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Abstract

Animals actively move their sensory organs, often in a rhythmic manner, to gather
information from the external environment. The movements performed to sense the world
are often very subtle and hard to detect in recording devices. For instance, in the visual
domain, eye movements with amplitudes smaller than a degree of visual angle can occur.
These tiny movements, called microsaccades, are at the threshold of the resolution of most
recording techniques and one could be tempted to ignore them when studying vision. Yet,
they might play an important role in visual processing. My thesis shows that microsaccades
should not be ignored, that an algorithm can detect them accurately, and that the same
algorithm can be used to detect any other seemingly “petty” events that deserve to be
detected among noisy signals.

In the first part, we demonstrated that microsaccades have a long-lasting impact on
visual processing. We designed behavioral experiments to probe visual detectability and
reaction time for stimuli presented at various moments relative to microsaccade onset. By
probing the behavioral performance at multiples time points, we could reconstruct a signal
that revealed oscillations occurring during visual processing. These oscillations occurred
in the beta and alpha range and were synchronized to microsaccade generation. Moreover,
the oscillations were sequential, occurring as two pulses, one in each hemifield, depending
on the direction of the microsaccade. We also found that microsaccades are associated with
a long-lasting increase in contrast sensitivity for stimuli presented in the same hemifield
than their direction. These discoveries were important because they demonstrated that
visuomotor processing is almost never exempt from the impact of subtle, seemingly
irrelevant, movement behaviors. The results therefore established the need for accurate
detection of microsaccades and other potentially significant events in brain activity and
behavior. We thus designed, in a second study, a deep neural network that performs human-
level eye movements detection even in noisy eye traces. Our algorithm outperformed the
state-of-the-art algorithm for eye movement detection as well as many commonly used
algorithms. In a third study, we finally showed that our algorithm can be generalized to
other types of signals by detecting complex spikes in extracellular recordings of cerebellar
Purkinje cells. We demonstrated human-level detection of complex spikes, outperforming
commonly used online algorithms. Furthermore, our approach also accurately estimated
the duration of complex spikes, which provides important information about the coding of
error in the cerebellum.

Putting all of the above together, this thesis argues for a careful control of
exploratory movements when studying sensory processing. It also provides the tools
necessary to approach a problem that is common in many different fields of neuroscience:
the detection of an event of interest in a noisy signal.
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Part I. Scientific background

Introduction

The brain is a complex organ composed of billions of neurons sharing the
information that is used to perform its function. Because current techniques are limited,
neuroscientists have to study the brain by measuring either a small subsample of its neurons
or the signal originating from the pooled activity of many neurons. Either option results in
a noisy measurement of brain activity that can rarely be decoded with a single observation.
This problem is often bypassed by averaging the signal over many trials. However, such
trial averaging method imposes a necessary requirement to control as many experimental
parameters as possible, such that trials are “identical”. For this reason, to reduce variability
between trials, neural processing has been mainly studied by testing the effect of stimuli
on anesthetized, immobilized, or passive animals. Yet, a growing body of evidence
indicates that endogenous neural events and spontaneous movements play an important
role in the computations that the brain performs. Thus, to understand sensory processing,
one needs to take into account the active contribution of the organism that senses the world.
In this thesis, I will develop the importance of studying active sensing using the example
of microsaccades, which are seemingly spontaneous eye movements occurring during
fixation. I will then describe the state-of-the-art algorithm that we designed to detect
microsaccades in recordings of eye position. Finally, I will show that our algorithm can be
used to detect other spontaneous or rare events and therefore be generalized to approach
other problems in systems neuroscience, in which spontaneous or rare events are relevant
for brain computations. This first section provides the scientific background that motivated
this thesis.



1 Active perception: the example of microsaccades

It is easy to assume that perception is a passive phenomenon. For any modality, the
overwhelming majority of studies find correlates of perception in the neural activity
elicited by stimuli presented to passive animals (Kandel et al., 2000). Yet, a growing body
of evidence shows that movement and spontaneous changes in neural activity play a major
role in sensory processing (Schroeder et al., 2010). This is the case for taste (Halpern, 1983;
Gutierrez et al., 2010), smell (Kepecs et al., 2006), audition (Guinan J. J., 2006; Garinis et
al., 2011), touch (Lederman and Klatzky, 1987; Hughes and Jansson, 1994), and vision
(Kowler, 2011). Perhaps, the most studied movements impacting visual perception are
saccades (Wurtz, 2008; Kowler, 2011). Saccades are ballistic eye movements that shift the
gaze from one location to another in ~50 ms. In my thesis, I explored the impact of a special
kind of saccade called microsaccade. Microsaccades are saccades occurring 1 to 3 times
per second while maintaining fixation at a certain location. They are of special interest
because they still occur in experiments where the paradigm imposes fixation in order to
prevent any saccades from happening. They therefore represent a violation of the ideal of
“identical” trials that experimentalists aspire towards, as stated above. In the following, I
will describe the well-known effects of saccades on visual processing and show that
microsaccades have similar impacts to those of larger saccades.

1.1  Presaccadic compression of space and time

Starting about 100 ms prior to saccade onset, a phenomenon called saccadic
compression occurs. In this phenomenon, the perception of the position of briefly flashed
stimuli is shifted towards the endpoint of a saccade (Matin and Pearce, 1965, 1969; Matin
et al., 1970; Morrone et al., 1997; Ross et al., 1997). Similarly, the position of receptive
fields in the frontal eye fields (FEF) and the lateral intraparietal cortex (LIP) are also shifted
during this brief interval (Colby et al., 1996; Colby and Goldberg, 1999; Kusunoki and
Goldberg, 2006; Sommer and Wurtz, 2006). This suggests a brief alteration of
sensorimotor processing in the brain around the time of saccades. Such alteration also
affects aspects of temporal coding, since perceptual experiments suggest that, within the
100 ms preceding a saccade, the time interval separating two stimuli is perceived to be
shorter (Morrone et al., 2005). Microsaccades also induce perisaccadic compression of
space (Hafed, 2013) as well as time perception (Yu et al., 2017). Figure 1 A. depicts the
compression of space prior to microsaccades.

1.2  Presaccadic attention

At the same time at which presaccadic compression occurs, detection performance also
increases for targets presented close to the saccade endpoint, depicted in Figure 1 B.
(Hoffman and Subramaniam, 1995; Deubel et al., 1996; McPeek et al., 1999; Godijn and
Theeuwes, 2003; Gersch et al., 2004, 2008, 2009; Van der Stigchel and Theeuwes, 2005;
Baldauf and Deubel, 2008; Rolfs et al., 2011; Rolfs and Carrasco, 2012). This increase in
performance is present when the saccade is instructed but also when the saccade occurs
spontaneously. Similarly, microsaccades are associated with an increase in visual



sensitivity prior to their onset (Hafed, 2013), and neural correlates of this phenomenon
have been found in the superior colliculus (SC) and FEF (Chen et al., 2015).

1.3  Saccadic suppression

When a saccade occurs, the image projected on the retina moves substantially. Yet, we still
see the world as stable. For this reason, many researchers have investigated visual
processing at the time of saccade occurrence (Binda and Morrone, 2018). The consensus
is that contrast sensitivity thresholds increase for stimuli presented during the saccade and
even shortly before. This effect most strongly impacts stimuli with low spatial frequencies.
Saccadic suppression has also been found with microsaccades, both at the behavioral and
neuronal levels (Hafed and Krauzlis, 2010; Chen and Hafed, 2017). Figure 1 C depicts an
example of this, showing a decrease in visual sensitivity in visual neurons of the superior
colliculus around the time of microsaccades.
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Figure 1. Microsaccade-associated changes in visual processing. A. Prior to a microsaccade, the
position of a target is estimated closer to the fovea than it really is. B. 50 ms prior to the
microsaccade, visual performance is increased relative to baseline. C. Around the time of
microsaccade onset, the burst evoked by a visual stimulus in the superior colliculus is reduced
relative to the burst for an identical stimulus presented when no microsaccade occurred. A and B
are adapted from (Hafed, 2013) and C is adapted from (Hafed and Krauzlis, 2010)

1.4  Open question

Microsaccades are associated with alteration of visual processing close to the time
of their generation. It is, however, unknown whether they impact vision for the remaining
period that separates them. If so, this will bring further evidence that vision is an active
process even when the eye no longer moves, and it would also provide clear justification
for developing algorithms like those presented in this thesis for the service of systems
neuroscience.



2 Saccades, oscillations, and attention

As seen above, many experiments have investigated the influences of saccades on
the processing of stimuli presented close to the time of their generation. It is therefore
commonly believed that saccadic influence on visual processing is short-lived. Yet, many
electrophysiological fluctuations lasting several hundreds of milliseconds have been found
to be reset by saccades. These fluctuations happen in frequency bands that are also linked
to attention. In this section, I will therefore introduce the relationships between saccades,
oscillations, and attention.

2.1  Saccades reset brain oscillations

Saccades reset oscillatory activities at various frequency bands in the visual system
and hippocampus (Bartlett et al., 2011; Ito et al., 2011b, 2011a; Jutras et al., 2013; Zanos
et al., 2015). Even microsaccades reset alpha oscillations (~10 Hz) in the occipital EEG
(Gaarder et al., 1964) and induce gamma synchrony in the LFP of macaque early visual
cortex (Bosman et al., 2009; Lowet et al., 2015, 2016, 2018a). However, the fluctuations
observed in LFP and EEG might be originating from distant areas in the brain and be
observed in the visual areas only because of volume conduction (Cohen, 2017). Even if
they are originating from visual areas, it is not known whether they have a functional
impact on visual processing and behavior. In this thesis, I make use of a technique called
dense sampling to show a causal link between oscillations and behavior.

2.2 Dense sampling

Dense sampling consists in probing behavioral performance (e.g. hit rate or reaction
time) for sensory targets presented at variable times from a resetting event. A running
average of the performance is then computed and a signal is obtained. This signal is then
treated as an electrophysiological signal to test for the presence of oscillatory patterns
compared to surrogate signals from permutations (Fig. 2). Dense sampling has been
recently used to reveal periodicity in behavioral responses after a resetting by an exogenous
cue (Fiebelkorn et al., 2011, 2013; Landau and Fries, 2012; Song et al., 2014; Drewes et
al., 2015; Dugué et al., 2016; Re et al., 2019). Most studies using dense sampling interpret
the observed fluctuations in behavior as a consequence of a rhythmic alternation in the
locus of a “spotlight” of attention.
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Figure 2: The method of dense sampling and its steps. A. A sensory stimulus is probed at various
times relative to an event that is hypothesized to reset neural oscillations. B. The neural oscillation
affects sensory processing such that the behavioral response to the same stimulus depends on the
time of stimulus presentation relative to the resetting event. C. Left panel: a signal is generated
from the many data points as a time course of behavioral performance. Right Panel: the signal is
analyzed in the frequency domain (shown) or in the time-frequency domain. D. Statistical tests are
obtained by shuffling the original data points in time, in order to obtain a surrogate signal and test
the probability of observing a peak in power as strong as that observed in the original dataset. Such
probability is estimated after making the shuffling operation a great number of times.



2.3 What is attention?

According to Willam James: “Everyone knows what attention is. It is the taking
possession by the mind, in clear and vivid form, of one out of what seem several
simultaneously possible objects or trains of thought” (James, 1890). In reality,
experimenters have had a very hard time making a consensus on the definition of attention
(Fernandez-Duque and Johnson, 2002). A majority of scientists consider attention as a
“selection operation” occurring at the level of sensory processing; that is, certain stimuli
may be selectively processed at the expense of other, simultaneously present, stimuli.
Neurobiologically, such selectivity may appear as a change in sensory activity to a given
stimulus, even if the stimulus attributes are themselves physically unaltered. For example,
some researchers call “attention” any change in neural activity correlated with the
instruction to focus on a certain aspect of the sensory environment (Reynolds et al., 2000;
Fries et al., 2001). Since a change in neural activity (e.g. increase in firing rate) is not
always a synonym of better sensory processing, other researchers prefer to consider only
an increase in behavioral performance as a marker for attention. In recent years, an
increasing body of literature using dense sampling or studying behavioral performance as
a function of electrophysiological measurements suggests that attention is an oscillating
process (Buschman and Kastner, 2015). In the next section, I will describe why
microsaccades might be a confounding factor when studying oscillatory fluctuations of
attention.

2.4  Microsaccade generation and its relation to attention

The overwhelming majority of experiments investigating visual attention uses
exogenous cues or central arrows to orient attention (Posner, 1980). Yet, exogenous stimuli
as well as asymmetric central cues impact both the probability of microsaccade occurrence
and their direction in a time dependent manner (Hafed and Clark, 2002; Engbert and Kliegl,
2003; Laubrock et al., 2005; Pastukhov and Braun, 2010; Hafed and Ignashchenkova,
2013; Pastukhov et al., 2013). This property, combined with the effect of microsaccades
on visual processing mentioned earlier, might be a confounding factor when studying
attention (Hafed, 2013; Tian et al., 2016). Microsaccades also tend to occur rhythmically
(Bosman et al., 2009) in a self-paced manner (Amit et al., 2017) and might, therefore, drive
the oscillations observed in the experiments mentioned in the previous section.

2.5 Open question

Covert attention is an actively studied topic relying on experiments in which
subjects perform fixation. Yet, microsaccade direction and frequency are systematically
affected by the cue onset in such experiments and could be a confounding factor (given the
active perception literature alluded to above in Section 1). Would it be sufficient to control
for the effects of microsaccades by excluding trials in which the tested stimulus occurred
only close to the time of a microsaccade?
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3 Microsaccade detection: eye tracking and algorithms

In the previous sections, I provided evidence that a seemingly spontaneously
generated event, the microsaccade, is important for visual processing. Yet, many studies
ignore this type of eye movement in analyses. One reason for ignoring microsaccades is
that they are hard to detect because their amplitude can be close to the noise of the recording
equipment for eye tracking. I will present now the two recording techniques that are most
commonly used to detect microsaccades. I will also review the popular and state-of-the-art
algorithms for microsaccade detection, paving the way for developing my own state-of-
the-art benchmark algorithm.

3.1 The scleral search coil

The scleral search coil is considered to be the most accurate technique for
measuring eye position. It consists of recording the current induced by a uniform magnetic
field on a coil made of thin metal wire physically attached to the eye sclera (Robinson,
1963). By rapidly alternating the strength of the magnetic field along a given axis, one can
induce currents in the implanted wire loop, and the amount of induced current will depend
in a lawful manner on the angle of the eye (i.e. the angle of the wire loop) relative to the
axis of the magnetic field (through well-known physical principles of electromagnetic
induction). If the magnetic field is now generated across multiple axes, then changes in
different eye movement axes, such horizontal and vertical eye position and also torsional
rotations, can all be detected from the same implanted wire loop. This method can provide
a very fine estimation of gaze position, down to a resolution 1 min of arc (approximately
the spacing between individual foveal photoreceptors). However, the search coil technique
is hard to set up. Used in non-human animals, one needs to surgically implant the wire in
the sclera. For use in humans, a thick and uncomfortable lens holding the wire has to be
placed onto the eye. In this case, the eye often needs to be anesthetized to prevent
discomfort, and the experiment has to be performed in the presence of a physician
(McCamy et al., 2015). However, because of its superior spatial resolution (Fig. 3), the
search coil is the technique of choice for investigating microsaccades, particularly in
animal models.

3.2 Purkinje-image eye tracker

The most common way to record eye movements is to illuminate the eye with an
infrared source of light and to record the position of the Purkinje images reflected by the
various optical elements of the eye (Collewijn, 1999). Purkinje images are reflections of
the infrared light formed as the light ray crosses different tissues in its path. The relative
position between the first Purkinje reflection, which is the reflection from the front surface
of the cornea, and the center of the pupil can be used to estimate the position of gaze, and
infrared lights are used because camera sensors can detect the infrared reflections without
visually disturbing the subject with a very bright illuminant. This technique can be accurate
enough to detect microsaccades but suffers from several sources of noise, like the change
in pupil diameter and the asperity of the corneal surface (Nystrom et al. 2016). Figure 3
shows an example of an eye trace recorded both with such an eye-tracker in combination
with a scleral search coil in a macaque monkey. Some devices, called dual Purkinje eye-
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trackers, measure the relative position of the first and the fourth Purkinje reflection. The
fourth Purkinje reflection comes from the light ray reflecting at the rear of the eye and
refracting at the posterior part of the lens. This technique suffers from less noise as it is not
affected by changes in the size of the pupil. However, the dual Purkinje eye tracker requires
the constant mechanical alignment of mirrors to the fourth Purkinje reflection by a
servomechanism. This makes the system cumbersome to calibrate and use, and most
laboratories avoid this eye tracker. Blinks, fast eye movements, or eccentric eye positions
often also interrupt the acquisition of the signal.

—— Video eye tracker
—— Eye caoll

Vertical eye position

05°

100 ms

W

Figure 3: Simultaneous recording of eye position with a scleral search coil and a video eye tracker.
The eye tracker uses the first Purkinje image and an estimate of the center of the pupil to calculate
gaze position. This results in a noisier estimate of the eye position compared to the eye coil (greater
high frequency wiggle in the green traces than in the blue traces). Moreover, the video eye tracker
shows substantial variation in eye position before and after the saccade, which is not present in the
coil data (e.g. the strong drift lasting >100 ms after the saccade in the upper most trace; it is not
present in the blue trace recorded simultaneously with the coil). This is due to artifacts caused by
pupil diameter changes in the video eye tracker. Note also that the topmost trace shows a short-
lived postsaccadic oscillation in eye position. This is likely due to oscillations of the anterior parts
of the eye (Nystrom et al., 2013; Bouzat et al., 2018), which the video eye tracker detects. The eye
coil does not reveal strong postsaccadic oscillation because it only tracks the position of the eyeball.

Horizontal eye position
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3.3  Engbert and Mergenthaler saccade detection algorithm

The most common way to automatically detect saccades is to set a threshold on the
instantaneous radial velocity from an eye position trace (Fig. 4). If eye velocity exceeds
the threshold, the time point is flagged as being part of a saccade. Because microsaccades
are so small, their eye velocities are also low. Therefore, the velocity threshold needs to be
as close as possible to the noise of the eye-tracker such that even the smallest microsaccade
is detected. Engbert and Mergenthaler (Engbert and Mergenthaler, 2006) proposed a
solution that consists of setting the threshold as a multiple of the median radial velocity
over an entire trial. Since saccades are rare events, the median is only influenced by the
noise in the eye tracker. This makes the threshold flexible to changes in background noise
and increases the accuracy of the detection algorithm. Engbert and Mergenthaler’s
algorithm needs to set a single parameter which is the factor with which the median velocity
is multiplied to obtain a threshold. The choice of this parameter can change the
performance of the algorithm, leading either to too many missed events (high threshold) or
too many false alarms (low threshold) (Fig. 4).

Horizontal 4___/"7 Saccades
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Figure 4: Detection of saccades using a velocity threshold. A. Horizontal and vertical eye position
recorded with a video-based eye tracker. Two small saccades have been manually labeled. B.
Corresponding radial eye velocity. The saccades induce peaks in eye velocity and can therefore be
detected using a threshold on the eye velocity. A high threshold can avoid labeling the noise as
saccades but will underestimate the duration of saccades and might miss smaller saccades. Instead,
a lower threshold would miss less saccades but would result in more false positives.
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3.4 Otero-Millan et al. algorithm

To avoid the choice of arbitrary parameters, Otero-Millan and colleagues (Otero-
Millan et al., 2014) developed an unsupervised algorithm for microsaccade detection. They
essentially used the same Engbert and Mergenthaler algorithm, but they added a means to
effectively choose the velocity threshold in a different manner. In their approach, the
threshold is set such that an average of 5 events per second is detected, which is a bit higher
than the normal rate of microsaccades. This first step will select microsaccades and some
events emerging from the noise. The rationale is then that microsaccades will be separable
from the noise in a space composed of the peak velocity, the first acceleration peak, and
the last acceleration peak. The microsaccades are then selected from the noise by k-mean
clustering of the detected events in 3-dimensional space.

3.5 Recent state-of-the-art algorithms

More recently, other unsupervised algorithms have been developed that are not
commonly used yet. However, as they have shown better performance than the algorithms
by Engbert and Mergenthaler and Otero-Millan et al., they might become popular in the
near future. Mihali and colleagues (Mihali et al., 2017) developed a Bayesian approach for
microsaccade detection based on a semi-Markov model that outputs a probability for each
time point to belong to a microsaccade or a drift. The approach developed by Mihali and
colleagues outperforms the commonly used algorithms discussed earlier. Finally,
Sheynikhovich and colleagues (Sheynikhovich et al., 2018) developed another method that
first selects events using the Engbert and Mergenthaler algorithm with a low threshold
parameter, and then separates the microsaccade from the noise by unsupervised clustering.
The clustering is performed on the absolute velocity of the horizontal and vertical
component of the eye trace. The Sheynikhovich algorithm outperforms all algorithms
mentioned earlier.

3.6  Detecting microsaccades during smooth pursuit

The detection of microsaccades is even more challenging when the target to fixate
is moving. Under such a condition, the eye engages in a movement called smooth pursuit;
this means that there is a sustained period of elevated instantaneous eye velocity above the
baseline fixation velocity. The microsaccades occurring during smooth pursuit often
compensate for the offset between the target position and the eye position and are thus
called catch-up saccades. Catch-up saccades are particularly difficult to detect because the
smooth pursuit is already a high velocity eye movement and thus reduces the signal gain
by microsaccades. Moreover, saccades going into the opposite direction actually reduce
the eye velocity. Therefore, a simple velocity threshold would miss these movements
entirely. To address this issue, Daye and Optican (Daye and Optican, 2014) developed an
algorithm based on a particle filter that cancels out the slow component of eye movement
to let saccades emerge in the signal.
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3.7  Open question

When manually analyzing the presence of microsaccades in eye traces, it is striking
how many mistake automatic algorithms still make. Is it possible to design a better
algorithm that labels microsaccades in the same way that a human would do it?
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4 Microsaccade detection, a generalizable problem

To correctly detect microsaccades, one would need to implement an algorithm
knowing all the rules that discriminate a microsaccade from any noise that the eye-trace
could contain. Expert users who label microsaccades manually exploit all such rules,
without necessarily verbalizing them explicitly. Therefore, there are two problems in
translating expect human performance to machine algorithms: on the one hand, the rules
are hard to implement programmatically; on the other hand, we use them without noticing
when manually labeling eye traces. Supervised machine learning approaches have often
proved to be helpful in such kind of situation (Theis et al., 2016; Mathis et al., 2018).
Moreover, machine learning approaches are flexible, such that different rules can be
learned by the same method once new training evidence can be provided. In this thesis, I
describe an algorithm, based on convolutional neural networks, that proved its efficacy for
detecting not only microsaccades but also other types of eye movements and even an
electrophysiological event called complex spike.

4.1 Detecting larger saccades and post-saccadic oscillations

In the previous section, I outlined that the detection of microsaccades is a challenging
problem. One might think that the detection of larger saccades is not difficult because their
velocity reaches higher peaks relative to the background noise. Yet, in the case of saccades,
the onset and offset of the movement have velocities close to the noise of the eye-tracker
since the eye accelerates from and decelerates towards fixation at the beginning and end of
a saccade. Therefore, it is still a challenge is to detect the timing of large saccades
accurately. This is of great importance because many psychophysics and electrophysiology
experiments analyze their data relative to onsets and offsets of saccades. For instance,
saccade onset can be used to accurately measure saccadic reaction time. Saccade offset, on
the other hand, is the time at which a novel stable image is projected on the retina. A great
number of studies aimed at developing algorithms for saccade detection (Andersson et al.,
2017).

At the end of the saccade, the inertia of the movement makes the pupil move relative
to the iris (Nystrom et al., 2013; Bouzat et al., 2018). This results in so-called post saccadic
oscillations (PSO) that last about 30 ms (see figure 3 where PSOs are visible in the video-
based eye tracker and not the search coil tracker). PSOs are challenging to detect because
their velocity is close to that of the saccade. PSOs might be important for visual processing
and have recently become an active topic of research (Tabernero and Artal, 2014; Hooge
et al., 2015).

Larsson and colleagues provided a benchmark dataset (with a video eye tracker) that
contains saccades and PSOs labeled by human experts (Larsson et al., 2013). This
benchmark dataset includes eye movements performed while viewing static pictures or
moving objects. It is used by any study attempting to compare the performance of their
algorithm to previously published algorithms.
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4.2 Detection in other signals: the example of complex spikes

The problem of accurately detecting the onsets and offsets of events in a signal is
not specific to eye movements. Similarly, the movement of other body parts or the
spontaneous emergence of events in electrophysiological signals can be of interest in
systems neuroscience (e.g. hand movement, ponto-geniculo-occipital waves, hippocampal
ripples, etc.). In this thesis, we decided to tackle the problem of complex spike detection in
extracellular recordings of cerebellar Purkinje cells. Complex spikes are high frequency
events occurring upon excitation of the dendrites of Purkinje cells by the climbing fibers
from the inferior olive. The shape of complex spikes differs from one cell to another, which
makes it challenging to design an automatic algorithm for complex spike detection. Even
within one cell, the duration of a complex spike can vary, and this variation has recently
been suggested to encode information (Yang and Lisberger, 2014; Herzfeld et al., 2015,
2018; Junker et al., 2018). However, in all of these studies, the duration of complex spikes
was detected manually requiring months of work.

4.3 Open question

Given that the problem of detecting microsaccades is encountered in other fields of
neuroscience for other events and other signals, is it possible to design a single algorithm
that would be used for the detection of any such event?
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Part I Main results

Statement of contribution

This thesis comprises 3 publications, which are summarized in the following

sections. The individual publications and manuscripts can be found in the annexes.
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1. Bellet, J., Chen, C.Y. and Hafed, Z.M., 2017. Sequential hemifield gating of a-
and B-behavioral performance oscillations after microsaccades. Journal of
neurophysiology, 118(5), pp.2789-2805.

I designed the project together with Z.M. Hafed. I performed the behavioral
experiments with the human subjects as well as with one monkey. I analyzed the
human behavioral data. I edited the paper together with Z.M. Hafed.

2. Bellet, M.E.*, Bellet, J.*, Nienborg, H., Hafed, Z.M. and Berens, P., 2018.
Human-level saccade detection performance using deep neural networks. Journal
of neurophysiology, 121(2), pp.646-661. (* shared first authorship)

I designed the study together with M.E. Bellet, Z.M. Hafed and P. Berens. I
implemented parts of the saccade detection algorithm. I analyzed the data together
with M.E. Bellet. I labeled manually two datasets provided in the paper. I wrote
the paper together with MLE. Bellet, Z.M. Hafed and P. Berens.

3. Markanday, A.*, Bellet, J.*, Bellet, M.E.*, Hafed, Z.M. and Thier, P., 2019.
Using deep neural networks to detect complex spikes of cerebellar Purkinje Cells.
(under revision, * shared first authorship)

I designed the study together with A. Markanday, M.E. Bellet, Z.M. Hafed and P.
Thier. I designed the post-processing steps to refine the output of the algorithm. I
analyzed the data. I wrote the paper together with A. Markanday, M.E. Bellet,
Z.M. Hafed and P. Thier.



