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ABSTRACT

This dissertation presents an optimal control-based architecture for motion plan-
ning and feedback control of simulated robots in multi-contact scenarios. Motion
planning and control are fundamental building-blocks for the creation of truly
autonomous robots. While there has been tremendous progress in these areas for
fixed-base manipulators and wheeled robots, the motion planning and control
problem for floating-base robots such as those with arms and legs is still an open
one, as experienced in recent robotic challenges where the need for efficient and
robust algorithmic approaches was made evident. Under this context, this disserta-
tion proposes an architecture to tackle two main challenges, namely: the efficient
planning of contact sequences and whole-body movements for floating-base robots
as well as its successful execution using feedback control policies capable of coping
with environmental uncertainties.

One of the first steps to successfully realize complex motions is the ability to effi-
ciently synthesize them, which if achievable in a close to real-time receding-horizon
fashion makes it possible to reactively control a robot based on its current state.
Traditional whole-body trajectory optimization approaches allow to fully exploit
the robot’s capabilities; however, they are computationally very costly to be run
in an online fashion. To overcome this algorithmic challenge, the motion planning
architecture proposed in this dissertation exploits the geometrical properties of
the problem to efficiently approximate a local solution using a polynomial-time
algorithm, but without sacrificing expressiveness for synthesizing complex motion
behaviors. Using the proposed approach, it will be shown that a wide range of
time-optimal highly dynamic motions can be generated for humanoid as well as for
quadruped robots.

Furthermore, based on the efficient computation of solutions for dynamic feasi-
bility of movement plans and thanks to its convex convergence properties, it will be
shown that it is also possible to efficiently select sequences of contacts in complex
terrains based on a measure of dynamical robustness using a mixed-integer solver.
This constitutes a very important step towards designing contact planners that
go beyond traditional approaches based on quasi-static stability assumptions and
that can be used in more complex and dynamic scenarios such as crossing a wide
gap, going down a steep slope or reactively selecting a new contact location in a
push-recovery task.

Despite the benefits that a fast contacts and motion replanning loop could bring at
enhancing the execution’s success rate of generated motions; due to environmental
uncertainties and the still non real-time replanning rates of the planning algorithms,
a feedback control architecture for the execution of movement plans is advantageous



and can greatly contribute to the successful accomplishment of motion tasks. To
this end, a feedback control architecture is proposed to execute movement plans in
tasks involving multi-contact interactions. This architecture builds upon two key
elements: Firstly, it exploits the superposition property of impedances to stabilize
desired movement plans based on its kino-dynamic nature. Secondly, it can generate
feedback behaviors adaptive to the uncertainty type (e.g. within dynamics or
measurement model) using a noise-sensitive algorithm that introduces a systematic
way to react in the presence of uncertainties by incorporating higher-order statistics
of the performance measure within the policy optimization. The resulting feedback
law not only exploits all the couplings between the degrees of freedom of the robot
for optimal tracking of kino-dynamic movement plans, but also provides the robot
a policy sensitive to the type of uncertainty it can find in contact interaction tasks.

In summary, a motion planning and feedback control architecture for legged
robots based on efficiently exploiting the mathematical structure of the problems
with dedicated solvers is proposed. This contribution brings the state-of-the-art
closer to the vision of real-time whole-body control for robots with arms and legs
in complex and highly dynamic environments.
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ZUSAMMENFASSUNG

Diese Dissertation prasentiert eine optimale steuerungsbasierte Architektur fiir die
Bewegungsplanung und Riickkopplungssteuerung simulierter Roboter in Multikon-
taktszenarien. Bewegungsplanung und -steuerung sind grundlegende Bausteine fiir
die Erstellung wirklich autonomer Roboter. Wahrend in diesen Bereichen enorme
Fortschritte fiir Manipulatoren mit festem Sockel und Radrobotern in den letzten
Jahren erzielt wurden, besteht das Problem der Bewegungsplanung und -steuerung
fiir Roboter mit Armen und Beinen immer noch ein ungeldstes Problem, das die
Notwendigkeit effizienterer und robusterer Algorithmen belegt. In diesem Zusam-
menhang wird in dieser Dissertation eine Architektur vorgeschlagen, mit der zwei
Hauptherausforderungen angegangen werden sollen, namlich die effiziente Planung
von Kontaktsequenzen und Ganzkoérperbewegungen fiir Floating-Base-Roboter so-
wie deren erfolgreiche Ausfiihrung mit Riickkopplungsregelungsstrategien, die
Umgebungsunsicherheiten bewiltigen konnen.

Einer der ersten Schritte zur erfolgreichen Verwirklichung komplexer Bewegungs-
abladufe ist die Fahigkeit, diese effizient zu synthetisieren. Wenn dies in Echtzeit
moglich ist, kann der Roboter basierend auf seinem aktuellen Zustand reaktiv ge-
steuert werden. Herkémmliche Ansitze zur Optimierung der Ganzkorperflugbahn
ermoglichen es, die Fahigkeiten des Roboters voll auszunutzen, jedoch sind sie
fiir die Online-Ausfiihrung sehr zeitintensiv. Um dieser algorithmische Herausfor-
derungen in Angriff zu nehmen, nutzt die in dieser Dissertation vorgeschlagene
Bewegungsplanungsarchitektur die geometrischen Eigenschaften des Problems, um
eine lokale Losung mit einem Polynomialzeit-Algorithmus effizient anzunihern,
ohne jedoch die Ausdruckskraft fiir die Synthese komplexer Bewegungsverhalten
abzuwédgen. Mit dem vorgeschlagenen Ansatz wird gezeigt, dass ein breites Spek-
trum an zeitoptimalen hochdynamischen Bewegungen sowohl fiir humanoide als
auch fiir vierbeinige Roboter erzeugt werden kann.

Basierend auf der effizienten Berechnung von Losungen fiir die dynamische Mach-
barkeit von Bewegungsplianen und dank der konvexen Konvergenzeigenschaften
wird auBlerdem gezeigt, dass es auch moglich ist, Kontaktsequenzen in komplexen
Gebieten basierend auf einer Messgrofie von dynamische Robustheit mithilfe eines
Mixed-Integer-Solvers optimal auszuwéhlen. Dies ist ein sehr wichtiger Schritt bei
der Gestaltung von Kontaktplanern, die tiber herkommliche Ansdtze hinausgehen,
die auf quasi-statischen Stabilititsannahmen basieren, und die in komplexeren und
dynamischeren Szenarien verwendet werden konnen, z. B. beim Uberqueren einer
grofsen Liicke, bei einem steilen Abhang oder bei der reaktiven Auswahl eines
neuen Kontaktorts in eine Push-Recovery-Aufgabe.
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Trotz der Vorteile einer schnellen Kontakt- und Bewegungsplanungsschleife bei
der Verbesserung der Erfolgsrate der durchgefiihrten Bewegungen, aufgrund von
Umgebungsunsicherheiten und den noch nicht in Echtzeit erfolgenden Neupla-
nungsraten der Architektur ist eine Riickkopplungssteuerungsarchitektur fir die
Ausfiihrung von Bewegungsplanen von Vorteil und kann erheblich zur erfolgreichen
Durchfithrung von Bewegungsaufgaben beitragen. Zu diesem Zweck wird eine
Riickkopplungssteuerungsarchitektur vorgeschlagen, um Bewegungsplane in Auf-
gaben, die Multikontaktinteraktionen umfassen, auszufiihren. Die Architektur baut
auf zwei Schliisselelementen auf: Erstens nutzt sie die Uberlagerungseigenschaft
von Impedanzen zur Stabilisierung gewtiinschter Bewegungspline aufgrund ihrer
kinodynamischen Natur. Zweitens kann sie Riickkopplungsverhalten erzeugen,
die an den Unsicherheitstyp angepasst sind (z. B. innerhalb eines Dynamik- oder
Messmodells). Dazu wird ein gerduschsensitiver Algorithmus verwendet, der eine
systematische Methode zur Reaktion auf Ungewissheiten einfiihrt, indem Statistiken
der Leistungsmessung hoherer Ordnung in die Optimierung einbezogen werden.
Das daraus resultierende Regelgesetz nutzt nicht nur alle Kopplungen zwischen
den Freiheitsgraden des Roboters zur optimalen Verfolgung kino-dynamischer
Bewegungsplane, sondern bietet dem Roboter auch ein Regelgesetz, das auf die Art
der Unsicherheit anspricht, die er bei Kontaktaufgaben finden kann.

Zusammenfassend wird eine Architektur fiir Bewegungsplanung und Riickkopp-
lungssteuerung fiir Floating-Base-Roboter vorgeschlagen, die auf einer effizienten
Ausnutzung der mathematischen Struktur der Probleme mit dedizierten Losern
basiert. Dieser Beitrag hat uns die Vision der Echtzeit Ganzkoérper Steuerung fiir
Roboter mit Armen und Beinen in komplexen und hochdynamischen Umgebungen
niher gebracht.
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PREFACE

This dissertation proposes an optimal control based architecture for motion planning
and feedback control for robots with arms and legs. It consists of six chapters.
Chapter 1 is an introductory chapter that highlights the potential of legged robots
in our society, but also describes the problems for contacts planning, whole-body
motion generation and feedback control design, which embeds this dissertation
into the context of related approaches and motivates the open challenges to be
addressed in the following chapters. It also defines the scope of this research in
terms of the type of problems considered and the selected optimization-based
approach. Chapter 2 formally presents the proposed motion planning and feedback
control architecture, as well as a summary of the contributions. Chapters 3, 4 and 5
present the theoretical and experimental contribution of this dissertation in terms of
contacts and whole-body motion generation algorithms, as well the feedback control
architecture for stabilization of whole-body movement plans. Finally, Chapter 6
summarizes and concludes this dissertation.






Chapter

INTRODUCTION

My heart is on the work!
— Andrew Carnegie, Scottish - American industrialist
and philanthropist, 1835 - 1919

Given the rapid development of our society, it is not unrealistic to believe that
in a not too distant future, robots will have an important place in our daily lives
by supporting our society within a broad spectrum of applications ranging from
industry and service to common household scenarios and elderly care [1]. Con-
sequently, the design of algorithms for efficient planning of complex whole-body
robotic behaviors as well as of feedback control strategies for the safe operation of
robots among humans in unstructured, uncertain and highly dynamic environments
are fundamental pieces for the future of autonomous robots [2, 3, 4] and really
exciting research problems with far-reaching applications in our society.

For instance, robots (guided by high-level task descriptions) could assist their
human supervisors: in factory or industry settings within intensive or repetitive
manufacturing tasks [5, 6, 7, 8], in construction sites with transport and operation
of heavy tools throughout the environment [9], in rescue or disaster relief scenarios
within risky and very dangerous tasks for humans [10, 11, 12], in elderly care with
daily chores and company [13], among many others. In the way to fulfilling our
vision of robots that achieve human levels of competence at movement generation
and control of complex tasks, and are thus capable of successfully filling-in many
useful roles in society, we first need to understand the underlying principles that
would allow us to overcome the major challenges for efficiently planning and
controlling the task-oriented movement of a robot with arms and legs.

Among the major challenges that a legged robot faces when performing a task
are to decide: where and when to contact the environment to avoid falling, in
which direction and how fast to move its body (specially in the case of highly
dynamic motions such as jumps), how compliant to behave with an uncertain
environment, among others. A freely moving legged robot needs to coherently
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coordinate its movement and its interaction with the environment via intermittent
physical contacts to successfully perform a desired task while keeping its balance.
Furthermore, in real-world scenarios it needs to quickly adapt to uncertainties and
react to sudden changes in the environment to successfully complete the desired
task. In this context, this dissertation proposes an architecture that tries to provide
answers to these questions by addressing the following problems: planning of
contact sequences based on a criteria of dynamical robustness, efficient generation
of time-optimal movement plans and whole-body feedback control design for robots
performing multi-contact interaction tasks in uncertain environments.

1.1 SCOPE OF RESEARCH WORK

This section describes the main focus and some key aspects and assumptions of the
architecture proposed in this dissertation.

Models based on physical knowledge: One of the core challenges for a legged
robot is to keep its balance: to move in a direction different than gravity, the
robot needs to interact with the environment via contact forces limited by the
mechanical laws of unilateral contact [14]: e.g. feet can only push and not pull
on the ground, thus arbitrary motions are not possible [15]. For this reason, the
proposed architecture makes use of mathematical models that express physical
knowledge about the problem to quickly and continuously answer questions such
as: where and when to break or make a contact, in which direction and how fast
to move, or how hard or compliant to push against the environment? and in this
way it prevents the robot from falling and successfully achieves a task.

Robot as floating-base rigid-body system: Traditional sampling-based approaches
would try to answer these questions by first selecting a sequence of contacts and
joint configurations in a discrete approximation of the continuous space, and
then the sequence of controls that would realize the sampled trajectories [16].
The difficulty of applying this approach to a legged robot is that it is subject to
nonlinear dynamic constraints such as friction forces, under-actuation (meaning
that there is no direct control over the robot’s pose in space "the floating base")
or equations of motion constraints (that describe a robot as a tree of rigid bodies
connected through joints) [17, 18]; which implies that either the sequences found
could be inconsistent with the nonlinear dynamic constraints or the difficulty of
sampling consistent sequences or trajectories in highly dimensional spaces would
be a limiting factor. This makes traditional sampling-based motion generation
algorithms not well suited for the kind of problems considered in this dissertation,
such as whole-body motion generation for floating-base systems.
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Discrete nature of contact models: Another challenge of motion planning for
legged robots is the inherent discrete nature of contacts switching: they introduce
instantaneous events (making or breaking of a contact) due to which the system
exhibits hybrid dynamics [19] (including continuous and instantaneous changes)
that are difficult to handle during planning, estimation and control phases [11,
20]. Despite the challenges they pose, physical contacts are the at the core of the
proposed architecture, because they allow a robot to interact with the environment
and in this way to dynamically move and control its floating-base. Here, they
are considered to be rigid, static and perfectly known by the motion planning
algorithm and soft by the feedback control method and within the physical
simulation. In theoretical and practical terms, flat ground walking of legged
robots has been robustly demonstrated [21, 22, 23, 24, 25]. However, going to a
broader range of tasks where robots interact with a non-coplanar environment
using multiple endeffectors still remains a challenging problem and is part of the
main focus of this dissertation.

Model-based trajectory optimization: One of the main goals of this dissertation is
to design a contacts and whole-body motion planning algorithm for robots with
arms and legs that perform tasks by physically interacting with the environment
through the creation of intermittent contacts. The approach for motion planning
of the proposed architecture belongs to the family of model-based optimal control
techniques that describe a task by means of a performance criteria and a set
of task constraints [26, 27, 28]; i.e. given a user-defined performance criteria in
terms of features of the robot’s state and environment, the proposed architecture
computes state and control sequences that maximize the performance measure
while satisfying task constraints given by the models of system dynamics and
contact geometries. The approach is limited to locally optimal solutions for
floating-base robots such as humanoids or quadrupeds [29, 30, 31, 32]. It is further
assumed perfect knowledge about mass distribution of robot models, on which
model-based control approaches rely.

Feedback policy based on Bellman’s optimality principle: Besides motion plan-
ning, to execute a complex behavior, the proposed architecture processes noisy
sensory information and using its control policy decides upon the appropriate
actions. For instance, a robot estimates its state (e.g. joint configuration and
floating-base pose) and the state of the world (e.g. the locations of stepping
stones) by processing sensor readings. Then, based on the estimated state, the
architecture decides over the control actions (e.g. joint torques) that would allow
the robot to track the desired motion plan [33, 34, 35]. A second goal of this
dissertation is then to design a feedback control module that on the one hand
is capable of exploiting the kino-dynamic nature of motion plans by means of
the superposition property of desired task impedances, and on the other hand is
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capable of reasoning about noise, the cost of this uncertainty and of adapting its
control policy according to the environmental uncertainty (e.g. noise within its
dynamics or measurement model) to control the interactions of the robot with its
uncertain environment. The world is not considered to be perfectly known within
the physical simulator and the focus of the approach is on locally optimal control
policies based on applying Bellman'’s principle of optimality around the nominal
planned trajectories [36].

Computationally tractable algorithms: Finding computationally efficient solutions
to these optimal control problems [37, 38] is also the focus of this dissertation, be-
cause the applicability and effectiveness of the developed algorithms at reactively
controlling a robot will to a great extent depend on it [30, 39, 40].

Experimental validation: The effectiveness of the proposed architecture and the
validity of the assumptions will be demonstrated through experimental validation
on a simulated torque controlled humanoid robot [41].

OUTLINE

This dissertation proposes an architecture for motion planning and control of legged
robots in multi-contact scenarios composed by two modules: one for contacts and
whole-body motion planning, and other for feedback control (specially designed
based on the kino-dynamic nature of motion plans and to cope with environmen-
tal uncertainty). In the remainder of this chapter, some of the challenges of the
addressed problem will be introduced in more detail and standard planning and
control approaches will be discussed to place the contributions into context.
Section 1.2 discusses the difficulties involved in the planning of contacts sequences
for legged robots. Techniques for design of feedback controllers are introduced in
Section 1.3. In Section 1.4, whole-body motion planning approaches will be reviewed
to motivate the design of the proposed architecture in the following chapters.
Section 1.5 will examine numerical methods and computational complexity and
finally, a brief overview of background material is presented in Section 1.6. In the
following, traditional approaches to contacts and motion generation and control
will be discussed to highlight the open problems that this dissertation will address.

1.2 PLANNING OF CONTACT SEQUENCES

Physical interaction via intermittent contacts allows a robot to dynamically na-
vigate an environment. A rich contact interaction with the world using multiple
endeffectors is favorable in terms of controllability and balance; however, it also
presents challenges within its planning phase, such as: it requires computationally
demanding balance checks due to the non-coplanar nature of contacts in complex
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terrains, and the problem’s planning complexity increases combinatorially because
any combination of the available endeffector contacts can be selected [42, 43, 44].

To overcome these challenges, in the computer graphics community the first
successful contributions to contacts and (in configuration-space) motion planning
techniques came from the animation of virtual characters that exploited motion
graphs built based on motion capture data [45], or its combination with early
locomotion controllers [46]. They excelled at generating realistic motions, but were
limited by the capture data that could not easily generalize to unforeseen scenarios.
In the robotics community, the emphasis was initially placed on real-time contact
planners for flat-terrain bipedal locomotion [47], but is now starting to focus on the
still unsolved general acyclic contacts planning problem [48, 49].

To tackle the combinatorial problem of planning acyclic contact sequences, [50]
suggested its formulation as two simultaneous sub-problems: the search of a guide
trajectory for the robot’s floating-base, and the selection of balanced contact con-
figurations along this trajectory. Based on this problem’s description later works
proposed solutions that reached a compromise between planning time and optimal-
ity, such as solving both sub-problems sequentially [51, 52, 53] or simultaneously
either over a restricted search space that limits the discrete set of possible con-
tacts [54] or over a continuous search space that relaxes the problem and relies on
high-level heuristics to converge to a local solution [55]. A particularly interesting
solution to the sequential approach was proposed in [48] because of its guarantees
(offline motion guide trajectory guarantees the existence of a contact sequence to
generate it) and real-time capabilities (online selection along the guide trajectory of a
contact sequence that optimizes a desired performance measure). These approaches
however rely on static stability criteria to scale down the computational demands of
selecting a contact sequence, thus favoring time complexity over dynamic feasibility
of contact plans [49].

Other interesting line of research are contact planners based on mixed-integer
solvers, capable of modeling discrete changes in the contact state using integer
variables, but also continuous postural adjustments and contact forces. They in-
troduce in this way the possibility to optimize a discrete sequence of contacts
using a measure of dynamic stability and robustness, previously not considered.
For instance, [56, 57] demonstrated the advantages of simultaneous adaptation of
discrete gait patterns and continuous force-motion trajectories in a humanoid robot
locomoting over flat-ground by using a simplified dynamics model (Linear Inverted
Pendulum) as a criteria to evaluate the desirability of a gait pattern within a mixed-
integer solver. [58] did not include a dynamics model, however it proposed a novel
approach to select footsteps on a complex uneven terrain using integer decision
variables to model the set of convex terrain regions, over which it is possible to step.

From what we have discussed, it is evident that a measure of dynamic stability
and robustness is important at selecting contact sequences that support dynamic
motions such as walking down a steep slope, crossing a wide gap, walking on
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uneven terrain or recovering from a push. To this end, this dissertation extends the
state-of-the-art by proposing a mixed-integer program that efficiently plans short
contact sequences over complex uneven terrains using an approximate centroidal
dynamics model as a measure of dynamic feasibility. Further, in [44] we have shown
that significant speed-up can be achieved by training neural networks at predicting
the evolution of the robot centroidal momenta, which can then be used for the
generation of dynamically robust contact sequences using a search-based planner.

1.3 OPTIMAL CONTROL FOR FEEDBACK DESIGN

The theory of optimal control evolved from Pontryagin’s [59] and Bellman'’s [36]
optimality principles. This section will review standard optimal control techniques
based on Bellman’s principle of optimality as they have been a very successful
and widely used tool in robotics for trajectory generation and control of legged
robots [31, 39, 60].

Bellman’s approach consisted in decomposing a problem into smaller nested
sub-problems in such a way that the optimal control action for any sub-problem
is independent of the way one arrived to the current state and minimizes the
sum of the cost at the current state plus the least cost incurred at the state at
which one arrives as a consequence of this action (nested sub-problem) [36, 61].
The recursive and backwards in time application of this principle (to build an
overall solution "the control policy") leads in the discrete case to the Dynamic
Programming algorithm [62], very successful at solving many multi-stage decision
problems. The global nature of the approach however makes it intractable for
high-dimensional or in continuous state space-defined problems due to the curse
of dimensionality [63]. In this case, maintaining a single trajectory that can be
iteratively improved along its neighborhood based on the optimality principle falls
back to local methods such as Differential Dynamic Programming (DDP) [64] or
iterative Linear-Quadratic Gaussian (LQG) [65], capable of successfully synthesizing
motions for large dimensional robotic systems [30, 31, 39, 65, 66, 67].

Typically, these techniques optimize a local control policy by iteratively solving
a low-order Taylor approximation of the nonlinear problem, as in [67, 68, 69]. Its
sequential nature (meaning that they optimize only over control policies, in contrast
with trajectory optimization methods that do it over control-state trajectories) limits
its applicability as state constraints cannot be easily incorporated; however, as they
build a local approximation of the cost-to-go, a feedback law for closed loop control
can be derived to stabilize the implicitly defined state trajectories.

These standard optimal control approaches do not consider or are indifferent to
the statistical properties of the noise that affects the system, i.e. control design is
independent from noise which is only handled by the estimator. In [70], Jacobson
proposed a risk-sensitive optimal control technique that broke this paradigm and
made the resulting feedback law explicitly dependent on the statistical properties
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of the noise by including higher-order statistics of the performance measure in
the policy optimization. It was shown that under low noise levels standard and
risk-sensitive policies agree, but they differ the more as noise increases. [65, 71, 72]
also proposed a noise-sensitive algorithm, synthesized by considering multiplicative
noise in the parameters of its model, which allowed them to explain the robust
behavior of human muscle models at movement generation and control in noisy
environments. [73], further extended Jacobson'’s idea to nonlinear continuous-time
systems using iterative methods.

Further efforts centered on sensitivity for systems under measurement noise
have produced finite dimensional solutions under special cases [74, 75, 76], but
also general solutions [77, 78]. Its applicability to robotic domains however has not
been shown, one of the reasons being that it relies on the definition of risk-sensitive
estimators, for which it is not clear how its mathematical construction will affect
in practice the control of a legged robot. In this context, this dissertation proposes
a scheme for feedback control of movement plans that exploits the superposition
property of impedances based on the kino-dynamic structure of motion plans [79].
It further exploits a novel formulation of a controller sensitive to measurement noise
that maintains the usual definition of estimators to model and control the dynamic
interaction of a humanoid robot with an uncertain environment (fundamental
in robotics) as an optimal control problem with measurement uncertainty (e.g.
uncertain distance to contact locations).

1.4 MOTION PLANNING FOR FLOATING-BASE ROBOTS

This section will review trajectory optimization methods, that in contrast to sequen-
tial optimal control techniques (discussed in the previous section), attempt to find a
state-control trajectory instead of a control policy, which makes them well suited
to handle constraints over states and controls [28]. This is of particular interest in
motion planning problems for floating-base robots as it allows to easily express
e.g. contact properties such as friction force constraints or task-relevant state-space
limits such as kinematic or actuation restraints.

