG780).

Figure 4.28: Steady state emission spectra of Ln-16.
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4.3.3 Preliminary tests for peptide synthesis

As it was shown in the last chapter, the lanthanoid specific properties of the cryptates remain largely unaf-

fected by the attachment of the amino acid. For the success of this project it is equally crucial that also the

specific properties of the amino acid remain unaffected by the rather exceptional side chain and retain their

specific reactivity. To probe this, and to simultaneously develop a synthesis protocol for the preparation

of a molecular nanocode, a series of solid phase peptide synthesis experiments of increasing complexity

were performed, each targeting a specific aspect of the reactivity of Fmoc-protected amino acids. Primary

aim of these experiments was not a complete characterisation of the products or an unambiguous proof

for the feasibility of the single steps. Due to the small amounts of the amino acid-functionalised lanthanoid

cryptates which were available for these test reactions, and due to the complicated analysis of the resulting

products this would have been too time consuming. Instead when the analytical results pointed towards

the success of the experiment being sufficiently likely, it was proceeded with the next, more complex ex-

periment. As the amino-acid functionalised lanthanoid cryptates were prepared (and used) as mixture of

diastereomers, the products of the peptide coupling experiments with these amino acids will be obtained

as a mixture of different species. Drastic differences in terms of reactivity of the diastereomers are not to

be expected.

As solid support for all peptide coupling experiments an Fmoc-Gly-Tentagel® PHB resin with an increased

swelling volume and a relatively low loading of 0.15-0.20 mmol/g was used. This is generally useful for the

synthesis of peptide sequences which are considered to be difficult and will also be helpful to minimise

problems resulting from steric overcrowding or charge agglomeration. Tentagel® PHB resins are Wang

type resins which are typically cleaved with TFA. Between the matrix of the beads and the acid labile group

a PEG linker (molecular weight in the range of 3000 Da) provides the necessary flexibility and dominates

the physico-chemical properties of the material.

For all coupling steps HATU was used as coupling reagent as it is considered to be the first choice for

difficult coupling reactions. In a typical solid phase peptide synthesis with HATU for any coupling step 5.0

equivalents of the Fmoc-protected amino acid and 4.9 equivalents of HATU are used with a rather short

reaction time of 30 minutes. For commercially available amino acids and longer sequences this is obvi-

ously reasonable und usually no attempts to reduce the equivalents are undertaken. But due to the limited

availability of the amino acid-functionalised lanthanoid cryptates, for development of a molecular nanocode

based on these compounds the use of smaller equivalents would be highly desirable. At the same time

longer reaction times are less problematic because of the rather short sequences which will be synthe-

sised. In order to test the applicability of fewer equivalents of the amino acids with longer reaction times

under the conditions which will be used herein a short peptide was prepared from commercially available

amino acids, in a first experiment with the established equivalents and in a second experiment with dras-

tically decreased equivalents (1.1 equivalents of the amino acid, 1.05 equivalents of HATU) and reaction

times increased to 24 hours for every coupling step.

Both reactions were performed on identical scales and in plastic syringes equipped with a PE frit. After

synthesis the peptides were cleaved from the resin with TFA (+ 5 vol.-% H2O) and the isolated material was

analysed without further purification. The ESI mass spectra of both substances are virtually identical. For
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Figure 4.29: Structure of the peptide synthesised to test the use of fewer equivalents of amino acids.

both spectra the dominant main species is the Na+ adduct of peptide 17 and no signals corresponding to

a shorter peptide which might result from an incomplete synthesis sequence were detected. In the ana-

lytical HPLC experiments performed with the crude materials the component which most likely relates to

the product was eluted after 25.9 minutes (see Figure 9.22, page 275). Both chromatograms revealed an

individual contamination of the HPLC run, due to the small amount of material this might originate from

sample preparation. If the coupling would be incomplete in the case of the synthesis with lower equiva-

lents, a series of species with more or less gradually varying retention times would have been expected

upon HPLC analysis. Mainly based on the results of mass spectrometry it was concluded that the use of

lower equivalents of amino acids and longer reaction times is a reasonable modification to be made for the

following experiments.

4.3.3.1 Reactivity of the carboxylic acid: Attachment to the resin

To be of use for peptide synthesis the carboxylic acid of the Fmoc-protected amino acid must be trans-

formable into an active ester with some kind of coupling reagent, and the resulting active ester must be

cleavable with a primary amine. An easy and also the most suitable experiment to test if these reactions

can be performed under the conditions of peptide synthesis, is the attachment of Ln-16 to the deprotected

primary amine of the glycine which is already attached to the peptide synthesis resin (see Figure 4.30).

In a plastic syringe equipped with a PE frit the resin was prepared for synthesis by swelling it in CH2Cl2,

washing it with DMF and then cleaving the Fmoc protecting group with 20% piperidine in DMF. For the very

first coupling experiment with an amino acid-functionalised lanthanoid cryptate the europium amino acid

was chosen. As mentioned before the strong luminescence of EuIII cryptates is often helpful for monitoring

the progress of a reaction and facilitates the identification of the product. 1.1 equivalents of the europium

amino acid were dissolved in a few drops of DMF and 1.05 equivalents of HATU and 2.2 equivalents of

DIPEA were added. After a few moments the dilute mixture turned slightly yellow, which indicates that the

active ester was successfully formed, subsequently the mixture was transferred to the resin in the syringe.

Under excitation with 302 nm light the solution was found to show the characteristic emission of EuIII. The

syringe was mounted onto a vibrating plate and gently shaken for 24 hours. Afterwards under excitation

with light of 302 nm a very promising observation could be made: Now the red emission was localised on

the particles, which strongly indicates that the europium cryptate was no longer homogeneously dissolved

in the solution but had been attached to the particles. Considering the nature of the peptide resin this is

most likely to be consequence of the formation of the desired covalent bond between the amino acid and

the primary amines at the surface of the beads.
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Figure 4.30: Synthesis performed to test the reactivity of the carboxylic acid moiety of the amino acid-functionalised
cryptates Ln-16.

(a) Shortly after addition. (b) After 24 hours.

Figure 4.31: Photographs of the syringe with the deprotected peptide synthesis resin with the solution of Eu-16, HATU
and DIPEA in DMF under a 302 nm lamp.
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Figure 4.32: Normalised high resolution steady state emission spectrum of 18 (CD3OD, �exc = 320 nm).

After the solution was drained from the syringe the resin was washed thoroughly with DMF and then

shrinked before TFA with 5 vol.-% H2O was added for cleavage of the dipeptide from the resin. The ob-

tained solution was drained into a flask and the volatiles were removed. Due to the small scale of the

experiment no attempts to purify the material were undertaken and instead the crude material was studied.

The red emission of the substance observed before could unambiguously be identified as the character-

istic emission of EuIII via luminescence spectroscopy (see Figure 4.32). Interestingly, the shape of the

signals is slightly changed compared to the functionalised cryptates Eu-1 and Eu-16. For 18 no longer two
5D0 ! 7F0-transitions are observed, so that there is no evidence for different photophysical properties of

the different species resulting from the use of diastereomeric Ln-16. Also the shape of the other signals is

slightly changed.

Subsequently the material should be studied via MALDI-MS. Though MALDI-MS is in principle a very

suitable method for the study of such molecules, the practical utilisation of this method was found to be

hindered by some fundamental problems. In contrast to the sodium cryptates which can very easily be

detected in any mass spectrometric method, the trivalent lanthanoid cryptates are generally significantly

more problematic. The use of a suitable matrix material in MALDI-MS was found to be helpful to circumvent

this problem by aiding the transfer of the analyte into the gaseous phase, but no general strategy for the

MALDI-MS characterisation of lanthanoid cryptates has been established until now. The individual optimi-

sation for any of the compounds studied in this chapter was not possible due to the very small amounts of

substance obtained. Often the spectra were dominated by signals originating from the matrix material and

the relevant signals could only be observed with very small intensities and under exposure to high laser

intensities (so that fragmentation is quite likely to occur). For example during MALDI-MS of dipeptide 18

with DCTB as matrix material two weak signals at m/z = 966.064 and m/z = 1137.470 were observed.

Due to the low intensity no isotope patterns could be resolved. Figure 4.33 shows two species which are

potential derivatives of 18 and have the exact masses which can be considered to be equivalent to the ob-

served signals under the conditions of the measurement. The loss of N-oxides during MALDI-MS is quite
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Figure 4.33: Species with suitable exact masses to cause the signals observed during MALDI-MS of 18 with DCTB
as matrix material.

commonly observed and also the reduction of the rather redoxactive EuIII to EuII is plausible under these

conditions. In addition to the MALDI-MS experiments also an LDI-MS experiment was performed. Herein

no signals corresponding to 18 could be detected, yet rather strong signals corresponding to polypropy-

lene glycoles and polysiloxanes. Since this contamination presumably originates from the plastic syringe

used as reaction vessel, the following experiments were performed in a custom-build glass vessel (see

page 210). Mainly based on the observations made during synthesis and the interpretation of the emission

spectrum from the substance isolated, it can be concluded that the carboxylic acid of the amino acid-

functionalised cryptates Ln-16 indeed shows the expected characteristic reactivity which is prerequisite for

the attachment of the cryptate to the primary amine of another amino acid.

4.3.3.2 Reactivity of the protected amine: Cleavage of Fmoc and attachment of another amino acid

The aim of the next experiment was to study the reactivity of the Fmoc-protected amino-group of the

complexes Ln-16. To probe if the protecting group can be cleaved under standard conditions applied in

solid phase peptide synthesis and to test if subsequently another amino acid can be attached to the primary

amine, again a peptide synthesis experiment was performed (see Figure 4.34). Apart from the change of

the reaction vessel to a custom-build glass vessel the experiment was performed analogously to the one

described before (until the amino acid Eu-16 was attached to the resin).
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Differently to the previous experiment now the dipeptide bound to the resin was not cleaved but the resin

was treated with Ac2O to cap the unreacted primary amines at the beads. Afterwards an Fmoc deprotection

step was performed to yield the primary amine of the dipeptide. In the subsequent step 5.0 equivalents of

Fmoc-protected glycine together with 4.9 equivalents of HATU and 10.0 equivalents of DIPEA were mixed

in a small amount of DMF and added to the vessel. Analogously to the standard procedure for peptide

coupling reactions the mixture was shaken for 30 minutes before the solution was drained and the resin

washed with DMF. After another Fmoc deprotection step to yield the primary amine, the tripeptide was

cleaved from the resin with TFA as described for the previous experiment. During this experiment the

typical red emission of EuIII was only weakly detectable as soon as the slightly yellow solution with the

active ester was transferred into the glass vessel, accordingly also the red colouring of the beads was only

faintly perceptible. In contrast to that, upon addition of the TFA the colouring of the resulting solution was

apparently much stronger than in the previous experiment. Most likely these phenomena result from the

optical properties of the vessels used.

The capping steps after the attachment of an amino acid are typically performed to ensure that a pep-

tide strand for which a coupling step was not successful is permanently “deactivated” for the subsequent

steps. Though this is not necessary for the testing of the reactivity of the amino group of Ln-16 this step

was performed in this experiment to test the compatibility of the lanthanoid containing amino acid with the

conditions applied during this procedure. As another modification towards the previous experiment the

assembled tripeptide was deprotected prior to cleavage from the resin so that it can be isolated as primary

amine. The reason for this variation was the finding that the amino-functionalised cryptates Ln-1 can be

detected more easily during MALDI-MS with DCTB as matrix material, since reaction of the primary amine

and DCTB leads to formation of a species which presumably is more likely to undergo co-crystallisation

with the matrix.[227]

Figure 4.35: Normalised high resolution steady state emission spectrum of 19 (CD3OD, �exc = 320 nm).

Again the high resolution steady state emission spectrum (see Figure 4.35) of the substance isolated un-
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ambiguously proves the presence of EuIII in the material. The spectrum is very similar to the one of the

previously prepared 18 and again the 5D0 ! 7F0-transition does not allow for the distinction of several

species.

Because in this case the luminescence of the material is indeed not suitable to give evidence of reactivity

which was to be studied in this experiment, in this case the mass spectrometric characterisation is espe-

cially important. Fortunately the strategy followed by deprotecting the assembled tripeptide was successful

and the spectrum obtained from MALDI-MS in this case is more meaningful than the one discussed before.
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Figure 4.36: Species with suitable exact masses to cause the signals observed during MALDI-MS of 19 with DCTB
as matrix material.

The signal observed at m/z = 1345.351 nicely correlates to a twofold reduced DCTB adduct (see Fig-

ure 4.36). The second species shown in Figure 4.36 might evoke the signal at m/z = 1158.12. The mod-

ification of the ethylene-amine linker of this species results from a reaction of 1,2-ethylenediamines and

formaldehyde, which usually is a trace contamination even in methanol of high purities.[228]

After this experiment in which the reactivity of the amino group of the lysine-functionalised Ln-16 was

probed, and after the previous one in which the feasibility of the attachment to amino groups was tested,

the given evidence of the desired reactivity and the compatibility of Ln-16 with the conditions applied was

evaluated as sufficient to use the amino acid-functionalised lanthanoid cryptates in more sophisticated

experiments.
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4.3.3.3 Feasibility of the connection of several lanthanoid amino acids
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peptide synthesis.
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For the construction of a molecular nanocode based on the amino acids Ln-16 it is of critical importance

that the monomers containing the different lanthanoids can be connected to each other, not just to any

amino acid. Compared to natural amino acids the cryptates Ln-16 have a special property which might

indeed become problematic, which is the relatively high charge of the individual amino acids. During syn-

thesis the resulting repulsion between the cryptates might indeed inhibit the active esters from approaching

the peptide strain on the beads to an extend which prevents the formation of a covalent bond. Of course

this problem can be circumvented or at least reduced by the use of spacers from natural amino acids

between the lanthanoid-containing ones. In principle also possible, but associated with a fundamental re-

design of the lanthanoid containing amino acids, would be the introduction of negatively charged groups to

the scaffold, like for example carboxylates or sulfonates, which is not pursued here.

In a first experiment to test the feasibility of the connection of several Ln-16 a short glycine spacer was

chosen to be placed between the lanthanoid containing amino acids. While the preparative effort for the

introduction of one separating amino acid is very low, the resulting increase of flexibility might already

be sufficient. The resulting synthesis which was performed is shown schematically in Figure 4.37. In

principle the experiment started with the sequence already performed for the previous experiment (see

Figure 4.34), but after assembly and deprotection of the tripeptide consisting of the initially bound glycine,

the lysine-functionalised europium cryptate and another glycine, in this case Sm-16 (1.1 equivalents) to-

gether with HATU (1.05 equivalents) and DIPEA (2.2 equivalents) was added to the resin. As already done

for the attachment of Eu-16 this reaction mixture was shaken for 24 hours. After completion of the coupling

procedure again a deprotection step was performed prior to cleavage. It should be noted that after the at-

tachment of the spacer glycine between Eu-16 and Sm-16 no capping step was performed. The feasibility

of a direct attachment without any spacer would be a valuable result, too.

The observations made during synthesis did show no deviations from the ones made during the previous

experiments. Upon addition of the lysine functionalised samarium cryptate no variation of the emissive

properties of the resin under 302 nm excitation was monitored, but as samarium cryptates are typically by

far less luminescent than the corresponding europium compounds this would also not have been expected.

Importantly, despite the big number of washing steps performed during this synthesis, also no decrease of

the characteristic red emission was noticeable. This is only likely to be the case when the luminophore is

indeed covalently attached to the beads.

After isolation of the substance the luminescence properties of the isolated material 20 were studied. The

normalised high resolution steady state emission spectrum recorded between 530 and 750 nm is at first

sight very similar to the one recorded for 19 (see Figure 4.38), the shape of all EuIII centered transitions

is virtually unchanged. But indeed there is a small feature which could not be observed before, which

is a flat structure centered around 562 nm. Indeed, upon recording the region between 540 and 600 nm

another time with an increased number of single measurements the shape of the signal becomes clearer

(see Figure 4.39), so that it could unambiguously be identified as the 4G5/2 ! 6H5/2-transition of SmIII. This

proves that the material under study contains both lanthanoids. Considering the process applied during

the preparation of the material, this effectively also gives evidence of the reaction taking place as shown in

Figure 4.37.

Subsequently the substance was also studied via MALDI-MS with DCTB as matrix material. Despite of sig-
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Figure 4.38: Normalised high resolution steady state emission spectrum of 20 (CD3OD, �exc = 320 nm).

Figure 4.39: Normalised high resolution steady state emission spectrum of 20 (CD3OD, �exc = 320 nm).

nals which can be assigned to matrix adducts, a single weak signal could be detected at m/z = 2239.011.

A species which could possibly evoke this signal is shown in Figure 4.40.

Again the results obtained from MALDI-MS are difficult to interpret. In contrast to that the study of the lumi-

nescence properties is giving strong evidence for the successful preparation of the target compound. The

obtained results show that the connection of several cryptates Ln-16 is indeed possible with the aid of solid

phase peptide synthesis. So the preparation of 20 is a successful proof-of-principle for the applicability of

these complexes for the preparation of a molecular lanthanoid nanocode and in principle already the first

example of such a nanocode.
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4.3.4 Preparation of a molecular nanocode based on lanthanoids

In principle the tetrapeptide 20 in which an europium and a samarium cryptate are covalently attached can

already be considered a short nanocode. Based on analysis of the codes of two cryptates using lumi-

nescence or ICP-MS, and using the four lanthanoid cryptates Ln-16 already prepared, ten different codes

would be accessible (which relates to a “k-combination with repetitions”). Considering the results of the

previous chapter also the combination of at least three lanthanoid cryptates in one nanocode seems feasi-

ble, which would allow for the preparation of twenty codes distinguishable for luminescence spectroscopy

or ICP-MS. When the sequence can be resolved with use of MS-MS methods even 64 distinguishable

codes are possible (which relates to a “permutation with repetition”).

While realisation of the reactions described in the preliminary studies was found to be quite straightforward

with only slightly modified standard procedures, the analysis was found to be very difficult. The prepara-

tion of the nanocode on a slightly bigger scale might help to reduce the problem, but upon design of the

nanocode and the synthesis additional measures were taken to provide best prerequisites for an unam-

biguous analysis.

The most important modification compared to the previous experiments is the use of 13C and 15N enriched

glycines as spacer between the lanthanoid-containing amino acids. These provide additional probes for

NMR spectroscopy and might help to document the experimental realisation of the synthesis sequence.

Based on the process of solid phase peptide synthesis the detection of the signal of the heteronucleus

of the correspondingly labeled amino acid will strongly indicate that the previous synthesis steps were

successful. In order to make this argument valid after any coupling step a capping step has to be per-

formed. Due to its higher relative sensitivity chances for the detection of the labeled 13C are better than

for the labeled 15N. Consequently the 13C-labeled glycine was placed between the second and the third

lanthanoid cryptate where the detection of the heteronucleus can provide evidence for the completion of

more steps. For similar reasons it was decided to introduce the europium cryptate in the very last step
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Figure 4.41: Structure of the molecular nanocode 21 in which SmIII, TbIII and EuIII cryptates are covalently attached
to each other via a peptide backbone.

of the synthesis. Since the attachment of Eu-16 can be monitored with the naked eye, this will potentially

allow for a very easy, yet quite meaningful observation. For this experiment the equivalents of the amino

acid-functionalised cryptates were increased to 1.5 equivalents for every coupling step and the equivalents

of HATU and DIPEA were adapted to 1.45 and 3.0 equivalents, respectively. Due to the small porosity

of the frit the individual washing steps are quite time consuming, consequently the reaction times for the

coupling steps with Ln-16 were reduced to a minimum of 12 hours. For the coupling steps with isotope

enriched glycines two identical subsequential coupling procedures were performed, respectively: After re-

acting the resin with the solution of reagents for at least nine hours, the solution was drained, and after

washing of the resin a freshly prepared identical reaction mixture was added and reacted with the resin for

further 30 minutes. If sufficient amounts of the amino acid are available this is a very easy, yet effective

strategy to improve the yield of the respective coupling step.

Despite the modifications mentioned, the synthesis was performed in analogy to the ones described above.

As expected upon attachment of Eu-16 the red emission was localised on the beads and under cleavage

conditions again released into the solution. After the cleavage with several portions of TFA (with 5 vol.-

% H2O) the reactor was also washed with CH3OH, and the resulting solution was combined with the sub-

stance isolated from the TFA solutions, evaporated to dryness and dried thoroughly.

In this case already the steady state emission spectrum recorded over the range from 450 to 750 nm

(see Figure 4.42) strongly points towards the successful preparation of 21, as the spectrum clearly shows

characteristic transitions of EuIII and TbIII. The detection of the characteristic luminescence of EuIII is in

a way the more important observation. As after every coupling step a capping step was performed, the

attachment of the europium cryptate is in principle only possible when the samarium and terbium cryptates

had been successfully attached to the peptide strain. In a separate measurement focusing on the range

between 530 and 600 nm also the 4G5/2 ! 6H5/2-transition of SmIII could be observed. The uncommon

shoulder of the 5D0 ! 7F2-transition of EuIII is most likely relates to the 5D4 ! 7F4-transition of TbIII.
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Figure 4.42: Normalised high resolution steady state emission spectrum of 21 (CD3OD, �exc = 320 nm, excitation
path: long pass filter LP399).

Figure 4.43: Normalised high resolution steady state emission spectrum of 21 (CD3OD, �exc = 320 nm, excitation
path: long pass filter LP399).

After the initial study of the luminescence properties of 21 different NMR techniques were used to study

the material. Unfortunately neither the 13C NMR spectrum nor the 15N NMR spectrum revealed signals

which can be assigned to the isotope enriched glycines. Also in the 1H NMR spectrum the signals with

distinct and characteristic shifts typical for the oxidised cryptates of EuIII and TbIII could not be identified,

most likely due to the low concentration of the sample. In the middle region of the 1H NMR spectrum,

apart from some signals which can be assigned to a contamination from the PEG linker of the resin or the

ester of TFA and CH3OH, also some rather weak signals between 8.5 and 7.5 ppm can be identified. Most

likely these correspond to protons of the peptide backbone or the linkers between the backbone and the

individual cryptates. Focussing on these signals a 1H DOSY NMR[229][230][231] experiment was performed
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(see Figure 4.44, all 1H NMR DOSY experiments were performed together with Dr. Wolfgang Leis).
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Figure 4.44: 1H DOSY NMR spectrum (CD3OD, 700 MHz) of the nanocode 21.

A 1H DOSY NMR allows to extract the diffusion coefficients of the species to which the protons under

study belong. According to the Einstein-Stokes equation the diffusion coefficient D is dependent on the

Boltzmann’s constant kB, the temperature T , the mobility of the particles ⌘ (which relates to the viscosity

of the medium) and the hydrodynamic radius r of the object under study, which is assumed to be spherical:

D =
kB T

6 ⇡ ⌘ r
(11)

For the signals assigned to the nanocode 21 a diffusion coefficient of 4.2·10-10 m2/s was determined. This

is in line with an estimation of the solvent accessible volume of 21, which was obtained from a MOPAC

calculation (calculations performed by Dr. Wolfgang Leis, see experimental section for details). This al-

ready points towards the presence of a species in the sample which has a size comparable to the one

expected for 21. For a more systematic study a series of five related compounds was studied in 1H DOSY

experiments. Due to the uncommon combination of structural features of the nanocode the reference com-
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pounds were chosen in a way that they either reflect the peptide-character or the cryptate-character of 21.

Three commercially available short peptides were studied (their sequences and structures are shown on

page 283), the amino acid-functionalised samarium cryptate Sm-16 and the partially deuterated lutetium

cryptate Lu-bpy3O2-D4
[135]. Selected parameters obtained from the 1H DOSY experiments and the molar

masses of the compounds are summarised in Table 4.3. For the cryptates the molar masses were calcu-

lated assuming that under the conditions of the experiment one anion is bound rather tight to the cryptate

and will hence diffuse together with the cation. The mobility of the particles ⌘ was approximated as the

viscosity of the solvents which can be calculated from the diffusion coefficients of the solvent molecules.

Table 4.3: Diffusion coefficients and further data for the compounds studied in 1H DOSY NMR experiments.

nanocode 21 Sm-16 Lu-bpy3O2-D4 magainin I angiotensin II kemptide

-pD [log(m2/s)] 9.38 9.32 9.20 9.57 9.63 9.58

D [10-10 m2/s] 4.17 4.82 6.37 2.68 2.35 2.66

⌘solv [mPa s] 0.59 0.61 0.59 0.68 1.10 1.09

M [g/mol] 3579.01 1366.63 646.20 2409.85 1046.18 771.92

D·⌘solv
2.46 2.93 3.78 1.81 2.58 2.89

[10-10 mPa m2]

1/M
0.28 0.73 1.55 0.41 0.96 1.30

[10-3 mol/g]

According to equation 11 the product of D and ⌘ will be indirectly proportional to the radius r . Furthermore

for closely related molecules with similar shapes and densities r should in some way correlate with the mass

of the molecules under study. In principle this is equivalent to the intuitive expectation that heavier species

will diffuse slower than lighter ones. While this approach indeed neglects many important properties and

differences of the compounds under study, it has the clear advantage that the molar mass can easier be

quantified than the exact density of a molecule or its shape during a 1H DOSY experiment. Based on these

consideration the results obtained from the performed 1H DOSY experiments were interpreted assuming

the following correlation to be valid:

D · ⌘ / 1

M
(12)

for:

T = const . (13)

The corresponding plot of the results from the 1H DOSY experiments as summarised in Table 4.3 is shown

in Figure 4.45. If the data points obtained for peptides and cryptates are considered independently from

each other for both groups a linear correlation can be found. The fact that no single correlation for all studied
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compounds was found reflects the limitations of the assumptions made above. But for closely related

molecules with a similar shape and density, like the studied small peptides, this simple approximations

gives surprisingly good results. Also for the studied cryptates the properties relevant for the diffusion

coefficients can be assumed to be comparable. All three molecules should have comparable densities and

polarities. Assuming that correlation 12 is as valid for the comparison of the cryptates studied herein, as

it was found to be for the peptides studied, the diffusion coefficient determined for 21 is completely in line

with expectations for a cryptate compound of this molar mass, which strongly points towards the successful

preparation of the nanocode. However, to prove this unambiguously some further studies are in progress,

for example the analysis of the material with high resolution ESI-MS and via ICP-MS.
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Figure 4.45: Plot of the products of the determined diffusion coefficients and the viscosity of the solvents versus the
reciprocal molar mass of the compounds studied via 1H DOSY NMR experiments, see Table 4.3.

In conclusion, the results from luminescence spectroscopy and the 1H DOSY NMR experiments performed

so far strongly point towards the successful preparation of the nanocode 21. Considering the experimental

procedure performed for synthesis, the detection of all three lanthanoids in the steady state emission

spectrum makes a successful realisation of the shown synthesis sequence very plausible. The findings

from 1H DOSY NMR, pointing to the presence of a molecule of the expected size, give additional evidence.
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4.4 Conclusion

One of the most innovative applications which came into reach with the preparation of lanthanoid cryptates

carrying a peripheral functionalisation is the construction of a molecular nanocode based on lanthanoid

cryptates, which was the aim of this project. As building blocks the amino acid-functionalised lanthanoid

cryptates Ln-16 were developed and characterised. The beneficial photophysical properties of the lan-

thanoids were found to be invariant towards the extended functionalisation at the periphery.
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Figure 4.46: Structure of the amino acid-functionalised lanthanoid cryptates Ln-16.

Subsequently in solid phase peptide synthesis experiments of increasing complexity the reactivity of the

amino acid attached to the cryptate was studied. The cryptates Ln-16 were found to be completely com-

patible with standard procedure of this well established technique. This opens up interesting possibilities

for different aspects of research, as it will now be possible to introduce a lanthanoid cryptate into the se-

quence of a peptide during SPPS.
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to each other via a peptide backbone.

127



Chapter 4. Construction of a Molecular Nanocode

After the preliminary experiments testing the reactivity of the complexes Ln-16, finally the first molecular

nanocode could be prepared as a peptide consisting of three different lanthanoid cryptates. Luminescence

spectroscopy could unambiguously prove the presence of SmIII, TbIII and EuIII in the material isolated,

which already gives strong evidence of the synthesis being successful. The results from 1H DOSY NMR

also give evidence of the successful preparation of the molecular nanocode 21.

(a) CD3OD, �exc = 320 nm, excitation path: long pass fil-
ter LP399.

(b) CD3OD, �exc = 320 nm, excitation path: long pass fil-
ter LP399.

Figure 4.48: Normalised steady state emission spectra of 21 giving evidence of the successful preparation of the first
molecular nanocode consisting of three different lanthanoids.

Sm Tb Eu 

Figure 4.49: Molecular structure of the realised nanocode, obtained from geometry optimisation with MOPAC
(charges and hydrogen atoms omitted for clarity).

The preparation of discrete molecules with more than two lanthanoids attached to another in a very con-
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trolled process is highly innovative and can only be realised when a highly reliable ligand core scaffold

like the cryptates bpy3O2 is combined with well established building blocks like the amino acids, as it was

realised with the cryptates Ln-16.
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5 Enantiopure Lanthanoid Cryptates

5.1 Introduction

Chirality is a fundamental concept which can be found in the macroscopic everyday life and on the molecu-

lar level, as such it is omnipresent in diverse fields of science and technology. Any object which cannot be

superimposed with its mirror image is chiral, and as indicated by this relatively general definition, chirality

can be manifested in different ways, also on the molecular level.[232][233]
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Figure 5.1: Chiral molecules which are archetypical for different forms of molecular chirality.

Figure 5.1 shows enantiomeric pairs of some molecules which can be considered archetypical for the type

of chirality they exhibit. The central carbon atom of glyceraldehyde is bound to four substituents which

are arranged in a tetrahedral fashion. As they all are different this makes the central carbon atom an asym-

metric carbon atom and the stereogenic center of glyceraldehyde, which exhibits point chirality. In contrast

to that, the stereogenic element of for example 1,3-dichloroallene is an axis of chirality, and accordingly

the substance is referred to as axially chiral. A special case of the axial chirality is the helical chirality, as it

is exhibited by hexahelicane. In this case the molecule is winding around the axis of chirality in a helical

fashion, as it can be found for many big biomolecules, such as DNA, amylose or some proteins. Another

manifestation of molecular chirality is planar chirality, as it can be found in the case of (E)-cyclooctene.

When the properties of a molecule which emerge from its chirality are to be exploited for some kind of
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application or study, typically enantiopure samples are desired. For organic molecules or coordination

compounds of transition metals, in many cases an excellent control over their stereogenic elements is pos-

sible, so that the compounds can either be prepared in an enantiopure fashion or the racemic mixture can

be separated into pure enantiomers. Again the situation is by far more difficult in the case of lanthanoid

coordination compounds. Indeed most lanthanoid coordination compounds exhibit at least one stereogenic

element, but their intrinsically high coordinative flexibility and their proneness to undergo decomplexation

paves the way for various isomerisation processes, of course also including racemisation. At the same

time enantiopure lanthanoid complexes are highly interesting target compounds. As already outlined in

chapter 3.3.5 they have high potential for the structural elucidation of biomolecules in solution. Here the

need for enantiopure compounds emerges from the fact that the biomolecules under study are chiral and

so the use of racemic lanthanoid compounds would lead to the formation of diastereomers and a significant

complication of the analysis. Another reason for the high interest in enantiopure lanthanoid coordination

compounds is the unparalleled suitability of these compounds for the observation of circularly polarised

luminescence.

Ln*
unpolarised light

circular polarised light

Figure 5.2: Under excitation with unpolarised light, a CPL emitter (like for example a nonracemic chiral lanthanoid
complex) preferentially emits left or right polarised light.

Figure 5.3: Circularly polarised (left) and total luminescence (right) of SmIII complexes with a diketonate (HFA) and a
PyBox-derivative (see below).[234] Comparison of both spectra reveals that from the CPL spectrum infor-
mation about the fine structure of the transition and the crystal field parameters is by far more accessible.
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Circularly polarised luminescence (CPL)[235][236][237][238][239][240] can be seen as the emission analogue to cir-

cular dichroism (CD). Under excitation with unpolarised light, a compound which exhibits CPL preferentially

emits left or right polarised light, whereby the observable direction of rotation is typically wavelength spe-

cific. As it is the case for any kind of optical activity, in a racemic mixture the effects cancel out, but when

an enantiopure sample is available the substance specific CPL properties can be quantified by comparison

of the CPL spectrum and the total luminescence spectrum. Usually for this purpose the luminescence

dissymmetry factor glum is calculated as the quotient of the difference of the intensities of left and right

polarised light (IL - IR) and the half of the total intensity (IL + IR):

glum =
IL � IR

1
2

(IL + IR)
=

�I

I
(14)

For a given transition a!b, glum is dependent on both, the transitions rotary strength Rab and its oscillator

strength Dab. The rotary strength of a transition is determined by the magnitudes and the relative orien-

tations of the magnetic and electric dipole moments (Rab = |Mba||Pab| · cos ⌧ab) and its oscillator strength

can be approximated with the square of the electric dipole moment (Dab = |Pab|2), and so glum can also be

calculated as:

glum =
4Rab

|Dab|
=

4|Mba| · cos ⌧ab

|Pab|
(15)

Differently to the total luminescence of the lanthanoids, as reflected by equation (15) and the factor cos ⌧ab,

the circularly polarised luminescence is strongly dependent on the exact spatial arrangement of the ligands

around the lanthanoid. This could already be used for the study of biomolecules,[241][242][243] but the main

potential of CPL can be found in different fields of research. The polarised nature of the light emitted by

CPL offers innovative possibilities for the construction of organic light emitting diodes (OLEDs)[244][245] and

since the background emission of biological samples will typically be unpolarised, the use of CPL-emitters

for bioimaging promises significantly improved signal to noise ratios.[246] Furthermore in CPL spectra it is

often significantly easier to differentiate between the different components of a transition, so they can be

helpful for the extraction of crystal field parameters (see Figure 5.3).

CPL used to be quite an exotic technique requiring custom-built devices, but as commercial spectrometers

became available the technique gained more attention and first applications are coming into reach. In

principle any chiral luminescent compound can exhibit CPL, but whereas purely organic molecules typi-

cally exhibit glum values between 10-4 and 10-2,[239] lanthanoid complexes can outperform this by orders of

magnitude as their glum values usually lay between 0.1 and 1.[235][238] Indeed the suitability of the different

lanthanoids for the observation of CPL differs largely. Generally (as is reflected by equation (15)) transi-

tions which are magnetic dipole allowed and electric dipole forbidden (�J = 0, ±1; except J’ = J” = 0) offer

optimal preconditions for the observation of CPL as long as any process is active which leads to the electric

dipole moment Pab being nonvanishing. The two limiting cases which can be operating in this sense are

the static and the dynamic coupling mechanism. Conceptually they can be distinguished from whether the
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coordination polyeder itself is chiral or not, and experimentally the operating mechanism can be studied for

example by recording circular dichroism spectra of the YbIII derivative of the complex of interest.[238][247] Al-

ready in 1980 Richardson deduced the general suitability of the lanthanoids’ transitions for the observation

of CPL and sorted them into corresponding classes (see Table 5.1).

Table 5.1: Lanthanoid ions and their luminescence transitions which typically exhibit sizeable CPL signals, with the
corresponding wavelengths and their classification following Richardson.[248][238]

ion transition wavelength [nm] class following Richardson[248]

SmIII 4G5/2!6H5/2 565 DII

4G5/2!6H7/2 595 DIII

EuIII 5D0!7F1 595 DI

TbIII 5D4!7F5 545 DII

DyIII 4F9/2!6H11/2 670 DIII

As a consequence of the purely magnetic dipole character of the 5D0!7F1-transition of EuIII, according to

Richardson for this transition the largest glum values can be expected, this transition is the single example

representing the class DI easily accessible to CPL measurements. Indeed EuIII is the lanthanoid of which

the most examples of CPL active compounds were reported and typically the first choice when the CPL

properties of a new ligand are to be studied. Both, the 4G5/2!6H5/2 transition of SmIII and the 5D4!7F5 of

TbIII are categorised as class DII, and consequently according to Richardson for both transitions decent glum

values can be expected. But while CPL of TbIII complexes is quite commonly reported,[249][250][251][252][253]

examples for enantiopure SmIII complexes which exhibit CPL are scarce.[254][255][256][257][258][259][234][260] Im-

portantly, this is not in contradiction with Richardson’s classification. TbIII, which is largely insusceptible

towards nonradiative deactivation via multiphonon quenching, is typically strongly luminescent, which of

course facilitates the measurement of CPL. In contrast to that, SmIII is only relatively weakly luminescent

under most conditions, so a good signal to noise ratio in a CPL measurement will be much more difficult to

realise in the case of a SmIII complex.

Generally, Richardson’s classification of the transitions has proven to be reliable and successful. In contrast

to that, the influence of the crystal field on the CPL properties of a given complex has been only poorly un-

derstood until now. A detailed understanding of the way the arrangement of the coordinating atoms has an

impact upon the CPL emission of the coordinated lanthanoid ion would pave the way for a tailored design

of CPL luminophores. The intrinsically low conformational stability of lanthanoid complexes can be consid-

ered to be the main obstacle for a development of the necessary understanding. For example a sample of

a DOTA-type complex in solution should be considered to be a mixture of different interconverting species.

If this sample is CPL-active, in most cases it will not be possible to determine which species contributes to

this optical activity to what extent and how their exact spatial structure in solution is. At least the second

problem will be encountered for most lanthanoid complexes, and consequently until now it was not possi-
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ble to establish reliable structure-property correlations for CPL-active lanthanoid coordination compounds.

Nevertheless there have been some efforts, in most cases based on crystallographic data. For example

in 2002, Bruce et al. presented a comparative study in which the structural and CPL properties of several

DOTA-type EuIII complexes with twisted square antiprismatic or capped twisted square antiprismatic co-

ordination geometries were analysed.[261] The authors related the local helicity around the lanthanoid ion

to the angle between the magnetic and electric dipole transition moment vectors and concluded, that the

angle of twist about the principal axis ⇥ will define the CPL activity of these compounds. They predicted

22.5°to be the optimum value for ⇥, and as the average coordination geometry of the emission timescale

is determinative, they noted that the rigidity of the complex will also be of influence. Indeed in this study the

complexes with a higher rigidity were found to be also the ones with higher glum values. Furthermore the

authors stated that a highly polarisable axial ligand will result in a more intense total luminescence intensity

of the �J = 2 transition, but will minimise the luminescence dissymmetry factor for this transition.

The highest luminescence dissymmetry factor reported until now was found for the complex Cs[Eu((+)-

hfbc)4] with glum values of 1.38 in solution[262] and 1.45 in the solid state[263]. In this complex the lanthanoid

is surrounded by four (+)-3-heptafluorobutyryl camphorate ligands whose perfluorinated chains also en-

close a caesium ion (see Figure 5.4 for the structure of the ligand). The choice of the alkali metal ion

incorporated in the complex was shown to have a significant impact onto its CPL properties[262][264] and it

was concluded that increased rigidity of the overall structure leads to higher glum values. In the case of

Cs[Eu((+)-hfbc)4] analysis of the paramagnetic 1H and 13C NMR shifts of the ytterbium analogue allowed

for a detailed understanding of the structure of the complex in solution.[265] The diketonates are arranged

in a twisted square antiprismatic geometry around the lanthanoid, with a twist around the principal axis ⇥
of -41.4°. This value is quite similar to the ones typically found for DOTA-derivates (⇥ ~40°) and differs

substantially from the optimum of 22.5°estimated by Bruce et al. Consequently, the twist angle (which is

associated with a static coupling mechanism[238]) alone cannot account for the exceptional CPL properties.

The situation becomes a bit clearer when also the dynamic coupling mechanism[238] is taken into account.

If the lanthanoid and a chromophoric ligand are spatially close, the (excited) electric multipole of the lan-

thanoid and the ligand-centered electric multipoles can interact and give rise to a rotary strength of the

transition. For this mechanism the angle between the C4-axis and the diketonate planes is determinative,

for Cs[Eu((+)-hfbc)4] this angle was determined to be -27.5°, for which an efficient dynamic coupling can

be expected.

Generally, rationalisation of the processes leading to CPL seems feasible, but to improve the understanding

of the mechanisms underlying CPL and to establish structure-spectra correlations, clearly more examples

of CPL active complexes with a stable and well-defined structure in solution are needed. Another aspect

which has been largely underdeveloped until now is broadening of CPL to lanthanoid ions different than

EuIII and TbIII. This is especially regrettable in the case of SmIII. As listed in Table 5.1, the 4G5/2!6H5/2-

transition of this lanthanoid ion belongs into Richardson’s class DII, and accordingly should be of similar

suitability for the observation of CPL than the 5D4!7F5 transition of TbIII. SmIII also has another transition

for which sizeable glum values can be expected and also exhibits transitions in the near-infrared, which

might become an additional benefit: Near-infrared CPL should allow for unprecedented signal to noise

ratios in studies upon biological samples. Indeed there were some initial studies[249][266] on YbIII- and NdIII-
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centered CPL around 1999, but the publication of results stopped quickly and at the moment no instrument

capable for the measurement of CPL in this part of the spectrum is available. More recently there are

efforts to revive this field of study.

Most likely the lack of known CPL active SmIII complexes is simply due to this lanthanoid’s high suscepti-

bility to multiphonon quenching and the resulting relatively low total luminescence which complicates the

measurement of CPL. The few reported examples of SmIII CPL (see Figure 5.4) do indeed reflect Richard-

son’s classification and point towards a high potential of these compounds.
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Figure 5.4: Ligands used for the preparation of CPL-active SmIII complexes. (+)-hfbc = (+)-3-heptafluorobutyryl
camphorate[264], A = pyridine-2,6-dicarboxylic acid bis-[(1-naphthalen-1-yl-ethyl)-amide][258], B = 1-
phenylethyleneamine substituted 2-hydroxyisophtalamide[257], edds = ethylenediamine-N,N’-
disuccinate[259], HFA = hexafluoroacetylacetonate[234], TTA = 2-thenoyltrifluoroacetonate[234], C =�-
anomer of N-acetylneuraminic acid anion,[260], iPr-PyBox = 2,6-Bis(4-iropropyl-2-oxazolin-2-yl)[234],
Ph-PyBox = 2,6-Bis(4-phenyl-2-oxazolin-2-yl)[234]. Modified from Reference [267].

The highest glum value reported for a SmIII complex was found for the respective analogue of the CPL

record holder Cs[Eu((+)-hfbc)4].[264] In the case of the 4G5/2!6H5/2-transition a luminescence dissymmetry

factor of -1.15 was determined, for the 4G5/2!6H7/2-transition a value of +1.15 was reported. This points
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towards an exceptional general suitability of this alkali metal-rigidified ligand system for the observation of

CPL, and since the values reported for the EuIII and the SmIII complex are both in the same order of mag-

nitude also points to the high potential of SmIII-CPL. Also for the complexes of SmIII and the pyridyldiamide

A (see Figure 5.4) remarkably high glum values of 0.50 for the 4G5/2!6H5/2-transition and 0.28 for the
4G5/2!6H7/2-transition were reported.[258] Also ligand B, a chiral derivate of the IAM-ligand, is suitable to

generate CPL-active SmIII complexes, with glum values of -0.027 (4G5/2!6H5/2) and -0.028 (4G5/2!6H7/2),

respectively.[257] In the case of ligand edds only for the typically more luminescent transition 4G5/2!6H7/2

a glum value could be reported (+0.066).[259] Using the Raman optical activity (ROA) technique CPL activity

of samples consisting of the N-acetylneuraminic acid anion C and SmIII could be detected. The authors re-

ported circular intensity differences (CID) in the range of 10-2 to 10-3. In a recent publication diketonates and

PyBox derivatives were combined to prepare four different but related SmIIIcomplexes Sm(diketonate)3-

PyBox which all do show CPL emission.[234] While the three diketonates provide a relatively high stability,

the additional PyBox ligands introduce chirality to the overall complex. Sm(HFA)3-iPrPyBox turned out to

show the most intense CPL transition (|glum| = 0.18 for 4G5/2!6H7/2 and |glum| = 0.013 for 4G5/2!6H9/2),

for the 4G5/2!6H7/2-transition the strongest CPL was reported for Sm(TTA)3-iPrPyBox (|glum| = 0.08). The

authors characterised the compounds with several techniques such as circular dichroism (CD) and vibra-

tional circular dichroism (VCD) and their approach could become valuable for the development of a more

quantitative understanding of CPL. Yet it should be kept in mind that the compounds dealt with in this study

are present as a mixture of different conformers. Interestingly, for many of the SmIII complexes for which

CPL was reported, for the 4G5/2!6H5/2-transition and the 4G5/2!6H7/2-transition similar glum values were

reported, though according to Richardson’s classification glum would be expected to be considerably higher

in the case of the former transition.

For a simplified overview, the presented examples for SmIII-centered CPL and additional photophysical

data (if available) of several complexes discussed above are summarised in a table which can be found

in the appendix (see page 334). However, upon direct comparison of the complexes it should be kept in

mind that the values were obtained from samples in different solvents and that for example a well-defined

structure of the complexes is not always given.

As already addressed in chapters 1.3 and 3, lanthanoid cryptates Ln-bpy3O2 are chiral. They exhibit axial

or helical chirality with their axis of chirality being perpendicular to the C2-symmetry axis and going through

the two tertiary amines which connect the three bipyridines. Both building blocks which are assembled

for synthesis of the unfunctionalised ligand bpy3O2 are achiral, yet in the case of the oxidised dibromide

bpyO2Br2 the steric demand of the two oxygen atoms will lead to the presence of two interconverting

structures of identical energy, which can be considered comparable to atropisomers (see Figure 5.5).[233]

However, both organic building blocks can be considered to be relatively flexible. This is not the case

in the assembled macrobicyclic structure. For steric reasons, the coordinated metal ion will be placed

at least partly between the oxygen atoms, which will raise the energetic barrier between the possible ar-

rangements of the oxidised pyridines and induce a corresponding overall rigidity of the scaffold. This is

for example reflected in the 1H NMR spectra of the cryptates, which do not give any evidence of intercon-

version processes. Until now all experimental findings indicate that even under challenging condition no

interconversion of the two enantiomeric forms of Ln-bpy3O2 can take place. As both arrangements of the

136



Chapter 5. Enantiopure Lanthanoid Cryptates

N

N

N

N

N

N

N

N
O
OLnN

N

N

N

N

N

N

N
O
OLn

3+3+

N

N N

N

N

N
N
N O

O

3+

=

Ln-bpy3O2

LnC2-symmetry axis

axis of chirality (Sa)- or (M)-(Ra)- or (P)-

N

N

O
O

Br

Br

N

N
O
O

Br

Br

Figure 5.5: Lanthanoid cryptates exhibit axial/helical chirality. Both building blocks employed in the synthesis of the
ligand are achiral, yet the atropisomer character of the oxidised bipyridine relates to the chirality found in
the assembled scaffold.

oxidised bipyridine are of identical energy and no chiral discrimination occurs during the macrobicyclisa-

tion step, these compounds are always obtained as racemic mixture from synthesis. The non-availability

of enantiopure samples hampered a more detailed study of a possible racemisation of Ln-bpy3O2 or the

corresponding energetic barrier until now.
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Yet it is possible to prepare enantiopure derivatives of the core structure Ln-bpy3O2.[134] Similarly to the

preparation of the derivatives carrying a reactive functionalisation discussed in chapter 3, the key building
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block to do so is a modified dibromide of the oxidised bipyridine. By introduction of an enantiopure tether

derived from 2,3-butanediol, the relative orientation of the pyridines of this unit can be controlled (see Fig-

ure 5.6). The steric strain induced by the methyl groups at the eight-membered ring directs them into equa-

torial positions and presets the overall orientation of the ring and the attached pyridines. The presumed

impact on the macrobicyclisation reaction could be proven by combined NMR and DFT studies. For the

theoretically possible diastereomers Yb-(S,S,Sa)-bpy3O2 and Yb-(S,S,Ra)-bpy3O2 full geometry optimisa-

tions using DFT calculations were performed and resulted in an optimised structure for Yb-(S,S,Sa)-bpy3O2

(see Figure 5.7(a)) which is by 23.7 kJ mol-1 more stable than the one found for Yb-(S,S,Ra)-bpy3O2. The
1H NMR spectrum was found to be consistent with the presence of a single C2-symmetric species and

an analysis of the “lanthanoid induced shifts” (LIS) found a better agreement with the (S,S,Sa), than with

the (S,S,Ra) enantiomer. The enantiopurity of the sample was proven by 1H NMR experiments in chiral

solvents (see Figure 5.7(b)).

(a) DFT optimised structure of the energetically strongly pre-
ferred diastereomer Yb-(S,S,Sa)-bpy3O2. Grey: carbon, blue:
nitrogen, red: oxygen, turquoise: chloride, orange: YbIII. Hydro-
gen atoms are omitted for clarity.

(b) Single signal from the 1H NMR (250 MHz, methyl
lactates/CD2Cl2, 11:1 v/v, TMS) of the cryptate Yb-
(S,S,Sa)-bpy3O2 in enantiopure solvents (red: methyl
D-lactate, black: methyl L-lactate).

Figure 5.7: Optimised DFT structure calculated for the enantiopure lanthanoid cryptate and 1H NMR data of the
compound in enantiopure solvents. Figures adopted from reference [134].

In the course of the study, no loss of configurational information could be observed, yet the stability against

such processes had not been tested directly. With respect to the unfunctionalised cryptate Ln-bpy3O2 this

would also provide only very limited information since the tether introduced for the enantiopure synthesis

is very likely to make the overall complex more stable against any isomerisation process than the parent

compound. Independently from that, the general accessibility of enantiopure lanthanoid cryptates offers

exciting new possibilities, most importantly in the study of their CPL properties. Due to their fundamental

properties the rigid lanthanoid cryptates have high potential to be efficient CPL emitters and importantly

could also pave the way to an improved understanding of CPL. Unlike most chiral lanthanoid complexes

they exhibit an extremely well-defined structure in solution and analysis of the lanthanoid induced shifts

together with DFT calculations has proven to be extremely successful for the determination of the exact
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structure of cryptates in solution. Earlier studies indicated that the rigidity itself might also be beneficial for

the observation of CPL. Finally the suitability of (deuterated) cryptates to efficiently sensitise and protect

the lanthanoids which are especially prone to undergo nonradiative deactivation processes, such as e.g.

SmIII or YbIII, points towards a high suitability of these compounds for the preparation of CPL-active com-

plexes of these lanthanoids.

The extraordinary stability of the cryptates of the type bpy3O2 against decomplexation processes might

also allow for a fundamentally different approach for the preparation of enantiopure lanthanoid cryptates,

which is the separation of racemic mixtures as obtained from the regular synthesis (see Figure 5.5) via

chiral HPLC. Generally it is of course favourable and more efficient to prepare both enantiomers simulta-

neously and separate them in a subsequent step. Unfortunately, most lanthanoid complexes cannot be

purified via HPLC at all, since the typically applied conditions (e.g. low pHs) lead to decomposition. Even

in cases where the overall stability might be sufficient, under such conditions rapid interconversion pro-

cesses are highly favoured and would lead to the loss of any chiral information. Until now only for a group

of closely related complexes based on trispyridylphosphinate substituted 1,4,7-triazacyclononanes sepa-

ration into enantiopure samples via chiral HPLC was reported. Lanthanoid cryptates Ln-bpy3O2 can easily

be purified via reversed phase HPLC and typically the stability of the complexes against decomplexation

is not an issue in this context. In the light of the high rigidity of these compounds a separation into both

enantiomers via chiral HPLC might also be possible.
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5.2 Conception of the Project

The intrinsically low stability of lanthanoid complexes is a major obstacle in the preparation of enantiopure

lanthanoid complexes and the detailed study of their structure in solution. In contrast to that, the high

rigidity of the lanthanoid cryptates gives the best prerequisite for a closer study of their chirality and related

phenomena, such as CPL.

This will be conducted with two independent approaches:
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• Initial study of the chiroptical properties of luminescent lanthanoid complexes with an enan-

tiopure cryptand scaffold

The cryptates obtained from enantiopure synthesis have mainly been structurally characterised until now.

No complexes of this ligand which are emissive in the visible part of the electromagnetic spectrum have

been prepared so far. During this study the preparation of corresponding complexes will allow for an in-

depth comparison of the properties of the complexes obtained from enantiopure synthesis to the one from

racemic synthesis. More importantly these complexes will allow for the first studies of the CPL properties

of lanthanoid cryptates.

• Separation of lanthanoid cryptates prepared as racemic mixture into pure enantiomers

The preparation of enantiopure samples of the unmodified, racemic lanthanoid cryptates bpy3O2 (for exam-

ple via chiral HPLC) would allow for detailed studies of the stability against configurational rearrangements

or decomplexation processes. Furthermore, the comparison of the CPL properties of these compounds

to the ones of the samples from enantiopure synthesis might give interesting insights in how far subtle

changes of the coordination geometry affect them.
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5.3 Results and Discussion

5.3.1 Chiroptical studies on enantiopure lanthanoid cryptates

Circularly polarised luminescence is one of the emerging topics in lanthanoid coordination chemistry. Until

now the fundamental understanding of this highly interesting phenomenon (and consequently also the real-

isation of concrete applications) was hindered by a lack of CPL-active systems which allow for an in-depth

study of how their structure and crystal field influence the CPL properties. The outstanding potential of

the lanthanoid cryptates to illuminate these relations is obvious and one of the aims of this chapter is to

provide first results towards this. At the same time the cryptates’ outstanding ability to protect the coordi-

nated lanthanoid against nonradiative deactivation processes shall be used to help establish the CPL of

the lanthanoids more sensitive towards multiphonon quenching. The most important example being SmIII.

Though its high potential for the preparation of highly CPL active compounds is predicted by theory and

there is also experimental evidence, CPL of SmIII has been underdeveloped so far.

With the enantiopure cryptates which could already be realised by the aid of an enantiopure tether at-

tached to one of the bipyridines, a highly suitable system for the aim of this study was already available.[134]

To improve prospects for the observation of intense luminescence of the lanthanoids more susceptible to

nonradiative deactivation, the partially deuterated derivative 22 (see Figure 5.8) was chosen for this study.