5. Long term impacts of microsaccades on visual processing

As I described in section 1, it is well established that microsaccades influence visual
processing for stimuli presented close to the time of their appearance. Yet,
electrophysiological experiments suggest that some oscillatory activities are phase-locked
to microsaccade generation. In my first study, I showed that microsaccades leave an imprint
on visual processing that lasts several hundreds of milliseconds after their occurrence. This
imprint is dependent on the direction of microsaccades.

5.1  Microsaccades reset oscillations in the alpha and beta range

5.1.1 Global effect

Saccadic reaction time is a reliable measure of the efficiency of visual processing
(Hafed and Krauzlis, 2010; Chen et al., 2018). Using the method of dense sampling
(described in section 2.2), we measured saccadic reaction times of 10 human subjects for
targets presented at various times relative to microsaccade onset. Microsaccades occurred
spontaneously during a long fixation period and were not reset by any visual transient.
Under these conditions, we observed oscillations in the signal obtained from the reaction
times in the alpha/beta range that lasted for ~500 ms after the onset of microsaccades. By
visual inspection of every single eye trace, I took care that no microsaccade or blink
occurred between the measured microsaccade and the target stimulus appearance. Thus,
this effect is not explained by the rhythmic nature of microsaccade generation, which lies
anyway in a lower frequency range.

5.1.2  Hemifield specific effect

To dissect this phenomenon, we performed the same analysis as described above
but independently for targets presented in the same hemifield or in the opposite hemifield
relative to the microsaccade direction. This revealed that the oscillatory activity is
composed of two pulses occurring successively in each hemifield. First, from ~100 ms to
~400 ms, a pulse in the beta range (13-20 Hz) occurs in the same hemifield relative to the
microsaccade direction. Then, from ~400 ms to ~600 a pulse in the alpha range (8-13 Hz)
occurred in the opposite hemifield relative to the saccade direction.

5.2 Microsaccades increase contrast sensitivity in one hemifield

Following the same logic as in the first experiment, we tested the probability to
detect low contrast stimuli presented at different times relative to microsaccade onset. We
found that in the period between 100 ms and 400 ms following a microsaccade onset, the
target was better perceived in the same hemifield as the microsaccade direction. This effect
occurs exactly at the same period and in the same hemifield as the beta oscillations revealed
by the first experiment.
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6. U’n’Eye a state-of-the-art algorithm for (micro)saccade
detection

We demonstrated in the first study that microsaccades impact vision for an
extended period of time after their occurrence. Microsaccade direction lateralizes the effect
they have on visual processing. Because of their systematic alteration by cueing,
microsaccades are even more likely to be a confounding factor in attention experiments.
Thus, the need for detecting microsaccades in eye traces becomes more important. Yet,
carefully detecting microsaccades requires tedious manual labeling as no algorithm to date
is fully satisfactory.

6.1  Deep neural network for microsaccade detection

We aimed at designing a machine learning algorithm that would detect
microsaccades in eye traces like a human would do. Our constraint was to reach a
performance that is at the level of a human expert while minimizing the number of training
samples needed to train the algorithm. We developed a convolutional neural network called
U’'n’Eye inspired by the architecture of the U-Net image segmentation algorithm
(Ronneberger et al., 2015). U'n’Eye is adapted for processing signals with few training
examples. To this end, we designed it with fewer layers than the original architecture and
included batch normalization operations that were not present in U-Net.

U’n’Eye was tested on three different datasets of eye traces, recorded with video
eye trackers or search coils, including microsaccades occurring during fixation or smooth
pursuit. All dataset where entirely annotated by human experts to train and evaluate the
performance of U’'n’Eye. For every dataset, U’n’Eye outperformed every other algorithm
that we tested. This included the classical algorithm from Engbert and Mergenthaler
(Engbert and Mergenthaler, 2006), the unsupervised algorithm from Otero-Millan and
colleagues (Otero-Millan et al., 2014), the last state-of-the-art algorithm for microsaccade
detection from Sheynikhovich and colleagues (Sheynikhovich et al., 2018), and the most
recent state-of-the-art algorithm for saccade detection from Pekkanen and Lappi (Pekkanen
and Lappi, 2017). In fact, U'n’Eye detected microsaccades with a performance that was at
the level of the agreement between two human experts.

6.2  State-of-the-art eye movement detection algorithm

To further demonstrate the capacities of our algorithm, we also tested its
performance on a benchmark dataset for eye movement classification (Larsson et al., 2013)
described in section 4.2. U’n’Eye can be trained to classify more than two categories and
we, therefore, tested its performance in detecting saccades, post-saccadic oscillations
(PSO), and blinks. U’n’Eye outperformed the previous state-of-the-art algorithm designed
for the detection of saccades and PSOs. It also labeled blinks accurately although no
algorithm could be compared to U’n’Eye for this class of eye movement.

20



6.3  Robustness of U’'n’Eye

We also showed that our algorithm can reach state-of-the-art performance in
microsaccade detection with only 50 seconds of eye traces as training samples. It can
accurately detect saccades even if some labels are missing in the training set. In a large
cohort study, U’n’Eye can be trained with eye trace samples from a few subjects and
generalize to detect eye movements from other new subjects.
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7. Generalization to complex spike detection

As we found that a single convolutional neural network can be used for the
detection of several types of eye movements, we considered extending its use to other types
of events in other kinds of signals. We choose to approach the problem of complex spike
detection in extracellular recordings of Purkinje cells in the cerebellum.

7.1  Our algorithm detects complex spikes like a human expert

Human experts in complex spike detection use the local field potential trace
together with the high-passed signal trace to spot complex spikes. We thus decided to use
these signals as input to our network. We also increased the size of the convolutional and
max-pooling kernels so that the span of the signal taken into consideration by the network
to estimate a time bin was equivalent to what a human expert uses. Finally, because
complex spikes have a similar waveform within one cell, we designed a post-processing
step than refined the outputs of the network by selecting only events that look alike within
one recording. Our algorithm was compared to the standard automatic approach that is
online detection by manual selection of bounding boxes to select the complex spike
waveform. Our algorithm outperforms, by far, the online sorting approach and detects
complex spikes like a human expert would do. The disagreements between our algorithm
and the human expert labeling are negligible and more often are because of mistakes from
the human expert.

7.2 Accurate detection of complex spike duration

The duration of complex spikes has been suggested to encode the strength of motor
learning in the cerebellum (Yang and Lisberger, 2014). To date, measuring the duration of
complex spikes has always been done manually since no algorithm has been developed for
this purpose (Herzfeld et al., 2015, 2018; Junker et al., 2018). We compared the estimation
of complex spike duration by our algorithm with that of a human expert. We found an error
in estimation that was typically below 1 millisecond. Moreover, our algorithm tracked the
changes in complex spike duration within one cell remarkably well. Thus, our algorithm is
suited for studying the code that the duration of complex spikes might carry and will greatly
speed up research in this domain.
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Part III Discussion

Our studies reveal the necessity and feasibility to detect rare events in different
signals used in systems neuroscience. We showed that microsaccades impact vision in a
stereotypical manner for several hundreds of milliseconds after their occurrence. This
observation revives the debate about the potential influence of microsaccades on the
interpretation of many experiments. Therefore, it is all the more necessary to detect
microsaccades, and the algorithm that we developed transforms this tedious task into an
easy routine check. The tool we provide is versatile such that it can approach other
problems where a certain event needs to be detected in a noisy signal. I will now discuss
how our results articulate with recent scientific discoveries.
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8 Microsaccades and attention

In the first study that I described in section 5, microsaccades occurring in steady-
state were found to be associated with rhythmic fluctuations and a long-lasting increase in
contrast sensitivity. Because these features are hallmarks of the presence of attention, we
will discuss two questions that emerge from these findings.

8.1 Microsaccades and attention: a chicken and egg problem?

On the one hand, one might interpret that microsaccades trigger a lateralized
increase in visual performance that would explain shifts in so-called attention observed in
cuing experiments. On the other hand, one might believe that spontaneous changes in
attention both trigger microsaccades and the increase in visual sensitivity observed in our
experiments. [ will review a few recent studies that tried to solve this chicken and egg
problem.

In a recent paper, the team of Robert Desimone (Lowet et al., 2018b) studied a
correlate of attention in areas V4 and IT of the macaque monkey. The correlate is the
increase of firing rate for neurons whose receptive fields are at the cued location. They
revealed that the increase in firing rate occurred only after the occurrence of a microsaccade
in the direction of the receptive field. Moreover, the identity of the object presented in the
receptive field can be more readily decoded if a microsaccade directed toward the receptive
field is generated before the stimulus presentation. These results suggest that sensory
processing is boosted in a cueing task only after a microsaccade has occurred. The author
interpretation of the result is that attention triggers the microsaccade, which in turn cause
the changes in visual processing. However, the cue used in this study is perfect to attract
microsaccades reflexively (Meyberg et al., 2017). Thus, it is more parsimonious to interpret
the result without invoking the involvement of attention at all.

Another way to disentangle this chicken and egg problem would be to prove that
attention can occur when microsaccades are absent. Poletti and colleagues (Poletti et al.,
2017) performed a series of tasks probing the change of performance induced by a cue
indicating the most likely position for a stimulus to occur. Under these conditions, the
manual reaction time is faster and the sensitivity is higher when the cue is valid than when
the cue is invalid or neutral. Using a high-resolution dual Purkinje eye tracker and
controlling that no microsaccade occurred during the cue-target interval, they ruled out the
involvement of microsaccades in the effect they observed. However, it is also contestable
whether the changes in performance measured in this study are caused by a boost in sensory
processing. It could be argued, on the contrary, that invalid and neutral cues are distractors
that impair performance relative to valid cues. An important control, ignored in this study,
would have been a condition where no cue is presented prior to the target appearance.
Moreover, the fact that no microsaccade occurred in their specific measurement interval
does not eliminate the fact that prior (or upcoming) microsaccades still have an influence
on perceptual performance.
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8.2 Rhythmic sampling of attention without microsaccade?

I will now describe three recent studies that considered the impact of microsaccades
in their results, but ruled it out. A thorough look at their methods reveals that the question
is, in fact, still very much open.

Landau and colleagues (Landau et al., 2015) measured by magnetoencephalography
the phase-amplitude coupling of gamma oscillations nested in a theta cycle occurring in
antiphase between hemifields. They observed that performance in detecting a target is
correlated with the phase of this oscillatory activity. As microsaccades tend to occur
rhythmically in the theta band, it could be that their results are a byproduct of spontaneous
microsaccade generation. They dismiss this possibility by displaying the position of the
eye relative to the target for the “hit” and “miss” conditions. As the eye position is not
significantly diverging for the two conditions, they conclude that microsaccades are not
involved in the observed effect. However, our study shows that the position of the eye is
not a good predictor of the performance, whereas the direction of the microsaccade is.
Averaging the eye position across trials is thus not a good control for detecting
microsaccades.

In another study, Spyropoulos and colleagues (Spyropoulos et al., 2018) observed
with electrocorticogramms over the areas V1 and V4 of two monkeys that the cued location
is associated with a decrease in theta activity. They observed microsaccades correlated with
the theta activity but that the effect remained when excluding microsaccades. Yet, the
detection of microsaccades was done by selecting events crossing the mean velocity of the
eye traces plus 5 standard deviations. This is a very conservative threshold. While this
custom-made heuristic might spot the biggest of the microsaccades, it does not ensure that
the totality of microsaccades is detected.

Fiebelkorn and colleagues (Fiebelkorn et al., 2018) observed a variety of oscillatory
activities in the frontal eye field and the lateral intraparietal area that correlate with visual
performance. Here also microsaccades are claimed to play no role in the effect they
observe: “removing trials with microsaccades did not substantially change the pattern of
the results or alter the statistical significance”. However, no description of the method for
microsaccade detection is provided, and we can assume that the authors did not go through
every eye trace to detect microsaccades manually.

The conclusion of the three studies described above suffice for Helfrich and
colleagues to conclude that “several studies have shown that rhythmic attentional sampling
is not a microsaccade artifact” (Helfrich et al., 2018). However, none of these studies used
methods that are sensitive enough to detect all microsaccades and thus, such claim cannot
be made. We hope that the scientific community will approach the problem more
rigorously in future studies perhaps with the help of U’n’Eye.
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9.  Futures research opportunities

The algorithms we developed revealed an easy and efficient way to detect events
in noisy signals. Although they were only tested for detecting eye movements and complex
spikes, they could provide great help in many other fields. I will now discuss other
problems that are similar to the one approached in this thesis and that could benefit from
using our approach. The list is not exhaustive but still reveals how general this problem is.

9.1 Detecting other movements

It is now evident that visual processing is organized around the transient occurrence
of saccades. Yet, movements have also been shown to affect sensory processing in other
modalities. (Halpern, 1983; Lederman and Klatzky, 1987; Hughes and Jansson, 1994;
Guinan J. J., 2006; Kepecs et al., 2006; Gutierrez et al., 2010; Garinis et al., 2011). Studying
active sensing is challenging because one needs first to acquire an accurate measurement
of the movement involved in sensory sampling. Many recording devices have been
developed for recording such movements. In olfaction, for instance, breathing patterns can
be acquired using thermocouples that sense change in the temperature of the air flowing in
or out of the nostrils (Kepecs et al., 2006). In hearing, the endogenously generated
movement of the basilar membrane can be detected by recording the sound that the eardrum
produces in reaction to this movement (Gruters et al., 2018). In the tactile domain, one can
record movements using electromyograms (Reaz et al., 2006), magnetic coils (Markanday
et al., 2018) or video tracking (Mathis et al., 2018). The signal resulting from such
measurements is often noisy and detecting movements could be made easy using our
algorithm.

9.2 Detecting transient electrophysiological events

Our neural network could also be wused for detecting a multitude of
electrophysiological events originating in the brain.

Sleep, alone, hosts a collection of spontaneously generated events that are
challenging to spot: K-complex, spindles, ponto-geniculo-occipital waves, and
hippocampal ripples. These events can be used for scoring the different stages of sleep and
are associated with different types of memory consolidation (Diekelmann and Born, 2010).
Therefore, their detection can have implication for fundamental and clinical research. The
K-complex is a biphasic EEG fluctuation that occurs spontaneously or upon sensory
stimulation during phase II of NREM sleep (Colrain, 2005). Sleep spindles also occur
during phase II of NREM sleep (De Gennaro and Ferrara, 2003). Spindles are oscillatory
events (12-12 Hz) generated in the thalamic reticular nucleus and propagating as a traveling
wave through the cortex. Ponto-geniculo-occipital waves are generated during REM sleep
in the pontine nucleus and propagate through the lateral geniculate nucleus to the occipital
cortex (McCarley et al., 1978). Hippocampal ripples are high-frequency events occurring
mostly during NREM sleep. They are causally involved in memory consolidation
(Girardeau and Zugaro, 2011). The detection of K-complex, spindles, ponto-geniculo-
occipital waves, and ripples are challenging problems (Bremer et al., 1970; Jansen, 1990;
Li et al., 2003; Sethi and Kemere, 2014; Warby et al., 2014; Lajnef et al., 2015).
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The brain can also generate signals that are important to detect in pathological
conditions. For instance, spike and wave discharges occur in the same frequency band as
sleep spindle (Beenhakker and Huguenard, 2009; Leresche et al., 2012) but are a hallmark
of epileptic seizures. Accurately detecting their occurrence and duration is a necessary step
when testing the effect of therapies (Venzi et al., 2016) and when trying to understand their
etiology (Polack et al., 2007). The detection of spike and wave discharge is a hard and
active field of research (Van Hese et al., 2009; Ovchinnikov et al., 2010; van Luijtelaar et
al., 2016; Maksimenko et al., 2017). Even in the periods between seizures, one can detect
events, called either “fast ripples” or “high-frequency oscillations”, that predict the
intensity of seizures. The detection of these events is also difficult, and a plethora of studies
attempt to address this problem (Gardner et al., 2007; Bénar et al., 2010; Birot et al., 2013;
Chaibi et al., 2013; Lopez-Cuevas et al., 2013; Burnos et al., 2014; Amiri et al., 2016;
Fedele et al., 2016).
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Bellet J, Chen CY, Hafed ZM. Sequential hemifield gating of a-
and B-behavioral performance oscillations after microsaccades, J
Neurophysiol 118: 2789-2805, 2017. First published August 9, 2017
doi:10.1152/jn.00253.2017.—Microsaccades are tiny saccades that
occur during gaze fixation. Even though visual processing has been
shown to be strongly modulated close to the time of microsaccades,
both at central and peripheral eccentricities, it is not clear how these
eye mo might influence longer term fluctuations in brain
activity and behavior, Here we found that visual processing is signif-
icantly affected and, in a rhythmic manner, even several hundreds of
milliseconds after a microsaccade. Human visual detection efficiency,
as measured by reaction time, exhibited coherent rhythmic oscillations
in the a- and B-frequency bands for up to ~650-700 ms after a
microsaccade. Surprisingly. the oscillations were sequentially pulsed
across visual hemifields relative to microsaccade direction, first oc-
curring in the same hemifield as the movement vector for ~400 ms and
then the opposite. Such pulsing also affected perceptual detection
performance. Our results suggest that visual processing is subject to
long-lasting oscillations that are phase locked to microsaccade gen-
eration, and that these oscillations are dependent on microsaccade
direction.

NEW & NOTEWORTHY We investigated long-term microsaccadic
influences on visual processing and found rhythmic oscillations in
behavioral performance at - and B-frequencies (~8-20 Hz). These
oscillations were pulsed at a much lower frequency across visual
hemifields, first occurring in the same hemifield as the microsaccad

direction vector for ~400 ms before switching to the opposite hemi-
field for a similar interval. Our results suggest that saccades tempo-
rally organize visual processing and that such organization can se-
quentially switch hemifields.

microsaccades; fixational eye movements; a-rhythms; B-rhythms;
perceptual oscillations

MICROSACCADES ARE SMALL SACCADES that occur during gaze
fixation (Cherici et al. 2012; Hafed et al. 2015; Krauzlis et al.
2017; Poletti and Rucci 2016). These eye movements are
governed by similar brain generation mechanisms as larger
saccades (Goffart et al. 2012; Hafed 2011: Hafed et al. 2009;
Hafed and Krauzlis 2012; Peel et al. 2016; Zuber et al. 1965),
suggesting a precise level of control over the metrics and
kinematics of these movements (Buonocore et al. 2017; Guer-
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Reichardt Centre for Integrative Neuroscience, Otfried-Mueller Str. 25, Tue-
bingen 72076, Germany (e-mail: ziad.m.hafed @cin.uni-tuebingen.de).
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rasio et al. 2010; Havermann et al. 2014; Ko et al. 2010; Poletti
et al. 2013; Tian et al. 2016). Interestingly. despite their small
size, microsaccades are also associated with substantial mod-
ulations in neural activity and behavior and over a wide range
of retinal eccentricities all the way from the fovea to the
periphery (Bosman et al. 2009; Chen and Hafed 2017; Chen et
al. 2015: Hafed 2013; Hafed et al. 2015; Hafed and Krauzlis
2010; Herrington et al. 2009; Tian et al. 2016; Zuber and Stark
1966). Such perimicrosaccadic modulations can be quite
strong. For example, suppression of visual sensitivity for stim-
uli presented around the time of microsaccades can reach levels
of ~50% in structures like the superior colliculus (SC) and lasts
for ~100 ms after movement onset (Chen and Hafed 2017;
Chen et al. 2015; Hafed and Krauzlis 2010). Moreover, peri-
microsaccadic changes in vision result in performance changes
that are virtually identical to those in a variety of experiments
involving “covert” processing without eye movements (Chen
et al. 2015; Hafed 2013; Hafed et al. 2015; Tian et al. 2016).
Therefore, understanding the relationships between microsac-
cades and visual performance not only can enrich the micro-
saccadic literature itself but also can potentially illuminate
findings in other related topics in perception and cognition.

The majority of studies of perimicrosaccadic modulations in
vision so far have focused on a tight temporal window of
~50-100 ms around microsaccade onset. Since microsaccades
are driven by saccade motor control circuitry (Hafed et al.
2009; Hafed and Krauzlis 2012; Peel et al. 2016), and since
they also refresh retinal images (Martinez-Conde et al. 2000),
it is reasonable to expect that changes in visual representations
would occur during such a tight temporal window (Hafed et al.
2015; Krauzlis et al. 2017). However, microsaccades may also
be associated with longer term changes in brain state going
beyond simple “transient recovery.”

In this study, we specifically hypothesized that microsac-
cades globally reset the visual system, meaning that after
“transient recovery,” the brain does not return to a random state
but to a coherently structured steady-state oscillatory pattern.
Such a pattern is so coherent and reliable across individuals
that it manifests in alterations of the visual system’s efficiency
in detecting stimuli even at the behavioral level and even up to
several hundreds of milliseconds after microsaccades. In this
regard, we were motivated by findings of synchronization of
endogenous brain rhythm behavioral manifestations with mo-
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tor actions. For example, Benedetto and colleagues have re-
cently found a synchronous relationship between ~3.5- and
8-Hz behavioral oscillation rhythms of contrast sensitivity and
reaching arm movements (Benedetto et al. 2016: Tomassini et
al. 2015). Moreover, large, voluntary saccades are associated
with phase locking of ~3- to 4-Hz behavioral oscillations
(Benedetto and Morrone 2017; Hogendoorn 2016; Wutz et al.
2016), and microsaccades have been shown to reset physio-
logical « rhythms (~10 Hz) in occipital cortex (Gaarder et al.
1966).

In our experiments, we therefore explored both time-depen-
dent and microsaccade-direction-dependent long-term behav-
ioral fluctuations after the occurrence of microsaccades. Unlike
in the large-saccade literature (Benedetto and Morrone 2017;
Hogendoorn 2016; Wutz et al. 2016), we observed higher
frequency oscillations in the a- and B-frequency ranges. This is
interesting as it might relate to findings of higher frequency
behavioral oscillations in attentional state (Song et al. 2014),
which is known to be correlated with microsaccades (Engbert
and Kliegl 2003; Hafed 2013; Hafed and Clark 2002; Hafed et
al. 2011; 2013; Kliegl et al. 2009; Laubrock et al. 2005: Peel et
al. 2016; Tian et al. 2016).

As we will show, our results demonstrate that visual pro-
cessing is almost never exempt from saccade-related influ-
ences, highlighting the importance of adopting an “active
perception™ approach to vision science.

MATERIALS AND METHODS

We performed two behavioral experiments on human subjects, and
we also analyzed neurophysiological data from the SC of two male
rhesus macaque monkeys (Macaca mulatta, aged 7 yr). As we
describe below, the logic of all experiments was to present stimuli
after microsaccade occurrence and to measure either behavioral or
neural responses to these stimuli, with the specific goal of probing
longer times after microsaccade onset than we had previously ex-
plored (Chen and Hafed 2017: Chen et al. 2015: Hafed 2013: Hafed
et al. 2015; Hafed and Krauzlis 2010).

Ethics committees at Tuebingen University approved the human
experiments, and human subjects provided informed, written consent
in accordance with the Declaration of Helsinki. Monkey experiments
were approved by the regional governmental offices of the city of
Tuebingen.

Behavioral Tusks

Experiment 1: reaction time task. Human subjects sat in a dark
room facing a computer display (41 pixels/*; 85 Hz). Head fixation
was achieved through a custom-made chin/forechead rest (Hafed
2013), and we d eye mo using a video-based eye
tracker (EyeLink 1000: SR Research). In each trial, a white fixation
spot (6-min arc in diameter; 89.1 cd/m?) appeared on a gray screen
(22.3 cd/m?) (Fig. 1A). After a random time, a target (white circle

btending 17 in di ) appeared at 5° either to the right or left of
fixation, and the fixation spot disappeared. Subjects were instructed to
execute a saccade as fast as possible to the target. Unbeknownst to the

bj they conti ly made cades during fixation, and
our experimental goal was to investigate reaction time (RT) to the
target as a function of when this target appeared after a given
microsaccade (Fig. 1A4). We wanted to sample as long an interval as
possible between a given microsaccade and target onset, such that we
could uncover long-term microsaccadic effects on RT. As a result, and
for the first six subjects who took part in the experiment, we pro-
grammed the experiment such that the target could appear between

1.000 and 3,000 ms after the initial fixation spot onset. The idea
behind using such a long interval was to increase our chances of
having trials with a very long delay between a microsaccade and
target onset (i.e., to obtain long time courses of RT fluctuations: e.g.,
see Fig. 3A in resuLts). Specifically, since intermicrosaccadic inter-
vals can be short (e.g., see Fig. 48 in ResuLTS), we needed to have
sufficient trials with long delays to be able to sample enough cases in
which no intervening microsaccades occurred for a long time after a
given movement until target onset. Having said that, and to accelerate
data collection, we found that we could shorten trial lengths for the
last four subjects that we recruited: in this case, the target could appear
between 300 and 1,300 ms after fixation spot onset. Even in these
cases, we ensured that our data analyses included only microsaccades
occurring after =300 ms of steady fixation (for reasons clarified
below).

We collected data from 10 subjects (6 females; 2 authors: 22-39 yr
old). All subjects completed 5 sessions of 1 h each, and we analyzed
a total of 10,817 trials in this experiment. As stated above, this large
number of trials was needed to allow us to sample enough time points
after individual microsaccades. In reality, for any given time bin in
our analyses, the number of trials used was much less than the total
number of trials collected (e.g., see Fig. 3A in RESULTS).

Experiment 2: perceptual detection task. In a second experiment,
we collected data from 14 human subjects (9 females: 2 authors;
22-39 yr old), and all subjects completed 3-5 sessions of | h each.

Each trial started with the appearance of a black fixation spot
subtending a 6-min arc in diameter along with white vertical lines
(3-min arc¢ X 4°) that were vertically centered 3° above and below the
two probable horizontal locations of an upcoming target (Fig. 1B).
The target was a dot subtending a 4-min arc in diameter presented
horizontally 5° to the right or left of fixation. The target was presented
only briefly for ~12 ms. The luminance of the target was darker than
the background, and it was continuously adjusted from trial to trial
with a staircase procedure (see below) to maintain correct target
detection performance of ~50% throughout all sessions. In our design,
“correct target detection™ meant that subjects reported both a con-
scious percept of the target and its correct location, because they also
always had the option to report “target not seen” (see below). We
chose to continuously adjust task difficulty to maintain ~50% correct
detections to demonstrate the robustness of our observed modulations
in target detection likelihoods at different times after microsaccades
(e.g.. see Fig. 7 in resuLTs) and also to ensure stable performance in
the face of fluctuations in subject arousal during the sessions. This has
also allowed us to combine subjects in analyses, as we describe below.

