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1

Introduction

1.1 Background

Continued advancements in targeted therapies and immunotherapy have resulted

into an increasingly precise treatment of patients with cancer [1, 2]. Whereas tar-

geted therapies alter pre-selected molecular pathways that are known to play an

important role in cancer progression (such as proliferation and angiogenesis) [1],

immunotherapies recruit the body’s own mechanisms of defense to eliminate the

tumor cells [2]. Unlike conventional cytotoxic therapies, which directly influence

cancer cells by driving them into a rapid cellular regression, the response to tar-

geted therapies and immunotherapies can be delayed and might not even begin

with a reduction in tumor size [3, 4]. Although the biological processes resulting

in such responses are not fully understood, the mechanistic differences between

the conventional and modern cancer treatments advocate for a more compre-

hensive response evaluation criterion than the widely utilized WHO and RECIST

measures [4, 5]. A second factor limiting the applicability of the two guidelines [5]

in the evaluation of the cancer treatments is the heterogeneity (figure 1.1) within

tumors [6, 7]. Heterogeneous lesions are notoriously aggressive and have been

closely associated with therapy relapses and reduced efficacy [8]. To measure
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Chapter 1: Introduction

Phenotype 2

Intertumor heterogeneity

Intratumor heterogeneity

Phenotype 3

Phenotype 1

Figure 1.1: Tumor heterogeneity in the clinic. The tumor tissue characteristics can vary between
different patients (intertumor heterogeneity) and also, within the same patient (intratumor hetero-
geneity). Moreover, the tissue types within the same tumor can either intermix with each other
(phenotype 1 and 2) or can have well-described spatial boundaries (phenotype 2 and 3). Figure
adapted from Burrell et al. [7].

the degree of intratumor heterogeneity, a common protocol in the clinic is to col-

lect needle biopsies from primary tumors [6]. However, as the heterogeneity of

these lesions stretches over the spatial and temporal scales, biopsies are often

unable to characterize the overall phenotypic landscape of cancer.

For the purpose of tumor characterization, medical imaging is very well suited

because it allows repeated non-invasive investigations of the patient. Although

imaging is already widely used for the diagnosis and management of patients in

oncology, a major fraction of the clinical studies rely on simple canonical features

derived from the anatomical images to characterize various aspects of the tu-

mors. To complement these investigations with additional quantitative data, more

recently, a radiomics [9] approach has been proposed. In radiomics, the intratu-

mor heterogeneity is quantified by calculating a plethora of shape- and texture-

based based features from the entire tumor. The hierarchy (from local to global

dependencies between image voxels) of details captured by radiomics features

provide a rich quantitative description of the underlying pathophysiology, enabling

the physicians to go beyond the routine analysis of the available patient data.

2



1.2. Outline

While several studies have shown the prognostic benefits of such methodology

[10, 11], it also has a few major limitations: the extracted features only charac-

terize the tissue heterogeneity of tumors as a whole (commonly with a numeric

score), without providing any information about the type and especially the loca-

tion of molecularly distinct regions within a tumor. However, such knowledge of

intratumor phenotypes has significant value in radiology, as it can provide strong

indications about the failure [12] or success [13] of modern cancer treatments and

may greatly assist in image-guided biopsies and radiation therapies.

The work conducted in this thesis, therefore, focused on techniques that can be

applied on in vivo tumor data to obtain a spatial map of intratumor phenotypes. As

distinct tissue types are more likely to differ in their functional characteristics than

the anatomical features, we acquired multiparametric and multimodality datasets,

capturing different functional processes of subcutaneous tumors in mice, using

positron emission tomography (PET) and magnetic resonance imaging (MRI).

Thereafter, we explored the feasibility of various machine learning techniques in

analyzing the intricate multiparametric single or multimodality imaging data and in

obtaining accurate maps of tumor tissue habitats. Above all, the results presented

in the final study of this thesis highlight the prognostic benefits of multiparametric

PET/MRI data over single modality imaging and demonstrate the important role

of machine learning in augmenting the scope of simultaneous PET/MRI towards

personalized medicine.

1.2 Outline

The remainder of this chapter provides the basics of the medical imaging modal-

ities and the machine learning methods relevant for this dissertation. The entire

work presented in this thesis was carried out in collaboration with several col-

leagues and is based on four publications. A summary of each paper and any

unpublished results are provided in chapter 2. The sections in chapter 2 also in-

clude the official published copy of the respective articles and their supplemental

data as attachments. Afterwards, a brief cumulative discussion on the research

3



Chapter 1: Introduction

findings and contributions of all papers is given in chapter 3.

1.3 PET

1.3.1 Brief History

The development of PET technology was made possible by a series of advances

in many different fields. However, the inception of the PET principle largely at-

tributes to the discovery of positrons. The existence of subatomic particles was

first shown near the end of 19th century, when British physicist Joseph Thom-

son conducted a set of experiments, which led to the discovery of electrons. His

experiments proved that cathode rays were composed of negatively charged par-

ticles (electrons), whose mass was much lower than the mass of the lightest atom

[14]. Thereafter, in 1904, Thomson proposed the plum pudding model of the atom

[15]. In his model, Thomson suggested that an atom was a sphere of positively

charged space, which maintained an electrical neutrality due to uniformly embed-

ded electrons (as shown in figure 1.2A). This model was later revised in a paper

by Ernest Rutherford [16], where the nucleus was described as a dense positively

charged core with negatively charged electrons revolving around it (figure 1.2B).

Rutherford’s planetary model, however, violated laws of classical physics and was

insufficient in describing the spectra emitted by atoms [17]. In 1913, Niels Bohr

modified the planetary model (figure 1.2C) by postulating that electrons can orbit

only in certain energy levels (in stationary orbits) and that the line spectra exhib-

ited by atoms is a result of emitted photons due to electron jumps from one level

to the other [18]. More than a decade after these events, Paul Dirac coined the

idea of positively charged electrons [19], which were discovered by Carl Ander-

son while studying cosmic radiation using a cloud chamber (figure 1.3) in 1932

[20].

In the subsequent years, the discovery of the positron was complemented by

developments in radiochemistry and material physics [21], and the first clinical

application of positron-emitting radioisotope was shown in 1945 [22]. The study

4
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Figure 1.2: Atomic model proposed by (A) J. J. Thomson, (B) Ernest Rutherford and (C) Niels
Bohr.

by Tobias et al., however, used a Geiger-Müller counter for the detection of γ pho-

tons. Within six years, two separate investigations [23, 24] laid the foundation of

modern PET scanners by showing the feasibility of coincidence detection, lead-

ing to a significant improvement in overall sensitivity and tracer localization. A

complete timeline of the next generation PET systems and their gradual induction

in the clinic as a vital medical imaging modality is outlined by Dayton Rich [21]

and Ronald Nutt [25].

Figure 1.3: The cloud chamber photograph of cosmic rays taken by Anderson in 1932 [20]. The
curved black line depicts the positron trail, which enters the chamber from the bottom, penetrates
the 6 mm lead plate and loses energy while moving upwards.
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Chapter 1: Introduction

1.3.2 Beta-plus Decay

Positrons can be produced in two different ways: nuclear disintegration and pair

production [26]. Due to its application in radiotracer synthesis, only the former

method is described in this section.

Nuclear disintegrations resulting in the emission of positrons are classified as

beta-plus decay. Specifically, in beta-plus decay, a “neutron-deficient element1”

(high proton-to-neutron ratio) converts one of its excess protons into a neutron

along with the emission of a positron and a neutrino. This nuclear transmutation

can be summarized using the following equation:

A
ZX → A

Z−1Y + β+ + ν + energy.

Thus, after a beta-plus decay the daughter nucleus (Y ) has the same atomic

mass (A) as the parent nucleus (X), but its atomic number (Z) is reduced by one.

Here β+ and ν symbolize a positron and a neutrino, respectively. The positrons

are emitted with a spectrum of energies, with the maximum energy determined by

the mass difference between the daughter and parent nuclei. The average energy

of the emitted positrons is roughly equal to one third of the maximum energy [27].

Post-emission, the kinetic energy of the positron is dissipated (analogous to a

freely moving electron) in its interactions with the surrounding matter. The elastic

and inelastic collisions [26] with atomic nuclei and electrons result in a tortuous

path of the particle. After losing almost all of its energy, the positron combines

with an electron to form an intermediate state, known as positronium. This state

exists for a short fraction of time (∼ 10−10 seconds [28]) before the sub-atomic par-

ticles annihilate and release a pair of photons. As the positron loses most of its

kinetic energy prior to annihilation, the rest mass of both the particles is converted

into electromagnetic radiation equal to an energy of 1022 keV. Thus, conserving

the net energy and momentum, two γ photons are emitted in opposite directions,

1 An alternative mechanism to beta-plus decay for neutron-deficient elements is electron capture
decay, which results in an X-ray photon and/or an Auger electron [27].

6



1.3. PET

each with an energy of 511 keV [26]. The annihilation process is shown in fig-

ure 1.4. In many cases, due to non-zero momentum of the positron, the photon

pairs are not emitted strictly opposite to each other. The displacement between

the positron emission and annihilation sites as well as the non-collinearity of the

emitted photons limit the maximum spatial resolution of the PET imaging devices

[26].

Positron-emitting
radionuclide 

Positron

Electron

Proton

Neutron 511 keV photon

511 keV photon

Figure 1.4: Positron emission from a radionuclide and its annihilation with an electron. The
resulting photons are nearly collinear (with the annihilation site) and have an energy of 511 keV.
Figure adapted from Cherry et al. [28].

1.3.3 Interaction of Gamma Photons

There are three major mechanisms through which γ photons interact with the sur-

rounding matter: the photoelectric effect, Compton scattering and pair production.

All of these processes result in either the ionization or excitation of the material

in-contact.

In the photoelectric effect (figure 1.5A), an energetic γ photon transfers its entire

energy to one of the electrons in the inner orbit2 (figure 1.2C), resulting in the

ejection of the electron from the interacting atom. The vacancy created in the

inner shell of the atom is filled by an outer shell electron, with the emission of an

X-ray photon carrying an energy equal to the binding-energy difference between

2 A γ photon usually transfers its energy to the electrons in the K or L shell.
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Chapter 1: Introduction

the two shells. In some cases, instead of transferring an electron from the outer

shell, the atom may remove excess energy by ejecting a secondary electron,

known as Auger electron. In living organisms, interacting photons with an energy

lower than 100 keV generally result into the emission of photo-electrons because

of the photoelectric effect [26].

Compton scattering takes place when a photon collides with a loosely bound

electron in the outer shell of an atom. The inelastic impact transfers part of the

energy from the photon to the electron, resulting in deflection of the photon and

ejection of the electron (figure 1.5B). This free electron is termed as the recoil

electron. In tissue, photons between the energy range of 100-2000 keV primarily

lead to Compton scattering [26].

Pair production is an ionization process in which a γ photon splits into an electron

and a positron (figure 1.5C). The creation of a particle and its anti-particle requires

that the γ photon is in proximity to a nucleus and carries an energy equal to or

A

Eγ

C

e-

Eγ

β+

e-

B

Eγ
E'γ

e-

Figure 1.5: Illustrations depicting three primary processes through which γ photons interact with
the surrounding matter. (A) the photoelectric effect, (B) Compton scattering and (C) pair produc-
tion. Here Eγ and E

′

γ denote the energy of the incident and deflected γ photons. The electron
and positron are symbolized by e− and β+, respectively. Figure adapted from Bailey et al. [26].
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1.3. PET

greater than the total rest mass energy of both the particles. In the case of a

γ photon with higher energy, the remaining energy is distributed between the

emitted particles.

1.3.4 Radiation Detection

The detection of incident radiation and its conversion into a proportional electrical

signal are key processes in nuclear medicine. Based on the mechanisms of these

processes, radiation detectors can be broadly classified in three categories: gas-

filled, semiconductor and scintillator detectors.

A desired characteristic for PET detectors is superior stopping efficiency (their

ability to stop 511 keV γ photons). Among the three detector categories men-

tioned previously, only scintillator detectors meet this requirement. These detec-

tors use scintillating crystals and photo-detectors in a cascade. When a γ photon

incidents upon the scintillating crystal, its energy is absorbed by the electrons in

the material, causing their transition from the ground state to an excited state. As

these electrons return to the low-energy state, they release the absorbed energy

(equivalent to the energy gap between the ground and excited state) in the form

of visible light3 [26], which is detected and converted into an electrical signal by

the cascaded photo-detector.

The most routinely used photo-detector in PET scanners is a photomultiplier tube

(PMT). As shown in figure 1.6A, a PMT comprises a cylindrical glass tube fitted

with a photo-cathode and several dynodes, each of which is biased with a voltage

supply higher than the previous dynode. The incoming light from the scintilla-

tor crystal incidents upon the photo-cathode, triggering the ejection of a photo-

electron. The difference in potential between the photo-cathode and the closest

dynode causes the photo-electron to accelerate towards the dynode. Upon im-

pact, the kinetic energy of the photo-electron results in the ejection of secondary

photo-electrons, which further advance towards the next dynode. This process

3 Often the radiation emitted by pure crystals is in ultra-violet range and impurities are added to
shift the emitted energy in visible spectrum [26].

9
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A B

Scintillation crystal

2 by 2 PMT 
array

Light from 
scintillator crystal

Dynode stages

Anode

Electron 
multiplication

Photocathode

Figure 1.6: Schematic of a (A) PMT and a (B) block detector, commonly used in PET scanners
for detecting γ photons. The block detector consists of a scintillator crystal cascaded with a 2 by
2 PMT array. This set-up uses a weighted combination of signals from the PMTs to calculate the
exact spatial location of the incident γ photons. Slits are carved in the scintillator crystal to prevent
the spreading of visible light emitted by the scintillator. Figure adapted from Bushberg et al. [27].

is repeated until the last dynode and the multiplied electrons are collected at the

anode, providing an amplification factor of approximately one million [26].

1.3.5 Coincidence Events

As described in sub-section 1.3.2, positron annihilation results in the emission

of two 511 keV γ photons. To detect the photons released in roughly opposite

directions, PET scanners utilize a ring of detectors, as shown in figure 1.7A.

The coincidences are recorded within a timing window that accounts for the time

taken by the photons to reach the scintillators and the delay introduced by the

font-end electronics. Afterwards, for each recorded event, a line of response

(LOR) is created by joining the centers of the associated detectors. The LORs

are subsequently processed by a reconstruction algorithm to create a two- or

three-dimensional image indicative of the activity concentration in the PET field

of view.

There are two types of coincidence events, which introduce statistical noise in the

reconstructed PET image: random and scatter. A random coincidence, as the

name suggests, is a phenomenon that results in a false LOR due to the detection

of photons from two random annihilation events within the same timing window

(figure 1.7B). The number of random coincidences between any detector pairs is

directly proportional to the length of the timing window as well as the true count

rate of each of the detectors (i.e. total amount of activity in the PET field of view)

10



1.3. PET

[27].

A scatter coincidence (figure 1.7C), on the other hand, involves Compton scat-

tering of either one or both the γ photons associated with the same annihilation

event. Hence, a scatter coincidence is theoretically a true coincidence event,

which results into a false LOR leading to increased background noise in the re-

constructed PET image.

1.3.6 Scanner Sensitivity and Spatial Resolution

The sensitivity of a PET scanner is defined as the rate of coincidence events

detected for each unit of the activity concentration in the PET field of view. The

most important factors determining the sensitivity of a PET scanner are: geomet-

ric and detector efficiencies, energy and timing windows, and the positioning of

the activity source with reference to the detectors [28]. The geometric efficiency

is further dependent on the physical elements of the scanner, such as the solid

angle covered by the detectors and the packing fraction. Likewise, the detector

efficiency is dictated by the characteristics (scintillation decay time and stopping

efficiency) of the scintillator crystal. Post acquisition, the influence of scattered

coincidences (sub-section 1.3.5) is minimized by selecting the detected events

only within a defined energy window [28]. As the intrinsic system sensitivity has

a direct impact on the acquired image, the PET scanners are carefully designed

to maximize its value.

A B C

Figure 1.7: Example of (A) true, (B) random and (C) scatter coincidence events. The solid and
dashed lines represent the true and false LORs, respectively. The object placed in the PET field of
view is depicted in yellow and an annihilation event is shown with a red asterisk. Figure adapted
from Bushberg et al. [27].
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Chapter 1: Introduction

Besides the fundamental limit set by the positron range of the used radionuclide

and non-collinearity of the emitted γ photons, the spatial resolution of a PET

scanner is determined by the type and physical characteristics of the detector

and the algorithm used for reconstructing the PET image. Common PET systems

utilize block detectors in which the scintillator crystals and PMTs are arranged into

an array (one such detector is shown in figure 1.6B). These detectors provide an

intrinsic spatial resolution of approximately half the width of the scintillator crystal

in the center of the field of view. However, because of the finite length of the

crystals, the spatial resolution further degrades towards the edges4. In addition to

system geometry, during post-processing, the choice of the image reconstruction

algorithm and the corresponding parameters affect the overall system resolution.

Further details of these methods are provided in the following sub-section. The

finite spatial resolution of PET scanners leads to partial volume effects, which

limits their ability to reliably quantify activity in small regions of interest.

1.3.7 PET Image Reconstruction

PET reconstruction algorithms are broadly divided in two categories: analytical

and iterative. Both the approaches use sinogram data to reconstruct an image,

reflective of the radioactivity in the PET field of view. A sinogram is a projection

view of all the LORs at a certain angle (i.e. parallel to each other) from a reference

coordinate system. Figure 1.8A shows a set of vertical LORs, which together form

a row of the sinogram matrix, with each column representing the radial distance of

the LOR from the scanner’s center. Thus, each element of the sinogram matrix is

the total number of coincidences accumulated by the associated pair of detectors.

Panel B and C in figure 1.8 depict the axial PET image of a patient and the

respective sinogram [29].

The most basic PET reconstruction algorithm is backprojection. Fundamentally,

in backprojection, the PET image is calculated using a weighted summation of

all the LORs. At first, the size of the target (or reconstruction matrix) image is
4 Moreover, the detectors not providing the depth of interaction information result in anisotropic
and non-uniform spatial resolution due to parallax errors [28].
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1.3. PET

defined. Afterwards, for each pixel of the image, a sinogram coordinate is calcu-

lated based on its spatial location and a projection angle, which determines the

count value to be assigned to the target pixel. If the sinogram coordinate does

not fully coincide with the sinogram element, interpolation is used to calculate the

exact count value. Also, a weighting factor is applied to account for the distribu-

tion of the counts from each pair of detectors to all the target pixels coinciding

with its LOR. This process is repeated for all the projection angles to finally ob-

tain the reconstructed image. Backprojection is an intuitive and simple way of

reconstructing the activity distribution within an object, however, it has one major

limitation. As the counts from each pair of detectors are distributed across all the

pixels coinciding with its LOR, many of the events are falsely assigned outside

the object, resulting into a smoothed version of the true activity distribution.

The issues encountered with backprojection algorithm are mitigated using a sim-

ple trick, based on the projection slice theorem. In particular, during reconstruc-

tion the Fourier transform is used to map the activity from the sinogram domain to

the frequency domain. Thereafter, to find a balance between the high frequency

components and signal to noise ratio, the Fourier transformed data is multiplied

with the frequency response of a filter. This operation is analogous to convolv-

ing the sinogram data with the response of a filter in the spatial domain. Lastly,

θ
θ

A B C

θ

r

Figure 1.8: (A) A PET detector ring with vertical LORs. The object placed in the PET field of view
is highlighted in blue. The projection view of these LORs will be identical to an axial image of the
object captured using a collimated scanner. The direction of projection angles is indicated with θ.
(B) An axial PET image of a patient and (C) the corresponding sinogram. The arms of the patient
are clearly distinguishable in the sinogram image at the top and bottom projection angles. Figure
adapted from Bailey et al and Turkington. [26, 29].
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Chapter 1: Introduction

the filtered sinogram data is transformed back to the spatial domain using the in-

verse Fourier transform and backprojection is used to reconstruct the filtered PET

image. Due to such post-processing, this method is termed as filtered backpro-

jection [28]. The three most widely used filters in filtered backprojection algorithm

are ramp, Shepp–Logan and Hann. The ramp filter enhances high frequency

components (i.e. edges) improving the spatial resolution at the cost of signal-

to-noise ratios. On the contrary, Shepp–Logan and Hann are apodizing filters,

which have responses similar to a ramp filter at low frequencies but a reduced

amplitude at high frequencies. These filters reduce ringing artifacts and favor

high signal-to-noise ratios over the spatial resolution.

In contrast to the analytical methods, iterative reconstruction techniques take the

imaging process into account by formulating a cost function followed by an op-

timization step to obtain the reconstructed image. These methods start with an

approximated PET image (generally an image with all zeros or ones) and com-

pute the sinogram estimate that would produce such an image. A cost function

is then used to measure the discrepancy between the measured and estimated

sinogram data, and to improve the initial approximation of the image. This pro-

cess is repeated over several iterations until the algorithm converges to a min-

imum/maximum. As radioactive decay is a stochastic process, a common opti-

mization paradigm is to obtain a maximum likelihood estimate of the count distri-

bution under a Poisson model using the expectation maximization (EM) algorithm

[30]. In order to achieve faster reconstructions, sampling can be performed while

forward and backward projecting the image data (computing the sinogram es-

timate). One such technique is ordered subset expectation maximization that

groups the projection angles prior to optimization [31].

1.3.8 PET in Oncology

Over the past decade, PET has progressed as a key imaging modality for the

staging and management of patients with cancer. The developments in radio-

chemistry now allow physicians to quantify a wide range of physiological pro-

14



1.3. PET

cesses associated with cancer, such as glucose metabolism, cell proliferation,

tissue hypoxia and lipid synthesis [32, 33]. A list of tracers commonly used in

clinical or preclinical PET studies is provided in table 1.1. Arguably the most

widely used tracer in oncological PET examinations is 18F-FDG. Due to the accu-

mulation of glucose in many types of cancer, 18F-FDG is established as a primary

clinical tracer for the early detection and subsequent staging and therapy planning

of various neoplasms [34]. Another factor contributing to the widespread use of
18F-FDG in the clinic is the favorable half-life (109.8 min) of the radio-nuclide.

1.3.9 PET Quantification

An important aspect of PET studies is to derive quantitative measures that allow

physicians to estimate the response to therapy, measure overall cancer burden

and make comparisons between various patient populations examined across

a group of institutions. For this purpose, static PET studies commonly rely on

computing the standardized uptake value (SUV ) [35, 36]. The SUV (g/mL) at

time t can be calculated as follows:

SUV =
CPET (t)

Dose/Weight
.

Where, CPET (t), Dose and Weight are the measured activity concentration

(kBq/mL), injected dose (MBq) and body weight (kg) of the subject, respectively.

Often, the quantitative reliability of the SUV is impaired by the simplicity of the

Radio-nuclide T1/2 (min) Tracer Application
15O 2.03 15O-H2O Perfusion

11C 20.3
11C-choline Cell proliferation
11C-acetate Lipid synthesis

18F 109.8

18F-FDG Glucose metabolism
18F-FMISO Tissue hypoxia

Na18F Bone abnormalities

Table 1.1: Commonly used positron emitting radio-nuclides, their half-lives (T1/2), few associated
tracers, and the applications of respective tracers in life-sciences.
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measure. Some of the factors responsible for causing variability in the SUV mea-

surements are: body size of the subject, blood glucose level, subject breathing,

scanner specifications, parameters of the reconstruction algorithm and the delin-

eated region of interest [35–37].

An alternative and more systematic way of quantifying the distribution of a tracer

and its transport mechanisms is to perform tracer compartmental modeling. The

objective of compartmental modeling is to find a set of parameters, which pro-

vide the most optimal fit for the observed time activity curves given the modeling

constraints between the observed data and the parameters describing the phys-

iological process. In practice, for a specific tracer, a compartmental model is a

simplified approximation of a biological system that takes into account the most

influential factors characterizing the functional properties of the region of interest,

such as perfusion, metabolism and receptor concentration.

Figure 1.9 shows a two-tissue compartmental model for 18F-FDG. The time vary-

ing tracer activity concentration in plasma and the two tissue (free and bound)

compartments are denoted by Cp(t), C1(t) and C2(t), respectively. As illustrated

in the figure, the rate of tracer exchange between plasma and the first tissue com-

partment is governed by K1 and k2, whereas the same is regulated between the

free and bound tissue compartments by k3 and k4. The parameters K1, k2, k3

and k4 are therefore termed as kinetic rate constants. Except for K1, the other

three kinetic rate constants have unit min−1. The parameter K1 additionally in-

corporates a perfusion component and has units of mL/min/g. Thus, based on

these modeling constraints and given the observed tissue activity concentration

CT (t) and the plasma input function Cp(t), the kinetic parameters of the two-tissue

compartmental model can be estimated using the following equations [38]:

dC1(t)

dt
= K1Cp(t)− (k2 + k3)C1(t) + k4C2(t)

dC2(t)

dt
= k3C1(t)− k4C2(t)

CT (t) = C1(t) + C2(t) + fbCp(t).
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Figure 1.9: A two-tissue compartmental model for 18F-FDG.

Where, fb is the fraction of vascular space. By solving the first two ordinary

differential equations, the free and bound tissue concentrations (C1(t) and C2(t))

can be expressed as:

C1(t) =
K1

α2 − α1

[(k4 − α1)e
−α1t + (α2 − k4)e−α2t] ∗ Cp(t)

C2(t) =
K1k3
α2 − α1

[e−α1t − e−α2t] ∗ Cp(t).

Where ∗ denotes the convolution operation. The variables α1 and α2 are algebraic

functions of the kinetic parameters and have the following form:

α1 =
k2 + k3 + k4 −

√
(k2 + k3 + k4)2 − 4k2k4

2

α2 =
k2 + k3 + k4 +

√
(k2 + k3 + k4)2 − 4k2k4

2
.

The kinetic parameter estimation is carried out by minimizing the sum of squared

differences between the measured dynamic PET data and the data predicted by

the compartmental model.

Other model-based approaches frequently applied to dynamic PET data are dis-

cussed in Bailey et al. [26].

1.4 MRI

1.4.1 Brief History

The foundations of MRI were laid by an American physicist Isidor Isaac Rabi in

1938. In his experiments, Rabi demonstrated the phenomena of nuclear magnetic

resonance (NMR) by subjecting lithium chloride molecules to oscillating magnetic

fields [39]. These experiments drew inspiration from the previous work of Stern
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and Gerlach, which had confirmed that the intrinsic angular momentum of ele-

mentary particles is quantized [40]. Within several years, two separate investiga-

tions conducted by Edward Purcell and Felix Bloch reported the NMR character-

istics of hydrogen molecules in paraffin and water, respectively [41, 42]. Purcell’s

approach was based on the measurement of energy absorption at resonance fre-

quency, whereas Bloch’s method relied on a crossed-coil (transmitter-receiver)

arrangement for measuring the signal produced during nuclear induction. Later

on, both the techniques played a significant role in formulating the theoretical ba-

sics of MRI. The next milestone in the history of MRI was marked by Erwin Hahn

in 1950. In his paper titled “Spin Echoes” [43], Hahn demonstrated the application

of a series of time-dependent radio-frequency (RF) pulses to produce a measur-

able nuclear induction signal. Afterwards, the development of Fourier transform

spectroscopy in 1966 [44] greatly improved the NMR sensitivity and opened up

the field of magnetic resonance to a broader community. These two contributions

were particularly pivotal for the development of MRI and have been influencing to

this day its application in medicine and biology.

However, it was only after 1971 that Raymond Damadian published the first NMR

study [45], which distinguished between the malignant and benign tissues in a

rat based on their T1 and T2 relaxation times. The final component for creating

a magnetic resonance image (localizing NMR signals in space using magnetic

field gradients) was invented by Paul Lauterbur in 1973 [46]. Lauterbur demon-

strated the applicability of his approach (shown in figure 1.10) by publishing the

2-D images of test tubes filled with water. Soon after this publication, Peter Mans-

field discovered the techniques of slice selection and snapshot acquisition, en-

abling the measurement of 2-D MRI images within a small fraction of time [47]. In

the next three decades a series of technological advancements were made [48],

which shaped the MRI scanners into the form that is currently being used. Lauter-

bur and Mansfield were jointly awarded with the 2003 Nobel Prize in Physiology

or Medicine, due to their contributions that lead to the development of MRI.
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1.4.2 MRI Physics

The MRI principle relies on the phenomena that in the presence of an external

magnetic field, atoms of certain elements can absorb and emit energy when ex-

cited with an RF energy source. This property of the atoms is dependent on the

total number of neutrons and protons present in the nucleus. If the nucleus has

even number of neutrons and protons, the net nuclear magnetic moment of the

atom is zero (protons and neutrons both have half integral spin, but in opposite

directions). However, in case either or both the particles are odd in number, the

resulting magnetic moment of the nucleus is finite. Among the other elements,

hydrogen is the best MRI candidate for two main reasons: it has a large magnetic

moment and it is an integral structural element of fat and water molecules, both of

which are highly abundant in living organisms. In the absence of an external field,

the resultant magnetic moment of a large number of loosely bound hydrogen nu-

clei in fat tissue and water is roughly equal to zero. However, when subjected to a

static magnetic field these nuclei align either parallel or anti-parallel5 to the direc-

tion of the applied field, which results in an overall measurable nuclear magnetic

moment (figure 1.11).

X

Y

Z

A B

Figure 1.10: The first magnetic resonance image. (A) A schematic of the method used by Lauter-
bur to produce the first magnetic resonance images. (B) The acquired MRI pictures of two test
tubes filled with water. The magnetic field gradients were applied in the direction of the arrows
depicted in panel A. Figure adapted from Lauterbur. [46].

5 Slightly more parallel than anti-parallel because the former configuration results into a lower
energy state than the latter.
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A B

Figure 1.11: A simplified illustration depicting the behavior of hydrogen nucleus in fat tissue and
water in the absence and presence of a static magnetic field (B0). (A) In the absence of the
applied field, the loosely bound protons are oriented randomly with zero net magnetic moment.
(B) However, when placed in the external magnetic field, the protons align either in the direction or
opposite to the direction of the applied field, resulting in a finite magnetic moment. Figure adapted
from Bushberg et al. [27].

Besides the alignment in parallel and anti-parallel states, the hydrogen nuclei

also precess (figure 1.12A) on their own axes due to the torque experienced by

the protons orthogonal to the direction of the applied magnetic field. The angular

frequency of the rotation (ω0) is therefore termed as precession frequency and

can be calculated using the Larmor equation:

ω0 = γ ∗B0.

Where γ is the gyromagnetic ratio of the element and B0 is the strength (in Tesla)

of the static magnetic field. Table 1.2 details the gyromagnetic ratio (in MHz/Tesla)

of some of the MRI active elements.

Nucleus γ/2π (MHz/Tesla)
1H 42.58
13C 10.7
17O 5.8
19F 40.0
23Na 11.3
31P 17.2

Table 1.2: Gyromagnetic ratio of useful MRI active elements. Data taken from Bushberg et al.
[27].
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Figure 1.12: Longitudinal and transverse magnetization. (A) The precession of magnetic moment
vector (indicated by red arrow) in the presence of a static magnetic field applied along the z-axis.
At this point, the net magnetic moment in xy-plane is zero. (B) Once an RF pulse is applied with
a flip angle of 90-degree, the magnetic moment vector is displaced to xy-plane resulting in a finite
transverse magnetization vector Mxy. The symbol M0 indicates the longitudinal magnetization
vector Mz at equilibrium. Figure adapted from Bushberg et al. [27].

1.4.3 Magnetization Vectors

A common convention in MRI is to assume the direction of the static magnetic field

along the z-axis of the Cartesian co-ordinate system. Therefore, the resultant

magnetic moment in z-direction is termed as longitudinal magnetization, which

can also be represented using a vectorial form (as shown in figure 1.12A). Under

equilibrium conditions there is a finite longitudinal magnetization and the magnetic

moment in xy-plane (known as transverse magnetization) is zero. This system

can be perturbed by applying RF pulses with a specific angle and the frequency

matched with the precession frequency of the hydrogen nuclei. The synchronized

RF pulses cause a transfer of energy to the object placed in the magnetic field

and displacement of the magnetic moment vector in the direction of the applied

pulse signal. For instance, an RF pulse applied orthogonally to the z-direction

flips the magnetic moment vector in xy-plane, resulting into a non-zero transverse

magnetization (figure 1.12B).

1.4.4 T2 Relaxation

Upon the application of an RF pulse with a 90-degree flip angle and the Larmor

frequency of protons, a spin coherence between the nuclei of hydrogen atoms is
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achieved, which results in a maximum value (specific to the tissue) of the trans-

verse magnetization. As soon as the RF pulse is ended, the individual nuclei

start to dephase due to the intrinsic inhomogeneities in the magnetic properties

of the sample. Thus, the amplitude of the transverse magnetization decays ex-

ponentially with time while precessing close to the Larmor frequency of protons.

The decaying transverse magnetization, when converted into an electrical signal

using a receiver coil, results into a damped sinusoidal wave (figure 1.13), which is

termed as the free induction decay (FID). This process can be summarized using

the following expression:

Mxy(t) = M0 e
−t/T2.

Where Mxy(t) and M0 are the magnitudes of the transverse magnetization at time

t and at t = 0, respectively. The parameter T2 is known as the T2 relaxation time

and is equal to the elapsed time until the amplitude of the transverse magneti-

zation reaches 37% of its maximum value (i.e. M0). The exponential decay of

the transverse magnetization is also known as spin-spin relaxation, because it is

caused by the intrinsic spin-to-spin interactions within the sample. Due to this fact,

the molecular composition and the amount of water in various tissues greatly in-

fluence their T2 decay values. In general, regions with less constrained structure

and more water exhibit higher T2 values, whereas tissues with densely packed

molecules (such as fat) have smaller T2 values. In addition to variations in intrin-

sic properties, external factors, such as inhomogeneities in the static magnetic

field (B0), and the presence of matter altering the local magnetic susceptibility

of the tissue contribute in the decay of the transverse magnetization. The time

constant associated with the external factors of spin dephasing is known as T2∗

decay.

1.4.5 T1 Relaxation

Concurrently to the decay of transverse magnetization, a recovery of the longi-

tudinal magnetization takes place. As the protons start to dephase after the RF

pulse is switched off, they also begin to return to their initial orientation and align
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themselves either parallel or anti-parallel to the static magnetic field. This causes

the longitudinal magnetization vector to recover and attain the magnitude and

direction similar to those of the equilibrium state. Mathematically, the recovery

process is described as follows:

Mz(t) = M0 (1− e−t/T1).

Where Mz(t) is the magnitude of the longitudinal magnetization at time t and M0

corresponds to its fully recovered value. The parameter T1 is known as the T1

relaxation time and is equal to the elapsed time until the amplitude of the longi-

tudinal magnetization recovers to 63% of its maximum value (i.e. M0). Contrary

to T2 decay, T1 recovery takes place due to spin-lattice interactions. During this

process, the energetic hydrogen nuclei (loosely bounded in molecular structures)

dissipate their energy to the surrounding lattice and return to the equilibrium state.

The energy dissipation is most effective (leading to shorter T1 relaxation time)

when the Larmor frequency of hydrogen nuclei matches with the tumbling (vi-

brational and random motion) frequency of the surrounding lattice and hydration

layers. Thus, the dissimilarities in physical characteristics of various tissues and

pathologies lead to differences in their T1 relaxation times. Overall, unstructured

tissues and fluids have large T1 relaxation times in contrast to those of the struc-

tured ones (lipids and moderately sized proteins). With an increase in the strength

of the static magnetic field, the Larmor frequency of hydrogen nuclei increases,
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Figure 1.13: T2 relaxation. (A) Displacement of the longitudinal magnetization into the xy-plane
upon the application of a 90-degree RF pulse. (B) The transverse magnetization vector precessing
in xy-plane due to the applied magnetic field. The purple coil along the x-axis shows the receiver
antenna. (C) As the transverse magnetization vector precesses, it also decays in amplitude due
to spin-spin interactions within the tissue. This induces a damped oscillatory signal in the receiver
coil, which is known as the free induction decay (FID). Figure adapted from Bushberg et al. [27].
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Figure 1.14: Measurement of T1 relaxation. In order to indirectly measure the spin-lattice re-
laxation, a series of 90-degree RF pulses, each separated with a known delay, are applied and
the corresponding peak FID amplitudes are recorded. The T1 time is then obtained by fitting a
rising exponential to the previously obtained points as a function of the delay time. The figure
shows three such points obtained using short, medium and long delay times. The symbol Mz

denotes the recovered value of the longitudinal magnetization (i.e. peak value of the respective
FID). Figure adapted from Bushberg et al. [27].

which results into its smaller overlap with the tumbling frequency of neighboring

atoms and increase in the T1 relaxation time. One way to expedite the T1 recov-

ery process in tissues is to use Gadolinium chelated complex macromolecules.

