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Abstract

The topography of mountain ranges or orogens results from the interaction between two oppos-
ingly directed processes: (1) rock uplift and (2) denudation. Eventually this leads to exhumation
of rocks at the Earth’s surface. During the last two decades a large debate arose in the geoscience
community, how tectonics and climate impact the uplift, denudation and exhumation of rocks, and
whether feedbacks and interactions between tectonic and climatic processes exist during mountain
building. The Olympic Mountains, situated at the Cascadia Subduction Zone (CSZ) in the north-
western USA, have been introduced as a textbook flux steady-state mountain range, whereby the
tectonic/accretionary influx has been balancing the denudational outflux since 14 Ma. By providing
new low-temperature thermochronometric ages and results from thermo-kinematic modelling this
thesis aims at better understanding the evolution of the Olympic Mountains and of mountain building
processes in general.

Overall 111 new thermochronometric ages have been obtained. The observed pattern of ther-
mochronometer ages requires a spatially variable pattern of exhumation rates and the highest ex-
humation rates coincide with the high-elevation, central part of the orogen. This focusing of exhuma-
tion is tectonically controlled, because the Olympic Mountains are located in an orogenic syntaxis,
where the subducting oceanic plate is bent, causing a lower angle of subduction below the Olympic
Mountains. Furthermore, exhumation varies temporally, related either to changes in the tectonic
parameters (decrease in plate convergence rate at 6 Ma) or climatic framework (increased glacial ero-
sion due to the onset of Plio-Pleistocene glaciation at 2–3 Ma). Because no equivalent increase in rock
uplift balances the observed increase in exhumation caused by glacial erosion, a reduction in topog-
raphy on the western side of the orogen is plausible. An independent calculation of the denudational
outflux out of the orogen as well as the accretionary influx into the mountain range indicates that the
orogen is in flux steady-state on long timescales (i.e., 14 Myr). However, Plio-Pleistocene glaciation
could have elicited perturbations of the flux steady-state on shorter timescales. A comparison of
the pattern of exhumation from this thesis with published datasets of denudation and rock uplift
corroborates that most permanent deformation is focused in the central part of the orogen. However,
the present-day signal from GPS stations in the western part of the Olympic Mountains reflects elastic
deformation of the seismic earthquake cycle, because free slip is restricted on the shallow, locked part
of the subduction interface of the CSZ. The deeper part of the subduction interface displays a more
complex pattern of slip and visco-plastic flow could initiate permanent deformation in the overriding
crust. Ultimately that process would produce the elevated topography of the Olympic Mountains.

In summary, this thesis reveals a complex and temporally non-steady history of the Olympic
Mountains. Both tectonics and climate play an important role in the evolution of the orogen, and in
particular Plio-Pleistocene glaciation has a profound effect on the shape of the mountain range. The
combination of observations from datasets integrating on both long-term and short-term timescales
might also contribute to a better understanding of the seismic hazard of the Cascadia Subduction
Zone.
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Zusammenfassung

Die Topographie von Gebirgsketten resultiert aus dem Zusammenwirken von zwei entgegen
gerichteten Prozessen: (1) Gesteinshebung und (2) Denudation. Letztendlich führt dieser Vorgang
zur Exhumierung von Gesteinen an die Erdoberfläche. Während der letzten zwei Jahrzehnte wurde in
den Geowissenschaften eine intensive Debatte darüber geführt, wie Tektonik und Klima die Hebung,
Denudation und Exhumierung von Gesteinen beeinflussen und ob Rückkopplungen sowie ein Zusam-
menwirken zwischen tektonischen und klimatischen Prozessen während der Gebirgsbildung ex-
istieren. Die an der Kaskaden Subduktionszone in den nordwestlichen USA gelegenen Olympic
Mountains wurden als klassisches Beispiel für ein Gebirge eingeführt welches im Fluss Gleichgewicht
steht, wobei der tektonische bzw. akkretionäre Zufluss den denudierten Abfluss seit 14 Ma ausgleicht.
Das Ziel der vorliegenden Doktorarbeit ist es, zu einem besseren Verständnis der Entwicklung der
Olympic Mountains und von Gebirgsbildungsprozessen im Allgemeinen beizutragen. Hierfür wer-
den neue Niedrig-Temperatur Thermochronometer Alter und Ergebnisse von thermo-kinematischen
Modellierungen bereitgestellt.

Insgesamt konnten 111 neue Thermochronometer Alter bestimmt werden. Um das beobachtete
Muster der Thermochronometer Alter zu erklären wird ein räumlich variables Muster der Exhumier-
ungsraten benötigt und der Ort der höchsten Exhumierungsraten überlappt mit der höchsten To-
pographie im Zentrum des Gebirges. Diese Bündelung der Exhumierung ist tektonisch bedingt, da
die Olympic Mountains in einer orogenen Syntaxe liegen. Hierbei ist die subduzierte, ozeanische
Platte gekrümmt, was zu einem flacheren Subduktionswinkel unter den Olympic Mountains führt. Des
weiteren ist die Exhumierung zeitlich variabel, was entweder durch Änderungen in den tektonischen
Rahmenbedingungen (eine Abnahme der Platten Konvergenzrate vor 6 Ma) oder klimatischen Rah-
menbedingungen (eine Zunahme von glazialer Erosion in Folge des Einsetzens der Plio-Pleistozänen
Vereisung vor 2–3 Ma) bedingt ist. Da kein entsprechender Anstieg der Gesteinshebung den durch
die glaziale Erosion hervorgerufenen Anstieg der Exhumierung ausgleicht, ist eine Verringerung der
Topographie auf der westlichen Seite des Gebirges wahrscheinlich. Die unabhängig voneinander
berechneten Mengen des denudierten Abflusses aus dem Gebirge heraus sowie des akkretionären Zu-
flusses in das Gebirge hinein verdeutlichen, dass das Gebirge im Fluss Gleichgewicht steht, zumindest
auf lange Zeitskalen (über 14 Myr) hin betrachtet. Allerdings könnte die Plio-Pleistozäne Vereisung
eine Störung des Fluss Gleichgewichts auf kürzeren Zeitskalen verursacht haben. Der Vergleich des
Exhumierungsmusters dieser Arbeit mit publizierten Datensätzen der Denudation und der Gestein-
shebung bestätigt, dass die meiste permanente Verformung in der Mitte des Gebirges konzentriert
ist. Das heutige Signal von GPS Stationen auf der Westseite der Olympic Mountains spiegelt jedoch
die elastische Deformation im Rahmen des Erdbeben Zyklus wider, da auf dem oberen, verriegelten
Teil der Plattengrenze der Kaskaden Subduktionszone keine freie Bewegung möglich ist. Die tieferen
Teile der Plattengrenze weisen ein deutlich komplexeres Bewegungsmuster auf und viskos-plastisches
Fließen könnte permanente Deformation in der überliegenden Kruste verursachen. Dieser Prozess
würde letztendlich die erhöhte Topographie der Olympic Mountains verursachen.

Zusammenfassend verdeutlicht diese Doktorarbeit eine komplexe und zeitlich nicht beständige
Geschichte der Olympic Mountains. Sowohl Tektonik als auch Klima spielen eine wichtige Rolle
während der Entwicklung des Gebirges und insbesondere die Plio-Pleistozäne Vereisung hat einen
erheblichen Einfluss auf die Gestalt des Orogens. Die Kombination von Datensätzen, die sowohl über
lange als auch über kurze Zeitskalen integrieren, könnte auch zu einem verbesserten Verständnis der
Erdbebengefahr der Kaskaden Subduktionszone beitragen.
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Chapter 1

Introduction

Mountain ranges or orogens are the result of the interaction between deeply
rooted tectonic processes (endogenic processes) and processes acting at the
Earth’s surface (exogenic processes). Characteristic features of active mountain
ranges include elevated and rugged topography, steep relief, extreme climatic
conditions and ongoing deformation.

Despite having been a focus of geoscientific research for over two centuries,
many processes which contribute to the evolution of orogens still remain elusive
and are part of ongoing research. Particularly the interplay and possible feed-
backs between endogenic and exogenic processes is a contentious topic in the
geoscience community.

However, mountain ranges have a profound impact on many aspects of the
earth system (e.g., climate, evolution of species) and human life, and therefore
need to be better understood. This thesis aims at contributing to a better under-
standing of the processes involved in the formation and evolution of mountain
ranges by investigating the Olympic Mountains, located in an orogenic syntaxis
at the Cascadia Subduction Zone.

The structure of the thesis is as follows: The first chapter is intended as in-
troductory chapter and provides background information on mountain building
processes in general as well as on the study area in particular. Furthermore, the
methods applied in the thesis (thermochronometric dating, thermo-kinematic
modelling) are briefly described. The second chapter states the hypothesis and
research questions that are addressed. The results and discussion on these are
reported in chapter three, in the form of manuscripts that are either published,
accepted for publication or under preparation. The fourth chapter summarizes
the outcomes, revisits the hypotheses and provides suggestions for future work.

1.1 Mountain ranges – A general introduction

The next two sections first briefly outline some of the impacts mountain ranges
have both on humans and on the earth system. After that, an introduction to some
key concepts behind mountain building is given, as well as a summary on which
processes are responsible for mountain building and how these processes are
investigated by geoscientists.

1



1. Introduction

1.1.1 Impact of mountain ranges on humankind and the earth system

During the history of humankind, the rugged topography and impressive relief
developed between mountain tops and valley bottoms acted as natural barrier for
unrestricted traffic and migration. Nonetheless, following the retreat of the ice
masses at the end of the last glacial maximum, the European Alps were quickly
colonized by human settlements and the flat valley bottoms show evidence of
agriculture starting at the Early to Middle Neolithicum about 5000–7000 years
before Present (Schmidl et al., 2005; Colombaroli et al., 2013). However, the
partly hostile environment of mountain areas in terms of climate, natural haz-
ards and remoteness often placed a threshold on further, flourishing develop-
ment of mountain villages, compared to settlements in the foreland or on the
flat valley bottoms of mountain ranges. In the case of the European Alps these
circumstances along with other disadvantages led to the impoverishment and
depopulation of many smaller mountain villages in the Italian and French Alps
during the late 19th and mid 20th century (Bätzing, 2002).

Meanwhile, humans have discovered mountains in terms of their recreational
potential, so that mountain villages and their surroundings often serve as impor-
tant tourist destinations. Because mountain ranges are often located in tecton-
ically active areas, are capable of receiving large amounts of precipitation and
display a steep relief, they are prone to natural hazards like earthquakes, rock
fall, debris flows or avalanches, making them a particularly vulnerable habitat.
Nonetheless, the gravitational potential offered by the steep relief is also often
used for generation of electricity by hydrodynamic power.

Besides their impact on humankind, the natural barrier represented by moun-
tain ranges also affects other parts of the earth system. The evolution of species
has shown to be impacted by the development of mountain ranges, whereby the
genetic pool of species is affected by the restricted exchange between popula-
tions on the different sides of evolving mountain ranges (e.g., Hoorn et al., 2010,
2013; Craw et al., 2015).

The absence or presence of mountain chains influences the movement of air
masses within the Earth’s atmosphere (Kasahara et al., 1973), which can strongly
impact the local climate and weather (e.g., Molnar et al., 2010). For instance,
the absence of an east-west trending mountain chain in North America allows
arctic air masses to ingress far south, whereas tropical air masses can reach
far north, causing weather extremes like blizzards or tornadoes (Häckel, 2016).
Furthermore, the north-south trending Rocky Mountains in North America are
also responsible for the contrasting winter climates between North America and
Europe, because they interfere with the atmospheric circulation (Seager et al.,
2002).

2



1.1. Mountain ranges – A general introduction

Orographic precipitation (i.e., the rise of moist air masses on one side of an
orogen and the descent of dry air on the other side, Banta, 1990) creates precip-
itation gradients of up to a magnitude decrease in the amount of precipitation
between the windward and leeward side of mountain chains (Roe, 2005), which
ultimately leads to strong climatic gradients. Examples for this include Asia,
where a strong gradient exists between the Himalayan foreland/high mountain
regions and the Tibetan Plateau (Bookhagen & Burbank, 2010), South America,
where the Andean Cordillera creates strong gradients between the Amazonian
lowlands and the Altiplano/western side of the Cordillera (e.g., Garreaud et al.,
2009), or New Zealand, where precipitation is focused on the western side of the
Southern Alps (e.g., Griffiths & McSaveney, 1983; Willett, 1999).

Greenhouse gases like CO2 play a pivotal role in controlling the global climate.
Weathering of silicate rocks consumes CO2 and removes it from the atmosphere,
having an important control on the global climate (Berner et al., 1983). The
formation of mountain chains by tectonic processes exposes fresh, unweathered
silicate rocks at the Earth’s surface, which in turn could be responsible for Ceno-
zoic climate change due to the CO2 drawback from the atmosphere by weathering
(Molnar & England, 1990; Raymo & Ruddiman, 1992). So besides possible effects
on local or regional climate, the formation and evolution of mountain ranges also
has significant implications for the global climate.

Furthermore, mountains also have an important control on river networks and
hence influence the development of watersheds of entire continents. Drainage
divides between large river systems are often located within mountainous areas,
and river incision or processes like drainage capture and river reversal can be
a direct response to tectonic processes in mountains. Prominent examples in-
clude the evolution of the Tsangpo-Yarlung river in the Eastern Himalaya (e.g.,
Finnegan et al., 2008; Wang et al., 2014; Seward & Burg, 2008), the evolution
of the Amazon river system in South America (e.g., Hoorn et al., 1995; Shephard
et al., 2010), or the evolution of the Central European river system of Rhine,
Rhone and Danube (e.g., Ziegler & Fraefel, 2009; Kuhlemann & Rahn, 2013;
Yanites et al., 2013; Olariu et al., 2018).

1.1.2 Exploring the evolution of mountain ranges

As a summary of the above paragraphs, orogens have a profound impact on
various aspects of the earth system and human life. But what are the actual mech-
anisms that contribute to the shape and evolution of active mountain chains and
how can these be investigated? The following paragraphs aim at providing a
brief outline of several concepts and terms behind mountain building processes.
However, because the focus of the thesis is to determine the spatial extent and
possible temporal variations in deformation and exhumation in an active moun-

3



1. Introduction
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Figure 1.1: Topography of the Earth. Orogens referred to in the text are (1) St. Elias Range
in Alaska/Canada, (2) Olympic Mountains, (3) Andes, (4) European Alps, (5) Himalaya,
and (6) Southern Alps of New Zealand. The red arrows indicate the location of plate
corners/orogenic syntaxes, which include St. Elias (SE), Olympic Mountains (OP), the
central Andes (CA), Nanga Parbat (NP) and Namche Barwa (NB).

tain range, only aspects relevant for this thesis are further outlined. Many other
concepts and disciplines behind the investigation of mountain building processes
(as for instance paleoaltimetry, sedimentary analysis) or observations from ex-
tensional settings are of course important, but the following lines do not further
elaborate on these.

Although characteristic features of orogens like elevated topography can also
be the result of extensional processes or the interaction of mantle plumes with
the earth’s crust, this thesis focuses on processes at convergent plate margins. At
convergent margins, orogens are the result of orogenesis, where compression due
to the tectonic forces lead to intra-plate shortening, crustal thickening and sur-
face uplift (e.g., Kearey et al., 2009). Currently, many active mountain ranges are
located at the Earth’s various convergent margins (Figure 1.1), which can be fur-
ther divided into oceanic-continental collisional settings (e.g., the Andes, Olympic
Mountains) or in continent-continent collisional settings (e.g., European Alps,
Himalaya). Mountain building processes can be directly investigated at these
actively deforming mountain ranges, which are characterized by for instance
elevated topography and increased seismicity. On the other hand, important in-
formation can also be obtained from the deeply eroded parts of formerly active
mountain ranges, as for instance in the European remnants of the Variscan or
Caledonian Orogens. The roots of these inactive mountain ranges offer valuable
insights into ductile deformation processes, high temperature/pressure metamor-
phism and associated magmatism.
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1.1. Mountain ranges – A general introduction

When investigating mountain belts, terms like surface uplift, rock uplift and
exhumation are widely applied. However, as noted by England & Molnar (1990),
these terms are often used in a misleading or erroneous way. So, in the following
parts of the thesis, these terms will be defined according to England & Molnar
(1990) and used in that sense. The elevated topography as observed in active
mountain ranges requires surface uplift (displacement of the earth’s surface with
respect to the geoid), but obtaining actual measures of surface uplift is a difficult
undertaking. Rock uplift refers to the displacement of rock with respect to the
geoid and can be determined by geodetic methods. Exhumation describes the dis-
placement of rocks with respect to the Earth’s surface, and either occurs through
denudation, normal faulting or ductile thinning (Ring et al., 1999). Hence, meth-
ods measuring the amount of denudation yield an estimate of exhumation. The
three parameters are interrelated to each other, because surface uplift = rock
uplift – exhumation. Considering also the respective time over which crustal and
surface processes occur, yields an equation linking surface uplift rate (dz/dt),
rock uplift rate (U) and exhumation rate (Ė):

dz

dt
= U − Ė (1.1)

In case no surface uplift, the topography is temporally invariant, which is referred
to as topographic steady state (e.g., Willett & Brandon, 2002). Therefore, the
rock uplift rate equals the exhumation rate, and measurements from one of the
parameters can be interpreted as a measure of the other.

To quantitatively constrain rock uplift and exhumation rates, proxies or meth-
ods directly measuring the respective parameter are employed. However, one
caveat to the direct comparison between the different methods is, that these of-
ten integrate over different timescales, i.e., they represent short-term measures
of 101–103 years or long-term measures of 104–106 years. Geodetic methods like
leveling campaigns or global positioning system (GPS) surveys provide direct
measurements of rock uplift (e.g., Friedrich et al., 2003; Krogstad et al., 2016),
usually integrating not longer than over a few decades. The geomorphic analysis
of landscapes also provides clues on the processes responsible for the formation
of these landscapes, because rivers record dynamic processes of landscapes (Wil-
lett et al., 2014) such that the analysis of river profiles can be used to obtain
rock uplift rates from timescales of up to several 107 years (e.g., Pritchard et al.,
2009; Glotzbach, 2015). Applying cosmogenic nuclide dating as for instance 10Be
dating allows to directly measure denudation rates at the Earth’s surface (e.g.,
von Blanckenburg, 2005; von Blanckenburg & Willenbring, 2014; Granger &
Schaller, 2014). This method usually has integration timescales of 103–105 years.
Thermochronometric cooling ages record the cooling of rock samples during
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exhumation and pinpoint the cooling through a certain temperature (the clo-
sure temperature of the respective thermochronometric system). If the closure
temperature of the respective thermochronometer system and the evolution of
the geothermal gradient are known, exhumation rates can be obtained from
cooling ages (e.g., Braun, 2005; Fox et al., 2014; Willett & Brandon, 2013). Ther-
mochronometric dating has integration timescales of 106–107 years, providing
long-term estimates of exhumation and denudation.

As outlined above, various methods exist in order to quantitatively constrain
the evolution of orogens. This thesis investigates the exhumation history of the
Olympic Mountains. In order to have a better sense how the exhumation of this
particular mountain range compares with other orogens, it is useful to have a
rough sense of the magnitude and extent of exhumational processes. In general,
exhumation rates are variable between different mountain ranges, depending on
the governing processes of denudation or rock uplift. For instance, an extreme
end member are the western, central Andes, which display very low denudation
due to the arid climate (e.g., Starke et al., 2017; Madella et al., 2018). Hence,
that part of the Central Andes is one of the most slowly exhuming active orogens
on Earth, and exhumation rates can be less than 0.1 km/Myr over several millions
of years (Avdievitch et al., 2018). On the other hand, in places where denudation
is more efficient as is the case in the Namche Barwa syntaxis or parts of the New
Zealand Alps (Figure 1.1), exhumation rates can exceed values of 5 km/Myr and
these places are some of the fastest exhuming orogens on Earth (e.g., Lang et al.,
2016; Enkelmann et al., 2011, 2015; Jiao et al., 2017). Exhumation is not only
variable between different orogens, but also within single orogens strong spatial
gradients in exhumation can be observed (Reiners et al., 2003; Thiede & Ehlers,
2013; Lease et al., 2016; Enkelmann et al., 2017; Jiao et al., 2017), depending
for instance on the local distribution of precipitation. Furthermore, temporal
variations in exhumation can also occur during the lifespan of an orogen, if the
parameters responsible for exhumation like tectonics or climate are temporally
not steady (e.g., Carrapa et al., 2003; Glotzbach et al., 2011; Adams et al., 2015;
Lease et al., 2016; Enkelmann et al., 2017; Jiao et al., 2017).

1.2 From case studies to general concepts – Introducing the
Olympic Mountains

Many of the concepts and aspects described in section 1.1.1 and section 1.1.2
are general concepts behind orogen formation, but were originally obtained from
case studies of e.g., the European Alps, the Himalaya or the St. Elias range. Be-
cause mountain building processes are governed by forces like tectonics, climate
or gravity that are not restricted to single orogens, it is common practice to gen-
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1.2. From case studies to general concepts – Introducing the Olympic Mountains

eralize the findings of case studies from a specific orogen and to transfer these
ideas and concepts to other orogens. Following that approach, this thesis aims at
contributing to a better understanding of mountain building processes by using
the Olympic Mountains as a case study. In the following sections, the study area is
introduced in more detail by providing background information on the Cascadia
Subduction Zone and the Olympic Mountains.

1.2.1 The Cascadia Subduction Zone

The Olympic Mountains, located in Washington State (USA), are part of the
Cascadia Subduction Zone. Today, this subduction zone extends along the North
American West Coast from 40◦ N to 51◦ N (Figure 1.2a). Just north of Vancouver
Island, the subduction zone terminates in a transform fault (the Queen Charlotte
Fault), and in the south offshore the Californian coast, the subduction zone ter-
minates in the Mendocino Triple Junction. Along most of the margin, the Juan
de Fuca Plate is subducting below the North American continent, and at the
northern and southern end two further micro plates (Explorer Plate, Gorda Plate;
Figure 1.2b) are involved in the subduction. The present-day configuration of
the subduction zone and the modern volcanism of the Cascades Arc was initiated
at around 40 Ma, after accretion of the Coast Range Terrane (Brandon & Vance,
1992; du Bray & John, 2011). This terrane (often also referred to as Siletzia)
represents a large magmatic, oceanic plateau, which can be traced along the
margin from southern Vancouver Island to southern Oregon (Wells et al., 2014;
Eddy et al., 2017; Phillips et al., 2017).

At present, the convergence angles and rates vary along the subduction margin
(Figure 1.2a), and at the latitude of the Olympic Mountains subducting and over-
riding plates converge with rates of 34 mm/yr (Doubrovine & Tarduno, 2008).
The age of the oceanic crust at the deformation front is young and varies between
~6 Ma and ~9 Ma (Figure 1.2b; Wilson, 1993). Due to the young and warm
oceanic crust, the buoyancy of the subducting slab is high, causing a flat subduc-
tion angle at the Cascadia Subduction Zone, compared to other subduction zones
worldwide. The down-going slab displays a complex three-dimensional geometry
below the Olympic Peninsula and southern Vancouver Island (Figure 1.2b), be-
cause a bend in the slab (with the axis of the bend approximately parallel to the
dip direction of the slab) results in a locally flatter angle of subduction compared
to areas north or south (Crosson & Owens, 1987; McCrory et al., 2012).

The young and warm oceanic crust has also important implications for the
earthquake hazard of this subduction zone. In general, the Cascadia Subduction
Zone is capable of producing strong, devastating earthquakes, involving partial
or entire rupture of the margin (e.g., Wang et al., 2013; Wang & Tréhu, 2016)
and the last known earthquake occurred AD 1700, corresponding to a moment
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Figure 1.2: Maps of the Cascadia Subduction Zone displaying (a) the general topography.
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the Cascade arc with Pleistocene/Holocene activity (du Bray & John, 2011). The arrows
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magnitude ~9.0 quake (Satake et al., 2003). An important constraint for the
hazard assessment of future earthquakes is the width of the locked or seismogenic
zone, which is widely disputed at the Cascadia Subduction Zone (e.g., Hyndman
& Wang, 1993; Burgette et al., 2009; Hyndman, 2013; Bruhat & Segall, 2016;
Wang & Tréhu, 2016).

The locked zone corresponds to the area, where free slip on the plate interface
between the overriding and subducting plate is restricted due to the high friction
between the two plates, leading to the accumulation of elastic strain between two
earthquakes (interseismic period). The buildup of elastic strain in the interseismic
period can be observed in GPS or leveling data, because coastal areas show an
upwards displacement (e.g., Hyndman, 2013). Finally, this process leads to the
initiation of a megathrust earthquake and the release of the accumulated, elastic
strain during the coseismic period. This sequence of interseismic and coseismic
period is known as the seismic cycle, which is particularly long at the Cascadia
Subduction Zone (300–500 years, Wang & Tréhu, 2016).

Most models for hazard assessment assume that all elastic deformation accu-
mulated during the interseismic period is recovered coseismically, implying that
no permanent deformation occurs (e.g., Hyndman, 2013; Burgette et al., 2009;
McCaffrey, 2009). However, recent work has indicated, that during the seismic
cycle viscoelastic deformation should also be considered, which is capable of
producing permanent deformation (Li et al., 2015). Refining the current under-
standing of elastic and viscoelastic deformation and how these affect the width of
the locked zone are important for the seismic hazard assessment of the Cascadia
Subduction Zone.

A novel discovery in the early 2000s by Dragert et al. (2001) was that at Cas-
cadia, slip occurred on plate interface outside the seismogenic zone without any
associated seismicity (also called a silent or slow slip event, SSE). After detection
that SSEs are not completely silent and are accompanied by non-volcanic tremor,
these events were introduced as episodic tremor and slip (ETS, Rogers & Dragert,
2003). The exact bearing of ETS is a matter of active and the expression of ETS
can be different between subduction zones. However, a better understanding
of the impact of ETS on the width of the seismogenic zone has implications for
the seismic hazard of a subduction zone (e.g., Vidale & Houston, 2012; Wang &
Tréhu, 2016; Bürgmann, 2018).

At Cascadia, the occurrence of tremor is localized in a narrow band along the
subduction zone, roughly corresponding to the location of the subducted slab at
depths of 30–40 km (Wang & Tréhu, 2016). A particular focus of tremor and slow
slip is located below the southern end of Vancouver Island and the Olympic Penin-
sula, as well as beneath the Klamath Mountains in northern California (Schmidt
& Gao, 2010; Wells et al., 2017). Single events do not affect the entire margin but
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are spatially restricted and usually last for days to weeks (e.g., Schmidt & Gao,
2010). Slip and tremor propagate from the initiation of the single event along
the plate interface (Dragert & Wang, 2011; Wech & Creager, 2011), but the exact
propagation speed and direction can display complex behavior (e.g., Houston
et al., 2011; Wech & Bartlow, 2014). The displacement at the Earth’s surface
related to ETS can be measured with GPS, and the horizontal displacement is
directed opposite to the plate convergence direction (i.e., to the SW) and the
vertical displacement is directed upwards (e.g., Schmidt & Gao, 2010; Bruhat &
Segall, 2016).

1.2.2 The Olympic Mountains

Compared to the surroundings, the Olympic Mountains form an isolated block
of elevated topography with its highest summit Mt. Olympus towering 2430 m
above the nearby Pacific Ocean (Figure 1.2a and 1.3a). In the north, the Strait of
Juan de Fuca separates the Olympic Peninsula from Vancouver Island, with it’s
highest point Golden Hinde (2195 m) located 250 km to the north-west of Mt.
Olympus. To the east, the Puget Lowlands separate the Olympic Mountains from
the Cascade Mountain Range, where elevations can be higher than 3000 m. In
the south, the Oregon Coast Range extends along the coast, but never reaches
elevations in excess of 1250 m. This pattern is in accordance with the topographic
features of fore arc high (Vancouver Island, Olympic Mountains, Oregon Coast
Range), fore arc low (Georgia and Puget Lowlands) and volcanic arc (Cascades
Mountains) commonly observed at subduction zones (Figure 1.2).

The Olympic Mountains are an actively deforming orogen, as evidenced by
present-day GPS data (e.g., McCaffrey, 2009; Bruhat & Segall, 2016) and Holo-
cene seismicity (Wilson et al., 1979; Barnett et al., 2015; Nelson et al., 2017;
Delano et al., 2017). Geologically, the accretionary wedge of the Cascadia Sub-
duction Zone is exposed onshore within the Olympic Mountains and comprises
flysch sediments of Eocene to Miocene age (which have been off-scraped from
the subducting oceanic plate) with minor intercalations of basaltic rocks (Tabor
& Cady, 1978; Brandon et al., 1998). The Hurricane Ridge Fault (HRF) separates
the accretionary wedge from the surrounding Coast Range Terrane (Figure 1.3b),
which predominantly consists of ~50 Ma old basaltic rocks (Eddy et al., 2017)
besides minor sediments of Eocene age (Tabor & Cady, 1978; Eddy et al., 2017).
In general, the metamorphic overprint of the sandstones and shales from the
accretionary wedge is low, but increases from the coast towards the interior of
the mountain range, reaching lower greenshist facies (Tabor & Cady, 1978). Lo-
cally, the basalts of the Coast Range Terrane can reach blueshist facies overprint
(Hirsch & Babcock, 2009). Because the interior part of the Olympic Mountains
offers only poor outcrop conditions, the internal structure of the accretionary
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wedge is difficult to constrain, but Brandon et al. (1998) grouped it into Coastal,
Upper and Lower Olympic Structural Complex (Figure 1.3b), based on available
faults, lithology and apatite fission-track ages.

From a climatic viewpoint, the Olympic Mountains form the first barrier for in-
coming, moist air masses from the Pacific Ocean. Hence, there is a strong gradient
in precipitation developed across the mountain range, where mountainous areas
close to Mt. Olympus receive up to 6000 mm/yr of precipitation, while the much
drier east side receives <1000 mm/yr (Figure 1.3c). The spatial distribution and
the large amount of precipitation also impacted the development of glaciers.
Although the currently existent glaciers are only a puny leftover from the past
major glaciation and are vanishing rapidly (e.g., Riedel et al., 2015), the moun-
tain range was intensely shaped by glacial processes. Particularly on the west-
ern side of the orogen, alpine glaciers incised deeply into the topography (e.g.,
Adams & Ehlers, 2017; Montgomery & Greenberg, 2000; Montgomery, 2002),
forming wide valleys like Hoh, Elwha, Queets and Quinault (Figure 1.3a), and
lobes of piedmont glaciers almost reached the Pacific Ocean (Thackray, 2001).
The Cordilleran Ice Sheet (one of North America’s major ice shields) surrounded
the Olympic Mountains in the north (covering large parts of Vancouver Island
and the continental shelf) and in the east, shaping the Puget Lowlands (Booth
et al., 2003; Clague & James, 2002). Dating the onset of alpine glaciation in
the Olympics is non-trivial due to the deeply weathered glacial deposits, but is
thought to have occurred at ~2 Ma (Easterbrook, 1986).

The Olympic Mountains have been the location for several studies applying
thermochronometry (Batt et al., 2001; Brandon & Vance, 1992; Brandon et al.,
1998; Garver & Brandon, 1994; Stewart & Brandon, 2004), cosmogenic nuclide
dating (Belmont et al., 2007; Adams & Ehlers, 2018) or geomorphic techniques
(Pazzaglia & Brandon, 2001; Adams & Ehlers, 2017; Delano et al., 2017) in order
to investigate the evolution of this mountain range. Hence, a large collection of
data is available, in particular of thermochronometric ages consisting of apatite
and zircon fission track ages with minor apatite (U-Th)/He ages (Figure 1.3d).
Based on the interpretation of the thermochronometric ages, exhumation of the
Olympic Mountains commenced at around 18 Ma (Brandon & Vance, 1992; Bran-
don et al., 1998) and since ~14 Ma the mountain range is thought to be in flux
steady-state (Batt et al., 2001; Brandon et al., 1998; Pazzaglia & Brandon, 2001).
Highest exhumation rates (1.0 km/Myr) are reported on the western side of the
range, and exhumation rates are lower (<0.3 km/Myr) at the coast (Figure 1.3d;
Brandon et al., 1998). Based on the metamorphic overprint of the sandstones,
a crucial role during uplift of the Olympic Mountains is assigned to the bend in
the subducting slab below the mountain range, which is interpreted to be the
result of extension in the Basin and Range Province starting at ~16 Ma (Brandon
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Figure 1.3: (a) Topography of the Olympic Mountains, indicating the location of Mt.
Olympus (white triangle) and major valleys (Hoh, Elwha, Queets, Quinault). Pink lines
correspond to Quaternary features, like the extent of alpine glaciers and the Cordilleran
Ice Sheet (CIS), which surrounded the Olympic Mountains in the north and east and
can be divided into the Juan de Fuca and Puget lobes. Extent of alpine glaciers after
Tabor & Cady (1978) and of the CIS after Porter (1964). (b) Geological and structural
map, showing the distribution of rocks from the accretionary wedge (OSC=Olympic
Structural Complex) and the surrounding Coast Range Terrane (CRT), separated by the
Hurricane Ridge Fault (HRF). Map is based on Tabor & Cady (1978) and Brandon et al.
(1998). (c) Precipitation pattern across the Olympic Peninsula, taken from the PRISM
dataset (http://prism.oregonstate.edu/). (d) Map of exhumation rates as suggested
by Brandon et al. (1998) along with the location of published thermochronometry ages
(Brandon & Vance, 1992; Garver & Brandon, 1994; Brandon et al., 1998; Batt et al., 2001;
Stewart & Brandon, 2004). Squares denote zircon fission-track ages, circles denote apatite
fission-track ages. Apatite (U-Th/He) ages also exist for eleven samples (not indicated on
map). The map of exhumation rates is based on the inversion of apatite fission-track ages.
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& Calderwood, 1990). Topographic analysis and denudation rates derived from
cosmogenic nuclides support the hypothesis that the bend in the subducted slab
is important for shaping the Olympic Mountains (Adams & Ehlers, 2017, 2018).

1.3 Background for methods applied in the thesis

As introduced in section 1.1.2 many tools like thermochronometric dating or
cosmogenic nuclide dating as well as geodetic methods can be utilized to inves-
tigate mountain building processes. In this thesis, thermochronometric dating
of rock samples along with thermo-kinematic modelling of thermochronomet-
ric cooling ages is applied, to better understand the exhumation history of the
Olympic Mountains. A brief introduction to the theoretical background behind
these two methods is given in section 1.3.1 and 1.3.2, respectively.

Furthermore, different published datasets are used in order to investigate the
flux steady-state balance of the Olympic Mountains or to better understand the
mechanisms behind deformation. These include published thermochronometric
ages, denudation rates from cosmogenic nuclides, sedimentary data from off-
shore drill cores as well as offshore seismic data and GPS-based observations. A
summary of these datasets is provided in section 1.3.3.

1.3.1 Thermochronometry

The discovery of radioactivity and radioactive decay chains in the late 19th and
early 20th century (e.g., Rutherford & Soddy 1903a,b; Rutherford 1905) laid the
foundation for radiometric dating. Since then, radiometric dating has become
a widely used tool in the geosciences allowing to determine absolute ages of
geological processes. Radiometric dating is based on the exponential decay of
radioactive parent isotopes into stable daughter isotopes, whereby the number
of daughter isotopes (Nd) is linked to the number of parent isotopes (Np) by the
decay constant λ and the evolved time (t) via

Nd = Np(e
λt − 1) (1.2)

After reformulation, equation 1.2 yields the general age equation used in radio-
metric dating:

t =
1

λ
ln

(
Nd
Np

+ 1

)
(1.3)

Radiometric dating is performed on certain minerals, which contain sufficient
radioactive parent nuclides and retain the daughter nuclides. If the decay con-
stant is known and the amount of daughter and parent nuclides within a given
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mineral can be determined, an age can be calculated using equation 1.3. Various
isotope systems exist for different minerals, and these can be grouped in methods
applied in geochronology (e.g., U-Pb dating of zircon or apatite, Sm-Nd dating of
garnet) and thermochronometric methods like Ar-Ar dating of micas or feldspar,
(U-Th)/He dating of apatite or zircon (AHe and ZHe) or fission-track dating of
apatite and zircon (AFT and ZFT).

AHe and ZHe dating is based on the measurement of accumulated He atoms
within apatite and zircon mineral grains, which are formed from α-particles as
part of the decay chain of U and Th to Pb (and in the case of apatite also of
Sm to Nd). The total amount of produced 4He equals the sum from the single,
contributing isotopes, where the respective production of 4He is governed by the
decay constant λ of the respective isotope

4He = 8238U(eλ238t−1)+7235U(eλ235t−1)+6232Th(eλ232t−1)+147Sm(eλ147t−1)
(1.4)

With that equation, an AHe or ZHe age can be calculated, if the amount of
4He and the respective parent isotopes is measured. To do so, single crystals of
either apatite or zircon are in a first step analyzed for their He content and in a
second step for their U/Th/Sm content. A diagram outlining the entire procedure
inherent to (U-Th)/He dating is displayed in Figure 1.4. Before a final AHe or
ZHe age can be calculated, the measured amount of He needs to be corrected,
because the kinetic energy of α-particles is high and single α-particles are ejected
over a distance of up to 20µm in a mineral grain, leading to potential He loss at
the mineral grain boundaries (Farley et al., 1996; Farley, 2002). The correction
is known as the Ft-correction and depends on the grain size and grain shape fo
a crystal. In (U-Th)/He dating of bedrock samples, usually 3–7 single grains are
analyzed and a mean sample age is calculated from the single grain ages.

Besides the decay of U, Th and Sm to table daughter products, which is utilized
in (U-Th)/He dating, 238U can also undergo spontaneous fission, whereby the
unstable 238U nucleus is split into two fragment nuclei and 2–3 neutrons (Tagami
& O’Sullivan, 2005). The fragment nuclei have high kinetic energies, are expelled
from the site of fission and cause damage to the surrounding crystal lattice due
to their positive electric charge. These damage zones are termed fission-tracks,
are typically several microns long and can be made visible for identification with
a microscope by etching the crystals. Counting these fission-tracks as “daughter
products” forms the basis of fission-track dating, whereby fission-tracks accumu-
late in a crystal with increasing time.

Fission-track dating of apatite (AFT) or zircon (ZFT) is performed on mineral
mounts, where the respective minerals are embedded in epoxy or teflon in a first
step. The following steps involved in counting the fission-tracks and calculating
an age are summarized in Figure 1.4. The fission-tracks in the host minerals ap-
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Figure 1.4: Diagram illustrating the steps involved in obtaining thermochronometric
cooling ages, starting from taking rock samples in the field to calculating the final ages for
fission-track and (U-Th)/He dating of apatite or zircon (AFT, ZFT, AHe, ZHe, respectively).
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atite or zircon are termed spontaneous fission-tracks, and the number of counted
tracks corresponds to the amount of produced daughter products in terms of
equation 1.3. In order to determine the amount of parent products (so the 238U
content), U can either be measured using laser-ablation or estimated with an
external detector (a sheet of mica), which is firmly attached to the surface of a
mineral mount. The external detector method (EDM) capitalizes on the induced
fission of 235U within the host minerals by thermal neutron irradiation in a nu-
clear reactor. Here, fission of 235U leads to formation of induced fission-tracks in
the mica sheet that can then be counted after etching of the mica sheets, yielding
the amount of parent products via the known and constant ratio of 238U and 235U.
A fission-track age can be obtained via

t =
1

λD
ln

(
1

137.88

λD
λF

Ns
Ni

σFφ

)
(1.5)

where λD and λF, respectively, correspond to the constants of decay and fission of
238U, Ns and Ni refer to the counted number of spontaneous and induced fission-
tracks, σF corresponds to the cross section of induced fission for 235U and φ is
the thermal neutron flux within the nuclear reactor. Around 20 grains are usually
dated for fission-track analysis and uncertainties on the single grain ages are very
high. Statistical methods are applied in order to check, whether the single grain
ages belong to the same age population, which is then interpreted to correspond
to the sample’s fission-track age (Galbraith, 2005). If a sample is detrital, hence
the single grain ages can belong to different grain age populations, about 100
grains need to be dated and the grain age distribution can be decomposed in the
respective age populations (Brandon, 1992).

After successful analysis, an age can be readily calculated from the measured
amount of parent and daughter nuclides using for instance equation 1.3 or mod-
ified versions like equation 1.4 or 1.5. However, during the interpretation of
thermochronometric ages it is important to take into account that the retention
of daughter nuclides in the considered minerals after decay is subject to diffusion.
Diffusion itself is strongly temperature dependent via an Arrhenius relationship

D = D0 exp

(
− Ea
RT

)
(1.6)

where diffusion D depends on the frequency factor D0, the activation energy Ea,
the gas constant R and the temperature T. For most geochronologic methods
(e.g., U-Pb dating of zircon), the diffusion of the daughter isotopes is negligibly
small even at high temperatures, hence an age obtained from geochronologic
dating is usually interpreted to correspond to the formation age of a particular
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1.3. Background for methods applied in the thesis

sample. For instance, a zircon U-Pb age of a granitic sample corresponds to the
crystallization age of this granite.

Contrary to that, the diffusivity of the considered daughter isotopes in ther-
mochronometry is high, and the obtained age corresponds to a cooling age. Fig-
ure 1.5a summarizes the evolution of the daughter/parent nuclide ratio during
cooling, as for instance occurs while a rock sample is exhumed to the surface.
Initially, the temperature is high and no daughter isotopes are retained, because
the loss by diffusion outpaces the production by radioactive decay (open sys-
tem). In case of AHe or ZHe this implies that no 4He produced by the decay
of U or Th is retained within the minerals due to the diffusional loss. For AFT
or ZFT, this means that no fission-tracks are retained within the host minerals,
because all damage created to the crystal lattice by the spontaneous fission of
238U is annealed. As time progresses and sufficient cooling has occurred, the
accumulation of daughter isotopes starts (but diffusional loss still occurs) and
when a sample has cooled below the blocking temperature, all daughter isotopes
are retained and the parent/daughter ratio evolves linearly with time (closed
system, Figure 1.5a). This range of temperatures between onset of accumulation
and complete retention is known as the partial retention zone (PRZ). Strictly
speaking, the ages obtained with thermochronometric dating record the entire
time interval of the PRZ.

However, because it is difficult to relate a cooling age obtained from ther-
mochronometric dating to a temperature interval (the PRZ), Dodson (1973)
introduced the concept of a closure temperature Tc. Here, an apparent cooling
age can be interpreted to represent cooling below a discrete temperature, the
closure temperature (Figure 1.5). For the case of steady cooling, Dodson (1973)
defined the closure temperature as

Tc =
Ea

R ln(AτD0/a2)
(1.7)

where A is a numerical constant, a corresponds to the diffusion domain (usually
the grain size of a dated mineral) and τ relates Tc to the cooling rate (Ṫ ) and is
given by

τ =
RT 2

c

EaṪ
(1.8)

Therefore, contrary to geochronology, an age obtained from thermochronometric
dating does not reflect the formation age of a rock sample but represents an
(apparent) cooling age. However, this has also the benefit that the cooling paths
of rock sample can be reconstructed.
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Figure 1.5: (a) Sketches illustrating the concept behind a closure temperature, show-
ing the evolution of temperature with time (top panel), as well as the evolution of the
daughter/parent nuclide ratio (bottom panel). If the temperature is too high, all daughter
isotopes are lost by diffusion (constant ratio, open system behavior). When sufficient
cooling has occurred, accumulation of daughter nuclides starts, however the change in
parent/daughter nuclide ratio is non-linear, due to partial loss by diffusion (partial reten-
tion zone). When cooling below the blocking temperature TB has occurred, all daughter
isotopes are retained and the daughter/parent ratio evolves linearly (closed system). The
closure temperature Tc corresponds to the temperature at the apparent closure time (tc),
which is obtained by extrapolating the linear daughter/parent ratio onto the time axis.
Sketch after Dodson (1973) and Braun et al. (2006). (b) Closure temperature estimates
of common thermochronometer systems calculated for a range of cooling rates, using
the parameters given in Ehlers (2005). The grey areas illustrate, in which setting the
respective cooling rates could be found, for instance very slow cooling in shields (or after
cessation of tectonic activity), intermediate cooling rates as found in many areas of active
tectonics, and very rapid cooling as can be found in some orogens (e.g., Southern Alps of
New Zealand or the Namche Barwa syntaxis, Figure 1.1). For a cooling rate of 20◦C/Myr,
the respective closure temperatures are indicated in white boxes, and assuming a geother-
mal gradient of 20◦C/km this would correspond to the expected closure temperatures for
an exhumation rate of 1 km/Myr.
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1.3. Background for methods applied in the thesis

Inspecting equations 1.7 and 1.8 shows that the closure temperature depends
on the cooling rate, grain size and the kinetics of diffusion (as contained in
the diffusional parameters D0 or Ea). The kinetic parameters differ between the
various thermochronometer systems and can be obtained from laboratory mea-
surements (e.g., Farley, 2000; Reiners et al., 2004; Ketcham et al., 1999; Rahn
et al., 2004). However, the kinetic parameters for a single system can also vary,
depending on the properties of the respective mineral like its composition (e.g.,
Green et al., 1985; Ketcham et al., 1999; Brandon et al., 1998) or radiation dam-
age caused by α-decay (e.g., Nasdala et al., 2001; Rahn et al., 2004; Flowers
et al., 2009; Guenthner et al., 2013). Figure 1.5b displays the respective closure
temperature estimates as a function of cooling rate for various thermochronome-
ter systems including apatite and zircon (U-Th)/He (AHe and ZHe), apatite and
zircon fission-track (AFT and ZFT), and biotite and muscovite Ar-Ar. Lower clo-
sure temperatures are obtained for very slow cooling rates, as might be the case
for slowly eroding areas like cratonic shields.

In order to provide an estimate of which temperature range can be constrained
with the four thermochronometer systems applied in the thesis (AHe, AFT, ZHe,
ZFT), the respective closure temperatures (80◦C, 130◦C, 200◦C and 250◦C) are
indicated in Figure 1.5b, assuming a cooling rate of 20◦C/Myr. Such a cooling
rate corresponds to an exhumation rate of 1 km/Myr, if a geothermal gradient of
20◦C/km is assumed. However it is important to remember that the calculated
closure temperatures are only valid in the case of steady cooling, i.e., if varia-
tions in cooling rate occur during cooling through the PRZ, then a numerical
approximation for the closure temperature has to be used (Braun et al., 2006).

1.3.2 Thermo-kinematic modelling

During exhumation, rocks experience cooling on their path from the hotter
interior of the earth to the cooler surface. The thermal structure of the Earth’s
crust can be imagined as a series of isotherms, which correspond to lines (in
two dimensions) or planes (in three dimensions) of equal temperature, similar
to contour lines of equal elevation (Figure 1.6). As described in section 1.3.1,
thermochronometers record the time, when a rock cooled below a certain tem-
perature, the closure temperature of the respective thermochronometric system.
By using the time of cooling recorded by the thermochronometer and the closure
temperature, a cooling rate for a rock can be calculated. Hence, thermochronom-
etry allows to put quantitative constraints on the cooling paths of rocks. However,
for many geological problems it is of particular interest not only to know the cool-
ing rate of a rock, but to know how fast it emerged to the surface (so to quantify
its exhumation rate). Therefore, it is necessary to constrain how the thermal
structure of the Earth’s crust is evolving through time.
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The thermal structure of the crust is governed by the transport of heat from the
mantle to the surface, which is controlled mainly by heat conduction and heat
advection, and to a minor amount by the production of heat within the crust due
to the decay of radioactive elements. Fourier’s law states that conductive heat
flow (q) occurs due to a temperature gradient (∆T) over a distance l, affected by
the thermal conductivity (k)

q = k
∆T

l
(1.9)

The heat flux equals the heat released within a given time over an area and can
be measured at the Earth’s surface. This would allow calculating the temperature
gradient (also called the geothermal gradient), if the thermal conductivity of
a rock is known. By using the calculated geothermal gradient, cooling rates
obtained from thermochronometry could be converted into exhumation rates.

However, the subsurface temperature field is a transient feature, depending
on the respective contributions from heat conduction, heat advection and heat
production. Hence, the geothermal gradient is variable with time, which has to
be considered for the interpretation of thermochronometry data, because for
example the concept of the closure temperature (Equation 1.7) only applies
for the case of a steady cooling rate. The three-dimensional heat-conduction
equation (Fowler, 2005) describing the variation of temperature with time is

∂T

∂t
=

k

ρcP
∇2T +

A

ρcP
(1.10)

Here, the contributions of the conduction of heat (controlled by the physical
properties of thermal conductivity k, density ρ and heat capacity cP) and the
contribution of heat production by the decay of radioactive elements (A, heat
production rate per volume) is considered, and ∇ is the Nabla-Operator, as de-
fined by

∇ =
∂

∂x
+

∂

∂y
+

∂

∂z
(1.11)

For most rocks on Earth, the thermal conductivity is low. Hence, it takes many
millions of years to disturb a given temperature field by for instance the heat
released by an intrusion or a change in the mantle heat flux, if heat transport
occurs solely by conduction of heat.

On the other hand, heat advection, so the transport of heat by the movement
of particles as occurs during exhumation, is a much more efficient heat trans-
port mechanism (Figure 1.6). Equation 1.10 provides sensible estimates of the
subsurface temperature field for very slow exhumation rates (e.g., < 0.1 mm/yr,
Braun et al., 2006). If the exhumation rates are higher as is the case for most
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Temperature (°C)

heat advection

heat conduction 
+ radioactive 

heat production

Figure 1.6: Results from a thermo-kinematic model, showing the 3-dimensional, thermal
structure below the Olympic Mountains, which is affected by contributions from heat con-
duction, heat production by radioactive decay and heat advection. The upward deflection
of isotherms (lines of equal temperature) in the center of the Olympic Mountains is the
result of the dominance of heat advection in this area, caused by locally faster exhumation
rates compared to areas close to the coast. The vertical axis of the diagram is exaggerated
by a factor of 2.
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active mountain ranges, then also the effect of heat advection has to be taken
into account. Therefore equation 1.10 needs to be modified to include the heat
advective term (Fowler, 2005), yielding

∂T

∂t
=

k

ρcP
∇2T +

A

ρcP
− Ė ∂T

∂z
(1.12)

That equation considers only displacement of particles in the z direction towards
the surface of the Earth (Ė, the exhumation rate). If also velocities in other
directions are considered, equation 1.12 needs to be modified correspondingly.

Besides the effect of heat conduction and heat advection, another important
parameter controlling the near surface thermal structure of the crust is the to-
pography (Stüwe et al., 1994; Mancktelow & Grasemann, 1997). Isotherms are
deflected upwards below topographic highs and downwards below topographic
lows (Figure 1.6). In general, this effect depends on the wavelength and am-
plitude of the considered features and decreases exponentially with depth and
particularly low-temperature isotherms are affected. Hence, the effect of topog-
raphy has to be considered for thermochronometer systems with low closure
temperatures (e.g., AHe), because for a constant exhumation rate cooling is
faster below valleys compared to mountain tops. On the other hand, this effect
can also be used in order to constrain changes in the topography of landscapes
(e.g., House et al., 1998, 2001; Braun, 2002; Ehlers et al., 2006).

In order to interpret cooling histories derived from thermochronometric cool-
ing ages and to provide quantitative constraints on exhumation, a thermo-kine-
matic model is applied in this thesis. Pecube is a 3D finite-element, thermo-
kinematic model, which solves the partial-differentials of equation 1.12 consider-
ing the contributions of topography, heat conduction, heat advection and produc-
tion of heat on the subsurface temperature field (Braun, 2003; Braun et al., 2006,
2012). For a given kinematic field, the model calculates particle paths from the
time-dependent location of particles and predicts thermochronometric cooling
ages for particles at the surface, based on their thermal histories. Because the
closure temperature of a thermochronometer system depends on the cooling rate,
which can be transient due to the effects of exhumation, Pecube uses a numerical
solution of Equation 1.7.

Pecube requires the user to define the kinematic field, physical properties
of rocks and the topography, in order to calculate time-temperature histories
(Figure 1.7). From that, modeled ages are predicted and can be compared to
thermochronometer ages from actual samples. Several options exist to explore
temporal variations in exhumation or changes in topography. The user can run
forward-model simulations with pre-defined exhumation histories where he de-
fines the exhumation pattern as well as the timing and magnitude of changes in
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Figure 1.7: Diagram illustrating the work flow of the thermo-kinematic model Pecube
(Braun, 2003), which allows to explore possible exhumation histories. Based on the pre-
scribed parameters, thermal histories are calculated and thermochronometer ages are
predicted, which are finally compared to observed thermochronometer ages. The iterative
topography variation allows to reconstruct the paleotopography of landscapes (Olen et al.,
2012). Grey boxes indicate input parameters that need to be specified by the user.

exhumation, and the viability of a particular exhumation history is assessed by
comparing modelled and observed ages. These simulations are run in three di-
mensions, include the effect of topography and are suitable for a large dataset of
thermochronometric cooling ages, but are time-consuming and generally require
a rough a-priori knowledge of possible exhumation scenarios. The user can also
capitalize on the built-in Monte-Carlo algorithm, which allows to explore a large
range of possible exhumation scenarios (i.e., thousands of simulations) for a sin-
gle sample with no a-priori knowledge of the exhumation history (e.g., Adams
et al., 2015; Thiede & Ehlers, 2013). However, these simulations are only per-
formed in one dimension for a single column of rock, but due to the large number
of simulations a robust, statistical estimate of the temporal evolution of exhuma-
tion is derived. The approach is particularly useful for samples, which are dated
with multiple thermochronometer systems. Another option allows to reconstruct
changes in topography for a given exhumation scenario, where Pecube iteratively
varies the topography within the three-dimensional model geometry, until the
misfit between modeled and observed ages is minimized (Olen et al., 2012).
This option is particularly useful to evaluate the erosive potential of glaciers on
landscapes.
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In the thesis, the forward modelling approach is utilized in order to reconstruct
the large scale, spatial pattern of exhumation in the Olympic Mountains, based
on the comparison between modelled and observed thermochronometer ages
distributed over the entire Olympic Peninsula. Furthermore the thesis aims at
resolving the location of changes in topography from the forward models. For
samples with three to four available thermochronometer ages the Monte-Carlo
approach is used in order to estimate possible temporal variations in exhumation
rate. However, although this approach is well-suited to resolve temporal varia-
tions, the spatial resolution of the obtained exhumation history is limited to the
respective sample site.

1.3.3 Published datasets used in this thesis

Besides generating new data by using thermochronometric dating and thermo-
kinematic modelling, the thesis capitalizes on the plethora of published datasets
that are available for the Olympic Mountains. Abundant thermochronometric
data for AHe, AFT and ZFT are available (Brandon & Vance, 1992; Brandon
et al., 1998; Stewart & Brandon, 2004), in particular on the western side of
the Olympic Mountains (see Figure 1.3d). These thermochronometric ages are
included in the thermo-kinematic models. Denudation rates derived from cos-
mogenic nuclide dating (Adams & Ehlers, 2018) are available for the Olympic
Mountains and are compared with exhumation rates from this work. During
the International Ocean Drilling Program, three marine drill cores were drilled
into the sediments blanketing the Juan de Fuca Plate, yielding information on
the sediment thickness and sedimentation rates offshore the Olympic Peninsula
(Kulm et al., 1973; Su et al., 2000; Westbrook et al., 1994). Along with informa-
tion from offshore seismic data (Adam et al., 2004; Booth-Rea et al., 2008; Han
et al., 2016), these constraints are used to estimate the accretionary influx into
the Olympic Mountains. Furthermore, GPS velocities, the GPS-derived vertical
displacement due to episodic tremor and slip (Bruhat & Segall, 2016) as well as
the available distribution of tremor (https://pnsn.org/tremor) due to episodic
tremor and slip yields constraints on the deformation of the Olympic Mountains
on timescales of decades.

24

https://pnsn.org/tremor


Chapter 2

Scope of the thesis - evaluated hypotheses

The previous chapter aimed at providing an overview of mountain building pro-
cesses in general and introduced the study area and methods. As indicated, the
main objective of the thesis is to contribute to a better understanding of processes
involved in mountain building. This overarching objective is framed around the
following five hypotheses and scientific questions, which are addressed in the
thesis:

1 If the plate geometry plays an important role in focusing deforma-
tion in mountain ranges, then a focused pattern of exhumation rates
should be observed within orogenic syntaxes.

2 If changes in the tectonic conditions or climate affect the evolution of
orogens, then an increase in exhumation rates should be caused by
an increase in plate convergence rate or the onset of Plio-Pleistocene
glaciation.

3 If the denudational outflux out of an orogen is increased by glacial
erosion, then the flux steady-state balance of an orogen should be dis-
turbed unless the accretionary influx increases by the same amount.

4 If the effects of viscoelastic deformation during the seismic cycle per-
manently deform landscapes, then these effects should be detectable
with methods measuring deformation over different timescales.

5 If glacial erosion is capable of significantly lowering the elevation of
mountain ranges, then a concomitant increase in exhumation rate
must occur.

The intention of the current chapter is to elaborate in more detail on these five
hypotheses and to provide additional background information. The actual results
of the thesis and the discussion about the results are presented in chapter 3.

2.1 Effect of the plate geometry on mountain building

Some of the highest exhumation rates on Earth (>5 km/Myr) are documented
for the Nanga Parbat and Namche Barwa areas of the greater Himalaya region
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and the St. Elias region in Alaska (Enkelmann et al., 2011, 2015; Lang et al.,
2016). These regions (Figure 1.1) are traditionally referred to as good examples
of the tectonic aneurysm model (Figure 2.1a), where high exhumation rates
are the result of a coupling between climate, erosion and tectonics (e.g., Zeitler
et al., 2001; Enkelmann et al., 2009; Koons et al., 2013). Focused and rapid
erosion by rivers or glaciers results in exhumation of warmer rocks from greater
depths. Because that process perturbs the stress and thermal field, the crust is
locally weakened, which creates a feedback and leads to more exhumation, finally
focusing deformation and exhumation of rocks.

However, Nanga Parbat, Namche Barwa and St.Elias are also located in oro-
clines or orogenic syntaxes. Orogenic syntaxes can be found, where the concave
segments of plate boundaries intersect, creating a convex, upward bend of the
plate in the intersection of the segments (Mahadevan et al., 2010; Bendick &
Ehlers, 2014). Based on numerical simulations Bendick & Ehlers (2014) showed
that bending the down-going plate results in mechanical stiffening and formation
of a rigid indenter, which in turn creates focused deformation and rapid exhuma-
tion in the overriding plate (Figure 2.1b). Nettesheim et al. (2018) expanded the
simulations of Bendick & Ehlers (2014) by also incorporating surface processes.
Their observations emphasize the importance of the plate geometry in focusing
exhumation and deformation, but also indicate that efficient erosional processes
are required in order to exhume rocks.

So both the tectonic aneurysm and the rigid indenter model elicit focused
deformation and exhumation of rocks. However, the driving mechanism differs
between the two concepts, because in the tectonic aneurysm model surface pro-
cesses control the focusing of exhumation, whereas in the rigid indenter model
focusing of exhumation is controlled by the plate geometry.

At the Cascadia Subduction Zone, a bend in the down-going slab (Figure 1.2b)
and lower angle of subduction compared to areas north or south is well docu-
mented below the Olympic Mountains (Brandon & Calderwood, 1990; Crosson
& Owens, 1987; McCrory et al., 2012). A locally flatter angle of subduction
is required to create the mechanical stiffening of a rigid indenter. Hence, the
Olympic Mountains are ideally suited to validate the model predictions from
Bendick & Ehlers (2014) and Nettesheim et al. (2018) and to investigate the first
hypothesis:

If the plate geometry plays an important role in focusing deformation
in mountain ranges, then a focused pattern of exhumation should be
observed within orogenic syntaxes.

The effect of plate geometry on exhumation and evolution of the Olympic Moun-
tains is investigated by means of low-temperature thermochronometric dating

26



2.2. Effects of climate and tectonics on mountain building

a) Syntaxial orogen with focused 
deformation and exhumation

Geometrically 
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plate/indenter

b)

Figure 2.1: Competing models for explaining focused deformation and exhumation of
rocks, (a) tectonic aneurysm model, where localized, strong erosion at the surface (e.g.,
by a river) results in focused exhumation of hot material, locally weakening the crust.
This creates a positive feedback, leading to more exhumation. Taken from Zeitler et al.
(2001). (b) Rigid indenter model, where the plate geometry plays a pivotal role, because
a bend in the subducting plate creates a mechanical stiffening and the resulting indenter
focuses deformation and exhumation in the overriding plate. Modified from Bendick &
Ehlers (2014).

(predominantly apatite and zircon (U-Th)/He) and thermo-kinematic modelling
of new and existing (Brandon & Vance, 1992; Brandon et al., 1998; Stewart &
Brandon, 2004) thermochronometer ages.

2.2 Effects of climate and tectonics on mountain building

Molnar & England (1990) suggested possible feedbacks between late Cenozoic
cooling, denudation and uplift of mountain ranges. Since then, the contribution
of processes like tectonics, erosion, and climate on the development of moun-
tain ranges (e.g., the formation of topography and relief) and possible feedbacks
between these processes (Figure 2.2) has been an ongoing debate among geo-
scientists (e.g., Whipple, 2009; Champagnac et al., 2012). The importance of
tectonics on parameters like topography or distribution of denudation and a re-
sponse of climate to tectonics (rather than a response of tectonics to climate) has
been proposed by various studies (e.g., Robert et al., 2011; Godard et al., 2014;
Wang et al., 2014; Adams et al., 2015; Lease et al., 2016; van der Beek et al.,
2016).

However, based on model predictions, a strong impact of surface processes
on the style and deformation of mountain ranges is expected (e.g., Beaumont
et al., 1992; Avouac & Burov, 1996; Willett, 1999; Whipple & Meade, 2006).
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Figure 2.2: Sketch illustrating possible links and feedbacks between tectonics, denudation,
climate and topography, which correspond to an interplay between endogene (lithosphere)
and exogene (atmosphere) processes. Links investigated in this thesis are highlighted in
red. Further links include (1) the isostatic loading or unloading of the lithosphere by
climate, (2) the effect of e.g. volcanism on climate, (3) the modification of the pattern of
deformation by erosion, (4) the effect of erosion on climate by carbon burial and weath-
ering, (5) the interference of topography with the atmospheric circulation or orographic
precipitation, (6) the effect of hill slopes on erosion. Figure is modified from Champagnac
et al. (2012), for further description of the described links see their publication.

Various studies have documented the importance of climate in governing surface
processes like fluvial or glacial erosion, and how this influences the development
of mountain ranges (e.g., Reiners et al., 2003; Ehlers et al., 2006; Grujic et al.,
2006; Egholm et al., 2009; Whipple, 2009; Thomson et al., 2010; Glotzbach et al.,
2013; Lease & Ehlers, 2013; Enkelmann et al., 2015; Georgieva et al., 2019).
Nevertheless, in particular the impact of Cenozoic cooling and Plio-Pleistocene
glaciation is a contentious topic, where a world-wide increase in denudation and
sedimentation rates is either supported (e.g., Zhang et al., 2001; Herman et al.,
2013; Herman & Champagnac, 2016) or viewed critically (e.g., Willenbring &
von Blanckenburg, 2010; Willenbring & Jerolmack, 2016; Schildgen et al., 2018).

The Olympic Mountains offer a good opportunity to explore the contributions
of both climate and tectonics to the evolution of a mountain range. A strong gradi-
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ent in precipitation exists across the range (Figure 1.3c) and it has been intensely
affected by Plio-Pleistocene glaciation (Figure 1.3a, Montgomery & Greenberg,
2000; Montgomery, 2002; Adams & Ehlers, 2017; Porter, 1964). As outlined in
section 2.1, the plate geometry (and hence the tectonics) could contribute to the
evolution. Furthermore, the convergence rate between the subducting Juan de
Fuca plate and the North American plate can be reconstructed over time using
the plate reconstruction model of Doubrovine & Tarduno (2008). Given these cir-
cumstances, the Olympic Mountains offer the possibility to investigate the second
hypothesis:

If changes in the tectonic conditions or climate affect the evolution of
orogens, then an increase in exhumation rates should be caused by
an increase in plate convergence rate or the onset of Plio-Pleistocene
glaciation.

For that, exhumation rate histories are reconstructed from thermochronometric
cooling ages (in particular from samples dated with multiple thermochronometer
systems). Possible variations in exhumation rates are compared to the onset of
Plio-Pleistocene glaciation and to variations in the plate convergence rate, as
derived from the plate reconstruction model of Doubrovine & Tarduno (2008).

2.3 Possible disturbance of steady-state mountain ranges

Steady-state, which implies a balance between opposingly-directed processes
like rock uplift and exhumation, is a concept widely employed in order to in-
vestigate mountain ranges, because it allows to infer parameters that are oth-
erwise difficult to constrain (e.g., exhumation rates from thermochronometry
can be interpreted as rock uplift rates). In general four types of steady-state can
be discerned (Willett & Brandon, 2002), but this thesis focuses on topographic
steady-state and flux steady-state. If a landscape is in topographic steady-state,
then the topography is invariant, because exhumation equals rock uplift (so no
surface uplift occurs). Flux steady-state corresponds to the balance between the
influx into an orogen (by accretion of sediment or rock) and the outflux out of
an orogen (by denudation).