The target was presented at a random time ranging from ~61 to
~1,061 ms after gaze entered a virtual window of 2° radius around the
fixation spot. Subjects were instructed to press a button corresponding
to the target location (right or left) as soon as it was consciously seen
(Fig. 1B). Because the target was difficult to see, we presented a
question mark at screen center 500-700 ms after target presentation to
indicate to subjects that they needed to make a response (Fig. 1B).
When the question mark was visible, subjects could either press a
middle button to indicate that the target was not seen or to press the
button corresponding to the right/left target location if it was seen.
Subjects were instructed not to guess the location and to only answer
when the target was consciously seen. To ensure that the subjects
followed the task instructions, 10% of the trials were designated as
catch trials with no target appearing at all, and we confirmed that false
alarms on these catch trials were much less frequent than correct
detections; we also confirmed that erroncous localizations of the target
when subjects reported consciously seeing it were rare (e.g., see Fig,
7A in resuLTs). Auditory feedback signaled if target localization was
correct or not. There was no auditory feedback when the subjects
reported not seeing the target.

For each subject, the first session in this experiment was used solely
to estimate target contrast needed to achieve ~50% correct target
detections. The luminance of the target was first started at background
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Fig. 1. Behavioral tasks. A: experiment 1. Subj d a target-di d . Before target onset, subjects could generate a microsaccade either toward

the same or opposite hemifield as the target. We :malyud reaction time (RT) as a function of target onset time and direction relative to microsaccades, and we
ensured that there were no intervening movements (saccades or microsaccades) or blinks between the microsaccade of interest and target onset. B: experiment

2. Subjects detected a target at threshold by indicating its location (or that they did not see any target). Task difficulty was i ly adj

target detections at ~50% (Se¢ MATERIALS AND METHODS).

contrast, which meant that subjects could not detect the target. After
every “target not seen” response by the subjects (Fig. 1B), the
luminance of the target was stepped by one display-gun value on our
eight-bit display driver (i.e., | out of 256 levels). As soon as the target
began to be detected, we started a procedure of monitoring correct
target detections based on the previous 50 trials. Target luminance
was increased or decreased by I display-gun value if average perfor-
mance was above 66% or below 34%, respectively, during the
previous 50 trials. For the sub i target lumi €
started at the level predicted from the first session, and it was
continuously adjusted (always based on performance in the previous
50 trials) using the same incremental procedure. This approach en-
abled us to track the ~50% threshold well (e.g., see Fig. 84 in
RESULTS), We analyzed a total of 6,693 trials from this task.
Experiment 3: monkey SC recordings. We performed a novel
analysis on data that were part of the set used to describe a previous
report (Chen et al. 2015); here, we critically extended our analysis
window as long as possible after microsaccade onset to explicitly
sample longer time courses of ncural modulations of SC visual
sensitivity after microsaccades than were analyzed in the previous
report. Briefly, two monkeys fixated, and we presented a 2.2 cycles/®
vertical sine wave grating in a neuron’s visual response field. The
grating was tailored in size to the response field size, and we varied
the contrast from trial to trial. We considered as “baseline” visual
response the response of SC neurons when the grating appeared with
no microsaccades occurring within %150 ms from grating onset. We

110 keep ¢

then measured the visual response of the same neurons when the
grating appeared at a given time after a microsaccade. Once again, the
difference in the present study from our earlier experiments was that
we increased the time window of analysis as much as possible (see
Fig. 10 in RESULTS).

Data Analysis

Microsaccades and saccades were detected offline using velocity
and acceleration criteria (Chen and Hafed 2013), and microsaccade
misdetections were checked manually for all trials, We defined as
microsaccades all fixational saccades with amplitudes <1°; in reality,
median amplitude was a 14.6-min arc in experiment I and a 17.6-min
arc in experiment 2.

Since we observed that microsaccade frequency increased substan-
tially in the first 300 ms following fixation spot onset (e.g., see Fig. 4C
in RESULTS), we only analyzed trials in which the last microsaccade to
occur before target onset actually occurred >300 ms after fixation
spot onset. This was done to ensure that the phase locking that we
observed in this study (see RESULTS) was to microsaccades and not
necessarily to another resetting event (i.e., fixation spot onset). In a
control analysis, we also analyzed data when target onset time was
measured with respect to fixation spot onset and not to microsaccade
onset; in this case, it was irrelevant whether or not a microsaccade had
occurred between fixation spot onset and target onset.
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Experiment 1: RT task. Our goal in this experiment was to analyze
the spectrotemporal variation of RT as a function of when a target
appeared after a given microsaccade (Fig. 14). We thus performed a
series of analysis steps that are graphically illustrated in Fig. 2 on an
example artificial data set designed to clarify our procedures as much
as possible (real data are presented in all subsequent figures). In what
follows, we step through the details of our analyses with the aid of this
figure.

We first excluded the 2.5% fastest and 2.5% slowest RTs of each
subject from any further analysis. We then demeaned each subject’s
RT distribution by obtaining RT values expressed as a difference from
the overall mean RT, thus reducing intersubject variability. We then
pooled trials from all subjects together, similar to what has been done
previously (Hogendoorn 2016), and we plotted RT as a function of
when a target on a given trial appeared after a microsaccade (also see
below for further justification). This resulted in a scatter plot similar

A Original data points

@Duh shuffling

Data poi;\ls after permuting stimulus onset time
relative to microsaccade onset time

Faster
reaction times

to that shown in Fig. 24, rop. The mean RT value per subject was
obtained from all trials regardless of when microsaccades or target
onsets occurred. Also, in every trial, the demeaned RT value was
plotted as a function of the time of target appearance relative to
microsaccade onset for the very last microsaccade to occur before
target onset (Fig. 1A), such that we ensured that there were no
intervening microsaccades (or other eye movements) between the
microsaccade of interest and the target onset. This means that if there
were multiple microsaccades during the fixation period before target
onset (a rarity), the time interval of interest to us was the time between
target onset and the final microsaccade 1o occur before such onset. We
also excluded any trials with blinks between the microsaccade of
interest and target onset.

To obtain the time course of RT fluctuations, we computed the
mean value across all trials using a running window of 50 ms in width
in steps of 1 ms (Fig. 2B, top). Note that such a running window is
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Fig. 2. Steps used for time-frequency analyses in our study. A: we collected all trials and plotted each trial’s RT (as in the case of experiment 1) as a function
of target onset time relative to a microsaccade. In this illustrative example. we show artificial data that have an underlying oscillatory pulse embedded in noise.
Bortom: we shuffied the data in time, and we did this 1,000 times to obtain 1,000 surrogate data sets. B: we filtered the data using a running average to obtain
a time course of fluctuations in the real data (rop) and also for each of the 1,000 surrogate data sets. C: we then convolved each of the time course traces with
a complex Gaussian wavelet of order 4. D: this allowed us to obtain time-frequency power spectra, For the real data, high power was observed during the interval
in which an oscillation pulse was present in the original signal. The surrogate data sets had high power at random places in the time-frequency plots. E: we
established statistical significance, with corrections for multiple comparisons, by finding a cluster in 2-dimensional time-frequency space in the original data set
that was unlikely to be observed by chance from similar clusters observed in the surrogate data sets, We then plotted this “outlying™ cluster with its associated

P values as the significant cluster of spectrotemporal oscillation.
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equivalent to implementing a 20-Hz low-pass filter, and it reduces the
amplitude of oscillations. The higher in frequency an oscillation is
(and approaching 20 Hz), the more its amplitude will be reduced by
the running window analysis. This also means that our analyses could
not detect oscillations higher than 20 Hz in frequency; however, to our
knowledge, behavioral oscillations are rarely studied above this fre-
quency. For some analyses (e.g., see Fig. 5 in RESULTS), we performed
this same RT time-course analysis but only for trials in which th
target appeared cither in the “same” hemifield as the microsaccad
direction vector or in the “opposite” hemifield. In addition, in yet
other analyses (e.g., see Figs. 3 and 5 in RESULTS), we also computed
the RT time courses for only microsaccades smaller than a 30-min arc
in amplitude.

To obtain the spectral content of RT fluctuations, we analyzed the
RT time course in the interval 100800 ms after microsaccade onset
(Fig. 2, A and B). We excluded the first 100 ms after microsaccade
onset because this period is dominated by “microsaccadic suppres-
sion” effects on RT (Chen and Hafed 2017; Chen et al. 2015; Hafed
et al. 2015; Hafed and Krauzlis 2010: Tian et al. 2016), as we detail
in REsULTS. We first removed the slow fluctuation trend of the signal
(any <2-Hz fluctuation) by using a finite impulse response low-pass
filter (Fieldtrip Toolbox; Oostenveld et al. 2011) and subtracting the
result from the original curve (Fig. 2B, top). The detrended signal was
then transformed using continuous complex Gaussian wavelets (order
4) for frequencies ranging from 2 to 20 Hz in steps of 0.25 Hz (Fig.
2C, top). The power of the resulting time-frequency image was
defined as the square of the absolute value of the complex transform
(Fig. 2D, top). We now had a time-frequency plot of spectrotemporal
variation in RT (Fig. 2D, top).

To assess statistical significance of given time intervals and/or
frequency bands in the spectral analysis, we used the following
starting point: the hypothesis in this study was that the oscillations that
we observed in RT were caused by the time at which a stimulus was
presented relative (0 a microsaccade (see ResuLts). In other words,
such oscillations can hardly ever be observed if we were to compose
surrogate signals by randomly arranging the behavioral responses in
time (i.c., without regard to the real time of stimulus onset relative to
a microsaccade; Fig. 24, bottom). We therefore tested the probability
that random permutations in the x-label values of figures like Fig. 24,
top, would result in as much as or more spectral power than the
original data. To generate a statistic, the following procedure was
repeated 1,000 times. We used data points that were collected outside
the microsaccadic suppression period (i.e., =100 ms after microsac-
cade onset), and we arranged them randomly relative to the time of a
virtual microsaccade (Fig. 2A, bortom). Care was taken such that there
were as many data points assigned for each time point as in the
original measurements, such that the difference in power between
original signals and surrogate signals could not be explained by
differences in variability (Fig. 2A4). The randomly arranged data points
were then processed using the exact same procedures as the original
data; time courses were obtained using running windows (Fig. 2B,
bottom); time courses were detrended: and finally, time courses were
wavelet-transformed (Fig. 2, C and D, bortom). For each time-
frequency point in the original power spectrum, P values were defined
as the proportion of power spectra in surrogate data that led to an
equal or higher power than the original data (Fig. 2E). P < 0.05 was
considered as significant. To control for multiple comparisons, we
additionally used a nonparametric statistical test of the size of the
cluster of adjoining significant P values (Maris and Oostenveld 2007).
More specifically, the multiple comparisons test consisted of deter-
mining the probability of obtaining a cluster (defined as a 2-dimen-
sional region in time-frequency space) of adjoining significant P
values as big as or bigger than the one obtained with the original data.
To this end, each of the 1,000 power spectra obtained by random
permutations was compared with the 999 other random power spectra
(Fig. 2D, bottom). This resulted in 1,000 sets of P values. Clusters of
significant P values from the original power spectrum passed the

multiple comparisons test if their size was >95% of the biggest
clusters of adjoining significant P value in each randomly drawn set of
P values (Fig. 2E).

Our approach to statistical tests of the oscillations provided us with
the most conservative estimates of significant oscillations in our data.
This was important because using a running window (i.e., a low-pass
filter) can cause ringing in signals that may erroneously appear like
oscillations by visual inspection. For example, see Figs. 38 and 5, B
and E, in rEsuLTS for examples of surrogate traces from our analyses
after the shuffling step of Fig. 2A. In some of these sample shuffled
traces, visual inspection might lead one to assume that an oscillation
was present. Thus our approach was to err on the conservative side to
be certain that our interpretations of oscillations are highly reliable.
This is also why we additionally ensured using similar numbers of
data points in each time bin in our shuffled signals as in the real data.

To rule out the possibility that RT oscillations may have resulted
from an increase of variance in RT after microsaccade onset, for
example, as suggested in (Zoefel and Sokoliuk 2014), we investigated
whether the phase of RT oscillation time courses was consistent
across subjects. To represent the instantaneous phase of oscillations in
each subject (e.g., see Fig. 6), we first obtained individual time
courses of RT using an averaging running window of 50 ms in the
“same hemifield” condition (i.e., when the target appeared in the same
hemifield as a microsaccade direction vector). In the “opposite hemi-
field” condition, we chose a 78-ms averaging window instead to
obtain the best estimate of the phase of a-oscillations in each subject
(because “opposite” oscillations were lower in frequency than “same”™
oscillations, as we show in RESULTS). We then band-passed the traces
in the freq y bands of i based on Fig. 5 (13-20 Hz in the
same condition and 812 Hz in the opposite condition; see RESULTS),
and we extracted the instantaneous phase with a Hilbert transform (see
Fig. 6 in resuLTs). Even though such a transform, which is well
established to evaluate phase (Le Van Quyen et al. 2001), may
introduce phase distortions at the edges of a signal interval, such
distortions would also occur in permuted data during significance
testing (see below): thus, if anything, there may be more false
negatives at the edges of an interval being analyzed. To quantify
the instant s phase ¢« y between subjects, we calcu-
lated the phase-locking value (PLV) at each time point after
microsaccade onset:

1
PLV=~.
n

(e3)

2" &2
|

k=

where n is the number of subjects and 6, the instantancous phase from
the k" subject. The PLV is between 0 (no coh e)and 1 (compl
coherence) (Lachaux et al. 1999).

We assessed the statistical significance of an increased PLV by
using random permutations (e.g., Fig. 24) and cluster corrections for
multiple comparisons. The PLV was computed for 1,000 sets of 10
surrogate signals (1 per subject). A P value for each time bin was
obtained by comparing the original PLV traces to the surrogate ones.
We also obtained surrogate P values by comparing each surrogate
PLV trace to the 999 other traces. We then measured the size of the
clusters of adjoining P values from the original PLV trace that were
<().1. This threshold was meant to reveal long-lasting PLV increases,
but the exact choice does not affect the false alarm rate of the
statistical test (Maris and Oostenveld 2007). We tested the probability
that clusters obtained from surrogate P values below the threshold had
a size equal to or exceeding the size of the cluster from the original
signal. If <5% of the biggest clusters from ecach of the 1,000 surrogate
P value traces were bigger than the cluster from the original signal,
then the whole period of increased PLV was considered as significant.

Finally, we also performed discrete Fourier transform (DFT) anal-
ysis on RT fluctuations in the interval 100-400 ms after microsaccade
onset (i.e., the interval in which we observed significant oscillations
throughout the different conditions; see RESULTS). We assessed signif-
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icance of individual frequency ranges using a similar approach to that
described above (including multiple comparison corrections), except
that there was now only one dimension to work with (i.e., frequency)
as opposed to two (i.e., time and frequency). We also performed such
DFT analysis for microsaccades either smaller than or larger than the
median amplitude.

It should be noted once again here that we combined all trials from
all subjects in most of our analyses, as in Hogendoorn (2016). Given
that our subjects performed similar numbers of trials to each other, it
was unlikely that our results could be dominated entirely by only a
subset of outlying subjects, and so our choice was justified. We also
confirmed this by our PLV analyses described above, because such
analyses can reveal phase consistency across individuals, and we took
measures in all of our statistical analyses to take the varying numbers
of observations per time bin into account. If each subject’s data were
first grouped into a single average trace before averaging across
subjects, as performed in some other studies, such information about
variability of numbers of observations per time bin would have been
lost, which in turn increases the likelihood that outlying subjects may
have distorted the measured signal-to-noise ratios in the averages.

Experiment 2: perceptual detection task. We used a similar time-
course analysis on detectability as a function of time of target
appearance relative to a microsaccade. Specifically, we computed the
proportion of detected targets combining data points from all subjects
together with a running window of 50 ms in width. We also used the
same spectral analyses on these time courses as in the RT task
described above and illustrated in Fig. 2. We should emphasize here
that our task was not a classic two-alternative forced choice task.
Thus, by “proportion of correct target detections,” we mean the
fraction of noncatch trials in which subjects reported seeing the target
and correctly localized it. Thus, if this proportion was 50% (as per
task design), then this means that the remaining 50% of the trials
could be of two types: /) either subjects indicated “target not seen™ in
their response (which was the great majority of cases: see RESULTS); or
2) subjects erroncously reported seeing the target in the wrong
location. This also means that microsaccadic suppression alluded to
above can lead to reductions in “correct target detections™ to levels
well below 50%, as we show in RESULTS.

To assess the statistical reliability of the difference in perceptual
detection performance between two conditions (e.g., “same” vs.
“opposite” or “close” vs. “far": see Fig. 7), we used two-proportion
Z-tests.

To study the effects of microsaccade directions while canceling out
the influence of gaze distance to the target (or equivalently, retinotopic
target position relative to the fovea) at the time of target onset, we
downsampled the data sets such that the distribution of retinotopic
target positions was the same whether the target appeared in the same
or opposite hemifield from a microsaccade. Specifically, we split the
entire distribution of observed retinotopic target positions into 50
quantiles, Then, within each quantile, we had a distribution of N
“same” trials and a distribution of M “opposite” trials. If N was larger
than M, we randomly picked M trials from the “same” distribution to
match the numbers of trials in the quantile to the “opposite™ distribu-
tion; similarly, if M was larger than N, we randomly picked N trials
from the “opposite™ distribution. This resulted in matched distribu-
tions of retinotopic target positions between same and opposite trials.
From these matched distributions, we compared detection perfor-
mance on same vs, opposite trials, and we also measured detection
performance from the same data after shuffling the “same™ and
“opposite” labels (to obtain a surrogate data set). Since this down-
sampling procedure required randomly selecting subsets of data, we
repeated this procedure 1,000 times, obtaining 1,000 downsampled
distributions and also 1,000 surrogate measurements from shuffled
data. The P value was calculated as the likelihood of observing
differences between “same” and “opposite” shuffled data sets that
were larger in absolute value than the differences in performance

between the real “same™ and “opposite” conditions observed with
overlapping retinotopic target positions.

We also compared detection performance on same vs. opposite
microsaccade trials to detection performance on “close™ vs. “far”
trials. We repeated the same comparison of perceptual detection
performance but after labeling trials as cither having “close” or “far”
target positions relative to the fovea instead of being from “same” or
“opposite” microsaccade trials. To obtain “close™ and “far” trials, we
performed a median split on the Euclidean distance between gaze and
the target (see Fig. 7B, right). In other words, in this analysis, we
simply asked whether any changes in perceptual detection perfor-
mance between same and opposite microsaccade trials were in reality
caused by the potential that retinotopic target position relative to the
fovea altered visual acuity and therefore detection performance (see
ResULTS). Finally, to explore whether there were different effects for
different microsaccade sizes, we repeated the comparisons between
“same” and “opposite” trials but only for trials in which microsac-
cades were either less than a 30-min arc in amplitude or when they
were classified as being larger or smaller than the median amplitude.

Experiment 3: monkey SC recordings. We repeated the time course
analyses described in detail in (Hafed and Krauzlis 2010), but we
extended them in time as much as possible given the data set
available. We combined trials from 20, 40, and 80% contrast because
these trials consistently exhibited robust visual responses. We nor-
malized responses to the “baseline™ of each contrast individually to
ensure that our plots of neural fluctuations (e.g., see Fig. 10) isolate
the influence of microsaccades on visual response strength, indepen-
dent of stimulus contrast. As stated above, we considered as “base-
line” neural responses those responses that were observed when
stimuli appeared without any microsaccades occurring within *150
ms from stimulus onset.

RESULTS

Microsaccades Reset the Phase of a- and B-Frequency
Oscillatory RT Fluctuations

In experiment 1, we analyzed visual processing efficiency by
asking 10 human subjects to perform a speeded RT task.
Subjects fixated on a spot, and we then presented a bright target
at 57 eccentricity either to the right or left of fixation (Fig. 1A,
See MATERIALS AND METHODS). Subjects had to look at the target
as fast as possible, and we investigated RT modulations as a
function of when the target appeared relative to a microsac-
cade. This task has previously been shown to provide a very
sensitive behavioral measure of visual sensitivity changes of
SC neurons around microsaccades (Chen and Hafed 2017;
Hafed and Krauzlis 2010). The key here was to densely sample
many times even long after movement occurrence. We mea-
sured RT for stimuli appearing up to 800 ms after a given
movement, and we took care to ensure that there were no other
microsaccades, saccades, or blinks occurring between the micro-
saccade of interest and the target (see MATERIALS AND METHODS).
We also aimed to identify only common effects across individu-
als. We thus subtracted each subject’s overall mean RT from each
trial's measurement, obtaining a differential RT value, and we
then combined trials from all subjects in analyses.

When the target appeared immediately after a microsaccade,
we observed an expected RT cost (Chen and Hafed 2017; Chen
et al. 2015; Hafed and Krauzlis 2010). Specifically, Fig. 34,
top, shows a plot of differential RT value across subjects as a
function of target onset time after a microsaccade. The error
bars in Fig. 3 show SE values across all trials from all subjects
combined (see MATERIALS AND METHODS), and Fig. 3A, bortom,
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Fig. 3. Long-term microsaccadic influence on RT. A: change in mean RT as a function of target onset time relative to a microsaccade. This trace shows lhe
demeaned RT trace before detrending (see MATERIALS AND METHODS). After an initial ~100-ms period of RT costs (i.e., ) due to

suppression,” RT oscillated coherently for almost 600 ms. Error bars denote SE across all trials from all subjects combined (se¢ MATERIALS AND METHODS), and
we used a running window of 50 ms (in steps of 1 ms); the inser shows that we obtained very similar RT fluctuations when individual subject data were first
averaged into a single subject trace and then all the single subject traces averaged together to obtain a grand average. The borrom shows the number of trials
used per time bin in the rop and using the same running window procedure. Also, the green trace shows results from only trials with microsaccades less than
a 30-min arc in amplitude. Note that the RT oscillation (and subsequent measurement for 1,000-1,500 ms shown as an individual data point) hovered slightly
below 0. This is because the total average used to demean RT included all trials even those with target onset <300 ms from fixation spot onset; because these
early trials almost always had a mu.m\aumk (e 5 Fig. 4C), they had long RTs due to microsaccadic suppression, and this elevated the average RT value slightly.
B: the tap trace in black is the i d and d ded RT trace from the same data in A. Below this trace are 10 example surrogate traces according
to the permutation procedures of Fig. 24. Our goal was to establish statistically whether oscillations in the original trace that are visible by inspection were not
ones expected by chance as might happen in some of the surrogate traces, C: power spectrum of the trace in A during the interval following the initial
microsaccadic suppression period of 100 ms. Colored pixels indicate times and frequency bands with a significant oscillation that is not expected by chance from

the surrogate traces (Fig. 2; see MATERIALS AND METHODS).

shows the number of trials within each time bin used to obtain

the data in Fig. 3A, top. In Fig. 3A, bortom. the time course of

number of trials was analyzed using the same running window
as that used in Fig. 3A, rop. As can be seen from Fig. 3A, rop,
for up to ~100 ms, RT was increased relative to the mean, and
it gradually decreased back to “baseline,” consistent with a
short-lived “microsaccadic suppression™ effect known to influ-
ence both RT and visual sensitivity in SC and other brain
structures (Chen and Hafed 2017; Chen et al. 2015; Hafed and
Krauzlis 2010). Interestingly, after ~100 ms, the RT recovery
was not back toward a “stable” baseline. Instead, RT kept
fluctuating in a rhythmic fashion, becoming sequentially either
faster or slower than average (e.g., see the period labeled
“Oscillation™ in Fig. 3A). Moreover, this oscillation was long-
lasting and persisted for almost the entire 800 ms that we
sampled, and it also occurred when we only included trials
with microsaccades less than a 30-min arc in amplitude (Fig.
3A, thin green curve). The oscillation was also present (Fig. 3A,
inset) when we first averaged all trials of a single subject into
a single curve and then averaged all the individual subjects’

single traces to obtain a grand average. as is often done in other
studies (e.g.. Fiebelkorn et al. 2013).

Since microsaccades have an intrinsic rhythm to them (Bos-
man et al. 2009; Hafed and Ignashchenkova 2013; Tian et al.
2016), we excluded the possibility that the fluctuations in Fig.
3A reflected the occurrence of subsequent microsaccades com-
ing in a rhythmic fashion. Specifically, in our analyses, there
was only one single microsaccade before target onset in the
analyzed intervals, by design, even for stimuli appearing =700
ms after a movement. To confirm this, we inspected eye
velocity traces from all of our accepted trials and ensured that
there were no spikes in velocity after the spike associated with
the microsaccade of interest. For example, the black radial eye
velocity trace of Fig. 4A shows average eye velocity from all

accepted trials, with only a peak at the microsaccade of

interest. In contrast, when we plotted average eye velocity after
a randomly chosen microsaccade irrespective of whether a
subsequent microsaccade had occurred or not, we obtained the
dashed gray curve in Fig. 4A. As expected, this curve was
elevated compared with the black one. with a peak occurring

J Neurophysiol « doi:10.1152/jn.00253,2017 « www.jn.org

41

£102 ‘pL J8quanoN uo §eg'022 01 Aq /B10-ABojoisAyd-ulj/:duy wouy papeojumoq




42

2796 MICROSACCADES RESET a- AND B-BEHAVIORAL RHYTHMS

4’1073 ‘—5,'5 Hz
g g
e 3
H i
5 2
e z
§ Subsequent fixations % 1
< without addmonal/ &
microsaccades
0.1 N N " " s 0 %
0 200 400 600 800 1000 0 200 400 600 800 1000
Time from last microsaccade onset (ms) Time interval between microsaccades (ms)
c Microsaccades excluded c
} from analyses ! used for &
9 »
§ 8
7
8 .
gL 6
g8 °
g
$5 4
>
88,
B=2
- |
0

0

100 200 300 400 500 800 700
Time from fixation spot onset (ms)

800 800 1000

Fig. 4. The RT oscillation in Fig. 3 was not due to either intrinsic microsaccadic rhythms or visual transients associated with the onset of the fixation spot at trial
beginning. A: the black curve shows mean eye velocity after the last detected microsaccade before target onset from all trials in Fig. 3. For comparison, the dashed
gray curve shows mean eye velocity after any given microsaccade irrespective of whether there were subsequent microsaccades or not (from a similar number
of trials), The black curve is ch erized by an abs of positive-going fluctuations in eye velocity after the first mi cade (at 0 ms), wh the gray
curve shows elevations peaking at ~200 ms and persisting later, consistent with the likelihood of observing subsequent microsaccades (also see B). A similar
result was also obtained for experiment 2. B: distribution of intermicrosaccadic intervals in experiment 1. If 2 microsaccades occurred before target onset, the
time between the final microsaccade and target onset contributed to our analyses (Fig. 1A), but the time between the two microsaccades allowed us to estimate
intrinsic microsaccadic rhythms. As can be seen from the histogram, intrinsic micros fic rhythms might predict dominant oscillations of ~5 Hz or less, which
is lower than any of the oscillations that we observed in our data (> 7 Hz; also see Fig. 5). C: microsaccade rate after fixation spot onset. In the interval >300
ms after fixation spot onset, mi de rate was We chose to analyze only trials in which the last microsaccade before target onset occurred =300
ms after the beginning of any given trial, 0 make sure that the effects presented in this study were not phase locked to fixation spot onsel. Similar results were

obtained from experiment 2.

near ~200 ms, reflecting normal intermicrosaccadic intervals
and a subsequent plateau reflecting the elevated likelihood of
obtaining microsaccades throughout the remaining time inter-
val. Consistent with this, intermicrosaccadic intervals in our
data (Fig. 4B) peaked at ~200 ms and had a broad tail later.
This means that the oscillations in Fig. 3A were not due to the
occurrence of subsequent microsaccades. This was further
confirmed when we considered the details of the intermicro-
saccadic interval distribution shown in Fig. 4B more closely.
According to this distribution, an oscillation dictated by when
subsequent microsaccades are triggered would necessarily
need to be ~5 Hz (the inverse of ~200 ms) or lower in
frequency. However, and as we show in more detail next, our
oscillations were significantly higher in frequency, where there
would be no microsaccades (see region >7 Hz in Fig. 4B).
Thus microsaccades have a persistent influence on RT modu-
lations, revealing a coherent long lasting oscillation.

