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1 Introduction

Derivatives play an increasingly important role as hedging and investment

instruments for both financial and non-financial corporations. Especially the trading

volume in over-the-counter (OTC) derivatives has experienced a tremendous increase

over the last decades, since these contracts can be designed to meet the investors’

specific needs. Between 2000 and 2017 alone, the notional amount of outstanding

OTC derivatives contracts increased from $94 trillion to $542 trillion according to

the Bank for International Settlements.1 The global financial crisis of 2007–2009 and

the bankruptcy of Lehman Brothers Holdings Inc. drew attention to OTC markets,

since the majority of the derivatives involved in the emergence of this financial

turmoil were traded in OTC markets.

As a result of the global financial crisis, the credit risk of OTC derivatives became

a more important issue in finance industry. In contrast to exchange traded markets,

OTC markets lack the advantage of a central clearing house ensuring that the

counterparties fulfill their obligations. The risk that the promised payments are

not made is called counterparty or default risk. Derivatives subject to counterparty

risk are called vulnerable derivatives. Since the counterparty risk cannot be ignored,

it should be considered in the valuation of OTC derivatives.

This dissertation addresses the valuation of European and American options which

are traded on OTC markets. Both European and American options exhibit unilateral

counterparty risk, since these contracts constitute an obligation only for the option

writer. For vulnerable European options, the valuation models of Klein (1996), Klein

and Inglis (2001) as well as Liu and Liu (2011) prevail in the literature. Based

on an extended Black-Scholes world, they use the structural approach of Merton

(1974) to price European options subject to counterparty risk. In the following, we

combine these models in a general model which incorprates their key characteristics.

Moreover, we extend the mentioned models to a stochastic interest rate framework.

In addition, we set up valuation models for vulnerable American options using the

core ideas of Klein (1996), Klein and Inglis (2001) as well as Liu and Liu (2011).

1 The detailed statistics on OTC markets are found in Bank of International Settlements (2018)
or can be retrieved from the BIS Statistics Explorer provided on the website of the Bank for
International Settlements.
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The remainder of this dissertation is organized as follows: In Chapter 2, we give

an overview of the existing literature on European and American options subject

to counterparty risk. Chapter 3 deals with the valuation of vulnerable European

options in an extended Black-Scholes world. In particular, the models of Klein

(1996), Klein and Inglis (2001) as well as Liu and Liu (2011) are presented and

discussed. Moreover, we develop a general model which includes the previously

mentioned models as special cases. Despite the complexity of the general model,

an approximate closed form valuation formula is derived. Chapter 4 addresses the

valuation of European options subject to both counterparty and interest rate risk.

The risk-free interest rate is governed by the Ornstein-Uhlenbeck process suggested

by Vasicek (1977). In particular, we extend the valuation models presented in the

previous chapter to the considered stochastic interest rate framework and derive

the corresponding closed form valuation formulas. Furthermore, we set up again

a general model which incoporates the fundamental features of the other models.

Despite the general model’s complexity, an approximate closed form valuation

formula is derived. Chapter 5 is devoted to the valuation of vulnerable American

options. We pick up on the fundamental ideas of Klein (1996), Klein and Inglis (2001)

as well as Liu and Liu (2011) to analyze the properties of the corresponding American

options subject to counterparty risk. Furthermore, we set up a general model. The

option values are computed using the least squares Monte Carlo simulation approach

suggested by Longstaff and Schwartz (2001). Chapter 6 addresses the valuation

of American options subject to counterparty and interest rate risk. The risk-free

interest rate follows the Ornstein-Uhlenbeck process of Vasicek (1977). Based on

this framework, we extend the models of Klein (1996), Klein and Inglis (2001) as

well as Liu and Liu (2011) to be applicable for the valuation of vulnerable American

options under stochastic interest rates. Again, we set up a general model which

incorporates the features of the other models. The option values are computed

using the least squares Monte Carlo simulation approach suggested by Longstaff

and Schwartz (2001). Chapter 7 concludes the dissertation and indicates further

research fields.
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2 Review on Options subject to Counterparty Risk

Counterparty risk is included under the concept of credit risks and constitutes a

phenomenon which may occur in over-the-counter (OTC) markets. In general terms,

counterparty risk is defined as the risk that a business partner in an OTC derivative

transaction is not able to (fully) meet its contractual obligations (see Bielecki &

Rutkowski, 2002: 26–27). Depending on the type of the considered OTC derivative,

counterparty risk can be unilateral (e.g. option contracts) or bilateral (e.g. futures

contracts or swaps). In the context of European and American options, counterparty

risk is clearly unilateral, since only the option holder faces the risk that a contractual

payment will not be made. In particular, there is only the risk that the option writer

(i.e. the counterparty) may not be able to fulfill the option holder’s claim if the option

is exercised. Options which are subject to counterparty risk are typically refered to

as vulnerable options.

2.1 Modelling the Counterparty’s Default

Before dealing with the valuation of vulnerable European and American options,

we discuss the modelling of the counterparty’s default risk. Essentially, two major

theoretical approaches have been emerged in the literature to account for the

potential default of the counterparty: structural models2 and intensity models3.

In the following, the key features of these two approaches will be presented and

discussed.

2.1.1 Structural Models

The fundamental idea of the structural default models is based on the seminal

work of Merton (1974).4 Under the assumption of a constant risk-free interest rate,

Merton (1974) links the counterparty’s default explicitly to its ability to pay back

its outstanding liabilities. In particular, the default is triggered if the market value

2 A profound examination of structural models can be found in Bielecki and Rutkowski (2002:
32–120) and Brigo et al. (2013: 47–65).

3 Bielecki and Rutkowski (2002: 221–264) as well as Brigo et al. (2013: 65–86) provide a
comprehensive analysis of the intensity models.

4 The structural model of Merton (1974) was originally developed to value zero and coupon
bonds subject to credit risk. However, its main ideal can be easily extended and applied to any
financial security that faces default risk.
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of the counterparty’s assets is below the default boundary LT at the end of the

considered time period T (=maturity), i.e. default can only occur at one specific

point in time. In the original work of Merton (1974), the default boundary LT = L̄

is a constant which is equal to the counterparty’s nominal debt. However, the default

boundary Lt can also be a determinstic and time-dependent or a random variable

(see Johnson & Stulz, 1987; Hull & White, 1995).

In a first step, we must address the mathematical modelling of the counterparty’s

assets. In principle, any stochastic process can be used to describe the evolution of

the counterparty’s assets over time. Typically, it is assumed that the market value

of the counterparty’s assets follows a continuous-time geometric Brownian motion.

The dynamics are given by

dVt = µV Vt dt + σV Vt dWV , (2.1)

where µV gives the expected instantaneous return of the counterparty’s assets, σV is

the instantaneous return volatility of the counterparty’s assets and dWV represents

the standard Wiener process.

Since Merton (1974) assumes that the counterparty’s default may occur only at one

specific point in time (typically at the maturity of the outstanding liabilities), the

default condition is given by

VT < LT , (2.2)

i.e. the default is triggered if the counterparty’s assets at time T are below the

default boundary LT .

The future payoff of any financial security Ft subject to default risk depends on

whether the counterparty actually is bankrupt or not. Discounting this payoff yields

today’s price of the considered financial security. In general terms, it is given by

Ft = e−r(T −t)
(

(1 − p) · E
[

PONoDef

T | VT ≥ LT

]

+ p · E
[

PODef

T | VT < LT

])

, (2.3)

where p gives the counterparty’s default probability and E [ · ] denotes the

expectation under the risk-neutral measure regarding the payoff at time T . In

particular, E
[

PONoDef

T

]

expresses the expected payoff if the counterparty does not

default, whereas E
[

PODef

T

]

gives the expected payoff in case of default.

4



The original model of Merton (1974) can be easily extended to a stochastic interest

rate framework (e.g. Shimko et al., 1993). In this case, the price of the financial

security Ft is given by

Ft = Bt,T

(

(1 − p) · E
[

PONoDef

T | VT ≥ LT

]

+ p · E
[

PODef

T | VT < LT

])

, (2.4)

where Bt,T denotes the discount factor of the considered stochastic interest rate

framework.

Black and Cox (1976) extend the model of Merton (1974). It is still assumed that

the risk-free interest rate is constant over time, but default may now occur at every

future point in time. In particular, default is triggered as soon as the value of

the counterparty’s assets Vt falls below the default boundary Lt for the first time.

Therefore, the Black-Cox model is also refered to as the first-time passage model.

Denoting the point in time at which the counterparty defaults by τ , the default

condition is now given by

Vτ < Lτ with τ = inf{t ≥ 0 : Vt < Lt}. (2.5)

The payoff of any financial security Ft subject to default risk depends on whether

the counterparty actually is bankrupt at any point in time in the future. Discounting

the future payoff yields today’s price of the considered financial security. In general

terms, it is given by

Ft = (1 − p) · e−r(T −t) · E
[

PONoDef

T | VT ≥ LT

]

(2.6)

+ p · e−r(τ−t) · E
[

PODef

τ | Vτ < Lτ

]

where p represents the counterparty’s default probability and E [ · ] denotes the

expectation under the risk-neutral measure regarding the future payoff. In particular,

E

[

PONoDef

T

]

denotes the expected payoff at time T if the counterparty does not

default, whereas E
[

PODef

τ

]

gives the expected payoff at the default time τ .

Longstaff and Schwartz (1995) extend the Black-Cox model to the stochastic interest

rate framework of Vasicek (1977). In contrast to Black and Cox (1976), however,

they assume that the default boundary is constant over time, i.e. Lt = L̄. Briys and

de Varenne (1997) as well as Schöbel (1999), in turn, extend the model of Longstaff

5



and Schwartz (1995) by allowing the default boundary to change over time. Unlike

Longstaff and Schwartz (1995), they are able to derive closed form solutions for the

price of both zero and coupon bonds.

The approaches of Briys and de Varenne (1997) as well as of Schöbel (1999) cannot

only be used to price zero or coupon bonds subject to credit risk but they can

also be applied to price any vulnerable financial security Ft. Under the existence of

stochastic interest rates, the current price of the considered financial security Ft is

given by

Ft = (1 − p) · Bt,T · E
[

PONoDef

T | VT ≥ LT

]

(2.7)

+ p · Bt,τ · E
[

PODef

τ | Vτ < Lτ

]

where Bt,T denotes the discount factor.

To value vulnerable European or American options using the structural approach,

the payoffs PONoDef

T and PODef

T as well as the default barrier Lt in Equations (2.3)

to (2.7) must be specified in accordance with the desired valuation model.

2.1.2 Intensity Models

In the intensity models, the counterparty’s default is not linked to the value

of the counterparty’s assets or the counterparty’s capital structure. Instead, the

counterparty’s default is described by an exogenous jump process. In particular, the

time at which the counterparty defaults is given by the first jump time of a Poisson

process with a deterministic or stochastic intensity.