Although steady-state is often assumed and forms the basis of many model-
ing studies (e.g., Willett, 1999; Whipple & Meade, 2006), there is ample field
evidence that exhumation rates in orogens are varying through time (e.g., Car-
rapa et al., 2003; Glotzbach et al., 2011; Adams et al., 2015; Lease et al., 2016;
Georgieva et al., 2019). Variations in exhumation both impact topographic steady-
state (i.e., if a change in exhumation is not associated with a commensurate
change in rock uplift, then the topography changes), and flux steady-state, be-
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cause a variation in exhumation corresponds to a variation in denudation, di-
rectly impacting the flux balance.

The Olympic Mountains serve as a text book example for a steady-state moun-
tain range, because they have been interpreted to be in flux steady-state for
14 Myr (Batt et al., 2001; Pazzaglia & Brandon, 2001). Steady exhumation rates
have been proposed, based on the inversion of apatite fission-track ages (Bran-
don et al., 1998). However, the previous studies did neither consider the impact
of Plio-Pleistocene glaciation on topography or exhumation (impacting the out-
flux), nor did they consider possible temporal variations of parameters governing
the influx into the mountain range (like sediment thickness or plate convergence
rate). Given that the Olympic Mountains were heavily glaciated during the Plio-
Pleistocene (Adams & Ehlers, 2017; Montgomery, 2002; Porter, 1964) and the
offshore sediment thickness increased during the Quaternary (e.g., Adam et al.,
2004), both the denudational outflux and the accretional influx seem to be tem-
porally variable. Hence, the thesis re-investigates the flux steady-state balance of
the Olympic Mountains and the third hypothesis addressed is:

If the denudational outflux out of an orogen is increased by glacial
erosion, then the flux steady-state balance of an orogen should be dis-
turbed unless the accretionary influx increases by the same amount.

For that purpose, an improved knowledge of the spatial pattern of exhuma-
tion and temporal evolution of exhumation is obtained by using multiple ther-
mochronometer systems, which provides constraints on the denudational outflux.
The accretionary influx is estimated from constraints of the offshore sediment
thickness (e.g., Adam et al., 2004; Han et al., 2016; Su et al., 2000; Westbrook
et al., 1994) along with the temporal evolution of the plate convergence rate,
taken from the plate reconstruction model of Doubrovine & Tarduno (2008).

2.4 Timescale dependence of observations

As described in section 1.1.2, observations from methods like geodesy, dating
of river terraces, cosmogenic nuclide dating or thermochronometry provide valu-
able insights into the evolution of mountain belts. The integration timescale of
these methods, i.e., the timespan on which an obtained rock uplift rate or denuda-
tion rate is acting, is different, lasting from decades (geodesy), to 103–105 years
(cosmogenic nuclides) or to 106–107 years (thermochronometry). An important
question is whether present-day, short-term observations (e.g., GPS velocities or
the displacement on a fault during an earthquake) are representative of processes
involved in the long-term development and deformation of mountain ranges.

However, studies comparing results from methods with different integration
timescales with each other often report discrepancies between short-term and
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long-term observations (e.g., Friedrich et al. 2003; Finnegan et al. 2014; Niemi
& Clark 2018; Ramírez-Herrera et al. 2018). This might be due to the fact that
mechanisms responsible for deformation have a strong timescale dependence,
i.e., that single events involved in deformation have variable magnitudes or occur
erratically. Hence, long-term observations record more events and provide better
statistics compared to short-term observations.

Furthermore, it is important to consider what type of deformation the sig-
nal of the respective method is capturing. As briefly outlined in section 1.2.1,
the seismic cycle corresponds to the time between two major earthquakes at a
subduction zone and is characterized by the accumulation of strain during the
interseismic period, which is then released coseismically. Many studies using
geodetic, short-term methods assume their signal to record the accumulation of
elastic (recoverable) strain during the seismic cycle (e.g., Burgette et al., 2009;
Bruhat & Segall, 2016; Hyndman, 2013; Krogstad et al., 2016). On the other
hand, recent work has highlighted that in addition to elastic deformation, vis-
coelastic deformation plays an important role during the seismic cycle (e.g., Li
et al., 2015). Hence, the short-term signal records both the elastic and viscoelas-
tic (permanent) parts of deformation. Long-term estimates of deformation like
exhumation rates derived from thermochronometry or cosmogenic nuclide based
denudation rates have the benefit that they integrate over 100s to 1000s of seis-
mic cycles. Therefore, the signal from these methods provides a measure of the
cumulative amount of permanent deformation, without the elastic component.
A separation of the short-term signal in both the elastic and permanent parts of
deformation should allow a direct comparison between short-term and long-term
methods. The fourth hypothesis of the thesis focuses on this problem:

If the effects of viscoelastic deformation during the seismic cycle perma-
nently deform landscapes, then these effects should be detectable with
methods measuring deformation over different timescales.

This hypothesis is tested by considering and comparing various short-term and
long-term datasets. Located at the Cascadia Subduction Zone, the Olympic Moun-
tains and surrounding areas are monitored by a dense GPS-station network,
which allows to obtain continuous GPS timeseries. Additionally, the GPS-derived,
vertical displacement due to episodic tremor and slip (ETS) is available (Bruhat
& Segall, 2016). The occurrence and distribution of tremor events due to ETS
is obtained from the Pacific Northwest Seismic Network (https://pnsn.org/
tremor). Denudation rates from cosmogenic nuclides (Adams & Ehlers, 2018)
are combined with new estimates of exhumation rates from this thesis, covering
integration timescales of decades over millennia to millions of years.
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2.5 Effects of glacial erosion on the topography of orogens

The present-day topography of mountain ranges is the result of an interplay
between earth surface and deep-seated processes. As outlined in section 2.3
temporally invariant, steady topography is a fundamental assumption in many
studies investigating mountain building processes (e.g., Willett & Brandon, 2002).
Hence, constraining how processes like river incision or glacial erosion affect the
temporal evolution of topography could give insights into the accuracy of this
assumption and is facilitated by applying low-temperature thermochronometry
and thermo-kinematic modelling (e.g., House et al., 1998, 2001; Braun, 2003;
Ehlers et al., 2006; van der Beek et al., 2009; Olen et al., 2012; McDannell et al.,
2018).

Particularly glaciers are known to be efficient agents of erosion that can rapidly
incise into landscapes, remove mass, and significantly overprint the pre-glacial
landscape (Shuster et al., 2005; Ehlers et al., 2006; Mitchell & Montgomery,
2006; Egholm et al., 2009; Valla et al., 2011; Steer et al., 2012). The efficacy of
glacial erosion depends on parameters like the sliding velocity or the temperature
at the bottom of the glacier (e.g., Yanites & Ehlers, 2012, 2016), and in general
glacial erosion appears to be highest close to the equilibrium line altitude (ELA)
of a glacier (Brozović et al., 1997; Egholm et al., 2009; Herman et al., 2011;
Sternai et al., 2011; Steer et al., 2012).

The Olympic Mountains experienced intense glaciation during the Plio-Pleisto-
cene (Figure 1.3a), and alpine glaciers significantly overprinted the landscape
(Thackray, 2001; Montgomery & Greenberg, 2000; Montgomery, 2002; Adams
& Ehlers, 2017). Especially the area to the west of Mt. Olympus was affected by
valley widening and deepening (Montgomery & Greenberg, 2000), which also
corresponds to the area of lowest ELA within the Olympic Peninsula (Porter,
1964). Given these circumstances, the fifth hypothesis evaluated in this thesis is:

If glacial erosion is capable of significantly lowering the elevation of
mountain ranges, then a concomitant increase in exhumation rate must
occur.

This is facilitated by dating new rock samples with low-temperature thermochron-
ometry, in particular with AHe, since this thermochronometer system has the low-
est closure temperature and is particularly sensitive to variations in topography.
Based on the new and published AHe ages (Batt et al., 2001), thermo-kinematic
modelling using Pecube is deployed, in order to evaluate an increase in exhuma-
tion rate with the onset of Plio-Pleistocene glaciation and possible effects on the
topography.
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Chapter 3

Scientific results

All hypotheses addressed in this thesis have been outlined in the previous
chapter. The following sections contain the main scientific results of the thesis,
which are used to address the hypotheses. The observations and discussion on
these are presented either as published or accepted manuscripts, or manuscript
which are in preparation. Where available, a supplement file is presented after
each manuscript, which provides the raw data or additional information for the
respective manuscript. Data tables containing detailed information like single
grain analyses from thermochronometry can be found in the appendix at the end
of the thesis.

3.1 Tectonic and climatic contributions to focused exhuma-
tion

3.1.1 Declaration on contributions to joint work

The following section of the dissertation has been published and is available
online under https://doi.org/10.1130/G39881.1. The full citation is:

Michel, L., Ehlers, T. A., Glotzbach, C., Adams, B. A. and Stübner, K.
(2018). Tectonic and glacial contributions to focused exhumation in the
Olympic Mountains, Washington, USA. Geology, 46(6), 491–494.

The original manuscript is provided in section 3.1.2 and the original electronic
supplement file is provided in section 3.1.3. The data tables presented online to-
gether with the electronic supplement are provided in the appendix (Section A),
containing the single grain ages from apatite and zircon (U-Th)/He dating, re-
spectively.

Five authors contributed to the work presented in the paper: Lorenz Michel
(LM), Todd Ehlers (TE), Christoph Glotzbach (CG), Byron Adams (BA) and Kon-
stanze Stübner (KS). A summary of the respective contributions is provided in
Table 3.1. The detailed contributions are as follows: TE developed the overall
idea of testing the Olympic Mountains for the rigid indenter model and the idea
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Table 3.1: Summary of contribution to joint work for the paper “Tectonic and glacial
contribution to focused exhumation in the Olympic Mountains, Washington, USA.”, indi-
cating the average fraction of work of the respective author in percent. The paper has
successfully been published in April 2018.

Author Position
Scientific
ideas (in

%)

Data gen-
eration
(in %)

Analysis and
Interpretation

(in %)

Paper
writing
(in %)

LM [1] 55 60 70 65

TE [2] 30 5 10 10

CG [3] 10 25 10 10

BA [4] 5 5 10 10

KS [5] 0 5 0 5

was further developed by LM (including the quaternary overprint). LM, TE and
BA performed fieldwork. LM performed the sample treatment, mineral separa-
tion and selected apatite and zircon minerals for thermochronometric dating. CG
performed most of the analytic work involved in (U-Th)/He dating, with help
from KS and LM. The thermo-kinematic modeling (Pecube) was performed by
LM, with input from TE, BA and CG. Analysis and interpretation of the results
was done by LM with contributions from TE, CG and BA. LM drafted the first ver-
sion of the manuscript along with all figures and during further writing/review
TE, CG, and BA gave most of the following input during writing. During peer
review, three reviewers commented on the manuscript.

34



GEOLOGY  |  Volume 46  |  Number 6  |  www.gsapubs.org	 491

Tectonic and glacial contributions to focused exhumation in the 
Olympic Mountains, Washington, USA
Lorenz Michel, Todd A. Ehlers*, Christoph Glotzbach, Byron A. Adams, and Konstanze Stübner
Department of Geosciences, University of Tübingen, Tübingen 72074, Germany

ABSTRACT
Tectonics and climate are major contributors to the topographic 

evolution of mountain ranges. Here, we investigate temporal varia-
tions in exhumation due to the onset of Pleistocene glaciation in the 
Olympic Mountains (Washington State, USA). We present 29 new 
apatite and zircon (U-Th)/He ages (AHe and ZHe), showing a decrease 
in ages toward the interior of the mountain range for both thermo-
chronometric systems. Young AHe ages (<2 Ma) can be found on the 
western side and the interior of the mountain range. Thermokine-
matic modeling of sample cooling ages suggests, that ZHe ages can 
be explained by an ellipse-shaped exhumation pattern with lowest/
highest rates of ~0.25 and 0.9 km/m.y. These rates are interpreted as 
tectonically driven rock uplift, where the pattern of rates is governed 
by the shape of the subducted plate. However, the youngest AHe ages 
require a 50–150% increase in exhumation rates in the past 2–3 m.y. 
This increase in rates is contemporaneous with Pliocene-Pleistocene 
alpine glaciation of the orogen, indicating that tectonic rock uplift is 
perturbed by glacial erosion.

INTRODUCTION
The evolution of mountain topography (e.g., relief, mean elevation) is 

sensitive to variations in climate and tectonics that modulate the efficiency 
of various surface processes (e.g., Whipple, 2009). The onset of Pleisto-
cene glaciation is hypothesized to have increased orogen exhumation rates, 
and significantly modified topography (e.g., Brocklehurst and Whipple, 

2002; Ehlers et al., 2006; Valla et al., 2011; Glotzbach et al., 2013; Her-
man et al., 2013). Advances in low-temperature thermochronology and 
thermal modeling enable the quantification of spatial and temporal varia-
tions in exhumation (e.g., Braun, 2003). Here we test the hypothesis that 
enhanced Pleistocene glacial erosion can perturb the flux steady state of 
an orogen by increasing the erosional flux over million-year time scales.

We evaluate this hypothesis through an application to the tectonically 
active and glaciated Olympic Mountains located in Washington State, 
USA (Fig. 1A). This orogen is the exhumed portion of the Cascadia 
Subduction zone accretionary wedge (Tabor and Cady, 1978). Previous 
studies have suggested that exhumation rates have been largely constant 
since ca. 14 Ma, and that the orogen is in flux steady state, where accre-
tionary and erosional fluxes are balanced (Brandon et al., 1998; Batt et 
al., 2001; Pazzaglia and Brandon, 2001). Largely unexplored in previ-
ous work is the potential transient effect of Pleistocene glaciation on the 
orogen-wide exhumation.

Here we complement previous work with new apatite and zircon 
(U-Th)/He ages (AHe and ZHe, respectively) from the Olympic Moun-
tains (Fig. 1B) and compare them to predicted thermokinematic model 
ages to discriminate between different exhumation histories.

BACKGROUND
At the Cascadia subduction zone, the Juan de Fuca plate subducts 

beneath the North American plate and displays a three-dimensional 
(3-D) bend beneath the Olympic Mountains (Fig. DR1a in the GSA Data 
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Figure 1. A: Map of the Olympic Peninsula (Washington State, USA) showing  topographic features: major river valleys (Elwha, Hoh, Queets, 
Quinault) are denoted. White triangle shows location of Mount Olympus (2428 m asl), and white dashed line corresponds to the range divide. 
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thermochronometer system and age). Red circles represent new data reported in this study. Swath profiles perpendicular and parallel to the 
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3.1. Tectonic and climatic contributions to focused exhumation

3.1.2 Paper: “Tectonic and glacial contribution to focused exhumation in
the Olympic Mountains, Washington, USA.”
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Repository1). The mountain range is dominated by two tectonostrati-
graphic units, which are separated by the Hurricane Ridge fault (HRF; 
Fig. 1; Fig. DR1b). The footwall represents the actual accretionary wedge, 
consisting of Eocene to Miocene marine sandstones and siltstones accreted 
to North America (Tabor and Cady, 1978; Brandon et al., 1998).

During the Pleistocene, alpine glaciers incised deep, wide valleys (e.g., 
Hoh, Queets, Quinault, and Elwha valleys; see Fig. 1A), locally forming 
piedmont-style glaciers approaching the Pacific Ocean (Thackray, 2001; 
Montgomery, 2002; Adams and Ehlers, 2017). Furthermore, the Cordilleran 
Ice Sheet surrounded the orogen in the north and east (Booth et al., 2003). 
Although the highest point (Mount Olympus, 2428 m) is located to the west 
of the range divide, most of the high topography is located east of the Elwha 
valley (Figs. 1A and 2). A strong gradient in modern precipitation exists, 
where the west side of the range receives 3–6 m/yr compared to the drier 
east (1–3 m/yr; see Fig. 2A and Fig. DR1c). Linked to the precipitation 

1 GSA Data Repository item 2018161, supplementary figures, details about methods and modeling, and analytical results (in Excel tables), is available online at 
http://www.geosociety.org/datarepository/2018/ or on request from editing@geosociety.org.

gradient, the Pleistocene equilibrium line altitude (ELA) increases from 
1000 m on the west side of the divide to 1800 m on the east (Fig. DR1d).

Sedimentary rocks often contain thermochronometric age populations 
controlled by bedrock cooling histories. Burial and heating of sedimentary 
rocks (e.g., during metamorphism or subduction) reset thermochronom-
eters, directly relating them to the exhumation of the collected bedrock 
sample. During exhumation, samples cool and pass through their closure 
temperatures: ~240 °C for zircon fission-track (ZFT), ~180 °C for ZHe, 
~100–120 °C for apatite fission-track (AFT), and ~60–70 °C for AHe 
(Reiners and Brandon, 2006). Published thermochronometer ages for the 
Olympic Mountains are compiled in Figure DR3. Young AFT ages (2.3–3.9 
Ma) are present on the western side of the mountain range, but the only four 
reset ZFT samples (13–14 Ma) are located to the east of Mount Olympus. 
Youngest AHe ages (2.0–2.5 Ma) can be found in the vicinity of Mount 
Olympus. High exhumation rates of 1 km/m.y. are suggested on the west 
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side of the range (Fig. DR1e), which then decrease toward zero near the 
coast of the peninsula (Brandon et al., 1998; Pazzaglia and Brandon, 2001).

NEW THERMOCHRONOMETER DATA
We collected 30 bedrock samples for (U-Th)/He thermochronometric 

dating at an elevation of ~400 m (Fig. 1B; Fig. DR2). This equal-elevation 
sampling approach allows for direct comparison of ages, without the need 
to correct ages for different sample elevation. Twenty-nine (29) of these 
samples yielded datable apatite crystals (e.g., suitable crystal shape, no 
inclusions) and 27 samples were selected for ZHe dating. A map of AHe 
and ZHe ages (Fig. DR3), a description of analytical methods, and data 
tables are provided in the Data Repository.

Reset AHe ages (27 samples) range from 15.0 to 1.5 Ma, but two 
samples at the east coast contain un-reset ages (Fig. DR3). Eleven samples 
are younger than or equal to the onset of glaciation (ca. 2–3 Ma), which 
are all located to the west of the Elwha valley. Only 14 samples have reset 
ZHe ages (4.8–14.3 Ma), and they are all located in the deeply incised 
valleys within the high-topography part of the range. The youngest ZHe 
ages (4.8 Ma and 5.9 Ma for samples OP1533 and OP1515, respectively) 
can be found in the headwaters of the Hoh and Elwha valleys.

Swath profiles of our data perpendicular (A-A′) and parallel (B-B′) to 
the range divide are shown in Figure 2 (for location, see Fig. 1B). In both 
swath profiles, AHe and ZHe ages decrease or change from un-reset to 
reset toward the center of the range. For swath B-B′, the high-topography 
part of the range overlaps with the area of young cooling ages (kilome-
ters 20 and 70 of the swath). However, in swath A-A′, the area of reset 
ZHe samples and young AHe ages (<2.5 Ma) is offset from the highest 
topography and shifted toward the west.

THERMOKINEMATIC NUMERICAL MODELING
Converting thermochronometric ages into exhumation histories requires 

estimation of the geothermal gradient over time. For this, we use the 3-D 
thermokinematic model Pecube (Braun, 2003), integrated with previous 
ages and our new thermochronometer ages. Although the importance of 
frontal accretion and horizontal velocities in the Olympic Mountains has 
been explored by previous studies (Batt et al., 2001), we only consider 
vertical movement in our model simulations. Further details and discus-
sion about the justification of this approach, as well as explanations about 
the modeling, can be found in the Data Repository.

Our thermokinematic model uses the present-day topography of the 
Olympic Mountains as input. Following Brandon et al. (1998), we start 
exhumation and development of topography at 18 Ma, and reach a steady 
state at 14 Ma. Orogens situated in an orogenic syntaxis (like the Olym-
pic Mountains) are predicted to show a “bull’s eye” pattern of exhuma-
tion (Bendick and Ehlers, 2014). Therefore, we choose an ellipse-shaped 
exhumation pattern for our model simulations (Fig. 1B), matching mean 
elevation and relief (Fig. DR7), which are suggested to correlate with 
rock uplift (Adams and Ehlers, 2017). The ellipse pattern is defined by a 
minimum rate at the edge of the ellipse and a maximum rate at the centroid 
of the ellipse. Our first objective is to find a spatial pattern of constant, 
long-term exhumation rates. To achieve this, we vary the location and 
size of the ellipse, and the gradient in exhumation rates, to minimize the 
misfit between modeled and observed ages (from literature and our data) 
with a reduced χ2-test (Fig. DR6). Our second objective is to test the 
hypothesis that the exhumation rates increased in Pliocene-Pleistocene 
times due to enhanced glacial erosion. To thoroughly investigate plausible 
increase scenarios, we take the preferred ellipse from the previous step 
and increase the rate of the entire model domain each at six different time 
steps by seven different magnitudes. From the resulting 42 combinations, 
we find the best-fit time and magnitude by comparing our and published 
ages with the modeled ages using a reduced χ2-test (results are shown 
in Figure DR8 and Table DR5). Finally, for comparison with our new 

data, modeled ages are extracted along the swaths A-A′ and B-B′ (Fig. 
1B) from elevations between 200 and 500 m and displayed in Figure 2.

Our preferred ellipse for temporally steady exhumation rates has diam-
eters of 70–60 km and the centroid of the ellipse is located in the core 
of the mountain range. Rates of 0.25 km/m.y. are found at the edges and 
increase to 0.9 km/m.y. in the center (Fig. 1B). Using this ellipse and keep-
ing the rates constant throughout the entire model duration results in ages 
(black solid lines in Figs. 2B, 2C, 2E, and 2F) reproducing the general age 
pattern for AHe and ZHe. Abrupt changes in modeled ages (particularly 
for ZHe) are caused by the strong gradient in exhumation rates. How-
ever, for constant-rate models, the modeled AHe ages are anomalously 
old compared to observed ages, indicating that an increase in rates is 
required. We find a wide variety of transient exhumation histories, where 
rate increases occurred between 10 and 2 Ma. These transient exhumation 
histories produce improved statistical fits to the data (total χ2 values of 
50–54; Fig. DR8) than the constant-rate simulations (lowest total χ2 value 
of 66; Fig. DR6). A timeline summarizing possible exhumation histories 
from our transient simulations is shown in Figure 3.

DISCUSSION AND CONCLUSIONS
Our new data and modeling allow us to resolve the long-term spa-

tial pattern of exhumation in the Olympic Mountains and to identify an 
increase in exhumation that occurred around the same time as the onset 
of Pliocene-Pleistocene glaciation. The strong spatial gradient in thermo-
chronometer ages (e.g., Fig. 2) requires a proportional spatial gradient 
in exhumation, and our best-fit model suggests an elliptical exhumation 
pattern with minimum and maximum rates of 0.25 and 0.9 km/m.y. While 
the range of exhumation rates agrees with previous findings (Brandon et 
al., 1998; Pazzaglia and Brandon, 2001), our spatial pattern of exhuma-
tion rates is different. The highest exhumation rates occur in the high, 
rugged core of the range, encompassing the headwaters of Hoh, Queets, 
Quinault, and Elwha rivers (Fig. 1B), as also suggested by Adams and 
Ehlers (2017) based on topographic analysis. We interpret that the general 
ellipse-shaped exhumation pattern is imposed by the geometry of the sub-
ducted plate, similar to other syntaxial orogens with focused exhumation 
(Bendick and Ehlers, 2014; Falkowski and Enkelmann, 2016; Lang et al., 
2016). The required bending of the subducted plate and slab convexity is 
well known in the Olympic Mountains (e.g., Crosson and Owens, 1987; 
see also Fig. DR1a).

A temporally constant exhumation rate may explain the observed cool-
ing ages of higher-closure-temperature systems (AFT, ZHe, ZFT), but 
transient exhumation histories provide much better statistical fits for ZHe, 
and for the AHe ages. The χ2-test also reveals that there is no unique exhu-
mation history solution, and several transient scenarios produce equally 
good fits (Fig. DR8). Generally speaking, the older the increase in rates 
is, the smaller is the required amount of increase (e.g., 30–50% rate 
increase at 7 Ma compared to 100–150% at 2 Ma). In the absence of other 
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Figure 3. Timeline of our preferred transient model simulations, whose 
model ages are depicted in Figure 2. Left y-axis indicates the magni-
tude of increase in comparison to the constant rate, and the right y-axis 
corresponds to the actual values of exhumation rates. Events related to 
glaciation are (1) onset of glaciation in the Coast Mountains of British 
Columbia (Canada) at ca. 7 Ma (Ehlers at al., 2006), and (2) onset of 
glaciation in the Olympic Mountains at ca. 2 Ma (Easterbrook, 1986).
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tectonic or climate mechanisms that might increase exhumation rates at 
older times (e.g., >5 Ma), increased erosion due to glaciation during the 
Pliocene-Pleistocene is the most plausible mechanism for explaining the 
young increase scenarios at 2–3 Ma with an increase in rates by 50–150%. 
These transient scenarios (colored envelopes in Figs. 2B and 2E) result 
in AHe ages that are 2–4 Ma younger compared to constant-rate predic-
tions, thereby improving the fit to observed ages. However, temporal 
constraints for the onset of alpine glaciation in the Olympic Mountains 
are ambiguous, and areas nearby experienced glaciations earlier than 2–3 
Ma (Fig. 3). Indeed, an earlier increase in exhumation at 4 or 5 Ma (but 
with a smaller magnitude) is permissible (colored dashed lines in Figs. 
2B, 2C, 2E, and 2F). The ELA corresponds to the area of most effective 
glacial erosion (e.g., Montgomery, 2002) and is lowest on the western 
side of the range (Fig. DR1d). Thus, the effect of glacial erosion on 
exhumation is expected to be strongest on the west side of the mountain 
range. Here, the AHe ages from three samples (OP1527, OP1529, and 
OP1532) support this hypothesis and locally suggest an increase in rates 
by 150–200% at 2–3 Ma (gray zones in Fig. 2B). This area could also 
have experienced a glacial-related change in topography, causing younger 
AHe ages (e.g., Ehlers et al., 2006). Other reasons that might explain a 
mismatch between modeled and observed ages include a deviation from 
the assumed, perfect ellipse-shaped exhumation pattern or an even more 
complex transient exhumation history.

In conclusion, the Olympic Mountains are the product of both spatial 
and temporal variations in exhumation rates. While the spatial pattern of 
exhumation is governed by the tectonic setting, the temporal variation 
was caused by Pliocene-Pleistocene glaciation. The magnitude of exhu-
mation rate increase is similar to other neighboring orogens influenced 
by Pleistocene glaciation (e.g., Ehlers et al., 2006). Given our observed 
temporal increase in rates, and the increase in material flux and the change 
in deformational style of the wedge during the Quaternary (Adam et al., 
2004), the proposed flux steady state of the mountain range (Batt et al., 
2001) is questionable.
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DR1. ADDITIONAL BACKGROUND INFORMATION 

The modern configuration of the Cascadia subduction zone formed during subduction of the Juan 

de Fuca plate beneath North America since the latest Eocene (Brandon and Vance, 1992). At present, 

the convergence rate between both plates reaches 34 km/Ma at the latitude of the Olympic Mountains 

(Doubrovine and Tarduno, 2008). The Olympic Mountains represent the aerially exposed part of the 

accretionary wedge (Tabor and Cady, 1978), whereas to the north beneath Vancouver Island and to the 

south beneath the Oregon Coast Range the wedge can only be found offshore (see Figure DR1a). A 

peculiar feature of the Cascadia subduction zone is a bend in the subducted slab beneath the Olympic 

Mountains (Figure DR1a). The wavelength of this bend and the resulting curvature of the slab differ, 

depending on which data set is used. Crosson and Owens (1987) provide a data set, where the 

wavelength is close to the size of the Olympics, whereas in a more recent model for slab geometry 

(Hayes et al., 2012; McCrory et al., 2012) the bend has a longer wavelength, so that the curved part of 

the slab also lies beneath the southern tip of Vancouver Island.  

 The Olympic Mountains consist of two tectono-stratigraphic units (see Figure DR1b), separated 

by a thrust fault (the Hurricane Ridge Fault, HRF): the Coast Range Terrain (CRT) and the Olympic 

Structural Complex (OSC). The CRT represents the upper plate and consists of Eocene aged basaltic 

rocks overlain and intercalated with sedimentary rocks of Eocene to Miocene age (Tabor and Cady, 

1978; Eddy et al., 2017). The origin of these Eocene aged partly marine basaltic rocks is disputed 

(plume-derived plateau vs. back-arc volcanics), but recent studies suggest them to represent an oceanic 

plateau (Phillips et al., 2017; Eddy et al., 2017). For a full discussion on this point we refer the interested 

reader to Phillips et al. (2017). Contrary to that, the OSC dominantly consists of marine turbidite 

sequences or slate of Eocene to Miocene age and minor basaltic lenses, which are interpreted as the 

actual accretionary wedge (Tabor and Cady, 1978; Brandon et al., 1998). The OSC can be further 

divided in the three subunits coastal, upper and lower OSC (Brandon et al., 1998). Rocks with the 

youngest depositional ages (Miocene) can be found in the coastal OSC. In general, the metamorphic 

overprint of the rocks from the OSC is low, increases from west to east and the highest metamorphic 

overprint is found in the center of the range in the area neighboring the HRF (Tabor and Cady, 1978). 

The strong orographic rainshadow effect in the Olympics is shown in Figure DR1c. Areas on the 

western side of the mountain range receive 5000 – 6000 mm/yr of precipitation, whereas the eastern 

part of the range is much drier and partly receives < 1000 mm/yr of precipitation.  

The Olympics were strongly impacted by glacial processes. The Cordilleran Ice Sheet (CIS) 

advanced from the Coast Mountains in British Columbia down to the latitude of the Olympic Mountains 

several times during the Pleistocene (Easterbrook, 1986), and the Juan de Fuca and Puget lobe 

surrounded the range in the north and east/south east, respectively (Porter, 1964, see Figure DR1d). 

Due to the presence of the CIS it is difficult to reconcile the extent of alpine glaciation on the northern 

and eastern side of the peninsula, because alpine ice streams merged with the CIS or deposits from 

alpine glaciers were destroyed by later advances of the CIS. Contrary to that, the western side of the 

peninsula offers well preserved glacial deposits (Figure 1a in the main text), suggesting that piedmont-

style alpine glaciers initiating in the headwaters of Hoh, Quinault or Queets valleys almost advanced to 

the Pacific ocean (Thackray, 2001). Similar to the distribution of rainfall, the equilibrium line altitude ELA 
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Figure DR1: (a) Overview of the Cascadia subduction zone at the latitude of the Olympic Mountains, convergence 

velocity of 34 mm/yr from Doubrovine and Tarduno (2008), dashed lines show the location of the top of the 

subducted slab at depth, Slab1.0 is based on McCrory et al. (2012), note that McCrory et al. (2012) refer to the top 

of the slab as the top of the oceanic igneous crust, whereas Crosson and Owens (1987) refer to it as the oceanic 

Moho, red triangles denote active volcanoes, VI = Vancouver Island, OM = Olympic Mountains, CR = Coast 

Range. (b) Structure of the Olympics, based on Tabor and Cady (1978) and Brandon et al. (1998), OSC = Olympic 

Structural Complex, CRT = Coast Range Terrain, HRF = Hurricane Ridge Fault. (c) Precipitation pattern from the 

PRISM data set (www.prism.oregonstate.edu). (d) Extent of the Cordilleran Ice Sheet and location of the 

equilibrium line altitude (ELA) on the peninsula, after Porter (1964). (e) Exhumation rate pattern as derived from the 

inversion of AFT data (Brandon et al., 1998), area of reset ZFT ages is based on Brandon and Vance (1992). In all 

panels, the white triangle and the thin white dashed line denote the location of Mt. Olympus or the range divide, 

respectively. 
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shows a strong spatial gradient (Figure DR1d) and increases from 1000 m on the western side to 

1800 m on the eastern side (Porter, 1964).  

It is difficult to exactly determine, when Pleistocene glaciation initiated in the Olympic Mountains. 

The oldest, preserved remnants from the CIS in the area were found south of Seattle (Easterbrook, 

1986) and belong to the Orting drift. They are believed to be ~2 Ma old, however, due to the magnetic 

polarization of the deposits, they could be deposited anytime between 0.78 and 2.48 Ma. Remnants of 

older alpine, glaciations are scarce within the Olympic Mountains, but deeply weathered glacial deposits 

on the western peninsula are believed to be of the same age as the Orting drift (Easterbrook, 1986). A 

marine drill core (OPD leg 168, at 48°N, 200 km offshore from Vancouver Island) shows a transition from 

deep sea sedimentation to turbidity current derived sedimentation at 1.7 Ma (Underwood et al., 2005). 

This could indicate increased turbidity current activity due to higher sediment supply, caused by 

increased glacial erosion. Generally, the offshore sedimentation increased significantly during the 

Quaternary and even led to a change in deformation of the accretionary wedge (e.g. Adam et al., 2004) 

 The exhumation rate pattern suggested by Brandon et al. (1998) based on inversion of their AFT 

data suggests fastest exhumation rates (>1.0 km/Ma) at the confluence of the north and south fork Hoh 

rivers (see Figure DR1e). Lower rates (~0.7 km/Ma) prevail in the center of the range. However, the only 

area of reset zircon fission track ages (13 – 14 Ma) is to the east of Mt. Olympus (Brandon and Vance, 

1992). 

 

DR2. THERMOCHRONOMETRIC DATING 

DR2.1 Details for sampling  

Where possible, we preferred sandstone to siltstone/slate while sampling. The collected sandstones vary 

in color, grain size and mineral composition (especially in feldspar, mica and lithics content). Location of 

the samples within the Olympics is shown in Figure DR2, coordinates and elevation together with the 

final ages for each sample can be found in table DR1. A map of ages is shown in Figure DR3. 

 

DR2.2 Analytical procedure for thermochronometric dating 

Common mineral separation techniques involving density and magnetic separation are applied to 

get apatite and zircon separates. Mineral grains are hand-picked under air in the thermochronology labs 

at the University of Tübingen using a Leica microscope. Euhedral, inclusion-free grains are selected and 

packed in Nb-tubes. Especially for apatite this often proofs to be difficult due to the detrital nature of the 

rocks. Hence, sometimes smaller but well-shaped grains (<70 µm) are packed. Apatite and zircon grains 

are analyzed in the thermochronology labs at the University of Tübingen and the further measurement 

procedure follows Stübner et al. (2016) and is described there. Parameters for Ft-correcting the AHe and 

ZHe ages are taken from Farley (2002) and Hourigan et al. (2005), respectively. The approach used for 

solving the (U- Th)/He age equation follows the method of Meesters and Dunai (2005). For each sample, 

3 – 5 grains are dated for AHe and three grains for ZHe. Data for the single grain analyses for apatite 

and zircon are reported in excel-tables DR2 and DR3, respectively.  

To calculate the sample ages from the single grain ages, we use the Helioplot software package 

(Vermeesch, 2010). However, we do not use the recommended central age as sample age, but instead 

use the arithmetic mean age. In our case, the errors for the central age are very large for some samples, 

which is probably caused by the very different composition of the mineral grains in these detrital 

samples. This effect is also enhanced by the small number of mineral grains that we only date per 

sample (n=3 – 5). As uncertainty Helioplot states the standard error (1SE), which we then use to 

calculate the standard deviation (1SD) that is reported in our data table. 
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Figure DR2: Samples collected for this study and their location on the Olympic Peninsula. White triangle denotes 

location of Mt. Olympus. 

 
In general, the geologic uncertainty that is inherent in (U-Th-Sm)/He dating is larger than the 

analytic uncertainty, which results in very different and overdispersed single grain ages within one 

sample. This geologic uncertainty is caused by overseen inclusions in the mineral grains, radiation 

damage or factors that affect the Ft-correction (e.g. grain shape, strong U/Th-zonation). As further 

complication in our case, it is possible, that a sample is not fully reset and the mineral grains still record a 

signal from the source region of the sandstones, as is the case with published AFT and ZFT data for the 

study area (Brandon and Vance, 1992; Brandon et al., 1998). Likewise, this creates problems using 

common methods for outlier detection. Our approach for determining, whether the range in single grain 

ages is caused by the geologic uncertainty or by the unreset/partially reset nature of the sample is as 

follows.  

First, samples that only contain single grain ages older than the onset of exhumation in the 

Olympics (18 Ma, Brandon et al., 1998) or where the single grain ages are similar to/older than the 

depositional age of the sample (see table DR1) are considered unreset. Samples, which pass this first 

test, are checked, whether they still show a large spread in single grain ages and if grains do not overlap 

within 2SD of their respective analytic uncertainty, the particularly old or young grains are considered as 

possible outliers. However, due to our small number of grains dated per sample (3 – 5), we can not 

discern between fully reset, partially reset or multiply reset samples (e.g. Brandon et al., 1998).  
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Figure DR3: Compiled map of the thermochronometry data available for the Olympic Mountains. AHe and ZHe are 

from this work, literature AHe data are taken from Batt et al. (2001), AFT is from Brandon et al. (1998) and ZFT 

from Brandon and Vance (1992) and Stewart and Brandon (2004). Note that our data are collected at an equal 

elevation of 400 m, whereas the literature data are not. The white dashed line denotes the range divide and the 

white triangle Mt. Olympus, respectively. White boxes outline the swaths parallel and perpendicular to the range 

divide. 
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The detrital nature of our sandstone samples, and linked to this the poor sample quality and 

different chemical composition of single grains likely also impacts the reproducibility of measured ages. 

For the analyzed apatites the mean standard deviation is ~21% (1 sigma, 27 samples, 92 dated grains, 

outlier grains and grains from unreset samples excluded). For the dated zircon grains the mean standard 

deviation is ~13 % (1 sigma, 14 samples, 34 dated grains, outlier grains and grains from unreset 

samples excluded). The poor reproducibility for our AHe ages is probably also linked to the very low He 

content of many grains, which is caused by the young age of many samples and the partly volcanic 

origin of apatite grains (these contain low amounts of U and Th and hence He). High uncertainties of up 

to 30% for apatite single grains from young samples supports this hypothesis. Comparison with the 

reproducibility of standards measured in the thermochronology labs of the University of Tübingen (for 

Durango apatite 6%, n=24; for Fish Canyon Tuff zircons 6%, n=21) indicates that indeed our observed 

reproducibility is likely caused by the nature of our samples and not by analytical issues. 

 

DR3. DETAILS FOR THERMO-KINEMATIC MODELING 

DR3.1 General setup for the models 

For our numerical modeling purpose we use the 3D thermo-kinematic model Pecube-D (e.g. 

Whipp et al., 2009; McQuarrie and Ehlers, 2015), which allows to calculate thermochronometric cooling 

ages from time-temperature paths and compare these modeled ages with our data. The model domain 

encompasses almost the entire Olympic Peninsula (120 km x 140 km, see Figure DR 4) and the depth of 

the model is 20 km, which corresponds to the minimum thickness of the accretionary wedge beneath the 

Olympic Mountains (e.g. Davis and Hyndman, 1989). Further model parameters are summarized in table 

DR4. For elevation, we use the present day topography, which is derived from a 10 m digital elevation 

model and downscaled, so that the final resolution of the model is 500 m. In order to better recognize 

modeled, unreset ages, we initiate our models at 50 Ma. Following Brandon et al. (1998), we start 

exhumation at 18 Ma and reach steady state at 14 Ma, which implies steady, present-day topography for 

the remaining model duration. This seems counterintuitive, because glaciation significantly impacted the 

topography of the mountain range. However, considering changes in topography within the model 

requires knowledge of the pre-glaciation topography, which we are not able to provide. So in order to 

reduce the model complexity and to not use unconstrained parameters, we keep the topography 

constant. 

 

DR3.2 Vertical-velocity-only models 

DR3.2.1 Constant, long-term exhumation rates 

Spatial variations in exhumation rates in the Olympic Mountains have already previously been 

reported for the Olympic Mountains (Brandon et al., 1998; Batt et al., 2001). Hence, we explored which 

pattern best explains the observed ages from our study (AHe and ZHe) and the literature data (AHe, 

AFT and ZFT). We run our models only considering vertical velocities and use an elliptic shaped 

exhumation pattern (for discussion of horizontal velocities see section DR3.3). Maximum exhumation 

rates are defined in the inner ellipse and minimum rates (“background rates”) outside of the ellipse (see 

Figure DR4). Pecube interpolates smoothly between these two values, to get the further values. 

Furthermore, in order to reconstruct transient changes in exhumation in the Olympic Mountains with 

onset of Pleistocene glaciation, we use a two-step approach.  

First, in order to estimate the best long-term exhumation history, we use constant rates 

throughout the entire model duration and try to find the best-fit ellipse in terms of location, size and rates. 

The location and size of the ellipse are assessed by the general pattern of reset/unreset ages. The most 

appropriate rates for the ellipse are found by using a reduced χ2-test. We perform runs with five different  

 

3.1. Tectonic and climatic contributions to focused exhumation

45



 

Table DR 4: List of parameters used for the Pecube modeling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure DR4: Elliptic exhumation rate pattern used for our model runs. Rates are defined outside of the ellipse 

(background rates), where they are lowest and in the inner ellipse, where they are highest. The pattern and values 

shown (0.25 to 0.9 mm/yr) are for our preferred constant rate ellipse. Rates for the horizontal model runs (section 

DR3.3) were extracted along the black, dashed line. Offshore above the ocean exhumation rates are set to zero. 

Parameter Value Source 

thermal conductivity 1.83 W m-1K-1 

average value for six drill cores in 

sediment material in the shelf offshore 

from Vancouver Island (Lewis et al., 

1988) 

Specific heat capacity 1200 J kg-1K-1  

crustal density 2700 kg m-3  

mantle density 3200 kg m-3  

temperature at the base of the 

model 
400 °C 

extrapolation to greater depths from 

temperature estimates based on heat 

flow measurements on the shelf 

(Hyndman et al., 1990; Hyndman and 

Wang, 1993; Booth-Rea et al., 2008) 

temperature at sea level 8 °C  

atmospheric lapse rate 6.69 °C km-1  

crustal heat production 0.77 µW m-3 

average value from drill cores on the 

shelf offshore from Vancouver Island 

(Lewis and Bentkowski, 1988) 
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inner ellipse rates (0.8, 0.9, 1.0, 1.2, 1.4 km/Ma) and six different background rates (0.1, 0.2, 0.25, 0.3, 

0.4, 0.5 km/Ma). At first we look at the distribution of single χ2-values for each sample and each model 

run in order to get an overview of how well the models reproduce the ages. The χ2-value gives 

information about the misfit between predicted (τm) and observed ages (τo with uncertainty σo): 

𝜒2 = (
𝜏𝑜 − 𝜏𝑚

𝜎𝑜
)

2

 

In order to also assign an uncertainty to unreset samples and include them in the χ2-test, we use an 

“arbitrary” uncertainty of 10%. Following Adams et al. (2015) we also apply this approach to reset 

samples and either use the actual uncertainty or use the 10%, whichever is greater. Furthermore, 

because Pecube can not discern between fully and partially reset samples, we exclude all AFT and ZFT 

samples from the data set that do not show concordant ages. Figure DR5 displays the range of 

observed χ2-values for each thermochronometric system. Generally the misfit for AFT and ZFT is smaller 

(χ2<100) compared to AHe or ZHe, where the χ2-values can be as high as 104 and can display a range 

of several magnitudes for some samples. Samples that have these very high χ2-values are likely 

candidates that can distort and bias a reduced χ2-analysis. Hence, we excluded several samples from 

the further analysis. This includes samples OP1521 and OP1582 for AHe (sample number 14 and 33 in 

Figure DR5), and samples OP1532, OP1542 and OP1582 for ZHe (sample number 16, 22 and 27 in 

Figure DR5). One reason why these samples show particularly high χ2-values could be that the true 

shape of the exhumation rate pattern deviates from the imposed perfectly ellipse-shaped pattern. 

So we use a total of 31 AHe, 14 AFT, 24 ZHe and 45 ZFT ages for our reduced χ2-analysis. For 

the respective thermochronometer system, the reduced χ2-value is defined as the sum of the single χ2-

values from each sample divided by the number of samples (n): 

𝜒𝑟𝑒𝑑𝑢𝑐𝑒𝑑
2 =

1

𝑛 − 2
∑ (

𝜏𝑜 − 𝜏𝑚

𝜎𝑜
)

2

 

The resulting reduced χ2-values for assessing the best-fit ellipse are displayed in Figure DR6 and give 

information about the goodness of fit for the respective combination of outer/inner ellipse rates. 

Comparing the best-fit suggestions (outlined by the red box in the subpanels in Figure DR6) for the four 

thermochronometer systems shows that very different combinations of outer/inner ellipse rates are 

suggested for each thermochronometer system (e.g. 0.25/1.2 for ZHe vs. 0.25/0.8 for AFT vs. 0.5/1.2 for 

AHe). This indicates that there is likely no single constant exhumation rate history fitting all 

thermochronometer systems equally well. Thus, simply adding the reduced χ2-values from each system 

to a total χ2-value could lead to a biased combination of outer/inner rates (e.g. this approach would favor 

0.25/1.2 km/Ma, giving an almost perfect fit for ZHe, but significantly misfiting AHe and to a minor 

amount AFT and ZFT). Furthermore, high rates in the inner ellipse (>1.0 km/Ma) result in ZFT ages that 

are much too young, compared to their unreset age or to the four partly reset ZFT ages (modeled ages 

of 5 – 10 Ma vs. 13 – 14 Ma for the reset samples). Choosing a high value in the inner ellipse results 

already in a very good fit for ZHe with constant exhumation rates (e.g. a reduced χ2-value of 1 – 2). 

However, a later increase in rates (which is suggested by the bad fit of constant rate models for AHe) 

would lead to very young ZHe ages and again decrease the reduced χ2-values for ZHe. 
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Figure DR6: Results from finding the best-fit constant rates for the ellipse, showing the reduced 

χ2-values for AHe, AFT, ZHe, ZFT and the sum of all systems from our reduced χ2-test runs. We 

performed model runs with five different erosion rates in the inner ellipse and six different 

background/outer ellipse erosion rates. Best fit solutions for each system are indicated by red 

boxes, note that the best-fit combinations of inner/outer ellipse rates differ significantly for the 

different thermochronometer systems. The colorbar is different for each subpanel. 

 
 

3.1. Tectonic and climatic contributions to focused exhumation

49



 

 

 
Figure DR7: Maps of a) relief (calculated for a moving circle of 3 km diameter) and b) elevation compared to our 

best-fit ellipse pattern. Both areas of high relief and elevation are contained within our ellipse pattern. 

 

To conclude, due to the afore mentioned points we argue for an inner ellipse rate that is not too 

high and picked rates of 0.25/0.9 km/Ma for our preferred constant-rate ellipse. This combination is 

strongly favored by AFT and ZFT (each have reduced χ2-values of 9), and if rates are increased within 

the transient model runs for the 0.25/0.9 km/Ma ellipse, the total χ2-values are also lower (~50 for best-fit 

transient models, see below) compared to the 0.25/1.2 km/Ma ellipse suggested by the total χ2-values 

(66). Different from Brandon et al., (1998) we do not locate the center of our ellipse on the western side 

(see Fig. DR1e), but in the central high topography part of the mountain range. Here, highest rock uplift 

rates are suggested to correlate with mean elevation and relief (Adams and Ehlers, 2017). Our proposed 

ellipse pattern matches both relief and mean elevation, where areas of highest relief and elevation are 

contained within the ellipse (Fig. DR7) 

 

DR3.2.2 Transient model runs 

In a second step, we use these best-estimate long-term exhumation rates (0.25 - 0.9 km/Ma) in order to 

explore transient model runs, where the exhumation rate is increased. This is centered around the 

question, whether Pleistocene glaciation, which undoubtedly affected the topography in the Olympics 

(e.g. Montgomery and Greenberg, 2000; Montgomery, 2002; Adams and Ehlers, 2017), also had an 

influence on the exhumation of the mountain range.  

Considering transient model runs adds more parameters to the model space that could be variable and 

that need to be explored. Hence, we try to find the best timing of increase in rates as well as increase 

amount by again using a reduced χ2-test. For this we consider six times of increase (1, 2, 3, 5, 7 and 10 

Ma) and seven increase amounts (10, 30, 50, 70, 100, 150 and 200%, all measured relative to the best-

fit ellipse rate of 0.25/0.9 km/Ma), resulting in 42 possible increase histories. Values from the reduced χ2-

test for each thermochronometer system and the total reduced χ2-value (sum of all systems) for each 

increase history are shown in Figure DR8, where the best-fit solutions with the lowest χ2-values are 

outlined by red boxes. Transient model runs with increasing exhumation rates lead to a much better fit of  
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Figure DR8: Results from finding the best-fit transient model run, where the timing of an increase in exhumation 

rates (6 different times) and the magnitude of increase (7 different amounts) are varied, giving a total of 42 possible 

combinations. Shown are the reduced χ2-values for AHe, AFT, ZHe, ZFT and the sum of the four systems. Best-fit 

solutions are outlined by red boxes in each subpanel. This indicates, that several increase histories equally well fit 

the data, e.g. an earlier increase requires a smaller amount, compared to a later increase with higher increase in 

exhumation rate. The amount of increase is measured relative to the best fit ellipse, which has rates of 

0.25/0.9 km/Ma. 
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AHe ages (reduced χ2-values of 10 – 15 compared to 29 – 34 for constant models, see Figures DR6 and 

DR8). Furthermore, ZHe now also shows a much better fit (reduced χ2-values of 1 – 7, compared to 32 

for the constant 0.25/0.9 model run). Reduced χ2-values for AFT and ZFT do slightly increase for the 

transient model runs, probably because the modeled ages for unreset samples become even younger 

with increased rates. In summary, the total reduced χ2-value for the transient models (50 – 55) is lower 

than for the best-fit constant rate model (66) and suggests that an increase in exhumation rate is 

required to explain the observed ages. However, this also shows that there is a non-unique solution and 

that several exhumation histories give an equally good fit (Figure DR8): at 2 Ma 100 – 150% increase, at 

3 Ma 50 – 100% increase, at 5 Ma 50 – 70% increase and at 7 or 10 Ma 30 – 50% increase. So the 

earlier the timing of increase, the smaller is the required amount of increase in rates. A summary of our 

preferred simulations can be found in table DR 5. 

Although the model suggests that an increase in rates could happen at different times, there also 

needs to be an increase mechanism preserved in the geological record at this particular time step, to 

make this timing of increase geologically feasible. To our knowledge, there is no mechanism between 5 

– 10 Ma, that could result in an increase in exhumation rates, e.g. the subduction zone geometry is 

thought to be in its present day geometry since the latest Eocene (Brandon and Vance, 1992), 

exhumation of the Olympic Mountains started already at 18 Ma (Brandon et al., 1998), and no significant 

change in climate has been proposed for this period. On the other hand, Pleistocene glaciation shaped 

the Olympic Mountains, both by alpine glaciers (see e.g. Figure 1 in the main paper) and the Cordilleran 

Ice Sheet (Figure DR1d). So Pleistocene glaciation is a mechanism readily at hand and has been 

invoked as a reason for changes in exhumation on a world-wide scale (e.g. Herman et al., 2013), but 

also local studies in other orogens suggest a strong impact of Pleistocene glaciation, e.g. in the Coast 

Mountains of British Columbia (Ehlers et al., 2006), St. Elias Range of Alaska (e.g. Berger et al., 2008) 

or the European Alps (e.g. Glotzbach et al., 2013).  

The exact onset of alpine glaciation in the Olympic Mountains is difficult to determine (see 

discussion in chapter DR1), hence we also collected information about Pleistocene glaciation in nearby 

areas in order to present a possible time frame for glaciation. Onset of alpine glaciation in the Olympics 

could be as old as 2 Ma (Easterbrook, 1986) and is close to the proposed onset of northern hemisphere 

glaciation at 2.7 Ma (Haug et al., 2005). However, glaciation commenced as early as 7 – 8 Ma in the BC 

Coast Mountains (Clague, 1989; Ehlers et al., 2006), only 400 km north of the Olympics. Given these 

time constraints, we believe that 2 to 3 Ma are plausible timings for increasing exhumation rates and 

picked these times and the suggested increase amounts (at 2 Ma 100 – 150% increase, at 3 Ma 50 – 

100% increase) as our preferred transient model solutions. Our proposed range of increasing rates by 50 

– 150% is also in accordance with results from the BC Coast Mountains (Ehlers et al., 2006) and would 

correspond to an ellipse with outer/inner rates of 0.38/1.4 – 0.63/2.3 km/Ma. Furthermore, a peak in 

glacial erosion at 1.8±0.2 Ma in the BC Coast Mountains (Shuster et al., 2005) suggests, that the effect 

of glacial erosion on exhumation can be temporally variable, and hence offering a range of increase 

times and amounts is geologically meaningful. 

In order to finally compare sample ages with model ages (Figures 2b,c,e,f in the main paper), we 

use the following approach. Model ages from the preferred transient model runs are extracted along the 

swaths A/A’ and B/B’, both with a width of 30 km. For better comparison with our equal elevation data 

(collected at ~400 m), these model ages are filtered for elevations between 200 and 500 m in a next step 

and the mean ages are calculated for each increment of the swath from the filtered ages. Finally, the 

colored envelopes in Figure 2b,c,e,f represent the range of ages derived from the five preferred transient 

model runs and are compared to the constant model run with the 0.25/0.9 km/Ma ellipse (black, solid 

lines in Figure 2b,c,e,f). For reference, the results for an earlier increase in rates (50 and 70% at 5 Ma) 

are also displayed, and given the uncertainty with onset of glaciation in the Olympics, the effect of 

glaciation commencing at this time would still produce ages observed in the Olympics.  
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Table DR 5: Summary of our preferred transient thermo-kinematic simulations from Figure DR8. 

Amount of 
increase relative to 

constant rate 

Outer/Inner 
ellipse rates 

(km/Ma) 

 Onset times for an increase in rates 

 2 Ma 3 Ma 5 Ma 7 Ma 10 Ma 

Initial constant rate 0.25/0.9 
 

     

10% 0.28/1.0 
 

- - - - - 

30% 0.33/1.2 
 

- - - X X 

50% 0.38/1.4 
 

- X* X* X X 

70% 0.43/1.5 
 

- X* X* - - 

100% 0.5/0/1.8 
 

X* X* - - - 

150% 0.63/2.3 
 

X* - - - - 

Notes: X = Respective increase at respective time yields best-fit simulation. 
 - = Respective increase at respective time did not yield a best-fit simulation 

* = Results from simulations are displayed in Figure 2. 

 

As elaborated in chapter DR1, both precipitation and the location of the equilibrium line altitude 

(ELA) show strong west to east gradients within the Olympics (Figures DR1c,d) and the ELA is lowest on 

the west side. Because the ELA corresponds to the area of most effective glacial erosion (e.g. 

Montgomery, 2002), the effect of glacial erosion on the exhumation rate is also expected to vary spatially 

in the Olympics. This is already partly reflected by the range of viable increase amounts of our models 

(50 – 150%). But particularly samples on the western side of the range (OP1527, OP1529, OP1532) still 

have AHe ages that are younger than ages predicted by our preferred transient model runs. So locally 

an increase by 150 – 200% or even more could explain the observed, young AHe ages (see range of 

predicted ages for this amount of increase in Figure 2b). 

 We do not include the literature data in our swath profiles of Figure 2, because direct comparison 

between our own data and the published literature data is hampered, due to the different (non-constant 

elevation) sampling approach. Our own samples were collected at an equal elevation of ~400 m allowing 

for direct comparison between the samples (where the effect of topography on thermochronometric ages 

does not have to be considered). On the other hand, the literature samples were collected at elevations 

between sea level and 2400 m. Nevertheless, we use the fully reset AFT ages in our χ2-approach in 

order to assess the goodness of fit for our transient model runs (Figure DR8). Furthermore we provide a 

comparison of literature AFT and ZFT ages to modeled ages along the swaths in Figure DR9, where we 

considered literature samples from elevations between 0 and 600 m asl (to make these swaths 

comparable to Figure 2). However, not many samples are available within this elevation range. The 

observed fit of sample to modeled ages is not as good as for our own AHe and ZHe data, particularly 

AFT ages seem to be too old. Several reasons could account for that. All of our and literature samples 

collected in the Olympic Mountains are sandstones and are hence detrital in nature, if they have not 

been subducted deep enough and heated to reset them. For their AFT ages this leads Brandon et al. 

(1998) to discern between fully reset (single age peak, younger than depositional age of sample), 

partially reset (several peaks, one age peak younger than depositional age), multiply reset (several age 

peaks, all younger than depositional age) and detrital samples (all peaks older than depositional age). 

The distribution of the different sample types is not correlated with their spatial occurrence, because 

fully, partially and multiply reset samples can all be found in the interior of the mountain range. This  
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Figure DR9: Literature AFT/ZFT ages (symbols) and modeled AFT/ZFT ages along the swath profiles A-A’ and B-

B’. Literature data are taken from an elevation interval between 0 and 600 m asl, to make the analysis comparable 

to our own equal elevation data. Model ages are taken from an elevation interval between 200 – 500 m. For 

location of the swaths see Figure 1b, AHe/ZHe ages together with elevation/precipitation can be found in Figure 2. 

Note: only fully reset or unreset literature samples are considered. 

 

clearly indicates that the resetting process is variable from sample to sample. Due to the different 

kinetics of the AHe, AFT and ZHe systems differences in the resetting behavior for these systems seem 

to be plausible. This could partly account for the better fit of AHe and ZHe ages to our models, compared 

to AFT, especially since modeled ages within Pecube are treated as fully reset ages. Furthermore, the 

quality of some of the sandstone samples from the Olympics can be poor and can cause analytical 

difficulties. E.g. for some of their fully reset samples Brandon et al. (1998) were able to report only 9 – 13 

grains, although usually 20 grains should be dated for AFT dating purposes. Finally, one further aspect 

that could result in a good fit of AHe and ZHe but a bad fit of AFT ages is another variation in 

exhumation rates besides our proposed increase at 2 Ma like a decrease in rates after samples cooled 

through the closure temperature of ZHe and subsequent stronger increase. This further complication of 

cooling histories should be addressed in future work. 
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To conclude, transient models with various timings and amounts of increase in exhumation rates 

give a good fit to the observed thermochronometric cooling ages in the Olympic Mountains. However, 

there are also other factors that are not included in our modeling approach, but that can explain the still 

observed mismatch between modeled ages and sample ages. First, the increase in rates (which is 

interpreted as the impact of glaciers) seems to be spatially (and temporally) variable. Second, the shape 

of the exhumation rate pattern could be different from the assumed perfect ellipse shape and explain 

some of the excluded, ‘outlier’ samples (e.g. samples OP1521 and OP1582), too. A possible reduction in 

topography, e.g. due to Pleistocene glaciation (Ehlers et al., 2006), was also not included in the model. 

And the exhumation history could be even more complicated, where exhumation rates increase or 

decrease additionally to the imposed 2 – 3 Ma. 

 

DR3.3 Horizontal velocity models 

In a previous study the horizontal velocity component additional to the vertical velocity 

component was considered in a modeling approach as well (Batt et al., 2001). For this model, a cross 

section through the accretionary wedge is assumed, starting at the offshore deformation front and 

extending to the east coast of the Olympic Peninsula. Sedimentary material derived from the subducting 

slab can enter the accretionary wedge either via frontal accretion or underplating. Batt et al. (2001) 

concluded that ~90% of the sediment needs to be frontally accreted (and hence a high horizontal 

velocity component is required) in order to explain their observed age pattern of AHe, AFT and ZFT. 

However, there are several reasons why we believe that the contribution of horizontal velocities 

in the Olympics is less important than previously suggested. First the approach of Batt et al. (2001) is 

questionable. They base their model on a predefined erosion rate function, which governs the vertical 

velocity field (and hence the rock uplift). Although the rates of the function are variable from model to 

model run (in order to explore the best-fitting rates), the shape of the function stays constant. This 

erosion rate function is determined from uplifted river terraces at the west coast (Pazzaglia and Brandon, 

2001) and long-term exhumation rates from inversion of AFT ages (Brandon et al., 1998). These AFT-

derived exhumation rates are based on a 1D thermo-kinematic model, but do not consider the proposed 

effect of horizontal velocities (e.g. the protracted cooling history due to longer travel paths) or possible 

changes of rates with time. So simply based on the shape of the function, highest erosion rates are 

always observed 20 – 30 km from the western coastline. Due to the fact that this corresponds also to the 

area of high horizontal velocities (generally speaking the horizontal velocities decrease from west to 

east), a strong interplay between horizontal and vertical velocities can always be expected for these 

models. 

 Second, the equation stated for the vertical velocity in Batt et al. (2001) contains a mistake, 

because their derivative of the horizontal velocity is not correct (it is missing a 𝜂𝑣𝑐ℎ0 term). Although a 

full derivation of horizontal and vertical velocities is beyond the scope of this paper (see e.g. Batt et al., 

2001; Pazzaglia and Brandon, 2001), we reformulate the corrected equation for the vertical velocity 

component, 

𝑤(𝑥, 𝑧) = 𝛼 (𝜀̇(𝑥) −
𝑧 𝜀̇(𝑥)

ℎ(𝑥)
− 𝑧 ∙ tan 𝜙 ∙ (

𝜂𝑣𝑐ℎ0 − ∫ 𝜀̇(𝑥)
𝑥

0

ℎ2(𝑥)
)) + (1 − 𝛼) 𝜀̇(𝑥) 

where the vertical velocity w(x,z) at place x and z in the wedge is calculated based on the erosion rate at 

the surface 𝜀̇(𝑥), thickness of the wedge h(x), angle of subduction ϕ, the incoming sediment material 

(product of sediment porosity 𝜂, subduction velocity vc and sediment thickness h0). The factor α is the 

ratio between frontal accretion and sedimentary underplating (so if α=1 all sediment is frontally 

accreted). The formula for the horizontal velocity in Batt et al. (2001) is correct, 

𝑢(𝑥) = 𝛼 (
𝜂𝑣𝑐ℎ0 − ∫ 𝜀̇(𝑥)

𝑥

0

ℎ(𝑥)
) 
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with the underlying assumption that horizontal velocities do not vary with depth but only in x-direction. 

Examining this equation shows that the horizontal velocity is highest for 100% frontal accretion (α=1) and 

zero, if only underplating occurs (α=0). 

 Using these two equations and the values given in table DR6, we also perform model runs in 

Pecube with both horizontal and vertical velocities. However, these model runs are highly simplified 

compared to our model runs described in chapter DR3.2: they neither include topography, nor do they 

consider an increase in rates at 2 – 10 Ma. Furthermore, the model follows a cross section across the 

Olympic Peninsula parallel to the subduction direction (with a bearing of 54°, for the trace of the cross 

section see Figure DR4). We derive the integral of the erosion rate by integrating over our preferred 

elliptic exhumation rate pattern (from the constant rate model run) along the cross section. Using the 

derived integral and the values listed in table DR6, we calculate the horizontal and vertical velocities 

along the cross section with a matlab script (using the above equations) and put these values back in 

Pecube. The resulting pattern of ages is depicted in Figure DR10. A high α-value (i.e. high horizontal 

velocities) generates AHe and ZHe ages that are too old compared to the observed ages, because it 

basically shifts the area of reset ages further to the east. For the α=0 model run sample ages are often 

younger than the model ages (particularly on the west side), which is probably related to the increase in 

rates at around 2 – 3 Ma due to Pleistocene glaciation. We did not include this increase in our horizontal 

model runs. 

All the points mentioned above lead us to the conclusion, that for our chosen exhumation rate 

pattern a high horizontal velocity (meaning a high amount of frontal accretion) is not necessary to explain 

the observed age pattern in the Olympic Mountains for the AHe and ZHe thermochronometer systems 

we consider. This is also in accordance with seismic studies showing that sedimentary underplating is 

taking place in the Olympics (Calvert et al., 2011). Hence, our approach to model an increase in 

exhumation rates at Plio-Pleistocene time using a model that only considers vertical movement seems to 

be viable. However, we acknowledge the possibility that horizontal motion may be significant for higher 

temperature thermochronometers (e.g. ZFT) that integrate over longer time scales and distances. 

 
 
Table DR 6: Additional list of parameters used for the horizontal velocity runs. 