These contrast agents modify the local magnetic properties by forming a hydra-

tion layer, thereby reducing the effective T1 relaxation time [27].

Although the recovery of the longitudinal magnetic moment takes place simul-

taneously to the decay of transverse magnetization, the former process is ap-

proximately 5–10 times longer than the latter one. Moreover, since the change

in longitudinal magnetization can not be measured directly, a specific RF pulse

sequence is used to determine the T1 relaxation time (figure 1.14).
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1.4.6 Acquisition Parameters

During the acquisition of MRI data, two main parameters determine the physio-

logic nature (T1-weighted, proton density and T2-weighted) of the recorded im-

ages: the time of repetition (TR) and the time of echo (TE).

TR is the time between the subsequent 90-degree RF pulses. During this period,

both the previously mentioned processes (T2 decay and T1 recovery) take place

in the tissues. To suppress the effects of magnetic field inhomogeneity and other

external factors, after a certain delay time (TE/2) from the first RF pulse, a 180-

degree inversion pulse is applied and the resultant echo signal is recorded. TE is

the elapsed time between the 90-degree RF pulse and the induction of the peak

echo signal.

1.4.7 T1-weighted Sequence

A T1-weighted spin-echo sequence produces an image reflective of the T1 char-

acteristics of different tissues by minimizing the contributions in the recorded sig-

nal from other magnetic resonance phenomena. The T1 effects are maximized

by selecting a short TR. When 90-degree RF pulses are applied within a short

time interval (i.e. short TR), the longitudinal magnetization vectors of different tis-

sues do not have enough time to recover, resulting in an enhanced T1 contrast.

Likewise, the T2 effects are minimized by choosing short TE values. The appli-

cation of successive 180-degree inversion pulses within a short period of time

refocuses the transverse magnetization vector and eliminates the T2 decay con-

tributions. In a typical T1-weighted brain image (figure 1.15A), fat has the highest

image intensity because of the short T1 recovery time. The remaining tissues

with a decreasing order of intensity in T1 image are: white matter, gray matter

and cerebrospinal fluid.
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A B C

Figure 1.15: (A) T1-weighted, (B) proton density and (C) T2-weighted images of a patient. The
black arrow in panel A indicates towards a metastatic lesion from lung carcinoma. Figure adapted
from Runge et al. [49].

1.4.8 Proton Density Weighting

Intensity in proton density weighting is proportional to the total number of hydro-

gen atoms present in each voxel of the image. This is achieved by suppressing

both T1 and T2 relaxation contributions. The T1 recovery contrast is minimized

by choosing a long TR and allowing the longitudinal magnetization component of

all the tissues to recover, whereas the T2 decay contrast is masked by selecting

short TE values as mentioned in the previous subsection. The signal-to-noise

ratios in proton density images are among the highest (in contrast to the T1 and

T2 weighted images), but the overall soft-tissue contrast between different types

of tissues is low (figure 1.15B).

1.4.9 T2-weighted Sequence

The T2-weighted image is obtained by accentuating the T2 decay contrast and

suppressing the T1 recovery effects. Thus, the T2-weighted spin-echo sequence

uses a long TR and a long TE. Among all the three images, T2-weighted image

generally exhibits maximum contrast between different tissues (figure 1.15C).

Common TR and TE values used for all the three pulse sequences are detailed

in table 1.3.
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1.4.10 Signal Localization

Spatial localization of magnetic resonance signals is an important step in MRI

and is achieved through a set of gradient coils producing linearly varying mag-

netic fields. The gradient magnetic fields are superimposed on the static mag-

netic field to induce position-dependent changes in the homogeneous magnetic

field. As the precession frequency of protons depends on the strength of the ex-

ternal magnetic field (sub-section 1.4.2), the positional differences in the strength

of the static magnetic field causes hydrogen nuclei at these locations to precess

at varying frequencies. This allows to spatially select and readout magnetic res-

onance signals across the entire field of view by applying RF pulses pertinent to

the precession frequencies of the hydrogen nuclei at different locations.

The three different gradients used for localizing magnetic resonance signals are:

slice-selection, and frequency and phase encoding. The slice-selection gradient

is applied along the axial direction (z-axis) of the MRI scanner. Upon activation,

it causes the hydrogen nuclei along the z-axis to precess at linearly increasing or

decreasing frequencies. This enables to select and perturb different axial slices

by applying RF pulses of the respective frequency bands (figure 1.16). The thick-

ness of axial planes (spatial resolution in z-direction) is determined by the slope

of the slice-selection gradient and the bandwidth of the RF pulse transmitter [27].

The frequency encoding gradient is applied orthogonally to the slice-selection

gradient along the x- or y-axis of the scanner’s coordinate system. It is also

termed as the readout gradient because it is activated during the rise and decline

of the induced echo signal. Similar to the slice-selection gradient, the frequency

encoding gradient alters the precession frequencies enabling a position depen-

Parameter T1-weighted Proton density T2-weighted

TR (ms) 400-600 2,000-4,000 2,000-4,000

TE (ms) 5-30 5-30 60-150

Table 1.3: Common TR and TE values used for recording different magnetic resonance images.
Data taken from Bushberg et al. [27].
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dent transfer and readout of RF energy. The location of the third dimension is

obtained through the phase encoding gradient. It is applied along the third dimen-

sion after the slice-selection gradient and before the frequency encoding gradient.

It is called phase encoding gradient because it produces spatially encoded phase

shifts across the entire field of view by incrementing the gradient strength during

each TR period [27]. A typical spin-echo sequence is shown in figure 1.17, where

all the three gradients are applied sequentially together with the 90-degree RF

pulse to record spatially resolved magnetic resonance signals.

z
x

y

Slice-selection 
gradient

Lower frequency
Higher frequencyNarrow-band RF:

Gradient coils

B0

Figure 1.16: A schematic depicting the functioning of the slice-selection gradient. The magnetic
field gradient is applied to alter the precession frequency of hydrogen nuclei along the z-axis.
This allows to transfer and readout energy from different axial planes by applying RF pulses of
the respective frequencies. In this figure two such slices are shown. The lower frequency RF
pulse selects the red slice, whereas the higher frequency RF pulse selects the blue slice. Figure
adapted from Bushberg et al. [27].

1.4.11 K-Space

The acquired MRI data is transformed into frequency domain and stored in a

matrix as complex numbers. The elements of the so called k-space matrix (figure

1.18) represent the positive and negative spatial frequency components of the im-

age. The data along the x- and y-axis are filled with the frequency and phase en-

coding gradients, respectively. Once the entire matrix is filled, the inverse Fourier

transform is applied on the k-space data to reconstruct the final spatial domain im-
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Figure 1.17: A complete spin-echo pulse sequence. The slice-selection, phase encoding and
frequency encoding gradients are applied to spatially localize the induced echo signals. The illus-
trated TR period is repeated several times, each with a different strength of the phase encoding
gradient (represented with a set of lines for the phase encoding gradient). Figure adapted from
Bushberg et al. [27].

age. Due to the symmetric nature of the matrix, various schemes can be utilized

to record only the partial data and expedite the acquisition process [50].
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Figure 1.18: The k-space matrix used for storing the raw MRI data. The matrix is symmetric about
the centers of x- and y-axis with frequency varying from −fmax to +fmax. Phase and frequency
encoding gradients are used to fill the matrix columns and rows, respectively. Figure adapted from
Bushberg et al. [27].

1.4.12 Diffusion Weighted MRI

Diffusion weighted (DW) MRI is a functional imaging technique that develops im-

age contrast based on the movement of water molecules. The magnitude of water
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movement measured by DW-MRI is proportional to the average distance traveled

by thermally driven protons within a specific period of time [51]. As benign and

malignant tissues have differing levels of cellularity, the degree of water diffusion

in these tissues is also variable. Furthermore, various cellular events, such as

apoptosis, necrosis and edema result in either an increase or decrease of the ex-

tracellular space, which influences the free diffusion of water molecules specific to

these phenotypes. Due to these reasons DW-MRI has become a well-established

tool for the diagnosis and monitoring of many cancer types in the clinic.

One approach to quantify DW-MRI measurements is by calculating apparent diffu-

sion coefficient (ADC) maps. The quantification is intended to remove the effects

of the T1 and T2 relaxation times and provide scanner independent values of

ADC based on the following equation [52]:

ADC =

ln

(
S0

S1

)
(b1 − b0)

.

Here S0 and S1 are the signal intensities measured using the b value b0 and

b1, respectively. A b value defines the degree to which the measured magnetic

resonance signal is sensitized to diffusion effects [52]. It depends on different

properties of the applied gradient pulses and is calculated as:

b = γ2 G2δ2(∆− δ/3).

Where γ is the gyromagnetic ratio of a proton. The parameters G, δ and ∆ are the

magnitude, duration and time interval of the applied gradient pulses. At very low b

values (<200 s/mm2) the MRI signal is sensitive to perfusion contributions (figure

1.19A) from large blood vessels [53]. Above 200 s/mm2, the perfusion component

disappears and mainly diffusion is measured6(figure 1.19 B-C). In practice, MRI

data acquired from multiple b values (ranging from 200 until 1000 s/mm2) and

along several directions are used to calculate the ADC map.

6 At b values>200 s/mm2 small blood vessels with less flow may still contribute to the measured
signal [53].

30



1.5. Simultaneous PET/MRI

A B C

Figure 1.19: Diffusion-weighted images acquired using a b value (s/mm2) of (A) 0, (B) 1000 and
(C) 3000. Figure adapted from Burdette et al. [54].

1.5 Simultaneous PET/MRI

1.5.1 Concept

Simultaneous PET/MRI seeks to acquire multiparametric functional and anatom-

ical information concurrently without the necessity of an additional image regis-

tration step, as performed in the sequential hybrid imaging studies [55]. The first

hybrid device to acquire sequential functional and anatomical information was de-

veloped using PET and computer tomography (CT), and therefore was termed as

PET/CT [56]. The anatomical references provided by CT significantly improved

the localization of malignant lesions and consequently, quantification of the asso-

ciated PET data, leading to a better diagnosis and staging of patients with cancer

[57–59]. In addition, contrast enhanced CT can provide further evidence about

perfusion and vascularization in tumors to better stratify the patients in relevant

clinical categories [60].

However, a major downside of CT is the amount of radiation given to the patient

[61]. Although the radiation dose does not pose a big issue in single clinical

examinations, it can alter experimental conditions in longitudinal clinical and pre-

clinical studies. Besides this, the limited soft tissue contrast of CT results in its low

sensitivity and specificity for certain tumor types as compared to MRI [62]. Since

the functioning of MRI system is based on the magnetic properties of hydrogen
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nuclei, the MRI examinations do not involve exposure to radiation. Moreover, the

advancements in multiparametric imaging now allow an accurate in vivo moni-

toring of various functional aspects of the tumors, such as diffusion, perfusion,

vascular permeability and the metabolic profile [63]. Due to these reasons, the

combination MRI and PET not only provides a precise morphological reference,

but also a plethora of complementary functional information [55, 64].

1.5.2 Development and Applications

Unlike PET/CT, combining PET and MRI into one scanner in the late 1990s was

a non-trivial task. In an ideal hybrid scanner enabling simultaneous data acquisi-

tion, each imaging modality should operate without influencing the performance

of the other techniques. However, PET/MRI scanner carried two main sources

of mutual interference [65]: inhomogeneities produced in the static magnetic field

due to PET electronics and malfunctioning of PET electronics due to the static

magnetic field, switching MRI gradients and RF pulses. The very first hybrid

PET/MRI approach [66] therefore tried to separate the interfering components of

both the modalities by placing the PMTs and other front-end electronics outside

the fringe magnetic field and using optical fibers to direct the scintillation light to-

wards the PMTs. Although this setup enabled simultaneous imaging, the use of

optical fibers caused significant damping (∼ 90%) of the scintillation light and a

considerable reduction in the energy resolution.

The incompatibility of the PET instrumentation (in particular PMTs) was resolved

with the development of avalanche photo-diode (APD) based PET detectors [67],

which were unaffected by the presence of static or varying magnetic fields. How-

ever, due to small amplification factor of these detectors, a preamplifier was re-

quired in the front-end electronics. Wu et al. [68] managed to minimize the

magnetic field inhomogeneities caused by the advanced front-end electronics by

connecting the scintillators and APDs with small optical fibers and shifting the

interfering electronics outside the scanner’s field of view. The more recent MRI

compatible PET systems [69] instead comprise Geiger-mode APD arrays, which
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are also known as silicon PMTs. In a Geiger-mode APD, each incident photon

can trigger a self sustaining avalanche breakdown (multiplication of electron–hole

pairs) through the process of impact ionization, providing a gain similar to that of

a conventional PMT. Moreover, like linear-mode APDs7, Geiger-mode APDs are

also insensitive to external magnetic fields. They operate at relatively low bias

voltages (30-100 V) and provide high amplification factors ranging between 105

and 106. Besides their advantages over APDs and PMTs, there are two impor-

tant characteristics of Geiger-mode APDs which can affect their normal operation:

the amount of dark current generated due to increased temperature and optical

crosstalk, and a highly sensitive temperature dependent gain profile. The latter

attribute is particularly crucial for PET inserts intended to operate in MRI scan-

ners, as frequent switching of gradient coils and application of RF pulses can lead

to wide temperature variations inside the scanner. For this reason, a temperature

stabilizing circuit is of high importance for silicon PMT based MRI compatible PET

inserts [70]. To avoid electromagnetic interferences and production of eddy cur-

rents (due to variations in magnetic field), the front-end electronics are shielded

using materials with specific characteristics: high density, low magnetic suscepti-

bility and low conductivity [65].

In contrast to the adjustments required in the PET hardware, only minimal

changes are needed in the MRI scanner, mainly because the majority of the pro-

totype PET/MRI systems [65] are based on a modified PET scanner that can be

fitted inside the bore of existing MRI devices. Nonetheless, efforts to optimize the

data quality for both the modalities are ongoing, such as the development of PET

compatible low attenuation MRI coils [71], MRI assisted attenuation correction

for PET [72, 73], joint reconstruction methods for PET and MRI [74] and motion

correction techniques for simultaneous imaging [75]. An example of one such

method is presented in figure 1.20, where an MRI-based tissue segmentation

approach [76] was used to correct the PET data for attenuation.

The complementary data obtained from PET/MRI has been shown to provide

7 These operate below the breakdown voltage and provide gains typically two or three orders of
magnitude smaller than that of Geiger-mode APDs.
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A B C D

Figure 1.20: PET/MRI of a melanoma patient. (A) MRI derived attenuation map and (B) T2-
weighted anatomy image, (C) 18F-FDG PET scan, (D) and an overlay of both the previous images.
The arrow in panel C indicates an enteric melanoma metastasis. Figure adapted from Disselhorst
et al. [65].

a significant prognostic relevance for a wide range of applications in oncology.

These include whole body staging for different types of cancer, identification of

intracranial and thoracic neoplasms, localization of metastatic lesions, delineation

of brain tumors and assessment of inter- and intra-tumor heterogeneity [77–79].

In the preclinical field the scope of integrated PET/MRI is broader than the clinic,

as animal experiments have more flexibility in terms of scan-time and experimen-

tal protocols. A comprehensive summary of preclinical PET/MRI applications is

provided by Judenhofer et al. [80].

This thesis primarily focuses on using machine learning methods to analyze mul-

tiparametric PET and MRI data, and characterize phenotypic heterogeneity in

subcutaneous tumor models. The following section provides a summary of the

algorithms that have been used in this work.

1.6 Machine Learning

Machine learning refers to the process of identifying structure or inferring a func-

tion from given data to perform deductive tasks, such as clustering, classification
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and regression. Depending on the type of data, learning can be performed in two

ways: supervised and unsupervised.

In case of supervised learning, labeled data (also known as a training set) is used

to tune the parameters of an adaptive model. Each observation (or data-point)

in the training set is a pair consisting of input predictors and an output variable.

In the setting of medical imaging, for example, the input predictors—which are

also referred to as features or measurements, can be the parameters acquired

from an imaging modality and the output variable (often termed as the target or

response variable) can be the survival data of patients or lesions labeled as ma-

lignant or benign. In general, both the input predictors and the output variable

can be either continuous or categorical. A supervised learning algorithm deter-

mines an association between the input and output data that can be generalized

for unseen observations (data-points not in the training set) to accurately predict

the corresponding target variable. More formally, if the training set consists of D

predictors, X1, . . . , XD (jointly referred to as X) and a numeric output variable Y ,

it is assumed that X and Y are related as following:

Y = f(X) + ε.

Where f is an unknown function and ε is the irreducible error, which does not

depend on X. The learning algorithms aim to estimate f using the observations

provided in the training set [81]. The estimated function is subsequently used

for either prediction (regression and classification) or inferring the relationship be-

tween each predictor and the target variable. Supervised learning is used in wide

range of day to day applications, such as online recommendation systems, spam

filtering, credit scoring algorithms, stock market analytics, and pattern recognition

tools based on audio and video signals.

In unsupervised learning only the input predictors are available without any labels

or target variable. Hence, the objective in unsupervised learning is to discover

intrinsic regularities in the data, different from what would be regarded as ran-

dom contributions of noise [82]. The two most intuitive examples of unsupervised

learning are clustering and dimensionality reduction. In clustering, the input ob-
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servations are grouped into disjoint clusters to minimize the intra-cluster variance

and maximize the inter-cluster variance. Whereas, dimensionality reduction tech-

niques aim to reduce the number of input predictors to a smaller subset that can

be used either for visualization or as a pre-processing step prior to supervised

learning [83].

Due to the lack of labeled data, the problem of unsupervised learning is much

more challenging than supervised learning. Moreover, there are no standard pro-

cedures of parameter selection and model validation, which makes the learning

process highly subjective. Despite these factors, unsupervised learning methods

have witnessed a growing interest in areas where obtaining labels is either expen-

sive or simply infeasible, such as medical imaging, genetics, anomaly detection

and remote sensing.

A considerable part of the research work presented in this thesis was carried out

using well known unsupervised and supervised learning methods as fundamental

building blocks. A brief summary of each one of the methods is provided in the

following subsections. Unless specified, all derivations in the subsequent sections

are taken from Bishop [83].

1.6.1 K -means Clustering

K -means is perhaps the most classic of all clustering methods. Sometimes also

referred to as Lloyd’s algorithm, it was originally proposed by Stuart P. Lloyd at

Bell Laboratories in 1957, however it was officially published 25 years later in

1982 [84]. K -means is an iterative partitional clustering algorithm that divides

input observations into a user provided number of clusters, K. The clustering

process iterates between two stages, until the algorithm converges and no further

improvements in objective function can be achieved. This can be best explained

using the formal description provided below.

Let’s assume the clustering problem in a multidimensional space, where the input

dataset {x1, . . . , xN} comprises N points of a D-dimensional random variable x.
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The clustering objective is to group these N observations into K clusters in such

a way that within-cluster point-to-point Euclidean distances are smaller as com-

pared to the inter-cluster point-to-point distances. Let’s also introduce a set of

D-dimensional vectors µk, where k = 1, . . . , K, in which µk can be considered as

the centroid of the cluster k. Thus, during clustering the data points are assigned

to different clusters based on their closest centroid. The cluster assignments can

be formally represented using an indicator variable rnk ∈ {0, 1}, which encodes

whether observation xn is included in cluster k or not. Using these notations, we

can define the cost function J as follows:

J =
N∑
n=1

K∑
k=1

rnk‖xn − µk‖2.

Which is simply the sum of the squared distances between all observations and

their closest centroids. In K -means clustering we minimize J by selecting the

most optimal values for the variables rnk and µk. The optimization is performed

iteratively, where each iteration consists of two steps. To begin with, the variable

µk is assigned some initial values (either random or user provided). Afterwards,

in the first step, µk is kept fixed and the cost function J is minimized with respect

to rnk. Since J and rnk are linearly related, this corresponds to assigning each

point to its nearest centroid as described below:

rnk =

1 if k = arg minj‖xn − µj‖2

0 otherwise.

In the second step, the rnk values determined previously are held fixed and the

cost function J is minimized with respect to µk. Thus, setting the derivative of J

with respect to µk equal to zero provides:

2
N∑
n=1

rnk(xn − µk) = 0

which is solved for µk to obtain:

µk =

∑
n rnkxn∑
n rnk

.
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320.9 310.9 235.8

Figure 1.21: K -means clustering performed multiple times on a synthetic dataset. In each run a
different random initial configuration for cluster centroids was used. The final cost function of each
run is indicated above the plot. In contrast to the first and second, the third configuration resulted
in a lower cost (highlighted in cyan) and well assigned cluster memberships. Figure adapted from
James et al. [81].

This implies that in each iteration µk should simply be assigned as the mean of

all observations in cluster k. The two steps of cluster assignment and centroid

update are performed repeatedly until there is no (or a very small) change in the

cost function J and the algorithm converges to a local or global minimum.

It should be noted that the clustering solution obtained using K -means is depen-

dent on the initial values of the cluster centroids. A poor initialization may result

in suboptimal results, because the optimization might converge to a local mini-

mum. In practice (when there is no a priori information available about cluster

centroids), the algorithm is run several times, each time with a different random

initial configuration of cluster centroids and the solution corresponding to the low-

est cost is considered as best (figure 1.21) [81].

The simplicity of Euclidean distance based K -means clustering comes at the cost

of certain drawbacks. First, it assumes that the input predictors are uncorrelated

and the clusters have a spherical shape [85]. This assumption provides reliable

results only as long as the clusters are compact and well isolated from each other.

However, this issue can be alleviated to some degree by choosing a dissimilarity

measure that takes into account the covariance matrix of the data, such as the

regularized Mahalanobis distance [86]. A second limitation of K -means is that in
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the cluster assignment step, each observation is uniquely assigned to only one

of the clusters. Such hard assignments can lead to incorrect results, especially

in cases when the clusters overlap with each other. For problems like this, a soft

clustering approach is more appropriate, as it would provide an uncertainty mea-

sure over the intermediate and final cluster assignments. Fuzzy C-means (FCM),

an extension of K -means clustering improves upon this issue by probabilistically

assigning each observation all clusters. For the details of FCM clustering the

reader is referred to the original article that proposed the algorithm [87].

1.6.2 Gaussian Mixture Modeling

A Gaussian mixture model (GMM) is a collection of two or more uni-/multi-variate

Gaussian distributions, whose joint probability density function is the weighted

sum of the probability density functions of the independent Gaussian components

[83]. A multi-variate Gaussian distribution is characterized using a mean vector µ

and a covariance matrix Σ in the following manner:

N (x|µ,Σ) =
1

(2π)D/2
1

|Σ|1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
,

where |Σ| is the determinant of Σ and D is the dimension of the mean vector µ.

As real datasets are often multimodal, a single Gaussian distribution is insufficient

to capture the underlying structure and fit the data faithfully. A linear combination

of several Gaussians, however, can be adjusted to generate complex probability

density functions (figure 1.22) and model multimodal datasets more accurately.

A GMM with K multi-variate Gaussian distributions takes the following mathemat-

ical form:

p(x) =
K∑
k=1

πkN (x|µk,Σk).

Here, πk is the mixture density coefficient of the normal distribution N (x|µk,Σk),

which is characterized using a mean vector µk and covariance matrix Σk. Each

Gaussian density function is also termed as a component of the GMM. The mix-
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ture density coefficients are constrained to fulfill the probability requirements:

K∑
k=1

πk = 1 and 0 6 πk 6 1.

The GMM described above is characterized by three variables πk, µk and Σk,

whose optimal values are chosen during model fitting. One option to select the

optimal parameters is by maximizing the log-likelihood function:

ln p(X|π, µ,Σ) =
N∑
n=1

ln

{
K∑
k=1

πkN (xn|µk,Σk)

}
,

where, X = {x1, . . . , xN}. However, due to the second summation being con-

tained in the logarithm, obtaining a closed form solution using maximum likeli-

hood is not trivial [83, 88]. Another factor limiting the use of maximum likelihood

estimation is the presence of singularities [83]. A singularity might arise during

model fitting, when the mean of one of the Gaussian components matches exactly

with an input observation (figure 1.23). This causes the contribution in the log-

likelihood function from this Gaussian component to diverge due to a constantly

increasing additive value, eventually resulting in a poorly fitted model [83].

A systematic and more reliable approach for obtaining the GMM parameters is

the EM algorithm. EM is a powerful statistical technique that is widely used to

find the maximum likelihood estimates of the parameters in models with hidden

variables. The method alternates between expectation (E) and maximization (M)

steps, which correspond to specifying a lower bound on the log-likelihood function

x

p(x)

Figure 1.22: A one dimensional mixture of Gaussians. The curve in the red shows the joint
probability density function obtained after linear superimposition of the three one-dimensional
Gaussian distributions (shown in blue). Figure adapted from Bishop [83].
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and raising this bound over each iteration [88]. The derivation of the EM algorithm

for a mixture of Gaussians is provided below.

First the derivatives of the log-likelihood function with respect to the model param-

eters (πk, µk and Σk) are set to zero to fulfill the maximum likelihood conditions.

Starting with µk:

0 = −

N∑
n=1

πkN (xn|µk,Σk)∑
j πj N (xn|µj,Σj)︸ ︷︷ ︸

γ(znk)

∑
k

(xn − µk).

Here γ(znk) are the posterior probabilities. After organizing the terms in the equa-

tion above, we obtain:

µk =
1

Nk

N∑
n=1

γ(znk)xn.

Where Nk is defined as:

Nk =
N∑
n=1

γ(znk).

Likewise, equating the derivatives of the log-likelihood function with respect to Σk

and πk to zero, we obtain8:

Σk =
1

Nk

N∑
n=1

γ(znk)(xn − µk)(xn − µk)T

p(x)

x
Figure 1.23: Singularities can arise during the fitting of a GMM, when the mean of one of the
Gaussian components becomes equal to a data point. In such a scenario, the model parameters
estimated using maximum likelihood often lead to a poor description of the data. Figure adapted
from Bishop [83].

8 Obtaining the value of πk is a more rigorous exercise and is beyond the scope of this thesis.
Complete details can be found in Bishop [83].
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and,

πk =
Nk

N
.

These solutions are not closed-form, as they depend on γ(znk) in an intricate

manner. Therefore, the EM algorithm uses the following steps [83] to find a set

of parameters that maximize the log-likelihood function.

1. Initialize the parameters (πk, µk and Σk) with random (or user provided)

values.

2. E step: compute the posterior probabilities γ(znk):

γ(znk) =
πkN (xn|µk,Σk)∑
j πj N (xn|µj,Σj)

.

3. M step: update the parameters (πk, µk and Σk) based on γ(znk):

µnewk =
1

Nk

N∑
n=1

γ(znk)xn

Σnew
k =

1

Nk

N∑
n=1

γ(znk)(xn − µnewk )(xn − µnewk )T

and,

πnewk =
Nk

N
.

Where,

Nk =
N∑
n=1

γ(znk).

4. Estimate the log-likelihood using new parameters (πnewk , µnewk and Σnew
k ):

ln p(X|π, µ,Σ) =
N∑
n=1

ln

{
K∑
k=1

πnewk N (xn|µnewk ,Σnew
k )

}
.

If the stopping criterion (for example, minimum change in the log-

likelihood) is not met, repeat the next iteration from step 2.

It is interesting to point out that the cluster assignment and centroid update steps

in K -means algorithm have close resemblance with the EM algorithm. While the
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former step bears a close similarity with the E phase described above, the latter

step is analogous to the parameter update procedure in the M phase. As a matter

of fact, it can be shown that K -means algorithm is a special case of modeling a

mixture of Gaussians using the EM algorithm [83]. An illustrative example of EM

iterations during the fitting of a GMM is shown in figure 1.24.

It should be noted that if several local maxima are present in the log-likelihood

function, the EM algorithm only guarantees convergence to one of the maxima,

which may not be the global maximum. Moreover, much alike K -means, the

clustering solution obtained using a GMM depends upon the initial configuration

of the model parameters. Therefore, a common practice in fitting a GMM is to

first run K -means clustering repetitively in order to obtain reasonable estimates

of the initial parameters. This initial configuration is subsequently fed into the EM

algorithm [83].

1 2 3

4 5 6

Figure 1.24: EM iterations (1-6) during the fitting of a GMM on a two dimensional dataset. No-
tice the probabilistic assignment (depicted by purple color) of points in both the clusters. Figure
adapted from Bishop [83].
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1.6.3 Spectral Clustering

Spectral clustering is a graph based clustering algorithm that represents the data

points as the vertices of an undirected similarity graph G = < V, E > [89]. Here,

V is the set of vertices or nodes and E is the set of edges. An edge between

two vertices exists, if the similarity between them is positive. Furthermore, all the

edges in graph G are weighted by the similarity between their respective vertices.

Thus, the matrix containing the weights of all the edges is termed as the affinity

or similarity matrix. A common approach to construct the affinity matrix for a fully-

connected graph9 (where all the vertices are connected with each other) is by

using the radial basis function (RBF) kernel. Given a set of N , D-dimensional

input observations X = {x1, . . . , xN}, the N × N affinity matrix (W ) is formed

using the RBF kernel in the following manner:

Wij =

e
−‖xi−xj‖2/2σ2 if i 6= j

0 otherwise.

Here, ‖ xi − xj ‖ is the Euclidean distance between observations xi and xj. The

RBF kernel is characterized using the scale parameter σ, which modulates the

reduction in affinity with the distance between observations xi and xj [90].

The objective in spectral clustering is to partition the graph in such a way that

the weights within a group are large and the weights of the edges connecting

different groups are small. By choosing the appropriate scale of the RBF kernel,

the affinity matrix is formed in a manner that preserves the local manifolds and

maintains the clustering objective [91]. Once the affinity matrix is obtained, the

diagonal degree matrix D with a diagonal vector di is defined as:

di =
N∑
j=1

Wij.

Based on the affinity (W ) and degree (D) matrices, various graph Laplacians can

9 There are several other ways to construct a similarity graph. The two other most popular graphs
are: the ε neighborhood graph and the k-nearest neighbor graph [89].
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be defined. The unnormalized Laplacian matrix is defined as:

L = D −W.

Likewise, the two normalized Laplacian matrices are defined as:

Lsym = 1−D−1/2WD−1/2 and Lrw = 1−D−1/2W.

The first Laplacian is denoted as Lsym because it is a symmetric matrix, whereas

the second Laplacian as Lrw due to its close connection with a random walk. For

detailed explanations about the properties of the graph Laplacians, the reader is

referred to the comprehensive tutorial on spectral clustering by Ulrike von Luxburg

[89].

Once the Laplacian matrix is obtained, clustering is performed by computing its

m first eigenvectors (corresponding to the m smallest eigenvalues) and clustering

them using using K -means. A common practice in spectral clustering is to com-

pute as many eigenvectors as the number of clusters, however this does not apply

when the data is noisy and the clusters overlap with each other. In such a sce-

nario, it is recommended to use more eigenvectors than the number of clusters.

The choice of graph Laplacian also affects the clustering solution. For stability

reasons, in almost all the cases, the normalized Laplacian is preferred over the

unnormalized one [89].

Spectral clustering outperforms traditional clustering algorithms (K -means, FCM

and Gaussian mixture modeling) primarily because it does not make any strict

assumptions about the shape of the clusters. The clustering methods described

previously assume the clusters to be spherical or ellipticals, which makes them

unsuitable for identifying clusters with non-convex shapes. This is illustrated by

the toy example in figure 1.25. Unlike K -means and Gaussian mixture modeling,

spectral clustering captures nonlinear manifolds of the spiral dataset by forming

an affinity matrix that preserves local distances (even in the presence of noise).

Once the appropriate affinity matrix is obtained, it simply solves a linear prob-

lem without any initialization or optimization (multiple local maxima) issues and

assigns the data points to their respective clusters adequately.
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Ground truth K-means

Gaussian mixture modeling Spectral clustering

Figure 1.25: Toy example illustrating the effectiveness of spectral clustering. The synthetic data
consists of points sampled from three concentric circles corrupted with additive white Gaussian
noise. Due to non-convex shape of the clusters, both K -means and Gaussian mixture modeling
provide poor clustering results. Contrary to these, spectral clustering retains the shape of all three
clusters and results into optimal grouping of points.

An important aspect of forming a fully-connected graph is the choice of σ. Figure

1.26 shows (for the toy dataset presented in figure 1.25) how the variations in σ

(too small or too big) can lead to suboptimal clustering results. In particular, one

should take into account that for a specific value of σ, the total number of points

with a relatively high value of affinity should not be either too many or too few [89].

This is analogous to choosing a suitable value of ε and k for the ε neighborhood

and k-nearest neighbor similarity graphs, respectively.

1.6.4 Random Forest

Random forest is an ensemble based supervised learning method that is widely

used for the tasks of classification or regression. Although many attempts were
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1 53

7 9 11

Figure 1.26: Solutions obtained using spectral clustering with variations in σ (indicated above
each panel). Overall, a σ value of 7 separated the three clusters best, as matched with the
ground truth plot in figure 1.25.

made in the 1990s [92–95] to develop a powerful aggregation based machine

learning technique, it was only after Breiman’s paper in 2001 [96] that random

forests were proven to achieve significant levels of accuracy both empirically and

theoretically. In this thesis, random forests are mainly used for classification and

therefore, hereinafter, we will refer to them as a random forest classifier.

A random forest classifier is an ensemble of many decision trees, where each

tree plays the role of a weak learner. The trees are termed as weak learners be-

cause their classification accuracy is just marginally better than making random

decisions [91]. Formally, a decision tree is non-parametric supervised learning

tool that classifies observations into different categories by traversing them down

the tree; from root node to one of the internal nodes and all the way to termi-

nal nodes or leaves. Prior to classification, the tree is trained using a greedy

approach that performs recursive binary splitting in the predictor space at each

(except leaf) node of the tree [81]. The training paradigm is termed greedy be-

cause each binary split is carried out by choosing an optimal predictor and its

corresponding threshold that maximizes a purity function (measuring the fraction
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of correctly classified observations) at that particular node. This does not take into

account the subsequent splits that depend on the current division and might lead

to an overall higher purity. The two most preferred purity measures for growing a

decision tree are the Gini index and cross-entropy.

For a dataset with K classes, the Gini index G can be defined as [81]:

G =
K∑
k=1

p̂mk(1− p̂mk).

Where, p̂mk is the fraction of data points in the region created at mth node (splits

at different nodes can be seen as operations that partition the predictor space

into different regions) that belong to class k.

Alternatively, the cross-entropy is defined as [81]:

D = −
K∑
k=1

p̂mk log p̂mk.

This implies that at the mth node, both the Gini index and cross-entropy will be

small if the p̂mk value for all clusters is close to one or zero. Therefore, dur-

ing training, binary split at each node is performed by choosing a predictor and

a threshold that leads to the best separation of input observations into their re-

spective classes and consequently, smallest possible value of the Gini index or

cross-entropy.

As opposed to linear models, decision trees are better suited when the relation-

ship between the input predictors and the output variable is non-linear (figure

1.27). But, it is often the case that decision trees do not generalize well on un-

seen or test datasets. The unreliability exists because decision trees suffer from

high variance. This means that even a small variation in the training data can

result in very different decision trees making their interpretation and predictions

rather precarious. Another major weakness of decision trees is that the decision

boundary learned by them during training lacks smoothness. A hard classification

boundary can severely degrade the performance of a model, if the observations

are expected to have probabilistic associations with different classes [91].
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A random forest classifier overcomes these limitations by training a large number

of uncorrelated trees and averaging their predictions to obtain probabilistic class

labels. Since a deeply grown tree has a low bias and a high variance, averaging

many identically distributed trees results into the same bias as that of an individual

tree, but a significant reduction in the model variance [91]. The uncorrelated trees

are obtained by performing a small trick in the way how each tree is grown. The

training paradigm of each tree in a random forest classifier is identical to that of

a single decision tree except that in the former case each split is made using

only a subset of all predictors. Typically if there are p predictors, during each

split ∼ √p predictors are taken into consideration. Another important operation

that reduces the variance of a random forest classifier is bagging. Bagging is a

common procedure in statistical learning that builds a large number training sets

from an original (labeled) population by randomly sampling different observations.