A common trajectory optimization approach for dynamic locomotion is a sequen-
tial contacts-movement architecture [8o, 81, 82] that in the first place optimizes
a contact plan (as studied in section 1.2) and then a whole-body movement [82,
83]. Success stories [80, 81, 82, 83] of this approach motivate its use within the
proposed architecture, as it allows to break down the problem’s complexity without
sacrificing neither the notions of global optimality and dynamical robustness when
selecting contact surfaces nor the possibility to further optimize contact locations
when optimizing the whole-body movement plan.

A simultaneous contacts-movement architecture has also been successfully im-
plemented [29, 55, 84, 85, 86, 87]. In these approaches, discrete in nature contact
decision variables are carefully introduced so as not to harm convergence proper-
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ties of gradient-based optimization routines. For instance, contacts are modeled
using complementarity constraints [29, 84] that imply that non-zero forces are
only possible if the distance to the contact surface is zero (and viceversa), or using
smooth contact models [69, 88] as in [55, 85, 86]. These contact models e.g. may
require a compromise between physical accuracy and numeric stability [14], or
could miss solutions that exploit force redundancy. As a consequence, simulta-
neous contacts-movement approaches that on the positive side can fully leverage
the robot’s capabilities, also require careful initialization and parameterization to
converge and are still computationally costly for close to real-time control [40, 86,
89, 90].

More recent trajectory optimization approaches exploit the strong torque capabil-
ities of nowadays robots and instead of considering the full dynamics equations of
motion of a floating-base robot, they look into its structure and focus on its key part,
the centroidal momentum [91]. The equations of motion describe how contact inter-
action forces affect the kinematic state of all rigid bodies. For instance, the dynamics
of a single rigid body can be described in terms of its momentum: changes to it are
determined by forces acting on the body, but it also relates to the body velocity via
a spatial inertia tensor [18]. Consequently, for a floating-base system, in contrast
with a fixed-base manipulator, the only way to move and steer its floating-base
body is by applying forces on the environment. This suggested to consider only
the dynamics of the floating-base body expressed at the center of mass (centroidal
dynamics) for motion planning, as the rest of degrees of freedom can be resolved
with techniques used for manipulators assuming enough torque authority [84, 92].
The centroidal dynamics [91, 93] have thus become very popular, as they serve
as the bridge between the interaction of the robot with the environment through
external contact forces and its motion in the world [23, 79, 84]. They capture the
couplings between a full kinematics model and the Newton-Euler equations of the
robot’s center of mass (CoM), which are required to describe limb motions and
contacts in 3d spaces [20].

Several works [29, 84, 94, 95, 96, 97, 98] have realized about the importance
of time-optimality in movement plans, not only to improve motion trajectories
in terms of smoothness and robustness, but also to make possible motions that
would otherwise be infeasible. For instance, highly constrained motions such as non-
coplanar walking under surfaces with low friction coefficient would be impossible if
time cannot be adapted, so as to allow the robot to move along a trajectory consistent
with the limited available contact forces [99]. Time optimization plays also a crucial
role in highly dynamic motions such as jumps with full flight phases, because
momentum conservation implies that e.g. the CoM motion cannot be changed
as no contact is available. For instance, to perform a jump without optimization
of timings, the robot would need to propel itself high enough such that its CoM
does not end up under the ground after landing, which might require excessively
large contact forces. In contrast, if timings are decision variables, the robot can
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decide upon the appropriate flight time to e.g. minimize contact forces and satisfy
torque constraints [32, 84]. But because trajectory optimization problems can quickly
become intractable, specially in robotic applications that involve large dimensional
systems, including time optimization has been usually ignored due to its high
computational demands.

The architecture proposed in this dissertation reasons about the centroidal dy-
namics of the robot to generate time-optimal whole-body movement plans. Inspired
by the kino-dynamic structure proposed in [79], this architecture designs specialized
numerical solvers for both sub-problems exploiting their underlying mathematical
structures. As will be shown in later chapters, this methodology can very efficiently
optimize time-optimal contact force and whole-body movement trajectories, as well
as respect torque actuation limits if required.

1.5 NUMERICAL OPTIMIZATION AND COMPUTATIONAL COMPLEXITY

Numerical optimization is a fundamental tool in decision science with countless
applications in many fields [37, 38]. Transferring its principles to robotic domains is
still a work in progress, because of the nonlinear and hybrid nature of robotic sys-
tems that cannot be neglected and that solutions are required at fast timescales [19].
However, the everyday increasing computational power of modern personal com-
puters and the technological maturity and availability of efficient optimization
software [100, 101, 102, 103, 104] have promoted the use of numerical optimization
tools in many robotic applications, as they allow to easily model problems as the
optimization of an objective function (a quantitative measure of the performance of
the system in terms of features of the optimization variables) subject to constraints,
that describe the set of feasible solutions.

The apparently straightforward formulation of the optimization problem is a
very important step that will play a fundamental role throughout this dissertation.
If the problem description is too simple, it might be of limited applicability; but
if it is too complex, it might be too difficult to solve [38]. For instance, trajectory
optimization problems based on the full equations of motion of the floating-base
rigid-body system are non-convex [38], very difficult to solve and in most cases
involve a compromise between very long computation times and not always finding
a solution. On the opposite end of the spectrum, less detailed models (that describe
only the essence of a behavior such as optimization problems based on the linear
inverted pendulum model) [105, 106] are convex [37], very efficiently and reliably
solvable, but limited in terms of the behaviors that they can synthesize. Models based
on the centroidal dynamics constitute a middle-ground level of complexity between
these two extremes [79, 84] and while they are still non-conveyx, its structure can be
exploited to derive accurate but efficient approximations with convex convergence
properties, as will be shown in this dissertation.

11
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The nonconvexities due to the bilinear expressions of the dynamic constraints im-
posed by the centroidal momentum dynamics appear in the optimization problems
in the form of quadratic equality constraints (linear either in the states or in the
controls, but not in both [107]). The algorithms used in the proposed architecture
for time-optimal whole-body motion planning exploit this special problem structure
by approximating the solution of the originally non-convex trajectory optimization
problem via a sequence of convex second-order cone programs that can be very effi-
ciently solved using a sparse implementation of an interior-point polynomial-time
method for convex programming (based on [104, 108]). A convex second-order cone
program is composed by a linear or quadratic objective function and by a set of
constraints that include: linear equality and inequalities as well as convex quadratic
inequality constraints.

In a similar way, the formulation of the combined estimation-control problem used
to derive sensitive feedback controllers in chapter 4 has a bilinear structure (linear
in the parameters of the estimation problem or in those of the control problem,
but not in both). In this case however, an alternating procedure is used to solve
the problem, because in this way the solution to one of the sub-problems, namely
the estimation problem, is already provided by the known Kalman Filter and then
only the control problem needs to be solved, which can be efficiently performed by
adapting standard optimal control techniques.

Within the kinematics optimization problem, sources of nonconvexity such as
obstacle avoidance constraints can also be found. In this case, the problem is decom-
posed in such a way that nonconvex constraints are treated separately from convex
ones, using a nonlinear solver for unconstrained minimization LBFGS [109] for the
nonconvex part and an efficient interior-point method for conic programming for
the convex part. The solutions are combined together into an overall solution in the
spirit of distributed consensus optimization [110, 111, 112, 113, 114, 115, 116]. To
conclude, discrete decisions to select contact surfaces based on a measure of dynam-
ical robustness are taken using a mixed-integer solver. To compare the difference
among optimized contact plans depending on the dynamics model used to evaluate
its desirability (e.g. including or not time optimization) a custom implementation of
a mixed-integer solver based on a Branch and Bound method [117] that internally
solves a centroidal dynamics problem using the previously mentioned algorithms
is used. Mixed-integer solvers have in the worst case exponential-time complexity,
but in the range of problems of interest in this dissertation they have shown good
performance, which made them well suited for the applications.

1.6 BACKGROUND MATERIAL

This section will present background introductory material including a general
formulation of the trajectory optimization problem, its notation (used throughout the
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following chapters) and, its structural analysis and reformulation as an alternating
kino-dynamic optimization problem [79], extensively used in this dissertation.

1.6.1  Trajectory Optimization Problem

A general formulation of the trajectory optimization problem for motion planning
can be stated as follows [29, 31, 55, 87]:

T-1

W00 ¢1(9,4,8,7,A) + f; ¢:(q,9,4,7,1) (1a)
subject to M(q)§ +N(q,q) =S5 +J(q)"A (1b)
Kinematic Limits (10)

Actuation Limits (zd)

It minimizes the sum of a terminal cost ¢ and a running cost ¢; (1a), that
expresses a cost over the robot kinematic (posture q, velocity q and acceleration
§) and dynamic variables (torques 7 and forces A), while satisfying dynamics
constraints (1b), kinematic (1c) and actuation limits (1d). Kinematic limits (1c)
include: constraints relating postures q, velocities q and accelerations § defined for
all robot’s joints and the floating-base as well as acceleration, velocity or joint limits
gj € [qjmi“, qjmax]. Actuation limits (1d) include: torque constraints 7; € ['L'jmi“, ijax],
center of pressure constraints to ensure stationary contacts, friction force constraints
for the endeffector not to slip, and contact constraints Je(q)§ + Je(q)q = Pe to keep
the endeffectors stationary during contact (e.g. zero acceleration p. = 0) or control
its motion in cartesian space during flight phases (e.g. pe = p=f) [02].

Finally, the dynamic constraints or equations of motion (EoM) for a floating-base
rigid-body system are given by equation (1b) [17, 18]. A robot’s posture defined

T
as q = |xT qu ] is composed by the pose x € SE(3) of a floating-base frame in

the robot relative to an inertial frame, and by the joint positions q; € R", where

n denotes the number of actuated joints. M(q) € R("T0)x(1+6) stands for the
inertia matrix of the rigid-body system, N(q,q) € R"* is a vector of nonlinear
terms (including Coriolis, gravity and friction forces). The selection matrix § =

[0”><6 I”X”} represents the system under-actuation [118], i.e. that the floating-base

x is not directly actuated by joint torques 7 € R”?, but indirectly only via contact
T

interaction forces A = [ £ T %T . } € R% (e being the number of endeffectors)

and the jacobian of the contact constraints J(q) € R%*("+6) formed by stacking

T
endeffector jacobians Je(q) € RS*("+6), The pair [feT ’yﬂ denotes the endeffector
wrench (force and torque) with respect to the frame at the endeffector position pe.
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_ Momentum
~  Rate

FIGURE 1: Block decomposition of the equations of motion (1b) of a floating-base rigid-body
system (that describes a robot with arms and legs) into its kinematic, dynamic and
torque actuation components. The gray box denotes the under-actuated dynamics
equations 2a that can further be decomposed into its kinematic (green box) and
dynamic (red box) components, as shown in equation 3, used in the alternating
kino-dynamic motion optimization approach [79]. The yellow box denotes the
actuated part of the equations of motion 2b. Finally, the dashed red box denotes
the combination of Newton-Euler equations and a linearized version of the torque
actuated constraints along a nominal kinematics trajectory.

1.6.2  Structure in Equations of Motion

This section presents an structural analysis of the EoM (1b) and how they can be
reformulated in a way more amenable for structured optimization (as in Figure 1).

System Under-actuation

The nature of the selection matrix S leads to a dynamics decomposition of the EoM
(1b) into an actuated (superscript 2) and un-actuated parts (superscript u) [119], as:

M"(q)§+N"(q,q) =J"(q)"A (2a)
M*(q)§ +N*(q,9) =J*(q9)"A+7 (2b)

Eq. (2a) (first 6 rows of EoM (1b)) relates the acceleration of the floating-base body
located at x € SE(3) to contact forces, i.e. external forces are needed to accelerate
this body in a direction other than gravity. Eq. (2b) (last #n rows of EoM (1b)) asserts
that any combination of forces A and accelerations { is possible, as long as they
are consistent with (2a) and, satisfy kinematic and actuation limits (1c)-(1d) [17, 92].
Thus, under the assumption of enough torque authority eq. (2a) is sufficient to plan
dynamically feasible motions [84]. In other words, robots with strong actuators can
neglect eq. (2b) and use only eq. (2a) for motion planning, while robots with limited
torque capability can benefit from it to plan contact force distribution across the
available endeffectors in a way that satisfies torque limits.
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Rz

Rx

Ry

FIGURE 2: A summary of the notation used throughout this dissertation. It shows the center
of mass r, linear 1 and angular momentum k. It also depicts control variables of
an endeffector over a flat contact (fe, T, z.), force, normal torque and center of
pressure (in orange). These same control variables can also be expressed at the
endeffector position p, as a force f. and torque 7. (as shown in blue). Each axis of
the endeffector orientation is shown in green.

Centroidal Momentum Dynamics

As noted earlier, eq. (2a) is sufficient for planning dynamically feasible motions.
Its mapping to a frame at the robot CoM (3), makes its kino-dynamic structure
apparent; namely, the rate of momentum around the CoM computed from the robot
joint angles and velocities (kinematic quantities) matches the total wrench generated
by external and gravitational forces (dynamic quantities) [84].

d . 1 mg + Y, f
s A@d = | = o ] 3)
N——— k Ze(Pe + Re"” ze — 1‘) X fo + Ri1e

From kinematics

From dynamics

The dynamics centroidal momentum (right hand side (3)) is also known as Newton-
Euler eqns. Fig. 2 shows a summary of some of its variables. Further, "m" denotes
the robot mass and g the gravity vector. Rz” € R*>*2 and RZ € R3*! are the first
two and third columns of the rotation matrix Re € R3*3 that rotates quantities
from endeffector- to inertial frame. Local forces are given by Lf, = RIf. and the
connection between torques . and Te is given by 7. = Ry ze % fo + R%7e. Within
the kinematics centroidal momentum (left hand side (3)), A(q) € RO* (1) js the

centroidal momentum matrix [93] that maps joint velocities ¢ to momentum [1 k} .
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Kinematics Optimization

dyn
3 kln kin ht - h
min Z ¢ q7 q’ ¢consensus ( (lyh) h:|
Pe i

RICE B — Pet — Pet

st.  (kinematics centroidal momentum)
(obstacle free motion trajectories)

(integration of postures and joint limits)

h d d ht _ hkin
|:p0:| dyn mm Z ¢ yn cg/:scnsus Pe = pguzx
st. (dynamlcs centroidal momentum)

(feasible sets for contact wrenches)

Dynamics Optimization

FIGURE 3: Schematic of kino-dynamic motion optimization approach [79] to iteratively com-
pute contact force and whole-body trajectories until convergence of the common
set of variables, namely robot centroidal momenta h and endeffector poses pe.

The whole-body trajectory optimization algorithm based on the kino-dynamic
separability of the centroidal momentum equations was proposed in [79] and allows
to find whole-body and contact force trajectories via an alternating procedure that
independently optimizes kinematic and dynamic quantities, that only need to agree
on a set of common variables: CoM, momentum and contact locations.

1.6.3 Trajectory Optimization

This section focuses on the trajectory optimization problem formulated as an
alternating optimization between contact forces (dynamics optimization) and whole-
body trajectories (kinematics optimization). This alternating kino-dynamic approach
for trajectory optimization was originally proposed in [79]. It does not constitute
a contribution of this dissertation, but it is widely used throughout it. Figure 3
schematically depicts its main idea; however, the specific details of the formulations
may vary as the architecture proposed in this dissertation further extends this work.

First, the differential equations (3) are discretized into algebraic ones and then
the optimization problems are formulated.
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Dynamics Optimization

This section describes the problem formulation used to dynamically optimize a
motion plan (that includes timings, contact wrenches and momentum trajectories)
under the centroidal dynamics constraints (3) and that minimizes a desired objective.
Formally, the goal is to search a local solution for problem (4).

T d
: dyn [ h, A, pe, d h; — h'es
min Z¢t m ( Pe > + ¢cg’r1115ensus ( t td ) (4a)
f:’i’p;e t=1 Ze, Ie, Te Pet — Pe,ets
It o1+ LA
subjectto hi = |k, | = ki 1+ (e et) At (4b)
lt 1t71 =+ (mg + Ze fe,t)At
Ket = (Pet — It) X for + Vet (40)
Yet = R::zlze,f X fe/t + Rgzg,tTe,t (4d)
Pe € 1(S) (4e)
A'c S [Amin/ A1rna><] (4f)
2} € [Zins Zmox] (48)
[Pet — xel| < £ (4h)
I N IR SV AV (4)

It minimizes a quadratic cost (4a) composed of a running cost (p;iyn that regularizes
controls (such as wrenches or duration of timesteps A¢) and includes user-defined
rewards (such as reaching a CoM position or moving through a waypoint), and a

consensus cost ¢S'3§35ensus that rewards good tracking of desired CoM and momentum
trajectories.

The constraints (formulated for all active endeffectors and timesteps Ve, t) include
a dynamics model (4b)-(4d) that coupled with the consensus cost guide dynamic
solutions towards kinematic ones, without explicitly including all kinematic vari-
ables, thus satisfying (3). Other constraints include: (4€) that constrains endeffector
locations to assigned contact surfaces, to be detailed in 3.3; (4f) restricts time vari-
ables to a box constraint; (4g) maintains CoP within the endeffector support region;
(4h) heuristically keeps the contact locations reachable from the CoM and avoids
singularities due to over-extensions, and (4i) defines friction cones [120].

Kinematics Optimization

This section describes the problem formulation used to kinematically optimize
a motion plan (including posture, velocity and acceleration trajectories) under

17
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the centroidal momentum dynamics (3) and that minimizes a desired objective.
Formally, a local solution for problem (5) is to be found.

. S ki - K h; — hles
min Y ¢ (qe Ge §e) + Plons " (52)

4.4 hpe t=1 pe,t - pe,?s
subject to [qt} = | Qe (5b)

qt qe-1 + GrAe
qj¢ € [, q"™] Vj e R” (50)
Pet = ForwKin(qt) € Ogee (5d)
Tt g+ 1A
ht = lt = (56)
A(qy)qe

This problem formulation minimizes the cost (5a) composed of a running cost
$K" that regularizes controls (such as joint velocities and accelerations) and includes
user-defined rewards (such as staying close to a desired robot posture at some
trajectory point), and a consensus cost ¢, that rewards good tracking of CoM,
momentum and endeffector trajectories.

The constraints (formulated for all endeffectors and timesteps Ve, t) include a
simple dynamics model (5b) that coupled with the consensus cost guide kinematic
solutions towards dynamic ones, without explicitly including all dynamic vari-
ables, thus satisfying (3). Other optimization constraints include: (5c) that limits
joint positions to its motion range; (5d) which expresses that endeffector locations
computed using a forward kinematics algorithm should lie in obstacle free spaces;
and (5e) that defines how CoM and robot momenta are computed using kinematic
information. A denotes the timestep discretization between trajectory points.

The dynamics (equations (4)) and kinematics sub-problems (equations (5)) com-
pose the kino-dynamic approach for optimization of contact force and whole-body
motion trajectories that will be the focus within the following chapters.

In summary, this chapter introduced the topic and scope of this dissertation. It
also motivated the importance and impact of legged robots in our society, and
discussed the challenges to be faced by contacts and motion - planning and control
approaches. Background material was also introduced in order to place into context
of related works the architecture proposed in this dissertation. The following chapter
will discuss in more detail the proposed planning and control architecture and will
highlight its contribution to the state-of-the-art in the field.



Chapter

CONTRIBUTIONS

This chapter states the contributions of the architecture proposed in this dissertation
to the state-of-the-art in the field. Section 2.1 introduces the planning and control
architecture. In Section 2.2, each contribution is presented within the context of the
overall architecture. Finally, specific contributions are listed in Section 2.3.
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2.1 CONTACTS AND MOTION - PLANNING AND CONTROL ARCHITECTURE

This section presents the architecture proposed in this dissertation to optimize
contact and movement plans as well as to control in closed-loop its execution, which
will be described in detail within the following chapters. The proposed motion
planning and control architecture is based on optimal control to describe in an
easy yet general form the desired motion optimization problem and on dedicated
solvers that exploit the problem’s mathematical structure to efficiently find local
solutions. Figure 4 highlights within red boxes the main components of the proposed
architecture where theoretical contributions have been attained, namely: a contacts
planning approach based on a measure of dynamical robustness, dedicated solvers
that exploit the structure of the kino-dynamic motion planning approach, and
feedback control design methods to execute whole-body movement trajectories.

Optimal control formulation

This dissertation proposes an optimization-based motion planning and control
architecture that takes as input a high-level task description and outputs torque com-
mands to successfully execute it on a physically simulated robot. This input-output
mapping happens in an efficient yet general manner thanks to the architecture
composed by three optimization-based controllers: for contacts planning, for time-
optimal whole-body motion generation and for feedback control. Each controller, as
shown in Figure 4, makes use of an appropriate level of model complexity so as
to remain efficiently solvable, but at the same time expressive enough so as not to
limit the range of possible behaviors that can be generated.

In general, if it were doable in an efficient manner, we (the robotics community)
would like to solve problem (1) without approximations or trade-offs, but in practice
it is intractable for real-time control. For this reason, in order to efficiently find
solutions to the motion planning problem, the proposed architecture approximates
a local solution using the structure depicted in Figure 4. In the first place, out of the
description of a complex terrain, the proposed architecture efficiently selects a set
of contacting surfaces that supports a contact sequence leading to a dynamically
feasible motion. To this end, it makes use of a mixed-integer solver that internally
evaluates the desirability of a contact sequence based on an efficient yet accurate
approximation of the centroidal momentum dynamics model, which allows to find
a globally optimal or e-suboptimal set of contacting surfaces S.

This set can then be used in the second step to only locally optimize a time-
optimal whole-body movement plan in a much more efficient way than if problem
(1) were to be naively solved using an off-the-shelf solver that does not exploit
its structure. This second phase, in contrast with the first one, includes a full
kinematics model but does not include anymore the discrete decision variables to
select contacting surfaces. The third and last stage of the architecture makes use of
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Task description:
Initial pose
Desired motion
Terrain specification
Importance weighted costs

Contacts planning: Preview 2-4 contacts, using a
centroidal dynamics model embedded in a mixed
—P| integer solver, ~0.5-1.0[sec].

min Gent (hes Ats Pe)

™, hodpe
~5-1s s.t.  (dynamic centroidal model)
(terrain & contact constraints) Sy

Time-optimal motion planning: Preview ~10[sec],
using a kino-dynamic centroidal model, contacts are
selected over terrain surfaces previously optimized Sx

min - Gmoti S A
", e Smotion(lt; M) Hierarchical Inverse
~sec | st. (contact constraints) ¢, he, Ac | Dynamics Controller:

v

(kino-dynamic centroidal model) Computes torques to
control the robot.

Robust feedback control: Preview ~10[sec],
using full dynamics model
9 v Ky, K, Kx‘

miil S (des Ae)

b~

q
~msec s.t.  (contact constraints)
(full dynamics model)

FIGURE 4: Proposed architecture for motion planning and control, highlighting within red
boxes the components where theoretical contributions have been achieved. The
input to the proposed architecture is a task description composed by the definition
of the initial and desired final states, a given contact sequence to follow or a terrain
description from where to select it, and a set of importance weighted costs that
define the desirability of each term of the objective functions of the contacts and
motion - planning and control trajectory optimization problems.
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the previously optimized contact force, momentum and whole body trajectories (A,
hy, q¢) to design impedance policies (K,, Ky, Kq) for optimal tracking of the desired
kino-dynamic behaviors even in the presence of uncertainty or model inaccuracies.

In its current state, the proposed architecture optimizes a motion and then
executes it, i.e. the motion is optimized only once instead of in a receding horizon
fashion. In spite of this limitation, it is capable of successfully generating and
executing many motions. However, thanks to the computational efficiency of the
algorithms composing the proposed architecture, it could be possible to use it in a
receding horizon fashion (using a shorter time-horizon, benefiting from warm-starts
using previous solutions and using updated measured states and constraints) to
achieve close to real-time truly robust and adaptive control capabilities.

Cost and constraints

Task performance descriptors as well as feasible sets for the optimization variables
constitute the inputs to the proposed architecture. Task performance descriptors
allow to measure the quality of a solution and thus to select the best one among the
set of feasible ones. They are built in terms of state and control features and express
its desirability. For instance, within the architecture shown in Figure 4, the functions
¢ent (+), Pmotion () and ¢g, () express the desirability of state-control features (contact
force Ay, momentum h, whole-body trajectories q;, and endeffector contacts pe)
within the solutions of the contacts planning, combined contact force and motion
planning, and kino-dynamic feedback design problems.