Parameter Value Source 

incoming sediment 

thickness 
2.5 km 

approximate value offshore from the Olympic 

Peninsula (Booth-Rea et al., 2008) 

subduction velocity 34 km/Ma 

calculated plate velocity of the down going Juan de 

Fuca plate at the latitude of the Olympics 

(Doubrovine and Tarduno, 2008) 

sediment porosity 27 % taken from Batt et al. (2001) 

angle of subduction 10° 

average value of the present day angle of 

subduction for the Cascadia subduction zone at the 

latitude of the Olympics (Davis and Hyndman, 

1989) 
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Figure DR10: Modeled and observed AHe and ZHe ages from 2D kinematic model simulations extracted along a 

profile across the Olympic Peninsula (see Fig. DR4 for location). Note that in offshore regions no exhumation is 

defined within the model, hence all ages are unreset. The α-value corresponds to the amount of material that is 

frontally accreted in the wedge (α=1, 100% frontal accretion with maximum horizontal velocity; α=0, 100% 

underplating with no horizontal velocity). A large horizontal velocity component predicts anomalously old cooling 

ages for both AHe and ZHe. 
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3.2 Temporal variations of exhumation and steady-state oro-
gens

3.2.1 Declaration on contributions to joint work

The following section of the dissertation contains a manuscript that has been
submitted and is accepted for publication in the journal Earth Surface Dynam-
ics - Discussion, entitled “How steady are steady-state mountain belts? – a re-
examination of the Olympic Mountains (Washington State, USA)”. It is an open
review process journal, hence the initial version of the submitted manuscript
can be accessed online under https://doi.org/10.5194/esurf-2018-65. The
most-recent versions during peer-review of the submitted manuscript and the
electronic supplement are provided in section 3.2.2 and section 3.2.3, respec-
tively. Supplementary data tables containing the single grain ages of AHe, ZHe,
AFT and ZFT are provided in the appendix (Section B).

Five authors contributed to the work presented in the manuscript: Lorenz
Michel (LM), Christoph Glotzbach (CG), Sarah Falkowski (SF), Byron Adams
(BA) and Todd Ehlers (TE). A summary of the respective contributions is pro-
vided in Table 3.2. The detailed contributions are as follows: LM developed
the idea of re-investigating steady-state of the Olympic Mountains by refining
the influx calculation and using cross sections. This basic idea was expanded
by contributions from CG, BA, TE and SF. LM, TE and BA performed fieldwork
and collected samples. LM performed the sample treatment, mineral separation
and selected apatite and zircon minerals for thermochronometric dating. SF pre-
pared mineral mounts for apatite and zircon fission-track dating (AFT, ZFT). SF
performed the AFT dating and LM performed ZFT dating, respectively, and the
interpretation of fission-track ages was done by SF and LM. CG performed most
of the analytic work involved in (U-Th)/He dating, with minor help from LM.
The thermo-kinematic modeling (Pecube) was performed by LM, with input from
BA, TE and CG. Analysis and interpretation of the results was done by LM, CG,
BA, SF and TE. LM drafted the first version of the manuscript along with all fig-
ures. During further writing and development of the manuscript, the manuscript
received comments from BA, SF, CG and TE. During peer review, two reviewers
commented on the manuscript.
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Table 3.2: Summary of the contribution to joint work for the paper “How steady are
steady-state mountain belts? – a re-examination of the Olympic Mountains (Washington
State, USA)”, indicating the average fraction of work of the respective author in percent.
The manuscript has been accepted for publication in February 2019.

Author Position
Scientific
ideas (in

%)

Data gen-
eration
(in %)

Analysis and
Interpretation

(in %)

Paper
writing
(in %)

LM [1] 70 60 65 65

CG [2] 15 20 15 10

SF [3] 5 15 10 10

BA [4] 5 5 5 10

TE [5] 5 0 5 5
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Abstract. The Olympic Mountains of Washington State (USA) represent the aerially exposed accretionary 

wedge of the Cascadia Subduction Zone and are thought to be in flux steady-state, whereby the mass outflux 

(denudation) and influx (tectonic accretion) into the mountain range are balanced. We use a multi-method 

approach to investigate how temporal variations in the influx and outflux could affect previous interpretations 

of flux steady-state. This includes analysis of published and new thermochronometric ages for (U-Th)/He 

dating of apatite and zircon (AHe and ZHe, respectively) and fission track dating of apatite and zircon (AFT 

and ZFT, respectively), 1D thermo-kinematic modelling of thermochronometric data, and independent 

estimates of outflux and influx.  

In total, we present 61 new AHe, ZHe, AFT, and ZFT thermochronometric ages from 21 new samples. 

AHe ages are generally young (<4 Ma), and, in some samples, AFT ages (5–8 Ma) overlap with ZHe ages (7–9 

Ma) within uncertainties. Thermo-kinematic modelling shows that exhumation rates are temporally variable, 

with rates decreasing from >2 km/Myr to <0.3 km/Myr around 5–7 Ma. With the onset of Plio-Pleistocene 

glaciation, exhumation rates increased to values >1 km/Myr. This demonstrates that the material outflux is 

varying through time, requiring a commensurate variation in influx to maintain flux steady-state. Evaluation of 

the offshore and onshore sediment record shows that the material influx is also variable through time and that 

the amount of accreted sediment in the wedge is spatially variable. This qualitatively suggests that significant 

perturbations of steady-state occur on shorter timescales (105–106 yr), like those created by Plio-Pleistocene 

glaciation. Our quantitative assessment of influx and outflux indicates that the Olympic Mountains could be in 

flux steady-state on long timescales (107 yr).  

1 Introduction 

The assumption of a balance between opposing processes has allowed geoscientists to use proxy 

measurements (like denudation rates) to constrain difficult to measure variables like rock uplift. This has given 

rise to the concept of steady-state landscapes or mountain ranges. Likewise, a steady-state (i.e., a mass balance) 

is commonly one of the boundary conditions in modelling studies investigating the evolution and dynamics of 

orogens in response to changes of other boundary conditions like climate or tectonic fluctuations (e.g., Batt et 

al., 2001; Stolar et al., 2007; Whipple and Meade, 2006; Willett, 1999). Two main types of steady-state are 

often used to interpret mountain building processes (e.g., Willett and Brandon, 2002): (1) Topographic steady-
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state, where the topography is invariant, because rock uplift and horizontal motion of material is balanced by 

denudation, and (2) flux steady-state, where the material influx (by accretion of sediment and rock) is balanced 

by the material outflux (by denudation) from a mountain range. The assumption of steadiness is both spatial- 

and timescale-dependent so that for a given timescale, steadiness might only be achieved on a large, orogen-

wide spatial scale, due to the spatial averaging of single processes acting on a small scale (e.g., catchment-wide 

sediment discharge vs. orogen-wide sediment discharge). Furthermore, a possible perturbation of steady-state is 

sensitive to the timescale it takes for orogens to respond to variations in crustal deformation or a change in 

climate. If the timescales required for a change in the influx and outflux are significantly different from each 

other, a deviation from steady-state is likely. 

Likewise, studies from different orogens worldwide suggest strong variations in denudation and 

exhumation on million-year timescales. These variations can be linked to changes in the tectonic conditions 

(e.g., Adams et al., 2015; Lease et al., 2016), internal dynamics of drainage basins (e.g., Willett et al., 2014; 

Yanites et al., 2013), changes in the magnitude of precipitation (e.g., Lease and Ehlers, 2013; Whipple, 2009), 

or the onset of glaciation (e.g., Berger et al., 2008; Bernard et al., 2016; Ehlers et al., 2006; Glotzbach et al., 

2013; Gulick et al., 2015; Herman et al., 2013; Herman and Brandon, 2015; Lease et al., 2016; Thomson et al., 

2010; Thomson et al., 2013; Valla et al., 2011; Yanites and Ehlers, 2012). 

Based on thermo-kinematic modelling of thermochronometric cooling ages, the Olympic Mountains, 

USA, (Fig. 1a) have been proposed to be in flux steady-state since ca. 14 Ma (Batt et al., 2001; Brandon et al., 

1998). The approach of these studies was to assume flux steady-state along a two-dimensional profile across the 

Olympic Peninsula as a precondition in order to derive the kinematics of the model from the balance between 

accretionary influx (governed by the thickness of accreted sediment and plate convergence rate) and 

denudational outflux (as set by exhumation rates). Because the cooling ages can successfully be modelled with 

the used kinematics, the mountain range is then interpreted to be in flux steady-state. However, possible 

temporal variations in parameters like sediment thickness, plate convergence rate or exhumation rates were not 

considered in these studies. Likewise, the impact of Plio-Pleistocene glaciation on the flux steady-state 

hypothesis has not been considered yet, although the range was extensively incised by glaciers (Adams and 

Ehlers, 2017; Montgomery, 2002; Montgomery and Greenberg, 2000; Porter, 1964) and experienced significant 

changes in climate conditions over the past 3 Myr (Mutz et al., 2018). Numerical modelling studies investigated 

the mechanics of the wedge by either considering fluvial erosion (Stolar et al., 2007) or glacial erosion (Tomkin 

and Roe, 2007). A significant response of the orogenic wedge to glaciation was suggested (Tomkin and Roe, 

2007) and recent studies proposed that exhumation rates in the Olympic Mountains increased due to Plio-

Pleistocene glacial erosion (Herman et al., 2013; Michel et al., 2018). Resulting high sedimentation rates during 

the Quaternary increased the sediment thickness on the oceanic plate and seem to have caused a change in the 

deformational style of the offshore part of the wedge (Adam et al., 2004). 

In this study, we test the hypothesis of flux steady-state in the Olympic Mountains, considering variations 

in both the material influx and outflux. First, we test the temporal steadiness of exhumation rates from bedrock 

3. Scientific results

64



cooling histories with a 1D thermo-kinematic model, capitalizing on new samples which have been dated with 

three to four thermochronometers (apatite and zircon (U-Th)/He and fission-track data; AHe, ZHe, AFT, and 

ZFT, respectively). Second, instead of assuming flux steady-state as a precondition, we attempt to estimate both 

the accretionary influx and denudational outflux independently from each other. We particularly consider 

possible temporal variations in parameters affecting both fluxes by using published data of the off- and onshore 

sediment records, and exhumation rates from thermochronometry. With our new thermochronometry data we 

reveal a previously undetected temporal variation in exhumation rates due to a change in the tectonics (a 

reduction in plate convergence rates that resulted in a decrease in exhumation rate), as well as the previously 

reported increase in exhumation rates related to the Plio-Pleistocene glaciation (reflecting a change in climate). 

Similarly, both material influx and outflux are temporally variable, especially during the Quaternary. A 

quantitative comparison between both fluxes suggests that the Olympic Mountains could be in flux steady-state 

over longer timescales (e.g., 107 yr), if a three-dimensional geometry is considered. 

 

2 Background 

2.1 Geology and glacial history of the Olympic Mountains 

At present, the Juan de Fuca Plate subducts obliquely with respect to the overriding North American Plate 

(Fig. 1a) at 34 mm/yr at the latitude of the Olympic Mountains (Doubrovine and Tarduno, 2008). The forearc 

high of the subduction zone comprises (from north to south) Vancouver Island, the Olympic Mountains and the 

Oregon Coast Range, and lies west of a forearc low (e.g., Georgia Lowlands, Puget Lowlands) and the active 

volcanic arc (Fig. 1a). Seismic imaging suggests a flatter subduction angle beneath southern Vancouver Island 

and the Olympic Mountains (Hayes et al., 2012; McCrory et al., 2012), compared to areas in the north and 

south (Fig. 1a). The modern configuration of the subduction zone was established by the latest Eocene (e.g., 

Brandon and Vance, 1992) after accretion of the Coast Range Terrane to the North American continent (Fig. 

1c). This terrane represents a large oceanic plateau and extends from the southern tip of Vancouver Island to 

Oregon (Eddy et al., 2017; Phillips et al., 2017; Wells et al., 2014). 

 The accretionary wedge of the subduction zone is exposed onshore within the Olympic Mountains (Fig. 

1a) and is composed of Eocene–Miocene flysch (Brandon et al., 1998; Tabor and Cady, 1978). This part of the 

mountain range is known as the Olympic Structural Complex (Brandon et al., 1998) and is separated from the 

surrounding Coast Range Terrane by the Hurricane Ridge thrust fault (HRF; Fig. 1c), a major discontinuity 

traceable in seismic surveys (e.g., Clowes et al., 1987; Calvert et al., 2011). Minor sedimentary rocks of Eocene 

age (Eddy et al., 2017; Tabor and Cady, 1978) are contained within the Coast Range Terrane besides the 

predominant ~50 Ma old marine and subaerial basaltic rocks (Eddy et al., 2017). Exhumation of the range 

commenced at 18 Ma and since 14 Ma, the orogen is supposed to be in flux steady-state (Batt et al., 2001; 

Brandon et al., 1998; Pazzaglia and Brandon, 2001). 
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Figure 1: a) Overview map of the Cascadia Subduction Zone, showing the extent of the accretionary wedge. White dashed lines are contour lines for 

the top of the subducted oceanic plate from the Slab1.0 model (Hayes et al., 2012; McCrory et al., 2012), the black arrow indicates the present-day 

convergence rate and direction at the latitude of the Olympic Mountains (Doubrovine and Tarduno, 2008), red triangles denote the location of active 

volcanoes. VI = Vancouver Island, OM = Olympic Mountains, CR = Oregon Coast Range. b) Topography of the Olympic Mountains, major river 

valleys (Elwha, Hoh, Quinault, Queets) and major Quaternary features are indicated. Limit of the Cordilleran Ice Sheet from Porter (1964), alpine 

moraines after geologic map of Tabor and Cady (1978). Locations of samples from this study (filled yellow circles) and previous studies (open white 

circles) are indicated. The white triangle denotes the location of Mt. Olympus. c) Geologic and structural map of the Olympic Mountains after Tabor 

and Cady (1978) and Brandon et al. (1998). The line pattern indicates the occurrence of sediments within the Coast Range Terrane. HRF = Hurricane 

Ridge Fault. 

 

 Plio-Pleistocene glaciation has strongly influenced the present-day appearance of the Olympic 

Mountains (Fig. 1b). During its maximum extent at ~14 ka, the Cordilleran Ice Sheet advanced from the Coast 

Mountains of British Columbia and covered Vancouver Island and large parts of todays’ continental shelf 

(Booth et al., 2003; Clague and James, 2002). The Puget and Juan de Fuca lobes of the Cordilleran Ice Sheet 

surrounded the Olympic Mountains in the east/southeast and in the north, respectively (Fig. 1b). Alpine glaciers 

incised deep valleys in the landscape, particularly on the western side of the range (Adams and Ehlers, 2017; 
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Montgomery, 2002), where piedmont glaciers almost reached the Pacific Ocean (Thackray, 2001). Glacial 

erosion varied across the range, as the location of the Pleistocene equilibrium line altitude increases from 

1000 m in the west to 1800 m in the east (Porter, 1964), due to a strong precipitation gradient (> 6000 mm/yr in 

the west, < 1000 mm/yr in the east). Determining the exact onset of glaciation in the Olympics has proven 

difficult, but the oldest deposits of the Cordilleran Ice Sheet in the Puget Lowland are as old as 2 Ma and deeply 

weathered alpine till on the west side of the Olympics is interpreted to be of the same age (Easterbrook, 1986). 

2.2 Previous thermochronometry studies in the Olympic Mountains 

Within the Olympic Mountains, an extensive dataset of thermochronometric cooling ages from bedrock 

samples (Figs. 1b and 2) exists for AHe (Batt et al., 2001; Michel et al., 2018), AFT (Brandon et al., 1998), 

ZHe (Michel et al., 2018) and ZFT (Brandon and Vance, 1992; Stewart and Brandon, 2004). These 

thermochronometer systems record cooling through a temperature range of ~60–240°C (e.g., Brandon et al., 

1998; Farley, 2002; Gallagher et al., 1998; Reiners et al., 2004), as they have effective closure temperatures of 

70°C, ~120°C, ~180°C and ~240°C, respectively, for a cooling rate of ~10°C/Myr (Ehlers, 2005). The 

interpretation of thermochronometric cooling ages from sedimentary rocks (such as in the Olympic Mountains) 

is often complicated when the cooling signal from the sediment source region(s) has not been reset due to 

reheating during subduction and metamorphism. If a sedimentary rock sample has not had sufficient exposure 

to temperatures above the closure temperature of a given thermochronometer, the sample might retain cooling 

ages that represent the source region's cooling history (referred to as unreset) or might be a mixture of 

provenance cooling histories and the reheating process (incompletely reset sample). Determining, whether a 

sample is completely, incompletely or un-reset can be difficult and usually depends on the statistics of cooling 

age populations, derived from the dated mineral grains (e.g., Brandon et al., 1998). The reproducibility of single 

grain (U-Th)/He ages from a sample provides an indication of whether a sample is reset or not. This is typically 

determined with n=4–7 grains. For the fission track method, a larger number of grains is typically dated (n=20–

100) to reduce the uncertainty in the final cooling age calculation. For samples with a large population, 

statistical methods can be applied to decompose the chronometer date distribution into different populations, 

and to determine if some portion of the sample is reset  (Brandon, 1992, 1996). In the case where a sample is 

incompletely reset, a significant young age peak is determined and interpreted as the sample cooling age (e.g., 

Brandon et al., 1998). 

In the Olympics, the youngest published reset AHe ages (≤ 2.5 Ma) can be found in the western and 

central portions of the mountain range, and there are two unreset samples in the east (Fig. 2a). The pattern of 

AFT ages is more complicated (Fig. 2b), and most reset and incompletely reset samples are located in the 

central part of the mountain range, whereas unreset samples are restricted to areas outside the central (high 

topography) part of the range. The youngest reported AFT samples (2–4 Ma) are incompletely reset samples 

and fully reset samples have cooling ages between 7 Ma and 27 Ma. ZHe data show a well-developed trend of  
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Figure 2: Map of new and previously published thermochronometric ages within the Olympic Mountains for a) AHe, b) AFT, c) ZHe and d) ZFT. 

Data from literature (Batt et al., 2001; Brandon et al., 1998; Brandon and Vance, 1992; Michel et al., 2018; Stewart and Brandon, 2004) are indicated 

by circles with black dot. Note that the colour coding of the symbols varies between panels. For AFT literature samples, the different reset states 

(fully reset, incompletely reset and unreset) are indicated by symbol shape. Maps of exhumation rates, as suggested by (e) Michel et al. (2018) and 

(f) Brandon et al. (1998). The white triangle denotes the location of Mt. Olympus. 
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unreset cooling ages at the coast and reset 5–6 Ma ages in the headwaters of Hoh and Elwha rivers (cf., Figs. 1b 

and 2c). Reset ZFT samples (~13–14 Ma) are confined to a small area east of Mt. Olympus (Fig. 2d).  

Based on thermo-kinematic modelling, Michel et al. (2018) attributed the observed AHe and ZHe age 

pattern to an ellipse-shaped exhumation pattern (with highest exhumation rates in the central, high-topography 

part of the mountain range, Fig. 2e), as predicted for a mountain range situated in an orogenic syntaxis setting 

(Bendick and Ehlers, 2014). Here, a bend in the subducted slab creates a mechanical stiffening, which in turn 

leads to rapid and focused exhumation at the surface (Bendick and Ehlers, 2014). High uplift rates in the 

central, high topography part of the mountain range are also corroborated by topographic analyses (Adams and 

Ehlers, 2017) and denudation rates based on cosmogenic nuclides (Adams and Ehlers, 2018). Furthermore, 

modelling of particularly young AHe ages (<2.5 Ma) suggests that exhumation rates increased significantly by 

50–150 % due to Plio-Pleistocene glacial erosion (Michel et al., 2018). 

2.3 Offshore sediment record 

 Data constraining the sediment thickness on the Juan de Fuca Plate before incorporation of sediment into 

the accretionary wedge are summarized in Figure 3. Three boreholes were drilled into the blanketing sediments 

of the Juan de Fuca Plate during deep-sea drilling projects (ODP 888, ODP 1027 and DSDP 174; Fig. 3 and 

Table 1), and provide estimates of the sediment thickness and age constraints. The sediment thickness at the 

deformation front of the subduction zone has been estimated from three seismic studies (Adam et al., 2004; 

Booth-Rea et al., 2008; Han et al., 2016). 

Most of the sediment is contained within two deep-sea sediment fans with different sediment sources. Today, 

sediment sources for the Nitinat Fan (offshore Vancouver Island and the Olympic Mountains) include detritus 

from Vancouver Island, the Olympic Mountains, and material delivered by the Fraser river system (Fig. 3), 

which drains large parts of the Canadian Cordillera including the British Columbian Coast Mountains 

(Carpentier et al., 2014; Kiyokawa and Yokoyama, 2009). The Astoria Fan offshore the Oregon coast is mostly 

fed by the Columbia River and is sourced by a large area in the interior of the USA (Fig. 3). 

The total sediment thickness varies between 2600–3500 m at the deformation front and decreases rapidly 

to 600 or 900 m approximately 100 km away from the deformation front. At the locations of ODP 1027 and 

DSDP 174, up to 50–70 % of the total sediment thickness are Quaternary deposits, and sedimentation rates 

more than doubled during the Quaternary (from 80–110 m/Myr to 250–270 m/Myr, Table 1). At the location of 

ODP 888 the drilled 570 m of core were deposited over the past 600 kyr, suggesting very high sedimentation 

rates of 950 m/Myr compared to 400 m/Myr for the total sediment thickness of 2600 m at the location of the 

core (Table 1). As determined from detailed, stratigraphic analysis of core ODP 888, sedimentation rates are 

also highly variable during the Quaternary. Rates during glacial periods can be as high as 1900 m/Myr 

compared to 700 m/Myr during interglacials (Knudson and Hendy, 2009). At sites ODP 888 and 1027, the 

source region of the sediments has been the Canadian Cordillera for the past 3.5 Myr, which has not been 

affected by glacial-interglacial cycles (Carpentier et al., 2014; Kiyokawa and Yokoyama, 2009). The prove- 
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Figure 3: Map of the Cascadia Subduction Zone, showing the age of the oceanic crust (Wilson, 1993) and sediment thickness, estimated from 

sediment cores of the ocean drilling programs (holes ODP 888, OPD 1027 and DSDP 174) and seismic studies (Adam et al., 2004; Booth-Rea et al., 

2008; Han et al., 2016). The amount of Quaternary sediment material estimated from cores is also included (Kulm et al., 1973; Su et al., 2000; 

Westbrook et al., 1994), more information about the drill cores is provided in Table 1. The locations of two major submarine fans (Nitinat Fan and 

Astoria Fan) are indicated by the dotted pattern. The Fraser and Columbia rivers are the main modern sediment sources for Nitinat and Astoria fans, 

respectively. White, dashed lines indicate the position of cross-sections presented in this study (cf., Fig. 7). 

nance of the sediments at DSDP 174 is mostly the Proterozoic Belt Supergroup in the interior of the USA and 

differs significantly from present-day detritus of the Columbia River (Prytulak et al., 2006). Hence, Prytulak et 

al. (2006) suggest that deposition of the upper 630 m of sediment at this site and the build-up of the Astoria Fan 

were governed by glacial outburst floods. 
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3 Methods 

We use a multi-method approach to assess flux steady-state in the Olympic Mountains. This includes 

thermochronometric dating, thermo-kinematic modelling of cooling ages to obtain exhumation rates, and 

independent estimates of accretionary influx and denudational outflux. We calculate the influx based on 

constraints of the incoming sediment thickness and plate convergence rate, and the outflux based on spatial 

constraints of exhumation rates within the Olympic Mountains. The procedure for each method is outlined 

below. 

3.1 Thermochronometric methods 

Our strategy with thermochronometric dating was (1) to obtain samples, which are multi-dated with up to four 

thermochronometer systems (because these are particularly sensitive to reveal variations in exhumation rate) 

and (2) to collect samples within vertical profiles in order to obtain estimates of the exhumation rate at the site 

of the respective profile. Therefore, we dated several literature samples with additional thermochronometer 

systems (Table 2) and we also present 19 new bedrock samples from vertical profiles (Fig. 4, Table 2) and two 

additional bedrock samples (OP1528 and OP1556; Fig. 2, Table 2) collected at an elevation of ~400 m, 

enlarging the existing ~400 m equal-elevation data of Michel et al. (2018). All new samples are sandstones of 

varying grain size. A sample transect at Mt. Olympus extends from the bottom of the Hoh Valley to the apex of 

the Olympic Peninsula (Mt. Olympus, 2428 m), covering ~2 km of relief (Figs. 4a and b). The Mt. Anderson 

transect starts in the upper reaches of the Quinault Valley and terminates on the flank of Mt. Anderson covering 

a total elevation difference of ~1600 m (Figs. 4a and c). The Blue Mountain transect is located in the northern 

part of the Olympic Peninsula close to Blue Mountain, covering an elevation difference of ~1300 m (Figs. 4a 

and d). All collected samples were dated with the AHe and ZHe techniques, three of these were dated by AFT, 

and two were dated by the ZFT technique. Additionally, we dated 13 samples from Michel et al. (2018) by AFT 

and five by ZFT thermochronometry. This process yielded seven samples with AHe, AFT, ZHe and ZFT 

cooling ages (Table 2).  

Standard mineral separation techniques (sieving, magnetic and gravimetric separation) were used to 

obtain apatite and zircon separates from crushed rock samples. For AHe and ZHe dating mineral grains were 

hand-picked and dated in the thermochronometry lab of the University of Tübingen, following the dating 

protocol of Stübner et al. (2016). The Ft-correction for apatite (Farley, 2002) and zircon (Hourigan et al., 2005) 

is applied to the measured amount of helium. The (U-Th)/He age equation is solved using the approach of 

Meesters and Dunai (2005). From each sample, we dated 4–7 apatite grains or 3–6 zircon grains and the results 

of single-grain analyses can be found in Tables S1 and S2. Our approach for assessing whether a sample is reset 

or unreset and the procedure for exclusion of outliers is explained in the supplementary material (Section S1.1). 

For reset samples, we calculate the arithmetic mean age from the accepted single-grain ages, which is reported 

in Table 2 along with a one standard deviation (1SD) uncertainty. 
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Figure 4: a) Map of samples, for which three to four different thermochronometer systems are available. The pie charts show the reset stage of a 

particular thermochronometer system for the sample. If AFT ages are unreset, the peak age of the youngest age population is given as sample age 

(see Table 3 for older populations). Ages denoted with an asterisk are taken from Michel et al. (2018). The Hurricane Ridge Fault (HRF) separates 

the rocks of the accretionary wedge from the surrounding Coast Range Terrane in the hanging wall. The locations of the three different elevation 

transects (Mt. Olympus, Mt. Anderson and Blue Mountain) are indicated on the map and the resulting age-elevation plots are shown in b) to d). In b) 

and c) the dashed coloured lines correspond to possible exhumation rates interpreted from the respective thermochronometer. All uncertainties are 1 

standard deviation, SGA = single-grain age. 

 

Fission-track dating of apatite and zircon was performed using the external detector and the ζ-calibration 

techniques (Hurford, 1990). Details about the treatment of the apatite and zircon mounts in the Tübingen 

thermochronometry laboratory can be found in Falkowski et al. (2014) and Falkowski and Enkelmann (2016). 

Table 3 contains the AFT and ZFT sample ages, and explains the procedure for assessing whether a sample is 

reset or unreset. Data for single-grain ages from fission-track dating of apatite and zircon are reported in Tables 

S3 and S4. 
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3.2 Thermo-kinematic modelling: model setup and boundary conditions 

To interpret cooling histories recorded by our thermochronometers as exhumation histories, we used a 

modified version of the thermo-kinematic model Pecube (Braun, 2003), which contains a built-in Monte Carlo 

approach to resolve temporal variations in exhumation histories (Adams et al., 2015; Thiede and Ehlers, 2013). 

The model allows exploring possible exhumation histories for a particular sample by varying exhumation rates 

through time at defined time steps. The accuracy of a particular exhumation rate history is estimated by 

comparing modelled with observed cooling ages. More age constraints, and hence thermochronometer systems, 

lead to better resolved, modelled exhumation histories. Therefore, although we report 21 new 

thermochronometric ages, we only used the seven samples, which have age constraints from AHe, AFT, ZHe, 

and ZFT in our modelling efforts (OP1513, OP1517, OP1533, OP1539, OP1551, OP1573, OP1582; Table 2). 

Thermo-physical parameters chosen for the modelling are typical values reported for the sandstones of 

the Olympic Mountains (Table 4). We performed a sensitivity analysis in order to find the most suitable time 

step for our simulations and the results of that analysis can be found in the supplementary material (Section S2). 

Based on the analysis, a time step interval of 1 Myr seems to be most appropriate to use, given the range of our 

thermochronometry ages and their respective uncertainties. During further modelling, we initiated the models at 

20 Ma and used the time step interval of 1 Myr with a maximum testable exhumation rate of 6 km/Myr. For 

each sample, we ran 20,000 simulations (each corresponding to a different exhumation history) and assessed 

the goodness of fit between observed and modelled data for the respective exhumation history, using a reduced 

χ2-test. Here, sample ages τo were compared with modelled ages τm, using the uncertainty of the sample age σo 

for the number (N) of thermochronometer systems available for the respective sample: 

𝜒2 = ((
(𝜏𝑜−𝜏𝑚)2

𝜎𝑜
2 )

𝐴𝐻𝑒
+ (
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𝜎𝑜
2 )

𝐴𝐹𝑇
+ (

(𝜏𝑜−𝜏𝑚)2

𝜎𝑜
2 )

𝑍𝐻𝑒
+ (

(𝜏𝑜−𝜏𝑚)2

𝜎𝑜
2 )

𝑍𝐹𝑇
) ∙

1

𝑁
    (1) 

If χ2≤2, a specific model run was accepted as good. The number of accepted exhumation histories is 

shown in Figure 5 for each sample. From the range of acceptable exhumation rates at each time step (shown as 

blue shaded areas in Fig. 5), we calculated the mean exhumation rate together with 1 standard deviation for 

each time step (red/dashed lines and grey areas in Fig. 5). Although the model provides output for the entire 

model duration of 20 Myr, a meaningful exhumation rate can only be obtained for the time interval between 

oldest thermochronometric age of a sample and today (shown in Fig. 5). 

For our purpose, we focus on exploring temporal variations in exhumation rates and therefore use a 1D 

model, where each sample is modelled independently from each other. In a 1D model, heat transport and 

movement of particles is only considered in the vertical dimension within a column of rock, ignoring 

topography. This mode of modelling was selected because it allowed us to efficiently perform thousands of 

simulations quickly in order to cover a large range of possible exhumation rates. The high number of 

exhumation histories accurately predicts our observed cooling ages and allows for a robust statistical 

assessment of the best-fitting exhumation history. Previous publications addressing exhumation histories in 

other orogens have also highlighted that 1D models are often sufficient to explain most of the signal recorded in  
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Figure 5: Results from the thermo-kinematic Monte Carlo modelling for the seven considered samples (OP1513, OP1517, OP1533, OP1539, 

OP1551, OP1573, OP1582). Location of each sample within the Olympic Peninsula is shown, together with the respective elevation (Elev). The 

entire range of exhumation rates from the number of accepted model runs (N) is outlined by the blue shaded area, from which the mean rate and one 

standard deviation (1SD) is calculated at each time step. Black, green, and blue stippled boxes outline measured AHe, AFT, and ZHe ages of the 

samples with 1SD. 
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thermochronometric systems (e.g., Adams et al., 2015; Thiede and Ehlers, 2013). In the Olympic Mountains, 

Michel et al. (2018) argued that exhumation histories for the thermochronometer systems considered here can 

be well explained by vertical velocity paths, too. Because the spatial resolution of our seven considered samples 

is poor and they are all from the interior part of the mountain range (Fig. 4), we cannot further resolve the 

exhumation rates outside this area, making a 3D model very difficult to validate. Therefore, we limit our 

interpretations to the better-resolved exhumation histories from the 1D model and focus on the primary 

temporal changes, rather than paleotopography, or specific differences in the exhumation rates between 

samples. 

Five of the seven considered samples are from the same elevation range (400–580 m), but two samples 

are from higher elevations (1360 m and 1500 m, Fig. 5). Large differences in elevation between the samples 

can impact the direct comparison between them (e.g., it can affect how changes in exhumation rate are recorded 

from location to location). However, we are not able to correct for this circumstance (by using an age elevation 

relationship), and therefore try to consider this complication when interpreting our exhumation rate histories 

from the different samples. 

3.3 Methods for estimating flux steady-state 

To assess the flux steady-state hypothesis of the Olympic Mountains, we need independent estimates of 

the material influx and outflux over time. For this, we focus on the time period since 14 Ma, which corresponds 

to the proposed establishment of flux steady-state (Batt et al., 2001; Brandon et al., 1998). Flux steady-state 

requires that the material influx into the wedge equates the amount of accreted material, removed from the 

subducting slab. We assessed the amount of accreted sediment (material influx) with two approaches. First, we 

calculated the amount of sediment incorporated into the accretionary wedge at the deformation front (Fig. 6a) 

during the 14 Myr period. Second, we compared this amount of “expected” accreted sediment with the 

observed amount of sediment residing in the accretionary wedge along two cross sections. The material outflux 

from the mountain range is estimated using results from thermo-kinematic modelling, by equating modelled 

exhumation with denudation, which can then be integrated spatially and over the 14 Myr period. 

The previous flux steady-state analyses in the Olympic Mountains were performed in two dimensions 

along a profile crossing the Olympic Peninsula. However, exhumation rates within the Olympic Mountains are 

known to vary spatially (Brandon et al. 1998; Michel et al., 2018). This suggests that the outflux is spatially 

variable, depending on the location within the mountain range. Hence, we performed our flux analysis in three 

dimensions and the resulting geometries are summarized in Figure 6. The influx is calculated along the length 

of the deformation front, and for the calculation of the outflux we considered almost the entire area of the 

Olympic Peninsula.  
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3.3.1 Calculating the accretionary influx 

We used a similar approach as Batt et al. (2001) to calculate the accretionary influx, but used a three-

dimensional geometry and additionally considered temporal variations of the used variables. Assuming all 

sediments resting on the subducting oceanic crust are incorporated into the accretionary wedge, the volume of 

accreted sediment (Vsed) can be approximated using the porosity of the sediment η, incoming sediment 

thickness d, length of the coast l, the duration of subduction t, and the subduction velocity perpendicular to the 

present-day deformation front uper: 

𝑉𝑠𝑒𝑑 = (1 − 𝜂) ∙ 𝑑 ∙ 𝑙 ∙ 𝑡 ∙ 𝑢𝑝𝑒𝑟   (2) 

A limitation to this approach is the assumption that all sediment resting on the down-going plate is 

accreted. There is geochemical evidence that, at early stages of subduction at the Cascadia Subduction Zone, 

sediment has been incorporated into the mantle and been involved in the magmatism of the Cascades Arc 

(Leeman et al., 2005; Mullen et al., 2017). However, there are no estimates on the amount of sediment 

transported into the mantle at present, and most sediments seem to be accreted, either at the deformation front 

or underplated at depth (Calvert et al., 2011). 

The variable with the greatest uncertainty in this calculation is the sediment thickness back in time that 

has now been subducted below the Olympic Mountains. As discussed above (Section 2.3), the present-day 

sediment thickness of 2.5 km is the product of increased offshore sedimentation during the Quaternary and the 

pre-Quaternary sediment thickness is difficult to determine. Following the approach described in the 

supplementary material (Section S3.1), we estimated a pre-Quaternary sediment thickness of 1.5 km. In total, 

we calculated three different sediment volumes based on different sediment thicknesses (Table 5). Assuming a 

thickness of 1.5 km and 2.5 km for the 14 Myr period yields a minimum and maximum value for the accreted 

sediment volume, respectively, representing a sediment volume unaffected by Quaternary sedimentation (1.5 

km) and a volume for a likely too high sediment thickness, using the modern thickness (2.5 km). Alternatively, 

we considered an increase in sediment thickness from 1.5 km to 2.5 km at 2 Ma, which likely yields the 

geologically most meaningful volume. 

The porosity of the sediment stack depends on the thickness and decreases with increasing overburden. 

According to Yuan et al. (1994), the porosity at depth z of the sediment stack can be approximated by  

𝜂 = 0.6 ∙ 𝑒−𝑧    (3) 

Using this equation, we calculated mean porosities of 31% and 22% for our sediment thicknesses of 1.5 km and 

2.5 km, respectively. 

Because the dip direction of the present-day deformation front is 72° (Φdef) and we only considered 

accretion perpendicular to the deformation front, we corrected the convergence rate (u) by using the 

convergence angle (Φ) between the Juan de Fuca and the North American plates: 

𝑢𝑝𝑒𝑟 = 𝑢 ∙
sin⁡(𝜙)

sin⁡(𝜙𝑑𝑒𝑓)
    (4) 
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Figure 6: Constraints used for our quantitative accretionary influx and denudational outflux calculations. a) Cartoon illustrating our approach for 

calculating the accretionary influx. The influx corresponds to the sediment scraped off from the subducting Juan de Fuca Plate, and is governed by 

the plate convergence rate (u) and the incoming sediment properties (thickness d, porosity η). Because we use a three-dimensional geometry, 

accretion is considered along a length (l) within a vertical plane. This length corresponds to the length of the coastline indicated in panel (d). OM = 

Olympic Mountains, CRT = Coast Range Terrane. After Batt and Brandon (2002). b) Temporal evolution of the plate convergence rate used in the 

calculations, considering only the component perpendicular to the deformation front (black envelope), and the original output (blue envelope) from 

the plate reconstruction model of Doubrovine and Tarduno (2008). To provide an uncertainty for our calculations, we consider a range of 

convergence rates (comprising the width of the envelope) for each time step, based on two different rotation models in the model of Doubrovine and 

Tarduno (2008) (see text for details). c) Temporal evolution of the plate convergence angle (Doubrovine and Tarduno, 2008) used to correct the plate 

convergence rate in b). d) Exhumation rate pattern from Michel et al. (2018) used for our outflux calculations. The range of displayed rates (0.25–0.9 

km/Ma) corresponds to the rates prior to the glacially induced increase in exhumation rates. The outflux is based on the spatial integration of the 

exhumation rate pattern. Values for the integrals are listed below the plot for the respective increase in exhumation and time. The white dashed line 

was used for integrating the exhumation rate using a two-dimensional geometry, which is further explained in the appendix. 

 

Both convergence rate and angle are variable over time and, therefore, we capitalized on the plate 

reconstruction model of Doubrovine and Tarduno (2008) to estimate these parameters over the past 14 Myr. 

Values shown in Figures 6b and 6c were calculated using the East-West Antarctica plate circuit model from 

Doubrovine and Tarduno (2008) for two different rotation models (Farallon M1 and M2 in the original 

publication). This yields a range of possible convergence rates and angles, providing an uncertainty on the 

calculated sediment volume. The temporal resolution is given by the number of magnetic isochrons used for the 

plate circuit reconstruction by Doubrovine and Tarduno (2008). From the temporal evolution of the corrected 

convergence rate (Fig. 6b), we calculated the sediment volume Vsed accreted during the 14 Myr period using 
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Equation 2 and the parameters discussed above. For the length l in Equation 2 we assumed a value of 131 km, 

which corresponds to the length of the coastline in the area of the exhumation rate pattern (Fig. 6d). The 

calculated sediment volumes are reported in Table 5.  

3.3.2 Sediment volumes along cross-sections 

We estimated the actual volume of sediment currently residing in the accretionary wedge along two cross-

sections, which are approximately 50 km apart (Profile 1 and 2 in Fig. 7). The lower boundary of the 

accretionary wedge is the top of the subducting oceanic plate, which is constrained from the Slab 1.0 model 

(Hayes et al., 2012; McCrory et al., 2012). The upper boundary is defined by the present-day 

topography/bathymetry (from 10 m- and 500 m-resolution digital elevation models, respectively) and the 

Hurricane Ridge Fault (HRF). At the surface, the location of the HRF is adopted from a geologic map (Tabor 

and Cady, 1978) and below the surface we use information provided by a seismic study at depths of 22 km and 

34 km (Calvert et al., 2011). The uncertainty related to the position of the HRF (error bars at HRF nodes in Fig. 

7) was propagated to estimate an uncertainty for the calculated sediment volumes. Further explanation of this 

approach is given in the supplementary material (Section S3.2). Because the location of the HRF is not resolved 

at greater depths, we truncate the area considered for volume calculation at 34-km depth. Finally, the calculated 

volume is corrected for the porosity of the sediment stack. Davis and Hyndman (1989) use porosities of 4–10% 

for sediments contained within the accretionary wedge offshore Vancouver Island. Hence, we use an average 

porosity of 6% in our correction. 

3.3.3 Calculating the denudational outflux 

In the absence of extensional faults, denudation acts as the prime mechanism for exhumation in the 

Olympic Mountains. Therefore, exhumation can be equated with denudation and the denudational outflux from 

the range can be obtained from the spatial and temporal integration of exhumation rates. 

 The exhumation histories presented in this paper (Fig. 5) are well-suited to resolve temporal variations 

in exhumation, and hence provide qualitative information about variations in the denudational outflux. The low 

spatial density of the seven considered samples prohibits a quantitative assessment of the denudational outflux. 

To overcome this problem, we reverted to the pattern and exhumation rates suggested by Michel et al. (2018), 

providing good spatial coverage of almost the entire Olympic Peninsula (Fig. 6d). The total amount of 

exhumation, which is used for calculating the outflux and corresponds to the temporal integration of the 

exhumation rates, is similar within uncertainty in both data sets. For example, the modelled exhumation rate is 

sufficient to explain the ZHe age of 10.2 Ma for sample OP1513 in both studies (Michel et al., 2018 and this 

study). 
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Figure 7: Sediment volumes calculated along two cross-sections spanning the Olympic Peninsula (Profile 1 and 2, vertical exaggeration=2, see inset 

for location). For explanation of the used procedure see text. The reported uncertainties for the volume are based on the uncertainties in the position 

of the Hurricane Ridge Fault (indicated with error bars at the respective symbol). Numbers in inset correspond to (1) = position of Profile 1, (2) = 

position of Profile 2, (3) = position of profile by Davis and Hyndman (1989), referred to in the text. 

 

 Our outflux calculations are based on the spatial integration of the entire exhumation rate pattern 

displayed in Figure 6d, which is then temporally integrated over the 14 Myr period. Additional to a constant 

exhumation scenario, we also considered an increase in exhumation rates, which is related to an increase in 

erosion due to Plio-Pleistocene glaciation of the Olympic Mountains (Michel et al., 2018). In Table 5, we report 

the denuded volumes for the case of constant exhumation rates, and for the two possible increase scenarios 

suggested by Michel et al. (2018), equating a 50% increase in rates occurring at 3 Ma or a 150% increase in 

rates occurring at 2 Ma. In order to account for the porosity of the denuded rocks, we corrected the denuded 
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volumes by a porosity of 6%, the same value we applied in the estimation of the volumes in the sedimentary 

cross sections 

4 Results 

4.1 Thermochronometry 

Along the Mt. Olympus elevation transect (Fig. 4b), AHe ages (1.9–3.7 Ma) overlap with each other 

within sample error (except for the uppermost sample). ZHe ages (4.8–8.5 Ma) show a similar behaviour (with 

the exception of the lowermost sample; Fig. 4b). AFT ages for two samples are 5.1 Ma and 6.2 Ma, and the 

obtained ZFT ages of this transect are all unreset. Within the Mt. Anderson transect (Fig. 4c), AHe ages (1.5–

3.9 Ma) increase with elevation up to an elevation of 1400 m and decrease between 1400 and 2100 m. ZHe ages 

vary between 6.5–8.9 Ma and one sample at ~1400 m has an AFT age of 7.8 Ma. For the Blue Mountain 

transect (Fig. 4d), AHe ages (3.6–30.1 Ma, and one unreset sample) do not show a clear correlation with 

elevation, but, interestingly, the uppermost sample yields the youngest age. ZHe ages of dated samples of this 

transect are all unreset. 

Clear spatial patterns for the multi-dated thermochronometer samples are observable (cf., Fig. 2 and 4). 

AHe ages are reset (apart from one sample in the north-east of the mountain range) and decrease towards the 

centre of the mountain range, where very young ages (< 2.5 Ma) can be found. Seven fully reset AFT samples 

(5.0–7.8 Ma) are confined to the centre of the range (samples OP1513, OP1517, OP1533, OP1539, OP1551, 

OP1573, OP1582), overlapping with the area of reset ZHe samples. The remaining eight AFT samples are 

unreset (Table 3 and Fig. 4). Two samples at the north and east coast (OP1502 and OP1510) have the youngest 

age peaks at 26 Ma (comprising 29% of the dates) and 36 Ma (35%), respectively. Samples from the western 

part of the mountain range (OP1521, OP1522, OP1527, OP1528, OP1531) have younger age peaks of 5–16 Ma 

(comprising 20–76% of the dates). Furthermore, the youngest age peak of these samples decreases in age 

towards the area of fully reset AFT samples. 

We also collected samples (OP1527 and OP1528) close to sample locations with the youngest AFT ages 

of Brandon et al. (1998), which were reported as incompletely reset samples (with youngest peak ages of 3.9 

and 2.3 Ma). In the original publication, only a small number of grains were dated (n=31 and n=12). To 

improve the statistics of these two samples, we merge our single grain ages with those of Brandon et al. (1998) 

and obtain more robust age distributions (n=134 and n=80; Table 3). The youngest peak ages of the age 

populations for the two merged samples are 7.4 Ma and 4.7 Ma (2–4 Myr older than age populations reported 

by Brandon et al., 1998). 

ZHe ages constrain an area of reset ages (4.8–10.2 Ma) in the central, high-topography portion of the 

mountain range (light grey-shaded area in Fig. 4a). Five of these samples have AFT (5.1–7.8 Ma) and ZHe 

(4.8–8.9 Ma) ages that overlap within sample errors, implying rapid cooling (and hence fast exhumation) 

through both systems’ closure isotherms. AHe ages of these samples are younger (1.7–3.9 Ma) and do not 
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overlap with AFT ages, indicating that exhumation rates decreased after cooling below the AFT closure 

isotherm. 

Of the seven samples dated with the ZFT method, only sample OP1539 has a fully reset age (12.6 Ma). 

Together with data from Brandon and Vance (1992) and Stewart and Brandon (2004) this confines reset ZFT 

samples to a very small area east/southeast of Mt. Olympus, encompassing the headwaters of Elwha and 

Quinault rivers (area outlined with a red dashed line in Fig. 4a). 

4.2 Exhumation histories from thermo-kinematic modelling 

Between 13,000–17,800 simulations provide a good fit to the data for each of the seven samples used in 

the thermo-kinematic modelling (Fig. 5). As expected, the four samples (OP1533, OP1539, OP1551, OP1582; 

Fig. 5) with overlapping AFT and ZHe ages require fast exhumation rates of >3 km/Myr between 5 Ma and 8 

Ma, followed by a reduction to <0.2 km/Myr at 5 Ma or 7 Ma. The reduction of rates for sample OP1573 

occurs at ~9 Ma. However, for this sample the AFT age has a larger uncertainty, hence we consider the 5–7 Ma 

decrease in exhumation rates as a more robust signal. Six of the seven samples (except for sample OP1517) also 

record an increase in exhumation rates at 2–3 Ma to rates >1 km/Myr. 

4.3 Estimating the flux steady-state balance 

The calculated volumes of the accretionary influx depend strongly on the incoming sediment thickness 

(Table 5). With our used three-dimensional geometry (Fig. 6a) volumes vary between ~70,000 km3 (1.5 km), 

~76,000 km3 (increase from 1.5 km to 2.5 km at 2 Ma) and ~130,000 km3 (2.5 km). The estimated amount of 

sediment within the accretionary wedge varies depending on the position within the wedge (Fig. 7). Offshore 

Vancouver Island, there is 950–1,000 km3 of sediment within the wedge (Davis and Hyndman, 1989), while on 

the Olympic Peninsula there is up to ~5,300 km3 and 3,600 km3 of sediment within the central and southern 

parts of the mountain range, respectively. Our estimates of the denudational outflux vary for the different 

exhumation rate scenarios (Table 5) and volumes range from 68,000 km3 for constant exhumation rates to 

75,000–82,000 km3 for the exhumation scenario with increasing rates. 

5 Discussion 

In the following, implications of the above described observations will be discussed in order to assess 

the flux steady-state balance between accretionary influx and denudational outflux within the Olympic 

Mountains. To do that, it is pivotal to have an understanding of both temporal and spatial variations in 

exhumation of the Olympic Mountains. First, we elaborate on results from thermochronometric dating, 

including the applicability of age-elevation relationships to reconstruct exhumation rates in the Olympic 

Mountains (Section 5.1). Second, we analyse the general pattern of exhumation based on the spatial distribution 

of cooling ages (Section 5.2). Third, we link thermochronometric cooling ages with thermo-kinematic 

modelling, which reveals the temporal evolution of exhumation rates (Section 5.3). Fourth, we discuss the 
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outcome of our qualitative and quantitative assessment of flux steady-state in the Olympic Mountains (Section 

5.4). Finally, in Section 5.5, we elaborate on the limitations of the different approaches. 

5.1 Age-elevation relationships 

The cooling ages of samples collected from a quasi-vertical elevation profile (e.g., Fitzgerald et al., 

1993; Reiners et al., 2003) can be analysed by looking at the age-elevation relationship. Often, the purpose is to 

determine an apparent exhumation rate by fitting a line through the data points when ages are positively 

correlated with elevation. However, the prerequisite for this approach is that, over the lateral extent of the 

sampled transect, no significant gradient in exhumation rates exists. This is not necessarily given in the 

Olympic Mountains (Michel et al., 2018; see also Fig. 2e) and the new data represent this complication (Figs. 

4b–d).  

At Mt. Olympus, the AHe and ZHe age-elevation relationships do show a positive correlation, 

suggesting fast exhumation rates of ~1 km/Myr between ~8 and 2 Ma (Fig. 4b). The Mt. Anderson age-

elevation relationship for AHe shows a break in slope at ~1400 m and decreasing AHe ages at higher 

elevations, and the large uncertainties of the ZHe ages limit an interpretation (Fig. 4c). While such an 'inverse' 

age-elevation relationship could be caused by a change in relief (Braun, 2002), we interpret it to be a result of 

the strong spatial variation in exhumation rates along the horizontal distance of the transect (e.g., rates increase 

from 0.25 km/Myr to 0.9 km/Myr over a horizontal distance of 15–20 km; Fig. 2e). In the case of the Blue 

Mountain transect (Fig. 4d), we relate the non-correlation of AHe ages and elevation to an incomplete resetting 

of the AHe system in this area. Here, some samples experienced high enough temperatures to start, or even 

complete, resetting of the AHe thermochronometric system, causing the observed variability in AHe ages. All 

ZHe ages from this transect are unreset, corroborating that this part of the Olympic Mountains has not 

experienced high temperatures, compared to the other transects. Indeed, the Blue Mountain transect belongs to 

the Coast Range Terrane (CRT), which is at a structurally higher level compared to the accretionary wedge 

(Fig. 1c). In summary, the age-elevation plots support previous results of strong lateral variations in exhumation 

and incomplete resetting of thermochronometer systems in the outer part of the mountain range. 

5.2 Pattern of exhumation 

A well-constrained spatial pattern of exhumation is needed for calculating the denudational outflux. 

Looking at the spatial distribution of thermochronometric cooling ages provides qualitative information about 

the pattern of exhumation. In general, the distribution of thermochronometric ages indicates that in the Olympic 

Mountains the magnitude of exhumation increases from the coast to the centre. As discussed above, areas 

belonging to the Coast Range Terrane (close to the coast or the Blue Mountain area, where unreset AHe ages 

can be found, Fig. 2a) correspond to the structurally highest parts within the range (Fig. 1c) and were not 

sufficiently reheated to reset the AHe system. Assuming a geothermal gradient typical for the Cascadia 

Subduction Zone of ~20 °C/km (Booth-Rea et al., 2008; Hyndman and Wang, 1993) and an AHe closure 
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temperature of ~60–70°C, the cumulative exhumation magnitude since onset of exhumation at ~18 Ma cannot 

have been greater than 2–3 km. 

The aerial exposure of the accretionary wedge (the Olympic Structural Complex, Fig. 1c) records 

exhumation from greater depths. Here, all samples yield reset AHe ages, requiring a minimum exhumation 

depth of 2–3 km. In the centre of the mountain range (encompassing the headwaters of Hoh, Queets, Quinault 

and Elwha rivers; Fig. 1b) the area of reset AFT ages approximately overlaps with the area of reset ZHe ages 

(Fig. 4a), requiring deeper exhumation, compared to the coastal part of the Olympic Structural Complex. 

The area east/south-east of Mt. Olympus (corresponding to the area of reset ZFT samples, Fig. 4a) has 

been exhumed from the greatest depths within the Olympic Mountains. For an average ZFT closure temperature 

of ~240 °C (Ehlers, 2005) and the above geothermal gradient this corresponds to a maximum exhumation from 

depths of 10–12 km, confirming previous estimates (Brandon and Calderwood, 1990; Brandon and Vance, 

1992). 

In summary, the central, high topography part of the mountain range corresponds to the most deeply 

exhumed part. This corroborates the exhumation rate pattern (Fig. 2e) suggested by Michel et al. (2018), the 

pattern of denudation rates based on cosmogenic nuclide dating (Adams and Ehlers, 2018), and results from 

topographic analysis (Adams and Ehlers, 2017), which all suggest that most of the exhumation/denudation 

occurs at this location. Hence, we use this pattern for the calculation of the denudational outflux. 

5.3 Temporal variations in exhumation 

Our new thermo-kinematic modelling revealed temporal variations in exhumation rates in the Olympic 

Mountains (Fig. 5). The decrease of exhumation rates at 5–7 Ma can be readily explained by the reduction in 

plate convergence rate and the change in convergence direction (Fig. 8). A Pacific-wide reorganization of plate 

movement at 5.9 Ma has been suggested (Wilson, 2002), and rapid uplift of the Oregon Coast Range at 6–7.5 

Ma with a subsequent cessation in uplift has also been attributed to variations in the plate subduction 

parameters (McNeill et al., 2000). Furthermore, the volcanic record of the Cascadia Subduction Zone shows 

temporal variations, where the strongest volcanic activity lasted from 25 Ma until 18 Ma (du Bray and John, 

2011). A period of volcanic quiescence, lasting from 17 Ma until 8 Ma, was then followed by increased 

activity, starting at ~7 Ma. A change in the stress field of the Cascadia Subduction Zone occurred at 7 Ma, 

which likely also affected the composition of the magmatism (Priest, 1990). Therefore, we interpret our 

observed 5–7 Ma drop in exhumation rates in the Olympic Mountains as a response to changes in the plate 

tectonic conditions. 

 In contrast, the increase in exhumation rates at ~2 Ma indicates a response to climatic rather than 

tectonic changes. As previously suggested by Michel et al. (2018), increased denudation due to the heavy 

glaciation of the mountain range led to an increase in exhumation rates by 50–150%, starting at 2–3 Ma. Our 

study corroborates these findings and shows that the observed young AHe ages require a recent increase in 

exhumation rates from slower rates (<0.2 km/Myr) lasting from ~7 Ma until ~2 Ma. Glaciation of the North 

3.2. Temporal variations of exhumation and steady-state orogens

83



American continent commenced at 2.7 Ma (Haug et al., 2005) and the oldest glacial deposits within the 

Olympics could be as old as 2 Ma (Easterbrook, 1986), overlapping with our modelled increase in rates at 

~2 Ma. Due to the strong spatial variation of the Pleistocene equilibrium line altitude within the Olympic 

Mountains (Porter, 1964), glacial erosion likely also varied spatially, which could explain the different 

magnitude in increase of exhumation rates suggested for the different samples. Increased offshore 

sedimentation related to glacially eroded sediment affected the deformational style of the offshore wedge 

leading to formation of west-ward dipping thrust faults, which changed at ~1.5 Ma (Adam et al., 2004; Flueh et 

al., 1998; Gutscher et al., 2001).  

Taken together, these observations indicate that temporal variations in exhumation rates within the 

Olympic Mountains are subject to both changes in the tectonic and climatic conditions (as summarized in Fig. 

8). The implication of these variations should be considered for the flux steady-state assessment. 

5.4 Flux steady-state in the Olympic Mountains 

5.4.1 A qualitative perspective 

Several variables that affect both the accretionary influx and the denudational outflux show temporal 

variations. Exhumation rates decrease at 5–7 Ma and increase at ~2 Ma (Fig. 8) and since exhumation is 

primarily controlled by denudation, we equate these variations in exhumation with variations in the 

denudational outflux. According to the model of Doubrovine and Tarduno (2008), the plate subduction velocity 

decreased at ~6 Ma (see Fig. 6b) after an earlier major decrease at ~25 Ma, causing a decrease in the 

accretionary influx. Conversely, the accretionary influx increased significantly during the Quaternary due to 

high offshore sedimentation rates and increased sediment thicknesses as a result of effective glacial erosion on 

the North American continent (i.e., 50–70 % of the present-day sediment thickness on the subducting Juan de 

Fuca Plate consists of Quaternary-aged sediments, Table 1 and Fig. 3). 

It follows that, qualitatively, both influx and outflux vary through time and are heavily influenced by the 

Plio-Pleistocene glaciation, which increased denudation rates and offshore sedimentation rates. However, we 

cannot quantitatively constrain whether variations in the influx and outflux on these short timescales (2–3 Myr) 

balance each other (and the system would still be in a flux steady-state). Interestingly, measured denudation 

rates based on cosmogenic nuclide dating (temporally integrating over the Holocene) suggest that modern 

denudation rates have not been significantly influenced by Plio-Pleistocene glaciation, but are mostly driven by 

tectonic rock uplift (Adams and Ehlers, 2018). The Holocene accretionary influx, however, is still affected by 

the increased sediment thickness since the onset of glaciation. Hence, the current accretionary influx seems to 

exceed the denudational outflux in the Olympic Mountains. 
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Figure 8: Summary of volcanic activity, tectonic and climatic events, and convergence rate and angle at the Cascadia Subduction Zone in 

comparison with our interpreted exhumation rates for the past 25 Myr. Exhumation rates are limited to the time interval covered by our 

thermochronometric ages (0–11 Ma). The curve depicts the interpreted evolution of exhumation rates, based on the modelling results shown in 

Figure 5 (see text for details). Volcanic activity after du Bray and John (2011). Tectonic and climatic events are (1) start of exhumation of the 

Olympic Mountains (Brandon et al., 1998), (2) onset of uplift of the Oregon Coast Range (McNeill et al., 2000), (3) rotation in stress field (Priest, 

1990), (4) faster uplift in Oregon Coast Range (McNeill et al., 2000), (5) Pacific-wide plate reorganization (Wilson, 2002), (6) onset of North 

American glaciation (Haug et al., 2005), (7) onset of glaciation within the Olympic Mountains (Easterbrook, 1986), (8) change in the deformational 

style of the offshore accretionary wedge (Flueh et al., 1998). Convergence rate and angle from Doubrovine and Tarduno (2008). 

 

5.4.2 A quantitative perspective 

Here, we discuss the quantitative assessment of influx and outflux for the last 14 Myr (Table 5), the time 

since when the Olympic Mountains are supposed to be in flux steady-state (Batt et al., 2001; Brandon et al., 

1998). In our used geometry (Figs. 6a and d), we calculate the accretionary influx over a distance along the 

deformation front and the spatial exhumation rate pattern is integrated to infer the denudational outflux (Fig. 

6d). Assuming an increase in sediment thickness at 2 Ma yields an accretionary volume (~76,000 km3) similar 

to the denudational outflux (75,000–82,000 km3). Assuming a maximum sediment thickness of 2.5 km for the 

14 Myr period yields an accretionary volume of ~130,000 km3, which cannot be reconciled with our 

denudational outflux (Table 5). These results indicate that if temporal variations in the sediment thickness and 

denudation are considered, a reasonable balance between influx and outflux is attained. The previous flux 

steady-state analysis (Batt et al., 2001) was performed in two dimensions and used a constant sediment 
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thickness of 2.0 km. We also performed an influx and outflux calculation using a two-dimensional geometry to 

tie in with previous work (see appendix below). However, the results from the two-dimensional analysis 

suggest that for an area with spatially variable exhumation rates like the Olympic Mountains a three-

dimensional geometry yields a more accurate prediction of influx and outflux. 

 Sediment volumes integrated along the cross-sections (Fig. 7) also provide an interesting perspective on 

the accretionary influx in the Olympic Mountains. These volumes are not directly comparable with the 

influx/outflux volumes discussed above (calculated from 14–0 Ma), because the sediment contained within the 

cross-sections (Fig. 7) records accretion since the ~40 Ma onset of subduction (Brandon et al., 1998; du Bray 

and John, 2011). Furthermore, these estimates are minimum volumes, because the amount of material that has 

been eroded during the 40 Myr period is not considered. Nevertheless, the amount of sediment currently 

residing in the accretionary wedge is variable along strike of the subduction zone (1000–5400 km3) and is 

highest below the central part of the Olympic Mountains (Fig. 7). This requires that parameters affecting the 

accretionary influx (like plate subduction velocity or sediment thickness) are highly variable over short 

distances (Profile 1 and Profile 2 are only 50 km apart; Fig. 7). Another explanation might be that considering 

accretion only perpendicular to the deformation is an oversimplification and another velocity component also 

contributes to material transport (see Section 5.5). This is in accordance with the conclusion drawn above that 

considering flux steady-state in a two-dimensional scenario (as it is done with the cross-sections) leads to 

ambiguous results. 

 In summary, the assessment of flux steady-state in the Olympic Mountains is non-trivial and several 

scenarios are possible. From a qualitative viewpoint, flux steady-state is probably not achieved on short 

timescales (few Myr), because the thickness of incoming sediment, plate subduction velocity, and exhumation 

rates show strong temporal variations on timescales of 2–3 Myr. From a quantitative viewpoint, influx and 

outflux volumes equate each other over longer timescales (i.e., 14 Myr), if influx and outflux are considered in 

three dimensions. 

5.5 Restrictions and limitations of our approaches 

In the sections above, we discussed exhumation in the Olympic Mountains and the results from our flux 

calculations. In the following section, we want to elaborate on possible restrictions or limitations in our 

approaches.  

With our 1D modelling, we revealed strong temporal variations in exhumation rates (Fig. 5) related both 

to variations in tectonic and climatic conditions (Fig. 8). However, two of our modelled samples (OP1513 and 

OP1517) do not display the decrease in exhumation rates at ~5–7 Ma. These are from the Elwha valley (Fig. 4), 

in contrast to the five samples displaying the decrease, which are located in the western part of the mountain 

range. This suggests that the response of the orogenic wedge to a variation in the tectonic conditions affects 

only parts of the wedge and might be controlled by discrete structures. Further sampling and 

thermochronometric dating would be required to localize possible faults. Furthermore, this places a limitation 
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on the application of a refined 3D model, because it requires to constrain parameters such as fault location or 

displacement on these faults. Besides the importance of single structures, the general pattern of deformation in 

the Olympic Mountains should still be viewed as controlled by the geometry of the subducted plate (Adams and 

Ehlers, 2017; Adams and Ehlers 2018; Brandon and Calderwood, 1990; Michel et al., 2018). 

Regarding our flux analysis, we based our calculations on the volume of accreted sediment within a 

certain time (governed by the sediment thickness and the plate convergence rate) and the amount of denuded 

material (governed by the exhumation rates). As we mentioned in Section 3.3.1, a variable with great 

uncertainty is the sediment thickness over time, which has now been subducted below the Olympic Mountains. 

In the supplementary material (Section S3.1) we outlined our approach for assessing the pre-Quaternary 

sediment thickness, which is used in our calculations. Although the reported 1.5 km sediment thickness seems 

to be a plausible value, we note that this value is afflicted with uncertainties and might have been higher. 

Nonetheless, our proposed balance between influx and outflux is still tenable, if the pre-Quaternary sediment 

thickness deviated from the assumed 1.5 km. I.e., we suggested an influx volume of 75–78 x 103 km3 and 

calculated outflux volumes between 75 x 103 km3 and 82 x 103 km3 (Table 5), so even an additional influx 

volume due to a thicker, unnoticed sediment thickness could be balanced with our calculated outflux volumes. 

Another simplification in our calculation is the assumption of a spatially uniform sediment thickness over the 

considered length. Figure 3 shows that the sediment thickness along the deformation front is variable and is 

highest in the Nitinat and Astoria fans. However, an attempt to reconstruct along-strike variations in sediment 

thickness over time is challenging and would introduce further uncertainties, and thus, we assume an average, 

constant thickness. 

During our influx calculations, we did not distinguish between different modes of accretion, such as 

frontal accretion or underplating. Batt et al. (2001) concluded that most accretion occurs at the front of the 

wedge. However, a recent seismic study showed that sedimentary underplating is taking place below the 

Olympic Mountains (Calvert et al., 2011). For our approach, the mechanism of accretion does not matter, 

because we are only interested in whether mass is balanced over the entire wedge and not at a specific point. As 

indicated, this is a limitation of our approach and might lead to an overestimation of the actual influx volume, 

because we do not account for the amount of sediment transported towards the mantle. 

Flux steady-state implies that the outflux from and influx into a mountain range balance each other. An 

inherent assumption is often that the material removed from a mountain range (the outflux) again enters the 

mountain range via the influx, which consists of the denuded material from the same source. So in case of an 

accretionary wedge, this implies that sediment is recycled and the system behaves as a closed system. As we 

described in Section 2.3 of the manuscript, the sediment currently entering the accretionary wedge of the 

Cascadia Subduction Zone is a mixture of sediment from different source regions (e.g., Olympic Mountains, 

Vancouver Island, Canadian Cordillera and in case of the Astoria fan the interior USA, Fig. 3). With the 

increased detrital input from the Cordilleran Ice Sheet from outside the Olympic Mountains, this effect became 

particularly pronounced since the onset of Plio-Pleistocene glaciation. Hence, our influx/outflux calculations for 
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the Olympic Mountains do not represent a closed system, where the influx into the Olympic Mountains is solely 

controlled by the outflux out of the system. However, our calculations indicate that on long timescales (i.e., 

over 14 Myr) flux steady-state is attained, which might seem surprising given that the sediment thickness is 

governed by contributions from different source regions. We suspect that processes during sediment deposition, 

like redistribution by turbidity currents and redeposition in more proximal parts of the Juan de Fuca Plate, play 

an important role in the final sediment budget. As a consequence, the amount of sediment denuded from the 

Olympic Peninsula in a given time period (the outflux) is dispersed as it enters the ocean, so that for the same 

time period only a fraction of the sediment thickness (governing the influx) is composed of material originating 

from the Olympic Peninsula. 

