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Abstract 

 
Animals actively move their sensory organs, often in a rhythmic manner, to gather 

information from the external environment. The movements performed to sense the world 

are often very subtle and hard to detect in recording devices. For instance, in the visual 

domain, eye movements with amplitudes smaller than a degree of visual angle can occur. 

These tiny movements, called microsaccades, are at the threshold of the resolution of most 

recording techniques and one could be tempted to ignore them when studying vision. Yet, 

they might play an important role in visual processing. My thesis shows that microsaccades 

should not be ignored, that an algorithm can detect them accurately, and that the same 

algorithm can be used to detect any other seemingly “petty” events that deserve to be 

detected among noisy signals.  

In the first part, we demonstrated that microsaccades have a long-lasting impact on 

visual processing. We designed behavioral experiments to probe visual detectability and 

reaction time for stimuli presented at various moments relative to microsaccade onset. By 

probing the behavioral performance at multiples time points, we could reconstruct a signal 

that revealed oscillations occurring during visual processing.  These oscillations occurred 

in the beta and alpha range and were synchronized to microsaccade generation. Moreover, 

the oscillations were sequential, occurring as two pulses, one in each hemifield, depending 

on the direction of the microsaccade. We also found that microsaccades are associated with 

a long-lasting increase in contrast sensitivity for stimuli presented in the same hemifield 

than their direction. These discoveries were important because they demonstrated that 

visuomotor processing is almost never exempt from the impact of subtle, seemingly 

irrelevant, movement behaviors. The results therefore established the need for accurate 

detection of microsaccades and other potentially significant events in brain activity and 

behavior. We thus designed, in a second study, a deep neural network that performs human-

level eye movements detection even in noisy eye traces. Our algorithm outperformed the 

state-of-the-art algorithm for eye movement detection as well as many commonly used 

algorithms. In a third study, we finally showed that our algorithm can be generalized to 

other types of signals by detecting complex spikes in extracellular recordings of cerebellar 

Purkinje cells. We demonstrated human-level detection of complex spikes, outperforming 

commonly used online algorithms. Furthermore, our approach also accurately estimated 

the duration of complex spikes, which provides important information about the coding of 

error in the cerebellum.  

Putting all of the above together, this thesis argues for a careful control of 

exploratory movements when studying sensory processing. It also provides the tools 

necessary to approach a problem that is common in many different fields of neuroscience: 

the detection of an event of interest in a noisy signal. 
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Part I. Scientific background 

Introduction 

 

The brain is a complex organ composed of billions of neurons sharing the 

information that is used to perform its function. Because current techniques are limited, 

neuroscientists have to study the brain by measuring either a small subsample of its neurons 

or the signal originating from the pooled activity of many neurons. Either option results in 

a noisy measurement of brain activity that can rarely be decoded with a single observation. 

This problem is often bypassed by averaging the signal over many trials. However, such 

trial averaging method imposes a necessary requirement to control as many experimental 

parameters as possible, such that trials are “identical”. For this reason, to reduce variability 

between trials, neural processing has been mainly studied by testing the effect of stimuli 

on anesthetized, immobilized, or passive animals. Yet, a growing body of evidence 

indicates that endogenous neural events and spontaneous movements play an important 

role in the computations that the brain performs. Thus, to understand sensory processing, 

one needs to take into account the active contribution of the organism that senses the world. 

In this thesis, I will develop the importance of studying active sensing using the example 

of microsaccades, which are seemingly spontaneous eye movements occurring during 

fixation. I will then describe the state-of-the-art algorithm that we designed to detect 

microsaccades in recordings of eye position. Finally, I will show that our algorithm can be 

used to detect other spontaneous or rare events and therefore be generalized to approach 

other problems in systems neuroscience, in which spontaneous or rare events are relevant 

for brain computations. This first section provides the scientific background that motivated 

this thesis. 
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1 Active perception: the example of microsaccades 

It is easy to assume that perception is a passive phenomenon. For any modality, the 

overwhelming majority of studies find correlates of perception in the neural activity 

elicited by stimuli presented to passive animals (Kandel et al., 2000). Yet, a growing body 

of evidence shows that movement and spontaneous changes in neural activity play a major 

role in sensory processing (Schroeder et al., 2010). This is the case for taste (Halpern, 1983; 

Gutierrez et al., 2010), smell (Kepecs et al., 2006), audition (Guinan J. J., 2006; Garinis et 

al., 2011), touch (Lederman and Klatzky, 1987; Hughes and Jansson, 1994), and vision 

(Kowler, 2011). Perhaps, the most studied movements impacting visual perception are 

saccades (Wurtz, 2008; Kowler, 2011). Saccades are ballistic eye movements that shift the 

gaze from one location to another in ~50 ms. In my thesis, I explored the impact of a special 

kind of saccade called microsaccade. Microsaccades are saccades occurring 1 to 3 times 

per second while maintaining fixation at a certain location. They are of special interest 

because they still occur in experiments where the paradigm imposes fixation in order to 

prevent any saccades from happening. They therefore represent a violation of the ideal of 

“identical” trials that experimentalists aspire towards, as stated above. In the following, I 

will describe the well-known effects of saccades on visual processing and show that 

microsaccades have similar impacts to those of larger saccades. 

 

1.1 Presaccadic compression of space and time 

Starting about 100 ms prior to saccade onset, a phenomenon called saccadic 

compression occurs. In this phenomenon, the perception of the position of briefly flashed 

stimuli is shifted towards the endpoint of a saccade (Matin and Pearce, 1965, 1969; Matin 

et al., 1970; Morrone et al., 1997; Ross et al., 1997). Similarly, the position of receptive 

fields in the frontal eye fields (FEF) and the lateral intraparietal cortex (LIP) are also shifted 

during this brief interval (Colby et al., 1996; Colby and Goldberg, 1999; Kusunoki and 

Goldberg, 2006; Sommer and Wurtz, 2006). This suggests a brief alteration of 

sensorimotor processing in the brain around the time of saccades. Such alteration also 

affects aspects of temporal coding, since perceptual experiments suggest that, within the 

100 ms preceding a saccade, the time interval separating two stimuli is perceived to be 

shorter (Morrone et al., 2005). Microsaccades also induce perisaccadic compression of 

space (Hafed, 2013) as well as time perception (Yu et al., 2017). Figure 1 A. depicts the 

compression of space prior to microsaccades. 