Problem constraints instead define the sets of admissible solutions without in-
dicating any preference among them. For instance, in a kinematic optimization
problem a task performance descriptor “cost” would describe the desirability of a
robot posture over others, while a “task constraint” would describe e.g. joint limits,
location of an endeffector over a surface to be in contact, or non-penetration obstacle
constraints when not in contact. In a dynamics problem, a cost could e.g. describe
the desirability of low energy solutions, while a constraint could describe the set of
forces admissible to generate a motion or torque actuation limits.

Task feedback

The optimized time-optimal contact and movement plans define a desired nominal
behavior for the robot motion in the environment (robot postures and velocities) as
well as for the robot interaction with the environment (contact forces). The successful
realization of these desired behaviors requires stabilization around the nominal
trajectories to cope with environmental uncertainties and mismatches between the
planning model and reality (e.g. a static and rigid contact model used for motion
planning that differs from a spring-damper system contact model used for execution
within the physical simulator).
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The first idea that comes to mind is the use of hand-designed proportional-
derivative (PD) feedback controllers to track the optimal feature trajectories; however,
their applicability is limited and the required tuning effort might be high. For these
reasons, the architecture proposed in this dissertation makes use of time-varying
linear quadratic regulators (TV-LQR) for optimal tracking of the desired whole-
body motion trajectories. They exploit all the couplings between the robot’s degrees
of freedom and the superposition property of impedances makes it possible to
further exploit the kino-dynamic separability of motion plans for feedback control.
Furthermore, these feedback control laws can be synthesized using noise-sensitive
algorithms in order to allow the robot to select the appropriate impedance according
to its knowledge about the uncertainty in the environment.

2.2 CONTRIBUTION

This section states the contributions of this dissertation in terms of the structural
analysis of the problem, the construction of dedicated solvers to exploit the un-
derstanding of this structure and the evaluation of the proposed architecture in
multi-contact interaction tasks.

The proposed architecture formulates and implements contacts and whole-body
motion planners as well as kino-dynamic feedback controllers to efficiently optimize
and successfully execute desired movement plans (Contr. A1). At the core of the
motion planning and control architecture are optimal control methods based on
the centroidal momentum dynamics that exploit the geometrical properties of the
dynamics model to achieve very high levels of computational efficiency (Contr.
A2). The methods to be introduced allow to study and optimize the effects of
time at generating highly dynamic and robust motion plans that include full
flight phases while preserving computational efficiency (Contr. A3). Further, the
proposed formulation leads to a dedicated solver with polynomial-time convergence
properties that could be exploited for receding horizon control or the efficient
selection of contacting surfaces in uneven terrains based on a measure of dynamical
robustness using a mixed-integer solver (Contr. Ag).

Feedback controllers sensitive to uncertainties in the environment are derived
and used to select the impedance or compliance policy according to the task’s
uncertainty type, such as e.g in tasks involving contact interactions with an uncertain
environment modeled as optimal control problems with measurement noise (Contr.
As). It is further shown in simulation experiments that the feedback controller is
applicable to each of the sub-problems composing the whole-body motion planning
algorithm in a very large dimensional system such as a humanoid robot and that the
super-position of the optimized impedances leads to robust tracking performance
of the desired kino-dynamic movement plans (Contr. A6). Finally, the kinematics
solver, inspired on how a consensus solver finds a solution to a problem, is able to
incorporate nonconvexities in a simple yet efficient distributed manner (Contr. Ay).

23



24

CONTRIBUTIONS

Additionally, the proposed theoretical contributions have found application out-
side of this dissertation, such as in a search-based contact planner where neural
networks are trained at predicting the optimal evolution of the robot centroidal
momenta and then used to generate dynamically robust contact sequences using
a search-based planner [44], or in practical applications of the algorithms on a
quadruped robot [121, 122] that dynamically traverses uneven terrains.

To summarize, the contributions of the proposed motion planning and control
architecture presented in this dissertation extensively exploit the mathematical
structure of the trajectory optimization problems to develop efficient but accurate
approximations. The remaining part of this section provides a summary of the
contributions to be presented in the following chapters.

Contribution I: Dynamic motion and contacts planning

Background

Optimal control theory is a fundamental tool in the robotics community [123] that
has been extensively used for solving contacts and motion - planning and control
problems described using dynamics models with different levels of complexity.
Some approaches use simplified contacts or dynamics models to efficiently find a
solution, but potentially limiting their applicability to specialized tasks [106, 124,
125]. Other approaches attempt to find a solution to the trajectory optimization
problem using off-the-shelf solvers without simplifying assumptions and using a
full dynamics model, leading to solutions that can leverage the full capabilities of the
robot but that are potentially very costly to optimize [29, 89, 126] and might miss the
benefits of exploiting structural properties of the problem [79]. Given the goal of this
dissertation being the close to real-time planning of complex multi-contact behaviors
and fast control loops, this chapter will propose a middle ground optimal control
formulation based on the centroidal dynamics and focus on its structural analysis
to devise efficient yet accurate approximations that do not sacrifice generality.

Contribution

The proposed approach is based on a decomposition of the whole-body finite-
horizon trajectory optimization problem over joint and contact force trajectories in
two sub-problems: a trajectory optimization over the whole body and an optimal
control problem over the centroidal dynamics [79]. Taking this formulation as
starting point, the proposed architecture suggests to solve the centroidal dynamics
problem using a sequential convex approximation of its nonconvexities within its
convex envelope and tailored to the curvature knowledge. An efficient and sparse
implementation of the method achieves polynomial-time convergence rates, which
make it possible to optimize 10 seconds of motion in around a second (Contr. A2).
The general nature of the approximation allows to include time as an optimization



2.2 CONTRIBUTION

variable (Contr. A3), which significantly improves feasibility and robustness of the
generated motions making it possible to e.g. generate highly dynamic movements
such as jumps with full flight-phases without affecting convergence properties.

The gained efficiency in the optimization of movement plans using a centroidal
dynamics model can also be exploited to optimize discrete contact decisions over
complex uneven terrains based on a criteria of dynamical robustness using a mixed-
integer solver (Contr. Ag). This solver remains computationally efficient for short
contact sequences and its capabilities go beyond traditional approaches that limit
themselves to quasi-static assumptions. This chapter will show that discrete contact
decision can be made in dynamically challenging situations such as crossing a wide
gap, going down a steep slope or recovering from a push. In summary, the proposed
approach is general enough such that highly dynamic time-optimal multi-contact
whole-body motions over challenging scenarios can be optimized out of task and
terrain descriptions, but at the same time it is computationally very efficient for
close to real-time applications (Contr. A1).

Context

The proposed formulations are motivated by the kino-dynamic decomposition
presented in [79], that allows the focus of this chapter to be on the efficient solution
of the dynamics problem exploiting its rich structure. Hopefully, the efficiency and
convergence properties of the proposed approximations can in the future be further
exploited to reactively and robustly control robotic platforms in real-world scenarios
in a receding horizon fashion. The contents of this chapter constitute an extended
version of the conference paper [127]. Plans resulting from this algorithm can be
stabilized using the feedback controllers to be described in chapter 5 and executed
on a torque controlled humanoid robot using inverse dynamics algorithms [92].

Contribution II: Feedback control design

Background

The proposed architecture takes advantage of the problem’s structure to efficiently
find feasible whole-body motion and contact force trajectories. However, despite the
progress at improving the computational efficiency of the derived algorithms, they
are still not able to achieve real-time control rates of 1KHz, but lower ones. Thus,
to cope with the discrepancy between the model for planning and the simulated
environment for execution, the proposed architecture includes a module for feed-
back control design to stabilize the desired kino-dynamic trajectories. In previous
work, a reinforcement learning approach was used to optimize impedance policies
for robust trotting on a quadruped robot [121, 128] by sampling from real-world
and simulated data. In this chapter, the aim is to derive based on first principles a
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model-based optimal control algorithm for feedback design capable of synthesizing
policies sensitive to environmental uncertainty for kino-dynamic movement plans.

Contribution

This chapter will present a computationally efficient feedback control design method
that distinguishes itself from standard approaches in that it is sensitive to two
sources of uncertainty coming from the environment (process and measurement
noise), which allows it to adapt the impedance behavior of its feedback control law
to the environmental uncertainty (Contr. As). By exploiting the separability of a
trajectory optimization problem into a whole-body and a contact force problems,
the proposed architecture builds feedback controllers to stabilize the desired motion
and contact force interaction trajectories of kino-dynamic movement plans for a
high-dimensional humanoid robot (Contr. A6). This chapter will also show that
in the presence of environmental uncertainties such as unknown distances to the
locations of stepping stones, sensitivity to measurement noise naturally leads to
compliant policies to control the interaction between the robot and an uncertain
environment.

Context

The proposed approach for feedback design is based on the superposition property
of impedances and the kino-dynamic separability of trajectory optimization prob-
lems into a whole-body motion and a centroidal dynamic problem. The proposed
architecture exploits this separability to independently design feedback policies
that generate optimal closed-loop behaviors for motion and contact interaction
tasks, which further exploit all the couplings between the system states (in contrast
with naive diagonal PD controllers). The contents of this chapter constitute an
extended version of the conference papers [23, 129], as it proposes and demonstrates
a feedback control architecture for a high-dimensional humanoid robot traversing
challenging and uncertain scenarios. The desired kino-dynamic feedback behaviors
can be realized on a torque controlled robot with inverse dynamics algorithms [92].

Contribution III: Kinematic motion planning

Background

Multi-contact trajectory optimization for robots traversing dynamically challenging
scenarios is typically performed using complex models to describe the dynamic
and kinematic interaction among all rigid bodies of a robot [29]. However, thanks
to recent work [79] that suggested the possibility to take advantage of the kino-
dynamic structure of the centroidal momentum dynamics [130] to independently
optimize whole-body motion and contact force trajectories, it is possible to focus in
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this chapter on the whole-body motion optimization problem. Desirable properties
of a whole-body trajectory include e.g. smoothness that comes from considering
a time-horizon in the optimization [131, 132], as well as the ability to incorporate
non-convex constraints such as the ones for obstacle avoidance, without turning the
entire problem nonconvex and thus intractable for the problem sizes of interest.

Contribution

This chapter presents an algorithm for whole-body motion planning (Contr. A7). The
most important characteristics of the approach are: a) Its capability of considering
a time-horizon within the optimization that leads to smooth whole-body motion
trajectories (when possible given the aim for highly dynamic motions such as
galloping on a quadruped robot), and b) the possibility to include nonconvex
constraints (such as the ones for obstacle avoidance) by taking inspiration on
how a consensus algorithm solves a big problem by decomposing it into smaller
ones (easier to solve, even though they might still be nonconvex). The proposed
algorithm combines a Limited-Memory BFGS solver to approximate the solution
of small nonconvex problems (solvable in a distributed manner) with an efficient
Interior-Point method that will bring the solutions to consensus. The algorithm
offers a compromise between computational efficiency and suitability for generating
complex kinematic motions.

Context

The proposed optimal control formulation is motivated by the separability of trajec-
tory optimization problems based on the kino-dynamic structure of the centroidal
momentum dynamics [79] that can be exploited using dedicated solvers. In a future,
when much more complex and dynamic motions (such as parkour maneuvers,
back-flips or traversing complex scenarios with obstacles) are possible in terms of
hardware control (e.g. new ideas are needed to model hard contact constraints of
inverse dynamics algorithms [92] in more flexible ways, such as [129, 133]), the
proposed algorithm could be useful at finding feasible kinematic plans for complex
motions as efficiently as possible.

2.3 LIST OF CONTRIBUTIONS

The contributions of the architecture proposed in this dissertation are as follows:

Contr. A1 It formulates and implements computationally efficient contacts and
whole-body motion planning as well as feedback control methods for robots
performing multi-contact interaction tasks. At the core of the architecture are
efficient optimal control methods that exploit the problem mathematical structure.
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Contr. A2 It analyses the geometrical properties of the centroidal dynamics, identi-
fies its basic sources of nonconvexity (quadratic equality constraints), and builds
efficient yet accurate approximations using sequential convex methods that exploit
the knowledge about the problem’s curvature.

Contr. A3 It can generate time-optimal motions without affecting convergence
properties, which opens the possibility to the generation of highly complex and
dynamic motions including full flight phases or very limiting constraints.

Contr. A4 It shows that the dedicated solver with polynomial-time convergence
properties for centroidal dynamics optimization can be integrated in an mixed-
integer solver to efficiently select contacting surfaces in complex uneven terrains
based on a measure of dynamical robustness.

Contr. A5 It introduces feedback controllers sensitive to uncertainties in the environ-
ment as a way to optimally select the impedance or compliance policy according
to the task’s uncertainty type, which leads to the idea of modeling uncertain
contact interactions as optimal control problems with measurement uncertainty.

Contr. A6 It shows in simulation experiments that the superposition of feedback
controllers for each sub-problem (contact force and whole-body trajectory opti-
mization) in a very large dimensional system such as a humanoid robot leads to
robust tracking performance of the desired kino-dynamic movement plans.

Contr. A7 It proposes a kinematics solver, inspired on how a consensus solver finds
a solution to a problem, that is capable of handling soft nonconvexities in a simple
yet efficient distributed manner.



Chapter

DYNAMIC MOTION PLANNING

Abstract

The synthesis of complex whole-body movements requires solving hard noncon-
vex trajectory optimization problems. Among its most challenging issues are the
high problem’s dimensionality, a limited time budget to find a solution amenable
for execution, nonconvexities coming from nonlinear dynamic constraints and dis-
continuities due to intermittent contacts. This chapter takes as starting point the
kino-dynamic approach [79] that scales down the large dimensionality of a problem
that simultaneously optimizes kinematic and dynamic variables by reformulating it
in an alternating manner, where kinematic and dynamic variables are sequentially
optimized until convergence to a common set of bridging variables, namely the
robot centroidal momentum and endeffector poses. It then proposes a solution
for the dynamics part of the trajectory optimization problem that systematically
addresses the challenges by exploiting the problem’s structure. The nonconvexities
of the Newton-Euler equations are approximated using an iterative convex model
built based on its curvature properties, which improves convergence for online
generation of time-optimized movement plans. Furthermore, the use of this model
to efficiently check feasibility of dynamic motions within a mixed-integer solver
allows to take discrete decisions over the contact surfaces from a terrain that support
the generation of a desired dynamic motion. To sum up, the algorithm decides over
contacting surfaces (globally or with e sub-optimality using a mixed integer solver)
and then computes locally time optimal motions (that can also respect actuation
limits) fast enough for online control using an Interior Point method for convex
programming. The capabilities and limitations of the approach are evaluated in
several multi-contact scenarios traversed by a physically simulated humanoid robot.

Notes:
The contents of this chapter and the introductory section 1.6 will be submitted as a journal
article, and constitute an extended version of the conference paper [127].
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3.1 INTRODUCTION

Many approaches have been proposed in the literature for the optimization of com-
plex robotic behaviors. One of the fundamental differences among these approaches
is the level of expressiveness of the dynamics model used within the trajectory
optimization problem, as its degree of complexity implies a compromise or trade-off
between the variety of movements that can be synthesized and the difficulty of
solving the corresponding trajectory optimization problem [98].

Among the first approaches proposed in the literature are those based on linear
models [124, 125, 134, 135] that e.g. describe only the essence of a behavior such as
the motion of its Center of Mass (CoM). They offer great computational advantages
that make them suitable for receding horizon control [136, 137, 138], but also they
have enough model expressiveness to describe a desired task that makes them well
suited to successfully control the performance of the desired (usually specialized)
robotic task such as e.g. flat-ground walking in an uncertain environment [139, 140,
141, 142].

Researchers have also considered trajectory optimization problems where the
full set of equations of motion of a floating-base system are used to describe the
physical interaction among all robot bodies, because this allows them to synthesize
motions that exploit the full robot’s capabilities and are thus methods useful for
a wider and more complex range of behaviors. Despite the enormous challenges
of solving such problems, great results have been achieved. To name a few: [67,
86, 96] efficiently optimize and execute complex tasks for a quadruped robot that
include gait and motion discovery. [40, 89, 143] show theoretical and experimental
results on online movement generation and robust control for legged robots. Further
works [29, 55, 87, 126, 144, 145] present theoretical approaches on how to efficiently
generate contact and movement plans for much more complex behaviors such as
the cooperation of several characters on a common task or the automatic discovery
of contacts.

Trajectory optimization problems with an intermediate level of complexity have
also been studied [95, 98, 146, 147]. One of these approaches based on the centroidal
momentum dynamics [91, 93] has become very popular in the robotics commu-
nity [79, 84, 148], because under the assumption of actuation feasibility (enough
torque authority), it provides sufficient conditions to plan kino-dynamically con-
sistent whole-body motions [84]. Trajectory optimization approaches based on the
momentum dynamics are simple enough to be solved online to control the perfor-
mance of a legged robot [32, 94], but at the same time expressive enough to plan
complex behaviors [23, 32, 98, 147]. [84] e.g. shows that a trajectory optimization
approach based on the centroidal momentum dynamics can be used to generate
time-optimal whole-body motions using a general nonlinear solver for nonconvex
programming [100]. Furthermore, it is capable of selecting contacts formulated as
complementarity constraints and can handle obstacle avoidance.
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Approaches based on the momentum dynamics model are still nonconvex and
thus hard to solve, which led researchers to focus on the problem mathematical
structure to derive more efficient methods. [130] e.g. uses a convex bound on
the angular momentum rate (that maximizes the contact wrench cone margin)
to minimize a worst-case bound on the /; angular momentum norm via convex
optimization. In [32, 94], the bilinear terms of the momentum dynamics and timings
are handled by a dedicated solver based on multiple-shooting, proxy constraints
are used for handling whole-body limits based on an offline learning method,
and experiments on a humanoid robot exemplify the online control capabilities
of the approach. [147] exploits a linear formulation of the momentum dynamics
based on a lower dimensional space projection and an adaptive method for timing
optimization to control a robot traversing multi-contact scenarios in a receding
horizon fashion. In [95, 146], the interpretation of friction cones as dual twists
allows to compute online cones of feasible CoM accelerations. The resulting bilinear
constraints are decoupled into linear pairs via a conservative trajectory-wide contact-
stability criterion for online motion generation. Timings between contact switches
are optimized online using a nonlinear but fast to solve problem.

[79], similarly to [84], proposed a kino-dynamic trajectory optimization method
based on the momentum dynamics solvable in an alternating manner. It further
proposed an analytical decomposition of positive and negative definite terms of
the problem’s Lagrangian based on the decomposition of angular momentum non-
convexities to improve solver convergence properties. Our previous work [149]
proposed a relaxation of the problem that suggested the use of a proxy function to
minimize angular momentum, namely the sum of the squares of the terms compos-
ing its nonconvexity. [122] showed experimental evidence about the application of
this approach [149] to control a quadruped robot and determined that not being able
to include an explicit target momentum in the cost function limits the applicability
of the approach, as it is not well suited for the alternating whole-body motion
optimization method [79]. For this reason, in [127] we proposed a more general
approximation of the problem’s nonconvexities: two methods for convex relaxation
of the dynamics problem that allowed to include an explicit angular momentum
objective, and thus to use it in the alternating approach [79] to compute consistent
whole-body time-optimal kino-dynamic motions. Recently, [98] presented a novel
phase-based parameterization of endeffectors and a smooth terrain description to
formulate an optimization problem, online solvable with a general nonlinear solver,
able to select gait-sequences, momentum and timings, swing-motions and body
poses, thus bringing to mind the question if a problem approximation is needed.

This chapter presents an extended version of the previous problem formula-
tion [127] that includes the following contributions:

* A convex, accurate and efficient modeling of the nonconvex centroidal mo-
mentum dynamics, based on two convex relaxations, that allows to online
generate time-optimized dynamic motions.
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FIGURE 5: Control diagram highlighting inputs and outputs to each stage, and colored parts
of the equations of motion used at each stage. For instance, to optimize contacts
only a dynamics model is used (red color), while for whole-body optimization, a
full kino-dynamic centroidal momentum dynamics model is used (red and green
colors). In addition, actuation limits could be included (yellow box).

¢ It shows that by exploiting the problem’s mathematical structure (Fig. 1), this
formulation can be used in a kino-dynamic approach to generate whole-body
motions, it can also include actuation limit constraints, as well as it can be
used in a mixed-integer solver to select contact locations based on a measure
of dynamical robustness.

¢ The capabilities and limitations of the algorithm are evaluated using a physical
simulator where a humanoid robot traverses several multi-contact scenarios.

To sum up, the algorithm is capable of selecting contact locations over a discrete
set of terrain surfaces using a measure of dynamical robustness. It is capable
of generating whole-body time-optimal motions that satisfy actuation limits (if
required) by exploiting the problem mathematical structure to render it tractable
and very efficiently solvable.

The remainder of this chapter is structured as follows: Section 3.2 details the
motion optimization approach to solve problem 4 presented in the background
introduction section 1.6, based on convex relaxations of its nonconvexities. Section
3.3 presents a formulation for the efficient planning of dynamically consistent
contact sequences. Finally, experimental results on a physical simulator are shown
in section 3.4 and conclusions in section 3.6.

3.2 OPTIMIZATION OF DYNAMIC MOTION PLANS

This section presents a method to optimize motion plans based on an analytical
decomposition of nonconvex bilinear expressions as a difference of convex functions,
whose known curvature can be exploited to design efficient iterative convex approx-
imations. The remainder of this section will analyze the nature of the nonconvexities
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Bilinear Expression

Decomposed Expression

FIGURE 6: Decomposition of bilinear form a; - b; into a difference of quadratic expressions a; -
b; = s(-) —r(-), where s(-) = 1 ||lai + bi||* and r(-) = 1 ||a; — b;||* are quadratic
functions € Q7 (i.e. its quadratic parameter matrices are positive semi-definite).

of problem (4), propose two convex relaxations to approximate them and, detail the
numerical optimization procedures and its convergence criteria.

3.2.0.1 Bilinear Terms as Difference of Convex Functions

Some constraints in problem (4) are affine (4e)-(4g) or second-order cones (SOC)
(4h)-(4i) and thus convex; others however describe nonconvex constraints such
as the momentum dynamics evolution when considering variable timesteps (4b)
or torque cross products (4¢)-(4d), and are thus nonconvex. In the following its
common nature is made clear and its reformulation is presented, in a way that is
more amenable for its approximation using iterative convex models.

The torque cross product ¢ x f between a length (p. — r in equation (4¢) or Ry” ze
in equation (4d)) and the force f.; can be written in the following way:

—0, y fy
Ixf= b 0 =l | |fy
|ty 6 0 f,

by by b,

aj

Y e i il

It is possible to see that each term is a scalar product a; - b; between two vectors
composed by elements of ¢ and f. Similarly, notice that the nonconvexities in (4b)
can be written as scalar products between the timestep A and linear momentum 1,
contact forces fe; or torque variables . It means that all nonconvex constraints
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solely include equality constraints with bilinear terms. Thus, in the following a
reformulation of bilinear expressions in terms of mathematical expressions with
known curvature is presented (in the spirit of [150, 151]), as performed in [79] as a
difference of convex quadratic functions [152].

Difference of Convex Quadratic Functions QO+

Let V be a real vector space. The set O* is then
0F(u) = {V — R | 3s(-),r(-) € @t (quadratic func.)
O (u) =s(u) —r(u) Yue V} 6)

where Q7 is the set of quadratic functions whose quadratic parameter matri-
ces are positive semi-definite. The set OF is closed under scalar multiplication,
addition and composition with affine functions A(-):

(Msov) +plrow)) € O
vs(-),r(-) € @t; v(),w(-)e A4 ABEK

Figure 6 shows an example of a bilinear form a; - b; (in blue) analytically de-
composed as the difference of the quadratic functions 1 [|a; + bi||2 (in red) and
A ET bi||® (in green). By using this tool, it is possible to decompose a bilinear
term with an indefinite curvature into a difference of quadratic terms with known
curvature, which is key for the efficiency of the proposed algorithm.

Let’s consider e.g. equation (4d) and assume for simplicity that R::i’ze,f X fer is
represented by the decomposition ¢ x f, then each endeffector torque component
becomes ’yé/t =alb; + (Rét‘(e,t)i. The torque component Tt can be formulated as a
difference of positive components T;rt — Tet @8 in [29]. Then, 'yé/t can be written as:

€Q*

. 1 2 . 1 2 L
T [l bl R - [l b+ R @

eQt eQt
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In a similar manner, each endeffector torque component !, (4¢), can be decomposed
parameterizing its cross product (pe — r) x fo with vectors ¢; and d; as xi, =
ofdi + 'yie,t. Then, the endeffector torque component Kie,t can be written as:

€Q*
cQ” eQ*
b= [F e+ al?] - [ - a?] + 7 ©
€Qt €Qt

A similar analysis holds for each of the cartesian components of the bilinear ex-
pressions within the dynamic constraints (4b), which can be decomposed into a
difference of convex functions as elements of Q% in the following way:

. 100 2 1. 2
o= [ +AtH L AtH (10a)
" 1 v : 1 " ’
Z et A :1 Z et T Al — Z Z et At (10b)
e e e
2 2
) 1 ) 1 )
(2 fe{t> Ay = Y ofli+ A — 1 Y £l — A (100)
e e e

The next section shows how the quadratic expressions Q" (in which the bilinear
terms have been decomposed) can be efficiently approximated using sequential con-
vex relaxations that exploit the curvature knowledge of the quadratic expressions.