Generally deuteration of the benzylic positions of the cryptates bpy3O2 was already found to be especially

effective to enhance the luminescence of these compounds.[133][135][139][268] An efficient trade-off between

efficient ligand synthesis and optimisation of the photophysical properties offers the deuteration of only

the benzylic positions of the non-oxidised bipyridines. Herein the deuterated and the enantiopure building

blocks of the synthesis are connected in the very last step of ligand assembly, and the synthesis of the

enantiopure bipyridine derivative is not further complicated by deuteration.
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Figure 5.8: The partially deuteration of the cryptate Na-22 can be realised with an efficient synthesis in which the
deuterated and the enantiopure building blocks are assembled in the last step of ligand assembly.[134]

For this study the corresponding EuIII and SmIII cryptates were prepared analogously to a procedure known

for the YbIII complex before[134] and purified via recrystallisation to yield both complexes in 61% yield (see

Figure 5.9). The identity of the complexes could be confirmed via 1H NMR spectroscopy and high reso-

lution ESI-MS, via analytical HPLC the absence of any residual sodium cryptate in the material isolated

could be established (see page 331 in the appendix).
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Figure 5.9: Preparation of the lanthanoid cryptates Ln-22 from the corresponding sodium cryptate Na-22.[134]

The 1H NMR spectra of the complexes in CD3OD (see Figure 5.10 and Figure 5.11) reflect the C2-symmetry

of the compounds, their well-defined structure and the absence of any interconversion processes between

different isomers. In the case of Eu-22 the signals of the protons which experience the most pronounced

paramagnetic shift in the case of Eu-1 can no longer be observed as a result of the deuteration. Most

signals are well separated from each other, only for signals in the range between 3.0 to 2.5 ppm and 1.0

to 0.7 ppm signals are overlapping which prevents integration. In line with the C2-symmetry of the com-

pound a total of seven signals with an integral of two protons, one multiplet with an integral equivalent to

six protons and one multiplet representing eight protons can be identified. In analogy to the previously

discussed NMR spectra the signals which experience the strongest paramagnetic shift can be assigned to

the benzylic protons and the signal of the six CH3-protons can be identified at 0.85 ppm.

Figure 5.10: 1H NMR spectrum (400 MHz, CD3OD) of the enantiopure europium cryptate Eu-22. Unambiguously
identified solvent signals are marked with an asterisk. Modified from reference [267].
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Figure 5.11: 1H NMR spectrum (400 MHz, CD3OD) of the enantiopure samarium cryptate Sm-22. Unambiguously
identified solvent signals are marked with an asterisk. Modified from reference [267].

Due to the weak paramagnetism of SmIII and the relatively long distance between the aromatic protons

and the paramagnetic center, for Sm-22 the aromatic protons can be expected to be virtually unshifted and

correlate to 14 of the 16 protons of the partially overlapping signals observed between 9.8 and 7.5 ppm.

Also the signals of the CH3-groups will not experience a considerable shift and can be assigned to the

signal at 1.45 ppm with an integral of six protons.

Figure 5.12: Normalised UV/Vis spectrum of Eu-22 in CD3OD.

Until now the general luminescence properties of cryptates Ln-22 emitting in the visible part of the elec-

tromagnetic spectrum had not been studied. To provide a basis for a comparison to the unfunctionalised

lanthanoid cryptates Ln-bpy3O2, prior to the investigation of the CPL properties a thorough photophysical

characterisation of the corresponding europium and samarium complexes was performed. As expected,

the shape of the normalised UV/Vis spectrum of both complexes (see Figure 5.12 for the one of Eu-22)
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Figure 5.13: Normalised high resolution steady state emission spectrum of Eu-22 (CD3OD, �exc = 305 nm). Modified
from reference [267].

(a) Normalised high resolution steady state emission
spectrum of the emission in the visible part of the elec-
tromagnetic spectrum.

(b) Normalised steady state emission spectrum of the
emission in the near-infrared part of the electromagnetic
spectrum.

Figure 5.14: Normalised steady state emission spectra of Sm-22 (CD3OD, �exc = 320 nm). Modified from reference
[267].

does not show any deviations to the ones of the unfunctionalised cryptates Ln-bpy3O2.

The high resolution steady state emission spectrum of Eu-22 (see Figure 5.13) is completely in line with

the presence of exactly one C2-symmetric EuIII species. The samarium complex was found to be indeed

highly luminescent, so that partial resolution of the fine structure of the transitions in the visible part of

the electromagnetic spectrum was possible. Furthermore also the transitions in the near-infrared could be

detected (see Figure 5.14). In Table 5.2 further photophysical parameters determined for Eu-22 and Sm-

22 are summarised. For both compounds the luminescence lifetimes ⌧obs and the overall quantum yields

�L
Ln were determined. Both compounds exhibit monoexponential luminescence decays. This is again in

line with the presence of exactly one luminescent species and of enormous importance for the subsequent
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analysis of the CPL properties. The lifetimes are higher than the ones which were discussed earlier in this

work, which can be accounted for by the deuteration of the scaffold.

Table 5.2: Luminescence lifetimes ⌧obs, radiative lifetimes ⌧rad , overall quantum yields �L
Ln, intrinsic quantum yields

�Ln
Ln and sensitisation efficiencies ⌘sens of Eu-22 and Sm-22 in CD3OD.

Compound ⌧obs ⌧rad �L
Ln

[a] �Ln
Ln

[b] ⌘sens
[c]

Eu-22 1.6 ms[d] 4.2 ms 5.9% 38% 15%

Sm-22 90µs[e] - 0.26% - -
[a] Determined using quinine in 0.5 M H2SO4 as reference com-
pound, see experimental section and reference [269], [b] �Ln

Ln = ⌧obs/⌧rad ,
[c] ⌘sens =�L

Ln/�Ln
Ln, [d] �exc = 320 nm, �em = 610 nm (5D0!7F2), [e]

�exc = 320 nm, �em = 597 nm (4G5/2!6H7/2).

Of course also the solvent in which the measurement is performed will have an impact on the determined

lifetime. In a rough approximation, due to the absence of C-H- and O-H-oscillators, CD3OD, CD3CN and

D2O can be assumed to be solvents which do not cause nonradiative deactivation of the excited lanthanoid.

But indeed at least the O-D-oscillators will cause nonradiative deactivation and shorten the luminescence

lifetime. Analogously to general experience shorter lifetimes will be expected for measurements in D2O

and longer lifetimes can be expected in CD3CN.[11] A rough comparison of lifetime data measured in these

solvents is possible, when this is kept in mind.

While the lifetime determined for Eu-22 is about one third higher than the corresponding value determined

for the parent compounds Eu-bpy3O2 in D2O (⌧obs = 1.15 ms),[132] the overall quantum yield �L
Ln of Eu-22

is about one order of magnitude smaller than the one reported for Eu-bpy3O2 in D2O (�L
Ln = 30%)[132],

which is counterintuitive. Due to the special electronic structure of EuIII for the complexes of this lanthanoid

some photophysical parameters can be extracted quite easily from the results of standard experiments. For

example, the purely magnetic dipole character of the 5D0!7F1-transition allows for the direct determination

of the radiative lifetimes ⌧rad from a corrected emission spectrum.[270][271] ⌧rad can be calculated from the

ratio of the integrated total emission intensity Itot and the intensity of the 5D0!7F1-transition (IMD):

1

⌧rad
= AMD,0 · n3

✓
Itot

IMD

◆
(16)

with AMD,0 being the probability of the spontaneous emission of the 5Do!7F1-transition in vacuo (14.65 s-1)

and n being the refractive index of the surrounding medium (1.326 for CD3OD). The radiative lifetime is a

measure for the theoretical lifetime of the excited lanthanoid in the absence of any nonradiative deactiva-

tion processes, and allows for the calculation of the intrinsic quantum yield �Ln
Ln as the ratio of the observed

luminescence lifetimes ⌧obs and the radiative lifetimes ⌧rad .

From the overall quantum yields �L
Ln and the intrinsic quantum yields �Ln

Ln finally the sensitisation efficiency

⌘sens could be determined. ⌘sens describes the efficiency of the indirect sensitisation via the antenna effect.
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In the case of Eu-22 the sensitisation efficiency was found to be lower than expected. This points towards

some kind of energetic mismatch between the triplet state of the ligand and the excited state of the lan-

thanoid, which could explain the relatively low overall quantum yield. Indeed the introduction of the tether

at the oxidised bipyridine unit is quite likely to affect the electronic structure of the overall ligand.

The lifetime determined for the samarium cryptate Sm-22 can be compared to the values determined for

the undeuterated and the perdeuterated Sm-bpy3O2 in CD3CN (31 and 394µs, respectively). As expected

it lies between them, the threefold increase compared to the undeuterated compound points towards the

high impact of the oscillators in the benzylic positions.

In conclusion the study of the photophysical properties of the complexes Eu-22 and Sm-22 gave evidence

of their high suitability for the aim of this project. All experimental results point towards the presence of

exactly one well-defined species in solution and the deuteration of the ligand was found to have the desired

effect upon the luminescence properties.

Figure 5.15: CD spectra of Eu-22 (black, solid line) and Sm-22 (red, dashed line) in CD3OD (3mM) at room tem-
perature. Both spectra were independently normalised on a scale of 0 to 1. Modified from reference
[267].

In the next step in cooperation with Prof. Dr. Lorenzo Di Bari (Università di Pisa) and Dr. Francesco

Zinna (Université de Genève) the chiroptical properties of the compounds were studied. As expected the

circular dichroism spectra of both compounds are identical, as it was found to be also the case for the

UV/Vis spectra before. Finally the CPL spectra were recorded. For technical reasons both complexes were

excited with light of 254 nm, which is not optimal for cryptates. Yet for both compounds circularly polarised

luminescence could be detected. The normalised CPL spectra and the corresponding total luminescence

spectra are shown in Figure 5.16. In the CPL spectrum of Eu-22 the 5D0!7F2-transition is split into two

components of opposite sign, whereby the one with the positive sign (glum = +0.02) dominates the CPL

signal of the transition. The CPL signal of the 5D0!7F1-transition has an opposite sign compared to the

main component of the transition mentioned before and a quite similar rotary strength, which gives the
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spectrum a shape which can be observed quite often in CPL spectra of EuIII complexes. Due to the lower

total luminescence intensity and in agreement with Richardson’s classification the luminescence dissym-

metry factor of the 5D0!7F1-transition is about one order of magnitude higher (glum = -0.19) than the one

determined for the 5D0!7F2-transition. While CPL of europium compounds has already been described

quite often, the CPL activity of the samarium cryptate Sm-22 is one of only few examples known until now.

Both, the 4G5/2!6H5/2-transition and the 4G5/2!6H7/2-transition, have distinct rotary strengths resulting

in luminescence dissymmetry factors of up to +0.13 for the less intense 4G5/2!6H5/2-transition. For the
4G5/2!6H7/2-transition again splitting in components with opposite signs (glum = -0.03 and glum = +0.03) can

be observed, which gives additional information of the fine structure of this transition. An important result

from the study of the CPL properties of these complexes is that the maximum glum values measured for the

europium and the samarium complexes are in the same order of magnitude. Such a finding has already

been reported for the europium and samarium complexes of the CPL record holder Cs[Ln((+)-hfbc)4].[264]

This gives evidence of the high potential of samarium-centered CPL when the processes diminishing the

luminescence of these complexes can be controlled, as it was done in this case by deuteration. The lumi-

nescence dissymmetry factors reported herein are not exceptionally high, but the distinct rotary strengths

which were detected together with the well-defined structure of the cryptates have a high potential for a

rationalisation of the basic principles of CPL.
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(a) Eu-22 (CD3OD (3 mM), �exc = 254 nm). (b) Sm-22 (CD3OD (3 mM), �exc = 254 nm).

Figure 5.16: Normalised CPL spectra (top) with the luminescence dissymmetry factors glum and total emission spec-
tra (bottom). Modified from reference [267].
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5.3.2 Separation of racemic Ln-bpy3O2 into enantiopure samples and their

stability against racemisation

All studies upon the structure of cryptates bpy3O2 performed until now pointed towards the structure be-

ing very rigid and the absence of any interconversion processes. While these processes are very difficult

to be studied with racemic samples, it is quite straightforward when enantioenriched or even enantiopure

samples are available. The method of choice for the separation of enantiomers of complex molecules is

typically HPLC with a chiral solid phase. Indeed, using a CHIRLPAK IE column and CH3OH with 0.5 vol.-

%TFA as mobile phase, for all cryptates Ln-bpy3O2 tested separation into two components of identical

integrals could be observed (see Figure 5.17).

Figure 5.17: Normalised chiral HPLC traces of racemic Ln-bpy3O2. Modified from reference [272].
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The total retention times were found to be varying (later experiments indicate that there is quite a strong

dependence on the concentration of the sample), and the same is the case for the relative retention times

of both components. Yet there is a tendency for larger separations for the later lanthanoids. It could be

observed that for all Ln-bpy3O2 tested, the component eluting earlier can be detected as a relatively sharp

peak. In contrast, the peak of the second component has a significantly lower maximum intensity and

a strong tailing. The relatively high content of TFA in the mobile phase was found to be critical for the

separation. The mobile phase has to be prepared directly prior to use, because upon standing TFA and

CH3OH form the corresponding ester F3C-CO-OMe. The resulting loss of free TFA is sufficient to lead to

a significant decrease of the separation. According to experience a portion of the mobile phase should not

be used longer than about one hour after preparation.

In order to prove that the two components observable in chiral HPLC indeed relate to the two enantiomers

of the lanthanoid cryptates, several milligrams of Lu-bpy3O2
[135] as obtained after recrystallisation were

subjected to chiral HPLC in subsequent runs, whereby the fractions of both components were collected

(see appendix page 318 for details). The samples of the substances isolated from these fractions were

again subjected to analytical chiral HPLC (see Figure 5.18). As it can easily be seen in the respective

HPLC traces the isolated samples contain no contamination with the other component, which offers best

prerequisites for further studies towards an unambiguous identification of the isolated compounds.

Figure 5.18: Normalised chiral HPLC traces of racemic Lu-bpy3O2 (top) and the samples isolated from the first
component (middle) and second component (bottom). Modified from reference [272].

The easiest experiment which can be performed for this purpose is a simple 1H NMR experiment. As it can

be seen in Figure 5.19, the 1H NMR spectra of both components are indistinguishable from each other and

the spectrum of a sample prepared from the racemic starting material with a few drops of TFA. Together
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with the traces obtained from chiral HPLC of the isolated compounds this already gives very strong evi-

dence for the components being the two enantiomers of Lu-bpy3O2.

Figure 5.19: 1H NMR spectra of the racemic Lu-bpy3O2 (top, 400 MHz, CD3OD + TFA), the first component eluted
from chiral HPLC (middle, 400 MHz, CD3OD) and the second component eluted from chiral HPLC (bot-
tom, 400 MHz, CD3OD). Unambiguously identified solvent signals are marked with an asterisk.

To unambiguously proof this, CD spectra of both substances were recorded (see Figure 5.20) and indeed

they are perfect mirror images. Furthermore the shape of the CD spectrum of the first component (shown in

black) is very similar to the ones of the complexes obtained from enantiopure synthesis (see Figure 5.15).

Consequently in this case the enantiomer which was eluted from the HPLC as first component can prelim-

inary be assigned to be the Ra enantiomer.

The fact that the enantiomers can be separated via chiral HPLC and even after elongated standing in so-

lution no racemisation was observed already gives evidence for a high stability of the oxidised lanthanoid

cryptates against configurational rearrangement processes. Based on these results it can be concluded

that enantiopure samples of Ln-bpy3O2 will indeed be suitable for e.g. the study of their CPL properties

and potentially arising applications. Apart from that the enantiopure samples already prepared to give

evidence of the feasibility of the separation, can also be used to study the stability of these compounds
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against racemisation and related processes even in more detail.

Figure 5.20: CD spectra of the first (black) and second component (red) obtained from chiral HPLC of Lu-bpy3O2 in
CH3OH (c⇡ 0.4 mM) at room temperature. Modified from reference [272].

To do so in two separate experiments samples of the Sa enantiomer of Lu-bpy3O2 were subjected to chal-

lenging conditions under which racemisation is very likely to occur. In the first experiment the compound

was stirred in pure TFA at room temperature. Most lanthanoid complexes would undergo rapid decomplex-

ation under such conditions and any of the many lanthanoid complexes which are based on carboxylates

(such as DOTA complexes) would at least loose any configurational information. In the second experiment

the complex and 10.0 equivalents of LuCl3 · 6 H2O were stirred in CH3CN at reflux temperature. This exper-

iment targets the mechanism which seems to be the most likely to result in a racemisation of the oxidised

bipyridine cryptates. Upon exchange of the inner lanthanoid for an external one the ligand would neces-

sarily have to undergo some kind of rearrangement process which would inevitably lead to racemisation.

From both experiments in time steps of about one day samples were taken and subsequently analysed

via chiral HPLC (see Figure 5.21). Even after five days in neither of the experiments any racemisation

or decomposition of the cryptate under study could be observed which gives evidence of the remarkable

stability of the cryptates Ln-bpy3O2.
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(a) neat TFA, room temperature. (b) Ten equivalents of LuCl3 · 6 H2O, Ch3CN, reflux tem-
perature.

Figure 5.21: Configurational stability tests by chiral HPLC of the Sa enantiomer of Lu-bpy3O2. Modified from refer-
ence [272].

153



Chapter 5. Enantiopure Lanthanoid Cryptates

5.4 Conclusion

The aim of this study was to improve the understanding of the properties of the cryptates which correlate

with their chirality and make first steps towards their utilisation. In the first part of the project the first enan-

tiopure lanthanoid cryptates which are luminescent in the visible part of the electromagnetic spectrum (Eu-

22 and Sm-22) were prepared and their photophysical properties were studied thoroughly. This included

the study of their circularly polarised luminescence, both compounds exhibit distinct rotary strengths. Sm-

22 is one of only few examples for a samarium complex exhibiting CPL. The results presented herein at

the same time give evidence of the high potential of samarium centered CPL (the glum values of the SmIII

and the EuIII complex are in the same order of magnitude) and point towards the control of nonradiative

deactivation being key for the observation of CPL of these compounds, as it was done here by a partial

deuteration of the ligand scaffold.
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Figure 5.22: Enantiopure complexes Eu-22 and Sm-22 prepared for the initial study of the CPL properties of
cryptates.

In the second part of the project a method for the separation of the racemic lanthanoid cryptates Ln-bpy3O2

into samples of pure enantiomers via chiral HPLC was successfully established. With the aid of the sep-

arated samples of Lu-bpy3O2 It was proven unambiguously that the fractions isolated from this process

correspond to the individual enantiomers of the complex.
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Figure 5.23: Racemic samples of Ln-bpy3O2, as obtained from synthesis, can be separated into samples of the pure
enantiomers via chiral HPLC.

The accessibility of enantiopure samples of Lu-bpy3O2 allowed for an in-depth study of the configurational
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stability of the oxidised lanthanoid cryptates. Even after 5 days at extreme conditions no traces of racemi-

sation or decomposition could be detected, which gives remarkable evidence of the outstanding stability

of these compounds. This is also an important finding for the application of the results from the earlier

chapters.

(a) Neat TFA, room temperature. (b) Ten equivalents of LuCl3 · 6 H2O, Ch3CN, reflux tem-
perature.

Figure 5.24: Configurational stability tests by chiral HPLC of the Sa enantiomer of Lu-bpy3O2. Modified from refer-
ence [272].

In latest experiments now both parts of the project are combined and chiral HPLC was used to prepare

enantiopure lanthanoid cryptates for the study of their CPL properties, which is currently underway and

might open up perspectives for the rationalisation of correlations of the coordination geometry and the CPL

properties of lanthanoid complexes.

In conclusion, in this chapter the chirality of the cryptates was proven to be one of their useful features

which opens up possibilities for innovative applications. Apart from that in this chapter a contribution to a

better understanding of one of their most important properties, namely their outstanding stability, could be

made.
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6 Cryptates for the Controlled Synthesis of

Homo- and Heteropolymetallic Complexes

6.1 Introduction

Apart from the possibilities which arise from the general covalent connection of several lanthanoids in a

molecular structure (see chapter 4), intrinsically new phenomena become observable when the lanthanoids

are combined in a way that allows for a direct interaction between the metals. As described earlier, the

Laporte-forbidden nature of the f-f transitions results in a long-lived population of the excited states of the

lanthanoids. In most cases upon relaxation the energy of the excited states can be released in the form of

a photon, be transferred onto quenching oscillators or be back-transferred onto the antenna ligand. But if

another lanthanoid ion is close enough to the initially excited lanthanoid ion, this neighbouring ion can also

function as an acceptor of energy, which results in a transfer of energy between both ions and subsequently

to emission of light of the second lanthanoid ion. In principle, such energy transfer processes between the

initially excited lanthanoid ion LnA and the energy accepting lanthanoid ion LnB can be divided into three

groups which are shown schematically in Figure 6.1.

E

Figure 6.1: Different energy transfer processes between two lanthanoid ions LnA and LnB: Downshifting (DS), quan-
tum cutting (QC) and upconversion (UC). Energy uptake leading to an excitation of lanthanoid ions is
represented with blue arrows, the emission of photons is represented with red arrows. Green, dotted
lines represent radiationless transitions.

During a downshifting (DS) process only a part of the energy of the initially excited lanthanoid ion LnA is

transferred onto the adjacent lanthanoid LnB, the indirectly excited transition of LnB has a smaller energetic

difference than the transition between the involved states of LnA. Consequently in a subsequent step LnB
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can emit a photon with a higher wavelength. The excess energy of the excited LnA is released into the

surrounding area, this process is similar to the antenna effect. Other processes which can occur when

two lanthanoids interact are quantum cutting (QC) processes. In this case, the energy of LnA is split and

transferred to two neighbouring LnB. Ideally the energy of the excited LnA should equal twice the amount

of energy necessary to excite LnB, and after the energy transfer double the intensity of light of a higher

wavelength will be emitted. The third group of processes shown in Figure 6.1 are upconversion (UC) pro-

cesses, which are significantly different to the previously described. Here, LnA is excited stepwise with

at least two photons before the energy is transferred onto LnB and subsequently emitted as a photon of

higher energy. If LnA is excited with a pump laser, the efficiency of the process will be proportional to the

square of the pump intensity. In this regard upconversion processes resemble non-linear optical processes

(like for example “second harmonic generation” or “two photon absorption”) but in fact the processes are

significantly different.[273]

Upconversion processes are relevant for a variety of applications, e.g. for photovoltaic cells or for biological

or medicinal applications. Upconversion contrast agents can be excited with low energetic NIR-radiation for

which biological tissues are transparent and which is less phototoxic. After the upconversion process such

contrast agents emit light in the NIR, visible or UV part of the spectrum. To some extent related target com-

pounds are nanocarriers containing drugs which are released upon NIR-irradiation.[274] In principle many

different upconversion mechanisms are possible, some of the most relevant are shown in Figure 6.2.[275]

The conceptually most straightforward mechanism is the “excited-state absorption” (ESA). Here, in the

initial step the absorption of a photon brings a lanthanoid into a first excited state. If a second photon

is absorbed before a radiative or nonradiative deactivation takes place, a second excited state can be

reached from which a photon is emitted whose energy equals the sum of the two in the forehand absorbed

photons. Typically, in this case no energy transfer from another lanthanoid or a ligand is responsible for

the population of the excited states but instead the lanthanoid is directly excited with a pump laser. As the

three involved energy levels often are not equidistant, sometimes the use of pump lasers with two different

wavelengths is beneficial or necessary. Different from that, the other mechanisms shown in Figure 6.2

require two elements, a sensitiser S and an activator A between which the energy is transferred. In the

simplest case this results in a SA-“energy transfer upconversion” mechanism (which also used to be called

“addition de photons par transferts d’énergie”, APTE). Thereby one sensitiser and activator each form an

upconversion pair. Firstly the sensitiser S is excited (directly or indirectly) and transfers its energy onto

the activator A. Activator A remains in the excited state until the sensitiser has been excited another time

and again transfers the energy onto activator A, which results in the population of a higher excited state of

A. From this excited state finally a photon of the corresponding energy can be emitted. The SAS-“energy

transfer upconversion” mechanism is closely related with the only difference that here the activator is in

contact with two sensitisers. Another variation is the “cooperative energy transfer upconversion”. Here the

activator does not have an intermediate energy level, so that a stepwise energy transfer from the sensitis-

ers is not possible and the transfer from both sensitisers has to take place simultaneously. In literature also

further upconversion mechanisms are discussed, for example the “photon avalanche”-mechanism (PA)[276]

or mechanisms for more specialised cases like for example upconversion-nanoparticles[275] for which sur-

face effects or coatings are relevant.
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Figure 6.2: Schematic representation of some upconversion mechanisms: ESA (excited state absorption), ETU (en-
ergy transfer upconversion), CET (cooperative energy transfer). Excitation processes are represented
with blue arrows, deactivation processes are represented with red arrows and transfer processes are
represented with dotted, green arrows.

Prerequisite for the observation of upconversion is the population of the second excited state of the activa-
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tor. Consequently in a first approximation the normalised population density of the activator in the second

excited state N |2i
A can be treated as a measure for the intensity of the emitted upconverted radiation. Un-

der steady state conditions (dN |2i
A /dt = 0) and when the sensitiser is directly excited with a pump laser

(kexc(i!j)
A =

�
�p/hc

�
· p · � i!j

A ), the following applies to an ESA-process:[30]
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Analogously a SA-ETU process can be described as:[30]
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Whereby �p is the pump wavelength, h is the Planck constant, c is the speed of light in vacuo, p is the

incident pump intensity, � are absorption cross sections, k are the relaxation rate constants and W are

the second order rate constants for energy transfer processes (see Figure 6.2). The total deactivation of

the first excited state of the sensitiser (k1!0
S,obs) includes radiative and nonradiative processes and also the

energy transfer onto the activator:

k1!0
S,obs = k1!0

S + W S!A
1 · N |0i

A (19)

Generally the ESA-mechanism is considered to be less efficient than ETU-mechanisms, very high absorp-

tion cross sections �A and pump intensities are necessary. In some cases the resulting luminescence could

only be observed at pump intensities at which also two-photon absorption processes would be possible,

which cannot be easily distinguished from upconversion processes.[30][277] Also, the SAS-ETU-mechanism

is significantly more efficient than the SA-ETU-mechanism, which can be explained by the fact that in the

case of an SAS-ETU-mechanism the doubled amount of activators is available for every sensitiser (see

equation 18).

The ladder like arrangement of the energy levels of many lanthanoids and the long lifetimes of their excited

states generally offer good conditions for upconversion processes.[278] Evidence for this general and intrin-

sic suitability of the lanthanoids for the observation of upconversion was given by Xiao et al.[279] As they

reported, complexes of DPA or EDTA with ErIII, TmIII or NdIII prepared in H2O or D2O emit upconverted

light when irradiated with two lasers of different wavelengths which were chosen to be in resonance with

specific transitions of the respective lanthanoid. Using peak laser powers as high as 100 kW they were

able to pump enough energy into the lanthanoids that following an ESA-mechanism upconverted light of

detectable intensities was emitted. Three years earlier, Reinhard et al. had not observed any upconverted

emission from DPA complexes of ErIII, TmIII or YbIII after excitation with only one wavelength.[280]

Upconversion materials based on lanthanoids and also the corresponding nanoparticles (upconversion

nanoparticles, UCNPs) can be prepared quite easily and a huge variety of examples can be found in liter-

159



Chapter 6. Cryptates for the Controlled Synthesis of Homo- and Heteropolymetallic Complexes

ature. UCNPs consist of a photophysically inactive host material in which a certain amount of the cations

has been replaced with photophysically active guest-ions during synthesis (e.g. via coprecipitation, ther-

mal decomposition or solvothermal synthesis).[281] Since most materials target an upconversion process

following the efficient ETU-mechanism both components, a sensitiser and an activator are needed. YbIII is

usually considered to be the best choice for the sensitiser since it has an absorption cross section which is

quite high for a lanthanoid ion (9.11 x 10-21 cm-2 for 2F7/2 ! 2F5/2), and has only one excited state, so that

the amount of energy which can be delivered from a YbIII ion is well defined. In the case of the activator

the lanthanoid should have excited states with sufficiently high and preferentially equidistant energy levels.

ErIII, TmIII and also HoIII ideally comply with these requirements and provide transitions which are in reso-

nance with the one of YbIII. Under these three ErIII is regarded as the activator which allows for the highest

ETU-efficiencies (see Figure 6.3).[275]

Figure 6.3: Different energy transfer paths between the energy levels of ErIII, TmIII and HoIII. Excitation processes
are represented with red arrows, nonradiative deactivation processes are represented with black arrows
and the emission of photons is represented with blue arrows. Figure adopted from reference [281].

Nevertheless also all other trivalent lanthanoid ions except for LaIII, CeIII and LuIII could already be com-

bined with YbIII to form an upconversion pair (see section 9.8, page 284 in the appendix). Since for the

activators several energy levels can be populated, not only different excitation paths (see Figure 6.3) are

possible, but also light of different wavelengths can be emitted. As the probabilities for the corresponding

excitation paths show different dependencies on the distance between sensitiser and activator, a change

of the relative concentration of the guest ions can allow for a manipulation of the emission colour of the cor-

responding material. Also the addition of a third lanthanoid can have an impact onto the emitted light.[282]

But unfortunately this does not allow for a targeted design. Though the growing experience in this field is

indeed helpful, in principle the optimisation of any new UCNP is some kind of a trial and error process and

the underlying concurring processes which result in the observation of lanthanoid-centered upconversion

are not completely understood until now.

Whenever nanoparticles are prepared, the product is obtained as a statistical mixture of different particles

and an exact reproducibility cannot be given. Furthermore in a single nanoparticle different pairs of sensi-

tisers and activators with slightly different distances can be found, which can also influence each other and
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further complicate the situation. Consequently, neither the exact characterisation of a single S/A-pair nor a

targeted design of such a pair in a nanoparticle is possible.

In stark contrast to that, molecular coordination compounds generally provide by far better possibilities for

the preparation of metal-consisting compounds with designed properties, such as a well-defined distance

between two metal centers. Particularly, these compounds allow for the preparation and characterisation of

uniform samples of exactly one species. Consequently molecular lanthanoid compounds are more suitable

for understanding the underlying principles which are responsible for energy transfer processes between

lanthanoids. Unfortunately such molecular compounds which exhibit these energy transfer processes are

more difficult to create than the corresponding nanoparticles. In nanoparticles, interactions with the lattice

vibrations of the material can deactivate the excited states of lanthanoids and diminish the upconversion

efficiency. Unfortunately the high-energy oscillators omnipresent in coordination compounds, such as C-

H- or N-H-bonds, are even more effective quenchers. Consequently, the critical step of the upconversion

process after the initial energy transfer to the activator, and during which it has to stay in this state until

it receives another energy transfer, is more difficult to realise in a molecular compound. Generally also

the organic ligand as a whole (or more specifically: its triplet state) can act as acceptor of the energy

accumulated on a lanthanoid and lead to a nonradiative deactivation which competes with the emission of

upconverted light.[277][283]

The typically low kinetic stability of lanthanoid complexes represents another important challenge for the

design of molecular lanthanoid upconversion compounds. The limited availability of ligand scaffolds which

allow for the preparation of stable lanthanoid compounds narrows the design possibilities for potential

molecular lanthanoid upconverters. Whenever coordination compounds in which several lanthanoids are

combined in a controlled fashion are to be prepared, of course also the high chemical similarity of the

lanthanoids becomes an important challenge.

In principle every nonradiative energy transfer between two lanthanoids can follow a Förster or a Dexter

mechanism. Förster energy transfers are dipole-dipole (or multipole-multipole) interactions whereby the

initially excited donor induces an oscillation of the acceptor and thus transfers its energy. Both, the spin

of the donor and of the acceptor remain unaffected. The efficiency E of the energy transfer is strongly

dependent on the distance r between donor and acceptor. kD is the rate of the nonradiative deactivation of

the donor in absence of an acceptor, ⌧D is the corresponding lifetime. kET is the rate of the energy transfer

and ki are the rates of any other processes which lead to a deactivation of the donor.

E =
kET

kD + kET +
P

ki
=

1

1 + (r/R0)6
(20)

kET = kD
R6

0

r 6
=

1
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R6
0
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The Förster radius R0 is the distance between donor and acceptor at which the energy transfer has an

efficiency of 50%:

R6
0 =

9 · ln (10)

128⇡5 · NA
· 

2QD

n4
· J (22)

Here  describes the relative orientation of donor and acceptor, which for isotropic systems usually is
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assumed to be 2/3. QD is the quantum yield of the donor in absence of an acceptor, n is the refractive index

of the medium and J represents the spectral overlap integral (SOI). Typically, energy transfer processes

which follow this mechanism can be observed at distances up to about 100 Å. In contrast to that, the Dexter

energy transfer, which shows an exponential dependence from the distance r and the sum of the Van der

Waals radii of the donor and the acceptor (L), can only operate in a significantly shorter range and is limited

to distances of about 10 Å:

kET / J · exp

✓
�2r

L

◆
(23)

Differently to the Förster energy transfer, in the case of the Dexter energy transfer donor and acceptor

exchange electrons (whereby the total spin of the system remains unaffected). Both mechanisms re-

quire sufficient overlap between the emission spectrum of the donor and the absorption spectrum of the

acceptor.[284] In the case of the typically narrow band widths of the lanthanoids this is more difficult to realise

than for e.g. organic chromophores. Another characteristic feature of the lanthanoids, namely the low spa-

tial expansion of the f-orbitals, makes energy transfers between lanthanoids following Förster mechanisms

appear more likely than the ones following Dexter mechanisms.

A few molecular systems already allowed for the study of energy transfer processes between lanthanoids.

For example Faulkner et al. in 2003 described a complex of two TbIII-ions and one YbIII-ion which does

show the characteristic emission of YbIII centered at around 980 nm not only after excitation of the lig-

and, but also after direct excitation of the neighbouring TbIII-ions. In both cases a lifetime of 4.2 µs could

be determined in D2O.[285] The ligand consists of two DOTA-type TbIII-complexes which are connected by

two aminobenzyl units and a DTPA-type binding pocket by which the YbIII is coordinated. As the TbIII-

complexes are prepared prior to the attachment to the third binding pocket, and since the DOTA complexes

are sufficiently stable, a uniform compound could be realised and studied.

Also between EuIII and TbIII[284][286] or between EuIII and NdIII[287] already energy transfer processes in

molecular systems could be observed. In principle any pair which allows for the observation of energy

transfer processes in UCNPs is potentially of interest for such studies. Interestingly there are also exam-

ples for energy transfer processes between the uranyl ion UO2
2+ and lanthanoids, where the uranyl ion

sensitises the characteristic luminescence of the respective lanthanoid. This phenomenon was observed

in the solid state[288] as well as in solution[289] and the presented results indicate that they can proceed with

high efficiencies. In this context it should be noted that the generally higher tendency of the (early) actinides

to show interactions with significant covalent character would facilitate a Dexter-type energy transfer.

Some especially interesting possibilities for the study of energy transfer processes between several lan-

thanoids are provided by homopolynuclear complexes of EuIII. The special electronic structure of EuIII

makes detailed information about the coordination sphere around the lanthanoid ion accessible.[163] Both,

the 5D0 and the 7F0 state of EuIII are non-degenerate, consequently exactly one transition between both

states is possible and no splitting can be observed in the corresponding emission spectra. The very exact

energetic position of this transition is dependent on a variety of parameters, for example the nature and

number of coordinating solvent molecules. For the evaluation of these “nephelauxetic effects” some empir-

ical formulas were developed which can allow to draw some conclusions about the chemical surrounding

of the EuIII under study from the exact position of this transition.[290][291][292] Whenever two Eu(5D0!7F0)-
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transitions can be observed in an emission spectrum of a compound with several EuIII-ions this indicates

that the ions are at least slightly different in terms of their coordination environment, which is a prerequisite

for the observation of an energy transfer process between two ions of the same element. In such a complex

it is possible to excite the EuIII-ions independently from each other by direct excitation of their respective

Eu(7F0!5D0)-absorption bands. If afterwards the emission of the other lanthanoid or of both lanthanoid

ions can be observed, this would strongly indicate that an energy transfer between both metals is taking

place.[284] Also the kinetics of the deactivation of the excited states in such a compound can make inter-

esting information accessible and point towards an energy transfer.[284][293] If it is possible to assign single

transitions reliably to one of the EuIII-ions (which can for example be done by luminescence experiments

in different solvents) this can in principle also be done when both EuIII-ions are conjointly excited via the

ligand.

As it is the case for any f-f-transition, also the Eu(5D0!7F0)-transition is Laporte-forbidden. As it is also

spin-forbidden it is especially difficult to excite this transition directly. Also the so-called hypersensitive

Eu(5D0!7F2)-transition, which is usually dominating the emission spectrum of EuIII, is sensitive towards

small variations in the environment of the lanthanoid. Often the intensity of this transition is treated as

a measure for the symmetry of the coordination environment of the EuIII, as corresponding to the Judd-

Oddfelt theory this transition must be forbidden for a coordination symmetry with an inversion center. In

contrast to that, the Eu(5D0!7F1)-transition is considered to be especially insensitive towards changes

in the coordination sphere and its intensity is often assumed to be constant to compare different spectra

quantitatively.[163]

Until now only two examples for molecular compounds which exhibit upconversion in solution as conse-

quence of an energy transfer between two lanthanoid ions are known.

The first of these examples is a fluoride bridged dimeric assembly of two indazolyl-functionalised DOTA

complexes coordinating an ErIII-ion.[28] The typically high affinity between lanthanoid ions and fluoride

leads to a short distance between the ErIII-ions of only 4.484 Å (DFT calculation), hydrogen bonds and

⇡-⇡-stacking interactions further stabilise the dimer. In the DFT optimised structure both lanthanoid ions

and the fluoride ion are arranged in a linear fashion. After excitation at 980 nm (Er(4I15/2!4I11/2)), a so-

lution of the dimer in D2O (obtained by addition of 0.5 equivalents of NaF to a solution of the monomeric

form, see Figure 6.4(a)) exhibits emission bands centered at around 525, 550 and 650 nm which can be

assigned to the 2H11/2!4I15/2-, 4S3/2!4I15/2- and 4I9/2!4I15/2-transitions of ErIII (see Figure 6.4(b)). Also

without the addition of NaF a weak signal of upconverted emission could be detected, and also when ErIII

was indirectly excited via the ligand (�exc = 294 nm) a characteristic emission could be detected, even in

the absence of NaF but not in H2O. The dominating mechanism of the upconversion process is assumed

to be an ETU-mechanism. This interpretation is supported by the relatively long rise time of the upcon-

verted luminescence (5 µs) and the significantly lower upconversion efficiency found for the solution of

the monomer without NaF (an ESA-mechanism can also operate without a second monomer in the close

vicinity). Presumably the fluoride ion has another important role in this system apart from connecting the

monomers, since it will also shield the lanthanoid ions from surrounding solvent molecules and conse-

quently protect the excited ErIII-ions from nonradiative deactivation processes.
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(a) Formation of the monomeric ErIII complex from the ligand and assembly of the fluo-
ride bridged dimeric compound.

(b) Photophysical data revealing the ErIII-centered upconversion. The sample in D2O was excited at 980 nm,
which corresponds to the 4I15/2!4I11/2-transition. Figure a): Emission of the sample between 500 and 700 nm at
excitation at 980 nm after addition of different equivalents of fluoride. Figure b): Integrated intensity (505 to 580nm)
as a function of added equivalents of fluoride. Figure c): log-log plot of the UC emitted intensity (integrated from
505 to 580 nm) as function of the incident pump intensity. The slope of approximately two corresponds to a two
photon process.

Figure 6.4: Formation of a dimeric ErIII complex and selected photophysical data revealing the observed upconversion
process in D2O.[28] Figures adopted from reference [28].

The second molecular system which allows for the observation of lanthanoid-centered upconversion in so-

lution is based on a partially deuterated phosphonated bipyridyl ligand (see Figure 6.5(a)). Upon reaction

with slightly less than one equivalent of LnCl3 · 6 H2O in aqueous solution (at neutral pH) and subsequent

recrystallisation the corresponding mononuclear complexes are accessible.[295] In these complexes the lan-

thanoid is coordinated in an octadentate fashion and well protected against surrounding solvent molecules

(q = 0). The complexes show high kinetic stability. If a buffered aqueous solution of the corresponding

YbIII complex is titrated with a buffered solution of TbCl3 · 6 H2O, upon direct excitation of the YbIII ion the

characteristic emission of the TbIII ions can be observed (see Figure 6.5(b)). If instead TbIII is added to the

corresponding LuIII complex, excitation at 980 nm does not lead to TbIII-centered emission, which allowed

to rule out nonlinear processes as responsible for the excitation of the TbIII-ions. From the analysis of

the photophysical data collected during the titration the authors of the study conclude that in the sample

under study three different species [(YbL)2Tbx] with x = 1,2 or 3 are in equilibrium. The DFT structures of

the compounds indicate that the YbL-units coordinate the first TbIII-ion in a more or less linear fashion via

their phosphonate groups. The coordination of the second and the third TbIII-ion, respectively, is realised

relatively similar. In all three calculated structures the Yb-Tb distances are very short (between 3.85 and

4.56 Å) and the Tb-Tb distances tend to be even shorter. If all three species exhibit upconversion activity

cannot be concluded on the basis of the data presented in the study.
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(a) Structure of the ligand L and its partially deuterated
analogue LD which was used for the preparation of the
samples.

(b) Emission spectra recorded upon titration of a solution of
YbLD in D2O with TbCl3 · 6 H2O

Figure 6.5: With the aid of the ligand LD it was possible to observe YbIII! TbIII upconversion in D2O. Figures adopted
from reference [294].

It is important to note that both systems which are known to exhibit lanthanoid centered upconversion (as

a consequence of an energy transfer mechanism) in solution were prepared in situ and most likely cannot

be isolated in the studied form. Both systems resemble more a supramolecular assembly than a discrete

molecule which results in severe limitations for the unambiguous characterisation of the actually upcon-

verting species and, even more importantly, for any application e.g. in a biological sample.

In the light of the very limited examples for lanthanoid upconversion in molecular systems it is reason-

able also to consider compounds which do exhibit upconversion in the solid state to improve the general

understanding of the underlying processes. A group of compounds which are interesting in this con-

text are 2D coordination polymers made from 4,4’-bipyridine-N,N ’-dioxide and YbIII and ErIII in variable

proportions.[296] Though the lanthanoid ions in these compounds are in close vicinity to deactivating C-H-

bonds and even H2O molecules, upon excitation at �exc = 980 nm upconverted emission at 548 nm and

525 nm (Er(4S3/2!4I15/2) and Er(2H11/2!4I15/2), respectively) could be observed, even at relatively low

pump intensities of about 10 mW. At higher pump intensities an additional emission band centered at

409 nm could be observed, which corresponds to the 2H9/2!4I15/2 transition of ErIII. The authors describe

a dependence of the operating upconversion mechanism from the pump intensity and the amount of ErIII

doped into the material: Upon increase of ErIII the previously dominating ESA-mechanism is progressively

replaced by an ETU-mechanism. Furthermore the authors consider that low energy phonon modes might

facilitate the nonradiative energy transfers which are basis of the upconversion process. This is quite an

important note, since in these materials quenching oscillators such as C-H or O-H bonds are omnipresent

and this points towards a special importance of the low energy phonon modes, since they seem to over-

compensate these detrimental effects.

In order to observe upconversion following an ETU-mechanism with a lanthanoid as activator, not nec-
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(a) General preparation of the heterometallic complex containing two CrIII ions and one
lanthanoid ion.

(b) Jablonski diagram of the energy transfer processes in the
helical Cr-Er-Cr complex. Excitation processes are represented
with upward solid arrows, ETU-processes are represented with
dotted arrows, nonradiative deactivation processes are repre-
sented with curled arrows and emission processes are repre-
sented with downward solid arrows.

Figure 6.6: Preparation of the helical heterometallic complexes in which a lanthanoid ion can be combined with two
adjacent CrIII-ions and the Jablonski diagram formulated for the rationalisation of the underlying processes
resulting in the observed upconversion. Figures adopted from reference [29].

essarily a lanthanoid has to be employed as sensitiser. In fact the use of different sensitisers seems to

facilitate the construction of molecular lanthanoid upconverters. An interesting example is the first com-

pound which was reported to exhibit NIR ! VIS upconversion in an isolated molecular system. The

complex is a supramolecular assembly of three identical ligands which jointly coordinate two terminal CrIII-
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and one central ErIII-ion and as such allows for a SAS-ETU-mechanism (see Figure 6.6(a)).[29] For the

EuIII and YbIII derivatives of the compound X-ray diffraction studies allowed for the determination of the

Cr-Ln-distances which are 8.8(1) Å and 8.9(1) Å, respectively. Figure 6.6(b) shows a Jablonski diagram

of the energy transfer processes which are responsible for the observed upconversion process: Initially

at 450 nm the 4A2!4T2-transition of CrIII is excited. An intersystem crossing results in the population of

the Cr(2E)-state and luminescence of the transition Cr(2E!4A2) (747 nm) can be observed. An alternative

energy path transfers the energy to the central ErIII-ion, which is consequently excited to the Er(4I9/2)-state.

After an additional energy transfer from CrIII the Er(4S3/2)-state can be populated and subsequently a pho-

ton with a wavelength of 543 nm can be emitted (Er(4S3/2!4I15/2)). After an initial study in the solid state

at 4K, these results could also be reproduced in a frozen acetonitrile solution at 30.6 K. Systems like this,

where d- and f-metals are combined, have the advantage that the significantly different coordination be-

haviour of the d-metals facilitates the control over the spatial arrangement of the different metals in such

a heterometallic complex. Furthermore, in the case of the d-metals a manipulation of the exact energetic

position of the excited states is possible via a modification of the ligand, and generally their emission bands

are broader which leads to an increase of the spectral overlap integral compared to systems in which the

energy has to be transferred between two lanthanoids.

In another example also an antenna ligand could be employed as sensitiser to generate upconverted

lanthanoid-luminescence: An adduct of Er(TTA)4 (TTA = 2-thenoyltrifluoroacetone) and the organic dye

IR-806 exhibits upconverted ErIII emission (Er(2H11/2!4I15/2) and Er(2S3/2!4I15/2)) in CDCl3 at room tem-

perature and after excitation with a 808 nm laser diode. Neither the pure potassium salt of Er(TTA)4 nor the

pure iodide of IR-806 showed any emission in the range of the upconverted ErIII-emission after excitation

at 808 nm, so the process which is observed in the sample containing both components is likely to be

consequence of an energy transfer process. Furthermore the emission intensity depends on the square

of the excitation intensity, which gives evidence of the observed process being an upconversion process.

Unfortunately the efficiency of the process is very low, at a laser intensity of 9.5 W/cm2 it was estimated to

be 0.1%.[297]

Considering the diverse examples described above, it can be concluded that the fascinating field of energy

transfer processes between lanthanoids in molecular systems is still in its infancy but has yet shown a

glimpse of its potential. As next step towards an utilisation of these phenomena there is definitely a need

for well-defined and controllable systems which allow for a systematic study and understanding of the rele-

vant processes. Again this is a task where the cryptates have an outstanding potential. As already outlined

in earlier chapters, these complexes show outstanding kinetic stabilities and can protect the lanthanoids

efficiently from nonradiative deactivation processes caused by high-energy oscillators in the close vicinity.

This has proven to be especially effective in the case of the NIR-emissive lanthanoids such as YbIII, which

are particularly important in the context of upconversion processes.[133][140]

In order to expand the beneficial impact of this ligand scaffold onto two lanthanoids in a single molecule, it

is conceptually straight forward to attach two cryptate cavities to each other in a rigid fashion by exchanging

one of the bipyridines of each cryptate with a shared bipyrimidine unit (see Figure 6.7). After considerable

preparative efforts it was indeed possible to prepare such a dicryptate scaffold and also the corresponding

complexes Eu-Eu-bpy2-bpm-bpy2 and Eu-Y-bpy2-bpm-bpy2.[141]
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Figure 6.7: In order to extend the concept of the tris-bipyridine cryptates to a ligand scaffold for the controlled co-
ordination of two lanthanoids, two cryptates were fused by exchange of two bipyridines for a shared
bipyrimidine.[141]

It could be shown that this ligand scaffold offers unprecedented possibilities for the highly controlled syn-

thesis of heterodinuclear lanthanoid complexes. In a first step, the sodium cryptate Na-Na-bpy2-bpm-bpy2

obtained after the synthesis of the ligand can be transformed into a mono-substituted lanthanoid complex

Ln-Na-bpy2-bpm-bpy2 which can be purified via reversed phase HPLC. Most importantly this removes

any remains of unreacted lanthanoid salt. In a subsequent reaction step the second cavity of the scaffold

can be filled with a (different) lanthanoid. For a first study upon this ligand and the properties of its com-

plexes, the homobimetallic compound Eu-Eu-bpy2-bpm-bpy2 was prepared. Interestingly, the emission

spectrum of the compound shows two clearly distinguishable bands for the Eu(5D0!7F0)-transition (at

572 and 575 nm, respectively) which is a strong evidence for differences in the exact coordinative situation

of the two binding pockets. In line with that, the luminescence lifetime of the compound exhibits a biexpo-

nential decay whereby both components contribute equally to the determined total luminescence lifetime.

Comparison of the lifetimes determined in CH3OH and CD3OD indicates that the coordinated EuIII-ions

differ significantly in terms of the number of solvent molecules coordinated in the first coordination sphere

around the lanthanoid. Furthermore some of the results point towards a strong mechanical coupling be-

tween both binding pockets. The unprecedented synthetic possibilities which result from the stepwise metal

exchange of Na-Na-bpy2-bpm-bpy2 and the interesting photophysical properties reported for the homo-

bimetallic EuIII-derivative (e.g. the differences of the coordinative situations found for both cavities) make

this ligand scaffold particularly attractive for the search of molecular lanthanoid upconverters.
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6.2 Conception of the Project
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After the preparation of the dicryptates Na-Na-bpy2-bpm-bpy2 and initial studies on corresponding lan-

thanoid complexes, now the study of cryptate-based molecular systems for the observation of energy

transfer processes between lanthanoids shall be broadened.

• Improvement of the accessibility of the ligand

Until now the synthesis of Na-Na-bpy2-bpm-bpy2 could only be performed with low overall yields. This

obviously hampered the preparation and study of complexes of different combinations of lanthanoids in

this scaffold. To solve this problem and to provide a better basis for extended studies of these compounds

the yield of the synthesis has to be improved. Also a facilitation of the work up procedures would be

desirable.

• Synthesis and characterisation of new complexes Ln-Ln-bpy2-bpm-bpy2

After the improvement of the accessibility of the ligand several new complexes shall be prepared, in which

combinations of lanthanoids are realised which are promising for the observation of energy transfer pro-

cesses, especially for upconversion processes. To improve the general understanding of these compounds

and facilitate the identification of interesting pairs of lanthanoids to be combined also the structural proper-

ties of these compounds shall be studied.

• Development of new ligands for multimetallic cryptate-derivatives

Ligands for the controlled synthesis of heteropolymetallic complexes of lanthanoids are still extremely un-

derrepresented in literature, though they offer many interesting properties which can be of potential for

different applications. Furthermore, for an improvement of the understanding of energy transfer processes

between lanthanoids, reference systems with slightly different coordinative situations might be extremely

helpful. Last but not least, the dicryptates Ln-Ln-bpy2-bpm-bpy2 can obviously only allow for upconversion

processes following a SA-ETU mechanism. In a complex of three lanthanoids the more effective SAS-ETU

mechanism could operate, which would improve chances for the observation of upconversion.
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6.3 Results and Discussion

6.3.1 Optimisation of ligand synthesis

Energy transfer processes (most prominently upconversion) between lanthanoids are well-known for nano-

particles and a plethora of systems exhibiting such phenomena has been described. Recently more and

more effort is invested in realising related molecular systems which will allow for innovative applications

and an improved understanding. Unfortunately this is significantly more difficult than for the particle-based

systems and only very few examples have been published until now. A promising scaffold for the prepa-

ration of molecular compounds with several lanthanoids between which energy transfer processes can be

observed are dicryptates Ln-Ln-26 (see Figure 6.8).[141]

In analogy to the preparation of the sodium cryptates Na-bpy3 and Na-bpy3O2 and their derivatives, the

sodium dicryptates Na-Na-26 are assembled from the macrocyclus consisting of two bipyridines and a

building block of two nitrogen heterocycles with bromides in benzylic positions. To offer nitrogen chelators

for the lanthanoids in both binding pockets, in this case a bipyrimidine instead of a bipyridine is necessary,

and of course it needs to be a tetrabromide instead of a dibromide. The resulting tetrabromide 4,4’,6,6’-

tetrakis(bromomethyl)-2,2’-bipyrimidine 25 is the key building block of the synthesis (see Figure 6.8).
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Figure 6.8: Preparation of the sodium dicryptate Na-Na-26 starting from 4,6-dimethyl-2-chloropyrimidine as estab-
lished until now.[141]

Starting from 4,6-dimethyl-2-chloropyrimidine[298] the initial step is a Ni0-promoted coupling reaction.[299][300]

The reaction has a rather high yield of 72% of the bipyrimidine 23, but the work up procedure tends to be

cumbersome and the removal of excess PPh3 and the corresponding oxide often requires two subsequent

column-chromatographies. The next reaction turned out to be the bottle-neck of the synthesis of Na-Na-26

until now: The bromination reaction using elemental bromine in glacial acetic acid at 80°C yields only 6%
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of the desired octabromide 24 after column-chromatography. In the final step of the synthesis of the tetra-

bromide 25 four of the bromines are reduced by addition of diethyl phosphite in the presence of DIPEA.

This reaction proceeds with a moderate yield of 55% after column-chromatography and the subsequent

double macrobicyclisation turned out to proceed with a surprisingly good yield of 22%. But since the pre-

vious three steps did only proceed with an overall yield of 3.5% the sodium dicryptate Na-Na-26 has been

available in only very limited quantities until now. This of course hinders the synthesis and characterisa-

tion of the corresponding lanthanoid dicryptates and the systematic search for pairs of lanthanoids which

exhibit interesting energy transfer processes in this scaffold. In order to solve this problem and provide a

better basis for efforts towards this aim, the steps for the synthesis of tetrabromide 25 from 4,6-dimethyl-2-

chloropyrimidine were optimised in terms of yields and time efficiency.

In the case of the Ni0-promoted coupling reaction towards the bipyrimidine 23 the yield of the reaction

was already satisfactorily good, but the work up procedure should be improved. The reaction is per-

formed in DMF and after 24 hours reaction time the crude mixture is poured into 4 M ammonia which

leads to precipitation of a dark solid. The solid is separated from the solution via filtration, the filtrate is

extracted with CH2Cl2, dried and evaporated to dryness. Main components of the material obtained are

the bipyrimidine 23, PPh3 and triphenylphosphine oxide. In principle separation of these compounds via

column-chromatography is possible, but often the product isolated afterwards is still contaminated so that

the column-chromatography has to be repeated and the overall procedure becomes quite tedious. As a

very time saving modification a two step aqueous work up was developed for the crude material obtained

after filtration. To do so the concentrated organic phases are taken up in 1 M HCl and subsequently ex-

tracted with Et2O. Under these conditions the product of the reaction is protonated and stays in the aqueous

phase while the phosphines are transferred into the organic phase. Subsequently the aqueous phase is

brought to pH 8-9 with saturated aqueous Na2CO3, so that the product is deprotonated and can be ex-

tracted from the aqueous phase with CHCl3. The same procedure can be repeated with the solid obtained

from filtration. Usually the material isolated herein is less pure than the first fraction, and often a repetition

of the work up procedure is reasonable. Still the purification following this strategy is significantly faster

and even a slight increase of the yield could be found (74%).

The next step of the synthesis has been the most problematic so far but could be drastically improved

with a very simple modification. Until now the bromination reaction was performed at a bath temperature

of 80°C. By increasing the bath temperature for the initial 30 minutes of the reaction, so that the internal

temperature of the reaction mixture actually reaches 80°C, a much more vivid reaction could be observed.