 

1.2 Presaccadic attention 

At the same time at which presaccadic compression occurs, detection performance also 

increases for targets presented close to the saccade endpoint, depicted in Figure 1 B. 

(Hoffman and Subramaniam, 1995; Deubel et al., 1996; McPeek et al., 1999; Godijn and 

Theeuwes, 2003; Gersch et al., 2004, 2008, 2009; Van der Stigchel and Theeuwes, 2005; 

Baldauf and Deubel, 2008; Rolfs et al., 2011; Rolfs and Carrasco, 2012). This increase in 

performance is present when the saccade is instructed but also when the saccade occurs 

spontaneously. Similarly, microsaccades are associated with an increase in visual 
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sensitivity prior to their onset (Hafed, 2013), and neural correlates of this phenomenon 

have been found in the superior colliculus (SC) and FEF (Chen et al., 2015).  

1.3 Saccadic suppression 

When a saccade occurs, the image projected on the retina moves substantially. Yet, we still 

see the world as stable. For this reason, many researchers have investigated visual 

processing at the time of saccade occurrence (Binda and Morrone, 2018). The consensus 

is that contrast sensitivity thresholds increase for stimuli presented during the saccade and 

even shortly before. This effect most strongly impacts stimuli with low spatial frequencies. 

Saccadic suppression has also been found with microsaccades, both at the behavioral and 

neuronal levels (Hafed and Krauzlis, 2010; Chen and Hafed, 2017). Figure 1 C depicts an 

example of this, showing a decrease in visual sensitivity in visual neurons of the superior 

colliculus around the time of microsaccades. 
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Figure 1. Microsaccade-associated changes in visual processing. A. Prior to a microsaccade, the 

position of a target is estimated closer to the fovea than it really is. B. 50 ms prior to the 

microsaccade, visual performance is increased relative to baseline. C. Around the time of 

microsaccade onset, the burst evoked by a visual stimulus in the superior colliculus is reduced 

relative to the burst for an identical stimulus presented when no microsaccade occurred. A and B 

are adapted from (Hafed, 2013) and C is adapted from (Hafed and Krauzlis, 2010) 

 

1.4 Open question 

 Microsaccades are associated with alteration of visual processing close to the time 

of their generation. It is, however, unknown whether they impact vision for the remaining 

period that separates them. If so, this will bring further evidence that vision is an active 

process even when the eye no longer moves, and it would also provide clear justification 

for developing algorithms like those presented in this thesis for the service of systems 

neuroscience. 
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2 Saccades, oscillations, and attention 

As seen above, many experiments have investigated the influences of saccades on 

the processing of stimuli presented close to the time of their generation. It is therefore 

commonly believed that saccadic influence on visual processing is short-lived. Yet, many 

electrophysiological fluctuations lasting several hundreds of milliseconds have been found 

to be reset by saccades. These fluctuations happen in frequency bands that are also linked 

to attention. In this section, I will therefore introduce the relationships between saccades, 

oscillations, and attention. 

 

2.1 Saccades reset brain oscillations 

  Saccades reset oscillatory activities at various frequency bands in the visual system 

and hippocampus (Bartlett et al., 2011; Ito et al., 2011b, 2011a; Jutras et al., 2013; Zanos 

et al., 2015). Even microsaccades reset alpha oscillations (~10 Hz) in the occipital EEG 

(Gaarder et al., 1964) and induce gamma synchrony in the LFP of macaque early visual 

cortex (Bosman et al., 2009; Lowet et al., 2015, 2016, 2018a). However, the fluctuations 

observed in LFP and EEG might be originating from distant areas in the brain and be 

observed in the visual areas only because of volume conduction (Cohen, 2017). Even if 

they are originating from visual areas, it is not known whether they have a functional 

impact on visual processing and behavior. In this thesis, I make use of a technique called 

dense sampling to show a causal link between oscillations and behavior. 

 

2.2 Dense sampling 

Dense sampling consists in probing behavioral performance (e.g. hit rate or reaction 

time) for sensory targets presented at variable times from a resetting event. A running 

average of the performance is then computed and a signal is obtained. This signal is then 

treated as an electrophysiological signal to test for the presence of oscillatory patterns 

compared to surrogate signals from permutations (Fig. 2). Dense sampling has been 

recently used to reveal periodicity in behavioral responses after a resetting by an exogenous 

cue (Fiebelkorn et al., 2011, 2013; Landau and Fries, 2012; Song et al., 2014; Drewes et 

al., 2015; Dugué et al., 2016; Re et al., 2019). Most studies using dense sampling interpret 

the observed fluctuations in behavior as a consequence of a rhythmic alternation in the 

locus of a “spotlight” of attention.  
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Figure 2: The method of dense sampling and its steps. A. A sensory stimulus is probed at various 

times relative to an event that is hypothesized to reset neural oscillations. B. The neural oscillation 

affects sensory processing such that the behavioral response to the same stimulus depends on the 

time of stimulus presentation relative to the resetting event. C. Left panel: a signal is generated 

from the many data points as a time course of behavioral performance. Right Panel: the signal is 

analyzed in the frequency domain (shown) or in the time-frequency domain. D. Statistical tests are 

obtained by shuffling the original data points in time, in order to obtain a surrogate signal and test 

the probability of observing a peak in power as strong as that observed in the original dataset. Such 

probability is estimated after making the shuffling operation a great number of times. 