3.2.0.2 Sequential Convex Approximation of Quadratic Terms

In this section, the known curvature of the quadratic terms Q7 is used to build its
approximation. First, they are isolated via a change of variables, e.g. equation (8)
can be written as (note that the method is valid for any QF such as (9)-(10)):

g = |ai+bi*, b=|a—bi’ (11a)
i 1_ z \i 1- 7 i —
Vet = |:Zui + (Re,t) Te+/t:| - |:Zb1 + (Re/t) Te,t:| (11b)

where the introduction of the variables 7;, b; € R allowed to isolate the nonconvex
expressions with known curvature (11a) from its original equation, which is now
linear (11b). There are now two additional variables and constraints, but with the
difference and benefit that each nonconvex constraint from the original problem
can now be written in the very simple form of equation (11a), which will allow to
find efficient sequential convex approximations.
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Ha1+b‘|2 (l,>Ha,+bH2 aq <Hal+b\|2

(a) A nonconvex quadratic equality constraint can be regarded as the intersection of a convex
and a nonconvex quadratic inequality constraint. The algorithms presented in this chapter
use only the convex space or constraint and a heuristic to guide solutions towards its
boundary, such that it becomes feasible for the original constraint.

Qp) <@ Q(pval) + VO(P)lpyy - (P — Prval) + 0 > &

X/ X/

(b) Trust region method: It first finds a solution within the convex space Q(p) < a;, where
the approximation variable 4; can take any value within the blue region. Then based on
this solution, the method iteratively builds a trust region that limits the search space to the
boundaries of the constraint. The parameter ¢ controls the distance between the quadratic
constraint and the trust region, and thus the amount of constraint violation.

A(p) < g Q(pval) + VO(P)lpew - (P — Pval)
(c) Soft-constraint method: It first finds a solution within the convex space Q(p) < 4; as

in the previous method and then based on this solution, it iteratively buﬂds a function
underestimator (in orange), whose purpose is to act as a cost that rewards the selection
of values close to it and thus close to the constraint boundary. Parameter 7 controls the
desirability of selecting solutions close to the underestimator of the quadratic constraint.

FIGURE 7: Approximation of quadratic equality constraints € QT within its convex space
using sequential convex relaxation methods: trust region and soft constraints.
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Fig. 7a sketches the hyperplane defined by the nonconvex constraint (11a), which
can be conceived as the intersection of two inequalities, a convex 4; > ||aj + b; Hz
and a nonconvex one 4; < ||a; + b; HZ While it is difficult to search a solution in a
high dimensional nonconvex space, it is easier to search within the space defined by
the convex inequality and guide the optimization towards the constraint boundary
as illustrated in Figure 7, approaching in this way towards solutions with practical
feasibility for the original nonconvex quadratic equality constraint. In the following,
the two proposed relaxation methods based on SOC programs to deal with the
quadratic equality constraints are presented.

TRUST REGION METHOD In this approach the main idea is to use a primal
constraint to limit the convex search space to values close to the boundaries (Fig. 7b).
In mathematical terms, the trust region should constrain the problem to values of
a; near Q(p) (for simplicity of notation we define p = a; + b; and Q(-) = ||-||*). In
the first iteration, as no guess for the optimal problem values is available, a solution
is found without additional constraints over the entire relaxed convex search space.
From there on, the trust region is built based on the optimal vector from the previous
iteration and by reducing the allowed amount of constraint violation . The benefits
of constraining the problem in this way are twofold: in the first place, it is easy
to refine the solution with values of p around the optimal values of the previous
iteration py, that satisfy the desired amount of constraint violation ¢, and secondly,
it provides a method to iteratively increase the approximation accuracy by reducing
the value of o, as required by convergence tolerances. Note that if the hessian of
the nonconvex constraint were an indefinite matrix, this trust region would lead to
unbounded regions instead of constraining the problem as desired.

Trust Region Approximation of Q" Expressions

In the case of Ot expressions, thanks to the positive curvature of the constraint
hessian, a linear inequality constraint suffices to constrain the problem as
desired [153].

Q(p) <4

Q(pval) + vg(p) ‘Pva] : (P - pval) >a—0

Qp) =ai —

The linear constraint is built based on the current optimal values py,; taken
by the optimization variables p and ¢ is a positive threshold, big enough
to provide a feasible interior to the intersection of the constraints. Figure 7b
graphically depicts the approximation.
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SOFT-CONSTRAINT METHOD  Alternatively, a hard restriction of the search space
could be replaced with a cost that biases the optimizer towards finding solutions
close to the boundary of the constraint by pulling optimization variables towards a
function underestimator (Fig. 7c).

Soft-Constraint Approximation of Q" Expressions

A cost heuristic rewards the selection of values of d; close to the function
underestimator (Q(pya1) + VQ(p)lp,., - (P — Pval)), hyperplane that supports
the function and was built based on the current optimal values p,, taken by
the optimization variables p in the previous iteration.

Q(p) <4

Alp) =a — 5
1]]Q(Pva) + VAP py - (P — Pral) — &

1 defines the desirability of selecting optimization values close to the un-
derestimator, and that thus enjoy of practical feasibility for the nonconvex
constraint. Figure 7c graphically depicts the approximation.

As shown in Fig. 7, both methods are iterative convex approximations of the problem
nonconvexities. They are based on looking for a solution over the convex search
space and thus enjoy of good convergence convexity properties, but at the same
time they are general approximations of the nonconvexities that can capture its
nature all over its range.

3.2.0.3 Numerical Optimization

This section describes numerical aspects such as convergence criteria and algorith-
mic implementation details used within the trajectory optimization problem.

CONVERGENCE CRITERIA The amount of constraint violation is used as the
measure to decide upon convergence. It is defined as the supremum among the
average errors of state variables (12a), which are computed by comparing the values
of optimization variables (rt, 1;, k¢) that solve the approximate problem and the
values obtained by integrating endeffector wrenches (r;"}, 1}, k1) that satisfy
exactly all nonconvex constraints, as in (12).
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When the errors (12a) fall below a certain threshold for the constraint violation to
be considered negligible for practical purposes, the algorithm has converged. While
errors are normalized to make them comparable, in practice angular momentum
trajectories converge after CoM and linear momentum trajectories, thus it is possible
to only focus on convergence of angular momentum to desired thresholds of
constraint violation to decide upon algorithmic convergence.

ALGORITHMIC IMPLEMENTATION DETAILS To approximate the solution of
problem (4), the proposed approach iteratively solves an approximate problem
(using an interior point solver for SOC programs based on [104]), where each
nonconvex constraint (4b)-(4d) has been replaced by a convex approximation. At
each iteration, the approximations and its parameters are updated (based on the
optimal values of the previous iteration) to reduce the constraint violation amount.
The procedure is then repeated until convergence.

The problem is solved in two phases (in the spirit of [55]): In the first one, the
algorithm discovers a good motion using a full quadratic approximation, i.e. all
nonconvex constraints are approximated using the methods described in section
3.2.0.2. In the second, the focus is more on convergence to physical consistency and
approximation accuracy of (4¢)-(4d) which are approximated using a second-order
model as in the previous phase, and use only a first-order approximation of time-
related constraints (4b) to allow the optimizer to still adjust CoM, linear momentum
and timings, while speeding up and increasing accuracy of angular momentum
convergence. Within the trust region method, the parameter ¢ is decreased using
iteratively increasing powers of a value less than one, e.g. ¢ o ¢!, where ¢ is a value
less than one, and i denotes the iteration number. Within the soft-constraint method,
a different value for the parameter 7 is selected at each phase between [1e¢4, 1¢6] to
be higher than other optimization costs.

3.3 OPTIMIZATION OF CONTACT PLANS

This section will explain how contact locations can be optimized within problem (4)
when they are considered optimization variables but given the contact surfaces to
which they should belong to. Then, this section will also describe an algorithm to
efficiently select out of a terrain description a discrete set of contact surfaces and
locations that would support the generation of a dynamic motion.
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FIGURE 8: The description of a safe contact surface S is a set of coplanar corners ¢;,i €
[1,4], out of which the following quantities can be computed: surface normal
n,, surface rotation S™', any surface point ps = ¢; and a membership constraint
x € u(S),¥x € S, that simply defines the set of points x that lie on the safe surface.

3.3.1  Membership of contact locations to terrain surfaces

Given a description of the terrain surface S (over which it is safe to make contact), a
contact location can be optimized by including its membership constraint to surface
S to the optimization problem. A contact surface S (as defined in Fig. 8) is such that
any contact point pe selected from its interior guarantees that the entire endeffector
is in contact. The expression pe € 1(S) constrains an endeffector position pe to
belong to surface S (see Fig. 8 for notation):

As As
Pe € (S) = ng | Pe < ng - ps (13)
—Ng —Ng - Ps

Equation (13) defines a set of halfspaces, whose intersection constrains a contact
point pe to lie on a safe contact surface. For instance, Aspe < As denote the half-
spaces that define lateral limits of the contact surface, while n - p. = ns - ps implies
that the normal distance from the plane should be zero, i.e. the contact point has to
lie on the contact surface.

Impact on convergence speed of this linear constraint is small and can be easily
included, assuming a terrain description in terms of safe contact surfaces is given.

3.3.2  Dynamics-Based Contacts Planning

Robots dynamically navigate an environment by interacting with it via intermittent
contacts. Thus, for dynamic motions such as walking down a steep slope, crossing a
wide gap or recovering from a push, it makes sense to select them using a measure
of dynamical robustness. To this end, ideally one would like to use a mixed-integer
solver that evaluates the desirability of a set of contact surfaces by solving problem
(4), as shown in section 3.2. In the following, such an approach is described.
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3.3.2.1  Terrain Description and Contact Model

This section describes how a terrain is modeled and how contacts are selected
within this description using the notation of [58].

The terrain consists of a set of convex, obstacle free regions S; € {1, R} and the
approach considers a sequence of p, € {1, N} contacts. Binary variables H,,, €
{0, 1}N —NoR define the contact surface S;, whose domain contains contact pn (No
are contacts initially active and thus have a predefined pose). Hy,, — pn € p(S;)
and ), H,, = 1 constrain contact p, to belong to only one contact surface. The
mapping between index n of contact location p, and the range of timesteps t, in
which this endeffector location pe; is active, is predefined.

Binary variables H decide upon the terrain region from where a contact location
p can be selected. Integrality constraints guarantee that only one region is active for
feet contacts and either one or none for hand contacts.

H,, = pun<u(S)

=1, for feet contacts
Zr Hn,r

<1, for hands contacts
1-Y,H,, = (fet =0), forhands
H,, = Fﬁor‘esrmtfe,t <0, friction cone

When no contact region is selected, control variables such as contact forces are
zeroed. Local endeffector forces S™!f.; also depend on the selected region to
enforce friction cone constraints. F{°™ is a matrix such that when multiplied by the
local force, the result is less than zero when the force respects the friction cone.

Reachability constraints between footstep locations can be based on kinematic
reachability using linear inequalities [154] or on the intersection of SOC con-
straints [58]. They can be described in a convex form using linear inequalities
based on kinematic reachability such as in

APmin < (Pl - pi—l) < APmax
or they could be described as in [58] using an intersection of second-order cone
constraints as:

¢, <00 < ¢4y
s = =B S s
s’ = g0 + b,

= 8500 +bf,

X X &f b
Pi Pi—1 s ¢

sec
Ch,n

LG =1

+ <dip
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In the latter case e.g., piece-wise affine approximations of sine and cosine func-
tions are used to model footsteps’ rotation # in a convex form. Binary variables
S G € {0, 1}HNf are used to select the active approximation 4 for each footstep
n. Integrality constraints ¥, Si77 = L Gy = 1 guarantee that only one approxi-
mation is active at each footstep. Each affine approximation is defined by a region
of validity of the yaw angle ¢j, < 0, < ¢j_; (for sine) or ¢ < 0, < ¢f , (for
cosine) and, the corresponding linear approximation of the yaw angle of rotation
s? = 85,01 + by, (for sine) or = 8,,0n + bj, (for cosine). Finally, these variables are
used to model the range of available positions for the next footstep based on the
current footstep position and yaw angle as the intersection of two SOC constraints.

3.3.2.2  Dynamics Model and Objective Function

The contacts planning algorithm makes use of a light version of problem (4) that
does not consider e.g. endeffector torques .+ (without loss of generality contacts
are modeled as points), uses a linear model of friction cones and, either a centroidal
momentum dynamics model with fixed or non-fixed timings. The objective function
¢ similarly to (4a) regularizes states and controls and, also incorporates user-
defined objectives.

The objective function ¢f™ regularizes available controls (timesteps A, contact
locations py, endeffector forces f.), as well as states (CoM and momentum).

min Y0 (b, A0 po £,

h,A,pn fe =1
I I+ %hAt
subject to hy= [k, | = Keo1 + (Yo ket) At
It L1+ (mg + Ye fer) At

Ket = (Pet — 1t) X for
At S [Aminr Amax]
[Pes — el < £

Physical constraints include a momentum dynamics model, a box constraint for
timestep discretizations and limits between endeffector positions and CoM.

3.3.2.3 Numerical Optimization

To compare the effect of time-optimal vs. non time-optimal, as well as the effect of
the number of iterations used to approximate the dynamics model over optimized
contact plans, a mixed-integer solver capable of solving a sequence of SOC programs
is used (not available commercially). It relies on two functions to bound the optimal
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(a) Rough terrain (b) Down-Up (c) Walking stairs (d) Up stairs

(e) Using hands (f) Up with hands (g) Tilted terrain (h) Narrow path

FIGURE 9: Examples of time-optimized dynamic movement plans.

value of a search space. The lower bound comes from a relaxation of the search space
binary variables and the upper bound by any solution where binary variables are
binary. The rest of constraints are treated using an iterative or non-iterative model
as previously described. Then, the feasible search space is partitioned into convex
sets and each partition bounded. The algorithm converges once global lower and
upper bounds are close enough, otherwise the partitions are refined and the search
process is repeated. The implementation of this mixed-integer solver is based on a

branch and bound method for global nonconvex optimization, as detailed in [117].

In simple scenarios linear reachability constraints suffice, and SOC constraints are
used in more complex ones, as will be shown in the experimental section 3.4.

3.4 EXPERIMENTAL RESULTS

This section shows experimental results about the optimization of contact and
motion plans. It demonstrates the capabilities of the algorithm in multi-contact
scenarios including walking on uneven terrain, climbing stairs using hands and
many others.

3.4.1  On the Optimization of Dynamic Movement Plans

This section will demonstrate the capabilities of the algorithm (soft and trust
region-based) at optimizing several centroidal momentum trajectories as defined by
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problem (4). In particular, it looks at convergence to feasibility (measured by the
amount of constraint violation of the solution) and time complexity to converge to
a desired feasibility threshold. This section will also present results regarding the
qualitative improvement of motions that include time and/or contact locations in the
optimization. Finally, it will show how whole-body motions can be optimized using
a kino-dynamic approach, how actuation limits can be included in the dynamics
optimization, and tracking performance of time-optimized motions.

3.4.1.1 Feasibility Convergence and Time Complexity

To analyze convergence properties and computational complexity of the algorithm,
a set of 8 optimized motions (shown in Fig. 9) are used to gather statistics about
algorithmic performance.

Figure 10 presents statistics about time complexity, convergence to feasibility
and relative cost reduction when using the same objective function but different
number of discretization timesteps and algorithmic settings. In particular, it shows
information about what happens when the optimization includes or not time as a
variable Time vs. Mom, includes or not optimization of contact locations Cnt, using
soft-constraint or trust-region heuristics Sc vs. Tr. First of all, in the center plot the
amount of constraint violation of the optimized solutions is shown, as measured
by (12a). Note that the algorithm converges when the error or its reduction within
an iteration fall below a desired threshold and, as visible on the plot, the method
converges in all experiments to the desired feasibility thresholds under all settings.

The uppermost plot shows statistics about the time-complexity of the algorithm
for convergence to the desired feasibility thresholds; in particular, it shows its
linear-tendency in momentum and time optimization problems. Notice that for
fixed-time optimization problems, neither the employed heuristic (trust region or
soft-constraint) nor the inclusion in the optimization of contact locations affect the
solving time performance. A similar behavior can be seen for time optimization prob-
lems with the difference that trust-regions are slightly faster than soft-constraints.
Finally, the bottom plot quantifies numerically the relative reduction of the cost
when optimizing time and contact locations. In orange tones, reference normalized
costs of momentum optimization problems using fixed contact locations and timings
for trust-region and soft-constraint heuristics are shown. As expected both achieve a
similar minimum and have thus similar normalized costs (close to one). Considering
contact locations as optimization variables has minimum impact on solving time
performance, yet it significantly reduces the objective value (around 35 percent)
because this degree of freedom allows the optimizer to select motions that require
lower values of momentum trajectories, e.g. motions with less lateral sway of the
center of mass.

The effect of time optimization on the objective value is dependent on the problem
time horizon (for simplicity, one can assume that the value of one timestep is 0.1
seconds and thus the horizontal axis spans between 2 and 20 seconds). For instance,
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FIGURE 10: Top: Linear-time complexity of movement plans: with or without time optimiza-
tion Time — Mom, using soft-constraint or trust-region heuristics Sc — Tr, and
with or without optimization of contact locations Cnt. Center: Corresponding
normalized convergence errors e as given by (12a) and Bottom: numerical relative
cost reduction of motions optimized including time and/or contact locations with
respect to motions using fixed contacts and timings. Each data-point summarizes
information from 8 experiments (shown in Fig. 9) optimized using the same
objective function but different number of timesteps and heuristics.

in problems with short-time horizons such as at the leftmost side of the plot, the cost
difference between motions that consider or not time as an optimization variable
is modest, but as the look-ahead horizon increases (right side) time optimization
becomes a powerful way of shaping the motion to achieve lower costs. Notice that
in this case the soft-constraint heuristic finds in average slightly lower local minima
than the trust-region heuristic. Figure 11 shows the average number of iterations
required to solve a momentum or time optimization problem for varying number of
timesteps, as well as the average time required to solve each of these iterations. For
instance, momentum optimization problems require between 2-3 iterations, while
time optimization problems 7-10. However, the difference in solving times of one
iteration is not significant, e.g. for a time horizon of 2 seconds (20 timesteps) the
solving times are 8o ms and 100 ms for momentum and time optimization problems
respectively. This suggests that the approach could be used in a receding horizon
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FIGURE 11: Average number of iterations required to solve an optimization problem with or
without time optimization for different number of discretization timesteps and,
average time to solve each iteration. Each data-point is based on 32 experiments,
with different heuristic Sc — Tr and with our without optimization of contacts.

setting, where the optimizer can be warm-started from a previous solution and thus
only needs to solve one iteration for a short look-ahead horizon.

3.4.1.2  Qualitative Improvement of Solutions

In this space, qualitative results on a pair of motions are shown to illustrate the
working principles and benefits of the approach.

For example, Figure 12 shows time optimal results for a walking up tilted stairs
motion traversed with two different values of the friction coefficient y. In the first
case (1 = 0.35), the tendency is to increase the duration of timestep discretizations
during double supports to have enough time to slowly accelerate the CoM while
respecting physical constraints, resembling statically stable motions. In an envi-
ronment with flat surfaces, the same approach would be valid even if the friction
coefficient is further reduced (e.g. u = 0.25). However, in a terrain with tilted
surfaces such a strategy might not be viable. In such a setting, even the fixed-time
version of the algorithm might struggle at finding a dynamically feasible solution.
However, the time optimization approach is able to find a solution, whose main
strategy is to quickly traverse the tilted surfaces to get to the uppermost flat contact
surfaces. During this phase, lateral contact forces are exploited to the limit, and
then a similar strategy to the previous case is used.

Figure 13 shows a walking up stairs motion, where hand contacts are used. Within
the performed experiments, in such multi-contact scenarios time optimization does
not significantly change motion timings. However, optimizing contact locations
allows to find motions with less CoM sway (compare e.g. CoM trajectories for a
momentum optimization without optimization of contact locations MomSc and a
time optimization that includes optimization of contact locations TimeScCnt), which
is more energetically efficient with a small additional computational cost in the
optimization.
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FIGURE 12: Comparison of optimal normalized endeffector forces and timing results for two
different values of friction coefficient y. Ref timings are the initial ones and Opt
the final optimized ones.

3.4.1.3 Kino-Dynamic Whole-Body Optimization

This section will show how the proposed algorithm can be used in a kino-dynamic
approach to generate whole-body motions. A climbing stairs motion (Fig. 9d) is
used to illustrate convergence of the method to kino-dynamic consistency. Figure 14
graphically compares kinematic Kin and dynamic momentum trajectories Dyn at
the end of each dynamics optimization, and on the bottom, it shows a quantitative
comparison that depicts how error norms, obtained by comparing desired kinematic
momentum trajectories and dynamic ones obtained by integrating optimal controls,
decrease until convergence at each kino-dynamic iteration. Linear momentum
converges to high levels of precision, while angular momentum only to modest
levels of precision. Note as well that the first dynamics optimization (shown in red)
takes the longest to converge. This plot also shows how trajectories optimized in
subsequent iterations converge faster without using any information from previous
ones. In practice, however by exploiting this information to construct optimization
heuristics, they can be solved much faster. Dark colors are used to show dynamic
trajectories Dyn, and the same, but light color, for kinematic ones Kin. Solid lines
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FIGURE 13: Comparison between CoM and normalized linear momentum in the lateral direc-
tion for a walking up stairs motion using hands. Bottom plot shows activations
of endeffectors over the time horizon for momentum and time optimization
problems.

correspond to motions optimized using soft-constraints, and dashed lines to motions
optimized using trust regions. Qualitatively and quantitatively they converge to
similar solutions, as can be seen in the plots, where it is difficult to distinguish them
from each other. Finally, notice that at each kino-dynamic iteration kinematic and
dynamic momentum trajectories match; however, in practice at least a couple of
iterations are used to converge to a motion easily executable on a physical simulator.

3.4.1.4 Execution of Movement Plans

This section shows that optimal motion plans optimized in the previous section
using a kino-dynamic approach can be executed on a physical simulator. Figure
15 shows tracking of optimized movement plans using feedback [129] and inverse
dynamics controllers [92] using the architecture described in Fig. 5. The top three
rows show desired momentum trajectories (Dyn,,,,, in orange) as well as its tracking
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FIGURE 14: This figure shows convergence to feasibility of each dynamics optimization
along three kino-dynamic iterations. It compares desired kinematic momentum
trajectories Kin and dynamic momentum trajectories obtained by integrating
optimal controls Dyn at the end of each dynamic optimization. Bottom plots show
how error norms decrease until convergence along each iteration. Momentum
values are normalized by robot mass. Vertical colored bars show the activation of
each endeffector over time.
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FIGURE 15: Tracking of desired momentum trajectories for the climbing up stairs motion
(shown in Fig. 9d) using time optimization.

(Dyn,,., in blue). At the bottom left corner, the activation of the endeffectors over
time can be seen, as given by the optimal timings, shown at the bottom right corner.
At the beginning of the motion execution, the robot transitions from a stiff feedback
controller to a pure feedforward one; in this phase, executed momentum trajectories
differ from desired ones.

Actuation limits are not always satisfied, if they are not explicitly considered in
the optimization. For instance, in the climbing up stairs motion the knee flexion-
extension KFE joint torque exceeds its limits by around 30[N], as shown in Fig. 16
in orange. If the torque limit constraint is included, linearized around the current
kinematic trajectory, the dynamics optimizer can adapt other available degrees of
freedom, such as timings and endeffector wrenches to satisfy it, as seen by the
executed torque in green. Another way to satisfy actuation limit constraints is by
redistribution of contact forces among the available endeffectors (Fig. 17). In this
case, timestep discretizations were kept constant, and the optimizer distributes
contact forces in such a way that the left leg is supported by the left hand in order
to synthesize a motion within the leg torque actuation limits.
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FIGURE 16: Satisfaction of actuation limits in walking motion (Fig. 9d) by considering joint
torque limit constraints in the dynamics optimization problem that adapts endef-
fector wrenches and timings.
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FIGURE 17: Satisfaction of actuation limits by redistribution of contact forces among available
endeffectors in multi-contact fixed-time motion. Torque references are shown
in solid lines, and execution torques in dashed lines. Top: left and right hands -
shoulder and elbow joints; Bottom: left and right feet - hip and knee joints.
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FIGURE 19: Comparison of normalized linear and angular momentum trajectories of dy-
namically optimized contact plans for a walking up motion (Fig. 9d). In green
dash-dotted lines, results when using only one iteration are shown; in dashed
orange lines, when using a multi-iteration dynamics model; and in blue solid
lines results when time is also considered an optimization variable are displayed.