In the subsequent 17 hours at 80°C bath temperature the continuous precipitation of a white solid could

be observed, which had not been mentioned in the previous description of the experiment. In line with

that also the work up procedure had to be adapted. The crude material isolated after evaporation of

the volatiles could not be dissolved in saturated aqueous NaHCO3 as it had been described before. In-

stead the material showed hydrophobic behaviour and only slowly dissolved under stirring after addition of

CHCl3. This already pointed towards a higher content of polybrominated species in the mixture. Indeed

after extraction and purification a higher yield of the octabromide 24 (15%) could be isolated, but also the

previously unknown heptabromide 27 (which was characterised via 1H NMR and 13C NMR spectroscopy

and via ESI-MS) in a surprisingly high yield of 53% (see Figure 6.11, page 174). Figure 6.9 shows the 1H
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NMR spectra of both polybrominated bipyrimidines 24 (top) and 27 (bottom). The spectrum of the highly

symmetric octabromide 24 has only two signals with integrals in a ratio of 2:4, the signal of the aromatic

protons at 8.51 ppm and the signal corresponding to the four protons of the CHBr2-groups at 6.72 ppm. In

the 1H NMT spectrum of the heptabromide 27 two signals with only slightly different shifts compared to the

spectrum of 24 can be found, at 8.49 and 6.73 ppm the signals of the protons of the fourfold brominated

pyrimidine unit can be found. The signal of the aromatic proton of the opposite pyrimidine can be observed

at 8.17 ppm and the signal of the proton of the corresponding CHBr2-group can be observed closely to

the one of the other CHBr2-groups (6.69 ppm). The signal at 4.67 ppm corresponds to the protons of the

CH2Br-group of 27.

Figure 6.9: 1H NMR spectra of the octabromide of the bipyrimidine 24 (top, 400 MHz, CDCl3) and the heptabromide
of the bipyrimidine 27 (bottom, 400 MHz, CDCl3). Unambiguously identified solvent signals are marked
with an asterisk.

Initially the octabromide 24 was isolated from column-chromatography with a significant contamination of

heptabromide 27. Due to the low solubility of 24 in CHCl3 the compound could easily be purified via re-

crystallisation. Most likely it is also possible to separate 24 from the crude mixture via recrystallisation so

that the already quite convenient column-chromatography to isolate the heptabromide 27 will be further

facilitated.

For 24 it was possible to obtain a crystal suitable for single-crystal X-ray crystallography. The structure

(see Figure 6.10) was solved in the monoclinic space group P21/c upon which a R-factor of 4.06% was
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Figure 6.10: X-ray structure of 24, thermal ellipsoid plot (Mercury, 50% probability level). Free CH3Cl in the unit cell
is omitted for clarity. Colour scheme: C, grey; N, light blue; H, white; Br, brown.

obtained. The structure is completely in line with expectations and the results from NMR spectroscopy.

The isolation of heptabromide 27 is so important since it is in principle as suitable for the subsequent re-

action step as the octabromide 24. Indeed a simple adaption of the equivalents of diethyl phosphite and

DIPEA from 8.0 to 7.0 equivalents was found to be sufficient to modify the reaction towards tetrabromide

25 for the new starting material. For this reaction also a purification without column-chromatography could

be developed. After extraction the crude material isolated was dried for several hours in vacuo to remove

excess DIPEA. Subsequently CH3OH was added to the solid and the resulting suspension was stirred to

remove impurities from the product (which itself is not soluble in this solvent). After filtration the solid was

dissolved in CHCl3, evaporated to dryness and extracted another time with CH3OH. The extraction per-

formed directly after quenching the reaction by pouring the mixture onto ice was previously performed with

Et2O. CHCl3 and CH2Cl2 were found to be the more efficient solvents for this step and actually Et2O seems

to preferentially remove some byproducts from the crude mixture. In an early attempt to perform the reac-

tion, the aqueous phase was initially extracted with Et2O but as the subsequent column-chromatography

yielded only a small amount of the product the aqueous phase was extracted another time with CH2Cl2.

The material obtained from this extraction was treated as described above and the product isolated after-

wards was pure enough for elemental analysis. For the reaction transforming heptabromide 27 into the

tetrabromide 25 a yield of 69% could be determined. Eventually a slight improvement of the yield of the

originally reported reaction starting from 24 is possible when the column-chromatography is substituted

with the procedure described herein.

Figure 6.11 shows the modified synthesis strategy for the preparation of the sodium dicryptate Na-Na-

26 together with the yields of the individual steps. For the total sequence starting from 4,6-dimethyl-2-

chloropyrimidine now a total yield of 33.5% can be realised which is an improvement of about one order
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of magnitude. Furthermore the purification procedures are now significantly less time consuming and as a

result the sodium dicryptate Na-Na-26 is now by far more accessible.
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Figure 6.11: Modified preparation of the sodium dicryptate Na-Na-26 starting from 4,6-dimethyl-2-chloropyrimidine
with improved yields and facilitated purification procedures.
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6.3.2 Preparation and study of sodium and lanthanoid dicryptates

6.3.2.1 Characterisation of the homobimetallic dicryptate

The results obtained from the previous studies on the dicryptates prepared so far point towards some very

interesting structural features (see page 167 and following). For example there is strong evidence that upon

coordination of two EuIII ions the cavities provide a significantly different coordination environment and that

there is some kind of mechanical coupling between both binding pockets. Though the binding pockets

do not carry N-oxides the overall structure seems to be significantly more rigid than the corresponding

cryptates Ln-bpy3O.

Figure 6.12: 23Na NMR spectra of the sodium dicryptate Na-Na-26 (top, 66.2 MHz, CD3OD), the sodium cryptate
Na-bpy3 (middle, 66.2 MHz, CD3OD) and NaCl (bottom, 66.2 MHz, D2O).

For an improvement of the general understanding of the overall properties of the ligand scaffold the sodium

dicryptate Na-Na-26 can provide some valuable information. As a spin 3/2 nucleus 23Na is quadrupolar

and therefore the width of the observed signals will be the smaller the higher the symmetry around the

observed nucleus is. In Figure 6.12 the 23Na NMR spectrum of Na-Na-26 (top), the sodium cryptate Na-

bpy3 (middle) and NaCl in D2O (bottom) as reference are shown. The spectra were recorded in direct

175



Chapter 6. Cryptates for the Controlled Synthesis of Homo- and Heteropolymetallic Complexes

succession without locking or shimming so that the signal of NaCl could be used for referencing the signals

of the cryptates. In line with the results from 1H NMR spectroscopy the 23Na NMR spectrum of Na-Na-26

gives evidence of both binding pockets being equivalent on the NMR time scale.

Figure 6.13: X-ray structure of Na-Na-26, thermal ellipsoid plot (Mercury, 50% probability level). Hydrogen atoms and
external Br- are omitted for clarity. Colour scheme: C, grey; N, light blue; Na, purple.

From a solution of Na-Na-26 in CD3OD a crystal suitable for single-crystal x-ray crystallography could be

obtained. The structure (see Figure 6.13) was solved in the monoclinic space group C2/m upon which a

R-factor of 10.38% was obtained. It is C2-symmetric and in line with the previous results from the charac-

terisation of the compound.

In the crystal structure the sodium cations have a distance of about 7 Å. It is reasonable to assume that

the distance between the metal centers in solution or in lanthanoid complexes will be very similar. Con-

sequently the distance between the lanthanoid centers in a complex Ln-Ln-26 would be in the range of

experimentally observable Förster radii for f-f transfer processes (5 ÅR0  15 Å).[284] Also the distances

between the sodium cations of the complexes in different layers of the crystal lie in this range, but for the

lanthanoid dicryptates (which would also be expected to have different counter anions) a different packag-

ing can be expected.

6.3.2.2 Preparation of dicryptates of small lanthanoids: Example of the homobimetallic erbium

dicryptate

As discussed above ErIII is one of the best suited activators for lanthanoid centered upconversion (see page

160) and based on a supramolecular assembly of two erbium complexes it was already possible to observe

molecular upconversion in deuterated water.[28] Consequently the corresponding dicryptate Er-Er-26 is a

highly interesting target structure. It could be prepared analogously to the procedure already published for

the synthesis of homodinuclear europium dicryptates.[141]
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Figure 6.14: Synthesis of the erbium dicryptate Er-Er-26 from the corresponding sodium dicryptate Na-Na-26.

While for the corresponding homodinuclear europium complex a purification via reversed-phase HPLC is

possible,[141] the feasibility of an analogous purification of the erbium dicryptate Er-Er-26 is questionable.

While for the rigidified lanthanoid cryptates Ln-bpy3O2 HPLC purification for all lanthanoids is possible,

in the case of the cryptates Ln-bpy3 the stability of the compounds is not sufficiently high for the smaller

lanthanoids, and for example preparative HPLC of Er-bpy3 is not feasible.

Figure 6.15: Chromatogram from the preparative HPLC (program A, setup A) performed for the purification of Er-Er-
26.

Yet, based on the previous analysis of the dicryptates, the rigidity and stability of these complexes can be

expected to be at least a bit higher than the ones of the directly related mononuclear cryptates Ln-bpy3

and consequently the feasibility of a HPLC purification was tested. To do so a portion of the crude material

obtained from synthesis was subjected to a preparative HPLC with program A (see Figure 6.15). Two

fractions (from 15.6 to 16.9 minutes and from 16.9 to 17.9 minutes) were collected and the volatiles were

removed as quickly as possibly to reduce the exposure of the complex to the strongly acidic conditions.
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Figure 6.16: Chromatogram from the analytical HPLC (program A, setup A) of the first fraction (15.6 to 16.9 minutes)
obtained from preparative HPLC of Er-Er-26.

The resulting material was subjected to analytical HPLC and for both fractions the presence of several

peaks strongly points towards a decomposition into several species (see Figure 6.16 for the chromatogram

obtained for the first fraction), consequently HPLC purification of Er-Er-26 is not feasible with the methods

available at the moment. As a result also the mono-substituted complex Er-Na-26 will not be accessible

with the HPLC-based strategy reported earlier.[141] The same will be the case for the analogous complexes

of the even smaller YbIII and TmIII, and most likely also for the slightly bigger HoIII. Consequently controlled

synthesis of the high potential target compounds in which two of these lanthanoids are combined in a

dicryptate will not be possible with the methods available until now.

Further studies on Er-Er-26 were performed with the material obtained from recrystallisation. Unfortunately

an interpretable 1H NMR spectrum could not be obtained due to the strong paramagnetism of ErIII so that

no structural characterisation of the complex was possible. During the initial study of the photophysical

properties in solution (CD3OD) and in a frozen matrix of CD3OD/CD3CD2OD (1:1, v/v) after ligand excita-

tion characteristic transitions of this lanthanoid in the visible and near-infrared part of the electromagnetic

spectrum could be detected (see Figure 6.17). Since ErIII is quite susceptible towards nonradiative deacti-

vation by e.g. C-H oscillators, the emission of this lanthanoid is not necessarily detectable in undeuterated

complexes and in solution. In the next step the photophysical properties of the complex under direct exci-

tation of the 4I15/2!4I15/2)-transition are to be studied, which is currently under way in cooperation with Dr.

Andrey Turshatov from Karlsruhe Institute of Technology.
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(a) Normalised steady state emission spectrum of the
4I9/2!4I15/2-transition of the erbium dicryptate Er-Er-26
(CD3OD, room temperature, �exc = 307 nm).

(b) Normalised steady state emission spectrum of the
4I13/2!4I15/2-transition of the erbium dicryptate Er-Er-
26 (frozen matrix of CD3OD/CD3D2OD (1:1, v/v), 77K,
�exc = 307 nm).

Figure 6.17: Normalised steady state emission spectra of Er-Er-26.

6.3.2.3 Modification of the strategy: Preparation of statistical mixtures

The outstanding characteristic of the dicryptates is the possibility of purifying them via HPLC. This allows

for high control over the actual composition of the samples under study and even for the controlled prepa-

ration of heterobimetallic compounds. Consequently the resulting relatively time consuming procedure for

the preparation is justified. At the same time the number of interesting pairs of lanthanoids between which

an energy transfer process could potentially be observable is high and it is difficult to identify the ones

which are most promising in a dicryptate scaffold. It should also be kept in mind that there is evidence

for the binding pockets being not equivalent when they are filled with lanthanoids. The geometries of the

binding pockets might in solution be interconverting into each other, but it might also be that upon exchange

of the first sodium cation with a lanthanoid the geometry of the overall scaffold is defined so that the se-

quence in which the lanthanoids are introduced might indeed have an influence on the local geometry the

lanthanoids experience. In principle this doubles the number of heterobimetallic dicryptates which could

potentially be prepared and studied. In order to make a systematic search for lanthanoid dicryptates in

which energy transfer processes can be observed feasible the preparation of the complexes had to be

made more time efficient. This can be done by giving up the stepwise and controlled synthesis and instead

preparing statistical mixtures of several complexes simultaneously. If the sodium dicryptate is reacted with

two lanthanoid salts simultaneously up to four bimetallic complexes can be prepared with a single reaction

(see Figure 6.18). The resulting mixture will contain both homobimetallic cryptates and the heterobimetallic

cryptates. As outlined above, depending on which lanthanoid is reacting at first with the sodium dicryptate

these can potentially be two different compounds, or both compounds are identical due to some kind of in-

terconversion process. Initially the mixture will also contain intermediates for which only one of the sodium

cations has been replaced with a lanthanoid. These compounds might indeed also be interesting, but they

also can be separated from the mixture quite easily via HPLC (when the used lanthanoids are big enough
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to make the corresponding dicryptates sufficiently stable).
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Figure 6.18: By simultaneous reaction with two lanthanoid salts the sodium dicryptate Na-Na-26 can be transferred
into up to four related lanthanoid dicryptates in a single reaction. Charges of the metal ions and counter
anions are omitted for clarity.

After preparation of these mixtures a study of the photophysical properties will reveal if for one of the

species an energy transfer process can be observed. In most cases it will not be possible to identify the

species unambiguously, but an individual synthesis of the compounds of the mixture will allow to do so in

the next step. When the lanthanoid ions are sufficiently big this can be done with the established, con-

trolled approach using HPLC. For the smaller lanthanoids the homobimetallic dicryptates will be the most

important reference compounds.

For an initial experiment following this approach europium and yttrium were chosen since the correspond-

ing heterobimetallic complex has already been described in literature.[141] To optimise comparability, after

reaction the isolated material was purified via reversed-phase HPLC following the standard procedure.

The HPLC trace of one of the preparative runs is shown in Figure 6.20. The material eluting between

around 17.7 and 19.6 minutes was collected, the analytical HPLC runs performed upon the isolated frac-

tions clearly show that the material consists of three different species (and some additional impurities).

Figure 6.22 shows the normalised steady state emission spectrum obtained for the substance. Interest-

ingly the shape of the spectrum is quite different to the ones reported earlier for Eu-Y-26 and Eu-Eu-26,[141]
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Figure 6.19: Synthesis of a mixture of several europium and yttrium containing dicryptates from the corresponding
sodium dicryptate Na-Na-26.

Figure 6.20: Chromatogram from the preparative HPLC (program A, setup A) performed for the purification of the
statistical mixture of dicryptates containing europium and yttrium.

what would not have been expected. Apart from that the spectrum is well in line with expectations, as the

shape of the 5D0!7F1- and 5D0!7F1-transitions point towards the presence of at least two EuIII species.

More detailed studies are under way in cooperation with Dr. Andrey Turshatov from Karlsruhe Institute of

Technology.
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Figure 6.21: Chromatogram from the analytical HPLC (program A, setup A) of the material obtained from preparative
HPLC of dicryptates containing europium and yttrium.

Figure 6.22: Normalised high resolution steady state emission spectrum of Y/Eu-26 (CD3OD, �exc = 320 nm).

For a second experiment following the approach shown in Figure 6.18 europium and terbium were chosen

(see Figure 6.23). From the energetic position of the respective emitting levels it can be concluded that

after initial direct excitation of TbIII an energy transfer to EuIII should be feasible. Since both lanthanoids are

very luminescent, also in the presence of quenching oscillators, for this pair the chances that a potential

energy transfer will actually be detectable are good and can further be improved by performing experiments

in the solid state. Corresponding experiments are also done in cooperation with Dr. Andrey Turshatov from

Karlsruhe Institute of Technology.
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Figure 6.23: Synthesis of a mixture of several europium and terbium containing dicryptates from the corresponding
sodium dicryptate Na-Na-26.

6.3.3 Towards new ligands for polymetallic lanthanoid complexes

Already in the first experiment performed to prepare Na-Na-26 for this study a byproduct could be iso-

lated which quickly turned out to be highly interesting. As the 1H NMR spectrum of the compound (see

Figure 6.25) is very similar to the one of the sodium dicryptate Na-Na-26 it could easily be identified as

a closely related substance. From the ratio of integrals it could finally be identified as the product of the

macrobicyclisation of one tetrabipyrimidine 25 and one macrobicyclus which corresponds to a bromide-

functionalised sodium cryptate.

Na-28
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N N

N N
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Na
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Br-

Br

Br

Figure 6.24: The bromide-functionalised sodium cryptate Na-28.

Compared to the 1H NMR spectrum of sodium dicryptate Na-Na-26, the signals of the aromatic bipyridine

protons of Na-28 have a very similar shape and are just slightly shifted downfield. At 7.74 ppm the aromatic

protons of the bipyrimidine can be observed. The multiplet which can be observed at 4.70-4.66 ppm corre-

sponds to the protons of the CH2Br-groups. Finally also the signal of the 12 benzylic protons of the cryptate

scaffold experiences a slight downfield shift to 3.96-3.82 ppm. The compound could also be characterised

via 13C NMR spectroscopy and ESI-MS.

By simple adaption of the equivalents used the bromide-functionalised sodium cryptate Na-28 can be made

the main product of the reaction. To improve chances for the formation of the desired 1:1 product the macro-

cyclus was added in portions over 3.5 hours to a mixture of tetrabromide 25 and ten equivalents of Na2CO3
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Figure 6.25: 1H NMR spectra (400 MHz, CD3OD) of the bromide-functionalised sodium cryptate Na-28 (top) and the
sodium dicryptate Na-Na-26 (bottom). Unambiguously identified solvent signals are marked with an
asterisk.

in CH3CN (about 1 mL per 1 mg of tetrabromide 25), which was already brought to reflux temperature be-

forehand. After complete addition of the macrocyclus the mixture was heated for another 14.5 hours before

the crude product was isolated by complete evaporation of the volatiles. After column-chromatography

the bromide-functionalised sodium cryptate Na-28 could be obtained in 51% yield together with 7% of the

dicryptate Na-Na-26 and 31% of the starting material. Considering the high amount of starting material

which could be isolated this reaction is surprisingly efficient.
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Figure 6.26: Synthesis of the bromide-functionalised sodium cryptate Na-28.

With the bromide-functionalised sodium cryptate Na-28 it was surprisingly easy to make an intermediate

for the development of new ligand systems for polymetallic lanthanoid complexes accessible. The design
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of such new ligands and attempts towards their preparation and study will be described in the subsequent

sections.

6.3.3.1 New ligands for the coordination of two lanthanoids

Though the emission spectra of the lanthanoids are typically considered to be unaffected by the coordi-

native situation around the lanthanoid this is not universally true. Of course the changes are very small

compared to the transition metals, but e.g. for europium it is even possible to extract some structural infor-

mation from the relative intensities and shapes of the individual transitions.[163] Slight shifts of the position

of the maxima and the fine structure of the transitions can also be expected for the other lanthanoids. For

the search for energy transfer processes between lanthanoids such small variations can indeed become

crucial. Firstly, between two completely identical lanthanoid ions principally no energy transfer process

can be observed. This is e.g. the case when the two binding pockets of a lanthanoid dicryptate are com-

pletely identical. Until now it is not completely resolved whether or when this is the case, but a general

decrease of symmetry of the ligand would circumvent this problem. Secondly, a variation of the coordi-

nation sphere around one or both of the coordinated lanthanoids and the resulting small variations of the

energetic position of their transitions might be useful for improving the spectral overlap integral of the coor-

dinated lanthanoids. Of course this is not a strategy which can be used in a designed fashion but still the

availability of different binding pockets will generally enhance changes for the observation of energy trans-

fer processes. A highly suitable group for the construction of the new binding pocket are imminodiacetates.

These groups are known to reliably coordinate lanthanoids and can typically be prepared quite easily.
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Figure 6.27: The lanthanoid dicryptate Ln-Ln-26 and the targeted new ligand for two lanthanoids Ln-Ln-29 and Ln-
Ln-30

Following this approach and starting from the bromide-functionalised sodium cryptate the ligand for the

preparation of Ln-Ln-29 (see Figure 6.27) should be prepared. Analogously the ligand for the preparation

of Ln-Ln-30 should be prepared from the tetrabromide 25. This can be expected to be feasible quite anal-

ogously to the preparation of the compound mentioned before, enlarge the library of available ligands for
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two lanthanoids and be suitable for the preparation of reference compounds in comparative studies of com-

plexes Ln-Ln-26 and Ln-Ln-29. Subject of such a comparative study could for example be the influence of

the number and nature of the different chromophoric groups in these compounds or the mechanism of the

energy transfer between the lanthanoids. In line with that the complex Y-Y-30 would allow for a detailed

study upon the photophysical properties of the bipyrimidine between the lanthanoids in the dicryptates Ln-

Ln-26.
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Figure 6.28: Retrosynthetic approach for the preparation of the iminodiacetate-functionalised cryptates Ln-Ln-29
starting from the bromide-functionalised cryptate Na-28.

For the heterobimetallic complexes Ln-Ln-29 (see Figure 6.28) even partial purification via reversed-phase

HPLC seems feasible. After the protected diiminodiacetate-functionalised sodium cryptate Na-31 has been

reacted with a lanthanoid salt to exchange the sodium cation, for sufficiently large lanthanoids the tert-butyl

groups can be cleaved and the resulting material be subjected to HPLC. This will help to ensure that no

remaining cations of this lanthanoid are bound in the second binding pocket when the second lanthanoid

is added to the intermediate. After addition of the second lanthanoid recrystallisation is the most promising

technique for purification. If a small lanthanoid like HoIII, ErIII or YbIII is to be introduced into the cryptate it

will be the more promising strategy to leave the protecting groups attached until the intermediate has been

purified e.g. by recrystallisation and to cleave them in a separate step. For the homobimetallic complexes

of this ligand it will most likely be the most efficient strategy to cleave the protecting groups initially and

then insert the lanthanoid into both binding pockets simultaneously. In the case of the complexes Ln-Ln-30

(see Figure 6.29) presumably only the homobimetallic compounds will be accessible. After cleavage of the

protecting groups from 32 both binding pockets are filled with a lanthanoid simultaneously. The resulting

complexes will not be stable in strongly acidic media and will not be purificable via HPLC. Again recrystalli-

sation is the most promising technique for purification of the resulting complexes.
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Figure 6.29: Retrosynthetic approach for the preparation of the iminodiacetate-functionalised complexes Ln-Ln-30
starting from the tetrabromide 25.

Since the availability of the tetrabromide 25 is better than the one of the bromide-functionalised sodium

cryptate Na-28, first reactions to test the general feasibility of the attachment of the iminodiacetates to the

bipyrimidine building block were performed with this starting material and towards the protected compound

32.
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Figure 6.30: Preparation of the protected ligand 32 from the tetrabromide 25.

To do so the tetrabromide 25 together with 10.0 equivalents of Na2CO3 and 4.4 equivalents of di-(tert-

butyl)iminoacetate 33 was brought to reflux temperature in CH3CN. After 14 hours the mixture was al-

187



Chapter 6. Cryptates for the Controlled Synthesis of Homo- and Heteropolymetallic Complexes

lowed to come to room temperature and purified in several steps. Though only a slight excess of di-

(tert-butyl)iminoacetate 33 had been used it was found to be quite difficult to remove remainders of the

compound from the product. In this case several purification steps had to be performed (see experimental

section, page 224), this presumably lead to the loss of a significant amount of product so that only 8% of 32

could be isolated, still with small impurities of reagent 33. The compound was characterised via 1H NMR

spectroscopy, 13C NMR spectroscopy and ESI-MS.

Figure 6.31: 1H NMR spectrum of the protected ligand 32 (400 MHz, CDCl3). Unambiguously identified solvent
signals are marked with an asterisk.

The 1H NMR spectrum of the isolated compound is shown in Figure 6.31. The spectrum is dominated by

the signal corresponding to the 72 protons of the tert-butyl groups at 1.44 ppm. The signal of the only two

aromatic protons at 8.12 ppm is shifted downfield compared to the starting material 25, where the signal

of these protons can be observed at 7.86 ppm. In contrast the signal of the eight benzylic protons of the

bipyrimidine building block experience a highfield shift from 4.64 to 4.21 ppm. The 16 protons of the CH2-

groups of the iminodiacetates can be observed at 3.52 ppm.

In a first experiment towards the deprotected ligand 30 the protected precursor 32 was stirred for two hours

in TFA with 10 vol.-% H2O to cleave the acid labile tert-butyl groups. TFA was chosen since it is quite

volatile and can easily be removed from the reaction mixture, together with the tert-butanol into which the

protecting groups are transformed. H2O was added as scavenger to trap reactive intermediates. Unfortu-

nately the 1H NMR spectrum of the crude product obtained after removal of the volatiles in vacuo did not

point towards a clean progress of the reaction. The signals of the CH2-groups could no longer be identi-

fied unambiguously and at the same time signals between 1.4 and 1.1 ppm pointed towards the cleaving

processes being not complete or residual tert-butanol being left in the substance. The latter is less likely

since the material had been dried in vacuo for several hours. In an attempt to recrystallise the substance it

was taken up in a minimum amount of CH3OH, overlayered with Et2O until a solid started to precipitate and

stored at 4°C overnight. Unfortunately the 1H NMR spectrum of the collected solid and the solid isolated

from the filtrate after evaporation were almost identical and no improvement could be realised. For more

systematic studies towards the realisation of this reaction, conditions should be chosen which allow for a
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higher degree of control over the reaction. Suitable conditions might for example be stirring in 6 N HCl at

90°C for several hours or days. In the case of a related, bipyridine-based system Havas et al. found a

quantitative deprotection with these conditions within 72 hours.[301] When the reaction is initially performed

at lower temperatures and with control via TLC, chances are good that conditions for the successful depro-

tection of 32 can be identified with this approach.

The conditions identified as suitable for the preparation of the protected ligand based on the bipyrimidine

could be transferred on the preparation of the protected diiminodiacetate-functionalised sodium cryptate

Na-31. The used equivalents of di-(tert-butyl)iminoacetate 33 were adapted to 2.2, and analogously the

amount of added Na2CO3 was reduced to 5.0 equivalents. In this case after isolation of the crude product

two of the three purification steps used for the preparation of 32 were omitted, and instead the compound

was subjected to a single column-chromatography using basic Al2O3 as solid phase. Indeed in this case a

slightly higher yield of 16% could be realised. After isolation the compound was characterised via 1H NMR

spectroscopy and ESI-MS. The 1H NMR spectrum is depicted in Figure 6.33.
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Figure 6.32: Preparation of the protected diiminodiacetate-functionalised sodium cryptate Na-31 from the bromide-
functionalised sodium cryptate Na-28.

The signals of the 14 aromatic protons are distributed over three multiplets found between 8.11 and

7.38 ppm. The signal of the aromatic protons of the bipyrimidine is part of the multiplet between 7.93-

7.78 ppm and can be identified at 7.90 ppm. This is a significant shift compared to the bromide-functionali-

sed starting material where the signal of these protons can be observed at 7.74 ppm. As expected also

the signal of the four protons of the CH2NR2-groups experiences an upfield shift compared to the CH2Br-

groups and can be found at 4.16 ppm. The shifts of the signals of the 12 benzylic protons of the cryptate

scaffold are virtually unaffected (3.95-3.81 ppm). Finally at 3.52 and 1.38 ppm the signals of the attached

iminodiacetate-moieties can be found.
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Figure 6.33: 1H NMR spectrum of the protected diiminodiacetate-functionalised sodium cryptate Na-31 (400 MHz,
CD3OD). Unambiguously identified solvent signals are marked with an asterisk.

Presumably when a method for the deprotection of the bipyrimidine based system 32 is found, it will be

transferrable to the deprotection of the protected diiminodiacetate-functionalised sodium cryptate Na-31.

Since the success of this project is dependent on the identification of a method suitable for the cleavage of

the protecting groups until now no further studies (e.g. the preparation of lanthanoid cryptates) on these

compounds have been made.

6.3.3.2 New ligands for the coordination of three lanthanoids

The dicryptates and the iminodiacetate-functionalised ligands described in the previous chapter are lig-

ands for the coordination of two lanthanoids. Upconversion processes would be limited to ESA or SA-ETU

processes in these scaffolds (see Figure 6.2, page 158). Most importantly the more effective SAS-ETU

process is only accessible when two sensitising centers transfer their energy onto the activator localised

between them. Since in such a process the two individual energy transfer processes may be performed

simultaneously or very shortly after each other (differently to the CET-mechanism), it is much more likely

that the activator actually reaches the energy level necessary for the emission of upconverted light before

some kind of quenching process carries away the energy from the first transfer. Consequently upcon-

version based on a SAS-ETU process is more likely to be detectable. By combining a cryptate with a

2,2’-bipyridine-6,6’-dicarboxylate in a single molecule (see Figure 6.34) a cryptate based ligand for the

preparation of supramolecular assemblies consisting of three lanthanoids, for which a SAS-ETU process

is in principle feasible, can be realised.

Again the bromide-funcionalised sodium cryptate Na-28 is a suitable precursor for the preparation of the

necessary ligand. Typically to prepare a carboxylic acid from a bromide, the bromide is initially transformed

into a hydroxide under basic conditions. The hydroxide is afterwards oxidised. However, the hydrolysis

step turned out to be surprisingly difficult to accomplish in this case. In an initial experiment the start-

ing material Na-28 was dissolved in a mixture of CH2Cl2 and CH3CN before 0.1 M aqueous NaOH was

added and the mixture was stirred vigorously for 3 hours. After complete evaporation of the volatiles a 1H
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Figure 6.34: By combining the cryptate scaffold with the ligand motif of a 2,2’-bipyridine-6,6’-dicarboxylate a
supramolecular assembly of three lanthanoid can be realised.
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Figure 6.35: Retrosynthetic approach for the preparation of a carboxylic acid-functionalised cryptate from the
bromide-funcionalised sodium cryptate Na-28.

NMR spectrum of the isolated material only showed signals of the starting material. The most plausible

reasoning therefore is that under the conditions applied no sufficient mixing of the phases containing the

bromide and the hydroxide could be realised. Consequently in the next experiment the basic phase transfer

reagent tetraethylammonium hydroxide was used and added to a solution of Na-28 in CH3CN. Somewhat

unexpectedly, the 1H NMR spectrum from the crude product strongly points towards decomposition of the

cryptate. Indeed, in the presence of tetraethylammonium hydroxide decomplexation of the sodium ion from

a bpy3 scaffold might be possible. Since these simple approaches were not successful, it was searched

for related reactions in literature and two interesting examples were identified. As reported by Vögtle et al.

2,2’-bipyridine-6,6’-dibromide could be transformed into the corresponding aldehyde by heating the start-

ing material in DMSO for several hours (see Figure 6.36).[302] Since it is usually very easy to transform

aldehydes into carboxylic acids this seemed to be a promising and very simple approach.

For the experiments following this strategy a small amount of Na-28 was dissolved in d6-DMSO and the
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Figure 6.36: Preparation of 2,2’-bipyridine-6,6’-dicarbaldehyde from 2,2’-bipyridine-6,6’-dibromide by heating in
DMSO as reported by Vögtle et al.[302]

reaction was performed in a NMR tube to monitor its progress via 1H NMR spectroscopy. In order to

diminish the probability of decomplexation of Na+, 10.0 equivalents of NaBr were added to the mixture.

Indeed already after a few minutes at room temperature, the first 1H NMR spectrum recorded showed a

signal at a shift characteristic for aldehydes. Also some interesting changes in the aromatic region could be

observed, but soon it turned out that this is due to decomposition of the starting material to 2,2’-bipyridine-

6,6’-dicarbaldehyde.

The other example found in literature was reported by Zhong et al. In a single step they prepared 4,7-

diphenyl-1,10-phenanthroline-2,9-dicarboxylic acid from the corresponding dibromide with (diacetoxyiodo)-

benzene as oxidant and different FeIII porphyrins as catalyst.[303] The presence of H2O was found to accel-

erate the reaction which was performed in CH3OH (see Figure 6.37).
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Figure 6.37: Preparation of 4,7-diphenyl-1,10-phenanthroline-2,9-dicarboxylic acid from 2,9-bis(bromomethyl)-4,7-
diphenyl-1,10-phenanthroline in a single step with (diacetoxyiodo)benzene as oxidant and 5,10,15,20-
tetraphenyl-21H,23H-porphyrin iron(III) chloride as catalyst.[303]

First experiments following this strategy were quite promising but further experiments have to be performed

to unambiguously prove the feasibility of this approach for the transformation of Na-28 into the carboxylic

acid-functionalised derivative.

Since the preparation of the target ligand for the formation of complexes as shown in Figure 6.34 turned out

to be surprisingly difficult, a model system which is easier to synthesise was designed to provide a basis

for the search of suitable combinations of lanthanoids. Similar to carboxylic acids also ether functionalities

can coordinate to a lanthanoid, though the interaction will be weaker. Consequently the supramolecular

assembly based on ether-functionalised cryptates as shown in Figure 6.38 will be less stable and presum-

ably being only one of several structures in the equilibrium. For an initial search of potentially interesting

pairs of lanthanoids this is not problematic.

The synthesis of the methoxy-functionalised sodium cryptate Na-34 could be accomplished in a single

step from the tetrabromide 25 and the macrocyclus. Initially the bromide-functionalised sodium cryptate
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Figure 6.38: Model system for the preparation of supramolecular assemblies of three lanthanoids.
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Figure 6.39: Synthesis of the methoxy-functionalised sodium cryptate Na-34.

was prepared. After evaporation of the solvent and without previous isolation of the material from the crude

mixture it was transformed into the methoxy-derivative by heating the crude material for a few minutes in

CH3OH. The methoxy-functionalised sodium cryptate Na-34 could be purified via column-chromatography

and was characterised via 1H NMR spectroscopy, 13C NMR spectroscopy and via ESI-MS.

In Figure 6.40 the 1H NMR spectrum of the methoxy-functionalised sodium cryptate Na-34 is shown to-

gether with the 1H NMR spectrum of the bromide-functionalised derivative Na-28. Apart from the signal of

the aromatic protons of the bipyrimidine, which can be observed at 7.65 ppm in the case of the methoxy-

functionalised sodium cryptate Na-34, not any signal experiences a considerable shift compared to the

bromide-functionalised derivative. Interestingly the signals of the benzylic protons between the bipyrimi-

dine and the methoxy ether (4.70-4.66 ppm) and also the signals of the protons of the CH3-groups (3.56-

3.49 ppm) are not observed as singlets but more as multiplets of two related but slightly shifted signals. At

a closer look also the signals of the aromatic protons reveal an unusual shape. Most likely this is due to

the presence of different isomers of the molecule in solution which correspond to different arrangements of

the CH3-groups.

For the preparation of the first lanthanoid cryptates of the new ligand scaffold ytterbium was chosen be-

cause of its outstanding suitability as sensitiser for upconversion processes. Because HPLC purification will

not be possible for the complexes Ln-34 of the smaller lanthanoids, yet it is very important for subsequent

experiments that no free lanthanoid salt contaminates the sample, in this case a shortage of YbCl3 · 6 H2O

was used (see Figure 6.41).
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Figure 6.40: 1H NMR spectra (400 MHz, CD3OD) of the methoxy-functionalised sodium cryptate Na-34 (top) and the
bromide-functionalised sodium cryptate Na-28 (bottom). Unambiguously identified solvent signals are
marked with an asterisk.
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Figure 6.41: Synthesis of the methoxy-functionalised ytterbium cryptate Yb-34.

Since this is usually the better choice for these reactions, initially it was tried to perform this reaction in

CH3CN. The cryptate Na-34 and the lanthanoid salt were well soluble in this solvent, but already after two

hours at reflux temperature a large amount of an orange to red solid precipitated. After a total of 47 hours

of reaction time the volatiles were removed and a 1H NMR spectrum of the crude mixture in CD3OD was

recorded. Surprisingly, no paramagnetically shifted signals could be observed. Probably in CH3CN the

complex resulting from the coordination of the lanthanoid to the methoxy-groups is not sufficiently soluble,

the complex precipitates and the reaction cannot progress further, but upon preparation of the sample in

CD3OD the complex dissolves and dissociates. Subsequently the reaction was repeated in CH3OH. After
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60 hours at reflux temperature the reaction mixture was still a clear solution. Again the volatiles were re-

moved and a 1H NMR spectrum in CD3OD was recorded. This time signals with a distinct paramagnetic

shift could be detected. The crude product was taken up in a minimum amount of CH3OH and overlayered

with Et2O. While stored at 4°C overnight an orange solid precipitated which was collected on a filter. As

it could be identified as the sodium cryptate Na-34, subsequently the filtrate was evaporated to dryness,

dried and suspended in CH2Cl2. After the mixture had been stirred for a few minutes it was again filtered

and this time the collected solid could be identified as the desired ytterbium cryptate.

Figure 6.42: 1H NMR spectrum (500 MHz, CD3OD) of the methoxy-functionalised ytterbium cryptate Yb-34. Unam-
biguously identified solvent signals are marked with an asterisk.

Figure 6.42 shows the 1H NMR spectrum of the methoxy-functionalised ytterbium cryptate Yb-34. The

shifts the identified signals are experiencing are in a range similar to the ones observed for the amino-

functionalised ytterbium cryptate Yb-1 (see chapter 3.3.4). However, in this case the interpretation of the

spectrum is less straightforward. In the case of the cryptates of the type Ln-bpy3 less reference data is

available and the flexibility of the scaffold makes the assignment of the signals more difficult. Additional

data, e.g. from 2D NMR experiments will be needed before a detailed discussion of the spectrum is rea-

sonable.
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6.4 Conclusion

Some time ago a cryptate based ligand scaffold for the controlled preparation of homo- and heterobimetallic

lanthanoid complexes could be realised, which has an enormous potential for the study of energy transfer

processes between lanthanoids. However, until now the accessibility of the dicryptates had not been suf-

ficient for extended studies on these compounds. To provide a basis for such studies, in this project the

synthesis of the ligand scaffold was optimised. Now the key precursor for the synthesis of the dicryptates

can be prepared with an efficiency increased by one order of magnitude and significantly facilitated purifi-

cation procedures. In the subsequent studies on the sodium dicryptate new data for an improved structural

understanding of these compounds could be collected, like for example by X-ray crystallography.

Figure 6.43: X-ray structure of Na-Na-26, thermal ellipsoid plot (Mercury, 50% probability level). Hydrogen atoms and
external Br- are omitted for clarity. Colour scheme: C, grey; N, light blue; Na, purple.

Since some of the smaller lanthanoids can be considered to be the most promising in terms of energy

transfer processes, in the next step studies towards the preparation of the corresponding dicryptates were

undertaken. Unfortunately these compounds were found to be not purificable via HPLC. Initial studies on

the homobimetallic dicryptate Er-Er-26 revealed that this compound is indeed luminescent in the visible

and near-infrared part of the electromagnetic spectrum, which is not necessarily the case for undeuterated

ligand scaffolds.
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Figure 6.44: Structure of the homobimetallic erbium dicryptate Er-Er-26.

For a detailed understanding of energy transfer processes between lanthanoids, related but slightly different

ligand systems for two lanthanoids will be useful. Apart from that the preparation of controlled assemblies
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of three lanthanoids is desirable, since based on the physical principles of upconversion such processes

will be more likely to be observable in such architectures. During this project a new intermediate for the

preparation of such compounds could be isolated. The dibromide-functionalised sodium cryptate Na-28 is

another example for a cryptate carrying a peripheral functionality realised during this work.
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Figure 6.45: Structure of the dibromide-functionalised sodium cryptate Na-28.
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7 Summary

In the course of this work, a number of important scientific milestones could be achieved:

Tag molecules!

“Lanthanoid Cryptates as Covalently Attached Tag-Molecules” :

• Realisation of two new cryptates for the preparation of rigid and stable lanthanoid complexes of the

type Ln-bpy3O2 carrying a peripheral functionalisation

• Validation of the photophysical and paramagnetic properties of the cryptates Ln-bpy3O2 being in-

variant towards the introduction of a peripheral amino-functionalisation

• Development and implementation of a general strategy for the preparation of cryptate based tag-

molecules

• Realisation and attachment of a functionalised linker moiety, transforming the enantiopure diol-

functionalised cryptate into a tag-molecule for the structural elucidation of proteins in solution

Ln 

functionalised  
cryptate δPCS"
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Molecular Nanocode!

“Construction of a Molecular Nanocode” :

• Realisation of an amino acid carrying a covalently attached lanthanoid cryptate which is suitable for

standard Fmoc peptide synthesis

• Validation of the properties of the lanthanoid cryptate being unaffected by the attachment of the

amino acid-functionalisation

• Verification of the amino acids reactivity and suitability for the use in solid phase peptide synthesis

• Synthesis of a nanocode with the sequence Sm-Tb-Eu which is the first example of a heterotrimetal-

lic, covalently linked lanthanoid coordination compound prepared by solid phase peptide synthesis

• Read-out of the nanocode via luminescence spectroscopy

Sm Tb Eu 
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CPL emitters!

“Enantiopure Lanthanoid Cryptates” :

• Realisation of the first cryptate-based emitters for circularly polarised luminescence

• Transfer of the deuteration strategy to the problem of enhancing CPL of lanthanoids more suscepti-

ble towards multiphonon quenching

• Preparation of the first enantiopure samples of Ln-bpy3O2 via chiral HPLC

• Demonstration of the unprecedented stability of the lanthanoid cryptates Ln-bpy3O2 by an in-depth

study of their configurational stability
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A S
NIR VIS 

Molecular energy transfer!

“Cryptates for the Controlled Synthesis of Homo- and Heteropolymetallic Complexes” :

• Significant improvement of the synthetic availability of the dicryptates Ln-Ln-26 by stepwise optimi-

sation of synthesis

• Preparation and study of lanthanoid dicryptates with new combinations of lanthanoids

• Development of a modified synthetic strategy for a more efficient search for pairs of lanthanoids

exhibiting energy transfer processes

• Preparation of a new bromide-functionalised cryptate scaffold which opens up possibilities for the

realisation of new cryptate-based architectures of several lanthanoids
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In conclusion, during this thesis several aspects of new functionalities could be added to the lanthanoid

cryptates. The contributions of the broadest impact are the ones presented in the chapter “Lanthanoid

Cryptates as Covalently Attached Tag-Molecules”, as they provide a solid basis for the evolution of the

cryptates Ln-bpy3O2 from a well-defined and highly reliable test system for hypotheses about specific

aspects of lanthanoid photophysics into well-defined and highly reliable tag-molecules for concrete appli-

cations. In the chapter “Construction of a Molecular Nanocode” an outstanding example for such an appli-

cation could be given. At the same time it gives remarkable evidence of the high potential of the lanthanoid

cryptates for concrete problem sets and is enormously innovative. Here it was possible to realise an archi-

tecture which normally would be considered to be impossible, namely a molecular coordination compound

combining three different lanthanoids in a highly controlled, covalent fashion. The chapter “Enantiopure

Lanthanoid Cryptates” extends the functionalities of the lanthanoid cryptates to a further aspect, namely

the circularly polarised luminescence. This phenomenon is gaining more and more attention at the moment

and as it could be shown herein, enantiopure lanthanoid cryptates can contribute to both, concrete appli-

cations and an improved understanding of CPL. Finally the chapter “Cryptates for the Controlled Synthesis

of Homo- and Heteropolymetallic Complexes” can be considered as dealing with the functionalisation of a

lanthanoid cryptate with further lanthanoids, aiming for the observation of energy transfer processes such

as upconversion, which is another current focus of interest in lanthanoid coordination chemistry.

Based on the results presented in this dissertation further studies can lead to broader applications and

further highly interesting systems and results:

• Use of the enantiopure diol-functionalised lanthanoid cryptate as paramagnetic tag-molecule for

the structural elucidation of peptides or proteins

After all necessary building blocks have been developed, use of the lanthanoid cryptates as tag-molecule

for such a purpose is only a few steps away. For a proof-of-principle a short peptide with a suitable

sequence would be attached to the tag-molecule, and subsequently be studied via 1H NMR spectroscopy

and analysis of the paramagnetic shifts.
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• Incorporation of amino acid-functionalised lanthanoid cryptates into various peptides via

solid phase peptide synthesis

Since the amino acid-functionalised lanthanoid cryptates are compatible with solid phase peptide synthesis

they can easily be introduce into any peptide sequence. This allows for the introduction of e.g. a lumines-

cent tag to a given structure without any additional techniques.

• Preparation of enantiopure samples of emissive cryptates Ln-bpy3O2 and study of their CPL

properties

Since the separation of racemic Ln-bpy3O2 into pure enantiomers is now possible, the preparation of sam-

ples for CPL studies is now far easier. This will allow for a more systematic study of the CPL properties

of cryptates. Together with their well-defined structure a correlation of the CPL properties and the very

specific structure of the complexes under study might become possible, allowing for an unprecedented

understanding of CPL.

• Preparation of new “multicryptates”

The cryptates Ln-bpy3 are accessible by assembly of three bipyridine dibromides. The dibromide function-

alised cryptate Na-28 is highly related to these building blocks and their use in reactions related to the ones

described above could lead to extended “multicryptates” for the study of e.g. energy transfer processes

between lanthanoids (see Figure 7.1, page 204).
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8 Experimental Section

8.1 General

Chemicals were purchased from commercial suppliers and used as received unless stated otherwise.

Deuterated solvents/reagents had deuterium contents > 99.5%. For the preparation of the lanthanoid

cryptates used for the experiments towards molecular nanocodes, lanthanoid salts with 99.99% purity

(REO, in regards to contaminations with different lanthanoids) were used. CH3CN used for the synthesis

of the cryptates was HPLC-grade. TFA was HPLC-grade. Dry THF and dry CH3CN were dried using a

MBraun SPS-800 solvent purification system. Dry DMF (Acros Organics) was used as purchased. Air-

sensitive reactions were carried out under a dry, dioxygen-free atmosphere of N2 or Ar using Schlenk

technique. Column-chromatography was performed with silica gel 60 (Merck, 0.063 - 0.200 mm) or basic

Al2O3 90 (Sigma-Aldrich, 0.063 - 0.200 mm). Analytical thin layer chromatography (TLC) was done on silica

gel 60 F254 plates (Merck, coated on aluminium sheets), silica gel RP-18 W/UV254 plates (Macherey-Nagel,

coated on aluminium sheets) or Al2O3 N/UV254 (Macherey-Nagel, coated on polyester sheets). Elemental

analysis was performed using elementar vario Micro cube.

NMR

NMR spectra were measured at 26°C on Bruker DPX-200 (1H: 200 MHz, 13C: 50.3 MHz), DPX-250 (1H:

250 MHz, 13C: 62.9 MHz, 23Na: 66.2 MHz), AVII+400 (1H: 400 MHz, 13C: 100.6 MHz, 19F: 376 MHz),

AVII+500 (1H: 500 MHz) or Avance III HDX 700 (1H: 700 MHz) spectrometers. All chemical shifts � are

reported in parts per million (ppm). For 1H and 13C NMR spectra they are reported relative to TMS and

the residual solvent signals have been used as internal reference. For 1H DOSY NMR experiments the

z-gradient strength was determined using a sample of 1 wt-% H2O and 0.1 wt-% CuSO4 in D2O. All NMR

spectra were analysed using MestReNova (Mestrelab Research) and/or Origin (OriginLab) and/or TopSpin

(Bruker). Observed multiplicities are specified as: singlet (s), doublet (d), triplet (t), quartet (q), and multi-

plet (m). Further abbreviations: br = broad.

Mass spectrometry

ESI mass spectrometry was measured using Bruker Daltonics Esquire6000 and Bruker Daltonics Esquire

3000plus. MALDI mass spectrometry was performed using Bruker Autoflex and 2,5-dihydroxybenzoic acid
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(DHB), trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB), 6-aza-2-thiothymine

(ATT) or sinapinic acid (SA) as matrix material. Isotopic patterns were only reported when the overall in-

tensity of the signal was sufficiently high. The following abbreviations were used for the description of

the results obtained from MALDI-MS: [DHB-H]-: deprotonated DHB, C7H5O4, [ox. DHB]: oxidised DHB,

C7H4O4, [SA-H]-: deprotonated SA, C11H11O5. In high resolution ESI-MS the species were typically ob-

served as formiate adducts. The formiate originates from the formic acid added to the mobile phase.

MOPAC geometry optimisations

Geometry optimisations were performed using MOPAC2016[304] with the semi-empirical method PM7[305].

The lanthanoid centers are calculated within the sparkle model[306], each is represented as a pure 3+ ion

without basis functions.

X-ray Analysis

For analysis the crystals were mounted on a glass fiber using perflouropolyether oil. The measurements

were carried out on a Bruker Apex 2 Duo using Mo K↵ radiation. Data were collected at a temperature

of 100(2) K. Frames corresponding to an arbitrary hemisphere of data were collected using ! scans.

The structure was solved within the Wingx[307] package using direct methods (SIR92[308]) and expanded

using Fourier techniques (SHELXL-97[309]) on F 2. Hydrogen atoms were included but not refined. All

non-hydrogen atoms were refined anisotropically. Further information is summarised in Table 8.1.
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Table 8.1: Crystallographic data for 24 and Na-Na-26.

compound 24 Na-Na-26

formula C7H4Br4N2Cl3 C30H25BrN8Na

mol. wt. 542.11 600.48

cryst appearance colourless block colourless block

cryst syst monoclinic monoclinic

space group P21/c C2/m

a [Å] 12.741(3) 16.91(6)

b [Å] 7.1842(18) 15.19(6)

c a [Å] 16.601(4) 10.62(4)

↵ [deg] 90.00 90.00

� [deg] 112.238(3) 97.14(13)

� [deg] 90.00 90.00

vol [Å3] 1406.5(6) 2707(19)

Z 4 4

⇢ [g cm-1] 2.560 1.473

⇥ max [deg] 28.48 23.81

measd reflns 15938 19931

independent reflns 3552 2161

reflns in ref 2493 (I � 2�(I)) 1641 (I � 2�(I))

params 145 186

Ra 0.0406 0.1038

wRb 0.0904 0.2925

Ra (all data) 0.0720 0.1304

wR (all data) 0.1014 0.3169

GOF 0.991 1.127
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HPLC

Most HPLC runs were performed on a Knauer Azura HPLC system (setup A). Resulting from a different

void volume, the runs performed on a Knauer Smartline HPLC system (setup B) typically show longer

retention times.

Reversed-phase HPLC

For the purification and analysis of lanthanoid cryptates via reversed-phase HPLC the following columns

and conditions were used:

• Analytical reversed-phase HPLC: Lichrospher RP-18e (Merck), 125x4 mm - 5µm, flow rate: 1 mL

min-1

• Semi-preparative reversed-phase: HPLC Lichrospher RP-18e (Merck), 250x10 mm - 10µm, flow

rate: 3 mL min-1

In both cases, UV detection (300 nm) was used for the detection of eluted substances. Using mobile

phases A (degassed HPLC-grade H2O + 1 vol.-% HPLC-grade CF3COOH, v/v) and B (degassed HPLC-

grade CH3CN) the following programs were applied:

Program A
min %A %B
0 85 15
5 85 15

19 45 55
25 45 55
40 85 15
50 85 15

Program B
min %A %B
0 85 15
5 85 15

19 45 55
41 0 100
48 0 100
78 85 15
90 85 15

If not stated differently, the samples for semi-preparative reversed-phase HPLC runs were dissolved in

CH3CN/H2O (HPLC-grade, 1:1, v/v). All samples were filtered with a 0.45µm nylon membrane filter (GE

Healthcare Life Sciences) before injection.

Separation of enantiomers via HPLC

For the preparation of enantiopure lanthanoid cryptates from racemic samples and the study of the racemi-

sation of these compounds the following columns and conditions were used:

• Analytical chiral phase HPLC: CHIRALPAK IE (Daicel Corporation), 250x4.6 mm - 5µm, flow rate:

1 mL min-1

• Semi-preparative chiral phase HPLC: CHIRALPAK IE (Daicel Corporation), 250x10 mm - 10µm,

flow rate: 4 mL min-1
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In both cases, UV detection (300 nm) was used for the detection of eluted substances. As mobile phase

freshly prepared solution of CH3OH (degassed, HPLC-grade) with 1 vol.-% CF3COOH (HPLC-grade) was

used. All samples were prepared using HPLC-grade CH3OH and were filtered with a 0.45µm nylon mem-

brane filter (GE Healthcare Life Sciences) before injection.

Photophysical measurements

UV/VIS spectra were measured on a Jasco V-770 spectrophotometer using quartz cuvettes (Suprasil, 1 cm

pathlength) at room temperature.

Steady state emission spectra were acquired on a Horiba Fluorolog-3 DF spectrofluorimeter using quartz

cuvettes (Suprasil, 1 cm pathlength) at room temperature or in a solid matrix of CD3OD/CD3CD2OD (1:1,

v/v) in an NMR tube at 77 K. The excitation light source was a 450 W xenon lamp. Emission was monitored

at 90° using a Hamamatsu R2658P PMT (UV/vis/NIR, 200 nm <�em < 1010 nm) or a Hamamatsu H10330-

75 PMT (NIR, 950 nm <�em < 1700 nm). Spectral selection was achieved by double grating monochroma-

tors (excitation: 1200 grooves/nm, blazed at 300 nm, visible emission: 1200 grooves/nm, blazed at 500 nm,

NIR emission: 600 grooves/nm, blazed at 1000 nm).

Luminescence decay profiles were determined with the same instrumental setup as described above for

the steady state experiments. The light source for the recording of the decay profiles was a 70 W xenon

lamp (pulse width ca. 2µs FWHM). Lifetime data analysis (deconvolution, statistical parameters, etc.) was

performed using the software package DAS from Horiba. Lifetimes ⌧obs were determined by fitting the

middle and tail portions of the decays. Estimated uncertainties in ⌧obs are ±10%. Absolute quantum yields

�L
Ln were determined with at least two independent sets of samples, using quinine sulfate in 0.5 M H2SO4

as quantum yield standard (� = 54.6%[269]). For analysis the optically dilute method was employed:

�x = �s ·
✓

Gradx

Grads

◆
·
✓

nx

ns

◆2

(24)

where �x /�s are the quantum yields of the sample (x) or the standard (s), Gradx/Grads are the linearly

fitted sloped from the plot of the integrated luminescence intensity of the sample (x) or the standard (s)

versus the absorbance at the excitation wavelength and nx/ns are the refractive indices of the medium or

the sample. Estimated uncertainties in �L
Ln are ±15%.