Variations in the geometry or extent of the accretionary wedge were also not included in our flux 

analysis. Since onset of subduction at the Cascadia Subduction Zone with the present geometry at ~40 Ma, the 

wedge must have grown over time in order to attain its present shape. As soon as a balance between accretion 

and erosion is established, the shape of an orogenic wedge remains constant, controlled by its critical taper 

(e.g., Davis et al., 1983). However, Adam et al. (2004) showed that the Cascadia accretionary wedge responded 

to increased offshore sedimentation during the Quaternary by development of west-ward dipping thrust faults, 

shifting the deformation front further seawards thereby increasing the extent and volume of the wedge. An 

important parameter contributing to the shape of the accretionary wedge is the angle of subduction, which is 

flatter below the Olympic Mountains (compared to areas north or south) due to the bend in the subducted slab 

(Fig. 1a). A reason hypothesized for bending the subducting slab is extension in the Basin and Range Province, 

starting in the middle Miocene (Brandon and Calderwood, 1990). All these points indicate that parameters 

controlling the size and volume of the accretionary wedge are both spatially and temporally variable. However, 

we cannot account for all of these circumstances in our flux calculations, because they are difficult to constrain 

quantitatively from available observations. Furthermore, because we based our flux calculations only on 

volumes of accreted or eroded material over the 14 Myr period, a comparison between these two volumes itself 

should not depend on a change in the shape or extent of the accretionary wedge. 

As we pointed out in Section 5.4.2, flux steady-state is obtained by using a three-dimensional geometry. 

However, we only considered the deformation front-perpendicular velocity component for our influx 

calculations. The different sediment volumes contained in the reported cross-sections (Fig. 7) could indicate 

that on long timescales additional velocity components must be considered. We can only speculate that margin-

parallel transport, which is a contentious topic at the Cascadia Subduction Zone (e.g., Batt et al., 2001; 

McCrory, 1996; Wang, 1996), also contributes to the accretionary influx. Present-day GPS velocities 

corroborate this hypothesis, indicating northward movement of coastal areas south of the Olympic Mountains 

(e.g., McCaffrey et al., 2013; Wells and McCaffrey, 2013). 

 To summarize, several parameters like the location of faults within the orogenic wedge, the sediment 

source region, the temporal evolution of the wedge geometry or margin parallel transport are difficult to 

constrain from current observations. Although we emphasized that not all of these parameters affect our flux 
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analysis, further knowledge of these will refine the current understanding of steady-state in the Olympic 

Mountains. 

6 Conclusion 

Our new data set of multi-dated thermochronometer bedrock samples together with thermo-kinematic 

modelling suggests that several mechanisms contribute to the evolution of the Olympic Mountains. Modelling 

of the observed AHe, AFT, ZHe, and ZFT ages shows that variations in both tectonic and climatic conditions 

result in temporal variations of exhumation rates. We revealed a hitherto unnoticed response of exhumation to 

the tectonic signal (a reduction in plate convergence rate causing a drop in exhumation rates), which can also be 

observed in other parts of the Cascadia Subduction Zone. Plio-Pleistocene glaciation of the Olympic Mountains 

led to increased denudation, resulting in increased exhumation rates. 

Our approach of assessing flux steady-state in the Olympic Mountains by estimating the material influx 

and outflux independently from each other is promising, but yields ambiguous results. The observed temporal 

variations in exhumation rate require a variation in the denudational outflux. Likewise, the accretionary influx 

is also temporally variable, because the plate subduction velocity and incoming sediment thickness are variable 

through time. Qualitatively, this suggests that flux steady-state is perturbed on short timescales by variations in 

the tectonic or climatic conditions. Our quantitative calculations of the influx and outflux show flux steady-state 

may be achievable over long timescales (i.e., 14 Myr). Contrary to a previous flux steady-state analysis in the 

Olympic Mountains, our calculated influx and outflux volumes only balance each other, if a three-dimensional 

geometry is considered. 

This study demonstrates the timescale (105–106 vs. 107 Myr) and spatial dependence of a steady-state 

assessment in an orogenic wedge. Furthermore, the tremendous effect of the Plio-Pleistocene glaciation is 

demonstrated, which is capable of significantly perturbing the development of an orogenic wedge, where both 

the influx and outflux are affected. Because we obtain flux steady-state for a three-dimensional geometry (but 

only consider velocities parallel to the subduction direction), more work is needed to constrain the role of 

material transport parallel to the deformation front. Such studies will lead to a better understanding of the 

development of orogenic wedges situated in a complex tectonic setting like the Olympic Mountains. 

 

Appendix: Two-dimensional flux steady-state analysis 

In Section 3.3 we performed our flux analysis in three dimensions due to the spatially variable 

exhumation rates (Fig. 6d). In the following, we also calculate the influx and outflux using a two-dimensional 

geometry, so that our calculations can be compared to those from Batt et al. (2001). Here, the accretionary 

influx occurs at a single location at the deformation front, and the sediment volume (Vsed2D) is obtained by 

using a slightly modified version of Equation 2: 

𝑉𝑠𝑒𝑑2𝐷 = (1 − 𝜂) ∙ 𝑑 ∙ 𝑡 ∙ 𝑢𝑝𝑒𝑟  (5) 

3.2. Temporal variations of exhumation and steady-state orogens

89



Variables are porosity (η), incoming sediment thickness (d), time (t) and the deformation front perpendicular 

convergence rate (uper). The further procedure is identical to the procedure outlined in Section 3.3.1. Although 

the volumes obtained with this equation have a unit of km2, no great uncertainty is introduced if the analysis is 

expanded over a width of 1 km, which then yields values of km3 and “true” volumes. Calculated volumes are 

520–540 km3 (for a 1.5 km thick sediment stack), 980–1020 km3 (for a 2.5 km thick sediment stack), and 580–

600 km3 (for the increase in sediment thickness from 1.5 km to 2.5 km at 2 Ma). 

 The outflux calculations are not based on the integration of the entire exhumation pattern in Figure 6d, 

but rates are only integrated along the white line in Figure 6. These integrals yield values of 68 km2/Myr 

(constant rate), 103 km2/Myr (50% increase in rate) and 171 km2/Myr (150% increase in rate). After also 

integrating temporally (and assuming a width of 1 km, in order to get units of km3, see above), the respective 

volumes of two-dimensional outflux are 900 km3, 1000 km3, and 1090 km3. 

 A comparison of two-dimensional influx and outflux shows that the accretionary influx (~1000 km3) 

only balances the denudational outflux (1060–1160 km3), if an incoming sediment thickness of 2.5 km is 

assumed for the 14 Myr period. Hence, flux steady-state can only be obtained using a two-dimensional 

geometry, if an unrealistically high sediment thickness is assumed. Contrary to that, the three-dimensional 

geometry yields flux steady-state using a more reasonable sediment thickness (an increase in sediment 

thickness from 1.5 km to 2.5 km at 2 Ma). This indicates that assuming a two-dimensional geometry during the 

flux steady-state analysis is an oversimplification. 
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Tables 

 

Table 1: Data for the ocean drill cores shown in Fig. 3.  

Core ODP 888 OPD 1027 DSDP 174 

Drilled/total sediment thicknessa (m) 570/2600 620/620 880/910 

Cored Quaternary sediment (m) 570 460 430b 

Maximum age of Quaternary sedimentsc (Ma) 0.6 1.7 1.7 

Amount of Quaternary section of total core (%) - 74 47 

Age of oceanic crustd (Ma) 6.5 3.2 7.5 

Quaternary sedimentation rate (m/Myr) 950e 270 250 

Pre-Quaternary/total sedimentation ratef (m/Myr) -/400 110/190 80/120 

 

Notes: For core ODP 888, information is taken from Westbrook et al. (1994), for ODP 1027 from Su et al. (2000), and for DSDP 174 from Kulm et 

al. (1973). Sedimentation rates are calculated in this study using the reported thicknesses and age constraints. 
a: If total thickness exceeds drilled thickness, then the total thickness was estimated from seismic data (e.g., ODP 888). 
b: Due to poor core recovery, the Plio-Pleistocene boundary can only be confined to be between 418 and 446 m. 
c: Ages based on biostratigraphy. For cores ODP 1027 and DSDP 174, the Plio-Pleistocene boundary was recovered and an age of 1.7 Ma is used 

here as reported by Su et al. (2000). 
d: For cores ODP 888 and DSDP 174, the age refers to the age of the oceanic crust and is taken from Figure 3 at the respective location of the core. 

For ODP 1027, the age refers to the age of the oldest sediment in the core taken from Su et al. (2000). 
e: This rate is calculated for the recovered core interval, which only encompasses 600 ka. 
f: Total sedimentation rate = total thickness divided by age of oceanic crust. 
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Table 2: Coordinates, elevations, and thermochronometric cooling ages for samples considered in this study.  

Sample 
Latitude 

(°) 

Longitude 

(°) 

Elevation 

(m) 
AHe ± 1SD (Ma) 

AFT ± 1SD 

(Ma) 

ZHe ± 1 SD 

(Ma) 

ZFT ± 1SD 

(Ma) 

                

Mount Olympus transect samples 

OP1533a 47.87572 -123.69427 430 2.5 ± 0.4 5.1 ± 0.6 4.8 ± 0.6 unreset 

OP1550 47.81568 -123.69601 1825 2.0 ± 0.7 nd 7.0 ± 0.8 nd 

OP1551 47.82647 -123.68324 1509 3.3 ± 0.6 6.2 ± 0.8 7.0 ± 0.5 unreset 

OP1552 47.80155 -123.71102 2377 3.7 ± 0.2 nd 8.5 ± 1.5 unreset 

OP1553 47.80377 -123.70244 2188 2.9 ± 1.6 nd 7.6 ± 0.4 nd 

OP1554 47.83979 -123.69330 1222 1.9 ± 0.8 nd 7.1 ± 0.5 nd 

OP1555 47.85457 -123.69194 851 2.5 ± 1.0 nd 7.2 ± 1.3 nd 
                

Blue Mountain transect samples 

OP1548a 48.02186 -123.34295 410 14.8 ± 1.2 nd unreset nd 

OP1557 47.98098 -123.31173 917 4.4 ± 2.5 nd nd nd 

OP1558 47.97233 -123.30092 1032 8.6 ± 1.2 nd unreset nd 

OP1559 47.97287 -123.28636 1184 10.8 ± 1.9 nd nd nd 

OP1560 47.96709 -123.27110 1324 unreset nd nd nd 

OP1561 47.95783 -123.26785 1500 30.1 ± 2.0 nd nd nd 

OP1562 47.95696 -123.26078 1778 3.6 ± 1.3 nd unreset nd 
                

Mount Anderson transect samples 

OP1570 47.70483 -123.32813 1624 nd nd 8.2 ± 1.1 nd 

OP1571 47.71657 -123.32927 2035 3.0 ± 0.5 nd 8.1 ± 0.9 nd 

OP1572b 47.71473 -123.32815 1842 3.3 ± 0.4 nd 8.4 ± 1.4 nd 

OP1573 47.69400 -123.32765 1363 3.9 ± 0.4 7.8 ± 1.5 8.9 ± 0.9 nd 

OP1574 47.68899 -123.35093 881 3.1 ± 1.1 nd 7.8 ± 0.9 nd 

OP1576b 47.67451 -123.39235 614 1.5 ± 0.2 nd 6.5 ± 0.2 nd 

OP1577 47.64185 -123.43398 470 nd nd 7.0 ± 0.8 nd 
                

Equal-elevation samples 

OP1502a 47.90796 -122.92804 325 unreset unreset unreset nd 

OP1510a 48.09852 -123.62231 273 8.3 ± 1.2 unreset unreset nd 

OP1513a 47.96015 -123.57273 402 1.5 ± 0.3 5.7 ± 0.7 10.2 ± 1.0 unreset 

OP1517a 47.93891 -123.51376 423 3.7 ± 0.9 5.0 ± 0.8 9.0 ± 0.6 unreset 

OP1521a 48.04832 -124.08702 390 2.0 ± 0.4 unreset unreset nd 

OP1522a 48.00530 -124.41620 367 9.1 ± 0.9 unreset unreset nd 

OP1527a 47.82500 -124.05184 280 2.8 ± 1.0 unreset unreset nd 

OP1528 47.80681 -123.99661 140 3.0 ± 0.3 unreset nd nd 

OP1529a 47.78265 -124.14257 343 6.2 ± 1.1 unreset unreset nd 

OP1531a 47.63659 -124.34966 50 7.5 ± 0.5 unreset unreset nd 

OP1539a 47.64151 -123.65870 446 2.1 ± 0.6 7.1 ± 0.9 6.8 ± 0.4 12.6 ± 1.5 

OP1542a 47.56001 -123.37533 450 1.9 ± 0.7 unreset 8.6 ± 0.9 nd 

OP1556 48.00848 -123.89398 470 3.3 ± 0.9 nd nd nd 

OP1582a 47.95595 -123.83732 578 1.7 ± 0.5 6.0 ± 0.6 7.1 ± 0.5 unreset 

 

Notes: Samples in italics are used for 1D thermo-kinematic modelling. Results from single-grain analyses for AHe and ZHe are reported in Tables 

S1 and S2, respectively. Further details for AFT and ZFT dating can be found in Table 3, and single-grain analyses for apatite and zircon are 

reported in Tables S3 and S4, respectively. 1SD = one standard deviation, nd = not determined. 
a: AHe and ZHe ages of the respective samples are from Michel et al. (2018). 
b: Reported sample AHe ages are single-grain ages, because the yield of suitable apatite grains did not allow to date more grains. 
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Table 4: List of parameters used for the Pecube modelling. 

Parameter Value Source 

Thermal conductivity 1.83 W m-1K-1 
average value for six drill cores in sediment material in the shelf 
offshore from Vancouver Island (Lewis et al., 1988) 

Specific heat capacity 1200 J kg-1K-1  

Crustal density 2700 kg m-3  

Mantle density 3200 kg m-3  

Temperature at the base of the model 400 °C 

extrapolation to greater depths from temperature estimates based on 

heat flow measurements on the shelf (Hyndman et al., 1990; Hyndman 

and Wang, 1993; Booth-Rea et al., 2008) 

Temperature at sea level 8 °C  

Atmospheric lapse rate 6.69 °C km-1  

Crustal heat production 0.77 µW m-3 
average value from drill cores on the shelf offshore Vancouver Island 

(Lewis and Bentkowski, 1988) 

Model depth 20 km 
minimum thickness of the accretionary wedge below the Olympic 
Mountains (e.g., Davis and Hyndman, 1989) 

 

 

 

 

Table 5: Results from influx and outflux calculations using a three-dimensional geometry. 

 Accretionary influx over 14 Myr period a  Denudational outflux over 14 Myr period 

 
Minimum a  

(1.5 km) 

Maximum a 

 (2.5 km) 

Increase at 2 Ma a 

(1.5 → 2.5 km) 
 Constant rates b 

50% increase at 3 

Ma b 

150% increase at 2 

Ma b 

3D 68–71 x 103 km3 128–133 x 103 km3 75–78 x 103 km3  68 x 103 km3 75 x 103 km3 82 x 103 km3 

 

Notes: 

The entire procedure for calculating the influx and outflux is described in Section 3.3. The influx volumes are reported as ranges, because minimum 

and maximum convergence rates (Figure 6b) have been obtained from the plate reconstruction model of Doubrovine and Tarduno (2008).  

 a: Sensitivity to incoming sediment thickness: The accretionary influx volume is calculated for three different sediment thicknesses, yielding a 

minimum volume (1.5 km thickness), maximum volume (2.5 km thickness), and a more realistic volume (where the volume increases from 1.5 km to 

2.5 km at 2 Ma). 
b: Sensitivity to an increase in exhumation rates: The denudational outflux volume is calculated assuming constant exhumation rates, and considering 

the increase in exhumation rates due to glacial erosion, with an increase by 50% at 3 Ma or an increase by 150% at 2 Ma. Exhumation rates are based 

on Michel et al. (2018) and displayed in Figs. 6d and e. 
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Electronic supplement to 

How steady are steady-state mountain belts? – a re-examination of the Olympic Mountains by Michel et al. 

 

S1 Details for thermochronometric dating 

S1.1 Identifying outlier single-grain ages of (U-Th)/He dating 

In the following we explain our procedure for deciding which apatite and zircon single grains are excluded 

from sample age calculation. The entire (U-Th-Sm)/He dataset of our analysed apatite and zircon single grains 

can be found in Tables S1 and S2, respectively. Calculating sample cooling ages for AHe and ZHe from single-

grain ages was complicated in some samples for two main reasons: (1) Cooling ages for the sedimentary rocks 

from the Olympic Mountains can be unreset, (i.e., the single-grain ages can exhibit cooling ages representative 

of the sediment source terrains), and (2) The geologic uncertainty for (U-Th-Sm)/He dating is often larger than 

the analytic uncertainty, which can lead to over-dispersed single-grain ages (e.g., Fitzgerald et al., 2006; Flowers 

and Kelley, 2011).  

In order to determine whether a sample contains outliers or is unrest, we used the following protocol. 

Samples where all single-grain ages are older than the depositional age of the sample or where single-grain ages 

show a large spread and do not overlap within analytical uncertainty (e.g., apatites of sample OP1560 or zircons 

of sample OP1557; Table S1 and S2), are considered as unreset samples. If samples pass this first test, we identify 

possible outliers by checking whether single-grain ages overlap within 2SD. Anomalously old single grains are 

considered outliers and excluded from sample cooling age calculations (e.g., single apatites of samples OP1552 

and OP1553; Table S1). Furthermore, if single-grain ages of a sample are disputable, we consider information 

from the higher closure temperature system of the sample or other samples collected along the same elevation 

transect. For example, if the ZHe age of a certain sample is reset or if AHe ages of samples at higher or lower 

elevation have concordant ages, we consider the AHe system of that sample to be reset. This applies to AHe ages 

of samples OP1555, OP1572 and OP1576. For samples OP1572 and OP1576, we take the youngest apatite single-

grain age as sample cooling age (due to the low high-quality apatite yield). 

 

S1.2 Further information for FT dating 

AFT and ZFT single-grain data are reported as additional files in Tables S3 and S4. 

 

S2 Additional information for thermo-kinematic modeling 

  During thermo-kinematic modeling, we used a time step interval of 1 Myr (as reported in Figure 5). Using 

sample OP1513 as an example, we performed sensitivity tests for different time steps (Figure S1). We considered 

four additional intervals of 2 Myr, 3 Myr, 0.5 Myr, and an interval, where the duration is variable and depends 

on the time between the different thermochronometer ages of the sample. 

 For sample OP1513, the exhumation rate history using a 1 Myr time step (Fig. S1d) is as follows: High 

rates (~1 km/Myr) are observed between 10–12 Ma, slow rates (<0.5 km/Myr) between 4–10 Ma, and an increase 
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in rates to values >1 km/Myr staring at 2 Ma. Simulations using the four additional time steps (Fig. S1a-d) result 

in a similar history of “high-low-high” exhumation rates as the model with the 1 Myr time step. However, the 

timing of an increase or decrease in exhumation rates occurs at a multiple of 0.5 Myr, 2 Ma or 3 Ma, respectively. 

If the respective time step is long (e.g., for the 3 Myr simulation or for some time steps in S1c), then the 

corresponding exhumation rate has to be lower compared to the 1 Myr or 2 Myr simulations, in order to result in 

the same amount of exhumation during a given time span. Furthermore, for long time steps, the uncertainty for a 

given time step is reduced (grey area around the mean exhumation rate in Fig. S1). 

 The simulation with the 0.5 Myr time step (Fig. S1d) suggests a very fine temporal resolution and, in 

particular in the time interval between 3 Ma and 0 Ma, several spikes occur in the mean exhumation rate curve. 

It is important to consider that for most of our thermochronometer ages the respective uncertainties are between 

0.5 Myr and 1.5 Myr. Hence, the suggested spikes in exhumation rates using a time step of 0.5 Myr are not well 

resolvable with our thermochronometry data. Although we did not test time steps shorter than 0.5 Myr, we suspect 

to observe a similar pattern of exhumation rate spikes. Due to the reason outlined above, we believe that models 

with a time step significantly shorter than 1 Myr pretend a temporal resolution that on the other hand is not 

resolved by our thermochronometry data, placing a minimum threshold on a reasonable time step. 

 In general, meaningful histories can only be derived for the time span covered between today and the 

oldest thermochronometer age of a sample. From all of our modeled samples, sample OP1513 has the oldest ZHe 

age (10.2 Ma). Therefore, it has the longest exhumation history resolved by our modeling and a time step of 3 

Myr still results in a meaningful exhumation history (i.e., it has four time steps). Sample OP1533 (AFT/ZHe ages 

of ~6 Ma) has a much shorter time span resolved, hence a time step interval of 3 Myr would result in two time 

steps, and in case of a 2 Myr interval in three time steps. So, longer time steps place a limitation on the information 

obtained from exhumation histories for particularly young samples and model runs with longer time steps seem 

not to be feasible for some of the considered samples 

 A variation in exhumation rate can only occur at the beginning of a time step in our simulations. So, for 

the simulation where the duration of the time steps is controlled by the thermochronometer ages of the respective 

sample (Fig. S1c), the derived pattern of exhumation rates depends on the actual cooling ages. This impacts the 

direct comparison between the different samples, because a possible decrease or increase in exhumation rate 

occurs at different times, compared to simulations, where all samples use the same, fixed time step. 

Based on the observations above, the general history of exhumation rates seems not to be sensitive to the 

time step. We believe that a time step interval of 1 Myr is the best trade-off between the investigated time steps 

and should yield reasonable exhumation rate patterns for all of our samples, which can have very different 

thermochronometer ages. Although the exhumation rate histories shown in Figure 5 have step-like patterns and 

suggest a high temporal sensitivity due to the 1 Myr time step, the interpretation of these histories should be based 

on a smoothed pattern, as we used in Figure 8. Furthermore, although we calculate the mean exhumation rate for 

each time step (red lines in Fig. 5 and Fig. S1), the respective uncertainty of this mean exhumation rate should 

also be considered (grey areas in Fig. 5 and Fig. S1). 
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Figure S1: Outcomes from Pecube simulations investigating different time step durations for sample OP1513. Panels (a–d) display the 

exhumation rate histories for additional simulations using time steps of 2 Myr, 3 Myr, a duration defined by the thermochronometric 

ages of the sample, and 0.5 Myr, respectively. Panel (e) shows the exhumation rate history for a time step of 1 Myr, as already displayed 

in Figure 5 of the main manuscript. Dashed boxes indicate the cooling ages of AHe, AFT and ZHe with the respective uncertainty 

(1SD). For a detailed explanation of the modeling approach see Section 3.2 in the main manuscript. 
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S3 Additional information for flux steady-state analysis 

S3.1 Sediment thickness during influx calculations 

We calculated our influx volumes reported in Table 5 for three different sediment thicknesses, considering 

a pre-Quaternary thickness and present-day thickness as well as a possible increase in thickness occurring at 2 

Ma. The sediment thickness of 2.5 km corresponds to the average present-day sediment thickness along the 

deformation front (Figure 3). The pre-Quaternary sediment thickness is difficult to determine for the entire 40 

Myr duration of subduction and sediment accretion. However, we focused our analysis on the past 14 Myr, where 

we estimated the thickness by the following approach.  

As displayed in Figure 3, the oceanic crust presently subducting is very young (~6–9 Ma). Together with 

the fast subduction rate of 34 km/Myr, which was even faster prior to 6 Ma (~60 km/Myr, Fig. 6), this prevents 

the accumulation of a thick succession of sediments on top of the oceanic crust. For instance, the pre-Quaternary 

sedimentation rates obtained from the ODP boreholes are around 80–110 m/Myr (Table 1). Assuming it takes the 

oceanic crust about 9 Myr to reach the deformation front (the oldest oceanic crust at the deformation front is 

currently 9 Ma old) would yield a sediment thickness of ~700–1000 m at the deformation front for the given 

sedimentation rate.  

However, this is likely an underestimation of the actual thickness, because the inherent assumption for 

this calculation is that the spreading rate and convergence rate stay constant over time. Furthermore, the 

sedimentation rate likely increases with decreasing distance to the deformation front, because more detritus is 

delivered through submarine canyons and turbidity currents. Therefore, we suggest a minimum sediment 

thickness of 1500 m for the pre-Quaternary as a good estimate of this otherwise difficult to constrain parameter. 

 

S3.2 Creation of the sediment cross-sections 

For calculation of the sediment volumes in the two cross-sections (Fig. 7), the lower boundary of the area 

occupied by the sediments corresponds to the top of the subducted slab, which is derived from the Slab1.0 model 

(Hayes et al., 2012; McCrory et al., 2012). Unfortunately, no uncertainty estimates are provided for this model. 

McCrory et al. (2012) only note that their current estimate of the top of the subducted slab locally differs by 5 

km in the vertical dimension from results from prior studies. As the current study is the most comprehensive and 

up-to-date one, we use their results for our calculations. 

The upper boundary is defined by the topography/bathymetry or the Hurricane Ridge Fault (HRF), the 

roof thrust separating the accreted sediments from the overlying Coast Range Terrane (CRT). At the surface, the 

location of the HRF is taken from a geologic map (Tabor and Cady, 1978) and at depth we use information 

provided by a seismic study (Calvert et al., 2011). This study provides seismic velocities at depths of 22 km and 

34 km for the Olympic Peninsula (Figures 3b and c in the original publication of Calvert et al., 2011), where a 

distinct area of low seismic velocities (LVZ = low velocity zone) can be observed beneath the Olympic 

Mountains. Calvert et al. (2011) interpret this LVZ to correspond to accreted/underplated sediments, which are 

enclosed by material of higher seismic velocities (possibly the subducted oceanic crust below or basaltic rocks 
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of the CRT on top of the sediments). Therefore, we assume that the eastern boundary of the LVZ represents the 

HRF and contour the boundary between low and high velocities at depths of 22 km and 34 km. According to 

Calvert et al. (2011), the seismic velocities of the accreted sediments vary with latitude and range from 5.8–6.5 

km/s (between 47.25°N and 48.1°N) and 6.7–7.0 km/s (north of 48.1°N). Hence, we mapped and contoured the 

boundary between sediments and CRT, distinguished by different velocities. The solid black line in Figure S2 is 

constructed using a seismic velocity of ~6.6 km/s (boundary between yellow and orange pixels in Figures 3b and 

c of Calvert et al., 2011), and we consider the volumes calculated with this outline as the most representative 

estimates. The cross-sections and volumes shown in Figure 7 correspond to this geometry (yielding values of 

5348 km2 and 3672 km2 for Profile 1 and 2, respectively). 

In order to provide an uncertainty for our calculated volumes, we also estimate the geometry of the HRF 

using different velocities. A maximum extent uses a velocity of ~7.0 km/s as boundary between sediments and 

CRT (boundary between bright and dark orange pixels in Figure 3b and c of Calvert et al., 2011), and a minimum 

extent uses a velocity of ~6.4 km/s as boundary (boundary between light green and yellow pixels in Figure 3b 

and c of Calvert et al., 2011). These maximum and minimum estimates for the sediment extent are shown as thin, 

dashed lines in Figure S2 for the respective depths of 22 km and 34 km.  

The uncertainties in the location for the HRF reported in Figure 7 are based on these maximum and 

minimum extents. Volumes calculated with these extents yield values of 5186 km2 and 5572 km2 (Profile 1), 

and 3446 km2 and 4005 km2 (Profile 2). The uncertainties of the calculated sediment in Figure 7 are derived 

from these minimum/maximum extents, and correspond to 5–10% of the reported volume. In general, the 

uncertainties of the location of the HRF at depth are largest in the southern part of the Olympic Peninsula 

(represented by the width of the dashed lines around the thick, solid line in Figure S2). Calvert et al. (2011) also 

note that the resolution of their reconstruction is reduced in the northern part of the peninsula, where velocities 

for the accreted sediments could be higher compared to areas in the south. Hence, we hesitate to construct a cross 

section for this part of the mountain range. 
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Figure S2: Map showing the data used for constructing Profile 1 and 2 (shown in Figure 7). Top of the subducted slab is taken from 

the Slab1.0 model (Hayes et al., 2012; McCrory et al., 2012). Trace of the Hurricane Ridge Fault (HRF) is taken from a geologic map 

at the surface (Tabor and Cady, 1978) and derived from the seismic study of Calvert et al., (2011) at depths of 22 and 34 km. The 

black dashed lines correspond to our estimates of uncertainty of the HRF at the respective depth. See Section S3.2 for details. 
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3.3 Investigating deformation on various timescales

3.3.1 Declaration on contributions to joint work

The following section of the thesis is a manuscript that is currently in prepa-
ration and aims at comparing the deformation within the Olympic Mountains
recorded on various timescales. The title of the manuscript will likely be “Fric-
tional transition leaves a permanent mark in Cascadia”. In section 3.3.2 the most
recent version of the manuscript is provided, and section 3.3.3 contains the ad-
ditional supplement. A data table containing the reported GPS velocities can be
found at the end of the manuscript, and further data tables listing the published
datasets used during the analysis are reported in the appendix (Section C).

Three authors contributed to the work presented in the manuscript: Lorenz
Michel (LM), Todd Ehlers (TE) and Rebecca Bendick (RB). A summary of the
respective contributions is provided in Table 3.3. The detailed contributions are
as follows: LM developed the idea of comparing datasets integrating over various
timescales, and RB contributed much of the understanding of the fault mechanic
behavior. RB provided the GPS data and conducted the elastic component simula-
tion, LM collected all other datasets from literature sources (thermochronometry,
cosmogenic nuclides, episodic tremor and slip). LM, TE and RB were all involved
in the data analysis, LM and TE had expertise on the long-term datasets, RB
had expertise on the short-term datasets. LM drafted an initial version of the
manuscript along with the swath profiles for comparison of the datasets. Later
versions of the manuscript received significant contributions from TE and RB.

Table 3.3: Summary of contribution to joint work for the manuscript “Frictional transition
leaves a permanent mark in Cascadia.”, indicating the average fraction of work of the
respective author in percent. The manuscript is currently in preparation.

Author Position
Scientific
ideas (in

%)

Data gen-
eration
(in %)

Analysis and
Interpretation

(in %)

Paper
writing
(in %)

LM [1] 60 60 60 70

TE [2] 10 0 20 15

RB [3] 30 40 20 15
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Frictional transition leaves a permanent mark in Cascadia 

 

Lorenz Michel, Todd A. Ehlers, Rebecca Bendick 

 

Abstract 

Traditional mechanical models of the earthquake cycle assume that interseismic elastic deformation is 

completely recovered during earthquakes, closing the deformation budget of steady slip on the deep subduction 

interface and different types of episodic slip on the shallow subduction interface.  However, at Cascadia, the 

presence of persistent, elevated topography in the Olympic Peninsula requires that some tectonic deformation is 

not recovered over the elastic cycle. Here, we compare estimates of deformation from various timescales with 

each other, in order to disentangle the contributions from elastic (recoverable) and permanent deformation 

within the Olympic Mountains. Elevated topography and high denudation rates from cosmogenic nuclides and 

thermochronometric data are located in the center of the Olympic Mountains. High values from these long-term 

observations are spatially coincident with geodetically observed residual tilting, overlapping with a published 

area of negative shear stress rates on the subduction interface.  We attribute the observed tilting to time-

dependent stresses and a spectrum of different slip types on the plate interface of the subduction zone. Visco-

plastic deformation at the top of the episodic slip zone causes the dissipation of stress over time and initiates 

tilting in the overriding plate, which in turn creates topography and focuses denudation.  Our findings indicate 

the importance of considering visco-plastic deformation additional to purely elastic deformation during the 

seismic cycle. 

 

1 Introduction 

The development or maintenance of mountain topography (corresponding to surface uplift) requires the 

accumulation of permanent tectonic deformation (through rock uplift) at a rate greater than, or equal to which 

denudation removes it, which leads to the exhumation of rocks over geologic timescales (e.g., Ellis et al., 1999). 

In the case when mountain topography is in steady state and no surface uplift occurs, rock uplift equals 

denudation and the respective measures can be compared with each other (England and Molnar, 1990). Rock 

uplift is commonly determined by geodetic methods whereas denudation and rock exhumation are often 

calculated with thermochronometry and cosmogenic radionuclide methods. Despite decades of research related 

to quantifying orogen deformation and exhumation processes, we still lack a clear understanding of the 

relationship between deformation at short time scales (e.g. ~100–102 year) and that at longer time scales (e.g. 

106–107 year) and whether the observed respective deformation is elastic (so recoverable) or permanent.  
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Comparing observations from methods, which integrate over various timescales, contributes to fill this gap of 

knowledge.  

At subduction zones, the observed deformation (on timescales of 100–102 years) is usually considered to 

correspond to purely elastic strain during the seismic cycle in between two major earthquakes. However, the 

mechanical models of time-dependent deformation related to subduction have evolved substantially from 

simple models of the elastic earthquake cycle on a planar fault interface that is either entirely locked or steadily 

slipping (e.g., Mansinha and Smylie, 1971; Okada, 1985; McCaffrey et al., 2007).  In particular, recent work on 

fault mechanics and nonlinear friction conditions combined with direct observations of several different types 

of tectonic motion all demonstrate that subduction interfaces have locked domains, freely slipping domains, and 

transitional domains that host complicated sequences of stick and slip.  In Cascadia and Japan, these domains 

appear to be arranged sequentially in the dip direction so that the shallowest part of the fault interface is locked, 

followed by a deeper enigmatic gap zone, then by a zone of conditional frictional stability hosting episodic 

tremor and slip (ETS), and finally a steadily slipping zone (Wang and Tréhu, 2016; Bruhat and Segall, 2016).  

However, whether and how the spatial extents of these zones in both the strike and dip directions change over 

long time scales or within the earthquake cycle is not well known, nor is the relationship of recoverable (elastic) 

strain to permanent strain that excites long-lived topography and landscape evolution. 

This study investigates the generation of permanent deformation and topography over variable 

timescales and how deformation is related to the different domains of the subduction interface. We use the 

Olympic Mountains, overlying the Cascadia Subduction Zone, Western North America (Fig. 1), as a case study. 

This area is an ideal location to study the spatial and temporal variability of fault slip mechanisms because a 

syntaxial bend in the downgoing Juan de Fuca Plate (Mahadevan et al., 2010; Bendick and Ehlers, 2014) means 

that each domain of the fault interface is anomalously wide and also that the overriding plate above the 

transitional domains is subaerial, so both geodetic observations and geologic samples can be collected. Indeed, 

this region was the first place where ETS was observed (Rogers and Dragert, 2003), as well as one of the test 

locations for steady-state landscape models (Willett and Brandon, 2002). 

For our purpose, we compare the position and magnitude of instantaneous residual vertical displacement 

from GPS time series with denudation rates derived from cosmogenic nuclide dating and thermochronometry 

within a transect spanning the Olympic Peninsula.  We capitalize on the large dataset of published denudation 

rates from thermochronometric and cosmogenic nuclide methods (Brandon et al., 1998; Michel et al., 2018; 

Adams and Ehlers, 2018), that are available for the region. We further compare these observations with vertical 

displacement related to ETS and inversions for shear stress on the subduction interface from Bruhat and Segall 

(2016), as well as forward simulations of deformation due to elastic and viscous mechanics in subduction 

settings (Wang et al., 2003; Li et al., 2015). 
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Figure 1: a) Overview of the Cascadia Subduction Zone of North America. Parts of the fore arc high, which are mentioned in the text 

(Vancouver Island, Olympic Mountains, Oregon Coast Range), are indicated. Dashed lines represent contour lines of the subducted 

slab at depth, according to McCrory et al. (2012). Note the bend in the slab at the latitude of the Olympic Mountains. The extent of 

locking of the thrust fault is indicated by the yellow area (after Hyndman and Wang, 1993). The extent of tremor is based on data 

from the Pacific Northwest Seismic Network (https://pnsn.org/tremor). b) Topography of the Olympic Mountains (red triangle 

denotes the location of Mount Olympus, 2430 masl), along with the location of GPS stations (data from this study), and the location 

of thermochronometry samples and cosmogenic nuclides (Michel et al. 2018; Adams and Ehlers 2018). The white box denotes the 

area considered for comparing the different datasets. The locations of GPS stations used by Bruhat and Segal (2016) for obtaining 

deformation related to slow slip events are mostly identical with our GPS stations. For full maps of thermochronometric cooling ages, 

denudation rates from cosmogenic nuclides, exhumation rates and GPS velocities, the reader is referred to the electronic supplement 

(Figures S1 and S2). Onshore location of the Hurricane Ridge Fault (HRF) is after Brandon et al. (1998). 

 

2 Background  

The Cascadia Subduction Zone (CSZ), where the Juan de Fuca Plate subducts below the North 

American continent, extends along the American west coast from northern California to the northern tip of 

Vancouver Island (Figure 1a). Currently the thrust fault is locked over much of its distance along the trench, 

although the locking depth is very poorly constrained by geodetic observations (e.g., Hyndman, 2013; Wang 

and Tréhu, 2016). At the latitude of the Olympic Mountains (which form the topographic apex of the 

subduction zone’s forearc high), the locked zone of the fault is inferred to be wider than both further north and 

further south (Figure 1a) due to the lower angle of subduction below the mountain range, related to the upward 

bending of the subducted slab (McCrory et al., 2012; Mahadevan et al., 2010).  The seismic cycle at the CSZ is 

long (about 300–500 years) and the last known rupture of the fault occurred in AD 1700 (Wang and Tréhu, 

2016).   
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Early geodetic studies near the Cascadia Subduction Zone (CSZ) assume all observed displacement to 

be elastic (e.g., Szeliga et al., 2008; Burgette et al., 2009; McCaffrey, 2009). This assumption is based on the 

accumulation of elastic strain during interseismic periods of the earthquake cycle, which is then recovered 

coseismically during slip on the thrust fault (e.g., Hyndman and Wang, 1993). However, this assumption of 

elastic and fully recoverable deformation is contradictory to the presence of topography (i.e., the fore arc high), 

discrepancies between rock uplift rates integrating over different timescales (Kelsey et al., 1994; Penserini et 

al., 2017), and results from modeling studies (Wang et al., 2003; Simpson, 2015; Wang and Tréhu, 2016) which 

all suggest that permanent deformation accumulates in the CSZ, at least over longer timescales. In particular, 

Wang and Tréhu (2016) and Li et al. (2015) simulate cases where interseismic stressing of the lithosphere and 

mantle at the transition from the steadily slipping to the locked domains of the subduction interface produces 

viscoelastic as well as recovered elastic deformation. In Cascadia, the viscoelastic contribution to surface 

displacement has been aliased into apparent block motions (e.g., McCaffrey et al., 2007, 2013), or unrealistic or 

poorly constrained locking depths (e.g., Wang et al., 2012).  Furthermore, such viscoelastic models predict that 

the spatial arrangement of interseismic uplift and subsidence of rocks should vary in time, with subsidence of 

the overriding plate surface expanding in the late stages of the interseismic interval (Li et al. 2015). 

Even mechanical simulations that incorporate more realistic viscoelastic material properties usually 

simplify the transition from a freely slipping to a locked subduction interface.  However, studies of ETS (e.g., 

Bartlow et al., 2011; Dragert and Wang, 2011; Wech and Creager, 2011; Wech and Bartlow, 2014), the 

Cascadia “gap” (e.g. Bruhat and Segall, 2016), and the strongly spatially heterogeneous distribution of 

coseismic slip in observed subduction megaquakes all point toward more complex zones over which tectonic 

stresses are relayed and partially stored. Specifically, recent models of the megathrust indicate fully locked 

conditions from the trench to depths of ~16 km (Krogstad et al., 2016) to 21 km (Bruhat and Seagall, 2016), 

then a “gap” zone inferred as velocity-strengthening where shear stress decreases over time (Bruhat and Segall, 

2016), extending to the ETS zone from ~25-60 km (Bartlow et al., 2011; Hawthorne and Rubin, 2013; Wech 

and Bartlow, 2014).  Below the ETS zone, the Cascadia subduction zone is inferred to be slipping steadily at 

the relative plate velocity.  Because the area of the interface that slips during a major subduction earthquake 

determines the moment of the event, whether the gap zone and the ETS zone can store elastic potential energy 

and therefore slip coseismically are critical questions for seismic hazard assessment and basic fault mechanics. 

The Olympic Mountains correspond to the aerially exposed part of the subduction zone’s accretionary 

wedge (Brandon et al., 1998). They have been the location for studies applying various methods like 

thermochronometry, topographic analysis and cosmogenic nuclide dating in order to assess the landscape 

evolution of this orogen, hence the “permanent” deformation over many seismic cycles (e.g., Brandon et al., 

1998; Adams and Ehlers, 2017, 2018; Michel et al., 2018). Based on thermochronometric cooling ages, cooling 

histories of rock samples collected at the earth’s surface can be reconstructed, and by modeling the temporal 
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evolution of the geothermal gradient, exhumation histories can be reconstructed from the cooling histories. In 

the Olympic Mountains exhumation is localized and controlled by an ellipse-shaped pattern (Michel et al. 2018; 

see Figure S1a), which is a consequence of the bend in the subducted slab (e.g., Bendick and Ehlers, 2014). 

Results from the topographic analyses and denudation rates derived from cosmogenic nuclides also corroborate 

that the evolution of this mountain range is mostly controlled by the shape of the subducted slab (Adams and 

Ehlers, 2017; Adams and Ehlers, 2018).  

 

3 Methods 

We compare four different observational data sets and map view figures of the datasets are provided in 

Figures S1 and S2, respectively. For a direct comparison between the datasets, we project these along a transect 

crossing the Olympic Peninsula from west to east between -125°E and -122°E (Figure 2). However, the spatial 

extent of the datasets is different and the datasets based on geodetic methods (Figure S2) cover a larger area of 

the Cascadia Subduction Zone, compared to estimates of denudation, which are only constrained for the 

Olympic Peninsula (Figure S1). Because the subducted slab displays a bend, different slab depths can be 

observed for the same longitude along strike the subduction zone. If the hypothesized processes responsible for 

permanent deformation and the different zones of the subduction interface depend on the slab depth, then this 

longitudinal variation in slab depth should be considered. For these two reasons, we focus our analysis on the 

area between latitudes 47°N and 48.5°N (Figure 1b), in order to minimize the effects of the bent slab and the 

variable spatial coverage of the different datasets. Hence all large, colored symbols in the panels of Figures 2b-

e are from locations between these latitudinal boundaries. Nonetheless, we also provide information from 

locations outside these boundaries for the geodetic methods, which correspond to the small, open symbols in 

Figures 2c-e. 

Of our considered datasets, two are sensitive to denudation rate: Cosmogenic nuclide dating using 10Be 

(Adams and Ehlers, 2018) and exhumation rates obtained from thermochronometry applying (U-Th)/He dating 

of apatite and zircon (Michel et al., 2018). These datasets have integration timescales of 103–104 or 105–106 

years, respectively, and integrate over many seismic cycles to yield a proxy for denudation associated with 

long-term deformation. Rates obtained from cosmogenic nuclides provide basin-wide denudation rates (Figure 

S1b) and are plotted at the respective sample site within the transect (green symbols in Figure 2b). Michel et al. 

(2018) suggested an ellipse shaped pattern of denudation based on their thermochronometry data (Figure S1a), 

and in our transect, we plot the denudation rate at the respective thermochronometer sample location (blue 

squares in Figure 2b). 
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Figure 2: West to east transects across the Olympic Peninsula, showing the datasets considered in our analysis. We focus are analysis 

on the area between 47°N and 48.5°N, due to reasons outlined in the text. For completeness, we also provide data from outside these 

boundaries, which are shown with open, small symbols in panels c) to e). The thin dashed lines displayed in panels c) to e) were also 

fitted using all available data. a) Mean and maximum elevation of the Olympic Peninsula, on the central Olympic Peninsula between 

latitudes of 47.4°N and 48.1°N. The location of Mt. Olympus (2430 masl) is indicated). b) Estimates of denudation, based on 

cosmogenic nuclide dating (green squares; Adams and Ehlers, 2018) and thermochronometry (blue squares; Michel et al, 2018). 

Denudation rates influenced by glaciation are indicated and are excluded from our analysis. c) GPS velocities from this study, the 

signal was treated according to the procedure outlined in the methods section. d) Residual vertical velocities, which are obtained from 

the GPS velocities displayed in c) by subtracting a forward modeled elastic component, using the model of Wang et al. (2003). These 

residual verticals correspond to the permanent component of deformation contained in the GPS signal. The tilt rate corresponds to the 

derivative of the residual vertical in the x-direction and has units of 10-8 yr-1. e) Data related to episodic tremor and slip (ETS), 

showing the vertical uplift due to ETS recorded by GPS stations as published by Bruhat and Segall (2016). Furthermore, the number 

of tremor events (in bins of 0.1° width) recorded during 2014–2018 are plotted along the transect. For our analysis we consider the 

tremor events between 47°N and 48.5°N. Because the occurrence of tremor follows the shape of the subducted slab (e.g., Figure 1a), 

the pattern of tremor outside the latitudinal boundaries is different from the pattern used in our analysis. Events are taken from the 

tremor database of the Pacific Northwest Seismic Network (https://pnsn.org/tremor). At the top of panel a), information regarding the 

depth of the subducted slab (from McCrory et al., 2012) and the different zones at the subduction interface is provided. 

 

Two datasets are sensitive to rock uplift and are based on inversion of GPS timeseries, hence integrating 

over a timescale of about a decade: the observed vertical component associated with ETS (Figure 2e, Figure 

S2d) published in Bruhat and Segall, (2016), and the residual vertical displacement (Figure 2d, Figure S2c) 

which we obtained from GPS timeseries using the following approach. 

The residual vertical displacement is calculated by first solving for the daily positions of 88 

continuously logging GPS stations, 63 in the Cascadia region and 15 elsewhere.  Daily positions were 

determined for every day and for fortnightly averages from 1 January 2005 to 31 December 2016 using a 

Kalman filter approach implemented in GAMIT/GLOBK and tied to the ITRF08 reference frame using the 15 

IGS sites outside of the study area.  Outlier positions were manually edited and Markov noise added to the time 

series using the station position variance and cross-correlations. Next, because vertical geodetic displacements 

are sensitive to many different loads, especially hydrologic and seasonal atmospheric masses, the daily vertical 

(UP) position time series with formal uncertainties were used to estimate independent annual sine and cosine 

harmonics, semiannual sine and cosine harmonics, and secular linear up velocities. The periodic terms together 

remove most of the seasonal hydrologic and atmospheric contributions, as well as draconitic and orbital 

residuals, as well as most of the ETS contribution. The steady linear rate is therefore the best geodetic estimate 

of steady decadal mean rock uplift in the late interseismic. A map view of this linear rate is provided in Figure 

S2a and in Figure 2c along the transect. Station names, locations, and vertical components are listed in Table 1.  

Finally, station vertical velocity (W) can be considered a linear combination of an elastic part due to the 

seismic cycle on the locked part of the Cascadia subduction zone and a viscous part due to permanent 

deformation of the domain. In the standard interpretation of subduction zones, all stored elastic bending should 

be recovered in slip events, either earthquakes or phenomena like afterslip or longer term creep events; the 
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residual visco-plastic deformation should be the component of rock uplift, contributing to formation of 

topography and denudation. In order to place an upper bound on the unrecoverable vertical displacement, we 

subtract the modeled elastic bending due to the locked subduction zone from Wang et al. (2003) to give the 

reported residual vertical displacement (Figure S2c). Because the study area is well inland of the bottom of the 

preferred locked zone, the elastic correction is nearly constant across the study area (Figure S2b). 

 

4 Results 

Within the Olympic Mountains, the topography steadily increases in height from the coast towards the 

center of the mountain range (Figure 2a) where it reaches its highest elevation at Mt. Olympus (2430 masl, at    

-123.7°E in Figure 2a). Previous work (Michel et al. 2018) shows that million-year timescale denudation rates 

from thermochronometer data display an ellipse shaped pattern (Fig. S1a) and are highest in the core of the 

range, coincident with the location of the highest mean elevation of the range. The denudation rates decrease 

away from the core of the range in the profile (Figure 2b), and also in map view (Fig. S1a), such that rates vary 

between 0.25 mm/yr at the coast to 0.9 mm/yr in the area of high topography.  

Previously reported (Adams and Ehlers, 2018) cosmogenic nuclide denudation rates that integrate over 

millennial timescales are lowest on the western side of the mountain range (~0.2 mm/yr) and increase to 

maximum values of 1.2–1.4 mm/yr in the core of the mountain range, coincident with the highest 

thermochronometer denudation rates and highest mean elevations (Figure 2a,b). Higher cosmogenic nuclide 

denudation rates (>1.8 mm/yr, indicated in Figure 2b) were previously interpreted as influenced by glaciation 

(Adams and Ehlers, 2018). Shielding of rocks from cosmic ray exposure by glacial ice results in lower 

cosmogenic nuclide concentrations and seemingly higher denudation rates. However, these high rates are 

unrelated to denudation caused by rock uplift and for this reason, we exclude the samples from catchments with 

significant recent glaciation from our analysis, because they are not comparable with denudation rates from 

thermochronometry or GPS-derived rock uplift rates.  

Highest denudation rates both from thermochronometry and cosmogenic nuclides are observed between 

-123.8°E and -123.2°E along our transect (Figure 2b). The peak in residual vertical velocity from geodetic 

observations is located between -123.8°E and -123.6°E, close to the location of Mt. Olympus (Figure 2d).  Only 

the western region of the peninsula between -124.4°E and -123.6°E has positive (upward) residual vertical 

velocities; the remainder of the residual velocities are zero or slightly negative.  The peak vertical displacement 

in ETS events is also spatially coincident (between -123.8°E and -123.7°E, Figure 2e), and upward directed 

displacement can be observed between -124.6°E and -123°E, whereas east of -123°E most observed uplift is 

zero or negative (Bruhat and Seagall, 2016).  The peak in tremor activity (events recorded from 2014–2018) 

associated with ETS is offset from the peak in vertical displacement and located at approximately -122.8°E. 
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From there, the occurrence of tremor gradually fades out towards the west and no tremor can be observed west 

of -124°E.  

We also plot the horizontal spatial derivatives of the smoothed residual velocities (Figure 2d).  Since W 

(the vertical velocity) is 
𝜕𝑧

𝜕𝑡
, the x-derivative of W is 

𝜕𝑧

𝜕𝑥𝜕𝑡
, which can be interpreted as a rate of topographic 

tilting.  The derivatives of the residual vertical velocity show high rates of positive tilting (toward the west) on 

the west side of the Olympic range and negative tilting (toward the east) on the east side of the range.  If we 

further consider the limiting case of a Newtonian viscous material, then the tilting rate is also a shear strain rate 

which should be proportional to the shear stress.  This interpretation of the observed derivative is consistent 

with the inversion of Bruhat and Seagall (2016) indicating a negative shear stress rate at the transition from the 

gap zone to the ETS domain on the Cascadian subduction interface, hence the observed negative shear strain 

rate (Figure 2). 

 

5 Discussion 

The long-wavelength topography and denudation rates in the Olympic Peninsula all yield a convex 

pattern, with highest values located in the center of the Olympic Mountains between -124°E and -123°E (Figure 

2a,b).  This area also hosts the most rapid vertical velocities from geodetic observations, rapid tilting, and a 

change of sign of shear stress rate, assuming linear viscosity.   

The location of these deformation anomalies lies above the inferred transition between an enigmatic 

“gap” zone and the zone that hosts episodic slip events, where the primary subduction interface is between 25 

and 35 km depth (Figure 2).  Based on a combination of observational constraints, emerging fault mechanics 

results, and basic continuum mechanics, this zone appears to be the part of the Cascadian subduction zone with 

the most complicated behavior, with consequences for both seismic hazard and landscape processes.   

Below the ETS zone, the North American and Juan de Fuca plates move past one another at the steady 

relative plate velocity.  This plate motion must be accommodated through the entire subduction zone to close 

the total tectonic velocity budget.  In the ETS zone (which in our analysis corresponds to the area where tremor 

is recorded between -123.8°E and -122.3°E in Figure 2e) accumulation of stress from the steadily slipping 

domain below appears to interact with a nearly-constant frictional threshold, resulting in quasi-periodic slip 

events that then transfer the plate motion to the base of the “gap” zone.  The mechanism of slip transfer through 

the gap is not well understood, but at least some of the tectonic stress must be loaded onto the base of the 

locked domain, eventually to be released coseismically.  Bruhat and Seagall (2016) sought to characterize the 

“gap” zone by inverting for shear stress rate from surface displacement observations.  They find a negative 

shear stress rate, especially in the lower gap zone, indicating that stresses applied to the gap zone by ETS 
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displacements are partially dissipated over time. This part of the fault is at depths of 25–35 km. Given that the 

continental lower crust is often inferred to be ductile at these depths and temperatures (Burov, 2011) and that 

accreted sediment is present at this depth (Calvert et al., 2011), one candidate for relaxation of applied stresses 

is viscous or plastic flow.  These flows could be responsible for the observed tilt rate in the residual vertical 

velocity.  Wang et al. (2012) and Li et al. (2015) have recently argued for interseismic viscous deformation 

excited by accumulation of tectonic stresses below the locked part of subduction zones that would not be 

recovered coseismically. 

Such secular tilting arising from continuum deformation of overriding lower crust should produce 

persistent topography.  In addition, tilting of the landscape surface should particularly enhance fluvial erosion 

transport by increasing local to regional relief and channel slopes.  Therefore, we expect the spatial correlation 

between tilting rate, elevated topography and high rates of denudation at the surface.  In the Olympic 

Mountains, we observe that the maximum denudation rates both from thermochronometry and cosmogenic 

nuclides are spatially correlated with the highest tilting rates (Figure 2a,b,d).  Hence, viscous or plastic flow 

seems to be causing permanent deformation, which can be recorded on timescales ranging from 101 years to 

103–104 years to 105–106 years. The plate geometry of the Cascadia Subduction Zone has been suggested to 

control the spatial pattern of deformation due to the locally flatter angle of subduction below the Olympic 

Mountains (Bendick and Ehlers, 2014; Michel et al., 2018). Seemingly the geometry also affects the efficacy of 

viscous or plastic flow, because compared to the areas north or south of the Olympic Peninsula, residual 

vertical velocities (Figure S2c), vertical uplift due to ETS (Figure S2d) and denudation rates are highest in the 

Olympic Mountains.  

Interestingly, previous studies have highlighted that when methods integrating over different timescales 

are compared with each other, discrepancies between short term and long term observations exist (e.g., 

Friedrich et al., 2003; Stock et al., 2009; Penserini et al., 2017; Niemi and Clark, 2018). This could in part be 

due to methods integrating over short timescales (like geodetic methods) contain an elastic and inelastic 

component, whereas methods with long integration timescales only record the inelastic component. As we 

showed, an attempt to remove the elastic component by forward modeling is promising in order to derive the 

permanent (viscous) component of deformation contained in a GPS signal.  In our case, the number of recorded 

events during the integration timescale is likely also a crucial point. For example, the seismic cycle at the 

Cascadia Subduction zone is 300–500 years such that available geodetic measurements do not integrate over 

several cycles, whereas our methods for estimating denudation integrate over 100s to 1000s of seismic cycles.  

A further important point to consider is the time dependence of stresses over a full seismic cycle.  Elastic 

mechanical models (e.g. Wang et al., 2003) assume a temporally steady stress evolution.  However, at present, 

the Cascadia Subduction Zone is in the late interseismic period (Wang and Trehu, 2016), and the outcome of 

elastic models might be more representative of the state of stress during an earlier phase of the interseismic 
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period. This could be responsible for some of the spatial misfit between residual vertical velocities, tilting rate 

and the long-term denudation rates, because our modeled elastic component could be an overestimation of the 

actual, present value. 

Furthermore, there are uncertainties associated with the long-term denudation rates. The denudation 

rates suggested by Michel et al. (2018) could deviate from the proposed ellipsoid pattern, which would result in 

a slight (~10km) variation in the lateral extent of high denudation rates shown in Figure 2b (i.e., the blue 

symbols could move further to the west or east). As Michel et al. (2018) showed, denudation rates can also be 

temporally variable. Glacial erosion due to Pleistocene glaciation locally increased the denudation rates by 50–

150 %, particularly affecting the western side of the mountain range (approximately between -123.9°E and -

123.7°E in Figure 2). However, Adams and Ehlers (2018) also noted that their denudation rates (temporally 

integrating over the Holocene) show, that the effect of glacial erosion can no longer be recorded in most of the 

available cosmogenic nuclide samples.   

 

6 Conclusion 

In the Olympic Mountains, the patterns of denudation rates obtained from cosmogenic nuclides and 

thermochronometry as well as the long-wavelength topography are all similar, indicating that most long-term 

(permanent) deformation occurs in the center of the mountain range. The permanent deformation recorded by 

topography and dating techniques aligns with a peak in displacement observed using geodetic methods, as well 

as with high rates of surface tilting.  High stresses on the Cascadian subduction zone may be exciting viscous 

deformation of the lower crust, dissipating some of the tectonic shear stress in the enigmatic “gap” zone, 

generating permanent topography, and enhancing erosion rates in a localized domain. 
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Correction factor
b

Station 

name
Longitude (°) Latitude (°)

Uplift rate 

(mm/yr)

1 SD 

(mm/yr)

Elastic component 

(mm/yr)

Uplift rate 

(mm/yr)
1SD (mm/yr)

ALBH -123.4875 48.3898 0.35 0.35 1.29 -0.94 0.35

BLYN -122.9275 48.0161 -3.36 0.48 1.00 -4.36 0.48

CPXX -122.2565 46.8401 -0.38 0.47 0.24 -0.62 0.47

KTBW -122.7954 47.5473 -0.96 0.19 1.37 -2.33 0.19

NEAH -124.6249 48.2979 1.44 0.17 1.19 0.25 0.17

P064 -123.4877 47.9699 0.18 0.34 1.37 -1.19 0.34

P397 -123.7992 46.4216 0.25 0.29 1.33 -1.08 0.29

P398 -123.9162 46.9258 0.59 0.16 1.23 -0.64 0.16

P399 -123.6130 47.4339 1.21 0.23 1.37 -0.16 0.23

P400 -123.8125 47.5134 2.15 0.27 0.89 1.26 0.27

P401 -124.5570 47.9372 0.68 0.18 0.85 -0.17 0.18

P402 -124.3059 47.7662 1.74 0.24 1.07 0.67 0.24

P403 -124.1409 48.0623 1.53 0.43 1.37 0.16 0.43

P408 -123.3766 46.2005 -0.86 0.22 1.09 -1.95 0.22

P410 -123.0786 46.1111 -1.29 0.25 0.68 -1.97 0.25

P415 -123.7299 46.6560 0.94 0.32 1.29 -0.35 0.32

P417 -123.2979 46.5747 -0.99 0.14 1.08 -2.07 0.14

P418 -123.4078 47.2366 -0.19 0.2 1.31 -1.50 0.2

P419 -123.3665 47.4093 0.05 0.21 1.33 -1.28 0.21

P420 -122.8663 46.5886 -0.93 0.24 0.64 -1.57 0.24

P421 -122.4292 46.5319 0.18 0.98 0.23 -0.05 0.98

P423 -122.9412 47.2879 -0.92 0.16 1.05 -1.97 0.16

P424 -122.8747 47.8232 0.28 0.22 1.03 -0.75 0.22

P425 -122.8454 46.4527 -1.51 0.33 0.56 -2.07 0.33

P426 -122.5146 47.8027 -2.98 0.22 0.55 -3.53 0.22

P430 -123.4362 47.0038 -0.95 0.16 1.30 -2.25 0.16

P435 -123.5033 48.0596 -0.12 0.48 1.37 -1.49 0.48

P436 -123.1344 48.0453 -0.05 0.21 1.18 -1.23 0.21

P437 -122.4592 48.0018 -1.18 0.42 0.53 -1.71 0.42

P438 -122.6703 48.4192 -0.97 0.28 0.57 -1.54 0.28

P439 -122.9093 48.7082 -0.30 0.19 0.51 -0.81 0.19

P440 -122.4933 48.8562 -0.96 0.29 0.17 -1.13 0.29

P441 -122.1396 48.9160 0.16 0.44 0.07 0.09 0.44

P446 -122.8928 46.1157 -1.29 0.24 0.47 -1.76 0.24

PABH -124.2046 47.2128 -0.25 0.17 1.12 -1.37 0.17

PCOL -122.5708 47.1721 -0.96 0.39 0.56 -1.52 0.39

PUPU -122.0081 47.4996 -1.26 0.26 0.18 -1.44 0.26

SC02 -123.0076 48.5462 -0.43 0.23 0.80 -1.23 0.23

SC03 -123.7057 47.8166 2.00 0.22 1.38 0.62 0.22

SC04 -123.7041 48.9232 0.74 0.26 0.92 -0.18 0.26

SEAT -122.3095 47.6540 -1.70 0.2 0.36 -2.06 0.2

SEDR -122.2239 48.5216 -0.75 0.34 0.18 -0.93 0.34

TPW2 -123.7684 46.2074 -0.17 0.18 1.36 -1.53 0.18

TWHL -122.9229 47.0159 0.16 0.23 0.94 -0.78 0.23

Notes:

a
: In order to remove effects of hydrology and seasonal atmospheric loading,  the GPS signal has been treated 

according to the procedure in the text

b
: The correction factor corresponds to the elastic component of the GPS signal, as calculated with the elastic model of 

Wang et al. (2003).

c
: The residual verticals corresponds to the GPS signal corrected by the elastic component. It should yield an estimate 

of the permanent deformation as recorded by GPS.

Coordinates GPS signal
a

Residual vertical
c

Table 1: GPS data presented in this study.
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1 Details for denudation rates 

Figure S1a displays the pattern of denudation rates from Michel et al. (2018) obtained from thermo-

kinematic modeling of thermochronologic cooling ages. The modeled denudation rates are based on the 

bedrock cooling ages reported in Michel et al. (2018), as well as earlier thermochronology data (Brandon and 

Vance, 1992; Brandon et al., 1998; Batt et al., 2001). Further details about the modeling procedure are reported 

in Michel et al. (2018). In the profiles of Figure 2 in the main manuscript, the denudation rates are plotted at the 

respective sample location (white squares in Fig. S1a). 

 Denudation rates from cosmogenic nuclide dating are based on denudation rates derived from 10Be 

dating of detrital river sand samples (Adams and Ehlers, 2018). Figure S1b displays the values of the reported 

denudation rates at the respective sample location. Note however, that these rates correspond to catchment-wide 

denudation rates, so strictly speaking they also provide information about the denudation rates in the respective 

catchment upstream of the sample location 

 

2 Details for GPS datasets 

The procedure of how our GPS data are treated is described in the main text and a data table containing 

the respective GPS stations locations along with the respective velocities can be found in supplementary 

Table 1. A map view of the GPS velocities is provided in Figure S2a. As we mention in the text, we forward 

model the elastic component of deformation using the model of Wang et al. (2003). The corresponding 

calculated values are shown in map view in Figure S2b. After subtraction of the calculated elastic component 

from the GPS signal, the obtained residual vertical velocities should correspond to the permanent deformation 

component of the GPS signal (Figure S2c). 

We also consider the vertical displacement caused by slow slip events (SSE), which have been reported 

in Bruhat and Segall (2016). The corresponding values are depicted in Figure S2d. 
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Figure S1: a) Ellipse-shaped map of denudation rates obtained from thermo-kinematic modeling of thermochronologic cooling ages 

(Michel et al., 2018). b) Catchment-wide denudation rates based on cosmogenic nuclide dating from Adams and Ehlers (2018). Data 

presented in all subpanels include the depth to the top of the subducted slab (white dashed lines; from McCrory et al., 2012) and the 

spatial occurrence of tremor events from 2014 – 2018 (grey circles or grey area), which is based on data from the Pacific Northwest 

Seismic Network (https://pnsn.org/tremor). 

 

3 Seismicity within the Olympic Mountains 

Figure S3 displays the seismicity along a transect across the center of the Olympic Peninsula. Plotted 

are all earthquakes from the USGS catalog with a magnitude >2.5 for the time period from 1980 until today, 

within a 80 km wide box. Contrary to that, the topography, top of oceanic crust and the location of the 

Hurricane Ridge Fault (HRF) are plotted along a line. The depth to the top of the subducted slab is taken from 

the Slab1.0 model (McCrory et al., 2012). The location of the HRF, which separates the accreted sediment from 

the overlying basaltic rocks of the Coast Range Terrane, is taken from a geologic map (Tabor and Cady, 1978) 

at the surface and from a seismic study (Calvert et al., 2011) at depth. 