3.4.2  On the Optimization of Contact Plans

This section analyzes the results of the contacts planning algorithm at finding a
set of contact surfaces and possibly an initial guess for a sequence of contacts that
support the generation of a dynamic motion.

In the first place, Figure 19 compares momentum trajectories of dynamically
optimized contact plans for a walking up motion using different dynamics models,
namely an iterative model that optimizes over time variables (in blue), an iterative
model with fixed timings (in orange), and a single-iteration dynamics model with
fixed timings (in green). It is possible to observe that momentum trajectories are
similar and thus generate similar contact plans. Yet, they significantly differ in
the time required to solve the corresponding mixed-integer problem ranging from
one second for the single-iteration model to a few seconds for the time-varying
dynamics model. This suggests that for contacts planning it suffices to consider a
single-iteration dynamics model, which has the benefits of being quickly solvable,
thus making the contacts planner reactive for online planning of contact locations,
but at the same time still considers a dynamic measure of motion robustness. The
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F1GURE 20: Examples of dynamically optimized contact plans.

details of the motion plan such as optimal timings are then deferred to the motion
planning stage, which can be initialized using the dynamics information of the
current contacts planning stage.

Fig. 20 shows a few examples of dynamically optimized contact plans, where a
static contact planner is likely to fail. On top, it shows contact plans optimized using
linear inequalities for reachability constraints, while on the bottom, SOC reachability
constraints are used, as they naturally allow the selection of foot rotations to traverse
difficult environments. Short contact plans (2-4 contacts) as in Fig. 20a can be solved
in a second; medium-size plans as in Fig. 20b-20c in a few seconds; and long contact
sequences with many contact surfaces as in Fig. 20d-20e can take a minute to
solve. In summary, short contact plans can be optimized online using the current
approach, while long contact sequences can be learned using e.g. the search-based

approach [44].
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3.5 DISCUSSION

This section discusses about time complexity and ways to speed up convergence, as
well as limitations of the approach, in the sense that it works well within the tested
problems, but it does not mean that it can solve any general nonconvex problem.

3.5.0.1 Time and Computational Complexity

In general, finding a solution to the dense version of any of the convex approxi-
mations solved, requires a polynomial time algorithm (of order O( p% lp+49)9%) ~

O(p%), p being the number of quadratic constraints and g its size) [108]. How-
ever, within the problem size ranges of interest to this work and thanks to the
exploited problem sparsity patterns, it can be observed (Fig. 10) that the problem
has approximately linear time complexity. Notice this linear tendency for both
momentum and time optimization problems, despite their different rates of grow
due to distinct problem sizes. Even problems that consider actuation limits show
this linear tendency (Fig. 18).

In practice, speed up of time optimization problems can be achieved by appro-
priately warm-starting the optimizer using solutions from previous iterations to
build optimization heuristics. When considering torque limits the doubled com-
putational effort due to the addition of 2nT inequality constraints for a problem
with T timesteps and robot with 7 joints (= 30 in our case) can be reduced by
considering only the weakest joints or only those involved in the motion. All in all,
computation times are still lower than the planned horizon, making it possible to
run the algorithm online (the next plan can be computed, while the current one is
being executed).

3.5.0.2 On Limitations of the Approximations

Problem (4) is nonconvex and thus hard to solve. The proposed heuristics lighten to
some extent the effort required to find a solution by searching for an approximate
one within the convex space of the problem. This however comes with certain
limitations. For instance, when using trust regions, they might be inappropriately
built leading to non-optimal solutions, or even unsuitably initialized which could
render the interior of the convex cone empty leading to primal infeasibility. For
the soft-constraint method, the difficulty lies in finding an appropriate trade-off
between two competing objectives: amount of constraint violation and problem
conditioning. An adaptive solution that iteratively reduces the value of the allowed
amount of constraint violation ¢ works well for the trust region heuristic. For the
soft-constraint method, a constant value for each phase of the problem (tuned for a
good objective trade-off) suffices in practice.
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3.6 CONCLUSION

This chapter presented a structured and efficient algorithm for generating time-
optimal whole-body movement plans for a humanoid robot, as well as an approach
to select a set of contact surfaces from a terrain description that supports such a
motion. Finally, experimental evidence on a physical simulator has been shown to
exemplify the capabilities of the algorithm at generating online motion plans to
successfully control a simulated humanoid robot.
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KINEMATIC MOTION PLANNING

Abstract

The synthesis of kino-dynamically consistent whole-body motion behaviors for
robots with arms and legs usually requires solving trajectory optimization problems
based on a highly complex dynamics model (such as the equations of motion) or a
middle complexity one (such as the centroidal momentum dynamics), which are
able to capture how contact force interaction with the environment relates to whole-
body motion of the robot. The alternating kino-dynamic approach for independent
optimization of whole-body motion and contact force trajectories based on the
centroidal dynamics model [79] made it possible in the previous chapter to only
focus on the efficient and structured optimization of the problem’s dynamics side.
In the same spirit, this chapter focuses only on the kinematics side of the problem,
whose main objective will be to find whole-body movement plans in consensus
with the dynamic momentum (computed from contact wrenches), center of mass
and desired endeffector motion trajectories for floating-base rigid-body systems.
The algorithm presented in this chapter also considers a look-ahead horizon as
well as proposes a methodology to incorporate soft nonconvexities inspired by how
consensus algorithms solve a problem in a distributed manner. The computational
efficiency, capabilities and limitations of the proposed algorithm are evaluated in
several multi-contact scenarios traversed by legged robots.
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4.1 INTRODUCTION

Many approaches have been proposed in the literature for the synthesis of complex
kinematic behaviors for robots with arms and legs, ranging from sampling-based [48,
51, 53] to optimization-based techniques [29, 55, 84, 87, 126] to name a few. The
range of possible behaviors that can be synthesized by the different methods as well
as the computational complexity of generating a motion behavior largely depend
on the dimensionality of the search space and the expressiveness of the model used
for movement generation (e.g. equations of motion or centroidal dynamics model
in an optimization-based method) [98].

Sampling-based techniques [16] sample from the robot’s configuration space
(floating-base and joints configuration) to build a discrete graph (called a roadmap)
composed by vertices that represent obstacle free configurations and edges that
denote the existence of an obstacle-free path between two vertices. The graph is
built as a discrete approximation of the connectivity of the obstacle-free space and
used to find a path between the initial and desired final configuration [51]. Sampled
configurations are usually further processed to increase the sampling success rate of
zero-measure manifolds [155]: for instance sampled configurations can be projected
so as to fulfill e.g. static stability conditions [156], contact conditions [157], or
dynamic constraints [158]. In the last years sampling based approaches, such as
Probabilistic Roadmaps (PRM) [159, 160, 161] or Rapidly-exploring Random Trees
(RRT) [162, 163], have been shown to provide not only theoretical guarantees such
as probabilistic completeness but also to work well in practice [164]. However, its
extension to sampling in state space (including robot posture and velocity) while
satisfying complex dynamic constraints (such as contact constraints and equations
of motion for floating-base robots) remains a challenging problem [165].

Optimization-based approaches on the other hand allow to easily formulate
constrained problems that include e.g. the dynamics model of a floating-base rigid-
body system and geometric contact constraints [29, 40]. These optimization problems
are able to describe the dynamic and kinematic interaction of every link and actuator
of the robot and can thus exploit the full robot’s capabilities to synthesize a wide
variety of motions [86, 87]. However, solving an optimization problem that considers
as dynamic model the equations of motion is a very challenging task for many
reasons, including high problem dimensionality, discontinuities due to intermittent
contacts, nonconvexities that make the optimizer prone to poor local minima from
where it is hard to recover, limited time budget to find a solution amenable for
execution on a robot, among others [55, 126].

Middle-ground approaches have also been considered [23, 96, 98, 146, 147].
Among them, the momentum dynamics model has [91, 93] has raised a lot of
attention [79, 84, 148], because it offers [79, 84, 148] sufficient conditions to plan
whole-body motions under the assumption of enough torque authority [84]. This
model allows the planning of complex behaviors [23, 98, 147], while at the same time
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it can be solved online to control a robot [32, 94]. [84] proposed for the first time to
formulate a trajectory optimization problem based on the kinematic and dynamics
side of the centroidal dynamics and was able to plan very complex and highly
dynamic motions, select contact sequences, timings and handle obstacle avoidance
constraints at orders of magnitude faster compared to approaches based on the
full equations of motion. [79] further proposed that the kino-dynamic problem can
be solved in an alternating fashion, where kinematic and dynamic variables are
optimized independently until convergence to a common set of variables.

The alternating formulation of whole-body kino-dynamic movement plans [79]
has thus opened the possibility of solving the kinematics problem by exploiting
highly developed algorithms for motion planning in complex environments [166,
167, 168, 169], capable of efficiently handling obstacle avoidance or nonlinear dy-
namic constraints. The algorithm proposed in this chapter belongs to the family of
optimization-based methods such as [29, 84, 168] and is built as a dedicated solver
for the kinematics’ side [79] of the trajectory optimization problem of floating-base
rigid-body systems. The contributions of the algorithm are as follows:

e It finds a locally optimal solution of the kinematics trajectory optimization
problem using a sequential convex formulation. The approach is capable
of generating a wide variety of whole-body motions satisfying kinematic
feasibility constraints (such as joint posture or velocity constraints as in [29,
84]) with the efficiency of a motion planning algorithm [168], but in addition
it also includes tracking objectives for dynamics momentum (computed from
contact wrenches) to ensure whole-body feasibility of the kino-dynamic
movement plans for floating-base systems.

Typically, motion planning algorithms [166, 167, 168] handle nonconvex con-
straints such as those for obstacle avoidance without any difference from
others thus creating bigger and bigger problems which are difficult and ex-
pensive to solve. The proposed approach instead reformulates the problem in
a way inspired by distributed optimization [110], where soft-nonconvexities
(such as obstacle avoidance constraints) can be solved separately in small
distributed sub-problems, whose solutions can then be used in the main opti-
mization problem to bring an overall solution to consensus with distributed
ones. In summary, small distributed problems handle soft-nonconvexities
using a general nonlinear solver, and then the main optimization problem
makes use of these solutions to build an overall solution using an efficient
interior-point method for convex optimization.

® The capabilities and limitations of the algorithm are evaluated on several
multi-contact scenarios traversed by legged robots.

To sum up, the algorithm presented in this chapter for kinematics optimization
combined with the algorithm for dynamics optimization from chapter 3, is capable
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of generating whole-body motions that satisfy kinematic constraints such as joint
limits, as well as dynamic constraints such as those for friction force limits. This
is achieved by using the kino-dynamic formulation [79] that by exploiting the
separability of the momentum dynamics makes it possible to focus only on each
sub-problem and build a dedicated solver for it based on its mathematical structure.
The remainder of this chapter is structured as follows: Background material was
presented in section 1.6. In section 4.2 the motion optimization algorithm is detailed.
Experimental results are shown in section 4.3 and conclusions in section 4.5.

4.2 OPTIMIZATION OF KINEMATIC MOTION PLANS

This section will detail the proposed algorithm for kinematic motion planning (that
attempts to find a locally optimal solution of problem (5)) tailored for floating-base
rigid-body systems such as robots with arms and legs. The algorithm is based
on a sequential convex approximation of the problem and the reformulation of
soft-nonconvexities as way-points in obstacle-free configuration space.

The main goal of the kinematics optimization problem is to find a trajectory of
robot postures that satisfies the following conditions: good tracking of center of
mass, dynamic momentum and collision-free endeffector motion trajectories, and
the generation of smooth profiles of joints velocities and accelerations if possible. To
accomplish these objectives, the proposed approach will first find a sequence of robot
postures using an iterative inverse kinematics approach. Then, if required it will
update the sequence of postures so as to e.g. satisfy obstacle avoidance constraints,
improve smoothness of the solution, and achieve good tracking performance of the
desired robot’s dynamics momenta (computed from contact wrenches).

The next subsection will describe a typical iterative inverse kinematics approach
and how it is updated within the proposed formulation to obtain a first guess
of a locally optimal trajectory of robot postures. Then, the strategies to handle
soft-nonconvexities and a looking-ahead horizon will be introduced.

4.2.1  Finding a Local Trajectory of Robot Postures

In this subsection, first a standard iterative inverse kinematics algorithm is intro-
duced and then its updated version, capable of generating trajectories of robot
postures that satisfy the conditions required to synthesize consistent kino-dynamic
whole-body movement plans.

Algorithm 1 describes the basic procedure in which a standard iterative inverse
kinematics (IK) algorithm optimizes a movement trajectory [170]. It assumes a
desired motion in cartesian space for reference points is given (such as the center of
mass and endeffector trajectories for a legged robot) and resolves the configuration
in joint space that achieves as close as possible the reference cartesian trajectories.
The desired center of mass motion trajectory can be obtained e.g. as explained in
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Chapter 3, and endeffector trajectories by interpolating between contact locations
using way-points to guide the endeffector motion through obstacle-free spaces.

Algorithm 1 Standard Iterative Inverse Kinematics Algorithm

Given:

¢ Desired CoM r{* and endeffector pds® trajectories Ve, t.

Initialize:

® ¢t = Qnom, to nominal or initial robot’s posture.

* Jt to the timestep for iterative inverse kinematics.
Optimize:

fort=1,..Tdo
do

¢ Update desired cartesian motion velocities

1

fe = = [ —x(a)], bl = 5 [Pl - pela)]

YT

e Find robot velocity solving the optimization problem
min QK ~J¢Mg) + Y Q(pe ~Ti'a)
off
* Update posture q; with velocity q during timestep dt.

while Q(i%) + Y, Q(pd®®) < e
end for

At each timestep t € [1,T] of the movement trajectory, a standard iterative IK
algorithm computes the required center of mass f4es and endeffector pdes velocities
that would move the robot from the current CoM r(q:) and endeffector pe(q)
locations to the desired CoM rd®® and endeffector pgﬁs configurations. Then, using a
local approximation of the velocities at the current robot posture q, the joint space
velocities are optimized so that they realize the desired cartesian space velocities.
Q(-) denotes a general quadratic penalty cost; ]gOM and ]f]ff denote the CoM and
endeffector jacobians at the current robot posture, which is updated at each iteration
by integrating the optimized robot velocity q over the timestep discretization Jt. At
each timestep, the algorithm converges when the norm of the required velocities or
its rate of change is below a desired threshold e.

Further improvements to the basic algorithm have been proposed in the literature,
such as the introduction of redundancy resolution strategies via optimal control
principles [171] (very successful in humanoid robotics [172, 173]) or the use of

strictly prioritized tasks using hierarchies [174, 175, 176].
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The following optimization problem is an adaptation of the iterative inverse
kinematics algorithm 1, originally described in a differential form [170], to be used
in the proposed architecture for the construction of a sequence of kino-dynamically
consistent robot postures. It is applied at each timestep t for a number of iterations
k until its convergence to the desired tolerance level.

kin gk gk gk | ki h{ — hges
min res (A6 A Gt ) + P (172)
vt,qf,q{(,ij{(,hb,pléyt (P eg(qt qt,qt (Ptrack p];t _ PSES
qr q ! Vi
st [pk| = |piet| | Jetve | ot (17b)
I{( rlt<71 Jgont
X 1
qF = A [‘ﬁ - qt—l] (170)
.. 17, .
af = 5 [af ] (17d)
K| Aqgk (17e)
K q4t
qft € @™, g™ ] Vj e R" (176)

At each timestep ¢, the algorithm builds a sequence of length k + 1 of kinematic
solutions ([qf, pel, -, [qF, plélt]) taking as starting point the kinematic solution
of the previous timestep ([q¢, pe;] = [qt1, Pet-1]) and as output the final kinematic
state ([qt, Pet] = [q¥, ple‘,t]), such that the total robot velocity required to generate
the kinematic motion from [qt.1, Pe,t-1] t0 [qt, Pet] satisfies the kinematic limits and
produces the desired momentum and cartesian endeffector motion.

In this optimization problem, the algorithm starts from a previous solution
(qf’l, ple(’jl, rffl), which can be modified using an instantaneous robot velocity
v; integrated during a small timestep 6t to compose a new solution (q¥, plg,t, k),
as shown in equation (17b). The newly composed solution will be updated so as
to satisfy joint limit constraints (17f), and will be used to update total velocities
(17¢), accelerations (17d) and generated robot momenta (17¢) in such a way that
regularization of the state and tracking performance of the solution are improved
as desired by the objective function (see equation (17a)). For simplicity, quaternions
representing base orientations can be treated as 3D-vectors using logarithmic and
exponential transformations as needed [177]. A, different from the small timestep
ot, corresponds to the total time elapsed between the solution at timestep ¢ — 1
and the one at f. Despite not explicitly shown, constraints on joint velocities or
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acceleration could also be enforced if required, in the same way as for joint limits.
Finally, the algorithm converges when the norm of the robot velocity v; or the
difference between two consecutive solutions falls below a desired threshold.

4.2.2  Optimizing a Time-Horizon Trajectory

The last subsection presented an approach to obtain a sequence of robot postures
capable of satisfying the required conditions to generate a kino-dynamically con-
sistent whole-body motion. This subsection takes this approach one step forward,
in the sense that by making use of the previously found solution, it is capable of
constructing a kinematic motion based on a time-horizon trajectory optimization.
One of the advantages of this improvement is the capability to look ahead and thus
of considering actions for long-term optimality that can improve e.g. the tracking
performance of momentum trajectories or achieve smoother movement plans. This
algorithm starts from a previously found locally optimal solution k — 1 and, iter-
atively updates it to improve momentum tracking and smoothness of the motion
plan. Formally, the following problem is solved:

i kin( gk gk gk | gl (hlt(_h?es> (18a)
min reg (¢ At Gt ) + Peons 18a
voakdkglnkpk, (T cone pk, — pdes
qF q ! Vi
st |pse| = [pect |+ | Jgtve |0t (18b)
* g1 JCoMy
. 1
ar = A {CI% - q}f—l} (18¢c)
1
.k Lk -k
qe = A {Qt - ‘lt—l} (18d)
{1{(} =A qk (18e)
= Aqqy
kg
q € [q"™, q"™] Vj € R" (18f)

In this optimization problem, the algorithm starts from a previous solution (q<~1,
plg/t’l, 1) such as the one obtained in the previous subsection, which can be
iteratively improved using an instantaneous robot velocity v; integrated during a
small timestep discretization 5t to compose an updated solution (qF, plg,t, 1Y), as
shown in equation (18b). The newly composed solution is also subject to kinematic
constraints such as joint limits (18f), and is used to update total robot velocities (18c),

accelerations (18d) and generated momenta (18e) in such a way that the problem
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objectives are optimized for long-term optimality. These goals might include e.g.
smoothness of the solution and good tracking performance of desired quantities
such as momentum and endeffector motion trajectories (see equation (18a)).

So far, the algorithm described is capable of producing kinematic movement
plans considering actions for long-term optimality. It could be further improved
using slack variables [29] or soft-constraints [55] to enhance convergence properties
or ease the finding of a solution. However, it would still be difficult to handle soft-
nonconvexities, such as those present in obstacle avoidance constraints [178, 179] or
manipulability objectives [180], because the nonconvex nature of these constraints
and objectives as well as the problem’s dimensionality would make it hard to solve
such a problem. Under this setting, the following subsection presents an alternative
to consider soft-nonconvexities, yet to conserve computational efficiency.

4.2.3 Incorporating Soft-Nonconvexities

This subsection presents an approach in which soft-nonconvexities, such as non-
convex terms in the objective function (e.g. rewards for staying away from singular
configurations) or nonconvex inequality constraints (e.g. those for obstacle avoid-
ance), could be taken into account in a trajectory optimization problem. The main
idea of the approach, inspired on how distributed or consensus optimization meth-
ods find a solution to a given problem [110], is to reformulate the nonconvexities of
the kinematics trajectory optimization as independent separate problems, whose
solutions can then be used as way-points in configuration space that bias an overall
solution towards those that satisfy the nonconvex constraints.

For instance, to solve a problem with obstacle avoidance constraints, one could
reformulate them as way-points through obstacle-free configuration spaces for
the endeffector motion. The approach could for example iterate between 1) a
whole-body motion optimization that attempts to find an overall solution close
to the in configuration space given way-points that satisfy obstacle avoidance
constraints, and then 2) a set of smaller distributed problems for each endeffector
that search for a solution that satisfies the non-penetration obstacle avoidance
constraint for each endeffector and as close as possible to the overall solution (this
projection over the feasible manifold can even in some simple cases be performed
analytically [111]). Naturally, the first iteration of the whole body optimization
could be performed without considering obstacle constraints. Then, the algorithm
iterates until a convergence criteria is met such as finding a feasible solution.

Before presenting the proposed approach, in the following a parenthesis is made
to motivate the approach by explaining the way in which a consensus optimization
algorithm solves a problem.
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Consensus Optimization

A general optimization problem can be written as the minimization of a
cost f(x), subject to a set of i constraints, that denote the membership of the
optimization vector x to the possibly non-convex sets S;.

min,  f(x) =  mingg f(x)+);gi(z)
st. x € S; st. zi=x Vi

In consensus optimization, each constraint x € S; is replaced by the indicator
function g;(z;), which is zero if the constraint is satisfied and infinity other-
wise. Additionally, the variables z; are used to make the objective separable
and the consensus constraints z; = x are introduced to make the variables
x and z; agree upon convergence. Using this canonical form, a consensus
algorithm can be derived by minimizing its Augmented Lagrangian, given by:

£= 109+ X (gi(20) +f (5= %) + 5 12 xI5)

where «; denote the dual variables of the consensus constraints, and the
quadratic terms robustify convergence. Out of the optimality conditions, the
following iterates for primal (x, z;) and dual variables (u;) can be obtained:

k+1 argmin,, {g,(z,-) + g Hz,- — x4 uk

Z;

2 .
2} ,Vi (19a)

2
2} (19b)

k-1 VT 25 B SRR
uf a2 X i (19¢)

X1« argmin, {f(x) + g ) szﬁl —x+ ui“
i

The form of these iterates is known as the scaled version of the algorithm,
because it makes use of the scaled dual variables u; = %. Notice that the

updates of consensus variables z; can be performed in parallel.

To sum up, a consensus method 1) benefits from parallel updates of its primal
variables z; (see equation (19a)) based on the projection of its desired value x* — uf.‘
over its feasible manifold g;(z;). Then, 2) it updates the primal variable x (equation
(19b)) so as to minimize its objective f(x) selecting values close to z; + u¥ Vi that
satisfy the constraints g;(z;). Notice that solving small distributed problems and
combining its solutions into an overall solution until consensus can be much less
computationally expensive than solving the joint problem. Also note that as this
first-order algorithm progresses, its iterates approach feasibility and its objective the
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optimal value; however the optimization vectors z; do not necessarily approach its
optimal value, but biased values xk — ui.‘ ; and thus the optimization vector x does
not converge to the optimal values.

What is very remarkable from this approach is the fact that it makes it possible to
formulate and solve an optimization problem in a different way and that by means
of this alternative way it is capable of building the solution for an optimization
problem that can incorporate soft-nonconvexities without the need of solving
the entire problem as a nonconvex one. In this way, part of the problem can be
solved exploiting its sparsity and convexity using a dedicated solver for convex
programming, and the other parts using a nonlinear nonconvex solver in the general
case. In particular, for the kinematics trajectory optimization problem, an overall
solution can be constructed by iterating between solving an instance of the whole-
body motion optimization problem as shown in section 4.2.1 or 4.2.2, and updating
the desired cartesian references for the endeffector motions such that they satisfy
obstacle avoidance constraints, as shown in the following.