Circular dichroism (CD) spectra were collected on a Jasco J-720 spectropolarimeter, using rectangular

quartz cuvettes (Suprasil, d = 1 mm path length), or in cooperation with Prof. Dr. Lorenzo Di Bari (Univer-

sità di Pisa) and Dr. Francesco Zinna (Université de Genève)) on a Jasco J-715 spectropolarimeter using

a 0.1 mm optical path cell.

Circular polarised luminescence (CPL) was measured in cooperation with Prof. Dr. Lorenzo Di Bari (Uni-
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versità di Pisa) and Dr. Francesco Zinna (Université de Genève) on a home-built spectrofluoropolarimeter

described in reference [310]. The samples were irradiated in a 90° geometry with an UVC high pressure

mercury lamp (�exc = 254 nm).

Peptide synthesis

All peptides were prepared via Solid Phase Peptide Synthesis (SPPS) following the Fmoc approach and

using standard techniques.[222] DMF (Acros Organics, 99.8%, for peptide synthesis) and piperidine (Roth,

�99.5%, for peptide synthesis) were used as purchased. As solid support Fmoc-Gly-Tentagel® PHB resin

(particle size 90µm, capacity 0.15-0.20 mmol/g) was used. Standard Fmoc-protected amino acids were

used as purchased (purity � 95%), isotopically enriched Fmoc-protected glycines (Cambridge Isotope

Laboratories, Inc.) had chemical purities � 98% and were 99% (2-13C) or 98% (15N) enriched. As cou-

pling reagent HATU was used, as base N,N-diisopropylethylamine (DIPEA) was added. All reactions were

performed in plastic syringes (BD DiscarditTM II) equipped with PE frits (average pore diameter of 0.35µm)

or in a custom-build glass-vessel (see Figure 8.1). To minimise adhesion of the resin to the glass surface

of the vessel it was silanised with trimethylsilyl chloride.

Figure 8.1: Custom-build glass-vessel used for the synthesis of peptides.

The following standard procedures were carried out:

Washing: About three bed volumes (at least 1 mL) of the solvent were added to the reaction vessel, the

suspension was shaken for about one minute, afterwards the solvent was drained. The procedure was

performed a total of five times.

Swelling of the resin: Prior to the first coupling step, the dry resin was placed in the reaction vessel and at

least a three bed volumes of CH2Cl2 were added. The suspension was shaken carefully and left standing

for about 30 minutes before the suspension was shaken for about 20 minutes. The CH2Cl2 was drained,

afterwards the resin was washed with DMF (see above).

Coupling: If not stated otherwise, in the case of commercially available amino acids the Fmoc-protected
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amino acid (5 eq.) and HATU (4.9 eq.) were dissolved in a minimum amount of DMF. After addition of

DIPEA (10 eq.) the mixture was added to the deprotected, washed resin immediately. The suspension

was shaken for at least 30 minutes before the solution was drained and the resin was washed with DMF

(see above). In the case of the lanthanoid-containing amino acids the equivalents were reduced and the

reaction times were elongated (see main text and below).

Capping: A 50-fold excess of acetic anhydride together with DIPEA and DMF (1:1:20 v/v/v, freshly pre-

pared) was added to the washed resin and shaken for 30 minutes. The solution was drained and the resin

was washed with DMF (see above).

Deprotection: About three bed volumes (at least 1 mL) of 20% piperidine in DMF (v/v) were added to the

washed resin. The suspension was gently shaken for about 2 minutes before the solution was drained and

the process was repeated two more times. Afterwards the resin was washed with DMF (see above).

Shrinkage of the resin: The DMF-washed resin was washed with CH2Cl2 and subsequently with Et2O

(see above). To remove remaining solvent the resin was dried in vacuo for several hours and subsequently

dried in air overnight.

Cleavage of the peptide from the resin: About three bed volumes (at least 1 mL) of trifluoroacetic acid

(TFA, HPLC-grade) with 5 vol.-% H2O were added to the shrinked resin and the suspension was shaken

for 10-60 minutes. The solution was drained into a round-bottomed flask equipped with a magnetic stirrer.

Typically this step was repeated 1-3 times. Under these conditions also additional protecting groups like

the trityl-group attached to cysteines are cleaved.
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8.2 Organic building blocks

Sodium methane-thiosulfonate (11)

+
H2O

reflux, 12 h
S S-
O

O
Na+

CH3NaO2S2
Exact Mass: 133.95

Molecular Weight: 134.15

11

S Cl
O

O
Na2S · 9 H2O

CH3ClO2S
Exact Mass: 113.95

Molecular Weight: 114.55
d: 1.48 g cm-3

1.0 eq.

36

Na2SH18O9
Exact Mass: 240.05

Molecular Weight: 240.18

1.0 eq.

35

The synthesis of sodium methane-thiosulfonate (11) was performed slightly modified to a procedure re-

ported earlier.[188]

Under stirring Na2S · 9 H2O (35) (25 g, 104 mmol, 1.0 eq.) was dissolved in 40 mL H2O to give a yellow

solution. Methanesulfonyl chloride (36) (11.9 g, 104 mmol, 8.05 mL, 1.0 eq.) was added dropwise via a

dropping funnel. The resulting mixture was slowly heated and then refluxed for 12 h, which yielded a dark

orange solution. The volatiles were evaporated and the resulting yellow solid was pestled to give a colour-

less powder which was dried overnight in vacuo. The crude product was taken up in 200 mL EtOH, brought

to reflux temperature and the resulting suspension was filtered hot when it started to turn green. The solid

residue was washed with 40 mL hot EtOH. The combined filtrates were concentrated and redissolved in

a minimum amount of boiling EtOH. After the solution was allowed to slowly come to room temperature it

was cooled with an ice bath and colourless crystals started to precipitate. After 12 h at room temperature

the crystals were collected (1.7 g) and the filtrate was concentrated and recrystallised as described above

to give another portion (4.0 g) of the product which was dried thoroughly and stored under Ar.

Yield: 5.7 g, 42.5 mmol, 41%.
1H NMR (400 MHz, D2O): � = 3.37 (s, 3 H) ppm.

m.p.: 269.5-270.5°C.
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S-(2-Aminoethyl)-methanethiosulfonate hydrobromide (12)

+
DMF

60°C, 3.5 h
S S-
O

O
Na+ Br NH3

+Br- S NH3
+Br-

S
O

O

CH3NaO2S2
Exact Mass: 133.95

Molecular Weight: 134.15

1.0 eq.

11

C2H7Br2N
Exact Mass: 202.89

Molecular Weight: 204.89

0.94 eq.

37

C3H10BrNO2S2
Exact Mass: 234.93

Molecular Weight: 236.15

12

The synthesis of S-(2-aminoethyl)-methanethiosulfonate hydrobromide 12 was performed slightly modified

to a procedure reported earlier.[189]

Sodium methane-thiosulfonate (11) (1.43 g, 10.6 mmol, 1.0 eq.) and 2-bromoethyl amine hydrobromide

(37) (2.04 g, 9.96 mmol, 0.94 eq.) were dissolved in 18 mL dry DMF to give a clear, slightly yellow solution.

The mixture was stirred at 60°C bath temperature for 3.5 h before the solvent was removed in vacuo. The

remaining viscous red to orange oil was dried thoroughly before 50 mL CH2Cl2 were added and the result-

ing suspension was stirred vigorously for 2 h. The mixture was left to settle, the liquid phase was decanted

and the remaining light orange residue was taken up in 175 mL boiling CH3CN (HPLC-grade). While hot,

a colourless fine solid was filtered off. Upon coming to room temperature a colourless solid started to

precipitate from the filtrate, which was overlayered with Et2O and stored at 4° overnight. After filtration and

washing with CH2Cl2 a colourless solid could be isolated.

Yield: 1.25 g, 6.90 mmol, 65%.
1H NMR: (400 MHz, D2O): � = 3.61 (s, 3 H), 3.60-3.55 (m, 2 H), 3.50-3.44 (m, 2 H) ppm.

m.p.: 109-110°C.
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Isocyanate 10

O
O

O
Cl

Cl
ClCl

Cl
ClS NH3

+Br-

S
O

O

C3H10BrNO2S2
Exact Mass: 234.93

Molecular Weight: 236.15

1.0 eq.

12

+

Chemical Formula: C3Cl6O3
Exact Mass: 293.80

Molecular Weight: 296.75

0.4 eq.

38

S N
S

O

O

C4H7NO3S2
Exact Mass: 180.99

Molecular Weight: 181.23

10

C O
2.42 eq. DIPEA

(Mol. Wt.: 129.24, 
d: 0.742 g cm-3)

CH2Cl2
rt, 2 h

The hydrobromide 12 (43.2 mg, 183µmol, 1.0 eq.) was stirred in 4 mL CH2Cl2. As 4.4 mL (443µmol,

2.42 eq.) of a freshly prepared 0.1 M solution of N,N-diisopropylethylamine (DIPEA) in CH2Cl2 were added,

the colourless solid dissolved. In a round-bottomed flask, triphosgene (38) (21.7 mg, 73.0µmol, 0.4 eq.)

was dissolved in 4 mL CH2Cl2 before the flask was sealed with a septum and equipped with a cannula to

release excess pressure. Via syringe the solution of 12 and DIPEA was slowly added to the triphosgene.

After addition of about 0.5 mL a colourless solid started to precipitate, after the addition of about 2 mL gas

formation could be observed. After completion of the addition the septum was exchanged for a bubble

counter. The mixture was stirred for a total of 2 h and subsequently slowly transferred into a separating

funnel filled with 20 mL H2O and 0.64 mL of the 0.1 M solution of DIPEA in CH2Cl2. Upon washing, the or-

ganic phase turned clear and was separated from the aqueous phase, which was extracted with additional

2 x 20 mL of CH2Cl2. The combined organic phases were dried (Na2SO4) and after complete evaporation

of the volatiles the isocyanate 10 was isolated as a colourless oil. Since the compound undergoes decom-

position quite fast it should be prepared freshly prior to subsequent use.

Yield: 15.6 mg, 86.1µmol, 47%.
1H NMR (400 MHz, CDCl3): � = 3.72 (t, J = 6.4 Hz, 2 H), 3.44-3.31 (m, 5 H) ppm.
13C NMR (100.6 MHz, CDCl3): � = 123.7, 51.1, 42.9, 37.4 ppm.
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Enantiopure, diol-functionalised bipyridine 8

CH2Cl2 / H2O
20 : 1 (v/v)

37°C, 72 h
+

C8Cl2N2O2
Exact Mass: 225.93

Molecular Weight: 227.00

3 x 3.0 eq.

39

C30H30N2O4
Exact Mass: 482.22

Molecular Weight: 482.57

1.0 eq.

7

O

O

CN

CN

Cl

ClN N

O O

OBnBnO

C16H18N2O4
Exact Mass: 302.13

Molecular Weight: 302.32

8

N N

O O

OHHO

The benzyl ether-protected bipyridine 7 (29.0 mg, 60µmol, 1.0 eq.) was dissolved in 6 mL CH2Cl2. A

first portion of 3.0 equivalents 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (39) (DDQ, 40.9 mg, 180µmol)

was added and the resulting mixture was diluted with additional 4 mL CH2Cl2 and 0.5 mL H2O. The mix-

ture was heated to 37°C bath temperature. After 24 h reaction time the second portion of 3.0 equivalents

DDQ (39), and after another 24 h the last portion of 3.0 equivalents DDQ (39) were added. After a total

of 72 h reaction time the volatiles were removed in vacuo and the resulting red solid was dried for sev-

eral hours to remove traces of H2O. The crude product was subjected to column-chromatography (SiO2,

CH2Cl2/CH3OH 15:1, UV detection). To remove remainders of DDQ the isolated substance was purified

via column-chromatography a second time (Al2O3, CH2Cl2/CH3OH 15:1, UV detection).

Yield: 8.7 mg, 28µmol, 48%.

MS (ESI+): m/z (%) = 303.0 (6, [M+H]+), 324.9 (100, [M+Na]+).
1H NMR (400 MHz, CD3CN): � = 7.49-7.43 (m, 2 H), 7.29-7.24 (m, 2 H), 3.98-3.89 (m, 2 H), 3.83-3.74 (m,

2 H), 3.68-3.58 (m, 2 H), 3.26 (br s, 2 H), 2.53 (m, 6 H) ppm. The spectrum is shown in the appendix (see

page 262).
13C NMR (62.9 MHz, CD3CN): � = 155.1, 154.2, 149.4, 131.4, 125.4, 87.2, 62.9, 23.9 ppm.

TLC: Rf = 0.65 (Al2O3, CH2Cl2/CH3OH 15:1, UV detection).
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Enantiopure bipyridine disulfide 13

O
O

O
Cl

Cl
ClCl

Cl
ClS NH3

+Br-

S
O

O

C3H10BrNO2S2
Exact Mass: 234.93

Molecular Weight: 236.15

1.0 eq.

12

+

Chemical Formula: C3Cl6O3
Exact Mass: 293.80

Molecular Weight: 296.75

0.4 eq.

38

C16H18N2O4
Exact Mass: 302.13

Molecular Weight: 302.32

0.4 eq.

8

N N

O O

OHHO

2.76 eq. DIPEA
(Mol. Wt.: 129.24, 
d: 0.742 g cm-3)

CH2Cl2
rt, 2 h

C24H32N4O10S4
Exact Mass: 664.10

Molecular Weight: 664.79

13

N N

O O

OO N
H

O S S
OO

N
H

OSS
O O

CDCl3

rt, 19 h

For in situ preparation of isocyanate 10, triphosgene (38) (16.6 mg, 56µmol, 1.6 eq.) was dissolved in

6 mL CH2Cl2 and 0.62 mL of a freshly prepared 0.1 M solution of N,N-diisopropylethylamine (DIPEA) in

CH2Cl2 were added. The flask was sealed with a septum and equipped with a cannula to release excess

pressure. In a separate flask, 33.1 mg of hydrobromide 12 (140µmol, 4.0 eq.) were suspended in 3 mL

CH2Cl2. Upon addition of 2.14 mL of the 0.1 M solution of DIPEA the colourless solid dissolved. Via syringe

the solution of 12 was added dropwise to the solution of 38 upon which the yellow solution got turbid and

a colourless solid precipitated. The mixture was stirred at room temperature for 2 h, during which it turned

almost completely colourless. Subsequently it was added dropwise to a mixture of 15 mL H2O and 0.5 mL

of the 0.1 M solution of DIPEA. After separation of the phases the aqueous phase was extracted with

2 x 10 mL CH2Cl2. The combined organic phases were dried (Na2SO4) and evaporated to dryness. The

resulting crude isocyanate 10 was used for the next step without additional purification: It was dissolved

in 3 mL CDCl3 and a solution of 10.5 mg of the diol-functionalised bipyridine 8 (35µmol, 1.0 eq.) in 2 mL

CDCl3 was added dropwise. The resulting mixture was stirred at room temperature for 19 h and afterwards

the solvents were removed in vacuo. The resulting crude product was purified via column-chromatography

(SiO2, CH2Cl2/CH3OH 25:1 ! CH3OH, UV detection, staining with I2 vapor) to yield the title compound.

Yield: Upon removal of the solvents from the fractions obtained from column-chromatography the product

was contaminated with another species. Based on NMR data the yield was estimated to be 60%.

MS (ESI+): m/z (%) = 665.1 (100, [M+H]+), 687.1 (35, [M+Na]+).
1H NMR (400 MHz, CD2Cl2): � = 7.38 (d, J = 8.3 Hz, 2 H), 7.23 (d, J = 8.3 Hz, 2 H), 5.59-5.46 (m, 2 H),
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4.45-4.26 (m, 4 H), 4.12 (br s, 2 H), 3.59-3.51 (m, 4 H), 3.38-3.27 (m, 10 H), 2.59 (s, 6 H) ppm. The spec-

trum is shown in the appendix (see page 263).
13C NMR (100.6 MHz, CD2Cl2): � = 155.6, 153.3, 148.7, 130.7, 127.8, 125.2, 83.4, 65.0, 51.2, 41.2, 36.8,

24.3 ppm.

TLC: Rf = 0.62 (SiO2, CH2Cl2/CH3OH 7:1, UV detection, staining with I2 vapor).
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Isothiocyanate-activated lysine derivative 15

HOOC
NH

NH2

Fmoc

HOOC
NH

N

Fmoc

C S
Cl

S
Cl

1.1 eq.CaCO3
(Mol. Wt.: 100.09)

CH2Cl2 
rt, 24 h

+

C21H24N2O4
Exact Mass: 368.17

Molecular Weight: 368.43

1.0 eq.

14

CCl2S
Exact Mass: 113.91

Molecular Weight: 114.98
d: 1.50 g cm-3

1.5 eq.

40

C22H22N2O4S
Exact Mass: 410.13

Molecular Weight: 410.49

15

In 200 mL CH2Cl2, 29.8 mg CaCO3 (298µmol, 1.1 eq.) were stirred vigorously for 30 minutes. 4.07 mL of

a 0.1 M solution of thiophosgene (40) in dry CH3CN (46.5 mg, 407µmol, 1.5 eq.) were added, immediately

followed by the Fmoc-protected lysine derivative 14 (100 mg, 271µmol, 1.0 eq.). The flask was closed

with a bubble counter, connected to two wash bottles of which the second was filled with a saturated

aqueous solution of Na2CO3. The mixture was stirred for 24 h at room temperature, subsequently 80 mL

H2O were added, followed by 3.25 mL of a 0.1 M aqueous HCl (325µmol, 1.2 eq.). After the mixture was

stirred vigorously for 90 minutes the phases were separated and the neutral aqueous phase was extracted

with additional 4 x 100 mL CH2Cl2, the combined organic phases were dried (MgSO4) and evaporated to

dryness to give a colourless glassy solid. The crude product was subjected to column-chromatography

(SiO2, CH2Cl2/CH3OH 25:1 ! 9:1, UV detection). TLCs of early fractions containing the product revealed

a contamination with another compound which could not be detected using 1H NMR or ESI-MS. The

substance collected from these fractions was subjected to column-chromatography a second time (SiO2,

CH2Cl2/CH3OH 50:1 ! 9:1, UV detection) to give another portion of the pure product, which was dried in

vacuo overnight to remove traces of solvents.

Note: Neither after storage in CD2Cl2 at room temperature nor pure in the solid state at -25°C for several

weeks any decomposition could be monitored via 1H NMR. Yet results of the subsequent reaction with the

amino-functionalised cryptates Ln-1 (see page 241) were found to proceed more efficiently with relatively

fresh portions of 15.

Yield: 52.3 mg, 127µmol, 47%.

MS (ESI+): m/z (%) = 413.3 (10), 433.2 (100, [M+Na]+), 449.1 (43, [M+K]+).
1H NMR (400 MHz, CD2Cl2): � = 7.79 (d, J = 7.6 Hz, 2 H), 7.62 (d, J = 7.5 Hz, 2 H), 7.46-7.28 (m, 4 H),

4.49-4.31 (m, 3 H), 4.24 (t, J = 6.6 Hz, 1 H), 3.59-3.47 (m, 2 H), 2.00-1.30 (m, 6 H) ppm. The spectrum is

shown in the appendix (see page 264).
13C NMR (100.6 MHz, CD2Cl2): � = 177.1, 157.0, 144.3, 141.8, 130.3, 128.3, 127.6, 125.6, 120.5, 67.6,

47.7, 45.4, 31.9, 30.3, 29.9, 23.1 ppm.

TLC: Rf = 0.20 (SiO2, CH2Cl2/CH3OH 15:1, UV detection).
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4,4’,6,6’-Tetramethyl-2,2’-bipyrimidine (23)

N N
Cl

N N

N N

1.0 eq. NiCl2 · 6 H2O
(Mol. Wt.: 237.69)

1.4 eq. Zn
(Mol. Wt.: 65.39)

4.0 eq. PPh3
(Mol. Wt.: 262.28)

DMF
70°C, 24 h

C6H7ClN2
Exact Mass: 142.03

Molecular Weight: 142.59

1.0 eq.

41

C12H14N4
Exact Mass: 214.12

Molecular Weight: 214.27

23

The synthesis of 4,4’,6,6’-tetramethyl-2,2’-bipyrimidine (23) was performed slightly modified to a procedure

reported earlier.[141][299][300]

Under N2, NiCl2 · 6 H2O (8.22 g, 35.1 mmol, 1 eq.) and PPh3 (36.8 g, 140 mmol, 4.0 eq.) were suspended

in 160 mL DMF (peptide grade). The dark blue suspension was degassed by three freeze-pump-thaw

cycles. After zinc powder (3.21 g, 49.1 mmol, 1.4 eq.) was added another freeze-pump-thaw cycle was

performed. The mixture was stirred at room temperature for 1 h during which it turned brown. Under N2 in

a separate flask 4,6-dimethyl-2-chloropyrimidine[298] 41 was dissolved in 30 mL DMF (peptide grade) and

degassed by three freeze-pump-thaw cycles. The yellow solution was added to the brown suspension

and stirred for 24 h at 70°C bath temperature. After the resulting dark mixture was allowed to come to

room temperature it was poured onto 630 mL 4 M aqueous ammonia. A dark solid precipitated and the

suspension was stirred vigorously for 30 minutes before the solid was separated from the blue solution

via filtration. The filtrate was extracted with 4 x 250 mL CH2Cl2, the combined organic phases were dried

(MgSO4) and evaporated to dryness. The resulting residue was taken up in 140 mL 1 M HCl and extracted

with 3 x 100 mL Et2O. The aqueous phase was brought to pH 8-9 with saturated aqueous Na2CO3 and

extracted with 4 x 100 mL CHCl3. The combined CHCl3-phases were dried (MgSO4) and after removal of

the solvent in vacuo 1.73 g (8.07 mmol, 46%) of the slightly yellow product were obtained. After extraction

of the dark solid obtained from filtration with 400 mL CH2Cl2 and twofold purification according to the pro-

cedure described above another portion of the product could be isolated (1.07 g, 4.99 mmol, 28%).

The product can also be purified via column-chromatography (SiO2, CH2Cl2/CH3OH 100:1 ! 24:1, UV

detection).[141]

Yield: 2.80 g, 13.06 mmol, 74%.

MS (ESI+): m/z (%) = 215.0 (26, [M+H]+), 237.0 (100, [M+Na]+), 253.0 (13, [M+K]+), 451.1 (85, [2 M+Na]+).
1H NMR (400 MHz, CDCl3): � = 7.11 (s, 2 H), 2.62 (s, 12 H) ppm.
13C NMR (100.6 MHz, CDCl3): � = 167.9, 163.0, 120.5, 24.5 ppm.
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Octabromide 24 and heptabromide 27 of the bipyrimidine

N N

N N

C12H14N4
Exact Mass: 214.12

Molecular Weight: 214.27

1.0 eq.

23

8.4 eq. Br2
(Mol. Wt.: 159.81,
d: 3.12 g cm-3)

AcOH
95°C, 0.5 h
80°C, 17 h

N N

N N

C12H6Br8N4
Exact Mass: 837.41

Molecular Weight: 845.43

24

Br
BrBr

Br

Br
Br

Br
Br

N N

N N

C12H7Br7N4
Exact Mass: 759.50

Molecular Weight: 766.54

27

Br
BrBr

Br

Br
Br

Br

+

The synthesis of octabromide 24 and heptabromide 27 was performed slightly modified to a procedure

reported earlier.[141]

In a two-necked flask equipped with an internal thermometer and a reflux condenser, 4,4’,6,6’-tetramethyl-

2,2’-bipyrimidine (23) (636 mg, 2.97 mmol, 1 eq.) was dissolved under stirring in 48 mL glacial acetic acid to

give an orange solution. 1.28 mL Br2 (3.99 g, 25.0 mmol, 8.4 eq.) were added and the dark brown solution

was heated quickly until the temperature of the reaction mixture reached 80°C. A colourless solid precipi-

tated from the mixture and the lower thirds of the cooler were filled with orange vapor. After 0.5 h reaction

time the temperature of the oil bath was lowered to 80°C and the mixture was stirred at this temperature

for further 17 h during which more of the colourless solid precipitated. The light orange suspension was

allowed to come to room temperature and the volatiles were condensed into an external cool trap in which

a light yellow solid sublimated. After concentration to dryness 20 ml of a saturated aqueous NaHCO3 solu-

tion were added to the orange solid left in the flask. The substance showed hydrophobic behaviour. 80 mL

CHCl3 were added and the mixture was stirred vigorously for several minutes until the solid was completely

dissolved. The dark orange organic phase was separated from the aqueous phase which was extracted

with 2 x 80 mL CHCl3. The combined organic phases were dried (MgSO4) and concentrated to give the

crude product which was subsequently subjected to column-chromatography (SiO2, CHCl3, UV detection,

staining with I2 vapor). The octabromide 24 (which was eluted from the column prior to the heptabromide

27) was obtained with significant contaminations which could easily be removed by recrystallisation from

warm CHCl3. To do so the impure octabromide 24 was suspended in CHCl3 and treated in an ultra-sonic

bath until the suspended solid was very fine and could be brought into solution completely with a water bath

of 40°C. The clear solution was stored at 4°C for 48 h during which the product precipitated as colourless

needles.

Octabromide 24:[141]

Yield: 349 mg, 0.41 mmol, 15%.
1H NMR (400 MHz, CDCl3): � = 8.51 (s, 2 H), 6.72 (s, 4 H) ppm.
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13C NMR (100.6 MHz, CDCl3): � = 170.2, 120.2, 118.1, 37.5 ppm.

TLC: Rf = 0.83 (SiO2, CHCl3, UV detection, staining with I2 vapor).

Heptabromide 27:

Yield: 1.124 g, 1.47 mmol, 53%.

MS (ESI+): m/z (%) = 788.4 (100, [M+Na]+, Br7-isotope pattern), 804.4 (19, [M+K]+, Br7-isotope pattern).
1H NMR (400 MHz, CDCl3): � = 8.49 (s, 1 H), 8.17 (s, 1 H), 6.73 (s, 2 H), 6.69 (s, 1 H), 4.67 (s, 2 H) ppm.
13C NMR (100.6 MHz, CDCl3): � = 170.1, 169.2, 168.7, 160.7, 160.3, 119.1, 117.9, 38.8, 38.6, 31.4 ppm.

TLC: Rf = 0.59 (SiO2, CHCl3/CH, UV detection, staining with I2 vapor).
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Tetrabromide 25 of the bipyrimidine

7.0 eq. HPO(OEt)2
(Mol. Wt.: 138.10,
d: 1.07 g cm-3),
7.0 eq. DIPEA

(Mol. Wt.: 129.24, 
d: 0.742 g cm-3)

THF
0°C, 1 h
rt, 5 h

N N

N N

C12H10Br4N4
Exact Mass: 525.76

Molecular Weight: 529.85

25

BrBr

Br Br

N N

N N

C12H7Br7N4
Exact Mass: 759.50

Molecular Weight: 766.54

1.0 eq.

27

Br
BrBr

Br

Br
Br

Br

The synthesis of tetrabromide 25 from heptabromide 27 was performed slightly modified to a procedure

reported for the preparation of 25 from octabromide 24.[141]

The N,N-diisopropylethylamine (DIPEA) used in the experiment was stirred overnight with KOH to remove

H2O.

Under N2, 596 mg (0.78 mmol, 1 eq.) of heptabromide 27 were dissolved in 22 mL dry THF. The slightly

yellow solution was cooled in an ice-bath before 0.70 mL diethyl phosphite (752 mg, 5.45 mmol, 7.0 eq.),

were added via syringe, followed by the addition of 0.95 mL of N,N-diisopropylethylamine (DIPEA, 704 mg,

5.45 mmol, 7.0 eq.), via syringe. The slightly brown solution was stirred at 0°C for 1 h before the ice-bath

was removed and the mixture was stirred at room temperature for further 5 h upon which it turned increas-

ingly dark and a colourless solid precipitated. The suspension was poured onto 50 g ice and the resulting

turbid orange mixture was stirred at room temperature until the ice was completely molten. 50 mL of CHCl3
were added, after separation of the organic phase the aqueous phase was extracted with 3 x 50 mL CHCl3
and the combined organic phases were dried (MgSO4). The solvent was evaporated and the resulting oily

residue was dried in vacuo for several hours. Upon addition of 5 mL CH3OH it turned into a suspension of

an orange solution and a fine colourless solid. It was stirred at room temperature for 60 h before the solid

was separated from the solution by filtration. The solid was dissolved in CHCl3, evaporated to dryness and

extracted by stirring another time (5 mL CH3OH, 12 h). After filtration the title compound could be isolated

as a beige solid.

The crude mixture can also be purified via column-chromatography (SiO2, CH2Cl2/CH3OH 100:1 ! 25:1,

UV detection, staining with I2 vapor).

Yield: 285 mg, 0.54 mmol, 69%.

MS (ESI+): m/z (%) = 530.8 (100, [M+H]+, Br4-isotope pattern), 552.7 (12, [M+Na]+), 568.1 (9, [M+K]+).
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1H NMR (400 MHz, CDCl3): � = 7.84 (s, 2 H), 4.62 (s, 8 H) ppm.
13C NMR (100.6 MHz, CDCl3): � = 167.6, 162.2, 120.1, 31.6 ppm.

Elemental Analysis: Anal. Calcd. for C12H10Br4N4 (Mr = 529.85): C, 27.20; H, 1.90; N, 10.57. Found: C,

27.62; H, 1.88; N, 10.75.

TLC: Rf = 0.40 (SiO2, CH2Cl2/CH3OH 25:1, UV detection, staining with I2 vapor).
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Tetra-(tert-butyl)iminodiacetate bipyrimidine 32

10.0 eq. Na2CO3
(Mol. Wt.: 105.99)

CH3CN
reflux, 14 h

N N

N N

C12H10Br4N4
Exact Mass: 525.76

Molecular Weight: 529.85

1.0 eq.

25

BrBr

Br Br

C60H98N8O16
Exact Mass: 1186.71

Molecular Weight: 1187.46

32

C12H23NO4
Exact Mass: 245.16

Molecular Weight: 245.31

4.4 eq.

33

+

tBuOOC

tBuOOC
N N

N N

N

N
tBuOOC

tBuOOC

N

COOtBu

COOtBu

N
COOtBu

COOtBu

H
N

O
O

O
O

In 25 mL CH3CN (HPLC-grade), tetrabromide 25 (38.9 mg, 73.4µmol, 1 eq.), di-(tert-butyl)iminodiacetate

(33) (79.2 mg, 323µmol, 4.4 eq.) and Na2CO3 (77.8 mg, 734µmol, 10 eq.) were suspended, upon which a

slight emission of gas could be observed. The suspension was brought to reflux temperature and stirred for

14 h. Afterwards the yellow mixture was concentrated to dryness and subjected to column-chromatography

(SiO2, CH2Cl2/CH3OH 25:1, UV detection). The signals in the 1H NMR spectrum of the isolated substance

(38.4 mg) pointed towards the successful preparation of the target compound, but also showed a significant

contamination with starting material 33. The substance was taken up in 5 mL CHCl3 and poured onto a

mixture of 0.2 mL 1 M aqueous Na2CO3 and 2 mL H2O. Both phases turned turbid and did not become

clear upon addition of 2 mL H2O and 5 mL CHCl3. The phases were mixed vigorously before the organic

phase was separated and the aqueous was extracted with 4 x 10 mL CHCl3. After the combined organic

phases were dried (MgSO4) and evaporated to dryness via 1H NMR spectroscopy only a slight improve-

ment of the purity of the compound (now 26.5 mg) could be ascertained. Finally a second purification via

column-chromatography (basic Al2O3, CH2Cl2/CH3OH 100:1 ! 9:1, UV detection, staining with I2 vapor)

allowed for the isolation of the sufficiently pure title compound.

Note: Presumably the column-chromatography with basic Al2O3 is the relevant step for purification. If the

previous steps which were undertaken for purification are not performed a higher yield might be possible.

Yield: 6.9 mg, 5.8µmol, 8%.

MS (ESI+): m/z (%) = 1209.7 (100, [M+Na]+).
1H NMR (400 MHz, CDCl3): � = 8.12 (s, 2 H), 4.21 (s, 8 H), 3.52 (s, 16 H), 1.44 (br s, 72 H) ppm.
13C NMR (100.6 MHz, CDCl3): � = 170.6, 170.3, 162.9, 117.6, 81.2, 59.6, 56.1, 28.3 ppm.

TLC: Rf = 0.45 (Al2O3, CH2Cl2/CH3OH 15:1, UV detection, staining with I2 vapor).
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8.3 Sodium Cryptates

Enantiopure, diol-functionalised sodium cryptate Na-5

CH2Cl2 / H2O
20 : 1 (v/v)

37°C, 22hN

N

N

N

N
N

N
Na

N

O
O

+

Br- +
O
O

OBn

OBn

C8Cl2N2O2
Exact Mass: 225.93

Molecular Weight: 227.00

9.0 eq.

39

C54H48BrN8NaO6
Exact Mass: 1006.28

Molecular Weight: 1007.90

1.0 eq.

Na-6

N

N

N

N

N
N

N
Na

N

O
O

+

Br-O
O

OH

OH

C40H36BrN8NaO6
Exact Mass: 826.18

Molecular Weight: 827.66

Na-5

O

O

CN

CN

Cl

Cl

The benzyl-protected sodium cryptate Na-6 (12.8 mg, 12.6µmol, 1.0 eq.) was dissolved in 6 mL CH2Cl2 to

give a slightly yellow solution. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (39) (DDQ, 25.9 mg, 114µmol,

9.0 eq.) was added in portions, upon which the mixture turned red. It was diluted with additional 4 mL

CH2Cl2 and 0.5 mL H2O, and heated to 37°C bath temperature. After 22 h the mixture was allowed to

come to room temperature and the volatiles were removed in vacuo. The resulting red solid was taken up

in 7 mL CH3CN (HPLC-grade), poured onto 7 mL of a saturated aqueous solution of NaHCO3 and extracted

with 3 x 15 mL CHCl3. The combined organic phases were dried (Na2SO4), evaporated to dryness and the

resulting crude product was purified by column-chromatography (Al2O3, CH2Cl2/CH3OH 25:1 ! CH3OH,

UV detection).

Yield: 4.8 mg, 5.8µmol, 45%.

MS (ESI+): m/z (%) = 715.4 (7, [M-2O-Br]+), 731.4 (11, [M-O-Br]+), 747.4 (100, [M-Br]+).
1H NMR (400 MHz, CD3OD): � = 8.02-7.80 (m, 10 H), 7.56-7.44 (m, 6 H), 4.26 (d, J = 12.0 Hz, 2 H), 4.15-

4.08 (m, 2 H), 3.95-3.82 (m, 6 H), 3.75-3.66 (m, 2 H), 3.58 (d, J = 12.9 Hz, 2 H), 3.50-3.39 (m, 4 H) ppm.

The spectrum is shown in the appendix (see page 265).
1H-1H COSY NMR (400 MHz, CD3OD): The spectrum is shown in the appendix (see page 266).

TLC: Rf = 0.12 (SiO2, CH2Cl2/CH3OH 1:1, UV detection).
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Enantiopure, twofold disulfide-functionalised sodium cryptate Na-9

CH2Cl2
rt, 16 h
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C4H7NO3S2
Exact Mass: 180.99

Molecular Weight: 181.23

4.57 eq.

10

C O
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Molecular Weight: 1190.12
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C44H43BrN9NaO9S2
Exact Mass: 1007.17

Molecular Weight: 1008.89

Na-42

Isocyanate 10 (4.8 mg, 26.5µmol, 4.57 eq.) and the diol-functionalised sodium cryptate Na-5 (4.8 mg,

5.8µmol, 1.0 eq.) were dissolved in 2 mL CH2Cl2 each. The latter solution was added dropwise to the

solution of isocyanate 10 and the mixture was stirred at room temperature overnight. Subsequently the

volatiles were completely removed in vacuo. The resulting residue was purified by column-chromatography

(SiO2, CH2Cl2/CH3OH 50:1 ! 15:1, UV detection) to yield separately the disulfide-functionalised sodium

cryptate Na-9 and the only mono-functionalised sodium cryptate Na-42 as byproduct.

Note: Due to the small amounts isolated no yield could be determined.

MS (ESI+): m/z (%) = 913.3 (7), 983.1 (20), 1061.1 (6, [M-3O-Br]+) 1109.0 (100, [M-Br]+).
1H NMR (400 MHz, CD2Cl2): The spectrum is shown in the appendix (see page 267).

TLC: Rf = 0.49 (SiO2, CH2Cl2/CH3OH 7:1, UV detection, staining with I2 vapor).

Byproduct: Enantiopure disulfide-functionalised sodium cryptate Na-42:

MS (ESI+): m/z (%) = 928.1 (100, [M-Br]+).
1H NMR (400 MHz, CD2Cl2): The spectrum is shown in the appendix (see page 268).

TLC: Rf = 0.44 (SiO2, CH2Cl2/CH3OH 7:1, UV detection, staining with I2 vapor).
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Azide-functionalised sodium cryptate Na-2
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O O O O N3
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C50H55BrN13NaO8
Exact Mass: 1067,34

Molecular Weight: 1068,95

Na-2

1.1 eq. DIPEA
(Mol. Wt.: 129.24, 
d: 0.742 g cm-3)

CH3CN/DMF
rt, 17 h

N
O

O

The amino-functionalised sodium cryptate Na-1 (16.7 mg, 21.0µmol, 1.0 eq.) was suspended in 5 mL

CH3CN (HPLC-grade), the resulting slightly yellow mixture was stirred several minutes. As also upon ad-

dition of 1.2 eq. N,N-diisopropylethylamine (DIPEA, 2.97 mg, 23.1µmol, 4.0µL) the starting material was

not completely dissolved, 2 mL DMF (peptide grade) were added. The resulting clear solution was stirred

a few more minutes before the NHS-ester 43 (8.16 mg, 21.0µmol, 1.0 eq., dissolved in 0.5 mL CH3CN

(HPLC-grade)) was added. The mixture was diluted with 1 mL CH3CN (HPLC-grade) and stirred at room

temperature for 17 h. Afterwards the solvents were removed in vacuo and the resulting yellow to orange oil

was dried thoroughly. The crude product was purified by column-chromatography (SiO2, CH2Cl2/CH3OH

25:1 ! 7:1, UV detection) to give the azide-functionalised sodium cryptate Na-2.

Yield: 9.1 mg, 8.5µmol, 40%.

MS (ESI+): m/z (%) = 988.6 (100, [M-Br]+).
1H NMR (400 MHz, CD3OD): � = 9.09 (br, 1 H), 8.72 (d, J = 2.6 Hz, 1 H), 8.50 (d, J = 2.5 Hz, 1 H), 8.07

(br, 1 H), 7.91 (dd, J = 7.8, 2.1 Hz, 1 H), 7.87-7.73 (m, 8 H), 7.54 (dd, J = 7.8, 2.1 Hz, 1 H), 7.44-7.34 (m,

5 H), 4.40-4.25 (m, 2 H), 4.01-3.88 (m, 4 H), 3.77-3.33 (m, 25 H), 3.27-3.19 (m, 1 H), 2.67 (s, H), 2.54 (t,

J = 6.2 Hz, 2 H) ppm. The spectrum is shown in the appendix (see page 264).

TLC: Rf = 0.42 (SiO2, CH2Cl2/CH3OH 7:1, UV detection).
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Lysine-functionalised sodium cryptate Na-16
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In 3 mL dry DMF the sodium cryptate Na-1 (15.1 mg, 19µmol, 1.0 eq.) was dissolved and NaHCO3

(2.4 mg, 29µmol, 1.5 eq.) was added. The slightly yellow solution was warmed to 30°C bath temperature.

After addition of the isothiocyanate-functionalised lysine derivative 15 (23.0 mg, 56µmol, 3.0 eq.) in 2 mL

dry DMF, the mixture was heated to 40°C and stirred for 17.5 h before the solvent was removed in vacuo

and the remaining solid was dried thoroughly. The crude product was subjected to column-chromatography

(SiO2, CH2Cl2/CH3OH 7:1, UV detection) to yield the title compound as an off-white solid.

Yield: 11.6 mg, 9.6µmol, 51%.

MS (ESI+): m/z (%) = 741.3 (8), 927.3 (9), 1125.3 (100, [M-Br]+), 1141.2 (13, [M-Na+K-Br]+), 1147.2.(12),

1173.2 (16).
1H NMR (500 MHz, CD3OD + CD2Cl2): The spectrum is shown in the appendix (see page 269).
1H-1H COSY NMR (500 MHz, CD3OD + CD2Cl2): The spectrum is shown in the appendix (see page 270).

TLC: Rf = 0.09 (SiO2, CH2Cl2/CH3OH 7:1, UV detection).
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Bromide-functionalised sodium cryptate Na-28

10.0 eq. Na2CO3
(Mol. Wt.: 105.99)

CH3CN
reflux, 18 h

N N

N N

C12H10Br4N4
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C24H22N6
Exact Mass: 394.19

Molecular Weight: 394.47

1.0 eq.

44

+

In a two-necked flask, tetrabromide 25 (123 mg, 233µmol, 1.0 eq.) and Na2CO3 (247 mg, 2.33 mmol,

10.0 eq.) were given into 130 mL CH3CN (HPLC-grade) and the resulting mixture was brought to reflux

temperature. A total of 91.8 mg (233µmol, 1.0 eq.) of the macrocyclus 44[311] was added in portions over

a period of 3.5 h. Afterwards the mixture was refluxed for further 14.5 h, then it was filtered hot. The

solid residue was washed with CH3CN (HPLC-grade) and the organic phases were evaporated to dryness

before the crude product was purified by column-chromatography (SiO2, CH2Cl2/CH3OH 25:1 ! 4:1, UV

detection). Prior to the title compound remainders of the starting material 25 (39.7 mg, 74.9µmol, 32%)

and subsequently the byproduct, sodium dicryptate Na-Na-26 (20.4 mg, 17.0µmol, 7%), were eluted from

the column.

Yield: 54.7 mg, 63.2µmol, 51%.

MS (ESI+): m/z (%) = 741.1 (56, [M-Br+Cl-Br]+, BrCl-isotope pattern), 785.0 (100, [M-Br]+, Br2-isotope pat-

tern), 825.0 (14, Br2-pattern), 870.9 (26, BrCl-isotope pattern).
1H NMR (400 MHz, CD3OD): � = 8.08 (m, 4 H), 7.90 (t, J = 7.8 Hz, 4 H), 7.74 (s, 2 H), 7.40 (m, 4 H), 4.70-

4.66 (m, 4 H), 3.96-3.82 (m, 12 H) ppm. The spectrum is shown in the appendix (see page 271).
1H-1H COSY NMR (400 MHz, CD3OD): The spectrum is shown in the appendix (see page 271).
13C NMR (100.6 MHz, CD3OD + CDCl3): � = 171.4, 168.9, 162.6, 159.7, 156.7, 139.6, 125.3, 122.1, 121.8,

60.3, 59.4, 31.5 ppm.

TLC: Rf = 0.36 (SiO2, CH2Cl2/CH3OH 9:1, UV detection).
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Di-(tert-butyl)iminodiacetate-functionalised sodium cryptate Na-31

C12H23NO4
Exact Mass: 245.16

Molecular Weight: 245.31
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C60H74BrN12NaO8
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Molecular Weight: 1194.20

Na-31

COOtBuN
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N COOtBu
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In 15 mL CH3CN (HPLC-grade), 17.1 mg (19.8µmol, 1.0 eq.) of the bromide-functionalised sodium cryptate

Na-28, 10.7 mg (43.6µmol, 2.2 eq.) di-(tert-butyl)iminodiacetate 33 and 10.5 mg (99.0µmol, 5.0 eq.)

Na2CO3 were brought to reflux temperature. The suspension which at first was slightly yellow gradually

turned dark and finally a solid started to precipitate. After 22 h reaction time the suspension was concen-

trated to dryness and the resulting crude product was subjected to column-chromatography (basic Al2O3,

CH2Cl2/CH3OH 100:1 ! 9:1, UV detection). The product was obtained as a slightly yellow solid.

Yield: 3.8 mg, 3.2µmol, 16%.

MS (ESI+): m/z (%) = 1113.6 (12, [M-Br]+).
1H NMR (400 MHz, CD3OD): � = 8.11-8.06 (m, 4 H), 7.93-7.87 (m, 6 H), 7.43-7.38 (m, 4 H), 4.16 (s, 4 H),

3.95-3.81 (m, 12 H), 3.52 (s, 8 H), 1.38 (s, 36 H) ppm. The spectrum is shown in the appendix (see page

273).

TLC: Rf = 0.16 (SiO2, CH2Cl2/CH3OH 9:1, UV detection).
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Methoxy-functionalised sodium cryptate Na-34

1.) 10.0 eq. Na2CO3
(Mol. Wt.: 105.99)

CH3CN
reflux, 88 h

2.) CH3OH
40°C, 10 min.

N N

N N

C12H10Br4N4
Exact Mass: 525.76

Molecular Weight: 529.85

1.0 eq.

25

BrBr

Br Br
N

N N

N N

N

N
N

N
Na

N

+

Br-

C38H36BrN10NaO2
Exact Mass: 766.21
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In a 1 L Schlenk flask 98.0 mg of tetrabromide 25 (185µmol, 1.0 eq.), 72.9 mg of macrocyclus 44[311]

(185µmol, 1.0 eq.) and 196 mg of Na2CO3 (0.185µmol, 10 eq.) were dried in vacuo (membrane pump),

for several hours. Afterwards the solids were set under Ar and 550 mL CH3CN (HPLC-grade) were added.

The suspension was brought to reflux and stirred for 88 h after which the solvent was removed in vacuo and

the resulting solid was dried. 100 mL CH3OH were added, the mixture was stirred for 10 minutes before the

volatiles were evaporated. During this the mixture turned dark green, but the colouring disappeared upon

column-chromatography (SiO2, CH2Cl2/CH3OH 25:1 ! 9:1, UV detection) from which the product was

isolated as a solid of a rather dark yellow colour, compared to other sodium cryptates. After the product

the byproduct, sodium dicryptate Na-Na-26 (11.3 , 9.41µmol, 5%) was eluted.

Yield: 23.7 mg, 30.9µmol, 17%.

MS (ESI+): m/z (%) = 657.1 (12, [M-2CH3-Br]+), 687.2 (100, [M-Br]+).
1H NMR (400 MHz, CD3OD): � = 8.10-8.05 (m, 4 H), 7.93-7.86 (m, 4 H), 7.65 (s, 2 H), 7.42-7.37 (m, 4 H),

4.70-4.66 (m, 4 H), 3.93-3.81 (m, 12 H), 3.56-3.49 (m, 6 H) ppm. The spectrum is shown in the appendix

(see page 272).
13C NMR (100.6 MHz, CD3OD): � = 171.1, 170.6, 162.4, 159.9, 156.7, 139.6, 125.3, 121.8, 119.3, 74.7,

60.3, 59.6, 59.5 ppm.

TLC: Rf = 0.26 (SiO2, CH2Cl2/CH3OH 9:1, UV detection).
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8.4 Lanthanoid Cryptates

Amino-functionalised lanthanoid cryptates Ln-1: general procedure[160]
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C47H49F12N10O17Ln

Ln = Sm, Eu, Tb, Yb, Lu

Ln-1

1.) 1.7 eq. Ln(X)3 · n H2O
CH3CN, reflux

2.) rp-HPLC
CH3CN/H2O/TFA 6 H2O

Sodium cryptate Na-1[161][160] (1.0 eq.) and lanthanoid salt Ln(X)3 · n H2O (1.7 eq.) were suspended in

CH3CN (HPLC-grade) and heated to reflux for at least 40 h. Volatile components of the mixture were re-

moved in vacuo and the resulting residue was subjected to semi-preparative reversed-phase HPLC (Lichro-

spher RP-18e (Merck), 250x10 mm - 10µm, flow rate: 3 mL min-1, UV detection: 300 nm) and program

A. The product was isolated from the pure fractions as off-white or faintly yellow solid after evaporation to

dryness in vacuo at room temperature.

Note: The exact nature and number of bound anions and solvent molecules could not be determined

unambiguously. 19F NMR data strongly indicate that at least one CF3COO- is bound and from general ex-

perience the assumption of several water molecules being attached after HPLC purification is reasonable.

Amino-functionalised samarium cryptate Sm-1

10.0 mg of sodium cryptate Na-1 (13.0µmol, 1.0 eq.) and 8.1 mg SmCl3 · 6 H2O (Mol. Wt.: 364.81 g/mol,

22µmol, 1.7 eq.) in 15 mL CH3CN (HPLC-grade), 65 h reflux.

C47H49F12N10O17Sm

Molecular Weight: 1404.29

Yield: 7.6 mg, 5.4µmol, 42%.
1H NMR (400 MHz, CD3OD): � = 9.47 (d, J = 7.9 Hz, 1 H), 9.36 (d, J = 8.1 Hz, 1 H), 9.03 (d, J = 8.0 Hz,

1 H), 8.98-8.88 (m, 2 H), 8.84 (t, J = 8.0 Hz, 1 H), 8.46 (d, J = 2.4 Hz, 1 H), 8.24-7.95 (m, 6 H), 7.92 (d,

J = 7.8 Hz, 1 H), 9.47 (d, J = 7.9 Hz, 1 H), 7.75 (dd, J = 7.8, 2.0 Hz, 1 H), 7.01 (d, J = 12.6 Hz, 1 H), 6.73 (d,

J = 12.6 Hz, 1 H), 6.66-6.58 (m, 2 H), 3.66 (t, J = 5.9 Hz, 2 H), 3.15 (t, J = 6.0 Hz, 2 H), 3.01-2.89 (m, 2 H),

2.60-2.50 (m, 2 H), 1.49-1.35 (m, 2 H), 0.95-0.77 (m, 2 H), 0.61 (d, J = 15.1 Hz, 1 H), 0.50 (d, J = 15.3 Hz,

1 H) ppm. The spectrum is shown in the main text (see page 39).
19F NMR (376 MHz, CD3OD): � = -77.4 (s) ppm.

MALDI-MS (2,5-dihydroxybenzoic acid (DHB), RP mode, pos. mode): m/z (%) = 992.64 (26, [M - O +
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[DHB-H]- + e- + 11 (from reaction with COH2)]+, Sm-isotope pattern), 1118.21 (100, [M - 2 O + 2 [DHB-

H]-]+, Sm-isotope pattern).

HR ESI-MS (pos. mode): [SmC39H36N10O3+HCOO-]2+: calculated: m/z = 444.60674,

found: m/z = 444.60658.

HPLC: Rf = 11.8 min (analytical reversed-phase HPLC, program A).

Amino-functionalised europium cryptate Eu-1

35.0 mg of sodium cryptate Na-1 (44.0µmol, 1.0 eq.) and 27.4 mg EuCl3 · 6 H2O (Mol. Wt.: 366.41 g/mol,

74.8µmol 1.7 eq.) in 17 mL CH3CN (HPLC-grade), 70 h reflux.

C47H49F12N10O17Eu

Molecular Weight: 1405.89

Yield: 14.3 mg, 10.2µmol, 23%.
1H NMR (400 MHz, CD3OD): � = 27.04 (br s, 1 H), 26.15 (br s, 1 H), 23.92 (br s, 2 H), 13.31 (s, 2 H),

10.39-10.04 (m, 2 H), 9.98-9.88 (m, 1 H), 9.88-9.77 (m, 2 H), 9.29 (t, J = 7.8 Hz, 1 H), 9.12 (d, J = 7.8 Hz,

1 H), 7.15 (s, 1 H), 7.05-6.75 (m, 3 H), 5.48-5.40 (m, 1 H), 5.10-5.02 (m, 1 H), 4.28-4.19 (m, 1 H), 4.18-4.09

(m, 1 H), 3.93-3.76 (m, 3 H), 3.69-3.61 (m, 1 H), 3.39 (t, J = 6.0 Hz, 2 H), 1.76-1.66 (m, 1 H), 1.17-1.10 (m,

1 H), -8.79-(-8.99) (m, 1 H), -9.51-(-9.70) (m, 1 H), -11.19 (br s, 1 H), -12.82 (br s, 1 H) ppm. The spectrum

is shown in the main text (see page 39).
19F NMR (376 MHz, CD3OD): � = -77.5 (s) ppm.

MALDI-MS (2,5-dihydroxybenzoic acid (DHB), RP mode, pos. mode): m/z (%) = 966.15 (100, [M - 2 O - H+

+ CF3OO- + CH3CN]+, Eu-isotope pattern), 1119.16 (6, [M - 2 O + CF3OO- + [ox. DHB] + CH3CN + e-]+).

HR ESI-MS (pos. mode): [EuC39H36N10O3+HCOO-]2+: calculated: m/z = 445.10749,

found: m/z = 445.10750.

HPLC: Rf = 11.7 min (analytical reversed-phase HPLC, program A).

Amino-functionalised terbium cryptate Tb-1

Synthesis and analytical data of Tb-1 have already been reported elsewhere.[162]

30.0 mg of sodium cryptate Na-1 (37.7µmol, 1.0 eq.) and 23.9 mg TbCl3 · 6 H2O (Mol. Wt.: 373.38 g/mol,

64.1µmol 1.7 eq.) in 17 mL CH3CN (HPLC-grade), 40 h reflux.

C47H49F12N10O17Tb

Molecular Weight: 1412.85

Yield: 14.6 mg, 10.3µmol, 27%.
1H NMR (500 MHz, CD3OD): � = 228.45, 186.01, 86.05, 70.51, 63.09, 51.93, 43.10, 37.51, 33.04, 24.90,

9.13, -14.38, -19.22, -21.77, -22.44, -59.14, -72.76, -95.46, -95.83, -102.88, -110.60, -211.95, -212.47,

-273.68, -277.62, -307.42, -328.51 ppm. In the middle region of the spectrum not all signals could be

identified unambiguously. The spectrum is shown in the main text (see page 40).
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19F NMR (376 MHz, CD3OD): � = -77.0 (s) ppm.

MALDI-MS (2,5-dihydroxybenzoic acid (DHB), RP mode, pos. mode): m/z (%) = 999.68 (15, [M - O +

[DHB-H]- + e- + 11 (from reaction with COH2)]+), 1125.23 (100, [M - 2 O + 2 [DHB-H]-]+), 1141.24 (4, [M -

O + 2 [DHB-H]-]+).

HR ESI-MS (pos. mode): [TbC39H36N10O3+HCOO-]2+: calculated: m/z = 448.10954,

found: m/z = 448.10949.

HPLC: Rf = 11.4 min (analytical reversed-phase HPLC, program A).

Amino-functionalised ytterbium cryptate Yb-1

Synthesis and analytical data of Yb-1 have already been reported elsewhere.[160]

30.0 mg of sodium cryptate Na-1 (37.7µmol, 1.0 eq.) and 25.2 mg YbCl3 · 6 H2O (Mol. Wt.: 387.49 g/mol,

64.1µmol 1.7 eq.) in 15 mL CH3CN (HPLC-grade), 186 h reflux.