We analyzed the spectral properties of the RT oscillation by
computing time-frequency plots in the range of 2-20 Hz.
Critically, we performed data shuffling to investigate whether
oscillatory rhythms in any given frequency band were expected
by chance. Such data shuffling (described in detail in MATERIALS
AND METHODS as well as in Fig. 2) gave us a set of surrogate

traces, examples of which are shown in Fig. 3B, and our goal
was to ask whether our original data (Fig. 3, A and B, 10p) was
significantly different from these surrogate traces. In Fig. 3C,
we only plotted time points after 100 ms (i.e., after the initial
microsaccadic suppression interval), and we also only labeled
time/frequency ranges that were statistically significant ac-
cording to conservative criteria (Fig. 2 and see MATERIALS
AND METHODS). RT oscillated in the a- and B-frequencies
(i.e., within ~8-20 Hz) (Wang 2010); the oscillation grad-
ually decreased in frequency, starting in the low-B/high-a
range (i.e., ~10-20 Hz) and then finishing in the low-a
range (i.e., ~8-10 Hz).

We also considered the possibility that the RT oscillation
was not due to microsaccades but instead to the visual transient
associated with fixation spot onset at trial beginning, which
could globally reset the visual system. If microsaccades were
temporally synchronized to such onset, then the RT oscillation
could in reality reflect phase locking to the visual event and not
to microsaccades. However, we only analyzed trials with >300
ms of steady fixation. This ensured that we excluded any
microsaccades synchronized with fixation spot onset. Indeed,
we did find that the likelihood of microsaccades was elevated
in the first 300 ms after fixation spot onset (Fig. 4C), so
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removing these trials was necessary to avoid possible ambigu-
ities about whether phase locking was to the fixation spot onset
or not. We also plotted RT time courses as a function of time

of target onset from fixation spot onset and irrespective of

microsaccades. We found no oscillation but instead a strong
RT cost in the first ~500 ms followed by a return to baseline
(data not shown); such early RT cost is to be expected given
the increased microsaccade likelihood in this early period,
since microsaccadic suppression is associated with RT in-
creases.

We also performed DFT analysis on the RT time course of

Fig. 3A in the period between 100 and 400 ms after microsac-
cade onset. We found significant power (P < 0.05; see MATE-
RIALS AND METHODS) in the range of ~10-16 Hz consistent with
Fig. 3C. Such significant power also existed when performing
the DFT analysis for only trials with microsaccades less than
the median amplitude (14.6-min arc) but not for microsaccades
larger than the median amplitude (although a nonsignificant
peak in a similar frequency range was still evident).

To summarize, our results so far suggest that microsaccades

influence RT in a rhythmic fashion for several hundreds of

milliseconds (Fig. 3), that this effect also holds for the smallest
movement amplitudes, and that this effect cannot be explained
by either microsaccade frequency or by visual transients asso-
ciated with trial onsets (Fig. 4).

Sequential Hemifield Pulses of «- and B-Frequency RT
Oscillations After Microsaccades

Even if visual transients associated with trial onsets were not
responsible for our results, it could still be the case that the RT

oscillation was due to visual transients associated with micro-
saccades themselves, since microsaccades shift and refresh
retinal images. Additionally, a putative extra-retinal influence
associated with movement triggering might contribute. In this
case, microsaccade direction might have differential effects,
since microsaccade generation would necessarily cause later-
alized activation of the oculomotor system (Hafed 2011: Hafed
et al. 2009, 2015; Hafed et al. 2009; Hafed and Krauzlis 2012;
Krauzlis et al. 2017). We thus separated microsaccades accord-
ing to the visual hemifield to which they were directed. For
example, if a microsaccade was directed to the right hemifield,
we asked how RT was modulated for rightward targets (pre-
sented in the “same hemifield” as the microsaccade) as op-
posed to leftward (“opposite”) ones. Immediately after a mic-
rosaccade (and for up to ~100 ms), both “same™ and “opposite™
targets experienced increased RT as expected from microsac-
cadic suppression (Fig. 5, A and D). However, surprisingly,
separating movement directions revealed that the coherent
oscillation in Fig. 3 consisted of two separate oscillating
“pulses” appearing sequentially in each hemifield, and these
observations persisted even when considering only microsac-
cades less than a 30-min arc in amplitude (green traces in Fig.
5, A and D). From ~160 to 360 ms, a low-fB/high-a-oscillation
pulse appeared in the same hemifield as the microsaccade (Fig.
5A). for target onsets ~380-635 ms after microsaccades, a
lower a-pulse appeared in the opposite hemifield (Fig. 5D). We
obtained these specific frequency ranges by repeating the
analyses highlighted in Fig. 2 for the present data subsets to
assess statistical significance in the spectrotemporal domain.
Specifically, we obtained surrogate traces, examples of which
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Fig. 5. Dep of RT oscillations on mi de di A: same analysis as in Fig. 3A but only for tnials with the target appearing in the same hemifield
as a microsaccade. There was an initial ceadic suppression effect, foll i by an oscillation. However, the oscillation only lasted for up to ~400 ms as
indicated by the dashed gle, which highlights a pulse of Ily significant RT oscillation (see €). B: original and example surrogate traces from the

data in A, as in Fig. 38. C: same analysis as in Fig. 3C illustrating that the statistically significant RT oscillation pulse was restricted to only the first part of our
sampled period after microsaccades. D-F: same as A=C but for targets appearing in the opposite hemifield. In this case, the RT oscillation pulse was delayed
relative to A-C (dashed rectangle in D; also see F for the statistically significant times and freq ies). Thus, when separating microsaccade directions, we found
that the long-term RT oscillation in Fig. 3 reflected sequential hemifield gating of RT oscillatory pulses first in the same hemifield as & microsaccade and then
in the opp hemifield. M . the effect was consistent across individual subjects (Fig. 6). Green traces show the RT time courses for microsaccades less
than a 30-min arc in amplitude,
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are shown in Fig. 5, B and E, and we then computed significant
time-frequency clusters shown in Fig. 5, C and F). These
clusters confirm the sequential nature of the oscillations across
hemifield that were evident in Fig. 5, A and D.

We next d the cc y of same- and opposite-
hemifield RT oscillation pulses across individual subjects. In
Fig. 6A, we plotted the phase of 13- to 20-Hz oscillations for
an RT curve like that shown in Fig. 5A but now obtained from
each subject individually. We found that the phase was largely
consistent across subjects during the initial same-hemifield RT
pulse of Fig. 5A, and it got scrambled later (Fig. 64). This was
further supported by plotting the PLV (see MATERIALS AND
METHODS) of the phase traces shown in Fig. 6A (Fig. 6B). The
shaded gray region in this case (Fig. 6B8) indicates the time
interval during which the PLV was statistically significant
according to permutation tests with 1,000 surrogate analyses
(P < 0.05; see MATERIALS AND METHODS). In other words, during
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Fig. 6. Consistency of same- and opposite-hemifield RT oscillation pulses
across individual subjects. A: phase of 13- to 20-Hz oscillations for each
subject. Phase was largely consistent across subjects during the initial same-
hemifield RT pulse of Fig. SA, C, but it was inconsistent later, B: phase-locking
value (PLV: sec MATERIALS AND METHODS) of the phase traces shown in A, The
shaded region shows the interval with significant PLV (P < 0.05; see
MATERIALS AND METHODS), which was consistent with the early pulse in Fig. 5,
A and C. Thus the results in Fig. 5, A and C, were reliable across individual
subjects. C: similar analyses but for opposite hemifield trials. Once again,
phase was consistent across individuals but only in the late period in which the
opposite-hemifield RT oscillation pulse occurred in Fig. 5, D and F; also see
D. Thus the opposite-hemifield RT oscillation pulse in Fig. 5, D and F, was
consistently observed across individual subjects. D: same as in B but for the
data in C.

the early same-hemifield RT pulse shown in Fig. 5, A and C,
PLV in our real data from individual subjects consistently
deviated from chance expectations obtained from the surrogate
traces. We also performed similar analyses for the opposite-
hemifield trials, this time within a frequency band (8-12 Hz)
consistent with the opposite-hemifield pulse frequency range in
Fig. 5, D and F. Once again, phase was consistent across
individuals, but only in the late period in which the opposite-
hemifield RT oscillation pulse occurred in Fig. 5, D and F (Fig.
6, C and D). Thus the opposite-hemifield RT oscillation pulse
in Fig. 5, D and F, was consistently observed across individual
subjects. These results, combined, reveal that microsaccade-
phase-locked RT oscillations are dependent on movement
direction.

Same-Hemifield Advantage in Perceptual Detection During
the First a- and B-frequency Oscillatory RT Pulse

In experiment 2 (Fig. 1 B), we asked whether visual detection
capabilities can also be affected long after microsaccades. We
performed this experiment on 14 subjects who had to detect a
small, briefly flashed target (see MATERIALS AND METHODS).
Target contrast was continuously adjusted to maintain an
average correct detection performance of ~50%. This means
that subjects reported consciously seeing the target, and cor-
rectly localized it, on ~50% of the trials (see MATERIALS AND
METHODS). Because this meant that the task was difficult, we
placed visual placeholders to aid subjects in estimating the two
possible target locations (Fig. 1B).

In Fig. 7A, top, we plotted the proportion of correct target
detections as a function of time after microsaccades. Immedi-
ately after microsaccade onset, and for ~100 ms, subjects had
immense difficulty in seeing the target: their likelihood of
reporting that they saw the target and with correct localization
was lower than the ~50% goal of this experiment’s design (this
means that they pressed “target not seen” more often than they
pressed a seen target location). This is consistent with micro-
saccadic suppression. Interestingly, after such suppression, and
specifically during the period in which the same-hemifield RT
oscillation pulse occurred in Fig. 5, A and C, perceptual
detection in the present experiment was also higher for the
target appearing in the same vs. opposite hemifield as the
microsaccade (dashed rectangle in Fig. 7A, rop: P = 0.0033 in
the interval 100-400 ms; 2-proportion z-test; also see Fig. 7C).
This effect is remarkable because it emerged even though task
difficulty was continuously titrated to maintain ~50% perfor-
mance. This effect is also reminiscent of other observations
made on shorter analysis time intervals than ours (Yuval-
Greenberg et al. 2014), although it is not clear whether these
authors analyzed performance during microsaccadic suppres-
sion or after it (Tian and Chen 2015). For later times, perfor-
mance in both hemifields was similar (Fig. 7A, top; P = 0.8035
in the interval 400-800 ms; 2-proportion z-test). These results
suggest that during the first RT oscillation pulse in the same
hemifield observed in Fig. 5, perceptual detection capabilities
were also improved (Fig. 7A). However, we did not find any
statistically significant high-frequency oscillations in perfor-
mance as we did for RT.

The carly same-hemifield perceptual detection improvement
(Fig. 7A) was also consistent across individuals (Fig. 8A4),
further suggesting that this effect was a robust property of
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long-term microsaccadic influences. However, we have to
emphasize here that we were unable to realize statistical
significance on a per-subject basis due to the low numbers of
trials per subject: nonetheless, all but three subjects showed
trends consistent with our pooled observations (Fig. 84).

We also ensured faithful task performance by the subjects
despite task difficulty. For example, incorrect reports of target
location were much less frequent than correct responses (Fig.

A — Same hemifield
A A RPe e eon . = Opposite hemifield
ggw- :
a '
§ .
TS sofpfly
£¥
gs
Fh- AP | EECEET R PR

3

Target seen in the opposite location

N N o VO e Vg

0c P M " N
0 200 400 600 800
Time of stimulus onset relative to microsaccade onset (ms)

False detections (%)
S
1

B o 1 Same Opposite , Close Far
gg .
[-% —
gey
gcs
3%% 0 0
fse
e 7
8 -1 L -1 . N
4 5 6 4 5 6

Horizontal retinotopic target position relative to gaze (deg)

C = =00033
-~ — p=0.1341
g
5 § 55
53 |
T8 5
2 | '
Same versus opposite Close versus far
comparison comparison
D Zp=00064 = p=00432 * p=0.0092
- 60
2
s z Same
'g 5 |Opposite
81 .10 |
3 1 1
©

—_—

Sy
.
7

F é@’é\\

4

%y,

(N L
d/; A
O
L

7A, bottom), and only 8% of catch trials had false alarms. This
means that subjects followed the instruction to only report
targets when they were consciously seen. Similarly, we en-
sured that target contrast was not different between same and
opposite trials when performance was different. Specifically, in
Fig. 8B, we compared target luminance contrast between the
two sets of trials and confirmed that target contrast could not
explain the early same-hemifield performance advantage ob-
served in Fig, 7A.

It could also be suggested that the improved perceptual
performance in Fig. 7A (dashed rectangle) was due to micro-
saccades bringing the fovea slightly closer to the peripheral
target than with oppositely directed movements. Indeed, when
we measured the position of the peripheral target relative to the
fovea at the time of target onset in trials with improved
perceptual performance (i.e., with targets 100-400 ms after
microsaccades), we found that the target was slightly closer to
the fovea on same than opposite trials (Fig. 7B, left), which was
due to the eye becoming better aligned to the fixation spot (see
Fig. 9). To ask whether this slight difference in retinotopic
position was sufficient to explain the same-hemifield advan-
tage, we performed two additional analyses. First, we only took
trials in which target position overlapped between same and
opposite trials (see MATERIALS AND METHODS), and we compared
detection performance. The same-hemifield advantage was still
present (P = 0.034 permutation test; see MATERIALS AND METH-
ops). Second, we reanalyzed the original data by now classi-
fying trials according to the position of the target relative to the
fovea rather than according to microsaccade direction (Fig. 7B,
right); we performed a median split on Euclidean distance
between target and fovea, and we compared “close™ vs. “far”
target positions, regardless of microsaccade direction. We no
longer observed a difference in performance (Fig. 70), sug-
gesting that our results could not be explained by the target
being closer to the fovea on same vs. opposite microsaccade
trials. Consistent with this, we still observed the same-hemi-
field advantage when restricting our analyses to only trials with
microsaccades less than a 30-min arc in amplitude and even
those with microsaccades less than the median amplitude of a

Fig. 7. Same-hemifield advantage in detectability during the period of the
initial RT pulse. A, fop: mean detectability (i.c., comect responses) as a
function of time after mi Je onset. | diately after mi i
detectability was impaired, consistent with microsaccadic suppression effects
(see MATERIALS AND METHODS). However, in the dashed rectangle. which
corresponds closely with the same-hemifield RT pulse in Fig. 5, A and C,
detectability was significantly higher for targets appearing in the same hemi-
field as a microsaccade than for opposite targets (P = 0.0033; 2-proportion
z-test). A, battom: incorrect target localizations, which were rare and unmodu-
lated by microsaccadic suppression, suggesting that subjects followed task
instructions (also see RESULTS). B: retinotopic target position at the time of
target onset for trials in the early (100-400 ms) interval after microsaccade
onset (each dot is a trial). Positions are colored based on the direction of the
last microsaccade relative 1o the target (left) or whether the target was closer
or farther than the median Euclidean distance observed. C: mean detectability
during the early (100-400 ms) period. The left pair compares conditions when
the target was presented in the same or opposite hemifield relative to a
microsaccade. The right pair compares closer or farther targets from the fovea.
Detectability was only enhanced in the same hemifield condition (fefr) and did
not depend on retinotopic target position (right). D: mean detectability as in C
but now only when microsaccades were less than a 30-min arc in amplitude or
when they were smaller or bigger than the median. In all cases, the same-
hemifield advantage of A was observed. Emor bars denote 95% confidence
intervals.
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17.6-min arc (Fig. 7D). For these trials, retinotopic target
position was very similar between same and opposite trials.

Finally, we wondered whether our results could reflect
microsaccades being pulled peripherally by a rhythmic process
of covert peripheral visual attention, as suggested by recent
evidence (Busch et al. 2009; Busch and VanRullen 2010;
Dugué et al. 2015; Fiebelkorn et al. 2013; Landau and Fries
2012; Landau et al. 2015; Song et al. 2014). We analyzed
microsaccade directions relative to the fixation spot (Fig. 9)
and confirmed previous findings that microsaccades redirect
gaze to the spot and not the periphery (Buonocore et al. 2017;
Guerrasio et al. 2010; Ko et al. 2010; Tian et al. 2016). That is,
eye position was closer to the fixation spot after microsaccades
than before them (Fig. 9). Thus our results are likely due to
microsaccade generation itself. Of course, some relation to
peripheral covert attention might still be expected (Hafed 2013;
Tian et al. 2016) given our results, as we discuss in more detail
in DISCUSSION.

Postsuppression Enhancement in SC Visual Sensitivity After
Microsaccades

Finally, because our experiment | was motivated by our
recent SC studies relating perimicrosaccadic visual sensitivity
in this brain structure to RT (Chen and Hafed 2017; Hafed and
Krauzlis 2010), we revisited these studies from the perspective

Fig. 9. Microsaccades acted 10 primarily cor-

rect for foveal motor errors during gaze fix- 1
ation. We plotted gaze distance from the
fixation spot before and after microsaccades,
for all microsaccades that were used in the
analyses of . 3.5, and 7. During both
experiments, microsaccades  brought  gaze
closer to the fixation spot than before the
movements (P = 1.2111 X 10 * in exper-
iment 1 and P = 6.9096 X 10> in experi-
meny 2; Wilcoxon rank sum test), consistent
with recent observations in previous studies,
This suggests that our microsaccades were
not necessarily reflecting endogenous atten-
tion shifts towards the periphery but were
instead part of a deliberate oculomotor strat-
egy o optimize eye position on the fixated 0
target.

Gaze distance from fixation spot
after microsaccade (deg)

Experiment 1

05 10 05
Gaze distance from fixation spot before microsaccade (deg)

of what we have learned so far from the present results. We
specifically hypothesized that RT oscillations should correlate
with visual sensitivity even in the absence of any overt re-
sponse. In our previous SC studies, visual response strength
was the only assay of microsaccadic suppression, and monkeys
did not perform any task other than fixation (Chen and Hafed
2017: Hafed and Krauzlis 2010). SC visual response strength
in these studies correlated remarkably well with RT effects
obtained from completely different behavioral sessions (Chen
and Hafed 2017). This means that if we were to record SC
visual responses in the absence of any behavioral task, then a
faster RT following the initial microsaccadic suppression effect
(e.g., Fig. 3) should be mirrored by stronger visual responses
than “baseline” (with “baseline” defined as response strength in
the absence of any nearby microsaccades; see MATERIALS AND
METHODS). We thus analyzed visual response strength after
microsaccades in two monkeys, using data from Chen et al.
(2015), by extending the time course of analysis beyond the
initial 100 ms that we typically used in our earlier studies. For
up to ~100 ms after microsaccade onset, visual response
strength in both visual and visual-motor SC neurons was
suppressed, as expected (Fig. 10). Specifically, the curves in
Fig. 10 were below the normalized “baseline™ response value
of 1 for all time points less than that indicated by the dashed
vertical line (error bars denote 95% confidence intervals).

Experiment 2
0.01

+ +0.005
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Fig. 10. Neural implications of an RT oscillation after initial microsaccadic
suppression. A: we performed time course analyses of visual response strength
in superior colliculus (SC) purely visual neurons. The neurons were the same
as those used in Chen et al, (2015), and the analysis was identical to that
performed in Hafed and Krauzlis (2010), except that we extended the analysis
window beyond the typical 100 ms after microsaccade onset that we had used
earlier (see MATERIALS AND METHODS). This allowed us to explore whether
recovery from neural microsaccadic suppression is towards a constant baseline
or not, as we did in the behavioral experiment of Fig. 1. Error bars denote 95%
confidence intervals. As can be seen. after the initial ~100 ms of neural

visual was enh d (i.e., the curve went above
). valhu' than being cqual (Ch hu\clmc suggesting that RT oscillations like in
Fig. 3 can refiect oscillations in visual neural sensitivity. B: a similar obser-
vation was made for visual sensitivity of visual-motor SC neurons, which are
better correlated 1o RT (Chen und Hafed 2017; Hafed and Krauzlis 2010). In
A and B. the “baseli lized to 1) was obtained from trials in
which there were no lmtm\anmdl.'s within * 150 ms from stimulus onset. Note
that this data set did not allow us to sample neural sensitivity for longer periods
after a microsaccade (as in Fig. 3), but the postsuppression enhancement
nonetheless suggests that visual neural fluctuations can also go above baseline,
consistent with the Fig. 3 RT oscillation.

Interestingly, visual response strength in both visual and visu-
al-motor SC neurons indeed increased above baseline after this
initial microsaccadic suppression (Fig. 10; curves lying above
I in the interval after the vertical dashed line). Thus, like RT
costs, recovery from neural microsaccadic suppression was
also not back to a single “baseline,” but there was higher visual
sensitivity after the initial suppression. These neural analyses
did not allow us to extend the time course for hundreds of
milliseconds like in our behavioral data, because our earlier
neural experiments did not sample long times after microsac-
cades (Chen et al. 2015); however, they nonetheless demon-
strate that our RT effects in Fig. 3 may be related to visual
sensitivity modulations after microsaccades, as suggested ear-
lier (Chen and Hafed 2017; Hafed et al. 2015; Hafed and
Krauzlis 2010; Tian et al. 2016). This is also similar to
behavioral results with large saccades showing enhancement
after the suppression (Burr et al. 1994; Diamond et al. 2000;
Knoll et al. 2011). We also saw hints of direction dependence
in the post-suppression enhancement of neural activity in Fig.
10, similar to Fig. 5, but the data (constrained by prior neural
recordings) were not sufficient to allow us to establish statis-
tical significance.

DISCUSSION

We found that microsaccade occurrence has a profound
long-term influence on brain state, resulting in coherent pulsed
a/B-RT oscillations first in the same visual hemifield as the
movement vector and then in the opposite hemifield. We also
found long-term changes in perceptual detection and SC neural
activity. In what follows, we discuss these observations and

relate them to observations of physiological rhythms in the
brain, attentional fluctuations, and motor control in general.
We also discuss our methodological choices and their potential
limitations.

We think that the lateralization of the two oscillatory pulses
that we observed in RT (Fig. 5) is likely jumpstarted by
microsaccade movement commands, which necessarily result
in lateralized action-potential bursts in spatially organized
visual-motor structures like the SC (Hafed et al. 2009; Hafed
and Krauzlis 2012). Interestingly, the switch to the opposite
hemifield RT oscillation that we observed in Fig. 5, D-F, came
at approximately the time at which one would normally make
a second eye movement during natural scene viewing and also
during fixation in the case of microsaccades (e.g., Fig. 4B8). It
would be interesting to investigate the implications of such
hemifield switching under more natural conditions. For exam-
ple, there is evidence for “facilitation of return™ in saccadic
scanning of natural scenes (Wilming et al. 2013), in which
“return saccades” are frequently observed (i.e., a saccade
oceurs opposite in direction to a previous one). It might be the
case that the brain mechanisms underlying the sequential
hemifield switches that we have observed could be related to
such increases in the propensity to make return saccades. This
can also apply in the case of scanning objects in far environ-
ments, in which microsaccades would be necessary given the
small images projected by far visual features onto the retina.
Thus the results that we obtained in a laboratory setting with a
fixation marker can potentially be extended to more naturalistic
scenarios.

We also think that our results may be related to observations
of neural oscillatory patterns in a variety of visual areas. For
example, it was previously shown that microsaccades cause
broadband modulation of visual areas immediately after move-
ments (Bosman et al. 2009; Lowet et al. 2016). This is
consistent with image refreshing (Martinez-Conde et al. 2000),
but there could also be longer term oscillations in neural
activity, and future work should explore the links between
neural and behavioral oscillations in relation to microsaccades.
Currently, such links may not always be obvious, especially
because during parts of the longer term intervals that we have
focused on here, some visual areas were shown previously to
exhibit low frequency oscillations and not higher frequency
ones like we saw. For example, the neural oscillations that
were reported previously were primarily consistent with mic-
rosaccade frequency (Bosman et al. 2009) and not necessarily
with the higher frequencies that we observed in our data.
Similarly, if neural oscillation results were indeed to turn out to
be linked to our behavioral observations, then we think that
longer term analyses of neural data (say, at 600 ms or more
after a movement) need to take microsaccade direction into
account, For example, the neurophysiological experiments of
Bosman et al. (2009) did not separate different movement
directions, and this could be why oscillatory patterns may not
have lasted for too long (if there is sequential hemifield pulsing
but all movements are combined, then such pulsing might be
masked). Indeed, even at the neural level, movement direction
does seem to matter a great deal for large saccades, which are
associated with direction-dependent S-frequency waves in area
V4 (Zanos et al. 2015). a-Oscillations have also been observed
in V4 after large saccades (Zanos et al. 2016), but these
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oscillations were once again short-lived because potential later
oscillations in the opposite hemifield were not investigated.

Related to the above, we observed a- and B-behavioral
oscillations in RT (Figs. 3 and 5). The B-oscillations that we
observed might be a lingering component of B-rhythms asso-
ciated with microsaccade generation, since B-rhythms can be
movement-related (Wang 2010). On the other hand, the a-o0s-
cillations may be related to occipital a-rhythms, which syn-
chronize to microsaccades (Gaarder et al. 1966). Of course,
this requires an assumption that occipital modulations can
manifest in RT modulations, but this is quite reasonable. In
fact, even manual RT is a highly sensitive measure of proper-
ties of the early visual system, like magno- and parvo-cellular
pathways (Breitmeyer 1975). Similarly, the early evoked visual
response of SC neurons is highly predictive of RT’s collected
from separate sessions (Chen and Hafed 2017). In this regard,
such sensitivity of RT could be why it was easier to see
significant oscillations in experiment 1 than in experiment 2.
Indeed, maybe more data would have revealed significant
oscillations also in experiment 2, but this itself would indicate
that the effect is less robust. The visual stimuli were also very
different in both experiments, so it could be that our task in
experiment 2 was not sensitive enough to behaviorally manifest
the underlying brain oscillations. It is nonetheless still inter-
esting that the same-hemifield advantage in Fig. 7 emerged at
the same time as the same-hemifield RT oscillation pulse in
Fig. 5.