  

Stimulus from one 
trial

Measured behavior  
(e.g. reaction time)

Resetting event

Time of stimulus onset

A

B

C

Frequency

P
ow

er

Hidden oscillation
in neural proces-
sing

Time of stimulus onset

Reconstructed signal

M
ea

su
re

d 
be

ha
vi

or
 Spectral analysis

D

Frequency

P
ow

er

Time of stimulus onset

Reconstructed surrogate signal

M
ea

su
re

d 
be

ha
vi

or
 Spectral analysis

Permutations

Stimuli from other 
trials



 10 

2.3 What is attention? 

According to Willam James: “Everyone knows what attention is. It is the taking 

possession by the mind, in clear and vivid form, of one out of what seem several 

simultaneously possible objects or trains of thought” (James, 1890). In reality, 

experimenters have had a very hard time making a consensus on the definition of attention 

(Fernandez-Duque and Johnson, 2002). A majority of scientists consider attention as a 

“selection operation” occurring at the level of sensory processing; that is, certain stimuli 

may be selectively processed at the expense of other, simultaneously present, stimuli. 

Neurobiologically, such selectivity may appear as a change in sensory activity to a given 

stimulus, even if the stimulus attributes are themselves physically unaltered. For example, 

some researchers call “attention” any change in neural activity correlated with the 

instruction to focus on a certain aspect of the sensory environment (Reynolds et al., 2000; 

Fries et al., 2001). Since a change in neural activity (e.g. increase in firing rate) is not 

always a synonym of better sensory processing, other researchers prefer to consider only 

an increase in behavioral performance as a marker for attention. In recent years, an 

increasing body of literature using dense sampling or studying behavioral performance as 

a function of electrophysiological measurements suggests that attention is an oscillating 

process (Buschman and Kastner, 2015). In the next section, I will describe why 

microsaccades might be a confounding factor when studying oscillatory fluctuations of 

attention. 

 

2.4 Microsaccade generation and its relation to attention 

The overwhelming majority of experiments investigating visual attention uses 

exogenous cues or central arrows to orient attention (Posner, 1980). Yet, exogenous stimuli 

as well as asymmetric central cues impact both the probability of microsaccade occurrence 

and their direction in a time dependent manner (Hafed and Clark, 2002; Engbert and Kliegl, 

2003; Laubrock et al., 2005; Pastukhov and Braun, 2010; Hafed and Ignashchenkova, 

2013; Pastukhov et al., 2013). This property, combined with the effect of microsaccades 

on visual processing mentioned earlier, might be a confounding factor when studying 

attention (Hafed, 2013; Tian et al., 2016). Microsaccades also tend to occur rhythmically 

(Bosman et al., 2009) in a self-paced manner (Amit et al., 2017) and might, therefore, drive 

the oscillations observed in the experiments mentioned in the previous section. 

 

2.5 Open question 

 Covert attention is an actively studied topic relying on experiments in which 

subjects perform fixation. Yet, microsaccade direction and frequency are systematically 

affected by the cue onset in such experiments and could be a confounding factor (given the 

active perception literature alluded to above in Section 1). Would it be sufficient to control 

for the effects of microsaccades by excluding trials in which the tested stimulus occurred 

only close to the time of a microsaccade? 
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3 Microsaccade detection: eye tracking and algorithms 

In the previous sections, I provided evidence that a seemingly spontaneously 

generated event, the microsaccade, is important for visual processing. Yet, many studies 

ignore this type of eye movement in analyses. One reason for ignoring microsaccades is 

that they are hard to detect because their amplitude can be close to the noise of the recording 

equipment for eye tracking. I will present now the two recording techniques that are most 

commonly used to detect microsaccades. I will also review the popular and state-of-the-art 

algorithms for microsaccade detection, paving the way for developing my own state-of-

the-art benchmark algorithm. 

3.1 The scleral search coil 

The scleral search coil is considered to be the most accurate technique for 

measuring eye position. It consists of recording the current induced by a uniform magnetic 

field on a coil made of thin metal wire physically attached to the eye sclera (Robinson, 

1963). By rapidly alternating the strength of the magnetic field along a given axis, one can 

induce currents in the implanted wire loop, and the amount of induced current will depend 

in a lawful manner on the angle of the eye (i.e. the angle of the wire loop) relative to the 

axis of the magnetic field (through well-known physical principles of electromagnetic 

induction). If the magnetic field is now generated across multiple axes, then changes in 

different eye movement axes, such horizontal and vertical eye position and also torsional 

rotations, can all be detected from the same implanted wire loop. This method can provide 

a very fine estimation of gaze position, down to a resolution 1 min of arc (approximately 

the spacing between individual foveal photoreceptors). However, the search coil technique 

is hard to set up. Used in non-human animals, one needs to surgically implant the wire in 

the sclera. For use in humans, a thick and uncomfortable lens holding the wire has to be 

placed onto the eye. In this case, the eye often needs to be anesthetized to prevent 

discomfort, and the experiment has to be performed in the presence of a physician 

(McCamy et al., 2015). However, because of its superior spatial resolution (Fig. 3), the 

search coil is the technique of choice for investigating microsaccades, particularly in 

animal models. 