C47H49F12N10O17Yb

Molecular Weight: 1426.97

Yield: 14.0 mg, 9.81µmol, 26%.
1H NMR (400 MHz, CD3CN): � = 153.5 (2 H), 135.3-134.0 (2 H), 113.2 (2 H), 69.1/69.0 (2 H), 61.8/61.4

(2 H), 34.1/33.9 (2 H), 22.6/21.6 (2 H), 12.8/10.9 (2 H), 12.04/11.97 (2 H), 0.02 (1 H), -3.2/-4.1 (2 H), -12.8/-

13.7 (2 H), -13.2/14.6 (2 H), -15.6/-15.9 (2 H), -66.0/-69.4 (2 H) ppm. The signals representing the four

protons of the ethylene group could not be identified unambiguously, as in the corresponding region of the

spectrum there are several solvent signals. The assignment of the signals is discussed in the main text

(see chapter 3.3.4).
19F NMR (376 MHz, CD3OD): � = -77.0 (s, 9 F), -114.4 (s, 3 F) ppm.

MS (ESI+): m/z (%) = 489.7 (100, [M + CF3OO- + e-]2+), 560.8 (58).

MALDI-MS (2,5-dihydroxybenzoic acid (DHB), RP mode, pos. mode): m/z (%) = 987.24 (55, [M - 2 O - H+

+ CF3OO- + CH3CN]+, Yb-isotope pattern), 1002.24 (8, [M - O - H+ + [DHB-H]-]+, 1014.71 (8), 1140.27

(100, [M - 2 O + CF3OO- + [ox. DHB] + CH3CN + e-]+, Yb-isotope pattern).

HPLC: Rf = 11.4 min (analytical reversed-phase HPLC, program A, setup A), 12.7 min (analytical reversed-

phase HPLC, program A, setup B).

Amino-functionalised lutetium cryptate Lu-1

Synthesis and analytical data of Lu-1 have already been reported elsewhere.[160]

20.0 mg of sodium cryptate Na-1 (25.0µmol, 1.0 eq.) and 27.0 mg Lu(OTf)3 (Mol. Wt.: 622.17 g/mol,

43µmol 1.7 eq.) in 15 mL CH3CN (HPLC-grade), 168 h reflux.

C47H49F12N10O17Lu

Molecular Weight: 1428.89

Yield: 18.3 mg, 12.8µmol, 51%.
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1H NMR (400 MHz, CD3OD): � = 10.0 (t, J = 4.6 Hz, 1 H), 8.90 (d, J = 2.3 Hz, 1 H), 8.70 (d, J = 2.4 Hz, 1 H),

8.48 (dd, J = 1,7, 7.8 Hz, 1 H), 8.33-8.28 (m, 2 H), 8.23-8.05 (m, 8 H), 7.62-7.55 (m, 4 H), 4.79-4.71 (m,

4 H), 4.13-3.93 (m, 6 H), 3.84 (d, J = 13.1 Hz, 1 H), 3.80-3.64 (m, 5 H), 3.23 (t, J = 5.3 Hz, 1 H) ppm.

MS (ESI+): m/z (%) = 360.4 (87), 478.3 (79), 561.3 (84), 697.3 (100).

MALDI-MS (2,5-dihydroxybenzoic acid (DHB), RP mode, pos. mode): m/z (%) = 988.24 (44, [M - H+ - 2 O +

CF3OO- + CH3CN]+), 1003.23 (6, [M - O - H+ + [DHB-H]-]+), 1101.24 (7, [M - 2 O + CF3OO- + [DHB-H]-]+),

1015.74 (28), 1141.28 (100, [M - 2 O + CF3OO- + [ox. DHB] + CH3CN + e-]+).

HPLC: Rf = 12.6 min (analytical reversed-phase HPLC, program A, setup B).
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Azide-functionalised europium cryptate Eu-2
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Caution: Organic azides are potentially explosive, appropriate measures should be undertaken when the

reaction is performed.

3.3 mg of the azide-functionalised sodium cryptate Na-2 (3.1µmol, 1.0 eq.) and 2.8 mg EuCl3 · 6 H2O

(7.8µmol, 2.5 eq.) were suspended in 3 mL CH3CN (HPLC-grade) and brought to reflux temperature.

Upon heating the mixture became turbid and a pale solid started to precipitate. After 18 h the mixture

was allowed to cool to room temperature and subsequently the solvent was removed in vacuo. The crude

product was purified by semi-preparative reversed-phase HPLC (Lichrospher RP-18e (Merck), 250x10 mm

- 10µm, flow rate: 3 mL min-1, UV detection: 300 nm) and program A. The product was isolated from the

pure fractions in vacuo at room temperature.

Note: The exact nature and number of bound anions and solvent molecules could not be determined

unambiguously. 19F NMR data strongly indicate that at least one CF3COO- is bound and from general ex-

perience the assumption of several water molecules being attached after HPLC purification is reasonable.

Yield: 3.2 mg, 2.0µmol, 65%.
1H NMR (400 MHz, CD3OD): � = 27.19 (br s, 1 H), 26.31 (br s, 1 H), 23.93 (br s, 2 H), 13.32 (d, J = 8.1 Hz,

2 H), 10.43-10.05 (m, 2 H), 10.03-9.66 (m, 3 H), 9.33 (t, J = 7.7 Hz, 1 H), 9.16 (d, J = 8.0 Hz, 1 H), 7.22-6.73

(m, 5 H), 5.47-5.33 (m, 1 H), 5.12-5.03 (m, 1 H), 4.28-4.07 (m, 2 H), 3.97-3.57 (m, 8 H), 3.55-3.44 (m, 1 H),

2.99 (t, J = 4.9 Hz, 2 H), 2.68-2.50 (m, 2 H), 1.65 (d, J = 7.7 Hz, 1 H), 1.15 (d, J = 7.6 Hz, 1 H), -8.76-(-8.90)

(m, 1 H), -9.42-(-9.62) (m, 1 H), -11.16 (br s, 1 H), -12.64 (br, 1 H) ppm. Not all signals representing the

protons of the PEG-linker could be identified unambiguously as in the corresponding region of the spec-
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trum there are several solvent signals. The spectrum is shown in the main text (see page 49).
19F NMR (376 MHz, CD3OD): � = -77.4 (s) ppm.

MALDI-MS (sinapinic acid (SA), RP mode, pos. mode): m/z = 1101.72 (9, [M - O + 2 e-]+, Eu-isotope pat-

tern), 1309.74 (100, [M - 2 O + [SA-H]- + e-]+, Eu-isotope pattern), 1533.51 (17, [M - 2 O + [SA-H]+ + SA +

e-]+).

MALDI-MS (2,5-dihydroxybenzoic acid (DHB), RP mode, pos. mode): m/z = 1238.42 (100, [M - 2 O +

[DHB-H]+ + e-]+, Eu-isotope pattern).

Rf = 13.9 min (analytical reversed-phase HPLC, program A).
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NHS-functionalised europium cryptate Eu-3
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With 10 mL CH3CN (HPLC-grade) the bis-NHS-functionalised PEG-linker 45 (1.6 mg, 3.3µmol, 1.0 eq.)

was transferred into a 1000 mL three-necked flask equipped with a magnetic stirrer. The solution was

diluted with additional 400 mL of solvent. The europium cryptate Eu-1 (4.7 mg, 3.3µmol, 1.0 eq.) was

transferred into a 500 mL three-necked flask and dissolved in a total of 265 ml CH3CN (HPLC-grade).

100µL of a freshly prepared 6.33 mM solution of N,N-diisopropylethylamine (DIPEA) in CH3CN (HPLC-

grade) (0.47 mg, 3.67µmol, 0.633µL, 1.1 eq.) were added to the latter solution. Via a thin Teflon tube the

diluted europium cryptate Eu-1 was added with a low drop rate to the stirred solution of 45. After 19 days

the solution had been completely transferred and additional 100 mL CH3CN (HPLC-grade) were filled in

the empty flask to transfer the remainders of the cryptate, which was done in the course of one more day.

Subsequently the mixture was stirred for 13 days at room temperature before the solvent was removed in

vacuo and the remaining orange residue was dried thoroughly.

1H NMR: The spectrum is shown in the main text (see page 51).
19F NMR (376 MHz, CD3CN): � = -75.8 (s) ppm.

MS (ESI+): m/z (%) = 552.2 (17, [M - O - [C4NO2H4]]2+), 560.2 (60, [M - [C4NO2H4]]2+), 1201.4 (13, [M - O

- H+ + e-]+), 1217.4 (100, [M - H+ + e-]+). The spectrum is shown in the appendix (see page 276).
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BCN-functionalised europium cryptate Eu-4
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The HPLC-purified europium cryptate Eu-1 (5.2 mg, 3.7µmol, 1.0 eq) was dissolved in 0.2 mL CH3CN

(HPLC-grade). A solution of 1.61 mg (5.5µmol, 1.5 eq) (1R,8S,9S)-bicyclo[6.1.0]non-4-yn-9-ylmethyl N-

succinimidyl carbonate 46 in 0.1 mL CH3CN (HPLC-grade) was added dropwise and the mixture was di-

luted with additional 0.3 mL of solvent. 100µL of a freshly prepared 9.6 mM solution of N,N-diisopropyl-

ethylamine (DIPEA) in CH3CN (HPLC-grade) (0.7 mg, 5.5µmol, 0.96µL, 1.5 eq.) were added and the

resulting mixture was stirred at room temperature for 24 h. Afterwards the solvents were removed in a

stream of air and the resulting product was dried in vacuo to remove residual solvents and excess DIPEA.

Note: The exact nature and number of bound anions and solvent molecules could not be determined

unambiguously. The observation of additional strongly shifted signals in the 1H NMR spectrum which do

not belong to the europium cryptate itself suggest that a small organic molecule is bound directly to the EuIII.

1H NMR: The spectrum is shown in the main text (see page 54).

MALDI-MS (2,5-dihydroxybenzoic acid (DHB), RP mode, pos. mode): m/z = 1016.72 (14), 1142.46 (100,

[M - 2 O + [DHB-H]- + e-]+), 1158.49 (27, [M - O + [DHB-H]- + e-]+), 1304.50 (20, [M + DHB + DIPEA +

2 e-]+).

HPLC: Rf = 16.0 min (see main text page 53, analytical reversed-phase HPLC, program A).
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Enantiopure, diol-functionalised terbium cryptate Tb-5
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The sodium cryptate Na-5 (15.3 mg, 18.5.µmol, 1.0 eq.) and TbCl3 · 6 H2O (10.4 mg, 27.8µmol, 1.5 eq.)

were suspended in 8 mL CH3CN (HPLC-grade) and brought to reflux temperature. After 60 h the mixture

was allowed to come to room temperature and subsequently the volatiles were removed in vacuo and the

resulting pale yellow solid was dried thoroughly. The crude product was dissolved in a minimum amount

of CH3OH, filtered over cotton and overlayered with Et2O. Upon storage at 4°C overnight a pale yellow

solid precipitated which was collected via filtration (0.45µm nylon membrane filter (GE Healthcare Life

Sciences)), washed with cold Et2O and dried.

Yield: 18.2 mg, 18.4µmol, 99%.
1H NMR: The middle region of the spectrum is shown in the main text (see page 78).

MALDI-MS (2,5-dihydroxybenzoic acid (DHB), RP mode, pos. mode): m/z (%) = 1065.37 (72, [M - O +

[DHB-H]- + CH3CH2O-]+), 1157.27 (100, [M - 2 O - H+ + 2 [DHB-H]-]+), 1173.29 (9, [M - O - H+ + 2 [DHB-

H]-]+).

HR ESI-MS (pos. mode): [TbC40H36N8O6+HCOO-]2+: calculated: m/z = 464.09884, found: m/z = 464.09876.

HPLC: Rf = 11.4 min (analytical reversed-phase HPLC, program A).
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Lysine-functionalised lanthanoid cryptates Ln-16

Method A: From the HPLC-purified amino-functionalised lanthanoid cryptates Ln-1
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Representative experiments performed for the preparation of Ln-16 (Ln = Sm, Eu, Tb, Yb) are described

below. DIPEA was used as a 0.1 M solution in CH3OH. For purification the material was dissolved in

CH3CN/1 vol.-%TFA in H2O (1:1, v/v), filtered and subjected to semi-preparative reversed-phase HPLC

(Lichrospher RP-18e (Merck), 250x10 mm - 10µm, flow rate: 3 mL min-1, UV detection: 300 nm). If pro-

gram A was used, usually the product obtained from any run after the first one was contaminated with a not

identified compound, and needed to be subjected to HPLC another time. This problem could be circum-

vented by the use of the elongated program B. The product was isolated as off-white or faintly yellow solid

after evaporation of the pure fractions to dryness in vacuo at room temperature. In many cases unreacted

Ln-1 could be isolated after HPLC.

Lysine-functionalised samarium cryptate Sm-16

2.9 mg of Sm-1 (2.1µmol, 1.0 eq.) were dissolved in 0.5 mL CH3OH. 62.2µL of the 0.1 M solution of

DIPEA (6.22µmol, 1.5 + 1.5 eq.) were added and the mixture was stirred for several minutes before 1.3 mg

(3.1µmol, 1.5 eq.) of 15 were added dropwise in a total of 0.3 mL of CH3OH/CH2Cl2 (1:1, v/v). After

30 minutes, 31.1µL of the 0.1 M solution of DIPEA (3.11µmol, 1.5 eq.) were added, followed by another

portion of 15 (1.3 mg, 3.1µmol, 1.5 eq.), added dropwise in a total of 0.3 mL of CH3OH/CH2Cl2 (1:1, v/v).

19 h after the first addition of 15 the volatiles were removed in a stream of air and the resulting residue

was dried thoroughly in vacuo. For purification a reversed-phase HPLC as described above with program

A was performed.
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C67H66F9N12O17Sm

Molecular Weight: 1664.72

Yield: 0.9 mg, 0.5µmol, 24%.
1H NMR: The spectrum is shown in the main text (see page 105).
19F NMR (376 MHz, CD3OD): � = -77.4 (s) ppm.

MALDI-MS (2,5-dihydroxybenzoic acid (DHB), RP mode, pos. mode): m/z (%) = 1376.27 (100, [M - 2 O -

H+ + [DHB-H]-]+, Sm-isotope pattern).

HR ESI-MS (pos. mode): [SmC61H57N12O7S-H++HCOO-]+: calculated: m/z = 1298.33623,

found: m/z = 1298.33181.

HPLC: Rf = 17.1 min (analytical reversed-phase HPLC, program A).

Lysine-functionalised europium cryptate Eu-16

In this experiment a solution of reagent 15 was continuously added to the starting material with the aid of

a dropping funnel:

In a 50 mL three-necked flask 2.1 mg of Eu-1 (1.5µmol, 1.0 eq.) were dissolved in 5 mL CH3OH. 53.3µL

of the 0.1 M solution of DIPEA (5.33µmol, 1.5 + 2.1 eq.) were added. 1.28 mL of a 1 mg/mL solution of 15

in dry CH2Cl2 (3.11µmol, 2.1 eq.) were transferred into a dropping funnel and diluted with 1 mL CH2Cl2
and 2 mL HPLC-grade CH3OH. The resulting mixture was added to the solution of Eu-1 over the course

of 20 minutes. 15 h after the start of the addition of 15 the volatiles were removed in a stream of air and

the resulting residue was dried thoroughly in vacuo. For purification a reversed-phase HPLC as described

above with program A was performed.

C67H66F9N12O17Eu

Molecular Weight: 1666.32

Yield: 0.5 mg, 0.3µmol, 20%.
1H NMR: The spectrum is shown in the main text (see page 105).
19F NMR (376 MHz, CD3OD): � = -77.3 (s) ppm.

MALDI-MS (2,5-dihydroxybenzoic acid (DHB), RP mode, pos. mode): m/z (%) = 1190.38 (23, [M - 4 O - H+

+ e-]+, Eu-isotope pattern), 1206.36 (26, [M - 3 O - H+ + e-]+, Eu-isotope pattern), 1222.35 (100, [M - 2 O -

H+ + e-]+, Eu-isotope pattern), 1375.40 (9, [M - 2 O - H+ + [DHB-H]-]+, Eu-isotope pattern).

HR ESI-MS (pos. mode): [EuC61H57N12O6S-H++HCOO-]+: calculated: m/z = 1283.34281,

found: m/z = 1283.3398.

HPLC: Rf = 17.1 min (analytical reversed-phase HPLC, program A).

Lysine-functionalised terbium cryptate Tb-16

3.6 mg of Tb-1 (2.5µmol, 1.0 eq.) were dissolved in 0.5 mL CH3OH. 76.0µL of the 0.1 M solution of DI-

PEA (7.60µmol, 1.5 + 1.5 eq.) were added and the mixture was stirred for several minutes before 1.6 mg

(3.8µmol, 1.5 eq.) of 15 were added dropwise in a total of 0.3 mL of CH3OH/CH2Cl2 (1:1, v/v). After
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30 minutes, 38.0µL of the 0.1 M solution of DIPEA (3.80µmol, 1.5 eq.) were added, followed by another

portion of 15 (1.6 mg, 3.8µmol, 1.5 eq.), added dropwise in a total of 0.3 mL of CH3OH/CH2Cl2 (1:1, v/v).

14 h after the first addition of 15 the volatiles were removed in a stream of air and the resulting residue

was dried thoroughly in vacuo. For purification a reversed-phase HPLC as described above with program

A was performed.

C67H66F9N12O17Tb

Molecular Weight: 1673.28

Yield: 1.7 mg, 1.0µmol, 40%.
1H NMR: The spectrum is shown in the main text (see page 106).
19F NMR (376 MHz, CD3OD): � = -77.2 (s) ppm.

MALDI-MS (2,5-dihydroxybenzoic acid (DHB), RP mode, pos. mode): m/z (%) = 1349.33 (45, [M - 4 O - H+

+ [DHB-H]-]+), 1365.32 (30, [M - 3 O - H+ + [DHB-H]-]+, 1381.31 (100, [M - 2 O - H+ + [DHB-H]-]+).

HR ESI-MS (pos. mode): [TbC61H58N12O7S+HCOO-]2+: calculated: m/z = 653.17456,

found: m/z = 653.17430.

HPLC: Rf = 17.1 min (analytical reversed-phase HPLC, program A).

Lysine-functionalised ytterbium cryptate Yb-16

4.4 mg of Yb-1 (3.1µmol, 1.0 eq.) were dissolved in 0.5 mL CH3OH. 87.5µL of the 0.1 M solution of DI-

PEA (8.75µmol, 1.5 + 1.34 eq.) were added and the mixture was stirred for several minutes before 1.7 mg

(4.1µmol, 1.34 eq.) of 15 were added dropwise with a total of 0.6 mL of CH3OH/CH2Cl2 (1:1, v/v). After

30 minutes, 21.9µL of the 0.1 M solution of DIPEA (2.2µmol, 0.71 eq.) were added, followed by another

portion of 15 (0.9 mg, 2.2µmol, 0.71 eq.), added dropwise in a total of 0.3 mL of CH3OH/CH2Cl2 (1:1, v/v).

17 h after the first addition of 15 the volatiles were removed in a stream of air and the resulting residue

was dried thoroughly in vacuo. For purification a reversed-phase HPLC as described above with program

A was performed.

C67H66F9N12O17Yb

Molecular Weight: 1687.40

Yield: 3.1 mg, 1.8µmol, 58%.
1H NMR: The spectrum is shown in the main text (see page 106).
19F NMR (376 MHz, CD3OD): � = -77.2 (s) ppm.

MALDI-MS (2,5-dihydroxybenzoic acid (DHB), RP mode, pos. mode): m/z (%) = 1243.34 (500, [M - 2 O -

H+ + e-]+, Yb-isotope pattern), 1363.37 (32, [M - 4 O - H - H+ + [DHB-H]-]+, Yb-isotope pattern), 1380.38

(13, [M - 3 O - H+ + [DHB-H]-]+, Yb-isotope pattern), 1396.37 (100, [M - 2 O - H+ + [DHB-H]-]+, Yb-isotope

pattern).

HPLC: Rf = 16.9 min (analytical reversed-phase HPLC, program A).
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Note: The lysine-functionalised lanthanoid cryptates Ln-16 can also be prepared from the crude com-

plexes Ln-1. In this case, after the synthesis of Ln-1 the material obtained after evaporation of the solvents

is subjected to the next reaction step without any purification. The content of the actual lanthanoid cryptate

in these crude materials can only be estimated (for stoichiometry the material was assumed to be the pure

chloride of Ln-1), consequently the equivalents of the reagents employed can not be controlled completely

and it is not reasonable to determine yields from these reactions. But as the reaction also proceeds prop-

erly with the crude starting material and the reduction of HPLC purifications safes a significant amount of

time this variation is reasonable when bigger amounts of lysine-functionalised lanthanoid cryptates Ln-16

are to be prepared.
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Method B: From the crude amino-functionalised lanthanoid cryptates Ln-1

+

1.) 3.5 eq. DIPEA 
(Mol. Wt.: 129.24, 
d: 0.742 g cm-3)
CH3OH/CH2Cl2, rt

2.) rp-HPLC
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C S
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4 H2O

The crude amino-functionalised lanthanoid cryptate Ln-1 (1.0 eq.) was dissolved in CH3OH (about 0.1 mL

per mg starting material) and stirred for a few minutes. 2 eq. of a 0.1 M solution of N,N-diisopropylethyl-

amine (DIPEA) in CH3OH were added and the resulting slightly yellow solution was stirred for a few minutes.

The first portion of 15 (1.5 eq) was taken up in 3.5 eq. of the 0.1 M solution of DIPEA and the resulting

solution was added to the starting material dropwise, upon which a yellow solid precipitated. The mixture

was diluted with a freshly prepared mixture of CH3OH and CH2Cl2 (1:1, v/v) (about 0.02 mL per mg start-

ing material). After 30 minutes the second portion of 15 (1.5 eq.) was added to the reaction mixture with

a total of 0.6 mL CH3OH/CH2Cl2 (1:1, v/v) per mg starting material. After at least 13.5 h the volatiles were

removed in a stream of air and for purification the crude product was treated as described above (program

A or B).

Using this method the complexes Ln-16 with Ln = SmIII, EuIII and TbIII were prepared. Their properties

were found to be identical to the ones of the complexes prepared following the method starting from the

HPLC-purified amino-functionalised lanthanoid cryptates Ln-1.
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Enantiopure lanthanoid cryptates Ln-22: General procedure[267]
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The general procedure for the synthesis of the respective lanthanoid cryptates from the corresponding

sodium cryptates Na-22 was already described earlier.[134]

1.0 eq. of the enantiopure sodium cryptate Na-22[134] and 1.5 eq. of the lanthanoid salt LnCl3 · 6 H2O were

suspended in CH3CN (HPLC-grade) and brought to reflux temperature whereby the mixture got turbid.

After 40 h the solvent was removed in vacuo and the resulting residue was dried thoroughly before it was

taken up in a minimum amount of CH3OH. The yellow solution was filtered over cotton, overlayered with

Et2O and stored overnight at 4°C. The product was isolated as faintly yellow precipitate which was collected

on a 0.45µm nylon membrane filter (GE Healthcare Life Sciences), washed with cold Et2O and dried.

Enantiopure samarium cryptate Sm-22

Synthesis and analytical data of Sm-22 have already been reported elsewhere.[267]

5.0 mg of sodium cryptate Na-22 (6.3µmol, 1.0 eq.) and 3.4 mg SmCl3 · 6 H2O (Mol. Wt.: 364.81 g/mol,

9.4µmol 1.5 eq.) in 7 mL CH3CN (HPLC-grade), 40 h reflux.

C40H28D8Cl3N8O4Sm

Molecular Weight: 957.54

Yield: 3.61 mg, 3.80µmol, 61%.
1H NMR (400 MHz, CD3OD): � = 9.54 (d, J = 8.1 Hz, 2 H), 9.11-9.00 (m, 2 H), 8.95 (d, J = 7.3 Hz, 2 H),

8.26-8.14 (m, 2 H), 7.93-7.65 (m, 8 H), 6.21 (br s, 2 H), 4.17 (br s, 2 H), 2.62-2.43 (m, 2 H), 1.52-1.39 (m,

6 H) ppm. The spectrum is shown in the appendix (see page 323).

HR ESI-MS (pos. mode): [SmC40H28D8N8O4+HCOO-]2+: calculated: m/z = 448.62623,

found: m/z = 448.62667

HPLC: Rf = 14.0 min (analytical reversed-phase HPLC, program A).
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Enantiopure europium cryptate Eu-22

Synthesis and analytical data of Eu-22 have already been reported elsewhere.[267]

5.0 mg of sodium cryptate Na-22 (6.3µmol, 1.0 eq.) and 3.4 mg EuCl3 · 6 H2O (Mol. Wt.: 366.41 g/mol,

9.4µmol 1.5 eq.) in 7 mL CH3CN (HPLC-grade), 40 h reflux.

C40H28D8Cl3N8O4Eu

Molecular Weight: 959.14

Yield: 3.62 mg, 3.81µmol, 61%.
1H NMR (400 MHz, CD3OD): � = 16.49 (s, 2 H), 11.54 (s, 2 H), 9.25 (s, 2 H), 9.03 (s, 2 H), 6.19 (s, 2 H),

3.09-2.43 (m, 6 H), 1.00-0.66 (m, 8 H), -10.40 (s, 2 H), -17.53 (s, 2 H) ppm. The spectrum is shown in the

appendix (see page 323).

HR ESI-MS (pos. mode): [EuC40H28D8N8O4+HCOO-]2+: calculated: m/z = 449.12698,

found: m/z = 449.12706

HPLC: Rf = 13.7 min (analytical reversed-phase HPLC, program A).
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Dicryptate coordinating two erbium-ions Er-Er-26

C60H50Br2N16Na2
Exact Mass: 1198.26

Molecular Weight: 1200.93
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7.9 mg of sodium dicryptate Na-Na-26[141] (6.6µmol, 1.0 eq) and 10.1 mg ErCl3 · 6 H2O (26.3µmol, 4.0 eq)

were suspended in 10 mL CH3CN (HPLC-grade) and brought to reflux temperature. Soon a light solid

started to precipitate. The mixture was heated for a total of 42 h before the volatiles were removed in

vacuo. The crude product was dried thoroughly before it was dissolved in a minimum amount of MeOH,

filtered over cotton and overlayered with Et2O. After storage at 4°C for several days the product which

precipitated from the solution was collected on a 0.45µm nylon membrane filter (GE Healthcare Life Sci-

ences), washed with cold Et2O and dried under air.

Yield: 4.4 mg, 2.9µmol, 44%.

Note: The characterisation of the isolated material is discussed in the main text.
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Dicryptate coordinating two lanthanoid ions in a statistical mixture Ln1/Ln2-26: General procedure

C60H50Br2N16Na2
Exact Mass: 1198.26

Molecular Weight: 1200.93
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1.0 eq. of the sodium dicryptate Na-Na-26[141] and 10.0 eq. of both lanthanoid salts Ln1Cl3 · 6 H2O and

Ln2Cl3 · 6 H2O each were suspended in CH3CN (HPLC-grade, about 1.25 ml per 1 mg sodium dicryptate

Na-Na-26). The suspension was brought to reflux temperature and stirred for 45 h during which a light

solid precipitated. The mixture was evaporated to dryness and the remaining solid was dried in vacuo.

Dicryptate coordinating europium and terbium in a statistical mixture Eu/Tb-26

8.4 mg sodium dicryptate 47 (7.0µmol, 1.0 eq), 25.7 mg (70.0µmol, 10.0 eq) EuCl3 · 6 H2O and 25.1 mg

(70.0µmol, 10.0 eq) TbCl3 · 6 H2O in 10 mL CH3CN (HPLC-grade).

After synthesis the crude product Eu/Tb-26 was used for initial studies on its photophysical properties but

no attempts for a further purification were undertaken.

Dicryptate coordinating yttrium and europium in a statistical mixture Y/Eu-26

8.4 mg sodium dicryptate Na-Na-26 (7.0µmol, 1.0 eq), 21.1 mg (70.0µmol, 10.0 eq) YCl3 · 6 H2O and

25.5 mg (70.0µmol, 10.0 eq) EuCl3 · 6 H2O in 10 mL CH3CN (HPLC-grade). The crude mixture was taken

up in 5 mL CH3CN/H2O (1:1, v/v) with a few drops of H2O + 1 vol.-% CF3COOH, filtered and subjected

to semi-preparative reversed-phase HPLC (Lichrospher RP-18e (Merck), 250x10 mm - 10µm, flow rate:

3 mL min-1, UV detection: 300 nm, program A) The fractions containing the product were evaporated to

dryness in vacuo at room temperature.

Yield: 4.4 mg, 2.9µmol, 44%.
1H NMR: The spectrum is shown in the appendix (see page 274).

HPLC: a representative HPLC trace of the isolated material is shown in the appendix (see page 182).
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Methoxy-functionalised ytterbium cryptate Yb-34
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16.6 mg of the methoxy-functionalised sodium cryptate Na-34 (22µmol, 1.0 eq) and 7.8 mg YbCl3 · 6 H2O

(20µmol, 0.9 eq) were dissolved in 25 mL CH3OH. The resulting clear, yellow solution was brought to

reflux temperature and stirred for 60 h during which no solid precipitated. After complete removal of the

solvent the dried orange to brown solid was taken up in a minimum amount of CH3OH, filtered over cotton

and overlayered with Et2O. Stored at 4°C overnight a orange solid precipitated. It was separated from the

solution but found to contain mainly the starting material Na-34. The solution obtained from filtration was

evaporated to dryness and CH2Cl2 was added, upon which the solid partially dissolved. The suspension

was stirred for a few minutes before it was filtered over cotton. The solid was washed with a few millilitres

of CH2Cl2 and washed with CH3OH from the filter material to isolate the product.

Yield: 6.5 mg, 6.9µmol, 31%.
1H NMR (500 MHz, CD3OD): The spectrum is shown in the main text (see page 195).
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8.5 Peptides

Peptide H2N-Cys-Gly-Gly-Gly-Cys-Gly-COOH 17
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H OHCys Gly Gly Gly Cys Gly

C14H24N6O7S2
Exact Mass: 452.11

Molecular Weight: 452.51

Method A: standard procedure for commercially available amino acids

168 mg of the Fmoc-Gly-Tentagel® PHB resin (equals 33.6µmol of the bound Fmoc-Gly, 1.0 eq.) were

swelled in in a plastic syringe equipped with a PE frit. After an initial deprotection step 5.0 eq. Fmoc-

Cys(Trt)-OH (98.4 mg, 168µmol), 4.9 HATU (62.6 mg, 165µmol) and 10.0 eq. DIPEA (43.4 mg, 336µmol,

58.5µL) were added for the first coupling step. After 30 minutes reaction time the solution was drained,

the resin was washed and deprotected. The next coupling step was performed with 5.0 eq. Fmoc-Gly-OH

(49.9 mg, 168µmol), after deprotection two more coupling/deprotection procedures with 5.0 eq. Fmoc-

Gly-OH and a final coupling/deprotection procedure with 5.0 eq. Fmoc-Cys(Trt)-OH was performed. After

the resin with the attached deprotected peptide was shrinked, 5 mL TFA with 5 vol.-% H2O were added and

the suspension was shaken for 2 h for cleavage. The solution was drained into a round-bottomed flask and

evaporated to dryness to give the title compound.

MS (ESI+): m/z (%) = 165.5 (4), 243.7 (11), 423.9 (3), 454.1 (9), 460.1 (5), 475.5 (100, [M + Na]+), 679.5

(2).

HPLC: a HPLC trace of the isolated material is shown in the appendix (see page 275).

Method B: modified procedure for amino acids with limited availability

The synthesis was performed analogously to method A with 168 mg of the Fmoc-Gly-Tentagel® PHB resin

in a plastic syringe equipped with a PE frit, but in all coupling steps the equivalents were reduced to 1.1 eq.

of the Fmoc-protected amino acid (21.7 mg of Fmoc-Cys(Trt)-OH or 11.0 mg of Fmoc-Gly-OH, 37.0µmol),

1.05 eq. HATU (13.4 mg, 35.3µmol) and 2.2 eq. DIPEA (9.6 mg, 73.9µmol, 12.9µL) and the reaction

times were elongated to at least 24 h.

MS (ESI+): m/z (%) = 165.5 (3), 243.7 (11), 423.9 (3), 454.1 (8), 460.1 (4), 475.5 (100, [M + Na]+), 679.5

(2).

HPLC: a HPLC trace of the isolated material is shown in the appendix (see page 275).
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Peptide Fmoc-Lys(Eu)-Gly-COOH 18
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C63H61EuN13O8S3+

Exact Mass: 1312.37
Molecular Weight: 1312.27

Fmoc OHLys(Eu) Gly

In a plastic syringe equipped with a PE frit, 0.52 mg of the Fmoc-Gly-Tentagel® PHB resin (equals 0.10µmol

of the bound Fmoc-Gly, 1.0 eq.) were swelled and the first amino acid bound to the resin was deprotected.

For the subsequent coupling step 1.1 eq. of the lysine-functionalised europium cryptate Eu-16 (0.19 mg,

0.11µmol), 1.05 eq. HATU (0.04 mg, 0.11µmol) and 2.2 eq. DIPEA (0.03 mg, 0.23µmol, 3.9·10-2µmL,

10µL of a mixture of 3.9µL DIPEA and 996.1µL DMF) were added to the resin and the resulting sus-

pension was shaken for 24 h. Subsequently the solution was drained, the resin was washed and shrinked.

The product was cleaved from the resin with 2 mL TFA with 5 vol.-% H2O (70 minutes reaction time) and

the volatiles were removed in vacuo.

Note: Due to the very small scale of this reaction no attempts for purification of the isolated substance

were undertaken. Since the amount of substance isolated was very small a thorough analysis was not

possible. Results from the study of the substance are presented in the main text.
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Peptide H2N-Gly-Lys(Eu)-Gly-COOH 19
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C50H54EuN14O7S3+

Exact Mass: 1147.32
Molecular Weight: 1147.08

O

H2N

H OHGly Lys(Eu) Gly

In the custom-build glass-vessel 0.52 mg of the Fmoc-Gly-Tentagel® PHB resin (equals 0.10µmol of

the bound Fmoc-Gly, 1.0 eq.) were swelled. After an initial deprotection step, 1.1 eq. of the lysine-

functionalised europium cryptate Eu-16 (0.19 mg, 0.11µmol), 1.05 eq. HATU (0.04 mg, 0.11µmol) and

2.2 eq. DIPEA (0.03 mg, 0.23µmol, 3.9·10-2µmL, 10µL of a mixture of 3.9µL DIPEA and 996.1µL DMF)

were added for the first coupling step (24 h reaction time). Afterwards a capping step was performed

(0.1 mL Ac2O and 0.1 mL DIPEA in 1 mL DMF), followed by deprotection and a second coupling step

with 5.0 eq. Fmoc-Gly-OH (0.15 mg, 0.52µmol), 4.9 eq. HATU (0.19 mg, 0.51µmol) and 2.2 eq. DIPEA

(0.13 mg, 1.04µmol, 17.5·10-2µmL, 10µL of a mixture of 17.5µL DIPEA and 992.5µL DMF). The result-

ing suspension was shaken overnight. After this step no capping was performed but it was deprotected

before shrinkage. The product was cleaved from the resin with TFA with 5 vol.-% H2O (60 minutes reaction

time). To ensure completeness of the reaction the resin was treated with another two portions of TFA with

5 vol.-% H2O (30 minutes). From the combined TFA-solutions the product was obtained after complete

evaporation of the volatiles.

Note: Due to the very small scale of this reaction no attempts for purification of the isolated substance

were undertaken. Since the amount of substance isolated was very small a thorough analysis was not

possible. Results from the study of the substance are presented in the main text.
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Peptide H2N-Lys(Sm)-Gly-Lys(Eu)-Gly-COOH 20

C96H100EuN26O11S2Sm6+

Exact Mass: 2161.59
Molecular Weight: 2160.44
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In the custom-build glass-vessel 0.52 mg of the Fmoc-Gly-Tentagel® PHB resin (equals 0.10µmol of

the bound Fmoc-Gly, 1.0 eq.) were swelled. After deprotection, the first coupling step was performed

with 1.1 eq. of the lysine-functionalised europium cryptate Eu-16 (0.19 mg, 0.11µmol), 1.05 eq. HATU

(0.04 mg, 0.11µmol) and 2.2 eq. DIPEA (0.03 mg, 0.23µmol, 3.9·10-2µmL, 10µL of a mixture of 3.9µL

DIPEA and 996.1µL DMF) and 24 h reaction time. After capping (0.1 mL Ac2O and 0.1 mL DIPEA in

1 mL DMF) it was deprotected and 5.0 eq. Fmoc-Gly-OH (0.15 mg, 0.52µmol), 4.9 eq. HATU (0.19 mg,

0.51µmol) and 2.2 eq. DIPEA (0.13 mg, 1.04µmol, 17.5·10-2µmL, 10µL of a mixture of 17.5µL DIPEA

and 992.5µL DMF) were added to perform the second coupling step for which the suspension was shaken

overnight. Afterwards no capping step was performed prior to deprotection and addition of the third amino

acid: 1.1 eq. of the lysine-functionalised samarium cryptate Sm-16 (0.19 mg, 0.11µmol), 1.05 eq. HATU

(0.04 mg, 0.11µmol) and 2.2 eq. DIPEA (0.03 mg, 0.23µmol, 3.9·10-2µmL, 10µL of a mixture of 3.9µL

DIPEA and 996.1µL DMF), 24 h reaction time. After a final deprotection step the resin was shrinked and

the peptide was cleaved with TFA with 5 vol.-% H2O (60 minutes reaction time). To ensure completeness of

the reaction the resin was treated with another two portions of TFA with 5 vol.-% H2O (30 minutes) before

the product was obtained from the combined solutions via complete evaporation of the volatiles.

Note: Due to the very small scale of this reaction no attempts for purification of the isolated substance

were undertaken. Since the amount of substance isolated was very small a thorough analysis was not

possible. Results from the study of the substance are presented in the main text.
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Peptide H2N-Lys(Eu)-Gly(13C)-Lys(Tb)-Gly(15N)-Lys(Sm)-Gly-COOH 21

C143
13CH147EuN38

15NO16S3SmTb9+

Exact Mass: 3239.87
Molecular Weight: 3239.41
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For this synthesis freshly distilled DIPEA was used. DMF (Acros Organics, 99.8%, for peptide synthesis),

piperidine (Roth, � 99.5%, for peptide synthesis) and Ac2O (Merck, EMSURE®, for analysis) were taken

from fresh bottles and all mixtures were freshly prepared shortly before usage.

6.01 mg of the Fmoc-Gly-Tentagel® PHB resin (equals 1.20µmol of the bound Fmoc-Gly, 1.0 eq.) were

swelled in the custom-build glass-vessel. After initial deprotection the following steps were performed:

1.) Coupling of the lysine-functionalised samarium cryptate Sm-16

1.5 eq. of Sm-16 (3.00 mg, 1.80µmol), 1.45 eq. HATU (0.66 mg, 1.74µmol), and 3 eq. DIPEA (0.47 mg,

3.60µmol, 0.63µL, 10µL of a mixture of 6.3µL DIPEA and 93.7µL DMF). Total volume of 2 mL of DMF,

reaction time of 16 h. After this coupling step a capping step and a subsequent deprotection step were

performed.

2.) Coupling of the 15N-labeled Glycine Fmoc-Gly(15N)-OH

5 eq. of Fmoc-Gly(15N)-OH (1.79 mg, 6.01µmol), 4.9 eq. HATU (2.24 mg, 5.89µmol), and 10 eq. DIPEA

(1.55 mg, 12.01µmol, 2.09µL, 10µL of a mixture of 20.9µL DIPEA and 79.1µL DMF). Total volume of

2 mL of DMF, reaction time of 11 h. After the solution was drained, the resin was washed and a freshly

prepared equivalent coupling mixture was added. Total volume of 2 mL of DMF, reaction time of 0.5 h. The

coupling procedure was followed by a capping and a deprotection step.

3.) Coupling of the lysine-functionalised terbium cryptate Tb-16
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1.5 eq. of Tb-16 (3.02 mg, 1.80µmol), 1.45 eq. HATU (0.66 mg, 1.74µmol), and 3 eq. DIPEA (0.47 mg,

3.60µmol, 0.63µL, 10µL of a mixture of 6.3µL DIPEA and 93.7µL DMF). Total volume of 2 mL of DMF,

reaction time of 12 h. After this coupling step a capping step and a subsequent deprotection step were

performed.

4.) Coupling of the 2-13C-labeled Glycine Fmoc-Gly(13C)-OH

5 eq. of Fmoc-Gly(13C)-OH (1.79 mg, 6.01µmol), 4.9 eq. HATU (2.24 mg, 5.89µmol), and 10 eq. DIPEA

(1.55 mg, 12.01µmol, 2.09µmL, 10µL of a mixture of 20.9µL DIPEA and 79.1µL DMF). Total volume

of 2 mL of DMF, reaction time of 9 h. After the solution was drained, the resin was washed and a freshly

prepared equivalent coupling mixture was added. Total volume of 2 mL of DMF, reaction time of 30 minutes.

The coupling procedure was followed by a capping and a deprotection step.

5.) Coupling of the lysine-functionalised europium cryptate Eu-16

1.5 eq. of Eu-16 (3.00 mg, 1.80µmol), 1.45 eq. HATU (0.66 mg, 1.74µmol), and 3 eq. DIPEA (0.47 mg,

3.60µmol, 0.63µL, 10µL of a mixture of 6.3µL DIPEA and 93.7µL DMF). Total volume of 2 mL of DMF,

reaction time of 12 h. After this coupling step a capping step and a subsequent deprotection step were

performed.

Afterwards the resin was shrinked and treated with three portions of TFA with 5 vol.-% H2O (3 x 60 minutes

reaction time). The TFA-solutions were drained into a round-bottomed flask and evaporated to dryness.

Subsequently 1 ml of CH3OH was added to the resin. The suspension was shaken for 1 h, afterwards the

solution was drained and it was washed with two more portions of 1 ml of CH3OH. The combined methano-

lic solutions were given to the substance obtained from the TFA solution, the volatiles were removed in

vacuo and the obtained product was dried thoroughly.

Note: Due to the very small scale of this reaction no attempts for purification of the isolated substance

were undertaken. Since the amount of substance isolated was very small a thorough analysis was not

possible. Results from the study of the substance are presented in the main text.
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8.6 Further procedures and experiments

Purification of the macrocyclus 44 consisting of two bipyridines

N
N
H

N

N

H
N

N

C24H22N6
Exact Mass: 394.19

Molecular Weight: 394.47

44

Typically the macrocyclus 44 is prepared from two equivalents 6,6’-bis(bromomethyl)-2,2’-bipyridine and

p-toluenesulfonamide monosodium salt.[127] As the compound has only a very limited solubility purification

is typically difficult and often impurities of p-toluenesulfonic acid remain in the material, which results in

further problems when the stoichiometry of a macrobicyclisation shall be controlled. In some cases even

a separation of p-toluenesulfonic acid from the following products of the sequence of synthesis did not

succeed.

To circumvent these problems the following procedure for the separation of p-toluenesulfonic acid from

macrocyclus 44 was developed:

3.0 g of the crude material were pestled and suspended in 200 mL H2O. The mixture containing the hy-

drophobic solid was stirred vigorously overnight before the solid was collected on a Büchner funnel, washed

with further 100 mL H2O and dried under air. With 200 mL CHCl3 most of the solid could be dissolved and

was collected in a separate flask. The solution was dried (MgSO4), evaporated to dryness and dried in

vacuo to give 1.8 g of the purified macrocyclus 44 as colourless solid.

The 1H NMR spectrum of the isolated compound revealed the successful removal of p-toluenesulfonic acid.
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Mn(II) complex of the bipyridine cryptate bpy3O2 MnII-48

C36H30Cl2MnN8O2
Exact Mass: 731.12

Molecular Weight: 732.52

+

Br-

C36H30BrN8NaO2
Exact Mass: 708.16

Molecular Weight: 709.57

1.0 eq.

Na-48

1.5 eq.MnCl2 · 4 H2O
(Mol. Wt.: 197.90)

CH3OH, 
reflux, 60 hN

N

N

N

N
N

N
Na

N

O
O

2+

(Cl-)2
N

N

N

N

N
N

N
Mn

N

O
O

MnII-48

The sodium cryptate Na-48 (2.1 mg, 3.0µmol, 1.0 eq.) and MnCl2 · 4 H2O were dissolved in 4 mL CH3OH.

The clear yellow solution was brought to reflux temperature and stirred for 60 h and afterwards evaporated

to dryness. The 1H NMR spectrum of the crude mixture did not show any of the typical signals of Na-48 and

an ESI-MS experiment performed with this material strongly indicated the successful formation of the de-

sired compound (MS (ESI+): m/z (%) = 330.6 (100, [M-2Cl]2+)). First experiments towards a purification of

the material indicate that a column-chromatography using silanised SiO2 and for example CH2Cl2/CH3OH

9:1 as mobile phase might be possible. For TLC reversed-phase SiO2 and CH2Cl2/CH3OH 9:1 + 0.1 vol.-%

TFA in H2O as mobile phase yielded the most promising results so far.

The compound MnII-48 appears to have only a limited stability under ambient conditions.

Note: The exact nature of the counteranions as indicated in the sum formula above was not established

experimentally but derived in analogy to the related lanthanoid complexes.

The UV/Vis spectrum of the crude MnII-48 in CD3OD is shown on page 259.
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9.1 UV/Vis spectra

Figure 9.1: Normalised UV/Vis spectra of different Ln-1 in CD3OD.

Figure 9.2: Normalised UV/Vis spectrum of (crude) MnII-48 in CD3OD.
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9.2 Luminescence decay profiles

Figure 9.3: Luminescence decay profile of Sm-1 (black) and biexponential fit in red (CD3OD, �em = 597 nm,
�exc = 320 nm).

Figure 9.4: Luminescence decay profile of Tb-1 (black) and biexponential fit in red (CD3OD, �em = 540 nm,
�exc = 305 nm).
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Figure 9.5: Luminescence decay profile of Sm-16 (black) and biexponential fit in red (CD3OD, �em = 597 nm,
�exc = 310 nm).

Figure 9.6: Luminescence decay profile of Tb-16 (black) and biexponential fit in red (CD3OD, �em = 541 nm,
�exc = 305 nm).
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9.3 NMR spectra
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Figure 9.7: 1H NMR spectrum (400 MHz, CD3CN) of the enantiopure, diol-functionalised bipyridine 8.
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Figure 9.8: 1H NMR spectrum (400 MHz, CD2Cl2) of the enantiopure, disulfide-functionalised bipyridine 13. The
signals marked with an asterisk originate from adventitious contamination after column-chromatography
(3,6-bis(chloromethyl)pyridazine).
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Figure 9.9: 1H NMR spectrum (400 MHz, CD2Cl2) of the isothiocyanate-activated lysine derivative 15.
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Figure 9.10: 1H NMR spectrum (400 MHz, CD2Cl2) of the azide-functionalised sodium cryptate Na-2.
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Figure 9.11: 1H NMR spectrum (400 MHz, CD3OD) of the enantiopure, diol-functionalised sodium cryptate Na-5.
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Figure 9.12: 1H-1H COSY NMR spectrum (400 MHz, CD3OD) of the enantiopure, diol-functionalised sodium cryptate
Na-5.
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Figure 9.13: 1H NMR spectrum (400 MHz, CD2Cl2) of the enantiopure, disulfide-functionalised sodium cryptate Na-9.
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Figure 9.14: 1H NMR spectrum (400 MHz, CD2Cl2) of the enantiopure, mono disulfide-functionalised sodium cryptate
Na-42.
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Figure 9.15: 1H NMR spectrum (500 MHz, CD3OD + CD2Cl2) of the lysine-functionalised sodium cryptate Na-16.
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Figure 9.16: 1H-1H COSY NMR spectrum (500 MHz, CD3OD + CD2Cl2) of the lysine-functionalised sodium cryptate
Na-16.

270



Chapter 9. Appendix

������������������������������������������	��	��
��
��
��
�����������������

�������

������

������

���

	��	��	��	��	�		�
	��
��
��
��
��
�����������������

��	���
���
�����������������
��
�����������������

Figure 9.17: 1H NMR spectrum (400 MHz, CD3OD) of the bromide-functionalised sodium cryptate Na-28.
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Figure 9.18: 1H-1H COSY NMR spectrum (400 MHz, CD3OD) of the bromide-functionalised sodium cryptate Na-28.
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Figure 9.19: 1H NMR spectrum (400 MHz, CD3OD) of the methoxy-functionalised sodium cryptate Na-34.
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Figure 9.20: 1H NMR spectrum (400 MHz, CD3OD) of the di-(tert-butyl)iminodiacetate-functionalised sodium cryptate
Na-31.
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Figure 9.21: 1H NMR spectrum (400 MHz, CD3OD) of the dicryptate coordinating yttrium and europium in a statistical
mixture Y/Eu-26.
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9.4 HPLC traces

Figure 9.22: Chromatograms from the analytical HPLC (program A, setup A) of the material obtained from synthesis
of peptide 17 with regular (top) and decreased (bottom) equivalents of amino acids.
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9.5 ESI mass spectra

Figure 9.23: ESI mass spectrum of Eu-3.