The above statements suggest that the implications of our
findings are not necessarily that RT or detection effects in our
present scenarios are the ultimate goal of microsaccade-related
synchronization of endogenous brain rhythms. Rather, we
think that our behavioral assays were sensitive measures of
underlying oscillations, which could be useful in a variety of
other ways. For example, oscillations could increase the effi-
cacy of transmitting information between areas (for example,
from the lateral geniculate nucleus to primary visual cortex)
(Bastos et al. 2014). This could happen, say, through the
so-called idea of “communication through coherence™ (Fries
2005). Additionally, the phase of oscillations slower than 20
Hz could be used to potentially increase the information
conveyed by each spike in V1 (Montemurro et al. 2008), and
a-oscillations could order and prioritize salient information
from the unattended visual field (Jensen et al. 2012). In this
regard, such oscillations could modulate when and how neural
assemblies might inhibit other assemblies. Overall, this could
help in allocating resources to “sample” different regions of an
image. At the circuit level, oscillations can also emerge out of
known microcircuit architecture in cortex with local inhibitory
loops, so they also represent structure-function relationships in
brain operation.

In our experiments, we also observed higher oscillation
frequencies than those predicted by attentional sampling at the
behavioral level (Fiebelkorn et al. 2013: Landau and Fries
2012). However, our results are still consistent with hypotheses
about perceptual rhythms in the visual system (Busch et al.
2009; Busch and VanRullen 2010; VanRullen 2016), and we
think that it is quite reasonable that these rhythms would be
related to saccades and microsaccades, especially given how
active visual perception is under natural conditions.

With respect to attention, it could additionally be argued that
covert attention might have been the source of the RT oscilla-

tions and same-hemifield detection advantages that we have
observed, independently of microsaccades. Indeed, attention
samples locations rhythmically (Busch et al. 2009; Busch and
VanRullen 2010; Dugué et al. 2015; Fiebelkorn et al. 2013;
Landau and Fries 2012; Landau et al. 2015; Song et al. 2014),
and microsaccades are correlated with attention (Engbert and
Kliegl 2003: Hafed and Clark 2002; Hafed et al. 2011).
However, time locking of our effects to microsaccades would
require that the time and direction of any given movement
would have to perfectly match the time and direction of every
single attention shift or at least within a small window associ-
ated with B-rhythms (<50 ms). Morcover, we found that
microsaccades correct for eye position error (Fig. 9), consistent
with previous findings (Guerrasio et al. 2010; Ko et al. 2010;
Tian et al. 2016), rather than increase such error, which is what
would happen if they were pulled peripherally by oscillations
in the locus of peripheral covert attention. Instead, we think
that our results are more likely related to well-known perimi-
crosaccadic influences on visual sensitivity, as in the case of
microsaccadic (Chen et al. 2015; Hafed et al. 2015; Hafed and
Krauzlis 2010; Zuber and Stark 1966) and saccadic (Benedetto
and Morrone 2017) suppression. However, even with this
view, a relation to attention can still be expected (Hafed 2013;
Hafed et al. 2015; Tian et al. 2016). For example, since
microsaccades are reflexively reset by sensory cues (Hafed and
Ignashchenkova 2013; Rolfs et al. 2008), it may be possible
based on our current results that some behavioral effects in
attention tasks may be partially influenced by microsaccades
oceurring several hundreds of milliseconds before a target.

It was also recently found that large voluntary saccades are
associated with behavioral performance oscillations like in our
results (Benedetto and Morrone 2017; Hogendoorn 2016; Wutz
et al. 2016). However, an intriguing difference between these
observations and ours is that our oscillations were higher in
frequency than in these studies. Indeed, the lower frequency
oscillations associated with large voluntary saccades may be
related either to attentional rhythms (Hogendoorn 2016) or the
intrinsic saccadic/microsaccadic rhythms of the oculomotor
system (Benedetto and Morrone 2017). which are both slower
than the a- and B-frequencies that we observed. Since micro-
saccades cannot be generally made at such high frequencies
(e.g., Fig. 4B), this leads us to hypothesize that microsaccades
may “ride” on slow frequency rhythms, as we have recently
suggested (Tian et al. 2016), and as is the case with the large
saccade results of Benedetto and Morrone (2017) and Hogen-
doorn (2016), but that they reset the phase of higher frequency
oscillations. Such resetting could serve the purpose of regular-
izing visual processing in between two successive movements
(Chen and Hafed 2017), particularly with the sequential hemi-
field pulsing that we observed. Interestingly, our DFT analysis
did not reveal significant ~10- to 16-Hz oscillations for mic-
rosaccades larger than the median amplitude, but there was
also a secondary peak at ~4-5 Hz (although still non-signifi-
cant) emerging for these larger microsaccades. It would be
interesting to investigate the interactions between multiple
frequency bands and saccade/microsaccade sizes at the mech-
anistic level in future research.

Finally, our observation of coherent effects when pooling
multiple subjects’ data suggests that our observations were
common across individuals, even if there may have been
individual differences in more subtle ways (in, say. the exact
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values of a- or B-oscillation frequencies that each individual
might exhibit). We find both this observation and the fact that
the coherent oscillations appeared at the behavioral level (i.e.,
at the overall output of the entire brain processing cascade)
intriguing. In this sense, a small effect size (e.g., for the
absolute RT difference between peak and trough in Fig. 34) is
to be perfectly expected after pooling all subjects together;
what is more interesting is that such a coherent effect occurs at
all in the first place. Also, amplitudes of behavioral oscillations
at the high frequencies that we studied are generally mild even
in carlier studies (Song et al. 2014). Thus it is the phase
consistency after pooling that is interesting here, rather than the
effect size itself. Having said that, it may still be argued that an
across-subject average oscillation can emerge even if individ-
ual subjects had no oscillations at all, but if they instead each
somehow had a “strategically timed” single peak in RT (to give
rise to the highly specific results in Figs. 3 and 5 after pooling).
This is both physiologically and statistically unlikely, but we
explored it further by running one of our monkeys on multiple
sessions of a version of experiment I to obtain reliable within-
subject RT time courses. The results that we obtained (Fig. 11),
which are part of an ongoing follow-up investigation of neural
mechanisms, confirmed that multiple RT peaks can indeed
appear within an individual subject.

The above points touch on the importance of statistical
analyses in studies like ours. In our approach, we pooled
subjects but this was because of the daunting task of data
collection (e.g.. the number of trials per time bin in Fig. 34 was
an order of magnitude smaller than the total number of trials
collected because of factors related to Fig. 4). However, we
were careful to correct for multiple comparisons and other
factors in analyses, especially because running average opera-
tions can cause ringing in traces that may appear to be an
oscillation visually even when there is no oscillation (e.g., see
some surrogate traces in Figs. 38 and 5. B and E). We find it
unlikely that our results were entirely explained by ringing,
especially given the sequential hemifield pulsing that we ob-
served in Fig. 5 (it is not clear how filtering-related ringing
artifacts can give rise to such a finding). However, we ac-
knowledge that our filtering choices restricted our analyses to
frequencies <20 Hz. It may be possible that higher frequencies
are present, but this remains to be seen in future experiments.

Overall, our results bridge action, perception, and rhythmic
brain fluctuations in a manner that should helpfully inform
many exciting future neurophysiological experiments in vision
science.
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running window in 5-ms steps) revealed RT fluctuations similar to those in
Fig. 3. with multiple peaks at different times; thus multiple peaks of RT
variability can indeed happen within an individual subject. Discrete Fourier
transform analysis on the shown interval revealed a spectral peak at ~7.7
Hz. B and C: we repeated the analysis for cases in which the target appeared
in a direction congruent with microsaccade direction (“Towards”) or
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Bellet ME, Bellet J, Nienborg H, Hafed ZM, Berens P. Human-
level saccade detection performance using deep neural networks. J
Neurophysiol 121: 646-661, 2019. First published December 19,
2018; doi:10.1152/jn.00601.2018.—Saccades are ballistic eye move-
ments that rapidly shift gaze from one location of visual space to
another. Detecting saccades in eye movement recordings is important
not only for studying the ncural mechanisms underlying sensory,
motor, and cognitive processes, but also as a clinical and diagnostic
tool. However, automatically detecting saccades can be difficult,
particularly when such saccades are generated in coordination with
other tracking eye movements, like smooth pursuits, or when the
saccade amplitude is close to eye tracker noise levels, like with
microsaccades. In such cases, labeling by human experts is required,
but this is a tedious task prone to variability and error. We developed
a convolutional neural network to automatically detect saccades at
human-level accuracy and with minimal training examples. Our al-
gorithm surpasses state of the art according to common performance
metrics and could facilitate studies of neurophysiological processes
underlying saccade generation and visual processing.

NEW & NOTEWORTHY Detecting saccades in eye movement
recordings can be a difficult task, but it is a necessary first step in
many applications. We present a convolutional neural network that
can automatically identify saccades with human-level accuracy and
with minimal training examples. We show that our algorithm per-
forms better than other available algorithms, by comparing perfor-
mance on a wide range of data sets. We offer an open-source
implementation of the algorithm as well as a web service.

algorithm; deep neural network; eye movements: microsaccade; sac-
cade

INTRODUCTION

Eye tracking is widely used in both animals and humans to
study the mechanisms underlying perception. cognition, and
action, and it is useful for investigating neurological and
neurodegenerative diseases in human patients (Carpenter 1988;
Kowler 2011: Leigh and Kennard 2004; Leigh and Zee 2015;
MacAskill and Anderson 2016). This is in part due to practical
reasons: recording eye movements is relatively easy (Duch-
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owski 2007). while, at the same time, eye movements can be
highly informative about brain state (Borji and Itti 2014;
Haji-Abolhassani and Clark 2014).

The most prominent type of eye movement, in terms of
eyeball rotation speed, is a ballistic shift in gaze position,
called saccade. This type of eye movement occurs 3-5 times
per second, and it can realign the fovea with interesting scene
locations within only ~50 ms. Naturally, saccades cause dra-
matic changes in visual input when they occur. and they
therefore impact neural processing in different visual areas and
also in a variety of ways (Burr et al. 1994; Crevecoeur and
Kording 2017; Duhamel et al. 1992: Golan et al. 2017: Ross et
al. 1997; Reppas et al. 2002; Sommer and Wurtz 2008; Yao et
al. 2018; Zirnsak et al. 2014). This even happens for the tiniest
of saccades, called microsaccades, that occur when gaze is
fixed (Bellet et al. 2017; Bosman et al. 2009: Chen and Hafed
2017; Hafed 2011; Hafed et al. 2015; Hass and Horwitz 2011;
Herrington et al. 2009; Gur et al. 1997: Leopold and Logothetis
1998; Yu et al. 2017). Therefore, studies not quantitatively
analyzing microsaccades can miss important behavioral and
neural modulations in experiments (Hafed 2013). Saccades and
microsaccades are, additionally, key discrete events in eye
tracking traces that can be useful for parsing other eye move-
ment epochs (e.g., smooth pursuits, ocular drifts, ocular trem-
ors) for further analysis. Therefore, detecting saccades is typ-
ically the first step in any quantitative analysis of behavior or
neural activity that might be impacted by these eye move-
ments.

Several algorithms have been proposed for automating the
task of saccade detection (reviewed in Andersson et al. 2017).
For example, Engbert and Mergenthaler (2006) developed a
method for classifying saccades and microsaccades based on
an adaptive threshold. This algorithm (which we refer to here
as EM) is particularly popular because of its simple implemen-
tation and ease of use, as well as its ability to detect even
microsaccades. However, this algorithm, like others, may still
mislabel some microsaccades due to high eye tracker noise (as
is typical with video-based eye trackers) as well as small
catch-up saccades occurring during smooth pursuit. Other
existing algorithms (Larsson et al. 2013; Pekkanen and Lappi
2017) have the added advantage of providing additional labels
for fixations and postsaccadic oscillations (PSO) in eye posi-
tion.
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Despite their success, several shortcomings still render the
use of existing algorithms either less reliable than desired or, at
the very least, cumbersome. While the performance of many
published algorithms is promising (Andersson et al. 2017;
Pekkanen and Lappi 2017), it does not reach the level of
trained human experts. Also. none of the existing algorithms
show convincing performance for all eye movement-related
events that may need to be analyzed (e.g., fixations, saccades,
PSO, blinks, smooth pursuits). In addition, equipment-depen-
dent hyperparameters, such as thresholds, need to be chosen for
most algorithms, a fact that renders broad usability difficult.
For example, even simple changes in eye tracking hardware,
involving changes in sampling frequency or measurement
noise, require retuning of such parameters. Retuning is also
needed when the ranges of eye movement amplitudes being
studied are modified (e.g., microsaccades vs. larger saccades).
Perhaps most importantly, objective parameter estimation in
existing algorithms is currently a challenging task because of a
limited amount of available reliably labeled data. Finally, in
many cases, applying available online resources is not straight-
forward. As a result of all of the above shortcomings, current
laboratory practice often still involves experimenters spending
substantial amounts of time to carefully relabel at least parts of
their data after automatic saccade detection.

Here we propose a convolutional neural network (CNN) for
classifying eye movements. The architecture of the network is
inspired by U-Net, which has successfully been used for image
segmentation (Ronneberger et al. 2015). We evaluated our
network (U'n’Eye) on four challenging data sets containing
small saccades occurring during fixations or smooth pursuits.
On these data sets, U'n’Eye reached the performance level of
human experts in labeling saccades and microsaccades, while
being much faster. The network also beat state-of-the-art algo-
rithms on a benchmark data set not just for saccade detection,
but also for PSO. As we show here. our network can be trained
quickly, even on a standard laptop, and with minimal amounts
of training data. More importantly, our network’s adaptability
to different data sets makes U’n’Eye the novel state-of-the-art
eye movement detection algorithm. We provide an easily
accessible web service for running U'n’Eye (http://uneye.
berenslab.org), as well as an open source implementation
(hutps://github.com/berenslab/uneye). Our labeled data sets
will also be freely available upon publication.

METHODS

Data sets. All experiments used for collecting the data sets were
approved by ethics committees at T bingen University. Human sub-
jects provided informed, written consent in accordance with the
Declaration of Helsinki. Monkey experiments were approved by the
regional governmental offices of the city of T bingen,

Data set | was collected from human subjects using the Eyelink
1000 video-based eye tracker (SR Research) sampling eye position at
1 kHz. The data set contains mostly microsaccades and small-ampli-
tude memory-guided saccades. It contains 2,000 trials of 1 s. Out of
these 2,000 trials, 1,000 were selected to compare U'nEye to other
algorithms via cross-validation (Fig. 4). We named these trials
“sctl A" When testing for the impact of missing labels on perfor-
mance (Fig. 78), we used the other 1.000 trials, “set1B.,” to train
networks and tested them on setlA.

Data set 2 was collected from three male rhesus macaque monkeys
implanted with scleral search coils (in one eye for each of the
monkeys)., The data set contains catch-up saccades generated during
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smooth pursuit. Eye position was again sampled at | kHz. For the
trials containing smooth pursuit of sinusoidal target motion trajecto-
ries in this data set, the data were obtained from the experiments
described in Hafed et al. (2008) and Hafed and Krauzlis (2008). For
the trials containing pursuit of constant speed, the experimental
conditions are described in Buonocore et al. (2018). Eye movement
calibration for search coil data was done according to the procedures
in Tian et al. (2016). The overall data set consists of 2,000 segments
of | s of eye traces. Like in the case of data set I, we split the set into
two sets of 1,000 segments each, “set2A” and “set2B.” set2A was
used to compare U'n’Eye to Daye and Optican’s (2014) algorithm
(Fig. 4).

Data set 3 was collected from a single male macaque monkey using
the Eyelink 1000 video-based system sampling eye position at 500
Hz. The data set contains microsaccades generated during fixation.
The data were obtained from experiments described in Kawaguchi et
al. (2018). It consists of 403 segments of 1.438 s. Similarly to data sets
1 and 2, we split the data in two subsets, “set3A™ and “set3B.” Set3A
contains 350 segments and set3B 53 segments. Set3A was used for
comparing U'n’Eye’s performance to other that of algorithms (Fig, 4).

For the results shown in Fig. 7D, we used setA of all data sets for
training and the respective setB for testing.

Data set 4 was collected from the same eye tracker as data set 1 but
with different sets of subjects. It comes from a recently published
study (Bellet et al, 2017) in which subjects had to keep fixation at the
center of the screen before a peripheral target appearance. We selected
630 segments of 750 ms from each of 10 subjects (4,725 s in total).
The data set includes not only successful trials, in which subjects
maintained fixation, but also trials containing blinks or saccades
outside of the fixation window. Again, we split the data set into two
subsets. Set4A contained 330 segments per subject and was used to
train networks. Set4B contained 300 segments per subject and was
used to test the performance of the networks.

In all data sets, we manually detected saccades using a custom-
made graphical user interface (GUI) in MATLAB. The GUI displayed
horizontal and vertical eye position traces, as well as filtered radial eye
velocity. The GUI internally estimated saccade onset and end times
using a combination of velocity and acceleration thresholds (Chen and
Hafed 2013). The user then manually interacted with the GUI to delete
false alarms, correct false negatives, and adjust estimation of onset
and offset timing.

Simulated saccades. To test the performance of our network on
noisy labeled data, we designed artificial eye traces for which we
knew the ground truth. Saccades ranging from (0.5 to 60 were
simulated using an adaptation of a model for saccade waveforms (Dai
et al. 2016). The model is a sum of soft ramp functions, which follows
the relationship between amplitude and peak velocity observed in real
saccades (Dai et al. 2016). Since the model is originally one dimen-
sional, we adapted it so that it generates two-dimensional trajectories.
Saccade generation in time was made to follow a Poisson process with
A equal to 3 saccades/s. Simulated blinks were also added by inducing
sharp transients in the eye traces. Finally, a Gaussian white noise with
a standard deviation of 0.02° was added to the trace. Then, as
described in rEsuLTs, we trained U'n’Eye under a variety of condi-
tions in which we intentionally removed a subset of saccade labels
during training, to explore robusiness to missing labels (Fig. 7).

U'n'Eye: our convolwtional neural network, The architecture of
CNN was inspired by U-Net, a CNN first used for image segmentation
(Ronneberger et al. 2015). Here we modified U-Net to meet the
requirements of an eye movement classifier. The network was built of
seven convolutional layers with kemel size 5, each followed by a
lincar-rectifying unit (ReLLU) and a BatchNorm layer, both described
in detail in resuLts. Batches consisted of samples of the same
duration, The input to the network was eye velocity which was
computed as the first-order difference of the eye position signal. The
input was of dimension N X T X 2, where N is the batch size, T the
number of time points, and 2 the number of coordinates (horizontal
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and vertical eye velocity). The number of input time points could be
variable but had to be a multiple of 25 bins due to the max pooling
operations. The output of the network was a matrix of dimension N X
K X T, where K was the user-defined number of classes. For example,
we could have a “saccade™ and “fixation” class in the networks of Fig.
3 and we could also add other classes like “PSO™ in the network of
Fig. 6.

We applied a softmax (Bishop 2016) activation function to the
output of the last convolutional layer x:

edi

Softmax(x) = — (1)

e

J=1

where x; is the layer corresponding to class i. Thus, the network’s
output y repr 1 the le-by ple conditional probability of
each class (e.g., “fixation™ or “saccade™) given the eye-velocity x and
the network weights w:

Y, =plk=1llx,w) (2)

The final prediction of the algorithm represented the class that
maximized this conditional probability:

k= argmaxp(k = 11x, w) (&3}

We chose the kernel sizes of the convolutional and max pooling
operations in a way to capture a relevant signal range around each
time point, Based on the given kernel sizes of the network, it can be
shown that the prediction of one time bin is influenced by the
preceding and following 89 time bins of the velocity signal (Fig. 25,
red color).

Network training. We trained the network with minibatches whose
size depended on the total number of training samples. We performed
10 training iterations in each epoch. Overfitting on the training set was
prevented by computing the loss on a validation set and stopping
training when the validation loss increased for three successive ep-
ochs. We used a multiclass error function, which, for two classes,
equals the cross entropy loss. Weight-regularization was done with
L2-penalty (Bishop 2016), which corresponds to a Gaussian prior with
zero mean over the network weights. The optimal parameter A was
determined to be 0.01. The loss function was thus defined as:

N

L==> ﬁ Ludogy (. w) + A3 (4
n=1k=1

where N is the number of time points and K the number of classes. The
ground truth label 7,, equals 1 if the time point n belongs to class k.
Gradient computation was done with PyTorch autograd method.

We used the Adam optimizer (Kingma and Ba 2014) with an initial
learning rate of 0.001. Adam is 4 stochastic gradient-based optimizer
that uses adaptive learning rates for different weights of the network.
An additional step decay by a factor of 2 was applied to the current
learning rates when the loss on the validation set increased during one
epoch.

Postprocessing. Tn the case of binary prediction into the classes
fixation and saccade, we provided the possibility to define thresholds
for minimum saccade duration and minimum saccade distance. If
thresholds were given, saccades closer than the minimum distance
were merged and saccades shorter than the minimum duration were
removed. We obtained the results reported here with a minimum
saccade distance threshold of 10 ms for data set 1 and of 3, 4, and 5
ms for data set 2, because we previously observed that some saccades
occurred very close in time in this data set. For data sets 1-4, we used
a minimum saccade duration threshold of 6 ms. The same thresholds
were used for the algorithm Engbert and Mergenthaler (2006).

Data augmentation. U'n’Eye performs better with a bigger training
set. However, we aimed to reduce the amount of saccades that a user
should provide to train U'n’Eye. In this study, to increase the number

of training samples, the input eye positions were rotated and added to
the original training samples:

X3 = xcos(0) + ysin(0) (&)
vy = —xsin{0) + ycos(0) (6)

where x and y are the horizontal and vertical eye positions. We used
O—(1/4m, 3/4m, 547, T/4m) radians. Thus, we could increase by
fivefold the size of our training set without causing overfitting.

Performance measures. To evaluate the eye movement detection
performance of our network, we used the following metrics: Cohen’s
kappa, F1 score. and onset and offset time differences.

Cohen’s kappa is a sample-based statistic. It reflects how much two
coders agree on the class that each time bin belongs to, while
controlling for chance agreement of the two coders. It is given by

= Po~ Pe )
1= p,
where py, is the proportion of time bins for which two coders agree,
and p, is the proportion of time bins for which agreement can be
expected by chance.
For a binary classification of fixation vs. saccades, the Cohen’s
kappa value p, is given by
¥

I
ke D theodert X Mhogers (8
&

pP,=
where nk..,...x is the number of time bins coder X assigned to class k.
The F1 score is a measure of classification accuracy that combines
precision and recall of a predictor. Precision is defined as the propor-
tion of correctly classified saccades over all predicted saccades. Recall
is defined as the proportion of correctly classified saccades over all
saccades in the ground truth. The F1 score is the harmonic mean of
these two measures. It is given by

TP
Fl =2 X —————— (9)
2*TP + FN + FP

where TP is the number of true positives, FN the number of false
negatives, and FP the number of false negatives. For all true positive
saccades, we compared saccade timing between the ground truth and
prediction by calculating the absolute time differences between true
and predicted saccade onsets and offsets.

Evaluation on a benchmark data set. We evaluated U'n’Eye
performance on a benchmark data set by Andersson et al. (2017). This
data set comprises 500 Hz eye-tracking data from humans looking at
images, movies, or moving dots. It contains human labels for the
events fixations, smooth pursuits, saccades, PSO, and blinks. Events
that the human experts did not assign to any of these classes were
labeled as “others.” For some trials, the data set contained labels from
two different human coders. For other trials, only one label was
available. We trained 20 independent networks with different random
initializations on the data with labels from one human coder (coder
RA). Performance was then tested on the trials with labels from two
coders, which makes our result comparable with previously reported
results (Pekkanen and Lappi 2017), Note that we were not able to
reproduce the interrater measures reported by Andersson et al. (2017)
in line with the results of Pekkanen and Lappi (2017). For compara-
bility with the NSLR-HMM algorithm (Pekkanen and Lappi 2017),
we excluded the event labels “other™ for the calculation of Cohen's
kappa scores. The performance on the class “blinks™ was not com-
pared with other algorithms since it was not reported.,

Evaluation of other algorithms. We compared U'n’Eye perfor-
mance on our data sets to several already published algorithms. For
data sets 1 and 3. which contain microsaccades occurring during
fixation of a static target, we evaluated the performance of three
algorithms designed for microsaccade detection (Engbert and Mer-
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genthaler 2006; Otero-Millan et al. 2014; Sheynikhovich et al. 2018)
and one algorithm designed for saccade detection in a high-noise
regime (Pekkanen and Lappi 2017).

The algorithm by Engbert and Mergenthaler (2006) is commonly
used as an unsupervised method to detect microsaccades. It selects
saccades based on a threshold that depends on the level of the noise
in the velocity. One parameter, called A, can be also be fit to the data
to obtain better results. This A is multiplied with the velocity noise to
determine a threshold for saccade selection. Here we chose A values
that maximized the metric of interest on the training data from our
cross-validations. This was done to give this algorithm the benefit of
the doubt in our comparisons. Importantly, before saccade detection,
we smoothed the eye traces using a five-point average independently
of the sampling frequency, as described by Engbert and Mergenthaler
(2006).

The approach from Otero-Millan et al. (2014) is an unsupervised
method. It gives an estimate of saccade onset and offset timing and
thus can be compared in terms of both the Cohen’s kappa and F1
metrics.

Another unsupervised method has been developed by Sheynikhov-
ich et al. (2018). This algorithm only gives an estimate of microsac-
cade occurrence at one point in time without determining onset and
offset. We thus compared only the performance in terms of F1 score
for this algorithm. We considered as true positive any saccade de-
tected =10 ms away from a ground truth saccade.

For data set 2, we evaluated the performance of the method by
Daye and Optican (2014), which uses particle filters to detect saccades
embedded in high-velocity eye movements. The algorithm was kindly
provided by the authors. To increase performance, we detected sac-

A
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cades independently in the horizontal and vertical channel and then
merged the predictions, This is because the Daye and Optican algo-
rithm only considers as a saccade an event crossing a threshold both
in horizontal and vertical components at the same time, which in-
creases the number of false negatives. To increase performance, the
parameters were tuned differently for trials containing sinusoidal
pursuit than for those containing linear pursuit, again to give the
algorithm the benefit of the doubt when comparing to U'n’Eye. To
detect saccades in sinusoidal pursuit, the parameters were set to
Q=10%E=3 105 N=100,m=20,A=510¢y=210""
To detect saccades in linear pursuit, the parameters were set to
Q=107 ¢£=3. 100 N=100,m=20,A=5. 103 y=10""%

For all unsupervised algorithms, the 10 testing subsets from the
cross-validation data were evaluated at once to yield better clustering
estimates,

The results of the algorithm by Pekkanen and Lappi (2017) on
data sets | and 3 were obtained by estimating the model’s param-
eters via cross-validation using the same training folds as for
U'n’Eye. The estimated parameters were kindly provided by the
authors.,

Comy time. The o times of our algorithm reported here
were achieved on a personal computer with a 2 GHz Intel Core i5
processor at 8 GB RAM running on Mac OS X 10.11.6.