The profile shows, that the accretionary wedge below the Olympic Mountains is basically devoid of 

seismicity. All recorded earthquakes occur either close to or in the hanging wall of the HRF, or can be found 

close to the top of the subducting slab. 
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Figure S2: Maps of the location of GPS stations considered in this study and the respective velocities. a) Rock uplift rates for GPS 

stations reported in this study. The rates are not corrected for the elastic component. b) Values for the elastic component calculated at 

the respective location of the GPS station using the model of Wang et al. (2003). c) Residual vertical GPS velocities, which are 

corrected for the elastic component. d) Rock uplift due to slow slip events (SSE) as reported by Bruhat and Segall (2016). The 

observed displacement corresponds to the average displacement from eight events recorded between 2000 – 2015. Data presented in 

all subpanels include the depth to the top of the subducted slab (white dashed lines; from McCrory et al., 2012) and the spatial 

occurrence of tremor events from 2014 – 2018 (grey circles or grey area), which is based on data from the Pacific Northwest Seismic 

Network (https://pnsn.org/tremor). 
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Figure S3: Cross section through the Olympic Peninsula in the middle of swath profile A/A’. The accretionary wedge is bounded by 

the top of the subducted slab (McCrory et al. 2012) and the Hurricane Ridge Fault (HRF), which is taken from Tabor ad Cady (1978) 

at the surface and from Calvert et al. (2011) at depth. Earthquakes are from the USGS earthquake catalog 

(https://earthquake.usgs.gov/earthquakes/search/) and color-coded by magnitude. 
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3. Scientific results

3.4 Effects of glacial erosion on topography

3.4.1 Declaration on contributions to joint work

The following section contains an early version of a manuscript entitled “Re-
duction of topography by glacial erosion in the Olympic Mountains (USA)”. It
aims at evaluating the role played by glacial erosion in modifying the topography
of the Olympic Mountains. At the time of submission of the thesis, this manuscript
represents an initial draft version and it has not been through several rounds of
commenting by the co-authors.

Two authors are responsible for developing this manuscript: Lorenz Michel
(LM) and Todd Ehlers (TE). TE and LM developed the idea of investigating the
role of glacial erosion on topography in more detail, by using a new modelling
approach, compared to the modelling of sections 3.1.2. LM compiled all available
thermochronometer ages and conducted the simulations using Pecube. Analysis
of the model outcomes was done by LM with suggestions by TE. LM created this
draft version of the manuscript along with the figures and TE provided minor
comments on it.

Table 3.4: Summary of the contribution to joint work for the manuscript “Reduction
of topography by glacial erosion in the Olympic Mountains (USA)”, indicating the aver-
age fraction of work by the respective author in percent. The manuscript is currently in
preparation.

Author Position
Scientific
ideas (in

%)

Data gen-
eration
(in %)

Analysis and
Interpretation

(in %)

Paper
writing
(in %)

LM [1] 80 100 90 90

TE [2] 20 0 10 10
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Reduction of topography by glacial erosion in the Olympic Mountains (USA) 

Lorenz Michel, Todd Ehlers 

 

Introduction  

The opposingly directed processes of tectonically-driven rock uplift and climate-controlled denudation create the 

topography of active mountain ranges. A balance between the two processes, implying topographic steady-state whereby 

topography is invariant through time, is an assumption that is inherent for many studies investigating the evolution of 

mountain ranges (e.g., Willett, 1999; Willett and Brandon, 2002). However, the assumption that the present-day 

topography (as for instance derived from digital elevation models) is equivalent to the topography over the entire, million-

year lifespan of an orogen is not ambiguous: The dynamic behavior of climate leads to temporal variations in denudation, 

which could potentially lead to changes in topography. Hence, reconstructing the temporal evolution of topography or 

putting temporal constraints on changes in topography contributes to a better understanding of the evolution of mountain 

belts and of the effects that tectonics or climate have on the development of orogens (Champagnac et al., 2012). 

In particular, the effect of Cenozoic climate change, which led to intense glaciation of many mid- to high-latitude 

orogens during the Plio-Pleistocene, could have affected the topography of mountain ranges (Molnar and England, 1990). 

Alpine glaciers as well as icesheets are powerful agents of erosion, efficiently remove mass, and thereby significantly 

overprint an existing, pre-glacial landscape. This includes the formation of U-shaped valleys, an increase in relief, 

development of bimodal landscapes with low relief plateaus and deeply incised fjords, and an overall limitation of 

mountain elevation (Montgomery, 2002; Shuster et al., 2005; Mitchell and Montgomery, 2006; Egholm et al., 2009, 2017; 

Valla et al., 2011; Steer et al., 2012; Sternai et al., 2012; Andersen et al., 2018). The erosive capability of glaciers depends 

on the conditions at the base of the glacier (e.g., Herman et al., 2011; Yanites and Ehlers, 2016), and is generally highest 

close to the equilibrium line altitude (ELA) of a glacier (Egholm et al., 2009; Sternai et al., 2011; Herman et al., 2011). In 

turn, the distribution of the ELA can be a consequence of the orographic precipitation pattern between windward and 

leeward sides of mountain ranges (Porter, 1964). Hence, particularly orogens with well-developed precipitation gradients 

are potentially affected by glacial erosion, but on the other hand, also offer the opportunity to constrain the effects of 

glaciation on topography. 

 An estimate of the volume of material removed by glacial erosion can be obtained from offshore sediment records 

in front of mountain ranges, which allows to approximate the pre-glacial paleo-topography (e.g., Steer et al., 2012). 

However, where the sediment record is sparse, not continuous or the sediment is derived from various source regions, the 

approach is hindered. On the other hand, the thermal structure of the Earth’s crust is sensitive to the long- and short-

wavelength topography (Stüwe et al., 1994; Mancktelow and Grasemann, 1997), affecting the cooling histories of rock 

samples during exhumation. Hence, constraints on the temporal evolution of topography can be obtained from rock 

samples dated with low-temperature thermochronometry methods (House et al., 1998; Braun, 2003), and attempts to use 

low-temperature thermochronometry together with thermo-kinematic modelling were successful to constrain the effect of 

glacial erosion on topography (Ehlers et al., 2006; Olen et al., 2012).  

3.4. Effects of glacial erosion on topography

3.4.2 Draft version of manuscript: “Reduction of topography by glacial
erosion in the Olympic Mountains (USA)”
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Figure 1: Topography of the Olympic Peninsula, along with (a) quaternary features and the location of the Hurricane Ridge Fault 

(HRF), which separates the Olympic Structural Complex (OSC) from the surrounding Coast Range Terrane (CRT). Major river 

valleys (Hoh, Queets, Quinault, Elwha) are indicated. The white circles are locations of low-temperature thermochronometry samples, 

for which AHe ages are available. The dashed, white box outlines the area considered for the modelling of this study, which is shown 

in a close-up view in Figure 2. (b) Precipitation pattern in the Olympic Mountains together with the distribution of the Pleistocene 

equilibrium line altitude (ELA, white lines). In both panels, the red triangle corresponds to the location of Mt. Olympus (2430 masl). 

Location of the HRF is based on Brandon et al. (1998). The quaternary features are from Porter (1964) and Tabor and Cady (1978). 

Precipitation pattern is taken from the prism dataset (http://prism.oregonstate.edu/) and the ELA is from Porter (1964). 

 

Here, we try to constrain the effects of glacial erosion on the topographic evolution of the Olympic Mountains 

(USA, Figure 1a). The Olympic Mountains were introduced as a textbook steady-state mountain range (Brandon et al., 

1998; Batt et al., 2001; Willett and Brandon, 2002), but the topography also displays clear evidence of Plio-Pleistocene 

glaciation (Montgomery, 2002; Adams and Ehlers, 2017). A strong precipitation gradient between the west and east side 

of the orogen can be observed, which also results in a strong west-east variation of the location of the Pleistocene ELA 

(Figure 1b). The role of glacial erosion on the orogen-wide denudation and exhumation rates is viewed contentious, 

suggesting either a pronounced increase in denudation rates with the onset of glaciation (Herman et al., 2013; Michel et 

al., 2018a, 2018b) or a negligible effect (Schildgen et al., 2018). Michel et al. (2018a) suggested an increase in denudation 

rates by 50–150 % occurring at 2–3 Ma and indicated that the western flank of the Olympic Mountains likely experienced 

a reduction in topography. Based on topographic analysis, a potential reduction in topography related to glacial erosion 

was also suggested for the area around Mt. Olympus, the highest peak of the range (Montgomery and Greenberg, 2000). 

However, a detailed analysis of the effects of glacial erosion on the topography and a quantification of the variation in 

topography has not been obtained so far. 

 We capitalize on the large, low-temperature thermochronometry dataset that is available for the Olympic 

Mountains (Batt et al., 2001; Michel et al., 2018a,2018b). We use these thermochronometric ages in order to deploy the 

thermo-kinematic model Pecube, building upon the exhumation histories suggested by Michel et al. (2018a). Based on the 
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misfit between observed and modelled thermochronometric cooling ages, we try to assess, in which part of the Olympic 

Mountains the suggested exhumation histories can successfully predict apatite (U-Th)/He (AHe) ages. We observe that 

even an increase in exhumation rates by 70–200% at 2–3 Ma is not enough to explain the young AHe ages on the western 

side of the mountain range. However, the same relative amount of increase results in modeled AHe ages that are too 

young compared to observed ages in the central part of the orogen. This suggests that the increase in exhumation rates is 

spatially extremely variable and strongest on the western side, which also corresponds to the area of lowest, Plio-

Pleistocene ELA. We interpret that the increase in exhumation rate must result in a reduction in topography, because it is 

not accompanied by a commensurate increase in rock uplift, as is evidenced by published cosmogenic nuclide data. Based 

on the absolute increase in exhumation rate, a reduction in topography by up to 1000 m could have occurred locally 

during the past 2 Myr. 

 

Regional Background 

The Olympic Mountains are part of the Cascadia Subduction zone and are located at the west coast of the North 

American continent (Figure 1a). The orogen corresponds to the aerially exposed accretionary wedge of the subduction 

zone (Tabor and Cady, 1978; Brandon et al., 1998), consisting of Oligocene to Miocene-aged turbidite deposits in the 

center of the range, which are enclosed by basaltic and minor sedimentary rocks of the Coast Range Terrane (Figure 1a). 

Exhumation of the mountain range commenced at around 18 Ma, and since 14 Ma the orogen is suggested to be in steady-

state (Brandon et al., 1998; Batt et al., 2001). In general, the exhumation and topography of the range is controlled by the 

subducting Juan de Fuca plate, which due to its bent shape leads to a localization of deformation and exhumation at the 

location of the Olympic Mountains (Bendick and Ehlers, 2014; Adams and Ehlers, 2017; Michel et al., 2018a; Adams and 

Ehlers, 2018). Hence, the general pattern of exhumation is ellipse-shaped, with highest exhumation rates in the center of 

the mountain range (Figure 3b), but exhumation is also temporally variable, either due to tectonic (Michel et al., 2018b) 

or climatic variations (Herman et al., 2013; Michel et al., 2018a). A large thermochronometry datasets exists for the 

Olympic Mountains, encompassing apatite and zircon (U-Th)/He (AHe and ZHe, respectively) and apatite and zircon 

fission-track (AFT and ZFT) ages (Brandon et al., 1998; Batt et al., 2001; Michel et al., 2018a, 2018b). In general, ages 

are youngest in the center of the mountain range and increase in age towards the coast. Here unreset ages can be observed, 

implying that the sandstones of this area have not been exposed to temperatures high enough to overprint the 

thermochronometric signal from the source region of the sandstones. 

Because the Olympic Peninsula is surrounded by sea in the west, north and east, elevation increases within a short 

distance (~30–40 km) from the low-elevation, low-relief coastal areas towards the central, high topography part of the 

mountain range. Here, the maximum elevations are between 2000–2400 masl, cresting in Mt. Olympus (2430 masl). The 

Plio-Pleistocene glaciation shaped the present-day topography. Alpine glaciers incised into the landscape (Montgomery, 

2002; Adams and Ehlers, 2017), forming the deeply incised valleys of the major rivers within the Olympic Mountains 

(Hoh, Quinault, Queets, Elwha, Dosewallips), which originate in the central high topography part and trend radially 

towards the coast (Figure 1a, 2). Alpine glaciers originating in the center of the range formed large piedmont-glaciers, 

almost reaching the Pacific Ocean on the western side of the range (Thackray, 2001). The Juan de Fuca and the Puget  

3.4. Effects of glacial erosion on topography

131



 

Figure 2: Close up view of the Olympic Mountains. Colored symbols correspond to AHe ages, taken from Batt et al. (2001) and 

Michel et al. (2018a, 2018b). The area inside the white box is the model domain, considered for the topographic inversion in this 

study. The names of the major river valleys are given as well, and the white triangles denote the location of major mountains referred 

to in the text (Mt. Olympus and Mt. Anderson). 

 

Lobe of the Cordilleran Ice Sheet surrounded the mountain range on the northern and eastern side (Booth et al., 2003), 

respectively, covering large parts of today’s low-elevation, low-relief landscape (Figure 1b). 

Due to the proximity to the Pacific Ocean and the barrier effect of the mountain range, the Olympic Mountains 

receive high amounts of precipitation and display a strong orographic precipitation pattern (Figure 1b). The western parts 

generally receive more than 3000 mm/yr of precipitation, culminating in 5000–6000 mm/yr close to Mt. Olympus. On the 

contrary, the area to the east of the Elwha valley is much drier and receives less than 2000 mm/yr. This strong 

precipitation gradient also affected the distribution of the Pleistocene equilibrium line altitude (ELA). To the east of the 

Elwha valley, the ELA is located at locations above 1600 m, to the west of the Elwha valley the ELA is located between 

1000–1400 m (Porter, 1964). 
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Methods 

In the case a mountain range is in topographic steady-state, so that topography is temporally invariant and no 

surface uplift occurs, rock uplift equals exhumation (England and Molnar, 1990). In the absence of extensional faults, 

removal of rock by denudation at the Earth’s surface is the prime mechanism controlling exhumation. If a change in 

exhumation occurs, i.e., an increase in denudation due to a variation in climate, which is not counterbalanced by an equal 

amount of change in rock uplift, a variation in the topography must occur. Therefore, knowing the exhumation history of 

an area allows to obtain estimates of possible variations in topography. 

 Quantitative constraints on exhumation can be obtained by dating rock samples with low-temperature 

thermochronometry like AHe or ZHe, which allows to reconstruct the cooling histories of rock samples during their path 

from depth to the surface of the Earth. The technique is based on the principle, that the obtained radiometric age 

corresponds to the time, when the rock sample cooled below a certain temperature, the closure temperature of the 

respective thermochronometric system. For instance, the closure temperature of AHe is about 60–70 °C (Farley, 2002), 

which allows to constrain cooling through the upper 2–3 km of the Earth’s crust, assuming a geothermal gradient of 20–

30 °C/km. This near surface temperature field is particularly sensitive to the effects of long- and short-wavelength 

topography (Figure 3a), so that low-temperature isotherms often reflect the shape of the topography (Stüwe et al., 1994). 

However, the assumption of a temporally constant geothermal gradient is a limitation, because the temporal 

evolution of the geothermal gradient depends on contributions from heat advection, heat conduction, heat production and 

the effects of topography, and can therefore be transient over time. Hence, the usage of thermo-kinematic models is 

required in order to obtain quantitative constraints on exhumation or variations in topography from thermochronometric 

data. Various studies have documented the potential of using AHe ages together with thermo-kinematic models in order 

to reconstruct the effects of fluvial or glacial erosion on topography (House et al., 1998; Braun, 2003; Ehlers et al., 2006; 

Olen et al., 2012). Pecube is a finite-element, thermo-kinematic model (Braun, 2003), which allows to predict 

thermochronometric cooling ages by prescribing an exhumation history, topography and physical parameters like heat 

conduction or heat production. Depending on the misfit between modelled and observed thermochronometric cooling 

ages, the viability of a certain exhumation history can be assessed.  

 In this work, we use Pecube for our modeling purposes and we base our modelling approach on the work of 

Michel et al. (2018a). They suggested that an ellipse-shaped exhumation pattern with exhumation rates of 0.9 km/Myr in 

the center of the ellipse and exhumation rates of 0.25 km/Myr outside the ellipse (Figure 3b) is required to explain the 

observed thermochronometric age pattern of the higher closure temperature systems (AFT, ZHe, ZFT). Furthermore, they 

suggested that an increase in exhumation rates by 50–150% at 2–3 Ma is required to explain the young AHe ages (i.e., 

1.5–2.5 Ma, Figure 2). They also noted that the increase in exhumation is likely higher on the western side of the 

mountain range (i.e., in the Hoh valley west of Mt. Olympus, Figure 2). For this work, we build upon these findings, but 

also include the additional AHe ages published in Michel et al. (2018b), significantly increasing the resolution of the 

model in the areas surrounding Mt. Olympus and Mt. Anderson (Figure 2). Michel et al. (2018a) assessed the viability of 

their models by using a cumulative misfit criterion, where the misfit of the single samples is totaled. We apply a redefined  
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Figure 3: (a) Three-dimensional view showing the thermal structure in the center of the model domain. Isotherms (lines of equal 

temperature) are bent because of heat advection by exhumation (long wavelength bend) and the low temperature isotherms are 

deflected due to the effects of topography. The 60°C isotherm corresponds to the approximate closure temperature of AHe. (b) 

Ellipse-shaped exhumation rate pattern suggested by Michel et al. (2018a) and used in our modeling. Rates are as high as 0.9 km/Myr 

in the center of the ellipse and decrease to values of 0.25 km/Myr at the edges of the model domain. Both panels are vertically 

exaggerated by a value of x1.4. 
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misfit criterion in order to assess the goodness of fit of our simulations, where the misfit for each sample is considered 

separately. Here, the misfit (Δ) is defined as 

Δ =  
𝑎𝑔𝑒𝑚𝑜𝑑−𝑎𝑔𝑒𝑜𝑏𝑠

𝜎𝑜𝑏𝑠
   (1) 

and depends on the modelled age (agemod), the observed age (ageobs) and the reported uncertainty of the observed age 

(σobs). We explicitly do not square our misfit as e.g., is commonly done for a χ2-misfit criterion and has been done in 

Michel et al. (2018a), hence the observed misfit can be positive or negative. An explanation of the meaning of the positive 

or negative nature and the actual value of the misfit is given in the discussion section. 

Our detailed model setup is as follows. The model domain encompasses an area approximately 90x60 km wide in 

the central, high topography part of the Olympic Mountains, including most of the AHe ages available in the orogen 

(Figure 2). The physical parameters used for our simulations are given in Table 2. Furthermore, we use the present-day 

topography as input in our simulations and keep the topography constant during the entire duration of the model. 

Following Brandon et al. (1998), exhumation of the Olympic Mountains starts at 18 Ma and reaches steady exhumation at 

14 Ma. We deploy the ellipse-shaped exhumation rate pattern (Figure 3b) suggested by Michel et al. (2018a) and either 

consider the case of steady exhumation rates during the entire 14 Myr period or the increase scenarios suggested by 

Michel et al. (2018a), where exhumation rates increase at 2 Ma, 3 Ma or 5 Ma by the respective amount. The resulting 

eight increase scenarios are summarized in Table 1. Based on these simulations, we calculate the misfit between observed 

and modeled ages according to Equation 1, which is displayed at the location of each sample for the respective model 

scenario (Figure 4). However, there are some samples, which have unreset AHe ages (white circles in Figure 2). None of 

our simulations is able to predict unreset AHe ages, hence we exclude samples with unreset AHe ages from our further 

analysis (the respective locations are not shown on Figure 4). In total, we use the AHe ages from 52 samples during our 

further analysis and Table 3 summarizes the data of all these samples.  

 

Results 

 The calculated misfit between modeled and observed AHe ages at the location of the respective sample site is 

displayed in Figure 4. In the case of steady exhumation and no temporal variation in exhumation rate over 14 Myr the 

observed misfit varies between values of -11.1 and 21.6, but most samples have misfit values between 0 and 5 (Table 3). 

Looking at the spatial distribution of misfit reveals that the misfit for the samples from the central part of the orogen is 

low (i.e., many white or light reddish/blueish symbols in Figure 4i). This particularly pertains to the samples from higher 

elevations at Mt. Olympus or Mt. Anderson. However, samples from the western part of the orogen or samples taken at 

lower elevation close to the bottom of river valleys (e.g. Hoh, Elwha or Sol Duc valleys) display a misfit larger than 3 

(i.e., deep red symbols in Figure 4i). 

 Considering an increase in exhumation rate at 2 Ma, 3 Ma or 5 Ma by 50–200% changes the observed misfit 

compared to the constant rate simulation (Table 3) and results in a spatial dichotomy of the observed misfit pattern. In the 

center of the orogen encompassing the area of the Elwha valley, Mt. Olympus and Mt. Anderson, all eight increase 

scenarios (Figure 4a-h) yield misfit values smaller than -3 (i.e., deep blue symbols). However, an increase by 50% or 70%  
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at 3 Ma or 5 Ma produces an acceptable misfit between -3 and 1 for some of the samples close to Mt. Olympus. On the 

contrary, most samples from the western part of the mountain range (Hoh and Sol Duc valleys) still display highly 

positive misfit values larger than 3. 

 

Discussion 

The aim of this study is to investigate, how glacial erosion has affected the topography of the Olympic 

Mountains. Therefore, it is important to know the exhumation history of this orogen and to constrain possible effects of 

glacial erosion on the exhumation. With our modeling, we tried to investigate, how a possible increase of the exhumation 

rate due to the onset of Plio-Pleistocene glaciation affected thermochronometric cooling ages. The calculated misfit 

allows to judge, whether a particular exhumation history suffices to explain the observed AHe ages.  

In Figure 5, all the misfit values for the variable exhumation scenarios are summarized along a west-east transect 

crossing the Olympic Peninsula. A positive misfit implies that the modeled age is too old and hence that the assumed 

exhumation was too slow, whereas a negative misfit implies that the modeled age is too young such that the assumed 

exhumation was too fast (Figure 5b). The actual value yields information about how well a particular model can 

reproduce the observed AHe age. In our case we consider a misfit between 2 and -2 as a good fit (Figure 5b), meaning 

that the respective simulation can reproduce the observed age within two times the reported uncertainty. Hence, a 

reduction in misfit is obtained during a simulation with an increase in exhumation rate (compared to the simulation with 

temporally constant exhumation rates,), if the respective misfit approaches values of 2 to -2. A deterioration in misfit 

occurs, if the misfit approaches values significantly outside the bounds of 2 to -2. Bearing that in mind, the observed 

misfit (e.g. Figure 4 and 5b) can be interpreted as follows. 

A constant exhumation history over 14 Myr with no increase in exhumation rates results in an acceptable misfit 

for many of the observed samples (i.e., their misfit is between -2 and 2) in the central, high topography part of the orogen 

(between longitudes 123.8°W and 123.2°W in Figure 5). The misfit for most of these samples tends to more negative 

values (therefore the misfit is increased) if the exhumation rates are increased, because the modeled AHe ages are then 

too young compared to the observed ages. With the exception for some samples close to Mt. Olymus, this effect is also 

irrespective of the considered timing (2 Ma, 3 Ma or 5 Ma) and amount of increase (50–200 %). These observations 

suggest that at least in the central part of the orogen the relative amount of increase in exhumation rates as suggested by 

Michel et al. (2018a) is too high, and is less in that part of the mountain range. We hypothesize that an increase in 

exhumation rate by 10–25% at 2–3 Ma is likely a more realistic value. On the contrary, samples from the western, low 

elevation part of the orogen (i.e., between longitudes of 124.2°W and 123.8°W) can not successfully be modeled using a 

temporally constant exhumation rate and the modeled ages are too old. Here, increasing the exhumation rate decreases the 

observed misfit, but for many of the samples the misfit is still not in the accepted range of 2 to -2, such that the modeled 

ages are still too old. These observations suggest that an increase in exhumation rate by 100–200 % at 2 or 3 Ma is not 

enough to explain the young AHe ages in the western part of the orogen. 

The dichotomy between central and western part of the orogen indicates, that the increase in exhumation rates is 

spatially extremely variable within the Olympic Mountains, because the central part likely experienced an increase by less 
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Figure 5: West to east transects across the Olympic Peninsula, showing (a) maximum and mean elevation as well as apatite and 

zircon (U-Th)/He ages (AHe and ZHe, respectively). The area west of 123.8°W has anomalously young AHe ages, but unreset ZHe 

ages, indicating a recent increase in exhumation. Thermochronometer ages are from Michel et al, (2018a, 2018b) and Batt et al. 

(2001). Note the break in the y-axis for the thermochronometer ages and that several ZHe ages are unreset. (b) Mean and maximum 

elevation and the location of the equilibrium line altitude (ELA, blue line). The symbols give information about the misfit between 

modelled and observed AHe ages from our simulations. The black squares are from the simulation with temporally constant 

exhumation rates and the triangles correspond to our considered increase scenarios and are color coded by the increase times of 2 Ma, 

3 Ma or 5 Ma. The black, dashed line indicates the range of misfit (2 to -2), which we consider as a good fit between modelled and 

observed ages. Based on the observed misfit, a western and central part of the mountain range can be discerned (separated at 

~123.8°W). In the western part, using temporally constant exhumation rates results in modelled AHe ages that are too old, and the 

observed misfit is decreased by an increase in exhumation rates, suggesting that here a decrease in topography occurred. In the 

western part, most AHe ages can successfully be modelled with temporally constant exhumation rates, and an increase in exhumation 

increases the observed misfit, suggesting that here the decrease in topography is small. Note that the range of the displayed misfit is 

limited to values between 10 and -10, and results from simulations outside these bounds are not included (samples with constant rate 

misfit >10 are indicated). The location of the ELA is based on Porter (1964). 
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than 25%, whereas an increase in excess of 200% in the western part could be possible. However, it is important to 

consider, that the exhumation rate pattern prescribed in our simulations is already spatially variable, even for the case of a 

temporally constant exhumation rate (Figure 3b) and that the considered increase in percent affects the entire exhumation 

pattern. In the center of the orogen, exhumation rates have values of 0.8–0.9 km/Myr, whereas the western part displays 

values of 0.25–0.3 km/Myr (Figure 3b), hence an increase in exhumation rates by 200% would correspond to values of 

2.4–2.7 km/Myr and 0.75–0.9 km/Myr, respectively. This clearly shows, that by just considering the relative increase in 

exhumation rates some bias is introduced in the direct comparison between the two areas. On the other hand, the 

suggested, relative increase by 25% and 200% in the two considered areas corresponds to exhumation rates of ~1.0 

km/Myr and 0.75 km/Myr, respectively. Hence, the absolute increase in exhumation rate is 0.2 km/Myr and 0.5 km/Myr 

in the central and western parts of the orogen, respectively. So, although the increase in exhumation rate is still spatially 

variable, the absolute difference between the two areas is not as strong as might be pretended by the relative increase. 

Our proposed increase in exhumation rate is also strongly dependent on the accuracy of the underlying 

exhumation rate pattern used in the modeling (Figure 3b). If the area of high exhumation rates would extend from the 

central part of the orogen further to the west, younger AHe ages would be predicted by the model without the necessity of 

a temporal increase in exhumation rate. However, the spatial distribution of higher closure temperature 

thermochronometers like AFT, ZHe and ZFT clearly restricts the area of fast (pre-increase) exhumation rates to the 

central part of the orogen. For instance, in Figure 5a reset and young ZHe ages can only be found between longitudes 

123.8°W and 123.4°W, whereas the ZHe ages west of ~123.8°W are all unreset. However, just west of 123.8°W is an 

area of particularly young AHe ages (<2.5 Ma), requiring faster exhumation rates than used in the constant rate simulation 

(Figure 5b). If these young AHe ages would be the result of a different exhumation pattern, then also the ZHe ages would 

be reset and younger than observed. Therefore, the increase in exhumation must be a young feature, which was not 

capable of exhuming young ages for the high temperature thermochronometer systems. 

As outlined in the beginning of the methods section, an increase in exhumation due to an increase in denudation 

corresponds to a reduction in topography, if no commensurate increase in rock uplift balances the increase in denudation 

(England and Molnar, 1990). Michel et al. (2018) interpreted their pre-increase, ellipse-shaped exhumation rate pattern 

(Figure 3b) to correspond to rock uplift rates, which are controlled by the bend in the subducted slab below the Olympic 

Mountains. These exhumation rates are based on thermochronometry, providing a long-term perspective on rock uplift 

rates. Adams and Ehlers (2018) published denudation rates based on cosmogenic nuclide dating, temporally integrating 

over the Holocene. They interpret their rates as being representative of the rock uplift rates in the Olympic Mountains and 

report values of 0.1 – 0.2 km/Myr on the western side and ~1.0 km/Myr in the central part, very similar to the pattern and 

rates suggested by Michel et al. (2018). Hence, the pattern of rock uplift is temporally stable and controlled by the 

tectonic setting (Bendick and Ehlers, 2014; Adams and Ehlers, 2017; Michel et al., 2018a; Adams and Ehlers, 2018).  

Therefore, any increase in exhumation rate as evidenced by our modeling and as required to explain the young 

AHe ages must be related to a reduction in topography. Glacial erosion due to the onset of Plio-Pleistocene glaciation is a 

prime candidate for increasing exhumation and reducing topography, given that the Olympic Mountains show clear 

evidence of glaciation (Figure 1a; Adams and Ehlers, 2017; Montgomery 2002; Montgomery and Greenberg, 2000). 

Glaciation is thought to have commenced at around 2 Ma in the Olympic Mountains (Easterbrook, 1986), which is 
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temporally overlapping with our modelled increase in exhumation at 2 Ma or 3 Ma. The spatial variability of the location 

of the Pleistocene equilibrium line altitude (ELA) could explain the spatial variability in the magnitude of increase in 

exhumation between the central and western parts of the orogen, because a glacier has its strongest erosive potential at the 

location of the ELA (Egholm et al., 2009; Sternai et al., 2011; Herman et al., 2011). Due to the precipitation gradient, the 

Pleistocene ELA was 800 m lower on the western side of the orogen compared to the eastern side (Figure 1b), which 

implies that glaciers extended to much lower elevations and more parts of the topography were subjected to glacial 

erosion. Indeed, all our modelled samples that require a particularly strong increase in exhumation are from areas, where 

the ELA was lower than 1200 m (Figure 4). We observe that the ELA most closely approximates the mean elevation of 

the orogen in the western part (Figure 5b), which is a consequence of glacial over-deepening of the landscape 

(Brocklehurst and Whipple, 2004; Adams and Ehlers, 2017). All these observations indicate that on the western side, 

topography was more affected by glacial erosion compared to the central and eastern part of the range and that on the 

western side the reduction in topography was strongest.  

Putting a quantitative constraint on the amount of reduction in topography is difficult with our modelling 

approach, because due to the model setup the topography is kept constant during our simulations and all observed 

increase is exhumation is interpreted to be the result of changes in topography. For the western part of the range, our 

hypothesized increase in exhumation rate by 0.5 km/Myr (on top of the background rock uplift rate of 0.25 km/Myr) 

would correspond to a reduction in topography by 1 km for a duration of 2 Myr. However, such calculations should be 

viewed with caution, because any transient effect that changes in topography have on the cooling history of the samples 

are not considered in our simulations and hence the actual reduction in topography could be less. Furthermore, the mean 

elevation of the orogen was likely reduced by less than 1 km, because all the samples requiring the particularly strong 

increase in exhumation are from river valleys (e.g., Figure 4i). On the other hand, this indicates that the deeply incised 

valleys like the Hoh, Sol Duc, Queets or Quinault on the western side of the Olympic Mountains are a young feature, and 

the pre-glacial valley bottoms were probably at higher elevations. Topographic analysis also corroborates that the present- 

day river profiles of the Olympic Mountains are out of steady state due to the glacial overprint (Adams and Ehlers, 2017). 

Studies investigating the incision rate of alpine glaciers into landscapes also highlighted that valley incision is a rapid 

process, and can locally exceed rates of 1 km/Myr (Shuster et al., 2005; Haeuselmann et al., 2007; Valla et al., 2011). 

 

Conclusions 

Using our thermo-kinematic modelling approach and a large dataset of AHe ages reveals several important 

aspects of glacial erosion in the Olympic Mountains. An increase in denudation due to the onset of Plio-Pleistocene 

glaciation requires a spatially variable increase in exhumation, which is higher on the western side of the orogen 

compared to the center of the range. However, the magnitude in increase is larger in the west and smaller in the center 

than hitherto thought. Because no commensurate increase in rock uplift rates balances the additional amount of 

denudation, the increase in exhumation corresponds to a reduction in topography. Based on the required exhumation, the 

topography could have been locally reduced by up to 1 km during the past 2 Myr and in particular the major river valleys 

on the western side of the orogen are a young feature. Because we did not include the transient effects of a reduction in 
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topography in our simulation, the next step would be to use an iterative inversion for paleotopography like the approach 

of Olen et al. (2012), which is capable of considering the transient effects of a reduction in topography. 
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Tables 

 

Table 1: Possible scenarios for an increase in exhumation rate at the respective time and by the respective amount. The exhumation rates prior to the 

increase are 0.25/0.9 km/Myr. 

Increase time 
 

2 Ma  3 Ma  5 Ma 

Increase (relative) 
 

100 % 150 % 200%  50 % 70 % 100 %  50 % 70 % 

Increase (absolute, 

km/Myr) 

 
0.25/0.9 0.38/1.45 0.5/1.8  0.13/0.45 0.19/0.63 0.25/0.9  0.13/0.45 0.19/0.63 

 

 

Table 2: List of parameters used for the Pecube modeling, based on values listed in Michel et al. (2018b). 

Parameter Value Source 

Thermal conductivity 1.83 W m-1K-1 
average value for six drill cores in sediment material in the shelf 
offshore from Vancouver Island (Lewis et al., 1988) 

Specific heat capacity 1200 J kg-1K-1  

Crustal density 2700 kg m-3  

Mantle density 3200 kg m-3  

Temperature at the base of the model 400 °C 

extrapolation to greater depths from temperature estimates based on 

heat flow measurements on the shelf (Hyndman et al., 1990; Hyndman 
and Wang, 1993; Booth-Rea et al., 2008) 

Temperature at sea level 8 °C  

Atmospheric lapse rate 6.69 °C km-1  

Crustal heat production 0.77 µW m-3 
average value from drill cores on the shelf offshore Vancouver Island 
(Lewis and Bentkowski, 1988) 

Model depth 20 km 
minimum thickness of the accretionary wedge below the Olympic 
Mountains (Davis and Hyndman, 1989) 

Model resolution 0.5 km  
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Longitude 

(°W)

Latitude 

(°N)

AHe age 

(Ma)

Age 1 SD 

(Ma)

2 Ma 

100%

2 Ma 

150 %

2 Ma 

200%

3 Ma 

50%

3 Ma 

70%

3 Ma 

100%

5 Ma 

50 %

5 Ma 

70%
constant

2 Ma 

100%

2 Ma 

150 %

2 Ma 

200%

3 Ma 

50%

3 Ma 

70%

3 Ma 

100%

5 Ma 

50 %

5 Ma 

70%
constant

123.19509 47.93235 4.6 1.4 5.1 4.2 3.0 5.6 5.1 4.2 4.8 3.9 7.1 0.4 -0.3 -1.1 0.7 0.3 -0.3 0.1 -0.5 1.8

123.11056 47.96521 6.2 1.6 6.9 5.9 4.9 7.4 6.8 5.9 6.4 5.6 8.8 0.4 -0.2 -0.8 0.7 0.4 -0.2 0.2 -0.4 1.7

123.61359 47.98306 3.3 0.2 2.4 1.4 0.8 3.0 2.4 1.7 2.5 2.0 4.4 -4.4 -9.5 -12.7 -1.7 -4.4 -7.8 -3.8 -6.3 5.3

123.57273 47.96015 1.5 0.3 1.2 0.7 0.4 1.8 1.5 1.0 1.7 1.3 3.1 -0.9 -2.7 -3.7 1.1 -0.1 -1.6 0.6 -0.6 5.3

123.44630 47.81028 2.8 0.7 0.6 0.3 0.1 1.1 0.8 0.5 1.0 0.7 2.1 -3.1 -3.5 -3.8 -2.4 -2.8 -3.2 -2.6 -2.9 -1.0

123.51377 47.93893 3.7 0.9 0.9 0.5 0.3 1.5 1.2 0.8 1.4 1.1 2.6 -3.1 -3.5 -3.8 -2.4 -2.8 -3.2 -2.6 -2.9 -1.2

123.83886 48.05065 8.6 1.5 7.0 6.1 5.1 7.6 7.0 6.1 6.7 5.8 9.0 -1.0 -1.7 -2.3 -0.7 -1.1 -1.7 -1.3 -1.9 0.3

124.08703 48.04830 2.0 0.4 8.1 7.2 6.2 8.6 8.1 7.2 7.7 6.8 10.1 15.3 12.9 10.5 16.6 15.2 13.0 14.3 12.0 20.4

124.05184 47.82504 2.8 1.0 7.8 6.8 5.8 8.3 7.7 6.8 7.4 6.4 9.8 5.0 4.0 3.0 5.5 4.9 4.0 4.6 3.6 7.0

123.99660 47.80682 3.0 0.3 6.5 5.5 4.5 7.0 6.4 5.6 6.1 5.2 8.5 11.6 8.4 5.2 13.3 11.4 8.5 10.4 7.4 18.2

124.14258 47.78269 6.2 1.1 8.3 7.3 6.3 8.8 8.2 7.3 7.8 6.9 10.3 1.9 1.0 0.1 2.3 1.8 1.0 1.5 0.7 3.7

124.26813 47.73081 10.4 1.3 8.0 7.1 6.1 8.5 8.0 7.1 7.6 6.7 10.0 -1.8 -2.6 -3.3 -1.4 -1.9 -2.6 -2.1 -2.8 -0.3

123.88135 47.87020 1.8 0.6 3.9 2.9 1.7 4.4 3.8 3.0 3.6 3.0 5.8 3.5 1.8 -0.2 4.3 3.4 1.9 3.1 2.0 6.7

123.69426 47.87572 2.5 0.4 0.7 0.4 0.2 1.2 0.9 0.6 1.1 0.8 2.3 -4.4 -5.4 -5.8 -3.1 -3.9 -4.7 -3.4 -4.1 -0.5

123.75552 47.88532 2.1 0.2 1.1 0.6 0.3 1.6 1.3 0.9 1.5 1.2 2.8 -5.2 -7.7 -8.9 -2.3 -4.1 -6.0 -3.0 -4.7 3.7

124.03370 47.48913 7.5 0.8 8.5 7.5 6.5 9.0 8.4 7.5 8.1 7.1 10.5 1.2 0.0 -1.2 1.9 1.1 0.0 0.7 -0.5 3.7

123.65869 47.64154 2.1 0.6 0.7 0.4 0.2 1.2 0.9 0.6 1.1 0.8 2.2 -2.3 -2.9 -3.2 -1.5 -2.0 -2.5 -1.6 -2.1 0.2

123.37533 47.56004 2.0 0.6 2.2 1.2 0.6 2.7 2.2 1.6 2.4 1.9 4.1 0.3 -1.4 -2.3 1.2 0.3 -0.7 0.6 -0.2 3.6

123.32442 47.51916 15.0 2.9 5.4 4.4 3.4 5.9 5.3 4.5 5.1 4.2 7.4 -3.3 -3.6 -4.0 -3.1 -3.3 -3.6 -3.4 -3.7 -2.6

123.34295 48.02189 14.8 1.2 5.9 4.9 3.9 6.4 5.8 4.9 5.5 4.6 7.8 -7.4 -8.3 -9.1 -7.0 -7.5 -8.2 -7.8 -8.5 -5.8

123.34295 48.02189 14.8 2.1 5.9 4.9 3.9 6.4 5.8 4.9 5.5 4.6 7.8 -4.2 -4.7 -5.2 -4.0 -4.3 -4.7 -4.4 -4.8 -3.3

123.69600 47.81569 2.0 0.7 1.2 0.6 0.3 1.9 1.5 1.0 1.7 1.3 3.2 -1.2 -2.0 -2.4 -0.2 -0.8 -1.5 -0.4 -1.0 1.8

123.68324 47.82648 3.3 0.6 1.1 0.5 0.3 1.7 1.3 0.9 1.5 1.2 3.0 -3.7 -4.6 -5.0 -2.7 -3.3 -4.0 -2.9 -3.5 -0.5

123.71102 47.80157 3.7 0.2 1.6 0.8 0.5 2.2 1.8 1.2 2.0 1.6 3.7 -10.6 -14.4 -16.2 -7.3 -9.7 -12.4 -8.5 -10.7 -0.1

123.70244 47.80378 2.9 1.6 1.4 0.7 0.4 2.1 1.6 1.1 1.9 1.5 3.5 -0.9 -1.3 -1.6 -0.5 -0.8 -1.1 -0.6 -0.9 0.4

123.69330 47.83982 1.9 0.8 0.9 0.5 0.3 1.5 1.2 0.8 1.4 1.1 2.7 -1.2 -1.8 -2.1 -0.5 -0.9 -1.4 -0.6 -1.0 1.1

123.69195 47.85459 2.5 1.0 0.8 0.4 0.2 1.4 1.1 0.7 1.3 1.0 2.6 -1.7 -2.1 -2.3 -1.1 -1.4 -1.8 -1.2 -1.5 0.1

123.89397 48.00848 3.3 0.9 7.7 6.7 5.7 8.2 7.6 6.7 7.2 6.3 9.7 4.8 3.8 2.7 5.4 4.8 3.8 4.4 3.4 7.1

123.31173 47.98095 4.4 2.5 4.9 3.9 2.8 5.4 4.8 4.0 4.6 3.7 6.9 0.2 -0.2 -0.6 0.4 0.2 -0.2 0.1 -0.3 1.0

123.30092 47.97234 8.6 1.2 4.8 3.8 2.6 5.3 4.7 3.8 4.4 3.6 6.7 -3.2 -4.0 -5.0 -2.8 -3.3 -4.0 -3.5 -4.2 -1.6

Model data: ages (Ma) Model data: Misfit (modelled age-observed age)/uncertaintySample information

Table 3: Information on samples used in our simulations, including the location and the respective AHe ages. The modelled ages and the calculated misfit for the various simulations are reported as well. Models were 

performed using a temporally constant exhumation rate, or an increase in exhumation rate at the respective time and amount. AHe sample ages are from Michel et al. (2018a, 2018b) and Batt et al. (2001).

3.4.
Effects

ofglacialerosion
on

topography
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Longitude 

(°W)

Latitude 

(°N)

AHe age 

(Ma)

Age 1 SD 

(Ma)

2 Ma 

100%

2 Ma 

150 %

2 Ma 

200%

3 Ma 

50%

3 Ma 

70%

3 Ma 

100%

5 Ma 

50 %

5 Ma 

70%
constant

2 Ma 

100%

2 Ma 

150 %

2 Ma 

200%

3 Ma 

50%

3 Ma 

70%

3 Ma 

100%

5 Ma 

50 %

5 Ma 

70%
constant

123.28635 47.97283 10.8 1.9 5.8 4.8 3.7 6.3 5.7 4.8 5.4 4.4 7.8 -2.6 -3.2 -3.7 -2.4 -2.7 -3.2 -2.9 -3.4 -1.6

123.26785 47.95785 30.1 2.0 5.9 4.9 3.9 6.4 5.8 4.9 5.5 4.5 7.9 -12.1 -12.6 -13.1 -11.8 -12.1 -12.6 -12.3 -12.8 -11.1

123.26078 47.95696 3.6 1.3 6.6 5.6 4.6 7.1 6.5 5.6 6.2 5.2 8.6 2.3 1.6 0.8 2.7 2.2 1.6 2.0 1.2 3.8

123.24616 47.91642 4.7 2.0 2.5 1.4 0.7 3.0 2.5 1.7 2.6 2.1 4.5 -1.1 -1.6 -2.0 -0.8 -1.1 -1.5 -1.1 -1.3 -0.1

123.32927 47.71656 3.0 0.5 1.3 0.7 0.4 2.0 1.6 1.1 1.8 1.4 3.4 -3.3 -4.6 -5.2 -2.0 -2.8 -3.8 -2.4 -3.2 0.8

123.32815 47.71476 3.3 0.4 1.3 0.7 0.4 1.9 1.5 1.0 1.8 1.4 3.3 -5.1 -6.6 -7.3 -3.4 -4.5 -5.7 -3.9 -4.9 0.0

123.32764 47.69398 3.9 0.4 1.0 0.5 0.3 1.6 1.2 0.8 1.4 1.1 2.8 -7.3 -8.5 -9.1 -5.8 -6.7 -7.7 -6.1 -7.0 -2.7

123.35093 47.68896 3.1 1.1 0.8 0.4 0.2 1.3 1.0 0.6 1.2 0.9 2.5 -2.1 -2.5 -2.7 -1.6 -1.9 -2.2 -1.7 -2.0 -0.6

123.39235 47.67452 1.5 0.2 0.7 0.3 0.2 1.2 0.9 0.6 1.1 0.8 2.3 -4.1 -5.8 -6.7 -1.5 -2.9 -4.6 -2.0 -3.4 3.9

123.17929 47.73974 5.0 1.2 1.7 0.9 0.5 2.3 1.8 1.3 2.0 1.6 3.7 -2.7 -3.4 -3.8 -2.3 -2.7 -3.1 -2.5 -2.9 -1.1

123.83733 47.95592 1.7 0.5 5.8 4.8 3.8 6.3 5.7 4.8 5.5 4.5 7.8 8.2 6.2 4.2 9.2 8.0 6.3 7.5 5.7 12.1

123.43234 47.82230 3.3 0.3 0.8 0.4 0.2 1.3 1.0 0.7 1.2 0.9 2.4 -8.4 -9.7 -10.3 -6.7 -7.6 -8.8 -7.0 -7.9 -2.9

123.59566 47.78630 2.3 0.2 0.9 0.5 0.2 1.5 1.2 0.8 1.4 1.0 2.8 -6.9 -9.2 -10.3 -3.9 -5.7 -7.6 -4.6 -6.3 2.3

123.70134 47.79649 3.1 0.2 1.5 0.8 0.4 2.2 1.7 1.2 1.9 1.5 3.6 -8.0 -11.6 -13.3 -4.6 -7.0 -9.7 -5.8 -8.0 2.5

123.57117 47.75601 2.1 0.2 0.6 0.3 0.1 1.2 0.9 0.6 1.1 0.8 2.2 -7.3 -9.0 -9.8 -4.7 -6.2 -7.7 -5.2 -6.6 0.7

123.66250 47.79250 2.8 0.2 1.2 0.6 0.3 1.8 1.4 1.0 1.7 1.3 3.2 -8.1 -10.9 -12.4 -4.9 -6.8 -9.2 -5.7 -7.6 2.0

123.63483 47.78896 2.8 0.1 0.9 0.5 0.2 1.5 1.2 0.8 1.4 1.0 2.8 -18.8 -23.4 -25.6 -12.9 -16.3 -20.4 -14.2 -17.5 -0.3

123.36134 47.79429 2.5 0.2 1.2 0.6 0.3 1.8 1.4 1.0 1.7 1.3 3.2 -6.6 -9.4 -10.8 -3.3 -5.3 -7.6 -4.2 -6.0 3.5

124.20267 47.65602 9.2 0.4 7.6 6.6 5.6 8.1 7.5 6.6 7.2 6.3 9.5 -4.1 -6.5 -8.9 -2.8 -4.3 -6.4 -5.1 -7.3 0.8

124.17317 47.67054 6.6 0.3 7.9 6.9 6.0 8.4 7.8 6.9 7.5 6.6 9.9 4.4 1.0 -2.2 6.0 4.0 1.1 2.9 -0.1 11.0

124.11517 47.67769 5.1 0.2 7.4 6.5 5.5 8.0 7.4 6.5 7.0 6.1 9.4 11.7 7.0 2.0 14.3 11.3 7.1 9.7 5.2 21.6

123.60067 47.78816 2.5 0.2 0.9 0.4 0.2 1.5 1.1 0.7 1.4 1.0 2.7 -8.0 -10.3 -11.3 -5.1 -6.8 -8.8 -5.7 -7.4 1.0

Sample information Model data: ages (Ma) Model data: Misfit (modelled age-observed age)/uncertainty

Table 3 continued

3.Scientific
results
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Chapter 4

Conclusions

The Olympic Mountains have been the location for various studies, investi-
gating the evolution of the mountain range (Brandon et al., 1998; Batt et al.,
2001; Pazzaglia & Brandon, 2001). By applying thermochronometric dating and
thermo-kinematic modeling, outcomes from this thesis along with results from re-
cent studies in the Olympic Mountains (Adams & Ehlers, 2017, 2018) contribute
to a more refined understanding of the evolution of this orogen in particular, but
also of processes involved in mountain building in general. Five hypothesis have
been investigated:

1 If the plate geometry plays an important role in focusing deforma-
tion in mountain ranges, then a focused pattern of exhumation rates
should be observed within orogenic syntaxes.

2 If changes in the tectonic conditions or climate affect the evolution of
orogens, then an increase in exhumation rates should be caused by
an increase in plate convergence rate or the onset of Plio-Pleistocene
glaciation.

3 If the denudational outflux out of an orogen is increased by glacial
erosion, then the flux steady-state balance of an orogen should be dis-
turbed unless the accretionary influx increases by the same amount.

4 If the effects of viscoelastic deformation during the seismic cycle per-
manently deform landscapes, then these effects should be detectable
with methods measuring deformation over different timescales.

5 If glacial erosion is capable of significantly lowering the elevation of
mountain ranges, then a concomitant increase in exhumation rate
must occur.

In the following section, the outcomes from chapter 3 are summarized and the
hypotheses are re-evaluated. The last section provides an outlook and indicates,
in which direction future work in the Olympic Mountains or the Cascadia Sub-
duction Zone might be directed.
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4. Conclusions

4.1 A Summary – The hypotheses revisited

The Olympic Mountains are a good example for an orogen, where the plate
geometry plays a pivotal role in affecting deformation and exhumation. As
demonstrated in section 3.1, the observed thermochronometric age pattern can
be best explained with an ellipse-shaped exhumation pattern. The young ther-
mochronometer ages in the central, high topography part of the orogen require
higher exhumation rates (0.9 km/Myr), compared to rates (0.25 km/Myr) in the
low-elevation areas close to the coast. These exhumation rates are interpreted
to correspond to rock uplift rates, which are a consequence of the bend in the
subducted slab below the Olympic Mountains. This is what the rigid indenter
model proposes to occur in an orogenic syntaxis (Bendick & Ehlers, 2014). How-
ever, compared to the Himalayan syntaxes or the St. Elias syntaxis (Figure 1.1),
where the maximum exhumation rates can exceed 5 km/Myr (Enkelmann et al.,
2011, 2015; Lang et al., 2016), the maximum exhumation rates in the Olympic
Mountains are distinctly slower. Taken together, the observations prove hy-
pothesis 1 , indicating that the plate geometry plays an important role in
controlling exhumation. Hence, the Olympic Mountains are a good example
of an orogen impacted by a rigid indenter, suggesting that in addition to the
tectonic aneurysm model (Zeitler et al., 2001; Enkelmann et al., 2009; Koons
et al., 2013) the rigid indenter model is a model that can explain focused and
rapid exhumation. However, there is also a dispute about the contribution of
oroclinal bending to focused exhumation within the Olympic Mountains (Finley
et al., 2019), which might instigate future work.

Both tectonics and climate contribute to the formation and evolution of the
Olympic Mountains. Due to the shape of the subducted slab, the tectonic setting
controls the general pattern of rock uplift, which is evidenced in the ellipse-
shaped exhumation pattern, cosmogenic denudation rates (Adams & Ehlers,
2018) and topography (Adams & Ehlers, 2017). In addition to the general con-
trol of tectonics on exhumation, temporal variations in the tectonic framework
also result in temporal variations of exhumation. As shown in section 3.2.2, a
reduction in convergence rate between the Juan de Fuca Plate and the North
American Plate at around 6 Ma is coincident with a reduction in exhumation
rate in the Olympic Mountains. At that time, rock uplift is reduced due to the
decrease in plate convergence rate. Furthermore, as demonstrated in sections 3.1
and section 3.2, a change in climate with onset of Plio-Pleistocene glaciation and
increased glacial erosion significantly affected exhumation rates, leading to an
increase in exhumation rates by up to 150–200 % at 2 to 3 Ma. These observed
temporal variations in exhumation rate either due to changes in the con-
vergence rate or the onset of glaciation prove hypotheses 2 . However, the
direction of change in convergence rate and the subsequent change in exhuma-
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4.1. A Summary – The hypotheses revisited

tion rate is opposite to the one suggested in hypothesis 2 , i.e., a decrease in
exhumation rates is observed due to a decrease in plate convergence rate.

Because the glacially-induced increase in exhumation is not accompanied with
a commensurate increase in rock uplift (i.e., the plate convergence rate is not
increasing), a lowering of topography must occur. Topographic analysis corrob-
orates that the present-day topography of the Olympic Mountains is the result
of Plio-Pleistocene glaciation (Montgomery, 2002; Montgomery & Greenberg,
2000; Adams & Ehlers, 2017). Based on the thermo-kinematic model work pre-
sented in section 3.1 and section 3.4, the western side of the Olympic Mountains
seems to be particularly affected, because here the young AHe ages require an
exceptionally strong increase in exhumation rate (locally exceeding an increase
in 200% relative to pre-increase exhumation rates). On the western side, the
location of the equilibrium line altitude (ELA) is lowest within the orogen, indi-
cating that the topography-lowering effect of glacial erosion is strongest in that
area. As shown in section 3.4 the increase in exhumation rates is less in the
central part of the orogen, coinciding with a much higher ELA. Hence, the effect
of glacial erosion to lower the mean elevation of orogens and thereby in-
crease exhumation is detectable and hypothesis 5 could be proven during
the thesis. However, the effects of glacial erosion on topography could only be
demonstrated qualitatively and a full quantification of the actual reduction in
topography needs to be done with future model work, for instance by using the
iterative topographic inversion scheme of Olen et al. (2012).

The Olympic Mountains have been introduced as a textbook steady-state moun-
tain range (Pazzaglia & Brandon, 2001; Batt et al., 2001; Willett & Brandon,
2002). The results presented in this thesis provide a new view of this tenet. Topog-
raphy has changed during the past 2–3 Ma due to the Plio-Pleistocene glaciation,
violating the assumption of topographic steady-state. A reassessment of the flux
steady-state hypothesis of the Olympic Mountains as presented in section 3.2
reveals several interesting aspects. From a qualitative viewpoint, exhumation
rates and hence denudation rates display strong temporal variations, so that the
denudational outflux from the Olympics is temporally variable. The accretional
influx is also temporally variable, due to increased off-shore sedimentation rates
related to an increased sediment delivery to the ocean in the Plio-Pleistocene
and due to a decrease in plate convergence rate. However, it was not possible
to assess quantitatively whether the changes in influx and outflux balance each
other, so that the mountain range is in flux steady-state on short timescales (i.e.,
2–3 Ma). A quantitative assessment over a 14 Myr period reveals that the Olympic
Mountains are in flux steady-state, but only if a three-dimensional geometry is
assumed for the flux analysis, contrary to previous results suggesting flux steady-
state assuming a two-dimensional geometry. Hence, hypothesis 3 is refuted,
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4. Conclusions

because flux steady-state is still possible, although temporal variations in
the influx and outflux occur. Nonetheless, these outcomes emphasize that many
parameters need to be constrained for a reasonable flux steady-state assessment
and that in particular Plio-Pleistocene glaciation is capable of disturbing an oro-
genic system, affecting both the outflux and influx.

Comparing datasets with different integration timescales in section 3.3 reveals
interesting aspects of deformation in the Olympic Mountains. On intermediate to
long timescales, the denudation rates derived from cosmogenic nuclides (Adams
& Ehlers, 2018) and from thermochronometry (this work) as well as the long-
wavelength pattern of topography suggest that most permanent deformation
occurs in the central part of the Olympic Mountains. This focusing of permanent
deformation is the consequence of the bend in the subducted slab below the
Olympic Mountains.

On short timescales, rock uplift rates derived from present-day GPS observa-
tions display a disparate pattern, because the GPS signal is dominated by the
elastic deformation of the seismic cycle: Because the shallow parts of the Casca-
dia Subduction Zone plate interface are locked, high rates of rock uplift close to
the western coast of the Olympic Peninsula can be observed, contrary to what
is suggested from the long-term methods. After forward modelling the elastic
component and subtracting it from the GPS signal, the pattern of residual ver-
tical velocities (which should now only contain the permanent component of
rock uplift) partially overlaps with the long-term pattern of permanent defor-
mation. Furthermore, the area of high residual vertical velocities (where also a
change in surface tilt rate occurs) overlaps spatially with the area, where Bruhat
& Segall (2016) suggested negative shear stress rates on the plate interface. From
a fault mechanical viewpoint, negative shear stress rates (so a reduction in shear
stress over time) can be caused by visco-plastic flow. This viscous flow would
initiate permanent deformation in the overriding crust and could explain the
focusing of surface tilting, denudation and high elevation within the Olympic
Mountains. Hence, additional to the elastic component, the GPS signal records a
viscous (permanent) component of deformation. Based on these observations
hypothesis 4 is proven and the effects of viscoelastic deformation can be
detected with both short- and long-term methods. However, it is important to
consider the elastic and permanent components of the short-term signal indepen-
dently from each other. The results also highlight the potential of characterizing
the behavior of the plate interface by combining observations from short- and
long-term methods and corroborate the view of Li et al. (2015) that viscoelas-
tic deformation plays an important role during the seismic cycle of subduction
zones.
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Taken together, all these observations both on short and long timescales re-
veal a more complicate history of the Olympic Mountains than previously sug-
gested by Brandon et al. (1998) and Batt et al. (2001). Clearly, the formation
and evolution of the Olympic Mountains is controlled both by tectonics and cli-
mate, indicating the importance of considering possible feedbacks between these
parameters during the evolution of orogens (Figure 2.2). Exhumation of the
Olympic Mountains is spatially and temporally variable, corroborating the notion
that exhumation during the lifespan of an orogen is temporally not steady (e.g.,
Carrapa et al., 2003; Glotzbach et al., 2011; Adams et al., 2015; Enkelmann et al.,
2017; Georgieva et al., 2019). Furthermore, deviations from steady-state seem
to be likely, at least on short time scales. As a summary, the Olympic Mountains
were used as a case study in order to investigate mountain building processes
and several intriguing aspects of the evolution of this mountain range could be
revealed. However, as indicated in section 1.2 the outcomes from a case study
should be viewed to be representative of mountain building processes in gen-
eral. For instance, the idea that the plate geometry is important in controlling
the deformation of orogens is a hypothesis that could also be evaluated in other
orogens, where this effect has hitherto not been considered.

4.2 Outlook and future work

New insights into the evolution of the Olympic Mountains were provided
by this thesis. However, many open and unresolved questions remain. Recon-
structing the topographic evolution of the Olympic Mountains in light of the
Plio-Pleistocene glaciation still requires to conduct more sophisticated thermo-
kinematic modeling with Pecube using the topographic inversion scheme of Olen
et al. (2012). Similar studies in different orogens were able to capitalize on a spa-
tially dense thermochronometry dataset and could reconstruct paleotopography
within a very fine spatial resolution (e.g., Ehlers et al., 2006; Olen et al., 2012).
Although the additional thermochronometer samples from this study enlarge the
existing thermochronometry dataset of the Olympic Mountains, especially AHe
ages are absent or less densely spaced in parts of the mountain range, which
experienced strong glaciation (i.e., the Queets valley and upper reaches of the
Quinault valley, Figure 1.3a). Collecting additional thermochronometry samples
in these parts of the orogen might improve the outcomes from the modeling.
Otherwise, the most robust estimates of paleotopography will be limited to the
area where most AHe ages exist, i.e., the Hoh valley and Mt. Olympus area.

The importance of the plate geometry in controlling the exhumation of the
Olympic Mountains could be demonstrated. The effect seems to be localized in
the Olympic Mountains, due to the bend in the subducted slab. However, other
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parts of the Cascadia Subduction Zone to the south and north of the Olympic
Peninsula were not further investigated in this study. No thermochronometric
ages are available for the Oregon Coast Range and old AFT ages (50 – 60 Ma,
England et al., 1997) on central Vancouver Island require slow exhumation, in-
dicating that indeed the area seems not to be affected by the rigid indenter,
but a dense thermochronometric dataset including (U-Th)/He systems is absent.
Hence, one part of future work might be to obtain more thermochronometry
ages both from Vancouver Island and from the Coast Range south of the Olympic
Mountains to further constrain the area of focused exhumation. Although the
isolated, high topography of the Olympic Mountains also suggests that defor-
mation is focused in this part of the Cascadia Subduction Zone, a better spatial
knowledge of the subduction-wide exhumation pattern will clearly show, how
localized the effect of the rigid indenter is.

All thermo-kinematic modeling in this work considers only vertical velocities.
However, modern GPS velocities indicate that the southern and central part
of the Cascadia Subduction Zone are rotating clock-wise (Wells & McCaffrey,
2013), resulting in margin-parallel displacement. The flux steady-state analysis
as well as the sediment cross-sections from this study revealed that the influx
should be considered in three-dimensions and is spatially variable along the
Cascadia Subduction Zone. Hence, a refined, three-dimensional kinematic field
could help to reveal the contributions from non-vertical velocities and margin-
parallel velocities to exhumation in the Olympic Mountains. Future work could
build upon the approach from Batt et al. (2001) for deriving the horizontal
velocity component, but should also consider possible temporal variations in
plate convergence rates or rotation rates.

As shown in this study, the comparison between the short-term and long-
term observations of deformation helps to understand the mechanics of the
Cascadia Subduction Zone. This could have important implications for the hazard
assessment of the subduction zone, because the magnitude of a future earthquake
is controlled by the size of the locked zone (e.g., Wang & Tréhu, 2016). So, a
spatially refined, subduction-wide pattern of exhumation on Vancouver Island
and in Oregon would give invaluable insights into the long-term deformation
of the Cascadua Subduction Zone. Furthermore, a more detailed analysis of
how episodic tremor and slip is related to permanent deformation could aid in
understanding the mechanisms involved in mountain building.
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Appendix A

Additional data tables of section 3.1

The following pages contain supplementary data tables for the paper “Tec-
tonic and glacial contribution to focused exhumation in the Olympic Mountains,
Washington, USA.” presented in section 3.1.2.