Assuming a Poisson process to model the default risk, the probability that the

counterparty defaults over the next dt instants, under the presumption that the

default has not occured before time t, is equal to

P

(

τ ǫ [t, t + dt]
∣

∣

∣ Ft

)

= λt dt, (2.8)

where λt is the time-dependent hazard rate and Ft is the information available at

time t. The corresponding cumulated hazard rate is given by

Λ(t) =
∫ t

0
λu du. (2.9)

6



In the context of vulnerable European and American options, the probability that

the counterparty’s default occurs within a given time period [0, t] needs to be known.

This probability is given by

P

(

τ ǫ [0, t]
∣

∣

∣ F0

)

= 1− e
∫ t

0
λu du. (2.10)

At this point it is important to note that the default event in intensity models is not

triggered by a random variable whose behavior is observable in the market. When

evaluating vulnerable European or American options based on the intensity model,

it must be considered that the counterparty’s default risk is typically independent

of other stochastic variables (e.g. the price of the option’s underlying) within the

valuation model. This restriction is required to keep the model mathematically

tractable. (Brigo et al., 2013: 65–66).

2.2 Review on European Options subject to Counterparty Risk

Over the last three decades, various valuation models for vulnerable European

options have been developed. In the following, we give a comprehensive literature

overview of the existing valuation models.

2.2.1 Models with Deterministic Interest Rates

Picking up on the ideas of Merton (1974), Johnson and Stulz (1987) model the effect

of default risk on the value of European options. They assume that the short position

in the option is the counterparty’s sole liability and that the counterparty defaults

if its asstes are not sufficient to meet the option holder’s claim at maturity. Hence,

default may be triggered either by a decline in the counterparty’s assets or by an

increase in the option value. In case of default, the option holder receives the entire

assets of the counterparty potentially reduced by the cost of default. Johnson and

Stulz (1987) also allow for the correlation between the counterparty’s assets and the

option’s underlying. However, it is important to note that the Johnson-Stulz model

is only suitable if the counterparty’s assets are relatively small compared to the

expected option payoff and if the counterparty’s other liabilities are negligible.

Klein (1996), however, considers this assumption to be inappropriate in most

situations and thus extends the Johnson-Stulz model by allowing for other liabilities

7



which rank equally with the option. The counterparty’s total liabilities are assumed

to be exogenous and, by construction, must include the short position in the

option. Since the structural model of Merton (1974) is used, default may only

occur at the option’s maturity. In particular, the counterparty is in default if its

assets are less than the total liabilities. In this case, the option holder receives a

proportion of his claim which is linked to the value of the counterparty’s assets.

As in the Johnson-Stulz model, Klein (1996) accounts for the correlation between

the counterparty’s assets and the option’s underlying. Based on these assumptions,

the default risk can only arise from the potential deterioration of the counterparty’s

assets, since the total liabilities are fixed.

Klein and Inglis (2001) set up a model which incorporates the features of both

Johnson and Stulz (1987) and Klein (1996). In particular, the counterparty’s

total liabilities are split into two components: the short position in the option

(stochastic) and all other equally ranked liabilities (deterministic). Default occurs

if the counterparty’s assets are less than the sum of the option holder’s claim and

the market value of the other liabilities at the option’s maturity. The payout ratio

in default is linked to the counterparty’s assets and the correlation between the

counterparty’s assets and the option’s underlying is retained. In this model, default

can be caused either by a decline in the counterparty’s assets or an increase in the

option value making the model applicable in various situations.

Liu and Liu (2011) extend the model of Klein (1996) by assuming that the

counterparty’s total liabilities are stochastic. Consequently, the counterparty is in

default if the assets are not sufficient to meet the total liabilities at the option’s

maturity. In case of default, the option holder receives a proportion of his claim which

depends on the market value of both the counterparty’s assets and total liabilities.

In this model, the default risk arises either from a decrease in the counterparty’s

assets or an increase of the counterparty’s liabilities. Liu and Liu (2011) also account

for all possible correlations between the random variables.

In contrast to the previously presented models, Hull and White (1995) use the

structural approach of Black and Cox (1976) to account for the default risk.

They assume that all the liabilities of the counterparty are of equal rank. Default
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occurs if the counterparty’s assets fall below a determinsitic boundary prior to the

option’s maturity. In this case, the option holder receives an exogenously determined

proportion of his claim. To keep the model tractable, Hull and White (1995) assume

that the counterparty’s default risk and the option’s underlying are independent.

Rich (1996) assumes that the option’s underlying as well as the counterparty’s

credit quality (e.g. the counterparty’s assets) and the default boundary (e.g. the

counterparty’s liabilities) are characterized by geometric Brownian motions. The

correlations between the three stochastic variables are also considered. Since the

structural approach of Black and Cox (1976) is applied, the counterparty is in default

if the stochastic variable describing the counterparty’s credit quality falls below the

default boundary for the first time. Rich (1996) assumes that the payout ratio of the

option holder’s claim in case of the counterparty’s default is exogenously given. This

assumption is necessary in order to keep the model mathematically tractable.

The model of Hui et al. (2003) extend the models of Hull and White (1995) and Klein

(1996). They assume that the counterparty’s total liabilities are time-dependent and

are governed by the volatility of the counterparty’s assets. The counterparty is in

default if the market value of the assets falls below the market value of the total

liabilities at any point in time prior or at the option’s maturity. Furthermore, it is

assumed that the option holder receives a exogenously given proportion of his claim

if the counterparty defaults.

Hui et al. (2007) can be seen as an extension of Hui et al. (2003), since they assue

that the counterparty’s liabilities are governed by its own stochastic process. The

counterparty is in default if the market value of the assets falls below the market

value of the total liabilities at any point in time prior or at the option’s maturity.

To keep the model mathematically tractable, Hui et al. (2007) assume that payout

ratio in case of the counterparty’s default is exogenously specified in order to keep

the model mathematically tractable.

Liang and Ren (2007) set up a valuation for vulnerable European options which can

be seen as an extension of Johnson and Stulz (1987) and Hull and White (1995). In

particular, they assume that the short position is the counterparty’s only liability

and that default occurs as soon as the value of the counterparty’s assets falls below
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the intrinsic value of the option. Hence, default may occur also prior to the option’s

maturity. In contrast to other valuation models based on the Black-Cox approach,

Liang and Ren (2007) assume that the payout ratio to the option holder in case of

default is endogenously determined.

2.2.2 Stochastic Interest Rate Models

Klein and Inglis (1999) set up a valuation model for vulnerable European options

under stochastic interest rates. In particular, they extend the model of Klein (1996)

by assuming that the risk-free interest rate follows the Ornstein-Uhlenbeck process

of Vasicek (1977). The counterparty’s liabilities are ranked equally and are assumed

to be constant. If the assets at the option’s maturity are less than the total liabilities,

the counterparty defaults and the option holder receives a proportion of his claim

which is linked to the value of the counterparty’s assets. Furthermore, they account

for correlations between all stochastic variables.

Yoon and Kim (2015) also extend the model of Klein (1996) to a stochastic interest

rate framework. In particular, it is assumed that the risk-free interest rate is

characterized by the model of Hull and White (1990). The counterparty’s liabilities

are ranked equally and are assumed to be fixed. Like in the original model, the

counterparty’s default may only occur at the option’s maturity. In case of default,

the option holder receives a proportion of his claim which is linked to the value

of the counterparty’s assets. Moreover, the correlations between the counterparty’s

assets, the option’s underlying the risk-free interest rate are considered.

Cao and Wei (2001) also deal with the valuation of vulnerable European options

under stochastic interest rates. In particular, they assume that the risk-free interest

rate is governed by the Ornstein-Uhlenbeck process suggested by Vasicek (1977). In

contrast to Klein and Inglis (1999), however, it is assumed that the counterparty’s

liabilities consist of a zero bond and a short position in the option where both of

them have different maturities. Furthermore, Cao and Wei (2001) assume that the

counterparty may default prior to the option’s maturity.

Liao and Huang (2005) also deal with the valuation of vulnerable European options

under stochastic interest rates. In particular, they assume that the risk-free interest
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rate is governed by the Ornstein-Uhlenbeck process of Vasicek (1977). In contrast

to Klein and Inglis (1999), Liao and Huang (2005) assume that the counterparty

may also default prior to maturity. Additionally, the correlations between the

counterparty’s assets, the option’s underlying and the interest rate are considered.

In contrast to the other valuation models, Kang and Kim (2005) use the intensity

model to value European options subject to counterparty and interest rate risk.

They assume that the risk-free interest rate follows the Ornstein-Uhlenbeck process

suggested by Vasicek (1977). The counterparty’s default is triggered by the first

jump of a Poisson process, where the default intensity is assumed to be constant.

In case of default, the recovery rate is exogenously given in order to keep the model

mathematically tractable.

Su and Wang (2012) also deal with the valuation of European options subject to

counterparty and interest rate risk using the intensity model. The risk-free interest

rate is governed by the Ornstein-Uhlenbeck process suggested by Vasicek (1977)

and the counterparty’s default is triggered by the first jump of a Poisson process.

In contrast to Kang and Kim (2005), however, the default intensity is assumed to

be stochastic. In case of default, the payout ratio of the option holder’s claim is

exogenously specified.

Jarrow and Turnbull (1995) propose a third approach for the valuation of European

options subject to counterparty and interest rate risk. Based on a foreign currency

analogy in which the stochastic term structure of risk-free interest rates and

the maturity-specific stochastic credit spreads are given, they use arbitrage-free

valuation to compute the price of the vulnerable European options. Again, the

payout ratio of the option holder’s claim in case of default is assumed to be

exogenously given.

2.2.3 Stochastic Volatility Models

Yang et al. (2014) extend the model of Klein (1996) to a stochastic volatility

framework. In particular, it is assumed that only the return volatility of the option’s

underlying is stochastic being governed by an Ornstein-Uhlenbeck process. The

counterparty’s assets follow a geometric Brownian motion. Like in the orginal model
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of Klein (1996), the counterparty’s liabilities are fixed and default may only occur

at the option’s maturity. In case of the counterparty’s default, the option holder

receives a proportion of his claim which is linked to the value of the counterparty’s

assets. Furthermore, the mutual correlations between the counterparty’s assets, the

option’s underlying the the risk-free interest rate are considered.

Following the main ideas of Klein (1996), Lee et al. (2016) set up a valuation model

for vulnerable European options under the assumption of stochastic volatility. In

particular, they assume that both the option’s underlying and the counterparty’s

assets follow the dynamics suggested by Heston (1993). Like in the orginal model

of Klein (1996), the counterparty’s liabilities are fixed and default may only occur

at the option’s maturity. In case of the counterparty’s default, the option holder

receives a proportion of his claim which is linked to the value of the counterparty’s

assets. Furthermore, the correlations between the counterparty’s assets, the option’s

underlying the the risk-free interest rate are considered.

Wang et al. (2017) also extend the model of Klein (1996) to a stochastic volatility

framework. In particular, they decompose the stochastic volatility into the long-term

and short-term volatility. It is assumed that the short-term volatility is described by

a mean reverting stochastic process, whereas the long-term volatility is assumed to

be constant. Like in the orginal model of Klein (1996), the counterparty’s liabilities

are fixed and default may only occur at the option’s maturity. In case of default,

the option holder receives a proportion of his claim which is linked to the value of

the counterparty’s assets. Furthermore, the correlations between the counterparty’s

assets, the option’s underlying the the risk-free interest rate are considered.