For a random forest classifier, it usual to perform sampling with replacement and

later train each tree on one of the bagged training datasets. Thus, each trained

tree in itself is considered as a weak learner because it has been trained only on

a subset of all the training observations, however, their combination results in a
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Figure 1.27: Top row: when the decision boundary between the green and the yellow class is
linear, the decision tree performs poorly with multiple splits parallel to the axes. Bottom row:
for non-linearly separated classes the linear model is outperformed by the decision tree. Figure
adapted from [81].
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very powerful statistical model that has low bias as well as low variance.

For each tree in a random forest classifier, the data points that have been used in

the training are called in-bag observations, whereas the left out points are termed

as out-of-bag observations. The out-of-bag observations provide a unique way

to estimate the cross-validation error of the trained classifier. It has been shown

[96] that bagging results in approximately two-third in-bag and one-third out-of-

bag observations. Hence, each observation from the complete training dataset

can be tested (by only considering the trees for which it is out-of-bag) on the

trained classifier to obtain an estimate of the out-of-bag error. Interestingly, if the

number of trees is large enough, the out-of-bag error is identical to leave-one-out

cross-validation error [81, 91]. This provides a convenient method of training and

validating a random forest classifier.
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Figure 1.28: A one to one comparison between the decision boundaries learned by a decision
tree (top row) and a random forest classifier (bottom row). Both the models were trained on
Fisher’s Iris dataset [97] that has 3 output classes, 4 predictors and 150 observations. For sim-
plicity and visualization, both the models were trained three times on all the observations, each
time with only two predictors (specified on the x- and y- axes). The random forest classifier was
trained with 100 trees. It is evident from all three cases that averaging the predictions of many
trees results in more accurate and smoother decision surfaces. The three colors in each panel
represent the three species (setosa, virginica and versicolor) of Iris flower.

Figure 1.28 compares the prediction surfaces of a decision tree and a random
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1.6. Machine Learning

forest classifier built with 100 trees. As described previously, the random for-

est classifier not only has a lower model variance than the decision tree (hence

more accurate decision boundaries), it also learns smoother decision surfaces

that separate input observations into different output classes.

1.6.5 Feature Selection

In machine learning, feature selection refers to the process of identifying rele-

vant predictors that improves model interpretability and generalization. In this

sub-section two feature selection algorithms (Laplacian and Fisher scoring) are

introduced, both of which are relevant for this thesis. For a detailed review on the

topic of feature selection, the reader is referred to Guyon et al. [98].

Laplacian score is a filter based unsupervised feature selection method that

selects important features based on their ability to preserve the local structure of

the multidimensional data [99]. The algorithm is defined as following:

1. Given a set of N , D-dimensional input observations X = {x1, . . . , xN},

compute the N ×N affinity matrix (W ), diagonal degree matrix (D) and

unnormalized Laplacian (L) as described in sub-section 1.6.3.

2. For the rth feature, compute the vector f̂r:

f̂r = fr −
fTr D1

1TD1
1

where,

fr = [fr1, . . . , frN ]T and 1 = [1, . . . , 1]T .

3. Calculate the Laplacian score (Lr) of the rth feature using the following

expression:

Lr =
f̂Tr Lf̂r

f̂Tr Df̂r
.

The rationale behind the Laplacian scoring algorithm is related with the applica-
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Chapter 1: Introduction

tion of the graph similarity matrix, as discussed in sub-section 1.6.3. The algo-

rithm mainly favors the features that preserve the local graph structure captured

by the similarity matrix and penalizes the others [99].

Fisher score, in contrast, is a supervised feature selection algorithm, which se-

lects a subset of features that minimize the point-to-point distances within the

same class and maximize the point-to-point distances between different classes

[100]. The Fisher score Fr for the rth feature is computed as:

Fr =

∑K
k=1 nk(µ

r
k − µr)2∑K

k=1 nk(σ
r
k)

2
.

Where K is the total number of classes and nk denotes the total number of points

in class k. The mean of feature r for all points is denoted as µr, and the mean and

standard deviation of all points in class k corresponding to feature r are denoted

by µrk and σrk.
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Results

All four publications included in this cumulative thesis aimed to assess intratumor

heterogeneity by applying unsupervised and supervised learning techniques on

non-invasive in-vivo imaging data. The first paper presents a novel unsupervised

learning framework based on GMMs to analyze longitudinally acquired 18F-FDG

PET SUV and DW-MRI data, and model the temporal and spatial phenotypic

variations in subcutaneous lung cancer [101]. In the second study we simulated

clinically relevant tumor tissue time activity curves (TACs) to evaluate the feasibil-

ity of spectral clustering in segmenting multi-dimensional dynamic 18F-FDG PET

tumor images and quantifying the population of various intratumor tissues [102].

This study also shows the benefits of analyzing PET TACs using spectral clus-

tering over conventional dynamic and static PET quantification measures, such

as compartmental modeling parametric maps and the SUV. The third publication

incorporated a spatial regularization step in spectral clustering and investigated

its utility in segmenting multiparametric functional MRI data of mice bearing sub-

cutaneous colon cancer [103]. The paper further shows that as compared to

the classical clustering algorithms, the suggested segmentation approach pro-

vides the most accurate estimation of phenotypic heterogeneity within tumors.

Lastly, in the final publication, we extended the previously applied spectral clus-
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tering techniques to a multimodality setting and incorporated them with a random

forest classifier to develop phenotype specific models. Our proposed multi-view

learning approach selected the most predictive features from dynamic 18F-FDG

PET/multiparametric MRI data and non-invasively quantified therapy-induced in-

tratumor tissue types. Notably, in this work we demonstrated that a systematic

analysis of multiparametric PET/MRI data was pivotal for a holistic voxel-wise tis-

sue characterization of solid tumors, which could not be obtained using static or

single modality imaging.
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2.1 Project-1

2.1.1 A Population-Based Gaussian Mixture Model

Incorporating 18F-FDG PET and Diffusion-Weighted MRI

Quantifies Tumor Tissue Classes

Mathew R. Divine, Prateek Katiyar, Ursula Kohlhofer, Leticia Quintanilla-

Martinez, Bernd J. Pichler, and Jonathan A. Disselhorst (2016). The Journal of

Nuclear Medicine 57.3, pp. 473–479.

This work aimed to develop a machine learning workflow that allows a non-

invasive spatial and temporal characterization of tumor tissue heterogeneity using
18F-FDG PET SUV (sub-section 1.3.9) and DW-MRI (sub-section 1.4.12). Both

of these parameters are acquired routinely in the clinic and have been found to

be inversely correlated in various neoplasms [104–107]. Whereas an increased

FDG uptake and metabolic activity of tumors is intricately related with high mi-

totic rates, hypoxia and the presence of a large number of viable cells [108–110],

ADC values have been shown to carry an inverse relationship with tumor cel-

lularity [111, 112]. Thus, a combination of these two parameters is believed to

provide valuable information about the tissue heterogeneity in tumors. Recently,

two investigations addressed the issue of intratumor tissue characterization using

a GMM (sub-section 1.6.2) on combined 18F-FDG PET SUV and DW-MRI data

[113, 114]. However, neither of these reports utilized the two parameters to study

the intratumor phenotypic changes in a longitudinal manner.

To meet this objective, four Naval Medical Research Institute (NMRI) nu/nu mice

(Charles River, Sulzfeld, Germany) were inoculated with NCI-H460 non-small cell

lung cancer human tumor cells (ATCC, Manassas, Virginia, USA) on the right

shoulder and imaged at day 20, 22, 24 and 27. Each imaging measurement in-

volved serial PET and MRI scans, which were later co-registered with the help

of fiducial markers. After the last imaging experiment of each mouse, the tumor
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Figure 2.1: Segmentation of the last time point measurement of all four tumors (row-wise) using a
GMM. Left to right: 18F-FDG PET SUV and ADC images, GMM probability map and the matched
H&E histology. The tumors were partitioned into three tissue clusters: viable-1 (V1, red), viable-2
(V2, green) and necrosis (Nec, blue). The arrow head and asterisk in the H&E images indicate
coagulative and liquefactive necrosis, respectively. Figure adapted from Divine et al. [101].

was sectioned (along the axial plane) in two equal parts, which were further pro-

cessed for hematoxylin and eosin (H&E) staining. The H&E stained sections were

digitized using a NanoZoomer 2.0 HT (Hamamatsu, Hamamatsu, Japan) and dif-

ferent regions of interests were drawn to localize intratumor viable and necrotic

tissues.

The modeling of tumor progression using PET/MRI data was carried out in two

phases: initialization and segmentation. In the initialization phase, the last time

point measurements of all mice were pooled into a combined dataset. This

dataset was normalized to have a unit standard deviation and all voxels with an

ADC value (prior to normalization) smaller than 50 (×10−6 mm2/s) were labeled

as noise. Subsequently, two GMMs were fitted on the combined dataset; the first

model with 3 tissue clusters on the noise-free data and the second model with

one cluster on the noisy data. The initialization of the first model was performed

using K -means (sub-section 1.6.1).

In the segmentation phase, the last time point measurements of all animals

were first processed independently for intratumor partitioning. This involved pre-
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2.1. Project-1

processing (normalization and noise removal) and clustering as described before.

However, the two GMMs in this step were started using the respective model pa-

rameters obtained after the initialization phase. Post-clustering the tissue proba-

bility map of each tumor was corroborated with the associated histology. Figure

2.1 shows the imaging parameters, GMM probability maps and matching H&E

histology of all four tumors. The three compartments identified in the noise-free

data corresponded to a necrotic and two viable clusters. Overall, an excellent

agreement was achieved between the GMM phenotypic maps and the tissue ar-

eas marked on the histology. This ground truth validation served as the basis for

attributing the model parameters (fitted on the noise-free data) of different clusters

from the last time point as the respective tissue class representative. Thereafter,

to faithfully model the intratumor heterogeneity over time, fixed clustering was

performed on the noise-free data of each tumor by applying the mixture model

configuration from the last time point to the previous time points. To account for

the variability in the SUV measurements [37], during fixed clustering the model

configuration was kept constant and an adaptive scaling was applied on the data

points (voxels) from earlier time points to obtain the most optimal fit. The data nor-

malization was performed using the standard deviations from the last time point

and the noise cluster was modeled as in the previous steps.

Figure 2.2A (density plot column) exhibits the temporal evolution of the SUV and

ADC distributions for the first tumor shown in figure 2.1. On the day 20 and 22, the

tumor was predominantly viable with a high 18F-FDG uptake and constrained wa-

ter diffusion. As the tumor grew (day 24 and 27), the necrotic areas got bigger and

a new cluster emerged with a low 18F-FDG uptake and high water diffusion. The

proposed modeling framework (figure 2.2A, column “Divine et al.”) maintained

these biological characteristics of the tumor and provided tissue probability maps

that depicted a faithful development of various intratumor phenotypes over time

(figure 2.2B). Contrary to this, when a standard GMM was applied independently

(instead of the suggested fixed clustering approach) on the previous time points,

the necrotic tissue population was overestimated and the viable areas were un-

derestimated (figure 2.2A, column “standard GMM”). The standard GMM failed,
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because clustering algorithms partition data irrespective of its biological signifi-

cance. Fitting a new GMM to each of the early time point measurements dis-

carded the longitudinal nature of the data, resulting in disproportionate fractions

of the tumor tissues.

In summary, this report presents a novel unsupervised learning framework that

can be applied on longitudinally acquired static PET and DW-MRI data to non-

invasively follow the development of intratumor phenotypes. Monitoring cancer

characteristics in such a manner is of utmost relevance in the clinic, because

a post-therapeutic change in the intratumor tissues can be a strong indicator of

therapy resistance or efficacy [115].
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Figure 2.2: Modeling the longitudinal PET/MRI data of the first tumor shown in figure 2.1. (A) Col-
umn 1: density scatter plots depicting the changes in the tumor microenvironment from the day 20
to 27. Column 2 and 3: scatter plots obtained after applying the proposed approach and standard
GMM. It is evident from the scatter plots at day 20 and 22 that as opposed to standard GMM, the
fixed clustering procedure estimates the necrotic and viable tissue populations at the early time
points more judiciously, providing a biologically consistent model of the tumor progression. (B)
A 3-dimensional rendering of the tumor growth (based on the suggested approach and exclud-
ing noisy voxels), illustrating the spatio-temporal development of various intratumor phenotypes.
Panel B adapted from Divine et al. [101].
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A Population-Based Gaussian Mixture Model Incorporating
18F-FDG PET and Diffusion-Weighted MRI Quantifies Tumor
Tissue Classes

Mathew R. Divine1, Prateek Katiyar1,2, Ursula Kohlhofer3, Leticia Quintanilla-Martinez3, Bernd J. Pichler1,
and Jonathan A. Disselhorst1

1Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen,
Tuebingen, Germany; 2Max Planck Institute for Intelligent Systems, Tuebingen, Germany; and 3Institute of Pathology, Eberhard Karls
University Tuebingen, Tuebingen, Germany

The aim of our study was to create a novel Gaussian mixture

modeling (GMM) pipeline to model the complementary information

derived from18F-FDG PET and diffusion-weighted MRI (DW-MRI) to
separate the tumor microenvironment into relevant tissue com-

partments and follow the development of these compartments

longitudinally. Methods: Serial 18F-FDG PET and apparent diffu-

sion coefficient (ADC) maps derived from DW-MR images of NCI-H460
xenograft tumors were coregistered, and a population-based GMMwas

implemented on the complementary imaging data. The tumor microen-

vironment was segmented into 3 distinct regions and correlated with

histology. ANCOVA was applied to gauge how well the total tumor
volume was a predictor for the ADC and 18F-FDG, or if ADC was a good

predictor of 18F-FDG for average values in the whole tumor or average

necrotic and viable tissues. Results: The coregistered PET/MR images
were in excellent agreement with histology, both visually and quantita-

tively, and allowed for validation of the last-time-point measurements.

Strong correlations were found for the necrotic (r 5 0.88) and viable

fractions (r 5 0.87) between histology and clustering. The GMM pro-
vided probabilities for each compartment with uncertainties expressed

as a mixture of tissues in which the resolution of scans was inadequate

to accurately separate tissues. The ANCOVA suggested that both ADC

and 18F-FDG in the whole tumor (P 5 0.0009, P 5 0.02) as well as
necrotic (P 5 0.008, P 5 0.02) and viable (P 5 0.003, P 5 0.01) tissues

were a positive, linear function of total tumor volume. ADC proved to be

a positive predictor of 18F-FDG in the whole tumor (P 5 0.001) and
necrotic (P 5 0.02) and viable (P 5 0.0001) tissues. Conclusion: The
complementary information of 18F-FDG and ADC longitudinal measure-

ments in xenograft tumors allows for segmentation into distinct tissues

when using the novel GMM pipeline. Leveraging the power of multi-
parametric PET/MRI in this manner has the potential to take the assess-

ment of disease outcome beyond RECIST and could provide an

important impact to the field of precision medicine.

Key Words: PET/MR; Gaussian mixture model; 18F-FDG; DWI

J Nucl Med 2016; 57:473–479
DOI: 10.2967/jnumed.115.163972

PET and MRI have been successfully integrated into a com-
bined imaging solution in clinics and preclinical laboratories

worldwide and represent a mature imaging modality (1). However,

because of the relatively short time period in which PET/MRI solu-

tions have been available, oncologic applications that use the com-

plementary information obtained from the separate modalities are in

their infancy. Several investigations have compared 18F-FDG PET/

CT and diffusion-weighted (DWI) MRI measurements on the same

cancer patients to determine the best approach for patient staging,

prognosis, and therapy stratification, pitting PET/CT against MRI, but

have not looked thoroughly into the combined utility of 18F-FDG

PET and MRI (2–5). In 2 of these investigations (4,5), an inverse

correlation between 18F-FDG uptake and DWI metrics in cancerous

lesions has been shown.
DWI is a noninvasive technique to measure the self-diffusion of

water in vivo and is often quantified by the apparent diffusion

coefficient (ADC). Malignant tumors generally have lower ADC

values than benign or necrotic tissues because of water movement

restriction caused by increased cellularity (5). Measurements of tumor

cellularity in non–small cell lung cancer (NSCLC) patients with DWI

have been used to predict tumor invasiveness at early stages and have

been shown to characterize well-differentiated adenocarcinoma from

other types of lung carcinoma (6). The underlying mechanism asso-

ciating changes in ADC to therapeutic response is a decreased cellu-

larity resulting from necrosis and apoptosis (7). In some cases, an

initial decrease in ADC, attributed to cellular swelling or reduced

blood flow (8), is attributed to treatment response.
18F-FDG uptake in lung cancers has been associated not only with

glucose transporter 1 and hexokinase activity, biologic components

directly related to glucose metabolism, but also with hypoxia-inducible

factor 1-a, vascular endothelial growth factor, its receptor, and micro-

vessels (9). This implicates a complex link between glucose consump-

tion and many opposing factors involved in the multifaceted tumor

microenvironment. Moreover, 18F-FDG can potentially stage tumors

in patients with histologically verified NSCLC (10–12), and changes

in 18F-FDG uptake after therapeutic intervention are correlated to pa-

tient prognosis (13–15), possibly predicting response (14). Adding

biologic information measured with DWI might further improve stag-

ing and help decide on patient-individualized therapies for treating

noninvasive adenocarcinomas (15).
To fully use multiparametric PET/MR imaging, assessment of

disease outcome needs to go beyond RECIST (16) and move
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toward comprehensive algorithms, which unify the complemen-
tary datasets. Recently, Schmidt et al. have reported on the corre-
lation of ADC and 18F-FDG inside of NSCLC tumors using a
hybrid PET/MR (17). They applied a Gaussian mixture model
(GMM) (18) and theorized that it separated the tumors into dis-
tinct and relevant tissue classes. Their investigation did not, how-
ever, include a histologic validation, track changes longitudinally,
or use adaptive clustering techniques. The aim of our study was to

create a novel clustering pipeline to model the complementary
information derived from 18F-FDG and ADC to separate the tumor
microenvironment into relevant tissue compartments and follow
their development longitudinally. A correlation with imaging and
histology was established to validate our model and guide a lon-
gitudinal implementation so that it was possible to observe the
dynamics of individual tissue compartments over time.

MATERIALS AND METHODS

A detailed description of cell culturing, animals, tumor inoculation,
18F-FDG production, PET and MR imaging, and image coregistration
and statistics can be found in the supplemental data (supplemental

materials are available at http://jnm.snmjournals.org). The rest of this
section describes details of our modeling pipeline.

The clustering workflow of PET/MRI data was performed in 2
major steps: GMM on all last time points of the 18F-FDG and ADC

datasets and GMM on individual measurements (Fig. 1). The first step
(population initialization) involved combining PET/MRI data acquired

at the last time points from all tumors into one dataset. The combined
dataset serves as a reference for the initialization of GMM in subsequent

steps, as these voxel pairs represent the heterogeneity expected in all
measurements. Before segmentation, the dataset was normalized to the

unit standard deviation (SD). Voxels with ADC values lower than 50 ·
1026 mm2/s were labeled as noise and excluded from initialization; a

2-dimensional (2D) Gaussian distribution was fit to the noise cluster.
Cluster initialization was performed on the noise-free dataset by repeat-

edly running the K-means (18) algorithm with 3 randomly seeded cen-
troids. The model parameters of the noise and noise-free clusters were

used to initialize GMM on the combined dataset. The choice of 3 tissue
clusters and 1 noise cluster was based on visual inspection of the data

(Figs. 2 and 3).
In step 2A, the last time point of each tumor was normalized to unit

SD, and the noise cluster was extracted as described above. Here, the
model parameters of the noise (corresponding to last time point of

respective tumor) and noise-free clusters (obtained in step 1) were
used to initialize GMM on the last time points.

After termination of the expectation maximiza-
tion algorithm, the clustering probability map of

the last time point of each tumor was validated
with respective histology (Fig. 4). After valida-

tion, the model parameters of the noise-free
clusters of each last time point were used to

perform hard clustering (model parameters

were fixed) on the early measurements of the
respective tumor (step 2B). The noise cluster

was characterized as described above. Because
18F-FDG measurements are vulnerable to vari-

ability, the data from early time points were
adaptively scaled by a multiplicative factor to

fit the given distribution. The clusters in the last
step were fixed for 2 main reasons: once vali-

dated with histology, the noise-free cluster pa-
rameters of the last time point can be considered

as GMM representative of the respective tumor
tissue classes, and the density-based models

have the tendency to partition data irrespective
of their biologic significance. It is highly likely

that the necrotic and viable fractions of tumors
in early time points are different as compared

with that in the last time point. Keeping the
clusters fixed does not forcefully assign false

observations to different clusters and models
the tumor progression judiciously. For the sake

FIGURE 1. In the first step of the GMM workflow, data from the last

imaging time point of all tumors are pooled into a single population and

initialized. Step 2A uses initialization from step 1 to segment the last time

point of each tumor. Step 2B uses adaptive scaling on all early time points

for each tumor while holding the GMM parameters from step 2A constant.

FIGURE 2. (From left to right) 18F-FDG, ADC, clustering, and hematoxylin and eosin (H&E)

examples are displayed for comparison. GMM was applied to the last time point of 18F-FDG

and DW-MR images to cluster them into viable (red, V1, and green, V2) and necrotic (blue, Nec)

regions. Manually delineated H&E stainings were coregistered to tumor volumes to verify tissue

classification. Liquefactive (asterisk) and coagulative necrosis (arrowhead) and blood vessel con-

gestion (arrow) are depicted in the H&E stainings.
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of comparison, a 1-dimensional (1D) GMM was performed in the
same manner with only the ADC data.

RESULTS

Hematoxylin and eosin (H&E) stainings depict tumors with
large atypical cells with prominent nucleoli and abundant cyto-
plasm. Mitosis and apoptosis are frequently seen (Fig. 2). Lique-
factive and coagulative necrosis is seen along with blood vessel
congestion and dilation. Visual inspection of the manually
aligned histology and delineated tumor slices revealed that a good
coregistration was achieved (Fig. 3). Uncertainty in tissue classifica-
tion is denoted by a weighted sum of colors and is exemplified in the
clustering results (Fig. 2B), which exhibits fingerlike regions of coag-
ulative necrosis in the histology; a similar texture is seen in the
corresponding clustering probability map. There are 2 viable regions
present, V2 (green) and V1 (red). V2 is seen only at the periphery and
corresponds to connective tissue, dense cells, and vessels (Fig. 3),
whereas V1 is bigger and represents densely packed tumors cells.
The median values and the interquartile range for the average

tumor, necrotic, viable, and noise regions are summarized for both

18F-FDG and ADC (Table 1). The 18F-FDG average values are
highest for the viable tissue and lowest for the necrotic tissue,
whereas the ADC is highest for the necrotic regions and lowest
for the viable regions across all time points.
The fractions of necrosis and viable tissue in H&E stainings cor-

relate quite well to corresponding tissue fractions in clustering slices
(Table 2) and are plotted (Fig. 4) for each mouse along with the line
of identity. Tissue fractions were derived from manually drawn re-
gions on histology (Supplemental Fig. 2). In both the 1D (ADC only)
and the 2D (ADC and 18F-FDG) cases, the GMM had a tendency
to overestimate viable regions and underestimate necrotic regions.
In general, the tumor clustering results were more influenced
by ADC (in the 2D case); however, the overall better agreement

FIGURE 3. (A) Outlines of the coregistered clustering slice (black) and

V2 (green) and necrosis (blue) are placed on top of the histology slice for

comparison of agreement between imaging and histology. (B and C) V2

is seen at the periphery of the tumor along with blood vessels (arrows)

and connective tissue (asterisk). (D) Slight misclassification of the ne-

crotic area occurred due to artifacts produced in ADC because of the

blood-pool.

FIGURE 4. Necrotic (open symbols) and viable (filled symbols) tissue

fractions taken from matching H&E, and clustering imaging slices are

plotted for each mouse (M1–M4) along with the line of identity as vali-

dation of GMM tissue classification. For the sake of comparison, a 1D

GMM was applied to only the ADC parameter. A 2D GMM was applied

to the combined 18F-FDG and ADC imaging dataset.

TABLE 1
Median and Interquartile Range for Whole Tumor and Individual Clusters

Cluster type

18F-FDG SUV ADC (· 10−6 mm2/s)

Median Interquartile range Median Interquartile range

Whole tumor 0.20 0.11 668 410

Viable 1 (red) 0.24 0.11 580 241

Viable 2 (green) 0.21 0.09 551 310

Necrotic (blue) 0.17 0.07 1008 394

Noise (black) 0.13 0.05 4.45 · 10−7 6.63 · 10−5
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between histology in the 2D GMM serves as a validation of this
methodology. The slice-by-slice correspondence between the
2D GMM and histology was calculated with the Dice coefficient
(Supplemental Table 2).
In Figure 5, the histograms of ADC and 18F-FDG for 4 different

time points from mouse 3 are shown along with corresponding
density and scatter plots. The ADC histograms become increas-
ingly skewed toward higher values as tumors become more ne-
crotic. The 18F-FDG histograms, on the other hand, demonstrate
large variability, consequently maintaining a similar average value
for all time points. In general, as the tumors grow in size, so does
the negative correlation between 18F-FDG and ADC on a voxel-
wise basis (Supplemental Fig. 3).
The 3-dimensional renderings of an exemplary tumor (mouse 3)

depict the spatial–temporal evolution of viable (red and green) and
necrotic (blue) tissue compartments (Fig. 6). The initial necrotic
portion at the first time point retains its relative position in the
tumor and becomes larger over time. In the second time point, a
smaller necrotic region appears in the lower portion of the tumor
and also increases in size while retaining its relative position in the
tumor. Moreover, purple areas on the rim of the necrotic region are
due to the mixed probability of belonging to the viable or necrotic
tissue class; the purple regions are possibly associated with hyp-
oxic areas in the tumor (Supplemental Fig. 4). The green viable
region is consistently located at the exterior of the tumor.
The linear regression analysis supported the hypothesis that

tumor volume was positively correlated to ADC and 18F-FDG for
the whole tumor and for the viable and necrotic regions (Supple-
mental Table 1). ADC was also a highly significant predictor for
18F-FDG in the whole tumor and in the segmented viable and
necrotic regions. There was no significant difference between
the slopes of the ADC versus volume (Fig. 7A) and 18F-FDG–
SUV versus volume (Fig. 7B). After the slopes of each group were
constrained, the Tukey–Kramer post hoc test confirmed that a
significant difference existed between all groups (Fig. 7A) and
the viable and necrotic regions (Fig. 7B); the slopes of the re-
gression lines (Fig. 7C) were significantly different from one
another.

DISCUSSION

We have developed a GMM pipeline to assess tumor heteroge-
neity using information from both PET and MRI, showing how
necrotic and viable regions develop in a longitudinal manner. We

validated the methodology both visually (Figs. 2 and 3) and quan-
titatively (Fig. 4) and have found a good agreement between clus-
tering results and histology. We have shown how the intratumoral
relationship between 18F-FDG and ADC changes longitudinally
(Fig. 5). Moreover, the manner in which the GMM segments the
tumors has been shown. The visualization of an exemplary tumor
reveals how tissue classes develop spatially over time (Fig. 6).
Last, we have shown a positive, linear relationship between
18F-FDG and ADC values in the tumor (Figs. 7A and 7B), and ADC

TABLE 2
Correlation Values for Histology and GMM Tissue Fractions

Mouse

2D GMM,

r-value

1D GMM (ADC),

r-value

NecroticViableNecroticViable

0.900.690.940.94Mouse 1

0.860.860.850.85Mouse 2

0.160.160.960.96Mouse 3

0.660.660.960.98Mouse 4

0.560.560.880.87All mice

r-value 5 Pearson correlation coefficient.

FIGURE 5. Histograms represent distributions of ADC and 18F-FDG

values at 4 time points for a single mouse. Density scatter plots depict

the voxelwise relationship of ADC and 18F-FDG values in the tumor. In

the scatter plots on the right, necrotic tissue is in blue, viable is in green

and red, and noise is in black. Combined probabilities of necrotic and

viable classes are shown as a mixture of colors.
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was shown to be an excellent predictor of 18F-FDG in this tumor
model (Fig. 7C).
In this study, the ADC values in the necrotic regions are low

compared with results from other investigators who have also used
similar segmentation techniques on purely MRI data, validated
with histology, to create 2 necrotic region types with the following
values: (1,510 6 120 and 1,560 6 240) (19), (1,260 6 130 and
1,610 6 41) (20), and (2,120 6 50 and 1,790 6 10) (21) ·
1026 mm2/s. The b-values being used affect the ADC values, with
lower b-values being heavily perfusion-dependent and responsible for
increasing the overall ADC. Higher b-values (.100) are desirable
to suppress perfusion-weighted components of well-perfused re-
gions (22). In the 3 aforementioned studies, b-values below 100
were used in the calculation of the ADC maps, whereas we used
b-values greater than 200.
Knowing the extent of necrosis in a tumor model can be helpful

as it can be the source of confounding results in determining the
efficacy of potential tumor therapies, as is the case with Berry
et al. who found that necrotic fractions contributed only noise to
the measurement of a therapeutic effect in an antiangiogenic drug
therapy study (19). Moreover, the extent of necrosis might help to
identify hypoxic tissues at the rim of necrosis and guide therapy
options, because hypoxic tissues are well known to be highly
resistant to radiation therapy (23). We also observed that perinecrotic
tissue stains positive for hypoxia-inducible factor 1-a (Supplemental

Fig. 4), an indirect marker of tissue hyp-
oxia. Although 18F-FDG is not specific for
hypoxic tissue, hypoxia has been shown to
correlate to 18F-FDG uptake (24).
The increase in the ADC value in the

viable regions (Fig. 7A) indicates that
these regions are becoming less dense,
presumably because of micronecrosis as
seen in the histology (Fig. 2). In the ideal
case, the necrotic regions would have a
slope of zero. The increase in both the
parameters over time (Fig. 7C) could
suggest that as the tumor becomes larger,
it also becomes more aggressive because
of the increased necrotic burden, which
harbors an increased interstitial pressure,
low oxygenation, and oxygen reactive
species due to opened cell membranes
(25–27). On the other hand, no partial-
volume correction was performed in this

study and could be a cause for the volume-dependent increase in
18F-FDG values (Fig. 7B).
A positive correlation between ADC and 18F-FDG SUV could

seem, at first glance, inconsistent with findings from Schmidt et al.,
who have reported a negative correlation between SUVmax and
ADCmin (17). However, in accordance with Schmidt et al., the
intratumor correlation coefficient is mostly negative for all tumors
and becomes more negative as the total tumor volume increases
(Supplemental Fig. 3). Thus, on a voxelwise basis, an L-shaped
2D histogram is seen in the tumors of this study and in the human
lung tumors from Schmidt et al. Several other authors have also
reported significant negative correlations between ADC and
18F-FDG in various types of malignancies. Nakajo et al. reported
a correlation coefficient of r 5 20.56 in head and neck squamous
cell carcinomas for ADCmean and 18F-FDG SUVmax (28); Baba
et al. reported r 5 20.36 in breast lesions for ADCmean and
18F-FDG SUVmax (29); and Rakheja et al. reported a range of r values
from 20.18 to 20.29 in various neoplastic lesions, for various
combinations of 18F-FDG SUV and ADCmin and ADCmax (30).
None of these studies reported the correlation between 18F-FDG
SUV and ADC longitudinally, as performed in this study, making
it hard to compare. Nakajo et al. did, however, correlate ADC
and 18F-FDG SUV to patient survival, with higher ADCs and lower
18F-FDG SUVs associated with disease-free survival. The number
of negative correlations observed could imply that ADC and

18F-FDG SUV move along a negative slope
in patients receiving treatment. In the NCI-
H460 xenograft tumors of this study, the vi-
able tissue regions are more island-shaped,
with micronecrosis between dense clusters
of cells, which could lead to a positive cor-
relation in both ADC and 18F-FDG SUV
mean values over time.

The ability of the proposed model to
accurately segment the tumor microenvi-
ronment into the proposed viable and
necrotic regions is dependent on the re-
lationship that 18F-FDG and ADC voxels
inside of the tumor have. There was a def-
inite negative correlation between the 2
imaging parameters at the time point we

FIGURE 6. A 3-dimensional rendering depicts spatial–temporal growth of tumors and develop-

ment of tissue classes. Red and green represent viable tissue, and blue represents necrosis. A

purple rim (arrows) is seen around the necrosis and represents the combined probability of necrotic

and viable tissue classes, possibly indicating hypoxic cells.

FIGURE 7. Average ADC (A) and 18F-FDG (B) values for different tissue classes plotted against

whole tumor volume. 18F-FDG values plotted against ADC values (C) for each class.
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chose to validate our model. The tissue classes have to be present to
create the shape seen in the 2D histogram of the last time point
(Fig. 5); otherwise, this tissue heterogeneity will not be incor-
porated into the model for earlier time points.
The clear limitation of this study is that the tumors were

subcutaneously inoculated in immune-compromised mice. An

orthotopic or genetic mouse model could have led to greater

tissue heterogeneity with an increase in the number of tissue

classes to identify. In addition, serial PET/MR imaging measure-

ments were used in this study, whereas the use of a recently

developed, combined PET/MR system (31) for measurements

could have decreased the error due to rigid coregistration, which

might have been further increased by movement of the animal

from the PET to the MRI scanner, eventually leading to nonrigid

movements of the subject. Also, clustering results were not veri-

fied with histology at every time point. Future studies will focus

on the automatic, nonrigid coregistration of histology with imag-

ing data to obtain a better degree of spatial correspondence (Sup-

plemental Table 2) than we were able to achieve in this study.

Obtaining a good degree of spatial correspondence poses its own

unique challenges because of nonrigid deformations of histology.
In summary, with the proposed GMM pipeline we incorporated

the complementary information intrinsically associated with DW-

MRI and 18F-FDG PET. One class of necrotic tissue was found,

along with 2 classes of viable tissue. The green tissue class was

found only at the periphery of the tumor and represents densely

packed cells, vessels, and connective tissue; it has the lowest

ADC values. This tissue class presumably represents the new

outgrowth of the tumor and could provide a hint as to the di-

rection of growth, as the tumor appears to progress in the di-

rection of this tissue class at every time step (Fig. 6). Because

necrosis has been indicated for poor survival outcome and has

been associated with hypoxia, measuring the relative abundance

of necrosis could help physicians to stratify patients accordingly

and decide on the type of therapy (32). The opportunity to mea-

sure the relative size and growth patterns of different tissue

types after the induction of treatment will help to gauge the

overall response to tumor therapy, as well as to be useful for

monitoring and optimizing the drug dose and scheduling in pre-

clinical animal models.