These data include single grain analyses from apatite (U-Th)/He dating (Table
DR2, section A.1) and single grain analyses from zircon (U-Th)/He dating (Table
DR3, section A.2). These tables are also available online as excel spreadsheets
in the GSA data repository (https://www.geosociety.org/datarepository/
2018/) under the data item 2018161.
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Sample/ 
Aliquot

U 
(ppm)

Th 
(ppm)

Sm 
(ppm)

grain 
mass 
(µg)

eU 
(ppm) Th/U

Uncorrected 
grain age 

(Ma)

FT 
correction

Ap_OP1502-1 2 7.5 ± 0.5 5 23.1 ± 0.7 144 636.2 ± 9.0 1.09E-15 ± 1.58E-17 4.4 3 3.18 15.6 0.73 21.2 ± 1.4
Ap_OP1502-3 7 7.7 ± 0.4 10 11.1 ± 0.5 393 420.4 ± 5.8 9.12E-16 ± 1.64E-17 1.1 10 1.49 16.4 0.59 27.5 ± 1.9
Ap_OP1502-4 6 8.8 ± 0.7 6 10.2 ± 0.4 323 510.7 ± 5.6 1.06E-15 ± 1.60E-17 1.6 7 1.19 17.5 0.68 25.8 ± 2.1
Ap_OP1502-5 12 15.1 ± 0.6 19 22.8 ± 0.7 466 565.6 ± 8.4 2.64E-15 ± 3.36E-17 1.2 17 1.55 23.8 0.60 40.0 ± 2.4

Ap_OP1504-1 21 42.3 ± 8.2 19 37.5 ± 1.4 280 568.4 ± 11.5 5.98E-16 ± 1.59E-17 2.0 25 0.91 2.2 0.67 3.3 ± 0.6
Ap_OP1504-2 81 35.8 ± 8.2 30 13.1 ± 1.1 333 147.0 ± 9.0 1.24E-16 ± 6.90E-18 0.4 88 0.38 0.6 0.62 1.0 ± 0.3
Ap_OP1504-3 161 150.5 ± 30.5 186 174.1 ± 7.6 215 201.2 ± 19.5 4.58E-15 ± 6.52E-17 0.9 205 1.19 4.6 0.62 7.3 ± 1.3
Ap_OP1504-4 94 110.2 ± 17.3 22 26.0 ± 1.2 212 247.3 ± 24.5 1.93E-15 ± 3.19E-17 1.2 100 0.24 3.2 0.69 4.5 ± 0.7

Ap_OP1505-1 39 48.2 ± 14.1 27 33.8 ± 1.7 127 156.9 ± 14.6 8.19E-16 ± 1.73E-17 1.2 46 0.72 2.9 0.64 4.5 ± 1.6
Ap_OP1505-2 65 129.7 ± 18.6 20 39.2 ± 1.6 240 475.3 ± 12.8 6.67E-15 ± 9.93E-17 2.0 70 0.31 9.1 0.68 13.4 ± 1.9
Ap_OP1505-3 53 65.3 ± 14.7 39 47.6 ± 1.9 88 108.3 ± 10.6 1.82E-15 ± 3.14E-17 1.2 62 0.75 4.6 0.62 7.4 ± 1.6
Ap_OP1505-4 38 64.2 ± 11.0 10 17.3 ± 1.1 300 505.4 ± 11.7 1.86E-15 ± 3.09E-17 1.7 41 0.28 5.2 0.66 7.9 ± 1.4

Ap_OP1507-1 10 57.3 ± 2.0 64 355.8 ± 13.2 321 1776.6 ± 15.1 2.05E-15 ± 3.02E-17 5.5 25 6.37 2.7 0.76 3.5 ± 0.2
Ap_OP1507-2 11 18.3 ± 0.7 61 105.3 ± 2.1 290 498.6 ± 6.5 5.28E-16 ± 1.17E-17 1.7 25 5.89 2.3 0.64 3.5 ± 0.2
Ap_OP1507-3 16 21.7 ± 0.9 41 55.6 ± 1.8 281 381.7 ± 5.9 3.72E-16 ± 9.68E-18 1.4 26 2.62 2.0 0.62 3.2 ± 0.2

Ap_OP1510-1 13 23.4 ± 0.8 39 68.9 ± 1.8 202 354.2 ± 5.1 1.24E-15 ± 1.93E-17 1.8 23 3.02 5.8 0.70 8.2 ± 0.5
Ap_OP1510-2 9 12.2 ± 0.6 14 19.2 ± 0.7 62 84.9 ± 4.4 6.30E-16 ± 1.33E-17 1.4 12 1.62 7.0 0.68 10.2 ± 0.7
Ap_OP1510-3 18 22.5 ± 0.7 40 51.5 ± 1.3 197 252.3 ± 3.0 8.75E-16 ± 1.55E-17 1.3 27 2.34 4.7 0.66 7.1 ± 0.4

Ap_OP1513-5 61 66.1 ± 13.3 300 322.8 ± 11.2 203 218.0 ± 13.7 8.12E-16 ± 1.43E-17 1.1 132 5.01 1.1 0.61 1.7 ± 0.2
Ap_OP1513-6 57 45.7 ± 11.9 71 57.4 ± 2.8 222 178.7 ± 10.1 2.11E-16 ± 6.85E-18 0.8 74 1.29 0.7 0.59 1.2 ± 0.3
Ap_OP1513-7 39 39.6 ± 12.5 95 96.1 ± 4.6 102 102.9 ± 9.1 2.91E-16 ± 9.63E-18 1.0 62 2.49 0.9 0.62 1.5 ± 0.3
Ap_OP1513-8 54 43.5 ± 9.3 55 44.0 ± 1.5 275 221.9 ± 8.7 2.43E-16 ± 7.57E-18 0.8 67 1.04 0.9 0.57 1.5 ± 0.3

Ap_OP1515-1 26 31.3 ± 1.0 14 17.2 ± 0.6 58 71.0 ± 3.3 3.59E-16 ± 8.44E-18 1.2 29 0.56 1.9 0.61 3.1 ± 0.2
Ap_OP1515-2 8 16.1 ± 0.6 18 36.3 ± 1.4 201 398.7 ± 5.4 2.99E-16 ± 9.24E-18 2.0 12 2.31 2.2 0.65 3.4 ± 0.2
Ap_OP1515-3 3 3.4 ± 0.3 31 36.5 ± 1.2 292 349.2 ± 5.0 7.43E-17 ± 5.73E-18 1.2 10 11.13 1.1 0.61 1.9 ± 0.2

Ap_OP1517-1 40 54.3 ± 1.4 83 112.8 ± 2.0 141 191.4 ± 3.9 1.32E-15 ± 2.25E-17 1.4 60 2.13 3.0 0.66 4.6 ± 0.3
Ap_OP1517-4 44 181.7 ± 27.1 57 236.9 ± 9.6 114 475.2 ± 43.2 2.56E-15 ± 3.71E-17 4.2 57 1.34 2.0 0.72 2.8 ± 0.3

Ap_OP1518-1 41 91.4 ± 16.7 45 99.6 ± 4.4 54 119.7 ± 8.2 2.95E-15 ± 4.58E-17 2.2 51 1.12 4.9 0.69 7.1 ± 1.2
Ap_OP1518-2 129 227.9 ± 19.4 139 244.8 ± 5.8 155 273.1 ± 7.6 1.05E-14 ± 1.38E-16 1.8 162 1.10 6.8 0.68 9.9 ± 0.8

Ap_OP1521-1 173 77.5 ± 23.1 272 121.6 ± 7.4 400 179.0 ± 28.4 5.95E-16 ± 1.21E-17 0.4 237 1.61 1.1 0.61 1.8 ± 0.5
Ap_OP1521-2 8 56.2 ± 14.8 5 34.3 ± 2.2 61 407.1 ± 18.6 4.05E-16 ± 1.14E-17 6.7 10 0.63 1.2 0.75 1.6 ± 0.5
Ap_OP1521-3 52 205.6 ± 22.7 63 249.8 ± 10.8 216 851.8 ± 43.7 2.00E-15 ± 2.91E-17 3.9 67 1.25 1.4 0.71 2.0 ± 0.2
Ap_OP1521-4 30 69.4 ± 14.5 144 331.9 ± 12.5 337 779.5 ± 45.1 1.40E-15 ± 1.93E-17 2.3 64 4.91 1.8 0.65 2.7 ± 0.3

Table DR 2: Apatite (U-Th-Sm)/He single grain data 

Note: Aliquots which are strike-through are not considered for the sample age calculation. ppm values of U, Th and Sm are calculated from iCAP results by 
deviding the mass of the respective element by the grain mass (which is derived from measurements of 43Ca). eU is calculated by adding U-content and 
0.235*Th-content. Mean sample ages are reported in table DR1.

Corrected grain 
age ± 1SD (Ma)U ± 2SD (pg) Th ± 2SD (pg) Sm ± 2SD (pg) He ± 1SD (mol) 
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Ap_OP1521-5 16 79.6 ± 19.9 19 97.0 ± 5.5 66 331.8 ± 51.8 6.71E-16 ± 1.44E-17 5.0 20 1.25 1.3 0.74 1.7 ± 0.4

Ap_OP1522-1 20 38.8 ± 1.3 35 69.1 ± 1.7 124 243.7 ± 3.5 1.78E-15 ± 2.34E-17 2.0 28 1.83 6.0 0.67 8.9 ± 0.5
Ap_OP1522-2 2 2.1 ± 0.3 1 1.4 ± 0.1 144 169.8 ± 3.8 8.19E-17 ± 5.75E-18 1.2 2 0.69 6.2 0.62 10.0 ± 1.5
Ap_OP1522-3 2 7.4 ± 0.4 2 7.7 ± 0.5 154 634.2 ± 9.6 8.13E-16 ± 1.59E-17 4.1 2 1.06 16.4 0.74 22.3 ± 1.5
Ap_OP1522-4 36 118.5 ± 17.6 5 15.8 ± 1.1 46 149.2 ± 18.1 4.98E-15 ± 7.04E-17 3.3 38 0.14 7.7 0.73 10.6 ± 1.7

Ap_OP1523-2 30 109.4 ± 20.1 49 177.6 ± 8.0 64 230.9 ± 18.9 4.25E-15 ± 6.31E-17 3.6 42 1.66 5.3 0.72 7.2 ± 1.0
Ap_OP1523-3 65 69.6 ± 17.1 94 101.0 ± 5.4 66 70.6 ± 11.6 1.98E-15 ± 3.56E-17 1.1 87 1.49 4.1 0.63 6.4 ± 1.3

Ap_OP1527-1 84 96.7 ± 2.9 11 12.6 ± 0.6 158 181.7 ± 3.8 1.34E-15 ± 2.02E-17 1.2 87 0.13 2.5 0.62 4.1 ± 0.2
Ap_OP1527-2 86 90.2 ± 13.0 54 57.3 ± 2.5 159 168.0 ± 9.8 6.25E-16 ± 1.42E-17 1.1 98 0.65 1.1 0.60 1.9 ± 0.3
Ap_OP1527-3 21 32.5 ± 1.0 20 30.3 ± 0.9 325 497.1 ± 7.4 3.96E-16 ± 8.41E-18 1.5 26 0.96 1.9 0.65 2.8 ± 0.2
Ap_OP1527-4 9 16.7 ± 0.6 12 23.0 ± 0.7 197 376.9 ± 8.4 1.20E-16 ± 7.00E-18 1.9 12 1.41 1.0 0.66 1.5 ± 0.1
Ap_OP1527-5 57 131.5 ± 3.2 50 114.5 ± 2.5 115 264.9 ± 6.1 2.09E-15 ± 3.11E-17 2.3 69 0.89 2.4 0.68 3.6 ± 0.2

Ap_OP1529-2 82 196.2 ± 4.2 24 56.5 ± 1.3 166 397.9 ± 3.5 5.89E-15 ± 7.67E-17 2.4 87 0.30 5.2 0.67 7.8 ± 0.4
Ap_OP1529-3 50 91.5 ± 2.6 9 17.0 ± 0.7 54 99.0 ± 3.5 2.01E-15 ± 2.95E-17 1.8 52 0.19 3.9 0.66 5.9 ± 0.3
Ap_OP1529-4 45 135.0 ± 3.3 13 39.6 ± 1.1 140 421.5 ± 5.8 2.70E-15 ± 3.57E-17 3.0 48 0.30 3.5 0.70 4.9 ± 0.3
Ap_OP1529-5 103 103.9 ± 17.9 79 79.4 ± 3.1 192 193.6 ± 14.0 1.30E-15 ± 1.30E-15 1.0 122 0.78 2.0 0.62 3.3 ± 0.5

Ap_OP1530-1 12 16.7 ± 0.7 14 20.5 ± 0.6 34 48.4 ± 2.4 7.80E-16 ± 7.80E-16 1.4 15 1.26 6.7 0.64 10.4 ± 0.6
Ap_OP1530-2 33 186.4 ± 4.3 38 216.6 ± 5.0 102 578.7 ± 6.1 1.18E-14 ± 1.18E-14 5.7 42 1.19 9.2 0.75 12.3 ± 0.7
Ap_OP1530-3 14 30.7 ± 0.9 14 31.4 ± 1.2 50 113.7 ± 3.6 1.27E-15 ± 1.27E-15 2.3 17 1.05 6.1 0.67 9.2 ± 0.5

Ap_OP1531-1 3 16.3 ± 0.6 6 40.3 ± 0.9 65 403.8 ± 4.7 8.39E-16 ± 1.43E-17 6.2 4 2.53 6.0 0.78 7.7 ± 0.4
Ap_OP1531-4 8 25.4 ± 1.0 9 26.0 ± 0.7 27 82.5 ± 3.4 8.54E-16 ± 1.40E-17 3.0 10 1.05 5.1 0.70 7.2 ± 0.5
Ap_OP1531-5 7 17.4 ± 0.9 3 8.2 ± 0.5 64 151.9 ± 4.7 5.61E-16 ± 1.04E-17 2.4 8 0.48 5.4 0.68 8.0 ± 0.5

Ap_OP1532-1 15 37.0 ± 1.0 42 101.6 ± 2.7 129 312.3 ± 4.8 5.04E-16 ± 9.68E-18 2.4 25 2.82 1.5 0.69 2.2 ± 0.1
Ap_OP1532-2 58 76.1 ± 12.7 46 60.7 ± 4.5 111 145.9 ± 29.6 2.69E-16 ± 7.20E-18 1.3 69 0.82 0.6 0.62 0.9 ± 0.1
Ap_OP1532-3 142 107.5 ± 18.2 95 71.8 ± 3.8 86 65.2 ± 17.0 6.61E-16 ± 1.65E-17 0.8 164 0.69 1.0 0.60 1.7 ± 0.3
Ap_OP1532-4 64 138.6 ± 3.5 112 243.6 ± 4.4 102 221.5 ± 4.4 1.98E-15 ± 3.22E-17 2.2 90 1.80 1.9 0.70 2.7 ± 0.1
Ap_OP1532-5 10 14.9 ± 0.8 25 38.6 ± 1.0 170 258.5 ± 6.4 1.28E-16 ± 5.60E-18 1.5 16 2.66 1.0 0.65 1.5 ± 0.1

Ap_OP1533-1 9 20.8 ± 0.7 19 43.7 ± 1.3 25 59.8 ± 2.1 2.65E-16 ± 8.91E-18 2.3 13 2.16 1.6 0.66 2.4 ± 0.2
Ap_OP1533-2 32 37.3 ± 1.1 36 42.5 ± 1.4 67 78.5 ± 3.2 3.54E-16 ± 1.03E-17 1.2 40 1.17 1.4 0.61 2.3 ± 0.1
Ap_OP1533-3 26 31.8 ± 1.4 14 17.2 ± 0.7 20 24.9 ± 2.5 3.75E-16 ± 1.03E-17 1.2 29 0.56 1.9 0.62 3.1 ± 0.2

Ap_OP1534-2 56 84.1 ± 14.8 52 77.1 ± 3.0 66 98.4 ± 4.9 6.81E-16 ± 1.29E-17 1.5 69 0.94 1.3 0.67 1.9 ± 0.3
Ap_OP1534-3 114 278.6 ± 22.3 69 168.8 ± 4.8 121 295.8 ± 7.1 2.75E-15 ± 4.10E-17 2.4 131 0.62 1.6 0.70 2.3 ± 0.2
Ap_OP1534-4 88 108.6 ± 12.7 103 127.0 ± 5.6 184 227.1 ± 5.8 9.37E-16 ± 1.76E-17 1.2 112 1.20 1.3 0.64 2.0 ± 0.2

Ap_OP1536-1 25 49.7 ± 1.5 32 62.8 ± 1.3 155 308.2 ± 4.3 1.74E-15 ± 2.67E-17 2.0 32 1.30 5.0 0.68 7.4 ± 0.4
Ap_OP1536-2 41 98.6 ± 2.6 88 210.2 ± 4.4 138 330.2 ± 5.4 3.91E-15 ± 5.49E-17 2.4 62 2.19 4.9 0.73 6.7 ± 0.4
Ap_OP1536-3 61 138.5 ± 2.9 103 231.5 ± 4.0 137 307.8 ± 6.5 6.55E-15 ± 8.05E-17 2.3 86 1.71 6.3 0.72 8.8 ± 0.5

Ap_OP1539-1 69 131.6 ± 2.4 210 398.8 ± 11.1 132 250.5 ± 4.0 1.87E-15 ± 2.34E-17 1.9 119 3.11 1.5 0.69 2.2 ± 0.1
Ap_OP1539-2 106 126.1 ± 2.8 33 39.1 ± 1.0 218 259.7 ± 4.1 1.29E-15 ± 1.77E-17 1.2 113 0.32 1.8 0.62 2.9 ± 0.2
Ap_OP1539-3 20 44.1 ± 12.4 69 154.8 ± 6.4 247 553.3 ± 27.8 3.33E-16 ± 9.79E-18 2.2 36 3.60 0.8 0.68 1.2 ± 0.2
Ap_OP1539-4 111 135.9 ± 18.6 107 131.4 ± 5.0 248 303.3 ± 28.0 1.11E-15 ± 1.83E-17 1.2 136 0.99 1.2 0.62 2.0 ± 0.2
Ap_OP1539-5 11 21.0 ± 1.1 41 76.3 ± 2.6 39 73.2 ± 3.1 3.00E-16 ± 7.14E-18 1.9 21 3.73 1.4 0.64 2.2 ± 0.1

Ap_OP1540-1 21 104.5 ± 14.5 25 124.0 ± 4.7 144 715.9 ± 16.0 8.98E-16 ± 2.20E-17 5.0 27 1.22 1.3 0.75 1.7 ± 0.2
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Ap_OP1540-2 34 59.6 ± 11.0 8 13.3 ± 0.9 118 207.6 ± 11.4 1.34E-16 ± 8.23E-18 1.8 36 0.23 0.4 0.66 0.6 ± 0.1
Ap_OP1540-3 145 129.6 ± 14.9 92 82.0 ± 3.3 296 263.8 ± 16.6 8.95E-16 ± 1.94E-17 0.9 167 0.65 1.1 0.63 1.8 ± 0.2
Ap_OP1540-4 63 194.9 ± 26.5 16 50.0 ± 2.2 75 229.9 ± 13.9 1.62E-15 ± 2.71E-17 3.1 67 0.26 1.5 0.70 2.1 ± 0.3

Ap_OP1542-5 39 50.1 ± 14.1 39 51.2 ± 2.0 135 175.7 ± 11.2 4.36E-16 ± 1.07E-17 1.3 48 1.05 1.4 0.69 2.0 ± 0.5
Ap_OP1542-6 37 47.0 ± 9.4 48 60.9 ± 2.4 146 183.2 ± 8.3 3.16E-16 ± 8.77E-18 1.3 49 1.33 1.0 0.64 1.5 ± 0.3
Ap_OP1542-7 40 47.0 ± 10.0 29 33.8 ± 1.1 138 161.0 ± 8.4 2.92E-16 ± 8.06E-18 1.2 47 0.74 1.0 0.69 1.5 ± 0.3
Ap_OP1542-8 6 100.5 ± 20.2 30 494.7 ± 15.3 83 1390.0 ± 12.6 2.88E-15 ± 4.04E-17 16.7 13 5.05 2.5 0.81 3.0 ± 0.3

Ap_OP1545-1 52 46.1 ± 8.6 41 36.4 ± 1.2 494 441.5 ± 11.7 2.49E-15 ± 3.73E-17 0.9 61 0.81 8.6 0.62 14.0 ± 2.4
Ap_OP1545-2 52 54.1 ± 16.8 52 54.5 ± 2.0 474 497.5 ± 17.0 3.90E-15 ± 5.49E-17 1.0 64 1.03 11.6 0.63 18.3 ± 5.6
Ap_OP1545-3 51 61.0 ± 12.0 37 43.9 ± 1.6 386 462.4 ± 17.4 4.26E-15 ± 5.53E-17 1.2 59 0.74 11.4 0.68 16.8 ± 3.2
Ap_OP1545-4 60 48.1 ± 9.6 55 43.5 ± 1.4 485 386.4 ± 9.9 4.48E-15 ± 6.66E-17 0.8 73 0.93 14.6 0.66 21.9 ± 3.9

Ap_OP1547-1 3 59.6 ± 13.7 6 106.1 ± 4.1 122 2173.2 ± 44.2 5.28E-15 ± 6.66E-17 17.8 5 1.83 11.8 0.83 14.2 ± 2.6
Ap_OP1547-2 2 13.6 ± 0.6 3 26.9 ± 1.0 139 1234.5 ± 12.1 2.55E-15 ± 3.65E-17 8.9 2 2.02 23.6 0.77 30.8 ± 2.0
Ap_OP1547-3 2 11.8 ± 0.6 7 46.1 ± 0.9 144 935.6 ± 8.8 2.01E-15 ± 2.69E-17 6.5 3 4.00 16.4 0.76 21.6 ± 1.2
Ap_OP1547-4 2 14.7 ± 0.6 8 53.3 ± 1.0 164 1095.8 ± 8.5 2.79E-15 ± 3.56E-17 6.7 4 3.72 18.9 0.76 25.0 ± 1.4
Ap_OP1547-5 2 13.7 ± 0.5 8 51.3 ± 1.3 136 853.4 ± 10.7 3.66E-15 ± 5.13E-17 6.3 4 3.85 26.1 0.75 35.0 ± 1.9

Ap_OP1548-1 105 136.8 ± 3.2 88 114.5 ± 2.8 216 280.4 ± 4.8 7.20E-15 ± 1.06E-16 1.3 126 0.86 8.1 0.63 12.9 ± 0.7
Ap_OP1548-2 16 19.4 ± 0.9 39 46.0 ± 1.4 66 77.9 ± 3.1 1.40E-15 ± 2.38E-17 1.2 26 2.43 8.6 0.61 14.0 ± 0.9
Ap_OP1548-3 5 8.3 ± 0.4 16 27.8 ± 0.8 355 599.8 ± 7.4 9.87E-16 ± 1.64E-17 1.7 9 3.42 12.2 0.68 18.0 ± 1.1
Ap_OP1548-4 2 4.7 ± 0.3 5 11.0 ± 0.6 23 50.7 ± 2.3 7.66E-16 ± 1.24E-17 2.2 3 2.39 19.5 0.68 28.7 ± 2.1

Ap_OP1565-1 40 223.2 ± 19.4 12 68.7 ± 3.1 83 458.7 ± 24.9 5.96E-15 ± 9.28E-17 5.5 43 0.32 4.6 0.76 6.1 ± 0.6
Ap_OP1565-2 36 77.7 ± 14.3 23 49.6 ± 2.3 174 379.0 ± 12.5 1.72E-15 ± 3.12E-17 2.2 41 0.65 3.6 0.68 5.4 ± 1.0
Ap_OP1565-3 33 41.2 ± 10.4 11 13.8 ± 0.9 106 132.2 ± 9.8 2.52E-16 ± 8.44E-18 1.2 36 0.34 1.1 0.64 1.7 ± 0.7
Ap_OP1565-4 38 152.9 ± 21.0 27 107.4 ± 3.9 90 366.5 ± 10.7 4.61E-15 ± 5.48E-17 4.1 44 0.72 4.9 0.78 6.2 ± 0.8

Ap_OP1580-1 9 56.7 ± 14.3 42 275.4 ± 10.5 154 1000.3 ± 12.1 2.80E-15 ± 4.87E-17 6.5 19 4.98 4.3 0.73 5.9 ± 0.8
Ap_OP1580-2 21 276.6 ± 31.3 24 325.6 ± 9.7 82 1090.9 ± 16.8 9.73E-15 ± 1.22E-16 13.4 26 1.21 5.1 0.81 6.3 ± 0.7
Ap_OP1580-3 19 93.7 ± 10.9 11 51.3 ± 2.6 137 669.2 ± 10.0 1.46E-15 ± 2.60E-17 4.9 22 0.56 2.6 0.78 3.3 ± 0.4
Ap_OP1580-4 31 169.6 ± 24.5 36 199.1 ± 5.8 118 652.0 ± 12.9 4.36E-15 ± 5.46E-17 5.5 39 1.20 3.8 0.75 5.0 ± 0.6

Ap_OP1582-1 13 68.9 ± 12.4 8 40.7 ± 1.9 39 200.7 ± 13.6 6.45E-16 ± 1.32E-17 5.2 15 0.61 1.6 0.75 2.1 ± 0.4
Ap_OP1582-2 12 48.2 ± 11.6 14 53.1 ± 2.3 155 601.9 ± 11.4 3.10E-16 ± 7.56E-18 3.9 16 1.13 1.0 0.73 1.3 ± 0.3
Ap_OP1582-3 40 110.7 ± 19.9 56 154.0 ± 5.2 149 409.1 ± 11.8 1.28E-15 ± 2.22E-17 2.8 53 1.43 1.6 0.69 2.4 ± 0.3
Ap_OP1582-4 12 50.6 ± 10.7 8 31.2 ± 1.3 21 87.4 ± 4.0 2.71E-16 ± 8.94E-18 4.1 14 0.63 0.9 0.72 1.2 ± 0.3
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Sample/ 
Aliquot

U 
(ppm)

Th 
(ppm)

grain 
mass 
(µg)

eU 
(ppm) Th/U Uncorrected 

grain age (Ma)
FT 

correction

Zr_OP1502-1 110 1023.2 ± 59.4 52 485.3 ± 46.3 1.95E-13 ± 2.31E-15 9.3 122 0.49 31.9 0.81 39.4 ± 2.8
Zr_OP1502-2 56 572.8 ± 36.3 36 363.4 ± 28.0 1.20E-13 ± 1.54E-15 10.2 65 0.65 33.7 0.81 41.3 ± 3.2

Zr_OP1504-1 320 2224.8 ± 210.5 61 422.1 ± 26.6 1.65E-13 ± 2.30E-15 6.9 335 0.19 13.2 0.79 16.8 ± 1.7
Zr_OP1504-2 395 3861.8 ± 61.0 170 1660.3 ± 42.1 4.06E-13 ± 5.23E-15 9.8 435 0.44 17.7 0.82 21.5 ± 1.1
Zr_OP1504-3 751 4376.2 ± 55.6 98 571.8 ± 11.0 9.62E-13 ± 1.19E-14 5.8 774 0.13 39.4 0.78 50.1 ± 2.6

Zr_OP1505-1 746 2495.4 ± 211.2 289 967.8 ± 63.1 4.57E-13 ± 4.99E-15 3.3 814 0.40 31.3 0.74 42.0 ± 3.9
Zr_OP1505-2 198 907.7 ± 37.7 131 601.2 ± 22.0 2.54E-13 ± 2.83E-15 4.6 228 0.68 44.9 0.76 58.7 ± 3.6
Zr_OP1505-3 174 1674.6 ± 72.5 75 717.6 ± 34.4 7.88E-13 ± 8.68E-15 9.6 192 0.44 79.0 0.76 104.0 ± 6.5

Zr_OP1507-1 382 2325.8 ± 29.8 104 630.3 ± 12.1 1.21E-13 ± 1.56E-15 6.1 407 0.28 9.1 0.77 11.8 ± 0.6
Zr_OP1507-2 610 4290.8 ± 65.5 158 1113.1 ± 13.2 3.12E-13 ± 4.01E-15 7.0 648 0.27 12.7 0.79 16.1 ± 0.9
Zr_OP1507-3 206 1735.5 ± 36.2 130 1100.5 ± 25.0 1.32E-13 ± 1.70E-15 8.4 236 0.65 12.3 0.80 15.3 ± 0.8

Zr_OP1510-1 130 494.3 ± 13.2 49 185.6 ± 7.8 2.56E-13 ± 2.97E-15 3.8 141 0.39 87.4 0.77 113.0 ± 6.3
Zr_OP1510-2 334 1685.3 ± 32.3 181 914.1 ± 18.0 8.82E-13 ± 9.36E-15 5.1 376 0.56 85.5 0.77 110.4 ± 5.8
Zr_OP1510-3 179 618.0 ± 20.1 78 268.3 ± 6.1 3.16E-13 ± 3.65E-15 3.4 197 0.45 85.3 0.76 112.4 ± 6.7

Zr_OP1513-1 755 1070.1 ± 42.6 240 340.4 ± 9.5 5.00E-14 ± 6.02E-16 1.4 811 0.33 8.1 0.71 11.3 ± 0.7
Zr_OP1513-2 610 712.0 ± 28.0 270 315.2 ± 8.3 2.73E-14 ± 3.13E-16 1.2 674 0.45 6.5 0.70 9.2 ± 0.6
Zr_OP1513-3 478 494.6 ± 13.9 456 471.4 ± 12.9 4.41E-14 ± 5.25E-16 1.0 585 0.98 13.5 0.67 20.1 ± 1.1

Zr_OP1515-3 102 982.4 ± 121.1 29 276.6 ± 29.7 2.78E-14 ± 3.33E-16 9.6 109 0.29 5.0 0.82 6.0 ± 0.8
Zr_OP1515-4 626 3893.5 ± 147.4 126 786.8 ± 23.0 1.01E-13 ± 1.38E-15 6.2 656 0.21 4.6 0.79 5.8 ± 0.4

Zr_OP1516-1 136 827.3 ± 48.4 63 382.7 ± 17.7 4.22E-14 ± 5.31E-16 6.1 151 0.47 8.6 0.78 10.9 ± 0.8
Zr_OP1516-2 254 1340.6 ± 31.8 76 400.2 ± 27.6 5.17E-14 ± 6.51E-16 5.3 272 0.31 6.7 0.76 8.8 ± 0.5
Zr_OP1516-3 571 6283.9 ± 182.1 142 1563.6 ± 61.2 1.96E-13 ± 2.32E-15 11.0 605 0.26 5.5 0.83 6.6 ± 0.4

Zr_OP1517-1 158 597.2 ± 47.5 108 408.4 ± 20.6 2.42E-14 ± 3.09E-16 3.8 183 0.70 6.5 0.72 9.0 ± 0.8
Zr_OP1517-2 60 335.3 ± 10.6 59 330.8 ± 10.5 1.53E-14 ± 1.81E-16 5.6 74 1.01 6.9 0.76 9.0 ± 0.5
Zr_OP1517-3 528 1972.3 ± 25.3 228 850.6 ± 18.6 1.15E-13 ± 1.37E-15 3.7 581 0.44 9.8 0.74 13.2 ± 0.7

Zr_OP1521-1 123 958.1 ± 14.2 50 384.9 ± 8.1 2.34E-12 ± 2.16E-14 7.8 135 0.41 398.3 0.81 490.4 ± 25.0
Zr_OP1521-2 1099 6339.4 ± 111.5 142 816.4 ± 12.4 7.20E-13 ± 9.28E-15 5.8 1132 0.13 20.4 0.78 26.0 ± 1.4
Zr_OP1521-3 473 3099.1 ± 43.9 97 633.7 ± 10.7 3.39E-13 ± 4.51E-15 6.5 496 0.21 19.4 0.76 25.3 ± 1.3

Zr_OP1522-1 319 1616.8 ± 45.4 134 678.3 ± 34.3 4.23E-13 ± 4.84E-15 5.1 350 0.43 44.2 0.79 55.5 ± 3.0

Table DR3: Zircon (U-Th)/He single grain data

Note: Aliquots which are strike-through are not considered for the sample age calculation. ppm values of U and Th are calculated from iCAP 
results by deviding the mass of the respective element by the grain mass (which is derived from measurements of 91Zr). eU is calculated by 
adding U-content and 0.235*Th-content. Mean sample ages are reported in Table DR1.

Corrected grain age ± 
1SD (Ma)U ± 2SD (pg) Th ± 2SD (pg) He ± 1SD (mol)
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Zr_OP1522-2 180 1780.5 ± 47.8 59 586.3 ± 13.7 4.60E-13 ± 5.28E-15 9.9 194 0.34 44.3 0.81 54.8 ± 3.2

Zr_OP1527-1 170 1990.6 ± 77.8 34 397.2 ± 19.4 1.51E-13 ± 1.84E-15 11.7 178 0.20 13.5 0.80 16.8 ± 1.1
Zr_OP1527-2 494 3828.6 ± 107.9 173 1338.8 ± 29.0 5.40E-13 ± 6.25E-15 7.8 534 0.36 24.2 0.78 31.1 ± 1.8
Zr_OP1527-3 68 442.1 ± 16.2 20 126.9 ± 5.6 3.67E-14 ± 4.64E-16 6.5 73 0.29 14.5 0.78 18.6 ± 1.1

Zr_OP1529-1 143 1344.1 ± 31.9 45 424.5 ± 13.7 3.42E-13 ± 4.36E-15 9.4 154 0.32 43.7 0.82 53.5 ± 3.0
Zr_OP1529-2 313 2745.1 ± 69.7 138 1205.1 ± 40.0 6.73E-13 ± 7.47E-15 8.8 346 0.45 41.1 0.79 51.8 ± 3.0
Zr_OP1529-3 712 12046.6 ± 395.3 107 1818.1 ± 47.4 2.12E-12 ± 1.97E-14 16.9 737 0.15 31.4 0.82 38.2 ± 2.2

Zr_OP1530-1 234 1520.6 ± 79.5 126 818.4 ± 30.1 3.61E-13 ± 4.91E-15 6.5 263 0.55 39.0 0.79 49.5 ± 3.3
Zr_OP1530-2 413 2879.0 ± 121.8 143 997.3 ± 43.8 7.56E-13 ± 9.03E-15 7.0 447 0.36 44.9 0.77 58.3 ± 3.7
Zr_OP1530-3 160 1309.0 ± 61.7 26 215.5 ± 7.7 2.43E-13 ± 3.32E-15 8.2 166 0.17 33.2 0.80 41.4 ± 2.8

Zr_OP1531-1 266 3647.6 ± 291.9 109 1495.4 ± 71.6 1.25E-12 ± 1.26E-14 13.7 292 0.42 58.1 0.82 70.9 ± 6.4
Zr_OP1531-2 113 905.9 ± 63.3 34 268.3 ± 11.6 6.84E-14 ± 9.48E-16 8.0 121 0.30 13.1 0.79 16.6 ± 1.4
Zr_OP1531-3 113 1104.3 ± 99.2 31 299.9 ± 29.6 1.20E-13 ± 1.67E-15 9.8 120 0.28 19.0 0.81 23.5 ± 2.3

Zr_OP1532-1 189 1795.2 ± 77.6 50 473.5 ± 15.5 1.31E-13 ± 1.61E-15 9.5 201 0.27 12.7 0.79 16.0 ± 1.0
Zr_OP1532-3 210 1756.0 ± 85.9 47 392.2 ± 20.1 7.26E-14 ± 8.71E-16 8.4 221 0.23 7.3 0.80 9.1 ± 0.6
Zr_OP1532-4 139 984.9 ± 47.4 24 166.8 ± 12.7 1.83E-14 ± 2.46E-16 7.1 145 0.17 3.3 0.79 4.2 ± 0.3

Zr_OP1533-1 239 2648.6 ± 208.6 121 1342.7 ± 91.0 5.45E-14 ± 7.02E-16 11.1 268 0.52 3.4 0.79 4.3 ± 0.4
Zr_OP1533-2 203 1482.3 ± 112.2 69 504.2 ± 34.8 1.08E-13 ± 1.43E-15 7.3 220 0.35 12.5 0.81 15.5 ± 1.3
Zr_OP1533-3 549 2271.8 ± 162.1 200 826.2 ± 43.2 5.78E-14 ± 7.53E-16 4.1 596 0.37 4.4 0.79 5.5 ± 0.4

Zr_OP1534-1 713 9063.9 ± 146.5 78 997.0 ± 15.5 3.17E-13 ± 3.72E-15 12.7 731 0.11 6.3 0.81 7.8 ± 0.4
Zr_OP1534-2 773 11279.9 ± 326.1 73 1073.0 ± 27.7 2.73E-13 ± 3.32E-15 14.6 790 0.10 4.4 0.82 5.4 ± 0.3
Zr_OP1534-3 1491 11832.0 ± 237.2 150 1186.7 ± 17.3 3.23E-14 ± 3.87E-16 7.9 1526 0.10 0.5 0.80 0.6 ± 0.0

Zr_OP1536-1 312 2063.1 ± 51.6 112 738.5 ± 21.0 3.61E-13 ± 4.29E-15 6.6 338 0.37 29.9 0.79 37.7 ± 2.0
Zr_OP1536-2 128 881.3 ± 26.3 58 402.1 ± 14.5 7.61E-14 ± 9.03E-16 6.9 142 0.47 14.5 0.80 18.1 ± 1.0
Zr_OP1536-3 473 2200.3 ± 51.4 284 1321.1 ± 38.1 1.66E-13 ± 1.95E-15 4.6 540 0.62 12.2 0.76 16.2 ± 0.9

Zr_OP1539-1 231 2402.0 ± 54.1 108 1126.6 ± 23.1 8.27E-14 ± 1.04E-15 10.4 256 0.48 5.7 0.80 7.2 ± 0.4
Zr_OP1539-2 263 2427.0 ± 38.0 224 2067.7 ± 32.5 7.99E-14 ± 9.38E-16 9.2 316 0.87 5.1 0.79 6.5 ± 0.3
Zr_OP1539-3 283 2988.4 ± 66.7 131 1386.9 ± 27.6 9.50E-14 ± 1.09E-15 10.6 313 0.48 5.3 0.79 6.7 ± 0.4

Zr_OP1540-1 603 5763.2 ± 273.9 58 551.2 ± 22.3 1.47E-13 ± 1.64E-15 9.6 616 0.10 4.6 0.79 5.9 ± 0.4
Zr_OP1540-2 601 4006.9 ± 248.4 165 1101.5 ± 75.6 1.02E-13 ± 1.22E-15 6.7 640 0.28 4.4 0.79 5.6 ± 0.4
Zr_OP1540-3 105 720.8 ± 21.8 52 358.3 ± 11.5 2.43E-14 ± 2.93E-16 6.9 117 0.51 5.6 0.79 7.1 ± 0.4

Zr_OP1542-1 249 1767.4 ± 136.7 63 446.7 ± 22.7 7.58E-14 ± 8.84E-16 7.1 264 0.26 7.6 0.77 9.8 ± 0.9
Zr_OP1542-2 822 7785.2 ± 356.9 148 1397.0 ± 60.1 3.24E-13 ± 3.86E-15 9.5 857 0.18 7.4 0.82 9.1 ± 0.6
Zr_OP1542-3 920 8788.2 ± 198.4 132 1256.9 ± 25.9 2.94E-13 ± 3.40E-15 9.6 951 0.15 6.0 0.79 7.6 ± 0.4

Zr_OP1547-1 31 289.7 ± 13.0 20 183.9 ± 6.9 6.43E-14 ± 7.62E-16 9.3 36 0.65 35.8 0.80 44.6 ± 2.8
Zr_OP1547-2 52 420.6 ± 13.3 26 209.4 ± 6.4 9.16E-14 ± 1.07E-15 8.1 58 0.51 36.0 0.79 45.8 ± 2.5

Zr_OP1548-1 108 1260.5 ± 23.0 38 447.6 ± 11.6 5.00E-13 ± 6.31E-15 11.7 117 0.36 67.5 0.82 82.0 ± 4.3
Zr_OP1548-2 592 7765.4 ± 206.9 91 1197.7 ± 20.6 2.69E-12 ± 2.47E-14 13.1 614 0.16 61.9 0.82 75.1 ± 4.3
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Zr_OP1565-1 162 1412.8 ± 31.4 52 450.0 ± 15.2 8.35E-14 ± 1.15E-15 8.7 174 0.33 10.2 0.80 12.7 ± 0.7
Zr_OP1565-2 121 1022.0 ± 12.3 57 477.7 ± 11.3 7.74E-14 ± 1.08E-15 8.4 135 0.48 12.6 0.77 16.3 ± 0.9
Zr_OP1565-3 293 2141.1 ± 38.3 65 474.6 ± 10.5 1.22E-13 ± 1.51E-15 7.3 308 0.23 10.0 0.80 12.6 ± 0.7

Zr_OP1580-1 89 584.1 ± 11.3 39 254.0 ± 7.8 2.85E-14 ± 3.52E-16 6.5 99 0.45 8.2 0.79 10.4 ± 0.5
Zr_OP1580-2 422 2138.6 ± 51.0 99 503.7 ± 14.9 8.08E-14 ± 9.78E-16 5.1 445 0.24 6.6 0.82 8.2 ± 0.4
Zr_OP1580-3 232 2292.1 ± 65.5 69 684.9 ± 16.0 1.23E-13 ± 1.58E-15 9.9 249 0.31 9.3 0.79 11.8 ± 0.7

Zr_OP1582-1 324 2592.4 ± 70.2 32 254.5 ± 8.9 8.44E-14 ± 1.02E-15 8.0 331 0.10 5.9 0.81 7.3 ± 0.4
Zr_OP1582-2 210 1488.5 ± 40.7 93 658.2 ± 16.5 1.59E-13 ± 2.02E-15 7.1 232 0.45 17.9 0.79 22.6 ± 1.3
Zr_OP1582-3 81 306.8 ± 6.3 45 170.2 ± 5.1 1.01E-14 ± 1.38E-16 3.8 92 0.57 5.4 0.79 6.8 ± 0.4
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Appendix B

Additional data tables of section 3.2

The following pages contain supplementary data tables for the manuscript
“How steady are steady-state mountain belts? – a re-examination of the Olympic
Mountains (Washington State, USA).” presented in section 3.2.2.

These data include single grain analyses from apatite (U-Th)/He dating (Table
DR1, section B.1), single grain analyses from zircon (U-Th)/He dating (Table
DR2, section B.2), single grain analyses from apatite fission-track dating (Ta-
ble DR3, section B.3) and single grain analyses from zircon fission-track dat-
ing (Table DR4, section B.4). These tables are also available online as excel
spreadsheets or PDF files on the Earth Surface Dynamics homepage (https:
//www.earth-surf-dynam-discuss.net/esurf-2018-65/#discussion).
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Sample/ 

Aliquot

U 

(ppm)

Th 

(ppm)

Sm 

(ppm)

grain 

mass 

(µg)

eU 

(ppm)
Th/U

Uncorrec

ted grain 

age (Ma)

FT 

correcti

on

Ap_OP1550-1 27 130.8 ± 18.5 24 115.8 ± 3.2 147 711.7 ± 10.7 1.66E-15 ± 3.14E-17 4.8 33 0.91 2.0 0.80 2.5 ± 0.3

Ap_OP1550-2 14 56.6 ± 10.9 10 40.1 ± 1.3 166 677.7 ± 10.8 4.92E-16 ± 1.15E-17 4.1 16 0.73 1.4 0.79 1.8 ± 0.3

Ap_OP1550-3 18 38.8 ± 9.9 11 25.1 ± 1.0 36 77.6 ± 8.2 1.80E-16 ± 7.31E-18 2.2 20 0.66 0.8 0.70 1.1 ± 0.3

Ap_OP1550-4 70 118.0 ± 16.0 50 85.1 ± 2.5 100 170.2 ± 8.6 1.36E-15 ± 2.19E-17 1.7 81 0.74 1.8 0.62 3.0 ± 0.4

Ap_OP1551-1 159 728.3 ± 20.7 125 571.7 ± 8.8 74 339.4 ± 7.3 1.20E-14 ± 1.65E-16 4.6 188 0.81 2.6 0.76 3.4 ± 0.2

Ap_OP1551-2 56 130.7 ± 3.1 112 262.8 ± 6.4 114 266.6 ± 7.0 2.86E-15 ± 4.08E-17 2.3 82 2.06 2.7 0.70 3.9 ± 0.2

Ap_OP1551-3 14 10.0 ± 0.7 37 27.4 ± 1.1 68 50.6 ± 3.5 1.41E-16 ± 6.15E-18 0.7 22 2.80 1.6 0.66 2.4 ± 0.2

Ap_OP1551-4 46 71.2 ± 2.5 68 106.1 ± 3.4 193 300.1 ± 8.5 1.19E-15 ± 1.72E-17 1.6 62 1.53 2.3 0.65 3.5 ± 0.2

Ap_OP1552-1 3 19.8 ± 1.1 4 32.4 ± 1.1 114 845.5 ± 13.2 4.48E-16 ± 1.10E-17 7.4 4 1.68 3.0 0.81 3.7 ± 0.3

Ap_OP1552-2 57 127.8 ± 4.8 64 145.0 ± 3.9 508 1145.2 ± 13.7 2.46E-14 ± 2.90E-16 2.3 72 1.16 28.1 0.69 40.6 ± 2.3

Ap_OP1552-3 3 10.6 ± 0.4 5 21.2 ± 1.0 100 409.5 ± 6.0 2.24E-16 ± 7.61E-18 4.1 4 2.05 2.7 0.74 3.6 ± 0.3

Ap_OP1552-4 79 201.9 ± 5.9 54 136.5 ± 3.4 227 578.9 ± 8.0 3.31E-15 ± 3.98E-17 2.5 92 0.69 2.6 0.71 3.7 ± 0.2

Ap_OP1553-1 14 46.2 ± 6.0 13 43.6 ± 1.2 86 291.3 ± 9.9 2.13E-16 ± 8.73E-18 3.4 17 0.97 0.7 0.70 1.0 ± 0.1

Ap_OP1553-2 80 225.8 ± 19.8 45 127.6 ± 2.6 144 403.9 ± 9.0 3.59E-15 ± 4.28E-17 2.8 91 0.58 2.6 0.73 3.6 ± 0.3

Ap_OP1553-3 5 70.9 ± 13.0 6 83.2 ± 2.1 85 1149.8 ± 12.9 8.08E-16 ± 1.13E-17 13.5 7 1.20 1.7 0.83 2.0 ± 0.3

Ap_OP1553-4 6 43.7 ± 8.6 7 46.2 ± 1.5 184 1290.4 ± 13.7 9.20E-14 ± 1.03E-15 7.0 8 1.08 312.2 0.78 399.0 ± 67.7

Ap_OP1553-5 6 25.2 ± 1.1 8 36.4 ± 1.0 129 585.0 ± 7.9 6.77E-16 ± 1.57E-17 4.5 7 1.48 3.7 0.73 5.1 ± 0.3

Ap_OP1554-1 22 79.9 ± 11.6 15 52.0 ± 1.2 77 276.2 ± 8.3 8.21E-16 ± 1.47E-17 3.6 26 0.67 1.7 0.78 2.1 ± 0.3

Ap_OP1554-2 35 72.0 ± 9.1 35 72.0 ± 1.5 98 199.2 ± 6.8 5.64E-16 ± 1.17E-17 2.0 44 1.03 1.2 0.65 1.8 ± 0.2

Ap_OP1554-3 36 43.3 ± 8.4 9 11.4 ± 0.6 87 105.8 ± 7.7 1.20E-16 ± 7.09E-18 1.2 38 0.27 0.5 0.63 0.8 ± 0.2

Ap_OP1554-4 53 106.4 ± 12.2 19 38.1 ± 1.1 105 211.4 ± 9.1 1.18E-15 ± 2.31E-17 2.0 57 0.37 1.9 0.64 3.0 ± 0.4

Ap_OP1555-1 10 40.0 ± 7.8 5 18.1 ± 0.7 196 757.2 ± 9.8 2.48E-14 ± 2.63E-16 3.9 11 0.47 106.5 0.74 143.5 ± 25.6

Ap_OP1555-2 19 37.9 ± 5.1 20 39.0 ± 1.4 119 238.3 ± 8.5 2.23E-16 ± 5.87E-18 2.0 24 1.05 0.9 0.68 1.3 ± 0.2

Ap_OP1555-3 80 263.6 ± 21.9 8 26.2 ± 0.7 155 509.2 ± 11.2 2.93E-15 ± 3.69E-17 3.3 82 0.10 2.0 0.76 2.7 ± 0.2

Ap_OP1555-4 57 135.4 ± 15.9 66 157.4 ± 3.9 186 444.6 ± 9.6 3.27E-14 ± 3.48E-16 2.4 72 1.19 35.2 0.68 51.6 ± 5.5

Ap_OP1555-5 32 126.8 ± 4.0 53 211.7 ± 5.7 135 538.1 ± 11.6 3.67E-14 ± 4.01E-16 4.0 44 1.71 38.4 0.72 53.5 ± 2.9

Ap_OP1555-6 30 96.8 ± 3.8 17 54.9 ± 1.7 132 434.0 ± 7.7 1.55E-15 ± 2.27E-17 3.3 33 0.58 2.6 0.72 3.7 ± 0.2

Table DR 1: Apatite (U-Th-Sm)/He data 

Notes: Aliquots which are strike-through are not considered for the sample age calculation.For two samples (OP1572 and OP1576) a single grain age (aliquot is red) is taken as 

sample age.  ppm values of U, Th and Sm are calculated from iCAP results by deviding the mass of the respective element by the grain mass (which is derived from 

measurements of 
43

Ca). eU is calculated by adding U-content and 0.235*Th-content.

Corrected 

grain age ± 

1SD (Ma)

U ± 2SD (pg) Th ± 2SD (pg) Sm ± 2SD (pg) He ± 1SD (mol) 
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Ap_OP1557-1 30 54.6 ± 9.2 6 11.2 ± 0.5 64 116.9 ± 5.2 5.56E-16 ± 1.11E-17 1.8 31 0.21 1.9 0.63 2.9 ± 0.5

Ap_OP1557-2 48 398.0 ± 23.9 9 73.9 ± 1.5 253 2081.3 ± 20.4 5.43E-14 ± 6.34E-16 8.2 50 0.19 24.3 0.79 30.9 ± 2.4

Ap_OP1557-3 48 83.1 ± 10.2 34 58.6 ± 1.2 308 531.9 ± 10.7 7.45E-15 ± 9.51E-17 1.7 56 0.72 14.4 0.67 21.6 ± 2.6

Ap_OP1557-4 61 287.3 ± 17.9 28 133.3 ± 2.8 380 1794.7 ± 22.4 5.08E-14 ± 6.06E-16 4.7 68 0.48 29.6 0.77 38.4 ± 2.8

Ap_OP1557-5 11 19.0 ± 0.9 38 62.7 ± 1.5 61 102.2 ± 4.8 2.86E-16 ± 8.59E-18 1.7 20 3.39 1.6 0.66 2.4 ± 0.2

Ap_OP1557-6 27 72.3 ± 3.2 43 117.0 ± 3.9 109 294.2 ± 6.4 3.07E-15 ± 4.54E-17 2.7 37 1.66 5.7 0.71 8.1 ± 0.5

Ap_OP1557-7 60 155.6 ± 3.1 39 100.6 ± 2.7 480 1243.4 ± 16.0 3.54E-14 ± 4.89E-16 2.6 69 0.66 36.5 0.75 48.4 ± 2.6

Ap_OP1558-1 7 9.6 ± 0.7 10 14.3 ± 0.7 183 255.7 ± 6.3 5.14E-16 ± 1.10E-17 1.4 9 1.53 7.4 0.63 11.8 ± 0.9

Ap_OP1558-2 11 9.9 ± 0.8 10 8.7 ± 0.7 93 79.7 ± 3.6 2.89E-16 ± 7.36E-18 0.9 14 0.91 4.5 0.60 7.4 ± 0.6

Ap_OP1558-3 16 31.9 ± 1.3 70 142.6 ± 3.0 276 564.4 ± 7.0 5.89E-15 ± 6.58E-17 2.0 32 4.58 16.6 0.66 25.0 ± 1.4

Ap_OP1558-4 31 56.1 ± 2.2 8 14.7 ± 0.6 102 187.3 ± 4.7 1.52E-15 ± 2.12E-17 1.8 33 0.27 4.7 0.68 7.0 ± 0.4

Ap_OP1559-1 22 15.9 ± 1.1 6 4.4 ± 0.4 224 160.6 ± 5.5 8.25E-16 ± 1.49E-17 0.7 24 0.29 9.1 0.66 13.7 ± 1.1

Ap_OP1559-2 50 45.0 ± 1.8 90 80.7 ± 1.9 223 200.8 ± 5.9 2.05E-15 ± 2.85E-17 0.9 71 1.84 5.9 0.66 9.0 ± 0.5

Ap_OP1559-3 71 43.5 ± 1.9 153 94.3 ± 2.5 167 103.0 ± 3.5 2.29E-15 ± 3.26E-17 0.6 107 2.22 6.4 0.54 12.0 ± 0.7

Ap_OP1559-4 46 56.3 ± 2.6 37 45.6 ± 1.4 213 262.7 ± 8.9 2.14E-15 ± 3.63E-17 1.2 54 0.83 5.9 0.64 9.3 ± 0.6

Ap_OP1560-1 21 58.8 ± 10.4 18 49.7 ± 1.2 57 157.0 ± 5.5 1.37E-15 ± 2.20E-17 2.8 25 0.87 3.7 0.68 5.4 ± 0.8

Ap_OP1560-2 58 160.3 ± 18.1 49 134.6 ± 2.5 138 380.9 ± 6.4 2.87E-14 ± 3.36E-16 2.8 69 0.86 27.9 0.69 40.5 ± 4.2

Ap_OP1560-3 21 34.3 ± 6.5 2 3.5 ± 0.2 169 278.9 ± 9.7 1.54E-15 ± 2.55E-17 1.7 21 0.10 8.4 0.67 12.7 ± 2.7

Ap_OP1560-4 30 35.8 ± 6.0 2 2.5 ± 0.2 70 82.4 ± 6.4 7.90E-17 ± 6.33E-18 1.2 31 0.07 0.4 0.62 0.7 ± 0.1

Ap_OP1561-1 12 65.0 ± 2.3 15 80.6 ± 2.6 202 1111.7 ± 14.0 9.98E-15 ± 1.25E-16 5.5 15 1.27 21.9 0.78 28.1 ± 1.7

Ap_OP1561-2 17 24.7 ± 1.3 15 20.7 ± 0.8 192 273.9 ± 6.6 3.13E-15 ± 4.98E-17 1.4 21 0.86 19.7 0.68 28.9 ± 2.0

Ap_OP1561-3 13 17.0 ± 0.9 9 11.7 ± 0.6 204 268.9 ± 6.4 2.45E-15 ± 3.85E-17 1.3 15 0.71 23.1 0.68 34.2 ± 2.2

Ap_OP1561-4 70 16.4 ± 0.6 221 52.0 ± 1.9 1199 282.1 ± 7.9 2.50E-15 ± 3.36E-17 0.2 122 3.26 16.1 0.52 31.1 ± 1.8

Ap_OP1562-1 35 61.4 ± 9.3 15 27.3 ± 1.0 47 82.6 ± 5.4 1.20E-15 ± 2.17E-17 1.8 38 0.46 3.3 0.68 4.9 ± 0.7

Ap_OP1562-2 62 63.9 ± 8.2 7 7.4 ± 0.3 144 147.4 ± 5.8 9.89E-16 ± 2.26E-17 1.0 64 0.12 2.8 0.55 5.2 ± 0.8

Ap_OP1562-3 36 45.7 ± 11.8 9 11.1 ± 0.5 21 26.8 ± 5.2 4.31E-16 ± 9.95E-18 1.3 38 0.25 1.7 0.59 3.0 ± 0.8

Ap_OP1562-4 17 38.8 ± 8.6 4 9.0 ± 0.5 61 138.3 ± 6.6 3.31E-16 ± 9.71E-18 2.3 18 0.24 1.6 0.72 2.2 ± 0.5

Ap_OP1571-1 31 122.9 ± 13.5 37 143.7 ± 3.3 104 407.7 ± 11.4 1.95E-15 ± 3.21E-17 3.9 40 1.20 2.3 0.76 3.0 ± 0.3

Ap_OP1571-2 14 42.5 ± 7.1 9 26.8 ± 1.0 321 943.5 ± 10.3 9.98E-15 ± 1.31E-16 2.9 17 0.65 38.6 0.73 53.1 ± 8.0

Ap_OP1571-3 19 62.2 ± 9.7 20 67.2 ± 1.8 82 271.3 ± 10.6 7.34E-16 ± 1.45E-17 3.3 24 1.11 1.8 0.71 2.5 ± 0.3

Ap_OP1571-4 44 181.5 ± 18.8 19 76.1 ± 1.2 161 655.9 ± 12.5 2.92E-15 ± 4.26E-17 4.1 49 0.43 2.7 0.73 3.7 ± 0.4

Ap_OP1572-1 55 247.9 ± 19.5 46 208.0 ± 4.0 178 796.6 ± 11.2 2.47E-14 ± 2.76E-16 4.5 66 0.86 15.5 0.77 20.2 ± 1.7

Ap_OP1572-2 55 89.7 ± 14.3 26 42.7 ± 1.5 121 197.5 ± 8.7 1.04E-14 ± 1.24E-16 1.6 61 0.49 19.5 0.61 31.9 ± 5.1

Ap_OP1572-3 56 127.1 ± 12.4 34 77.2 ± 1.6 122 277.7 ± 9.6 9.64E-15 ± 1.23E-16 2.3 64 0.62 12.4 0.68 18.2 ± 1.8
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Ap_OP1572-4 30 70.5 ± 10.0 19 44.3 ± 1.5 111 262.8 ± 10.8 1.01E-15 ± 1.63E-17 2.4 34 0.64 2.3 0.72 3.3 ± 0.4

Ap_OP1572-5 59 186.7 ± 6.7 55 175.0 ± 4.7 209 659.4 ± 9.1 1.86E-14 ± 2.29E-16 3.2 72 0.96 15.1 0.74 20.5 ± 1.2

Ap_OP1572-6 72 117.5 ± 4.3 56 92.7 ± 2.5 185 304.2 ± 4.9 1.18E-14 ± 1.47E-16 1.6 85 0.81 15.7 0.73 21.4 ± 1.2

Ap_OP1573-1 83 19.1 ± 1.1 55 12.8 ± 0.3 290 66.9 ± 3.9 3.14E-16 ± 9.55E-18 0.2 96 0.69 2.6 0.70 3.7 ± 0.3

Ap_OP1573-2 32 75.1 ± 3.0 75 174.2 ± 4.6 141 328.4 ± 7.1 2.44E-14 ± 3.08E-16 2.3 50 2.38 38.9 0.68 56.9 ± 3.2

Ap_OP1573-3 53 107.3 ± 2.6 11 21.6 ± 1.0 148 298.8 ± 5.0 1.72E-15 ± 2.57E-17 2.0 56 0.21 2.8 0.69 4.1 ± 0.2

Ap_OP1573-4 89 123.1 ± 5.0 147 202.7 ± 4.5 191 263.9 ± 6.9 2.29E-15 ± 3.26E-17 1.4 124 1.69 2.5 0.64 3.9 ± 0.2

Ap_OP1574-1 36 82.0 ± 15.0 1 1.8 ± 0.2 293 662.8 ± 7.2 1.49E-15 ± 2.25E-17 2.3 36 0.02 3.5 0.71 4.9 ± 1.0

Ap_OP1574-2 87 208.2 ± 21.1 63 151.3 ± 3.3 223 536.5 ± 13.1 1.61E-14 ± 2.29E-16 2.4 101 0.75 12.3 0.69 17.9 ± 1.8

Ap_OP1574-3 57 93.1 ± 12.1 10 16.6 ± 1.0 96 156.0 ± 8.6 5.69E-16 ± 1.18E-17 1.6 59 0.18 1.1 0.63 1.8 ± 0.2

Ap_OP1574-4 32 44.5 ± 10.8 18 25.2 ± 0.9 46 65.4 ± 4.2 2.71E-16 ± 7.90E-18 1.4 36 0.58 1.0 0.65 1.6 ± 0.4

Ap_OP1574-5 32 46.4 ± 1.4 34 49.9 ± 2.0 100 145.9 ± 4.8 7.24E-16 ± 1.72E-17 1.5 40 1.10 2.3 0.66 3.5 ± 0.2

Ap_OP1574-6 13 40.3 ± 1.7 12 36.8 ± 1.4 160 492.7 ± 9.9 7.32E-16 ± 1.58E-17 3.1 16 0.94 2.8 0.71 3.9 ± 0.2

Ap_OP1574-7 19 25.6 ± 1.3 7 10.0 ± 0.5 187 251.3 ± 6.1 3.86E-16 ± 1.04E-17 1.3 21 0.40 2.6 0.64 4.0 ± 0.3

Ap_OP1576-1 9 40.9 ± 7.6 6 26.8 ± 0.9 192 905.3 ± 13.4 2.87E-14 ± 3.46E-16 4.7 10 0.67 114.0 0.77 147.3 ± 25.6

Ap_OP1576-3 35 89.5 ± 11.6 29 72.8 ± 1.4 150 380.3 ± 6.6 5.88E-16 ± 1.37E-17 2.5 42 0.83 1.0 0.67 1.5 ± 0.2

Ap_OP1576-4 15 36.5 ± 6.8 4 8.7 ± 0.5 156 373.6 ± 7.8 4.36E-14 ± 5.71E-16 2.4 16 0.24 211.9 0.72 291.8 ± 56.4

Ap_OP1528-1 39 110.1 ± 3.6 72 205.3 ± 5.1 73 208.3 ± 5.8 1.55E-15 ± 2.23E-17 2.9 55 1.91 1.8 0.70 2.6 ± 0.2

Ap_OP1528-2 12 14.2 ± 0.7 18 22.2 ± 1.2 90 109.6 ± 4.8 2.17E-16 ± 8.41E-18 1.2 16 1.61 2.1 0.63 3.3 ± 0.2

Ap_OP1528-3 13 39.3 ± 1.3 30 90.2 ± 2.0 75 226.4 ± 4.9 6.44E-16 ± 1.64E-17 3.0 20 2.35 2.0 0.69 2.8 ± 0.2

Ap_OP1528-4 33 49.4 ± 2.5 61 92.0 ± 2.5 136 203.8 ± 5.6 8.30E-16 ± 1.27E-17 1.5 47 1.91 2.2 0.65 3.3 ± 0.2

Ap_OP1556-1 17 12.7 ± 0.9 10 7.7 ± 0.5 75 56.3 ± 3.8 1.04E-16 ± 5.49E-18 0.7 19 0.62 1.3 0.63 2.1 ± 0.2

Ap_OP1556-2 29 57.7 ± 1.8 12 23.3 ± 0.8 149 295.0 ± 6.2 9.73E-16 ± 1.60E-17 2.0 32 0.41 2.9 0.68 4.2 ± 0.2

Ap_OP1556-3 6 13.4 ± 0.8 15 35.0 ± 1.2 135 319.6 ± 6.9 2.84E-16 ± 7.76E-18 2.4 9 2.68 2.4 0.69 3.5 ± 0.2
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Sample/ 

Aliquot

U 

(ppm)

Th 

(ppm)

grain 

mass 

(µg)

eU 

(ppm)
Th/U

Uncorrected 

grain age 

(Ma)

FT 

correcti

on

Zr_OP1550-1 283 1955.9 ± 49.3 53 364.0 ± 9.4 7.37E-14 ± 9.07E-16 6.9 295 0.19 6.7 0.82 8.2 ± 0.4

Zr_OP1550-2 421 1982.2 ± 33.7 98 459.5 ± 12.8 5.27E-14 ± 6.43E-16 4.7 444 0.24 4.7 0.76 6.2 ± 0.3

Zr_OP1550-3 865 1449.5 ± 32.9 86 144.5 ± 4.2 7.16E-14 ± 8.34E-16 1.7 885 0.10 9.0 0.74 12.2 ± 0.7

Zr_OP1550-4 628 3753.8 ± 55.0 148 886.8 ± 17.5 1.15E-13 ± 1.37E-15 6.0 662 0.24 5.4 0.80 6.7 ± 0.3

Zr_OP1551-2 628 3891.7 ± 75.4 76 469.0 ± 12.5 3.73E-13 ± 2.39E-15 6.2 646 0.12 17.3 0.83 20.9 ± 1.1

Zr_OP1551-3 341 2429.3 ± 47.9 106 756.4 ± 18.9 1.16E-13 ± 1.45E-15 7.1 366 0.32 8.2 0.83 10.0 ± 0.5

Zr_OP1551-4 730 5134.3 ± 123.4 289 2034.2 ± 53.6 1.66E-13 ± 2.18E-15 7.0 798 0.41 5.5 0.80 6.8 ± 0.4

Zr_OP1551-5 164 774.0 ± 18.0 51 238.8 ± 7.4 2.34E-14 ± 3.03E-16 4.7 176 0.32 5.2 0.77 6.8 ± 0.4

Zr_OP1551-6 259 2145.2 ± 37.4 144 1195.0 ± 30.0 7.42E-14 ± 9.30E-16 8.3 293 0.57 5.7 0.80 7.1 ± 0.4

Zr_OP1551-7 176 537.8 ± 12.7 67 205.6 ± 9.0 1.75E-14 ± 2.10E-16 3.1 191 0.39 5.5 0.75 7.4 ± 0.4

Zr_OP1552-1 347 728.7 ± 20.7 122 256.8 ± 8.7 3.14E-14 ± 3.42E-16 2.1 376 0.36 7.4 0.68 10.8 ± 0.6

Zr_OP1552-2 413 2298.7 ± 42.4 77 430.6 ± 11.9 9.18E-14 ± 1.05E-15 5.6 431 0.19 7.1 0.79 9.0 ± 0.5

Zr_OP1552-3 117 323.0 ± 6.5 39 107.6 ± 4.8 9.18E-15 ± 1.16E-16 2.8 126 0.34 4.9 0.74 6.6 ± 0.4

Zr_OP1552-4 517 855.2 ± 25.6 153 252.5 ± 9.0 2.68E-14 ± 3.18E-16 1.7 552 0.30 5.4 0.70 7.8 ± 0.4

Zr_OP1553-1 248 1927.2 ± 38.4 43 338.2 ± 9.6 6.95E-14 ± 8.91E-16 7.8 258 0.18 6.4 0.80 8.0 ± 0.5

Zr_OP1553-2 553 6195.5 ± 130.2 136 1523.9 ± 34.3 2.27E-13 ± 2.87E-15 11.2 585 0.25 6.4 0.84 7.7 ± 0.4

Zr_OP1553-3 173 2082.4 ± 30.0 71 851.0 ± 22.5 7.63E-14 ± 9.95E-16 12.1 189 0.42 6.2 0.85 7.3 ± 0.4

Zr_OP1554-1 113 355.6 ± 7.4 26 82.9 ± 3.2 1.17E-14 ± 1.70E-16 3.2 119 0.24 5.8 0.75 7.7 ± 0.4

Table DR2: Zircon (U-Th)/He data

Note: Aliquots which are strike-through are not considered for the sample age calculation. ppm values of U and Th are calculated from iCAP results by deviding the mass 

of the respective element by the grain mass (which is derived from measurements of 
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Zr). eU is calculated by adding U-content and 0.235*Th-content.