3.2 Purkinje-image eye tracker 

The most common way to record eye movements is to illuminate the eye with an 

infrared source of light and to record the position of the Purkinje images reflected by the 

various optical elements of the eye (Collewijn, 1999). Purkinje images are reflections of 

the infrared light formed as the light ray crosses different tissues in its path. The relative 

position between the first Purkinje reflection, which is the reflection from the front surface 

of the cornea, and the center of the pupil can be used to estimate the position of gaze, and 

infrared lights are used because camera sensors can detect the infrared reflections without 

visually disturbing the subject with a very bright illuminant. This technique can be accurate 

enough to detect microsaccades but suffers from several sources of noise, like the change 

in pupil diameter and the asperity of the corneal surface (Nyström et al. 2016). Figure 3 

shows an example of an eye trace recorded both with such an eye-tracker in combination 

with a scleral search coil in a macaque monkey. Some devices, called dual Purkinje eye-
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trackers, measure the relative position of the first and the fourth Purkinje reflection. The 

fourth Purkinje reflection comes from the light ray reflecting at the rear of the eye and 

refracting at the posterior part of the lens. This technique suffers from less noise as it is not 

affected by changes in the size of the pupil. However, the dual Purkinje eye tracker requires 

the constant mechanical alignment of mirrors to the fourth Purkinje reflection by a 

servomechanism. This makes the system cumbersome to calibrate and use, and most 

laboratories avoid this eye tracker. Blinks, fast eye movements, or eccentric eye positions 

often also interrupt the acquisition of the signal. 

 

 

 

 

 
 

 

Figure 3: Simultaneous recording of eye position with a scleral search coil and a video eye tracker. 

The eye tracker uses the first Purkinje image and an estimate of the center of the pupil to calculate 

gaze position. This results in a noisier estimate of the eye position compared to the eye coil (greater 

high frequency wiggle in the green traces than in the blue traces). Moreover, the video eye tracker 

shows substantial variation in eye position before and after the saccade, which is not present in the 

coil data (e.g. the strong drift lasting >100 ms after the saccade in the upper most trace; it is not 

present in the blue trace recorded simultaneously with the coil). This is due to artifacts caused by 

pupil diameter changes in the video eye tracker. Note also that the topmost trace shows a short-

lived postsaccadic oscillation in eye position. This is likely due to oscillations of the anterior parts 

of the eye (Nyström et al., 2013; Bouzat et al., 2018), which the video eye tracker detects. The eye 

coil does not reveal strong postsaccadic oscillation because it only tracks the position of the eyeball. 
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3.3 Engbert and Mergenthaler saccade detection algorithm 

The most common way to automatically detect saccades is to set a threshold on the 

instantaneous radial velocity from an eye position trace (Fig. 4). If eye velocity exceeds 

the threshold, the time point is flagged as being part of a saccade. Because microsaccades 

are so small, their eye velocities are also low. Therefore, the velocity threshold needs to be 

as close as possible to the noise of the eye-tracker such that even the smallest microsaccade 

is detected. Engbert and Mergenthaler (Engbert and Mergenthaler, 2006) proposed a 

solution that consists of setting the threshold as a multiple of the median radial velocity 

over an entire trial. Since saccades are rare events, the median is only influenced by the 

noise in the eye tracker. This makes the threshold flexible to changes in background noise 

and increases the accuracy of the detection algorithm. Engbert and Mergenthaler’s 

algorithm needs to set a single parameter which is the factor with which the median velocity 

is multiplied to obtain a threshold. The choice of this parameter can change the 

performance of the algorithm, leading either to too many missed events (high threshold) or 

too many false alarms (low threshold) (Fig. 4).  

 

 

 

 

 
 

Figure 4: Detection of saccades using a velocity threshold. A. Horizontal and vertical eye position 

recorded with a video-based eye tracker. Two small saccades have been manually labeled. B. 
Corresponding radial eye velocity. The saccades induce peaks in eye velocity and can therefore be 

detected using a threshold on the eye velocity. A high threshold can avoid labeling the noise as 

saccades but will underestimate the duration of saccades and might miss smaller saccades. Instead, 

a lower threshold would miss less saccades but would result in more false positives. 
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3.4 Otero-Millan et al. algorithm 

To avoid the choice of arbitrary parameters, Otero-Millan and colleagues (Otero-

Millan et al., 2014) developed an unsupervised algorithm for microsaccade detection. They 

essentially used the same Engbert and Mergenthaler algorithm, but they added a means to 

effectively choose the velocity threshold in a different manner. In their approach, the 

threshold is set such that an average of 5 events per second is detected, which is a bit higher 

than the normal rate of microsaccades. This first step will select microsaccades and some 

events emerging from the noise. The rationale is then that microsaccades will be separable 

from the noise in a space composed of the peak velocity, the first acceleration peak, and 

the last acceleration peak. The microsaccades are then selected from the noise by k-mean 

clustering of the detected events in 3-dimensional space.  

 

3.5 Recent state-of-the-art algorithms 

More recently, other unsupervised algorithms have been developed that are not 

commonly used yet. However, as they have shown better performance than the algorithms 

by Engbert and Mergenthaler and Otero-Millan et al., they might become popular in the 

near future. Mihali and colleagues (Mihali et al., 2017) developed a Bayesian approach for 

microsaccade detection based on a semi-Markov model that outputs a probability for each 

time point to belong to a microsaccade or a drift. The approach developed by Mihali and 

colleagues outperforms the commonly used algorithms discussed earlier. Finally, 

Sheynikhovich and colleagues (Sheynikhovich et al., 2018) developed another method that 

first selects events using the Engbert and Mergenthaler algorithm with a low threshold 

parameter, and then separates the microsaccade from the noise by unsupervised clustering. 

The clustering is performed on the absolute velocity of the horizontal and vertical 

component of the eye trace. The Sheynikhovich algorithm outperforms all algorithms 

mentioned earlier. 