An obstacle avoidance constraint can be expressed as the distance between an
obstacle and an endeffector position being greater than zero D(pops, Pe,t) > 0. This
constraint has to be satisfied simultaneously for all timesteps and endeffectors. In
the proposed approach, they can be updated separately for each endeffector using
the following optimization problem:

min Z Q(Pe,t - qe,‘[)
t

et
st. D(Pobssget) >0 Vit

such that it finds the set of points qet that are the closest ones to pe: through
which the original endeffector trajectories originally pass, but that satisfy obstacle
avoidance constraints. Notice that, the optimization problems that need to be solved
to find the points qe are still nonconvex, but smaller and can thus be solved faster
than a big single joint problem. Further, note that the whole-body motion trajectory
is then optimized so as to realize a collision free trajectory, which is much easier than
directly finding a collision-free trajectory within whole-body joint configuration
space. Notice as well that endeffector trajectories need to be updated only if there is
a collision. A similar procedure could be applied at each timestep to bias the robot
posture towards that one that maximizes the robot’s manipulability a a function of
the set of contacts.

To sum up, Figure 21 summarizes the algorithm for the optimization of a sequence
of robot postures that satisfy the requirements to generate consistent kino-dynamic
whole-body motions.
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Kinematics Trajectory Optimization
- (h{‘ —hf“?
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FIGURE 21: Summary of the kinematics optimization algorithm: 1) whole-body trajectory op-
timization, and 2) reformulation of soft-nonconvexities as way-points in obstacle-
free configuration space.

des min Z Q(pg,ets - ple(,t)
t

4.3 EXPERIMENTAL RESULTS

This section will present experimental results about the optimization of kinematic
movement plans using the algorithms previously described. Its capabilities and
limitations are tested in several multi-contact scenarios including several gaits for a
quadruped robot such as walking, trotting, galloping and many others.

4.3.1  On the Optimization of Kinematic Movement Plans

This section demonstrates the capabilities of the proposed algorithms at generating
whole-body kino-dynamically consistent motions. The algorithm of section 4.2.2
was used to optimize motions for the quadruped robot. Figure 22 shows a few
snapshots and gait graphs of these optimized gaits. Later, two motions will be
examined in detail: a transverse galloping motion (that involves simultaneous flight
phases for all endeffectors) and an acrobatic motion (where two endeffectors always
remain in contact and the other two have a flight phase).
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(a) Walking
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(b) Walking Trot

-

(c) Walking Pace

(d) Canter
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(e) Transverse Gallop

-- |

(f) Rotary Gallop

FIGURE 22: Examples of kino-dynamically movement plans: Several optimized gaits for a
quadruped robot are shown, including walk, trot, pace, canter, transverse- and
rotaty gallop. To the left, gait graphs display in color the flight phases of each
endeffector during one stepping cycle. BR denotes the back-right foot, BL the
back-left foot, FR the front-right foot, and FL the front-left foot. To the right,
snapshots of the optimized movement plans during a gait cycle are shown.
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FIGURE 23: Whole-body motion and contact force trajectories of a transverse galloping move-
ment. A full description of the plots in this figure are given in section 4.3.1.1.

4.3.1.1  Transverse Galloping Motion

This section analyzes a galloping motion, which is a very fast and dynamic move-
ment and thus allows to test the capabilities of the approach proposed in section
4.2.2 at generating whole-body motion trajectories consistent with the required
dynamic momentum (computed from gravitational and external contact wrenches)
in a very challenging motion. A galloping motion is a gait that involves flight phases
for three and four endeffectors simultaneously with only short stages where at most
there are two endeffectors simultaneously in contact. Figure 22e depicts its gait
graph, where flight phases are visualized in color for each endeffector, while stance
phases in white color along a gait cycle.

Figure 23 shows optimization results for a transverse galloping motion with flight
phases for all endeffectors simultaneously, as well as its corresponding momentum
trajectories normalized by the robot mass. The top three rows show the matching of
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FIGURE 24: Comparison of joint velocities in a kinematic optimization that does and does
not consider a time-horizon. BR denotes the back-right endeffector foot, BL the
back-left foot, FR the front-right foot, and FL the front-left foot. While HFE
denotes the hip-flexion-extension joint and KFE the knee flexion-extension joint.

momentum trajectories computed kinematically and dynamically. The Y direction
is for forward motion, Z for upward-downward movements and X the transversal
direction around which base and joints rotate generating angular momentum.
Vertical forces for all endeffectors (normalized by the robot weight) as well as
optimal durations of timestep discretizations are shown in the two bottom plots.
Notice that momentum trajectories DynMom computed from dynamic quantities
(external and gravitational forces) and KinMom computed from kinematic quantities
(robot postures and velocities) can be brought to agreement, despite the dynamic
motion being very hard to optimize. Key elements for the algorithmic convergence
are the ability of the dynamics optimizer to adapt timestep discretizations during
stance and flight phases, as well as the ability of the kinematics optimizer to consider
a time-horizon when updating the trajectories of robot postures and velocities.

Notice as well in Figure 24 that an additional benefit of considering a sequential
convex approximation of the time-horizon kinematic optimization problem is that
the degree of smoothness in joint trajectories can be improved, leading to motion
trajectories that are potentially easier to track and execute.
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FIGURE 25: Whole-body motion and contact force trajectories of an acrobatic movement
where the quadruped robot stands in only two feet. A full description of the plots
in this figure are given in section 4.3.1.2.

4.3.1.2  Acrobatic Motion - Standing in Two Feet

The acrobatic motion, as the previous one, is also a fast and dynamic movement. In
this motion, the quadruped robot keeps always its front feet in contact, while the
other two are lifted up simultaneously. To this end, the robot moves its center of
mass forward close to the line formed by the front feet and adapts the timings in
which the motion is performed, so as to generate a consistent whole-body motion.

Figure 25 displays the optimization results for an acrobatic motion where the
quadruped robot stands in only two feet. In the top three rows, momentum tra-
jectories computed kinematically and dynamically are shown. The Y direction is
for forward motion, Z for upward-downward movements and X the transversal
direction around which base and joints rotate generating angular momentum. Verti-
cal forces for all endeffectors (normalized by the robot’s weight) as well as optimal
durations of timestep discretizations are shown in the two bottom plots. Figure 25
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FIGURE 27: Execution on physical simulator of obstacle avoidance task.

shows the matching of kinematic and dynamic momentum trajectories (normalized
by the robot’s mass). Note that endeffector contact forces are equal for front and
back feet because of the symmetry of the motion. It is worth mentioning that being
able to optimize over time, helps to reduce the values of momentum that need to be
kinematically generated (for instance, by reducing the flight time for getting up or
down), and optimizing over a horizon makes it easier to find such a kinematic tra-
jectory able to generate the desired momentum. Finally, Figure 26 shows snapshots
of the motion.

4.3.1.3 Obstacle Avoidance Task

This section shows a task where a humanoid robot plans and executes a motion
where it needs to get out of a box and thus needs to appropriately decide on the
endeffector trajectories that will allow it to generate the motion without colliding
with the environment. It does so by combining its ability to discover a motion
(section 4.2.1) and avoid obstacles (section 4.2.3) Snapshots of this simple yet
exemplary motion are visible in Figure 27 and show the proposed approach’s ability
to find a collision free motion.
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FIGURE 28: Statistics about the relative time required to solve a kinematics optimization
problem in comparison with the time required to solve the corresponding time-
optimal dynamics optimization problem of the same size as well as the achieved
levels of precision to kinematic feasibility upon convergence.

4.3.2  Solving Time and Convergence

This section presents statistics about the required time to solve a kinematics optimiza-
tion problem and the achieved values of precision upon algorithmic convergence.
Figure 28 summarizes these two results.

To the left, it shows statistics about the relative time required to solve a kine-
matics optimization problem in comparison with the time required to solve the
corresponding time-optimal dynamics optimization problem of the same size. For
instance, for kinematic optimization problems that consider a time-horizon of 200
timesteps, the solving time is twice the time required to solve a dynamics trajectory
optimization problem of the same size. To the right, this figure shows the errors in
kinematic feasibility achieved once the algorithm has converged, i.e. the difference
between the center of mass an momentum trajectories generated by a kinematics
and a dynamics optimization problem. To generate these statistics, the problems
solved include those in Figure 22 and Figure 26, which are 7 in total. Out of these
optimized motions, the best and worst outlier results were removed and then the
rest of samples were averaged to generate the results shown.

Notice that since the motions used to generate the statistics using the algorithm
described in section 4.2.2 are still simple in terms of obstacle avoidance constraints,
the algorithm only requires one pass. Also note the tendency that the time required
to solve a kinematics trajectory optimization problem is more expensive than the
time required to solve the time-optimal dynamics optimization problem, around
twice as much expensive. However, it only required one iteration of kino-dynamic
alternation with fixed contacts to find a solution to the described levels of precision.
The implementation of the kinematics optimizer was done based on the fast analyti-
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cal derivatives of rigid body algorithms provided by [181]. It is worth highlighting
that the algorithm described in section 4.2.1 is less computationally expensive and
is still able to generate solutions that converge to the desired precision of kino-
dynamic feasibility; however more kino-dynamic iterations might be required to
converge to a solution easily executable on a physical simulator.

4.4 DISCUSSION

The presented experiments have shown that the proposed approach for kinematics
optimization is capable of synthesizing a whole-body motion trajectory that satisfies
the constraints for kinematic feasibility as well as the momentum tracking objectives
required to generate a kino-dynamically consistent movement plan.

From a computational point of view, the algorithm, as shown in the experimental
section, scales to complex and large optimization problems. It is built based on the
implementation of an interior-point method (based on [104]). This method works
well for solving the problems described in section 4.2.2. However, to obtain an initial
solution based on the method described in section 4.2.1 there are alternatives that
should work faster. For instance, an interior point method cannot be warm-started
as an active set one [182], which could be extensively exploited in this problem
given its sequential nature to significantly speed up it solution.

In comparison with other approaches, the proposed method is a middle-ground
one between: on the one hand, very flexible but also computationally costly methods
based on the dynamics description of a rigid-body system [29, 55, 84] and on the
other, faster methods for kinematic optimization of fixed-base manipulator trajecto-
ries [168, 169]. Thus, the proposed method offers a trade-off between flexibility or
diversity of motions that can be synthesized and the time required to find such a
solution. It is hard to justify the computational advantages of solving this problem in
a distributed manner, given the limited number of experiments performed. But, the
vision is to incorporate e.g. other optimization criteria such as the maximization of
manipulability of center of mass and endeffectors [180] at given contact poses, and
in cases like this, the distributed nature of the algorithm would come in very handy,
as some problems could be independently solved and its information incorporated
into a consensus problem, which is less computationally expensive to solve than a
joint trajectory optimization one.

4.5 CONCLUSION

This chapter has presented a structured and efficient algorithm for kinematic plan-
ning of whole-body motions, and has shown experimental evidence that evaluates
its performance at generating a variety of motions in several multi-contact scenarios
traversed by a legged robot.



Chapter

FEEDBACK CONTROL DESIGN

Abstract

The physical interaction of robots with an uncertain environment through contacts
is at the heart of many robotic applications. Environmental uncertainty can happen
in the form of external disturbances (noise in the process model), but can also
come from the lack of precise knowledge of the world (noise in the measurement
model). Typically, feedback controllers ignore these noise statistics, which is a
reasonable assumption for systems under low noise levels; however, a strategy able
to reason about noise and the cost of this uncertainty would be more appropriate
for systems under large noise intensity. Taking this observation into account, this
chapter presents a feedback control architecture for a humanoid robot that exploits
the kino-dynamic nature of movement plans using the superposition property
of impedances to optimally execute whole-body motions, and furthermore, the
proposed architecture can benefit from the use of feedback controllers sensitive to
measurement noise to synthesize locally-optimal policies, whose compliance is a
function of the uncertainty. The algorithm for risk-sensitive control exploits in the
first place an exponential transformation of the performance criteria to synthesize
policies that do not only optimize the expected value of the performance criteria,
but also its higher order moments (cost of uncertainty), and second it includes the
dynamics of an observer in such a way that the control law explicitly depends upon
the covariance of estimation errors and process noise. Experimental results will
show that high measurement uncertainty leads to low impedance behaviors, a result
in contrast with the effects of process noise that creates stiff behaviors. Simulation
results on a humanoid robot will also show the benefits of the proposed architecture
over traditional approaches to control a humanoid robot that physically interacts
with the environment under uncertain contact locations.

Note:
The contents of this chapter constitute an extended version of the conference paper [129].
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FIGURE 29: Control diagram of a humanoid robot emphasizing where an how the two sources
of uncertainty considered (process and measurement noise) enter the system. h
denotes the robot’s dynamic state (center of mass and centroidal momentum) and
q, q denote the robot’s kinematic state (posture and velocity); subscripts denote
measured, estimated, planned and initial states. The impedance controller (feed-
back control architecture) is composed by 1) noise-sensitive feedback controllers
that define a control policy to optimally realize desired kinematic and dynamic
movement plans coming from a high-level planner, and 2) by an inverse dynamics
controller that maps desired kino-dynamic behaviors to robot torques 7j via a
convex constrained optimization problem that satisfies all physical constraints.

5.1 INTRODUCTION

One of the key elements in the way to fulfill the vision of robots that achieve human
levels of competence at movement generation and control is the ability to safely
interact with a dynamic environment by optimally adapting to its uncertainty. In this
spirit, this chapter on the one hand proposes a feedback control architecture for the
successful execution of kino-dynamic behaviors and on the other it studies the effect
of considering measurement uncertainty upon the compliance or stiffness behavior
of control policies in optimal control problems that involve contact interactions.
Figure 29 shows examples on a humanoid robot of the two sources of uncertainty
analyzed in this chapter. First, external disturbance forces physically perturb the
robot (as noise in the process model) and thus have a direct influence over its
dynamic evolution. The goal of an impedance controller is then to scale down its
effects by using a certain level of stiffness. Secondly, uncertainty in the belief about
the robot’s state inferred from noisy sensor readings (noise in the measurement
model) has no direct effect over the system actuation, but instead it influences
the decision making process of how control signals are selected based on the
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uncertain knowledge about the robot’s state. For instance, in a hand-reaching task
that involves an uncertain distance to the contact location due to visual noise, the
reaching motion would require a gentle touch instead of an aggressive approach in
order not to cause any self-harm.

As it will be shown within the experimental section, in general an increase in the
magnitude of an external disturbance implies and increment of the robot’s stiffness
to maintain the desired tracking accuracy, while an increase in the magnitude of the
uncertainty level on a measurement implies an increment on the level of compliance.
Then, the distinction between the two sources of uncertainty examined in this chap-
ter is very important, as it brings to mind the idea of modeling contact interactions
between a humanoid robot and its uncertain environment (a fundamental problem
in robotics [1]) as an optimal control problem with measurement uncertainty, out
of which optimal impedance behaviors can be synthesized as a function of the
uncertainty about the environment.

5.2 RELATED WORK

This section presents related works and discusses how the proposed architecture
for feedback control distinguishes itself from other state-of-the-art techniques.
Optimal control approaches based on Bellman'’s Principle of Optimality [36],
such as iterative Linear-Quadratic Gaussian (iLQG) [65] or Differential Dynamic
Programming (DDP) [31, 39, 68], are very important in robotics due to its success
at synthesizing complex motions for large dimensional systems [30, 66, 67]. These
methods combine the benefits of a local method (as they maintain a single nominal
trajectory) with those of a global method (as they improve the nominal trajectory
iteratively along its neighborhood based on the optimality principle), which allows
them to overcome to some extent the curse of dimensionality [63] of a global method
and remain computationally efficient as a local one. The algorithm used in this
chapter for the synthesis of feedback control policies belongs to this family with the
added benefit that it can take into account and reason about measurement noise.
Generally speaking, these methods estimate the solution of the underlying non-
linear problem by iteratively solving a Taylor approximation of it [67, 68, 69, 183].
The linear (in the dynamics) and quadratic (in the cost) nature of this local problem
description makes it possible to find solutions efficiently using a computationally
tractable algorithm. However, this local approximation also poses limitations such
as ignoring the effects of noise over the cost and dynamics, because it only considers
the mean of a performance measure (expected value of a quadratic cost) for systems
under purely additive noise, for which the solution of stochastic and deterministic
problems is the same (Certainty Equivalence Principle). In other words, the esti-
mator takes care of uncertainty by itself and control design is independent from
noise. The Certainty Equivalence Principle is reasonable for systems under low
noise levels; however, the same is not necessarily true for systems with large noise
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intensity where an approach sensitive to noise and the cost of this uncertainty
would be more appropriate. This reasoning leads us to favor risk- or noise-sensitive
approaches over neutral ones within the proposed architecture for feedback control.
Furthermore, risk-sensitive approaches provide robustness guarantees such as a
small gain theorem and a stochastic robust stability result [184].

Risk-sensitive methods capture the effects of uncertainty upon controls by inval-
idating the assumptions of the Certainty Equivalence Principle [185]. They make
use of formulations that preserve the computational efficiency, but at the same time
make controls dependent on statistical properties of the noise. For instance, [65,
71, 72] proposed to consider multiplicative noise in the process and measurement
model parameters to study movement and control of a bio-mechanical arm where
muscle models included multiplicative noise. Other different approaches exits [186],
but the one taken in this chapter is the use of a non-quadratic performance criteria,
able to capture noise effects on higher order statistics of the performance criteria.

Starting from a LQG controller (linear dynamics, quadratic cost and Gaussian
additive noise), [70] introduced a method to consider higher order statistics of
the cost by using an exponential transformation of the original quadratic perfor-
mance criteria, and named it Linear-Exponential Gaussian (LEG). A LEG controller
explicitly depends on process noise statistics, and is thus similar to LQG at low
noise levels, but greatly differs as noise becomes larger. [73] extended the idea
to nonlinear systems using an iterative method and illustrated risk-seeking and
risk-averse behaviors in a continuous-time car on a cliff problem. Further, [187]
presented a unified theory of linearly solvable control including both standard and
risk-sensitive stochastic optimal control (SOC) problems for systems under process
noise.

Later [74, 75, 76] considered systems under measurement noise and were able
to find finite dimensional controllers in two special cases: when the objective
depends only on the final state and when there is no process noise. A general
solution of the SOC problem with measurement uncertainty was proposed in [77]
for continuous time and in [78] for discrete time. The results in these works rely on
the novel definition of risk-sensitive estimators (similar in spirit to noise-sensitive
controllers), but for which it is not clear how the new mathematical construction of
the estimators will affect in practice the control of a humanoid robot. For this reason,
the architecture proposed in this chapter favors the formulation presented in [129],
where measurement noise-sensitive controllers can be derived without redefining
estimators. In this approach, as in [73], the nonlinear problem is sequentially
approximated and risk-sensitive controllers are designed for the problem’s Taylor
approximation. However, to consider the effects of measurement uncertainty, it
makes use of an extended dynamical system composed of the control and estimation
problems [188, 189, 190]. The proposed approach limits the amount of information
available for constructing the control policy to statistics that can be captured in the



5.3 PROBLEM FORMULATION

state estimate (mean and variance), but gains flexibility at defining the performance
criteria and can capture simultaneously process and measurement noise.

The architecture for feedback control presented in this chapter is based on the
previous problem formulations [23, 129], and presents the following contributions:

o A theoretical extension of recent work on risk-sensitive control [73] to con-
struct feedback control laws that explicitly depend on statistical properties of
measurement uncertainty by incorporating a state observer.

¢ The successful application of the proposed formulation to track and control
the execution of kino-dynamic movement plans on a simulated humanoid
robot shows that 1) the approach can optimally adapt impedance behaviors to
traverse uncertain terrains (favorably suggesting that contact interaction tasks
could be better formulated as optimal control problems with measurement
uncertainty) and 2) that the proposed architecture for feedback control design
with sensitivity to measurement uncertainty is applicable to high-dimensional
robotic systems, which is generally not the case for noise-sensitive algorithms.

Section 5.3 presents background material for the synthesis of risk-sensitive feed-
back controllers for systems under process noise [73] and formulates in a general
way the problem of interest including measurement uncertainty. Section 5.4 re-
minds the algorithm for noise-sensitive feedback control. Finally, in Section 5.5
the proposed architecture for feedback control and stabilization of kino-dynamic
motion plans is discussed. Section 5.6 presents experimental results including the
stabilization of optimal motions in a physically simulated humanoid robot. Finally,
discussion and conclusions of this chapter are presented in Sections 5.7-5.8.

5.3 PROBLEM FORMULATION

This section presents the formulation of the optimal control problem with process
and measurement noise considered in this chapter as well as recalls previous
results [70, 73] useful to understand the derivation of the proposed algorithm.
The following stochastic differential equations (SDE’s) define the dynamical
evolution of the state and measurement models of a general nonlinear system:

dx =f(x,u)dt + g*(x, u)dw (21)
dy =h(x,u)dt + g¥(x,u)dy (22)

Let x € R”, u € R™ and y € R” be state, control and measured output; dw, dy
zero-mean Brownian motions with covariance Qdt, I'dt respectively. f(x,u) and
h(x,u) denote the drift coefficients or deterministic components of process and
measurement models; and g*(x,u), g¥(x,u) denote the diffusion coefficients of
process and measurement models that encode the problem’s stochasticity.
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In optimal control, usually the objective consists in minimizing the performance
criteria J™, which is a functional of the control policy u = 77(x):

T 00) = By, + [ Lo w it @)

where L(x;, ut, t) denotes the rate at which cost increases and ®(x;,) the measure
of performance at the final time t f and state x; Iz In general, the mean of the
performance criteria E[.7”] would be minimized; however, this is not enough to
analyze the effects of uncertainty upon optimal control policies, as a term is required
within the performance measure to capture the cost due to uncertainty. Tools from
the risk-sensitive control literature make this possible as they allow to include higher
order statistics of the performance criteria 7 in the optimization of control policies,
e.g. via an exponential transformation of the original performance criteria [70]. The
risk-sensitive cost would then be given by the following expression:

J = min E{exp[c.7 "]} (24)

J™ can be considered as a random variable functional of the control policy u = 7(x);
o € R is the risk-sensitive parameter; [E the expectation operator; and finally J
denotes the risk-sensitive cost that corresponds to the moment generating function,
an alternative specification of the probability distribution of the random variable
J7 [191]. The rest of this section reminds two previous results from [70, 73]
useful to the architecture proposed in this chapter: the meaning of the exponential
transformation of the performance criteria and the form that the Hamilton-Jacobi-
Bellman (HJB) equation takes under this exponential transformation.

Meaning of the Exponential Transformation

It has been shown [73] that the logarithmic transformation of the risk-sensitive cost
is proportional to a linear combination of the moments of the objective J

2
log ) & ELT ™) + Z 2l ™) 4+ il T 4 - - (25)

where 5, 3 denote second (variance) and third (skewness) order moments of J7,
respectively. The parameter ¢ defines the role of higher order moments either as a
penalty or a reward, which give rise to risk-averse or risk-seeking behaviors. Positive
values of ¢ imply that control effort can be increased to narrow confidence intervals.
The lower the value of o, the lower the weight given to higher moments and thus
the wider the confidence intervals. For negative ¢, strong control effort is avoided
in the presence of poor information (high variance), higher order moments even act
as a reward leading to risk-seeking solutions.
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Hamilton-Jacobi-Bellman (H]B) Equation under the Exponential Transformation
Another important result [73] is the form taken by the Hamilton-Jacobi-Bellman

equation under the exponential transformation. Under only the process model
dynamics of eq. (21) and objective function given by (23)-(24), it takes the form:

¥ = min{ L+ V, ¥+ %Tr (VXX‘I’gXQgXT) +gVX‘FTgXQgXTVx‘I’ } (26)
ug

Usual HJB equation Term due to uncertainty

The value function ¥ is a function of state x and time ¢, that satisfies eq. (26). It is
composed by the usual HJB eq. for a stochastic system with cost rate L due to the
current state and control, the free drift and control benefit costs, and the diffusion
cost where noise enters the system but without effect upon controls. The new term
due to uncertainty captures the effects of noise over the statistical properties of the
cost and because it is a function of the state and noise, it makes controls explicitly
dependent on the process noise covariance Q). For ¢ = 0, the problem reduces to
the minimization of the expected value of the performance criteria E[J] (25)-(26).
It is worth highlighting once more that these results model only process noise.

Problem Statement

Finally, the problem definition can be stated as follows: Under the state and mea-
surement dynamics (eqns. (21)-(22)), and risk-sensitive cost to be minimized (eqns.
(23)-(24)), the goal is to find the optimal control law 77* that minimizes the cost
J™(xo, to) for the stochastic system in the presence of additive process and mea-
surement noise. The globally optimal control law 77*(x, ) does not depend on an
initial state. However, finding it is in general intractable. Instead, it suffices to find
a locally-optimal solution that approximates the global one in the vicinity of a
nominal trajectory xj'. Since the nominal trajectory depends on the system’s initial
state, so does the control law. Note that this formulation differs from the one used
in the previously shown results [73], because it includes a measurement model;
however, it will be shown that it is still possible to exploit these results under a
suitable reformulation.