Figure 9.24: ESI mass spectrum of Eu-3 (magnification).
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Figure 9.25: ESI mass spectrum of Eu-3 (magnification).
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9.6 mayavi2/python script for the graphical representation of the

anisotropy of the magnetic susceptibility �

# �*� coding : u t f�8 �*�

import numpy as np

from mayavi import mlab

# def ine tensor

def V( x , y , z ) :

return 2740*( (3* z **2�(( x **2+ y **2+ z * * 2 ) * * 0 . 5 ) * * 2 ) /

( ( ( x **2+ y **2+ z * *2 ) * *0 .5 ) * *5 ) ) �8601* ( ( x**2�y * * 2 ) /

( ( ( ( x **2+ y **2+ z * * 2 ) * * 0 . 5 ) * * 5 ) ) )

X, Y, Z = np . mgrid [�10:10:150 j , �10:10:150 j , �10:10:150 j ]

mlab . f i g u r e (1 , bgco lor =(1 , 1 , 1 ) , f g c o l o r = (0 .8 , 0 .5 , 0 . 1 ) )

ten1=V(X, Y, Z )

# draw isosur faces

conten1 = mlab . contour3d (X, Y, Z , V,

contours = [12 ] ,

opac i t y =0.3 ,

colormap= ’PuBuGn ’ ,

vmax=12 ,

vmin=�12,

t ransparen t=True

)

conten1 = mlab . contour3d (X, Y, Z , V,

contours =[�12] ,

opac i t y =0.3 ,

colormap= ’ PiYG ’ ,

t ransparen t=True

)

# def ine molecule

abc = np . ar ray ( [ [ 0 . 0 0 0 0 , 0.0000 , 0 .0000] ,
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# n i t rogen atoms N35 to N43 , N93

[�0.1867 , 2.3097 , 1 .0899] ,

[5 .1202 , �3.2896, �10.0095] ,[3.0889 , �1.4058, �7.4335] ,

[�0.7560 , 1.2276 , �2.9043] ,

[�2.2415 , 1.3458 , �0.4052] , [2.2809 , �1.3738, �0.4140] ,

[0 .7637 , �1.2334, �2.9140] ,

[0 .2250 , �2.3292, 1.0741] , [�2.1796 , �1.3245, 0 .3718] ,

[2 .2022 , 1.3216 , 0 .3544] ,

# carbon atoms C44 to C82

[4 .6098 , 2.6613 , 0 .9007] ,

[3 .3923 , 3.1932 , 1 .3144 ] , [0 .7617 , 4.1949 , 2.2352] , [�0.5104 , 4.6451 , 2 .5776] ,

[4 .6119 , 1.4428 , 0 .2324 ] , [2 .2102 , 2.4902 , 1 .0598 ] , [0 .8950 , 3.0225 , 1 .4795] ,

[�1.6238 , 3.9223 , 2 .1543 ] , [3 .3933 , 0.8007 , �0.0047] ,

[�1.4166 , 2.7558 , 1 .4185] ,

[3 .3813 , �0.4677, �0.8153] , [3.9975 , �1.5786, �8.5572] ,

[�2.1253 , 2.4944 , �1.3684] ,

[�1.8890 , 1.9736 , �2.7482] , [3.5058 , �1.6816, �6.1700] ,

[�2.7641 , 2.1220 , �3.8191] ,

[�2.5603 , 1.9064 , 0 .9363 ] , [1 .4233 , �0.5975, �5.1217] ,

[4 .1003 , �3.0672, �8.9179] ,

[2 .5128 , �1.4684, �5.0593] ,[�2.5211 , 1.4679 , �5.02676] ,

[�0.5672 , 0.4616 , �4.0258] ,

[0 .5672 , �0.4616, �4.0307] ,[�1.4361 , 0.5994 , �5.1071] ,

[2 .6140 , �1.9723, 0 .9072] ,

[2 .7715 , �2.1071, �3.8420] , [1.9077 , �1.9690, �2.7673] ,

[2 .1603 , �2.5029, �1.3966] ,

[�3.3484 , 0.4541 , �0.8228] , [1.4501 , �2.7853, 1 .4080] ,

[1 .6459 , �3.9420, 2 .1633] ,

[�3.3658 , �0.8257, �0.0325] ,[�0.8626 , �3.0398, 1 .4597] ,

[�2.1775 , �2.5185, 1 .0214] ,

[�4.5829 , �1.4727, 0 .1972 ] , [0 .5281 , �4.6506, 2 .5953] ,

[�0.7391 , �4.2013, 2 .2338] ,

[�3.3574 , �3.2314, 1.2611] , [�4.5759 , �2.7005, 0 .8481] ,

# oxygen atoms O83 to O84, O86

[0 .1711 , 1.2652 , �1.9554] ,

[4 .6431 , �2.0905, �5.9170] ,[�0.1501 , �1.2799, �1.9619]])

# c o r r e c t f o r o r i g i n

p0 = np . ar ray ( [ [ 0 . 0 0 0 0 , 0.0000 , 0 . 0 0 0 0 ] ] )

A = abc � p0
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# ax is

syml ine = np . ar ray ( [ [ 0 . 0 0 0 0 , 0.0000 , 0 .0000 ] , [0 .0000 , 0.0000 , �4.028]])

mlab . p lo t3d ( syml ine [ : , 0 ] , syml ine [ : , 1 ] , syml ine [ : , 2 ] ,

ex ten t = [0 , 0 , 0 , 0 , �11, 11 ] , l i n e _ w i d t h =10.0 ,

c o l o r = (0 .3 , 0 .7 , 0 . 1 ) , tube_rad ius =0.1)

# connect ion o f atoms

# r i ng s

# r i n g R1 = N41 , C70 , C69 , C63 , C61 , C66 , c lose r ing , to N41 , to N�ox id (O86)

R1 = np . ar ray ( [ [ 0 . 7 6 3 7 , �1.2334, �2.9140] , [1.9077 , �1.9690, �2.7673] ,

[2 .7715 , �2.1071, �3.8420] , [2.5128 , �1.4684, �5.0593] ,

[1 .4233 , �0.5975, �5.1217] , [0.5672 , �0.4616, �4.0307] ,

[0 .7637 , �1.2334, �2.9140] ,[�0.1501 , �1.2799, �1.9619]])

mlab . p lo t3d (R1 [ : , 0 ] , R1 [ : , 1 ] , R1 [ : , 2 ] , tube_rad ius =0.15)

# r i n g R2 = N38 , C65 , C67 , C64 , C59 , C57 , c lose r ing , to N38 , to N�ox id (O83)

R2 = np . ar ray ([ [�0.7560 , 1.2276 , �2.9043] ,[�0.5672 , 0.4616 , �4.0258] ,

[�1.4361 , 0.5994 , �5.1071] ,[�2.5211 , 1.4679 , �5.02676] ,

[�2.7641 , 2.1220 , �3.8191] ,[�1.8890 , 1.9736 , �2.7482] ,

[�0.7560 , 1.2276 , �2.9043] , [0.1711 , 1.2652 , �1.9554]])

mlab . p lo t3d (R2 [ : , 0 ] , R2 [ : , 1 ] , R2 [ : , 2 ] , tube_rad ius =0.15)

# r i n g R3 = N43 , C75 , C78 , C82 , C81 , C77 , c lose r ing , to N43

R3 = np . ar ray ([ [�2.1796 , �1.3245, 0.3718] , [�3.3658 , �0.8257, �0.0325] ,

[�4.5829 , �1.4727, 0.1972] , [�4.5759 , �2.7005, 0 .8481] ,

[�3.3574 , �3.2314, 1.2611] , [�2.1775 , �2.5185, 1 .0214] ,

[�2.1796 , �1.3245, 0 . 3 7 1 8 ] ] )

mlab . p lo t3d (R3 [ : , 0 ] , R3 [ : , 1 ] , R3 [ : , 2 ] , tube_rad ius =0.15)

# r i n g R4 = N42 , C76 , C80 , C79 , C74 , C73 , c lose r ing , to N42

R4 = np . ar ray ( [ [ 0 . 2 2 5 0 , �2.3292, 1.0741] , [�0.8626 , �3.0398, 1 .4597] ,

[�0.7391 , �4.2013, 2 .2338 ] , [0 .5281 , �4.6506, 2 .5953] ,

[1 .6459 , �3.9420, 2 .1633 ] , [1 .4501 , �2.7853, 1 .4080 ] , [0 .2250 , �2.3292, 1 . 0 7 4 1 ] ] )

mlab . p lo t3d (R4 [ : , 0 ] , R4 [ : , 1 ] , R4 [ : , 2 ] , tube_rad ius =0.15)

# r i n g R5 = N35 , C53 , C51 , C47 , C46 , C50 , c lose r ing , to N35

R5 = np . ar ray ([ [�0.1867 , 2.3097 , 1.0899] , [�1.4166 , 2.7558 , 1 .4185] ,

[�1.6238 , 3.9223 , 2.1543] , [�0.5104 , 4.6451 , 2 .5776] ,
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[0 .7617 , 4.1949 , 2 .2352 ] , [0 .8950 , 3.0225 , 1.4795] , [�0.1867 , 2.3097 , 1 . 0 8 9 9 ] ] )

mlab . p lo t3d (R5 [ : , 0 ] , R5 [ : , 1 ] , R5 [ : , 2 ] , tube_rad ius =0.15)

# r i n g R6 = N93 , C49 , C45 , C44 , C48 , C52 , c lose r ing , to N93

R6 = np . ar ray ( [ [ 2 . 2 0 2 2 , 1.3216 , 0 .3544 ] , [2 .2102 , 2.4902 , 1 .0598] ,

[3 .3923 , 3.1932 , 1 .3144 ] , [4 .6098 , 2.6613 , 0 .9007] ,

[4 .6119 , 1.4428 , 0 .2324 ] , [3 .3933 , 0.8007 , �0.0047] , [2.2022 , 1.3216 , 0 . 3 5 4 4 ] ] )

mlab . p lo t3d (R6 [ : , 0 ] , R6 [ : , 1 ] , R6 [ : , 2 ] , tube_rad ius =0.15)

# connect ion o f r i ngs

# r i n g R1 und R2 : C66 and C65

R1R2 = np . ar ray ( [ [ 0 . 5 6 7 2 , �0.4616, �4.0307] ,[�0.5672 , 0.4616 , �4.0258]])

mlab . p lo t3d (R1R2 [ : , 0 ] , R1R2 [ : , 1 ] , R1R2 [ : , 2 ] , tube_rad ius =0.15)

# r i n g R2 and R3 : C57 , C56 , N39 , C72 , C75

R2R3 = np . ar ray ([ [�1.8890 , 1.9736 , �2.7482] ,[�2.1253 , 2.4944 , �1.3684] ,

[�2.2415 , 1.3458 , �0.4052] ,[�3.3484 , 0.4541 , �0.8228] ,

[�3.3658 , �0.8257, �0.0325]])

mlab . p lo t3d (R2R3 [ : , 0 ] , R2R3 [ : , 1 ] , R2R3 [ : , 2 ] , tube_rad ius =0.15)

# r i n g R3 and R4 : C77 and C76

R3R4 = np . ar ray ([ [�2.1775 , �2.5185, 1.0214] , [�0.8626 , �3.0398, 1 . 4 5 9 7 ] ] )

mlab . p lo t3d (R3R4 [ : , 0 ] , R3R4 [ : , 1 ] , R3R4 [ : , 2 ] , tube_rad ius =0.15)

# r i n g R4 and R1 : C73 , C68 , N40 , C71 , C70

R4R1 = np . ar ray ( [ [ 1 . 4 5 0 1 , �2.7853, 1 .4080 ] , [2 .6140 , �1.9723, 0 .9072] ,

[2 .2809 , �1.3738, �0.4140] , [2.1603 , �2.5029, �1.3966] ,

[1 .9077 , �1.9690, �2.7673]])

mlab . p lo t3d (R4R1 [ : , 0 ] , R4R1 [ : , 1 ] , R4R1 [ : , 2 ] , tube_rad ius =0.15)

# r i n g R5 and R6 : C50 , C49

R5R6 = np . ar ray ( [ [ 0 . 8 9 5 0 , 3.0225 , 1 .4795 ] , [2 .2102 , 2.4902 , 1 . 0 5 9 8 ] ] )

mlab . p lo t3d (R5R6 [ : , 0 ] , R5R6 [ : , 1 ] , R5R6 [ : , 2 ] , tube_rad ius =0.15)

# attachment R5 : N39 , C60 , C53

zuR5 = np . ar ray ([ [�2.2415 , 1.3458 , �0.4052] ,[�2.5603 , 1.9064 , 0 .9363] ,

[�1.4166 , 2.7558 , 1 . 4 1 8 5 ] ] )

mlab . p lo t3d ( zuR5 [ : , 0 ] , zuR5 [ : , 1 ] , zuR5 [ : , 2 ] , tube_rad ius =0.15)
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# attachment R6 : N40 , C54 , C52

zuR6 = np . ar ray ( [ [ 2 . 2 8 0 9 , �1.3738, �0.4140] , [3.3813 , �0.4677, �0.8153] ,

[3 .3933 , 0.8007 , �0.0047]])

mlab . p lo t3d ( zuR6 [ : , 0 ] , zuR6 [ : , 1 ] , zuR6 [ : , 2 ] , tube_rad ius =0.15)

# d iam ine l i nke r : C63 , C58 , O84, C58 , N37 , C55 , C62 , N36

en = np . ar ray ( [ [ 2 . 5 1 2 8 , �1.4684, �5.0593] , [3.5058 , �1.6816, �6.1700] ,

[4 .6431 , �2.0905, �5.9170] , [3.5058 , �1.6816, �6.1700] ,

[3 .0889 , �1.4058, �7.4335] , [3.9975 , �1.5786, �8.5572] ,

[4 .1003 , �3.0672, �8.9179] , [5.1202 , �3.2896, �10.0095]])

mlab . p lo t3d ( en [ : , 0 ] , en [ : , 1 ] , en [ : , 2 ] , tube_rad ius =0.15)

mlab . po in ts3d (A [ : , 0 ] , A [ : , 1 ] , A [ : , 2 ] , co l o r = (1 ,1 ,1 ) , s ca l e _ fac to r = .5 )
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9.7 Sequences and structures of peptides studied via 1H DOSY NMR
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9.8 Examples for upconversion processes between different

lanthanoids in nanoparticles

On the following pages some selected examples for upconversion processes as observed in nanoparticles

are summarised, together with the rationalisation of the underlying processes as presented in the original

publication. Aim of the selection was to reflect the special suitability of YbIII for the preparation of such

materials, apart from that, the selection is arbitrary.
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9.9 Research paper

For a facilitated overview, on the following pages the original research papers already published based on

this work are reprinted:

“Magnetic Anisotropy in Functionalised Bipyridyl Cryptates”:

Main text: pages 291 to 299.

Supporting information: pages 300 to 312.

“Chiral Resolution of Lanthanoid Cryptates with Extreme Configurational Stability”:

Main text: pages 313 to 315.

Supporting information: pages 316 to 319.

“Circularly Polarised Luminescence in Enantiopure Samarium and Europium Cryptates”:

Main text: pages 320 to 328.

Supporting information: pages 329 to 334.

“Nonradiative Deactivation of Lanthanoid Luminescence by Multiphonon Relaxation in Molecular

Complexes”:

Main text: pages 335 to 379.
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‡Inorganic Chemistry I, Ruhr-University Bochum, 44780 Bochum, Germany
§Departamento de Química Fundamental, Universidade da Coruña, Campus da Zapateira-Ruá da Fraga 10, 15008 A Coruña, Spain
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ABSTRACT: The magnetic properties of molecular lanthanoid complexes are very
important for a variety of scientific and technological applications, with the unique
magnetic anisotropy being one of the most important features. In this context, a very rigid
tris(bipyridine) cryptand was synthesized with a primary amine functionality for future
bioconjugation. The magnetic anisotropy was investigated for the corresponding
paramagnetic ytterbium cryptate. With the use of a combination of density functional
theory calculations and lanthanoid-induced NMR shift analysis, the magnetic
susceptibility tensor was determined and compared to the unfunctionalized cryptate
analogue. The size and orientation of the axial and rhombic tensor components show remarkably great resilience toward the
decrease of local symmetry around the metal and anion exchange in the inner coordination sphere. In addition, the functionalized
ytterbium cryptate also exhibits efficient near-IR luminescence.

■ INTRODUCTION
The highly interesting physical properties of trivalent
lanthanoids have made them crucial components in innovative
scientific and technological applications.1 One of the most
prominent features in this respect is their unique magnetism,
which has been used in many different areas such as NMR shift
reagents,2 magnetic resonance imaging contrast agents,3 single-
molecule magnets,4 or paramagnetic tags in the structural
biology of proteins.5 One of the centrally important aspects of
lanthanoid magnetism is its often very pronounced and well-
defined anisotropy in the case of nonspherical f-electron
distributions, that is, for all paramagnetic Ln3+ except Gd3+. In
general, the magnitude and the spatial dependence of the
effects in molecular complexes are often very sensitive to the
composition and the symmetry of the inner coordination
sphere around the lanthanoid and the corresponding ligand
field splitting of the f-orbitals. Consequently, ligand architec-
tures that are able to provide a well-defined, unchanging
coordination environment would be the best choice if time-
invariant and predictable magnetic anisotropy is required. By
far the most prevalent ligand class for lanthanoid complexation
is based on 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic
acid (DOTA) and related systems.6 Despite the great success of
DOTA in fields related to lanthanoid magnetism, many DOTA-
derived lanthanoid complexes often exhibit typical exchange
processes that inherently affect magnetic anisotropy, for
example, configurational exchange between Δ and Λ stereo-
isomers through rotation of the pendant arms and conforma-
tional flexibility associated with the inversion of the macrocyclic
unit, which leads to interconversion between the square-
antiprismatic and twisted square-antiprismatic geometries.7

Some of these problems have been overcome with special
ligand modifications8 but remain a ubiquitous detrimental

phenomenon overall. In addition, recent studies point to
somewhat unpredictable magnetic behavior even in DOTA
complexes with supposedly high symmetry9 and the extreme
sensitivity of the anisotropy toward exchange of additional,
axially coordinated ligands such as H2O or fluoride.10 One of
the alternatives to DOTA-derived ligand systems for lanthanoid
chelation are tris(2,2′-bpy)-based cryptands (2,2′-bpy = 2,2′-
bipyrdine) that have proven to be very valuable tools for
bioanalytical luminescence applications.11 Originally, they were
introduced by Lehn et al. in the form of the flexible cryptates 1-
Ln (Figure 1).12 Later development has shown the N,N′-

dioxide analogues 2-Ln to be conformationally and configura-
tionally very stable on the NMR time scale, without any signs of
the detrimental exchange processes typically observed for
DOTA derivatives.13

Despite the great potential that cryptates of the type 2-Ln
have in this area, this class of ligands is virtually absent from the
field of lanthanoid magnetism. One of the major reasons for
this phenomenon is the somewhat underdeveloped and
sometimes cumbersome synthethic chemistry of cryptands, in

Received: March 8, 2016
Published: May 23, 2016

Figure 1. 2,2′-Bipyridine-based cryptate scaffolds. Flexible 1-Ln12 vs
extremely rigid 2-Ln.13
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contrast to the very mature synthetic methodology for the
preparation of tailor-made DOTA-derivatives. Especially
detrimental in this regard is the lack of cryptands with well-
behaved and stable magnetic anisotropy that also have the
possibility for covalent attachment via suitable, peripheral
functional groups to other chemical entities such as proteins. In
the past, there have been reports of a few monofunctionalized
lanthanoid cryptates such as cryptates 3-Ln14 with a peripheral
ester group or 4-Ln15 with a primary amine functionality for
bioconjugation (Figure 2, top row). Unfortunately, these
species are rather flexible and undergo the same unwanted
exchange processes as seen in DOTA.

In this study, we alleviate this problem with the introduction
of a new, monofunctionalized cryptate 5-Ln (Figure 2, bottom)
that is synthetically accessible on larger scales. For the
corresponding ytterbium cryptate 5-Yb, we investigate the
influence that the functionalization and the concomitant
reduction from C2 to C1 symmetry has on the magnetic
anisotropy and the photoluminescence properties.

■ RESULTS AND DISCUSSION
Cryptate Design−Functionalization Strategy. The

specific placement and the nature of the peripheral functional
group onto the parent cryptate scaffold 2-Ln is of crucial
importance for achieving well-defined and stable complexes.
First, functionalization in the 4-position on a pyridine unit is
generally the most accessible from a synthetic perspective and
points away from the metal binding site, therefore avoiding
steric interferences with the nature of the core cryptate
geometry (Figure 3). Second, our choice for the functional
group fell on carboxylic acid derivatives (X in Figure 3) because
of literature precedence (cf. 3-Ln in Figure 2) and because of
the great synthetic versatility of this motif for further
modification/conjugation. Third and most importantly, the
functionalization must be located on the 2,2′-bpy-N,N′-dioxide
moiety (Figure 3, path B) and not on any of the pyridines of
the 2,2′-bpy units (Figure 3, path A) to avoid the potential
formation of diastereomeric cryptate species. Unfunctionalized
cryptates like 2-Ln already possess one stereogenic element in
the form of the fixed helical arrangement of the biaryl moieties.
Cryptates 6-Ln (Figure 3) with the peripheral group on the
bipyridines would feature a new and rather unusual stereogenic
element due to the special topology of the macrobicyclic
cryptand framework (Figure 4), which in turn would lead to the

potential formation of diastereomeric cryptands. The diaster-
eomers of the corresponding paramagnetic lanthanoid com-
plexes would certainly have very different magnetic anisotropies
which would, of course, completely defeat the purpose outlined
in the introduction. The cryptates 7-Ln do not suffer from this
problem and are therefore ideal candidates for this study.

Cryptate Synthesis. The key building block for the
synthesis of the cryptates 5-Ln is the funtionalized 2,2′-
bipyridine derivative 10 (Scheme 1), which is known to be

accessible by either Stille16 or Negishi14 cross coupling. Both
reported procedures rely on chromatographic purification of
10, which makes its preparation rather cumbersome on larger
scales. We were therefore interested in developing an improved
purification protocol that avoids chromatography. Our
optimized approach utilizes the known Stille coupling16 of tin
precursor 8 and triflate 9 (Scheme 1). After the reaction,
product 10 can conveniently be isolated in analytically pure
form by a continuous liquid−liquid extraction using n-heptane
and CH3CN as the two liquid phases. So far, we successfully
validated this protocol on scales of up to 80 mmol of starting

Figure 2. (top) Monofunctionalized lanthanoid cryptates 3-Ln14 and
4-Ln.15 (bottom) Rigid, monofuntionalized lanthanoid cryptate 5-Ln
developed for this study.

Figure 3. Possibilities for the introduction of the peripheral group X in
the cryptate 2-Ln. Path A: Functionalization at the 2,2′-bpy unit; Path
B: Functionalization on the 2,2′-bpy-N,N′-dioxide moiety.

Figure 4. Unusual stereogenic element in cryptates 6-Ln due to the
topology of the macrobicyclic cryptand framework (the colors indicate
the fact that all three cryptate arms are different and one is
unsymmetric).

Scheme 1. Synthesis of Sodium Cryptate 15
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materials (8 and 9) giving product 10 in rather large amounts
(>13 g). The subsequent reactions to sodium cryptate 15 are
straightforward and start with the oxidation of 10 to the
corresponding N,N′-dioxide 11 using 3-chloroperbenzoic acid
(m-CPBA). This is followed by a one-pot Boekelheide
rearrangement/nucleophilic substitution sequence to benzylic
dibromide 12.17 After conversion of 12 to the N,N′-dioxide 13
using improved conditions (trifluoroacetic anhydride/urea
hydrogen peroxide) for the oxidation of electron-poor pyridine
derivatives,18 cryptate 15 can be obtained under standard
conditions (sodium template, high dilution) by macrocycliza-
tion reaction with aza-crown ether 14.19

In our first approach to transform the methyl ester in 15 into
a more suitable functional group for conjugation chemistry, we
were able to saponify the ester using NaOH to the
corresponding carboxylate in cryptate 16 (Scheme 2) in good

yield. Unfortunately, the carboxylate group proved to be a very
sluggish reactant in peptide coupling reactions with primary
amines under a variety of standard conditions (e.g., DCC/
HOBt, HATU, PyBOP, etc). Because of these unexpected
difficulties, we turned our attention to alternative trans-
formations of the ester group of 15. After a number of
unsuccessful trials, we identified the reaction of 15 with an
excess neat ethylene diamine to the corresponding amide 5-Na
as a very efficient way to generate a universally useful primary
amine functionality for further conjugation chemistry (see
analogy to cryptate 4-Ln in Figure 2). Purification of this highly
polar compound on a preparative scale is possible by column
chromatography using silanized silica gel.
For the final complexation step, ytterbium was chosen as the

paramagnetic center for a number of reasons: First, the analysis
of its magnetic anisotropy is straightforward because of the
known fact that ytterbium-induced NMR shifts in molecular
complexes are overwhelmingly due to the dipolar, pseudocon-
tact shift mechanism with only minor interference from
corresponding contact shift contributions. This circumstance
makes the magnetic analysis of 5-Yb very convenient and the
obtained results highly reliable. Second, we have already
performed similar analyses of the magnetic anisotropies in the
unfunctionalized cryptate 2-Yb and similar species.13d,e Third
and finally, ytterbium is not only relevant for its magnetic
properties but it is also of considerable current interest in the
emerging field of near-IR bioimaging because of its efficient

luminescence in this spectral region.20 In addition to the
ytterbium cryptate 5-Yb, the analogue 5-Lu was also
synthesized as a diamagnetic and photoinactive reference
system. The metal exchange reaction of Ln3+ for Na+ was
performed similarly to the previously reported unfunctionalized
cryptates 2-Ln (Figure 1) but with the requirement for
extended reaction times (t > 40 h). The crude lanthanoid
cryptates with anions X− (X = Cl, Br, or OTf) were purified by
reversed-phase, preparative HPLC (H2O+1 vol % CF3COOH/
CH3CN). Under these harsh conditions, no decomposition of
the cryptates was observed, which is an indication of the
extremely high kinetic inertness of the complexes as has been
seen before for similar cryptates.11,13,15 The cryptate cations of
5-Ln have most likely the inner-sphere composition shown in
Figure 5. Because of the low pH (∼1) and the great excess of

trifluoroacetate anions in the HPLC eluent mixture, the
obtained cryptates 5-Ln are protonated at the primary amine
and feature exclusively trifluoroacetate as the counteranions.
From our previous studies on the corresponding unfunction-
alized cryptates 2-Ln, we know that there is exactly one
available binding site in the inner coordination sphere of the
lanthanoids. For example, if 2-Ln is synthesized from LnCl3·
6H2O and is not purified by HPLC, it features a chloride anion
directly bound to the lanthanoid in methanolic solution (Figure
5, right).13d In the case of 5-Yb, 19F NMR in CD3CN after
HPLC purification shows two singlet resonances, one at −76.4
ppm and another at −116.5 ppm in an integrated ratio of 3:1.
While the former signal is in the typical range for free
trifluoroacetate anions,21 we interpret the latter as originating
from a paramagnetically shifted inner-sphere trifluoroacetate.

Chemical Structure in SolutionNuclear Magnetic
Resonance/Density Functional Theory. The investigations
into the effects that structural variations of the core cryptate
scaffold 2-Yb have on the nature and spatial orientation of the
corresponding magnetic anisotropy were performed by
analyzing the lanthanoid-induced, paramagnetic 1H NMR
shifts. To assess these changes, we used the differences
outlined in Figure 5, that is, the introduction of the peripheral
functionalization in 5-Yb resulting in the reduction of overall
symmetry (from C2 in 2-Yb to C1) and the exchange of a
trifluoroacetate anion in 5-Yb for the inner-sphere chlorido
ligand in 2-Yb. Both effects could potentially have an enormous
impact on magnetic anisotropy as it has been documented
recently in DOTA-derived systems.9,10

The 1H NMR spectrum of 5-Yb in CD3CN (Figure 6b)
shows a set of 29 paramagnetically shifted but very well-defined
resonances corresponding to the immediate cryptate core
structure (i.e., aromatic and benzylic hydrogen atoms in 5-Yb).
The signals for the C−H moieties in the peripheral ethylene
diamine unit could not be identified unambiguously because of

Scheme 2. Synthesis of Cryptates 16 and 5-Ln

Figure 5. Composition of the inner coordination sphere of 2-Ln13d

and 5-Ln.
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overlap with strong residual solvent signals. Overall, the spectral
features are similar to the ones observed for 2-Yb in CD3OD
(Figure 6a).13d Typically, signals that could be observed as
singlets with an integral of two protons, in the case of 2-Yb,
split into two singlets for 5-Yb with an integral of one proton
each (see, e.g., the signals between −60 and −80 ppm in Figure
6). The shifts of the signals of the formerly equivalent protons
show small separations, but the differences do not exceed 3.5
ppm. As in the case of the parent compound 2-Yb, no exchange
processes on the NMR time scale are observable for 5-Yb.
Density functional theory (DFT) calculations in CH3CN

were performed on the cryptate cation of 5-Yb to get a deeper
understanding of the spatial structure of the cryptate. To keep
the sizable computational demands as low as possible, we used
a simplified model system with a water molecule bound to
ytterbium instead of the actually present inner-sphere
trifluoroacetate (cf. Figure 5). The obtained structure (Figure
7) shows great similarity to the calculated structure for 2-Yb13d

(DFT) and the crystallographically determined one previously
reported for the structurally related cryptate 2-Lu.13b The
optimized geometry for 5-Yb retains a nearly undistorted, local
C2 symmetry in the immediate coordination sphere around the
metal, where the symmetry axis contains the oxygen atoms of
the coordinated water molecule and the Yb(III) ion. The
general arrangement of the biaryl units remains virtually
unaffected by the functionalization of the ligand.
Lanthanoid-Induced NMR Shift Analysis. The para-

magnetic 1H NMR shifts of the cryptate 5-Yb were analyzed

following the previously reported methodology,13d,22 assuming
that they are dominated by the pseudocontact contribution
(δpc), which can be expressed as a linear combination of the five
components of the magnetic susceptibility tensor χ:23
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Here, x, y and z represent the Cartesian coordinates of the
observed nuclei with the paramagnetic ion placed at the origin.
In the principal magnetic axis system, the tensor is diagonalized,
so that χxy = χxz = χyz = 0. Thus, the pseudocontact shifts were
analyzed by using a five-parameter least-squares search that
minimizes the difference between the experimental and
calculated pseudocontact shifts. These five parameters are (χzz
− 1/3Trχ), (χzz − χyy), and a set of Euler angles that relate the
principal magnetic axis system to the molecular coordinate
system. Given the small chemical shift differences introduced
by the absence of C2-symmetry in 5-Yb, we carried out this
analysis using averaged chemical shifts (Table 1). The 1H NMR

chemical shifts of the unfunctionalized lutetium cryptate 2-
Lu13d were used to estimate the diamagnetic contributions. The
DFT structure of 5-Yb (Figure 7) optimized in acetonitrile
solution provides very good agreement between the exper-
imental and calculated Yb-induced shifts, with an agreement
factor AFj = 0.032 (Figure 8, Table 1). The excellent match
between experiment and theory unambiguously proves that our
DFT calculations provide a very accurate description of the

Figure 6. 1H NMR spectra of (a) unfunctionalized 2-Yb (CD3OD,
400 MHz)13d with chloride in the inner coordination sphere and (b)
functionalized 5-Yb (CD3CN, 500 MHz) with trifluoroacetate bound
to the lanthanoid.

Figure 7. Calculated structure of 5-Yb optimized in CH3CN solution
at the TPSSh/LCRECP/6-31G(d,p) level and bond distances of the
metal coordination environment (Å).

Table 1. Comparison of Experimental and Calculated 1H
NMR Shiftsa for 5-Yb in Acetonitrile

proton δi
exp δi

avg b δi
avg,cald c

H1o −69.35/−65.97 −67.66 −68.46
H2o 21.63/22.55 22.09 25.89
H3o 12.79/10.88 11.84 12.73
H4o 0.02 0.02 2.11
H5o −13.19/−14.55 −13.87 −13.96
H1b 153.49d 153.49 148.05
H2b 61.82/61.35 61.59 63.50
H3b −3.18/-4.07 −3.63 −2.65
H4b −12.82/-13.72 −13.27 −11.88
H5b −15.59/-15.85 −15.72 −15.06
H6b 12.04/11.97 12.01 10.63
H7b 34.09/33.97 34.01 33.32
H8b 69.10/68.99 69.05 68.81
H9b 113.22d 113.22 114.63
H10b 135.27/133.96 134.62 137.96
AFj

e 0.0321

χ χ− Trzz
1
3

2740 ± 62 ppm Å3

χxx − χyy −8601 ± 138 ppm Å3

aSee Figure 8 for numbering scheme. bAveraged chemical shifts.
cValues obtained from the analysis of the paramagnetic shifts assuming
that the paramagnetic shifts are purely pseudocontact in origin. dOnly
one signal is observed. e δ δ δ= ∑ − ∑AF [ ( ) / ( ) ]j i i i i i

exp cal 2 exp 2 1/2,
where δi

exp and δi
exp represent the experimental and calculated values

of a nucleus i, respectively.
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structure of this complex, as much higher agreement factors AFj
≈ 0.06−0.09 have been considered to be acceptable for
different nonaxial Yb(III) complexes.24

Magnetic Anisotropy. Multiple studies in the past have
shown that magnetic anisotropy and hence the induced
pseudocontact NMR shifts of Yb(III) complexes can be
profoundly different upon subtle changes in the lanthanoid
coordination environment.9,10 For the purpose of this study, we
can compare two factors governing the magnetic anisotropy in
the related cryptates 2-Yb and functionalized 5-Yb, the
reduction in symmetry from C2 to C1 and the exchange of
inner-sphere monodentate ligands (Figure 5: chloride vs
trifluoroacetate). As expected given the similarity of the
measured chemical shifts of 2-Yb and 5-Yb (see Figure 6),
the calculated axial (χzz − 1/3Trχ = 2740 ppm Å3) and
rhombic (χxx − χyy = −8601 ppm Å3) components of the
magnetic susceptibility tensor in 5-Yb (Table 1) are very similar
to those obtained previously for the unfunctionalized cryptate
2-Yb (χzz − 1/3Trχ = 2197 ppm Å3; χxx − χyy = −7916 ppm
Å3).13d Figure 9 shows a schematic representation of the core
cryptate 5-Yb surrounded by an isosurface of the induced
pseudocontact shifts.
In addition to the size of the tensor components being

similar in 2-Yb and 5-Yb, the relative spatial orientation of the
two different tensors are also remarkably similar. Figure 10
clearly shows that the pseudocontact isosurfaces as a
manifestation of the underlying tensors are almost indistin-
guishable apart from very small differences in size and virtually
none in terms of orientation. This result underscores the very
robust nature of the tensors in these cryptates with a
remarkable degree of tolerance for functionalization and
inner-sphere substitution of monodentate ligands.
Luminescence Properties. The unfunctionalized parent

compound 2-Yb has very favorable photoluminescence proper-
ties, especially after perdeuteration of the cryptand scaf-
fold,13b,d,e which could be very interesting for bioanalytical
applications using the new functionalized cryptates.20 There-
fore, we also measured the luminescence of 5-Yb to see
whether we could find any detrimental effect of functionaliza-
tion on the photophysical properties. In the case of the indirect
lanthanide sensitization via the surrounding organic ligand

(antenna effect), the energy is usually transferred to the
lanthanoid from the ligand-centered excited triplet level. From
the low-temperature (77 K) steady-state emission spectrum of
the photoinactive lutetium cryptate 5-Lu (Figure 11), we could
obtain an estimate for the zero-phonon T1 → S0 transition
energy E(T1) ≈ 20 400 cm−1, which is virtually identical to the
values previously found for 2-Lu13b and 2-Gd.26 Like 2-Yb,
functionalized 5-Yb shows rather strong steady-state photo-
luminescence after excitation at λex = 305 nm in CD3OD
(Figure 12) with an almost identical band shape of the
transition 2F5/2 →

2F7/2 compared to the spectrum for 2-Yb.13c

In addition, the observed monoexponential luminescence decay
(Figure 13) with a lifetime of τobs = 10.8 μs is also very similar

Figure 8. Experimental 1H NMR spectrum (CD3CN, 500 MHz) of 5-
Yb, plot of experimental versus calculated shifts, and numbering
scheme for the hydrogen atoms in 5-Yb (protons that would be related
by the pseudo C2 symmetry in the unfunctionalized cryptate have the
same name). The solid line represents a perfect fit between
experimental and calculated values.

Figure 9. Graphical representation of 5-Yb (without the bound water
molecule) and the pseudocontact shift isosurface (light green: +12
ppm, dark green: −12 ppm; negative shifts correspond to shifts to
lower field) corresponding to the magnetic susceptibility tensor χ. The
green line illustrates the effective C2 symmetry axis.25

Figure 10. Graphical representation of the size and orientations of the
pseudocontact shift isosurfaces of the functionalized and unfunction-
alized cryptate along the three different Cartesian coordinate axes
(rows) − Right column: 2-Yb;13dLeft column: 5-Yb; Middle column:
Overlay of 2-Yb and 5-Yb.
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to the behavior observed for 2-Yb (τobs = 12.3 μs) under
identical conditions. Taken together, the excellent photo-
luminescence properties documented previously for the
unfunctionalized cryptate 2-Yb are completely retained in the
functionalized cryptates 5-Yb.

■ CONCLUSION
In summary, we have developed a practical synthetic route to
rigid lanthanoid cryptates 5-Ln (Ln = Yb, Lu) with a peripheral
primary amino group for future conjugation chemistry to
biomolecules. These species are highly stable in solution and
can even be purified by reversed-phase HPLC. In addition, the
functionalized ytterbium cryptate retains all excellent physical
properties found in the unfunctionalized parent cryptate 2-Yb,
such as well-defined, time-invariant magnetic anisotropy and
efficient photoluminescence in solution. Particularly remarkable
is the great apparent resilience of its magnetic anisotropy
toward changes in symmetry and anion exchange in the inner-
coordination sphere. These findings show that this type of
lanthanoid cryptate will be a very good candidate in future

applications where stable magnetic properties are key and
where DOTA-derived systems still suffer from fluxional
magnetic behavior due to conformational and configurational
exchange processes in the ligand backbone.

■ EXPERIMENTAL SECTION
General. Solvents were dried by standard procedures (tetrahy-

drofuran (THF), xylenes: Na; CH2Cl2; CaH2), dry dimethylforma-
mide (DMF) was used as purchased. Air-sensitive reactions were
performed under a dry, dioxygen-free atmosphere of N2 using Schlenk
technique. Column chromatography was performed with silica gel 60
(Merck KGaA, 0.063−0.200 mm) or for cryptate 5-Na with silanized
silica gel 60 (Merck KGaA, 0.063−0.200 mm). Analytical thin layer
chromatography (TLC) was done on silica gel 60 F254 plates (Merck,
coated on aluminum sheets). Electrospray ionization (ESI) mass
spectrometry was measured using Bruker Daltonics Esquire 3000plus
or Bruker Daltonics APEX II FT-ICR (FAB). NMR spectra were
measured on a Bruker AVII+500 (1H: 500 MHz), AVII+400 (1H: 400
MHz), DPX-250 (1H: 250 MHz, 13C: 62.9 MHz), and DPX-200 (1H:
200 MHz, 13C: 50 MHz).

Density Functional Theory Calculations. All calculations were
performed employing DFT within the hybrid meta generalized
gradient approximation, with the TPSSh exchange-correlation func-
tional,27 and the Gaussian 09 package (Revision D.01).28 Full
geometry optimizations of 5-Yb were performed in acetonitrile
solution by using the large-core relativistic effective core potential
(LCRECP) of Dolg et al. and the related [5s4p3d]-GTO valence basis
set for Yb,29 and the standard 6-31G(d,p) basis set for C, H, N, and O
atoms. No symmetry constraints were imposed during the
optimizations. The default values for the integration grid (“fine”)
and the self-consistent field energy convergence criteria (1 × 10−8)
were used. The stationary points found on the potential energy
surfaces as a result of the geometry optimizations were tested to
represent energy minima rather than saddle points via frequency
analysis. Solvent effects (acetonitrile) were taken into account by using
the integral equation formalism variant of the polarizable continuum
model as implemented in Gaussian 09.30

Luminescence Spectroscopy. Steady-state emission spectra were
acquired on a PTI Quantamaster QM4 spectrofluorimeter using 1.0
cm quartz cuvettes. The excitation light source was a 75 W continuous
xenon short arc lamp. Emission was monitored at 90° using a PTI
P1.7R detector module (Hamamatsu PMT R5509−72 with a
Hamamatsu C9525 power supply operated at −1500 V and a
Hamamatsu liquid N2 cooling unit C9940 set to −80 °C). For the
near-IR steady-state emission measurements, a long-pass filter RG-780
(Schott, 3.0 mm thickness, transmission >83% between 800 and 850
nm and >99% between 850 and 1700 nm) was used in the emission
channel to avoid higher-order excitation light. Low-temperature
spectra were recorded on frozen glasses of solutions of 5-Lu
(MeOH/EtOH 1:1, v/v) using a dewar cuvette filled with liquid N2
(T = 77 K). Spectral selection was achieved by single grating
monochromators (excitation: 1200 grooves/mm, blazed at 300 nm;
near-IR emission: 600 grooves/mm, blazed at 1200 nm). Lumines-
cence lifetimes were determined with the same instrumental setup
without the use of the long-pass filter. The light source for these
measurements was a xenon flash lamp (Hamamatsu L4633; 10 Hz
repetition rate, pulse width ca. 1.5 μs full width at half-maximum).
Lifetime data analysis (deconvolution, statistical parameters, etc.) was
performed using the software package FeliX32 from PTI. Lifetimes
were determined by deconvolution fitting of the decay profiles with
the instrument response function, which was determined using a dilute
aqueous dispersion of colloidal silica (Ludox AM-30). The estimated
uncertainties in τ are ±10%.

Synthesis. 6,6′-Dimethyl-2,2′-bipyridine-4-carboxylic Acid Meth-
yl Ester (10). Under N2, a two-neck Schlenk flask equipped with a
reflux condenser was charged with 2-methyl-6-(trifluoromethylsulfo-
nyloxy)-isonicotinic acid methyl ester (9)16 (11.97 g, 40.00 mmol, 1.0
equiv), 2-methyl-6-(tributylstannyl)pyridin (8)16 (15.29 g, 40.00
mmol, 1.0 equiv), and PPh3 (1.05 g, 4.00 mmol, 0.1 equiv) in dry

Figure 11. Low-temperature steady-state emission spectra (λexc = 315
nm, T = 77 K) for 5-Lu in a glassy CH3OH/EtOH matrix (1:1, v/v).

Figure 12. Normalized steady-state emission spectra for 5-Yb (black)
and for 2-Yb (red)13c in solution (CD3OD, λexc = 305 nm, emission
path: long pass filter RG780).

Figure 13. Luminescence decay profile of 5-Yb (black) and
monoexponential fit in red (CD3OD, λexc = 305 nm, λem = 970 nm).
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xylene (300 mL, isomeric mixture). The solution was degassed by one
freeze−pump−thaw cycle before solid [PdCl2(PPh3)2] (1.40 g, 2.00
mmol, 0.05 equiv) was added. After two additional freeze−pump−
thaw cycles, the yellow suspension was heated to reflux for 24 h. The
reaction mixture was allowed to come to ambient temperature and was
poured into a saturated, aqueous solution of Na2H2EDTA (300 mL).
The aqueous phase was extracted with CH2Cl2 (3 × 300 mL), and the
combined organic phases were dried (MgSO4) and concentrated
under reduced pressure. The remaining residue was dissolved in
CH3CN, and the solution was extracted continuously in a liquid−
liquid extractor with n-heptane for 24 h. The pale yellow product,
which crystallized from the extract after standing overnight at room
temperature, was collected, washed with n-heptane, and dried in vacuo
(6.78 g, 70%). The analytical data were in complete agreement with
the literature.14,16

1H NMR (200 MHz, CDCl3): δ = 8.72 (s, 1 H), 8.20 (d, J = 7.8 Hz,
1 H), 7.71 (s, 1 H), 7.68 (d, J = 7.8 Hz, 1 H), 7.18 (d, J = 7.8 Hz, 1 H),
3.98 (s, 3 H), 2.72 (s, 3 H), 2.69 (s, 3 H) ppm.
6,6′-Dimethyl-4-methyloxycarbonyl-2,2′-bipyridine N,N′-dioxide

(11). With cooling in an ice bath, a solution of m-chloroperoxybenzoic
acid (32.35 g of 77 wt %, 24.90 g of pure, 144 mmol, 2.4 equiv) in
CH2Cl2 (750 mL) was added dropwise to a solution of 6,6′-dimethyl-
2,2′-bipyridine-4-carboxylic acid methyl ester (10) (14.57 g, 60.1
mmol, 1.0 equiv) in CH2Cl2 (600 mL) over the course of 1.5 h. The
pale yellow solution was allowed to reach room temperature over ca. 3
h and was stirred overnight. After extraction of the reaction mixture
with aq. NaHCO3 solution (pH 8, 2 × 300 mL) and water (300 mL),
the organic layer was dried over MgSO4, and the solvent was removed
under reduced pressure (bath temperature <35 °C). The crude
product was purified by column chromatography (SiO2, CH2Cl2/
MeOH 100:1 → 24:1) to afford the title compound as an off-white
solid (13.85 g, 84%).

1H NMR (250 MHz, CDCl3): δ = 8.01 (br s, 2 H), 7.49−7.30 (m, 3
H), 3.94 (s, 3 H), 2.64 (s, 3 H), 2.61 (s, 3 H) ppm. 13C NMR (62.9
MHz, CDCl3): δ = 164.1, 150.2, 150.0, 143.7, 143.2, 127.3, 126.8,
125.7, 125.5, 125.3, 124.9, 52.7, 17.97, 17.94. MS (FAB, pos. mode):
m/z (%) = 275.1 (100, [M + H]+), 259.1 (13). TLC: Rf = 0.08 (SiO2,
CH2Cl2/MeOH 24:1, detection: UV). mp:190−192 °C (decomp).
6,6′-Bis(bromomethyl)-2,2′-bipyridine-4-carboxylic Acid Methyl

Ester (12).17 Under N2, (CF3CO)2O (44.1 mL, 66.6 g, 317 mmol, 12
equiv) was added dropwise via syringe to a yellow solution of 11 (7.25
g, 26.4 mmol, 1.0 equiv) in dry CH2Cl2 (80 mL). The brown reaction
mixture was heated under reflux for 1.5 h before the volatiles were
removed in vacuo. Under N2, the obtained orange residue was
dissolved in a mixture of dry DMF/THF (40 mL, 1:1, v/v). Under N2
and with ice-cooling, anhydrous LiBr (18.4 g, 211 mmol, 8.0 equiv)
was dissolved in dry THF (50 mL), and the cold solution was added
dropwise to the reaction mixture. After it was stirred at room
temperature for 12 h, the solvents were removed under reduced
pressure (bath temperature 40 °C). The brown residue was dissolved
in CH2Cl2/water (400 mL, 1:1, v/v), and the aqueous phase was
adjusted to pH ≈ 6 with saturated aqueous Na2CO3. The organic layer
was washed with additional water (2 × 150 mL), dried (MgSO4), and
concentrated to dryness. The crude product was purified by column
chromatography (SiO2, CH2Cl2/MeOH 100:1, preloading onto SiO2)
to give the product as a yellow solid (7.00 g, 66%).

1H NMR (200 MHz, CDCl3): δ = 8.97−8.84 (m, 1 H), 8.47−8.33
(m, 1 H), 8.08−7.96 (m, 1 H), 7.90 (t, J = 7.8 Hz, 1 H), 7.59−7.47
(m, 1 H), 4.73 (s, 2 H), 4.69 (s, 2 H), 4.02 (s, 4 H) ppm. 13C NMR
(50 MHz, CDCl3): δ = 165.4, 157.6, 156.6, 156.4, 154.4, 139.9, 138.5,
124.4, 123.1, 121.0, 120.2, 53.0, 33.6, 33.4 ppm. MS (ESI, pos. mode):
m/z (%) 258.99 (42), 336.88 (46), 400.74 (100, [M + H]+), 422.69
(100, [M + K]+). TLC: Rf = 0.64 (SiO2, CH2Cl2/MeOH 100:1,
detection UV).
6,6′-Bis(bromomethyl)-4-methyloxycarbonyl-2,2′-bipyri-dine

N,N′-dioxide (13).18 Under N2 and with cooling in an ice bath, urea/
H2O2 adduct (3.77 g, 40.1 mmol, 2.3 equiv) was added in portions to a
suspension of 3 (6.97 g, 17.4 mmol, 1.0 equiv) in dry CH2Cl2 (300
mL). Then, (CF3CO)2O (5.6 mL, 8.42 g, 40.1 mmol, 2.3 equiv) was
added slowly; the mixture was allowed to warm to room temperature

and stirred overnight (15 h). A saturated solution of sodium
thiosulfate pentahydrate (10 mL) and water (200 mL) was added,
and the mixture was stirred for 30 min. The phases were separated,
and the aqueous phase was extracted with CH2Cl2 (2 × 75 mL). The
combined organic layers were dried (MgSO4) and concentrated. The
isolated crude product was purified by column chromatography (SiO2,
CH2Cl2/MeOH 100:1 → 25:1, preloading onto SiO2) to give the title
compound as a colorless solid (5.85 g, 78%).

1H NMR (200 MHz, CDCl3): δ = 8.23 (d, J = 2.5 Hz, 1 H), 8.14 (d,
J = 2.4 Hz, 1 H), 7.67 (dd, J = 2.0, 7.5 Hz, 1 H), 7.59−7.50 (m, 1 H),
7.34 (t, J = 7.9 Hz, 1 H), 4.73 (s, 2 H), 4.70 (s, 2 H), 3.96 (s, 3 H)
ppm. 13C NMR (126 MHz, CDCl3): δ = 163.7, 148.4, 148.2, 143.6,
142.7, 128.0, 127.9, 127.8, 127.5, 125.3, 124.7, 53.1, 25.4, 25.1 ppm.
MS (ESI+): m/z (%) = 454.73 (100, [M + Na]+, Br2-pattern). TLC: Rf
= 0.22 (SiO2, CH2Cl2/MeOH 25:1, detection: UV).

Sodium Cryptate 15. Under N2, macrocycle 1419 (0.48 g, 1.22
mmol, 1.0 equiv) and the dibromide 13 (0.53 g, 1.22 mmol, 1.0 equiv)
were dissolved in CH3CN (500 mL, HPLC grade), and Na2CO3 (1.29
g, 12.2 mmol, 10 equiv) was added. The mixture was heated under
reflux for 40 h, cooled to ambient temperature, and filtered. The
filtrate was concentrated under reduced pressure, and the resulting
residue was subjected to column chromatography (SiO2, gradient:
CH2Cl2/MeOH 15:1 → 9:1) to yield the title compound as a light-
yellow solid (0.30 g, 31%).

1H NMR (200 MHz, CDCl3): δ = 8.26−8.18 (m, 1 H), 8.10−8.02
(m, 1 H), 8.01−7.92 (m, 1 H), 7.88−7.60 (m, 8 H), 7.58−7.33 (m, 4
H), 4.32 (d, J = 12.0 Hz, 1 H), 4.29 (d, J = 11.7 Hz, 1 H), 4.08−3.31
(m, 13 H) ppm. 13C NMR (50.3 MHz, CDCl3): δ = 163.6, 158.8,
158.4 157.8, 157.6, 157.1, 157.0, 156.4, 156.2, 148.6, 148.5, 145.5,
144.0, 138.32, 138.30, 130.2, 128.6, 126.9, 126.8, 125.4, 125.3, 124.74,
124.68, 122.2, 122.1, 121.3, 121.2, 60.9, 60.70, 60.66, 60.62, 54.6, 54.3,
53.1 ppm. MS (ESI, pos. mode): m/z (%) = 687.20 (100, [M]+).TLC:
Rf = 0.45 (SiO2, CH2Cl2/MeOH 9:1, detection UV + I2 vapor). Anal.
Calcd (Found) for C38H32BrN8NaO4·2 H2O (Mr = 803.64): C, 56.79
(56.61); H, 4.52 (4.28); N, 13.94 (13.73).

Sodium Cryptate 16. Compound 15 (71.0 mg, 88.3 μmol, 1.0
equiv) was dissolved in MeOH (8 mL), and a solution of NaOH (18.5
mg, 462 μmol, 5.2 equiv) in water (2 mL) was added dropwise. The
solution was stirred at 40 °C (bath temperature) for 3 h. The solvents
were removed, and the residue was subjected to column chromatog-
raphy (SiO2, CH2Cl2/MeOH 2:1, detection: UV). The product was
obtained as a colorless solid (51 mg, 76%).

1H NMR (200 MHz, CD3OD): δ = 8.22 (d, J = 2.3 Hz, 1 H), 8.14
(d, J = 2.3 Hz, 1 H), 7.99−7.73 (m, 10 H), 7.66−7.36 (m, 5 H), 4.30
(d, J = 11.8 Hz, 2 H), 3.95−3.75 (m, 4 H), 3.64−3.34 (m, 6 H) ppm.
13C NMR (50.3 MHz, CD3OD): δ = 169.5, 160.1, 159.3, 159.2,
157.91, 157.88, 150.2, 149.5, 146.6, 145.9, 139.5, 139.3, 131.0, 130.6,
128.5, 128.4, 128.1, 125.61, 125.56, 125.51, 123.13. 123.11, 122.34,
122.31, 61.81, 61.73, 61.69, 55.63, 55.55 ppm. MS (ESI, pos. mode):
m/z (%) = 673.21 (66, [M + H]+), 695.17 (100, [M + Na]+). Rf = 0.17
(SiO2, CH2Cl2/MeOH 2:1, detection: UV). Anal. Calcd (Found) for
C37H29N8NaO4·5H2O (Mr = 762.74): C, 58.26 (57.96); H, 5.15
(4.94); N, 14.69 (14.72).

Sodium Cryptate 5-Na. Under N2 and with ice-cooling, 15 (250.7
mg, 0.327 mmol, 1.0 equiv) was added as a solid to freshly dried and
distilled ethylenediamine (3.5 mL, 3.15 g, 52.4 mmol, 150 equiv). The
slightly red suspension was allowed to warm to room temperature and
stirred for 2 d before the volatiles were removed in vacuo. The crude
product was subjected to column chromatography (silanized SiO2,
CH2Cl2/MeOH 24:1, preloading onto silanized SiO2) to give pure 5-
Na as an off-white solid (197 mg, 76%).

1H NMR (250 MHz, CD3OD): δ = 8.48 (d, J = 2.3 Hz, 1 H), 8.35
(d, J = 2.6 Hz, 1 H), 7.96−7.82 (m, 9 H), 7.79 (dd, J = 2.0, 7.8 Hz, 1
H), 7.62−7.53 (m, 1 H), 7.51−7.42 (m, 4 H), 4.43−4.30 (m, 2 H),
4.02−3.85 (m, 4 H), 3.83−3.60 (m, 4 H), 3.59−3.39 (m, 4 H), 3.30−
3.20 (m, 2 H) ppm. 13C NMR (62.9 MHz, CD3OD): δ = 166.3, 160.1,
159.3, 159.2, 158.3, 157.8, 150.25, 150.23, 146.2, 146.0, 139.6, 139.4,
131.9, 131.4, 128.71, 128.69, 126.8, 125.7, 123.2, 122.4, 61.9, 61.82,
61.75, 61.6, 55.5, 55.4, 41.0, 39.4 ppm. MS (ESI, pos. mode): m/z (%)
357.99 (34), 715.10 (100, [M]+). Anal. Calcd (Found) for

Inorganic Chemistry Article

DOI: 10.1021/acs.inorgchem.6b00591
Inorg. Chem. 2016, 55, 5549−5557

5555

297



Chapter 9. Appendix

C39H36BrN10NaO3·4 H2O (Mr = 867.72): C, 53.98 (53.85); H, 5.11
(4.92); N, 16.14 (16.00). TLC: Rf = 0.48 (SiO2, CH2Cl2/MeOH 4:1,
detection UV + ninhydrin).
Synthesis of Ln Complexes 5-LnGeneral Procedure. The

sodium cryptate 5-Na (1.0 equiv) and Ln(X)3·nH2O (1.7 equiv)
were suspendend in CH3CN (HPLC grade), and the mixture was
heated under reflux for at least 40 h. The solvent was removed in
vacuo, and the remaining residue was taken up in a minimum of
CH3CN/H2O (1:1, v/v) and subjected to preparative reversed-phase
HPLC (Lichrospher RP-18e, 250× 10 mm-10 μm, flow rate: 3.0 mL
min−1, UV detection: 300 nm) with H2O (+1% TFA, v/v) as mobile
Phase A, CH3CN (HPLC grade) as mobile Phase B, and the following
gradient: 0 min: 85%A/15%B; 5 min 85%A/15%B; 19 min: 45%A/
55%B; 25 min: 45%A/55%B; 40 min: 85%A/15%B; 50 min: 85%A/
15%B.
The composition of the collected fractions was checked by

analytical, reversed-phase HPLC (Lichrospher RP-18e, 125 × 4 mm-
5 μm, flow rate: 1 mL min−1, UV detection: 300 nm), using the same
mobile phase mixture and gradient (see Supporting Information for
HPLC traces). Fractions containing pure lanthanoid complexes 5-Ln
were combined (retention times tr ≈ 12.6−12.7 min) and evaporated
to dryness at room temperature. The complexes were isolated as off-
white or faintly yellow solids.
Ytterbium Cryptate 5-Yb. 5-Na (30 mg, 38 μmol, 1.0 equiv) and

YbCl3·6 H2O (25 mg, 63 μmol, 1.7 equiv) in 15 mL of CH3CN
(HPLC grade). Yield: 14 mg.

1H NMR (500 MHz, CD3CN): δ = 153.5 (H1b, 2 H), 135.3/134.0
(H10b, 2 H), 113.2 (H9b, 2 H), 69.1/69.0 (H8b, 2 H), 61.8/61.4
(H2b, 2 H), 34.1/33.9 (H7b, 2H), 22.6/21.6 (H2o, 2H), 12.8/10.9
(H3o, 2 H), 12.04/11.97 (H6b, 2 H), 0.02 (H4o, 1 H), −3.2/−4.1
(H3b, 2 H), −12.8/−13.7 (H4b, 2 H), −13.2/−14.6 (H5o, 2 H),
−15.6/−15.9 (H5b, 2 H), −66.0/−69.4 (H1o, 2H) ppm. Remarks:
(a) The signals representing the four protons of the ethylene group
could not be identified unambigiously, as in the respective region of
the spectrum there are several solvent signals; (b) The numbering
scheme uses the same name for protons that would be symmetry-
related in the unfunctionalized cryptate, see Figure 8. 19F NMR (376
MHz, CD3CN): δ = −76.4 (s, 9 F), −116.5 (s, 3 F) ppm. 19F NMR
(376 MHz, CD3OD): δ = −77.0 (s, 9 F), −114.4 (s, 3 F) ppm. MS
(ESI, pos. mode): m/z (%) = 489.7 (100, {[Yb(II)(L)] +
CF3COO}

2+), 560.8 (58). Analytical HPLC: tr = 12.7 min (see Figure
S13 in the Supporting Information).
Lutetium Cryptate 5-Lu. 5-Na (20 mg, 25 μmol, 1.0 equiv) and

Lu(OTf)3 (27 mg, 43 μmol, 1.7 equiv) in 15 mL of CH3CN (HPLC
grade). Yield: 18 mg.

1H NMR (400 MHz, CD3CN): δ = 10.0 (t, J = 4.6 Hz, 1 H), 8.90
(d, J = 2.3 Hz, 1 H), 8.70 (d, J = 2.4 Hz, 1 H), 8.48 (dd, J = 1.7, 7.8
Hz, 1 H), 8.33−8.28 (m, 2 H), 8.23−8.05 (m, 8 H), 7.62−7.55 (m, 4
H), 4.79−4.71 (m, 4 H), 4.13−3.93 (m, 6 H), 3.84 (d, J = 13.1 Hz, 1
H), 3.80−3.64 (m, 5 H), 3.23 (t, J = 5.3 Hz, 2 H) ppm. MS (ESI, pos.
mode.): m/z (%) = 360. (87), 478.3 (79), 561.3 (84), 697.3 (100).
Analytical HPLC: tr = 12.6 min (see Figure S14 in the Supporting
Information).
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1. NMR Spectra 

 
Figure S1. 1H NMR (200 MHz, CDCl3) of 10.  

 

 
Figure S2. 1H NMR (250 MHz, CDCl3) of 11.   
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Figure S3. 1H NMR (200 MHz, CDCl3) of 12. 

 
Figure S4. 1H NMR (200 MHz, CDCl3) of 13.  
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Figure S5. 13C NMR (126 MHz, CDCl3) of 13. 
 

 
Figure S6. 1H NMR (200 MHz, CDCl3) of 15. 
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Figure S7. 13C NMR (50.3 MHz, CDCl3) of 15. 