Wang (2017a) sets up a valuation model for European options subject to

counterparty risk in a stochastic volatility framework. The return volatility of both

the option’s underlying and the counterparty’s assets are modeled by Generalized

Autoregressive Conditional Heteroscedasticity processes, respectively. Furthermore,

the correlation between the returns of the option’s underlying and the counterparty’s

assets is assumed to be stochastic. Like in the model of Klein (1996), the level of the

counterparty’s liabilities is fixed and default may only occur at maturity. In case of

default, the payout ratio is linked to the value of the counterparty’s assets.
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Using the intensity model, Wang (2017b) develops a valuation model for vulnerable

European options in a stochastic volatility framework. The return volatility of

the option’s underlying is modeled by a Generalized Autoregressive Conditional

Heteroscedasticity process. The counterparty’s default is triggered by the first jump

of a Poisson process, where the default intensity is assumed to be stochastic.

2.2.4 Jump-Diffusion Models

Xu et al. (2012) as well as Xu et al. (2016) extend the model of Klein (1996) by

assuming that both the option’s underlying and the counterparty’s assets follow

jump-diffusion processes, respectively. Like in the orginal valuation model of Klein

(1996), the counterparty’s liabilities are fixed and default may only occur at the

option’s maturity. In case of the counterparty’s default, the option holder receives

a proportion of his claim which is linked to the value of the counterparty’s assets.

Furthermore, the correlation between the counterparty’s assets and the option’s

underlying are considered.

Tian et al. (2014) also follow the ideas of Klein (1996) and provide a valuation

model for vulnerable European options in which both the option’s underlying and

the counterparty’s assets are governed by jump-diffusion processes, respectively. The

authors account for the correlation between the two stochastic variables. In contrast

to Xu et al. (2012, 2016), Tian et al. (2014) divide the jumps into an idiosyncratic

and a systematic component for both stochastic variables. Like in the orginal model

of Klein (1996), the counterparty’s liabilities are fixed and default may only occur

at the option’s maturity. In case of the counterparty’s default, the option holder

receives a proportion of his claim which is linked to the value of the counterparty’s

assets.

Wang (2016), in turn, extends the model of Liu and Liu (2011) by assuming that

the option’s underlying as well as the counterparty’s assets and liabilities follow

jump-diffusion processes. Wang (2016) also picks up on the idea of Wang et al

(2014) and assumes that the jumps for all three stoachstic variables consist of an

idiosyncratic and a systematic component. The counterparty is in default if the value

of the counterparty’s assets falls below the value of the counterparty’s liabilities.
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In contrast to the other valuation models, Fard (2015) uses the intensity model to

deal with the valuation of vulnerable European options whose underlying follows

a jump-diffusion model. In particular, the counterparty’s default is triggered by

the first jump of a Poisson process, where the default intensity is assumed to be

stochastic. Aditionally, the correlations between the option’s underlying and the

counterparty’s default risk is considered.

2.2.5 Incomplete Markets

Hung and Liu (2005) set up a valuation for vulnerable European options when the

market is incomplete based on the structural approach of Merton (1974). They pick

up on the idea of Klein (1996) assuming that default occurs if the value of the

counterparty’s assets are less than the fixed level of the counterparty’s liabilities

at the option’s maturity. In contrast to Klein (1996), Hung and Liu (2005) assume

that neither the option’s underlying nor the counterparty’s assets are traded in the

financial market. Hence, closed form valuation formulas cannot be derived. Using

the methodology of Cochrane and Saa-Requejo (2000), price bounds for vulnerable

European options are computed under deterministic and stochastic interest rates.

Murgoci (2013) also deals with the valuation of European options subject to

counterparty risk in an incomplete market based on the ideas of Klein (1996). In

contrast to Hung and Liu (2005), Murgoci applies the methodology of Björk and

Slinko (2006) to get the price bounds for vulnerable European options. As a result,

she finds that her computed price bounds are tighter than those obtained by Hung

and Liu (2005).

2.3 Review on American Options subject to Counterparty Risk

Compared to vulnerable European options, fewer models have been set up for

American options subject to counterparty risk. In the following, an overview of

the existing valuation models will be given.

2.3.1 Models with Deterministic Interest Rates

Hull and White (1995) use the structural approach of Black and Cox (1976) to

model the effect of default risk on the value of American options which rank equally
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with the other liabilities of the counterparty. Default occurs if the counterparty’s

assets fall below a determinsitic boundary prior to the option’s maturity. In this

case, the option holder receives an exogenously determined proportion of his

claim. To keep the model mathematically tractable, Hull and White (1995) assume

that the counterparty’s default risk and the price of the option’s underlying are

independent.

Chang and Hung (2006) adopt the framework of Klein (1996) to evaluate American

options subject to counterparty risk. The option’s underlying and counterparty’s

assets follow geometric Brownian motions, respectively. Furthermore, the correlation

between the option’s underlying and the counterparty’s assets is considered. If the

counterparty defaults prior to maturity, Chang and Hung (2005) assume that the

American option is not necessarily exercised. Instead, the option holder has the

opportunity to keep the American option unexercised until maturity despite the

counterparty’s default. The payout ratio in case of the counterparty’s default is

endogenously sp within the model.

Klein and Yang (2010) set up a valuation model for vulnerable American options

based on the framework of Klein and Inglis (2001). The option’s underlying

and counterparty’s assets follow geometric Brownian motions, respectively. The

correlation between the option’s underlying and the counterparty’s assets is

considered. In case of the counterparty’s default, Klein and Yang (2010) assume that

the American option is only exercised immediately if the option is in the money at

that point in time. The payout ratio in case of the counterparty’s default is linked

to the value of the counterparty’s assets.

Klein and Yang (2013) adopt the framework of Klein (1996) to evaluate American

options subject to counterparty risk. The option’s underlying and counterparty’s

assets follow geometric Brownian motions, respectively. Furthermore, the correlation

between the option’s underlying and the counterparty’s assets is considered. If the

counterparty defaults prior to maturity, Klein and Yang (2013) assume that the

American option is only exercised immediately if the option is in the money at that

point in time. In case of default, the payout ratio of the option holder’s claim is

exogenously specified.
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2.3.2 Jump-Diffusion Models

Xu et al. (2012) adopt the framework of Klein (1996) to evaluate American options

subject to counterparty risk. In contrast to Klein (1996), it is assumed that both the

option’s underlying and the counterparty’s assets follow jump-diffusion processes,

respectively. The counterparty’s liabilities are fixed and default may only occur at

the option’s maturity. In case of the counterparty’s default, the option holder receives

a proportion of his claim which is linked to the value of the counterparty’s assets.

Furthermore, the correlation between the counterparty’s assets and the option’s

underlying are considered.

2.4 Summary

The vast majority of the existing literature deals with the valuation of vulnerable

European options. Predominantly, the counterparty’s default is modeled using the

structural approaches of Merton (1974), Black and Cox (1976) or an extended

version of them, respectively. Intensity models, however, play a subordinate role.

The overall literature on the valuation of American options subject to counterparty

risk is relatively small. The existing models in the context of vulnerable American

options use the structural approach of Black and Cox (1976) or an extended version

to account for the counterparty’s default.

In the following, the valuation of vulnerable European options will be based on

the structural approach of Merton (1974). This approach is rather restrictive with

respect to the default time, but it has a better mathematical tractability, i.e. closed

form valuation formulas can be derived. Furthermore, the payout ratio in case of

the counterparty’s default can be endogenously determined within the considered

valuation model. Using the approach of Black and Cox (1976), the greater flexibility

with respect to the default time comes at the cost of an exogenously given payout

ratio for the option holder’s claim in case of the counterparty’s default.

Due to the early exercise features of American options, we apply the structural

approach of Black and Cox (1976) in this context. The higher mathematical

complexity of the Black-Cox approach is not problematic, since we will price

American options subject to counterparty risk by Monte Carlo simulation.
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3 European Options subject to Counterparty Risk

In this chapter, we present and discuss different valuation models for European

options subject to counterparty risk. The risk of the counterparty’s default is

modeled using the structural approach suggested by Merton (1974). In this context,

the counterparty’s default may occur only at the option’s maturity and is triggered

by the value of the counterparty’s assets being below the value of the counterparty’s

total liabilities.

Based on this theoretical framework, Klein (1996), Klein and Inglis (2001) and Liu

and Liu (2011) develop valuation models for vulnerable European options. These

models differ only with respect to the characterization of the counterparty’s total

liabilities and therefore with respect to the condition under which the counterparty

is in default.5

In the following, we set a general valuation model which incorporates all the features

and characteristics of the previously mentioned models. Despite the general model’s

complexity, we derive an approximate closed form solution. Furthermore, we apply

Monte Carlo simulation to price vulnerable European options based on the general

model. Comparing the approximate closed form with the numerical solution shows

that our valuation formula provides accurate values for vulnerable European options

in most situations.

Section 3.1 outlines and discusses the assumptions of the considered theoretical

framework. In Section 3.2, we derive the partial differential equation that

characterizes the price of a European option subject to counterparty risk. Section 3.3

deals with the solution to this partial differential equation. In Section 3.4, the Klein,

Klein-Inglis and Liu-Liu model are discussed. Moreover, we develop our general

valuation model and derive the corresponding approximate closed form solution.

Section 3.5 provides a comparative analysis of the different valuation models based

on numerical examples. Section 3.6 gives a summary of the main findings.

5 Johnson and Stulz (1987) also set up a valuation model for vulnerable European options based
on the theoretical framework considered in this chapter. However, this model is not included into
the analysis, since the authors assume that the counterparty does not have any other liabilities
beside the short position in the option. Due to this rather strict and unrealistic assumption,
the Johnson-Stulz model is not very useful for practical applications.
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3.1 Assumptions

The assumptions that characterize the theoretical framework for the valuation of

European options subject to counterparty risk are based on Black and Scholes (1973),

Merton (1974), Johnson and Stulz (1987), Klein (1996), Klein and Inglis (2001) as

well as on Liu and Liu (2011).

1. The price of the option’s underlying St follows a continuous-time geometric

Brownian motion. Assuming that the option’s underlying is a dividend-paying

stock, its dynamics are given by

dSt = (µS − q)St dt+ σS St dWS , (3.1)

where µS indicates the expected instantaneous return of the option’s

underlying, q denotes the continuous dividend yield, σS is the instantaneous

return volatility and dWS represents the standard Wiener process.

2. Likewise, the market value of the counterparty’s assets Vt follows a

continuous-time geometric Brownian motion. Its dynamics are given by

dVt = µV Vt dt+ σV Vt dWV , (3.2)

where µV is the expected instantaneous return of the counterparty’s assets,

σV gives the instantaneous return volatility and dWV is a standard Wiener

process. The instantaneous correlation between dWS and dWV equals ρSV .