CONCLUSION

The complementary information from 18F-FDG SUV and
ADC longitudinal measurements in tumors allows for segmen-

tation into distinct tissue classes when the proposed GMM pipe-

line is used. Leveraging the power of multiparametric PET/MR

imaging in this manner has the potential to take the assessment

of disease outcome beyond RECIST and into the realm of pre-

cision medicine.
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Supplemental Materials and Methods 

 

Cell Culture 

NCI-H460 non-small cell lung cancer human tumor cells (ATCC, Manassas, VA, 

USA) (2 – 5 x 106 ) remained frozen at -80° C in Phosphate Buffered Saline (PAA 

Laboratories, Pasching Austria) without Ca2+ or Mg2+ at a pH of 7.5 with 10% 

dimethyl sulfoxide in 1.5 ml Eppendorf tube aliquots until needed. Cells were thawed 

by pipetting 1 ml of Roswell Park Memorial Institute cell medium (RPMI) 

(Biochrom, Berlin, Germany) with 10% fetal calf serum (Biochrom) and 5% 

penicillin streptomycin (Biochrom) into the Eppendorf tube and pipetting up and 

down until the cell medium was no longer frozen. Cells were then pipetted into 175 

cm2, polystyrene, Cellstar® cell culture flasks with a red filter cap (Greiner Bio-One, 

Frickenhausen, Germany) with 15 ml of RPMI cell medium mixture and incubated at 

37° C in a Heracell 150i cell incubator (Thermo Scientific, Karlsruhe, Germany) at 

5% CO2. Cells were inspected every other day under the Aciovert 40 CFL 10 

microscope (Zeiss, Oberkochen, Germany) for confluency and viability. Cell medium 

was changed every two days until cells reached 90% confluency, upon which they 

were split by first vacuuming excess cell medium from the flasks with an Integra 

Vacusafe pump (Integra Biosciences, Kassel, Germany), followed by a wash using 10 

ml of PBS, followed by adding 3 ml of 0.05% trypsin (Biochrom) with 0.02% EDTA 

(Biochrom) and finally incubated for 5 min or until the cells visibly detached from the 

flask. Cells were then pipetted into a 50 ml Falcon tube (BD, Fanklink Lakes, NJ, 

USA) and centrifuged at 1200 rpm for 5 min in a Heraeus multifuge 35 RT centrifuge 

(Thermo Scientific) at 8° C. Cells were then placed back into the 10 ml of PBS and 

pipetted up and down until all visible cell clumps had dissolved. If cells were to be 
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further expanded, they were split into different cell flasks. If cells were to be injected 

into animals, they were first counted by taking a 10 μl sample from the 10 ml cell 

suspension, mixing it thoroughly with 90 μl of 1:2 trypan blue (Biochrom) staining, 

and pipetting this mixture into a Neubauer improved cell counter chamber (Assistant, 

Sondheim, Germany). Cells were re-centrifuged and 2 x 106 cells were placed in 200 

μ l of sterile 0.9% NaCl for later subcutaneous injection. Pipetting of cells and 

mixing of reagents was performed in sterile conditions in a clean bench. 

 

Animals 

Six week old nmri nu/nu mice (Charles River, Sulzfeld, Germany) were ordered and 

allowed to acclimatize for one week in the laboratory vivarium before any procedures 

were performed. Briefly, mice were held in specific pathogen-free conditions in 

individually ventilated cages of type 2 long (Tecniplast, Buguggiate, Italy). The room 

climate was regulated with a room temperature of 20 ± 1° C, a 50 ± 10% humidity, 

and a 12 h night and day lighting scheme. The mice were provided with food and 

water ad libitum.  

Tumor inoculation 

Directly before injecting tumor cells subcutaneously, mice were anesthetized by being 

allowed to breathe in 1.5% isoflurane (CP Pharma, Burgdorf, Germany) dissolved in 

100% O2 (Linde AG, Münich, Germany) at a flow rate of 0.8 l/min until they showed 

loss of reflex due to deep narcosis. Twenty-two gauge micro lance needles (BD) were 

used to fill Injekt F 1 ml syringes (Braun, Melsungen, Germany) with cell suspension 

to reduce the shear force experienced by the cells while being pulled into the syringe. 

The injections were made subcutaneously on the right shoulder of mice with 27 gauge 
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micro lance needles to suppress leakage of the cells through the puncture made in the 

skin for the subcutaneous injection. Mice were then placed in the vivarium and tumor 

sizes as well as normal social activity of animals were monitored until tumors were 

palpable and showed signs of vascularization with a minimum length of 5 mm. 

One mouse was imaged using PET and MRI at 27 days after tumor inoculation in 

order to establish how well ex vivo histology could be correlated with imaging 

experiments. Afterwards, three mice were measured longitudinally at days 20, 22, 24, 

and 27 after tumor inoculation. All experiments were performed in accordance with 

the German Animal Welfare Act, and protocols were approved by the 

Regierungspräsidium in Tuebingen. 

18F-FDG production 

18F was produced from the 20Ne(d,α)18F reaction by bombarding a Ne(%15 H2) target 

with energetic protons using the 16 MeV Cyclotron. Afterwards, distilled water was 

used to remove no-carrier added 18F-HF from the target. Using a FDG MicroLab 

module (GE Healthcare, Münster, Germany), FDG was synthesized based on the 

protocol from Hamacher et al.(1)  using mannose triflate (ABX, Radeberg, Germany) 

as the precursor. Radiochemical purity as determined by TLC was greater than 95%.  

PET 

Anesthesia was induced with 1.5% isoflurane (CP Pharma, Burgdorf, Germany) in 

100% O2 at a flow of 0.5 L/min shortly before injection of 12.0 ± 0.7 MBq of 18F-

FDG in 50 μL of 0.9% NaCl in the tail vein. Mice were kept under anesthesia and 

warmed using heating pads for 50 minutes before PET measurements. Mice were 

carefully placed on an animal holder, and the temperature of the mice was maintained 

with a heating water pump system (Circulating Thermostat; Bruker Biospin, 
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Ettlingen, Germany). Three line sources were placed on the animal holder in order to 

co-register PET and MRI images.  Tumors were placed in the middle of the field of 

view of the Inveon dedicated small animal PET scanner (Siemens, Knoxville, TN, 

USA). Scans were acquired using accompanied software (Inveon Acquisition 

Workplace version number 1.5.0.28) for 10 min and reconstructed using 

OSEM3D/FastMAP (reconstruction software version: 2.5, histogram version: 2.39, 

re-binning version: 2.5) with the following parameters: Ramp projection filter, image 

zoom = 1, image matrix size = 256 x 256 x 159 with (0.39 x 0.39 x 0.80) mm3 voxel 

sizes, OSEM3D Iterations = 2, MAP Iterations = 18, Beta = 0.05, Uniform set to 

Resolution, and FastMap setting on. Data are reported as Standard Uptake Value 

(SUV). 

MRI 

Directly after PET scans, mice were moved while lying in the same position to a 

dedicated small animal 7 T Clinscan MRI (Bruker Biospin) where T2-weighted 

anatomical and DW-MR images were acquired using accompanied software 

(Siemens, Syngo version number: MR B15). For better image quality, breathing was 

measured using a pneumatic air pad included in the Model 1030 (SA Instruments, 

Stony Brook, NY, USA) and used to trigger MRI sequences. The T2-weighted turbo 

spin echo (T2tse) sequence had the following settings: repetition time (TR) = 3,000 

ms, echo time (TE) = 205 ms, averages = 1, echo train length = 161, scan time ≈ 8 – 

10 min, number of slices = 112, matrix size = 160 x 256, voxel size (mm3) = 0.22 x 

0.22 x 0.22. The DW images utilized a half-Fourier acquisition single-shot turbo spin 

echo sequence with multiple b-values (200; 400; 600; 800; 1,000) and the following 

settings: TR = 5,000 ms, TE = 112 ms, averages = 4, echo train length = 256, total 
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scan time ≈ 8 – 12 min, number of slices = 7 – 12, matrix size = 148 x 192, voxel size 

(mm3) = 0.21 x 0.21 x 1.00. 

Histology 

After the last imaging time point, mice were removed from the MRI and euthanized 

by means of cervical dislocation while under deep narcosis, maintaining the position 

of the tumor. Tumors were removed by first drawing a line parallel to the transversal 

imaging plane, and a scalpel was used to cut the tumor in half along this line. The 

tumor halves were subsequently placed in 4.7% neutral buffered formaldehyde for 48 

h in preparation for histopathology. A Hematoxylin and eosin (H&E) staining was 

performed on 5 μm thick paraffin embedded sections, which were cut at 300 μm 

intervals parallel to the transverse imaging plane, and examined by an experienced 

mouse pathologist. To validate the GMM, histology slides were digitized with the 

NanoZoomer 2.0 HT (Hamamatsu, Hamamatsu, Japan) and regions of interest were 

manually drawn around the entire tumor and the necrotic regions using the drawing 

tool included in the NanoZoomer Digital Pathology software as shown in 

supplementary Figure 2 (Hamamatsu, version number: 2.3.1.0).  Necrotic and viable 

portions of the histology were reported as a fraction of the total tissue slice.  

 

Image Registration  

ADC maps were calculated from DWI using custom software developed in MATLAB 

2013b (MathWorks, Natick, MA, USA). PET images were co-registered to MR 

images using a marker-based, semi-automatic co-registration tool in PMOD 3.2 

(PMOD Technologies, Zurich, Switzerland), and the T2tse images were an 

anatomical reference for drawing volumes of interest (VOIs) on each tumor. Special 

care was taken to exclude the skin of mice during VOI placement on the tumors of 
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mice in T2-weighted images. The voxel values along with voxel coordinates from 

each VOI for all PET/MR images were exported and further processed in MATLAB. 

The T2-weighted tumor voxels were reconstructed into a 3-dimensional volume and 

the mid-point of the tumor in the transaxial plane was used as a starting point for 

making visual matches to the first histology slice. Once the first histology slice was 

visually matched by making small translational and rotational changes to the 3-

dimensional volume, subsequent image planes were deemed to correspond to 

subsequent histology slices based purely on the distance between subsequent 

histological slices; the distance between subsequent histological slices was 

determined at the time of cutting with the microtome. To confer spatial agreement 

between matched histology and the 2-D GMM slices, each was first converted into a 

binary mask, with ones corresponding to viable tissue and zeros to necrotic tissue. For 

the histology, hand drawn regions of interest were used to create the mask. For the 2-

D GMM the combined probability of viable tissue classes 1 and 2 greater than 0.5 

was used. A two dimensional image co-registration algorithm implemented in 

MATLAB matched the paired histology masks to the 2-D GMM masks. The 

algorithm utilized regularized gradient descent to decrease the mean square error. The 

co-registration algorithm was constrained to translational, rotational, and scaling 

transformations. The Dice coefficient was then calculated for each co-registered 

histology and 2-D GMM slice pair.  

  

Statistics 

To test whether the total tumor volume was a predictor of ADC and 18F-FDG SUV, or 

if ADC was a good predictor of 18F-FDG SUV for average values in the whole tumor 

or average necrotic and viable tissues, a linear regression analysis was performed to 
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establish whether the slope of the regression line was significantly different than zero. 

To test the validity of the linear regression analysis, a Durbin-Watson test was 

performed on the residuals of the straight-line fit to check whether the residuals of the 

linear regression analysis are auto-correlated. The hypothesis of no auto-correlation 

was accepted for p > 0.05. Afterwards, an analysis of co-variance (ANCOVA) tested 

whether the groups had different slopes. If the slopes were not different (p > 0.05), the 

slopes were set to the average and the difference in groups was tested. A Tukey-

Kramer post hoc test elucidated which groups had significantly different intercepts (p 

< 0.05). The degrees of freedom along with the F-statistic and p-values are reported in 

supplementary Table 3. 
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Supplemental Figure 1: An adaptive scaling factor was used in step 2B of the 

implemented population based GMM model. Since 18F-FDG measurements are 

vulnerable to variability, the data from early time points was adaptively scaled by a 

multiplicative factor to fit the given distribution. Keeping the clusters fixed does not 

forcefully assign false observations to different clusters and models the tumor 

progression judiciously. 
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Supplemental Figure 2: Black contours on H&E stained tumor tissue slices (A-D) include 

only tumor tissue, exclude skin, and were used to normalize the necrotic fraction. Red 

contours outlined the necrotic portion of the tumors. Viable fractions were calculated by 

subtracting the necrotic fraction from unity. The contours have been made thicker for the sake 

of illustration. The black bars indicate a distance of 2.5 mm.   
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Supplemental Figure 3: There is a high degree of correlation between the Pearson’s 

correlation coefficient calculated on a voxel-wise basis for 18F-FDG and ADC and the 

tumor volume for all mice and time points (ρ = -0.76, p = 0.004). A straight line fit is 

shown for visualization purposes. 
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Supplemental Figure 4: HIF-1α staining confers information about cells undergoing 

hypoxic stress. The necrotic areas (red asterisk) present a large amount of unspecific 

staining, but perinecrotic regions are viable cells positive for HIF1-α. The mixture of 

viable and necrotic tissues is represented by purple regions around blue necrotic 

regions in Figure 5 and could represent hypoxic regions. This example is from the 

same tumor cell line. 
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2.2 Project-2

2.2.1 Spectral Clustering Predicts Tumor Tissue

Heterogeneity Using Dynamic 18F-FDG PET: A

Complement to the Standard Compartmental Modeling

Approach

Prateek Katiyar, Mathew R. Divine, Ursula Kohlhofer, Leticia Quintanilla-

Martinez, Bernhard Schölkopf, Bernd J. Pichler, and Jonathan A. Disselhorst

(2017). The Journal of Nuclear Medicine 58.4, pp. 651–657.

The two acquisition methodologies to monitor and quantify the tracer distribu-

tion in PET are static and dynamic imaging. Among these, single-time-point or

static PET imaging of 18F-FDG is certainly the most widely used modality in nu-

clear medicine. It provides a spatial map of local metabolic activity, captured

and averaged over a defined time interval. The static 18F-FDG PET studies are

commonly quantified by calculating the SUV (sub-section 1.3.9), which is sub-

sequently used either for cancer diagnosis or for patient staging. Despite the

popularity and simplicity of the SUV, its reliability for clinical and preclinical in-

vestigations is frequently questioned [35–37]. For instance, the limitations of the

SUV have been shown to introduce unacceptable errors in tumor delineation and

region segmentation [116, 117]. The shortcomings of the SUV pose an even

bigger challenge for a reliable quantification of the tumor heterogeneity, because

fundamentally, probing tumor sub-regions is a more complex problem than tumor

delineation, as the former task might involve a precise multi-class classification

of a highly composite environment in contrast to the binary decision of cancer-

ous versus non-cancerous regions. In such scenarios, the spatial as well as

the temporal distribution of the tracer captured by dynamic PET imaging can be

highly beneficial for a voxel-wise tissue characterization. As opposed to a single

static measurement, a 60 min long dynamic 18F-FDG PET study measures the

81



Chapter 2: Results

full characteristics of the tracer distribution, such as the early tracer transport and

the overall metabolic rate [118]. Although several investigations [119–121] have

proven the benefits of dynamic PET imaging over the SUV, it have not been widely

adopted in the nuclear medicine community. A major reason behind its limited

application is the difficulties associated with the quantification of dynamic PET

data. One of the most popular approaches to quantify dynamic PET acquisitions

is tracer compartmental modeling [26] (sub-section 1.3.9). It is a deterministic

approach to study the temporal distribution of a tracer in a target area/volume

and is dependent on an accurate estimation of the arterial input function (AIF)

and the measurement of TACs with low noise. Measuring an AIF accurately is a

tedious and invasive process in humans and extremely difficult in mice that nearly

prohibits its application in longitudinal studies.

An alternative approach to compartmental modeling is applying machine learn-

ing methods directly on PET TACs. Although many studies have applied unsu-

pervised learning methods on dynamic PET data for tumor delineation and re-

gion segmentation, their utility for estimating intratumor heterogeneity is yet to

be investigated. Therefore, in this work we evaluated the feasibility of spectral

clustering (sub-section 1.6.3) for assessing tissue heterogeneity in cancer using

simulations of dynamic 18F-FDG PET tumor imaging data. We also compared the

performance of PET TACs clustering with compartmental modeling parametric

maps and the SUV segmentations, and justified the quantitative results obtained

on the simulated data by applying the suggested methodology on an in vivo tumor

measurement.

To perform an objective comparison between all the clustering schemes, tumor

tissue TACs were simulated using the widely accepted compartmental modeling

tool COMKAT [122]. An irreversible 2-tissue-compartmental model (figure 1.9,

k4 = 0) was implemented to simulate the TACs of three tumor tissue types based

on the kinetic modeling parameters reported by Sugwara et al. [123]. Moreover,

a population based curve fitting approach was used to generate various clini-

cal AIFs [124]. The full AIF dataset was kindly provided to us by Dr. Dennis
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Vriens. Afterwards, to duplicate the simulations of clinical tissue classes in pre-

clinical scenario, 12 dynamic 18F-FDG PET measurements were made with nu/nu

NMRI mice (Charles River, Sulzfeld, Germany) bearing subcutaneous colon can-

cer. During these measurements, a minimally invasive blood sampling technique

was used to estimate the preclinical AIFs [125]. Moreover, H&E and CD-31 (Ab-

cam plc, 330 Cambridge Science Park, Cambridge, UK) histology was obtained

from one tumor to corroborate the segmentation results on an in vivo measure-

ment. Subsequently, a reasonable range of preclinical kinetic parameters was

obtained by fitting an irreversible 2-tissue-compartmental model on the average

TAC of the tumor for each acquisition. Thereafter, the preclinical analog of clinical

TACs was simulated based on the observed kinetic parameter ranges and the

relationships between the parameters of all three clinical tumor tissue classes.

For each tumor tissue type, 2000 TACs were simulated by sampling the kinetic

parameters from a truncated Gaussian distribution. Both clinical and preclinical

simulations were performed using the following framing protocol:
{

30 × 2 s, 8 ×

5 s, 8× 10 s, 6× 1 min, 5× 2 min, 5× 10 min
}

. A clinical and preclinical example

of the simulated TACs is shown in figure 2.3.

Before any further analyses, the simulated TACs were corrupted using different

levels of log-normally distributed noise [126]. The noisy TACs were fitted using the

implemented 2-tissue-compartmental model and their respective original AIFs to

calculate the deviations in estimated kinetic parameters from their true sampled

values. The kinetic parameter estimation error was defined as following:

ε(%) =


(
− Kptrue

Kpestimated
+ 1

)
× 100 true ≤ estimated(

Kpestimated

Kptrue
− 1

)
× 100 true > estimated.

Where Kptrue and Kpestimated
are the true and estimated kinetic parameter values.

Overall for both the simulation scenarios, k2 and k3 were most affected by noise,

with median absolute parameter estimation error ranging up to (22.93, 37.97) %

and (27.32, 31.03) % for the preclinical and clinical cases, respectively.

Although not reported in the published article, in addition to noise, we also as-
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Figure 2.3: Examples of the simulated tumor TACs for (A) clinical and (B) preclinical scenarios.
Solid lines and shaded areas depict the mean and unit standard deviation of the color-coded
tumor tissue types. The associated clinical and preclinical AIFs are shown in panel C and D,
respectively. Figure adapted from Katiyar et al. [102].

sessed the sensitivity of the kinetic rate constants to the most common distortions

in the AIFs: under- or overestimation errors in the peak amplitude and delay or

advance errors in the peak location of the true AIFs. Figure 2.4 depicts the afore-

mentioned distortions in an exemplary preclinical AIF. The distorted AIFs were

used to fit the noise free simulated TACs and estimate the corrupted kinetic pa-

rameters. Finally, ε was calculated to measure difference between the true and

estimated kinetic parameters.

Figure 2.5 and 2.6 display the effects of changes in the peak amplitude (in-

crease/decrease) and shifts (delay/advance) in the peak location of the true pre-

clinical and clinical AIFs, respectively on the calculation of kinetic rate constants.

We found that a decrease or increase in peak amplitude reflected in the overes-
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Figure 2.4: True and distorted preclinical AIFs for (A) peak amplitude decrease, (B) peak ampli-
tude increase, (C) peak position delay and (D) peak position advance.

timation or underestimation of the parameters respectively. Similarly, a delayed

input function overestimated and an advanced input function underestimated the

kinetic parameters. This was also in agreement with previously reported literature

[127]. In contrast to the preclinical simulation, clinical parameter estimates were

more robust to the distortions in the true AIFs.

The efficacy of spectral clustering in grouping the noisy TACs into their respec-

tive tissue classes was evaluated together with two different PET frame weighting

schemes. In the first scheme, the frames were weighted with the inverse of their

noise variance [128], whereas in the second scheme the Laplacian scoring [99]

was used to weigh the most relevant PET time points. In addition to these, to

perform an objective comparison with standard PET quantification techniques,

spectral clustering and K -means were applied on the estimated kinetic parame-

ters (for noisy TACs) and just K -means was applied on the SUV. The SUV was
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Figure 2.5: Preclinical ε (non-absolute) for K1, k2, k3, and Ki in panels (A)–(D) and (E)–(H) with
percent change (increase/decrease) and percent shift (delay/advance) in the peak amplitude of
the true AIFs, respectively. The boxes depict the interquartile range and whiskers represent the
10th and 90th percentiles of the data.

obtained by taking the mean of the last two PET time points. Throughout this ex-

ercise, the number of eigenvectors was set to 6 and an RBF kernel scale equal to

40 and 55 was used for preclinical and clinical cases, respectively. The scale and
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Figure 2.6: Clinical ε (non-absolute) for K1, k2, k3, and Ki in panels (A)–(D) and (E)–(H) with
percent change (increase/decrease) and percent shift (delay/advance) in the peak amplitude of
the true AIFs, respectively. The boxes depict the interquartile range and whiskers represent the
10th and 90th percentiles of the data.

number of eigenvectors were determined by applying spectral clustering on the

noise free data. The performance of each clustering scenario mentioned above

was assessed by calculating the tissue misclassification error.
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In both preclinical and clinical settings, unweighted and weighted spectral clus-

tering variants applied directly on noisy TACs provided the best clustering results.

Although minimally affected by noise, approximately half of the TACs were mis-

classified by clustering the SUV with K -means. The SUV’s poor clustering ability

was due to the significant overlap in the last time points of all three tumor tissue

classes (figure 2.3A–B). Overall, up to medium noise levels in both the simulation

scenarios, the misclassification error of spectral clustering on estimated kinetic

parameters was lower than that of the SUV clustering. Among both the weighted

spectral clustering methods, the noise variance weighted technique was slightly

better than the Laplacian weighted technique for preclinical simulations, whereas

the opposite was seen in the analysis of clinical TACs.

To validate the suggested method in vivo, the inverse-noise-variance-weighted

spectral clustering was applied on the dynamic 18F-FDG measurement of a sub-

cutaneous colon cancer xenograft that was processed to obtain histology and

immunohistochemistry matching with the imaging planes. The tumor was largely

viable with few focally present high vessel density areas (figure 2.7). The pro-

posed clustering method was applied to identify three clusters in the tumor. As

shown in figure 2.7, a high degree of spatial agreement was present between

the tissue probability map derived from the suggested approach and the CD-31

immunohistochemistry of the tumor. The two small clusters could be clearly as-

sociated with the densely vascularized portions of the tumor. The mean TACs of

these clusters also had a higher FDG uptake in early as well as late time points

than that of the viable cluster.

In summary, this manuscript carries out an objective evaluation of spectral cluster-

ing for identifying intratumor tissues using realistic clinical and preclinical simula-

tions (over varying levels of noise), and makes one to one comparisons with com-

partmental modeling parametric maps and SUV segmentations. It also shows

the adverse effects of the most common input function distortions on the esti-

mation of kinetic rate constants. Although the clinical and preclinical simulations

did not involve modeling the respective biologic process (for instance the tumor
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Figure 2.7: Clustering of in vivo dynamic PET tumor data. (A) CD31-stained immunohistochem-
istry of a tumor. The four insets show highly perfused areas of the tumor. (B) Tissue probability
map obtained after applying the inverse-noise-variance-weighted spectral clustering on the dy-
namic 18F-FDG PET images of the tumor. The matching regions of interest are annotated (a-d) in
both the panels. Figure adapted from Katiyar et al. [102].

microenvironment), it was necessary to evaluate the efficacy of spectral cluster-

ing also in preclinical scenario due to two main reasons. First, the differences in

the early kinetics of the preclinical and clinical AIFs (figure 2.3) resulted in TACs

with different shapes. Since spectral clustering operates on the feature vectors

built using individual TACs, it was essential to confirm that the algorithm per-

forms comparably in preclinical settings. Second, preclinical simulations acted

as a bridge between clinical simulations and the preclinical experiment. Specifi-

cally, they allowed selection of the most optimal spectral clustering scheme (the

inverse-noise-variance-weighted SC) that was later applied and validated on the

experimental data. The qualitative comparison to the histology presented in fig-

ure 2.7 is essentially a proof of concept, which shows how well the segmentation

method works spatially on an in vivo measurement. An accurate quantification

of these segmented intratumor compartments, however, is a challenging prob-

lem, as it requires a reliable spatial correspondence between the imaging and

histology. Since a PET imaging slice is orders of magnitude thicker than the thin

histology slice (800 µm versus 4∼6 µm), a non-rigid co-registration between the

two and a subsequent region-wise quantification can be an independent investi-

gation on its own.
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Spectral Clustering Predicts Tumor Tissue Heterogeneity
Using Dynamic 18F-FDG PET: A Complement to the Standard
Compartmental Modeling Approach

Prateek Katiyar1,2, Mathew R. Divine1, Ursula Kohlhofer3, Leticia Quintanilla-Martinez3, Bernhard Schölkopf2,
Bernd J. Pichler1, and Jonathan A. Disselhorst1

1Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen,
Tuebingen, Germany; 2Max Planck Institute for Intelligent Systems, Tuebingen, Germany; and 3Institute of Pathology and
Neuropathology, Eberhard Karls University Tuebingen and Comprehensive Cancer Center, University Hospital Tuebingen,
Tuebingen, Germany

In this study, we described and validated an unsupervised seg-
mentation algorithm for the assessment of tumor heterogeneity

using dynamic 18F-FDG PET. The aim of our study was to objec-

tively evaluate the proposed method and make comparisons with
compartmental modeling parametric maps and SUV segmentations

using simulations of clinically relevant tumor tissue types.Methods:
An irreversible 2-tissue-compartmental model was implemented to

simulate clinical and preclinical 18F-FDG PET time–activity curves
using population-based arterial input functions (80 clinical and 12

preclinical) and the kinetic parameter values of 3 tumor tissue types.

The simulated time–activity curves were corrupted with different

levels of noise and used to calculate the tissue-type misclassifica-
tion errors of spectral clustering (SC), parametric maps, and SUV

segmentation. The utility of the inverse noise variance– and Lap-

lacian score–derived frame weighting schemes before SC was also
investigated. Finally, the SC scheme with the best results was

tested on a dynamic 18F-FDG measurement of a mouse bearing

subcutaneous colon cancer and validated using histology. Results:
In the preclinical setup, the inverse noise variance–weighted SC
exhibited the lowest misclassification errors (8.09%–28.53%) at all

noise levels in contrast to the Laplacian score–weighted SC

(16.12%–31.23%), unweighted SC (25.73%–40.03%), parametric

maps (28.02%–61.45%), and SUV (45.49%–45.63%) segmentation.
The classification efficacy of both weighted SC schemes in the

clinical case was comparable to the unweighted SC. When applied

to the dynamic 18F-FDG measurement of colon cancer, the pro-
posed algorithm accurately identified densely vascularized regions

from the rest of the tumor. In addition, the segmented regions and

clusterwise average time–activity curves showed excellent correla-

tion with the tumor histology. Conclusion: The promising results of
SC mark its position as a robust tool for quantification of tumor

heterogeneity using dynamic PET studies. Because SC tumor seg-

mentation is based on the intrinsic structure of the underlying data,

it can be easily applied to other cancer types as well.

Key Words: spectral clustering; tumor heterogeneity; compartmental

modeling; 18F-FDG PET; SUV
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Tumors exhibit widespread genetic and phenotypic heteroge-
neity. The local tissue variability is known to mediate drug re-

sistance and influence therapeutic efficacy (1). The magnitude of

intratumor diversity is also linked with tumor aggressiveness and

has been shown to predict cancer mortality (2). The robust char-

acterization of the tumor heterogeneity is an urgent requirement

for not only precision medicine, but also for preclinical and phar-

maceutical research (3).
The sensitivity and quantitative ability of PET make it a promising

prognostic tool for cancer diagnosis and in vivo monitoring of

therapy response. Accumulation of 18F-FDG in cancerous lesions is

widely associated with tumor grade and prognosis (4,5). The most

common clinical assessment of 18F-FDG is based on visual inspec-

tion and basic quantification of the SUV. Although the SUV as a

metric is practical and easy to measure, it is vulnerable to numerous

sources of variability (6). Whereas static measures lack the ability to

distinguish between nonphosphorylated and phosphorylated 18F-

FDG, kinetic methods measure the complete aspects of the tracer

distribution, providing vital information about glycolysis and blood

flow. Kinetic modeling can play an especially essential role when

evaluating the drug response of cancer patients with low pretherapy
18F-FDG uptake, which results in poor sensitivity of the SUV and

other static measures (7,8).
Despite the quantification benefits over static measures, kinetic

methods such as compartmental modeling and graphical analysis

have not been widely adopted, partly due to their reliance on the

acquisition of time–activity curves with low noise and a precise

measurement of the arterial input function (AIF). Moreover, to

improve signal-to-noise ratios, a common practice in dynamic

PET studies is to perform region averaging (9) before compartmen-

tal modeling. Because compartmental modeling assumes the region

of interest to be functionally homogeneous (10), user-defined delin-

eations might lead to incorrect estimation of kinetic parameters in

regions with tissue variability.
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Avoxel-level analysis is essential to create a holistic profile of the
spatial and temporal heterogeneity of cancerous lesions (11). Over
the past decades, several segmentation methods have been proposed
for the region-wise analysis of PET images (12). Recently, one
investigation has applied spectral clustering (SC) on dynamic PET
data for brain image segmentation (13). The study by Mouysset
et al., however, lacked a histologic validation. In the present
study, we aimed to examine the suitability of SC in the segmen-
tation of the tumor microenvironment. Through comprehensive
simulations, we present an objective evaluation of SC and com-
pare its robustness with the parametric maps and SUV segmen-
tation. We also tested the proposed methodology in vivo on a
mouse model of subcutaneous colon cancer with a histologic
validation.

MATERIALS AND METHODS

The widely accepted pharmacokinetic modeling tool COMKAT (14)

was used to simulate 18F-FDG PET time–activity curves. The complete
details of the implemented compartmental model, preclinical experi-

ments, and histology are provided in the supplemental materials (available
at http://jnm.snmjournals.org).

Clinical and Preclinical Tissue Class Simulation

To simulate clinically relevant and comparable scenarios, the kinetic

parameter values of different tissue classes were derived from Sugwara
et al. (15). The authors studied 21 patients with primary germ cell

tumors using 18F-FDG PET and reported the kinetic parameter values
of 3 different tumor tissue classes, namely the viable tissue, mature

teratoma, and necrosis. Because tumor tissue types were confirmed by
histologic findings, we extended the average kinetic parameter values of

each tissue type as corresponding class representative. Likewise, the
clinical AIF was selected from a population-based AIF model (16).

The study identified the parameters of the mathematic equations by
fitting a 3-compartment blood-pool model (17) on the arterial blood

samples taken from 80 different patients. We contacted the authors to
obtain the complete dataset because the published details were insuffi-

cient for simulations.
To extrapolate the clinical scenario into the preclinical setting,

twelve 60-min dynamic 18F-FDG PET scans (4 mice · 3 scans) were
acquired from 8-wk-old Naval Medical Research Institute nu/nu mice

bearing subcutaneous Colo-205 tumors. The AIFs of all the measure-
ments were approximated using a minimal blood sampling scheme

(18). A 2-tissue-compartmental model was fitted to the mean time–
activity curve of each tumor, for each measurement. The obtained

kinetic parameters from all 12 PET scans provided realistic values
of kinetic parameters observable in preclinical studies, which formed

the basis to simulate the preclinical tumor tissue classes. First, the

averages of these kinetic parameters were used to simulate the viable
tissue. Afterward, the parameters of teratoma and necrotic tissues

were obtained by scaling the viable parameters to achieve the same
parameter ratios (between different tissue classes) as in the clinical

settings. The SDs were chosen to match the mean-to-SD ratio of the
respective clinical tissue type. All the animal experiments were per-

formed in accordance with the German Animal Welfare Act, and local
authorities approved all experimental protocols.

A total of 2,000 time–activity curves were sampled from a trun-
cated Gaussian distribution (Table 1) for each tumor tissue class.

The distributions were truncated to avoid sampling time–activity
curves with an unrealistic shape. The framing protocol was kept

the same for both clinical and preclinical simulations: {30 · 2 s, 8 ·
5 s, 8 · 10 s, 6 · 1 min, 5 · 2 min, 5 · 10 min}. For simplicity,

throughout this article, we refer to the simulated tumor tissue clas-
ses (viable, teratoma, and necrosis) as class 1, class 2, and class 3,

respectively.

Noisy Time–Activity Curves

The noisy realizations of the simulated time–activity curves were
obtained by estimating the noise SD for each time frame and distrib-

uting it log-normally to the noise-free curve (9,19). The noise SD for
each frame i can be computed as follows:

SD 5 b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2lti · ROIðtiÞ

Dti

s
;

where ROIðtiÞ is the decay-corrected activity concentration of the

region of interest, e2lti is the decay uncorrection factor, l refers to
the ratio lnð2Þ

half-life, Dti is the frame duration, and b is a scale factor to

limit the amount of noise within practical conditions. An illustrative
example of noisy time–activity curves can found in Supplemental

Figure 1.

SC

SC (20) uses the eigenstructure of the affinity matrix and one of the

classic clustering methods (e.g., k-means, fuzzy c-means, Gaussian mix-
ture modeling) (21) to partition voxels into disjoint clusters. The affinity

matrix Wij of the dynamic PET data was computed as follows:

Wij 5

�
e2kxi 2 xjk2

=2s2

if   i 6¼ j
otherwise0 :

Here,
��xi 2 xj

�� is the Euclidian distance between the time–activity
curves i and j, and s is the scale parameter of the Gaussian kernel.

TABLE 1
Summary of Kinetic Parameters and Corresponding Truncation Limits Used for the Simulation of Preclinical

and Clinical Tumor Tissue Classes

Class 1 Class 2 Class 3

Truncation limitsClinicalPreclinicalClinicalPreclinicalClinicalPreclinicalKinetic parameter

K1 0.138 ± 0.043 0.110 ± 0.034 0.123 ± 0.033 0.114 ± 0.026 0.045 ± 0.006 0.036 ± 0.010.005 –1.0

k2 0.116 ± 0.136 0.195 ± 0.228 0.180 ± 0.069 0.301 ± 0.116 0.105 ± 0.025 0.176 ± 0.010.042 –1.0

k3 0.085 ± 0.056 0.073 ± 0.048 0.014 ± 0.008 0.012 ± 0.007 0.005 ± 0.002 0.004 ± 0.0010.001 –1.0

Data are mean ± SD.
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Subsequently, the affinity matrix Wij was used to compute the normal-
ized graph Laplacian using the following expression:

L 5 Dinv · Wij · Dinv;

where Dinv 5 D20:5, and D is the diagonal matrix with di 5 +n
j 5 1Wij

as the diagonal vector. To perform unsupervised clustering, the set of

first k eigenvectors (corresponding to k largest eigenvalues (20)) of

the normalized graph Laplacian was fitted using Gaussian mixture mod-

eling. Throughout the study, we used the first 6 eigenvectors (k5 6) of

the normalized Laplacian matrix and set s equal to 40 and 55 for

segmentation of preclinical and clinical time–activity curves, respec-

tively. The scale was chosen experimentally, based on the misclassifica-

tion error of the method on the noise-free time–activity curves. The same

scale was used for segmentation of the preclinical example, but we could

determine that segmentation was robust to the choice of s.

PET Frame Weighting

In this study, the performance of 2
different weighting schemes for SC was

investigated. In the first case, weights for
each frame were set equal to the inverse of

the noise variance (INV) of the respective
frame, thus, dependent on frame length

and total amount of activity in that specific
frame. In the second scheme, weights were

derived from the Laplacian scoring (LS)
algorithm (22). In the end, the weighted

SC scheme with the best results (for pre-
clinical simulations) was applied on the

experimental data.

Clustering Comparisons

The clustering potential of SC was

tested on the simulated data over varying
levels of noise. The proposed methodol-

ogy was also compared with SUV and para-
metric map segmentation. In the former

case, the average of the last 2 frames of
the simulated dataset was clustered using

k-means, and in the latter case the estimated
kinetic parameters (K1, k2, k3, and Ki) were

segmented into 3 tissue classes using k-means
and SC.