Corrected grain 

age ± 1SD (Ma)
U ± 2SD (pg) Th ± 2SD (pg) He ± 1SD (mol)
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Zr_OP1554-2 433 1348.3 ± 34.4 147 458.7 ± 26.3 3.90E-14 ± 4.74E-16 3.1 468 0.35 5.0 0.75 6.6 ± 0.4

Zr_OP1554-3 363 754.1 ± 10.6 63 130.4 ± 5.0 1.93E-14 ± 2.42E-16 2.1 377 0.18 4.6 0.70 6.5 ± 0.4

Zr_OP1554-4 640 789.2 ± 19.1 256 315.8 ± 12.5 2.33E-14 ± 3.07E-16 1.2 700 0.41 5.0 0.66 7.6 ± 0.4

Zr_OP1555-1 197 1440.1 ± 34.7 92 673.0 ± 18.5 5.68E-14 ± 7.17E-16 7.3 218 0.48 6.6 0.81 8.1 ± 0.4

Zr_OP1555-2 252 1977.7 ± 44.7 103 809.1 ± 21.2 7.71E-14 ± 9.58E-16 7.9 276 0.42 6.6 0.81 8.2 ± 0.4

Zr_OP1555-3 309 1575.4 ± 38.5 79 403.5 ± 11.7 3.78E-14 ± 4.57E-16 5.1 328 0.26 4.2 0.82 5.1 ± 0.3

Zr_OP1555-4 190 877.2 ± 25.9 101 464.8 ± 9.0 3.10E-14 ± 4.02E-16 4.6 214 0.54 5.8 0.79 7.3 ± 0.4

Zr_OP1557-1 334 2568.3 ± 64.5 103 792.2 ± 15.1 5.97E-13 ± 7.29E-15 7.7 358 0.32 40.1 0.75 53.1 ± 3.0

Zr_OP1557-2 653 4708.8 ± 74.3 176 1266.6 ± 34.4 1.02E-12 ± 1.16E-14 7.2 694 0.28 37.8 0.80 47.1 ± 2.5

Zr_OP1557-3 236 1901.9 ± 42.3 95 763.3 ± 20.8 2.08E-13 ± 2.53E-15 8.1 258 0.41 18.5 0.74 25.1 ± 1.4

Zr_OP1557-4 189 1225.3 ± 30.5 76 493.3 ± 13.6 1.13E-13 ± 1.40E-15 6.5 207 0.41 15.6 0.78 20.1 ± 1.1

Zr_OP1562-1 356 1205.1 ± 30.6 141 479.2 ± 11.9 1.46E-13 ± 1.75E-15 3.4 389 0.41 20.5 0.80 25.5 ± 1.4

Zr_OP1562-2 369 1959.8 ± 42.4 39 208.6 ± 7.9 2.82E-13 ± 3.45E-15 5.3 379 0.11 26.0 0.81 32.3 ± 1.8

Zr_OP1562-3 237 869.4 ± 24.4 57 209.9 ± 7.5 1.02E-13 ± 1.28E-15 3.7 250 0.25 20.6 0.81 25.4 ± 1.4

Zr_OP1562-4 190 962.4 ± 24.7 142 720.7 ± 16.2 1.58E-13 ± 1.96E-15 5.1 223 0.77 25.9 0.77 33.6 ± 1.8

Zr_OP1570-1 345 2886.9 ± 89.4 103 857.4 ± 16.4 1.15E-13 ± 1.48E-15 8.4 369 0.30 6.9 0.82 8.4 ± 0.5

Zr_OP1570-2 574 3152.9 ± 44.1 192 1056.8 ± 27.6 1.42E-13 ± 1.89E-15 5.5 619 0.34 7.7 0.78 9.8 ± 0.5

Zr_OP1570-3 466 2264.1 ± 50.3 33 158.4 ± 4.8 7.36E-14 ± 9.25E-16 4.9 474 0.07 5.9 0.76 7.7 ± 0.4

Zr_OP1570-4 160 1158.4 ± 32.9 29 209.2 ± 7.1 3.70E-14 ± 4.79E-16 7.2 167 0.19 5.7 0.82 6.9 ± 0.4

Zr_OP1571-1 548 2883.0 ± 70.9 47 247.9 ± 7.2 8.68E-14 ± 1.06E-15 5.3 559 0.09 5.5 0.77 7.1 ± 0.4

Zr_OP1571-2 139 2304.5 ± 47.1 33 550.4 ± 15.8 1.09E-13 ± 1.33E-15 16.5 147 0.24 8.3 0.86 9.7 ± 0.5

Zr_OP1571-3 519 1215.3 ± 28.7 161 377.0 ± 13.7 4.19E-14 ± 5.34E-16 2.3 557 0.32 6.0 0.72 8.3 ± 0.5

Zr_OP1571-4 420 3548.8 ± 62.5 97 822.7 ± 16.0 1.26E-13 ± 1.69E-15 8.4 443 0.24 6.3 0.82 7.6 ± 0.4
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Zr_OP1572-1 435 674.6 ± 17.8 114 177.1 ± 7.8 2.31E-14 ± 2.66E-16 1.6 462 0.27 6.0 0.67 8.9 ± 0.5

Zr_OP1572-2 1002 4173.2 ± 61.1 255 1062.4 ± 26.1 1.12E-13 ± 1.34E-15 4.2 1062 0.26 4.7 0.77 6.1 ± 0.3

Zr_OP1572-3 258 1378.8 ± 34.3 35 187.6 ± 7.0 4.66E-14 ± 5.32E-16 5.3 266 0.14 6.1 0.78 7.7 ± 0.4

Zr_OP1572-4 682 2496.6 ± 42.5 187 684.2 ± 16.3 1.12E-13 ± 1.17E-15 3.7 726 0.28 7.8 0.76 10.3 ± 0.5

Zr_OP1572-5 217 1863.6 ± 29.7 92 793.4 ± 14.1 8.09E-14 ± 8.64E-16 8.6 239 0.44 7.3 0.81 9.1 ± 0.5

Zr_OP1573-1 286 745.7 ± 18.0 129 337.0 ± 10.6 2.46E-14 ± 2.74E-16 2.6 317 0.46 5.5 0.73 7.6 ± 0.4

Zr_OP1573-2 89 308.0 ± 9.1 29 99.0 ± 4.0 1.25E-14 ± 1.35E-16 3.5 96 0.33 7.0 0.75 9.3 ± 0.5

Zr_OP1573-3 409 1664.9 ± 35.1 122 496.7 ± 10.3 7.05E-14 ± 8.25E-16 4.1 438 0.31 7.3 0.75 9.7 ± 0.5

Zr_OP1573-4 276 2324.7 ± 54.0 50 424.9 ± 6.3 9.48E-14 ± 1.07E-15 8.4 288 0.19 7.3 0.80 9.1 ± 0.5

Zr_OP1574-1 232 669.4 ± 10.6 44 126.9 ± 5.4 2.15E-14 ± 2.85E-16 2.9 242 0.19 5.7 0.74 7.7 ± 0.4

Zr_OP1574-2 69 622.9 ± 18.2 34 308.7 ± 8.0 2.84E-14 ± 3.81E-16 9.0 78 0.51 7.6 0.82 9.2 ± 0.5

Zr_OP1574-3 1124 6696.8 ± 117.3 66 393.8 ± 7.4 1.88E-13 ± 2.60E-15 6.0 1140 0.06 5.1 0.77 6.6 ± 0.4

Zr_OP1574-4 698 3205.0 ± 55.5 215 987.7 ± 23.1 1.10E-13 ± 1.45E-15 4.6 749 0.32 6.0 0.76 7.9 ± 0.4

Zr_OP1576-1 161 396.4 ± 6.9 43 105.3 ± 2.6 1.13E-14 ± 1.53E-16 2.5 171 0.27 5.0 0.73 6.8 ± 0.4

Zr_OP1576-2 194 398.7 ± 9.9 87 179.7 ± 7.1 1.59E-14 ± 1.93E-16 2.1 214 0.46 6.7 0.69 9.7 ± 0.5

Zr_OP1576-3 129 212.4 ± 8.7 26 42.8 ± 2.7 5.27E-15 ± 7.11E-17 1.7 135 0.21 4.4 0.72 6.1 ± 0.4

Zr_OP1576-4 213 586.5 ± 14.5 56 154.4 ± 5.9 1.63E-14 ± 2.18E-16 2.8 226 0.27 4.9 0.73 6.6 ± 0.4

Zr_OP1576-5 369 1186.5 ± 31.0 89 287.7 ± 9.5 3.30E-14 ± 4.26E-16 3.2 390 0.25 4.9 0.76 6.4 ± 0.4

Zr_OP1577-1 341 3594.9 ± 64.8 145 1523.0 ± 36.9 1.32E-13 ± 1.66E-15 10.5 375 0.43 6.2 0.83 7.4 ± 0.4

Zr_OP1577-2 777 3966.1 ± 78.2 131 667.5 ± 16.9 1.21E-13 ± 1.51E-15 5.1 808 0.17 5.5 0.75 7.2 ± 0.4

Zr_OP1577-3 1265 4039.0 ± 82.2 394 1257.0 ± 36.0 1.35E-13 ± 1.58E-15 3.2 1357 0.32 5.8 0.75 7.7 ± 0.4

Zr_OP1577-4 132 351.2 ± 10.6 35 92.3 ± 3.9 8.35E-15 ± 1.06E-16 2.7 140 0.27 4.2 0.74 5.6 ± 0.3
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Table DR3: Apatite fission track single grain ages listed for each sample. 
 

===================ZetaAge Program v. 4.8 (Brandon 8/13/02)=================== 

OP1502 (Olympics) sedimentary bedrock, (Counted by Sarah Falkowski Nov. 2016) 

EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2):      8.270E+05 

                                       RELATIVE ERROR (%):      1.48 

               EFFECTIVE URANIUM CONTENT OF MONITOR (ppm):     15.00 

                 ZETA FACTOR AND STANDARD ERROR (yr cm^2):    252.90     5.00 

                            SIZE OF COUNTER SQUARE (cm^2):      1.000E-06 

Grain    RhoS    (Ns)     RhoI    (Ni)  Squares  U+/-2s     Grain  Age (Ma) 

 no.    (cm^-2)          (cm^-2)                          Age     --95% CI-- 

   1   8.33E+05 (   5)  1.67E+05 (   1)    6      3   5  454.2   58.2 10161.2 

   2   3.33E+05 (   2)  1.67E+05 (   1)    6      3   5  193.6   10.9 6895.4 

   3   8.70E+04 (   4)  4.35E+05 (  20)   46      8   3   21.5    5.2   62.2 

   4   2.50E+05 (   4)  2.50E+05 (   4)   16      5   4  103.7   19.4  538.5 

   5   1.67E+05 (   1)  3.33E+05 (   2)    6      6   8   55.4    0.9  933.6 

   6   6.25E+05 (   5)  1.00E+06 (   8)    8     18  12   65.8   16.8  222.8 

   7   3.13E+05 (   5)  8.75E+05 (  14)   16     16   8   38.0   10.5  108.9 

   8   2.12E+05 (  11)  2.50E+05 (  13)   52      5   2   88.1   35.8  210.7 

   9   5.00E+05 (   6)  1.67E+05 (   2)   12      3   4  292.1   55.8 2584.3 

  10   1.56E+04 (   1)  4.69E+04 (   3)   64      1   1   37.9    0.7  420.3 

  11   1.07E+06 (  15)  2.86E+05 (   4)   14      5   5  370.2  123.7 1448.2 

  12   2.67E+05 (   4)  1.33E+05 (   2)   15      2   3  198.7   29.9 1976.2 

  13   1.07E+05 (   3)  3.21E+05 (   9)   28      6   4   36.0    6.1  138.3 

  14   6.25E+05 (   5)  2.50E+05 (   2)    8      5   6  245.6   42.6 2287.6 

  15   3.33E+05 (  13)  1.69E+06 (  66)   39     31   8   20.8   10.4   37.6 

  16   6.36E+04 (   7)  5.55E+05 (  61)  110     10   3   12.2    4.6   26.2 

  17   2.62E+05 (  11)  1.57E+06 (  66)   42     29   7   17.6    8.3   33.2 

  18   8.06E+04 (   5)  1.77E+05 (  11)   62      3   2   48.2   12.9  146.8 

  19   2.97E+05 (  27)  2.09E+05 (  19)   91      4   2  146.6   79.1  277.0 

  20   1.18E+04 (   1)  4.71E+04 (   4)   85      1   1   28.8    0.5  259.0 

  21   1.00E+05 (   4)  2.50E+05 (  10)   40      5   3   42.7    9.6  143.5 

  22   4.17E+05 (  10)  1.67E+05 (   4)   24      3   3  250.5   74.9 1051.7 

  23   9.09E+04 (   2)  1.36E+05 (   3)   22      2   3   71.0    5.8  581.7 

  24   3.33E+05 (   8)  2.08E+05 (   5)   24      4   3  163.3   48.1  619.5 

  25   3.33E+05 (  10)  2.33E+05 (   7)   30      4   3  146.7   51.1  446.8 

  26   1.67E+05 (   3)  2.22E+05 (   4)   18      4   4   78.9   11.5  447.8 

  27   3.85E+05 (  10)  5.38E+05 (  14)   26     10   5   74.6   29.6  178.4 

  28   9.00E+05 (   9)  3.00E+05 (   3)   10      5   6  296.4   77.8 1589.1 

  29   1.11E+05 (   2)  1.67E+05 (   3)   18      3   3   71.0    5.8  581.7 

  30   2.00E+05 (   4)  2.50E+05 (   5)   20      5   4   83.8   16.6  377.6 

  31   8.33E+04 (   3)  5.00E+05 (  18)   36      9   4   18.2    3.3   59.5 

  32   1.56E+05 (   5)  1.56E+05 (   5)   32      3   2  103.7   24.0  439.3 

  33   1.00E+06 (   6)  3.33E+05 (   2)    6      6   8  292.1   55.8 2584.3 

  34   1.67E+05 (   4)  2.50E+05 (   6)   24      5   4   70.2   14.4  287.6 

  35   6.67E+04 (   3)  3.78E+05 (  17)   45      7   3   19.2    3.5   63.5 

  36   2.19E+05 (   7)  4.69E+05 (  15)   32      9   4   49.2   16.8  126.0 

  37   6.88E+05 (  11)  1.25E+05 (   2)   16      2   3  519.9  124.3 3890.6 

  38   2.54E+05 (  15)  6.95E+05 (  41)   59     13   4   38.4   19.6   70.3 

  39   1.25E+05 (   3)  1.67E+05 (   4)   24      3   3   78.9   11.5  447.8 

  40   1.56E+06 (  14)  2.11E+06 (  19)    9     38  17   76.8   35.6  160.2 

  41   5.00E+05 (  10)  1.00E+05 (   2)   20      2   2  475.0  110.4 3649.8 

  42   3.43E+05 (  12)  1.03E+06 (  36)   35     19   6   35.1   16.5   68.2 

  43   5.00E+05 (   8)  5.63E+05 (   9)   16     10   7   92.5   31.1  266.0 
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  44   8.70E+04 (   4)  2.17E+05 (  10)   46      4   2   42.7    9.6  143.5 

  45   2.20E+05 (  11)  2.00E+05 (  10)   50      4   2  113.9   44.2  295.4 

  46   4.07E+05 (  24)  2.37E+05 (  14)   59      4   2  176.0   88.4  364.6 

  47   9.30E+04 (   4)  3.02E+05 (  13)   43      5   3   33.0    7.6  103.4 

  48   1.04E+05 (   7)  6.42E+05 (  43)   67     12   4   17.3    6.5   38.1 

  49   2.08E+05 (   5)  5.83E+05 (  14)   24     11   6   38.0   10.5  108.9 

  50   1.40E+05 (   7)  1.44E+06 (  72)   50     26   6   10.4    3.9   22.0 

  51   1.50E+05 (   3)  1.00E+05 (   2)   20      2   2  151.4   17.9 1648.5 

  52   3.33E+05 (   2)  1.67E+05 (   1)    6      3   5  193.6   10.9 6895.4 

  53   6.06E+04 (   4)  2.42E+05 (  16)   66      4   2   26.9    6.4   80.6 

  54   2.50E+05 (   6)  2.92E+05 (   7)   24      5   4   89.4   24.8  304.3 

  55   1.46E+05 (   7)  2.92E+05 (  14)   48      5   3   52.7   17.8  137.1 

  56   4.44E+05 (   4)  3.33E+05 (   3)    9      6   6  136.3   23.5  888.1 

  57   3.33E+05 (  10)  3.67E+05 (  11)   30      7   4   94.5   36.1  242.1 

  58   1.88E+05 (   3)  1.25E+05 (   2)   16      2   3  151.4   17.9 1648.5 

  59   2.50E+05 (   4)  6.25E+04 (   1)   16      1   2  368.6   41.2 9245.0 

  60   2.00E+05 (  16)  4.38E+05 (  35)   80      8   3   47.9   24.6   88.2 

  61   1.10E+06 (  11)  1.70E+06 (  17)   10     31  15   67.7   28.6  151.5 

  62   9.53E+05 (  61)  1.61E+06 ( 103)   64     29   6   61.7   44.2   85.4 

  63   5.36E+04 (   3)  1.96E+05 (  11)   56      4   2   29.5    5.1  107.1 

  64   2.99E+04 (   2)  3.88E+05 (  26)   67      7   3    8.6    0.9   32.1 

  65   7.50E+04 (   3)  1.00E+05 (   4)   40      2   2   78.9   11.5  447.8 

  66   2.14E+05 (   9)  1.67E+05 (   7)   42      3   2  132.4   44.4  411.6 

  67   6.67E+05 (   4)  8.33E+05 (   5)    6     15  13   83.8   16.6  377.6 

  68   5.00E+04 (   2)  1.25E+05 (   5)   40      2   2   43.5    4.0  250.7 

  69   2.00E+05 (   5)  1.20E+05 (   3)   25      2   2  168.6   33.8 1035.0 

  70   1.67E+05 (   5)  3.00E+05 (   9)   30      5   4   58.6   15.3  190.3 

  71   2.50E+05 (   2)  5.00E+05 (   4)    8      9   9   54.0    4.7  355.0 

  72   1.67E+05 (   3)  2.78E+05 (   5)   18      5   4   63.7    9.7  314.8 

  73   4.50E+05 (   9)  5.00E+04 (   1)   20      1   1  785.7  129.1 12902.5 

  74   6.25E+05 (  10)  1.69E+06 (  27)   16     31  12   39.0   16.7   82.1 

  75   3.44E+06 ( 155)  2.82E+06 ( 127)   45     51   9  126.3   99.6  160.0 

  76   9.38E+04 (   3)  1.25E+05 (   4)   32      2   2   78.9   11.5  447.8 

  77   3.50E+05 (   7)  2.50E+05 (   5)   20      5   4  143.5   39.9  560.2 

  78   2.50E+05 (   4)  2.50E+05 (   4)   16      5   4  103.7   19.4  538.5 

  79   8.33E+05 (  10)  1.67E+05 (   2)   12      3   4  475.0  110.4 3649.8 

  80   3.57E+05 (   5)  2.86E+05 (   4)   14      5   5  128.4   28.1  627.4 

  81   2.00E+06 (  40)  1.10E+07 ( 219)   20    199  27   19.1   13.3   26.8 

  82   4.17E+05 (  10)  2.92E+05 (   7)   24      5   4  146.7   51.1  446.8 

  83   5.00E+05 (   3)  1.67E+05 (   1)    6      3   5  281.7   25.1 8176.7 

  84   1.07E+05 (   3)  4.64E+05 (  13)   28      8   5   25.1    4.4   87.3 

  85   2.31E+05 (   9)  5.38E+05 (  21)   39     10   4   45.1   18.0  101.3 

  86   4.10E+06 (  41)  1.38E+07 ( 138)   10    250  43   31.1   21.3   44.2 

  87   7.00E+05 (  21)  2.67E+05 (   8)   30      5   3  265.6  115.7  679.9 

  88   4.33E+05 (  13)  4.33E+05 (  13)   30      8   4  103.7   44.5  240.5 

  89   8.33E+05 (  10)  1.67E+05 (   2)   12      3   4  475.0  110.4 3649.8 

  90   9.17E+05 (  11)  1.67E+05 (   2)   12      3   4  519.9  124.3 3890.6 

  91   0.00E+00 (   0)  1.33E+05 (   4)   30      2   2   19.8    0.7  156.6 

  92   9.38E+05 (  15)  2.25E+06 (  36)   16     41  14   43.7   22.1   81.2 

  93   1.36E+05 (   6)  1.82E+05 (   8)   44      3   2   78.5   22.4  252.9 

  94   8.33E+04 (   2)  4.17E+04 (   1)   24      1   1  193.6   10.9 6895.4 
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OP1510 (Olympics) sedimentary bedrock, (Counted by Sarah Falkowski Oct. 2016) 

EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2):      8.250E+05 

                                       RELATIVE ERROR (%):      1.48 

               EFFECTIVE URANIUM CONTENT OF MONITOR (ppm):     15.00 

                 ZETA FACTOR AND STANDARD ERROR (yr cm^2):    252.90     5.00 

                            SIZE OF COUNTER SQUARE (cm^2):      1.000E-06 

Grain    RhoS    (Ns)     RhoI    (Ni)  Squares  U+/-2s     Grain  Age (Ma) 

 no.    (cm^-2)          (cm^-2)                          Age     --95% CI-- 

   1   5.00E+05 (   9)  4.44E+05 (   8)   18      8   6  116.1   40.0  340.6 

   2   5.33E+05 (   8)  4.67E+05 (   7)   15      8   6  117.8   37.7  375.3 

   3   5.56E+05 (   5)  8.89E+05 (   8)    9     16  11   65.6   16.8  222.3 

   4   2.00E+06 (  48)  4.21E+06 ( 101)   24     77  15   49.5   34.3   70.3 

   5   3.81E+05 (   8)  3.81E+05 (   8)   21      7   5  103.5   34.0  311.4 

   6   6.00E+05 (  12)  9.50E+05 (  19)   20     17   8   65.9   29.1  141.5 

   7   3.89E+05 (  14)  5.28E+05 (  19)   36     10   4   76.6   35.5  159.8 

   8   9.17E+05 (  11)  2.92E+06 (  35)   12     53  18   33.0   15.0   65.8 

   9   1.05E+06 (  21)  2.75E+06 (  55)   20     50  14   39.9   22.8   66.7 

  10   3.00E+05 (   3)  2.00E+05 (   2)   10      4   5  151.1   17.9 1645.0 

  11   5.33E+05 (   8)  1.40E+06 (  21)   15     25  11   40.1   15.2   92.8 

  12   2.00E+05 (  14)  4.43E+05 (  31)   70      8   3   47.2   23.1   90.7 

  13   1.15E+06 (  23)  5.15E+06 ( 103)   20     94  19   23.4   14.1   36.8 

  14   2.50E+05 (   6)  1.00E+06 (  24)   24     18   7   26.6    8.7   65.2 

  15   4.17E+05 (  20)  1.48E+06 (  71)   48     27   6   29.5   16.9   48.7 

  16   3.57E+05 (  10)  6.07E+05 (  17)   28     11   5   61.5   25.0  140.5 

  17   1.25E+05 (   3)  1.25E+05 (   3)   24      2   2  103.5   14.0  735.5 

  18   4.17E+05 (  10)  8.75E+05 (  21)   24     16   7   49.9   20.8  109.4 

  19   1.56E+05 (   5)  5.63E+05 (  18)   32     10   5   29.6    8.4   80.5 

  20   3.00E+05 (   6)  8.50E+05 (  17)   20     15   7   37.4   11.9   97.2 

  21   7.69E+04 (   1)  4.62E+05 (   6)   13      8   7   19.4    0.4  141.8 

  22   4.29E+05 (  18)  6.67E+05 (  28)   42     12   5   66.9   34.8  124.5 

  23   5.33E+05 (   8)  1.80E+06 (  27)   15     33  13   31.3   12.1   69.6 

  24   2.92E+05 (   7)  7.50E+05 (  18)   24     14   6   41.0   14.3  101.1 

  25   1.44E+06 (  23)  4.13E+06 (  66)   16     75  19   36.4   21.5   59.0 

  26   4.44E+05 (   4)  3.33E+05 (   3)    9      6   6  135.9   23.5  886.0 

  27   6.67E+05 (   8)  1.17E+06 (  14)   12     21  11   59.9   21.6  150.6 

  28   1.88E+05 (   3)  1.06E+06 (  17)   16     19   9   19.2    3.5   63.4 

  29   8.75E+05 (   7)  1.63E+06 (  13)    8     30  16   56.5   18.9  149.8 

  30   9.44E+05 (  17)  3.00E+06 (  54)   18     55  15   33.0   17.8   57.3 

  31   1.22E+06 (  22)  2.72E+06 (  49)   18     49  14   46.9   26.9   78.5 

  32   1.11E+05 (   2)  5.56E+04 (   1)   18      1   2  193.1   10.9 6885.2 

  33   2.14E+05 (   6)  5.00E+05 (  14)   28      9   5   45.2   14.1  122.7 

  34   1.25E+05 (   1)  1.25E+05 (   1)    8      2   4  103.5    1.3 5286.0 

  35   5.31E+05 (  17)  7.50E+05 (  24)   32     14   6   73.7   37.1  142.0 

  36   1.67E+05 (   2)  1.67E+05 (   2)   12      3   4  103.5    7.6 1299.3 

  37   8.75E+05 (  35)  8.25E+05 (  33)   40     15   5  109.7   66.4  181.3 

  38   2.33E+05 (   7)  5.33E+05 (  16)   30     10   5   46.1   15.9  116.3 

  39   2.00E+05 (  12)  1.50E+05 (   9)   60      3   2  137.0   53.5  363.5 

  40   2.22E+05 (   4)  3.33E+05 (   6)   18      6   5   70.1   14.4  286.9 

  41   5.42E+05 (  13)  1.08E+06 (  26)   24     20   8   52.3   24.5  104.5 

  42   1.33E+05 (   2)  7.33E+05 (  11)   15     13   8   20.1    2.0   86.4 

  43   5.56E+05 (   5)  1.78E+06 (  16)    9     32  16   33.2    9.3   92.5 

  44   4.00E+05 (   4)  1.20E+06 (  12)   10     22  12   35.6    8.2  113.8 

B. Additional data tables of section 3.2

192



 

  45   4.29E+05 (   9)  8.10E+05 (  17)   21     15   7   55.5   21.6  129.8 

  46   2.00E+05 (   6)  2.67E+05 (   8)   30      5   3   78.3   22.3  252.3 

  47   1.04E+05 (   5)  6.46E+05 (  31)   48     12   4   17.3    5.1   43.5 

  48   6.88E+05 (  11)  1.31E+06 (  21)   16     24  10   54.8   23.7  117.6 

  49   2.00E+05 (   6)  1.00E+05 (   3)   30      2   2  200.3   44.4 1175.7 

  50   6.11E+05 (  11)  7.78E+05 (  14)   18     14   7   81.7   33.6  191.6 

  51   6.67E+05 (  10)  6.67E+05 (  10)   15     12   7  103.5   38.8  273.5 

  52   5.00E+05 (  30)  1.48E+06 (  89)   60     27   6   35.2   22.4   53.6 

  53   5.00E+05 (   6)  6.67E+05 (   8)   12     12   8   78.3   22.3  252.3 

  54   5.33E+05 (   8)  6.67E+05 (  10)   15     12   7   83.3   28.5  230.8 

  55   1.33E+05 (   4)  6.33E+05 (  19)   30     12   5   22.6    5.4   65.8 

  56   7.33E+05 (  11)  2.13E+06 (  32)   15     39  14   36.1   16.3   72.7 

  57   2.86E+04 (   2)  3.00E+05 (  21)   70      5   2   10.6    1.1   40.5 

  58   2.86E+05 (   4)  7.14E+05 (  10)   14     13   8   42.6    9.5  143.2 

  59   3.25E+05 (  13)  6.00E+05 (  24)   40     11   4   56.6   26.4  114.5 

  60   8.33E+05 (  15)  2.44E+06 (  44)   18     44  13   35.7   18.3   64.9 

  61   2.67E+05 (   4)  6.67E+05 (  10)   15     12   7   42.6    9.5  143.2 

  62   5.00E+05 (   6)  1.58E+06 (  19)   12     29  13   33.5   10.8   85.3 

  63   1.68E+06 (  67)  3.45E+06 ( 138)   40     63  11   50.5   37.1   68.0 

  64   4.58E+05 (  11)  3.75E+05 (   9)   24      7   4  125.9   47.8  339.2 

  65   2.22E+05 (   4)  7.22E+05 (  13)   18     13   7   32.9    7.6  103.1 

  66   1.33E+05 (   4)  5.67E+05 (  17)   30     10   5   25.2    6.0   74.9 

  67   1.67E+05 (   6)  5.00E+05 (  18)   36      9   4   35.3   11.3   90.9 

  68   1.33E+05 (   2)  5.33E+05 (   8)   15     10   7   27.5    2.7  129.4 

  69   6.67E+05 (  16)  4.17E+05 (  10)   24      8   5  163.8   70.8  399.1 

  70   1.39E+05 (   5)  1.39E+05 (   5)   36      3   2  103.5   24.0  438.2 

  71   3.33E+05 (  18)  4.70E+06 ( 254)   54     86  11    7.5    4.3   11.9 

  72   1.04E+06 (  52)  1.58E+06 (  79)   50     29   6   68.4   47.2   98.1 

  73   3.33E+04 (   2)  1.17E+05 (   7)   60      2   2   31.3    3.0  154.7 

  74   3.33E+05 (   5)  4.67E+05 (   7)   15      8   6   74.7   18.6  267.2 

  75   3.33E+04 (   1)  2.00E+05 (   6)   30      4   3   19.4    0.4  141.8 

  76   1.00E+06 (  10)  1.50E+06 (  15)   10     27  14   69.5   27.9  163.5 

  77   1.07E+06 (  30)  2.11E+06 (  59)   28     38  10   53.0   32.9   83.2 

  78   1.85E+05 (   5)  5.93E+05 (  16)   27     11   5   33.2    9.3   92.5 

  79   3.14E+05 (  11)  3.14E+05 (  11)   35      6   3  103.5   40.9  260.2 

  80   1.07E+05 (   6)  2.86E+05 (  16)   56      5   3   39.7   12.5  104.5 

  81   4.44E+05 (   8)  6.11E+05 (  11)   18     11   7   75.8   26.4  203.9 

  82   4.69E+05 (  15)  1.09E+06 (  35)   32     20   7   44.8   22.6   83.5 

 

 

OP1513 (Olympics) sedimentary bedrock, (Counted by Sarah Falkowski Oct. 2016) 

Grain    RhoS    (Ns)     RhoI    (Ni)  Squares  U+/-2s     Grain  Age (Ma) 

 no.    (cm^-2)          (cm^-2)                          Age     --95% CI-- 

   1   3.57E+04 (   1)  5.36E+05 (  15)   28     10   5    7.9    0.2   45.0 

   2   5.00E+04 (   1)  3.00E+05 (   6)   20      5   4   19.4    0.4  141.6 

   3   8.57E+04 (   3)  1.29E+06 (  45)   35     23   7    7.3    1.4   21.6 

   4   0.00E+00 (   0)  1.25E+05 (   5)   40      2   2   15.5    0.5  112.8 

   5   1.67E+05 (   1)  1.50E+06 (   9)    6     27  18   13.0    0.3   83.1 

   6   2.00E+05 (   4)  1.65E+06 (  33)   20     30  10   13.1    3.2   35.4 

   7   1.21E+05 (   4)  3.61E+06 ( 119)   33     66  12    3.6    0.9    9.2 

   8   4.88E+04 (   2)  4.15E+05 (  17)   41      8   4   13.1    1.4   51.5 

   9   8.62E+04 (   5)  1.78E+06 ( 103)   58     32   6    5.2    1.6   12.2 

  10   5.00E+05 (   6)  6.58E+06 (  79)   12    120  27    8.1    2.8   18.0 

  11   3.51E+04 (   2)  2.28E+05 (  13)   57      4   2   17.0    1.8   70.5 

B.3. Apatite fission track single grain analyses
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  12   5.00E+05 (   4)  1.98E+07 ( 158)    8    360  58    2.7    0.7    6.9 

  13   7.32E+04 (   3)  4.63E+05 (  19)   41      8   4   17.2    3.1   55.7 

  14   2.78E+04 (   1)  3.17E+06 ( 114)   36     58  11    1.0    0.0    5.2 

  15   6.67E+04 (   2)  9.33E+05 (  28)   30     17   6    8.0    0.9   29.5 

  16   1.05E+05 (   4)  1.82E+06 (  69)   38     33   8    6.3    1.6   16.2 

  17   7.14E+04 (   2)  8.57E+05 (  24)   28     16   6    9.3    1.0   34.9 

  18   1.25E+05 (   3)  1.38E+06 (  33)   24     25   9    9.9    1.9   30.1 

  19   9.76E+04 (   4)  2.17E+06 (  89)   41     40   8    4.9    1.2   12.4 

  20   4.00E+04 (   2)  7.60E+05 (  38)   50     14   4    5.9    0.6   21.2 

  21   7.69E+04 (   6)  9.87E+05 (  77)   78     18   4    8.3    2.9   18.5 

  22   4.88E+04 (   2)  4.63E+05 (  19)   41      8   4   11.7    1.2   45.3 

  23   8.33E+04 (   3)  1.42E+06 (  51)   36     26   7    6.4    1.2   18.9 

  24   6.38E+04 (   3)  1.87E+06 (  88)   47     34   7    3.7    0.7   10.7 

 

 

OP1517 (Olympics) sedimentary bedrock, (Counted by Sarah Falkowski Oct. 2016) 

EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2):      8.220E+05 

                                       RELATIVE ERROR (%):      1.48 

               EFFECTIVE URANIUM CONTENT OF MONITOR (ppm):     15.00 

                 ZETA FACTOR AND STANDARD ERROR (yr cm^2):    252.90     5.00 

                            SIZE OF COUNTER SQUARE (cm^2):      1.000E-06 

Grain    RhoS    (Ns)     RhoI    (Ni)  Squares  U+/-2s     Grain  Age (Ma) 

 no.    (cm^-2)          (cm^-2)                          Age     --95% CI-- 

   1   0.00E+00 (   0)  9.68E+04 (   6)   62      2   1   12.7    0.4   87.7 

   2   2.78E+04 (   1)  1.03E+06 (  37)   36     19   6    3.2    0.1   16.6 

   3   5.56E+04 (   2)  5.56E+05 (  20)   36     10   4   11.1    1.2   42.7 

   4   1.13E+05 (   8)  8.87E+05 (  63)   71     16   4   13.4    5.5   27.6 

   5   6.25E+04 (   1)  1.31E+06 (  21)   16     24  10    5.6    0.1   30.7 

   6   5.33E+04 (   4)  1.53E+06 ( 115)   75     28   5    3.8    1.0    9.5 

   7   6.06E+04 (   2)  6.36E+05 (  21)   33     12   5   10.6    1.1   40.4 

   8   1.79E+04 (   1)  9.29E+05 (  52)   56     17   5    2.3    0.0   11.6 

   9   2.71E+05 (  13)  6.67E+06 ( 320)   48    122  14    4.3    2.2    7.3 

  10   7.14E+04 (   3)  2.43E+06 ( 102)   42     44   9    3.2    0.6    9.2 

  11   1.00E+05 (   6)  8.67E+05 (  52)   60     16   4   12.3    4.2   27.9 

  12   0.00E+00 (   0)  9.38E+05 (  15)   16     17   9    4.9    0.2   28.9 

  13   9.52E+03 (   1)  1.52E+05 (  16)  105      3   1    7.4    0.2   41.7 

  14   0.00E+00 (   0)  1.27E+06 (  38)   30     23   7    1.9    0.1   10.6 

  15   1.18E+04 (   1)  2.24E+05 (  19)   85      4   2    6.2    0.1   34.3 

  16   3.45E+04 (   2)  5.52E+05 (  32)   58     10   4    7.0    0.8   25.4 

  17   0.00E+00 (   0)  2.50E+04 (   2)   80      0   1   42.9    1.3  531.1 

 

 

OP1521 (Olympics) sedimentary bedrock, (Counted by Sarah Falkowski Nov. 2016) 

EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2):      8.200E+05 

                                       RELATIVE ERROR (%):      1.48 

               EFFECTIVE URANIUM CONTENT OF MONITOR (ppm):     15.00 

                 ZETA FACTOR AND STANDARD ERROR (yr cm^2):    252.90     5.00 

                            SIZE OF COUNTER SQUARE (cm^2):      1.000E-06 

Grain    RhoS    (Ns)     RhoI    (Ni)  Squares  U+/-2s     Grain  Age (Ma) 

 no.    (cm^-2)          (cm^-2)                          Age     --95% CI-- 

   1   8.33E+04 (   2)  1.71E+06 (  41)   24     31  10    5.4    0.6   19.5 

   2   6.00E+05 (  36)  1.07E+06 (  64)   60     20   5   58.2   37.5   88.6 

   3   4.17E+04 (   4)  1.04E+05 (  10)   96      2   1   42.3    9.5  142.3 

   4   1.00E+05 (   6)  1.60E+06 (  96)   60     29   6    6.6    2.3   14.6 

B. Additional data tables of section 3.2
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   5   5.67E+05 (  17)  2.97E+06 (  89)   30     54  12   19.9   11.0   33.5 

   6   4.12E+05 (   7)  1.65E+06 (  28)   17     30  11   26.3    9.5   60.5 

   7   0.00E+00 (   0)  1.73E+05 (   9)   52      3   2    8.3    0.3   52.3 

   8   6.00E+04 (   3)  2.40E+05 (  12)   50      4   2   26.9    4.7   95.4 

   9   5.00E+05 (   6)  3.92E+06 (  47)   12     72  21   13.5    4.6   31.0 

  10   5.00E+05 (   8)  3.00E+06 (  48)   16     55  16   17.6    7.1   36.8 

  11   6.25E+04 (   1)  2.25E+06 (  36)   16     41  14    3.3    0.1   17.1 

  12   4.38E+05 (   7)  9.38E+05 (  15)   16     17   9   48.8   16.7  124.9 

  13   4.00E+05 (  10)  2.60E+06 (  65)   25     48  12   16.2    7.3   31.2 

  14   2.92E+05 (  19)  1.97E+06 ( 128)   65     36   6   15.5    9.0   25.0 

  15   1.46E+06 (  35)  3.50E+06 (  84)   24     64  14   43.2   28.2   64.6 

  16   7.50E+05 (   6)  1.88E+06 (  15)    8     34  17   42.0   13.2  112.2 

  17   5.33E+05 (  16)  2.43E+06 (  73)   30     45  10   22.9   12.3   39.3 

  18   4.58E+05 (  22)  3.38E+06 ( 162)   48     62  10   14.2    8.6   22.0 

  19   0.00E+00 (   0)  1.73E+06 ( 109)   63     32   6    0.7    0.0    3.6 

  20   2.94E+04 (   2)  7.65E+05 (  52)   68     14   4    4.3    0.5   15.1 

  21   3.57E+04 (   1)  1.07E+05 (   3)   28      2   2   37.5    0.7  416.8 

  22   1.79E+05 (   5)  1.93E+06 (  54)   28     35  10    9.9    3.0   23.8 

  23   6.67E+04 (   2)  1.23E+06 (  37)   30     23   7    6.0    0.7   21.7 

  24   6.67E+04 (   4)  1.23E+06 (  74)   60     23   5    5.8    1.5   15.0 

  25   3.33E+05 (   8)  4.17E+05 (  10)   24      8   5   82.8   28.4  229.4 

  26   2.40E+05 (  12)  1.76E+06 (  88)   50     32   7   14.3    7.0   25.9 

  27   5.56E+04 (   1)  6.11E+05 (  11)   18     11   7   10.6    0.2   64.6 

  28   1.17E+06 (   7)  1.67E+05 (   1)    6      3   5  617.1   92.5 11630.7 

  29   2.00E+06 (  20)  7.00E+05 (   7)   10     13   9  285.5  119.2  780.4 

  30   2.50E+05 (   4)  6.88E+05 (  11)   16     13   7   38.5    8.7  126.1 

  31   6.00E+05 (  18)  2.67E+05 (   8)   30      5   3  226.7   95.7  592.3 

  32   5.00E+04 (   3)  1.13E+06 (  68)   60     21   5    4.8    0.9   13.9 

  33   1.29E+06 (  18)  3.64E+06 (  51)   14     67  19   36.7   20.1   63.5 

  34   4.44E+05 (   8)  2.89E+06 (  52)   18     53  15   16.2    6.5   33.8 

  35   2.34E+05 (  11)  9.79E+05 (  46)   47     18   5   25.0   11.6   48.5 

  36   2.00E+05 (   4)  1.25E+06 (  25)   20     23   9   17.1    4.2   47.9 

  37   1.43E+05 (   6)  4.05E+05 (  17)   42      7   4   37.1   11.8   96.6 

  38   2.50E+05 (   3)  2.42E+06 (  29)   12     44  16   11.2    2.1   34.5 

  39   9.52E+04 (   2)  8.57E+05 (  18)   21     16   7   12.3    1.3   48.0 

  40   4.17E+04 (   1)  8.33E+04 (   2)   24      2   2   54.9    0.9  926.3 

  41   2.50E+05 (   4)  3.69E+06 (  59)   16     67  18    7.3    1.9   19.0 

  42   3.75E+05 (   3)  5.00E+05 (   4)    8      9   9   78.3   11.4  444.2 

  43   4.00E+05 (   6)  1.80E+06 (  27)   15     33  13   23.5    7.8   56.8 

  44   4.76E+04 (   5)  1.90E+05 (  20)  105      3   2   26.5    7.6   70.8 

  45   4.38E+05 (   7)  2.44E+06 (  39)   16     45  14   18.9    7.0   42.0 

  46   6.67E+05 (   4)  1.67E+05 (   1)    6      3   5  365.5   40.9 9203.3 

  47   2.92E+05 (   7)  4.17E+04 (   1)   24      1   1  617.1   92.5 11630.7 

  48   0.00E+00 (   0)  2.89E+05 (  11)   38      5   3    6.7    0.2   41.2 

  49   1.82E+05 (   6)  2.82E+06 (  93)   33     52  11    6.9    2.4   15.1 

  50   1.25E+05 (   2)  8.13E+05 (  13)   16     15   8   17.0    1.7   70.1 

  51   1.67E+05 (   1)  3.33E+05 (   2)    6      6   8   54.9    0.9  926.3 

  52   3.00E+05 (   3)  4.00E+05 (   4)   10      7   7   78.3   11.4  444.2 

  53   6.67E+05 (   6)  2.56E+06 (  23)    9     47  19   27.5    9.0   68.0 

  54   3.75E+05 (   9)  1.04E+06 (  25)   24     19   8   37.7   15.3   82.2 

  55   1.43E+04 (   1)  1.57E+05 (  11)   70      3   2   10.6    0.2   64.6 

  56   0.00E+00 (   0)  2.33E+05 (  17)   73      4   2    4.3    0.2   25.1 

  57   1.40E+05 (   7)  5.20E+05 (  26)   50     10   4   28.3   10.2   65.7 

  58   5.56E+04 (   1)  3.33E+05 (   6)   18      6   5   19.3    0.4  140.9 
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  59   2.16E+05 (  11)  3.33E+05 (  17)   51      6   3   67.1   28.3  150.2 

  60   1.00E+05 (   2)  9.50E+05 (  19)   20     17   8   11.7    1.2   45.1 

  61   3.75E+05 (   6)  5.00E+05 (   8)   16      9   6   77.8   22.2  250.8 

  62   8.33E+04 (   1)  8.33E+04 (   1)   12      2   2  102.9    1.3 5264.1 

  63   1.25E+06 (  15)  5.83E+05 (   7)   12     11   8  215.8   84.7  614.3 

  64   7.32E+04 (   3)  1.12E+06 (  46)   41     21   6    7.1    1.3   21.0 

  65   2.88E+05 (  19)  5.14E+06 ( 339)   66     94  11    5.9    3.5    9.2 

  66   1.43E+05 (   1)  2.14E+06 (  15)    7     39  20    7.8    0.2   44.8 

  67   6.25E+04 (   1)  5.63E+05 (   9)   16     10   7   13.0    0.3   82.7 

  68   1.50E+05 (   3)  2.20E+06 (  44)   20     40  12    7.4    1.4   22.0 

  69   4.17E+05 (  10)  2.17E+06 (  52)   24     40  11   20.2    9.0   39.6 

  70   1.39E+05 (   5)  1.11E+06 (  40)   36     20   6   13.3    4.0   32.8 

  71   9.17E+05 (  11)  2.50E+05 (   3)   12      5   5  356.3   99.6 1835.1 

  72   3.00E+05 (   6)  2.55E+06 (  51)   20     47  13   12.5    4.3   28.4 

  73   2.40E+05 (  12)  2.48E+06 ( 124)   50     45   8   10.2    5.0   18.2 

  74   6.67E+05 (   6)  3.33E+05 (   3)    9      6   7  199.1   44.1 1169.2 

  75   7.50E+05 (  12)  9.94E+06 ( 159)   16    182  29    7.9    4.0   14.1 

  76   1.85E+05 (   5)  9.26E+05 (  25)   27     17   7   21.2    6.2   55.0 

  77   1.00E+05 (   5)  9.80E+05 (  49)   50     18   5   10.9    3.3   26.4 

  78   2.50E+05 (   2)  6.50E+06 (  52)    8    119  33    4.3    0.5   15.1 

  79   5.56E+04 (   1)  6.67E+05 (  12)   18     12   7    9.8    0.2   58.2 

  80   1.00E+06 (   6)  3.00E+06 (  18)    6     55  26   35.1   11.2   90.3 

  81   0.00E+00 (   0)  4.07E+05 (  11)   27      7   4    6.7    0.2   41.2 

  82   4.44E+05 (   8)  9.44E+05 (  17)   18     17   8   49.1   18.2  118.3 

  83   8.33E+04 (   1)  1.25E+06 (  15)   12     23  12    7.8    0.2   44.8 

  84   1.65E+05 (  13)  2.30E+06 ( 182)   79     42   6    7.5    3.9   13.0 

  85   3.33E+05 (   6)  2.22E+05 (   4)   18      4   4  151.8   36.8  709.1 

  86   1.25E+05 (   3)  1.21E+06 (  29)   24     22   8   11.2    2.1   34.5 

  87   6.00E+04 (   3)  1.20E+05 (   6)   50      2   2   52.9    8.4  238.4 

  88   2.80E+05 (  14)  3.04E+06 ( 152)   50     56   9    9.6    5.1   16.5 

  89   1.88E+05 (   3)  4.38E+05 (   7)   16      8   6   45.6    7.4  191.9 

  90   8.33E+04 (   2)  4.58E+05 (  11)   24      8   5   20.0    2.0   85.9 

  91   2.22E+05 (   2)  5.33E+06 (  48)    9     98  28    4.6    0.5   16.5 

  92   1.37E+04 (   1)  5.07E+05 (  37)   73      9   3    3.2    0.1   16.6 

  93   1.50E+05 (   6)  1.93E+06 (  77)   40     35   8    8.3    2.9   18.4 

  94   4.44E+05 (  12)  1.78E+06 (  48)   27     33   9   26.1   12.5   49.4 

  95   4.17E+04 (   1)  8.33E+04 (   2)   24      2   2   54.9    0.9  926.3 

  96   1.11E+05 (   4)  3.06E+05 (  11)   36      6   3   38.5    8.7  126.1 

  97   1.25E+05 (   1)  5.00E+05 (   4)    8      9   9   28.5    0.5  256.9 

  98   2.67E+05 (   4)  1.27E+06 (  19)   15     23  11   22.5    5.4   65.4 

  99   9.17E+05 (  22)  6.13E+06 ( 147)   24    112  19   15.6    9.4   24.4 

 100   3.08E+05 (  12)  2.92E+06 ( 114)   39     53  10   11.0    5.5   19.8 

 101   1.50E+05 (   9)  1.75E+06 ( 105)   60     32   6    9.0    4.0   17.5 

 102   6.25E+04 (   1)  1.13E+06 (  18)   16     21  10    6.5    0.1   36.4 

 103   2.50E+05 (  10)  3.35E+06 ( 134)   40     61  11    7.9    3.6   14.7 

 

 

OP1522 (Olympics) sedimentary bedrock, (Counted by Sarah Falkowski Nov. 2016) 

EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2):      8.180E+05 

                                       RELATIVE ERROR (%):      1.48 

               EFFECTIVE URANIUM CONTENT OF MONITOR (ppm):     15.00 

                 ZETA FACTOR AND STANDARD ERROR (yr cm^2):    252.90     5.00 

                            SIZE OF COUNTER SQUARE (cm^2):      1.000E-06 

Grain    RhoS    (Ns)     RhoI    (Ni)  Squares  U+/-2s     Grain  Age (Ma) 
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 no.    (cm^-2)          (cm^-2)                          Age     --95% CI-- 

   1   5.00E+05 (  12)  2.88E+06 (  69)   24     53  13   18.2    8.9   33.4 

   2   5.00E+05 (  12)  1.63E+06 (  39)   24     30  10   32.0   15.1   61.8 

   3   3.50E+05 (   7)  3.00E+05 (   6)   20      6   4  119.1   34.6  420.8 

   4   7.14E+04 (   5)  1.34E+06 (  94)   70     25   5    5.7    1.7   13.3 

   5   6.67E+04 (   3)  2.22E+04 (   1)   45      0   1  278.7   24.9 8126.1 

   6   4.76E+04 (   2)  2.38E+04 (   1)   42      0   1  191.5   10.8 6849.2 

   7   1.55E+06 (  62)  3.40E+06 ( 136)   40     62  11   47.1   34.2   63.9 

   8   5.94E+05 (  19)  1.50E+06 (  48)   32     28   8   41.0   22.7   70.6 

   9   3.70E+04 (   1)  3.70E+04 (   1)   27      1   1  102.6    1.3 5255.3 

  10   4.05E+05 (  17)  3.10E+05 (  13)   42      6   3  133.5   61.5  296.1 

  11   3.33E+04 (   1)  1.67E+05 (   5)   30      3   3   22.9    0.4  182.3 

  12   5.00E+05 (  27)  2.30E+06 ( 124)   54     42   8   22.6   14.2   34.3 

  13   2.50E+04 (   1)  2.50E+04 (   1)   40      0   1  102.6    1.3 5255.3 

  14   6.00E+05 (  12)  1.65E+06 (  33)   20     30  10   37.8   17.7   74.4 

  15   1.18E+06 (  71)  3.45E+06 ( 207)   60     63   9   35.5   27.1   46.7 

  16   1.00E+06 (  35)  2.54E+06 (  89)   35     47  10   40.7   26.6   60.6 

  17   1.85E+04 (   1)  5.56E+04 (   3)   54      1   1   37.5    0.7  415.8 

  18   1.48E+05 (   8)  5.74E+05 (  31)   54     11   4   27.0   10.6   59.1 

  19   2.67E+05 (   8)  2.33E+05 (   7)   30      4   3  116.8   37.3  372.2 

  20   1.39E+06 (  39)  2.29E+06 (  64)   28     42  11   62.8   41.0   94.7 

 

 

OP1527 (Olympics) sedimentary bedrock, (Counted by Sarah Falkowski Nov. 2016) 

EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2):      8.170E+05 

                                       RELATIVE ERROR (%):      1.48 

               EFFECTIVE URANIUM CONTENT OF MONITOR (ppm):     15.00 

                 ZETA FACTOR AND STANDARD ERROR (yr cm^2):    252.90     5.00 

                            SIZE OF COUNTER SQUARE (cm^2):      1.000E-06 

Grain    RhoS    (Ns)     RhoI    (Ni)  Squares  U+/-2s     Grain  Age (Ma) 

 no.    (cm^-2)          (cm^-2)                          Age     --95% CI-- 

   1   1.19E+05 (   5)  1.19E+06 (  50)   42     22   6   10.6    3.2   25.7 

   2   1.14E+05 (   4)  1.60E+06 (  56)   35     29   8    7.7    1.9   20.0 

   3   2.50E+05 (   5)  3.00E+06 (  60)   20     55  14    8.9    2.7   21.2 

   4   1.22E+05 (  11)  8.22E+05 (  74)   90     15   4   15.5    7.3   29.1 

   5   5.00E+04 (   3)  5.00E+05 (  30)   60      9   3   10.8    2.0   33.2 

   6   1.29E+05 (   9)  1.50E+06 ( 105)   70     28   5    9.0    3.9   17.5 

   7   7.20E+05 (  36)  1.76E+06 (  88)   50     32   7   42.2   27.8   62.7 

   8   1.67E+05 (   8)  1.83E+06 (  88)   48     34   7    9.6    3.9   19.3 

   9   1.79E+05 (   5)  1.96E+06 (  55)   28     36  10    9.7    2.9   23.2 

  10   4.38E+05 (  14)  1.13E+06 (  36)   32     21   7   40.3   20.0   75.9 

  11   2.14E+05 (   6)  8.21E+05 (  23)   28     15   6   27.4    9.0   67.8 

  12   5.00E+05 (   6)  1.58E+06 (  19)   12     29  13   33.1   10.7   84.5 

  13   2.00E+05 (   4)  3.35E+06 (  67)   20     62  15    6.4    1.6   16.5 

  14   2.50E+05 (   8)  2.63E+06 (  84)   32     48  11   10.0    4.1   20.3 

  15   7.50E+04 (   3)  2.13E+06 (  85)   40     39   9    3.8    0.7   11.0 

  16   3.57E+04 (   1)  4.29E+05 (  12)   28      8   4    9.7    0.2   58.0 

  17   5.56E+04 (   2)  1.33E+06 (  48)   36     24   7    4.6    0.5   16.4 

  18   8.57E+04 (   3)  3.49E+06 ( 122)   35     64  12    2.7    0.5    7.6 

  19   4.69E+05 (  15)  2.56E+06 (  82)   32     47  10   19.0   10.1   33.0 

  20   1.88E+05 (  15)  1.08E+06 (  86)   80     20   4   18.2    9.7   31.4 

  21   2.33E+05 (   7)  4.47E+06 ( 134)   30     82  14    5.5    2.1   11.4 

  22   8.33E+04 (   2)  2.42E+06 (  58)   24     44  12    3.8    0.4   13.5 

  23   2.00E+05 (   4)  3.50E+05 (   7)   20      6   5   59.7   12.7  228.2 
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  24   3.50E+05 (   7)  2.00E+06 (  40)   20     37  12   18.4    6.8   40.7 

  25   2.50E+05 (   4)  2.31E+06 (  37)   16     42  14   11.6    2.9   31.0 

  26   1.67E+05 (   2)  8.33E+04 (   1)   12      2   2  191.3   10.7 6844.0 

  27   1.25E+05 (   5)  1.58E+06 (  63)   40     29   7    8.4    2.6   20.1 

  28   1.57E+05 (  11)  1.61E+06 ( 113)   70     30   6   10.2    4.9   18.7 

  29   1.20E+05 (   3)  3.00E+06 (  75)   25     55  13    4.3    0.8   12.5 

  30   4.00E+05 (  24)  2.60E+06 ( 156)   60     48   8   16.0    9.9   24.5 

  31   3.75E+04 (   3)  1.09E+06 (  87)   80     20   4    3.7    0.7   10.8 

  32   1.00E+05 (   1)  1.00E+05 (   1)   10      2   3  102.5    1.3 5250.9 

  33   6.67E+05 (  12)  5.56E+04 (   1)   18      1   2 1012.1  180.8 14321.3 

  34   3.33E+05 (   8)  2.13E+06 (  51)   24     39  11   16.5    6.6   34.3 

  35   0.00E+00 (   0)  7.14E+04 (   1)   14      1   2  102.5    2.6 3130.2 

  36   2.14E+05 (   6)  2.68E+06 (  75)   28     49  11    8.5    2.9   18.8 

  37   8.33E+04 (   2)  4.17E+04 (   1)   24      1   1  191.3   10.7 6844.0 

  38   2.22E+05 (   2)  1.22E+06 (  11)    9     22  13   19.9    2.0   85.5 

  39   8.33E+04 (   2)  1.29E+06 (  31)   24     24   8    7.1    0.8   26.2 

  40   4.00E+05 (   8)  5.80E+06 ( 116)   20    106  20    7.3    3.0   14.5 

  41   4.67E+05 (   7)  8.27E+06 ( 124)   15    152  28    6.0    2.3   12.4 

  42   1.00E+05 (   1)  1.40E+06 (  14)   10     26  14    8.4    0.2   48.3 

  43   6.80E+05 (  34)  3.72E+06 ( 186)   50     68  10   18.9   12.7   27.3 

  44   2.50E+05 (   3)  3.67E+06 (  44)   12     67  20    7.4    1.4   22.0 

  45   4.17E+05 (   5)  6.58E+06 (  79)   12    121  27    6.7    2.1   15.9 

  46   1.07E+05 (   3)  1.39E+06 (  39)   28     26   8    8.3    1.6   25.0 

  47   6.67E+05 (  20)  8.27E+06 ( 248)   30    152  20    8.4    5.0   13.2 

  48   6.00E+05 (   6)  1.05E+07 ( 105)   10    193  38    6.1    2.1   13.3 

  49   3.33E+05 (   2)  1.50E+06 (   9)    6     28  18   24.3    2.4  110.0 

  50   8.33E+04 (   2)  4.17E+04 (   1)   24      1   1  191.3   10.7 6844.0 

  51   1.00E+05 (   2)  2.35E+06 (  47)   20     43  13    4.7    0.5   16.8 

  52   5.00E+05 (   3)  5.00E+05 (   3)    6      9  10  102.5   13.8  728.8 

  53   2.50E+05 (   5)  1.15E+06 (  23)   20     21   9   23.0    6.7   60.2 

  54   2.50E+05 (   2)  3.25E+06 (  26)    8     60  23    8.5    0.9   31.7 

  55   1.67E+05 (   3)  1.72E+06 (  31)   18     32  11   10.5    2.0   32.0 

  56   3.33E+05 (   3)  1.11E+05 (   1)    9      2   3  278.4   24.8 8120.4 

  57   1.33E+05 (   2)  1.40E+06 (  21)   15     26  11   10.5    1.1   40.2 

  58   1.27E+06 (  19)  2.00E+06 (  30)   15     37  13   65.3   34.7  119.1 

  59   0.00E+00 (   0)  3.00E+05 (   6)   20      6   4   12.6    0.4   87.2 

  60   5.56E+04 (   2)  1.72E+06 (  62)   36     32   8    3.6    0.4   12.6 

  61   1.83E+05 (  11)  2.77E+06 ( 166)   60     51   8    6.9    3.3   12.6 

  62   2.59E+05 (   7)  2.37E+06 (  64)   27     44  11   11.5    4.4   24.6 

  63   3.78E+05 (  17)  1.96E+06 (  88)   45     36   8   20.1   11.1   33.7 

  64   3.33E+05 (   2)  2.00E+06 (  12)    6     37  21   18.3    1.9   76.9 

  65   5.00E+05 (   3)  1.33E+06 (   8)    6     24  17   39.9    6.6  159.5 

  66   3.75E+05 (  21)  1.46E+06 (  82)   56     27   6   26.6   15.5   43.1 

  67   4.17E+04 (   1)  1.13E+06 (  27)   24     21   8    4.4    0.1   23.2 

  68   1.67E+05 (   2)  2.67E+06 (  32)   12     49  17    6.9    0.7   25.3 

  69   3.33E+05 (   8)  1.75E+06 (  42)   24     32  10   20.0    8.0   42.3 

  70   1.85E+05 (   5)  1.15E+06 (  31)   27     21   8   17.1    5.1   43.1 

  71   4.29E+05 (   6)  2.50E+06 (  35)   14     46  15   18.1    6.1   42.4 

  72   2.83E+05 (  17)  2.00E+06 ( 120)   60     37   7   14.7    8.2   24.4 

  73   1.88E+05 (   3)  1.50E+06 (  24)   16     28  11   13.5    2.5   42.4 

  74   6.67E+04 (   1)  1.20E+06 (  18)   15     22  10    6.5    0.1   36.3 

  75   8.89E+05 (   8)  4.67E+06 (  42)    9     86  26   20.0    8.0   42.3 

  76   2.50E+05 (   3)  5.00E+05 (   6)   12      9   7   52.8    8.4  237.5 

  77   4.08E+04 (   2)  8.98E+05 (  44)   49     16   5    5.0    0.6   18.0 
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  78   2.20E+05 (  11)  1.60E+05 (   8)   50      3   2  139.8   51.8  394.7 

  79   3.33E+04 (   2)  6.67E+04 (   4)   60      1   1   53.3    4.7  350.8 

  80   4.17E+05 (  15)  6.39E+05 (  23)   36     12   5   67.3   32.6  133.5 

  81   6.25E+05 (  20)  1.50E+06 (  48)   32     28   8   43.1   24.1   73.6 

  82   5.43E+05 (  38)  2.29E+05 (  16)   70      4   2  239.4  132.1  455.2 

  83   6.67E+04 (   2)  2.00E+05 (   6)   30      4   3   36.1    3.4  189.8 

  84   1.00E+05 (   2)  3.30E+06 (  66)   20     61  15    3.4    0.4   11.8 

  85   1.67E+05 (   2)  1.25E+06 (  15)   12     23  12   14.7    1.5   59.0 

  86   2.14E+05 (   9)  1.05E+06 (  44)   42     19   6   21.4    9.1   43.7 

  87   5.56E+04 (   2)  4.17E+05 (  15)   36      8   4   14.7    1.5   59.0 

  88   3.50E+05 (   7)  1.05E+06 (  21)   20     19   8   34.9   12.3   83.6 

  89   9.26E+04 (   5)  2.93E+06 ( 158)   54     54   9    3.4    1.0    7.8 

  90   8.33E+04 (   3)  3.61E+05 (  13)   36      7   4   24.8    4.4   86.2 

  91   2.00E+05 (   6)  1.87E+06 (  56)   30     34   9   11.3    3.9   25.6 

  92   2.50E+05 (   6)  3.08E+06 (  74)   24     57  13    8.6    3.0   19.1 

  93   2.86E+05 (   6)  1.81E+06 (  38)   21     33  11   16.7    5.6   38.8 

  94   8.33E+04 (   1)  1.58E+06 (  19)   12     29  13    6.2    0.1   34.1 

  95   2.00E+05 (  12)  2.13E+06 ( 128)   60     39   7    9.8    4.9   17.5 

  96   0.00E+00 (   0)  1.94E+05 (   7)   36      4   3   10.7    0.4   71.3 

  97   2.08E+04 (   1)  2.29E+05 (  11)   48      4   2   10.6    0.2   64.3 

  98   3.67E+05 (  11)  2.13E+06 (  64)   30     39  10   18.0    8.4   33.9 

  99   9.68E+04 (   3)  1.77E+06 (  55)   31     33   9    5.9    1.1   17.3 

 100   8.33E+05 (  15)  2.17E+06 (  39)   18     40  13   39.9   20.3   73.4 

 101   6.60E+05 (  33)  5.54E+06 ( 277)   50    102  13   12.4    8.3   17.7 

 102   2.00E+05 (   3)  3.00E+06 (  45)   15     55  16    7.2    1.4   21.4 

 103   7.41E+04 (   4)  8.15E+05 (  44)   54     15   5    9.7    2.4   25.8 

 

 

OP1528 (Olympics) sedimentary bedrock, Counted by Sarah Falkowski May 2017 

EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2):      9.280E+05 

                                       RELATIVE ERROR (%):      1.51 

               EFFECTIVE URANIUM CONTENT OF MONITOR (ppm):     15.00 

                 ZETA FACTOR AND STANDARD ERROR (yr cm^2):    261.20     6.80 

                            SIZE OF COUNTER SQUARE (cm^2):      1.000E-06 

Grain    RhoS    (Ns)     RhoI    (Ni)  Squares  U+/-2s     Grain  Age (Ma) 

 no.    (cm^-2)          (cm^-2)                          Age     --95% CI-- 

   1   1.20E+05 (   3)  1.20E+06 (  30)   25     19   7   12.7    2.4   38.9 

   2   2.00E+05 (   2)  1.00E+05 (   1)   10      2   3  223.9   12.6 7536.3 

   3   0.00E+00 (   0)  3.33E+05 (   2)    6      5   7   50.0    1.5  615.2 

   4   8.33E+04 (   4)  1.02E+06 (  49)   48     17   5   10.3    2.6   27.0 

   5   3.13E+04 (   1)  8.13E+05 (  26)   32     13   5    5.3    0.1   28.3 

   6   1.71E+05 (   6)  1.40E+06 (  49)   35     23   6   15.2    5.2   34.6 

   7   0.00E+00 (   0)  2.89E+06 ( 101)   35     47   9    0.8    0.0    4.5 

   8   0.00E+00 (   0)  3.27E+06 ( 157)   48     53   9    0.5    0.0    2.9 

   9   3.70E+04 (   1)  5.93E+05 (  16)   27     10   5    8.6    0.2   48.6 

  10   1.25E+05 (   2)  8.13E+05 (  13)   16     13   7   19.8    2.0   81.9 

  11   8.33E+04 (   3)  2.50E+05 (   9)   36      4   3   41.7    7.0  160.0 

  12   2.50E+05 (   7)  1.54E+06 (  43)   28     25   8   20.1    7.5   44.1 

  13   1.20E+05 (   3)  2.16E+06 (  54)   25     35  10    7.1    1.3   20.7 

  14   2.33E+05 (   7)  3.73E+06 ( 112)   30     60  12    7.7    3.0   16.1 

  15   4.25E+05 (  17)  4.30E+06 ( 172)   40     70  11   12.1    6.8   19.7 

  16   2.29E+05 (   8)  4.49E+06 ( 157)   35     73  12    6.3    2.6   12.5 

  17   1.25E+05 (   5)  2.23E+06 (  89)   40     36   8    7.0    2.2   16.5 

  18   4.00E+04 (   1)  4.80E+05 (  12)   25      8   4   11.4    0.2   67.9 

B.3. Apatite fission track single grain analyses
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  19   0.00E+00 (   0)  1.25E+05 (   5)   40      2   2   18.0    0.6  131.0 