 
Figure S8. 1H NMR (200 MHz, CD3OD) of 16. 
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Figure S9. 13C NMR (50.3 MHz, CD3OD) of 16. 

 

 
Figure S10. 1H NMR (250 MHz, CD3OD) of 5-Na. 
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Figure S11. 13C NMR (62.9 MHz, CD3OD) of 5-Na. 
 

 
 

Figure S12. 1H NMR (400 MHz, CD3CN) of 5-Lu. 
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2. HPLC traces of 5-Ln 
For the detailed HPLC conditions see the main article. 

 
Figure S13. Analytical HPLC trace of 5-Yb (after preparative HPLC purification).  
 

Figure S14. Analytical HPLC trace of 5-Lu (after preparative HPLC purification). 
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3. DFT Calculations 
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Figure S15. Numbering scheme for the hydrogen atoms in 5-Yb. 
 
Cartesian coordinates for the calculated structure of 5-Yb in acetonitrile: 

# FAWYbLehnNox2F3_TPSSh 

# Created by GaussView 5.0.8 

# 

 

# 

# 

 

@<TRIPOS>MOLECULE 

Molecule Name 

93 101 

SMALL 

NO_CHARGES 

 

 

@<TRIPOS>ATOM 

1 Yb1     0.0000     0.0000     0.0000 Yb 

2 H2    -1.2913     3.1217    -1.0487 H 

3 H3     1.3329    -3.1404    -1.0784 H 

4 H4    -3.0447     3.0902    -1.3609 H 

5 H5     3.0824    -3.0948    -1.4112 H 

6 H6    -3.6455     2.7370    -3.6818 H 

7 H7     3.6720    -2.6996    -3.7317 H 

8 H8    -3.1949     1.5865    -5.8662 H 

9 H9     1.2429     0.0339    -5.9834 H 

10 H10    -1.2659    -0.0050    -5.9897 H 

11 H11     4.9767    -1.1943    -8.2605 H 

12 H12     3.6222    -0.9892    -9.3956 H 

13 H13     4.4360    -3.6436    -8.0568 H 

14 H14     3.1545    -3.4623    -9.2871 H 

15 H15     2.8279    -1.1554     1.6059 H 

16 H16    -2.7150     1.0679     1.6241 H 

17 H17    -3.4882     2.4916     0.9054 H 

18 H18     3.5156    -2.5946     0.8410 H 
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19 H19    -2.6314     4.2492     2.3834 H 
20 H20     2.6509    -4.2730     2.3984 H 
21 H21    -0.6290     5.5529     3.1587 H 
22 H22     0.6385    -5.5484     3.1929 H 
23 H23     1.6298     4.7539     2.5571 H 
24 H24    -1.6124    -4.7513     2.5569 H 
25 H25     3.3709     4.1450     1.8270 H 
26 H26    -3.3346    -4.1900     1.7610 H 
27 H27     5.5357     3.1897     1.0984 H 
28 H28    -5.4995    -3.2366     1.0354 H 
29 H29     5.5350     0.9884    -0.1086 H 
30 H30    -5.5074    -1.0162    -0.1368 H 
31 H31     4.3553    -0.9691    -0.7432 H 
32 H32    -4.3181     0.9626    -0.7412 H 
33 H33    -3.2072     0.1963    -1.8769 H 
34 H34     3.2395    -0.1924    -1.8648 H 
35 N35    -0.1867     2.3097     1.0899 N 
36 N36     5.1202    -3.2896   -10.0095 N 
37 N37     3.0889    -1.4058    -7.4335 N 
38 N38    -0.7560     1.2276    -2.9043 N 
39 N39    -2.2415     1.3458    -0.4052 N 
40 N40     2.2809    -1.3738    -0.4140 N 
41 N41     0.7637    -1.2334    -2.9140 N 
42 N42     0.2250    -2.3292     1.0741 N 
43 N43    -2.1796    -1.3245     0.3718 N 
44 C44     4.6098     2.6613     0.9007 C 
45 C45     3.3923     3.1932     1.3144 C 
46 C46     0.7617     4.1949     2.2352 C 
47 C47    -0.5104     4.6451     2.5776 C 
48 C48     4.6119     1.4428     0.2324 C 
49 C49     2.2102     2.4902     1.0598 C 
50 C50     0.8950     3.0225     1.4795 C 
51 C51    -1.6238     3.9223     2.1543 C 
52 C52     3.3933     0.8007    -0.0047 C 
53 C53    -1.4166     2.7558     1.4185 C 
54 C54     3.3813    -0.4677    -0.8153 C 
55 C55     3.9975    -1.5786    -8.5572 C 
56 C56    -2.1253     2.4944    -1.3684 C 
57 C57    -1.8890     1.9736    -2.7482 C 
58 C58     3.5058    -1.6816    -6.1700 C 
59 C59    -2.7641     2.1220    -3.8191 C 
60 C60    -2.5603     1.9064     0.9363 C 
61 C61     1.4233    -0.5975    -5.1217 C 
62 C62     4.1003    -3.0672    -8.9179 C 
63 C63     2.5128    -1.4684    -5.0593 C 
64 C64    -2.5211     1.4679    -5.0267 C 
65 C65    -0.5672     0.4616    -4.0258 C 
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66 C66     0.5672    -0.4616    -4.0307 C 

67 C67    -1.4361     0.5994    -5.1071 C 

68 C68     2.6140    -1.9723     0.9072 C 

69 C69     2.7715    -2.1071    -3.8420 C 

70 C70     1.9077    -1.9690    -2.7673 C 

71 C71     2.1603    -2.5029    -1.3966 C 

72 C72    -3.3484     0.4541    -0.8228 C 

73 C73     1.4501    -2.7853     1.4080 C 

74 C74     1.6459    -3.9420     2.1633 C 

75 C75    -3.3658    -0.8257    -0.0325 C 

76 C76    -0.8626    -3.0398     1.4597 C 

77 C77    -2.1775    -2.5185     1.0214 C 

78 C78    -4.5829    -1.4727     0.1972 C 

79 C79     0.5281    -4.6506     2.5953 C 

80 C80    -0.7391    -4.2013     2.2338 C 

81 C81    -3.3574    -3.2314     1.2611 C 

82 C82    -4.5759    -2.7005     0.8481 C 

83 O83     0.1711     1.2652    -1.9554 O 

84 O84     4.6431    -2.0905    -5.9170 O 

85 O85    -0.3713     0.0025     2.4346 O 

86 O86    -0.1501    -1.2799    -1.9619 O 

87 H87     6.0509    -2.9593    -9.7348 H 

88 H88     4.8646    -2.8106   -10.8786 H 

89 H89    -0.1613     0.7483     3.0168 H 

90 H90     2.1140    -1.2206    -7.6286 H 

91 H91     5.2068    -4.2870   -10.2289 H 

92 H92    -0.3459    -0.7907     2.9909 H 

93 N93     2.2022     1.3216     0.3544 N 

@<TRIPOS>BOND 

1 1 83 1 

2 1 85 1 

3 1 86 1 

4 2 56 1 

5 3 71 1 

6 4 56 1 

7 5 71 1 

8 6 59 1 

9 7 69 1 

10 8 64 1 

11 9 61 1 

12 10 67 1 

13 11 55 1 

14 12 55 1 

15 13 62 1 

16 14 62 1 

17 15 68 1 

18 16 60 1 
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19 17 60 1 

20 18 68 1 
21 19 51 1 
22 20 74 1 
23 21 47 1 
24 22 79 1 
25 23 46 1 
26 24 80 1 
27 25 45 1 
28 26 81 1 
29 27 44 1 
30 28 82 1 
31 29 48 1 
32 30 78 1 
33 31 54 1 
34 32 72 1 
35 33 72 1 
36 34 54 1 
37 35 50 Ar 
38 35 53 Ar 
39 36 62 1 
40 36 87 1 
41 36 88 1 
42 36 91 1 
43 37 55 1 
44 37 58 Ar 
45 37 90 1 
46 38 57 Ar 
47 38 65 Ar 
48 38 83 1 
49 39 56 1 
50 39 60 1 
51 39 72 1 
52 40 54 1 
53 40 68 1 
54 40 71 1 
55 41 66 Ar 
56 41 70 Ar 
57 41 86 1 
58 42 73 Ar 
59 42 76 Ar 
60 43 75 Ar 
61 43 77 Ar 
62 44 45 Ar 
63 44 48 Ar 
64 45 49 Ar 
65 46 47 Ar 
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66 46 50 Ar 

67 47 51 Ar 
68 48 52 Ar 
69 49 50 1 
70 49 93 Ar 
71 51 53 Ar 
72 52 54 1 
73 52 93 Ar 
74 53 60 1 
75 55 62 1 
76 56 57 1 
77 57 59 Ar 
78 58 63 1 
79 58 84 2 
80 59 64 Ar 
81 61 63 Ar 
82 61 66 Ar 
83 63 69 Ar 
84 64 67 Ar 
85 65 66 1 
86 65 67 Ar 
87 68 73 1 
88 69 70 2 
89 70 71 1 
90 72 75 1 
91 73 74 Ar 
92 74 79 Ar 
93 75 78 Ar 
94 76 77 1 
95 76 80 Ar 
96 77 81 Ar 
97 78 82 Ar 
98 79 80 Ar 
99 81 82 Ar 
100 85 89 1 
101 85 92 1 
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Chiral Resolution of Lanthanoid Cryptates with Extreme
Configurational Stability
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*S Supporting Information

ABSTRACT: Chiral resolution is achieved for racemic
tris(2,2′-bipyridine)-based lanthanoid cryptates by chiral
HPLC. The resolved complexes exhibit very rare
configurational stability under extreme conditions.

Chirality is one of the most fundamental aspects of
chemistry. In this context, enantiopure metal complexes

have long been recognized to play a crucial role in a wide
variety of areas, most prominently in the recent past as catalysts
in asymmetric catalysis. The archetypes of this class of
compounds are octahedral tris(bidentate) complexes such as
[Ru(bpy)3]

n+, which in many instances can be chirally resolved
and often show remarkable configurational stability in
enantiopure form.1 In contrast, lanthanoid complexes, due to
their inherent kinetic lability and generally rather fluxional
coordination sphere, rarely show similarly advantageous
properties and usually only form configurationally stable
complexes with enantiopure ligands.2 For example, the chiral
europium complex anion [Eu(dpa)3]

3− (with dpa 
dipicolinate) shows very fast exchange between its Δ and Λ
enantiomers with a half-life on the order of a few tens of
milliseconds in aqueous solution at ambient temperature.3

Despite the great potential that enantiopure lanthanoid
complexes have for unique applications such as paramagnetic
NMR shift reagents4 or circularly polarized luminescence
(CPL) probes,5 there is currently only one practically useful
ligand platform based on 1,4,7-triazacyclononane that provides
lanthanoid complexes which can be chirally resolved and which
show sufficient configurational stability after resolution.6 It has
so far proven very difficult to develop other ligands for
lanthanoid chelation with the same advantageous properties.
Here, we report the chiral resolution of tris(2,2′-bipyridine)-
based lanthanoid cryptates as a different class of universally
applicable rare earth chelators and their remarkable chemical
and configurational stability under rather harsh conditions.
Rigidified bipyridine cryptands such as (±)-1-Ln (Scheme 1,

left) have proven to be excellent ligands for lanthanoids,
providing kinetically inert complexes with outstanding photo-
physical and interesting magnetic properties.7 Due to the helical
arrangement of the overall cryptate architecture and the axial
chirality of the 2,2′-bipyridine-N,N′-dioxide units, these
cryptates are chiral but have so far almost exclusively been
synthesized and used as racemates.
Cryptates of this type are also accessible as single

enantiomers using enantiomerically pure cryptands,8 but the
much more desirable and practically straightforward chiral

resolution to obtain both enantiomers of the corresponding
cryptates with racemic or achiral cryptands has not been
achieved so far. In order to test the latter possibility, we
subjected a series of previously realized cryptates (±)-1-Ln
(with Ln = Pr, Nd, Sm, Er, Lu)7c,d to chiral HPLC. Under
optimized HPLC conditions (stationary phase, CHIRALPAK
IE; eluent, isocratic CH3OH + 0.5 vol % CF3COOH), the
racemates could be sufficiently resolved for all lanthanoids
investigated along the series. As a representative example,
Figure 1 shows the HPLC traces for the racemate (±)-1-Lu, as
well as the isolated enantiomers 1-Lu-ent1 (first fraction) and
1-Lu-ent2 (second fraction) after the preparative resolution
(see Figure S1 in the Supporting Information for the HPLC
traces for all other lanthanoids). The HPLC trace of the
racemate shows the two peaks assigned to the enantiomers in
the expected 50:50 ratio. The recovery of the pure enantiomers
from the racemate was quite good with 72% for 1-Lu-ent1 and
88% for 1-Lu-ent2 (see the Supporting Information for details).
Both of these resolved fractions showed no sign of the other
enantiomer in the HPLC traces, identical 1H NMR spectra
(Figure S1 in the Supporting Information) in CD3OD, and
perfect mirror-image CD spectra in CH3OH (Figure 2). Taken
together, this constitutes conclusive evidence that the two
fractions contain the corresponding enantiomers and that the
enantiopurity of each form is very high. At the moment, we
cannot assign the absolute configurations of the two
enantiomers, but efforts in this direction are underway.
In order to test the configurational stability of the resolved

enantiomers, 1-Lu-ent1 was subjected to two rather harsh
environments, and the progress over time was monitored by
chiral HPLC (Figure 3). On the one hand, we evaluated
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Scheme 1. Chiral Resolution of the Racemic Cryptates 1-Ln
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potential racemization reactions in solutions of this enantiomer
in neat CF3COOH at room temperature, conditions which
usually favor rapid decomplexation and/or configurational
instability in most other lanthanoid chelates. Second, we also
heated 1-Lu-ent1 in CH3CN under reflux with 10 equiv of
externally added LuCl3·6H2O and monitored the potential self-
exchange of the lutetium cations which would lead to the
appearance of the second enantiomer 1-Lu-ent2. In neither of
these experiments could we detect any chemical instability or
any sign of the other enantiomer after 5 days.
In conclusion, we could show that the lanthanoid cryptates

(±)-1-Ln can be separated into pure enantiomers by chiral
HPLC and that the resolved, enantiopure complexes show very
high configurational stability. This extraordinary and very rare
ability to preserve the absolute stereochemical information
under extremely challenging conditions makes these enantio-
pure cryptates very interesting lanthanoid chelates. We expect
that this will open up entirely new prospects for applications
where enantiopurity is a key requirement, for example for the
development of new CPL probes in the near-IR wavelength
range, a spectral region where we have already shown the great
worth of these cryptates.7b−d
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1. Materials and Methods 
NMR spectra were recorded on a Bruker 
CD3OD (≥ 99.8% D) as the solvent. 
described previously from the corresponding sodium cryptates
Ln = Pr, x = 6 for Ln = Nd, Sm, 
 
2. Chiral HPLC 
All chiral HPLC runs of (±)-1-Ln
Azura HPLC system (UV detection at 
(Daicel, particle size: 5 µm, internal diameter: 4.6
with additional 0.5 vol.-% CF3

were prepared using HPLC-grade MeOH 
pore size, 13 mm diameter) in a stainless steel filter holder 
HPLC traces for (±)-1-Ln with Ln = Pr, Nd, Sm, Er are shown in Fig
Figure 1 in the manuscript. 
 
Notes: The separation efficiency
enantiomers is dependent on 
that only freshly prepared MeOH/CF
 

Figure S1. Normalized chiral HPLC 

 
 
 
 
 
 
 

S2 

 
NMR spectra were recorded on a Bruker AVII+400 spectrometer (1H: 400 MHz) using 

 99.8% D) as the solvent. The racemic lanthanoid cryptates were synthesiz
from the corresponding sodium cryptates using LnCl

= Pr, x = 6 for Ln = Nd, Sm, Er, or Lu).1  

Ln (with Ln = Pr, Nd, Sm, Er, Lu) were performed on a
detection at λ = 300 nm), equipped with a CHIRALPAK

internal diameter: 4.6 mm, column length: 150
3COOH as mobile phase with a flow of 1.0 mL/

grade MeOH and filtered with a membrane filter
) in a stainless steel filter holder prior to injection.

with Ln = Pr, Nd, Sm, Er are shown in Figure S1 and for 

he separation efficiency and the relative and absolute retention of the two 
enantiomers is dependent on the concentration of the analyte. Special care has to be taken 

prepared MeOH/CF3COOH mobile phases are used. 

Normalized chiral HPLC traces of the racemates (±)-1-Ln (Ln = Pr, Nd, Sm, Er)

 

H: 400 MHz) using 
thanoid cryptates were synthesized as 

using LnCl3 ⋅ x H2O (x = 7 for 

were performed on a Knauer 
), equipped with a CHIRALPAK IE column 

150 mm) using MeOH 
mL/min. All samples 

and filtered with a membrane filter (nylon, 0.45 µm 
prior to injection. The obtained 

ure S1 and for (±)-1-Lu in 

te retention of the two 
Special care has to be taken 

 
(Ln = Pr, Nd, Sm, Er). 
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Preparative chiral resolution of 1-Lu:  
Racemic 1-Lu1a (8.0 mg, 6.4 µmol, 2.0 equivs.) was dissolved in MeOH (2.7 mL, HPLC-
grade) and filtered through a membrane filter (vide infra). The filter was washed with 
additional 0.5 mL of MeOH (HPLC-grade), to yield a total volume of 3.2 mL and a 
concentration of 2.5 mg/mL, which was found to be the optimal compromise between 
separation and time efficiency. The solution was subjected to chiral HPLC in portions of 100 
µL. The collected fractions of the respective enantiomers were combined and the solvents 
were removed in vacuo at room temperature. After drying, samples of the enantiomers were 
redissolved in MeOH (HPLC-grade), filtered and injected to verify the enantiopurity (see main 
article). After this HPLC purification with MeOH/CF3COOH (0.5 vol.-%) as mobile phase, a 
molecular composition of [C36H30N8O2Ln] (O2C2F3)3 ⋅ CH3OH was assumed, resulting in a 
molar mass of M = 1152.74 g/mol in the case of Lu. 
 
1-Lu-ent1: 2.7 mg (2.3 µmol, 72% yield) of a colorless solid 
1H NMR (400 MHz, CD3OD): δ = 8.48 (d, J = 7.9 Hz, 2 H), 8.42-8.36 (m, 4 H), 8.28-8.14 (m, 
8 H), 7.70 (d, J = 7.7 Hz, 2 H), 7.66 (d, J = 7.8 Hz, 2 H), 4.82 (d, J = 12.7 Hz, 2 H), 4.81 (d, J 
= 15.8 Hz, 2 H), 4.14 (d, J = 15.3 Hz, 2 H), 4.10 (d, J = 15.2 Hz, 2 H), 3.95 (d, J = 12.9 Hz, 2 
H), 3.70 (d, J = 15.7 Hz, 2 H) ppm. 
 
1-Lu-ent2: 3.2 mg (2.8 µmol, 88% yield) of a colorless solid 
1H NMR (400 MHz, CD3OD): δ = 8.48 (d, J = 8.1 Hz, 2 H), 8.42-8.35 (m, 4 H), 8.27-8.14 (m, 
8 H), 7.70 (d, J = 7.8 Hz, 2 H), 7.66 (d, J = 7.8 Hz, 2 H), 4.82 (d, J = 12.9 Hz, 2 H), 4.81 (d, J 
= 15.9 Hz, 2 H), 4.14 (d, J = 15.1 Hz, 2 H), 4.10 (d, J = 15.1 Hz, 2 H), 3.95 (d, J = 12.8 Hz, 2 
H), 3.70 (d, J = 15.8 Hz, 2 H) ppm. 
 

 
Figure S2. 1H NMR spectra (400 MHz, CD3OD) of 1-Lu-ent1 (A) and 1-Lu-ent2 (B).  
 
 
Configurational stability studies: 
A) Neat CF3COOH, room temperature 
1-Lu-ent1 (0.25 mg) was dissolved in CF3COOH (3.3 mL) and the solution was stirred at 
room temperature for seven days. In total eight samples of 200 µL were taken at different 
times (see Figure 4 in the manuscript). 

B) 10 eq. LuCl3 ⋅ 6 H2O, reflux 
1-Lu-ent1 (0.25 mg, 0.22 µmol, 1.0 equiv.) and LuCl3 ⋅ 6 H2O (0.84 mg, 2.2 µmol, 10 equivs.) 
were dissolved in CH3CN (3.3 mL, HPLC-grade) and heated under reflux for six days. In total 
seven samples of 200 µL were taken at different times (see Figure 4 in the manuscript). To 
prevent the mixture from running dry, several additional portions of CH3CN were added at 
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different times (24.2 h: 0.4 mL; 51.3 h: 2.5 mL; 57.8 h: 1.5 mL; 76.3: 0.8 mL; 102 h: 1.8 mL; 
120 h, 1.9 mL). 

For both studies (A and B), the samples were treated as follows: 
The solvents were concentrated under a stream of air and the residues were taken up in 
MeOH (100 µL). The solutions were filtered through a membrane filter (nylon, 0.45 µm pore 
size), the filter was washed with additional MeOH (0.3 mL) and the combined methanolic 
filtrates were concentrated. For chiral HPLC analysis, the dry samples were redissolved in 
MeOH (100 µL) directly before the HPLC run. 
 
 
3. Circular Dichroism Spectroscopy 
CD spectra were collected on a Jasco J-720 spectropolarimeter, using a bandwidth of 1.0 
nm, a response time of 2 seconds and a scan speed of 50 mm/min. Samples of the 
enantiomers (1-Lu-ent1: 0.21 mg, 1-Lu-ent2: 0.19 mg) were dissolved in MeOH (400 µL 
each), yielding solutions with concentrations of c = 0.46 mmol/L (1-Lu-ent1) and c = 0.41 
mmol/L (1-Lu-ent2), respectively. The solutions were measured in rectangular quartz 
cuvettes (Suprasil, d = 1 mm path length).  

 
4. References 
1 a) Pr, Nd, and Er, Lu: Doffek, C.; Alzakhem, N.; Bischof, C.; Wahsner, J.; Güden-Silber, 

T.; Lügger, J.; Platas-Iglesias, C.; Seitz, M.; J. Am. Chem. Soc., 2012, 134, 16413; b) Sm: 
Doffek, C.; Wahsner, J.; Kreidt, E.; Seitz, M.; Inorg. Chem., 2014, 53, 3263; c) Doffek, C.; 
Seitz, M.; Angew. Chem. Int Ed. 2015, 54, 9719 
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& Lanthanoid Compounds

Circularly Polarised Luminescence in Enantiopure Samarium and
Europium Cryptates
Elisabeth Kreidt,*[a] Lorenzo Arrico,[b] Francesco Zinna,[c] Lorenzo Di Bari,*[b] and
Michael Seitz[a]

Abstract: Circularly polarised luminescence (CPL) is a chirop-
tical phenomenon gaining more and more attention, as the
availability of the necessary spectrometers is getting better
and first applications in bioimaging or for the preparation of
OLEDs (organic light emitting diodes) are coming within
range. Until now most examples of distinctly CPL-active
compounds were europium and terbium complexes though
theoretically the electronic structure of samarium should be
as suitable as the one of terbium. This discrepancy can be

accounted for by the high susceptibility of samarium to
non-radiative deactivation processes. The aim of this study
was to strategically circumvent this difficulty by the use of a
ligand scaffold which has already proven to efficiently sup-
press these processes, namely the cryptates. The prepared
partly deuterated samarium and europium complexes exhib-
it distinct circularly polarised luminescence with dissymme-
try factors up to glum = + 0.13 (SmIII) or glum =ˇ0.19 (EuIII).

Introduction

Chirality is a ubiquitous concept in science and technology
and of special importance in chemistry and related fields. The
handedness of molecules is crucial for various phenomena.
Many of these phenomena depend on the interplay of chiral
matter with (polarised) light, for example, optical rotation, cir-
cular dichroism (CD) or circularly polarised luminescence (CPL).
Especially the latter is of special interest for various applica-
tions. A compound which exhibits CPL emits different intensi-
ties of left and right circularly polarised light at specific wave-
lengths after excitation with unpolarised light.[1] This property
is usually quantified by means of the luminescence dissymme-
try factor glum, which is defined as quotient of the difference of
the intensities of left and right polarised light (ILˇIR) and the
half of the total intensity (IL + IR) [Eq. (1)]:

glum à
IL ˇ IR

1=2ÖIL á IRÜ
à DI

I Ö1Ü

The luminescence dissymmetry factor of a given transition
a!b depends on the ratio of the transition’s rotatory strength
Rab and the oscillator strength Dab. The rotatory strength is de-
termined by the magnitudes and the relative orientation of
the magnetic and electric dipole transition moments
(Rab = jMbaj Pabj jcos tab), whereas the oscillator strength can be
approximated as the square of the electric dipole moment
(Dab = jPabj2), giving [Eq. (2)]:[1b]

glum à
4 Rab

Dabj j à
4 Mbaj jcos tab

Pabj j
Ö2Ü

The dependence on the angle tab between the magnetic and
electric dipole transition moments points towards the high
sensitivity of CPL towards subtle changes in the coordination
geometry. This makes it a useful tool in the study of biomole-
cules.[2] Also, the circularly polarised nature of the emitted light
offers great potential for applications, for example, in bioimag-
ing, as it enables a substantial improvement of the signal to
noise ratio.[3] Another field which will greatly benefit from cir-
cularly polarised luminescence are innovative organic light
emitting diodes (OLEDs).[4] In the past few years CPL has
evolved from a quite exotic speciality measured on custom-
built devices to a more established technique. Subsequently,
attempts to realise applications in the fields mentioned above
are getting more concrete.

For all kinds of applications, substances with high glum values
are desired. While for purely organic molecules usually values
in the range of 10ˇ4 to 10ˇ2 are reported,[1f] a special class of
coordination compounds, namely lanthanoid complexes, may
reach glum values between 0.1 and 1.38 (or up to 1.45 in the
solid state).[1, 5] This is not the only exceptionality of lanthanoid
complexes, other peculiarities like long luminescence lifetimes,
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very sharp emission spectra or very high magnetic anisotropies
have led to flourishing research on these compounds in the
past years.[6]

Both the general electronic structure of the lanthanoid and
the influence of the crystal field control the CPL properties of a
lanthanoid complex. From Equation (2) it becomes evident
that the highest luminescence dissymmetry factors can be ex-
pected for transitions which are magnetic dipole allowed and
electric dipole forbidden and satisfy the magnetic dipole selec-
tion rule (DJ = 0, ⌃1; except J’ = J’’ = 0). Already in 1980 Rich-
ardson identified the transitions of the lanthanoids for which
the highest dissymmetry factors can be expected.[7] The
5D0!7F1 transition of EuIII with its purely magnetic dipole char-
acter offers by far the best prerequisites for observing large
dissymmetry factors. But also the electronic structures of for
example, TbIII and SmIII allow for sizeable glum values. Although
Richardson’s classification of the transitions has proven to be
very reliable and successful, the influence of the coordination
situation around the lanthanoid is only poorly understood
until now. Also against the background of the lanthanoid’s in-
trinsic kinetic lability it is very difficult to establish correlations
of structural features of a complex and its CPL properties such
as the magnitude of the luminescence dissymmetry factor or
the shape of the CPL spectrum, however there have been
some efforts.[8]

A wealth of europium complexes exhibiting CPL has been
reported until now, in line with this metal’s exceptional suit-
ability for observing CPL.[9] Though the electronic nature of the
5D4!7F5 transition of terbium is less favourable for the obser-
vation of CPL, the generally high luminescence of this lantha-
noid is beneficial for the detection of CPL and many examples
have been reported.[8e, 10] Following Richardson’s classification
of the transitions of lanthanoids, the suitability for the observa-
tion of CPL of the 4G5/2!6H5/2 transition of samarium should
be comparable to the one of the 5D4!7F5 transition of terbi-
um. But in contrast to terbium, samarium complexes are usual-

ly only weakly luminescent, which is due to this lanthanoid’s
high susceptibility to multiphonon quenching. Consequently,
the study of CPL has to a certain degree been limited to com-
plexes of europium and terbium so far. To the best of our
knowledge, until now four molecular samarium complexes
were known to exhibit CPL in solution.[5b, 11] For these com-
pounds which were studied as enantiopure samples also dis-
symmetry factors were reported. The ligands used for the
preparation of these compounds are shown in Figure 1.
The most intense samarium-centred CPL was found for
Cs[Sm((++)-hfbc)4] with maximum glum values of ˇ1.15
(4G5/2!6H5/2) and + 1.15 (4G5/2!6H7/2). The respective europium
complex Cs[Eu((++)-hfbc)4][5] exhibits the highest glum value
(+ 1.38 in CHCl3) reported so far, which points towards an ex-
ceptional suitability for CPL of the coordination geometry and
electronic structure of the ligand found in these complexes.
The fact that the glum value of the samarium compound reach-
es the same order of magnitude as the europium compound
gives evidence of the high potential of samarium-centred CPL.
Remarkably high glum values were also found for the complexes
of SmIII and the pyridyldiamide A (up to 0.50 for 4G5/2!6H5/2

and up to 0.28 for 4G5/2!6H7/2).[11e] The complex of SmIII and
the 2-hydroxyisophthalamide B is the third example of a sama-
rium complex for which glum values were reported (ˇ0.027 for
4G5/2!6H5/2 and ˇ0.028 for 4G5/2!6H7/2).[11d] In the case of the
complex consisting of the disuccinate edds and SmIII only for
the 4G5/2!6H7/2 transition (which is typically more luminescent)
a glum value (+ 0.066) could be reported.[11f] Interestingly, in two
of these four examples, for the 4G5/2!6H5/2 and the 4G5/2!6H7/2

transitions identical glum values were reported, though accord-
ing to Richardson’s classification one would expect the dissym-
metry factor to be considerably higher in the case of the
4G5/2!6H5/2 transition.

Rigidified bipyridine cryptands (Figure 2) are C2-symmetric
and offer an extremely high conformational and configuration-
al stability. The propeller-like arrangement of the three bipyri-

Figure 1. Ligands used for the preparation of CPL-active samarium complexes. (++)-hfbc = (++)-3-heptafluorobutyrylcamphorate,[5b] A = pyridine-2,6-dicarboxylic
acid bis-[(1-naphthalen-1-yl-ethyl)-amide] ,[11e] B = 1-phenylethylamine substituted 2-hydroxyisophthalamide,[11d] edds = ethylenediamine-N,N’-disuccinate.[11f]
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dine-units results in helical (M/P) or axial chirality (Ra/Sa). Usual-
ly, lanthanoid cryptates are synthesised as racemic mixture of
two enantiomers, but it has been shown that it is also possible
to prepare these complexes selectively in an enantiopure fash-
ion.[12]

The luminescence properties of the racemic lanthanoid
cryptates have already been studied in detail.[13] The three bi-
pyridine units around the lanthanoid ion cause both an effi-
cient shielding from surrounding solvent molecules and an effi-
cient indirect population of the excited state of the lanthanoid
via the so-called antenna effect,[6a–e] affording lanthanoid com-
plexes with long luminescence lifetimes and good quantum
yields.[14]

Lanthanoids for which the energetic difference between the
electronic states is typically small (e.g. SmIII or YbIII) are espe-
cially sensitive towards nonradiative deactivation processes
caused by multiphonon quenching. Past studies have shown
that deuterated derivatives of the cryptates have a special abil-
ity to protect this group of lanthanoids against nonradiative
deactivation processes, leading to extraordinarily long lumines-
cence lifetimes of the corresponding YbIII and SmIII complexes
in deuterated solvents.[13d,e] In the case of SmIII this also leads
to very promising conditions for the observance of CPL. The

aim of this work was to realise an enantiopure samarium crypt-
ate and study whether such a compound is indeed suitable to
enlarge the repertory of samarium complexes exhibiting CPL.

Results and Discussion

Complex design

As shown before, it is possible to prepare lanthanoid cryptates
in an enantiopure form (Figure 2).[12] For this purpose a tether
derived from (S,S)-2,3-butanediol is attached to the N-N’-diox-
ide modified bipyridine unit of the ligand scaffold. 1H NMR ex-
periments on samples of corresponding lanthanoid cryptates
in enantiopure solvents (methyl-l-lactate and methyl-d-lactate)
already gave evidence of the enantiopurity of the samples.
Due to the presence of transitions with small energetic differ-
ences DE between the electronic states, samarium complexes
are especially sensitive towards non-radiative deactivation pro-
cesses and some additional efforts are necessary to prepare lu-
minescent samarium complexes. Generally, deuteration of the
ligand scaffold can suppress multiphonon quenching process-
es efficiently, most efficiently in the case of the benzylic posi-
tions.[13c,d, 14, 15] Furthermore the deuteration of only the benzylic
positions of the non-oxidised bipyridine units offers an accept-
able trade-off between efficient ligand synthesis and the im-
provement of the luminescence properties. The synthesis of
the resulting enantiopure and partly deuterated ligand core
has already been reported.[12] This ligand offers optimal pre-
conditions for the preparation of a CPL-active samarium com-
pound (Figure 3). Additionally, the respective europium com-
plex was prepared. The special electronic structure of EuIII is
not only suitable for observing CPL but it also offers the ex-
traction of additional information from the study of the photo-
physical properties like for example the radiative luminescence
lifetime trad, which is not always easily accessible in the case of
the other lanthanoids.

Synthesis

The synthesis of the ligand and the corresponding samarium
and europium complexes was performed analogously to pro-
cedures already described (Scheme 1).[12] Experimental details
for the preparation of the lanthanoid complexes 1-Sm and 1-
Eu from the sodium complex are given in the experimental

Figure 2. Rigidified lanthanoid cryptates are usually isolated as racemic mix-
ture (top). By attachment of a stereogenic element to one of the bipyridine
units a preorganisation of the building blocks and enantiopure synthesis
can be achieved (bottom).[12]

Figure 3. Enantiopure, luminescent lanthanoid cryptates prepared for this study.
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section. After complex synthesis, the obtained crude products
were purified via recrystallisation. Analytical HPLC (high per-
formance liquid chromatography) runs were performed to
check the purity of the isolated compounds, whereby no re-
mains of the sodium cryptate were detected (see Experimental
Section and Supporting Information).

Chemical structure in solution: nuclear magnetic resonance

The spectra of 1-Sm and 1-Eu consist of relatively sharp sig-
nals, giving evidence of the expected rigid structure, the pres-
ence of only one species in solution and the C2-symmetry of
the complexes.

The pronounced magnetic susceptibility anisotropy of 1-Eu
leads to considerable shifts of the signals in the 1H NMR spec-
trum (CD3OD) of the compound (Figure 4). The signals are dis-
tributed over about 35 ppm, and most of them are well sepa-
rated from each other. Only in the range between 2.5 to
3.0 ppm and 1.0 to 0.7 ppm signals are overlapping, so that an
individual integration is not possible. In total ten signals with
an integral of two protons and one multiplet of two overlap-
ping signals with a total integral of eight protons can be iden-
tified, perfectly mirroring the expected C2-symmetry of the
molecule. Usually the pseudo-contact component of the para-
magnetic shift that a signal experiences will be more pro-
nounced when the corresponding nucleus is spatially close to
the paramagnetic centre. In compliance with that, in previous
detailed NMR studies on paramagnetic lanthanoid cryptates
the most shifted signals could always be assigned to the ben-

zylic protons.[12, 13c] Accordingly, the strongly shifted signals at
about ˇ10 and ˇ17.5 ppm most likely correspond to the pro-
tons in the benzylic position, which is also in agreement with
the NMR data reported for the unfunctionalised europium
cryptate and a study on a modified europium cryptate, in
which for the respective protons very similar lanthanoid in-
duced shifts were found.[13b, 16] Because of their long distance
from the lanthanoid, the signal of the methyl groups
(0.85 ppm, overlaid with another signal of two protons) is ex-
periencing only a slight shift compared to the diamagnetic an-
alogue.[12]

As for 1-Eu, the spectrum of 1-Sm (in CD3OD) gives evidence
of the C2-symmetry of the complex (Figure 5). The eight partly
overlapping signals between 7.5 ppm and 9.8 ppm with inte-
grals of two protons each correspond to the aromatic protons
of the ligand and the signal at 1.45 ppm with an integral of six
protons can be assigned to the methyl groups. SmIII is only

slightly paramagnetic, yet some signals experience a consider-
able shift. Whereas in the diamagnetic 1-Lu[12] no signals could
be detected in the ranges between 1.5 ppm to 3.0 ppm and
between 5.0 ppm to 7.5 ppm, in the spectrum of 1-Sm two
signals can be detected in these ranges. As these signals expe-
rience the strongest paramagnetic shifts they most likely corre-
spond to the protons which are closest to the lanthanoid,
namely the benzylic protons. In contrast, the two remaining
protons of the tether are relatively apart from the paramagnet-
ic centre. Their 1H NMR signal will not experience a consider-

Scheme 1. Preparation of the enantiopure, partly deuterated lanthanoid cryptates from the corresponding sodium cryptates.

Figure 4. 1H NMR (CD3OD, 400 MHz) of 1-Eu.

Figure 5. 1H NMR (CD3OD, 400 MHz) of 1-Sm.
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able paramagnetic shift and can be detected at about
4.2 ppm.

In conclusion, the 1H NMR spectra of both compounds
under study give evidence of the presence of one C2-symmet-
ric species in solution. As expected the structure of the com-
plexes is well defined and no exchange or rearrangement pro-
cesses are observable.

Steady-state emission spectra

In accordance to the findings from the analysis of the 1H NMR
spectra, the high resolution luminescence spectrum of 1-Eu
(Figure 6) is completely consistent with one C2-symmetric EuIII-
species, exhibiting one 5D0!7F0 transition and three sublevels
of the 5D0!7F1 transition.[17] As 1-Sm is highly luminescent, a
partial resolution of the transition’s fine structure was possible,
by the use of a narrow emission monochromator slit width
(1 nm) (Figure 7). In addition, the transitions in the near-infra-
red could also be detected (Figure 8). Luminescence lifetimes and quantum yields

For both complexes 1-Sm and 1-Eu the luminescence lifetimes
tobs and absolute quantum yields fL

Ln were determined (see
Table 1). Both complexes exhibit a monoexponential decay
(see supporting information), which is another evidence of the
stable and well-defined structure of 1-Sm and 1-Eu in solution.

As expected, tobs and fL
Ln are significantly higher in the case

of 1-Eu. In a rough approximation, due to the absence of C/H-
and O/H-oscillators, CD3OD, CD3CN and D2O can be assumed
to be solvents which do not cause nonradiative deactivation of
the excited lanthanoid. Indeed at least the O/D-oscillators will
cause some nonradiative deactivation and analogously to gen-
eral experiences shorter lifetimes can be expected for measure-
ments in D2O and longer lifetimes for measurements in
CD3CN.[18] Keeping this in mind, a rough comparison of lifetime
data measured in these solvents is possible.

The determined luminescence lifetime tobs of 1-Eu in CD3OD
is about one third higher than the previously reported value
for the unfunctionalised europium cryptate in D2O (tobs =
1.15 ms).[13a] This increase of the lifetime can be accounted for
by the partial deuteration of the ligand scaffold by which eight
of the quite efficient C/H-oscillators are replaced by less effi-
cient C/D-oscillators. Interestingly the overall quantum yield
fL

Ln of 1-Eu is almost one order of magnitude smaller than the

Figure 6. Emission spectrum of 1-Eu in CD3OD at room temperature.
lexc = 305 nm, A305 nm = 0.22. Insert: Magnification of the 5D0!

7F0 transition.

Figure 7. Emission spectrum of 1-Sm in CD3OD at room temperature.
lexc = 320 nm, A320 nm = 0.26.

Figure 8. Near-infrared emission spectrum of 1-Sm in CD3OD at room tem-
perature. lexc = 320 nm, A320 nm = 0.26.

Table 1. Luminescence lifetimes tobs, radiative lifetimes trad, intrinsic
quantum yields fLn

Ln, overall quantum yields fL
Ln and sensitisation efficien-

cies hsens of 1-Eu and 1-Sm in CD3OD.

Compound tobs trad fL
Ln

[a] fLn
Ln

[b] hsens
[c]

1-Eu 1.6 ms[d] 4.2 ms 5.9 % 38 % 15 %
1-Sm 90 ms[e] – 0.26 % – –

[a] Determined using quinine in 0.5 m H2SO4 as reference compound, see
supporting information and reference [20]. [b] fLn

Ln =tobs/trad. [c] hsens =
fL

Ln/fLn
Ln. [d] lexc = 320 nm, lem = 610 nm (5D0!7F2). [e] lexc = 320 nm, lem =

597 nm (4G5/2!6H7/2).
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value for the previously reported unfunctionalised compound
(fL

Ln = 30 %, in D2O).[13a]

Due to the purely magnetic dipole character of the 5D0!7F1

transition of EuIII the intrinsic luminescence lifetime trad of the
corresponding complexes is proportional to the ratio of inte-
grated total emission intensity Itot and the integrated emission
intensity of the 5D0!7F1 transition (IMD).[19] Consequently, it can
be obtained directly from the corrected steady state emission
spectrum [Eq. (3)]:

1
trad
à AMD;0 ⇥ n3 Itot

IMD

✓ ◆
Ö3Ü

in which AMD,0 corresponds to the probability of spontaneous
emission of the 5D0!7F1 transition in vacuo (14.65 sˇ1) and n is
the refractive index of the surrounding medium (1.326 for
CD3OD). The intrinsic quantum yield fL

Ln of 1-Eu can be deter-
mined as the quotient of the observed luminescence lifetime
tobs and the intrinsic luminescence lifetime trad.

The sensitisation efficiency hsens (=fL
Ln/fLn

Ln) determined for
1-Eu is somewhat lower than expected, which indicates some
kind of energetic mismatch between the ligand and the triva-
lent europium ion. A less efficient energy transfer from the
ligand to the lanthanoid would also explain the relatively low
overall quantum yield. Indeed, the introduction of the tether at
the oxidised bipyridine unit is likely to alter the electronic
structure at the ligand. Nevertheless, the UV/Vis spectra of the
complexes (see supporting information) correspond to the
spectra typically obtained for tris(2,2’-bipyridine)-N,N-dioxide
cryptates.

As expected, the luminescence lifetime of the partly deuter-
ated 1-Sm in CD3OD lies between the luminescence lifetimes
determined for the undeuterated and the perdeuterated un-
functionalised analogues in CD3CN (31 and 394 ms, respective-
ly).[13d] The threefold increase compared to the undeuterated
compound, despite the more pronounced non-radiative deacti-
vation in CD3OD, points towards the high impact of the oscilla-
tors in the benzylic positions of the ligand scaffold.

Chiroptical properties: circular dichroism and circularly po-
larised luminescence

The normalised CD spectra of 1-Eu and 1-Sm (Figure 9) are
quite similar to the previously reported CD spectra of enantio-
pure, unfunctionalised LuIII-cryptates.[21] This indicates that the
geometry of the ligand around the lanthanoid and the helicity
is comparable to the one found in unfunctionalised lanthanoid
cryptates.

After the complexes were found to meet the photophysical
and structural expectations, finally circularly polarised lumines-
cence was studied. The spectra of both complexes feature
transitions with distinct rotatory strengths. Figures 10 and 11
show the normalised CPL (with the luminescence dissymmetry
factors glum) and total emission spectra of 1-Eu and 1-Sm. In
the case of 1-Sm the 4G5/2!6H5/2 and the 4G5/2!6H7/2 transition
exhibit distinct rotatory strengths, leading to glum values of up
to + 0.13 (4G5/2!6H5/2) (Figure 10). In the case of the

4G5/2!6H7/2 transition the opposite signs of the components of
the transition give additional information about the fine struc-

Figure 9. CD spectra of 1-Eu (black, solid line) and 1-Sm (red, dashed line) in
CD3OD (3 mm) at room temperature. Both spectra were independently nor-
malised on a scale of 0 to 1.

Figure 10. Normalised CPL spectrum (top) with the luminescence dissymme-
try factors glum and total emission spectrum (bottom) of 1-Sm (lexc = 254 nm,
c = 3 mm in CD3OD).
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ture of the band, which could not be resolved in the total lu-
minescence spectrum, not even in the high-resolution spec-
trum (Figure 7). For this transition glum values of ˇ0.03 and
+ 0.03 were determined. Consequently, in the case of 1-Sm
Richardson’s prediction of the 4G5/2!6H5/2 transition exhibiting
more intense CPL than the 4G5/2!6H7/2 transition was experi-
mentally confirmed. In the CPL spectrum of 1-Eu, the 5D0!7F2

transition is split into two components with opposite signs
(Figure 11). On the other hand the 5D0!7F1 transition exhibits
opposite sign with respect to the major CPL component asso-
ciated with the hypersensitive transition and quite similar rota-
tory strengths, as it can often be observed in CPL spectra of
Eu-complexes. Resulting from the lower total luminescence in-
tensity of the 5D0!7F1 transition (and in congruence with Rich-
ardson’s classification), the corresponding luminescence dis-
symmetry factor glum is about one order of magnitude higher
than the one allied to the 5D0!7F2 transition. Interestingly the
maximum glum values determined for 1-Sm and 1-Eu are in the
same order of magnitude, as it had already been reported for
Cs[Ln((++)-hfbc)4] .[5b] Consequently the results reported herein
give another evidence for the high potential of samarium-cen-
tred CPL.

Conclusions

In summary we could show that enantiopure cryptates are
indeed a well-suited scaffold for the observation of circularly
polarised luminescence. In the partly deuterated ligand scaf-
fold under study the lanthanoid ion is efficiently protected

against nonradiative deactivation processes, which is especially
helpful in the case of the less luminescent lanthanoids such as
samarium. As already observed for other ligand scaffolds in
which samarium and europium exhibit distinct CPL-activity, in
our study glum values in the same order of magnitude were de-
termined for the europium (glum =ˇ0.19) and the samarium
complex (glum = + 0.13). This points to the high potential of sa-
marium CPL which is accessible when the non-radiative deacti-
vation can be controlled, as it is possible in lanthanoid crypt-
ates. The well-defined structure in solution of these complexes
may be of help for a more detailed understanding of the
origin of CPL and the extraordinarily high stability of these
complexes under various conditions makes the lanthanoid
cryptates promising candidates for upcoming applications of
CPL.

Experimental Section

General

The synthesis of the ligand and respective YbIII and LuIII complexes
has already been reported elsewhere.[12] Chemicals were purchased
from commercial suppliers and used as received unless stated oth-
erwise. CH3CN for the synthesis of the cryptates was HPLC grade.
NMR spectra were measured at 26 8C on a Bruker AVII + 400 (1H:
400 MHz) and analysed using MestReNova 7 (Mestrelab Research)
and Origin 9.0 (OriginLab). Deuterated solvents had deuterium
contents >99.8 %D and were used as commercially available with-
out additional purification or drying procedures. To confirm the
purity of the complexes, samples were taken up in a minimum of
CH3CN/H2O (1:1, v/v), filtered (0.45 mm nylon membrane filters) and
subjected to analytical reversed-phase HPLC (RP-18e, 125 î 4 mm–
5 mm, flow rate: 1 mL minˇ1, UV detection: 300 nm) with H2O (de-
gassed, + 1 % TFA, v/v) as mobile phase A, CH3CN (degassed, HPLC
grade) as mobile phase B, and the following gradient: 0 min:
85 %A/15 %B; 5 min 85 %A/15 %B; 19 min: 45 %A/ 55 %B; 25 min:
45 %A/55 %B; 40 min: 85 %A/15 %B; 50 min: 85 %A/ 15 %B. The
identity of the complexes was confirmed via high resolution ESI
mass spectrometry experiments in which the formate adducts
[LnC40H28D8N8O4 + HCOOˇ]2 + of the respective complexes could be
identified unambiguously. The formate adducts result from the in
situ oxidation of methanol during the mass spectrometry experi-
ments.

Photophysical measurements

Steady state emission spectra were acquired on a Horiba Fluoro-
log-3 DF spectrofluorimeter using quartz cuvettes (suprasil, 1 cm
pathlength) at room temperature. The excitation light source was
a 450 W xenon lamp. Emission was monitored at 908 using a Ha-
mamatsu R2658P PMT (UV/vis/NIR, 200 nm<lem<1010 nm) or a
Hamamatsu H10330-75 PMT (NIR, 950 nm<lem<1700 nm). Spec-
tral selection was achieved by single grating monochromators (ex-
citation: 1200 grooves nmˇ1, blazed at 300 nm, visible emission:
1200 grooves/nm, blazed at 500 nm, NIR emission: 600 grooves/
nm, blazed at 1000 nm). Luminescence decay profiles were deter-
mined with the same instrumental setup as described above for
the steady state experiments. The light source for the recording of
the decay profiles was a 70 W xenon lamp (pulse width ca. 1.5 ms
FWHM). Lifetime data analysis (deconvolution, statistical parame-
ters, etc.) was performed using the software package DAS from
Horiba. Lifetimes were determined by fitting the middle and tail

Figure 11. Normalised CPL spectrum (top) with the luminescence dissymme-
try factors glum and total emission spectrum (bottom) of 1-Eu (lexc = 254 nm,
c = 3 mm in CD3OD).
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portions of the decays. The absolute quantum yields fL
Ln of 1-Eu

and 1-Sm were determined with two independent sets of samples
each, using quinine sulfate in 0.5 m H2SO4 as quantum yield stan-
dard (F= 54.6 %).[20] For analysis the optically dilute method was
employed [Eq. (4)]:[20]

FX à Fs ⇥
Gradx

Grads

✓ ◆
⇥ nx

ns

✓ ◆2

Ö4Ü

where FX/Fs are the quantum yields of the sample (x) or the stan-
dard (s), GradX/Grads are the linearly fitted slopes from the plot of
the integrated luminescence intensity of the sample (x) or the stan-
dard (s) versus the absorbance at the excitation wavelength and
nx/ns are the refractive indices of the medium or the sample (here:
CD3OD, nx = 1.326) or the standard (here: ns = 1.33). For the deter-
mination of fL

Eu an excitation wavelength of 317 nm was chosen,
for the determination of fL

Sm an excitation wavelength of 310 nm
was chosen. All spectra were corrected and the integrated intensity
of the second order peaks in the spectra of the lanthanoid com-
plexes were subtracted from the integrated luminescence intensity.
The estimated uncertainties in fL

Ln are ⌃15 %.

Chiroptical measurements

ECD (electronic circular dichroism) spectra were recorded using a
Jasco J-715 spectropolarimeter, in 3 mm CD3OD solution in a
0.1 mm optical path cell (4 accumulations). CPL spectra were mea-
sured using the home-built spectrofluoropolarimeter described in
reference [8h]. The samples were irradiated by a 908 geometry em-
ploying as the source an UVC high pressure mercury lamp (lmax =
254 nm), the following acquisition parameters were used: accumu-
lations = 2, integration time = 8 sec, scan-speed = 0.5 nm secˇ1.

Synthesis

Europium complex 1-Eu : The sodium cryptate 1-Na (5.02 mg,
6.25 mmol, 1.0 equiv) and EuCl3·6 H2O (3.44 mg, 9.38 mmol,
1.5 equiv) were suspended in 7 mL dry CH3CN (HPLC grade) and
heated to reflux temperature, whereby the mixture got turbid.
After 40 h the volatiles were removed. The remaining solid was
dried in vacuo, afterwards taken up in a minimum amount of
CH3OH and filtered over cotton. The yellow solution was overlaid
with Et2O and stored at 4 8C overnight. Afterwards the precipitate
was collected on a membrane filter, washed with cold Et2O and
dried to give a faintly yellow solid (3.62 mg, 3.81 mmol, 61 %).
1H NMR (400 MHz, CD3OD): d= 16.49 (s, 2 H), 11.54 (s, 2 H), 9.25 (s,
2 H), 9.03 (s, 2 H), 6.19 (s, 2 H), 3.09–2.43 (m, 6 H), 1.00–0.66 (m, 8 H),
ˇ10.40 (s, 2 H), ˇ17.53 ppm (s, 2 H). Analytical HPLC: tr = 13.7 min
(see Figure S1 in the Supporting Information). HR ESI-MS (pos.
mode), [EuC40H28D8N8O4 + HCOOˇ]2 + : calculated: m/z = 449.12698,
found: m/z = 449.12706.

Samarium complex 1-Sm : 5.02 mg (6.25 mmol, 1.0 equiv) of the
sodium cryptate 1-Na together with SmCl3·6 H2O (3.42 mg,
9.38 mmol, 1.5 equiv) were suspended in 7 mL dry CH3CN (HPLC
grade) and heated to reflux temperature. After 40 h the volatiles
were removed and the crude product was treated as described for
1-Eu to yield 3.61 mg (3.80 mmol, 61 %) of a faintly yellow solid.
1H NMR (400 MHz, CD3OD): d= 9.54 (d, J = 8.13 Hz, 2 H), 9.11–9.00
(m, 2 H), 8.95 (d, J = 7.30 Hz, 2 H), 8.26–8.14 (m, 2 H), 7.93–7.65 (m,
8 H), 6.21 (br s, 2 H), 4.17 (br s, 2 H) 2.62–2.43 (m, 2 H), 1.52–1.39 (m,
6 H) ppm. Analytical HPLC: tr = 14.0 min (see Figure S2 in the sup-
porting information). HR ESI-MS (pos. mode), [SmC40H28D8N8O4 +
HCOOˇ]2 + : calculated: m/z = 448.62623, found: m/z = 448.62667.
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1. HPLC traces 

Figure S1: analytical HPLC trace of 1-Eu. 

Figure S2: analytical HPLC trace of 1-Sm. 
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 S3 

Figure S3: analytical HPLC trace of 1-Na. 
 

 

2. Absorption spectra 

Absorption spectra were measured in quartz cuvettes (suprasil, 1 cm pathlength) on a Jasco-

V770 spectrophotometer. 

 

 
Figure S3: normalised UV/Vis spectra of 1-Eu (red, dotted) and 1-Sm (black, solid) in 

CD3OD at room temperature. 
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 S4 

3. Luminescence Decay Profiles 

 

 
Figure S4: Luminescence decay profile of the transition 5D0  7F2 (em = 610 nm) in 1-Eu 

(CD3OD, exc = 320 nm, monoexponential fit in red). 

 

 
Figure S5: Luminescence decay profile of the transition 4G5/2  6H7/2 (em = 597 nm) in 1-Sm 

(CD3OD, exc = 320 nm, monoexponential fit in red). 