Evaluation Metrics

The percentage kinetic parameter esti-

mation error (e) was defined as:

eð%Þ 5

8>>><
>>>:

�
2

Kptrue

Kpestimated

1 1

�
· 100 true# estimated

�
Kpestimated

Kptrue

2 1

�
· true100 . estimated;

where Kpestimated
is the estimated and Kptrue is the true value of the

compartmental modeling rate constant. The misclassification error
was defined as follows:

+NTAC

i 5 1+
K

j 5 1I
�
Oi;j; Ti;j

�
NTAC · K

;

where Oi;j is the output and Ti;j is the true label of the time–activity

curve i from class j, NTAC represents the total number of time–activity

FIGURE 1. Classwise simulated time–activity curves and corresponding AIF for clinical (A and C)

and preclinical (B and D) scenarios. Kinetic parameters for each class were sampled from truncated

Gaussian distributions. Shaded regions depict the distribution of time–activity curves up to unit SD

of the respective tumor tissue type.

TABLE 2
Kinetic Parameter Estimation Errors Obtained After Fitting the Preclinical and Clinical Noise Free Time–Activity

Curves Using Respective AIFs

Kinetic parameter estimation error (ε) %

Preclinical Clinical

Kinetic parameter Median Interquartile range Median Interquartile range

K1 −0.003 −0.020 to 0.012 0.012 −0.073 to 0.116

k2 −0.040 −0.180 to 0.071 0.050 −0.140 to 0.287

k3 −0.121 −0.649 to 0.213 0.049 −0.260 to 0.387

Ki −0.033 −0.385 to 0.091 0.000 −0.143 to 0.165
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curves in each class, and K is equal to the number of tumor tissue

types (i.e., 3). The indicator variable I is given as:

I 5

�
1 if  Oi;j 6¼ Ti;j
0 otherwise:

RESULTS

Examples of simulated time–activity curves of class 1, class 2,
class 3 and corresponding AIF for clinical and preclinical scenarios
are shown in Figure 1. To assess the influence of selected framing
and the bias introduced by COMKAT, noise-free curves were fitted
using their respective AIF. The interquartile range and median e
for K1, k2; k3, and Ki for preclinical and clinical simulations are
reported in Table 2.

Noise Evaluation

Figure 2 shows the absolute e for noisy preclinical time–activity
curves with different levels of log-normally distributed noise (b 5
0.1–1.5). Among all, k2 and k3 showed the highest deviations from
the true parameter values. Moreover, the errors in k2 and k3 also
propagated to Ki. A similar tendency was seen in the case of noisy
clinical time–activity curves (Supplemental Fig. 2), although the e
for k3 and Ki in the clinical case carried less variability than those
in the preclinical settings.
The segmentation ability of different clustering methods for noisy

preclinical time–activity curves is shown in Figure 3. While the
INV-weighted SC exhibited the lowest misclassification error, both
the weighted and the unweighted SC techniques outperformed other
clustering schemes. Figure 3 also depicts the misclassification errors
obtained after clustering the SUV and estimated kinetic parameters.
Up to moderate noise levels (b, 0.7), k-means and SC applied on the
estimated kinetic parameters yielded lower errors in comparison to

clustering the SUV, signifying the efficacy of dynamic measures over
the static ones. Supplemental Figure 3 shows the aforementioned
clustering results for the clinical scenario. At low noise levels (b ,
0.5), SC on the estimated kinetic parameters displayed the highest
accuracy but became worse with a gradual increase in noise. Overall
for clinical simulations, the misclassification error of LS-weighted SC
remained most steady at all noise levels.

FIGURE 2. Absolute ε for preclinical simulations with an increase in the amount of noise (β) for K1 (A), k2 (B), k3 (C), and Ki (D). The boxes depict the

interquartile range, and whiskers represent the 10th and 90th percentiles of the data.

FIGURE 3. Misclassification error of various clustering schemes for

preclinical simulations with increase in the amount of noise (β).
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Supplemental Figure 4 shows the ground truth and clustering affinity
matrices for the noise-free preclinical time–activity curves (shown in
Fig. 1B). It is clearly visible that the clustering solution retains the
approximate block diagonal structure of the original affinity matrix.
Here, the clustering solution corresponds to the INV-weighted SC of
the simulated noise-free preclinical time–activity curves. The grid
lines in Supplemental Figure 4B give an impression as to the extent
of overestimation of class 3 and respective underestimation in class 1.

Example

Figure 4 shows the segmentation result of INV-weighted SC on
an 18F-FDG measurement. The algorithm effectively identified the

densely vascularized regions (depicted with blue and red) from the

rest of the tumor (green cluster). The segmented regions were

visually validated by CD-31 histology of the tumor section (Fig.

4A). The affinity matrix of the aforementioned clustering solution is

shown in Supplemental Figure 5B. The average time–activity

curves of well-perfused areas also showed a significantly higher

uptake than that of the rest of the tumor (Supplemental Fig. 5C).

The parametric maps of this tumor are presented in Figure 5; the

figure also shows an 18F-FDG PET image exhibiting the tumor

uptake in the last 20 min of the scan. The outcome of segmenting

the tumor parametric maps using SC is shown in Supplemental Fig-

ures 5D–5F. It is evident from Supplemental Figure 5B that cluster-

ing the tumor time–activity curves yielded compartments with

high intracluster similarity, whereas the uncertainties in the para-

metric maps resulted in poor segmentation of the tumor with low

within-cluster similarity (Supplemental Figs. 5D–5F).

DISCUSSION

This study shows the potential of spectral clustering for the as-
sessment of tumor heterogeneity using dynamic 18F-FDG PET
data. It also contrasts SC with the widely used 2-tissue-compartmen-
tal model and the SUV, using dynamic PET simulations of clin-
ically relevant tumor tissue types. The clinical tissue classes
were duplicated in the preclinical setting and studied for differ-
ent levels of noise. A meaningful comparison of the proposed
algorithm with compartmental modeling was performed by fitting
the noisy time–activity curves and subsequently clustering the esti-

mated kinetic parameters using k-means and
SC. Furthermore, as a proof of principle we
also applied the suggested method to an in
vivo mouse model of colon cancer and val-
idated it with histology. Recently, the value
of unsupervised segmentation has been
shown in a translational study (23). The
promising results of SC on the simulated
datasets as well as on an in vivo mouse
model strongly indicate its potential for dy-
namic 18F-FDG PET clinical investigations.
A precise characterization of the tumor

microenvironment requires a robust voxel-
level analysis. However, the variability of
kinetic rate constants with the amount
of noise and distortions in AIF (9,24) indi-
cate the shortcomings of compartmental
modeling for a voxel-wise analysis. Al-
though clustering the estimated kinetic pa-
rameters in the preclinical case produced

more accurate results than clustering the SUV (b , 0.7), the mis-
classification error of the INV-weighted SC was lower than that of
any of the other schemes. In clinical simulations, SC applied on the
estimated kinetic parameters seemed promising at low noise levels
but failed to distinguish tumor tissue types accurately as the time–
activity curves became noisier. k-means and SC errors on the esti-
mated kinetic parameters reflect the best-case scenario for compart-
mental modeling–based tumor tissue segmentation, because the
noisy time–activity curves were modeled using their respective true
AIFs (without any shape distortions). Uncertainties in AIF are most
likely to introduce adverse effects on kinetic parameter estimation
and consequently in parametric map–based tumor tissue segmenta-
tion. The poor predictive ability of the SUV in both preclinical and
clinical settings was due to the considerable overlap in the last time
points of the time–activity curves of all 3 tumor tissue types. This
shows that the faster static PETacquisition comes at the cost of vital
physiologic information, which can play a principal role in probing
intratumoral heterogeneity. The errors caused by noise in kinetic
modeling on the other hand, can be minimized to a moderate extent
by first using the proposed algorithm for region segmentation
and later estimating the kinetic parameters from the averaged
time–activity curves.
In dynamic PET imaging, early, middle, and late frames capture

different kinetics of the time–activity curve. However, because of
non-uniform frame durations and different activity concentration
levels they are also affected by varying levels of noise. Thus, while
clustering the simulated time–activity curves, we compared the effi-
cacy of 2 different frame-weighting schemes: INV and LS. Whereas
the former scheme intuitively favors frames with a higher signal-to-
noise ratio, the latter one exploits the intrinsic structure of the high
dimensional dynamic PET data. In the analysis of preclinical sim-
ulations, the INV-weighted SC performed marginally better than
the LS-weighted SC; the opposite was true in the case of clinical
simulations.
Some of the results presented in this article may slightly vary

with a different choice of frame-sampling schedule. For example,
longer early frames might increase the robustness of kinetic parameter
estimates at the expense of faster early kinetics. Likewise, the re-
binning will also influence the misclassification errors of different
clustering schemes. Because this can be an independent study on its
own, we did not optimize the simulations for the best framing

FIGURE 4. (A) CD31-stained histology of a representative tumor; the 4 insets (scale in μm) illustrate

high vessel density areas. (B) Segmentation of the tumor into 3 clusters by applying SC on the dynamic
18F-FDG PET data. The matched clusters are marked as a, b, c, and d in A and B respectively.
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schedule. Similar considerations apply to different tracer infusion
protocols. Furthermore, to be consistent with Sugwara et al. (15), the
2-tissue-compartmental model was implemented with k4 and Fb (frac-
tional blood volume) equal to 0. Although the tissue types identified in
colon cancer were different from the simulated tissue classes (except
for the viable), the synthetic time–activity curves enabled a thorough
objective evaluation of the proposed technique. Moreover, because SC
tumor segmentation is based on the intrinsic structure of the underly-
ing data, it can be easily applied to other cancer types as well.
The number of clusters in the example in Figure 4 was determined

on the basis of the visual inspection of the data and solution affinity
matrices for different number of clusters. Significant off-diagonal
similarity between the red and blue clusters was evident from the
similar average time–activity curves of the respective regions (Sup-
plemental Fig. 5C). While the blue cluster corresponds well to re-
gions with high vessel density, the red cluster appears to the periphery
of the blue regions, resulting in similar uptake patterns. The histol-
ogy was rigidly registered with the imaging, and we did not perform
any nonrigid registration between the two. Although the tumor was
carefully partitioned into 2 parts parallel to the transversal field of
view, imaging to histology registration remains nontrivial because of
the substantial differences in resolution (mm vs. mm). Additionally,
during the dehydration process the tissue sections undergo a series of
nondeterministic affine deformations, which cannot be corrected

using rigid transformations. However, by
sectioning the tumor along the reference
(imaging) plane and keeping a track of its
orientation, the errors in the manual registra-
tion can be minimized (25).
Unlike k-means, SC does not make any

assumptions about the shape of the clusters.
The efficacy of SC mainly lies in the change
of representation (from abstract data points
to points in the feature space), which en-
hances the segregation tendency of the input
data. The optimal SC solution depends on
the number of chosen eigenvectors from
the normalized graph Laplacian. In ideal sce-
narios, the top k eigenvectors corresponding
to the k largest eigenvalues of the normalized
Laplacian matrix (where k 5 number of bi-
ologic classes) contain the class discrimina-
tive information (20). However, because of
the complex microenvironment, resolution
limit, and large statistical noise, compart-
ments in oncologic dynamic PET studies of-
ten display similar tracer uptake patterns. To
a certain extent, these perturbing effects can
be dealt with by choosing a larger number of
eigenvectors than the potential number of
clusters. Throughout our study, we used 6
eigenvectors to segment the dynamic PET
data (simulated and measured) into relevant
biologic compartments. It has been shown
that a prior eigenvector selection can further
enhance the clustering stability (26), but we
did not explore any such possibility. Addi-
tionally, the choice of graph Laplacian can
also affect the outcome of SC. As suggested
in the literature (20), we used the normalized
graph Laplacian rather than the unnormal-

ized one. Also, we did not notice any difference in the performance
of two previously established normalized graph Laplacians.
A clear limitation of this study is the lack of clinical experimental

data; however, accurate alignment of histology to imaging in a
clinical setting is difficult to achieve, making validation of intra-
tumoral tissue classes challenging. In preclinical studies, this
alignment can be more easily performed. Yet, Figure 4 presents
only a qualitative comparison of the segmented tumor compart-
ments with the histology. Future preclinical studies will include
an automated nonrigid imaging to histology coregistration to pro-
vide reliable quantification of intratumoral heterogeneity. Because
PET scanners have a finite spatial resolution, tissue inhomogeneities
occurring at the cellular level cannot be observed and analyses are
limited to large-scale heterogeneity. Information about variations at
this scale has clear potential, for example, in radiotherapy for dose
painting and as a basis in image-guided biopsy procedures.
To the best of our knowledge, this is the first study investigating

the feasibility of SC for the assessment of the tumor microenviron-
ment incorporating exhaustive dynamic PET simulations and aug-
mented by real datawith histologic validation. SC exploits the temporal
characteristics of dynamic studies and uses high dimensional embed-
ding (27) to effectively segment the tumor into distinct biologic com-
partments. This could play an instrumental role in in vivo cancer
studies, because the tumor microenvironment stems from complex

FIGURE 5. (A) Left to right: K1, k2, and k3 maps of the tumor shown in Figure 4. (B) Left to right:

Ki map calculated using the parametric maps in A and 18F-FDG uptake in the tumor in the last 20 min

of the scan.
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genetic alterations and phenotypic interactions, which might not be
readily discernible using the existing methods for analyzing dynamic
PET measurements.

CONCLUSION

We have shown the feasibility of SC for the segmentation of
4-dimensional dynamic PET tumor images. The proposed technique
showed a performance superior to that of the SUV- and parametric
map–based segmentation of tumor tissue variability. Overall, SC
can be used as a potential tool for the voxel-level characterization
of the tumor microenvironment.
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Two-tissue Compartmental Modeling 

A simplified two tissue compartmental model for 18F-FDG is shown in Supplemental Figure 6, 

where 𝐶𝑝(𝑡), 𝐶1(𝑡) and 𝐶2(𝑡) are the time varying plasma, free and bound tracer activity 

concentrations (Bq/mL); K1, k2, k3 and k4 are the kinetic rate constants which control the rate 

of tracer exchange between compartments. In order to simulate time–activity curves, an 

irreversible two tissue compartmental model (i.e., k4 = 0) was implemented. Additionally, the 

vascular fraction (Fb) was assumed to be zero. The equations for this model can be written in 

the following manner: 

𝑑𝐶1(𝑡)

𝑑𝑡
= K1𝐶𝑝(𝑡) − k2𝐶1(𝑡) − k3𝐶1(𝑡) 

  

𝑑𝐶2(𝑡)

𝑑𝑡
= k3𝐶1(𝑡) 

 

𝐶𝑚𝑜𝑑𝑒𝑙(𝑡) = 𝐶1(𝑡) + 𝐶2(𝑡). 

 

Here, 𝐶𝑚𝑜𝑑𝑒𝑙(𝑡) is the observed activity concentration of the target tissue. The model 

parameters (K1, k2 and k3) are estimated by solving the ordinary differential equations and 

minimizing a weighted least square objective function. The net influx rate (Ki) was computed 

as: 

 

Ki =  
K1 ∗  k3 

 k2 +  k3
. 

  

Preclinical Experiments  

Six-week-old Naval Medical Research Institute nu/nu mice (n = 4) were ordered from Charles 

River, Germany and allowed to acclimatize in the on-site animal vivarium before being 

subcutaneously injected with 4.5 × 106 Colo-205 tumor cells on the right hind leg. The tumor 

size as well as normal social activity of animals was monitored during the entire study. When 

the tumors were palpable and showed signs of vascularization with a minimum length of 5 

mm, the imaging experiments were started. Before and during tumor inoculation and imaging 

experiments, mice spontaneously respired 1.5% isoflurane dissolved in 100% O2 at a flow 

rate of 0.8 L/min in order to maintain a deep anesthesia. All experiments were carried out in 

a specific-pathogen-free environment. 

Three line sources were placed on the animal holder in order to co-register PET and 

magnetic resonance imaging (MRI) data. The mice were placed with the tumor in the middle 
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of the field-of-view of the Inveon dedicated small animal PET scanner (Siemens, Knoxville, 

TN, USA) and 12.0 MBq of 18F-FDG in 50 μL of 0.9% NaCl was injected in the tail vein at a 

flow rate of 0.5 mL/min using an automated syringe pump system (Harvard Apparatus, 

Hollistion, MA, USA) directly after starting the PET acquisition. Scans were acquired using 

manufacturer-supplied software (Inveon Acquisition Workplace, version number 1.5.0.28) for 

60 min and reconstructed using OSEM3D/FastMAP (reconstruction software version: 2.5, 

histogram version: 2.39 and re-binning version: 2.5) with the following framing: {10×2 s, 4×5 

s, 2×10 s, 3×1 min, 3×2 min, 5×10 min}. Other reconstruction parameters were as follows: 

image zoom = 1, image matrix size = 256×256×159 with (0.39×0.39×0.80) mm3 voxel sizes, 

OSEM3D Iterations = 2, MAP Iterations = 18, Beta = 0.05, Uniform set to Resolution and 

FastMAP setting on. 

After the PET scans, the animal holder was moved to a 7 T Clinscan (Bruker BioScan, 

Ettlingen, Germany) small animal MRI while maintaining the position of the mouse. The 

following settings were used for the T2 weighted turbo spin echo sequence (T2tse): repetition 

time (TR) = 3000 ms, echo time (TE) = 205 ms, echo train length = 161, image size = 

256×160 and voxel size (mm3) = 0.22×0.22×0.22.  

PET images were co-registered to MR images using a marker-based, semi-automatic co-

registration tool in PMOD 3.2 (PMOD Technologies, Zurich, Switzerland) and the T2tse 

images were used as an anatomical reference for drawing volumes of interest (VOIs) on 

each tumor. Special care was taken to exclude the skin of the mice during the VOI placement 

on the tumors in T2tse images. The voxel values along with the coordinates from each VOI 

for all PET and MRI measurements were exported and further processed in MATLAB 

(Mathworks, Natick, MA, USA). 

Histology 

The histology and immunohistochemistry of one tumor was obtained to validate the results of 

SC on 18F-FDG measurements. Following the dynamic PET scan, the mouse was sacrificed 

and a line was drawn on the tumor parallel to the transversal imaging plane. The tumor was 

removed using a scalpel and sectioned into two halves along the aforementioned line. The 

individual halves were kept in neutral buffered formaldehyde (4.7% by volume) and 

embedded into paraffin, before processing for staining. For histology, 3-5 µm-thick sections 

were cut and stained with haematoxylin and eosin. Immunohistochemical stainings with an 

anti-CD31 antibody (Abcam plc) were performed on an automated immunostainer (Ventana 

Medical Systems, Inc.) according to the company’s protocols with slight modifications. 

Appropriate positive and negative controls were used to confirm the adequacy of the 

staining. Only a rigid co-registration was performed between the histology and imaging data. 
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The matching imaging slice was selected based on the visual alignment of the contours of 

the PET and histology image.  
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Supplemental figure 1. Preclinical noise-free and noisy (for ß = 0.5) time–activity curve 

samples of class 1, class 2, and class 3. 
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Supplemental figure 2. Absolute 𝜀 for clinical simulations with an increase in the amount of 

noise (ß) for K1 (A), k2 (B), k3 (C), and Ki (D). The boxes depict the interquartile range and 

whiskers represent the 10th and 90th percentiles of the data.  
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Supplemental figure 3. Misclassification error of various clustering schemes for clinical 

simulations with an increase in the amount of noise (ß). 
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Supplemental figure 4. Ground truth (A) and clustering (B) affinity matrices of the preclinical 

noise-free time–activity curves (shown in Fig. 1B). The three block diagonal matrices (top to 

bottom) depict the intra-class similarity of class 1, 2, and 3. The rest of the two off-diagonal 

block matrices in each row display the inter-class similarity between the annotated classes. 

As the time–activity curves of class 2 and class 3 were relatively similar in shape (Fig. 1B), 

the inter-class similarity between these two clusters was also higher. On the other hand, 

despite significant overlap, the inter-class similarity between class 1 and class 2 was 

relatively lower, primarily due the differences in the shape of the simulated time–activity 

curves.     
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Supplemental figure 5. (A) SC segmented image of a representative tumor with three 

clusters obtained using dynamic 18F-FDG PET data. (B) Affinity matrix of the entire tumor 

volume computed using the clustering solution in A. The comparable cluster population of the 

green and blue regions is due to the fact that the end slices of the tumor are densely 

vascularized in contrast to the center ones. (C) Averaged time–activity curves of the 

respective clusters. While all three clusters depict high intra-class similarity, the red and blue 

clusters also contain high inter-class similarity. As the red cluster appears on the periphery of 

the blue cluster, both the regions also have similar average time–activity curves. (D) 

Segmentation of the same tumor using the parametric maps (shown in Fig. 5) and SC. (E) 

Affinity matrix of the entire tumor volume computed using the clustering solution in D and 

PET time–activity curves. (F) Averaged time–activity curves of the respective clusters.    
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Supplemental figure 6. A two tissue compartmental model for 18F-FDG PET. The dashed box 

represents the observed activity concentration of the region. 
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2.3 Project-3

2.3.1 A Novel Unsupervised Segmentation Approach

Quantifies Tumor Tissue Populations Using

Multiparametric MRI: First Results with Histological

Validation

Prateek Katiyar, Mathew R. Divine, Ursula Kohlhofer, Leticia Quintanilla-

Martinez, Bernhard Schölkopf, Bernd J. Pichler, and Jonathan A. Disselhorst

(2017). Molecular Imaging and Biology 19.3, pp. 391–397.

The unmatched soft tissue contrast of MRI has resulted into its integration as

a key diagnostic modality in the clinic [129, 130]. Besides the standard prac-

tice of cancer detection and management using anatomical imaging [130–132],

the superior benefits of multiparametric MRI (which includes anatomical as well

as functional parameters) are increasingly utilized for a better characterization of

solid tumors [63, 133]. Alongside the increase in complexity of the imaging data

being acquired, the development of robust and automated tools of analysis is also

soaring. In this context, a large number of supervised and unsupervised learning

approaches have been reported for the differentiation and detection of prostate

cancer [134], and brain tumors [135], however, only a handful of techniques have

been applied for the characterization of intratumor heterogeneity. Among the pub-

lished reports, many have utilized variants of K -means [136–139], GMMs [140,

141] and FCM [142] to identify the intratumor viable, hypoxic and necrotic tissues.

As discussed in subsection 1.6.3, all of these methods find disjoint clusters by

making relatively strong assumptions about the data. In particular, for clusters

with non-convex shapes these techniques are likely to fail or provide sub-optimal

results (figure 1.25).

Therefore in this work, we proposed an unsupervised segmentation method that

overcomes the limitations of the classical clustering techniques and provides a
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reliable estimation of tumor tissue heterogeneity. Our suggested spatially regu-

larized spectral clustering (SRSC) algorithm incorporates a penalty term in the

clustering objective to penalize the voxels that have inconsistent class (tumor

tissue) memberships with their neighbors and obtain spatially coherent segmen-

tation results. We applied SRSC on mice bearing subcutaneous glioblastoma

tumors and compared its performance with the three previously mentioned clus-

tering techniques.

The imaging experiments were performed on six NMRI/nu-nu mice (Charles

River, Sulzfeld, Germany) that were subcutaneously inoculated with human

U87MG glioblastoma tumor cells. A total of six MRI parameters were acquired:

T2-weighted anatomy image, ADC map, pre-contrast T2 and T2* maps, and post-

contrast T2 and T2* maps. The post-contrast images were acquired 2 minutes af-

ter the administration of ferumoxytol (Rienso; Takeda Pharmaceuticals, Glattpark-

Opfikon, Switzerland). At the end of each scan, each tumor was carefully sec-

tioned in four approximately equal parts parallel to the axial imaging plane, which

were later processed to obtain the following immunohistochemistry stains: CD-31

(Abcam plc, 330 Cambridge Science Park, Cambridge, UK), Ki-67 (Clone SP6,

DCS Innovative Diagnostik-Systeme GmbH u. Co. KG, Hamburg, Germany),

Glucose transporter 1 (GLUT-1, Abcam Inc., Suite B2304 Cambridge, USA) and

cleaved caspase-3 (ASP 175; Cell Signaling Technology, Frankfurt am Main, Ger-

many). Furthermore, H&E histology was obtained. The stained slides were digi-

tized using a NanoZoomer 2.0 HT (Hamamatsu, Hamamatsu City, Japan). After-

wards, with the assistance of seasoned mouse pathologists, the high-resolution

histology images were processed to estimate the fractional population of three

tumor tissue types. The peri-necrotic regions were identified on GLUT-1 images,

and the necrotic and viable tissues were marked on H&E histology.

Prior to clustering, the histology images were rigidly co-registered with the T2-

weighted images. The co-registration was performed by selecting the adequate

imaging slice and applying in-plane rotations to visually match the contours of the

tumor anatomy and histology images. The qualitative registration between the
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T2-weighted 
image

Histology Overlapping 
contours

1 32 4

Figure 2.8: Top panel: the co-registered T2-weighted and histology images of two tumors. It is
evident from their overlapping contours that the careful sectioning and handling of tumor slices
provided a good spatial agreement between the in vivo and ex vivo images. Bottom panel: the
four H&E stained slices (numbered as 1–4) of the first tumor shown above. Note the small amount
of tumor tissue in the two end slices.

two images was solely based on the shape of the tumor because little could be

inferred about the intratumor tissues using just the anatomical images (figure 2.8,

top panel). Additionally, due to lack of tumor tissue or small size of the histology,

only the middle histology slices were aligned with the imaging (figure 2.8, bottom

panel). One tumor was excluded from further analyses due to substandard reg-

istration. For the remaining 5 tumors, a total of 7 histology slices were matched

with the respective imaging planes.

Post-registration, the tumors were segmented using SRSC, K -means, FCM and
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a standard GMM. In SRSC, the top eigenvectors of the Laplacian matrix were

segmented using a constrained GMM. In particular, the constrained GMM incor-

porated a spatial regularization term in the EM algorithm (subsection 1.6.2), which

weighted the posterior probability of each voxel with the average posterior prob-

abilities of the 26 connected neighboring voxels. Such weighting scheme main-

tained a textural regularity in the segmented image by penalizing voxels which

had inconsistent tissue class probabilities with their neighbors. K -means clus-

tering was run several times on each tumor and the solution corresponding to

the lowest cost was considered as best. The parameters of FCM were chosen

by maximizing the linear correlation between the histology and clustering tissue

fractions. The SRSC results were invariant to any scale value of the RBF kernel

between 20 and 500.

Figure 2.9 shows the acquired imaging parameters, histology, SRSC probability

map and the solution affinity matrix of an exemplary tumor. It is evident from

the H&E and GLUT-1 histology that the viable, necrotic and peri-necrotic areas

identified in the SRSC probability map are excellent representative of the actual

tissue heterogeneity of the slice. The high similarity within the third block diagonal

matrix (corresponding to the viable cluster) of the affinity matrix indicates the

presence of homogeneous viable regions in the tumor. Likewise, the low similarity

between the necrotic and viable clusters signifies large differences in pathology

of both the tissues.

Among the remaining four tumors, two were entirely homogeneous consisting of

only viable tissue, whereas the other two had characteristics similar to the tumor

shown in figure 2.9. Figure 2.10 shows a qualitative comparison between the

clustering results of all the tested algorithms for the three heterogeneous tumors.

Although all four methods were able to differentiate between necrosis and viable

tissues, only SRSC provided accurate segmentation of peri-necrotic areas.

The Pearson’s correlation coefficients between the ground truth (histology) and

clustering tissue fractions for all the methods are detailed in table 2.1. The corre-

lation analysis was performed using the tissue fractions obtained from all seven

109



Chapter 2: Results

A

B

0.2

0.4

0.6

0.8

1.0

0

0

10

20

30

0

50

100

150

200

0

1000

2000 

C

(ms)(ms)(10-6 mm2/s) 

0 1 2 3 4 5 mm

Figure 2.9: SRSC segmentation of a tumor. (A) Left to right: ADC map, pre- and post-contrast
T2 maps, and pre- and post-contrast T2* maps of a tumor. (B) Left to right: CD-31, GLUT-1,
H&E and Ki-67 histology of the tumor in panel A. (C) Left to right: SRSC probability map and
the corresponding affinity matrix organized in cluster-wise fashion. The viable, necrotic and per-
necrotic tissues are depicted with red, green and blue colors, respectively. The colored arrows
point towards the corresponding tissue in the histology. Figure adapted from Katiyar et al. [103].

co-registered slices. In contrast to SRSC, all the other methods underestimated

viable and overestimated peri-necrotic tissue fractions.

Although the correlation coefficients for standard spectral clustering were similar

to SRSC, the benefits of spatial regularization are evident from the tissue prob-

ability maps shown in figure 2.11. Due to the disturbances caused by magnetic

field inhomogeneities and subject motion, the multiparametric MRI data might

contain uncertainties at voxel-level. For the experiments performed in this study,

only the ADC and anatomy sequences were acquired with tracking of animal

breathing, leaving T2 and T2* maps vulnerable to motion artifacts. SRSC over-

comes some of these issues by imposing the spatial smoothness constraints.

This assumption is fairly reasonable from a biological perspective, as it is highly

likely that even in a heterogeneous tumor, neighboring voxels share similar phe-

notypic characteristics.

Upon close inspection of imaging parameters in figure 2.9, it appears that the

T2 values seem to increase in the necrotic tissue after contrast, while there is a

decrease in T2* value indicative of perfusion. This observation can be explained
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Tissue type SRSC K -means FCM GMM

Viable 0.98 0.66 0.33 0.59

Necrotic 0.92 0.76 0.79 0.88

Peri-necrotic 0.82 -0.84 -0.80 -0.72

All 0.99 0.64 0.69 0.68

Table 2.1: Pearson’s correlation coefficients between the histology and clustering tissue fractions
for all four algorithms. Data taken from Katiyar et al. [103].

SRSC

Standard spectral clustering

Figure 2.11: Tissue probability maps obtained using SRSC and standard spectral clustering. The
viable, necrotic and peri-necrotic tissues are depicted with red, green and blue colors, respectively.
For all three tumors, the SRSC tissue probability maps were more spatially consistent than those
of the standard spectral clustering.

by the potential physiologic nature of the peri-necrotic tissue. The peri-necrotic

areas in all three heterogeneous tumors exhibited high GLUT-1 expression, which

is an indirect evidence of induced hypoxia [143]. The hypoxic and acidic regions

of the tumors are well known to induce angiogenesis and modulate the vascular

permeability factor, resulting in chaotic and highly permeable blood vessels [144].

The two insets of the CD-31 histology shown in figure 2.12 clearly exhibit a high

vessel density in the peri-necrotic regions of the tumor. It is quite likely that these

blood vessels leaked the contrast agent into the necrotic portions, causing a sig-

nal enhancement and reduction in the T2 and T2* maps, respectively. It should
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also be noted that an imaging slice (∼200 µm) is several orders thicker than a

thin histology slice (∼6 µm). Thus, the contrast variations seen in figure 2.9 might

be caused by the overall vessel population of several of these histology slices.
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Figure 2.12: CD-31 histology image of the tumor shown in figure 2.9. Both the insets depict
densely vascularized necrotic rim of the tumor.

In conclusion, this study proves the benefits of SRSC over the classical clustering

methods for the assessment of intratumor heterogeneity. This work is limited in

a sense that the suggested method is only tested on a single tumor model with

small sample size. In future, it would be worthwhile to apply SRSC on multimodal-

ity multiparametric datasets that are acquired on a larger cohort with different

cancer types and multiple therapy groups.
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Abstract
Purpose: We aimed to precisely estimate intra-tumoral heterogeneity using spatially regularized
spectral clustering (SRSC) on multiparametric MRI data and compare the efficacy of SRSC with
the previously reported segmentation techniques in MRI studies.
Procedures: Six NMRI nu/nu mice bearing subcutaneous human glioblastoma U87 MG tumors
were scanned using a dedicated small animal 7T magnetic resonance imaging (MRI) scanner.
The data consisted of T2 weighted images, apparent diffusion coefficient maps, and pre- and
post-contrast T2 and T2* maps. Following each scan, the tumors were excised into 2–3-mm thin
slices parallel to the axial field of view and processed for histological staining. The MRI data
were segmented using SRSC, K-means, fuzzy C-means, and Gaussian mixture modeling to
estimate the fractional population of necrotic, peri-necrotic, and viable regions and validated with
the fractional population obtained from histology.
Results: While the aforementioned methods overestimated peri-necrotic and underestimated
viable fractions, SRSC accurately predicted the fractional population of all three tumor tissue
types and exhibited strong correlations (rnecrotic = 0.92, rperi-necrotic = 0.82 and rviable = 0.98) with
the histology.
Conclusions: The precise identification of necrotic, peri-necrotic and viable areas using SRSC
may greatly assist in cancer treatment planning and add a new dimension to MRI-guided tumor
biopsy procedures.

Key words: Tumor heterogeneity, Multiparametric MRI, Spectral clustering, K-means, Fuzzy C-
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Introduction
Targeted cancer therapies have experienced an unprece-
dented increase in approval over the past decade [1], with
most recent approaches utilizing the immune system against
tumors. However, due to their cytostatic effects, in treatment
response evaluation of these therapies, volume- and size-
based descriptors (WHO and RECIST criteria) need to be
complemented with quantitative imaging biomarkers [2].

A plethora of studies have reported the prognostic
value of the multiparametric magnetic resonance imaging
(MRI) derived quantitative biomarkers in oncology [3, 4].
Nonetheless, little effort has been laid out in developing
techniques to quantify the intra-tumoral heterogeneity.
Several investigations have used K-means clustering [5]
or related algorithms to distinguish necrosis from viable
tissue and assess phenotypic variability [6–9]. Kazerooni
et al. [10] combined fuzzy C-means (FCM) with a region
growing algorithm to segment glioblastoma in patients. In
addition to these, a recent study [11] has demonstrated the
application of Gaussian mixture modeling (GMM) [5] on
longitudinal positron emission tomography (PET)/MRI
data to create a spatio-temporal profile of different tumor
tissue populations.

All of the previously mentioned techniques make strong
assumptions about the shape of the clusters and are classified
as partitional clustering algorithms [5]. These methods
perform well as long as the clusters are easily separable
and their underlying assumptions are met. However, due to
highly composite microenvironment and voxel level pertur-
bations, the multidimensional MRI tumor data may contain
mixed and irregularly shaped clusters (in parameter space),
limiting the applicability of the aforementioned algorithms.

In this paper, we propose a robust algorithm, which
overcomes the limitations of the previously described
techniques and accurately characterizes the tumor tissue
variability. We show that spatially regularized spectral
clustering (SRSC) outperforms K-means, FCM, and GMM.
Furthermore, we quantitatively validate the segmentation
results of SRSC on the MRI data (consisting of apparent
diffusion coefficient (ADC) maps, normal and contrast-
enhanced T2 and T2* maps) using tumor histology.

Materials and Methods

Data Acquisition

All the studies were performed in accordance with the German
Animal Welfare Act and protocols were approved by the
Regierungspraesidium in Tuebingen. Human U87MG glioblastoma
tumor cells were subcutaneously inoculated in the right shoulder of
six 11-week-old NMRI/nu-nu mice (1 × 107 in 200 μl of 0.9 %
NaCl). Once injected, the tumors were allowed to grow for 2 weeks,
after which the imaging experiments were carried out.

The MRI scans were acquired using a dedicated small animal
7T ClinScan scanner (Bruker BioSpin, Ettlingen, Germany). The

details of the MRI sequences used for the acquisition of T2-
weighted anatomy, ADC, T2 and T2* images are provided in the
supplementary material. The pre- and post-contrast T2 and T2*
images were obtained before and 2 min after the intravenous
injection of 50 μl of ferumoxytol (Rienso; Takeda Pharmaceuticals,
Glattpark-Opfikon, Switzerland). To avoid motion artifacts, the
animal breathing was tracked (Model 1030; SA Instruments, Stony
Brook, NY, USA) and used for triggering the anatomy and ADC
sequences. Inveon Research Workplace (Siemens, Knoxville,
Tennessee, USA) was utilized to delineate the tumors on the
anatomical images of the mice.

Although not included in this paper, during MRI scans, the mice
were also injected with 2-deoxy-2-[18F]fluoro-D-glucose PET tracer
for independent investigations.