  20   6.67E+04 (   4)  2.83E+06 ( 170)   60     46   7    3.0    0.8    7.4 

  21   6.67E+04 (   2)  5.00E+05 (  15)   30      8   4   17.2    1.8   69.2 

  22   1.00E+05 (   5)  9.00E+05 (  45)   50     15   4   13.8    4.2   33.8 

  23   1.00E+05 (   5)  3.94E+06 ( 197)   50     64   9    3.2    1.0    7.3 

  24   6.90E+04 (   6)  2.69E+06 ( 234)   87     43   6    3.2    1.1    6.9 

  25   0.00E+00 (   0)  7.30E+05 (  73)  100     12   3    1.2    0.0    6.3 

  26   4.17E+04 (   1)  1.00E+06 (  24)   24     16   7    5.7    0.1   30.9 

  27   0.00E+00 (   0)  2.22E+05 (  10)   45      4   2    8.7    0.3   53.9 

  28   8.33E+04 (   3)  2.69E+06 (  97)   36     44   9    3.9    0.8   11.3 

  29   1.11E+05 (   2)  5.00E+06 (  90)   18     81  17    2.9    0.3   10.0 

  30   7.50E+04 (   3)  2.18E+06 (  87)   40     35   8    4.4    0.8   12.6 

  31   6.25E+05 (  20)  1.05E+07 ( 335)   32    169  19    7.3    4.4   11.4 

  32   7.14E+04 (   5)  1.07E+06 (  75)   70     17   4    8.3    2.5   19.7 

  33   2.50E+04 (   1)  3.00E+05 (  12)   40      5   3   11.4    0.2   67.9 

  34   2.08E+05 (   5)  2.71E+06 (  65)   24     44  11    9.6    2.9   22.9 

  35   1.00E+05 (   3)  2.37E+06 (  71)   30     38   9    5.4    1.0   15.6 

  36   1.25E+05 (   3)  2.50E+06 (  60)   24     40  10    6.4    1.2   18.6 

  37   1.25E+05 (   7)  3.59E+06 ( 201)   56     58   8    4.3    1.7    8.9 

  38   6.67E+04 (   2)  8.00E+05 (  24)   30     13   5   10.8    1.2   40.6 

  39   2.50E+05 (   5)  3.40E+06 (  68)   20     55  13    9.2    2.8   21.8 

  40   3.33E+04 (   3)  4.33E+05 (  39)   90      7   2    9.8    1.8   29.3 

  41   5.00E+05 (  10)  7.55E+06 ( 151)   20    122  20    8.1    3.8   15.2 

  42   0.00E+00 (   0)  9.52E+04 (   4)   42      2   1   22.9    0.8  181.1 

  43   4.00E+05 (   8)  8.65E+06 ( 173)   20    140  22    5.7    2.4   11.3 

  44   3.75E+05 (  21)  2.20E+06 ( 123)   56     36   6   20.8   12.3   33.0 

  45   4.17E+04 (   2)  8.33E+05 (  40)   48     13   4    6.5    0.7   23.3 

 

 

OP1531 (Olympics) sedimentary bedrock, (Counted by Sarah Falkowski Nov. 2016) 

EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2):      8.150E+05 

                                       RELATIVE ERROR (%):      1.48 

               EFFECTIVE URANIUM CONTENT OF MONITOR (ppm):     15.00 

                 ZETA FACTOR AND STANDARD ERROR (yr cm^2):    252.90     5.00 

                            SIZE OF COUNTER SQUARE (cm^2):      1.000E-06 

Grain    RhoS    (Ns)     RhoI    (Ni)  Squares  U+/-2s     Grain  Age (Ma) 

 no.    (cm^-2)          (cm^-2)                          Age     --95% CI-- 

   1   9.60E+05 (  24)  6.40E+05 (  16)   25     12   6  152.3   78.3  304.3 

   2   3.00E+05 (  12)  1.55E+06 (  62)   40     29   7   20.1    9.8   37.3 

   3   1.44E+05 (  13)  6.11E+05 (  55)   90     11   3   24.5   12.2   45.0 

   4   4.00E+05 (  20)  1.06E+06 (  53)   50     20   5   39.0   22.0   65.9 

   5   4.69E+04 (   3)  1.56E+05 (  10)   64      3   2   32.0    5.5  119.0 

   6   4.94E+04 (   4)  1.48E+05 (  12)   81      3   2   35.2    8.1  112.4 

   7   3.13E+04 (   1)  5.94E+05 (  19)   32     11   5    6.2    0.1   34.0 

   8   2.86E+04 (   2)  7.14E+04 (   5)   70      1   1   42.9    3.9  247.1 

   9   1.09E+06 (  76)  7.37E+06 ( 516)   70    136  13   15.2   11.9   19.5 

  10   1.67E+05 (   4)  9.58E+05 (  23)   24     18   7   18.5    4.5   52.3 

  11   2.50E+05 (   3)  1.08E+06 (  13)   12     20  11   24.7    4.3   86.0 

  12   4.79E+05 (  23)  3.23E+06 ( 155)   48     59  10   15.4    9.4   23.8 

  13   8.89E+04 (   8)  1.11E+05 (  10)   90      2   1   82.3   28.2  228.1 

  14   1.07E+05 (   6)  1.59E+06 (  89)   56     29   6    7.1    2.5   15.7 

  15   2.50E+05 (   6)  4.54E+06 ( 109)   24     84  16    5.8    2.0   12.7 

  16   2.14E+05 (   6)  2.04E+06 (  57)   28     37  10   11.1    3.8   25.1 

  17   4.00E+04 (   4)  1.80E+05 (  18)  100      3   2   23.6    5.6   69.2 

B. Additional data tables of section 3.2
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  18   8.57E+04 (   6)  1.39E+06 (  97)   70     26   5    6.5    2.3   14.4 

  19   2.50E+05 (  25)  2.57E+06 ( 257)  100     47   6   10.1    6.4   15.1 

  20   1.83E+05 (  11)  1.93E+06 ( 116)   60     36   7    9.9    4.7   18.1 

  21   3.40E+05 (  17)  1.00E+05 (   5)   50      2   2  333.9  122.8 1113.3 

  22   1.67E+04 (   1)  2.83E+05 (  17)   60      5   2    6.9    0.1   38.6 

  23   1.10E+06 (  22)  1.30E+06 (  26)   20     24   9   86.7   46.9  158.2 

  24   2.83E+05 (  17)  2.15E+06 ( 129)   60     40   7   13.7    7.7   22.6 

  25   2.50E+04 (   1)  3.50E+05 (  14)   40      6   3    8.3    0.2   48.2 

  26   4.60E+05 (  23)  7.02E+06 ( 351)   50    129  14    6.8    4.2   10.3 

  27   9.00E+04 (   9)  3.30E+05 (  33)  100      6   2   28.4   11.8   59.8 

  28   5.67E+05 (  34)  5.47E+06 ( 328)   60    101  11   10.7    7.3   15.2 

  29   4.44E+04 (   4)  3.89E+05 (  35)   90      7   2   12.2    3.0   32.9 

  30   3.75E+05 (  15)  3.23E+06 ( 129)   40     59  11   12.1    6.5   20.5 

  31   6.67E+04 (   4)  1.17E+05 (   7)   60      2   2   59.6   12.6  227.7 

  32   7.50E+04 (   6)  2.50E+05 (  20)   80      5   2   31.4   10.1   79.4 

  33   4.00E+04 (   4)  6.70E+05 (  67)  100     12   3    6.4    1.6   16.5 

  34   1.00E+05 (   8)  1.34E+06 ( 107)   80     25   5    7.8    3.2   15.7 

  35   1.11E+05 (  10)  9.00E+05 (  81)   90     17   4   12.9    5.9   24.6 

  36   3.88E+05 (  31)  3.53E+06 ( 282)   80     65   8   11.4    7.5   16.5 

  37   5.00E+04 (   4)  2.88E+05 (  23)   80      5   2   18.5    4.5   52.3 

  38   2.50E+05 (  20)  1.11E+06 (  89)   80     20   4   23.3   13.5   37.9 

  39   5.75E+05 (  23)  2.60E+06 ( 104)   40     48   9   22.9   13.8   36.0 

  40   1.25E+05 (   2)  2.50E+05 (   4)   16      5   4   53.2    4.7  350.0 

  41   1.58E+06 (  19)  2.50E+05 (   3)   12      5   5  596.6  189.2 2759.8 

  42   5.25E+05 (  21)  2.15E+06 (  86)   40     40   9   25.3   14.8   40.8 

  43   5.50E+05 (  11)  8.65E+06 ( 173)   20    159  25    6.6    3.2   12.0 

  44   2.00E+05 (  16)  2.19E+06 ( 175)   80     40   6    9.5    5.3   15.7 

  45   1.70E+05 (  17)  1.50E+06 ( 150)  100     28   5   11.8    6.6   19.3 

  46   5.75E+05 (  23)  1.80E+06 (  72)   40     33   8   33.0   19.6   53.1 

  47   1.67E+05 (  10)  2.02E+06 ( 121)   60     37   7    8.6    4.0   16.2 

  48   1.20E+05 (   3)  3.60E+05 (   9)   25      7   4   35.4    6.0  136.3 

  49   1.04E+05 (   5)  1.04E+06 (  50)   48     19   5   10.6    3.2   25.7 

  50   9.38E+04 (   3)  1.56E+05 (   5)   32      3   2   62.8    9.6  310.3 

  51   3.67E+05 (  22)  6.67E+05 (  40)   60     12   4   56.6   32.0   97.1 

  52   1.43E+05 (   3)  2.86E+05 (   6)   21      5   4   52.6    8.3  237.0 

  53   5.00E+05 (  15)  3.00E+05 (   9)   30      6   4  168.3   70.0  430.7 

  54   1.80E+05 (   9)  1.44E+06 (  72)   50     27   6   13.1    5.7   25.8 

  55   4.08E+04 (   2)  5.51E+05 (  27)   49     10   4    8.2    0.9   30.3 

  56   6.67E+04 (   2)  5.00E+05 (  15)   30      9   5   14.6    1.5   58.8 

  57   9.00E+04 (   9)  1.30E+06 ( 130)  100     24   4    7.3    3.2   14.0 

  58   6.50E+05 (  13)  1.40E+06 (  28)   20     26  10   48.0   22.7   94.8 

  59   1.22E+05 (  11)  8.89E+05 (  80)   90     16   4   14.3    6.8   26.7 

  60   2.00E+05 (   9)  1.27E+06 (  57)   45     23   6   16.5    7.1   33.1 

  61   1.40E+05 (  14)  3.50E+05 (  35)  100      6   2   41.4   20.4   78.2 

  62   1.11E+05 (   4)  3.61E+05 (  13)   36      7   4   32.5    7.5  101.9 

  63   5.71E+04 (   4)  1.86E+05 (  13)   70      3   2   32.5    7.5  101.9 

  64   7.14E+04 (   3)  1.05E+06 (  44)   42     19   6    7.4    1.4   21.9 

  65   5.71E+05 (  40)  6.47E+06 ( 453)   70    119  12    9.1    6.4   12.6 

  66   1.25E+05 (   9)  3.33E+05 (  24)   72      6   2   39.0   15.8   85.6 

  67   6.25E+04 (   2)  2.81E+05 (   9)   32      5   3   24.2    2.4  109.8 

  68   6.25E+04 (   1)  6.25E+04 (   1)   16      1   2  102.2    1.3 5242.1 

  69   3.93E+05 (  11)  8.57E+05 (  24)   28     16   6   47.4   20.8   99.5 

  70   3.33E+05 (  12)  1.11E+06 (  40)   36     20   6   31.1   14.7   59.9 

  71   1.00E+05 (  10)  9.50E+05 (  95)  100     17   4   11.0    5.0   20.8 

B.3. Apatite fission track single grain analyses
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  72   1.67E+05 (   2)  1.58E+06 (  19)   12     29  13   11.6    1.2   44.8 

  73   1.50E+05 (   6)  4.00E+05 (  16)   40      7   4   39.2   12.4  103.2 

  74   1.88E+05 (  15)  5.13E+05 (  41)   80      9   3   37.9   19.3   69.3 

  75   2.89E+05 (  13)  3.49E+06 ( 157)   45     64  10    8.6    4.4   15.0 

  76   5.83E+05 (  35)  1.55E+06 (  93)   60     29   6   38.8   25.4   57.6 

  77   2.50E+04 (   1)  2.75E+05 (  11)   40      5   3   10.6    0.2   64.2 

  78   5.40E+05 (  27)  4.56E+06 ( 228)   50     84  11   12.3    7.9   18.2 

  79   2.08E+05 (  10)  2.06E+06 (  99)   48     38   8   10.6    4.8   19.9 

  80   2.50E+05 (   6)  8.33E+04 (   2)   24      2   2  288.0   55.0 2553.3 

  81   4.81E+05 (  13)  1.33E+06 (  36)   27     25   8   37.4   18.1   71.5 

  82   3.33E+05 (   2)  5.00E+05 (   3)    6      9  10   70.0    5.7  573.6 

  83   1.25E+05 (   4)  9.38E+04 (   3)   32      2   2  134.3   23.2  876.0 

  84   3.29E+05 (  23)  1.47E+06 ( 103)   70     27   5   23.1   13.9   36.4 

  85   1.02E+05 (   5)  2.24E+05 (  11)   49      4   2   47.5   12.7  144.7 

  86   4.17E+04 (   3)  2.78E+05 (  20)   72      5   2   16.1    2.9   51.9 

  87   1.35E+06 (  27)  6.60E+06 ( 132)   20    121  21   21.1   13.4   32.0 

  88   1.00E+05 (   9)  3.67E+05 (  33)   90      7   2   28.4   11.8   59.8 

  89   4.94E+04 (   4)  5.19E+05 (  42)   81     10   3   10.2    2.6   27.0 

  90   4.00E+04 (   4)  3.20E+05 (  32)  100      6   2   13.3    3.3   36.2 

  91   1.60E+06 (  64)  9.25E+05 (  37)   40     17   6  175.5  115.9  269.5 

  92   1.60E+06 (  64)  6.38E+06 ( 255)   40    117  15   26.0   19.7   34.2 

  93   4.00E+05 (  12)  2.83E+06 (  85)   30     52  11   14.7    7.2   26.7 

  94   3.33E+05 (  10)  3.33E+04 (   1)   30      1   1  854.2  144.9 13355.4 

  95   1.11E+06 (  30)  2.11E+06 (  57)   27     39  10   54.2   33.5   85.4 

  96   3.50E+05 (   7)  1.45E+06 (  29)   20     27  10   25.3    9.2   57.8 

  97   2.00E+05 (   4)  1.60E+06 (  32)   20     29  10   13.3    3.3   36.2 

  98   6.25E+04 (   5)  4.25E+05 (  34)   80      8   3   15.6    4.6   38.9 

  99   2.00E+05 (   2)  1.00E+06 (  10)   10     18  11   21.8    2.2   96.0 

 100   4.00E+05 (  28)  4.36E+06 ( 305)   70     80   9    9.5    6.2   14.0 

 

 

OP1533 (Olympics) sedimentary bedrock, (Counted by Sarah Falkowski Nov. 2016) 

EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2):      8.130E+05 

                                       RELATIVE ERROR (%):      1.48 

               EFFECTIVE URANIUM CONTENT OF MONITOR (ppm):     15.00 

                 ZETA FACTOR AND STANDARD ERROR (yr cm^2):    252.90     5.00 

                            SIZE OF COUNTER SQUARE (cm^2):      1.000E-06 

Grain    RhoS    (Ns)     RhoI    (Ni)  Squares  U+/-2s     Grain  Age (Ma) 

 no.    (cm^-2)          (cm^-2)                          Age     --95% CI-- 

   1   9.09E+03 (   1)  3.45E+05 (  38)  110      6   2    3.1    0.1   16.0 

   2   2.00E+04 (   2)  8.80E+05 (  88)  100     16   3    2.5    0.3    8.7 

   3   4.41E+04 (   3)  5.44E+05 (  37)   68     10   3    8.7    1.6   26.3 

   4   1.89E+05 (  17)  5.50E+06 ( 495)   90    101  10    3.6    2.0    5.7 

   5   1.48E+05 (   4)  1.04E+06 (  28)   27     19   7   15.2    3.7   41.9 

   6   1.00E+05 (   6)  2.02E+06 ( 121)   60     37   7    5.2    1.8   11.4 

   7   5.56E+04 (   2)  1.56E+06 (  56)   36     29   8    3.9    0.4   13.9 

   8   3.33E+04 (   2)  6.50E+05 (  39)   60     12   4    5.7    0.6   20.3 

   9   2.50E+04 (   1)  7.25E+05 (  29)   40     13   5    4.0    0.1   21.4 

  10   7.00E+04 (   7)  1.28E+06 ( 128)  100     24   4    5.7    2.2   11.9 

  11   1.00E+04 (   1)  1.50E+05 (  15)  100      3   1    7.8    0.2   44.4 

  12   3.06E+04 (   3)  2.04E+05 (  20)   98      4   2   16.1    2.9   51.8 

  13   1.00E+05 (   5)  1.66E+06 (  83)   50     31   7    6.4    2.0   15.0 

  14   8.33E+04 (   2)  2.54E+06 (  61)   24     47  12    3.6    0.4   12.7 

  15   2.19E+05 (   7)  4.34E+06 ( 139)   32     80  14    5.3    2.0   11.0 

B. Additional data tables of section 3.2
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  16   1.00E+05 (   2)  2.05E+06 (  41)   20     38  12    5.4    0.6   19.3 

  17   1.43E+05 (   5)  4.71E+06 ( 165)   35     87  14    3.2    1.0    7.4 

  18   5.19E+04 (   4)  6.10E+05 (  47)   77     11   3    9.1    2.3   23.9 

  19   5.00E+04 (   5)  3.40E+05 (  34)  100      6   2   15.5    4.6   38.8 

  20   9.23E+04 (   6)  6.92E+05 (  45)   65     13   4   14.0    4.8   32.2 

 

 

 

 

 

 

 

 

OP1539 (Olympics) sedimentary bedrock, (Counted by Sarah Falkowski Nov. 2016) 

EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2):      8.120E+05 

                                       RELATIVE ERROR (%):      1.48 

               EFFECTIVE URANIUM CONTENT OF MONITOR (ppm):     15.00 

                 ZETA FACTOR AND STANDARD ERROR (yr cm^2):    252.90     5.00 

                            SIZE OF COUNTER SQUARE (cm^2):      1.000E-06 

Grain    RhoS    (Ns)     RhoI    (Ni)  Squares  U+/-2s     Grain  Age (Ma) 

 no.    (cm^-2)          (cm^-2)                          Age     --95% CI-- 

   1   2.50E+04 (   2)  3.25E+05 (  26)   80      6   2    8.5    0.9   31.5 

   2   3.33E+04 (   1)  8.00E+05 (  24)   30     15   6    4.9    0.1   26.2 

   3   8.33E+04 (   6)  2.50E+06 ( 180)   72     46   7    3.5    1.2    7.6 

   4   8.33E+04 (   4)  7.08E+05 (  34)   48     13   4   12.5    3.1   33.8 

   5   8.33E+04 (   2)  1.21E+06 (  29)   24     22   8    7.6    0.8   27.9 

   6   5.56E+04 (   2)  2.50E+05 (   9)   36      5   3   24.1    2.4  109.4 

   7   7.50E+04 (   3)  1.45E+06 (  58)   40     27   7    5.6    1.1   16.3 

   8   4.00E+05 (   6)  2.40E+06 (  36)   15     44  15   17.5    5.9   40.9 

   9   6.25E+04 (   2)  2.00E+06 (  64)   32     37   9    3.4    0.4   12.1 

  10   6.25E+04 (   2)  2.50E+05 (   8)   32      5   3   27.1    2.7  127.4 

  11   1.67E+05 (   2)  3.17E+06 (  38)   12     58  19    5.8    0.6   20.9 

  12   1.56E+05 (   7)  2.42E+06 ( 109)   45     45   9    6.7    2.6   14.0 

  13   6.67E+04 (   2)  5.00E+05 (  15)   30      9   5   14.6    1.5   58.6 

  14   5.00E+05 (   3)  1.67E+06 (  10)    6     31  19   31.8    5.4  118.6 

  15   4.00E+04 (   2)  8.60E+05 (  43)   50     16   5    5.1    0.6   18.3 

  16   1.00E+05 (   5)  1.40E+06 (  70)   50     26   6    7.6    2.3   17.9 

  17   1.79E+05 (   5)  2.89E+06 (  81)   28     53  12    6.5    2.0   15.4 

  18   6.00E+04 (   6)  1.00E+06 ( 100)  100     18   4    6.3    2.2   13.9 

  19   1.25E+05 (   3)  1.71E+06 (  41)   24     32  10    7.9    1.5   23.5 

  20   7.50E+04 (   3)  6.50E+05 (  26)   40     12   5   12.4    2.3   38.6 

  21   3.33E+04 (   2)  2.67E+05 (  16)   60      5   2   13.7    1.4   54.4 

 

 

OP1542 (Olympics) sedimentary bedrock, (Counted by Sarah Falkowski May 2017) 

EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2):      9.330E+05 

                                       RELATIVE ERROR (%):      1.51 

               EFFECTIVE URANIUM CONTENT OF MONITOR (ppm):     15.00 

                 ZETA FACTOR AND STANDARD ERROR (yr cm^2):    261.20     6.80 

                            SIZE OF COUNTER SQUARE (cm^2):      1.000E-06 

Grain    RhoS    (Ns)     RhoI    (Ni)  Squares  U+/-2s     Grain  Age (Ma) 

 no.    (cm^-2)          (cm^-2)                          Age     --95% CI-- 

   1   8.89E+04 (   4)  2.67E+05 (  12)   45      4   2   41.6    9.5  132.7 

   2   5.17E+04 (   3)  1.33E+06 (  77)   58     21   5    5.0    1.0   14.4 

B.3. Apatite fission track single grain analyses
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   3   1.22E+05 (  11)  1.68E+06 ( 151)   90     27   4    9.0    4.3   16.3 

   4   1.44E+05 (  13)  8.22E+05 (  74)   90     13   3   21.6   10.9   38.8 

   5   8.75E+04 (   7)  1.19E+06 (  95)   80     19   4    9.2    3.5   19.2 

   6   2.80E+05 (  28)  1.32E+06 ( 132)  100     21   4   25.9   16.5   39.0 

   7   3.17E+04 (   2)  4.92E+05 (  31)   63      8   3    8.4    0.9   30.8 

   8   6.19E+05 (  26)  1.93E+06 (  81)   42     31   7   39.2   24.1   61.3 

   9   5.71E+04 (   2)  2.97E+06 ( 104)   35     48   9    2.5    0.3    8.7 

  10   4.00E+04 (   4)  6.00E+05 (  60)  100     10   2    8.4    2.1   21.9 

  11   1.33E+05 (  12)  1.81E+06 ( 163)   90     29   5    9.1    4.5   16.1 

  12   3.10E+05 (  31)  3.26E+06 ( 326)  100     52   6   11.6    7.7   16.8 

  13   4.00E+04 (   2)  3.20E+05 (  16)   50      5   3   16.2    1.7   64.5 

  14   7.41E+04 (   6)  1.72E+06 ( 139)   81     28   5    5.4    1.9   11.7 

  15   1.00E+05 (   7)  1.23E+06 (  86)   70     20   4   10.1    3.9   21.3 

  16   1.00E+05 (   2)  6.50E+05 (  13)   20     10   6   19.9    2.1   82.3 

  17   1.60E+05 (   8)  6.00E+04 (   3)   50      1   1  307.4   77.5 1667.1 

  18   5.00E+04 (   5)  1.38E+06 ( 138)  100     22   4    4.6    1.4   10.6 

  19   2.00E+04 (   2)  4.30E+05 (  43)  100      7   2    6.1    0.7   21.7 

  20   3.33E+04 (   2)  3.83E+05 (  23)   60      6   3   11.3    1.2   42.8 

 

 

OP1551 (Olympics), counted by Sarah Falkowski July 2017 

EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2):      9.420E+05 

                                       RELATIVE ERROR (%):      1.51 

               EFFECTIVE URANIUM CONTENT OF MONITOR (ppm):     15.00 

                 ZETA FACTOR AND STANDARD ERROR (yr cm^2):    256.80     5.00 

                            SIZE OF COUNTER SQUARE (cm^2):      1.000E-06 

Grain    RhoS    (Ns)     RhoI    (Ni)  Squares  U+/-2s     Grain  Age (Ma) 

 no.    (cm^-2)          (cm^-2)                          Age     --95% CI-- 

   1   1.49E+04 (   1)  3.73E+05 (  25)   67      6   2    5.5    0.1   29.5 

   2   0.00E+00 (   0)  2.62E+05 (  11)   42      4   2    7.9    0.3   48.0 

   3   2.50E+05 (   3)  3.42E+06 (  41)   12     54  17    9.3    1.8   27.7 

   4   4.00E+04 (   2)  9.60E+05 (  48)   50     15   4    5.4    0.6   19.2 

   5   1.00E+04 (   1)  3.00E+05 (  30)  100      5   2    4.6    0.1   24.2 

   6   3.13E+04 (   1)  5.63E+05 (  18)   32      9   4    7.6    0.2   42.4 

   7   5.77E+04 (   3)  9.42E+05 (  49)   52     15   4    7.8    1.5   22.9 

   8   5.56E+04 (   1)  5.56E+05 (  10)   18      9   5   13.6    0.3   84.5 

   9   3.00E+04 (   3)  3.10E+05 (  31)  100      5   2   12.3    2.3   37.4 

  10   2.67E+05 (   4)  2.07E+06 (  31)   15     33  12   16.1    4.0   44.0 

  11   2.50E+04 (   2)  1.15E+06 (  92)   80     18   4    2.8    0.3    9.8 

  12   1.11E+05 (   1)  1.00E+06 (   9)    9     16  10   15.1    0.3   96.3 

  13   1.50E+05 (   6)  1.63E+06 (  65)   40     26   6   11.4    4.0   25.6 

  14   2.78E+04 (   1)  4.72E+05 (  17)   36      8   4    8.1    0.2   45.3 

  15   0.00E+00 (   0)  8.33E+04 (   2)   24      1   2   49.9    1.5  614.1 

  16   1.43E+05 (   5)  3.57E+06 ( 125)   35     57  10    5.0    1.5   11.6 

  17   4.76E+04 (   1)  1.52E+06 (  32)   21     24   9    4.3    0.1   22.6 

  18   2.38E+05 (  10)  7.38E+06 ( 310)   42    118  14    4.0    1.9    7.3 

  19   2.50E+05 (   5)  5.05E+06 ( 101)   20     80  16    6.2    1.9   14.4 

  20   2.56E+04 (   1)  3.33E+05 (  13)   39      5   3   10.5    0.2   61.7 

  21   2.19E+05 (   7)  2.44E+06 (  78)   32     39   9   11.1    4.2   23.4 

 

 

OP1573 (Olympics), counted by Sarah Falkowski July 2017 

EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2):      9.410E+05 

                                       RELATIVE ERROR (%):      1.51 

B. Additional data tables of section 3.2
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               EFFECTIVE URANIUM CONTENT OF MONITOR (ppm):     15.00 

                 ZETA FACTOR AND STANDARD ERROR (yr cm^2):    256.80     5.00 

                            SIZE OF COUNTER SQUARE (cm^2):      1.000E-06 

Grain    RhoS    (Ns)     RhoI    (Ni)  Squares  U+/-2s     Grain  Age (Ma) 

 no.    (cm^-2)          (cm^-2)                          Age     --95% CI-- 

   1   8.33E+05 (  10)  6.00E+06 (  72)   12     96  23   17.0    7.7   32.6 

   2   2.00E+04 (   2)  2.50E+05 (  25)  100      4   2   10.3    1.1   38.7 

   3   3.75E+05 (   3)  4.13E+06 (  33)    8     66  23   11.5    2.2   34.9 

   4   5.00E+04 (   2)  5.00E+05 (  20)   40      8   4   12.9    1.4   49.6 

   5   1.00E+06 (   1)  2.60E+07 (  26)    1    414 162    5.3    0.1   28.2 

   6   2.50E+05 (  10)  6.48E+06 ( 259)   40    103  13    4.7    2.2    8.7 

 

 

 

 

OP1582 (Olympics) sedimentary bedrock, (Counted by Sarah Falkowski Nov. 2016) 

EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2):      8.100E+05 

                                       RELATIVE ERROR (%):      1.48 

               EFFECTIVE URANIUM CONTENT OF MONITOR (ppm):     15.00 

                 ZETA FACTOR AND STANDARD ERROR (yr cm^2):    252.90     5.00 

                            SIZE OF COUNTER SQUARE (cm^2):      1.000E-06 

Grain    RhoS    (Ns)     RhoI    (Ni)  Squares  U+/-2s     Grain  Age (Ma) 

 no.    (cm^-2)          (cm^-2)                          Age     --95% CI-- 

   1   1.67E+05 (   5)  2.23E+06 (  67)   30     41  10    7.9    2.4   18.7 

   2   4.17E+04 (   2)  1.35E+06 (  65)   48     25   6    3.4    0.4   11.8 

   3   1.25E+05 (   2)  1.44E+06 (  23)   16     27  11    9.5    1.0   36.0 

   4   6.00E+04 (   3)  4.60E+05 (  23)   50      9   4   14.0    2.6   44.1 

   5   6.67E+03 (   1)  2.73E+05 (  41)  150      5   2    2.9    0.1   14.7 

   6   0.00E+00 (   0)  1.67E+05 (   3)   18      3   3   26.6    0.9  243.3 

   7   2.78E+04 (   2)  2.50E+05 (  18)   72      5   2   12.1    1.3   47.4 

   8   1.17E+05 (   7)  3.00E+06 ( 180)   60     56   8    4.1    1.6    8.4 

   9   2.03E+05 (  13)  3.58E+06 ( 229)   64     66   9    5.9    3.0   10.1 

  10   1.94E+04 (   3)  1.87E+05 (  29)  155      3   1   11.1    2.1   34.1 

  11   4.17E+04 (   2)  4.17E+05 (  20)   48      8   3   10.9    1.2   42.1 

  12   3.00E+05 (   9)  7.03E+06 ( 211)   30    130  18    4.4    2.0    8.5 

  13   1.16E+04 (   1)  3.95E+05 (  34)   86      7   3    3.4    0.1   17.9 

  14   5.71E+04 (   4)  3.14E+05 (  22)   70      6   2   19.2    4.7   54.6 

  15   1.78E+05 (   8)  2.91E+06 ( 131)   45     54  10    6.4    2.6   12.7 

  16   1.11E+05 (  10)  1.59E+06 ( 143)   90     29   5    7.3    3.4   13.6 

  17   1.43E+05 (   5)  1.17E+06 (  41)   35     22   7   12.8    3.8   31.5 

  18   3.25E+05 (  13)  6.68E+06 ( 267)   40    124  16    5.0    2.6    8.7 

  19   1.51E+05 (   8)  1.62E+06 (  86)   53     30   7    9.7    4.0   19.6 

  20   4.00E+04 (   2)  4.20E+05 (  21)   50      8   3   10.4    1.1   39.8 

  21   1.00E+05 (  11)  2.05E+06 ( 226)  110     38   5    5.1    2.5    9.1 

  22   4.29E+04 (   3)  9.29E+05 (  65)   70     17   4    5.0    0.9   14.4 

 

B.3. Apatite fission track single grain analyses
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Table DR4: Zircon fission track Single grain ages listed for each sample. 
 
===================ZetaAge Program v. 4.8 (Brandon 8/13/02)=================== 
Zr_OP1513-1 sedimentary bedrock, (counted by Lorenz Michel Sep. 2017) 
EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2):      5.410E+05 
                                       RELATIVE ERROR (%):      1.58 
               EFFECTIVE URANIUM CONTENT OF MONITOR (ppm):     50.00 
                 ZETA FACTOR AND STANDARD ERROR (yr cm^2):    109.00    11.00 
                            SIZE OF COUNTER SQUARE (cm^2):      1.000E-06 
Grain    RhoS    (Ns)     RhoI    (Ni)  Squares  U+/-2s     Grain  Age (Ma) 
 no.    (cm^-2)          (cm^-2)                          Age     --95% CI-- 
   1   4.50E+06 (  72)  5.44E+06 (  87)   16    503 109   24.4   17.6   33.7 
   2   2.44E+06 (  22)  1.89E+06 (  17)    9    175  84   38.0   19.3   76.2 
   3   3.88E+06 (  31)  6.75E+06 (  54)    8    624 170   16.9   10.5   26.8 
   4   6.75E+06 (  81)  5.92E+06 (  71)   12    547 130   33.5   24.1   46.8 
   5   5.25E+06 (  21)  6.50E+06 (  26)    4    601 234   23.8   12.7   43.9 
   6   4.29E+06 (  60)  3.86E+06 (  54)   14    356  97   32.7   22.2   48.1 
   7   9.50E+06 (  38)  5.50E+06 (  22)    4    508 215   50.6   29.3   89.9 
   8   5.78E+06 (  52)  3.78E+06 (  34)    9    349 119   44.9   28.6   71.4 
   9   1.12E+07 ( 112)  5.40E+06 (  54)   10    499 136   60.8   43.6   85.8 
  10   1.00E+07 ( 120)  8.33E+06 ( 100)   12    770 156   35.3   26.8   46.5 
  11   4.70E+06 (  47)  2.70E+06 (  27)   10    250  95   51.0   31.2   85.2 
  12   1.09E+07 (  87)  6.38E+06 (  51)    8    589 165   50.0   35.1   72.2 
  13   4.43E+06 (  31)  3.43E+06 (  24)    7    317 128   37.9   21.6   67.5 
  14   2.00E+07 (  60)  7.00E+06 (  21)    3    647 280   83.3   50.3  144.3 
  15   8.13E+06 (  65)  8.75E+06 (  70)    8    809 194   27.3   19.2   38.9 
  16   3.67E+06 (  11)  3.00E+06 (   9)    3    277 180   35.8   13.6   97.7 
  17   5.80E+06 (  58)  6.10E+06 (  61)   10    564 145   28.0   19.2   40.8 
  18   9.67E+06 (  58)  1.00E+07 (  60)    6    924 239   28.4   19.5   41.5 
  19   9.40E+06 (  47)  8.40E+06 (  42)    5    776 239   32.9   21.2   51.1 
  20   3.00E+06 (  36)  2.17E+06 (  26)   12    200  78   40.6   23.9   70.1 
  21   1.10E+07 (  99)  7.67E+06 (  69)    9    709 171   42.1   30.7   58.2 
  22   6.40E+06 (  64)  5.80E+06 (  58)   10    536 141   32.4   22.4   47.1 
  23   5.40E+06 (  54)  5.40E+06 (  54)   10    499 136   29.4   19.8   43.7 
 
 
Zr_OP1517-2 sedimentary bedrock, (counted by Lorenz Michel Sep. 2017) 
EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2):      5.420E+05 
                                       RELATIVE ERROR (%):      1.58 
               EFFECTIVE URANIUM CONTENT OF MONITOR (ppm):     50.00 
                 ZETA FACTOR AND STANDARD ERROR (yr cm^2):    109.00    11.00 
                            SIZE OF COUNTER SQUARE (cm^2):      1.000E-06 
Grain    RhoS    (Ns)     RhoI    (Ni)  Squares  U+/-2s     Grain  Age (Ma) 
 no.    (cm^-2)          (cm^-2)                          Age     --95% CI-- 
   1   7.33E+06 (  88)  5.33E+06 (  64)   12    492 124   40.5   29.0   56.8 
   2   1.55E+07 ( 155)  8.50E+06 (  85)   10    784 171   53.6   40.9   70.8 
   3   7.86E+06 ( 165)  7.14E+06 ( 150)   21    659 109   32.4   25.8   40.8 
   4   4.88E+06 (  39)  3.00E+06 (  24)    8    277 112   47.7   28.1   83.0 
   5   1.08E+07 ( 130)  6.67E+06 (  80)   12    615 138   47.8   35.9   64.0 
   6   9.00E+06 ( 144)  6.81E+06 ( 109)   16    628 122   38.9   30.1   50.4 
   7   8.07E+06 ( 121)  5.00E+06 (  75)   15    461 107   47.4   35.3   64.2 
   8   7.25E+06 (  87)  5.42E+06 (  65)   12    500 124   39.4   28.2   55.2 
   9   5.81E+06 (  93)  4.63E+06 (  74)   16    427 100   37.0   27.0   51.0 
  10   8.00E+06 (  72)  7.11E+06 (  64)    9    656 165   33.1   23.3   47.2 
  11   1.47E+07 ( 176)  1.09E+07 ( 131)   12   1007 179   39.6   31.3   50.1 

B. Additional data tables of section 3.2
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  12   1.15E+07 ( 138)  9.00E+06 ( 108)   12    830 162   37.6   29.0   48.9 
  13   4.24E+06 (  89)  2.90E+06 (  61)   21    268  69   42.9   30.7   60.5 
  14   1.37E+07 (  41)  1.10E+07 (  33)    3   1015 352   36.6   22.6   59.7 
  15   7.75E+06 (  93)  8.33E+06 ( 100)   12    769 155   27.4   20.4   36.8 
  16   4.44E+06 (  40)  2.89E+06 (  26)    9    267 104   45.2   27.0   77.2 
  17   1.13E+07 (  45)  5.75E+06 (  23)    4    530 219   57.3   34.1   99.4 
  18   1.26E+07 ( 189)  8.80E+06 ( 132)   15    812 143   42.1   33.5   53.1 
  19   8.00E+06 (  64)  6.88E+06 (  55)    8    634 171   34.3   23.5   50.1 
  20   2.03E+07 (  61)  1.20E+07 (  36)    3   1107 368   49.8   32.5   77.4 
  21   4.00E+06 (  32)  3.25E+06 (  26)    8    300 117   36.2   20.9   63.3 
  22   2.22E+06 (  20)  1.78E+06 (  16)    9    164  81   36.8   18.1   75.8 
  23   1.30E+07 (  78)  8.83E+06 (  53)    6    815 224   43.3   30.2   62.6 
  24   5.50E+06 (  33)  4.33E+06 (  26)    6    400 156   37.3   21.7   65.0 
  25   8.93E+06 ( 134)  6.47E+06 (  97)   15    597 122   40.7   31.1   53.4 
 
 
 
Zr_OP1533-2 sedimentary bedrock, (counted by Lorenz Michel Sep. 2017) 
EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2):      5.430E+05 
                                       RELATIVE ERROR (%):      1.58 
               EFFECTIVE URANIUM CONTENT OF MONITOR (ppm):     50.00 
                 ZETA FACTOR AND STANDARD ERROR (yr cm^2):    109.00    11.00 
                            SIZE OF COUNTER SQUARE (cm^2):      1.000E-06 
Grain    RhoS    (Ns)     RhoI    (Ni)  Squares  U+/-2s     Grain  Age (Ma) 
 no.    (cm^-2)          (cm^-2)                          Age     --95% CI-- 
   1   5.27E+06 (  79)  5.40E+06 (  81)   15    497 111   28.8   20.8   39.8 
   2   2.17E+06 (  65)  1.33E+06 (  40)   30    123  39   47.8   31.8   72.9 
   3   4.92E+06 ( 118)  2.88E+06 (  69)   24    265  64   50.4   37.1   68.9 
   4   1.93E+06 (  77)  1.53E+06 (  61)   40    140  36   37.2   26.3   53.0 
   5   1.94E+06 (  31)  2.00E+06 (  32)   16    184  65   28.6   16.9   48.4 
   6   4.04E+06 ( 109)  1.85E+06 (  50)   27    171  48   64.1   45.5   91.6 
   7   3.96E+06 (  95)  3.46E+06 (  83)   24    318  70   33.8   24.9   46.0 
   8   5.58E+06 ( 134)  3.38E+06 (  81)   24    311  70   48.7   36.7   65.1 
   9   6.89E+06 ( 186)  5.19E+06 ( 140)   27    477  82   39.2   31.3   49.2 
  10   7.67E+06 (  46)  5.83E+06 (  35)    6    537 181   38.7   24.4   62.0 
  11   1.36E+07 ( 272)  3.75E+06 (  75)   20    345  80  106.3   82.1  139.3 
  12   1.03E+07 ( 164)  6.06E+06 (  97)   16    558 114   49.8   38.5   64.8 
  13   4.08E+06 (  98)  3.25E+06 (  78)   24    299  68   37.1   27.2   50.6 
  14   7.97E+06 ( 255)  4.09E+06 ( 131)   32    377  67   57.2   42.9   76.4 
  15   8.25E+06 (  99)  5.08E+06 (  61)   12    468 120   47.8   34.4   67.0 
  16   3.20E+06 (  64)  2.80E+06 (  56)   20    258  69   33.7   23.2   49.2 
  17   4.21E+06 ( 101)  2.08E+06 (  50)   24    192  54   59.4   42.0   85.2 
  18   1.06E+07 ( 212)  3.65E+06 (  73)   20    336  79   85.3   65.1  113.0 
  19   4.95E+06 (  99)  3.00E+06 (  60)   20    276  72   48.6   34.9   68.2 
  20   1.66E+06 (  73)  1.68E+06 (  74)   44    155  36   29.1   20.8   40.8 
  21   9.59E+06 ( 307)  4.78E+06 ( 153)   32    440  72   59.0   44.7   77.9 
  22   8.50E+06 ( 153)  4.67E+06 (  84)   18    430  94   53.6   40.8   71.0 
  23   5.73E+06 (  86)  4.47E+06 (  67)   15    411 101   37.9   27.2   53.0 
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Zr_OP1539-2 sedimentary bedrock, (counted by Lorenz Michel Sep. 2017) 
EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2):      5.440E+05 
                                       RELATIVE ERROR (%):      1.58 
               EFFECTIVE URANIUM CONTENT OF MONITOR (ppm):     50.00 
                 ZETA FACTOR AND STANDARD ERROR (yr cm^2):    109.00    11.00 
                            SIZE OF COUNTER SQUARE (cm^2):      1.000E-06 
Grain    RhoS    (Ns)     RhoI    (Ni)  Squares  U+/-2s     Grain  Age (Ma) 
 no.    (cm^-2)          (cm^-2)                          Age     --95% CI-- 
   1   2.33E+06 (  56)  4.46E+06 ( 107)   24    410  80   15.5   11.0   21.6 
   2   1.59E+06 (  43)  4.37E+06 ( 118)   27    402  75   10.8    7.4   15.4 
   3   2.75E+06 (  33)  7.33E+06 (  88)   12    674 145   11.1    7.2   16.8 
   4   5.71E+05 (  12)  1.48E+06 (  31)   21    136  49   11.6    5.4   23.0 
   5   2.80E+06 (  56)  5.95E+06 ( 119)   20    547 102   14.0    9.9   19.3 
   6   1.83E+06 (  11)  3.00E+06 (  18)    6    276 129   18.2    7.7   40.4 
   7   5.00E+05 (  12)  1.50E+06 (  36)   24    138  46   10.0    4.7   19.4 
   8   7.14E+05 (  15)  2.24E+06 (  47)   21    206  60    9.5    4.9   17.2 
   9   3.25E+06 (  39)  7.33E+06 (  88)   12    674 145   13.2    8.8   19.4 
  10   1.89E+06 (  68)  4.00E+06 ( 144)   36    368  62   14.0   10.3   18.8 
  11   3.94E+06 (  63)  6.69E+06 ( 107)   16    615 120   17.5   12.5   24.1 
  12   1.25E+06 (  15)  4.33E+06 (  52)   12    398 111    8.6    4.5   15.4 
  13   5.05E+06 ( 106)  1.16E+07 ( 243)   21   1064 140   12.9   10.2   16.3 
  14   2.50E+06 (  15)  5.33E+06 (  32)    6    490 173   14.0    7.0   26.4 
  15   5.71E+05 (  12)  1.76E+06 (  37)   21    162  53    9.7    4.6   18.8 
  16   1.31E+06 (  21)  3.88E+06 (  62)   16    356  91   10.1    5.8   16.7 
  17   4.76E+05 (  10)  1.33E+06 (  28)   21    123  46   10.7    4.6   22.4 
  18   1.13E+06 (  27)  3.83E+06 (  92)   24    352  74    8.7    5.4   13.5 
  19   5.00E+06 (  60)  8.08E+06 (  97)   12    743 152   18.3   13.0   25.6 
  20   3.50E+05 (   7)  1.25E+06 (  25)   20    115  46    8.4    3.0   19.7 
  21   1.69E+06 (  27)  5.50E+06 (  88)   16    506 109    9.1    5.7   14.1 
 
 
Zr_OP1551-1 sedimentary bedrock, (counted by Lorenz Michel Sep. 2017) 
EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2):      5.470E+05 
                                       RELATIVE ERROR (%):      1.58 
               EFFECTIVE URANIUM CONTENT OF MONITOR (ppm):     50.00 
                 ZETA FACTOR AND STANDARD ERROR (yr cm^2):    109.00    11.00 
                            SIZE OF COUNTER SQUARE (cm^2):      1.000E-06 
Grain    RhoS    (Ns)     RhoI    (Ni)  Squares  U+/-2s     Grain  Age (Ma) 
 no.    (cm^-2)          (cm^-2)                          Age     --95% CI-- 
   1   1.11E+06 (  40)  1.78E+06 (  64)   36    163  41   18.6   12.2   28.1 
   2   1.63E+06 (  39)  2.54E+06 (  61)   24    232  60   19.1   12.4   28.9 
   3   1.83E+06 (  44)  3.33E+06 (  80)   24    305  69   16.4   11.1   24.0 
   4   2.00E+06 (  72)  2.67E+06 (  96)   36    244  50   22.3   16.2   30.7 
   5   1.25E+06 (  20)  8.13E+05 (  13)   16     74  40   45.5   21.7   99.6 
   6   5.42E+05 (  13)  1.50E+06 (  36)   24    137  46   10.8    5.2   20.8 
   7   5.83E+05 (  28)  1.00E+06 (  48)   48     91  26   17.4   10.5   28.3 
   8   1.08E+06 (  27)  2.48E+06 (  62)   25    227  58   13.0    7.9   20.7 
   9   6.25E+05 (  15)  1.67E+06 (  40)   24    152  48   11.2    5.7   20.7 
  10   5.56E+05 (  10)  2.00E+06 (  36)   18    183  61    8.4    3.7   17.0 
  11   2.75E+06 (  44)  4.56E+06 (  73)   16    417  98   18.0   12.0   26.5 
  12   1.17E+07 ( 117)  1.21E+07 ( 121)   10   1106 204   28.8   22.1   37.5 
  13   6.10E+06 (  61)  6.40E+06 (  64)   10    585 147   28.4   19.6   40.9 
  14   3.33E+05 (  10)  9.00E+05 (  27)   30     82  31   11.1    4.8   23.5 
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  15   9.71E+05 (  34)  1.20E+06 (  42)   35    110  34   24.1   14.9   38.8 
  16   2.14E+06 (  77)  1.42E+06 (  51)   36    129  36   44.8   31.1   65.2 
  17   2.58E+06 (  62)  1.33E+06 (  32)   24    122  43   57.4   37.0   90.9 
  18   5.83E+05 (  21)  8.06E+05 (  29)   36     74  27   21.6   11.7   39.1 
  19   1.08E+06 (  39)  2.89E+06 ( 104)   36    264  52   11.2    7.5   16.3 
  20   2.50E+06 (  40)  4.25E+06 (  68)   16    388  95   17.5   11.5   26.3 
  21   1.15E+06 (  23)  2.40E+06 (  48)   20    219  63   14.3    8.3   23.9 
  22   6.54E+06 ( 157)  3.83E+06 (  92)   24    350  74   50.6   38.9   66.3 
  23   1.72E+06 (  62)  3.47E+06 ( 125)   36    317  58   14.8   10.7   20.2 
 
 
Zr_OP1552-1 sedimentary bedrock, (counted by Lorenz Michel Sep. 2017) 
EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2):      5.480E+05 
                                       RELATIVE ERROR (%):      1.58 
               EFFECTIVE URANIUM CONTENT OF MONITOR (ppm):     50.00 
                 ZETA FACTOR AND STANDARD ERROR (yr cm^2):    109.00    11.00 
                            SIZE OF COUNTER SQUARE (cm^2):      1.000E-06 
Grain    RhoS    (Ns)     RhoI    (Ni)  Squares  U+/-2s     Grain  Age (Ma) 
 no.    (cm^-2)          (cm^-2)                          Age     --95% CI-- 
   1   1.00E+06 (  45)  1.82E+06 (  82)   45    166  37   16.4   11.1   23.9 
   2   1.00E+06 (  40)  1.83E+06 (  73)   40    167  39   16.4   10.8   24.4 
   3   9.05E+05 (  38)  1.83E+06 (  77)   42    167  38   14.8    9.7   22.0 
   4   2.18E+06 ( 122)  2.52E+06 ( 141)   56    230  39   25.8   20.0   33.2 
   5   4.88E+06 (  78)  4.25E+06 (  68)   16    388  95   34.2   24.3   48.0 
   6   5.25E+05 (  21)  1.08E+06 (  43)   40     98  30   14.6    8.2   25.1 
   7   8.10E+05 (  34)  1.36E+06 (  57)   42    124  33   17.8   11.3   27.7 
   8   1.69E+06 (  27)  1.81E+06 (  29)   16    165  61   27.8   15.8   48.5 
   9   7.38E+05 (  31)  1.48E+06 (  62)   42    135  34   15.0    9.4   23.3 
  10   7.19E+06 ( 115)  5.63E+06 (  90)   16    513 109   38.0   28.6   50.8 
  11   5.83E+05 (  21)  1.42E+06 (  51)   36    129  36   12.3    7.0   20.8 
  12   1.20E+06 (  67)  2.34E+06 ( 131)   56    213  38   15.3   11.2   20.7 
  13   7.50E+05 (  24)  1.78E+06 (  57)   32    163  43   12.6    7.5   20.6 
  14   1.02E+06 (  49)  2.48E+06 ( 119)   48    226  42   12.3    8.6   17.3 
  15   6.90E+05 (  29)  1.29E+06 (  54)   42    117  32   16.1    9.8   25.6 
  16   5.71E+05 (  12)  1.29E+06 (  27)   21    117  45   13.4    6.1   27.1 
  17   1.43E+06 (  43)  3.87E+06 ( 116)   30    353  66   11.1    7.6   15.8 
  18   5.52E+06 ( 138)  4.60E+06 ( 115)   25    420  79   35.7   27.7   46.2 
  19   4.22E+05 (  27)  1.27E+06 (  81)   64    115  26   10.0    6.2   15.6 
  20   6.90E+05 (  69)  1.37E+06 ( 137)  100    125  22   15.0   11.1   20.2 
  21   6.61E+05 (  37)  1.43E+06 (  80)   56    130  29   13.8    9.1   20.6 
  22   1.07E+06 (  30)  2.00E+06 (  56)   28    182  49   16.0    9.9   25.3 
  23   1.07E+06 (  48)  2.87E+06 ( 129)   45    262  47   11.1    7.8   15.6 
  24   1.29E+06 (  31)  2.21E+06 (  53)   24    201  55   17.5   10.8   27.7 
 
 
Zr_OP1582-1 sedimentary bedrock, (counted by Lorenz Michel Sep. 2017) 
EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2):      5.450E+05 
                                       RELATIVE ERROR (%):      1.58 
               EFFECTIVE URANIUM CONTENT OF MONITOR (ppm):     50.00 
                 ZETA FACTOR AND STANDARD ERROR (yr cm^2):    109.00    11.00 
                            SIZE OF COUNTER SQUARE (cm^2):      1.000E-06 
Grain    RhoS    (Ns)     RhoI    (Ni)  Squares  U+/-2s     Grain  Age (Ma) 
 no.    (cm^-2)          (cm^-2)                          Age     --95% CI-- 
   1   4.77E+06 ( 143)  2.33E+06 (  70)   30    214  51   60.3   45.0   81.6 
   2   5.50E+06 ( 165)  3.50E+06 ( 105)   30    321  63   46.5   36.2   60.0 
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   3   7.72E+06 ( 139)  8.11E+06 ( 146)   18    744 125   28.2   22.2   35.9 
   4   6.09E+06 (  67)  2.64E+06 (  29)   11    242  89   68.1   43.6  109.3 
   5   3.17E+06 (  95)  2.13E+06 (  64)   30    196  49   43.9   31.7   61.3 
   6   5.31E+06 (  85)  2.31E+06 (  37)   16    212  70   67.7   45.7  102.6 
   7   5.62E+06 ( 118)  5.81E+06 ( 122)   21    533  98   28.7   22.0   37.3 
   8   8.56E+06 ( 231)  4.74E+06 ( 128)   27    435  78   53.4   42.8   66.9 
   9   4.12E+06 ( 198)  3.77E+06 ( 181)   48    346  53   32.4   24.4   43.0 
  10   4.50E+06 (  54)  2.17E+06 (  26)   12    199  77   61.2   37.8  101.9 
  11   2.57E+06 (  54)  1.43E+06 (  30)   21    131  48   53.1   33.5   86.1 
  12   3.36E+06 ( 121)  1.67E+06 (  60)   36    153  40   59.5   43.4   82.7 
  13   9.05E+05 (  19)  7.62E+05 (  16)   21     70  34   35.1   17.1   73.0 
  14   2.75E+06 (  33)  2.92E+06 (  35)   12    268  90   28.0   16.8   46.3 
  15   4.12E+06 (  99)  2.08E+06 (  50)   24    191  54   58.5   41.3   84.0 
  16   2.42E+06 (  29)  1.58E+06 (  19)   12    145  66   45.1   24.5   85.1 
  17   1.74E+06 (  61)  1.77E+06 (  62)   35    163  41   29.2   20.1   42.2 
  18   6.40E+06 (  96)  3.07E+06 (  46)   15    281  83   61.6   43.0   89.6 
  19   8.92E+06 ( 107)  6.08E+06 (  73)   12    558 131   43.4   31.9   59.3 
  20   6.67E+05 (  20)  6.33E+05 (  19)   30     58  26   31.2   15.8   61.7 
  21   2.50E+06 (  50)  2.20E+06 (  44)   20    202  61   33.7   22.0   51.7 
  22   2.56E+06 (  92)  2.03E+06 (  73)   36    186  44   37.3   27.1   51.5 
  23   7.38E+06 ( 155)  4.90E+06 ( 103)   21    450  90   44.5   34.5   57.8 
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Appendix C

Additional data tables of section 3.3

The following pages contain supplementary data tables for the manuscript
“Frictional transition leaves a permanent mark in Cascadia.” presented in sec-
tion 3.3.2.

These tables include the estimates of long-term denudation rates from ther-
mochronometry and cosmogenic nuclides used in the analysis of the paper (Table
S1, section C.1). Furthermore, the displacements related to episodic tremor and
slip as derived from literature sources is reported (Table S2, section C.2).
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Sample Latitude (°N) Longitude (°E)
Denudation rate 

(mm/yr)

Denudation rate 

2 SD (mm/yr)
Sample Latitude (°N) Longitude (°E)

Denudation rate 

(mm/yr)

WA1501 47.810972 -123.44503 0.638 0.118 OP1502 47.90796 -122.92804 0.25

WA1502 47.948389 -123.56092 0.718 0.134 OP1504 47.93233 -123.19509 0.329

WA1503 47.969639 -123.59908 0.93 0.183 OP1505 47.96524 -123.11056 0.257

WA1519 47.878306 -123.70736 2.511 0.618 OP1507 47.98305 -123.61359 0.522

WA1520 47.885139 -123.75147 0.61 0.112 OP1510 48.09852 -123.62231 0.256

WA1522 47.976972 -123.68797 0.432 0.09 OP1513 47.96015 -123.57273 0.695

WA1523 47.876735 -123.69469 1.881 0.442 OP1515 47.81031 -123.44630 0.93

WA1524 47.876161 -123.69537 3.117 0.782 OP1516 47.88040 -123.47196 0.914

WA1525 47.916688 -123.24247 1.451 0.301 OP1517 47.93891 -123.51376 0.816

WA1526 47.67787 -124.11701 0.224 0.037 OP1518 48.05061 -123.83886 0.253

WA1527 47.62844 -123.6316 0.564 0.104 OP1521 48.04832 -124.08702 0.25

WA1537 47.615017 -123.47443 1.213 0.256 OP1522 48.00530 -124.41620 0.25

WA1538 47.739067 -123.17657 0.635 0.116 OP1523 48.12315 -124.22835 0.25

WA1539 47.951718 -123.81862 0.318 0.055 OP1527 47.82500 -124.05184 0.254

U-EFMC 47.685616 -124.23868 0.171 0.034 OP1529 47.78265 -124.14257 0.25

L-EFMC 47.653568 -124.24006 0.129 0.02 OP1530 47.73081 -124.26813 0.25

U-WC 47.738694 -124.04432 0.158 0.025 OP1531 47.63659 -124.34966 0.25

L-WC 47.728534 -124.03657 0.199 0.031 OP1532 47.87025 -123.88135 0.386

DEN104 47.55637 -124.28191 0.223 0.176 OP1533 47.87572 -123.69427 0.867

DEN106 47.644947 -124.24263 0.114 0.043 OP1534 47.88536 -123.75552 0.749

DEN101 47.642348 -124.23752 0.237 0.11 OP1536 47.48917 -124.03370 0.25

OP1539 47.64151 -123.65870 0.897

OP1540 47.59012 -123.54913 0.828

OP1542 47.56001 -123.37533 0.527

OP1545 47.51918 -123.32442 0.311

OP1547 47.44632 -123.11424 0.25

OP1548 48.02186 -123.34295 0.306

OP1565 47.91644 -123.24616 0.515

OP1580 47.73972 -123.17929 0.568

OP1582 47.95595 -123.83732 0.309

Rates based on cosmogenic nuclides Rates based on thermochronometry

Table S1: Published long term denudation rates, based on cosmogenic nuclide dating (Adams and Ehlers, 2018) and based on 

thermochronometric dating (Michel et al., 2018). Location of the samples is given in Latitude/Longitude and the rate at the respective 

sample location.
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Station 

name
Latitude (°N) Longitude (°E)

Vertical displacement 

(mm)

Vertical displacement 

1SD (mm)

ALBH 48.389781 -123.487471 1.05 0.54

ARLI 48.174067 -122.141860 -0.53 0.70

BAMF 48.835329 -125.135105 5.37 0.82

BELI 48.755269 -122.478998 -0.62 0.75

BLYN 48.016058 -122.927540 -1.61 1.68

BRNB 49.275056 -123.021821 2.91 1.24

CHCM 48.010618 -122.775867 -1.44 0.72

CHWK 49.156608 -122.008427 0.57 0.64

CLRS 48.820300 -124.130800 1.76 0.98

CUSH 47.423344 -123.219924 5.51 1.13

DWH1 47.774104 -122.080156 -0.40 1.36

GRP4 48.194668 -122.127286 -0.32 1.10

KTBW 47.547319 -122.795418 -0.67 0.56

LKCP 47.944379 -121.830853 -0.74 0.66

NANO 49.294810 -124.086480 0.26 0.57

NEAH 48.297855 -124.624907 1.58 0.65

P064 47.969846 -123.487705 2.07 1.35

P398 46.925785 -123.916145 1.83 0.72

P399 47.433920 -123.612960 4.66 0.93

P400 47.513349 -123.812450 7.56 1.55

P401 47.937188 -124.557020 1.59 0.61

P402 47.766221 -124.305897 2.29 0.74

P403 48.062322 -124.140875 3.44 0.89

P418 47.236645 -123.407814 5.53 0.75

P423 47.287903 -122.941210 1.36 0.72

P426 47.802725 -122.514585 -0.83 0.80

P435 48.059549 -123.503279 5.30 0.91

P436 48.045302 -123.134348 0.58 0.74

P437 48.001809 -122.459158 -0.54 0.83

P438 48.419148 -122.670263 -1.05 0.72

P439 48.708192 -122.909304 -0.96 0.68

P440 48.856193 -122.493341 -0.47 0.77

P441 48.915970 -122.139640 0.09 1.09

P442 48.260480 -121.615550 1.38 0.82

PABH 47.212799 -124.204582 1.55 0.51

PCOL 47.172057 -122.570806 -0.94 0.69

PFLD 47.898507 -122.282183 -0.09 0.71

PGC5 48.648533 -123.451129 -1.84 0.54

PTAL 49.256329 -124.860956 1.77 0.57

PTRF 48.544100 -124.412900 1.99 1.09

PUPU 47.499559 -122.008081 -4.30 1.40

RPT1 47.387506 -122.374767 -1.74 0.96

SC02 48.546195 -123.007611 -2.38 0.55

SC03 47.816587 -123.705738 8.66 0.73

SC04 48.923164 -123.704130 -0.99 0.65

SEAT 47.653977 -122.309476 -1.04 0.66

SEDR 48.521558 -122.223848 -1.21 0.66

TWHL 47.015905 -122.922876 1.93 0.59

UCLU 48.925637 -125.541641 2.81 0.61

VERN 48.417854 -122.337203 1.29 0.91

WHD1 48.312716 -122.696144 -5.41 1.21

Table S2: GPS-based vertical displacement due to episodic tremor and slip (ETS) at 

the respective GPS station. The reported displacment corresponds to the average 

displacment for a single ETS event, and is based on eight ETS events during 2000 to 

2014. Data is from Bruhat and Segall (2016).
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Appendix D

Location of important files on the group server

This appendix indicates, where important files created during the PhD project
are located on the server of the Earth Surface Dynamics group.

D.1 Manuscripts

All papers and manuscripts presented in chapter 3 can be found under

/esd/esd01/docs/lmichel/papers

Here, sub folders for the different manuscripts exist (/paper_1,/paper_2, ...).
In the folder of the respective manuscript the text (submitted .docx-files), figures
(submitted .pdf-files or .tif-files along with the original .ai-files) and the corre-
spondence during the review process (where available) are located in subfolders:
/text, /figures, /review. The most up-to-date version (i.e., the submitted
version of the respective files) can be found in these, along with earlier versions
(in sub folders).

D.2 Datasets

Several datasets have been generated during the PhD project. All data from
thermochronometric dating available as spreadsheets and categorized into results
from (U-Th)/He and fission-track methods, are located in

/esd/esd01/docs/lmichel/data_small/thermochronometry

Data from the flux calculations section 3.2 along with the matlab scripts used for
calculation are located in

/esd/esd01/docs/lmichel/data_small/flux_calculations

The results (i.e., the calculated thermochronometer ages from section 3.1 and
section 3.4 or the exhumation histories from section 3.2) from the different
modelling approaches are summarized in the respective sub folders in

/esd/esd01/docs/lmichel/data_small/modelling_results
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D.3 Modelling

A large number of thermo-kinematic models using Pecube have been run
during the PhD project. The data of all these simulations (i.e., modelled ther-
mochronometer ages, goodness of fit) along with the respective Pecube .in-files
used to define the models are available on the group server. For a better overview,
the different simulations have been categorized into groups. Initial test runs in-
vestigating various physical parameters and different ellipse shapes are located
in

/esd/esd01/data/lmichel/model_runs/pecube/test

All data from the final simulations of the first manuscript (section 3.1) are located
at

/esd/esd01/data/lmichel/model_runs/pecube/ellipse

The Monte-Carlo simulations of the manuscript presented in section 3.2 are
located at

/esd/esd01/data/lmichel/model_runs/pecube/monte_carlo

Results from the simulations of section 3.4 investigating changes of topography
are located at

/esd/esd01/data/lmichel/model_runs/pecube/topography_changes/
steady_simulations

D.4 ArcGIS

Variable ArcGIS files have been created during the course of the PhD project.
The folder structure for categorizing these is oriented along the varies tasks, that
emerged during the PhD. If ArcGIS was used in order to create a figure presented
in any of the manuscripts or papers, the corresponding .mxd-file is located in
the respective figure folder (see appendix D.1). Shapefiles created from various
datasets during the PhD are located at

/esd/esd01/share/arc/extreme/pecube/Cascades/lmichel/shape_files

Any data prepared with ArcGIS in order to import it into Pecube (e.g., topography
from DEMs) is located in

/esd/esd01/share/arc/extreme/pecube/Cascades/lmichel/pecube

Files used during planning the field work can be found under

/esd/esd01/share/arc/extreme/pecube/Cascades/lmichel/fieldwork
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D.5 Thesis writing

Files involved in creating this thesis can also be found on the server, the .tex-
files are located in

/esd/esd01/docs/lmichel/thesis_writing/text

and the figure files (.pdf-files or .tif-files included in the figure) and the original
.ai-files are located at

/esd/esd01/docs/lmichel/thesis_writing/figures
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