 

 

 

 

 

333



Chapter 9. Appendix

 S5 

4. Compilation of photophysical parameters reported for CPL-active 

Sm Complexes 
Refa glum 

4G5/26H5/2 
glum 

4G5/26H7/2 
obs 

[s] 


[%] 
solvent 

11d -0.027 -0.028 17 ± 2 0.3 CH3OH 
11e 0.50 0.28 -c -c H2O 
11f - 0.066  21 0.67  • 10-3 

(4G5/26H5/2), 
0.98 • 10-3 

(4G5/26H7/2), 
0.33 • 10-3 

(4G5/26H9/2) 

H2O 

5b -1.15 (553)b, -
0.35 (561), 0.96 

(575) 

-0.45 (588), 
1.15 

(598), -0.76 
(605), 0.24 
(611), 0.15 

(617) 

-c -c CHCl3 

This work +0.13 ±0.03 90 0.26 CD3OD 
a) In ref 11a CPL is observed in racemic complexes after circularly polarized excitation; in 
refs 11b and 11c glum values are not reported. b) Wavelengths (nm). c) values are not 
reported. 
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1 INTRODUCTION

1.1 Outline and Scope

Lanthanoid luminescence in molecular complexes with trivalent lanthanoid ions
has matured into a well-developed and thoroughly investigated field of research
with a plethora of interesting photonic applications in various and diverse fields,

2. Both authors contributed equally.
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ranging from time-resolved luminescence immunoassays, biomedical imag-
ing, lasers, to optical telecommunications [1]. For most purposes, of course,
high luminescence efficiencies are desirable and many of the phenomena
governing the photoluminescence of trivalent lanthanoids are well understood.
The typical case of molecular lanthanoid luminophores in this context involves
sensitization of luminescent f–f transitions with an appropriate antenna ligand.
Fig. 1 shows the prototypical, photophysical processes, from singlet–singlet
absorption, intersystem crossing (ISC) to an excited triplet state, energy trans-
fer onto an excited lanthanoid state, and subsequent luminescence to the
lanthanoid ground-state manifold. Particularly important for the design of
highly luminescent lanthanoid complexes is an intricate knowledge of the pro-
cesses that can lead to unwanted dissipation of the excitation energy and hence
reduced lanthanoid emission intensity. Much research has been devoted over
the years to studying this sensitization approach and many strategies have been
identified and successfully implemented to make emission as efficient as pos-
sible (e.g., ISC and F€orster or Dexter energy transfer) or to avoid detrimental
processes leading to diminished luminescence (e.g., deactivation by 3O2 or
by low-lying CT states).

One important mechanism for deactivation once the energy has reached a
lanthanoid excited state is the energy transfer to overtones of molecular vibra-
tions in the vicinity of the metal center, either in the ligands bound or in the
surrounding medium (see Fig. 1). In solid-state lanthanoid materials, this has
long been known as “multiphonon relaxation” (MR), and for the sake of sim-
plicity, we will use the same term for the analogous processes in molecular
complexes. This phenomenon, which is much more opaque to our understand-
ing and harder to control chemically than other design factors in molecular
lanthanoid complexes, is one of the major drivers of nonradiative deactivation

FIG. 1 Schematic representation of the typical sensitization process using the antenna effect and

the energy transfer leading to multiphonon relaxation (EnT: energy transfer; ISC: intersystem cross-
ing; S0/S1: ground/excited singlet states; T1: excited triplet state; n: vibrational quantum number).

36 Handbook on the Physics and Chemistry of Rare Earths

336



Chapter 9. Appendix

and crucial for the understanding of luminescence in the majority of lantha-
noids, especially for the ones exhibiting near-IR emission. This review, which
aims to emphasize primarily molecular Ln3+ complexes in solution, will cover
the theoretical approaches for the qualitative and quantitative description of
MR, highlight some of the special implications of MR for molecular com-
plexes, explain strategies to minimize nonradiative deactivation by MR, and
document some of the recent results for different lanthanoids.

1.2 f–f Transitions in Trivalent Lanthanoid Ions

Trivalent lanthanoid ions have the electronic ground-state configuration [Xe]
4fx ¼ [Kr] 4d10 5s2 5p6 4fx (with x ¼0–14) which gives rise to unique proper-
ties compared to all other elements in the periodic table. The fundamental
difference is that the 4f valence orbitals are closer to the atomic nucleus than
the filled 5s and 5p orbitals, essentially shielding the 4f electrons from the
surrounding chemical environment. This phenomenon has well-known chem-
ical (e.g., the lanthanoid contraction, the flexible coordination geometry, the
predominance of ionic instead of covalent bonding to the metal center, etc.)
and physical (e.g., the very narrow emission spectra, very small ligand field
splitting, etc.) consequences [1]. This particular electronic situation also has
implications for the nature of the processes involved in MR of lanthanoid
excited states.

In general, two limiting cases for MR can be distinguished, depending on
the nature of the coupling between emitting and accepting states [2]. A good
illustration of these two prototypical cases is the photophysics of octahedral
chromium(III) complexes with d3 electronic configurations, where both the
excited states 2Eg and 4T2g can be affected by MR to the 4A2g ground state
(Fig. 2) [3].

For example, the spin-allowed transition between the excited-state 4T2g

and the ground-state 4A2g involves the change of the electronic configuration
from (t2g)

2(eg)
1 to (t2g)

3 and considerable redistribution of electron density
around the chromium center (Fig. 2, right side). This usually leads to large
displacement of the nuclear coordinates (Fig. 2: dM–L) of the equilibrium
geometries in the two states (Fig. 2: shift of the energy surface to the right
for 4T2g). This phenomenon makes it much more likely that the two energy
surfaces intersect at some point close to the equilibrium geometry of the
excited-state 4T2g. This so-called strong coupling case provides for a straight-
forward nonradiative deactivation pathway via the surface crossing point. For
the initial step of surface crossing, only a rather small amount of energy has to
be disposed of via vibrational energy transfer. For this situation, in principle
all vibrations (including low-frequency oscillators) are suitable for accepting
the excited-state energy and therefore isotopic substitution is not expected
to make a large difference. Contrary to this, the 4A2g ground state and the
excited 2Eg state both have the electronic configuration (t2g)

3 and only differ

Nonradiative Deactivation of Lanthanoid Luminescence Chapter 300 37
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in the orientations of their respective spins involved (Fig. 2, right side).
Consequently, the electron distributions around the metal and the bonding
situation to the ligands are very similar resulting in only minor geometric
distortions upon spin-forbidden transitions from 4A2g to 2Eg or vice versa.
As a consequence, the two potential energy surfaces are offset in energy
but have a very similar position with respect to their respective nuclear coor-
dinates (dM–L). This situation is called “weak-coupling” limit and it does not
provide for easy access to surface crossing points between the two nested
states. For this case, where a rather large amount of energy has to be
dissipated in any nonradiative process, the best candidates for MR are
high-energy and highly anharmonic oscillators such as local-mode X–H
(X¼O, N, C, etc.) or C]O stretching vibrations. Isotopic substitution in
the form of replacing X–H with X–D (i.e., deuteration) often has a consider-
able effect due to the concomitant considerable decrease in vibrational
energy (vide infra).

For Ln3+, redistribution of electrons within the shielded f-orbitals does not
alter the ionic bonding to ligands and therefore almost no geometric changes
occur after f–f transitions. Consequently, the states involved in lanthanoid
luminescence usually are only weakly coupled and therefore MR of lantha-
noid excited states is mostly induced by anharmonic, high-energy oscillators.
The susceptibility of lanthanoid excited states to nonradiative deactivation due
to MR depends qualitatively on the amount of excess energy that needs to be
dissipated via transfer to vibrational overtones, with smaller energies leading to
larger MR rates and therefore lower emission intensities. Conventionally, the
measure for this assessment is the energy gap DE between the emitting level
and its neighboring state immediately below. The situation in this respect is
unique to each individual luminescent lanthanoid and this phenomenon can

FIG. 2 Electronic configurations of the ground and excited states in octahedral chromium(III)

complexes (e.g., the hexammine complex shown)—schematic potential energy surfaces of the

corresponding ligand field states: weak coupling between 2Eg and
4A2g/strong coupling between

4T2g and
4A2g.

38 Handbook on the Physics and Chemistry of Rare Earths
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affect different emitting states in one single lanthanoid differently, of course.
Fig. 3 shows a comprehensive energy-level diagram for the relevant trivalent
lanthanoids, indicating often encountered emitting states and their corresponding
values for DE [4,5]. The lanthanoids fall roughly into three, somewhat arbitrarily
chosen, categories depending on the largest energy gap present in their respective
energy-level scheme. First, the ones with large gaps DE >ca. 12,000cm!1 are
represented by the visible emitters Eu3+ (5D0: DE ¼12,400cm!1) and Tb3+

(5D4: DE ¼14,800cm!1). These ions are rather resistant to MR compared to
the other lanthanoids and many highly efficient emitters with excellent quantum
yields even in aqueous solution have been developed over the last decades
[1,6,7]. The second category of Ln3+ exhibits intermediate values for the largest
gaps with DE between ca. 6800 and 12,000cm!1 and comprises the visible/near-
IR emitters Pr3+ (1D2: DE ¼6960cm!1), Sm3+ (4G5/2: DE ¼7410cm!1), Dy3+

(4F9/2: DE ¼7380cm!1), and Yb3+ (2F5/2: DE ¼10,250cm!1). These ions are
much more susceptible to MR than Eu3+ and Tb3+, but their luminescence effi-
ciency can often benefit greatly from removing high-energy oscillators from
the immediate vicinity of the lanthanoid [6]. The third category are the mostly
near-IR emitting lanthanoids with very small energetic gaps DE <ca.
6800cm!1, namely Nd3+ (4F3/2: DE ¼5450cm!1), Ho3+ (5S2: DE ¼2840cm!1),
Er3+ (4I13/2: DE ¼6500cm!1), and Tm3+ (1G4: DE ¼6260cm!1). The lumines-
cence from these ions is usually extremely sensitive to vibrational deactivation
by oscillators in surrounding ligands or solvent molecules, and even careful
avoidance of high-energy vibrations often only has a rather limited beneficial
effect. Generally, emission in molecular complexes of these lanthanoids in solu-
tion is exceedingly small with quantum yields commonly below 1%.

1.3 Vibrational Overtones

For the analysis of MR of excited lanthanoid states to molecular oscillator
overtones in the vicinity, the characteristics of the vibrational modes play
a crucial role. For an illustration of the aspects involved, Fig. 4 shows as a
typical MR case of the excited state 2F5/2 of Yb

3+ by C–H stretching vibra-
tions (nC–H).

Besides general symmetry considerations relevant to vibrational transi-
tions (cf. selection rules for infrared spectroscopy), there are three important
factors that determine the effectiveness of MR:

l Order of the vibrational overtone: In general, the energetic gaps DE in
lanthanoids are several multiples of the energies of the fundamental vibra-
tions involved (e.g., in Fig. 4: DE ¼10,250cm!1 vs en(C–H) # 3000cm!1).
The higher the order of the overtone required, the less likely MR becomes.
This fact is mainly connected to the probability for the transition from
the vibrational ground state to the overtone required. These circumstances
favor MR for anharmonic, high-energy oscillators which only require a

Nonradiative Deactivation of Lanthanoid Luminescence Chapter 300 39
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few vibrational quanta to bridge the energetic gap and which exhibit much
larger oscillator strengths for the population of their overtones.

l Energy matching: MR is more effective, the closer the energy gap in the
lanthanoid matches the energy of the accepting vibrational overtones. This
aspect can be understood in terms of Franck–Condon factors or spectral
overlap (vide infra).

In the context of lanthanoid MR, historically the relevant vibrations have
overwhelmingly been treated as idealized harmonic oscillators. This is a very
good approximation when the vibrational processes in question involve the
motion of many atoms simultaneously or the localized vibrations of diatomic
oscillators of comparable mass, e.g., for lattice vibrations in lanthanoid-doped,
extended solids, or for aromatic ring breathing motions in ligands. This
approach makes the theoretical description of vibrational overtones and MR
relatively easy and is therefore the basis for most variants of the energy gap
law (EGL, vide infra). One of the most obvious and straightforward implica-
tions of the harmonic model is that the spacing of vibrational energy levels En

depending on the vibrational quantum number nharm is equidistant (Fig. 5).
There is, however, one serious conceptual problem for this approach in the

context of lanthanoid MR in molecular complexes where the weak coupling
between the emitting and accepting state necessitates the dissipation of a large
amounts of energy transfer (see Fig. 3: DE up to 14,800cm!1) to high-energy
vibrational overtones. Since the selection rule for vibrational transitions in the
harmonic model only permits Dn ¼#1, the excitation of vibrational over-
tones in the MR process directly from the vibrational ground state (n ¼0)
would be strongly forbidden. Therefore, only relatively small energies could
be transferred (typically on the order of 800–3500cm!1 for the fundamental
vibrations in molecular complexes) in a single transition. This notion is not
in agreement with the experimental observations which show that MR is often

12,500
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FIG. 4 Schematic representation of the C–H vibrational overtone levels and the electronic

levels in Yb3+.
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very efficient, even for energetic gaps which are several multiples of typical
vibrational energies for transitions from the ground to the first excited state.
It is therefore important to realize that vibrational overtones generally only
gain oscillator strength and hence the ability to accept larger amounts of
energy from lanthanoid states if the oscillators involved display a large degree
of anharmonicity. A much more appropriate description for oscillators in
molecular lanthanoid systems in solution is a local-mode Morse oscillator
model which explicitly incorporates the anharmonicity of the vibrations [8].
This approach has proved to be a very successful model for the quantitative
description of the energetic positions of vibrational overtones in molecular
systems [9]. Most relevant for the discussion of MR in molecular lanthanoid
complexes is the nonequidistant spacing of the vibrational overtone energies.
Instead, the energetic differences become increasingly smaller with an
increase in vibrational quantum number n (Fig. 5). In this model, the energy
enn (in the wavenumber scale) for the transition from the ground state to the
state with vibrational quantum number n depends on the frequency en0 of the
local-mode fundamental vibration and the anharmonicity parameter x accord-
ing to Eq. (1) [9]

enn ¼ n "en0#n n+ 1ð Þ " x (1)

In Eq. (1), the parameter x is a very convenient measure of the degree of
anharmonicity of the vibration with larger values of x indicating increasing
anharmonic behavior (and ideal harmonic behavior for x ¼0). Table 1 shows
representative values for the Morse parameters in diatomic stretching vibra-
tions relevant in typical ligand motifs for lanthanoid chelates in solution.
From these data, it is clear that the most anharmonic vibrations are the ones

FIG. 5 Comparison of the vibrational states and energies of harmonic oscillators (quantum number

nharm) and anharmonic, Morse-type oscillators (quantum number nMorse).
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involving high-energy X–H stretches such as nO–H (x ¼90cm"1) and nC–H
(x ¼58cm"1), whereas less energetic vibrations such as C–F (x ¼5cm"1)
are also much more harmonic. In addition, the respective values for isotopo-
logic oscillators such as C–H/C–D show the typical reduction of vibrational
frequencies with the increase in reduced mass for the diatomic vibrations
according to Eq. (2):

enC"H

enC"D
¼

ffiffiffiffiffiffiffiffiffiffiffi
mC"D

mC"H

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mC #mDð Þ= mC +mDð Þ
mC #mHð Þ= mC +mHð Þ

s

¼ 1:36 (2)

Equally or even more relevant, however, is the reduction of vibrational
anharmonicity upon deuteration. As a rule of thumb, the anharmonicity
parameter x decreases to roughly half the value found for the protiated oscil-
lators (e.g., Table 1: xO–H ¼90cm"1 vs xO–D ¼50cm"1/xC–H ¼56cm"1 vs
xC–D ¼28cm"1).

Crucially, anharmonicity does not only determine the energetic positions of
the vibrational overtones but also significantly influences the oscillator strength
of the vibrational transition to higher overtones during MR energy transfer from
the lanthanoid. Within the local-mode Morse model, the integrated absorption
band intensities (e.g., expressed by the molar extinction coefficients e) for the
transition to the overtone with vibrational quantum number n are determined
by the anharmonicity ratio k¼en0=x as shown in Eq. (3) [9]:

In ¼
Z
e enð Þden∝ n!

n2
# k1"n (3)

Eq. (3) makes two things clear. First, with increasing n the intensities In
rapidly decrease (n >0 and k >0), and second, the intensities go down more
slowly for anharmonic vibrations because of smaller values for k and because
1 – n <0. Or to put it the other way around, the overtone oscillator strengths
are much higher for strongly anharmonic oscillators compared to more har-
monic ones. While every vibration has unique features determining its vibra-
tional overtone intensities, as a very crude approximation, the oscillator
strength goes down by one order of magnitude with each overtone order n.
Experimentally, these effects are often not easy to measure, but this aspect
has long been known in fiber optical telecommunications which operates in
the same energy regime as the one relevant to lanthanoid MR [13]. Over
the years, many studies for the development of low-loss optical fibers and
of the effects that anharmonic oscillators such as O–H or C–H in plastic opti-
cal fibers have on the attenuation of the near-infrared signals to be transmitted
have yielded a wealth of empirical data on overtone positions and oscillator
strengths. Fig. 6 shows a graphical compilation of different oscillators and
their relative intensities. It gives a very good impression of the strong effects
that anharmonicity has on the oscillator strength of successive overtones (e.g.,
compare the slopes for C–H vs C–F vibrations). In particular, it illustrates that
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the effects for different moieties are not small but involve absorption intensity
differences of several orders of magnitudes for a given energy gap. For exam-
ple, at the vibrational overtone energy of 8400cm!1 the ratio IC–H/IC–F " 10!6,
i.e., the oscillator strength for a the C–H overtone is 1 million times higher than
for a C–F overtone of the same energy.

As a special case, the intensity ratios of the same overtones for isotopic
oscillators can be analyzed theoretically from Eq. (4) with the use of the anhar-
monicity ratios k:

IHn
IDn

∝
kD

kH

! "n!1

(4)

Since for this exponential expression, both the basis (kD/kH >1) and the
exponent (n !1 # 1) are greater than 1 for transitions to higher overtones
(n >2), the intensity ratio becomes increasingly larger with n, i.e., the inten-
sities of the X–H overtones are greater than the corresponding X–D overtones.

Another very important aspect is the nature of the vibrations that one
should consider for the analysis of MR processes. So far, we have only taken
into account diatomic, localized stretching vibrations despite the fact that

FIG. 6 Experimentally determined vibrational overtone positions and typical integrated absorp-

tion band strength relative to the band strength of the fundamental C–H stretching vibrations

I1
C–H $ 1. Data from W. Groh, Overtone absorption in macromolecules for polymer optical fibers,
Makromol. Chem. 189 (1988) 2861–2874.
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many vibrations show coupling to other vibrations, maybe most prominently
illustrated by symmetric and asymmetric stretching vibrations in chemical
motifs XH2 found in water molecules H2O or in methylene groups –CH2–.
For example, in liquid water, the rather strong near-IR absorption band around
1940nm (5140cm!1) is a combination of the asymmetric stretching and a
bending vibration [14]. This complication potentially makes the analysis of
vibrational overtones immensely complex and a lot of effort has been devoted
to the assignment of the identity of vibrational signatures in a myriad of mole-
cules. Fortunately, however, the situation is alleviated by a few circumstances
that greatly simplify the discussion of vibrational overtones [9b]. First, the
oscillator strengths of overtone combination bands involving high- or low-
frequency vibrations are usually considerably smaller than isolated, local-
mode overtones of diatomic high-energy oscillators. Second, the higher the
order of the overtone, the more the overtones become decoupled and the more
local-mode character is gained. In practice, it is often a reasonable, albeit crude
approximation that the first overtones are already local mode in nature. For
example, it has been shown that for the four visible lanthanoid emitters Sm3+,
Eu3+, Tb3+, and Dy3+ with relatively large energy gaps (DE >7380cm!1, see
Fig. 3) the two O–H moieties of H2O can be considered as two diatomic,
decoupled O–H overtone oscillators [15]. In addition, another implication of
the local-mode model is, of course, that as a first approximation, similar oscil-
lators in different molecules, which are not involved in strong intra- or intermo-
lecular noncovalent bonds, should have similar Morse parameters, regardless of
the individual chemical environment. For example, aromatic C–H/C–D oscilla-
tors in pyridines show very similar anharmonicity, no matter if observed in pyr-
idine [16], in pyridine-based lanthanoid cryptates [12], or even in benzene [17]
or toluene [18]. The situation for O–H or N–H oscillators is complicated by the
fact that their vibrational properties are strongly affected by hydrogen bonding.
For example, it is known that hydrogen bonding increases the anharmonicity of
O–H oscillators considerably, for example, in alcohol dimer motifs [19] or upon
absorption of alcohols on silica surfaces featuring Si–OH motifs [20]. It is very
plausible that similar effects are operative for inner- and second-sphere water
molecules in molecular lanthanoid complexes, but reliable studies on this sub-
ject are yet to be reported.

2 THE QUANTITATIVE DESCRIPTION OF MR
IN MOLECULAR COMPLEXES

2.1 The EGL in Molecular Complexes

The quantitative description of nonradiative deactivation of lanthanoid excited
states by MR has traditionally been based on the EGL which correlates the
energy gap DE (see Fig. 3) between emitting and next-lower state with the
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induced quenching rate contribution knr of a certain deactivating oscillator.
Over the years, many versions of the EGL have been developed [21] which
in its simplest manifestation has the form shown in Eq. (5):

knr ¼C1 " e
# C2 " DE

ħoM

! "

(5)

with C1 and C2 being constants characteristic for a particular system, which
are fitted to experimental data, and ħoM being the energy of the deactivating
vibrational mode. The various forms of the EGL all suppose MR being
induced by harmonic oscillators and are based on assumptions regarding the
relative energies relevant for the system, for example, that the energy gap is
much larger than the energy of the deactivating mode (DE≫ħoM) or that
the available thermal energy is negligible compared to the vibrational energy
(ħoM≫kBT). The EGL, although initially developed for the description of
luminescence in aromatic hydrocarbons, has proved its great utility also in
other fields such as inorganic photophysics, e.g., in solid-state materials doped
with trivalent lanthanoid ions [22] or certain molecular transition metal com-
plexes [23]. The application of the EGL to molecular lanthanoid complexes in
a quantitative way has also been reported many times, mostly with qualita-
tively plausible results [24]. One has to recognize, however, that this can nec-
essarily only be a very crude approximation. Eq. (5) makes this fact quite
obvious since it does not treat different oscillators differently but lumps all
distance and structure dependencies of the vibrational properties into the
two constants C1 and C2. In addition, the main deactivating oscillators for
lanthanoids in low-phonon host matrices or for most molecular transition
metal complexes mentioned earlier are usually very different from the ones
involving molecular lanthanoid complexes involving high-energy oscillators
in the ligands or the surrounding solvent. For example, in yttrium aluminum
garnet (YAG) hosts the phonon energy with ħoM$700cm#1 corresponds to
harmonic lattice vibrations. Even in the case of molecular complexes with
very similar ligand architectures, the moieties mainly responsible for MR
can be very different, as depicted in the two 2,20-bipyridine-based complexes
shown in Fig. 7. For the osmium complex (Fig. 7A), harmonic pyridine ring-
breathing mode overtones are the major contributors to MR [23a], whereas for
the superficially similar ytterbium cryptate (Fig. 7B), the main quenching
overtones are high-energy, highly anharmonic, local-mode C–H stretching
vibrations [12].

As a consequence of the nature of the deactivating overtone modes (high
energy and anharmonicity) in molecular lanthanoid complexes and the fact
that the energy gap DE is often only within one to three multiples of the
energy of the accepting oscillator energies, the fundamental assertions under-
lying the derivation of the EGL are not completely valid (cf. the assumption
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(DE≫ħoM) for the EGL above). Fig. 8 shows typical situations for dyspro-
sium ions (DE ¼7380cm"1 for the gap between the emitting state 4F9/2 and
the next lower state 6F1/2) in different cases involving on the one hand
low-phonon host matrices such as YAG (Fig. 8, right) and on the other molec-
ular lanthanoid complexes having aromatic C–H oscillators (Fig. 8, left).

There are several fundamental aspects that are crucial for the understand-
ing of the differences between the two cases:

FIG. 7 Comparison of the main deactivating oscillators in molecular metal complex lumino-
phores with very similar 2,20-bipyridine motifs in solution. (A) Harmonic ring-breathing modes

in osmium(II) complexes showing MLCT emission [23a]; (B) anharmonic C–H stretching modes

in f–f-luminescent ytterbium(III) complexes [12].

FIG. 8 Partial energy-level diagram for the Dy3+ levels (emitting 4F9/2 and lower 6FJ) compared

to the vibrational overtones of local-mode, aromatic C–H oscillators [12,25] and lattice phonons

in yttrium aluminum garnet (YAG, ħoM#700 cm"1) [22c].
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l DE vs ħoM: For molecular complexes, the overtone energy of deactivating
C–H oscillators is only two to three multiples of the energy gap
DE ¼7380cm"1, whereas for the much lower-phonon YAG modes at least
10 vibrational quanta are needed to bridge the gap. The latter situation is
well suited for the application of the EGL, the former is clearly not.

l Anharmonicity: As already discussed in Section 1.3, the high anharmoni-
city of the C–H stretching vibration is not included in the descriptions
using the EGL. Probably the smaller problem associated with this fact is
that the anharmonic overtone energies are at slightly different positions
compared to a model assuming harmonic vibrations. The much more seri-
ous issue is that the overtone intensities for anharmonic oscillators can be
several orders of magnitude higher compared to harmonic vibrational
descriptions as used by the EGL (see Fig. 6).

l Energy matching (Franck–Condon factors): The EGL implicitly assumes
that the smallest energy gap DE from the emitting state (in this case
4F9/2 ! 6F1/2) is responsible for the determination which overtone order
is required for MR to take place. In the case of small vibrational quanta
(here ħoM#700 cm"1 in YAG) the gap DE always matches a suitable
overtone close in energy, e.g., with n ¼10 or n ¼11 for 6F1/2 in Fig. 8.
Since the lower matching overtone (n ¼10) always has an oscillator
strength more than an order of magnitude higher than the next overtone
(n ¼11), the former will always dominate MR even if the energy of a
higher overtone would have a perfect energetic match with a lower-lying
state at the metal. In this case, the energy gap DE is a very good measure
for the quantitative analysis of MR and hence the EGL is a very suitable
model. Often, the situation for molecular lanthanoid complexes will be
similar and the EGL will make reasonable predictions. On the other hand,
the situation for MR with the high-energy C–H oscillators in molecular
complexes can be very different as shown in Fig. 8 on the left side. There,
the energy gap DE does not match the energy of the first (n ¼2) or second
(n ¼3) C–H overtone and the energetic difference to the gap energy is in
both cases more than 1000cm"1, a situation which can only happen for
high-energy oscillators found in molecular complexes. This prevents effi-
cient energy transfer from the emitting state to the oscillator via the tran-
sition from 4F9/2 to 6F1/2 corresponding to the conventionally defined
energy gap DE. Instead, the second overtone (n ¼3) perfectly matches
the energy of the larger gap 4F9/2–

6F5/2 # 8700cm"1 and even though
the oscillator strength associated with this overtone is much smaller than
for the first overtone, the MR process is highly likely to proceed via the
transition 4F9/2–

6F5/2 [25]. The EGL is ill equipped to deal with situations
like these because the relevant energy gap DE for high-energy oscillators
is not predetermined a priori and can be very different from the tradition-
ally defined smallest one, depending on the circumstances. Similar break-
downs of the EGL have also been observed for MR involving C–H and
C–D oscillators in Sm3+ and Pr3+ complexes (vide infra) [25,26]. It should
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be pointed out, however, that these abnormal cases are only likely for situa-
tions where one has to compare MR from overtones that are close in quantum
number (e.g., n ¼2 and n ¼3 in Fig. 8 on the left side). If the overtone orders
are further apart, it is unlikely that better energy matching can overcome the
much lower overtone oscillator strengths associated with higher vibrational
quantum numbers (e.g., the oscillator strength for a third overtone C–H is
roughly 100 times smaller than for the corresponding first overtone C–H).

In summary, the application of the EGL for the quantitative analysis of MR in
molecular lanthanoid complexes is not without problems. While most of the
time, it will give the right qualitative picture, it cannot account for the poten-
tially severe influence of strong Franck–Condon overlap with lower-lying
states. In addition, vibrational anharmonicity needs to be accounted for
because of the differences in overtone energies and especially in oscillator
strengths that anharmonic overtones exhibit compared to the harmonic model.

2.2 The Inductive-Resonant Mechanism of Nonradiative
Transitions

In light of the shortcomings of the EGL for molecular complexes, a different
approach, proposed by Ermolaev and Sveshnikova, is more suitable, the
so-called inductive-resonant mechanism of nonradiative transitions (IRM)
[27]. In this model, the MR energy transfer from the lanthanoid to the anhar-
monic oscillators is effected mainly through electric dipole–dipole interac-
tions under inductive-resonant conditions. As such, the principle underlying
this approach is the same as for the better-known F€orster resonance energy
transfer (FRET) for the nonradiative energy transfer between different elec-
tronic states, maybe most prominently exemplified for FRET between organic
and inorganic luminophores [28]. The IRM expresses the rate knr of nonradia-
tive deactivation due to MR from the lanthanoid excited state to a particular
oscillator in the vicinity of the lanthanoid by Eq. (6) [27]:

knr ¼
9000 "ln 10ð Þ " k2

128 " p5 "NA
" kr
n4 " r6 " SOI¼ 5:857%10&25 kr

n4 " r6 " SOI (6)

with the following constants and parameters: kr is the rate of the radiative tran-
sition, k2 is a factor depending on the relative orientations of the transition
dipole moments of the donor (the lanthanoid) and the vibrational acceptor moi-
ety which amounts to k2 ¼2/3 in the dynamic isotropic limit, n is the refractive
index of the medium, NA is Avogadro’s number, and r is the distance between
the lanthanoid and the oscillator with the usual inverse sixth-power dependence
characteristic for dipole–dipole interactions. The spectral overlap integral (SOI)
is a F€orster-type expression in the wavenumber scale en shown in Eq. (7):

SOI¼
Z

Inorm enð Þ " evib enð Þ "en&4den (7)

50 Handbook on the Physics and Chemistry of Rare Earths

350



Chapter 9. Appendix

Within the integral expression in Eq. (7), evib enð Þ is the decimal molar
vibrational absorption spectrum (with the usual units M#1 cm#1) which
implicitly takes into account the accurate energetic position of all vibrational
overtones and the actual oscillator strengths for each individual overtone.
Furthermore, Inorm enð Þ is the (dimensionless) emission spectrum normalized
to unit area defined by Eq. (8):

Inorm enð Þ¼ Iem enð ÞZ
Iem enð Þ den

)
Z

Inorm enð Þden¼ 1 (8)

Eqs. (6)–(8) only take into account one single oscillator at a certain dis-
tance r from the lanthanoid. In order to obtain the overall MR rate Sknr, the
contributions from every relevant oscillator must be summed up over all oscil-
lators according to Eq. (9):

X
knr ¼ 5:857%10#25 & n#4 & kr &

X

i

r#6
i & SOIi

! "
 !

(9)

The IRM model defined by Eqs. (6)–(9) alleviates a number of the limita-
tions of the EGL discussed earlier. In particular, contrary to the EGL, it
implicitly treats vibrational anharmonicity by incorporating experimentally
accessible vibrational absorption spectra evib enð Þ which reflect the actual vibra-
tional properties quite well and conceptually in an unbiased manner. In addi-
tion, it treats different oscillators as different localized entities with individual
distances and vibrational properties, which are much more intuitive from the
perspective of a molecular chemist and also more consistent with the descrip-
tion of molecular vibrations by a local-mode Morse oscillator approach (see
Section 1.3). On the other hand, the IRM loses the conceptual simplicity of
the EGL as a necessary trade-off for the much more comprehensive approach
for the description of MR. For its quantitative use, it requires very specific
information that is not always easy to obtain. For example, the crucial para-
meters kr, r, and evib enð Þ in solution are often rather inaccessible experimentally
or subject to dynamic changes on the experimental timescale. The most cru-
cial and tedious to obtain at the same time is quantitative information regard-
ing the vibrational overtone absorption signatures evib enð Þ of the high-energy
oscillators X–H, which in turn is essential for the calculation of SOIs. This
is often difficult because the exact geometric relationship between oscillator
and lanthanoid is often not known and is also subject to structural changes,
e.g., through dynamic changes in the coordination sphere. In addition, sol-
vent molecules in the first, second, and outer solvation spheres, which are
often the most important drivers of MR in solution (e.g., in H2O), are often
especially difficult or even impossible to measure from a vibrational stand-
point because the absorption spectrum of the bulk solvent (which is often
easily accessible) may not reflect the vibrational properties of oscillators
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most relevant for quenching, e.g., inner-sphere water molecules at the metal
center. While there is only a very small body of work for the quantitative
analysis of evib enð Þ and its impact on MR in molecular coordination com-
pounds [12,25–27,29–31], a lot of high-quality data on vibrational overtone
spectra of simple organic and inorganic molecules have been compiled in
the literature [9,14] by a variety of experimental methods such as conven-
tional near-IR absorption spectrophotometry, ICL-PAS (intracavity laser
photoacoustic spectroscopy) [16b], or CRDS (cavity ring-down spectros-
copy) [32]. In a lot of cases where the vibrational properties should not
be affected by the chemical environment, these data can give a very good
starting point for the analysis of coordination compounds that possess simi-
lar structural motifs. For example, nonexchangeable, aromatic local-mode
C–H oscillators are very good candidates for this purpose. Fig. 9 shows a
very good example where the aromatic C–H overtones in the bidentate che-
lator motif 2,20-bipyridine could be measured quantitatively in solution [12].
The obtained overtone bands are in very good agreement with data for the
corresponding tris(bipyridine) lanthanoid cryptates (Ln¼Lu) [12]. For oscil-
lators like these, it seems even possible to determine the properties of the
higher overtone bands (i.e., energies, widths, molar absorption coefficients)
by fitting the measured overtones (Fig. 9; n ¼2–4) as simple Gaussian band
shapes envib enð Þ and extrapolating the parameters for higher overtones (Table 2,
n ¼5) [33]:

envib enð Þ¼An $ e
%1
2 $

en%en n

max

sn

! "2

(10)

In this way, the overall vibrational function evib enð Þ can be generated in
analytical form as the sum of individual, local mode overtone signatures
envib enð Þ according to Eq. (11):

evib enð Þ¼
X

n

envib enð Þ (11)

This approach will likely not be possible for more complicated oscillators
involved in strong hydrogen bonding or similarly complicating circumstances
but provides a promising prospect for the simplification of the analysis using
the IRM.

Based on the fundamental IRM framework defined by Eqs. (6) and (7), a
few conceptual modifications have been made by introducing rather crude
approximations in order to simplify the analysis. For example, Galanin and
Frank [34] have developed a model where two approximations are made:
(1) no quenching oscillators are present In a sphere of radius rmin around
the lanthanoid; (2) for distances from the lanthanoid greater than rmin, oscilla-
tors are homogeneously distributed (instead of the discrete distribution in real
molecular species) over the entire space with a constant linear absorption
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coefficient avib enð Þ that incorporates the contributions from all oscillators. In
this scenario, knr can be calculated by Eq. (12):

knr ¼
1

2pð Þ4
$ kr

n4 $ rminð Þ3
$ SOI∗ (12)

SOI∗ ¼
Z

Inorm enð Þ $ avib enð Þ $en%4den (13)

where all parameters have the indicated meaning and avib enð Þ are in units of
cm%1. This model has been used particularly in the context of near-IR lumi-
nescence in erbium complexes [29,31] where Eq. (12) was further simplified
to Eq. (14) [29]:

kErnr &
lemð Þ4

2pð Þ4
$ kr $ aAh iEr
n4 $ rminð Þ3

(14)

with haAiEr being the vibrational absorption coefficient (on the wavelength
scale) averaged over the erbium emission band centered around lem ¼1530nm
and with all other parameters having the meaning defined earlier.

3 STRATEGIES FOR THE REDUCTION OF MR

The reduction of MR in molecular lanthanoid complexes is conceptually
straightforward but practically a formidable task. The foremost priority, of
course, is to avoid high-energy oscillators X–H (X¼O, N, C) in the ligand
environment around the lanthanoid. Two strategies have been developed to
achieve this goal, deuteration [35] and perhalogenation [36]. Perhalogenation
via fluorination or chlorination provides very efficient suppression of

TABLE 2 Parameters of the Gaussians (ennmax :Center Wavenumber;
sn: Gaussian Width; An: Amplitude) Describing the Different Overtone
Signatures envib enð Þ of the Aromatic C–H Oscillators in Me2-bpy [33]

Quantum Number n Maximum ennmax (cm–1) sn (cm–1) An (M–1 cm–1)

2 (measured data) 5984.4 61.13 8.639'10%1

3 (measured data) 8792.0 90.21 6.399'10%2

4 (measured data) 11,493 129.1 3.910'10%3

5 (calculated data) 14,065a 161.5b 2.716'10%4c

aCalculated using ennmax ¼ n'3170cm%1–n $ (n +1) $ 59cm%1.
bCalculated using sn ¼ n $ 34.0cm%1 %8.53cm%1.
cCalculated using log(An)¼2.295 % n $ 1.172.
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vibrational quenching compared to perdeuteration due to the lower energy of
the C–F/Cl stretching vibration and its smaller anharmonicity. It cannot, how-
ever, be used for every ligand system (e.g., amino carboxylates, DOTA deri-
vatives, cryptates) because of the chemical instability of the perhalogenated
species. Therefore, this strategy can only be used for a limited number of
ligands, usually only with low denticities (e.g., acetylacetonates, imidodipho-
sphinates). The substitution of hydrogen for deuterium, on the other hand,
does not change the basic chemistry of the ligand architectures and therefore
allows the adaptation of virtually any ligand systems for perdeuteration, usu-
ally also without substantially altering the fundamental photophysical proper-
ties (except the MR properties). This topic has been covered extensively in a
number of recent excellent reviews [6,36,37]. Fig. 10 and Table 3 show
selected examples of highly efficient molecular lanthanoid luminophores
(except for Eu and Tb) designed using the two strategies of halogenation
and deuteration and recently reported.

4 MR ISOTOPE EFFECTS IN DEUTERATED COMPLEXES

One of the most powerful tools for the investigation of MR in molecular lan-
thanoid complexes is the analysis of selectively deuterated complex architec-
tures compared to the nondeuterated parent compounds. Isotopic substitution
of deuterium for hydrogen can have a strong effect on MR but usually does
not change the structural parameters (e.g., distance Ln-H/D, orientation factor
k2) in molecular complexes significantly and presumably also not the basic
photophysics during the sensitization process (e.g., kr). Under identical exper-
imental conditions, the measured differences in luminescence lifetimes τobs
can directly be correlated to the differences in MR rates Dknr for the oscillator
in question (Eq. 15):

Dknr ¼
1

τHobs
" 1

τDobs
(15)

In addition, for the analysis within the IRM framework [27], the ratio of
MR rates of two isotopologic oscillators simplifies from Eq. (6) to Eq. (16),
where only the two different spectral overlap integrals SOIH and SOID are
required:

kHnr
kDnr

¼

Z
Inorm enð Þ % eHvib enð Þ %en"4d en

Z
Inorm enð Þ % eDvib enð Þ %en"4d en

¼ SOIH

SOID
(16)

The differences in knr due to isotopic substitution in solvents, and in par-
ticular due to O–H/D oscillators, have already been recognized and analyzed
early on by the pioneering work of (among others) Kropp and Windsor
[47], Heller [15a], Gallagher [15b], and Haas, Stein, and W€urzberg [24b–d].
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More recently, careful structure–property correlations on the basis of
measured Dknr values have allowed the development of empirical equations
for the reliable determination of inner-sphere water molecules for europium
(Horrocks [48], Parker [49]), terbium (Parker [49]), and ytterbium (Parker
[49]). In addition, an analogous relation has been reported for the analysis
in MeOH for ytterbium (Beeby, Faulkner, and Ward [50]). The situation has
also been analyzed for neodymium [50–52], samarium [53], and dysprosium
[54] but with less success. Apart from these more empirical studies, extensive
qualitative and quantitative analysis using the IRM model has been done by
Sveshnikova and Ermolaev [27]. In general, the topic of solvent isotope

TABLE 3 Luminescence Data at Room Temperature for Selected
Lanthanoid Complexes Showing Reduced MR Due to Halogenation and
Deuteration (See Fig. 10 for Structures)

Complex

Sample

Form

Lifetime τobs
(ms) (Emitting

Level)

Quantum

Yield FLn
L

(%) References

1-Pr [D6]-DMSO 0.595 (1D2) n.d. [26]

2-Nd [D6]-DMSO 6.3 (4F3/2) 1.1 [38]

3-Nd [D6]-acetone 13 (4F3/2) 3.2 [39]

4-Nda [D8]-THF 2.8 (4F3/2) 1.4 [40]

5-Nd solid 92 (4F3/2) n.d. [41]

8-Nd CD3CN 44 (4F3/2) n.d. [42a]

6-Sm CD3CN 394 (4G5/2) n.d. [25]

7-Dy CD3OD 194 (4F9/2) n.d. [25]

8-Dy CD3CN 300 (4F9/2) n.d. [42a]

5-Er solid 850 (4I13/2) n.d. [41]

8-Er CD3CN 741 (4I13/2) n.d. [42]

5-Tm solid 89 (3H4) n.d. [41]

7-Tm [D6]-DMSO 4.6 (1G4) 0.12b [43]

8-Yb CD3CN 1111 (2F5/2) n.d. [42a]

9-Yb solid 180 (2F5/2) n.d. [44]

10-Yb CD2Cl2 714 (2F5/2) 63 [45]

11-Yb CD3OD 172 (2F5/2) 12 [46]

aDirect Nd excitation at lexc ¼585nm.
bPartial QY for the transition 1G4 ! 3H6 only.
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effects has often been reviewed over the years and further details can be found
in a number of excellent summaries in the literature [1,35,37]. Unfortunately,
the usually very fluxional nature of lanthanoid–solvent interactions in the
inner- and second-sphere and the concomitant rapid (and often unknown)
changes in critically important parameters (e.g., distances Ln oscillator,
evib enð Þ, etc.) make the rigorous quantitative analysis of isotope effects in
MR extremely challenging. This section will therefore highlight selected exam-
ples for MR rate differences Dknr due to deuteration of well-defined oscillators.
In general, the description will focus on rigidly attached C–H/D or well-defined
N–H/D oscillators, where the number and nature of deuterated oscillators as
well as their approximate geometries relative to the metal center are known
or can be estimated with a high degree of confidence. In addition, some of
the observed phenomena specific to a particular lanthanoid will be discussed.

4.1 Europium and Terbium Complexes

Trivalent europium (5D0: DE ¼12,400cm$1) and terbium (5D4:
DE ¼14,800cm$1) have relatively large energy gaps and are therefore only
affected moderately by MR of high-energy oscillators. Apart from the well-
known, empirically documented effect that O–H and N–H oscillators (especially
water) have on the two lanthanoids [48,49], the extent of C–H-induced MR detri-
mental to luminescence efficiencies is very limited (Tables 4 and 5). Interestingly,
the deuterated C–Doscillators of aliphatic moieties in DOTA complexes (Fig. 11:
H4L

1 [49]) are reported to sometimes even have a slightly higher MR efficiency
than the isotopologic C–H analogues (see Table 5, first entry).

4.2 Samarium and Dysprosium Complexes

For samarium and dysprosium complexes, despite their relative importance as
visible lanthanoids emitters, only a very limited number of examples are
reported for the determination of MR rate differences in isotopologic C–H/D
oscillators (Table 6). For both lanthanoids, Dknr values for the main emitting
levels (Sm3+: 4G5/2 and Dy3+: 4F9/2) are on the order of roughly 0.1–1ms$1

per oscillator.
In the case of aromatic C–H/D oscillator overtones, it could be shown

(Fig. 12) that the relevant energy gaps for both lanthanoids are not the usually
assumed smallest gaps (Sm3+: 4G5/2–

6F11/2 and Dy3+: 4F9/2–
6F1/2) but larger

ones that are in much better resonance with the second C–H overtone
(n ¼3) or with the third C–D overtone (n ¼4) [25].

4.3 Praseodymium, Holmium, and Thulium Complexes

For molecular complexes of Pr, Ho, and Tm in solution, only a handful of
reports of lanthanoid-centered luminescence are known. Even less is known
about the effect that molecular vibrations in the ligands have on the MR

58 Handbook on the Physics and Chemistry of Rare Earths
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efficiencies (Table 7). Holmium, with its many and closely spaced energy
levels (Fig. 3: DE <3000cm!1), is especially prone to vibrational deactivation,
even by fundamentals of high-energy oscillators. It is therefore not entirely
surprising but still a rare observation that even minor vibrational isotope effects
can have an observable impact on the luminescence intensities. For instance, a
surprisingly large effect could be shown for a near-IR emission band of holmium
around 974nm (3K8 ! 5I5) which increases its intensity by approximately 45%
(Fig. 13) upon isotopic labeling of the four inner-sphere carboxylates of com-
plexes with ligand H2L

10 (Fig. 11) labeled with 13C and 18O [62]. This only
changes the vibrational C]O stretching frequency of the carboxylates by roughly

5% from en12C¼16O ¼ 1624cm!1 to en13C¼18O ¼ 1549cm!1 and should also have no
significant effect on anharmonicity. Unfortunately, the observed luminescence
intensities were too small to allow for detailed measurements of the lifetime dif-
ferences between the isotopologues. As expected, the luminescence of other
lanthanoids such as Eu3+ or Sm3+ is entirely unaffected by isotopic substitution
in the carboxylates due to their much larger energy gaps so that small changes
in enC¼O do not play any role [62].

For thulium, which also rarely shows luminescence in molecular systems in
solution, one report by Faulkner et al. [61] shows the large isotope effect that deu-
teration of solvent CH3 groups has on the luminescence of thulium(III) triflate in
MeOH and DMSO (Table 7). In both cases, Dknr on the order of 103 ms!1 are
found. Presumably, the CH3/CD3 groups are (at least in part) in the inner sphere

FIG. 12 Partial energy level diagram for Dy(III) and Sm(III) showing the energy gaps DE
according to the energy gap law (smaller DE) and the ones actually relevant for MR of aromatic

C–H/D oscillators (larger DE). Reprinted with permission from C. Doffek, J. Wahsner, E.
Kreidt, M. Seitz, Breakdown of the energy gap law in molecular lanthanoid luminescence: the
smallest energy gap is not universally relevant for nonradiative deactivation, Inorg. Chem.
53 (2014) 3263–3265—copyright 2015 American Chemical Society.
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of the lanthanoid with relatively short distances Tm–H (ca. 3.5–4.2Å) albeit
without any detailed knowledge of the number of oscillators close to the thulium
ion or the precise geometrical arrangements for the solvent oscillator groups.
Aromatic C–H oscillators relatively far away from the metal center with well-
defined geometries (distances ! 5.5–6.3Å) in complexes with ligand H2L

9

(Fig. 11 and Table 7) show large Dknr ¼112ms#1 (3 H) [43], which is two orders
of magnitude greater than for the less sensitive Dy complex [25] of the same
ligand (Table 6: Dknr ¼1.1ms#1, 3 H).

As for Ho and Tm, luminescence from molecular praseodymium lumino-
phores is very rare in solution, in part due to its strong susceptibility to deac-
tivation by MR. This is exemplified by the huge quenching rate difference of
Dknr ¼67,800ms#1 (Table 7) for the combined effect of O–H and C–H deu-
teration of methanol solvent molecules for the complex [Pr(L11)(L12)2]. Pra-
seodymium also shows a very peculiar isotope effect for vibrational
deactivation of the emitting 1D2 state with benzylic and aromatic C–H/D
oscillators in cryptates with the tris(bipyridine)-based cryptand L13 (Fig. 11)
[26]. While the benzylic methylene groups induce a normal decrease in MR
rates upon deuteration (Table 7: Dknr ¼788ms#1), the aromatic C–H moieties
of the pyridines anomalously lead to slightly smaller quenching compared to
corresponding C–D modes (Table 7: Dknr ¼#45 ms#1). This phenomenon
has been rationalized with the much better spectral overlap of the second aro-
matic C–D overtones with the energy gap of DE ! 7000cm#1 compared to
the first aromatic overtone C–H (Fig. 14A). In the case of benzylic oscillators,

FIG. 13 Partial steady-state emission spectra for 13C/18O-labeled complex [Ho(L10)2](HNEt3)
and its nonlabeled analogue in [D6]-DMSO (c ¼10mM, lexc ¼306nm). Redrawn from J.
Wahsner, M. Seitz, Non-radiative deactivation of lanthanoid excited states by inner-sphere car-
boxylates, Inorg. Chem. 54 (2015) 10841–10848 with permission—copyright 2015 American
Chemical Society.
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both isotopologues with lower vibrational frequencies than their aromatic
counterparts seem to be out of resonance with DE, and consequently, the
higher oscillator strength of C–H leads to considerably faster MR and conse-
quently the normally expected behavior upon deuteration. This explanation
could later be confirmed by quantitative calculations of the SOI for the two
different aromatic oscillators C–H/D using Eq. (16) [12]. Fig. 14B shows a
schematic depiction of the energetic positions of the relevant overtone absorp-
tion/lanthanoid emission bands. A similar effect had qualitatively already
been described for the emission from the 3P0 state in Pr complexes with a
deuterated m-terphenyl-based ligand [59].

FIG. 14 (A) Partial energy level diagram for Pr(III) and the position of the overtones of C–H/D
oscillators in tris(bipyridine)-based cryptates relative to the emitting 1D2 and the lower 1G4 level;
(B) schematic representation of the spectral overlap of the praseodymium emission 1D2 ! 1G4

and the different aromatic overtones C–H and C–D (band intensities not to scale). Reprinted with
permission from C. Doffek, N. Alzakhem, C. Bischof, J. Wahsner, T. G€uden-Silber, J. L€ugger, C.
Platas-Iglesias, M. Seitz, Understanding the quenching effects of aromatic C-H- and
C-D-oscillators in near-IR lanthanoid luminescence, J. Am. Chem. Soc. 134 (2012)
16413–16423; J. Scholten, G. A. Rosser, J. Wahsner, N. Alzakhem, C. Bischof, F. Stog, A.
Beeby, M. Seitz, Anomalous reversal of C!H and C!D quenching efficiencies in luminescent
praseodymium cryptates, J. Am. Chem. Soc. 134 (2012) 13915–13917—copyright 2012 American
Chemical Society.
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4.4 Neodymium Complexes

Neodymium luminescence has been an intense subject of research over the
years and many quite successful molecular Nd complexes have been devel-
oped [63]. Nevertheless, the main emitting level 4F3/2 has a very small energy
gap of DE ¼5450cm"1 (Fig. 3) and is therefore very prone to nonradiative
deactivation by MR. Relatively numerous studies have determined values
for Dknr upon deuteration of C–H groups in well-defined systems (Table 8).
The observed differences vary considerably with the structural conditions
but are generally on the order of Dknr # 1–100ms"1 per C–H/D oscillator.

4.5 Erbium Complexes

Luminescent erbium complexes are of particular interest because of their
near-IR luminescence bands around 1550nm (4I13/2 ! 4I15/2) which are in
the most useful wavelength range for fiber-optical telecommunication [68].
Much effort has been invested in the reduction of MR in molecular com-
plexes, which is most effectively achieved by halogenation strategies
[29,36,41,42]. Deuteration has been realized for quite some time now to be
rather ineffective for emission efficiency improvements [30,31]. The main
reason for this is the good resonance of the second vibrational overtones in

C–D oscillators (e.g., aromatic en3C"D # 6600cm"1, [12]) with the relevant
energy gap DE ¼6500cm"1 for erbium, which makes C–D oscillators also
very efficient vibrational quenchers. Table 9 shows isotopologic rate differ-
ences Dknr # 1–100ms"1 per C–H/D oscillator, which is very similar to other
lanthanoids sensitive to MR such as Nd, Pr, or Tm.

4.6 Ytterbium Complexes

For a number of reasons, ytterbium luminescence around 1000nm is one of the
most interesting among all other near-IR-emitting lanthanoids. For one, Yb with
its relatively large energy gap DE ¼10,250cm"1 is not as sensitive as other
near-IR emitters and can be expected to achieve high quantum efficiencies if
properly protected from detrimental MR effects. The progress in this area has
been spectacular with the recent development of a number of highly lumines-
cent luminophores with absolute quantum yields of 12% [46] or even 63%
[45] in solution due to decreased vibrational quenching enabled by deuteration
and/or halogenation (see Section 3). In addition to the efficiency gains during
the last years, a number of quantitative studies of Dknr in well-defined isotopo-
logues have been reported (Table 10), which will undoubtedly facilitate further
improvement in the field by advancing a much better quantitative understand-
ing of MR. As a crude rule of thumb, the deuteration of individual C–H oscil-
lators can be expected to yield Dknr of ca. 1–10ms"1.

Particularly noteworthy is a very recent study by Zhang et al. [71]
which investigated the MR differences well-defined O–H/D in porpholactol-
based Yb complexes with ligand H2L

21 (Fig. 15). Fig. 16 shows the two
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diastereomeric complexes Yb-up and Yb-down used for this purpose, which
represent very rare examples where the relative spatial orientation of the O–
H oscillators is reasonably well established and can be analyzed. The authors
showed that the observed nonradiative rate differences between the OH- and
OD-containing species in either complex are solely induced by isotopologic
hydroxyl overtones with no measurable effect of the concomitant change in
orientation of the geminal C–H oscillators at the lactol motif (Table 10). It
remains unclear, if the observed values for Dknr are mainly due to differences
in the Ln-oscillator distances or if the potentially different vibrational signa-
tures also play a role, e.g., via strong hydrogen-bonding interactions.

5 CONCLUSION AND OUTLOOK

The chemical development of highly luminescent, molecular lanthanoid com-
plexes has made enormous strides over the last decades. Despite these great
advances, the understanding of the role that MR induced by molecular vibra-
tions plays for the associated photophysical processes is still qualitative in
nature rather than rigorously quantitative. Detailed studies of this important
phenomenon in well-defined molecular systems are still only few in number
but already provide tantalizing glimpses into the unique aspects that MR in
molecular complexes exhibits compared to other areas of inorganic photophy-
sics. Especially important will be the recognition of the exact role that vibra-
tional anharmonicity plays for the crucial overtone energies and oscillator
strengths. Work in this area would not only enable even more efficient lantha-
noid luminophores to be designed but would more importantly also further a
much deeper understanding of the role that molecular vibrations play for other
fundamental photophysical aspects such as internal conversion between dif-
ferent lanthanoid states. It stands to reason that with the recent emergence

FIG. 16 Diastereomeric ytterbium complexes Yb-up and Yb-down with geometrically well-

defined O–H/D oscillators for the determination of Dknr (OH–OD). Adapted from Y. Ning,
Y.-W. Liu, Y.-S. Meng, J.-L. Zhang, Design of near-infrared luminescent lanthanide complexes
sensitive to environmental stimulus through rationally tuning the secondary coordination sphere,
Inorg. Chem. 57 (2018) 1332–1341 with permission—copyright 2018 American Chemical Society.
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of highly efficient near-IR luminophores, more elaborate studies into MR will
be within reach that were previously unthinkable. This in turn will undoubt-
edly enable the realization of even more sophisticated and fascinating aspects
such as molecular upconversion.
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ABBREVIATIONS

DMSO dimethyl sulfoxide
EGL energy gap law
EnT energy transfer
FLn

L absolute quantum yield
FRET F€orster resonance energy transfer
IRM inductive-resonant mechanism of nonradiative transitions
ISC intersystem crossing
MR multiphonon relaxation
n.d. not determined
rt. room temperature
THF tetrahydrofurane
τobs observed luminescence lifetime
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