Histology

At the end of each scan, the mice were taken out from the MRI
scanner and sacrificed by cervical dislocation, while maintaining
their position on the bed. Prior to dissection, three equidistant
lines (∼2–4 mm apart) were drawn on the skin parallel to the
imaging field of view and the tumors were frozen using a
freezing spray. The frozen tumors were subsequently cut into
four pieces along the parallel lines, and the sectioned parts were
placed into the tissue biopsy baskets while keeping track of the
slice orientation. Thereafter, the tissue baskets were placed in
4.7 % neutral-buffered formaldehyde for 48 h and processed for
paraffin embedding and subsequent cutting in 6-μm sections. An
automated immunostainer (Ventana Medical Systems, Tucson,
AZ, USA) was used to perform the immunohistochemistry with
the following primary antibodies: GLUT-1 (Glucose transporter
1, Abcam Inc., Suite B2304 Cambridge, USA), Ki-67 (Clone
SP6, DCS Innovative Diagnostik-Systeme GmbH u. Co. KG,
Hamburg, Germany), and CD-31 (Abcam plc, 330 Cambridge
Science Park, Cambridge, UK). Positive and negative controls
were included for the immunohistochemical analysis of each
antibody. Additionally, H&E staining was performed. The
stained histology slides were scanned into high-resolution digital
images using a NanoZoomer 2.0 HT (Hamamatsu, Hamamatsu
City, Japan), and different tumor tissue populations were marked
by a seasoned mouse pathologist. Utilizing these markings as
reference, regions of interest were drawn on the histology slices
using NDP.view (Hamamatsu, Hamamatsu City, Japan) and the
fractional population of each tumor tissue type was calculated.
The viable and necrotic tissues were delineated on H&E, while
the peri-necrotic tissue was defined on GLUT-1 immunostain-
ing. The registration (additional details are provided in the
supplemental data) between histology and delineated tumor
images was performed manually using MATLAB (MathWorks,
Natick, MA, USA), as described by Divine et al. [11]. Due to
inadequate registration, one mouse was excluded from further
analyses.

Spatially Regularized Spectral Clustering

Spectral clustering [12, 13] utilizes voxel-wise MRI feature vectors
to create affinity matrix for each tumor. The voxel-wise feature
vectors were obtained by concatenating the co-registered MRI
parameters (ADC, T2 pre-contrast, T2 post-contrast, T2* pre-
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contrast, and T2* post-contrast), and the affinity matrices were
constructed using a radial basis function (RBF) kernel:

Wij ¼ e− ‖xi−x j‖
2
=2σ2 if i≠ j

0 otherwise:

�

Here, σ is the scale parameter of the RBF kernel and ‖xi − xj‖ is
the pairwise Euclidian distance between the MRI feature vectors of
voxel i and j. Unsupervised clustering was performed using
constrained GMM on the eigenvectors of the normalized Laplacian
matrix. Further details about the algorithm can be found in the
supplemental data.

Standard GMM probabilistically assigns observations to differ-
ent clusters and characterizes them using a mean vector and
covariance matrix. We included a spatial regularization (in the
image space) into standard GMM which we will refer to as
constrained GMM. Spatial constraints were imposed by weighing
the tissue class probabilities of each voxel by the average tissue
class probabilities of the 26 connected neighboring voxels during
the optimization process. Thus, the likelihood of a voxel to be
characterized as a certain tissue type is enhanced if the nearby
voxels belong to the same tissue class and vice versa.

The results of SRSC were compared with K-means, FCM, and
standard GMM. All of the methods were implemented in
MATLAB.

Statistical Analysis

The Pearson’s correlation coefficient was computed to evaluate the
linear relationship between the histology and clustering tumor
tissue fractions. The one-sample Kolmogorov-Smirnov test was
used to test whether the distribution was normal. Due to non-
normality, the differences between all of the groups were first
checked using the Kruskal-Wallis non-parametric test. In case of a
significant difference, the individual groups were compared using
the Bonferroni corrected rank-sum tests (a p value less than 0.0167
was considered as statistically significant).

Results
The MRI parameters of one of the tumors are shown in
Fig. 1a. The corresponding histology and segmentation
results of SRSC are presented in Fig. 1b, c, respectively.
The affinity matrix (Fig. 1c) depicts the intra- and inter-class
similarity between the identified tissue classes of the tumor.

The clustering comparisons of SRSC with K-means,
FCM, and standard GMM, together with the histological
images of three tumors are shown in Fig. 2. The proposed
method outperformed all three techniques and demonstrated
the best visual correlation with the histology. The SRSC
results of the remaining tumors are shown in Supplementary
Figs. 1 and 2. Both tumors were highly homogeneous and
mostly composed of viable portions. SRSC however also
identified minor amounts of muscle and connective tissue.

The class-wise box plots and the histograms of all the
MRI parameters for the aforementioned tumors are shown in

Fig. 3. The box plots and histograms were generated using
the voxel-wise segmentation results of SRSC. For each MRI
parameter, the distributions of all three tumor tissue classes
significantly differed from each other (Supplementary
Table 1).

Table 1 summarizes the Pearson’s correlation coefficients
(p values are given in Supplementary Table 2) between
histology and clustering tumor tissue fractions for all four
algorithms. Matching scatter plots are shown in Supplemen-
tary Fig. 3. While K-means, FCM, and GMM overestimated
peri-necrotic and underestimated viable fractions, SRSC
accurately predicted the fractional population of all the three
tumor tissue types.

Discussion
We proposed a novel algorithm for the analysis of multi-
parametric MRI data and assessment of the intra-tumoral
heterogeneity. We compared our algorithm with the previ-
ously reported segmentation methods in MRI studies [6–8,
11] and exhibited its efficacy over K-means, FCM, and
standard GMM. We corroborated the segmentation results of
SRSC with different histological stainings and demonstrated
strong correlations between the tissue fractions derived from
immunohistochemistry and SRSC. The precise identification
of the necrotic, peri-necrotic, and viable tissue fractions
using SRSC highlights the strengths of combining novel
image analysis methods with multiparametric imaging and
advocates the potential of the proposed method for clinical
investigations.

Different types of cell death play an important role in
tumor regression and progression. Among others, necrosis is
designated as a lethal form of cell demise, which triggers
inflammation [14]. Moreover, inflammation is a known
regulator of the hallmarks of cancer [15], whose complex
interplay promotes uncontrolled tumor growth. Thus, mea-
suring the amount of necrosis can be pivotal for predicting
the degree of tumor aggressiveness and cancer morbidity
[16]. While all of the models were able to identify necrotic
regions, only SRSC provided precise estimates of viable
(revealed by high mitotic rate in Ki-67 staining) and peri-
necrotic tissue populations. Furthermore, the average ADC
in SRSC segmented necrotic (1252.68 ± 628.48), peri-
necrotic (1132.2 ± 466.72), and viable (598.46 ± 344.67)
regions was also consistent with previous findings [7, 11].
The moderate and relatively low interclass similarity of the
peri-necrotic tissue with the viable and necrotic regions
respectively, shown in Fig. 1c (affinity matrix), might be a
result of metabolic stress, elucidating the gradual transfor-
mation of the peri-necrotic regions from viable to necrotic
tissue. This is also indicated by the higher expression of
GLUT-1 receptor in the peri-necrotic areas in Fig. 1b,
possibly due to induced hypoxia [7]. Although we did not
perform any hypoxia-specific staining, it is well established
that hypoxia leads to an increase in glycolysis, eventually
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Fig. 1. a The acquired MRI parameters of a tumor, left to right: ADC, T2 pre, T2 post, T2* pre, and T2* post maps. b Left to
right: CD-31, GLUT-1, H&E, and Ki-67 stained histology of the tumor from a. c Left to right: SRSC probability map and the
affinity matrix of the tumor. Green, blue, and red colors represent the necrotic, peri-necrotic, and viable tissue, respectively. The
arrows in the histology indicate the corresponding tissue type in the tumor. The affinity matrix was computed using the voxel-
wise feature vectors from the entire tumor volume. The diagonal and off-diagonal matrices in the affinity matrix depict intra- and
inter-class similarities for the labeled tissue clusters, respectively. For example, the high intra-class similarity of viable cluster
indicates the presence of homogeneous viable areas in the tumor.

Fig. 2. a CD-31, b GLUT-1, c H&E, and d Ki-67 stained histology of three different tumors and corresponding segmentation
maps obtained using e SRSC, f GMM, g FCM, and h K-means. Green, blue, and red colors represent the necrotic, peri-
necrotic, and viable tissue, respectively. The arrows in the histology indicate the corresponding tissue type in the tumor.
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resulting into a higher GLUT-1 expression [17]. Similar
characteristics are exemplified in Supplementary Fig. 4.

In this study, the histology was manually co-registered
with the in vivo MRI images. The confounding challenges
faced in the registration process [18] were mitigated by the

careful sectioning and fixation of the tumor. Due to the
difficulties encountered in one-to-one (histology to imaging)
registration, tissue labels from histology are hard to obtain,
limiting the application of supervised algorithms. Recently,
one investigation has improved this by using a two-step

Fig. 3. The distributions of the acquired MRI parameters for each tumor tissue type. The boxes depict the interquartile range
and the whiskers extend to the 5th and 95th percent value of the parameter. The line in the box shows the median of the
distribution.

Table 1. Pearson’s correlation coefficients for the tissue fractions obtained from histology and clustering algorithms

Tissue type Pearson’s correlation coefficient (r)

SRSC K-means FCM GMM

Viable 0.98 0.66 0.33 0.59
Necrotic 0.92 0.76 0.79 0.88
Peri-necrotic 0.82 −0.84 −0.80 −0.72
All 0.99 0.64 0.69 0.68
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registration process, involving digital photographs of the
specimen and later performing a linear discriminant analysis
on the multiparametric MRI data [19]. Another way to
circumvent the registration challenges is by using the
unsupervised and supervised techniques in a cascaded
manner. Specifically, tissue labels can be obtained by
clustering the multiparametric MRI data using SRSC and
labeled voxels with a probabilistic confidence score can be
used to train a supervised classifier, thereby allowing the
development of phenotype specific mathematical models.

Biopsies are routinely used in modern cancer diagnostics
and tumor phenotyping. As tumors exhibit frequent spatial
and temporal heterogeneity, the limited spatial extent of the
invasive procedure can severely underestimate the disease
complexity, resulting in a misleading prognosis or an
unsuccessful therapy [20]. Imaging techniques on the other
hand provide a complete view of the patient, allowing a
comprehensive inspection of the spatio-temporal variations.
Therefore, the combination of imaging diagnostics with
tissue biopsy procedures could not only assist in lesion
localization and selective tissue sampling, but could also
deliver an extensive phenotypic and genotypic profile of the
tumor, potentially uncovering the causal relationships
between the two [21].

Since the acquired MRI parameters (ADC, T2 and T2*
maps) in this investigation are standard protocols in the
clinic, SRSC can be translated into clinical examinations.
One major limitation of this study, however, is the use of a
single xenograft tumor model and the small sample size.
Evaluating SRSC on several tumor types along with a
combination of different cancer therapies and imaging
parameters could reveal the versatility of the suggested
method and bring additional insights about the most robust
and informative in vivo imaging biomarkers.

In multifaceted tumor microenvironment, it is highly
probable that the neighboring cells exhibit similar functional
and anatomical characteristics and there is a smooth
transition from one tissue type to another. MRI measure-
ments, however, can be corrupted by subject motion and
magnetic field in-homogeneities, giving rise to voxel level
uncertainties. We addressed these textural irregularities by
imposing spatial constraints and achieved accurate intra-
tumor segmentation results. As opposed to commonly used
partitional clustering algorithms, SRSC makes no a priori
assumptions about cluster shapes; hence, it is likely to
perform better on multidimensional data sets. Such methods
of region-wise analyses are of high significance for multi-
parametric imaging, as they can facilitate biomarker selec-
tion and treatment planning by providing a reliable quanti-
fication of imaging measures probing inter- and intra-tumor
heterogeneity [22].

Conclusion
In conclusion, through quantitative histological validation
and one-to-one algorithmic comparison, we demonstrated

the efficacy of SRSC on multiparametric MRI data and
delivered an accurate segmentation of the intra-tumoral
heterogeneity. Multiparametric imaging in combination with
image analysis tools has the ability to probe tumor
heterogeneity beyond currently utilized volume- and size-
based measures, which might be of great value for selective
treatment planning and reliable response evaluation of
personalized cancer therapies.
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Supplementary Materials and Methods 

Animal Handling 

Six-week-old NMRI nu/nu mice were ordered and allowed to acclimatize in the on-

site animal vivarium before subcutaneous injection of tumor cells. Mice were kept in a 

specific pathogen free (SPF) environment in individually ventilated cages of type 2 

long with wood chip bedding. The climate was regulated so that a temperature of 20 

± 1° C with a relative humidity of 50 ± 10% was maintained. The lighting was set at a 

12 h night and day lighting scheme, and the mice were provided with food and water 

ad libitum. Tumor sizes as well as normal social activity of animals were monitored 

until tumors were palpable and showed signs of vascularization with a minimum 

length of 5 mm, before beginning the imaging experiments. 

Before and during tumor inoculation and imaging experiments, mice 

spontaneously respired 1.5% isoflurane dissolved in 100% O2 at a flow rate of 0.8 

l/min in order to maintain a deep anesthesia. For injection of MRI contrast agent, 

catheters were placed in the tail vein of mice while they were under anesthesia using 

a 27 gauge micro lance needles. All experiments were carried out in a SPF 

environment [1].  

 

Data Acquisition 

The following settings were used for the T2 weighted turbo spin echo sequence: 

repetition time (TR) = 3000 ms, echo time (TE) = 205 ms, echo train length = 161, 

image size = 256 x 160 and voxel size (mm3) = 0.22 x 0.22 x 0.22. The diffusion 

weighted images were acquired using a half-Fourier acquisition single-shot turbo spin 

echo (HASTE) sequence with five b-values (200, 400, 600, 800 and 1000 s/mm²).  

Furthermore, the HASTE sequence had following settings: TR = 5000 ms, TE = 112 

ms, echo train length = 256, number of averages = 4, image size = 192 x 120 and 

voxel size (mm3) = 0.21 x 0.21 x 1.00. For T2 maps, the data were acquired using a 

spin echo sequence with 12 echo times (TE = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 

110 and 120 ms) and following parameter values: TR = 2500 ms, number of 

averages = 2, image size = 192 x 120 and voxel size (mm3) = 0.21 x 0.21 x 1.00. 

Similarly, the data for T2* maps were acquired using a gradient echo sequence with 

10 different echo times varying from 3 to 26.85 ms with an interval of 2.65 ms. The 

remaining parameter values were as follows: TR = 2000 ms, number of averages = 2, 

image size = 192 x 120 and voxel size (mm3) = 0.21 x 0.21 x 1.00. All maps were 

calculated with in-house developed software in MATLAB (R2013a) using linear 

regression on the natural logarithm transformed imaging data. The T2 maps were 

calculated without the first echo (i.e., 11 echo’s in total), whereas the T2* maps were 

calculated with all 10 echo’s.  
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Histology 

A rigid co-registration was performed between the histology and T2W images of the 

tumors. This was done by selecting the appropriate imaging slice and manually 

rotating it to match (based on visual correspondence) the corresponding histology 

section. The visual correspondence was based mainly on the contours of the imaging 

and histology slices, as little can be inferred about the tumor microenvironment using 

just the T2W images. Moreover, the co-registration was performed before the 

clustering analyses were carried out and therefore was not influenced by the 

segmentation results.    

Furthermore, not every histology slice from each tumor could be matched 

adequately to imaging planes within the respective tumor. This was either due to the 

small size of the histology or the amount of tumor in the histology section, which 

corresponded to even fewer imaging voxels, reducing the ability to accurately align 

the contours. Thus, although clustering was performed on the imaging data from the 

entire tumor, the imaging to histology correlation analysis was restricted only to the 

tissue fractions obtained from the co-registered slices. This was also reasonable 

because the heterogeneity in the co-registered histology sections was not 

representative of the entire tumor volume. 

   

Spatially Regularized Spectral Clustering 

The normalized Laplacian was computed using the following expression:  

 

𝐿 = 𝐷𝑖𝑛𝑣 ∗ 𝑊𝑖𝑗 ∗ 𝐷𝑖𝑛𝑣 . 

 

Where, 𝐷𝑖𝑛𝑣 = 𝐷−0.5 and D is the diagonal matrix with diagonal vector 𝑑𝑖 = ∑ 𝑊𝑖𝑗
𝑛
𝑗=1 . 

The parameter 𝑛 is equal to the total number of voxels. The number of clusters was 

chosen based on the visual inspection of the affinity matrix constructed after 

clustering (i.e. number of block diagonal matrices visible in the affinity matrix). The 

algorithm was robust to the choice of the scale parameter 𝜎 and any value between 

20 and 500 yielded the results as shown in Figure 2. The number of eigenvectors 

segmented using constrained GMM was always equal to the number of clusters. A 

window size of 3 x 3 x 3 was used to perform the spatial regularization. Due to small 

size of the tumors, we remained conservative with the selection of window size and 

did not attempt to optimize it. A total number of 100 iterations were used for the 

expectation and maximization (EM) step in constrained GMM.  
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K-means, Standard GMM and FCM 

The number of clusters for K-means, standard GMM and FCM were kept the same 

as chosen for SRSC. K-means clustering was repeated 50 times, each time with a 

random seed point and a solution with the lowest within-cluster sum of points-to-

centroid distance was selected. Standard GMM was initialized using the clustering 

solution obtained from K-means. An exponent of 1.1 was chosen for the fuzzy 

partition matrix in FCM. This was obtained by performing a grid search and 

minimizing the difference between the histology and FCM tissue fractions.     
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Supplementary Tables 

 

 

 

SUPPLEMENTARY TABLE 1. P-values obtained from different group 

comparisons made for each of the MRI parameter.  

 

MRI parameter 

Group comparison p-value* 

Viable-Peri-

necrotic 
Viable-Necrotic 

Peri-necrotic-

Necrotic 

ADC <0.001 <0.001 <0.001 

T2 pre-contrast <0.001 <0.001 <0.001 

T2 post-contrast <0.001 <0.001 <0.001 

T2* pre-contrast <0.001 <0.001 <0.001 

T2* post-contrast <0.001 <0.001 <0.001 

 

* p<0.0167 was considered statistically significant  

 

 

 

SUPPLEMENTARY TABLE 2. P-values of Pearson's correlation 

coefficient for the tissue fractions obtained from histology and clustering 

algorithms. 

 

Tissue type 
 Pearson's correlation coefficient p-value* 

SRSC K-means FCM GMM 

Viable <0.001 0.104 0.464 0.159 

Necrotic 0.026 0.135 0.108 0.048 

Peri-necrotic 0.090 0.074 0.104 0.169 

All <0.001 0.006 0.002 0.003 

 

*p<0.05 was considered statistically significant   
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Supplementary Figures 

 

 

 

 

 

 
 

 

SUPPLEMENTARY FIGURE 1. (a) Left to right: CD-31, GLUT-1, H&E, and Ki-67 

stained histology of tumor 4. (b) Left to right: SRSC probability map and the affinity 

matrix of the tumor. Red and cyan colors represent the viable, and muscle and 

connective tissue, respectively. The arrows in the histology indicate the 

corresponding tissue type in the tumor. The affinity matrix was computed using the 

voxel-wise feature vectors from the entire tumor volume.   
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SUPPLEMENTARY FIGURE 2. (a) Left to right: CD-31, GLUT-1, H&E, and Ki-67 

stained histology of tumor 5. (b) Left to right: SRSC probability map and the affinity 

matrix of the tumor. Red color represents the viable tissue. The arrow in the histology 

indicates the corresponding tissue type in the tumor. The affinity matrix was 

computed using the voxel-wise feature vectors from the entire tumor volume. 
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SUPPLEMENTARY FIGURE 3. Correlation plots between the histology and 

clustering tumor tissue fractions obtained using (a) SRSC, (b) K-means, (c) FCM and 

(d) GMM. The green, blue and red lines depict the linear fit on the necrotic, peri-

necrotic and viable tissue fractions. The line in black shows the linear fit on the 

combined points from all three tumor tissue types. The five points for each tissue type 

were obtained from the five imaging slices matched with the respective histology of 

the three tumors presented in Figure 2. The two additional points in the viable group 

were acquired from the tumors shown in Supplementary figure 1 and 2. 
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SUPPLEMENTARY FIGURE 4. Left to right: SRSC probability map and the affinity 

matrix of tumor (a) 2 and (b) 3. The affinity matrices were computed using the voxel-

wise feature vectors from the entire tumor volume. 
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2.4. Project-4

2.4 Project-4

2.4.1 Multi-view learning of multiparametric PET/MRI data

quantifies intratumor heterogeneity

Prateek Katiyar, Mathew R. Divine, Ursula Kohlhofer, Leticia Quintanilla-

Martinez, Martin Siegemund, Roland Kontermann, Bernhard Schölkopf, Bernd J.

Pichler, Jonathan A. Disselhorst

In the previous projects we have seen the utility of dynamic 18F-FDG PET and

multiparametric MRI in probing intratumor heterogeneity. In this paper, we went

beyond the realm of single modality imaging to prove the superior benefits of

simultaneously acquired dynamic 18F-FDG PET/multiparametric MRI data in lo-

calizing biologically distinct intratumor tissues and providing early indications of

therapeutic efficacy.

Despite the unique principles and complementary nature of PET and MRI, the

medical relevance of combining these two modalities is repeatedly questioned

[145]. In the field of oncology and in particular tumor heterogeneity, only few

investigations have shown the potential of combined 18F-FDG PET SUV and DW-

MRI data [101, 113, 114]. Not only are these studies limited in the number of

imaging parameters that were acquired using the PET/MRI system, their chosen

imaging features also provide redundant information, as they are known to carry

high correlations within tumors [101, 113]. Another factor impairing the broad

applicability of these reports is the use of unsupervised learning in their analysis

of intratumor heterogeneity. Applying supervised learning techniques in this con-

text is quite challenging because of the difficulties in obtaining tissue labels, for

example from tumor histology.

Therefore, in this work we advanced well beyond these studies by acquiring dy-

namic 18F-FDG PET/multiparametric MRI data of mice with subcutaneous colon

cancer that received an EGFR-specific apoptosis inducing therapy [146]. Based
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on the promising results of spectral clustering (sub-section 1.6.3) on each of the

two modalities [102, 103], we further extended its scope to a multimodality set-

ting by devising an algorithm that takes into account the dimensionality and scale

differences between the data obtained from the two sources. Thereafter, we com-

bined the proposed clustering approach with an unbiased random forest classifier

[147] to develop a phenotype specific mathematical model that provides an accu-

rate in vivo evaluation of tumor heterogeneity and therapy efficacy.

The imaging data were acquired using 46 NMRI nu/nu mice (Charles River,

Sulzfeld, Germany) that were subcutaneously inoculated with COLO-205 tumor

cells (ATCC, Manassas, Virginia, USA). Once the tumors were large enough, the

mice were divided in two control (C-24 and C-72) and two therapy (Th-24, Th-72)

groups. The therapy animals received Db-scTRAIL [146] injections, whereas the

control mice were administered with equivalent quantities of saline. An additional

dose was given to the mice in C-72 and Th-72 groups 48 hours later. Imaging

experiments were performed approximately 24 hours after the last injection.

The measurements were performed using a hybrid PET/MRI scanner. For each

mouse, a 55 min long dynamic 18F-FDG PET scan was performed during which

multiparametric MRI images were also acquired. A total of six MRI parameters

were recorded: T2-weighted anatomy image, ADC map, pre-contrast T2 and T2*

maps, and post-contrast T2 and T2* maps. The post-contrast images were ac-

quired 2 minutes after the administration of ferumoxytol (Rienso; Takeda Phar-

maceuticals, Glattpark-Opfikon, Switzerland). The dynamic PET data was re-

constructed using ordered subsets expectation maximization algorithm into 22

frames
{

1× ∼ 30, 8 × 30, 6 × 60, 5 × 300, 2 × 600 s
}

. Due to zero or very low

activity, the first frame was discarded from any further analysis. Furthermore, be-

cause of artifacts, the pre-contrast T2* maps were also excluded. All remaining

functional PET and MRI data were co-registered to the anatomy images that were

subsequently used for the delineation of the tumors.

After each scan, the tumors were sectioned in four equal parts (2∼3 mm thick),

which were processed to obtain H&E and the following immunohistochemistry

132



2.4. Project-4

stains: CD-31 (Abcam plc, 330 Cambridge Science Park, Cambridge, UK),

cleaved caspase-3 (ASP 175; Cell Signaling Technology, Frankfurt am Main, Ger-

many), F4-80 (SP115, Acris Antibodies GmbH, Herdford, Germany) and TK-1

(Abcam plc, 330 Cambridge Science Park, Cambridge, UK). In addition to these,

Masson’s trichrome staining was also obtained. The histology slides were dig-

itized using a NanoZoomer 2.0 HT (Hamamatsu, Hamamatsu City, Japan) and

rigidly co-registered with the imaging planes as described in subsection 2.3.1.

The co-registration accuracy was quantified using the Dice similarity coefficient

(DSC) [148] and the modified Hausdorff distance [149]. Five mice (1×C-24, 1×C-

72, 1×Th-24 and 2×Th-72) were discarded from further analyses due to substan-

dard co-registration and experimental interruptions. The control tumors from C-24

and C-72 groups were pooled to form a single Control group.

Figure 2.13 shows the suggested multi-view learning framework. The tumors

from all three groups (Control, Th-24 and Th-72) were divided into a Training and

two test sets (Test-1 and Test-2). The histology and imaging data of each Train-

ing set tumor was processed using multi-view spectral clustering (MSC) to obtain

the histologically validated intratumor labels of viable, apoptosis, and fibrous and

necrotic (rest cluster) tissues (figure 2.14). The MSC derived probabilistically la-

beled voxels from all Training set tumors were merged together to obtain a collec-

tive training dataset. To enhance the purity of the three clusters in the combined

training dataset, voxels with mixed phenotype (i.e. maximum MSC probability <

0.9) were discarded and the remaining data was used to train an unbiased ran-

dom forest classifier.

MSC is an extended spectral clustering approach for multimodality datasets. The

algorithm can be divided in three phases. In the first phase (figure 2.14, gray

area), the multiparametric MRI data of each tumor in the Training set was seg-

mented using spectral clustering. The Control tumors were divided into two

compartments, viable and restControl, while the Th-24 tumors were segmented

into apoptosis and restTh−24 clusters. Figure 2.15 shows a ground truth exam-

ple of the restControl and restTh−24 clusters from a Control and a Th-24 Training
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Figure 2.13: The suggested multi-view learning workflow applied to simultaneously acquired
dynamic 18F-FDG PET/multiparametric MRI tumor data.

set tumor, respectively. The former cluster comprised of fibrous, connective and

muscle tissues, whereas the latter cluster consisted of necrotic and fibrous re-

gions. The spectral clustering parameters (the RBF kernel scale and the number

of eigenvectors) were selected by segmenting the co-registered histology slices of

the respective tumors using K -means and performing a grid search to minimize

the DSC between the histology and spectral clustering phenotypic maps. The

matched H&E and caspase-3 histology images were segmented for the Control

and Th-24 Training set tumors, respectively.

In the second phase (figure 2.14, yellow area), the dynamic 18F-FDG PET data of

the Training set tumors was segmented using spectral clustering. However, prior

to clustering, the PET frames were weighted using the Fisher scoring algorithm

[100] (subsection 1.6.5). The Fisher weights were calculated using the voxel-level

histologically validated labels obtained from the clustering of the multiparametric

MRI data in the previous step. The clustering on the weighted PET data was

performed identically to the previous phase (not fully depicted in figure 2.14).

In the third phase, a convex combination of the multiparametric MRI (WMRI) and

dynamic PET (WPET ) affinity matrices (calculated in phase 1 and 2) was used to
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Figure 2.14: The MSC algorithm. The gray, yellow and blue regions depict the segmentation of
multiparametric MRI, Fisher score weighted dynamic 18F-FDG PET and multiparametric PET/MRI
data using spectral clustering. The MRI, PET and PET/MRI affinity matrices are denoted as
WMRI , WPET and WPET/MRI , respectively and the variable α is introduced to optimize the influ-
ence of the two modalities on the final PET/MRI tissue labels.

obtain the PET/MRI affinity matrix (WPET/MRI):

WPET/MRI = α ∗WPET + (1− α) ∗WMRI .

Here, α (0 ≤ α ≤ 1) controls the contribution from each modality. The final voxel-

wise tissue labels were obtained by calculating the normalized graph Laplacian

and clustering its top eigenvectors using a GMM. The optimal value of α and

the number of eigenvectors were selected by validating the PET/MRI phenotypic

maps with the segmented histology.

In all phases above, the normalized graph Laplacian Lsym was calculated, as

detailed in the subsection 1.6.3.

The MSC example of a Control and a Th-24 Training set tumor is shown in figure
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Figure 2.15: The restControl and restTh−24 areas in histology. (A) and (B) H&E histology of a
Control and Th-24 Training set tumor. The insets depict muscle and necrotic tissues, respectively.
(C) and (D) Masson’s trichrome staining of the tumors in A and B. The trichrome inset in C shows
loose fibrous tissue. Similarly, the insets in D depict regions with necrotic and loose fibrous
tissues.

2.16. Overall, for the intratumor partitioning of the Control or Th-24 Training set

tumors multiparametric MRI data was more predictive than dynamic 18F-FDG PET

images.

Due to broad tissue heterogeneity, the restControl cluster of all Control Training set

tumors was excluded from the supervised learning step. Also, for simplicity the

restTh−24 cluster is referred to as rest (figure 2.13).

After the label filtering step, the redundancy in the combined training data was

reduced by applying a linear fit on the last 7 PET time points of each voxel and

using the fit-intercept as their substitute. Hence, the final training data consisted

of 19 input predictors (PET frames 2-15, intercept, ADC maps, pre-contrast T2

and T2* maps and post-contrast T2* map) and one categorical output variable

(apoptosis/viable/rest). The PET/MRI classifier was trained on all input features,

whereas as the PET and MRI classifiers were trained by using the features only

from the respective modality. All trained models were applied on the Test-1 and

Test-2 set tumors to predict the probability maps depicting intratumor heterogene-
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ity.

Figures 2.17A-C show the random forest proximity matrices for all trained clas-

sifiers. Unlike the intratumor segmentation step, the prognostic relevance of the

dynamic 18F-FDG PET was evident from the combined training dataset. As de-

picted by the first two diagonal matrices of the PET proximity matrix, the trained

PET classifier was able to distinguish the viable and apoptotic voxels well. Con-

versely, the third block diagonal matrix of the MRI proximity matrix shows that

multiparametric MRI features were more predictive in identifying the voxels la-

beled as rest. The combined information from both the modalities, therefore,

enabled the PET/MRI classifier to identify voxels from each one of the clusters.

The relevant features for the PET/MRI classifier are shown in figure 2.17D. The

six most predictive features included ADC, pre-contrast T2 and post-contrast T2*

maps as well as early and late PET time points, indicating the importance of diffu-

sion, perfusion and late tracer uptake information in the assessment of intratumor

heterogeneity.

The test results of the trained classifiers are shown in figure 2.18. The Control

A

Viable RestControl (Fibrosis + muscle + connective)

Apoptosis RestTh-24 (Fibrosis + necrosis)

0 2 4 6 mm

0 1 2 43 mm

H&E Caspase-3 K-means clustering maps
PET, MRI and PET/MRI 

clustering maps

C
on

tr
ol

 
T

h-
24

B

Figure 2.16: MSC segmentation of a Control and Th-24 Training set tumor. (A) Left to right: H&E
and caspase-3 histology, K -means clustering indexed image, ground truth viable and restControl
clusters, PET, MRI and PET/MRI phenotypic maps of a Control Training set tumor. (B) H&E and
caspase-3 histology, K -means clustering indexed image, ground truth apoptosis and restTh−24

clusters, PET, MRI and PET/MRI phenotypic maps of a Th-24 Training set tumor.
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and Th-24 tumors (first four) were from the Test-1 set and the Th-72 tumors (last

two) were from the Test-2 set. All three classifiers were applied on the test tumors

in a voxel-wise manner to obtain the probabilistic intratumor phenotypic maps. In

both the Control tumors, the PET classifier accurately distinguished between the

viable and apoptotic regions, whereas the MRI classifier identified the fibrous and

necrotic tissues. In the Th-24 tumors, the MRI classifier additionally recognized

the apoptotic tissue, while the PET classifier was more specific for the viable ar-

eas. Lastly, in the first Th-72 tumor, the viable and apoptotic tissues were correctly

identified by the PET classifier and the same was true in the second Th-72 tumor

for the MRI classifier. In both the tumors, the fibrous and necrotic regions were

differentiated by the MRI classifier. Due to such complementary characteristics of

PET and MRI, for every test tumor, the PET/MRI classifier resulted in an accurate

intratumor description of all the phenotypes.

The next step in this study was to assess the transferability of the multi-view learn-

ing concepts to a different tumor model. Therefore, we trained two additional

MRI-only classifiers that were applied to the multiparametric MRI data of the sub-

cutaneous glioblastoma tumors [103] (subsection 2.3.1). In order to account for

measurement bias of the two separate studies, before training, the features were

normalized to zero mean and unit standard deviation. Thereafter, only voxels

from the viable and rest clusters were included in the training of the first model

(2-class MRI classifier), whereas the entire dataset was used to train the second

model (3-class MRI classifier).

Figure 2.19 shows the intratumor tissue probability maps obtained after applying

the two classifiers on the multiparametric MRI data of the glioblastoma xenografts.

Both the models were accurate in identifying the necrotic areas. Whereas the

two-class classifier precisely characterized the viable regions, the 3-class model

misclassified some of these regions as apoptosis.

To summarize, this work provides an important and novel contribution in the field

of precision oncology and multimodality imaging. We have shown that the sug-

gested multi-view learning approach selects the most predictive features from a
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Figure 2.18: PET, MRI and PET/MRI classifier results. Column-wise, left to right: cleaved
caspase-3, H&E and Masson’s trichrome stainings of two exemplary test tumors from the Control,
Th-24 and Th-72 groups each. The respective tissue probability maps obtained from the PET, MRI
and PET/MRI models are shown in the last three columns. The arrows are color-coded according
to the figure legend.
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Figure 2.19: MRI classifiers applied to the glioblastoma tumors. Column-wise, left to right: GLUT-
1, Ki-67, caspase-3, H&E and CD-31 histology of five glioblastoma tumors. The corresponding
tissue probability maps obtained after applying the 2- and 3-class MRI classifiers. The arrows
are color-coded according to the figure legend. The muscle tissue in the second last tumor is
additionally indicated by the purple arrow.
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plethora of imaging parameters and provides a reliable voxel-wise characteriza-

tion of intratumor heterogeneity. As a proof of principle, we also showed that the

classifier trained on one tumor model can be applied to another tumor model as

well. Despite the fact that both tumor types were subcutaneously inoculated, ap-

proximately half of the Training set mice bearing colon cancer were undergoing an

EGFR-specific apoptosis inducing therapy, and therefore were subjected to very

different experimental conditions than the glioblastoma tumors. The ability of the

MRI classifier to detect the viable and necrotic tissues in the latter tumor model

signifies the specificity of the imaging biomarkers for the identified phenotypes.

Nonetheless, the transferability of the trained classifiers on orthotopic tumor mod-

els and clinical datasets is yet to be investigated. One clear limitation of this study

is the use of a supervised learning algorithm that can only consider hard tissue la-

bels as the output variable. As MSC provided probabilistic tissue probability maps

for the Training set tumors, a model utilizing the soft tissue labels [150] could have

better characterized the intratumor phenotypes.

Overall, the translational prospects of this report are quite high because the PET

and MRI experiments performed in this work are standard protocols in the clinic.

In particular, prostate cancer investigations [151] can certainly benefit from this

approach, as they occasionally include a complete surgical resection of the pri-

mary tumor [152].
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Abstract 

Advances in immunotherapy and targeted therapy have made cancer treatment 

increasingly precise. However, solid tumors are well known to exhibit inter- and 

intratumor heterogeneity, a characteristic that is closely linked to therapy resistance 

and efficacy. Therefore, a reliable characterization of intratumor phenotypes is highly 

desirable in precision oncology. Cancer biopsies often represent only a tiny snapshot of 

the tumor profile, lacking the ability to comprehensively reflect spatio-temporal 

phenotypic changes. Recent multimodal imaging techniques could provide further 

valuable insights if the complementary imaging information is sufficiently analyzed. 