 

3.6 Detecting microsaccades during smooth pursuit 

 The detection of microsaccades is even more challenging when the target to fixate 

is moving. Under such a condition, the eye engages in a movement called smooth pursuit; 

this means that there is a sustained period of elevated instantaneous eye velocity above the 

baseline fixation velocity. The microsaccades occurring during smooth pursuit often 

compensate for the offset between the target position and the eye position and are thus 

called catch-up saccades. Catch-up saccades are particularly difficult to detect because the 

smooth pursuit is already a high velocity eye movement and thus reduces the signal gain 

by microsaccades. Moreover, saccades going into the opposite direction actually reduce 

the eye velocity. Therefore, a simple velocity threshold would miss these movements 

entirely. To address this issue, Daye and Optican (Daye and Optican, 2014) developed an 

algorithm based on a particle filter that cancels out the slow component of eye movement 

to let saccades emerge in the signal. 
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3.7 Open question 

 When manually analyzing the presence of microsaccades in eye traces, it is striking 

how many mistake automatic algorithms still make. Is it possible to design a better 

algorithm that labels microsaccades in the same way that a human would do it?   
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4 Microsaccade detection, a generalizable problem 

To correctly detect microsaccades, one would need to implement an algorithm 

knowing all the rules that discriminate a microsaccade from any noise that the eye-trace 

could contain. Expert users who label microsaccades manually exploit all such rules, 

without necessarily verbalizing them explicitly. Therefore, there are two problems in 

translating expect human performance to machine algorithms: on the one hand, the rules 

are hard to implement programmatically; on the other hand, we use them without noticing 

when manually labeling eye traces. Supervised machine learning approaches have often 

proved to be helpful in such kind of situation (Theis et al., 2016; Mathis et al., 2018). 

Moreover, machine learning approaches are flexible, such that different rules can be 

learned by the same method once new training evidence can be provided. In this thesis, I 

describe an algorithm, based on convolutional neural networks, that proved its efficacy for 

detecting not only microsaccades but also other types of eye movements and even an 

electrophysiological event called complex spike. 

    

4.1 Detecting larger saccades and post-saccadic oscillations 

In the previous section, I outlined that the detection of microsaccades is a challenging 

problem. One might think that the detection of larger saccades is not difficult because their 

velocity reaches higher peaks relative to the background noise. Yet, in the case of saccades, 

the onset and offset of the movement have velocities close to the noise of the eye-tracker 

since the eye accelerates from and decelerates towards fixation at the beginning and end of 

a saccade. Therefore, it is still a challenge is to detect the timing of large saccades 

accurately. This is of great importance because many psychophysics and electrophysiology 

experiments analyze their data relative to onsets and offsets of saccades. For instance, 

saccade onset can be used to accurately measure saccadic reaction time. Saccade offset, on 

the other hand, is the time at which a novel stable image is projected on the retina. A great 

number of studies aimed at developing algorithms for saccade detection (Andersson et al., 

2017).  

At the end of the saccade, the inertia of the movement makes the pupil move relative 

to the iris (Nyström et al., 2013; Bouzat et al., 2018). This results in so-called post saccadic 

oscillations (PSO) that last about 30 ms (see figure 3 where PSOs are visible in the video-

based eye tracker and not the search coil tracker). PSOs are challenging to detect because 

their velocity is close to that of the saccade. PSOs might be important for visual processing 

and have recently become an active topic of research (Tabernero and Artal, 2014; Hooge 

et al., 2015). 

Larsson and colleagues provided a benchmark dataset (with a video eye tracker) that 

contains saccades and PSOs labeled by human experts (Larsson et al., 2013). This 

benchmark dataset includes eye movements performed while viewing static pictures or 

moving objects. It is used by any study attempting to compare the performance of their 

algorithm to previously published algorithms. 
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4.2 Detection in other signals: the example of complex spikes 

 The problem of accurately detecting the onsets and offsets of events in a signal is 

not specific to eye movements. Similarly, the movement of other body parts or the 

spontaneous emergence of events in electrophysiological signals can be of interest in 

systems neuroscience (e.g. hand movement, ponto-geniculo-occipital waves, hippocampal 

ripples, etc.). In this thesis, we decided to tackle the problem of complex spike detection in 

extracellular recordings of cerebellar Purkinje cells. Complex spikes are high frequency 

events occurring upon excitation of the dendrites of Purkinje cells by the climbing fibers 

from the inferior olive. The shape of complex spikes differs from one cell to another, which 

makes it challenging to design an automatic algorithm for complex spike detection. Even 

within one cell, the duration of a complex spike can vary, and this variation has recently 

been suggested to encode information (Yang and Lisberger, 2014; Herzfeld et al., 2015, 

2018; Junker et al., 2018). However, in all of these studies, the duration of complex spikes 

was detected manually requiring months of work.  

 

4.3 Open question 

 Given that the problem of detecting microsaccades is encountered in other fields of 

neuroscience for other events and other signals, is it possible to design a single algorithm 

that would be used for the detection of any such event?  
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Part II Main results 

Statement of contribution 

This thesis comprises 3 publications, which are summarized in the following 

sections. The individual publications and manuscripts can be found in the annexes. 

 

 

1. Bellet, J., Chen, C.Y. and Hafed, Z.M., 2017. Sequential hemifield gating of α-

and β-behavioral performance oscillations after microsaccades. Journal of 
neurophysiology, 118(5), pp.2789-2805. 

 

I designed the project together with Z.M. Hafed. I performed the behavioral 

experiments with the human subjects as well as with one monkey. I analyzed the 

human behavioral data. I edited the paper together with Z.M. Hafed. 

 

 

 

2. Bellet, M.E.*, Bellet, J.*, Nienborg, H., Hafed, Z.M. and Berens, P., 2018. 

Human-level saccade detection performance using deep neural networks. Journal 
of neurophysiology, 121(2), pp.646-661. (* shared first authorship) 
 
I designed the study together with M.E. Bellet, Z.M. Hafed and P. Berens. I 

implemented parts of the saccade detection algorithm. I analyzed the data together 

with M.E. Bellet. I labeled manually two datasets provided in the paper.  I wrote 

the paper together with M.E. Bellet, Z.M. Hafed and P. Berens. 

 

 

 

3. Markanday, A.*, Bellet, J.*, Bellet, M.E.*, Hafed, Z.M. and Thier, P., 2019. 

Using deep neural networks to detect complex spikes of cerebellar Purkinje Cells. 