Code and data availability. A web service for running the algo-
rithm is available at htp://uneye.berenslab.org. All code is available
from https://github.com/berenslab/uneye. Data will be available upon
publication.

Fig. 1. Examples of eye traces containing sac-
cades for detection. A: microsaccades during
fixation recorded with a video-based eye
tracker. B: catch-up saccades during smooth
tracking recorded with scleral search coils. C:
microsaccades during fixation recorded with a
video-based eye tracker. D: microsaccades dur-
ing fixation recorded with the same video-
based eye tracker as in A but for different sets
of subjects. E: simulated saccades. In all pan-
els, 2D plots on the left are the 2D representa-
tion of the eye trajectory over | s of recording,
and to the right of them are the horizontal and
vertical components of the comesponding
traces presented as a function of time: in this
case, an upward deflection in the shown traces
corresponds 0 a rightward or upward eye
movement for the horizontal and vertical com-
ponents, respectively. Note that, in B, we refer
to the nonsaccadic smooth change in eye posi-
tion as “fixation” for simplicity. since the pri-
mary goal of our algorithm was to detect sac-
cades, ir ive of whether they hapy 1

during fixation or embedded in smooth pursuit
eye movements,
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RESULTS

Design of a convolutional neural network for eve movement
classification. We developed a CNN that predicts the state of
the eye for each time point of an eye trace. The aim of the
network was to segment eye movement recordings (Fig. 1) into
epochs containing saccades/microsaccades (orange highlights)
vs. epochs not containing these eye movements (but see also
U'n’Eye: new state-of-the-art eye movement classifier below
for additionally classifying PSO using our network). Our
primary goal was to have a network that can seamlessly handle
the challenging scenarios of tiny microsaccades during fixation
(Fig. 1A), small catch-up saccades embedded in relatively high
smooth pursuit eye velocities (Fig. 18). and microsaccades and
saccades occurring in recordings with higher noise levels
associated with video-based eye trackers when compared with,
say, scleral search coil techniques (Fuchs and Robinson 1966;
Judge et al. 1980) (Fig. 1C). We therefore trained and tested
the network on three different challenging data sets (see
MeTHODS and Table 1), which contain labels for fixations and
saccades manually determined by human experts. To test the
ability of our network to generalize across eye movement
traces recorded from different individuals, we also included a
fourth data set (Fig. 1D), which was obtained from 10 different
subjects using the same eye tracker as in data set | (see
METHODS). Testing generalizability was also achieved using
with a fifth and final data set containing artificially generated
noisy eye movement traces, in which the ground truth for
saccade times was known (see METHODS) (Fig. 1E). Finally, we
compared our network’s performance to different existing
algorithms, both on our data sets and also on a publicly
available benchmark data set (Larsson et al. 2013) (http://dev.
humlab.lu.se/www-transfer/people/marcus-nystrom/annotated_
data.zip).

The network operates on the eye velocity signal and requires
no other preprocessing. Eye velocity is computed as the dif-
ferential of eye position (see METHODS), and chunks of eye

Table 1. Data set characteristics

velocity signals are then input to the network. Briefly, the
network’s architecture is based on the U-Net, a CNN for
pixel-by-pixel image segmentation (Ronneberger et al. 2015),
which we modified to process one-dimensional signals and
output a predictive probability for each eye movement class at
every time point (Fig. 2A4). A major change compared with the
original U-Net architecture is that we introduced batch normal-
ization (BatchNorm) layers (Klibisz et al. 2017). BatchNorm
layers subtract a mean from their input and divide it by a
standard deviation. Both of these parameters are estimated for
each layer over minibatches of training samples during learn-
ing. This method normalizes the distribution of activations
across the network layers, allowing for higher learning rates
and reducing overfitting (loffe and Szegedy 2015). We also
applied a rectified linear unit (ReLu) function between each
convolutional and batch normalization layer. The ReLu func-
tion, or heaviside step function, introduces nonlinearities in the
network, allowing it to apply arbitrary-shaped functions to the
input data. Finally, the U-shaped architecture of the network
leads to temporal downsampling and upsampling in the hidden
layer representations (Fig. 2). Downsampling is achieved by
max pooling (MaxPool) operations that reduce the dimension-
ality of the network content, extracting relevant features. Up-
sampling is realized by transposed convolution. Convolutional
kernels and max pooling operations together lead to the inte-
gration of information over time. Due to the network design,
the probability assigned to each time bin can be influenced
by *+89 preceding and following time bins (Fig. 2B). Thus,
U’n’Eye takes into account a large enough signal to make point
predictions of the correct eye movement class.

U'n'Eye achieves human-level performance. Our network
achieved human-level performance after training on our data
sets. We first illustrate this with three example scenarios for
detecting saccades (Fig. 3). For illustrative purposes, we also
show how the commonly used EM algorithm might perform
for the examples; we later provide an exhaustive quantitative

Data Set ! 2 3 4
Subjects Humans Monkeys Monkeys Humans
Eye tracker Eyelink 1000 Search coil Eyelink 1000 Eyelink 1000
Sampling frequency, Hz 1.000 1.000 500 1.000

Saccade type Microsaccades and memory saccades  Saccades during smooth pursuit Mi ccades Mi des and saccades
Duration
Mean £ SD, ms 44,58 * 1542 37.51 £ B.8I 23.12 £ 6.52 31.66 £ 893
Median, ms 42 36 22 31
Minimum, ms 11 18 8 8
Maximum, ms 169 97 54 1o
Amplitude
Mean * 8D, © 0.69 £ 0.93 1.07 £0.70 022013 033 £028
Median, © 0.43 0.96 0.20 0.24
Minimum, ° 0.02 0.04 0.010 0.008
Maximum, ° 11.34 7.03 1.27 2.66
Velocity
Mean peak = SD. “/s 10246 * 63.82 68.23 £ 42,98 208.41 = 65.95 61.93 = 3518
Median peak, “/s 81.91 56.59 198.86 5296
Minimum peak, °/s 17.81 11.49 85.28 15.32
Maximum peak. “/s 547.72 45044 560.28 42318
Median instantaneous, °/s 5.63 15.70 10.20 5.63
All statistics refer to des. Note that mini saccade amplitude may appear very low due to the existence of some saccades that had very strong dynamic

overshoot (a substantial saccadic movement followed by one lobe of a postsaccadic oscillation almost to the original eye position before saccade onset). The

statistics of the simulated data set are described in METHODS.
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Fig. 2. U'n’Eye. A: network architecture. The input matrix contains horizontal and vertical eye velocity. 7 is the number of input time points (see B), and K is

the user-defined number of eye movement classes (e.g., “fixation™ vs. “saccade™ in a binary clas:

a convolutional neural network for eve movement classificarion under

ier). The different network layers are described in Design of

LTS, B: the output probability of one time bin is influenced by 89 time samples before

and after this time bin. For each layer of the network, the red color indicates the range of influgnce of the time bin indicated by the red dot in the output. Traces
show the projection of the layer’s output onto its first principal component. The outputs of convolutional (Conv) layers 6 and 7 resemble the final classifier's
output probability (Softmax), whereas early convolutional layers 1 and 2 seem to perform noise reduction.

comparison with several more algorithms (Fig. 4). In the first
example, a small microsaccade occurred with substantial os-
cillation in eye position toward movement end, and with the
amplitude of the movement being near the eye tracker noise
level (Fig. 3A). Human coder | considered the postsaccadic
oscillation as part of the saccade, and so did our network
trained on his training set (compare the binary classification
output of the coder and network 1 below the eye movement
traces in Fig. 34). On the other hand. coder 2 determined that
the saccade ended earlier, and our network trained on his
training set did the same (again, compare the classification
output for human coder 2 and network 2). Thus, our network
could match the criterion used by an individual human coder
very well. Moreover, our network successfully avoided a false
detection by the EM algorithm on these traces. In the second
example, the EM algorithm missed all three saccades, which is
perfectly reasonable since this algorithm was never designed to
work in association with smooth pursuit eye movements, but
our network successfully flagged them (Fig. 3B). Finally, the
eye moyement in the third example was collected with a

video-based eye tracker having substantially more noise (Fig.
3C). In this case, one false detection made by the EM algorithm
was successfully excluded by our network.

To present more quantitative performance measures, we first
tested our network on our in-house data sets (Fig. 1) and
compared its performance to that of commonly used or recently
published algorithms. For our network. we performed 10-fold
cross-validation separately for data sets 1-3. In each cross-
validation round, 90% of the data were used for training the
network, and the remaining 10% were used to test perfor-
mance. A separate validation set from cach data set was used
to detect overfitting of the network. To prevent such overfit-
ting, we regularized the weights of the network using the L2
penalty (Bishop 2016) (see MeTHODS), preventing the parame-
ters of the network from deviating excessively from zero.
Furthermore, we made use of early stopping. For this, a
separate validation set was used, and the validation set error
was computed in each epoch. Training was stopped at the point
of smallest validation set error. For data sets 1 and 2, 950 s of
eye traces were used for cross-validation and 50 s for valida-
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Horizontal
eye position

Vertical
eye position

Fig. 3. Examples of eye traces from our first
three data sels. Saccades are labeled by cither [l Fixation
human coders. different instances of U'n’Eye,
or a popular algorithm from the literature I saccade
included here for illustrative purposes (also
see Fig. 4 for detailed performance compari-
sons Lo several algorithms). A: an example
microsaccade exhibiting substantial postsac-
cadic oscillation (PSO). The top two traces
show eye position as a function of time in an
identical format to Fig. 1. Below the eye
position traces, we show labels for “fixation™ B
or “saccade” made by two human experts
(human coder | and human coder 2) as well as
predictions of two separate networks, Net-
work | was trained on labels from human
coder 1, and network 2 was trained on labels
from human coder 2. Note how each network
matched the performance of its corresponding
human coder. The very bottom row shows the
performance of the Engbert and Mergenthaler
(2006) algorithm (EM), which suffered from a
false alarm later in the trace due to eye tracker
noise. B: saccades embedded in smooth pur-
suit eye movements. Here. our network suc-
cessfully detected three catch-up saccades, all
of which were missed by the EM algorithm,
which was not designed o work with eye c
movement records containing smooth pursuit.
The reason that these saccades were missed is
that the saccudes were directed opposite to the

going pursuit, Iting in y re-
ductions in eye speed., as opposed Lo increases,
C: an example microsaccade embedded in
high eye tracker noise. Once again, the EM
algorithm suffered from a false alarm due to
eye tracker noise.
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tion. Thus, each training set contained 855 s of data. For data
set 3, 330 s were used for cross-validation and 23 s for validation,
resulting in 297 s of data in cach training set. For the other
algorithms that we tested, we used the same cross-validation
approach in the case of supervised algorithms [EM (Engbert and
Mergenthaler 2006), Pekkanen and Lappi (2017))]. Note that we
used the EM algorithm as a supervised method since we fitted its
single parameter on our training data (see METHODS). For unsuper-
vised methods (Daye and Optican 2014; Otero-Millan et al. 2014;
Sheynikhovich et al. 2018), the identical 10 test sets were evalu-
ated without using the training set (see METHODS).

Finally, similarity of the algorithms’ predictions to human
labels was evaluated using three metrics. First, we calculated
Cohen's kappa, which is a sample-by-sample similarity mea-
sure that takes chance agreement of two predictors into account
(Cohen 1960). Second. we calculated the F1 score, which is an

100 ms

accuracy measure that considers precision and recall of a
classifier. Recall corresponds to the number of correctly de-
tected saccades divided by the number of saccades that were
labeled by the human expert. Precision, on the other hand, is
the number of correctly classified saccades divided by the total
number of saccades detected by the classifier (see METHODS).
The F1 score is defined as the harmonic mean of both, and it
thus only measures how accurate saccades were detected with-
out taking into account their timing (i.e., exact saccade onset
and offset times). Correctly labeling saccade onset and offset
can be crucial for further analyses. Therefore, for our third and
final metric, we additionally computed the absolute time dif-
ference in onset and offset of correctly predicted saccades and
of saccades labeled by the human experts. This measure
reflects how well an algorithm agrees with the human coder in
terms of saccade start and end.
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Fig. 4. High performance of U'n’Eye. Each panel shows results from one performance metric described in the text, and on each of our first three data sets.
For each metric, we show the median across 10 different cross-validation runs, The boxes show two quartiles of the distributions. A: Fl score (See Egq.
9 and the surrounding text) summarizing precision and recall performance between two predictors. The first predictor was always a human coder
(considered as ground truth). Therefore, the first column indicates agreement between a second coder (labeled Human in the figure) to the original coder
used to train our network. B: Cohen's kappa measuring sample to sample agreement. C: average absolute difference in the timing of saccade onset times.
D: same as € but for saccade offset times. In all cases, our network (highlighted by gray rectangles) demonstrated superior performance (the arrows on
the far right side indicate the direction of superior performance for each metric). EM, Engbert and Mergenthaler (2006); OM, Otero-Millan et al. (2014);
S, Sheynikhovich et al. (2018): PL, Pekkanen and Lappi (2017); DO, Daye and Optican (2014), Note that we only tested data set 2 on DO because only
this algorithm was explicitly designed to deal with smooth pursuit eye movements.

U'n’Eye reached high similarity to the human coder (Fig. 4,
A and B) and outperformed all the other compared algorithms
(Fig. 4, A and B). U'n’Eye also detected saccade onset and
offset in high agreement with the human labels. On average,
saccade onset differences to human labels were smaller than 3
ms, and saccade offset differences were smaller than 4 ms.
Saccade onset and offset labels by the other algorithms devi-
ated more strongly from the human-labeled saccades (Fig. 4. C

and D; Table 2). This indicates that U'n"Eye’s saccade predic-
tions were more humanlike.

In the more challenging data set 2, in which saccades
occurred during smooth pursuit eye movements, U'n’Eye out-
performed the algorithm by Daye and Optican (2014), which
was designed to overcome this difficulty. Here, saccade peak
velocity was close to the instantaneous velocity of the ongoing
smooth pursuit movements. In fact, the minimum saccade peak
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Table 2.  Comparison of U'n’Eye performance to other
algorithins on data sets 1, 2, and 3

Data Cohen’s
Set  Algorithm Fl Kappa A Onset, ms A Offset, ms
! Un'Eye 096 = 001 089 +0.02 2.66 =034 4.11* 041
EM 087 003 066002 539049 1128 * 1.00
OM 0.85+003 0.68+003 380=048 1150*0.77
S 0,95 * 002
PL 092 +002 068+*003 551 =088 8.53 * 0.60
2 Un'Eye 096 =001 092+001 170029 2.19*037
DO 0.84 003 049003 999 =019 922 *035
3 Un'Eye 0.94+001 082+002 223=022 399+ 0.60
EM 0.77+004 058+004 322053 687+ 0.66
oM 0.68 007 055+006 348 =055 490 + 0.64
S 0.70 + 0.04
PL 083+002 064+003 274=039 694 +050

In bold arc the best performances for cach data set. In all cases, U'n’Eye
achieved highest performance. Values report mean and standard deviation
across validation sets. EM. Engbert and Mergenthaler (2006): OM. Otero-
Millan et al. (2014): PL, Pekkanen and Lappi (2017); S, Sheynikhovich et al.
(2018).

velocity in this data set was smaller than the median instanta-
neous velocity during pursuit (Table 1). Yet U'n’Eye suc-
ceeded in detecting such saccades. This was because the
network architecture utilized a substantial time window (Fig.
2), allowing it to infer changes in the state of the eye even if the
instantaneous velocity is low compared with the surrounding
eye trace.

We next addressed the question of whether U'n’Eye can
achieve a similar level of interhuman agreement when multiple
human experts analyze the same data. For this, we used data set
| because, among the four data sets, it contained saccades with
the widest range of amplitudes (from as small as 0.02° up to a
size of 117 see Table 1 for a reason why saccades as small as
0.02° were possible). We could thus assess interrater agree-
ment for a broad range of saccades. Data set 1 was labeled by
a second independent human coder (Fig. 3, top panel: Fig. 4,
data set 1). Coder | estimated saccade timing based on a
combination of the raw eye traces and the smoothed radial
velocity, whereas coder 2 used the raw eye traces only. We
trained independent networks either with labels from coder 1 or
coder 2 (network 1 and network 2, respectively), and we tested
the networks™ performance on the 10 test sets from the 10-fold
cross-validation routine described above, both against ground
truth labels from coder | or coder 2. U'n’Eye’s saccade labels
were as similar to both human coders as the human labels were
to each other (Table 3). In terms of the Fl score. the interhu-
man agreement was not significantly different from the net-
work-human agreement (Table 4). Interestingly, network |
showed higher similarity scores than coder 2 when both were
compared with labels of coder 1 in the test sets, and vice versa
for network 2 and coder 2. This is reflected by larger Cohen’s
kappa scores and smaller onset and offset differences (Table 4,
all P<<5X 107" after Bonferroni correction for multiple com-
parisons, Student’s paired samples r-test for Cohen’s kappa and
F1 scores, and independent samples r-test for on- and offset
differences). This indicates that U'n’Eye’s saccade estimation
surpasses interrater consistency.

U'n’Eye misses only a small fraction of microsaccades. We
then analyzed the patterns of agreement and disagreement
between U'n’Eye and human labeling. For true positive sac-

Table 3. Interrater comparison

Cohen's kappa Fl1 A Onset. ms A Offset. ms
Coder 1 vs.
coder 2 083002 098001 372+039 7.10+034
Network 1 vs.
coder | 0.89 = 0.02 096 =001 265+ 034 411041
Network 2 vs.
coder 2 0892001 096 =001 200x0.11 481033
Network 2 vs,
coder 1 085001 096 =001 334+034 558+033
Network 1 vs.
coder 2 0.86 = 0.01 096 = 001 282*032 657=*053

The first row shows the similarity measures between labels from two human
experts (coder | and coder 2), Network | was trained on labels from coder 1,
and network 2 was trained on labels from coder 2. In bold are comparisons
leading to best performances. Values report mean and standard deviation
across cross-validations. Intercoder agreement was evaluated on the 10 test
samples from cross-validation.

cades, the two dimensional histogram of detected movements
reflected the typical main sequence relationship between peak
velocity and amplitude of saccades (Fig. 5, A, D, and G) (Zuber
et al. 1965). A few false positives were present within the range
of the main sequence, suggesting that the human coder forgot
1o label some saccades (for example, see the movement in the
inset in Fig. 5B). Concerning the rare false negatives that
occurred, some of them had fairly large amplitudes (beyond
eye tracker noise). Closer inspection revealed that there were
pairs of successive saccades that had very short intersaccadic
intervals. The network lumped them into one movement,
whereas the human coders separated them. Most remaining
disagreements between the human and the network were asso-
ciated with the smallest microsaccades, closest to eye tracker
noise levels.

U'n’Eye: new state-of-the-art eye movement classifier. To
compare our algorithm to state-of-the-art methods for eye
movement classification, we next evaluated its performance on
a benchmark data set (Larsson et al. 2013), which has previ-
ously been used for the comparison of 12 eye movement
classifiers (Andersson et al. 2017; Pekkanen and Lappi 2017).
The data set comprises 500-Hz eye tracking recordings from
humans watching videos. images. or moving dots, and it
contains human labels for fixations, smooth pursuits, saccades,

Table 4. Statistical tests in interrater comparison

Metric Comparison Test 1-Value P Value
Kappa to C1 N1vs. C2  paired r-test 1838 298-1077
Kappa relative

w C2 N2 vs. Cl paired r-test 1088 3.69-10° "
Fl relative to I N1vs. C2  paired t-test -352 508-10°
FI relative 10 €2 N2 vs. C1 paired t-test -37  519-107°
Onset distance

relative o C1 NI vs. C2  independent r-test  —6.6  2.98-107°

Onset distance

relative to C2 - N2 vs. C1 independent r-test —13.6  5.26-10'°
Offset distance

relative to CI N1 vs, C2 independent r-test  —17.9 52810 "
Offset distance

relative t0 C2 N2vs. C1 independent r-test —15.3  7.33- 107"

Network | (N1) was trained on labels from coder | (C1). and network 2 (N2)
was trained on labels from coder 2 (C2). All P values were Bonferroni
corrected for multiple comparisons.
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PSO (Fig. 6A), and blinks. We therefore used U'n’Eye as a
multiclass classifier to predict saccades, PSOs, and blinks (Fig.
6B). Fixations and smooth-pursuit eye movements were both
assigned to the fixation class. U'n’Eye output a predictive
probability for each class (Fig. 6D), with the prediction value

100

Number of occurences

Number of occurences

10

e
Number of occurences

655

Fig. 5. Location on the main sequence of de-
tected and undetected saccades. A, D, and G:
saccades that were detected both by a human
expert and U'n’Eye. The detected saccades
expectedly foll d the main sequence rela-
tionship between peak velocity and movement
amplitude. B, £, and H: saccades that were
detected only by U'n’Eye. Most saccades were
small and close to the eye tracker noise, likely
being cautiously unlabeled by human coders. In
the inset, a large saccade was detected by
U'n’Eye but not by the human coder, suggest-
ing a possible lapse by the latter. C, F, and I
saccades missed by U'n"Eye. Most of these
were very small.

corresponding to the class that maximized this predictive
probability (Fig. 6C). We trained U'n’Eye on one part of the
data and evaluated its performance on the test trials listed in
Andersson et al. (2017, their Table 11 ). When considering the
whole benchmark data set, U'n"Eye outperformed the state-of-
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Fig. 6. Multiclass labeling by U'n'Eye. A: an

ple saccade she

ial postsaccadic oscillation (PSO) from the data in Larsson et al. (2013). B: an

example full race from the same data set showing sequences of saccades, PSOs, and blinks. C: for the trace in B, ground truth labels are shown, in addition 1o
labels by U'n’Eye. The latter successfully classified all ground truth labels, except for one instance marked by a black vertical arrow. D: nonetheless, the
predictive probability of the network still showed a transient for the missed microsaccade {upward black arrow), suggesting that additional postprocessing may

be used to improve the performance of U'n’Eye even more. For example, the user could

y inspect sig
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the-art classifiers for saccades and PSOs (Table 5). Moreover,
U'n’Eye’s performance lay within the range of the intercoder
agreement of the two human experts who labeled the data set
(Table 5). This result indicates that U'n’Eye is very well suited
for multiclass eye movement classification.

Practical considerations for U'n'Eve usage. To belter un-
derstand the practical aspects of using our approach, we addi-
tionally assessed how U’n’Eye performs under different train-
ing scenarios. The results of this section can be used as good
practice guidelines by the users in their own applications that
employ our algorithm.

First, we studied how the amount of training data impacts
saccade detection performance. In practice, the available num-
ber of annotated training samples might be limited. To achieve
good performance of U’n’Eye, small training sets were suffi-
cient (Fig. 7A). Even with only 50 s of labeled data, our
network outperformed other algorithms. Using more training
samples led to a further increase of performance. Training time
was also no limiting factor, since training a new network even
on a CPU took only ~2 min for every minute of training data
(Fig. 7A).

In machine learning, the quality of the training data is also
crucial for the performance of a classifier, since the latter
directly learns from the human ground truth labels. Human
labeling, however, is prone to mistakes and lapses: saccades
might be missed by the human coder, leading to noisy labels.
We therefore assessed how U'n’Eye’s performance was influ-
enced by noise-corrupted labels. We evaluated the network’s
performance when trained on real data (data set 1) from which
we artificially removed a fixed fraction of saccade labels.
U'n’Eye was robust to the presence of noisy labels in the
training data: even with 20% of missing labels, our network
outperformed other algorithms (Fig. 7B). We also trained the
network on simulated data (Fig. 1£) for which we knew the
ground truth. While noise-corrupted labels in the training data
impaired saccade detection performance as expected, this ef-
fect could be compensated for by using a larger amount of
training data (Fig. 7C). This indicates that U'n’Eye can achieve
good performance even if the human coder misses some
saccades in the training set.

Table 5. Performance of U'n’Eye compared with state-of-the-urt
algorithins

Event Coder MN U'n’Eye NSLR-HMM LNS
Saccades Image 091 0.89 0.81
Dot 0.80 0.79 0.75
Video 0.88 0.89 0.81
All 0.89 0.88 082 0.81
PSOs Image 0.76 0.72 0.64
Dot 0.59 0.59 0.53
Video 0.73 0.68 0.63
All 073 0.70 053 0.64
Blinks Tmage 092 0.84
Dot 0.77 0.71
Video 0.82 0.84
All 091 0.83

Naive Segmented Linear Regression-Hidden Markov models (NSLR-
HMM) and Larsson, Nystr m, and Stridh (LNS) values were taken from
Pekkanen and Lappi (2017) and Andersson et al. (2017), respectively. For
U'n’Eye, values are the median across 20 independent networks, In bold are
the values reached by the best performing algorithm. MN, initial of the expert
labeling the dataset (anonymous): PSO. postsaccadic osciilation.

Next, we studied how well an already-trained network can
be applied to label saccades in new data, for which no training
labels are available. Our results show that this is possible if the
new data has broadly the same signal characteristics as the data
used for training the network (i.c., if it was sampled with the
same eye tracker during a sufficiently similar task). To illus-
trate this, we trained networks on our first three data sets and
evaluated their performance on each data set plus an additional
data set 4 on which none of the networks was trained. Data set
4 was similar to data set 1 in that it was recorded with the same
eye tracker in human subjects performing fixations (Table I).
Therefore, a network trained on data set | performed very well
not only in detecting saccades in the same data set, but also in
data set 4 (Fig. 7D). Overall, good performance was guaran-
teed when the test set exhibited similar statistics as the training
set or was exposed in training to a sufficiently wide variety of
training samples (Fig. 7D).

Likewise, our network extrapolated well over subjects, for
example in large cohort studies with many different observers
(as is often the case in clinical investigations of neurological
diseases). We studied whether a network trained on data from
one subject was able to detect saccades well in data from
another subject. To this end, we trained separate networks on
data from 10 individual human subjects in data set 4 and
applied them to all other subjects. Overall, performance on data
that came from the same subject as the training data were only
marginally higher than performance on data that came from a
different subject (F1 mean and SD: 0.96 and 0.01 vs. 0.92 and
0.08, Fig. 7E). The higher standard deviation of intersubject
performance was due to the apparent difference between data
from certain subjects (Fig. 7E). We therefore advise users to
combine training data from a few subjects to obtain a network
that is able to deal with different signal statistics (Fig. 7E,
network trained on all). Note that for the network trained on a
combination of subjects, we made sure to keep the number of
training samples the same as for networks trained on individual
subjects. Thus, the better performance was a result of having
more variable samples in the training set and not of more
training examples being available.