Thus, we developed a novel machine learning framework that utilizes metabolic and 

functional tumor profiles, captured by dynamic (~55 minutes) positron emission 

tomography (PET) and multiparametric magnetic resonance imaging (MRI), to provide a 

precise spatial characterization of intratumor heterogeneity. By implementing a unique 

unsupervised-supervised learning setup, which has never been applied to multimodality 

tumor imaging data, we investigate the feasibility of image-derived tumor tissue labels 

in training a phenotype specific classifier. Applying the proposed multi-view learning 

framework to two different subcutaneous tumor models, we show that an accurate 

assessment of important therapy-induced phenotypes, specifically apoptotic, fibrous 

and necrotic tissues was only possible using the complementary information from 

simultaneous PET/MRI. Moreover, feature importance scores of the PET/MRI classifier 

revealed that all multiparametric MRI features and both early and late PET time points 

were relevant in distinguishing the tissue types. Lastly, histological validation confirmed 

that the predicted phenotypic maps provide a definite localization of molecularly 

distinct regions, allowing an accurate in vivo evaluation of therapy efficacy.    

144



 
 
 
 

 

Significance statement 

Tissue heterogeneity within tumors can have a profound influence on therapeutic 

success and patient survival. This study presents the prognostic benefits of 

simultaneously acquired dynamic positron emission tomography (PET) and 

multiparametric magnetic resonance imaging (MRI) data in determining intratumor 

heterogeneity. We devised a novel machine learning approach on multiparametric 

oncology data to identify the most predictive PET/MRI features and obtain 

diagnostically relevant intratumor maps of phenotypic habitats. Our findings revealed 

that, as opposed to static or single modality imaging, multiparametric PET/MRI enables 

an early characterization of therapy-induced cellular changes in the tumor. These results 

demonstrate the potential of PET/MRI and machine learning in monitoring cancer 

patients undergoing immunotherapy or targeted therapy as well as for dose-painting in 

radiation treatments.  
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Introduction 
  

Medical imaging plays a cardinal role in the diagnosis, treatment planning and response 

evaluation of patients with cancer. As opposed to omics technologies (genomics, 

proteomics, metabolomics and transcriptomics), imaging is non-invasive and can 

consequently be repeatedly applied, which may allow a complete spatial and temporal 

characterization of inter- and intratumor heterogeneity. Although the current clinical 

evaluation of solid tumors using imaging relies primarily on shape- and volume-based 

descriptors (1), efforts to incorporate quantitative imaging biomarkers into routine 

clinical practice are ongoing (2).  

After computed tomography, the two most widely used imaging modalities in oncology 

are positron emission tomography (PET) and magnetic resonance imaging (MRI). Due to 

unique imaging principles, the combination of PET and MRI has been shown to provide a 

wealth of complementary and diagnostically relevant information (3, 4). However, 

despite its benefits, the ability of the PET/MRI system to offer a “key clinical application” 

(5) and the superiority of combining the two modalities to a single modality have been 

continuously debated (6, 7). Nonetheless, there is a growing interest in using machine 

learning for understanding the highly intricate multimodality multiparametric imaging 

data (6, 8).   

The quantification of intratumor heterogeneity is a key issue in precision oncology. 

Although the PET/MRI system enables the measurement of a multitude of functional 

parameters, each corresponding to a distinct physiological view of the tumor, state-of-

the-art PET/MRI studies investigating intratumor heterogeneity have been restricted to 

only two imaging features: the standardized uptake value (from static PET) and 

diffusion-weighted MRI (7, 9, 10). Since both of these parameters have been shown to 
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exhibit significant intratumor correlations (9, 10), these studies are limited in their 

ability to probe the multifaceted intratumor microenvironment. Furthermore, in their 

translational study, Schmitz et al. (7) independently modeled each parameter as a one-

dimensional mixture of Gaussians, and consequently discarded the predictive value of 

the multidimensional PET/MRI dataset.  

Although the utility of each aforementioned imaging modality has been demonstrated 

individually (11–13), the full potential of dynamic 2-deoxy-2-(18F)fluoro-D-glucose (18F-

FDG) PET combined with multiparametric MRI in characterizing intratumor 

heterogeneity has never been exploited. Moreover, due to difficulties in obtaining 

accurate tumor tissue labels, previously published studies have not attempted to use 

supervised learning (14) and train a phenotype-specific classifier. Therefore, we aimed 

to address the following questions in this work, which together justify the important 

role of PET/MRI and machine learning in precision oncology: Is combined dynamic 18F-

FDG PET and multiparametric MRI more valuable in decoding intratumor heterogeneity 

than single modality imaging? Can machine learning aid in extracting complementary 

information from multimodal multiparametric datasets? Is training a classifier that 

identifies various intratumor phenotypes feasible using in vivo imaging? Are these 

learning concepts transferrable from one tumor model to another?  

We examined these questions by developing a novel multi-view learning framework, 

which duly combines complementary information from dynamic 18F-FDG 

PET/multiparametric MRI data to predict early changes in intratumor heterogeneity and 

monitor therapy efficacy. Specifically, we devised an unsupervised-supervised learning 

setup by extending our previously established tumor clustering algorithm (12, 13) to a 

multimodal setting and used histologically validated phenotypic maps of the multi-view 

clustering algorithm to train machine learning classifiers. Thereafter, we applied the 
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trained models to test datasets consisting of subcutaneous colon and glioblastoma 

tumors and corroborated the predicted phenotypic maps using the respective tumor 

histology. Our findings revealed that the PET/MRI data paired with multi-view learning 

provides a tool of significant prognostic value that can distinguish between multiple 

tumor tissue types and deliver reliable estimates of intratumor heterogeneity.  
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Materials and methods 

A brief description of the materials and methods is given below; a more thorough 

description can be found in the supplemental materials and methods section online. 

Animal model 

The animal experiments performed in this study were approved by local authorities. 

NMRI nu/nu mice (n = 46, Charles River, Sulzfeld, Germany) were subcutaneously 

injected with 4.5×106 COLO-205 tumor cells (ATCC, Manassas, Virginia, USA) into the 

right flank. The tumors were allowed to grow for at least 2 weeks before being studied 

in one of four groups, control (C-24 = 11 and C-72 = 12) and therapy (Th-24 = 12 and 

Th-72 = 11). The therapy groups were intravenously (i.v.) injected with 100 µg of Db-

scTRAIL (15) approximately 3 h after an intraperitoneal injection of 5 µg of Bortezomib 

(Velcade; Takeda Oncology), whereas the control groups received equal volumes of 

vehicle. The C-72 and Th-72 groups were administered a second dose 48 h later. The 

imaging experiments were performed 24 h after the first injection for the C-24 and Th-

24 groups and 72 h after the first injection for the C-72 and Th-72 groups.  

Imaging experiments 

The dynamic 18F-FDG-PET/MRI data were acquired using a PET insert inside a 7 T 

ClinScan MRI scanner (both Bruker BioSpin GmbH, Ettlingen, Germany). The animals 

were injected i.v. with 10.9±1.1 MBq of 18F-FDG during the 55-min long PET scan. T2-

weighted (T2W) anatomical images, apparent diffusion coefficient (ADC), and T2 and 

T2* maps were acquired simultaneously with MRI. Contrast-enhanced T2 and T2* maps 

were obtained two minutes after the i.v. injection of 50 μL of ferumoxytol (Rienso; 

Takeda Pharmaceuticals, Glattpark-Opfikon, Switzerland). The dynamic PET data were 

reconstructed into 22 PET frames (1×~30, 8×30, 6×60, 5×300, 2×600 s); the first PET 
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frame was not used in the data analyses. The resulting dynamic PET and MRI parameter 

images were aligned and up-sampled to the resolution of the T2W image (0.22 mm3). 

The anatomical images of the mice were subjected to tumor delineation using Inveon 

Research Workplace (Siemens Healthcare, Oxford, UK). Two mice (1×C-24 and 1×Th-72) 

were excluded from further analyses due to experimental disruptions, and another three 

mice (1×C-72, 1×TH-24 and 1×Th-72) were discarded due to inadequate imaging-

histology alignment. Moreover, all pre-contrast T2* images were excluded from the 

analyses due to image artifacts. Fig. 1A shows the measured parameters of one of the 

tumors. Due to their similar characteristics, the C-24 and C-72 tumors were combined 

into one Control (n = 21) group.  

Histology 

After each scan, the mice were sacrificed by cervical dislocation, and three equidistant 

lines (2~3 mm apart and parallel to the axial plane) were drawn on the skin while 

keeping the animals on the imaging bed. Subsequently, the tumors were superficially 

frozen using a freezing spray and dissected along the parallel lines, resulting in four 

sections (labeled as 1 – 4), as depicted in Fig. 2A. Each section was fixed in formalin, 

embedded in paraffin, sectioned into 2~3 µm thick slices, and stained with hematoxylin 

& eosin (H&E) and Masson’s trichrome. Immunohistochemistry was performed on an 

automated immunostainer (Ventana Medical Systems, Inc.) according to the company’s 

protocols for open procedures with slight modifications. The slides were stained with 

the following antibodies: cleaved caspase-3 (ASP 175; Cell Signaling Technology, 

Frankfurt am Main, Germany), CD-31 (Abcam plc, 330 Cambridge Science Park, 

Cambridge, UK), TK-1 (Abcam plc, 330 Cambridge Science Park, Cambridge, UK) and F4-

80 (SP115, Acris Antibodies GmbH, Herdford, Germany). Appropriate positive and 

negative controls were used to confirm the adequacy of staining. The stained slides were 
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digitized using a NanoZoomer 2.0 HT (Hamamatsu, Hamamatsu City, Japan). T2W 

images of the tumors were manually co-registered to the corresponding histology in 

MATLAB 2015b (The MathWorks, Natick, MA, USA). The co-registration reliability was 

evaluated by computing the modified Hausdorff distance (𝑀𝐻𝐷) (16) between the 

contours of the matched T2W and histology images. Moreover, the Dice similarity 

coefficient (𝐷𝑆𝐶) (17) was calculated to measure the extent of spatial overlap among the 

co-registered images.  

Glioblastoma tumors (12) were also stained for cleaved caspase-3.  

Multi-view learning 

A schematic of the utilized multi-view learning framework is presented in Fig. 2B. All 

tumors from the Control, Th-24 and Th-72 groups were ordered into three sets, namely 

Training, Test-1 and Test-2. Whereas the Training and Test-1 sets consisted of tumors 

from the Control and Th-24 groups, the Th-72 tumors were exclusively retained in the 

Test-2 set. The intratumor partitioning using multi-view spectral clustering (MSC) 

involved MRI, MRI-derived Fisher score-weighted PET, and PET/MRI segmentations 

(Fig. S1). Although MSC serves as a vital functional block of the developed multi-view 

learning workflow and is repeatedly mentioned in this paper, the complete details of 

these methods are provided in the supplementary data because they are beyond the 

scope of the main text.    

Voxel-level image-derived tissue labels were obtained by independently segmenting the 

PET/MRI data of each tumor in the Training set using MSC. Both the Control and Th-24 

tumors were divided into two tissue compartments. The MSC probability maps of the 

Control tumors were labeled as viable and restcontrol, and Th-24 tumors were labeled as 

apoptosis and restTh-24. Likewise, the co-registered histology images of the Control (H&E) 

and Th-24 (cleaved caspase-3) Training set tumors were segmented into viable and 
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restcontrol or apoptosis and restTh-24 regions, respectively using K-means clustering. The 

ground truth histology clustering maps were utilized to improve the MSC results by 

maximizing the 𝐷𝑆𝐶 between itself and the MSC phenotypic maps. A simple grid search 

was used to select the MSC parameters that yielded the highest 𝐷𝑆𝐶 between the MSC 

and histology segmented maps. Due to extensive tissue heterogeneity in the restcontrol 

cluster, only the viable labeled data from the Training Control tumors were utilized for 

the subsequent analyses. For ease, we hereafter refer to the restTh-24 cluster as rest.   

The voxels from the MSC labeled (as viable, apoptosis and rest) maps and the 

corresponding PET/MRI data of all the Training set tumors were pooled together into 

one combined training dataset. To refine the clusters in this dataset, voxels with low 

confidence labels (MSC probability score<0.9) were removed, and the remaining voxels 

were assigned the corresponding tissue label (viable/apoptosis/rest) with a probability 

of 1.   

For each voxel in the refined dataset, a linear fit was performed on the last 7 PET frames, 

and the fit-intercept was obtained as a surrogate feature. Finally, each voxel with 19 

PET/MRI features (ADC, T2 pre, T2 post, T2* post maps, PET frames 2-15 and Intercept) 

and a tissue label was used to train an unbiased random forest classifier. Similarly, PET- 

and MRI-only classifiers were built by training the classifier on the aforementioned 

imaging features from each of the modalities alone. Post-training, random forest 

proximity matrices and feature permutation scores were obtained from all classifiers. In 

addition, relative feature importance scores were calculated.  

The trained classifiers were applied to the tumors from both test sets in a voxel-wise 

manner, resulting in intratumor probability maps of tissue heterogeneity. The classifier 

results for the Control and Th-24 tumors from the Test-1 set were validated by 

calculating the 𝐷𝑆𝐶 between the predicated probability maps and ground truth 
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phenotypic maps produced by clustering either the H&E or cleaved caspase-3 histology 

of the respective tumors using K-means (as in the training phase). The results for the Th-

72 tumors from the Test-2 set were subjectively validated by visually corroborating the 

predicated probability maps with the H&E, cleaved caspase-3 and Masson’s trichrome 

stains of the tumors.   

To test the proposed framework on a different tumor model, two additional MRI 

classifiers were trained (as mentioned previously) on the combined MRI training data 

(this time normalized for zero mean and unit standard deviation) of the colon cancer 

xenografts. The first classifier (2-class MRI classifier) was trained only on the voxels 

labeled as viable and rest, whereas the second classifier (3-class MRI classifier) was 

trained on the entire dataset. Both classifiers were applied to the five glioblastoma 

tumors (12) in a voxel-wise manner (excluding T2* pre maps and normalized as 

mentioned above) to produce phenotypic maps that demonstrated the intratumor 

heterogeneity. These phenotypic maps were visually validated using the respective 

tumor histology (12).   

MSC was implemented in MATLAB 2015b, and an R implementation of unbiased random 

forest (cforest, party package (18)) was used for supervised learning.   

Statistical tests 

The one-sample Kolmogorov-Smirnov test was used as a test of normality. Due to non-

Gaussian distributions, the Kruskal-Wallis non-parametric test was initially applied to 

investigate possible differences among groups. Post-test individual comparisons were 

performed with the Bonferroni corrected rank sum tests, and a p-value less than 0.0167 

(target p-value of 0.05 adjusted for 3 comparisons) was considered significant.  
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Results 

Intratumor heterogeneity in the Control, Th-24 and Th-72 tumors 

The tumor volumes for all three groups are shown in Fig. 1B. Although the Th-72 tumors 

showed significant (p-value<<0.0167, Table S1) volume differences from those of the 

Control and Th-24 tumors, no size differences were present among the latter two 

groups. However, the intratumor characteristics radically changed 24 h after therapy, 

and extensive apoptosis was visible in cleaved caspase-3 stainings (Fig. 1C), indicating 

the anti-tumor effects of the therapy. At this time point, macrophage infiltration was also 

observed at the tumor periphery (Fig. S2A, right). In all Th-24 tumors, loose fibrous 

tissue was present in the non-apoptotic regions (Fig. S2B) but was unrelated to the 

therapy because similar tissue was observed in Control tumors. Furthermore, in several 

(n = 8) Th-24 tumors, the non-apoptotic regions contained mixed areas of necrotic and 

fibrous tissue (rest cluster), as depicted in Fig. S3. In the Th-72 group, the apoptotic 

fraction was reduced (Fig. 1C) and the rest cluster portions were significantly enlarged 

(Fig. S4A). Unlike the tumors in both therapy groups, the Control tumors were very 

homogeneous and mostly consisted of viable tissue. Moreover, muscle, connective, and 

fibrous tissues were focally observed in some Control tumors (Fig. S5). Due to broad 

tissue heterogeneity, these regions were excluded from the voxel-wise analysis. The MRI 

and PET correlation matrices for the combined data of all 44 tumors are shown in Fig. 

1D and 1E, respectively. Among all MRI parameters, T2 pre- and post-maps were 

moderately correlated, whereas a strong correlation was present in the last 7 frames of 

the dynamic 18F-FDG PET data.   
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Co-registration of in vivo data with tumor histology 

Fig. 2C presents two good and two poor imaging-to-histology co-registration examples. 

The angles of in-plane, vertical and horizontal axis rotations applied to match 80 (~2 

slices for each tumor) imaging slices (along the axial plane) with the corresponding 

histology are detailed in Fig. 2D. The average absolute angles for in-plane and vertical 

axis rotations were 4.4±4.9 and 1.5±3.5 degrees, respectively. The resulting 𝑀𝐻𝐷 and 

𝐷𝑆𝐶 values between all co-registered image-histology pairs are shown in Fig. 2E and 2F, 

respectively. The reasonably low average 𝑀𝐻𝐷 (0.89±0.45 mm) and high average 𝐷𝑆𝐶 

(0.91±0.04) values highlight the excellent co-registration achieved by the careful fixation 

and sectioning of tumors.  

   

MSC on multiparametric PET/MRI data provides histologically validated 

intratumor tissue labels  

Fig. 3A illustrates examples of clustering in a Control and Th-24 tumor from the Training 

set. A simple color-based K-means clustering of the histology was adequate to 

distinguish the viable or apoptotic tissue from the remaining tumor. Among the in vivo 

modalities, intratumor partitioning using multiparametric MRI was more accurate in 

discriminating fibrous, necrotic and muscle tissues from viable or apoptotic cluster than 

the clustering of 18F-FDG PET time activity curves. Nonetheless, tissue-labeled maps 

obtained by applying MSC to the PET/MRI (combined multiparametric MRI and MRI-

derived Fisher score-weighted PET) data agreed best with the segmented histology. The 

cluster-wise pooled imaging parameters (from all Training set tumors) used to train the 

PET, MRI and PET/MRI classifiers are shown in Fig. 3B.   
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Classifier trained using multiparametric PET/MRI data and MSC tissue labels 

characterizes intratumor heterogeneity 

Fig. 4A-C exhibit the proximity matrices formed using the trained PET, MRI and 

PET/MRI classifiers. In the pooled training dataset, the rest cluster was best 

distinguished from the viable and apoptosis clusters using multiparametric MRI. 

Conversely, metabolic information from PET was more significant in differentiating 

viable and apoptotic samples. The PET/MRI classifier exploited complementary 

information from each modality and separated all three clusters from each other. The 

sub-clusters in the viable and apoptosis block diagonal matrices of the PET and 

PET/MRI proximity matrices are a result of the intertumor heterogeneity within the 

Control and Th-24 Training set tumors. Fig. 4D shows the relative feature importance 

scores for the PET/MRI classifier. The most predictive MRI and PET features were ADC, 

T2 pre, and T2* post and frame 2, 5, and the Intercept, respectively.   

The PET, MRI and PET/MRI classifier results for four tumors from the Test-1 set 

(2×Control and 2×Th-24) and two tumors from the Test-2 set are shown in Fig. 5. The 

tumor in the first, second and fifth rows are reasonable examples of the specificity 

provided by the dynamic 18F-FDG PET data, enabling a precise identification of 

intratumor viable and apoptotic tissue, which was not feasible using the 

multiparametric MRI data alone. In contrast, the second, fourth and sixth row tumors 

show that the vital information captured by multiparametric MRI allows the accurate 

localization of the rest cluster, which was entirely un-identified by the PET classifier. 

Likewise, the apoptotic regions in both Th-24 tumors (third and fourth rows) were 

determined by the MRI classifier. For each example, the PET/MRI classifier provided a 

definite characterization of all three clusters by utilizing the complementary information 

from both modalities.   
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PET/MRI classifier-predicted fractional tissue volumes are indicative of therapy 

efficacy 

Fig. 6A details the average Training and Test-1 set 𝐷𝑆𝐶𝑠 of the Control and Th-24 

tumors. MSC on the PET/MRI data resulted in the highest 𝐷𝑆𝐶 for both groups in the 

Training set. The average 𝐷𝑆𝐶 of the test Control tumors for the PET classifier was 

marginally higher than that of the PET/MRI classifier, and the opposite was true for the 

test Th-24 tumors. Fig. 6B shows the fractional volumes (only for the co-registered 

slices) of all three clusters as predicted by the PET/MRI classifier for the test set tumors. 

The viable fraction of the test Control tumors significantly differed from the viable 

fractions of the test Th-24 and Th-72 tumors. Similarly, the apoptotic fraction of the test 

Th-24 tumors significantly differed from that of the test Control and Th-72 tumors. 

However, the rest fraction of the test Th-72 tumors only differed from the rest fraction of 

the test Control tumors. The p-values for the aforementioned analyses are given in Table 

S2.   

 

Multi-view learning concepts are transferable from one tumor model to another 

Fig. 7 depicts the outcomes of applying the 2- and 3-class MRI classifiers to the 

glioblastoma tumors. The 2-class model correctly identified the viable and necrotic 

areas. Additionally, the muscle tissue in one of the tumors was classified as rest. The 3-

class classifier differed from the 2-class model only in the viable portions and recognized 

false apoptotic areas in each tumor.   
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Discussion 

To the best of our knowledge, this study is the first to use the synergistic value of 

simultaneously acquired dynamic 18F-FDG PET and multiparametric MRI data to deliver 

a comprehensive profile of intratumor heterogeneity and, consequently, to non-

invasively assess therapy efficacy. We achieved these objectives by developing a novel 

multi-view learning framework that judiciously combined complementary information 

from the two modalities and built a model that quantified phenotypic changes induced 

by the therapy. In this workflow, we extended our previously established single 

modality tumor clustering method (12, 13) to a multimodal setting and successfully 

showed that MSC maps of intratumor heterogeneity can be used to train a multiclass 

classifier. Our results revealed that an accurate intratumor classification of the viable, 

apoptotic, and fibrous and necrotic tissue was only feasible using combined information 

from the dynamic PET and multiparametric MRI data. Moreover, all multiparametric 

MRI features and both early and late PET time points were relevant in distinguishing the 

tissue types, highlighting the superior value of multiparametric PET/MRI in decoding 

intratumor heterogeneity. Lastly, in addition to the colon cancer xenografts, we applied 

the trained models to the subcutaneous glioblastoma tumors and corroborated the 

classification results using the corresponding histology, which demonstrated the wide 

applicability of the proposed approach. Our unique unsupervised-supervised learning 

setup offers vast opportunities in the clinic because it aptly combines the collective 

information of multiple imaging parameters in one single map of intratumor 

heterogeneity, which could serve as an accurate indicator of the therapy efficacy.  

Despite the widespread use of supervised learning (14), its potential in identifying 

intratumoral tissues using in vivo imaging has not been demonstrated. The most 
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significant hurdle to developing a phenotype-specific classifier is the availability of 

reliable tumor tissue labels. Manual annotation of tumor histology is a time-consuming 

and tedious procedure associated with the subjective bias of the involved pathologist, 

and clinical studies are further limited due to difficulties in obtaining tumor histology 

(19). Additionally, transferring labels from histology to imaging requires voxel-wise co-

registration, which is highly challenging given the resolution differences between both 

the sources. We mitigated some of these issues by directly extracting voxel-wise labels 

from the PET/MRI data of the Control and Th-24 tumors. Therefore, instead of 

performing a voxel-wise non-rigid imaging to histology co-registration, we rigidly 

matched the imaging slices with the corresponding histology sections. By ensuring the 

careful fixation and sectioning of tumors, the ground truth (histology-derived) and MSC 

phenotypic maps could be reliably matched while optimizing the MSC parameters. This 

approach provided histology-validated probabilistic labels of intratumor heterogeneity, 

which were subsequently used to train the unbiased random forest classifiers. The 

choice of histology segmentation algorithm largely depends on the complexity of 

pathology images. Our selection of K-means clustering was primarily due to the 

effectiveness and simplicity of the method.  

This study goes beyond the earlier efforts of Gatidis et al. (20), who used the labels 

obtained from the static PET and multiparametric MRI data using a spatially constrained 

fuzzy c-means algorithm to train a support vector machine classifier for prostate cancer 

delineation. Their investigations, however, did not attempt to probe intratumor 

heterogeneity. Our MSC framework selectively merged relevant information from 

dynamic PET and multiparametric MRI data by considering the dimensionality and scale 

differences between both modalities. To minimize the influence of histology-to-imaging 

co-registration uncertainty on the tumor tissue labels, only tumors with a high 𝐷𝑆𝐶 (for 
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MSC) were included in the Training set. Furthermore, purity within each cluster of the 

combined training set was maximized by discarding voxels with a low MSC probability 

score (voxels with mixed phenotypes) in the label-filtering step (Fig. 2B). Although 

random forest is a powerful machine learning tool, it is vulnerable to differences in the 

measurement scale and unbalanced number of observations in each category when used 

for variable selection. Hence, we used unbiased random forest in the supervised learning 

step (18), which overcomes the shortcomings of standard random forest by training 

unbiased classification trees, thereby ensuring a fair variable selection and reasonable 

predictions.    

The rationale behind the specific partitioning of mice in the Training, Test-1 and Test-2 

sets (Fig. 2B) stems from the characteristics of the tumors in the Control, Th-24 and Th-

72 groups. The Control tumors mainly consisted of viable tissue, whereas the Th-24 

tumors consisted of apoptotic and the rest areas. Moreover, in many Th-24 tumors, 

viable tissue was present in patches surrounded by large apoptotic regions (Fig. S6). The 

Th-72 tumors on the other hand, contained sizable populations of all three clusters. 

Restricting these tumors in the Test-2 set provided an independent validation set, which 

adequately confirmed the predictive performance of the trained PET/MRI classifier for 

all three labels.   

Despite suitable visual agreements with the histology, the average training and test 

𝐷𝑆𝐶𝑠 (Fig. 6A, corresponding to MSC and the trained classifier probability maps, 

respectively) for the Control and Th-24 tumors were relatively low (<0.8). Several 

factors account for these results. First, these 𝐷𝑆𝐶 measures were affected by manual 

tumor delineation and co-registration inaccuracies (Fig. 2F, average 𝐷𝑆𝐶<1). Second, the 

indexed (probability maps thresholded to highest probability) MSC or classifier maps 

were used to calculate the amount of spatial overlap with the histology clustering maps. 
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As reflected by the histology and probability maps in Fig. 3A and 5, the tissue 

heterogeneity of the tumors extends beyond the spatial resolution of each voxel, causing 

the algorithms to characterize each voxel as a probabilistic combination of several 

phenotypes. In such a scenario, the most accurate assessment of the predicted spatial 

heterogeneity can only be obtained by calculating a fuzzy 𝐷𝑆𝐶 between the histology 

and MSC or classifier probability maps. A multi-class probabilistic segmentation of the 

histology requires a pixel-wise co-registration between different stains (identifying 

different phenotypes) of the same section, which can be processed by an 

unsupervised/supervised algorithm to create a ground truth map of intratumor 

heterogeneity. Furthermore, to reliably quantify the 𝐷𝑆𝐶 for each imaging slice, a fused 

3D stack of many of these ground truth maps needs to be created to eliminate the 

resolution differences between the two modalities (mm vs µm). However, such an 

investigation is well beyond the scope of this paper. Fig. 6C shows an example of a test 

Control tumor, which highlights the influence of the aforementioned factors. Although 

the PET/MRI classifier precisely characterized the viable tissue and local apoptosis in 

the tumor (shown in the inset), the 𝐷𝑆𝐶 of the PET/MRI phenotypic map was lower than 

that of the PET phenotypic map. Because the H&E histology was segmented for the 

Control tumors, apoptotic regions were absent in the ground truth phenotypic maps, 

which resulted in their better agreement with the PET classifier’s output. The inclusion 

of texture and color information (at higher magnification) from multiple histological 

stains could have enabled a detailed inspection of the intratumor heterogeneity and 

provided more accurate 𝐷𝑆𝐶 estimates of the test Control and Th-24 tumors (Fig. 6A). In 

the supervised learning phase, hard tumor tissue labels were used to train the 

classifiers; the proposed multi-view learning framework can be further improved by 
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selecting a classifier that can use the probabilistic MSC tissue labels (21) to learn the 

decision boundary between various tumor tissue classes.     

Fig. 5 provides vital evidence of the sensitivity of the multiparametric MRI data for the 

apoptosis and rest clusters and dynamic 18F-FDG data for viable cluster, except for the 

two tumors shown in the last two rows. While the PET/MRI classification map of the Th-

72 tumor in the fifth row clearly benefitted more from the dynamic PET data, the 

multiparametric MRI data alone was sufficient to identify all three clusters in the sixth 

tumor. Overall, the PET/MRI classifier extracted the most relevant information from a 

host of imaging features by weighting the prognostic influence of different input 

parameters as well as each modality. The mislabeling of the viable regions as apoptosis 

by 3-class MRI classifier in Fig. 7 indicates the poor specificity of the multiparametric 

MRI data for apoptotic tissue. These results were in agreement with the MRI-only 

phenotypic maps of the colon cancer xenografts (Fig. 5, Control tumors), where the 

mislabeled regions were rectified in the PET/MRI phenotypic maps using the 

complementary information from the dynamic PET data.     

Our approach differs from texture- and shape-based radiomics analysis (22), which 

extracts a plethora of synthetic features from radiology images to characterize tumor 

heterogeneity. Principally, in radiomics by combining the least correlated and most 

predictive of all features, a quantitative descriptor of the entire tumor is obtained. 

Although these image descriptors have proven to be indicative of intertumor 

heterogeneity and patient survival (23), they do not provide the spatial information of 

biologically distinct regions within each tumor. Moreover, the high dimensionality 

(>100) of the input data warrants a large number of studies (24) to identify the most 

robust and predictive features and avoid the curse of dimensionality. Our proposed 

multi-view learning workflow on the other hand, provides a spatial map of intratumor 
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heterogeneity by taking the voxel-level information into account. Phenotypic 

information at this scale has clear potential in clinical decision-making because 

measuring the fraction of various intratumor tissue types can provide strong clues about 

the success (25) or failure (26) of a specific therapy. In this case for instance, the 

fractional tissue volume of viable and apoptotic tissues (Fig. 6B) can be used to stratify 

the Control and Th-24 tumors, which would not be possible using just the volume (Fig. 

1B) of respective tumors. In addition, intratumor phenotypic maps may play a key role 

in linking imaging with omics by serving as a reference for image-guided tumor tissue 

biopsies. Similarly, the exact location of these biologically distinct regions might also be 

of great assistance in image-guided radiation (27) and ultrasound therapies (28).   

The proposed framework holds high translational relevance because the imaging 

parameters used in this study are routinely acquired in the clinic. Most importantly, a 

trade-off between the scan-duration and model accuracy can be made in the clinical 

examinations by acquiring only the relevant imaging parameters (Fig. 4D). As shown in 

Fig. S7, the classifier trained on the most predictive PET/MRI parameters (PET/MRIpred) 

yielded phenotypic maps comparable to that of the PET/MRI classifier for the Control 

and Th-24 tumors, but it failed to fully identify the apoptotic tissue in the Th-72 tumor. 

Additionally, the probability maps of PET/MRIpred did not manifest uncertainty in 

heterogeneous regions, which indicates its weakness in resolving highly composite 

areas. In particular, the apoptotic regions in the test PET/MRI and PET/MRIpred 

phenotypic maps exhibited the least agreement (Table S3). Nevertheless, the test viable 

and apoptosis fractions of PET/MRIpred could significantly stratify the test Control and 

Th-24 tumors. Overall, the non-invasive application of these models is highly beneficial 

in the clinic because the tumor state is a continually evolving process and demands the 

longitudinal monitoring of intratumor characteristics (29, 30).     
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In conclusion, this report provides compelling evidence to substantiate the superior 

value of dynamic 18F-FDG PET/multiparametric MRI and multi-view learning in the 

assessment of intratumor heterogeneity. Our results suggest that the complementary 

information provided by PET time activity curves and multiple MRI parameters goes 

beyond the limits of static or single modality imaging, enabling a robust voxel-wise 

characterization of the complex intratumor microenvironment. We also demonstrated 

the central role of machine learning in analyzing the multimodal multiparametric 

imaging data by devising a novel multi-view learning approach. Finally, we have shown 

that the full potential of PET/MRI can be exploited by using in vivo imaging and multi-

view learning in tandem, which can significantly augment the current standards of 

selective treatment planning and precision oncology.  
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Figure legends 

Fig. 1. In vivo parameters, volume and histology of the Control, Th-24 and Th-72 

tumors and correlation matrices. (A) The acquired PET/MRI parameters of a 

representative tumor. Top row, left to right: ADC, T2 pre, T2 post and T2* post maps. 

Bottom row, left to right: dynamic 18F-FDG PET frame 5, 10, 15 and 20. (B) Tumor 

volumes for the Control, Th-24 and Th-72 groups. The ends of the boxes represent the 

25th and 75th quantiles and the whiskers extend to the 10th and 90th quantiles of the data. 

Asterisks indicate a significant difference between the volumes of the respective groups. 

(C) H&E, cleaved caspase-3 and Masson’s trichrome stains representing the 

microenvironment of the Control, Th-24 and Th-72 group tumors. The extensive 

apoptosis indicated by the cleaved caspase-3 staining (dark brown areas) of the Th-24 

tumor demonstrates the potent anti-tumor effects of the therapy. Likewise, the Masson’s 

trichrome staining of the Th-72 tumor illustrates large populations of fibrous tissue 

(white asterisks). (D) Multiparametric MRI and (E) dynamic 18F-FDG correlation 

matrices computed from the entire PET/MRI dataset.  

 

Fig. 2. Tumor sectioning, the proposed multi-view learning framework and 

imaging-to-histology co-registration. (A) The experimental protocol used for 

partitioning the tumors. (B) The entire dataset was divided into a Training and two test 

sets. The histology and PET/MRI data of the Control and Th-24 tumors in the Training 

set were segmented using K-means and MSC, respectively. During this process, the MSC 

parameters were optimized by maximizing the 𝐷𝑆𝐶 between the two segmentation 

maps. Subsequently, the labeled MSC phenotypic maps of all Training set tumors were 

pooled into one combined training dataset. This dataset was filtered by excluding the 
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voxels with a low MSC probability (<0.9) and used to train the unbiased random forest 

classifier. Finally, the trained classifier was applied to the imaging data of the tumors 

from the test sets to obtain the maps of intratumor heterogeneity. (C) Columns, left to 

right: T2W image, co-registered histology and the corresponding overlapping contours 

of four different tumors. The two top and bottom rows depict good and bad co-

registration examples, respectively. The T2W images of the Control (row 1 and 4) and 

therapy (row 2 and 3) tumors were matched with the corresponding H&E and cleaved 

caspase-3 stains, respectively. (D) The in-plane, vertical and horizontal axis rotations 

applied to the T2W images to match the respective histology. (E) The resulting 𝑀𝐻𝐷 and 

(F) 𝐷𝑆𝐶 values between the 80 co-registered imaging-histology pairs. The ends of the 

boxes represent the 25th and 75th quantiles and the whiskers extend to the 10th and 90th 

quantiles of the data.     

 

Fig. 3. Clustering of the Training set tumors and the cluster-wise pooled imaging 

parameters. (A) K-means and MSC segmentation results of the two Training set tumors. 

Top row, left to right: H&E and cleaved caspase-3 histology of a Control tumor, the 

corresponding K-means indexed image with two clusters, the ground truth viable and 

restcontrol clusters, and the phenotypic maps derived from the PET, MRI and PET/MRI 

data during MSC. Bottom row, left to right: H&E and cleaved caspase-3 histology of a Th-

24 tumor, the corresponding K-means indexed image with two clusters, the ground truth 

apoptosis and restTh-24 clusters, and the phenotypic maps derived from the PET, MRI and 

PET/MRI data during MSC. For both tumors, the PET phenotypic map was obtained by 

segmenting the MRI-derived Fisher score-weighted PET data. (B) Cluster-wise pooled 

imaging parameters from all Training set tumors. Top row, left to right: the distributions 

of ADC, T2 pre and T2 post. Bottom row, left to right: the distributions of T2* post and 
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the intercept feature calculated by linearly fitting the last seven PET time-points of the 

Training set voxels and the cluster-wise average PET time activity curves. The ends of 

the boxes represent the 25th and 75th quantiles and the whiskers extend to the 10th and 

90th quantiles of the data.       