(under revision, * shared first authorship) 

 

I designed the study together with A. Markanday, M.E. Bellet, Z.M. Hafed and P. 

Thier. I designed the post-processing steps to refine the output of the algorithm. I 

analyzed the data. I wrote the paper together with A. Markanday, M.E. Bellet, 

Z.M. Hafed and P. Thier. 
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5. Long term impacts of microsaccades on visual processing 

As I described in section 1, it is well established that microsaccades influence visual 

processing for stimuli presented close to the time of their appearance. Yet, 

electrophysiological experiments suggest that some oscillatory activities are phase-locked 

to microsaccade generation. In my first study, I showed that microsaccades leave an imprint 

on visual processing that lasts several hundreds of milliseconds after their occurrence. This 

imprint is dependent on the direction of microsaccades. 

 

5.1 Microsaccades reset oscillations in the alpha and beta range 

 

5.1.1 Global effect 

Saccadic reaction time is a reliable measure of the efficiency of visual processing 

(Hafed and Krauzlis, 2010; Chen et al., 2018). Using the method of dense sampling 

(described in section 2.2), we measured saccadic reaction times of 10 human subjects for 

targets presented at various times relative to microsaccade onset. Microsaccades occurred 

spontaneously during a long fixation period and were not reset by any visual transient. 

Under these conditions, we observed oscillations in the signal obtained from the reaction 

times in the alpha/beta range that lasted for ~500 ms after the onset of microsaccades. By 

visual inspection of every single eye trace, I took care that no microsaccade or blink 

occurred between the measured microsaccade and the target stimulus appearance. Thus, 

this effect is not explained by the rhythmic nature of microsaccade generation, which lies 

anyway in a lower frequency range.  

 

5.1.2 Hemifield specific effect 

To dissect this phenomenon, we performed the same analysis as described above 

but independently for targets presented in the same hemifield or in the opposite hemifield 

relative to the microsaccade direction. This revealed that the oscillatory activity is 

composed of two pulses occurring successively in each hemifield. First, from ~100 ms to 

~400 ms, a pulse in the beta range (13-20 Hz) occurs in the same hemifield relative to the 

microsaccade direction. Then, from ~400 ms to ~600 a pulse in the alpha range (8-13 Hz) 

occurred in the opposite hemifield relative to the saccade direction.  

 

5.2 Microsaccades increase contrast sensitivity in one hemifield 

Following the same logic as in the first experiment, we tested the probability to 

detect low contrast stimuli presented at different times relative to microsaccade onset. We 

found that in the period between 100 ms and 400 ms following a microsaccade onset, the 

target was better perceived in the same hemifield as the microsaccade direction. This effect 

occurs exactly at the same period and in the same hemifield as the beta oscillations revealed 

by the first experiment.  
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6. U’n’Eye a state-of-the-art algorithm for (micro)saccade 

detection 

  We demonstrated in the first study that microsaccades impact vision for an 

extended period of time after their occurrence. Microsaccade direction lateralizes the effect 

they have on visual processing. Because of their systematic alteration by cueing, 

microsaccades are even more likely to be a confounding factor in attention experiments. 

Thus, the need for detecting microsaccades in eye traces becomes more important. Yet, 

carefully detecting microsaccades requires tedious manual labeling as no algorithm to date 

is fully satisfactory. 

6.1 Deep neural network for microsaccade detection 

We aimed at designing a machine learning algorithm that would detect 

microsaccades in eye traces like a human would do. Our constraint was to reach a 

performance that is at the level of a human expert while minimizing the number of training 

samples needed to train the algorithm. We developed a convolutional neural network called 

U’n’Eye inspired by the architecture of the U-Net image segmentation algorithm 

(Ronneberger et al., 2015). U’n’Eye is adapted for processing signals with few training 

examples. To this end, we designed it with fewer layers than the original architecture and 

included batch normalization operations that were not present in U-Net.  

U’n’Eye was tested on three different datasets of eye traces, recorded with video 

eye trackers or search coils, including microsaccades occurring during fixation or smooth 

pursuit. All dataset where entirely annotated by human experts to train and evaluate the 

performance of U’n’Eye. For every dataset, U’n’Eye outperformed every other algorithm 

that we tested. This included the classical algorithm from Engbert and Mergenthaler 

(Engbert and Mergenthaler, 2006), the unsupervised algorithm from Otero-Millan and 

colleagues (Otero-Millan et al., 2014), the last state-of-the-art algorithm for microsaccade 

detection from Sheynikhovich and colleagues (Sheynikhovich et al., 2018), and the most 

recent state-of-the-art algorithm for saccade detection from Pekkanen and Lappi (Pekkanen 

and Lappi, 2017). In fact, U’n’Eye detected microsaccades with a performance that was at 

the level of the agreement between two human experts.  

 

6.2 State-of-the-art eye movement detection algorithm 

 To further demonstrate the capacities of our algorithm, we also tested its 

performance on a benchmark dataset for eye movement classification (Larsson et al., 2013) 

described in section 4.2. U’n’Eye can be trained to classify more than two categories and 

we, therefore, tested its performance in detecting saccades, post-saccadic oscillations 

(PSO), and blinks. U’n’Eye outperformed the previous state-of-the-art algorithm designed 

for the detection of saccades and PSOs. It also labeled blinks accurately although no 

algorithm could be compared to U’n’Eye for this class of eye movement. 
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6.3 Robustness of U’n’Eye 

 We also showed that our algorithm can reach state-of-the-art performance in 

microsaccade detection with only 50 seconds of eye traces as training samples. It can 

accurately detect saccades even if some labels are missing in the training set. In a large 

cohort study, U’n’Eye can be trained with eye trace samples from a few subjects and 

generalize to detect eye movements from other new subjects. 
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7. Generalization to complex spike detection 

 As we found that a single convolutional neural network can be used for the 

detection of several types of eye movements, we considered extending its use to other types 

of events in other kinds of signals. We choose to approach the problem of complex spike 

detection in extracellular recordings of Purkinje cells in the cerebellum. 