Eye movement representation becomes disentangled along
network layers. We finally had a closer look at how the
network achieves the separation of two eye states (e.g., fixa-
tions and saccades; Fig. 8A). In the velocity domain, saccades
and fixations can show highly overlapping distributions (Fig.
8B). This explains why velocity threshold-based algorithms
can fail to distinguish fixations from saccades (Fig. 4). Here,
we showed that U'n’Eye can differentiate between fixations
and saccades with high accuracy (Fig. 4). The classification
was based on the output layer of the network. To illustrate how
this decision arises throughout the hidden layers, we performed
principal component analysis (PCA) on the features of each
convolutional layer. The fraction of explained variance by the
first two principal components (PCs) reflects the U-shaped
architecture of the network (Fig. 8C): in the middle layers,
information is distributed across more components than in
early and late layers. We projected the hidden layer activations
onto the PC space and labeled time bins according to their
ground truth labels (fixation or saccade, Fig. 8D). We observed
in higher layers that the two classes were better separated (Fig.
8D). Finally, in the output layer, fixations and saccades became
linearly separable (Fig. 8E). Thus, through training, the net-
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Fig. 7. Robustness of U'n’Eye performance under a variety of training regimes. A, fop: U'n'Eye saccade detection performance (red) as a function of amount
of training samples. Borom: linear increase of training time with the number of training samples on a CPU, Data shows mean = standard deviation across the
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1. Performance of U'n'Eye and other algorithms was evaluated on 1.000 s of test data from data set 1. C: U'n’Eye saccade detection performance in simulated
data with missing labels for different amounts of training samples N in seconds. D: U'n'Eye saccade detection performance for different combinations of training
and test sets. Each number in a square (and its d color code) indi the F1 score for training on one data set and testing on another. The column labeled
14243 on the far right shows results when the network was trained on all three data sets simultaneously (but ensuring the same amount of training data as in
the other columns of the figure). E: U'n'Eye saccade detection performance for combinations of different human subjects in training and test data from data set
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the network on u (small) population of suh_;ccb yields best performance, and the rest of the figure indi that bjccts can then be tested with the
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work effectively learns to extract relevant features and to
project those onto a plane where the two eye movement classes
are linearly separable.

DISCUSSION

In this study, we presented U'n’Eye, a convolutional neural
network for eye movement classification. We demonstrated
that U'n"Eye achieved human-level performance in the detec-
tion of saccades and microsaccades. In addition, the network
was able to predict other classes of eye movements, which we

exemplified with the detection of blinks and PSOs in a bench-
mark data set.

Furthermore, we showed that U'n’Eye achieved excellent
performance both when trained on a single type of data with
labels from one coder and when trained on different data sets
with labels from two coders. While data sets 1 and 3 used in
this study contained data with only one type of visual task and
labels from one coder each, data set 2 was composed of two
different pursuit tasks and contained labels from two different
human coders. Moreover, data set 4 allowed us to conclude that
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our algorithm has generalization properties and can therefore
be used when training on a subset of individuals and then
testing with large cohorts of subsequent subjects measured
with similar eye tracking technology. The data set by Ander-
sson et al. (2017) also contained greatly varying types of
saccades and other eye movements. Still, U'n’Eye achieved
good performance when trained and tested on this data set.
Note that the network might fail to detect eye movements when
tested on data that show a very different distribution than the
data it was trained on. We therefore recommend to either train
a network with a variety of data or to train separate specialized
networks for each task.

In this regard, our approach falls in the class of supervised
learning algorithms, as opposed to methods not requiring
parameter estimation based on annotated data (Engbert and
Mergenthaler 2006: Otero-Millan et al. 2014; Sheynikhovich et
al. 2018). However, we typically see in different scenarios that
casting an algorithmic issue as a supervised problem helps in
terms of performance. For example, we recently showed that
supervised techniques perform as well as, or better than,
unsupervised ones for spike inference from calcium imaging
data (Berens et al. 2018; Theis et al. 2016). Similarly, Mathis
et al. (2018) recently showed that supervised learning provides
superior animal tracking with few annotated samples. We
showed here that the situation is similar for eye movement
detection. Importantly, we showed that performance general-
izes to new unseen data sets and subjects, yielding better
performance than any of the unsupervised algorithms. Of
course, there is some manual work involved in preparing the
training samples for our network, but we posit here that this
amount of manual work is significantly less intensive than the
manual postprocessing that we typically perform with other
saccade-detection algorithms.

U'n’Eye is publicly available and provides a user friendly
interface as well as a web service in which users can upload
their data and receive classification outputs (see METHODS). No
parameter tuning is needed even for training (e.g., learning
rate, and so on) since the standard settings were found to work
well across data sets. Instead, an experimenter just needs to
provide a few hundred seconds of labeled data to train the
network once. Even if some labels are missing in the training
data, U'n"Eye can still reach high performance. We recom-
mend, however, to use only carefully annotated data for train-
ing, as this should improve results.

Of the few algorithms that are capable of detecting saccades
as well as PSO (Larsson et al. 2013; Pekkanen and Lappi 2017;
Zemblys et al. 2018b), U'n’Eye achieves highest performance.
Note that Zemblys et al. (2018a) also recently proposed a deep
learning method for eye movement detection. Their approach
consists of generating a large training set out of a small
human-labeled data set using a generative neural network. A
second network is then trained on this data to classify eye
movements. This method reports performance similar to that of
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U'n’Eye in a subset of the benchmark data set by Andersson et
al. (2017), but it remains to be seen how this algorithm
performs on more exhaustive tasks like the ones that we
reported here. For example, the applicability to data containing
smooth pursuit has not been demonstrated. Conversely Startsev
et al. (2018) recently published a deep learning approach
showing reasonable performance, but again they tested only on
a subset of the benchmark data set containing smooth pursuit.

Recently, a Bayesian approach for the detection of micro-
saccades based on a generative model has been proposed
(Mihali et al. 2017). Inherently, Bayesian methods provide
estimates of uncertainty, in addition to estimates of the quantity
of interest. Indeed, it is an interesting future perspective to
combine U'n’Eye with Bayesian Deep Learning techniques to
provide uncertainty estimates for the detected eye movements
(Gal and Ghahramani 2015).

Future work should include combining data sets with differ-
ent characteristics, such as different sampling frequencies, to
obtain a network that can generalize on a large range of data.
Such a network could be used by a large part of the scientific
community, which would allow for reproducibility of scientific
results. We recommend that anyone who uses our algorithm to
publish the weights of the trained network so that eye move-
ment detection can be reproduced. For our own trained net-
works, all weights have been published online (https://github.
com/berenslab/uneye) along with the code of the network. This
has the advantage that users with similar data characteristics to
one of our three data sets (e.g., microsaccades during fixation
with a video-based eye tracker as in data set 3) can directly use
our weights from the proper data set without having to retrain
their own network. We also intend to make all three data sets
publicly available, facilitating the further development for eye
movement detection algorithms.

Of course, it should be noted that some prediction errors
may still occur with U'n’Eye. However, such errors fall within
the range of interrater variability across humans anyway. Also,
even when U'n"Eye does make mistakes, the predictive prob-
ability that it outputs can be used to retrieve missed events
(e.g.. see the upward black arrow in the bottom of Fig. 6D). For
example, detecting peaks in the predictive probability output
that did not cross the threshold can accelerate eventual manual
postprocessing.

Finally, U'n’Eye’s capacity to learn nonlinear relationships
between an eye trace and some annotated labels opens new
horizons in neuroscience: the network could be used to under-
stand the properties of neural activities related in a complex
manner to eye movements. For example, the disentanglement
in later layers (Fig. 8) could be used to quantitatively analyze
the activity patterns of premotor neurons in the brain stem,
which themselves ultimately transform brain processing into
individual ocular muscle innervations. Furthermore, U'n’Eye
could be turned into a generative model for eye movements, as
was shown for neural networks that are used for image clas-

Fig. 8. Disentanglement of fixations and saccades throughout the network. A: example eye trace with a microsaccade. B: distribution of data set 2 in the velocity
domain. Fixations and saccades (shown in bluish and orangish colors. respectively) showed overlapping distributions. (: fraction of explained variance by the
two first principal components (PCs) of the network’s convolutional (Conv.) layers. There was a reduction in the middle layers followed by a peak at the final
seventh layer. D: projection of hidden layer activations by eye traces of data set 2 onto the first two principal components. Fixation and saccade classes became
better separated throughout the hidden layers. B-D: Dots indicate the time points of the example eye trace in A, and the rest of the background data show the
entire duta set time samples. £: the probability output allowed for a linear separation of the two classes. Time points with a saccade predictive probability above

0.5 were classified as a saccade.
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sification (Gatys et al. 2015). The information about eye
movements that is contained in the network architecture might
in the future be used to identify variations in eye movement
characteristics that could hint at underlying pathologies.
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Abstract

One of the most powerful excitatory synapses in the entire brain is formed by cerebellar
climbing fibers, originating from neurons in the inferior olive, that wrap around the proximal
dendrites of cerebellar Purkinje cells. The activation of a single olivary neuron is capable of
generating a large electrical event, called “complex spike”, at the level of the postsynaptic
Purkinje cell, comprising of a fast initial spike of large amplitude followed by a slow
polyphasic tail of small amplitude spikelets. Several ideas discussing the role of the
cerebellum in motor control are centered on these complex spike events. However, these
events are extremely rare, only occurring 1-2 times per second. As a result, drawing
conclusions about their functional role has been very challenging, as even few errors in their
detection may change the result. Since standard spike sorting approaches cannot fully handle
the polyphasic shape of complex spike waveforms, the only safe way to avoid omissions and
false detections has been to rely on visual inspection of long traces of Purkinje cell recordings
by experts. Here we present a supervised deep learning algorithm for rapidly and reliably
detecting complex spikes as an alternative to tedious visual inspection. Our algorithm,
utilizing both action potential and local field potential signals, not only detects complex spike
events much faster than human experts, but it also excavates key features of complex spike

morphology with a performance comparable to that of such experts.

Key words: Convolutional neural network, complex spike, simple spike, LFP, action

potentials, cerebellum

69



70

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

85

bioRxiv preprint first posted online Apr. 5, 2019; doi: http:/dx.doi.org/10.1101/600536. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license.

Significance statement

Climbing fiber driven “complex spikes”, fired at perplexingly low rates, are known to play a
crucial role in cerebellum-based motor control. Careful interpretations of these spikes require
researchers to manually detect them, since conventional online or offline spike sorting
algorithms (optimized for analyzing the much more frequent “simple spikes™) cannot be fully
trusted. Here, we present a deep learning approach for identifying complex spikes, which is
trained on local field and action potential recordings from cerebellar Purkinje cells. Our
algorithm successfully identifies complex spikes, along with additional relevant
neurophysiological features, with an accuracy level matching that of human experts, yet with

very little time expenditure.
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86  Introduction

87  The Purkinje cell (PC) output, the sole output of the cerebellar cortex, is characterized by two
88  distinct types of responses (Fig. 1A, bottom), the simple spike (SS) and the complex spike
89  (CS) (Thach, 1968). SSs are ordinary sodium-potassium spikes with a simple bi- or tri-phasic
90  shape in extracellular recordings (Fig. 1B). These spikes, lasting only a fraction of a
91  millisecond and firing up to several hundred times per second, reflect the concerted impact of
92  mossy fiber input, mediated via the granule cell-parallel fiber system, as well as inhibitory
93  interneurons. On the other hand, an individual CS (Fig. 1C), elicited by a single climbing
94  fiber originating from the inferior olivary nucleus and pervading the proximal dendrites of a
95  PC, is characterized by a polyphasic somatic spike consisting of a first back propagated
96  axonal spike component followed by a series of spikelets riding on a long-lasting, calcium
97  dependent depolarization (Eccles et al., 1967; Fujita, 1968; Thach, 1968; Llinas and
98  Sugimori, 1980; Stuart and Hiusser, 1994; Davie et al., 2008). In addition to an exceptional
99  morphology, CSs also exhibit an unusual, perplexingly low firing rate of at most two spikes
100  per second (Fig. 1A, bottom). What could these infrequent, yet unique events possibly tell us
101 about their purpose, and what might be the best statistical tool allowing us to unravel the full
102  extent of information carried by them? These are questions that have kept researchers busy

103  until today.

104  Thinking about the role of CSs has been guided by two, not necessarily incompatible, ideas:
105  motor timing and motor learning. The first idea, championed by Llinds and his coworkers,
106  was prompted by the characteristic 8-10 Hz rhythmicity and synchronicity of inferior olivary
107  neurons, a pattern that seemed to reflect the temporal structure of many forms of motor
108  behavior, as well as physiological and pathological tremor (Llinas, 1974; Leznik and Llinds,
109  2005). The second idea emphasized the role of performance errors in driving motor learning.

110  On experiencing an error, the climbing fiber system is assumed to produce a CS, which helps
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111 to predictively correct future manifestations of the same motor behavior by modifying the
112 impact of parallel fibers on targeting PCs (Marr, 1969; Albus, 1971; Ito, 1972). This concept
113 has indeed received support from a number of experimental studies (Oscarsson, 1980:
114  Kitazawa et al., 1998; Medina and Lisberger, 2008; Herzfeld et al., 2015, 2018). However,
115 not all findings have been fully compatible with this so-called Marr-Albus-Ito hypothesis, at
116 least not in its original form. For instance, recent work on oculomotor learning has suggested
117  that CS discharge is not only influenced by a current error, but also by a memory of past
118  errors suitable to stabilize behavioral adaptations (Catz et al.. 2005: Dash et al., 2010; Junker
119 et al., 2018). An analogous influence of past errors on CS discharge has also been noted in
120  recent studies of eye-blink conditioning (Ohmae and Medina, 2015). Finally, others have
121 advocated that CSs may not be confined to encoding unexpected errors, but to also offer a
122 prediction of the multiple kinematic parameters of the upcoming movement (Streng et al.,

123 2017).

124  Reaching consensus on the diverse views of CS functions would be substantially facilitated
125 by more data on these sparse neural events, collected in conjunction with advanced
126  behavioral paradigms. Yet, it is exactly their unique properties of rarity and complex and
127  highly idiosyncratic spike morphology that have hampered progress. In fact, CS spike
128  morphology not only differs between individual PCs, but it also often changes over the
129  course of a single recording from the same PC. This is why using standard spike sorting
130  software to detect CSs has turned out to be error prone. Critically, given the rarity of CSs,
131 even a few missing or erroneously detected CS events will have profound impacts on
132 conclusions drawn about their functional role. Consequently, researchers are compelled to
133  meticulously label CSs manually, or at least to visually control the CSs detected by
134  conventional spike sorting approaches, an exhausting approach that constrains the amount of

135  experimental data that can be processed.
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136  In this paper, we exploited a state-of-the-art convolutional neural network (CNN) approach to
137  dramatically reduce the burden of investigators in identifying CSs. We show that our network
138 is able to learn fast and that it easily matches the performance of an experienced human
139  expert in detecting CSs. Our algorithm also extracts a number of key parameters on CS
140 timing and morphology, in a regularized and systematic manner, which we believe is

141 particularly important for understanding the functional role of CSs.

142

143 Materials and Methods

144 Animals, preparation, surgical procedures, and recording methods

145  Two adult male rhesus macaques (Macaca mulatta) of age 10 (monkey K) and 8 (monkey E)
146  years, purchased from the German Primate Center, Gottingen, were subjects in this study.
147  Initial training of all animals required them to voluntarily enter an individually customized
148  primate chair and get accustomed to the setup environment, a procedure that could last for up
149  to three months. Following initial training, they underwent the first major surgical procedure
150  in which foundations of all implants were fixed to the skull using titanium bone screws, and
151  then allowed to rest for a period of approximately 3-4 months to improve the long-term
152  stability of the implant foundations. Then, a titanium-based hexagonal tube-shaped head post
153  was attached to the implanted head holder base to painlessly immobilize the head during
154  experiments, and scleral search coils were implanted to record eye positions using
155  electromagnetic induction (Judge et al., 1980; Bechert and Koenig, 1996). Within 2-3 weeks
156  of recovery from the eye-coil implantation procedure, monkeys quickly recapitulated the
157  already learned chair-training protocol, and were trained further on their respective
158  behavioral paradigms. Once fully trained, a cylindrical titanium recording chamber, whose

159  position and orientation were carefully planned based on pre-surgical MRI and later
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160  confirmed by post-surgical MRI, was finally mounted on the implanted chamber base, tilting
161 backwards by an angle of 30° with respect to the frontal plane, right above the midline of the
162  cerebellum. A part of the skull within the chamber was removed to allow precise electrode
163  access to our region of interest, the oculomotor vermis (OMYV, lobuli VIc/VlIla), for
164  electrophysiological recordings. All surgical procedures were carried out under aseptic
165  conditions using general anesthesia, and post-surgical analgesics were delivered until full
166  recovery. See Prsa et al. (2009) for full details. All experiments and surgical procedures were
167  approved by the local animal care authority (Regierungsprisidium Tiibingen) and complied
168  with German and European law as well as the National Institutes of Health’s Guide for the
169  Care and Use of Laboratory Animals. All procedures were carefully monitored by the
170  veterinary service of Tiibingen University.

171

172 Behavioral tasks

173 In-house software (NREC), running on a Linux PC (http:/nrec.neurologie.uni-tuebingen.de),

174  was used for data collection, stimulus presentation, and operations control. The two monkeys
175  were trained on a fatigue inducing repetitive fast eye movements (saccades) task (Fig. 1A,
176  top: Prsa et al., 2010). A trial started with a red fixation dot (diameter: 0.2°) displayed at the
177  center of a CRT monitor placed 38 cm in front of the monkey. After a short and variable
178  fixation period (400-600 ms from trial onset), the fixation dot disappeared and at the same
179  time, a target, having the same features as the fixation dot, appeared on the horizontal axis at
180  an eccentricity of 15°. In a given session, the target was presented consistently either on the
181  left or right of the central fixation dot. The maximum number of trials (>200) per session
182  depended on the willingness of the monkey to cooperate and on the duration for which a PC

183  could be kept well isolated. Each trial lasted for 1200 ms, and inter-trial intervals were kept
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184  very short (100 ms) to maximize the induction of fatigue. At the end of every correct trial,
185  monkeys were rewarded with a drop of water.

186

187  Electrophysiological recordings

188  Extracellular recordings with commercially available glass-coated tungsten microelectrodes
189  (impedance: 1-2 MQ; Alpha Omega Engineering, Nazareth, Israel) were performed using a
190  modular multi-electrode manipulator (Electrode Positioning System and Multi-Channel
191 Processor, Alpha Omega Engineering) whose position was estimated, based on the position
192  and orientation of the chamber relative to the brain, using a stereotactic apparatus and later
193  confirmed by post-surgical MRI scans. Saccade-related modulation of an intense background
194  activity, reflecting multi-unit granule cell activity, paralleled by saccade-related modulation
195  in the local field potential record (LFP, <150 Hz bandwidth) served as electrophysiological
196  criteria for identifying the OMV (Fig. 1A, middle). Extracellular potentials, sampled at 25
197  KHz, were high band-pass (300 Hz - 3 KHz) and low-pass filtered (<150 Hz) to differentiate
198  PC action potentials and LFP signals, respectively (Fig. 1 A, bottom).

199

200  Multi Spike Detector: the online spike sorting algorithm

201 Single PC units were identified online by the presence of a high-frequency SS discharge
202  accompanied by the signatory, low-frequency CS discharge using a real-time spike sorter, the
203  Alpha Omega Engineering Multi Spike Detector (MSD). The MSD, designed for detecting
204  sharp waveforms uses a template matching algorithm developed by Worgoétter et al. (1986),
205  sorts waveforms according to their shape. The algorithm employs a continuous comparison of
206  the electrode signal against an 8-point template defined by the experimenter to approximate
207  the shape of the spike of interest. The sum of squares of the difference between template and

208  electrode signal is used as a statistical criterion for the goodness of fit. Whenever the
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209  goodness of fit crosses a threshold, the detection of a spike is reported. The 8-point template
210  can be adjusted manually or alternatively, run in an adaptive mode that allows it to keep track
211 of waveforms that may gradually change over time.

212

213 Identification of simple spikes and complex spikes in Purkinje cells

214  As opposed to short duration SSs (Fig. 1B), characterized by short median inter-spike
215  intervals (Fig. 1E), the long duration CSs (Fig. 1C) were much more rare. In addition to the
216 10-20 msec long pause triggered by a CS in the SS firing (e.g. Fig. 1F, Bell and Grimm,
217 1969; Latham and Paul, 1971; McDevitt et al., 1982), the presence of a CS was also indicated
218 by a massive deflection of the LFP signal, lasting for the whole duration of a CS (Fig. 1D).
219 While the MSD-based detection of abundantly available SS events can be trusted most of the
220 time, since the consequences of erroneously including or missing a few SSs are less
221 problematic, MSD-based detection of much rarer CS events is error prone, the costs of which
222  cannot be neglected. Consequently, thorough analysis of PC data often requires
223  experimenters to visually control the quality of MSD-based detections post-hoc, and many
224  times, to even manually identify CS events.

225

226  Convolutional neural network

227  We used the architecture of a CNN that was originally designed to segment images (“U-Net”,
228  Ronneberger et al., 2015) and later successfully adapted for the detection of saccades in eye
229  position recordings (“U’n’Eye”; see Bellet et al. (2018) for details). For CS detection, we
230  input the LFP and action potential signals, sampled at the same frequency of 25 KHz, to the
231  network (Fig. 2A., top). The output was a bin-wise predictive probability of CS occurrence

232 (Fig. 2A, bottom).
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233  The network consists of convolutional and max-pooling layers. Max-pooling is an operation
234  that down-samples the input in order to reduce the dimensionality of its representation in the
235  network. It filters the input with a certain window size and extracts only the maximum value.
236 It then steps further on the input, repeating the same operation on the next time window.
237  Convolutional layers extract relevant features of the input signal by learning the parameters
238  of its convolutional kernel during training. We chose the size of the max-pooling (mp) and
239  convolutional kernels (c) as 7 and 9 bins, respectively. These influence the signal interval (SI)
240  taken into account for labeling one time bin in the output. as described by the formula,

_mp?+ (mp?Xc)+ (mpXxc)—mp+2xc—2)

SI >

241 In our case, the ST corresponds to 281 time bins before and after each classified bin.

242

243  Training and testing procedures

244  We recorded a total of 160 PCs, out of which 119 PCs were selected, based on careful visual
245  assessment of MSD-based CS detection by a human expert (author AM), for in-depth
246  statistical analysis. These PCs remained stable throughout the recording session with clearly
247  isolated CSs and associated signatory SS pauses and LFP deflections. The remaining 41 PCs,
248  for which it was deemed that MSD-based analysis might have led to spurious detections of
249  SSsand CSs, were excluded from analysis.

250 To prepare the training set, we asked our human expert, who is experienced in
251  electrophysiological recordings from PCs, to visually identify CS events and manually label
252  their start and end points. The expert used small segments of action potential and LFP
253  recordings during labeling, without access to eye movement data. For each PC, 24 segments,
254  each 250 ms long, were manually labeled. To avoid having segments in which a part of a CS
255  may have been truncated (at the beginning or end of a segment), we excluded the first and

256  last 9 ms of each segment during training, thereby reducing its size to 232 ms. Since the
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257  network was trained on the manually labeled data, recording segments from the excluded set
258 of 41 PCs, for which the MSD-based CS detection was poor but the human expert-based
259  visual identification was still feasible, were also included for training the network in addition
260 to the selected set of 119 PCs. The number of recording segments for a given PC included in
261  training naturally varied with the number of CSs found in the particular cell, but we ensured
262  including recording segments from all 160 PCs in training.

263

264  Since the MSD-based CS detection in 41 PCs was already unsatisfactory, as stated above, a
265 comparison based on the performance of our algorithm and the MSD on these particular PCs
266  would have been too biased in favor of our algorithm. Therefore, to fully test our algorithm’s
267  performance while still giving the MSD-based approach the benefit of the doubt, we used
268  cross-validation on recordings from only the selected pool of 119 PCs. For every PC tested
269 for CS detection, we trained a separate network excluding the currently tested PC from the
270  training set. This allowed us to test how well the network generalized to new data sets, on
271 which it had not been trained, and it also allowed us to have multiple performance tests on
272 our algorithm. Therefore, the training set always comprised the remaining 159 PCs not being
273  currently tested. The total number of recording segments used in any given training set was
274  970-988, depending on the PC under test. Other parameters of network training such as loss
275  function, learning rate, batch size, and early stopping criterion, were chosen as described in
276  Belletetal. 2018 for U'n’Eye.

277  We also performed one more performance test of our algorithm, which was concerned with
278  establishing consistency with expert labeling. For 7 PCs (out of our 119 selected ones
279  described above), we asked our human expert to manually label CSs in the entire records, and
280  not just a small training subset within each of them. This allowed us to directly compare the

281  labeling of the entire records of these 7 PCs by both our algorithm and the human expert. Our
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282  algorithm in this case was based on training the network on segments from the remaining 159
283  PCs (other than the currently tested one), as described above.

284

285  Post-processing

286 We implemented three post-processing steps to enhance the quality of CSs detected by our
287  algorithm. First, time shifts between the detected start points of all CSs fired by a particular
288 PC were corrected by re-aligning them. To this end, we computed the average waveform
289  from the first estimation of start times of all detected CSs. This average-waveform template
290  was then used as a reference to realign each waveform within a +2 ms window around CS
291  start so that the cross-correlation was maximized (Fig. 2B). Second, action potential and LFP
292  waveforms, occurring within 2 ms after CS start, were projected onto a two-dimensional
293  plane (Fig. 2C) using the UMAP dimensionality reduction technique (McInnes et al., 2018).
294  This allowed us to use the third post-processing step to cluster waveforms into suitable CSs
295  and unsuitable ones. In this third step, groups of waveforms were identified (Fig. 2D) using
296 HDBSCAN, a hierarchical clustering algorithm (Campello et al., 2013) that builds a tree to
297  describe the distance between data points. The algorithm minimizes the spanning size of the
298 tree and further reduces the complexity of the tree to end up with a minimum number of leaf
299  nodes, corresponding to the clusters. We used the default parameters for HDBSCAN with the
300 option to find only one cluster. Waveforms were excluded if they belonged to a cluster for
301  which the average predictive probability output from the network remained below 0.5 for
302 more than 3 ms (Fig. 2E).