3. The total liabilities Dt comprise all the obligations of the counterparty’s, i.e.

debt, short positions in financial securities and accruals. The dynamics follow

a continuous-time geometric Brownian motion which is given by

dDt = µD Dt dt+ σD Dt dWD , (3.3)

where µD is the expected instantaneous return of the counterparty’s liabilities,

σD indicates the instantaneous return volatility and dWD represents the

standard Wiener process. The instantaneous correlation between dWS and

dWD equals ρSD and ρV D between dWV and dWD, respectively.
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4. The market is perfect and frictionless, i.e. it is free of transaction costs or taxes

and the available securities are traded in continuous time.

5. The instantaneous risk-free interest rate r is assumed to be deterministic and

constant over time.

6. The expected instantaneous return of the option’s underlying as well as of

the counterparty’s assets and liabilities (µS, µV and µD) are deterministic and

constant over time. The same applies for the dividend yield q of the option’s

underlying.

7. The instantaneous return volatilities of the option’s underlying as well as of

the counterparty’s assets and liabilities (σS, σV and σD) are deterministic and

constant over time. The instantaneous correlations ρSV , ρSD and ρV D are also

constant and independent of time.

8. All the liabilities of the counterparty (i.e. debt, short positions in options, etc.)

are assumed to be of equal rank.

9. Default can only occur at the option’s maturity T . The counterparty is in

default, if the counterparty’s assets VT are less than the threshold level L:

VT < L̄ or VT < L(ST , DT ). (3.4)

Depending on the considered valuation model, the threshold level L is

characterized in different ways and is either a constant or a function of the

stochastic variables ST and DT .

10. If the counterparty is in default, the option holder’s claim must be determined.

In principle, the option holder’s claim is equal to the intrinsic value of the

European option at its maturity. If the counterparty, however, is in default,

the option holder faces a percentage write-down ω on his claim. In this case,

the option holder receives

(1 − ω) max(ST − K, 0) or (1 − ω) max(K − ST , 0) (3.5)

depending on whether the option is a call or a put.
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The percentage write-down ω on the claim can be endogenized. Assuming that

all the liabilities of the counterparty are ranked equally, the amount payable

to the holder of a European call is given by

(1− ω) max (ST − K, 0) =
(1− α)VT

L(ST , DT )
max (ST − K, 0), (3.6)

whereas it is given by

(1− ω) max (K − ST , 0) =
(1− α)VT

L(ST , DT )
max (K − ST , 0) (3.7)

for the holder of a European put. The parameter α represents the cost

of default as a percentage of the counterparty’s assets and the ratio

VT /L(ST , DT ) gives the proportion of the option holder’s claim which can

be paid back.

Based on Assumptions 9 and 10, the counterparty can only default at the option’s

maturity which is in line with the valuation models of Klein (1996), Klein and

Inglis (2001) and Liu and Liu (2011). Due to this assumption, the valuation models

become mathematically tractable and analytical or approximate analytical solutions

can be derived. On the other hand, however, this assumption might be criticized as

being too restrictive and not taking into account the real-world circumstances of the

default occurring prior to the option’s maturity.

As pointed out by Klein and Inglis (2001), the assumption that default can only

occur at the option’s maturity is less restrictive as it initially seems due to the

special treatment of OTC European options if the counterparty defaults. Most

OTC European option contracts are concluded in compliance with the standards

recommended by the International Swap and Derivatives Association (ISDA). In

contrast to other financial instruments subject to counterparty risk, the option holder

does not have to determine his claim associated with the considered OTC option

immediately at the default date but has the right to wait until the maturity date is

reached. Even if the option holder decides not to wait until the option’s maturity

to determine his claim, Assumptions 9 and 10 can still be valid. Based on the ISDA

standardized contract for OTC European options, the option holder’s claim at the
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counterparty’s default is equal to the market value of the option at that point in

time. This market value, in turn, depends on the expected option payoff at maturity.

Another point in favor of assuming that default can only occur at option maturity

is the fact that there is typically a time lag between the default event and the point

in time, at which the counterparty’s assets are distributed among all claim holders.

Consequently, the option’s maturity is a valid proxy for the date at which it is

determined whether the counterparty is in default or not.

3.2 Derivation of the Partial Differential Equation

Following the argument of Hull (2012: 309–312), we derive the partial differential

equation governing the price evolution of a vulnerable European option. In the

considered theoretical framework (see Section 3.1), the price of a vulnerable

European option Ft must be a function of the underlying St, the counterparty’s

assets Vt, the counterparty’s liabilities Dt and time t. According to Itô’s lemma, the

price evolution of a vulnerable European option is given by the following stochastic

differential equation:

dFt =
∂Ft

∂t
dt+ (µS − q)St

∂Ft

∂St

dt+
1

2
σ2

SS2
t

∂2Ft

∂S2
t

dt+ σSSt

∂Ft

∂St

dWS (3.8)

+ µV Vt

∂Ft

∂Vt

dt+
1

2
σ2

V V 2
t

∂2Ft

∂V 2
t

dt+ σV Vt

∂Ft

∂Vt

dWV + µDDt

∂Ft

∂Dt

dt

+
1

2
σ2

DD2
t

∂2Ft

∂D2
t

dt+ σDDt

∂Ft

∂Dt

dWD + ρSV σSσV StVt

∂2Ft

∂St∂Vt

dt

+ ρSDσSσDStDt

∂2Ft

∂St∂Dt

dt+ ρV DσV σDVtDt

∂2Ft

∂Vt∂Dt

dt.

To eliminate the Wiener processes dWS, dWV and dWD, a portfolio Πt consisting

of the European option Ft, the underlying St, the counterparty’s assets Vt and the

counterparty’s liabilities Dt must be set up.
6 In particular, this portfolio consists

of a short position in the European option and long positions in the underlying,

the counterparty’s assets and liabilities. The amount of shares in the long positions

6 To construct such a portfolio, it is necessary to assume that option’s underlying as well as the
counterparty’s assets and liabilities are traded securities. This assumption is not questionable
for the option’s underlying, but it is for both the counterparty’s assets and liabilities. As argued
by Klein (1996), it is likely that the counterparty’s assets and liabilities are not traded directly
in the market, but that their market values behave similarly as if they were traded securities.
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are equal to ∂Ft/∂St, ∂Ft/∂Vt and ∂Ft/∂Dt, respectively. Hence, the value of the

portfolio at time t is given by

Πt = −Ft +
∂Ft

∂St

St +
∂Ft

∂Vt

Vt +
∂Ft

∂Dt

Dt. (3.9)

The change in the value of the portfolio over the time interval dt is characterized by

the total differential which is equal to

dΠt = −dFt +
∂Ft

∂St

dSt +
∂Ft

∂Vt

dVt +
∂Ft

∂Dt

dDt. (3.10)

Substituting Equations (3.1) to (3.3) and (3.8) into Equation (3.10) yields

dΠt = −∂Ft

∂t
dt+ qSt

∂Ft

∂St

− 1

2
σ2

SS2
t

∂2Ft

∂S2
t

dt − 1

2
σ2

V V 2
t

∂2Ft

∂V 2
t

dt (3.11)

− 1

2
σ2

DD2
t

∂2Ft

∂D2
t

dt − ρSV σSσV StVt

∂2Ft

∂St∂Vt

dt

− ρSDσSσDStDt

∂2Ft

∂St∂Dt

dt − ρV DσV σDVtDt

∂2Ft

∂Vt∂Dt

dt.

Since the portfolio dynamics are independent of the Wiener processes dWS, dWV

and dWD, the portfolio is riskless during the infinitesimal time interval dt. To avoid

arbitrage opportunities, the portfolio must earn the same return as other short-term

risk-free investments – namely the risk-free interest rate r:

rΠdt = dΠt. (3.12)

We substitute Equations (3.9) and (3.11) into Equation (3.12) which yields

r

(

−Ft +
∂Ft

∂St

St +
∂Ft

∂Vt

Vt +
∂Ft

∂Dt

Dt

)

dt (3.13)

=
∂Ft

∂t
dt − qSt

∂Ft

∂St

+
1

2
σ2

SS2
t

∂2Ft

∂S2
t

dt+
1

2
σ2

V V 2
t

∂2Ft

∂V 2
t

dt+
1

2
σ2

DD2
t

∂2Ft

∂D2
t

dt

+ ρSV σSσV StVt

∂2Ft

∂St∂Vt

dt+ ρSDσSσDStDt

∂2Ft

∂St∂Dt

dt

+ ρV DσV σDVtDt

∂2Ft

∂Vt∂Dt

dt.
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Rewriting Equation (3.13), the partial differential equation that characterizes the

price of a European option whose payoff at time T is contigent upon the price of

the option’s underlying as well as upon the value of both the counterparty’s assets

and liabilities is obtained. It is given by

0 =
∂Ft

∂t
− rFt + (r − q)St

∂Ft

∂St

+ rVt

∂Ft

∂Vt

+ rDt

∂Ft

∂Dt

(3.14)

+
1

2
σ2

SS2
t

∂2Ft

∂S2
t

+
1

2
σ2

V V 2
t

∂2Ft

∂V 2
t

+
1

2
σ2

DD2
t

∂2Ft

∂D2
t

+ ρSV σSσV StVt

∂2Ft

∂St∂Vt

+ ρSDσSσDStDt

∂2Ft

∂St∂Dt

+ ρV DσV σDVtDt

∂2Ft

∂Vt∂Dt

.

To obtain a unique solution of the partial differential equation, we must set up

the boundary conditions which specify the value of the European option at the

boundaries of St, Vt, Dt and t. The key boundary condition specifies the option payoff

at maturity. Based on Assumption 10, the boundary condition for the European call

is thus equal to

FT = CT =







































ST − K if ST ≥ K, VT ≥ L(ST , DT )

(1− α)VT

L(ST , DT )
(ST − K) if ST ≥ K, VT < L(ST , DT )

0 otherwise

(3.15)

whereas the boundary condition for the corresponding vulnerable European put is

given by

FT = PT =







































K − ST if ST ≤ K, VT ≥ L(ST , DT )

(1− α)VT

L(ST , DT )
(K − ST ) if ST ≤ K, VT < L(ST , DT )

0 otherwise

(3.16)

For both European calls and puts, the first line in the boundary condition refers to

the situation in which the option is in the money at maturity and the counterparty

does not default, i.e. ST − K and K − ST are paid out to the holder of a European

call and a European put, respectively. The second line indicates the option payoff
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if the option expires in the money and the counterparty is in default. In this case,

the entire assets of the counterparty (less the default costs α) are distributed to the

creditors. Since all liabilities of the counterparty are ranked equally, all creditors

receive the same proportion of their claims. This proportional payout ratio is given

by ((1− α)VT ) /L(ST , DT ), i.e. the value of the counterparty’s assets available for

distribution is divided by the value of the counterparty’s total liabilities. Hence, the

holder of a European call receives ((1− α)VT (ST − K)) /L(ST , DT ), whereas the

holder of a European put receives ((1− α)VT (K − ST )) /L(ST , DT ). The third line

refers to the out-of-the-money scenario, in which the option holder receives nothing

irrespective of whether the counterparty defaults or not.

The actual characterization of the boundary conditions depends on the choice of

a specific valuation model (see Section 3.4). In particular, the variable L(ST , DT )

must be defined according to the chosen model.