5.4 ALGORITHMIC DERIVATION

This section’s goal is to describe how a measurement model is included into the
problem in such a way that results on risk-sensitive control with process noise [73,
187] can be used to derive feedback controllers for problems with measurement
uncertainty. The main idea is to extend the state dynamics (21) with the dynamics
of a state estimator (22) and by means of a forward propagation of measurement
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uncertainty along a nominal trajectory to precompute optimal estimation gains. This
allows then the use of standard techniques to compute backwards in time optimal
feedback controllers [68] for the composite system (state and state estimate dynam-
ics). The rest of this section presents a detailed derivation of the continuous time
algorithm, as well as its formulation in discrete time for computational purposes.

5.4.1  Continuous-Time Algorithm

At each iteration, the algorithm begins with a nominal control sequence u} and
the corresponding zero-noise state trajectory xj’, obtained by applying the control
sequence to the system through the dynamics x = f(x, u) with initial state x(0) = xo.
Then, following standard iterative control approaches [68, 69], a linear dynamics
approximation and a quadratic cost approximation are composed along the nominal
trajectories x} and u}, in terms of control and state deviations du; = u; —u},
Oxy = x¢ — x}. Linearized dynamics and measurement models evaluated along the
nominal state and control trajectories x}, u} then become:

d(§xt) :(At5Xt + Btéut)dt + C[da}t (27)
d((sylﬁ) :(Ftéxt + Eféut)dt + Dtd’yt (28)
The system’s matrices are defined as follows:
A = af(x,u)/axT\x;xlu;« B; = af(x,u)/auT\x;«,u? Cr = g"(x, ) |xy u
Fi =oh(x,u)/ox [y Er=0h(x,u)/ou’ [y Di=g"(x u)lgu

Similarly, a general quadratic approximation of the cost J can be written as:

. 1 1
0(x,u,t) =q¢ + théxt + rtT(Sut + EéxtTQtéxt + foTPtéut + E(SutTRtéu, (29)

1
Le(x) =q5 + q}éxt + E&xtTQféxf (30)

By including the dynamics of a state observer (22) within an extended dynamical
system composed of the control and estimation problems, noise of the measurement
model is explicitly considered when computing the optimal control law and previous
results can be extended, while remaining computationally efficient. The observer
could in principle be of any type, but for simplicity an Extended Kalman Filter
(EKF) is used in the following derivation. Its dynamics are given by:

d(é)’z[) :(Atéﬁt + Bf&l.lt)dt + K[ [d(éyt) - d(éi’t)]

More compactly, the control-estimation dynamics of the extended dynamical system
(composed by state and state estimate dynamics) can be written as:
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Optimal Control Problem
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FIGURE 30: This figure depicts the proposed approach to approximate a solution for the
combined control-estimation problem for the discrete case.

d(éxt) _ Atéxt + Btéu[ dt + Ct 0 dwt (31)

d((s)?t) At(S)’k[ + Bt5Ut + K[Ft (5)([ — (S)’Zt) 0 KtDt d')/[
——

d(5%;) F(6%;,0uz) g(t)

where 6%; is the estimate of dx;, and 6%; represents the vector [6x;,6%;]. Eq. (31)
is bilinear in K; and 6%;. Below, a detailed derivation is shown. However, the
algorithm’s main idea is to use this special problem structure to iteratively find a
solution. It first forward propagates measurement noise and computes estimation
gains K; along the nominal trajectory. Then, using fixed estimation gains, it does
a usual backward pass to compute feedback controllers [68, 69]. This eases the
design of a locally optimal estimator and controller, while still considering the
effects of process and measurement noise. As can be easily noticed, (6%, 0u;) and
&(t) correspond to what in (26) was called f and g* respectively. However, now they
include measurement noise by incorporating the dynamics of the state estimator.
Figure 30 graphically depicts a simple sketch on how the proposed approach
approximates a local solution for the combined control-estimation problem. Because
it is linear in the states x, %, or in the estimation gains K, but not in both due to
its nonconvex bilinear nature, an iterative approach is used to exploit this fact
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by decomposing the combined problem into two linear more easily solvable sub-
problems, but that are still capable of finding a local solution for the combined
problem. The optimal control problem is solved using its cost plus an additional
one that regularizes new optimal trajectories towards previous ones (to remain close
to the region of validity of the dynamics linearizations and estimation gains). As
constraint it makes use of a dynamics model linear in its states given the fact that
estimation gains K'~1, output of the optimal estimation problem, are considered
fixed here. The optimal estimation problem as usual tries to minimize the outer
product of the error dynamics between the state and state estimate (x, — X). The
constraints used are the usual definitions of the dynamics models. It would be
possible to solve the estimation problem along the entire state trajectory to exploit
all the available information [192]; however, this approach approximates its solution
by a sequence of minimizations at each timestep that fall back to estimation by
means of the well known Extended Kalman Filter. In the optimal estimation problem,
its cost acts also as a regularization term towards the solution of the control problem,
and thus this common consensus cost supports the algorithm convergence.

5.4.1.1  Estimator Design

An Extended Kalman Filter in continuous time is used for simplicity. Note however
that other estimators could be used as long as it is possible to extract a sequence of
estimation gains from them [193]. In this EKF, the main idea is to find the gain K;
that minimizes the expected outer product of the error dynamics between state and
state-estimate dynamics [123]. Error dynamics are given by:

d(ber) = d(6x;) — d(o%:)
= Asbeidt + Crdw; — Ki[d(8y) — d(69+)]
= (At — KiF;)deidt + Crdw; — K Dydy;
Then, the optimal estimation gains that minimize
¥§ =E[d(de;)d(de;)T]
=(A; — KiF)Z{ + 2 (A — KeFp)T
+K:DI'DI K] + ;0 CT (32)
are given by
K, ==¢F/ (D,I;D}) ! (33)
They are updated at each iteration in a forward pass along the nominal trajectories,
and are then fixed for the backward pass. In this way, the combined estimation and
control system (31), is linear in 0X; and éu;, which allows to make use of the HJB Eq.
(26) to compute a control law 7t sensitive to both process and measurement noise of

the original system. For notational convenience the following shortcuts are used in
the rest of this section: a; = CthCtT and s = KtDtl"[DtTKtT.
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5.4.1.2  Controller Design

The locally-optimal control law is an affine function of the state estimate du; = 1; +
L;6%;. The HJB equation for this system that allows to derive control laws is given by
(26) (just remember that f and g* correspond now to f and g respectively), the cost
by (29)-(30) (remember that the HJB equation under the exponential transformation
is used; thus, the cost need not to be exponentiated), and the dynamics by (31). The
Ansatz for the value function ¥ (0%, t) is a quadratic form

T T
x xx X
‘P(&)‘q, t) _ 1 5Xf Sf StA 5Xf + (5xt StA +5
2 lo%,| (S sf[o&]) [o%] st
and the partial derivatives of the Ansatz ¥ are given by
. T, . T
X XX & X
oY= & OX¢ St S.tA Xt n Xt StA s
2 \6%] |88 8] |o%] 6w |sf
x xX X
V&i‘P _ Sf StA §Xt + StA
S Sf | [0k s;
x x%
Visex¥ = {Sf stl
St S

Right super-scripts x and # for S and s denote that they are sub-blocks that
multiply x and £, respectively. Under the assumed linear dynamics and quadratic
cost and value function, the HJB equation can be written as follows: The left-hand
side (LHS) corresponds to the time derivative of the value function and is given by

1 . 1 N Yo .
- iéxtTSféxt - E(S)‘(tTSféﬁt — OxI 8¥% 6% — oxT 87 — 0%] 5T — &4
and the right-hand-side (RHS) corresponds to the following minimization

1

) 5utTR,(5ut

1
= r?in {qt + qtréxt + rtTéuf + Eéx,TQféxt + éxtTPtéut +
uy
+ (SFox; + SFo%; + s7)T (As0x; + Biduy)
+ (S ox; 4 % + s7)T (A0 + Bidus + KiF (0x; — 0%¢))

. o 1
+ %(Sf&xt + 7% + sF) Ty (SFox; + SFEo%; +s7) + ETr (Sfat)

- - - - - . 1 .
+ 7 (SF0xs + S10% + 1) Br(SFox: + S{o%: +sF) + S Tr (S£B1) }
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In order to perform the minimization of the right-hand side expression above, its
control dependent terms need to be analyzed. They are given by:

1 N
Viu, :iéufT R; ou; +0uf (1 + B (s,’f + sf) +
H; “
8t

(PT+B7 (57 +5")) oxi + BY (S +7) o%1)

Gf (;«f

The above expression is quadratic in the controls du; and is thus easy to minimize.
However, the minimum depends not only on the state estimate 6%;, but also on
the state dx;. The algorithm presented in this chapter assumes however not to have
access to full state information, but only to a statistical description of it, given
by the state estimate. Therefore, in order to perform the minimization above, the
expectation of Vs, over 6x; conditioned on J%; is taken.

Ejy, o5, [Vou,] = %(5utTHt5ut +0u (g + (G} + G )o%)

This means that the cost of uncertainty due to measurement noise, considers only
the effects of mean and variance of the measurement (captured by the EKF) when
evaluating noise effects on the statistical properties of the performance criteria.
Consequently, the risk-sensitive control law, considers only as cost of measurement
uncertainty the one that can be computed by means of the state estimate, i.e. the
one that can be extracted from using mean and variance of the state estimate and
neglecting higher order terms. From the above expression, the minimizer can be
analytically computed. In case of control constraints, a quadratic program can be
used to solve for the constrained minimizer [31]. In both cases, the minimizer is an
affine functional of the state-estimate. For the unconstrained case, it is given by

Sup =1 + Lio% = —H; 'g; — H; (G} + Gf )% (34)
Vsu, can then be written in terms of the optimal control as
Vi =508 (GITH;'GF — G HGF) 6%,
ox{ GYH (G + Gf) o — %g? Hi'gi—
0! (GY)'H; g — 03] G H g,
The negative coefficients in the terms of V;,; are the benefit of control at reducing

the cost. It should be noted that even setting measurement noise to zero does not
give a control law equivalent to what was found in [73]. It should be clear from
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(34) that mathematically they are not the same. However, it is worth pointing out
that, [73] considers neither measurement noise, nor the combined effect of process
and measurement noise over optimal controls. In the presence of measurement
noise, this control law has more conservative gains than [73], in order to remain
compliant enough for the measurement noise level. Writing these terms back into
the right-hand side of the HJB, the minimization can be solved and it can be verified

that the quadratic Ansatz for the value function remains quadratic and is thus valid.

Finally, matching terms in left-hand and right-hand sides of the HJB equation, the
backward pass recursion equations become:

8% =Q; + B(A, S7) + B(SF, )+
o(SiT St + S piSH)
~${ =B(x,Sf) + GTH, 'G} — G} 'H; 'G{ +
o(s st + 57 BiSf)
~87* =ATS + 8 + 7/'8f — GITH 1 (GF + Gf)+
o(SF S} + SFBiS])
—8} =qi + Afsf +7/s{ — GITH g1+
o (i s + S} pisf)
8] =5 — GI H; g+ o(SI* wsi + { pis)
=8 =q; — %gtTHflgt + %Tf (Sf“r + S’fﬁr) +
2 (stTwsi +si" pist) (35)

where for convenience of presentation the following definitions were used: B(X,Y) =
XTY +YTX, 7 = K;F; and x; = A; — K;F;. The integration runs backward in time
with 8§ = Qy, Sf=0,8=0,sf =qssf =0ands, = qy- Despite being long, it
is a very simple to implement solution, similar to any other LQR-style recursion.

Remark The effects of process and measurement noise appear in pairs because
their Brownian motions were assumed to be uncorrelated (see g(t) in (31)). However,
their combined effect is not just as having higher process noise. Estimation couples
their effects, and this can be seen in the recursion eqns. that do not only contain
costs for the state and its estimate S} and S, but also the coupling cost S}*, whose
products with the covariances of process noise and estimation errors determine how
process and measurement noise affect the value function and therefore the control
law. As will be seen in the experimental section, the higher the process noise, the
higher the feedback gains, while the opposite holds for measurement noise.
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5.4.2  Discrete-Time Algorithm

This section will briefly derive a discrete-time version of the algorithm, amenable
for computational implementation and control, but that remains similar in spirit to
the continuous time version. Note that all the details that can be easily recovered
from the continuous case discussion are skipped. The reading of this section can be
omitted safely without hindering the understanding of the rest of the chapter, since
the derivation to come synthesizes the same algorithm only in discrete form.

The algorithm begins with a nominal control uj; and state sequence x;. It also
requires to obtain a discrete linear approximation of the dynamics and a quadratic
approximation of the cost along the nominal trajectories u}, x} in terms of state and
control deviations éx; = x; — X, dux = u; — uf, which is given by:

OXir1 =Ax0x) + Bduy + Crwy (36)
OYk41 =Frdxx + Exduy + Dy (37)

where wy ~ N (0,Qy) and 7, ~ N(0,Tk) are zero-mean Gaussian variables. The
matrices Ay, By, Cx, Dy, Ei, Fy, discretized along the nominal trajectories, are:

Ay =1+ Atof/ox, By = Atof/ou, Cy = VALg*(x,u)
Fy = Atoh/0dx, Ex = Atoh/ou, Dy = VAtgY(x,u)
The quadratic approximation of J is given by

- 1 1
L(x,u, k) =q; + q,;rﬁxk + r,{&uk + §5X11(-Qk5xk + 5x,€Pk(5uk + E(Su;{Rk(Suk (38)

1
In(x) =qN + qioxi + §5XkTQN5Xk (39)

where Jx = tht, qk = tht, I = I‘tAt, Qk = QtAt, Pk = P[At and Rk = RtAt. As
in the continuous time case, a state estimator is introduced using a discrete-time
Extended Kalman Filter, whose equation is given by

O%p1 =A0Xy + Brouy + Kka((SXk — (5)’2]() + KDy

Combining the estimator and the state dynamics, an extended system is formed by
the composition of the control and estimation dynamics, that takes the form:

{&(k H} _ { Apox; + Biduy CG 0 [wk}
ORge1 Ay 6%y + Biouy + KiFy (6x; — 0%) 0  KiDg| [7%
Oy y1 HE ) g(k)

where 6%y is the estimate of the state dx;, and X, the composite vector [0k, 0% T.
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5.4.2.1 Estimator design

An EKF that minimizes the expected outer-product of the error dynamics is used.
The optimal estimation gains that minimize

T =(Ax — KeFo) 2 (Ar — KeF) T+ KDIDIKS + COCE (40)
are given by
Ky =AZ(F] (F,2¢F + DI;D]) 7! (41)

They are updated at each iteration in a forward pass along the nominal trajectories,
and then fixed during the backward pass to compute feedback control policies.

5.4.2.2  Controller design

This subsection presents the derivation of the backward pass recursion equations to
compute the optimal feedback control law. The locally-optimal control law is affine,
of the form duy = 1; + Li0%X;. The Ansatz for the value function is still quadratic
and the recursion equation is given by the following expression

Yo (0%, k) = min {0(x,w, k) + E[¥s (0% 1,k +1)]}

The subscript ¢ is a reminder that, although this eq. is similar to the usual Bellman
eq., noise propagation is different. Here, besides the usual diffusion cost (noise
effects on the mean), the cost of uncertainty given by the HJB Eq. (26) in the o-
dependent term is included. Using the linear dynamics of the extended system,
the quadratic cost eqns. (38)-(39), and the quadratic Ansatz, it is easy, but long to
write the Bellman eq., which is why we omit it here. It is worth pointing out, that
the gradients of the Ansatz for evaluating how noise propagates, should not be
evaluated at 6%y, but at 6% 1. This allows to capture noise effects in the control
terms, and derive a risk- sensitive control law. The control law has the form

Suy =1 + L%, = —H; gy — Ho (G + Gf)o%, (42)
where Hy, gy, G{ and Gf are given by
Hy =Ry + B (S} +Sf + i+ S{*) B+
oBT (s;g + s’k‘f) " (sz + s’k“?) Bi+
oB] (sf+ sf)Tﬁk (si*+ i) B

. NT
gk =13 + B} (si—‘rsf)—&—aB,{( i-i-si’() asi+
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o8 (57 +f) pust
£ =P[ +B] (i +5S{") Ac+ B (Sf +SI*) KiFit
oBT ( ) a <SkAk + ST Fy )
oB] (i + sg)Tﬁk (Si*A+ STK.F)
(
)

i =B{ (Sk+5 ) Ay — KiFy) +

T

oB] (s’( +87) S (A — KiFy) +

oB] (i + Sf) BiS{ (Ax — KiFy)

For notational convenience, the following shortcuts were defined: oy = CkaCZ,
,Bk = KkaFkDTK;, T = Kka, K = Ak — Kka, HX”Y = XTYX, Pk = siilAk +
Sk 1T Mk = S{q A+ Sk 1 T Finally, by inserting the optimal control in the RHS
of the Bellman eq., and grouping together terms with similar coefficients of dx; and
0%y, the following set of backward recursion eqns. can be obtained:

Si =Qx + HAkHs,f‘1 + (TkTS}fH + ZAIZSﬁl)Tk'f‘

o (Il + llell g, )
Si = leellsg, | + L{H Ly +2G{ L+

o ([lsitos, + Istam],)
[ Bk
Si* =plxy + GiLc+
(Uk Sk + PZﬁka+lxk)
st =qi + Als{yq + 4 siq + Gilit
g (Ul;r“ksiﬂ + pl{ﬁksfﬂ)
st =«lsi. + LIHI L + Ll g + Gili+
o (St 00 Twistyr + (SEam) Brsia )

1 1
Sk =Ski1 T gk + Elnglk +1 g+ ETr(strl‘xk—"_

SEiB) + 5 (Hsiﬂllak + |sal| m) 43
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where the recursion runs backward in time from S§; = Qy, S = 0, Sif =0,
sy = 4qn, sy = 0and sy = gn.

5.4.3 Implementation details and algorithm summary

Algorithm 2 Risk-Sensitive Nonlinear Control

Given:
- Risk sensitivity parameter o
- System dynamics (21), measurement model (22), and cost function (23)
Initialization:
- Start with a stable control law (¢, x)
repeat
- Forward integrate or propagate the system dynamics to
compute a nominal trajectory: x{.., uf.p
- Linear approximation of the dynamics. Egs. (27)-(28) or (36)-(37)
- Quadratic approximation of the cost. Egs. (29)-(30) or (38)-(39)
- Forward pass for estimation gains. Egs. (32)- (33) or (40), (41)
- Backward pass with regularization parameter A. Egs. (35) or (43)
- Update control law with line search parameter «,
7t(t,x) = u(t) + al(t) + L(t) (x(£) — x"(t))
until convergence or a termination condition is satisfied

Algorithm 2 summarizes the procedure to compute locally-optimal feedback
control policies sensitive to process and measurement noise. It is important to
mention two implementation details used for the discrete-time case, as presented
in [39]. First of all, when computing the optimal control in Eq. (42), Hx needs to be
inverted. When it is positive-definite, the unique minimizer can be readily found. If
it is not, there exist control directions which would allow to make the cost arbitrarily
small. This is obviously not true for the nonlinear system, it appears because of the
approximations (compare for example Hy with H;). To control this, a regularization
term Al is used to make the sum Hy + AI positive-definite. This brings an additional
advantage: when the sensitivity parameter takes a large value so as to make the
matrix Hy be negative-definite, by including the regularization term, the feedback
gains being too loose does not happen anymore. An outer-loop regulates A, similar
to [39]. The second detail, is that when propagating the dynamics with the updated
control sequence, the new state trajectory might diverge. By adding a line search
with parameter a € [0,1], a control sequence that generates a reduction in the cost
can still be found and progress in the optimization can be made.
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5.5 FEEDBACK CONTROL ARCHITECTURE FOR KINO-DYNAMIC MOVEMENT
PLANS

In the previous section, a method for synthesis of noise-sensitive feedback controllers
was derived (as summarized in algorithm 2), that requires the definition of a state
dynamics and measurement models (f(x,u) and h(x, u) respectively as defined
in (21)-(22)), as well as of the desired cost to be minimized. This section will
describe how the previously derived algorithm can be applied to stabilize whole-
body movement plans on a simulated humanoid robot and will thus define the
appropriate models and objective functions required by the algorithm. As explained
in the introductory background section 1.6, the algorithm described in chapters
3-4 for whole-body motion optimization is based on exploiting the kino-dynamic
separability of the centroidal momentum dynamics model, as shown in Figure 1.
In the same spirit, the feedback control architecture for tracking of kino-dynamic
movement plans, proposed in this chapter, makes use of this decomposition to
synthesize independently impedance behaviors for tracking of the desired whole-
body motion (kinematic plan) and momentum trajectory (dynamic plan). These
optimally designed closed loop behaviors will finally serve as input to an inverse
dynamics controller, that while respecting all physical constraints, will compute
the torques required to generate in the robot a behavior as close as possible to the
desired ones.

In the rest of this section, the design of kino-dynamic feedback controllers and its
use within an inverse dynamics controller will be presented.

5.5.1  Optimal Impedance Behavior for Centroidal Momentum Plans

The dynamics side of the kino-dynamic trajectory optimization approach is in charge
of finding dynamically feasible endeffector contact wrenches (forces and torques) as
well as contact locations that support the generation of a desired dynamic motion
while satisfying all physical dynamics constraints. Thus, the goal of the impedance
controller for a dynamic plan is to stabilize the robot state trajectories h around
the desired ones h9° using the available controls. In other words, the robot state
trajectories to be stabilized using the available controls u;, namely contact forces f.
and contact torques ‘e (with respect to the frame at the endeffector pose), include
the robot’s center of mass r and centroidal momenta 1, k. Figure 31 shows the
structure used to synthesize a dynamics feedback controller.
The most important components include:

* The performance criteria Jgy, composed by two terms: ‘szgk used to reward
good tracking of the desired center of mass and momentum trajectories, and

¢flyn used to regularize controls and include user-defined rewards.
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Impedance Control for Contact Force Behaviors
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FIGURE 31: This figure shows the inputs (desired momentum and contact force trajectories),
outputs (momentum and force impedances) and the definition of process and
measurement models as well as of the objective used to optimize an impedance

for tracking of momentum and contact force behaviors.

* The process model in this system defined by fgy, that maps previous state

T
h;_; and control inputs u = | £T AT . ] to output state h.

¢ The measurement model hgy, that for simplicity, but without loss of generality,

is assumed to consist of a noisy measurement of each state.

* The zero-mean noise parameters wp, and 7y, that encode the stochasticity

within the process and measurement models respectively.

e The inputs to this system are the desired centroidal dynamics hd®s and contact
force Ades trajectories generated by the kino-dynamic trajectory optimizer, and
the outputs are a set of impedance policies Ky, K for closed loop tracking of

the desired dynamic behaviors.

The force gain K, is the control policy produced by the noise-sensitive algorithm
mapping tracking errors in the state to corrections in the control actions (contact
forces At). The momentum gain Kj, is obtained by pre-multiplying the force gain
K by the control transition matrix of the linearized dynamics, and maps tracking
errors in the state to corrections in the state (center of mass and momentum). Thus,
together Kj, and K, allow to update nominal momentum trajectories and reference
contact wrenches according to the current errors in state tracking, behaviors which
serve then as input to an inverse dynamics controller that attempts to generate the

torques to follow them as close as physically possible.
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FIGURE 32: This figure shows the inputs (desired momentum and whole-body motion trajec-
tories), output (whole-body gain) and the definition of process and measurement
models as well as of the objective used to optimize an impedance for tracking of
whole-body motion behaviors.

5.5.2  Optimal Impedance Behavior for Whole-Body Motion Plans

The kinematics side of the kino-dynamic trajectory optimization is in charge of
finding a kinematically feasible sequence of robot postures q, velocities q and
accelerations § within the robot limits that resemble the dynamically optimized
center of mass motion and centroidal momentum. Thus, the goal of the impedance
controller for a kinematic plan is to stabilize the robot state trajectories q, q around
the desired ones q9¢, 3% using the available controls, namely contact forces A
and joint torques Tj, such that the motion-induced momentum h = A(q)q follows
the desired dynamics one h¢. Consequently, to synthesize a kinematics feedback
controller, the structure defined in Figure 32 is used.
Its most important components include:

* The performance criteria J7 composed as in the previous case by two
components, namely: 4)51;1( used to reward good tracking performance of de-
sired momentum and kinematic state trajectories; and pK™

controls and include user-defined rewards.

used to regularize

® The process model corresponds to the equations of motion of a floating-base
rigid-body system. The state dynamics are defined by fy;, that maps previous

T
state x;_; and control inputs u = [)\tT TtT ] to the output state x;.
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* The measurement model hy;, is for simplicity, but without loss of generality,
assumed to consist of a noisy measurement of each state variable in x;.