7.1 Our algorithm detects complex spikes like a human expert 

 Human experts in complex spike detection use the local field potential trace 

together with the high-passed signal trace to spot complex spikes. We thus decided to use 

these signals as input to our network. We also increased the size of the convolutional and 

max-pooling kernels so that the span of the signal taken into consideration by the network 

to estimate a time bin was equivalent to what a human expert uses. Finally, because 

complex spikes have a similar waveform within one cell, we designed a post-processing 

step than refined the outputs of the network by selecting only events that look alike within 

one recording. Our algorithm was compared to the standard automatic approach that is 

online detection by manual selection of bounding boxes to select the complex spike 

waveform. Our algorithm outperforms, by far, the online sorting approach and detects 

complex spikes like a human expert would do. The disagreements between our algorithm 

and the human expert labeling are negligible and more often are because of mistakes from 

the human expert. 

 

7.2 Accurate detection of complex spike duration  

 The duration of complex spikes has been suggested to encode the strength of motor 

learning in the cerebellum (Yang and Lisberger, 2014). To date, measuring the duration of 

complex spikes has always been done manually since no algorithm has been developed for 

this purpose (Herzfeld et al., 2015, 2018; Junker et al., 2018). We compared the estimation 

of complex spike duration by our algorithm with that of a human expert. We found an error 

in estimation that was typically below 1 millisecond. Moreover, our algorithm tracked the 

changes in complex spike duration within one cell remarkably well. Thus, our algorithm is 

suited for studying the code that the duration of complex spikes might carry and will greatly 

speed up research in this domain. 
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Part III Discussion 

 Our studies reveal the necessity and feasibility to detect rare events in different 

signals used in systems neuroscience. We showed that microsaccades impact vision in a 

stereotypical manner for several hundreds of milliseconds after their occurrence. This 

observation revives the debate about the potential influence of microsaccades on the 

interpretation of many experiments. Therefore, it is all the more necessary to detect 

microsaccades, and the algorithm that we developed transforms this tedious task into an 

easy routine check. The tool we provide is versatile such that it can approach other 

problems where a certain event needs to be detected in a noisy signal. I will now discuss 

how our results articulate with recent scientific discoveries. 
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8 Microsaccades and attention 

In the first study that I described in section 5, microsaccades occurring in steady-

state were found to be associated with rhythmic fluctuations and a long-lasting increase in 

contrast sensitivity. Because these features are hallmarks of the presence of attention, we 

will discuss two questions that emerge from these findings. 

8.1 Microsaccades and attention: a chicken and egg problem? 

On the one hand, one might interpret that microsaccades trigger a lateralized 

increase in visual performance that would explain shifts in so-called attention observed in 

cuing experiments. On the other hand, one might believe that spontaneous changes in 

attention both trigger microsaccades and the increase in visual sensitivity observed in our 

experiments. I will review a few recent studies that tried to solve this chicken and egg 

problem. 

In a recent paper, the team of Robert Desimone (Lowet et al., 2018b) studied a 

correlate of attention in areas V4 and IT of the macaque monkey. The correlate is the 

increase of firing rate for neurons whose receptive fields are at the cued location. They 

revealed that the increase in firing rate occurred only after the occurrence of a microsaccade 

in the direction of the receptive field. Moreover, the identity of the object presented in the 

receptive field can be more readily decoded if a microsaccade directed toward the receptive 

field is generated before the stimulus presentation. These results suggest that sensory 

processing is boosted in a cueing task only after a microsaccade has occurred. The author 

interpretation of the result is that attention triggers the microsaccade, which in turn cause 

the changes in visual processing. However, the cue used in this study is perfect to attract 

microsaccades reflexively (Meyberg et al., 2017). Thus, it is more parsimonious to interpret 

the result without invoking the involvement of attention at all.  

Another way to disentangle this chicken and egg problem would be to prove that 

attention can occur when microsaccades are absent. Poletti and colleagues (Poletti et al., 

2017) performed a series of tasks probing the change of performance induced by a cue 

indicating the most likely position for a stimulus to occur. Under these conditions, the 

manual reaction time is faster and the sensitivity is higher when the cue is valid than when 

the cue is invalid or neutral. Using a high-resolution dual Purkinje eye tracker and 

controlling that no microsaccade occurred during the cue-target interval, they ruled out the 

involvement of microsaccades in the effect they observed. However, it is also contestable 

whether the changes in performance measured in this study are caused by a boost in sensory 

processing. It could be argued, on the contrary, that invalid and neutral cues are distractors 

that impair performance relative to valid cues. An important control, ignored in this study, 

would have been a condition where no cue is presented prior to the target appearance. 

Moreover, the fact that no microsaccade occurred in their specific measurement interval 

does not eliminate the fact that prior (or upcoming) microsaccades still have an influence 

on perceptual performance. 
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8.2 Rhythmic sampling of attention without microsaccade? 

I will now describe three recent studies that considered the impact of microsaccades 

in their results, but ruled it out. A thorough look at their methods reveals that the question 

is, in fact, still very much open. 

Landau and colleagues (Landau et al., 2015) measured by magnetoencephalography 

the phase-amplitude coupling of gamma oscillations nested in a theta cycle occurring in 

antiphase between hemifields. They observed that performance in detecting a target is 

correlated with the phase of this oscillatory activity. As microsaccades tend to occur 

rhythmically in the theta band, it could be that their results are a byproduct of spontaneous 

microsaccade generation. They dismiss this possibility by displaying the position of the 

eye relative to the target for the “hit” and “miss” conditions. As the eye position is not 

significantly diverging for the two conditions, they conclude that microsaccades are not 

involved in the observed effect. However, our study shows that the position of the eye is 

not a good predictor of the performance, whereas the direction of the microsaccade is. 