3.3 Solution to the Partial Differential Equation

The partial differential equation given by Equation (3.14) depends on the price

of the option’s underlying, the counterparty’s assets and liabilities, the risk-free

interest rate, the dividend yield of the option’s underlying as well as on the return

volatilities. All these variables and parameters are independent of the risk preferences

of the investors.7 Since the risk preferences of the investors do not enter the partial

differential equation, they cannot affect its solution. Consequently, any type of risk

preferences can be used when solving the partial differential equation.

Using the approach of Cox and Ross (1976) and Harrison and Pliska (1981), the

risk-neutral stochastic processes for the price of the option’s underlying as well as

for the market values of the counterparty’s assets and liabilities are equal to

dSt = (r − q)St dt+ σS St dWS, (3.17)

7 Following the argument of Hull (2012: 311–312), the partial differential equation given by
Equation (3.14) would not be independent of risk preferences if it included the expected returns
of the option’s underlying, the counterparty’s assets and the counterparty’s liabilities. These
parameters depend on risk preferences, since their magnitude represents the level of risk aversion
of the investor: the higher the level of the investor’s risk aversion, the higher the required
expected return.
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dVt = r Vt dt+ σV Vt dWV (3.18)

and

dDt = r Dt dt+ σD Dt dWD, (3.19)

where r denotes the risk-free interest rate and all other variables are defined as

before.

Applying Itô’s lemma to Equations (3.17) to (3.19), the stochastic processes for

lnSt, ln Vt and lnDt are obtained. They are given by

d lnSt =
(

r − q − 1

2
σ2

S

)

dt+ σSdWS, (3.20)

d ln Vt =
(

r − 1

2
σ2

V

)

dt+ σV dWV (3.21)

and

d lnDt =
(

r − 1

2
σ2

D

)

dt+ σDdWD. (3.22)

Rewriting Equations (3.20) to (3.22), the expressions for the price of the option’s

underlying as well as for the market values of the counterparty’s assets and liabilities

at the option’s maturity are obtained. They are equal to

ST = St e(r−q− 1
2

σ2
S
)(T −t)+σS

√
T −t xS , (3.23)

VT = Vt e(r− 1
2

σ2
V
)(T −t)+σV

√
T −t xV (3.24)

and

DT = Dt e(r− 1
2

σ2
D
)(T −t)+σD

√
T −t xD , (3.25)

where the three random variables xS, xV and xD are jointly standard normally

distributed and their respective correlations are given by the coefficients ρSV , ρSD

and ρV D.
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The Feynman-Kač theorem states that the solution to the partial differential

equation specified in Equation (3.14) is given by

Ft = E









e
−

T
∫

t

ru du

g (ST , VT , DT )









, (3.26)

where E[ · ] denotes the expectation under the risk-neutral measure and function g( · )
determines the payoff of the considered European option (Musiela & Rutkowski,

2005: 296; Pennacchi, 2008: 209–210). Consequently, the value of a vulnerable

European option is equal to the expected payoff at maturity which is discounted

at the risk-free interest rate. Since the risk-free interest rate is deterministic and

constant over time according to Assumption 5, Equation (3.26) can be rewritten as

follows:

Ft = e−r(T −t)
E

[

g (ST , VT , DT )
]

. (3.27)

Equation (3.27) can be used to set up the pricing equations for vulnerable European

calls and puts by specifying the payoff function g( · ) accordingly. In particular,

if the payoff function g( · ) is defined according to the boundary condition given by

Equation (3.15), the pricing equation for vulnerable European calls is received which

is given by

Ct = e−r(T −t)

(

E

[

(ST − K) · 1[ST ≥K, VT ≥L(ST , DT )]

]

(3.28)

+E

[

(1− α)VT

L(ST , DT )
(ST − K) · 1[ST ≥K, VT <L(ST , DT )]

])

.

In the same manner, the pricing equation for vulnerable European puts is obtained

if the boundary condition given by Equation (3.16) is used to specify the payoff

function g( · ):

Pt = e−r(T −t)

(

E

[

(K − ST ) · 1[ST ≤K, VT ≥L(ST , DT )]

]

(3.29)

+E

[

(1− α)VT

L(ST , DT )
(K − ST ) · 1[ST ≤K, VT <L(ST , DT )]

])

.

26



In both pricing equations, the first line gives the expected payoff if the option is in the

money at maturity and the counterparty does not default. The second line, in turn,

gives the expected payoff if the option expires in the money and the counterparty

is in default. The out-of-the-money scenario is only implicitly specified, since the

option payoff is equal to zero in this case.

To derive analytic valuation formulas for both vulnerable European calls and puts

based on the above pricing equations, the following major steps must be performed.

First, the variable L(ST , DT ) indicating the default condition must be characterized

in accordance with the considered valuation model. Subsequently, the expected value

expressions in Equations (3.28) and (3.29) are rewritten as integrals, since ST , VT

and DT are continuous random variables. Afterwards, the expressions for the market

values of the option’s underlying, the counterparty’s assets and the counterparty’s

liabilities at the option’s maturity specified by Equations (3.23) and (3.25) are

inserted and the density function of the corresponding trivariate normal distribution

is standardized. Finally, the closed form solutions for vulnerable European options

are received after some algebraic transformations (see Section 3.4).

3.4 Valuation Models

Various models to value vulnerable European options have been developed over the

last three decades based on the theoretical framework described in Section 3.1. In the

following, the most important models are discussed in greater detail. Furthermore,

we set up a general valuation model which incorporates the features of the other

models.

3.4.1 Absence of Default Risk

Since the counterparty cannot default, the valuation model of Black and Scholes

(1973) gives the default-free value of a European option which serves as an

upper price limit. The pricing equations given by Equations (3.28) and (3.29) are

substantially simplified, since the second summand vanishes completely due to the

absence of counterparty risk. The pricing equation for a European call is given by

Ct = e−r(T −t)
E

[

(ST − K) · 1[ST ≥K]

]

, (3.30)
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whereas the pricing equation for a European put is equal to

Pt = e−r(T −t)
E

[

(K − ST ) · 1[ST ≤K]

]

. (3.31)

Since the counterparty cannot default, the structure of the pricing equations is rather

simple. If the option expires in the money, the payoff of a European call is equal to

ST − K, whereas the payoff of the European put is given by K − ST . If the option

is out of the money at maturity, the option holder receives nothing.

Computing the expected value expressions in Equations (3.30) and (3.31), the

closed-form valuation formulas for default-free European options can be obtained

(see Black & Scholes, 1973). For European calls and puts, these valuation formulas

are given by

Ct = St e−q(T −t) N(a1)− K e−r(T −t) N(a2) (3.32)

and

Pt = K e−r(T −t) N(−a2)− St e−q(T −t) N(−a1), (3.33)

where N( · ) represents the cumulative distribution function of the univariate

standard normal distribution and where a1 and a2 are given as follows:

a1 =
ln St

K
+ (r − q + 1

2
σ2

S) (T − t)

σS

√
T − t

,

a2 =
ln St

K
+ (r − q − 1

2
σ2

S) (T − t)

σS

√
T − t

.

3.4.2 Deterministic Liabilities

In the model of Klein (1996), the counterparty is in default if its assets are not

sufficient to meet its total liabilities at the option’s maturity. The total liabilities

of the counterparty are assumed to be deterministic and must include the short

position in the option, since it obliges the option writer to deliver or purchase the

option’s underlying at maturity.

In particular, Klein (1996) assumes that the market value of the counterparty’s

total liabilities at the option’s maturity is equal to its initial market value. To put it

28



differently, the level of the counterparty’s total liabilities is constant over time and

therefore the default boundary L(ST , DT ) must be given by

L(ST , DT ) = L̄ = D̄ = D0. (3.34)

Inserting the above expression into Equations (3.28) and (3.29) yields the pricing

equations for vulnerable European options based on the model of Klein (1996). In

particular, the pricing equations for vulnerable European calls and puts, respectively,

are equal to

Ct = e−r(T −t)

(

E

[

(ST − K) · 1[ST ≥K, VT ≥D̄)]

]

(3.35)

+E

[

(1 − α)VT (ST − K)

D̄
· 1[ST ≥K, VT <D̄)]

])

and

Pt = e−r(T −t)

(

E

[

(K − ST ) · 1[ST ≤K, VT ≥D̄)]

]

(3.36)

+E

[

(1 − α)VT (K − ST )

D̄
· 1[ST ≤K, VT <D̄)]

])

.

In both pricing equations, the first line is related to the situation in which the option

expires in the money and the counterparty does not default. Hence, the payoff of a

European call is equal to ST − K, whereas the payoff of the European put is given

by K −ST . The second line gives the payoff if the option is in the money at maturity

and the counterparty is in default. In this case, the entire assets of the counterparty

(less the default costs α) are distributed to all the creditors. Since all liabilities of

the counterparty are ranked equally, all creditors receive the same proportion of

their claims. This proportion is given by the ratio ((1 − α)VT ) /D̄, i.e. the asset

value available for distribution is divided by the value of the counterparty’s total

liabilities. The holder of a European call receives ((1 − α)VT (ST − K)) /D̄, whereas

((1 − α)VT (K − ST )) /D̄ is paid out to the holder of a European put. If the option

expires out of the money, the option holder receives nothing irrespective of whether

the counterparty defaults or not.
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Computing the expected values given by Equations (3.35) and (3.36), the closed-form

valuation formulas for vulnerable European options based on the Klein model are

obtained (see Klein, 1996). They are given by

Ct = St e−q(T −t) N2(a1, b1, ρSV )− K e−r(T −t) N2(a2, b2, ρSV ) (3.37)

+
(1− α)Vt St e(r−q+ρSV σSσV )(T −t)

D̄
N2(a3, b3, −ρSV )

− (1 − α)Vt K

D̄
N2(a4, b4, −ρSV )

and

Pt = K e−r(T −t) N2(−a2, b2, −ρSV ) − St e−q(T −t) N2(−a1, b1, −ρSV ) (3.38)

+
(1 − α)Vt K

D̄
N2(−a4, b4, ρSV )

− (1 − α)Vt St e(r−q+ρSV σSσV )(T −t)

D̄
N2(−a3, b3, ρSV ),

where N2( · ) represents the cumulative distribution function of the bivariate

standard normal distribution and where a1, a2, a3, a4, b1, b2, b3 and b4 are given as

follows:

a1 =
ln St

K
+ (r − q + 1

2
σ2

S) (T − t)

σS

√
T − t

,

a2 =
ln St

K
+ (r − q − 1

2
σ2

S) (T − t)

σS

√
T − t

,

a3 =
ln St

K
+ (r − q + 1

2
σ2

S + ρSV σSσV ) (T − t)

σS

√
T − t

,

a4 =
ln St

K
+ (r − q − 1

2
σ2

S + ρSV σSσV ) (T − t)

σS

√
T − t

,

b1 =
ln Vt

D̄
+ (r − 1

2
σ2

V + ρSV σSσV ) (T − t)

σV

√
T − t

,

b2 =
ln Vt

D̄
+ (r + 1

2
σ2

V ) (T − t)

σV

√
T − t

,

b3 = − ln Vt

D̄
+ (r + 1

2
σ2

V + ρSV σSσV ) (T − t)

σV

√
T − t

,

b4 = − ln Vt

D̄
+ (r + 1

2
σ2

V ) (T − t)

σV

√
T − t

.