303

304  Quality metrics

305 We evaluated the performance of our algorithm in detecting CSs using the so-called F1 score

306 (Dice, 1945; Sgrensen, 1948), which compares the consistency of CS labels predicted by the
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307  algorithm, to “ground-truth” labels provided by the human expert. The F1 score is the
308 harmonic mean of recall (the ratio of true positive detections and all true CS labels) and
309 precision (the ratio of true positive detections and all CS labels predicted by the algorithm),
310  as given by the following equation

Fl= 2 X recall X precision
" recall + precision

311 In our case, an F1 score of 1 would suggest that the CSs predicted by our algorithm perfectly
312  matched the “ground-truth” labels provided by the human expert. However, a lower F1 score
313  may suggest that CSs were either erroneously missed or falsely detected. For quality
314  assessment, we also computed the post-CS firing rate of SSs, a signatory feature immune to
315  labels detected by the human expert, which served as a reliable and objective criterion for the
316  identification of a CS. Finally, the resulting CS waveforms were scrutinized by visual
317  inspection.

318

319  Results

320  CNN-based algorithm reliably detects complex spikes

321  The main idea of our approach was to train a classifier to extract relevant features from
322  electrophysiological recordings of PCs and to identify CSs. This was realized with the help of
323 a CNN that uses the LFP and action potential signals as inputs (Fig. 2A, top). We chose these
324  two inputs because human experts achieve consensus on the presence or absence of a CS,
325 more easily and reliably, if both action potentials and LFPs are simultaneously available. Our
326 network uses convolutional and max pooling operations to extract the temporal features
327  relevant for distinguishing CSs from the surrounding signal. In the end, the network predicts
328  the probability of the presence of a CS for each time bin. Time bins for which the predictive

329 probability exceeded the threshold of 0.5 are classified as CSs (Fig. 2A, bottom). The
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330 prediction for each time bin depends on an interval in the input signal whose size is
331  determined by the size of the max-pooling and convolutional kernels of the CNN (Methods).
332  Our analysis considered an interval of 281 time bins before and after the time bin containing
333 apredicted CS event. As our sampling rate was 25 kHz, a 10 ms duration CS would span 250
334  time bins. This means that the network was often using information surrounding CS events

335 (281 versus 250 time bins) to classify CSs.

336  One of the key requirements for correct CS classification is the quality of the recorded PC
337  signal, which may naturally depend on several factors. For example, subtle drifts between
338 electrode tip and the cell body during a recording session can lead to sudden or gradual
339  changes in the signal-to-noise ratio of the PC signal, and potentially change the morphology
340 of the CS waveform. Also, several SSs firing in close proximity to each other might lead to
341  complex waveforms that may erroneously be detected as CS events. Furthermore, there is
342  also a possibility of CS waveforms being modified by the presence of preceding SSs (Servais
343 et al, 2004; Zang et al., 2018). In order to make our algorithm more resilient to such
344  influences, we added automatic post-processing steps at the output of the CNN. We first fine-
345  tuned the CS start points (Fig. 2B, Methods), and we then differentiated between candidate
346  waveforms using a clustering algorithm in a dimensionally-reduced space (Fig. 2C,
347  Methods). The waveform clusters after dimensionality reduction represented potential
348  candidates for CSs of the recorded PC. Some of these candidates needed to be excluded. For
349  example, if the network in the first step mistakenly classified non-CS events as CSs, then the
350  clustering method would help to refine the classification and exclude these events post-hoc:
351  amongst the CS events erroneously detected by the network might be SSs that are revealed by
352  a separate cluster in the two-dimensional space (Fig, 2C and D, black vs. orange and blue).
353  These false positive events were removed by applying a threshold to the average predictive

354  probability output of the network of the respective cluster (Fig. 2E). Not only non-CS events
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355  might have contributed to a distinct cluster separated from the main CS cluster, but true CSs
356  with slightly deviant waveforms (Fig. 2D orange vs. blue) might also have led to separate
357  clusters in the two-dimensional space (Fig 2C orange vs. blue). For all CS clusters that met
358  the defined threshold criterion on predictive probability (Fig. 2E, cluster 1 and 2), the output
359  of our algorithm, CS timing and corresponding cluster IDs, allowed the user to carefully
360 inspect each cluster and decide whether to include clusters with deviant, yet true, CSs or not.
361

362  Objective quality measure confirms identity of complex spikes

363  Itis well-established that SS firing rate decreases during 10-20 ms after the emission of a CS
364 (Bell and Grimm, 1969; Latham and Paul, 1971; McDevitt et al., 1982, Fig. 1F). This
365  physiological feature, independent of the subjective assessment of the human expert,
366  provided us with an additional means for objectively measuring the CS labeling quality of our
367  algorithm. For 119 PCs, we evaluated SS firing rates before and after the occurrence of CSs
368  detected by our algorithm. As depicted in Fig. 3, CSs identified by the algorithm were
369 followed by a clear and significant decrease in the neurons’ SS firing rates by 96% on
370  average (Fig. 3A). In the pre-CS period of 3 to 8 ms, median SS firing rate of the 119 PCs
371 was 58.7 spikes/s; this dropped to 10.5 spikes/s in the post-CS period of 10-15 ms (Fig. 3B,
372  Wilcoxon signed-rank test: p = 2.18 x 10°°°). This indicates a very low probability of false
373  positive CS detections, since such false positives would increase the apparent post-CS firing

374  rate of SSs.
375
376  The new algorithm outperforms a widely-used online sorter

377  The spike sorting application MSD, based on a template matching algorithm suggested by

378  Waorgdtter et al. (1986) for online CS detection, has been widely used by several laboratories
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379 as an aid in supporting the visual inspection of PC records (e.g. Catz et al., 2005). This is
380 why we compared the performance of our CNN-based approach to that of the MSD for the
381  same 119 PCs used to test the performance of the algorithm in the previous section. Overall,
382  ouralgorithm detected 23% more CS events than the MSD (p = 1.4 x 10, Wilcoxon signed-
383  rank test; Fig. 4A). In order to objectively quantify the difference in CS detection by our
384  algorithm and the MSD, and to verify that the additionally detected events were indeed CSs,
385  we again evaluated the decrease of post-CS S8 firing rate. The median decrease of SS firing
386 rate after CSs detected only by our algorithm and not by the MSD was significantly stronger
387  than the decrease induced by CSs detected only by the MSD and not by our algorithm (p =
388  1.4x 107, Wilcoxon signed-rank test; Fig. 4B). This indicates that the CSs detected by our
389  algorithm and missed by the MSD were veridical, whereas CSs only detected by the MSD
390 and not by our algorithm were probably erroneous detections (false positives). This view is
391  also supported by a consideration of the time course of SS firing rate aligned to the start time
392  of detected CSs. SS firing rate for CSs only detected by our algorithm and not by the MSD
393  revealed a peak, approximately 3 ms earlier than in the case of CSs that were detected only
394 by the MSD (Fig. 4C). This suggests that SSs occurring shortly before a CS altered the
395  waveform of the latter (Servais et al., 2004) (also see Fig. 2D showing how the amplitude of
396  the average CS waveform of cluster 2 was reduced), therefore impeding its detection by the

397 MSD.

398  We also found that CS waveforms for CSs only detected by our algorithm and not by the
399 MSD were similar in shape to the CSs detected by both our algorithm and the MSD (Fig. 5,
400  middle column vs. left). CSs labeled only by the MSD, on the other hand, deviated from this
401 waveform shape (Fig. 5 right vs. left). This impression clearly also concurs with the weaker

402  post-CS depression of SS firing rate seen in the pool of CS events detected only by the MSD
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403  (Fig. 4C). In summary, our algorithm is both more sensitive and less error prone than the

404  MSD-based detection.

405 We also evaluated to what extent the predictions from both approaches agreed with labels
406 from a human expert. To this end, we computed the F1 score (see Methods) on short
407  recording segments from the same 119 neurons as in the previous section for which we had
408  “ground-truth” labels from the human expert. The F1 score is a measure of consistency in
409  performance between an algorithm and the human expert. As shown in Fig. 6, our algorithm
410  achieved overall higher F1 scores than the MSD, and it also showed much less variability
411 between the different PC records (Fig. 6A). In fact, for the majority of recorded PCs, our
412 algorithm agreed with the human expert on all CS labels, reflected by an F1 score of 1. This
413  indicates that the predictions by our approach are more “human-like” than the ones labeled by
414 the MSD. To achieve good performance in terms of F1 score, our algorithm also did not need
415  a lot of training data. With only 50 training records of 232 ms of data each (sampled at 25
416 kHz), our algorithm outperformed the MSD algorithm (Fig. 6B). Larger training sets, of

417  course, yielded even higher performance (Fig. 6B).

418

419  CNN approach reaches human expert-level performance

420  Finally, for 7 PCs, we asked our human expert to fully label the entire recorded data for each
421  neuron, instead of only a tiny training set (Methods). We then compared the CS labels of our
422  algorithm to the ones placed by the human expert on the entire records of the neurons
423  (spanning a time range of approximately 8-14 minutes of neural recording). Overall, the
424  predictions of our algorithm agreed very well with the human labeling (Fig. 7A). A few
425  events were identified as CSs by our algorithm but not by the human expert. However, also

426  the waveforms of these events matched the waveforms of CSs that were labeled by the
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427  human expert (Fig 7A, cells 3, 5, and 6), indicating that the CSs ignored by the expert were
428 indeed genuine CSs. For one of the PCs, the waveforms of additionally detected events
429  indicated that our algorithm mistakenly labeled some SSs as CSs (Fig. 7, cell 7). These false
430 positive detections, whose average predictive probability remained above the threshold (0.5)
431 for more than 3 ms and were not removed during automatic post-processing, however, would
432 appear as isolated clusters after dimensionality reduction (Fig. 2C). Hence, such false
433  detections could be easily removed post-hoc by inspecting the properties of the CSs in the
434  respective isolated cluster. For false positive labels, the average duration of pause in SS firing
435  after these events would also be reduced to the average refractory period of SSs in this

436  recording.

437  The comparison with human labels further showed that our algorithm reliably identified the
438  ends of CSs and, considering knowledge of CS start, provided a quantitative estimate of CS
439  duration. For the recording segments from the 119 PCs, we compared the end times of all
440  CSs that were detected by both our algorithm and the human expert. As shown in Fig. 8A, the
441  estimate of CS end times provided by our algorithm and the human expert differed only very
442  slightly. Correspondingly, average CS durations per neuron predicted by our algorithm and
443  the human expert were highly correlated (p = 0.78, p = 1.12 x 102 Spearman correlation;
444  Fig. 8B). In light of a possible CS duration code supplementing a CS rate code (Yang and
445  Lisberger, 2014; Herzfeld et al., 2015; Warnaar et al., 2015; Herzfeld et al., 2018; Junker et
446  al., 2018), it is important to precisely identify the end times of CSs and to track changes in
447  CS duration in conjunction with behavioral changes even within individual PCs. Our
448  algorithm was indeed capable of identifying small variations in CS duration similar to the
449  expert. This is indicated by a strong correlation (p = 0.62, p = 6.81 x 10, Spearman

450  correlation) of the residuals of human-labeled and algorithm-labeled CS end times of the
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451  selected 119 PCs, obtained by subtracting the mean CS duration of the respective PC (Fig.

452  8C).

453

454  Discussion

455  This study proposes a largely automated approach to CS detection as a sensitive and reliable
456  alternative to tedious and experience-dependent manual labeling. The approach is based on a
457  CNN, trained on two input vectors (Fig. 9A), a high frequency band pass signal for the
458  extraction of action potentials and a simultaneously sampled lower-frequency band pass
459  signal reflecting LFPs. After training with surprisingly little data, our algorithm outperformed
460 a widely used spike sorter deploying a user defined template. Moreover, our algorithm also
461  easily caught up with the performance of an experienced human expert. Searching manually
462  for rare events like CSs, amidst a sea of high-frequency SS signals, not only requires several
463  weeks of tedious effort, but, as demonstrated by research on visual search (Wolfe et al., 2005;
464  Evans et al., 2011), is also error prone, even among experts. Our network renders CS
465  detection not just feasible, but also, more objective and systematic. Steps describing the

466  general workflow of our algorithm are summarized in Fig. 9.

467

468  Limitations of conventional spike sorting algorithms

469 The major challenge that any approach for detecting CSs meets is the polymorphic
470  complexity of these neural events (Warnaar et al., 2015). The MSD spike sorter relies on user
471 defined templates to identify distinct spike waveforms. However, no matter how well isolated
472  a PC neuron may be, spike waveforms may change for internal reasons or because the

473  position of the neuron relative to the electrode may drift over time. The MSD, like other
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474  automatic online or offline sorting approaches, tries to accommodate these changes by
475  adapting the original template. The principal virtue of template adaptation notwithstanding, it
476  may not be sufficient to keep track of a changing CS or, alternatively, may gradually render
477  the template indistinguishable from the waveforms of unrelated neural activity (including the
478 much more frequent SSs in the signal). Hence, the sorter may miss a true CS or falsely
479  qualify other waveforms as CSs because of similar morphological features. To avoid
480  erroneous detections and omissions, most analysts resort to manual detection. Experienced
481  human experts may in principle reach a high level of agreement by using visual search to
482  identify CS events. However, this approach is very tedious and therefore inevitably
483  associated with fluctuations of attention, which jeopardizes the analyst’s performance (Wolfe
484 et al., 2005). The tediousness of the manual detection approach is increased even further if
485  attempts are made to pinpoint the times of CS start and end or to identify distinct features of
486 the CS morphology such as its spikelet architecture (Warnaar et al., 2015). Conventional
487  spike sorters based on template matching (Catz et al., 2005; Dash et al., 2010; Herzfeld et al.,
488 2015, 2018; Junker et al., 2018) or even simpler voltage-threshold crossings can be useful to
489  facilitate visual inspection. However, the need to double check detected CS events will

490 forestall gains in investments of time and effort only minimally.

491

492  Our algorithm is more sensitive and performs better than the online sorter

493  Our CNN-based algorithm, trained on action potential and LFP signals, clearly outperformed
494  the MSD. Not only was it more sensitive in detecting more CSs, but it also rejected many
495  false CSs, as compared to the MSD. This can best be seen in the example of Fig. 2C. In this
496  figure, the Cluster 1 waveforms, despite sharing a similar shape of the initial spike

497  component with the genuine CSs in Cluster 3, appeared as a clearly separated group in our
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498  dimensionally reduced space. These erroneous waveforms were therefore safely rejected. On
499  the other hand. waveforms belonging to Cluster 2, neighboring the main Cluster 3, were still

500  accepted due to close resemblance of their features to the genuine ones.

501 It is likely that there can be interactions between SS occurrence and CS waveform
502  appearance. Specifically, a study on PCs in non-anaesthetized mice has demonstrated that the
503 shape of the CS waveform can be altered by preceding SSs (Servais et al., 2004).
504  Furthermore, recently conducted experiments on climbing fiber responses in PCs have
505 revealed that the potassium currents, by means of voltage gating in a branch-specific manner,
506  can regulate the climbing fiber driven calcium ion influx leading to changes in CS waveform
507 amplitude (Zang et al., 2018). This may explain why the additional CSs detected by our
508 algorithm might have potentially deceived the online sorter. The genuine nature of the
509  additional CSs detected by our algorithm was confirmed with the help of another prominent
510  physiological marker-a pause in spontaneous firing activity of SSs 10-20 ms right after the
511 occurrence of a CS. The additional CSs that were detected by the online sorter and not by our

512  algorithm did not show a clear suppression of SS firing.

513 A major factor, contributing to unsatisfactory performance of conventional sorters, is the fact
514  that they typically rely only on information from the action potential record, rather than using
515  complementary information from time synchronized LFP recordings, which is what human
516  experts would do when searching PC recordings for CSs. In accordance with a very recent
517  Principal Component Analysis (PCA) based approach (Zur and Joshua, 2019), demonstrating
518 improved CS sorting by exploiting LFP frequency bands, the high performance of our
519  algorithm in detecting CSs also critically relies on the use of LFP signals. The virtue of the
520 PCA-based approach notwithstanding, it is clearly outperformed by our network. First, our
521  approach gives a good estimate of CS occurrence without requiring a subsequent manual

522  selection of the cluster in a principal component space. Second, as compared to the PCA, the
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523 UMAP dimensionality reduction technique is more resistant to changes in waveform shape,
524  such as reductions in waveform amplitude due to relative shifts in position between electrode
525  tips and cell bodies. Third, the performance of our algorithm is indifferent to occasional
526  oscillations that may occur in the LFP signal that may impede the performance of the PCA-
527  based approach, which relies on threshold crossings for event detection. Finally, as discussed
528  further below, the CNN, but not the PCA, offers precise information on timing, enabling us to

529  study CS durations much more systematically and objectively.

530 Itis well established (Eccles et al., 1967) that each PC receives input from only one climbing
531  fiber. Therefore, it is very unlikely to find a second CS with completely different properties
532  in addition to the first CS in a PC record. Surprisingly, we found two PCs (see Fig. 9C for an
533 example) for which the CNN delineated a completely separate, large cluster of CSs in
534  addition to the main cluster. Al first glance, this might have suggested a violation of the
535  aforementioned architectural principle. However, the CSs found in the respective second
536  clusters could be easily discarded post-hoc because of the insufficient suppression that they
537  induced in SS firing as compared to the genuine CSs. Therefore, although rare, even if
538  genuine CSs that belonged to a neighboring PC (Fig. 9C, seen as much smaller amplitude
539  waveforms in Cluster 2) were captured by the electrode tip, these CSs could easily be

540  identified based on their cluster IDs and scrutinized for selection.

541  To test whether our algorithm could really take over the burden of labeling CSs manually, we
542 made a one to one comparison of the performance of the CNN and the human expert on
543  records of 7 PCs for which all CSs had been labeled manually. Indeed, our algorithm's
544  performance matched the human-level expertise in detecting CSs in all PCs, except for one in
545  which additional CSs were detected by our algorithm (Fig. 7, Cell 7). The location of these

546  CSs in a distinct cluster in two dimensional feature space allowed the experimenter to easily

21



bioRxiv preprint first posted online Apr. 5, 2019; doi: http:/dx.doi.org/10.1101/600536. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made avallable under a CC-BY-NC-ND 4.0 International license.

547  evaluate the validity of the identification of the waveform as CS and, in this case, to conclude

548  that it was spurious.

549

550  Qur algorithm detects start and end points of CSs with human-level performance

551  The prevailing idea of CSs serving as the “teaching-signal” for post-synaptic PCs (Marr,
552  1969: Albus, 1971; Ito, 1972), for which the occurrence of each CS event might be the only
553  source of relevant information (Rushmer et al., 1976; Gellman et al., 1985), has been
554  challenged by studies that demonstrated that the duration of action potential bursts fired by
555  olivary neurons may vary and that this may be reflected by changes in the duration and the
556  spikelet architecture of CSs (Llinds and Yarom, 1981; Ruigrok and Voogd, 1995; Maruta et
557  al., 2007; Mathy et al., 2009; Bazzigaluppi et al., 2012; De Gruijl et al., 2012; Rasmussen et
558  al.. 2013; Zang et al., 2018). These observations have suggested that not only the occurrence
559  of a CS, but also its duration may be relevant for motor learning. Addressing this possibility
560  requires experimenters to invest even more time to manually label the start and end times of
561  CS waveforms in addition to just detecting the events themselves. Not surprisingly, given the
562  amount of time and effort involved, only a handful of attempts have been made to test this
563 idea (Yang and Lisberger, 2014: Herzfeld et al., 2015, 2018; Junker et al., 2018) with
564  inconsistent results. In order to achieve consensus, larger data sets collected under more
565  diverse conditions would have to be explored, a necessity researchers have been reluctant to
566  meet because of the hassles of the manual timing analysis. Since our CNN-based approach is
567  able to effortlessly follow the performance of the human expert in detecting the start and end
568 of the CS waveforms, by applying the expert’s “mental rules” learned during training,
569  quantifying task related changes in the architecture of CSs collected at different times in an

570  experiment will become much more feasible in the future.
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571 Deep learning as a research tool

572  More broadly, deep learning allows modeling non-linear relationships between input and
573  output for which no analytical solutions may exist. It is exactly this property of deep learning
574  that explains why this machine learning approach has recently emerged as a potentially
575  powerful research tool, which can tremendously reduce the workload of scientists (Ciregan et
576  al.. 2012; Havaei et al., 2017; Oztel et al., 2017; Bellet et al., 2018). In light of recent
577  developments, in which deep learning has been successfully utilized to not only design
578  stimuli with controlled higher order statistics (Gatys et al.. 2015), but also to model non-
579  linear relationships in neural data (Ecker et al., 2018), it is not hard to imagine that the full
580  potential of deep learning will significantly boost the pace of neuroscientific research in the
581 coming years. Certainly, in the case of cerebellar neurophysiology, we believe that our use of
582  deep learning to detect the rare, but relevant, CS events will allow much renewed

583  investigation of the contentious functional roles of these events in motor control and beyond.

585  Conclusion

586  So far, all analysis involving CSs has been based on extremely laborious, manual, or semi-
587  automated methods lasting up to several weeks. This enormously slows down the pace of
588  developments in the field. On the other hand, our deep learning approach can reverse this
589  reality. For example, for a database like ours (160 PCs), our approach requires the human
590  expert to invest only 2-3 hours of CS labeling for training purposes and another 3-4 hours to
591  later verify the results. Given that it takes 3-4 hours to manually label all CSs found in
592  recordings of just one PC, this investment in time is negligible compared to the alternative of
593  manually labeling all recorded PCs. Moreover, our automated algorithm performs this task at

594  par with human experts, and it renders more systematic valuable information about the timing
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and morphology of CS waveforms. The algorithm will be made available for use via an open

source implementation https:/github.com/jobellet/detect CS with provisions for retraining

the network to new users’ own measurements. We strongly believe that the gains in time and
reliability that our tool offers may substantially facilitate the quest for a better understanding

of the roles of the still largely mysterious CSs.
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Figure 1. Characteristics of an exemplary Purkinje cell. (A) Local field potential (LFP,
low passed, <150 Hz. middle panel) and action potential (AP, high band-passed, 300 Hz - 3
KHz, bottom panel) activity in relation to horizontal eye movements (top panel). CSs are
marked by asterisks. (B) Isolated SS waveforms aligned on SS start. (C) Isolated CS
waveforms aligned on CS start. (D) LFP responses aligned to CS start. (E) Histogram of

inter-spike intervals of SSs. Solid gray line depicts the median value (13.2 ms). (F) Raster
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plot showing a 17 ms pause in SS activity caused by the occurrence of a CS. Solid black line

represents the mean SS firing rate aligned to CS start.
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612  Figure 2. Pipeline for complex spike detection. (A) Input to the network (LFP and action
613  potential signal, labels as AP) as well as its output (bin-wise predictive probability for CS
614  occurrence and binary CS classification). (B) Waveforms aligned to the first estimation of
615  start times of all CSs detected by the network (upper panel) used for computing an average
616  waveform that served as a template for realigning the waveforms of all detected CS events
617  (lower panel). (C) Projection of the waveforms during the time interval shaded in gray in B
618 onto a two-dimensional plane and identification of clusters in this space. Different colors
619  indicate distinct clusters. (D) Waveforms of the clusters in (C). Note that Cluster 1 clearly
620 violates well-known CS waveform shapes. (E) Average predictive probability output of the
621 network for the events in each cluster. Clusters, whose probability output exceeds the
622  classification threshold of 0.5 (dashed gray line) for less than 3 ms, are excluded as not

623  representing CSs (Cluster 1).
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Figure 3. Decrease of SS rate after CSs. (A) Baseline-normalized mean SS firing rate
aligned to the start of CSs detected by our algorithm. Data shows mean + SEM over 119 PCs.
Note that the small sharp peak in the SS response, seen immediately after CS start (vertical
dashed line in black), is a result of the detection of initial large components of CSs in some
PCs where these initial components resembled the shape of SSs and were most probably
falsely detected as SSs by the online sorter. (B) Violin plots showing SS firing rate -8 to -3
ms before and 10 to 15 ms after CS start. Each dot represents the average SS firing rate
aligned to start time of all CSs in one PC predicted by our algorithm. Thick lines indicate the

median SS firing rate of all PCs.
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640  algorithm and the online sorter. 100% corresponds to the number of CSs detected by both
641  methods. Our algorithm detected significantly more CSs than the MSD. (B) Violin plots
642  showing SS firing rate aligned to the start of the CSs predicted by both algorithms (gray) or
643  of the events additionally labeled as CSs by either our algorithm (pink) or the online sorter
644  (beige). The decrease in SS firing after CSs predicted by our algorithm but not by the online
645  sorter indicates a higher sensitivity of our algorithm. (A and B) Each dot represents the
646  average SS firing rate aligned to all CSs for the recording of one neuron. Thick lines indicate
647  the median. (C) Pause in averaged SS firing rate following a CS. Gray shaded region
648  represents the period of 3-8 ms before and 10-15 ms after CS start used for comparing SS
649  firing rates in panel B. The sharp increase in SS firing rate approximately 3 ms prior to CS
650  start (vertical dashed line in black), observed only for CSs detected by our algorithm (pink),
651  and not the MSD (beige), suggests that these SSs occurring shortly before the start of CSs
652  might have altered their waveform. Only our algorithm was sensitive enough to detect such
653  CSs with altered waveforms. Green bars on top show intervals with a significant difference

654  between the two traces (random permutations cluster-corrected for multiple comparisons).
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Figure 5. Waveforms of events labeled as CSs by our algorithm and the online sorter

application MSD. Examples from seven neurons showing the average waveform in the LFP

and action potentials of CSs detected by both methods (left), by our algorithm only (middle)

or by the online sorter only (right).
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Figure 6. Classification agreement of our algorithm and the online sorter application
MSD with a human expert. (A) Distribution of F1 scores of our algorithm and the online
sorter computed by comparing CS labels with the human expert. Data from 119 neurons. (B)
F1 score of our algorithm as a function of the number of recording segments used for training

(pink) and F1 score achieved by the online sorter (beige). Think lines indicate the mean and

the shaded area represents 95% confidence interval of the mean obtained by bootstrapping.
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Figure 7. Waveforms of events labeled as CSs by our algorithm and the human expert.

Examples from seven neurons showing the average waveform in the LFP and action

potentials of CSs detected by both the human expert and our algorithm (left), by our

algorithm only (middle) or by the human expert only (right).
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Figure 8. Comparison of CS end times estimated by our algorithm and by the human
expert. (A) Distribution of difference in CS end times labeled by our algorithm and by the
human expert. Data shows all CSs detected by both our algorithm and the human expert in
short recording segments from 119 neurons. (B) Correlation of CS end times estimated by
our algorithm (network) and the human expert. Each dot shows the average end time of all
CSs from one neuron. (C) Correlation of all CS end times pooled across the 119 neurons. The
end time of each CS was normalized by subtracting the average end time of the respective

neuron.
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Figure 9. Workflow for using our algorithm. (A) The experimenter selects small segments
of signal containing at least one CS each. Each segment is fed into the neural network in the
form of three matrices containing the action potentials, the LFPs, and the labels separately.
After training, the network outputs a set of weights. (B) The weights are used for evaluating
new signals. (C) The output of the algorithm contains information about waveform shape that
can be grouped in a dimensionality reduced space. This helps manual verifications, for

example by inspecting the pause in SS firing rate after CS events in each cluster.
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