Averaging the eye position across trials is thus not a good control for detecting 

microsaccades. 

In another study, Spyropoulos and colleagues (Spyropoulos et al., 2018) observed 

with electrocorticogramms over the areas V1 and V4 of two monkeys that the cued location 

is associated with a decrease in theta activity. They observed microsaccades correlated with 

the theta activity but that the effect remained when excluding microsaccades. Yet, the 

detection of microsaccades was done by selecting events crossing the mean velocity of the 

eye traces plus 5 standard deviations. This is a very conservative threshold. While this 

custom-made heuristic might spot the biggest of the microsaccades, it does not ensure that 

the totality of microsaccades is detected. 

Fiebelkorn and colleagues (Fiebelkorn et al., 2018) observed a variety of oscillatory 

activities in the frontal eye field and the lateral intraparietal area that correlate with visual 

performance. Here also microsaccades are claimed to play no role in the effect they 

observe: “removing trials with microsaccades did not substantially change the pattern of 

the results or alter the statistical significance”. However, no description of the method for 

microsaccade detection is provided, and we can assume that the authors did not go through 

every eye trace to detect microsaccades manually. 

The conclusion of the three studies described above suffice for Helfrich and 

colleagues to conclude that “several studies have shown that rhythmic attentional sampling 

is not a microsaccade artifact” (Helfrich et al., 2018). However, none of these studies used 

methods that are sensitive enough to detect all microsaccades and thus, such claim cannot 

be made. We hope that the scientific community will approach the problem more 

rigorously in future studies perhaps with the help of U’n’Eye.  
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9. Futures research opportunities 

 The algorithms we developed revealed an easy and efficient way to detect events 

in noisy signals. Although they were only tested for detecting eye movements and complex 

spikes, they could provide great help in many other fields. I will now discuss other 

problems that are similar to the one approached in this thesis and that could benefit from 

using our approach. The list is not exhaustive but still reveals how general this problem is.  

9.1 Detecting other movements 

 It is now evident that visual processing is organized around the transient occurrence 

of saccades. Yet, movements have also been shown to affect sensory processing in other 

modalities.  (Halpern, 1983; Lederman and Klatzky, 1987; Hughes and Jansson, 1994; 

Guinan J. J., 2006; Kepecs et al., 2006; Gutierrez et al., 2010; Garinis et al., 2011). Studying 

active sensing is challenging because one needs first to acquire an accurate measurement 

of the movement involved in sensory sampling. Many recording devices have been 

developed for recording such movements. In olfaction, for instance, breathing patterns can 

be acquired using thermocouples that sense change in the temperature of the air flowing in 

or out of the nostrils (Kepecs et al., 2006). In hearing, the endogenously generated 

movement of the basilar membrane can be detected by recording the sound that the eardrum 

produces in reaction to this movement (Gruters et al., 2018). In the tactile domain, one can 

record movements using electromyograms (Reaz et al., 2006), magnetic coils (Markanday 

et al., 2018) or video tracking (Mathis et al., 2018). The signal resulting from such 

measurements is often noisy and detecting movements could be made easy using our 

algorithm.  

 

9.2 Detecting transient electrophysiological events 

 Our neural network could also be used for detecting a multitude of 

electrophysiological events originating in the brain.  

Sleep, alone, hosts a collection of spontaneously generated events that are 

challenging to spot: K-complex, spindles, ponto-geniculo-occipital waves, and 

hippocampal ripples. These events can be used for scoring the different stages of sleep and 

are associated with different types of memory consolidation (Diekelmann and Born, 2010). 

Therefore, their detection can have implication for fundamental and clinical research. The 

K-complex is a biphasic EEG fluctuation that occurs spontaneously or upon sensory 

stimulation during phase II of NREM sleep (Colrain, 2005). Sleep spindles also occur 

during phase II of NREM sleep (De Gennaro and Ferrara, 2003). Spindles are oscillatory 

events (12-12 Hz) generated in the thalamic reticular nucleus and propagating as a traveling 

wave through the cortex. Ponto-geniculo-occipital waves are generated during REM sleep 

in the pontine nucleus and propagate through the lateral geniculate nucleus to the occipital 

cortex (McCarley et al., 1978). Hippocampal ripples are high-frequency events occurring 

mostly during NREM sleep. They are causally involved in memory consolidation 

(Girardeau and Zugaro, 2011). The detection of K-complex, spindles, ponto-geniculo-

occipital waves, and ripples are challenging problems (Bremer et al., 1970; Jansen, 1990; 

Li et al., 2003; Sethi and Kemere, 2014; Warby et al., 2014; Lajnef et al., 2015).  
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 The brain can also generate signals that are important to detect in pathological 

conditions. For instance, spike and wave discharges occur in the same frequency band as 

sleep spindle (Beenhakker and Huguenard, 2009; Leresche et al., 2012) but are a hallmark 

of epileptic seizures. Accurately detecting their occurrence and duration is a necessary step 

when testing the effect of therapies (Venzi et al., 2016) and when trying to understand their 

etiology (Polack et al., 2007). The detection of spike and wave discharge is a hard and 

active field of research (Van Hese et al., 2009; Ovchinnikov et al., 2010; van Luijtelaar et 

al., 2016; Maksimenko et al., 2017). Even in the periods between seizures, one can detect 

events, called either “fast ripples” or “high-frequency oscillations”, that predict the 

intensity of seizures. The detection of these events is also difficult, and a plethora of studies 

attempt to address this problem  (Gardner et al., 2007; Bénar et al., 2010; Birot et al., 2013; 

Chaibi et al., 2013; López-Cuevas et al., 2013; Burnos et al., 2014; Amiri et al., 2016; 

Fedele et al., 2016). 
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