30



3.4.3 Deterministic Liabilities and Option induced Default Risk

Klein and Inglis (2001) recognize that the short position in the option itself may

cause additional financial distress. To account for this potential source of default

risk, they extend the model of Klein (1996) by splitting the counterparty’s total

liabilities into two components. In particular, the counterparty’s total liabilities now

consist of the short position in the option on the one hand and all the other liabilities

on the other.

Klein and Inglis (2001) assume that the market value of the counterparty’s other

liabilities at the option’s maturity is equal to its initial market value. Hence, the level

of the counterparty’s other liabilities is constant over time. The value of the short

position in the option is taken into account separately. Combining these two features,

the counterparty’s total liabilities are given by either D̄ + ST − K or D̄ + K − ST

depending on whether the considered option is a European call or put. Consequently,

the default boundary L(ST , DT ) depends on the type of the considered option. For

vulnerable European calls and puts, respectively, it is given by

L(ST , DT ) = L(ST ) = D̄ + ST − K = D0 + ST − K (3.39)

and

L(ST , DT ) = L(ST ) = D̄ + K − ST = D0 + K − ST . (3.40)

Inserting the expressions for L(ST , DT ) into Equations (3.28) and (3.29), the pricing

equations of the Klein-Inglis model are obtained. For vulnerable European calls and

puts, respectively, they are given by

Ct = e−r(T −t)

(

E

[

(ST − K) · 1[ST ≥K, VT ≥D̄+ST −K]

]

(3.41)

+E

[

(1 − α)VT (ST − K)

D̄ + ST − K
· 1[ST ≥K, VT <D̄+ST −K]

])

and

Pt = e−r(T −t)

(

E

[

(K − ST ) · 1[ST ≤K, VT ≥D̄+K−ST ]

]

(3.42)

+E

[

(1 − α)VT (K − ST )

D̄ + K − ST

· 1[ST ≤K, VT <D̄+K−ST ]

])

.
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Like in the Klein model, the first line in both pricing equations refers to the situation

in which the option expires in the money and the counterparty does not default, i.e.

ST − K and K − ST are paid out to the holder of a European call and a European

put, respectively. The second line indicates the option payoff if the option expires

in the money and the counterparty is in default. In this case, the entire assets of

the counterparty (less the default costs α) are distributed to the creditors. Since

all liabilities of the counterparty are ranked equally, all creditors receive the same

proportion of their claims. This proportion is given by ((1− α)VT ) /
(

D̄ + ST − K
)

for a European call and by ((1 − α)VT ) /
(

D̄ + K − ST

)

for a European put.

To put it differently, the asset value available for distribution is divided by

the value of the counterparty’s total liabilities. The holder of a European call

receives ((1 − α)VT (ST − K)) /
(

D̄ + ST − K
)

, whereas the holder of a European

put receives ((1 − α)VT (K − ST )) /
(

D̄ + K − ST

)

. If the option expires out of the

money, the option holder receives nothing irrespective of whether the counterparty

defaults or not.

In Equations (3.41) and (3.42), the default boundary as well as the expression in the

denominator of the second summand of the the pricing equations are non-linear and

depend on a stochastic variable – namely on the price of the option’s underlying

at maturity. To cope with this issue when computing the expected values, both

the default boundary and the second summand’s denominator must be linearized

and approximated. Such an approximation can be achieved by employing a first

order Taylor series expansion. Subsequently, the closed form solutions for vulnerable

European options based on the Klein-Inglis model are obtained by explicitly

computing the expected value expressions given by Equations (3.41) and (3.42)

(see Klein & Inglis, 2001). For vulnerable European calls and puts, respectively, the

valuation formulas are equal to

Ct = St e−q(T −t) N2(a1, b1, δSV ) − K e−r(T −t) N2(a2, b2, δSV ) (3.43)

+
(1 − α)Vt St e(r−q+(ρSV −m)σSσV + 1

2
σ2

V
(m2−2ρSV m))(T −t)−g p

D̄ + St e(r−q− 1
2

σ2
S
)(T −t)+σS

√
T −t p − K

N2(a3, b3, −δSV )

− (1 − α)Vt K e
1
2

σ2
V
(m2−2ρSV m)(T −t)−g p

D̄ + St e(r−q− 1
2

σ2
S
)(T −t)+σS

√
T −t p − K

N2(a4, b4, −δSV )
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and

Pt = K e−r(T −t) N2(−a2, b2, −δSV )− St e−q(T −t) N2(−a1, b1, −δSV ) (3.44)

+
(1− α)Vt K e

1
2

σ2
V
(m2−2ρSV m)(T −t)−g p

D̄ + K − St e(r−q− 1
2

σ2
S
)(T −t)+σS

√
T −t p

N2(−a4, b4, δSV )

+
(1 − α)Vt St e(r−q+(ρSV −m)σSσV + 1

2
σ2

V
(m2−2ρSV m))(T −t)−g p

D̄ + K − St e(r−q− 1
2

σ2
S
)(T −t)+σS

√
T −t p

N2(−a3, b3, δSV ) ,

where N2( · ) represents the cumulative distribution function of the bivariate

standard normal distribution and where a1, a2, a3, a4, b1, b2, b3 and b4 are given as

follows:

a1 =
ln St

K
+ (r − q − 1

2
σ2

S)(T − t)

σS

√
T − t

+ σS

√
T − t,

a2 =
ln St

K
+ (r − q − 1

2
σ2

S)(T − t)

σS

√
T − t

,

a3 =
ln St

K
+ (r − q − 1

2
σ2

S)(T − t)

σS

√
T − t

+ σS

√
T − t

+ m σV

√
T − t + g

+ δSV

√

1 − 2ρSV m + m2 σV

√
T − t,

a4 =
ln St

K
+ (r − q − 1

2
σ2

S)(T − t)

σS

√
T − t

+ m σV

√
T − t + g

+ δSV

√

1 − 2ρSV m + m2 σV

√
T − t,

b1 = − −b − m p√
1 − 2ρSV m + m2

+ δSV σS

√
T − t,

b2 = − −b − m p√
1 − 2ρSV m + m2

b3 =
−b − m p√

1 − 2ρSV m + m2
−

√

1 − 2ρSV m + m2 σV

√
T − t,

b4 =
−b − m p√

1 − 2ρSV m + m2
−

√

1 − 2ρSV m + m2 σV

√
T − t

− δSV

(

m σV

√
T − t + g

)

.
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The parameter δSV gives the adjusted correlation between the return of the option’s

underlying and the counterparty’s assets. It is defined as

δSV =
ρSV − m√

1− 2ρSV m+m2
.

The parameters b, m and g depend on the type of the considered option due to

the first order Taylor series expansion applied in the derivation of the valuation

formulas. For vulnerable European calls, they are given by

bCall =
ln Vt

D̄+St e
(r−q− 1

2σ2
S
)(T −t)+σS

√
T −t p−K

+ (r − 1
2
σ2

V )(T − t)

σV

√
T − t

,

mCall =
σS

σV

St e(r−q− 1
2

σ2
S
)(T −t)+σS

√
T −t p

D̄ + St e(r−q− 1
2

σ2
S
)(T −t)+σS

√
T −t p − K

,

gCall = −σS

√
T − t

St e(r−q− 1
2

σ2
S
)(T −t)+σS

√
T −t p

D̄ + St e(r−q− 1
2

σ2
S
)(T −t)+σS

√
T −t p − K

,

whereas they are equal to

bPut =
ln Vt

D̄+K−St e
(r−q− 1

2σ2
S
)(T −t)+σS

√
T −t p

+ (r − 1
2
σ2

V )(T − t)

σV

√
T − t

,

mPut = − σS

σV

St e(r−q− 1
2

σ2
S
)(T −t)+σS

√
T −t p

D̄ + K − St e(r−q− 1
2

σ2
S
)(T −t)+σS

√
T −t p

,

gPut = σS

√
T − t

St e(r−q− 1
2

σ2
S
)(T −t)+σS

√
T −tp

D̄ + K − St e(r−q− 1
2

σ2
S
)(T −t)+σS

√
T −t p

for vulnerable European puts.

Since a first order Taylor series expansion is used in the derivation to linearize and

approximate both the default boundary and the denominator in the expected value’s

second summand, the valuation formulas given by Equations (3.43) and (3.44) are

only analytical approximations and depend on the point of expansion p. In principle,

the value for p can be chosen freely, however, it is important to note that this choice

might have a decisive impact on the accuracy of the obtained option values.

Figures 3.1 and 3.2 provide insights to the impact of choosing a particular value

for the point of expansion p. In these two figures, the option values are depicted as
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functions of the price of the option’s underyling, the time to maturity and the value

of the counterparty’s assets. These option values are obtained from the approximate

closed form solutions given by Equations (3.43) and (3.44) using different values

for the point of expansion. The approximate analytical solution and the numerical

solution (e.g. Monte Carlo simulation) are almost identical for p = 1.5 and p = −1.5
in case of vulnerable European calls and puts, respectively. This finding is consistent

with Klein and Inglis (2001) who suggest the same choice for p using different

numerical examples. Hence, the approximate closed form solutions are quite accurate

for a wide range of moneyness, different times to maturity and various values of the

counterparty’s assets if the point of expansion p is chosen appropriately.

Figure 3.1: European Calls in the Model of Klein and Inglis (2001)

Unless otherwise noted, the calculations are based on the following parameters: S0 = 40, K = 40,

V0 = 100, D0 = 90, T − t = 0.5, r = 0.05, q = 0, σS = 0.15, σV = 0.15, σD = 0.15, ρSV = 0,

ρSD = 0, ρV D = 0 and α = 0.25. The option values (ochre line) are generated using the approximate

closed form solution given by Equation (3.43) based on p = 1.5. The numerical solution of the

Klein-Inglis model (circles) is calculated by Monte Carlo simulation (N = 1 000 000). The shaded

area of the figure represents several possible approximate analytical solutions using different values

for the point of expansion p ranging from 0 to 4.
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Figure 3.2: European Puts in the Model of Klein and Inglis (2001)

Unless otherwise noted, the calculations are based on the following parameters: S0 = 40, K = 40,

V0 = 100, D0 = 90, T − t = 0.5, r = 0.05, q = 0, σS = 0.15, σV = 0.15, σD = 0.15, ρSV = 0,

ρSD = 0, ρV D = 0 and α = 0.25. The option values (ochre line) are generated using the approximate

closed form solution given by Equation (3.44) based on p = −1.5. The numerical solution of the

Klein-Inglis model (circles) is calculated by Monte Carlo simulation (N = 1 000 000). The shaded

area of the figure represents several possible approximate analytical solutions using different values

for the point of expansion p ranging from −4 to 0.