¢ The zero-mean noise parameters wp, and 7y, that encode the stochasticity
within the process and measurement models respectively.

e The inputs to this system are the desired centroidal dynamics h{¢s and
whole-body motion trajectories q¢® generated by the kino-dynamic trajectory
optimizer, and the outputs are a set of impedance policies K for closed loop

tracking of the desired motion behavior.

It is worth highlighting that the objective function for tracking the kinematically
optimized motion plans is defined for simplicity in joint space (stabilization of robot
postures and velocities q, q), but it could also be defined in cartesian space (in terms
of tracking of endeffectors’ cartesian trajectories pet — pg‘?) as the endeffectors’
locations can be easily computed applying a forward kinematics algorithm to the
current joint configuration pet = ForwKin(qy).

Note also that in this problem the equations of motion are not being used to
optimize a motion from scratch, but instead only to find a locally optimal impedance
controller around the trajectories provided by the kino-dynamic motion planner.
To synthesize a feedback controller for a whole-body motion plan torque slack
variables are used to have full control over the degrees of freedom of the floating-
base; however, they are heavily penalized so as to guarantee that their value is
negligible. In practice they make it much easier to perform a couple of iterations
of the algorithm to synthesize a feedback controller. Alternatively a simplified
kinematics model such as the one used for building the kinematic plan in chapter 4
could be used instead of the equations of motion to simplify the computation of
derivatives, while still allowing to synthesize optimal control policies capable of
stabilizing a whole-body motion behavior.

The noise-sensitive algorithm generates a torque gain K; as the control policy.
It maps tracking errors in the state to corrections in the control actions (contact
forces A and joint torques ). The whole-body gain Kq can be obtained by pre-
multiplying the torque gain K. by the control transition matrix of the linearized
system dynamics, and it maps tracking errors in the state to corrections in the state
(whole-body motion trajectories). Notice that only the whole-body gain K is used
to update the nominal motion plan as the inverse dynamics controller takes care of
resolving the torques that track as good as physically possible the hierarchical task.

5.5.3 Inverse Dynamics Controller

The hierarchical inverse dynamics controller [92] is used to compute the torques
to realize the desired kino-dynamic behaviors. This controller computes at each
timestep the torques required to track as close as possible the desired references
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Rank  Task/Constraint

1 Friction constraint
Center of Pressure constraint

Stance endeffector acceleration task

2 Force control task
Momentum rate control task
Base orientation control task
Joint acceleration control task

Swing endeffector acceleration task

TaBLE 1: Definition of tasks and ranks for a hierarchical inverse dynamics controller.

h h Ky h h

q|l = |q| + Kq < ql| — [ (qa )

A A K q q
N~ N~ —— N——

des plan est plan

FIGURE 33: This figure shows how control references for the hierarchical inverse dynamics
controller are computed. Given these references and a description of the ranks
and importance weightings of tasks within each hierarchy, the hierarchical inverse
dynamics controller [92] will compute the required joint torques to track the
desired closed loop behaviors as close as possible within the feasible sets.

given a set of hierarchies that define strict task priorities and the importance weight-
ing of each task within a hierarchy. The most important references provided include
endeffector wrenches, joint accelerations, and momentum rate references, as shown
in Figure 33. These references include a feedforward term provided by the motion
planner and state-control corrections coming from the feedback controllers. Controls
are interpolated and low-pass filtered to obtain smooth continuous trajectories.

K, and K}, are force and momentum gains respectively, used for optimal stabiliza-
tion of the desired dynamic behaviors. Similarly, within the kinematics problem Kq
is the whole-body gain to optimally track whole-body behaviors. The hierarchical
inverse dynamics problem is solved using the set of ranks and tasks described in
Table 1. Note that for simplicity only two hierarchies are used: one for constraints
and one for tasks, but other architectures are also possible as well.
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5.6 EXPERIMENTAL RESULTS

The experimental results, to be shown in this section, include simple experiments
to analyze the effect of noise sensitivity into the feedback control policies, but also
more complex ones to evaluate the algorithm’s performance at the stabilization
of kino-dynamic motion plans on a simulated humanoid robot. The performed
experiments demonstrate the effect of considering measurement uncertainty on
impedance policies and the behaviors they generate. The capabilities of the proposed
feedback control architecture are tested in several multi-contact scenarios (as shown
in Figure 9) including climbing stairs with and without using hands, among others.

5.6.1  Experiment 1: Process Noise Vs. Measurement Uncertainty

In this subsection, the control algorithm is applied to a two degree of freedom
(DOF) manipulator on a passing through a viapoint task. This simple setting allows
the analysis of important properties of the algorithm.

Its equations of motion are given by M(q)§ + C(q, q) = J(q)TA + 7. The vector
q = [q1,q2]" contains the joints positions. M(q) denotes the inertia matrix, C(q, §)
the vector of Coriolis and centrifugal forces, J(q) the endeffector Jacobian, A € R?
the external forces and T € R? the input torques. The system dynamics can be easily
written in the form given by equation (21) with additive process noise dw and state
x = [q", q"]T. The measurement model can also easily be written in the form given
by equation (22) (dy = dx + d<y) with Brownian motion -y and variance I'dt.

The effects of process and measurement noise in the control law are compared in
a motion task between two points with several viapoints. The objective function

tf Nvia
J :;Qu(’f) + 1221 Qi(x—x;) + Qtf(xfxtf)

measures task performance. x, X;, X;, € R* are current, viapoints and final desired
endeffector positions and velocities, respectively. Q,,, Q; and Q;, are quadratic cost
functions that regularize control signals, reward passing through the viapoints and
arriving to the final endeffector location given in cartesian space.

First, motion and optimal feedback behaviors for this system are shown under no
process noise and no measurement uncertainty (Figure 34, to the left). Then, the
center plot in Figure 34 presents the results of evaluating the effects of increasing
process noise while keeping the level of measurement uncertainty at zero. It shows
the nominal motion and optimal feedback gains for the motion task under process
noise. As process noise increases, the cost of uncertainty does too, because the ma-
nipulator might miss passing through the viapoints or the goal due to disturbances.
Under these circumstances, the trade-off between cost of uncertainty and control-
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FIGURE 34: This figure depicts cartesian trajectories and impedances to control the motion
of a 2-DOF finger moving from a Start to and End point passing through three
Viapoints. To the left, optimal impedance behaviors under no noise in the system
are shown; in the center, the impedance gains under process noise; and to the right,
the values of feedback gains under measurement noise. Notice that the higher
the process noise, the higher the optimal values for the impedances; while for
measurement uncertainty: the higher the noise, the lower the feedback gains.

effort involves feedback gains proportional to the process noise, the higher the process
noise, the higher the feedback gains in order to maintain the desired performance.

In a second set of simulations, the effect of increasing measurement uncertainty
under no process noise are tested (Figure 34, to the right). Optimal feedback gains
and nominal motion trajectories for the motion task under measurement noise
are shown. Feedback gains are also higher near viapoints and goal position, as
in the case of the controller sensitive to process noise. The difference is that the
optimal control policy in this case is to rely on feedback proportionally to the
information content of the measurements, i.e. the higher the measurement uncertainty,
the lower the feedback gains. It shows how under low measurement noise, feedback
control with higher gains is possible and optimal (as shown in the No Noise case).
Under high measurement noise, lower impedance is better. In these experiments,
the risk sensitive parameter was kept constant as it is not the focus of this paper
(see for example [73]). However, the effects of process and measurement noise are
qualitatively similar for the allowed values of ¢ (data not shown).

5.6.2  Experiment 2: Process Noise Vs. Measurement Uncertainty with Control Constraints

In this experiment, the algorithm is applied in a control-constrained task, namely
a car parking maneuver [31], where front wheels” acceleration and turning angle
are constrained. This experiment allows to show that the proposed algorithm can
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FI1GURE 35: This figure shows examples of nominal trajectories for the car parking example:
to the left, cartesian motion and orientation of the car moving from a Start to an
End position are shown; in the center, the evolution of the state variables over time
("x,y" cartesian position, 6 angle with respect to the x-axis, and the velocity of the
forward wheels "v") is displayed; and to the right, nominal control feedforward
trajectories ("a" acceleration of front wheels and "«" turning angle of the wheels).

still be applied to a more complex system that includes control constraints and the
same tendency in the optimal noise-dependent impedance behaviors holds.

The system’s state (x, y, 6, v) is composed by: "x, y" the position of the point in
between the backward wheels, 6 is the angle of the car with respect of the x-axis,
and "v" denotes the velocity of the front wheels. The control vector is composed
by: « denoting the angle of the front wheels, and "a" the acceleration of the front
wheels. Similarly to the formulation of the car parking experiment presented in [31],
the rolling distance of front and back wheels is defined as:

f=Av
b = fcos(a) +d — 1/d? — f2sin?(«)

where "d" denotes the distance between the front and back axles, and A the timestep
discretization. The discrete-time system dynamics are given by:

Xk+1 = Xk +bcos(6)
Vi+1 = Yk + bsin(6)

f
Orr1 = Ok + arcsin (sin(zx) a)
Vit1 = Vi + Aa

The cost for the parking task is written as a final cost on the distance from the last
state from (0,0,0,0), being at the origin and facing towards east at rest.

Figure 35 shows examples of nominal optimized trajectories for the car parking
experiment. The left picture shows the car’s motion in cartesian space to reorient
its angle 0 so that it faces towards east as desired. The center plot shows how all
states converge to zero as desired; and the right plot depicts the nominal control
feedforward trajectories and shows how them respect control limits.
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FIGURE 36: This figure shows examples of constrained feedback gains optimized with our
algorithm and a constrained minimization of control signals. To the left, we show
optimal impedance behaviors under no noise in the system; in the center, the
impedance gains under process noise; and fo the right, the values of feedback gains
under measurement noise. We notice that under process noise, high impedance
control is optimal; while under measurement uncertainty, compliant impedance
control is optimal.

Finally, Figure 36 shows the effect of noise sensitivity to the different sources
of uncertainty over impedance policies for tracking and stabilization of a desired
behavior. Feedback control gains are constrained, similarly to [31], in such a way
that they satisfy control constraints. The left plot shows feedback gains for a nominal
zero noise case, where no process noise and no measurement noise are present
into the system. It serves as a baseline for comparison to the gains of systems
under different kinds of noise. The center plot presents feedback gains for this
system under process noise. It is possible to see that the effect of process noise, such
as external disturbances that can physically perturb the system, over the optimal
control policy is the increase of the feedback gains as a function of the process noise
level to scale down noise effects on the system. In contrast, in the measurement
noise case (shown in the right plot), the effect of noise over the feedback policy
is to decrease its value. One can interpret this result as: feedback based on noisy
measurements is avoided, precisely because the confidence on the measurements is
low and thus the system prefers to use feedforward control signals for control.

5.6.3 Experiment 3: Stabilizing a Multi-Contact Interaction Task

Our previous work [129] presented a simple contact interaction experiment where a
2-DOF manipulator established contact with a wall at an uncertain distance. The
work in this chapter goes beyond this result and shows the results of applying the
algorithm for controlling multi-contact interaction tasks on a humanoid robot.

5.6.3.1  Nominal Impedance for Tracking Kino-Dynamic Plans

This subsection presents in the first place the tracking performance of kino-dynamic
motion plans using the described impedance controllers under nominal conditions
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(i.e. the evaluation of the impedance controllers” performance is under very small
noise environments). As described in the background introductory section 1.6, the
bridge between kinematic and dynamic variables is the robot centroidal momentum.
Thus, its tracking allows to evaluate the success in the execution of a motion. Figure
37 and 38 show the tracking of optimized movement plans using the architecture
described in Fig. 29. The top three rows show desired momentum trajectories (in
orange) as well as its tracking (in blue). At the bottom left corner, the activation
of the endeffectors over time can be seen, as given by the optimal timings, shown
at the bottom right corner. At the beginning of the motion execution, the robot
transitions from a stiff feedback controller to a pure feedforward one that includes
feedforward and feedback control references; in this phase, executed momentum
trajectories differ from desired ones. Figures 37 and 38 show how the proposed
architecture for feedback control allows to track kino-dynamic behaviors as desired,
given that planned force- and motion-induced momentum trajectories match at
execution.

5.6.3.2  Robust Impedance for Tracking of Kino-Dynamic Plans

This subsection evaluates the effect of measurement uncertainty over optimal
impedance gains for a multi-contact interaction task. The climbing up stairs motion
task, shown in Fig. 9d, is used to illustrate these effects. Section 5.6.3.1 presented
simulation experiments that showed that this motion can be successfully executed
using the developed feedback controllers in an environment with very small noise
levels. However, real world scenarios are noisy and thus now it will be shown
that the use of this information is helpful at synthesizing noise-sensitive feedback
controllers capable of successfully realizing a motion in such an environment. En-
vironmental uncertainty is introduced by randomly perturbing the height of the
stepping stones a few centimeters.

Under this setting, a comparison between a feedback controller sensitive to
measurement uncertainty and one sensitive to process noise will be shown. As the
uncertainty lies in the not exactly known contact locations (due to perturbations in
stepping stone locations), uncertainty is modeled within the impedance controllers
for tracking of kinematic plans (e.g. feedback controllers sensitive to noise in the
legs’ joints are synthesized) and feedback controllers for tracking of dynamic plans
are synthesized with very small noise level. Figure 39a shows to the right a heat
map of a force gain K, at one timestep of the trajectory. The top 6 and bottom 6
rows correspond to the wrench of the different feet. The first 3 columns correspond
to gains for control corrections due to errors in the center of mass, the central 3
columns to corrections due to errors in linear momentum and the last 3 are gains
for control corrections due to errors in angular momentum tracking. To the left a
plot showing the norm of 3 x 3 sub-blocks of the force gains plotted over time can
be visualized.

101



102 FEEDBACK CONTROL DESIGN

04

T— Tracking —— Desired — Tracking —— Desired
02 ~ 7 0.05 /\\
>
% o0 = \\ 2 000 A\
5 1 & LY
—02 \v/ ~0.05
-0.4
02 A 0.05
T 01 A= J" Va Y 0.00 "‘\4\ ,/6 \_
< i \ 2 o = N
NV < v/ Y=
-0.05
-0.1
01 0.05
< 00 2 000 NS
3 < g
—01 -0.05
00 25 50 75 100 125 00 25 50 75 100 125
RE T Time [sec]
g
£ N
1] [
00 25 50 75 100 125 0 20 40 60 80 100
Time [sec] Discretization Timestep

FIGURE 37: This figure shows examples of tracking desired centroidal momentum dynamic
trajectories using the described kino-dynamic feedback controllers for a climbing
up stairs motion. Momentum trajectories are shown normalized by the robot
mass. EffAct plots show the activation of each endeffector over time. Vertical
colored bars help to match optimal endeffector activations over time with bottom
right plots displaying the optimal duration of each timestep discretization.
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Ficure 38: This figure shows examples of tracking desired centroidal momentum dynamic
trajectories using the described kino-dynamic feedback controllers for a climbing
up using hands motion. Momentum trajectories are shown normalized by the
robot mass. EffAct plots show the activation of each endeffector over time. Vertical
colored bars help to match optimal endeffector activations over time with bottom
right plots displaying the optimal duration of each timestep discretization.
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FIGURE 39: This figure shows time-indexed trajectory values and a heat map visualization of
(39a) force, (39b) momentum and (39c) whole-body gains.
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FIGURE 40: Cartesian force and location in the z direction of: measurement-noise sensitive
feedback controller (to the left) and process-noise feedback controller (to the
right).

Fig. 39b displays similar results but for the momentum gains Ky, which are
obtained by pre-multiplying the force gains by the control transition matrices of
the linearized dynamics along the optimal trajectories. In the heat map, the first 3
rows correspond to linear momentum corrections and the last 3 rows to angular
momentum corrections. As can be seen in the plots, the gains contain off-diagonal
terms leading to optimal coupling between linear and angular momentum, which
does not happen in a naive diagonal feedback control gain. To the left, the norm of
3x3 sub-blocks of the momentum gain plotted over time is shown. As can be seen,
gain profiles change significantly over time and contact configurations to exploit
the different couplings; however, discontinuities in the momentum trajectories were
not observed.

While the dynamics feedback controllers are the same for both scenarios (model-
ing contact uncertainty either as measurement or process), the kinematics feedback
controllers, shown in Fig. 39c, are not. To the right, heat maps of whole-body gains
are shown at one timestep of the trajectories mapping errors in the joint configura-
tions to corrections in joint accelerations. éj{gggs corresponds to corrections in joint
accelerations when contact location uncertainty has been modeled as measurement
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FIGURE 41: A standard feedback controller (optimized for negligible levels of noise) has also
a similar problem to the controller sensitive to process-noise. Its optimal control
policy implies also feedback gains high enough for a good tracking of the desired
joint posture, reason for which when performing the motion in an uncertain
environment, the robot hits the stepping stone laterally and fails.

noise, while ij{:;sc corresponds to corrections when contact location uncertainty
has been modeled as without noise in the process model. Each leg is composed
by four joints to control endeffector positions (HFE Hip Flexion-Extension, HAA
Hip Abduction-Adduction, KR Knee Rotation, KFE Knee Flexion-Extension) and of
three joints to control endeffector orientations. In these heat maps, only gains of the
four joints in each leg that control positions and its couplings are shown. Notice
that the off-diagonal terms significantly help to more easily track desired kinematic
motions, while requiring lower gains than naive diagonal gains. To the left, the
norm of the 4x4 diagonal sub-blocks of the whole-body gains plotted over time is
shown. The dashed-dotted lines correspond to the norm of the controller gains that
model uncertainty as process noise, and the solid lines correspond to the norm of
the gains that model uncertainty as measurement noise. They have been normalized
to one and show that measurement uncertainty leads to more compliant impedance
behaviors that can ease the execution of a task in an uncertain environment.

In Fig. 40, an execution comparison of both feedback controllers in the uncer-
tain environment is shown. On the gray highlighted region, it is shown how the
impedance controller, sensitive to measurement uncertainty, smoothly handles land-
ing on a stepping stone earlier than expected. However, the feedback controller
sensitive to process-noise has a different behavior. Because it requires a stiffer policy,
it impacts the stepping stone and bounces up again, which leads to higher forces
on the active leg to support the robot’s full weight. In the same figure, top pictures
show how the controller sensitive to measurement uncertainty instead slides over
the stepping stone after the early landing with a smooth interaction.

Finally Figure 41 shows how a standard feedback controller would also fail in
such a noisy scenario as its control policy for the kinematic plan requires gains to
track the desired postures that lead to the robot hitting laterally the stepping stone.
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The presented experiments have shown that process noise is fundamentally different
from measurement noise. While the first one is a dynamics disturbance that requires
control using high feedback gains; the second one represents uncertainty in the state
information, and requires compliance proportional to the uncertainty to dynamically
interact with the world given our limited knowledge about it.

The fundamental difference between process and measurement noise effects on
the control law comes from the cost they penalize. Cost of uncertainty due to
process noise increases with terms of the form Ct()tCtT . Under no control action,
Pprocess noise increases the cost. Thus, regulation with high gains is optimal. For
measurement noise, cost grows with terms KtDtl"tDtTKtT and estimation gains
are inversely proportional to measurement noise. Thus, not using informative
measurements is costly and requires high feedback gains. For poorly-informative
measurements, cost is low and control with lower gains is optimal. This behavior
can be used in robotic tasks with dynamic interactions. For example when making
a contact, behaving compliant under poor contact-information could be the robust
way of behaving. Once the contact is established and position certainty is higher,
feedback gains could then be increased. In a receding horizon setup, gaining
information about the current state of the world after contact would allow to online
adapt the feedback control policy.

From a computational point of view, the algorithm, as shown in the experimental
section, scales to complex systems. The complexity of a call to the dynamics can
be approximated by its heaviest computation (factorization and back-substitution
of M(q)) as roughly O(n%), n being the number of states. The most expensive
computation is that of first derivatives O(Nn*), N being the number of timesteps in
the horizon. This is in the same order of complexity as other iterative approaches that
show very good performance on also complicated robotic tasks [39], [31], although
those examples did not exploit measurement uncertainty for control. While the
proposed approach requires using twice the number of actual states, which increases
the solving time a small amount, this is still fine given the impressive results of
recent papers on high dimensional robotics problems with contacts [194].

5.8 CONCLUSION

An iterative algorithm for finding locally-optimal feedback controllers for nonlinear
systems with additive measurement uncertainty was presented. In particular it
was shown that measurement noise leads to very different behaviors than process
noise and it can be exploited to create low impedance behaviors in uncertain envi-
ronments (e.g. during contact interaction). This opens the possibility for planning
and controlling contact interactions based on controllers sensitive to measurement
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noise. In a receding horizon setting, it could be possible to regulate impedance in a
meaningful way depending on the current uncertainty about the environment.



Chapter

SUMMARY AND CONCLUSION

An approximate solution to the right problem is far better than
an exact answer to an approximate problem.
— John Wilder Tukey, American statistician, 1915 -2000

This chapter concludes this dissertation by summarizing the approach proposed
for motion planning and control of legged robots in multi-contact scenarios.

109



110

%

SUMMARY AND CONCLUSION

6.1 SUMMARY

This dissertation proposed an optimal control-based architecture for contacts and
motion planning as well as for feedback control of floating-base robots performing
complex tasks in multi-contact scenarios. The proposed architecture has been
specially designed for floating-base rigid-body systems (such as robots with arms
and legs) to exploit the geometrical properties of the trajectory optimization problem
(dynamically challenging task in contact-rich scenarios) by efficiently building an
approximate structured solution of the problem. The approach scales down the
challenges of solving a very large nonlinear and nonconvex optimization problem
by breaking it down into smaller problems and finding approximate solutions using
efficient solvers with polynomial-time convergence properties. For instance, the
discrete optimization problem, that in a first stage is in charge of selecting contact
surfaces and locations from a terrain description, does not consider a full floating-
base dynamics model that would render the optimization problem intractable.
Instead it makes use of an approximate dynamics model based on the centroidal
momentum dynamics and a simple kinematic reachability model, which give the
algorithm a notion of dynamics and kinematics so as to keep its solution consistent
and feasible for the next phase, but at the same time easy to find. Then in the
next phase, the motion planning algorithm resolves in more detail whole-body
movements, timings and contact interaction trajectories using solvers tailored to
each sub-problem of the kino-dynamic structure and as a local solution around the
previously selected contact surfaces.

The proposed architecture has been tested as a planning framework in simulation
on a torque controlled humanoid robot performing several multi-contact tasks.
However, its computational efficiency would make it well suited also as a framework
for close to real-time receding horizon planning of complex tasks for any robot
with arms and legs. The feedback control module of the proposed architecture,
based on the superposition property of task impedances for optimal tracking of
desired kino-dynamic behaviors as well as the adaptability of the control policies to
environmental uncertainty, made it possible to successfully execute in a physical
simulator several multi-contact motions over difficult terrains, even in the presence
of discrepancies between the expected and actual locations of the stepping stones.

The performed experiments have demonstrated the benefits of the proposed
architecture for motion planning and feedback control of legged robots thanks to the
properties it exploits. The contribution of this dissertation brings the state-of-the-art
in the field closer to the vision of real-time whole-body control of autonomous robots.
However, the reliable execution of highly dynamic tasks in complex environments
with real humanoid robots remains an open challenge for future research *.

Source code is made available at https:/ /git-amd.tuebingen.mpg.de/bponton/timeoptimization in the hope
that it can be useful to further progress of other interested researchers.
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6.2 CONCLUSION

To conclude, the most important contributions proposed in this dissertation include:
a structured solution of a motion planning problem that makes use of an appropriate
level of complexity for each planning stage, a contacts planner based on a measure
of dynamical robustness which makes it better suited for selecting contacts in
dynamically challenging scenarios, an approximation of the trajectory optimization
problem for time-optimal whole-body movement generation, and a feedback control
architecture to execute the desired kino-dynamic motion plans even in the presence
of uncertainties. Thus, the proposed architecture for contacts and motion - planning
and control of legged robots, based on the previously mentioned contributions,
made it possible as a whole to efficiently generate a contacts and motion plan as
well as to successfully execute it on a physical simulator. As future work remains
the testing of the proposed architecture in robotic hardware experiments.
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