 

Fig. 4. Proximity matrices and relative feature importance scores. (A) PET, (B) MRI 

and (C) PET/MRI proximity matrices derived from the respective classifiers. The viable, 

apoptosis and rest clusters are denoted by V, A and R. Each element of the N×N (where, 

N = number of voxels in the Training set) proximity matrix represents the fraction of 

trees (normalized by twice the number of trees) for which the corresponding row and 

column voxels were classified as the same tissue type. The PET and MRI classifiers 

complemented each other by exhibiting relatively higher proximities in the viable and 

apoptosis clusters, and rest cluster, respectively. This feature enabled the PET/MRI 

classifier to adequately distinguish all three clusters. (D) Relative feature importance 

scores derived from the PET/MRI classifier. The six (3 PET and 3 MRI) most relevant 

features are highlighted in red.  

 

Fig. 5. Phenotypic maps predicted by the trained classifiers. Column-wise, left to 

right: H&E, cleaved caspase-3 and Masson’s trichrome histology of six representative 

test set tumors and the corresponding phenotypic maps predicted by the PET, MRI and 

PET/MRI classifiers. The top, middle and bottom pairs of the tumors belong to the test 

Control, Th-24 and Th-72 groups, respectively. The color-coded arrows in the histology 

indicate the same tissue type shown in the figure legend. For each tumor, the PET/MRI 

classifier extracted the most relevant information from the dynamic PET and 

multiparametric MRI data and provided accurate maps of the intratumor heterogeneity.  
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Fig. 6. 𝑫𝑺𝑪𝒔, test fractional volumes and intratumor heterogeneity of a Control 

tumor. (A) PET, MRI and PET/MRI 𝐷𝑆𝐶𝑠 for the Training and Test-1 set tumors (Control 

and Th-24). The training 𝐷𝑆𝐶𝑠 were computed between the MSC and histology 

phenotypic maps, whereas the test 𝐷𝑆𝐶𝑠 were calculated among the classifier and 

histology phenotypic maps. (B) The test fractional viable, apoptosis and rest volumes 

predicted by the PET/MRI classifier. The ends of the boxes represent the 25th and 75th 

quantiles and the whiskers extend to the 10th and 90th quantiles of the data. Asterisks 

indicate a significant difference between the fractional volumes of the respective groups. 

(C) Top row: cleaved caspase-3 histology of an exemplary Control tumor. The inset 

shows natural apoptosis present in the tumor. Bottom row, left to right: the associated 

PET and PET/MRI phenotypic maps and H&E histology of the tumor. Among both 

models, the PET/MRI classifier was more sensitive in identifying apoptotic tissue in the 

Control tumors. 

 

Fig. 7. Classification of the glioblastoma tumors. Column-wise, left to right: cleaved 

caspase-3, CD-31, glucose transporter 1, H&E, and Ki-67 histology of five glioblastoma 

xenografts and the associated phenotypic maps predicted by the 2- and 3-class MRI 

classifiers. The color-coded arrows in the histology indicate the same tissue type shown 

in the figure legend. Furthermore, the purple arrow in the H&E histology of the fourth 

tumor points towards the muscle tissue. The precise identification of the viable and 

necrotic areas by the 2-class MRI classifier confirms that the multi-view learning 

concepts are transferrable from one tumor model to another.         
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Supplementary materials and methods 

Animal handling 

Six-week-old NMRI nu/nu female mice were ordered from Charles River, Germany and 

allowed to acclimate in the on-site animal vivarium prior to subcutaneous injection of 

COLO-205 (4.5×106) tumor cells (periodically tested for mycoplasma contamination). 

Mice were housed in a specific pathogen free environment in separate ventilated cages. 

The vivarium’s temperature was modulated at 20±1° C and a relative humidity of 

50±10% was maintained. The animals were given water and food ad libitum and the 

lighting was adjusted to a 12 h night and day scheme. The imaging experiments were 

performed once the tumors were palpable (with a minimum length of 5 mm) and 

exhibited signs of vascularization. To maintain a deep anesthesia, mice spontaneously 

respired 1.5% isoflurane dissolved in 100% O2 at a flow rate of 0.8 L/min, before and 

during tumor inoculation and imaging experiments. FDG and ferumoxytol were injected 

through an 80-cm catheter in the tail vein of the mice while keeping them under 

anesthesia. All experiments were carried out in a specific pathogen free environment. 

Respiration of the mice was monitored during the imaging experiments using a 

pneumatic air pad connected to a monitoring and gating system (Model 1030; Small 

Animal Instruments, Stony Brook, NY, USA).    

Data acquisition 

Image acquisition 

The 80 cm tail vein catheter was filled with 10.88±1.14 MBq (decay-corrected to the 

start of the scan) of 18F-FDG in 50 μL of 0.9% NaCl prior to acquisition. After the 

PET/MRI acquisition was started, 50 μL of ferumoxytol was used to administer the 
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activity to the animal. An additional 50 μL of ferumoxytol was later injected to obtain 

contrast-enhanced T2 and T2* maps.  

MRI settings  

The following MRI sequences were acquired using a mouse brain surface coil (Bruker 

BioSpin): 

T2 weighted imaging sequence: turbo spin echo with repetition time (TR) = 3500 ms, 

echo time (TE) = 205 ms, echo train length = 161, image size = 256×160 and voxel size 

(mm3) = 0.22×0.22×0.22.   

Diffusion weighted imaging sequence: half-Fourier acquisition single-shot turbo spin 

echo (HASTE). B-values: 200, 400, 600, 800 and 1000 s/mm². HASTE settings: TR = 

5000 ms, TE = 112 ms, echo train length = 256, number of averages = 4, image size = 

192×120 and voxel size (mm3) = 0.21×0.21×1.00.   

T2 map sequence: spin echo with 12 echo times (TE = 10, 20, 30, 40, 50, 60, 70, 80, 90, 

100, 110 and 120 ms). Additional settings: TR = 2500 ms, number of averages = 2, image 

size = 192×120 and voxel size (mm3) = 0.21×0.21×1.00.   

T2* map sequence: gradient echo with 10 different echo times varying from 3 to 26.85 

ms with an interval of 2.65 ms. Additional settings: TR = 2000 ms, number of averages = 

2, image size = 192×120 and voxel size (mm3) = 0.21×0.21×1.00.  

All the maps were calculated with in-house developed software in MATLAB (R2013a) 

using linear regression on the natural logarithm transformed imaging data. The T2 maps 

were calculated without the first echo (i.e., 11 echo’s in total), whereas the T2* maps 

were calculated with all 10 echo’s. The T2 weighted and diffusion images were acquired 

with respiratory triggering. 
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PET settings 

PET images were simultaneously acquired with the MR on a commercial version of the 

PET insert mentioned in Wehrl et al. (1). For each acquisition, 60 min of data were 

acquired in list-mode format. Each dataset was binned into a 22 time-frame sinogram, 

and reconstructed with the ordered subsets expectation maximization (OSEM2D) 

algorithm in 16 iterations with 4 subsets. Reconstruction resulted in a 256×256×89 

voxel image for each frame. The first time-frame was of variable duration (~30 s), from 

start of the acquisition until the time of injection. This frame was not used in the 

analyses. All subsequent time-frames (8×30, 6×60, 5×300, 2×600 s, adding to 55 min) 

were used. Decay-correction, dead-time correction, and corrections for random were 

applied to the data, but no attenuation correction was applied.  

For the details of glioblastoma tumors the reader is referred to Katiyar et al. (2).  

Imaging to histology co-registration 

A rigid co-registration between the T2W images and histology was performed by 

selecting the matching imaging (axial) slice, followed by in-plane (clockwise or 

anticlockwise), vertical and horizontal axis rotations to fit its contours with the contours 

of the associated histology section. The Control tumors were co-registered with H&E, 

whereas the Th-24 and Th-72 tumors were matched with cleaved caspase-3 histology. 

Special care was taken to match the tumor imaging planes in the same order (14) as 

the sectioned histology (Fig. 2A). In a few cases, the histology sections were shuffled as 

41, and therefore, the entire tumor volume was rotated along the vertical axis by ~180 

degrees to keep the imaging planes in the same order. In these cases, 180 degrees was 

subtracted from the final vertical axis rotation angle (Fig. 2D). Because of the small size 

of the histology or the amount of tumor in the histology section, all four histology slices 
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of each tumor could not be adequately matched with the corresponding imaging planes 

(slice 1×4, slice 2×29, slice 3×31 and slice 4×16). The co-registration was performed 

before implementing the multi-view learning framework.  

The modified Hausdorff distance (𝑀𝐻𝐷) (3) between the contours of the matched 

imaging-histology pairs was calculated in two steps. In the first step, the directed 

distance between two sets of points 𝐼 = {𝑖1, 𝑖2, … . . , 𝑖𝑁𝑖
} and 𝐻 = {ℎ1, ℎ2, … . . , ℎ𝑁ℎ

} was 

calculated using the following expression: 

𝑑(𝐼, 𝐻) =
1

𝑁𝑖
∑ (𝑑(𝑖, 𝐻))𝑖∈𝐼 . 

Where, 𝑁𝑖 and 𝑁ℎ are total number of points in imaging set 𝐼 and histology set 𝐻, 

respectively and the distance metric between two points was defined as the Euclidean 

distance. In the second step, the directed distances 𝑑(𝐼, 𝐻) and 𝑑(𝐻, 𝐼) were combined to 

obtain the 𝑀𝐻𝐷:  

𝑀𝐻𝐷 = 𝑚𝑎𝑥(𝑑(𝐼, 𝐻), 𝑑(𝐻, 𝐼)). 

The Dice similarity coefficient (𝐷𝑆𝐶) (4) between 𝑇2𝑊 image and 𝐻𝑖𝑠𝑡𝑜𝑙𝑜𝑔𝑦 was 

calculated as follows: 

𝐷𝑆𝐶 =
2|𝑇2𝑊 ∩ 𝐻𝑖𝑠𝑡𝑜𝑙𝑜𝑔𝑦|

|𝑇2𝑊| + |𝐻𝑖𝑠𝑡𝑜𝑙𝑜𝑔𝑦|
. 

Where, |𝑇2𝑊| and |𝐻𝑖𝑠𝑡𝑜𝑙𝑜𝑔𝑦| is the area in each image.   

Multi-view spectral clustering 

The multi-view spectral clustering (MSC) workflow can be broadly divided into three 

major stages (Fig. S1). In the first (gray) stage, spectral clustering (SC) (5) was applied to 
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the multiparametric MRI data of the Training set tumors. In SC, the MRI features vectors 

(ADC, T2pre, T2post and T2*post) were used to compute the MRI affinity matrix (𝑊𝑀𝑅𝐼): 

𝑊𝑀𝑅𝐼𝑖𝑗
= {𝑒−‖𝑥𝑖−𝑥𝑗‖

2
2𝜎2⁄ if 𝑖 ≠ 𝑗

0 otherwise.
 

Where 𝜎 is the scale parameter of the radial basis function kernel and ‖𝑥𝑖 − 𝑥𝑗‖ is the 

pairwise Euclidian distance between the MRI feature vectors of voxel 𝑖 and 𝑗. 

Subsequently, the normalized Laplacian (2, 5) was derived from 𝑊𝑀𝑅𝐼 and Gaussian 

mixture modeling (GMM) was performed on the 𝑀 first Eigenvectors of the normalized 

Laplacian matrix. GMM is a well-established unsupervised segmentation method. 

Additional details of this technique are provided in Bishop (6).      

The Training Control tumors were segmented into viable and restcontrol clusters, whereas 

the Th-24 tumors were divided into apoptosis and restTh-24 clusters. Similarly, the 

previously co-registered tumor histology images (H&E for the Control tumors and 

cleaved caspase-3 for the Th-24 tumors) were segmented into the two respective 

classes. Histology segmentation was carried out by converting the RGB histology image 

into LAB color space and applying K-means clustering to the A and B channels. During 

clustering, the optimal SC parameters (𝜎 and 𝑀) were obtained by minimizing the DSC 

between the MRI and histology segmentation maps. A simple grid search was used for 

the parameter selection. Due to a complex intratumor microenvironment (Fig. S4), the 

histology images of the Th-72 tumors could not be segmented using K-means clustering.     

In the second (yellow) stage, the histologically validated MRI labels were used to 

calculate the feature scores (Fig. S8) of the dynamic PET data. The Fisher scoring 

algorithm (7) was used to weight each PET frame prior to SC. The Fisher weight 𝐹(𝑝) for 

frame 𝑝 was calculated using the following expression: 
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𝐹(𝑝) =
∑ 𝑛𝑘(𝜇𝑘

𝑝
−𝜇𝑝)

2𝑐
𝑘=1

∑ 𝑛𝑘(𝜎𝑘
𝑝

)
2𝑐

𝑘=1

, 

where 𝑐 and 𝜇𝑝 denote the total number of classes (in this case 2 for each tumor) and 

the mean of all tumor voxels for frame 𝑝. The mean and standard deviation of all the 

voxels (𝑛𝑘) in class 𝑘 corresponding to frame 𝑝 are denoted by 𝜇𝑘
𝑝 and 𝜎𝑘

𝑝. The voxels 

were grouped into different classes based on the MRI labels. For each training set tumor 

the Fisher scores were scaled between 0 and 1.  

SC on the Fisher score-weighted PET data was performed in the same manner as on the 

multiparametric MRI features (not fully shown in Fig. S1). In addition, for comparison, 

the unweighted PET data of each Training set tumor was also segmented using SC. 

Overall, the average DSC of the Control and Th-24 Training set tumors for the 

unweighted segmentation scheme was lower than that of the weighted methodology 

(Table S4).   

In the final (blue) stage, the PET/MRI affinity matrix (𝑊𝑃𝐸𝑇/𝑀𝑅𝐼) was obtained by convex 

combination of the affinity matrices (corresponding to the optimum 𝜎) of each of the 

modalities: 

𝑊𝑃𝐸𝑇/𝑀𝑅𝐼 = 𝛼 ∗ 𝑊𝑃𝐸𝑇 + (1 − 𝛼) ∗ 𝑊𝑀𝑅𝐼 . 

Here 𝑊𝑃𝐸𝑇 corresponds to the affinity matrix calculated from the Fisher score-weighted 

PET data and 𝛼 controls the influence of each modality (0 ≤ 𝛼 ≤ 1). Finally, the 

PET/MRI labels were obtained by segmenting the 𝑀 first Eigenvectors of the normalized 

Laplacian matrix using GMM. Again, a grid search was performed to choose the optimal 

parameters (𝛼 and 𝑀), while minimizing the DSC between the histology and PET/MRI 

segmentation maps. The resulting values of 𝛼 are shown in Fig. S9. 
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In each step above, the normalized Laplacian matrix was calculated using the following 

equation: 

𝐿 = 𝐷𝑖𝑛𝑣 ∗ 𝑊𝑖𝑗 ∗ 𝐷𝑖𝑛𝑣, 

where 𝐷𝑖𝑛𝑣 = 𝐷−0.5 and 𝐷 is the diagonal matrix with diagonal vector 𝑑𝑖 = ∑ 𝑊𝑖𝑗
𝑛
𝑗=1 . The 

parameter 𝑛 denotes the total number of voxels in the tumor.  

Unbiased random forest 

The settings used for the cforest function were as follows: random seed = 42 and 

number of trees = 500. The number of features randomly sampled for each split was set 

to 𝑟𝑜𝑢𝑛𝑑(√𝑃), where 𝑃 is the total number of input features. The remaining settings 

were kept to default (8).      
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Supplementary tables 

Table S1. P-values for group-wise volume comparisons. The Th-72 tumors 

significantly shrunk in size (Fig. 1B) and could be separated from the Control and Th-24 

tumors using just the tumor volume. The p-values were obtained using the Bonferroni 

corrected rank sum tests.    

Volume 

Groups 

{Control, Th-24} {Control, Th-72} {Th-24, Th-72} 

6.14×10−1 2.68×10−4 5.06×10−4 
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Table S2. P-values for group-wise fractional volume comparisons. The fractional 

volumes predicted by the PET/MRI classifier in the test set were indicative of the tissue 

heterogeneity induced by the therapy (Fig. 6B). The p-values were obtained using the 

Bonferroni corrected rank sum tests.  

Fractional volume Groups 

(cluster) {Control, Th-24} {Control, Th-72} {Th-24, Th-72} 

Viable 1.00×10−3 3.79×10−5 8.12×10−1 

Apoptosis 3.01×10−4 9.62×10−1 8.74×10−4 

Rest 7.64×10−2 2.90×10−3 2.67×10−1 
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Table S3. DSCs between the phenotypic maps predicted by the PET/MRI and 

PET/MRIpred classifiers. The classifier trained on the most relevant PET/MRI features 

provided reasonably matching results for the viable and rest clusters, however, it 

over/under-estimated apoptosis in all the test tumors, as compared to the PET/MRI 

model trained on all the features. 

Group 
Cluster 

Viable Apoptosis Rest 

Control 0.924 0.588 0.772 

Th-24 0.753 0.721 0.824 

Th-72 0.873 0.716 0.842 
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Table S4. PET frame weighting using MRI-derived Fisher score improved SC 

intratumor segmentation. The DSCs of the Fisher score-weighted and unweighted PET 

SC for the Training Control and Th-24 tumors. The former scheme improved clustering 

of the dynamic 18F-FDG PET data by giving more weight to the predictive PET time 

points.   

Segmentation scheme 
Training set tumors 

Control Th-24 

Fisher score-weighted PET 0.612 ± 0.174 0.513 ± 0.138 

Unweighted PET 0.549 ± 0.211 0.487 ± 0.137 
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Supplementary figure legends 

Fig. S1. MSC workflow. The MSC workflow broadly comprised three analysis stages 

(shaded with gray, yellow and blue). The first (gray) and second (yellow) stages utilized 

SC to segment multiparametric MRI and MRI-derived Fisher score-weighted dynamic 

18F-FDG PET data, respectively. In the third stage, complementary information from both 

the previous steps was combined to obtain PET/MRI maps of intratumor heterogeneity. 

The Control tumors in the training set were segmented into viable and restcontrol clusters, 

whereas the Th-24 tumors were divided into apoptosis and restTh-24 clusters.   

Fig. S2. Cleaved caspase-3, F4-80 and Masson’s trichrome stainings of a Th-24 

tumor. (A) Left to right: cleaved caspase-3 and F4-80 staining of an exemplary Th-24 

tumor. The images in the inset show macrophages present at the border and in the 

fibrous area of the tumor. (B) The Masson’s trichrome insets in this panel show three 

non-apoptotic regions of the Therapy-24 tumor, which majorly consist of loose fibrous 

tissue.    

Fig. S3. Necrosis in the Th-24 tumors. In several Th-24 tumors, the non-apoptotic 

regions contained mixed areas of necrotic and fibrous tissues. This is clearly depicted by 

the H&E inset in (A), where the necrotic region gradually mixes with the fibrous 

portions of the tumor (B). The two Masson’s trichrome insets also highlight the 

complexity of the rest cluster, which made the separation of these two tissue classes 

unfeasible using imaging. The rest of the tumor was predominantly apoptotic, as shown 

by the cleaved caspase-3 stain in (C). 

Fig. S4. Masson’s trichrome and H&E stainings of a Th-72 tumor. (A) In the Th-72 

tumors, the rest cluster portions were significantly enlarged. The white squares in the 
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Masson’s trichrome inset exhibit large clusters of fibrous tissue surrounding small 

necrotic areas (shown with the white circles). (B) In addition, highly composite regions 

with viable and apoptotic tissues were also present, as depicted by the H&E inset. In 

general, due to the complex intratumor characteristics, the analysis of the Th-72 tumor 

histology images was beyond the scope of color based tissue segmentation and would 

warrant sophisticated algorithmic development.   

Fig. S5. Tissue heterogeneity in the Control tumors. Focally present muscle, 

connective, and fibrous tissues in the Training set Control tumors were excluded from 

the supervised learning. The H&E (A) and Masson’s trichrome (B) insets in this image 

present one such example, where all the three tissues can be seen.      

Fig. S6. Viable tissue in the Th-24 tumors. Cleaved caspase-3 staining of two (A and B) 

Th-24 tumors. The small viable patches can be clearly seen in both insets. These patches 

were surrounded by large apoptotic regions and hence, posed significant challenges 

during tissue classification.        

Fig. S7. Comparison of the PET/MRI and PET/MRIpred classifiers. Column-wise, left 

to right: H&E, cleaved caspase-3 and Masson’s trichrome histology of the three test set 

tumors, and the corresponding phenotypic maps predicted by the PET and PET/MRIpred 

classifiers. The first, second and third row tumors belong to the Control, Th-24 and Th-

72 groups from the test set, respectively. The color-coded arrows in the histology 

indicate the same tissue type shown in the figure legend.  

Fig. S8. MRI-derived Fisher scores. The MRI-derived Fisher scores for 18F-FDG PET 

frames (2-22) of the Training set tumors. Due to low or zero activity, the first frames 

were excluded from the proposed multi-view learning analysis. The solid lines and 
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shaded regions depict the mean and standard deviation of the Fisher scores for all the 

Training Control and Th-24 tumors, respectively.  

Fig. S9. Parameter 𝜶. The distribution of the parameter 𝛼. The ends of the boxes 

represent the 25th and 75th quantiles and the whiskers extend to the 10th and 90th 

quantiles of the data.     
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Discussion and Outlook

The central goal of this doctoral thesis was to investigate the advantages of si-

multaneously acquired dynamic 18F-FDG PET/multiparametric MRI data in de-

coding intratumor heterogeneity using various unsupervised and supervised ma-

chine learning techniques.

To this end, we first addressed the elementary question of modeling the spa-

tial and temporal tumor tissue heterogeneity using longitudinally acquired two-

dimensional 18F-FDG PET SUV/DW-MRI data. Although the complexity of the

acquired dataset for each time point was relatively low, the non-trivial aspect of

this study was to model the development of various intratumor tissues in a man-

ner that matches the temporal biological characteristics of the tumor as a whole.

Therefore, we developed a novel segmentation workflow based on GMMs that

begins with the last time point PET/MRI data to obtain a histologically validated

mathematical description of the intratumor heterogeneity. Afterwards, for each of

the previous time points, the model description was kept fixed and different tu-

mor tissue fractions were identified by obtaining the posterior probabilities of all

voxels under the specified model configuration. Moreover, to account for the inter-

measurement variabilities, a scale factor was included while fitting the data from

all previous time points. As discussed previously (subsection 1.6.2 and 1.6.3),
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a GMM makes strong assumptions about the shape of the clusters, which might

not be suitable for certain datasets. In this study, however, the assumption of

Gaussian clusters was well justified due to the shape of the data distribution at

all time points (figure 2.2A, first column). Also, a strong negative intratumor cor-

relation was present between the SUV and ADC in the last two time points. A

natural consequence of the high correlation between input features is the amount

of redundancy. In our results, we observed that the distinction between the viable

and necrotic clusters was achieved mainly based on their ADC values. Nonethe-

less, SUV was relevant in identifying the viable-2 cluster and achieving an over-

all higher spatial agreement with the histology (figure 2.2A, second column). It

should be noted that the efficacy of this methodology is dependent on the choice

of the validation time point. In particular, the tissue heterogeneity in the last time

point should be representative of the phenotypic diversity to be modeled in all the

previous time points. A clear limitation of this study is the lack of histological val-

idation for the first three time points. Incorporating ground truth information from

intermediate measurements might further improve the precision of the suggested

approach.

In the next two studies we focused on the multiparametric data acquired from PET

and MRI alone and evaluated the feasibility of spectral clustering in segmenting

the high dimensional tumor datasets.

In PET, multiple characteristics of the tumor can be obtained by monitoring the

temporal distribution of a tracer. Therefore, in the second study, we simulated

the 18F-FDG PET TACs of three tumor tissue classes (mature teratoma, viable

and necrosis) and reported the benefits of clustering the TACs over parametric

maps of kinetic parameters and SUV-based segmentation. Overall, in both clin-

ical and preclinical scenarios, the weighted-spectral clustering applied to noisy

TACs provided more accurate results than all the other clustering schemes. The

misclassification error of spectral clustering on the estimated kinetic parameters

for clinical TACs was initially (at lower levels of noise) the lowest, however, its

performance deteriorated rapidly as the noise in the TACs was increased. These
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results indicate the limitations of parametric maps based voxel-wise tumor tissue

characterization, because as opposed to the TACs obtained after region averag-

ing, the voxel-wise TACs are often corrupted by significant levels of noise. Fur-

thermore, it should be noted that the accuracy of the clustering methods based on

the estimated kinetic parameters corresponds to the most optimal case for com-

partmental modeling, because the rate constants were calculated by using the

true AIFs. As shown in figure 2.5 and 2.6, commonly occurring peak amplitude

and position distortions in AIFs either underestimate or overestimate the kinetic

parameters, which would further worsen the parametric maps based estimation

of intratumor heterogeneity. Moreover, aside from peak amplitude and position

distortions, AIFs can generally not be acquired noise-free. Up to moderate noise

levels, in contrast to the noisy TACs and parametric maps based techniques, K -

means clustering on the SUV remained least effective in identifying the three tis-

sue classes. These findings clearly signify the benefits of dynamic 18F-FDG PET

measurements over the SUV. Although this study lacked the validation of spectral

clustering on clinical experimental data, a recent report by Schmitz et al. [114]

has shown the feasibility of translating a GMM based approach from preclinical to

clinical setting. Overall, the promising results of spectral clustering on preclinical

and clinical simulations as well as on the preclinical experimental data confirm

its suitability for analyzing dynamic PET tumor images and estimating the intratu-

mor heterogeneity in a voxel-wise manner. In cases where the interpretability of

kinetic parameters is more important, spectral clustering can be used in a com-

plementary way with compartmental modeling. In particular, the impact of noise

on the estimation of kinetic parameters can be reduced by using spectral cluster-

ing as a pre-processing segmentation step and performing kinetic modeling on

the mean TACs of different clusters.

In the third study we applied the suggested SRSC algorithm on the multipara-

metric MRI data of glioblastoma xenografts and compared its ability to segment

intratumor tissues with three widely utilized classical clustering algorithms (K -

means, FCM and a GMM). To validate the phenotypic maps predicted by all four

algorithms, we quantified the ground truth fractions of viable, necrotic and peri-
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necrotic tissues by delineating regions of interest on the co-registered H&E and

GLUT-1 histology images. A linear correlation analysis between the histology

and clustering tissue fractions revealed that contrary to all other techniques, only

SRSC probability maps reliably predicted the fractional population of all three tis-

sue types . In our experiments the spatial smoothness constraints were imposed

by centering a 3×3×3 window around each voxel and weighting its posterior prob-

ability with the probability average of the neighboring voxels. As all five tumors

were relatively small in size (the dimensions of the largest tumor being 27×24×29

voxels), we did not choose a bigger window while applying SRSC. In the correla-

tion analysis some of the data points originated from the same tumor (correspond-

ing to different histology slices from the same tumor), which raises the question

whether such analysis is actually justified, because the data points are not inde-

pendent. To assess whether these points introduce bias, we took their average

(for both histology and clustering tissue fractions) and recomputed the Pearson’s

correlation coefficients for each of the algorithm. This exercise resulted in an in-

crease of the Pearson’s correlation coefficient for all four methods indicating that

the original analysis was not biased, although it was conservative. Besides the

three heterogeneous tumors, the viable, connective and muscle tissues in the

two homogeneous tumors were identifiable using all clustering techniques. The

findings of this paper indicate that incorporating spatial constraints in a standard

clustering algorithm can lead to improved segmentation results and provide more

reliable intratumor quantification of imaging biomarkers. Although FCM clustering

and a GMM make strong assumptions about the cluster shapes, these techniques

can invariably benefit with such modifications, when the underlying assumptions

are partially or fully met, for instance in studies where the acquired parameters

are known to be highly correlated (figure 2.2A).

In the last paper we drew inspiration from the promising results of the two previous

studies to develop a multi-view learning approach that identified therapy-induced

changes in the tumor microenvironment by utilizing complementary information

from dynamic 18F-FDG PET/multiparametric MRI data. The proposed multi-view

learning approach is essentially an unsupervised-supervised learning workflow
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consisting of MSC and an unbiased random forest classifier. As Db-scTRAIL ther-

apy induced mass apoptosis in the treated tumors, the multiparametric PET/MRI

data of the Contol and Th-24 Training set tumors was initially segmented using

MSC to obtain the in vivo labels of viable, apoptosis and rest clusters. Thereafter,

three separate models (PET, MRI and PET/MRI) were trained using the voxel-

wise MSC labeled combined training set data and an unbiased random forest

classifier. The classification results on the Test-1 and Test-2 set tumors confirmed

that the PET/MRI classifier outperformed the PET and MRI models by selectively

combining the relevant information from each of the modalities and provided an

accurate intratumor localization of all three clusters. We subsequently tested the

additionally trained 2- and 3-class MRI-only models on the glioblastoma tumors

and found that multi-view learning concepts can be transferred from one tumor

model to another. The misclassification of viable tissue by 3-class MRI classi-

fier as apoptosis (figure 2.19) was consistent with the classification results of the

MRI classifier on the Control Test-1 set tumors (figure 2.18), which demonstrates

the prognostic value of the complementary information provided by dynamic PET

data for the PET/MRI model. Although not described in section 2.4, we also

trained a PET/MRI classifier using just the six predictive features (PET/MRIpred),

shown in figure 2.17D. In contrast to the PET/MRI model trained on the full fea-

ture set, the test results of the PET/MRIpred classifier were in weak agreement

with the apoptotic regions identified on the caspase-3 histology of the test Th-24

and Th-72 tumors. In addition, within the heterogeneous portions of the tumors,

the classification maps often lacked uncertainty. Nonetheless, the treatment and

control tumors could be stratified using the respective apoptotic and viable tissue

fractions for both the PET/MRI models. In training of the unbiased random forest

classifiers, round(
√
D) predictors were sampled for each split, as suggested by

Strobl et al. [153]. Here, D denotes the total number of predictors. A color-based

segmentation of H&E and caspase-3 histology images using K -means was ade-

quate to obtain the ground truth viable, apoptosis and rest clusters. However, this

was only applicable for the Control and Th-24 tumors. The Th-72 tumor histology

images could not be processed as such, due to extensive tissue heterogeneity of
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the tumors. To reduce the redundancy in the dynamic PET data, prior to training

the PET and PET/MRI classifiers, a linear fit was performed on the last 7 PET

time points and the fit-intercept was used as a surrogate feature. The intercept of

these time points reflects the combination of two biological processes (perfusion

and the hexokinase driven phosphorylation rate of FDG) in a complex fashion,

which are likely to work against one another in deriving its value across hetero-

geneous tissue regions. An alternative and possibly more generic approach to

mitigate this issue would be to use the average of the correlated last PET time

frames in training the PET and PET/MRI classifiers.

In conclusion, this thesis systematically presents the advantages of multiparamet-

ric and multimodality imaging for the assessment of tumor tissue heterogeneity

and therapeutic efficacy. Despite the fact that some of the methods presented in

this thesis can not be readily translated into the clinic, due to difficulties in obtain-

ing tumor histology and its alignment with imaging, they might play a pivotal role

in improving our understanding of cancer and discovering diagnostically relevant

patterns from highly intricate PET/MRI datasets. In the same vein, the pheno-

typic classifiers trained using the proposed multi-view learning approach have

great potential, as they can be applied on different tumor models with minimal

supervision.

In future work, we will therefore acquire preclinical PET/MRI datasets using ortho-

topic tumor models that closely match with an ongoing or culminated clinical trial.

The objectives of the planned future studies include the development of histolog-

ically validated phenotypic classifiers and their prospective translation on clinical

datasets. Furthermore, to obtain reliable ground truth phenotypic maps, greater

focus will be placed on the development of multi-stain automated histology anal-

ysis techniques.
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Summary

Despite a broad understanding that solid tumors exhibit significant tissue het-

erogeneity, clinical trials have not seen a remarkable development in techniques

that aid in characterizing cancer. Needle biopsies often represent only a partial

view of the tumor profile, lacking the ability to comprehensively reflect spatio-

temporal phenotypic changes. Recent multimodal multiparametric imaging tech-

niques could provide further valuable insights if the complementary imaging in-

formation is sufficiently analyzed. Therefore, in this work I developed and ap-

plied machine learning methods on multiparametric positron emission tomogra-

phy (PET) and magnetic resonance imaging (MRI) datasets, acquired using mice

bearing subcutaneous tumors, to obtain a precise spatio-temporal characteriza-

tion of intratumor heterogeneity.

In the first study, I modeled longitudinal development of viable and necrotic tissues

in subcutaneous lung cancer using multiparametric PET/MRI data and Gaussian

mixture models. The subsequent two studies used spectral clustering and its

variants to analyze dynamic PET and multiparametric MRI data, respectively and

to quantify phenotypic heterogeneity in tumors. These reports also present the

benefits of the suggested algorithms over conventional dynamic PET quantifica-

tion methods and clustering techniques. In the final study, I proposed a novel

multi-view learning framework that selectively utilized complementary information

from dynamic PET/multiparametric MRI data to predict early changes in intratu-

mor heterogeneity and monitor therapy efficacy. The results of this investigation

provide compelling evidence that the full potential of PET/MRI can be exploited

by using in vivo imaging and machine learning in tandem, which can positively
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impact the current standards of personalized treatment planning and precision

oncology.

214



Zusammenfassung

Trotz des umfassenden Verständnisses, dass solide Tumore eine sig-

nifikante Gewebe-heterogenität aufweisen, haben klinische Studien keine be-

merkenswerte Entwicklung in unterstützenden Techniken zur Charakterisierung

von Krebs erfahren. Mit Nadelbiopsien können oft nur Teilansichten eines

Tumorprofils dargestellt werden, welche die räumlich-zeitlichen phänotypis-

chen Veränderungen nicht umfassend reflektieren. Neuere multimodale und

multiparametrische Bildgebungstechniken können weitere wertvolle Erkennt-

nisse liefern, wenn die komplementären Bildgebungsinformationen ausreichend

analysiert werden. Hier setzt diese vorliegende Arbeit an, mit der ich maschinelle

Lernverfahren für multiparametrische Positronen-Emissions-Tomographie (PET)-

und Magnetresonanztomographie (MRT)-Datensätze entwickelte und implemen-

tierte. Die Datensätze wurden von Mäusen mit subkutanen Tumoren gewonnen,

um eine genaue räumlich-zeitliche Charakterisierung der intratumoralen Hetero-

genität zu erhalten.

Im Rahmen der ersten Studie modellierte ich die longitudinale Entwicklung von

gesundem und nekrotischem Gewebe bei subkutanem Lungenkrebs mit multi-

parametrischen PET/MRT-Daten und Gaußschen Mischverteilungsmodellen. Für

die nachfolgenden zwei Studien wurden Spektral Clustering und seine Vari-

anten angewandt, um dynamische PET- und multiparametrische MRT-Daten zu

analysieren und die phänotypische Heterogenität in Tumoren zu quantifizieren.

Die Ergebnisse dieser Studien zeigen die Vorteile der vorgeschlagenen Algo-

rithmen gegenüber konventionellen dynamischen Quantifizierungsmethoden und

Clustering-Techniken. In der abschließenden Studie präsentiere ich ein neuar-
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tiges Multi-View-Lernverfahren, das selektiv komplementäre Informationen aus

dynamischen PET- und multiparametrischen MRI-Daten nutzt, um frühe Verän-

derungen der intratumoralen Heterogenität vorherzusagen und die Therapiewirk-

samkeit zu überwachen. Die Ergebnisse dieser Untersuchung zeigen, wie mittels

kombinierter in vivo Bildgebung und maschinellen Lernens das volle Potenzial

der PET/MRT-Bildgebung genutzt werden kann um neue Standards in der per-

sonalisierten Behandlungsplanung und Präzisionstherapie zu ermöglichen.
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