In Table 3.1, the option values for vulernable European calls and puts based on

the Klein-Inglis model are presented. The first two columns give the values of a

vulnerable European call computed by the approximate valuation formula and the

numerical solution, respectively. The third column reports the approximation error

which is measured as the percentage deviation of the approximate from the numerical

solution. Most errors are smaller than ±0.2% with the highest error being +0.25%.

Compared to the base case scenario, the magnitude of the approximation error

considerably increases for in-the-money options (S ↑), an increased return volatility

of the option’s underlying (σS ↑), a longer time to maturity (T ↑) and higher default

cost (α ↑).
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European Call European Put

Approx.

CF

Num.

Sol.

Approx.

Error

Approx.

CF

Num.

Sol.

Approx.

Error

Base Case 2.0110 2.0084 +0.15% 1.1341 1.1342 −0.01%
S = 45 5.3869 5.3755 +0.21% 0.1718 0.1721 −0.20%
S = 35 0.2912 0.2908 +0.13% 3.9007 3.9121 −0.29%
V = 105 2.1011 2.0990 +0.10% 1.1778 1.1777 +0.01%

V = 95 1.8847 1.8818 +0.16% 1.0682 1.0687 −0.05%
σS = 0.2 2.4389 2.4344 +0.18% 1.6102 1.6123 −0.13%
σS = 0.1 1.5614 1.5601 +0.09% 0.6496 0.6493 +0.05%

σV = 0.2 1.9603 1.9579 +0.12% 1.1032 1.1035 −0.02%
σV = 0.1 2.0740 2.0715 +0.12% 1.1724 1.1728 −0.03%
ρSV = 0.5 2.1521 2.1501 +0.09% 1.0409 1.0415 −0.06%
ρSV = −0.5 1.8567 1.8537 +0.16% 1.2037 1.2033 +0.04%

T − t = 1 3.0009 2.9950 +0.20% 1.3411 1.3423 −0.09%
T − t = 0.25 1.3770 1.3758 +0.09% 0.9153 0.9151 0.02%

α = 0.5 1.8560 1.8524 +0.20% 1.0634 1.0644 −0.09%
α = 0 2.1660 2.1645 +0.07% 1.2047 1.2040 0.06%

r = 0.08 2.3553 2.3524 +0.12% 0.9329 0.9330 −0.01%
r = 0.02 1.6968 1.6943 +0.15% 1.3584 1.3592 −0.06%
q = 0.02 1.8000 1.7975 +0.14% 1.2814 1.2817 −0.02%

Table 3.1: Approx. Error in the Model of Klein and Inglis (2001)

Unless otherwise noted, the calculations are based on the following parameters: S0 = 40, K = 40,

V0 = 100, D0 = 90, T − t = 0.5, r = 0.05, q = 0, σS = 0.15, σV = 0.15, σD = 0.15, ρSV = 0,

ρSD = 0, ρV D = 0 and α = 0.25. The approximate closed form solutions that are used to compute

the option values are given by Equations (3.43) and (3.44), respectively. The point of expansion

are chosen to be p = 1.5 in case of a European calll and p = −1.5 in case of a European put. The

numerical solution is calculated by Monte Carlo simulation (N = 1 000 000).

In the fourth and fifth columns, the values of a vulnerable European put computed

by the approximate valuation formula and numerical solution, respectively, are

presented. In the sixth column, the approximation error is given. Again, it is

measured as the percentage deviation of the approximate from the numerical
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solution. Most errors are smaller than ±0.25% with the highest error being −0.29%.

Compared to the base case scenario, the magnitude of the approximation error

considerably increases for in-the-money and out-of-the-money options (S ↓ and S ↑),
an increased return volatility of the option’s underlying (σS ↑), a longer time to

maturity (T ↑) and higher default cost (α ↑).

To conclude, the magnitude of the approximation errors is relatively low for both

vulnerable European calls and puts which indicates that the approximate valuation

formulas suggested by Klein and Inglis (2001) work quite well for the given set of

parameters. This result is in line with the findings of Klein and Inglis (2001). They

perform a similar analysis to verify the accuracy and quality of their approximate

analytical solution. Using slightly different parameter values, they find marginally

higher but still rather small approximation errors.

3.4.4 Stochastic Liabilities

In contrast to Klein (1996) and Klein and Inglis (2001), Liu and Liu (2011) suggest

a valuation model in which the counterparty’s total liabilities may vary over time. In

particular, it is assumed that the market value of the counterparty’s total liabilities

follow a geometric Brownian motion (see Equation (3.3)). The market value at the

option’s maturity is denoted by DT . It is important to note that the short position

in the option is implicitly included in the counterparty’s total liabilities, since it is

an obligation to the option writer. Unlike in the Klein-Inglis model, however, its

impact on the value of the couterparty’s total liabilities is not explicitly modeled.

Hence, the default boundary L(ST , DT ) in the Liu-Liu model is defined as

L(ST , DT ) = L(DT ) = DT . (3.45)

Inserting this expression into Equations (3.28) and (3.29) yields the pricing equations

of the Liu-Liu model. The pricing equation for a vulnerable European call equals

Ct = e−r(T −t)

(

E

[

(ST − K) · 1[ST ≥K, VT ≥DT ]

]

(3.46)

+E

[

(1− α)VT (ST − K)

DT

· 1[ST ≥K, VT <DT ]

])

,
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whereas the pricing equation for a vulnerable European put is given by

Pt = e−r(T −t)

(

E

[

(K − ST ) · 1[ST ≤K, VT ≥DT ]

]

(3.47)

+E

[

(1− α)VT (K − ST )

DT

· 1[ST ≤K, VT <DT ]

])

.

The first line in both pricing equations still refers to the situation in which the

option expires in the money and the counterparty does not default, i.e. ST − K

and K − ST are paid out to the holder of a European call and a European put,

respectively. The second line gives the payoff if the option is in the money at

maturity and the counterparty is in default. In this case, the entire assets of the

counterparty (less the default costs α) are distributed to all the creditors. Since

all liabilities of the counterparty are ranked equally, all creditors receive the same

proportion of their claims. This proportion is given by the ratio ((1− α)VT ) /DT , i.e.

the asset value available for distribution is divided by the value of the counterparty’s

total liabilities. The holder of a European call receives ((1− α)VT (ST − K)) /DT ,

whereas ((1− α)VT (K − ST )) /DT is paid out to the holder of a European put. If

the option expires out of the money, the option holder receives nothing irrespective

of whether the counterparty defaults or not.

In Equations (3.46) and (3.47), the default boundary as well as the denominator of

the pricing equations’ second summand depend on the value of the counterparty’s

liabilities which is a stochastic variable. To circumvent this issue, a new variable,

the debt ratio, is introduced which is defined as Rt = Vt/Dt. Using the debt ratio,

the expected value expressions in Equations (3.46) and (3.47) can be computed

analytically and the closed-form valuation formulas for vulnerable European options

based on the Liu-Liu model are obtained (see Liu & Liu, 2011). For vulnerable

European calls and puts, respectively, these valuation formulas are equal to

Ct = St e−q(T −t) N2(a1, b1, δSR)− K e−r(T −t) N2(a2, b2, δSR) (3.48)

+
(1− α)Vt St e(−q+σ2

D
+ρSV σSσV +ρSDσSσD−ρV DσV σD)(T −t)

Dt

N2(a3, b3, −δSR)

− (1− α)Vt K e(−r+σ2
D

−ρV DσV σD)(T −t)

Dt

N2(a4, b4, −δSR)
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and

Pt = K e−r(T −t) N2(−a2, b2, −δSR)− St e−q(T −t) N2(−a1, b1, −δSR) (3.49)

+
(1− α)Vt K e(−r+σ2

D
−ρV DσV σD)(T −t)

Dt

N2(−a4, b4, δSR)

− (1− α)Vt St e(−q+σ2
D
+ρSV σSσV +ρSDσSσD−ρV DσV σD)(T −t)

Dt

N2(−a3, b3, δSR),

where N2( · ) represents the cumulative distribution function of the bivariate

standard normal distribution and where a1, a2, a3, a4, b1, b2, b3 and b4 are given as

follows:

a1 =
ln St

K
+ (r − q + 1

2
σ2

S) (T − t)

σS

√
T − t

,

a2 =
ln St

K
+ (r − q − 1

2
σ2

S) (T − t)

σS

√
T − t

,

a3 =
ln St

K
+ (r − q + 1

2
σ2

S + σSV − σSD) (T − t)

σS

√
T − t

√
T − t,

a4 =
ln St

K
+ (r − q − 1

2
σ2

S + σSV − σSD) (T − t)

σS

√
T − t

,

b1 =
ln Vt

Dt
− 1

2
(σ2

V − σ2
D − 2σSV + 2σSD) (T − t)

(σSV − σSD)
√

T − t
,

b2 =
ln Vt

Dt
− 1

2
(σ2

V − σ2
D) (T − t)

(σSV − σSD)
√

T − t
,

b3 = −
ln Vt

Dt
− 1

2
(σ2

V − σ2
D − 2σSV + 2σSD) (T − t)

(σSV − σSD)
√

T − t
−

√

σ2
V + σ2

D − 2σV D

√
T − t,

b4 = −
ln Vt

Dt
− 1

2
(σ2

V − σ2
D) (T − t)

(σSV − σSD)
√

T − t
−

√

σ2
V + σ2

D − 2σV D

√
T − t.

The parameter δSR gives the adjusted correlation between the returns of the option’s

underlying and the counterparty’s debt ratio. It is defined as

δSR =
ρSV σV − ρSDσD

√

σ2
V + σ2

D − 2 ρV DσV σD

.
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3.4.5 General Model

Our general model picks up on the ideas of both Klein and Inglis (2001) and Liu

and Liu (2011). In particular, we assume that the short position in the option may

increase the counterparty’s default risk and the market value of the counterparty’s

other liabilities follows a geometric Brownian motion. At the option’s maturity the

counterparty’s total liabilities are given by DT + ST − K in the case of a European

call and DT + K − ST in the case of a European put, respectively. Consequently,

the default boundary L(ST , DT ) depends on the type of the considered option. For

vulnerable European calls and puts, respectively, it is given by

L(ST , DT ) = DT + ST − K (3.50)

and

L(ST , DT ) = DT +K − ST . (3.51)

Plugging these expressions into Equations (3.28) and (3.29) yields the pricing

equations of the general model. The pricing equation for a vulnerable European

call equals

Ct = e−r(T −t)

(

E

[

(ST − K) · 1[ST ≥K, VT ≥DT+ST −K]

]

(3.52)

+E

[

(1− α)VT (ST − K)

DT + ST − K
· 1[ST ≥K, VT <DT+ST −K]

])

,

whereas the pricing equation for a vulnerable European put is given by

Pt = e−r(T −t)

(

E

[

(K − ST ) · 1[ST ≤K, VT ≥DT+K−ST ]

]

(3.53)

+E

[

(1− α)VT (K − ST )

DT +K − ST

· 1[ST ≤K, VT <DT+K−ST ]

])

.

In analogy to the other valuation models, the first line of both pricing equations

refers to the situation in which the option expires in the money and the counterparty

does not default. Consequently, the corresponding payoff of a European call is equal

to ST − K, whereas it is given by K − ST for a European put. The second line of

both pricing equations indicates the payoff if the option expires in the money and

the counterparty is in default. In this case, the entire assets of the counterparty
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(less the default cost α) are distributed to the creditors. Since all liabilities of

the counterparty are ranked equally, all creditors receive the same proportion

of their claims. This proportion is given by ((1− α)VT ) / (DT + ST − K) for a

European call and ((1− α)VT ) / (DT +K − ST ) for a European put, respectively.

To put it differently, the asset value available for distribution must be divided

by the value of the counterparty’s total liabilities to obtain the payout ratio

in case of the counterparty’s default. Therefore, the holder of a European call

receives ((1− α)VT (ST − K)) / (DT + ST − K), whereas the holder of a European

put receives ((1− α)VT (K − ST )) / (DT +K − ST ). If the option is, however, out

of the money at maturity the option holder receives nothing irrespective of whether

the counterparty is in default or not.

Looking at Equations (3.52) and (3.53), it becomes clearly evident that our general

valuation model incorporates the models of Klein (1996), Klein and Inglis (2001)

and Liu and Liu (2011) as special cases. The communalities and differences between

these models are summarized as follows:

1. If the counterparty’s other liabilities are assumed to be deterministic and

constant over time, our general model is reduced to the model of Klein and

Inglis (2001) which is represented by Equations (3.41) and (3.42), since then

the default condition is given by VT < D̄ + ST − K and VT < D̄ + K − ST ,

respectively.

2. If the option holder’s claim ST − K and K − ST , respectively, is removed

from the default condition and the market value of the counterparty’s other

liabilities is still assumed to follow a geometric Brownian motion, our general

model collapses to the model of Liu and Liu (2011) which is specified by

Equations (3.46) and (3.47), since the default condition is equal to VT < DT

in this case.

3. If the option holder’s claim ST − K and K − ST , respectively, is removed from

the default condition and the counterparty’s other liabilities are assumed to be

constant over time, our general model is reduced to the model of Klein (1996)

specified by Equations (3.35) and (3.36), since the default condition is equal

to VT < D̄ in this case.
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In Equations (3.52) and (3.53), the default boundary as well as the denominator of

the pricing equations’ second summand are non-linear and depend on two stochastic

variables – namely the price of the option’s underlying and the market value of the

counterparty’s other liabilities. Due to this issue, an exact analytical solution cannot

be derived. However, we are able to derive an approximate closed form solution if

the returns of the option’s underlying and the counterparty’s other liabilities are

assumed to be uncorrelated (ρSD = 0).

We employ a first order Taylor series expansion to linearize and approximate both

the default boundary and the second summand’s denominator. After some algebraic

transformations, we obtain the approximate valuation formulas for vulnerable

European options (see Appendix 1). For vulnerable European calls and puts,

respectively, these approximate valuation formulas are equal to

Ct = St e−q(T −t) N2(a1, b1, δSV )− K e−r(T −t) N2(a2, b2, δSV ) (3.54)

+
(1− α)Vt St e(r−q+(ρSV −m1)σSσV + 1

2
σ2

V
(m2

1+m2
2−2ρSV m1−2ρV Dm2))(T −t)

Dt e(r− 1
2

σ2
D
)(T −t)+σD

√
T −t p2 + St e(r−q− 1

2
σ2

S
)(T −t)+σS

√
T −t p1 − K

· e−g1 p1−g2 p2 N2(a3, b3, −δSV )

− (1− α)Vt K e
1
2

σ2
V
(m2

1+m2
2−2ρSV m1−2ρV Dm2)(T −t)

Dt e(r− 1
2

σ2
D
)(T −t)+σD

√
T −t p2 + St e(r−q− 1

2
σ2

S
)(T −t)+σS

√
T −t p1 − K

· e−g1 p1−g2 p2 N2(a4, b4, −δSV )

and

Pt = K e−r(T −t) N2(−a2, b2, −δSV )− St e−q(T −t) N2(−a1, b1, −δSV ) (3.55)

+
(1− α)Vt K e

1
2

σ2
V
(m2

1+m2
2−2ρSV m1−2ρV Dm2)(T −t)

Dt e(r− 1
2

σ2
D
)(T −t)+σD

√
T −t p2 +K − St e(r−q− 1

2
σ2

S
)(T −t)+σS

√
T −t p1

· e−g1 p1−g2 p2 N2(−a4, b4, δSV )

− (1− α)Vt St e(r−q+(ρSV −m1)σSσV + 1
2

σ2
V
(m2

1+m2
2−2ρSV m1−2ρV Dm2))(T −t)

Dt e(r− 1
2

σ2
D
)(T −t)+σD

√
T −t p2 +K − St e(r−q− 1

2
σ2

S
)(T −t)+σS

√
T −t p1

· e−g1 p1−g2 p2 N2(−a3, b3, δSV ) ,
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where N2( · ) is the cumulative distribution function of the bivariate standard normal

distribution and where a1, a2, a3, a4, b1, b2, b3 and b4 are given as follows:

a1 =
ln St

K
+

(

r − q − 1
2
σ2

S

)

(T − t)

σS

√
T − t

+ σS

√
T − t,

a2 =
ln St

K
+

(

r − q − 1
2
σ2

S

)

(T − t)

σS

√
T − t

,

a3 =
ln St

K
+

(

r − q − 1
2
σ2

S

)

(T − t)

σS

√
T − t

+ σS

√
T − t+m1 σV

√
T − t+ g1

+ δSV

√

1− 2 ρSV m1 − 2 ρV D m2 +m2
1 +m2

2 σV

√
T − t,

a4 =
ln St

K
+

(

r − q − 1
2
σ2

S

)

(T − t)

σS

√
T − t

+m1 σV

√
T − t+ g1

+ δSV

√

1− 2 ρSV m1 − 2 ρV D m2 +m2
1 +m2

2 σV

√
T − t,

b1 = − −b − p1 m1 − p2 m2
√

1− 2 ρSV m1 − 2 ρV D m2 +m2
1 +m2

2

+ δSV σS

√
T − t,

b2 = − −b − p1 m1 − p2 m2
√

1− 2 ρSV m1 − 2 ρV D m2 +m2
1 +m2

2

,

b3 =
−b − p1 m1 − p2 m2

√

1− 2 ρSV m1 − 2 ρV D m2 +m2
1 +m2

2

−
√

1− 2 ρSV m1 − 2 ρV D m2 +m2
1 +m2

2 σV

√
T − t

− δSV

(

σS

√
T − t+m1 σV

√
T − t+ g1

)

− δV D

(

m2 σV

√
T − t+ g2

)

,

b4 =
−b − p1 m1 − p2 m2

√

1− 2 ρSV m1 − 2 ρV D m2 +m2
1 +m2

2

−
√

1− 2 ρSV m1 − 2 ρV D m2 +m2
1 +m2

2 σV

√
T − t

− δSV

(

m1 σV

√
T − t+ g1

)

− δV D

(

m2 σV

√
T − t+ g2

)

.

The adjusted correlation between the return of the option’s underlying and the

counterparty’s assets is denoted by δSV and is equal to

δSV =
ρSV − m1

√

1− 2 ρSV m1 − 2 ρV D m2 +m2
1 +m2

2

,
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whereas the adjusted correlation between the return of the counterparty’s assets and

the counterparty’s liabilities is denoted by δV D and is equal to

δV D =
ρV D − m2

√

1− 2 ρSV m1 − 2 ρV D m2 +m2
1 +m2

2

.

The parameters b, m1, m2, g1 and g2 depend on the type of the considered option due

to the first order Taylor series expansion applied in the derivation of the valuation

formulas. For vulnerable European calls, they are given by

bCall =
ln Vt

Dt e
(r− 1

2σ2
D
)(T −t)+σD

√
T −t p2+St e

(r−q− 1
2σ2

S
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√
T −t p1−K

+ (r − 1
2
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,
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for vulnerable European puts.
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Since a first order Taylor series expansion is used in the derivation to linearize and

approximate both the default boundary and the denominator in the expected value’s

second summand, the valuation formulas given by Equations (3.54) and (3.55) are

analytical approximations and depend on the points of expansion p1 and p2. In

principle, the values for p1 and p2 can be chosen freely, however, it is important

to bear in mind that this choice might have a decisive impact on the accuracy

of the obtained option values. Consequently, we must analyze to what extent an

inappropriate choice for the values of p1 and p2 affect the quality of our valuation

formulas (see Figures 3.3 and 3.4).

Figure 3.3: European Calls in the General Model

Unless otherwise noted, the calculations are based on the following parameters: S0 = 40, K = 40,

V0 = 100, D0 = 90, T − t = 0.5, r = 0.05, q = 0, σS = 0.15, σV = 0.15, σD = 0.15, ρSV = 0,

ρSD = 0, ρV D = 0 and α = 0.25. The option values (red line) are generated using the approximate

closed form solution given by Equation (3.54) based on p1 = p2 = 1.5. The numerical solution of

the general model (circles) is calculated by Monte Carlo simulation (N = 1 000 000). The shaded

area of the figure represents several possible approximate analytical solutions using different values

for the points of expansion p1 and p2 ranging from 0 to 4.
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Figure 3.4: European Puts in the General Model

Unless otherwise noted, the calculations are based on the following parameters: S0 = 40, K = 40,

V0 = 100, D0 = 90, T − t = 0.5, r = 0.05, q = 0, σS = 0.15, σV = 0.15, σD = 0.15, ρSV = 0,

ρSD = 0, ρV D = 0 and α = 0.25. The option values (red line) are generated using the approximate

closed form solution given by Equation (3.55) based on p1 = p2 = −1.5. The numerical solution of

the general model (circles) is calculated by Monte Carlo simulation (N = 1 000 000). The shaded

area of the figure represents several possible approximate analytical solutions using different values

for the points of expansion p1 and p2 ranging from −4 to 0.

Figures 3.3 and 3.4 provide insights to the impact of choosing a particular value

for the points of expansion p1 and p2. In these two figures, the option values are

depicted as functions of the price of the option’s underlying, the time to maturity

and the value of the counterparty’s assets. These option values are obtained from

our approximate closed form solutions given by Equations (3.54) and (3.55) using

different values for the points of expansion. The approximate analytical solution and

the numerical solution are almost identical for p1 = p2 = 1.5 in case of vulnerable

European calls and for p1 = p2 = −1.5 in case of vulnerable European puts. The

same choice for p1 and p2 is also obtained for a large variety of other numerical

examples. Hence, the approximate closed form valuation formulas of the general
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model work quite well for a wide range of parameters if the values for the points of

expansion are chosen appropriately.

In Table 3.2, the option values for vulernable European calls and puts based

on our general model are presented. The first two columns give the values of a

vulnerable European call computed by the approximate valuation formula and

Monte Carlo simulation (= numerical solution), respectively. The third column

reports the approximation error which is measured as the percentage deviation of the

approximate from the numerical solution. Most errors are smaller than ±0.2% with

the highest errors being equal to −5.85% and +7.01%. These errors are observed if

the correlation between the return of the option’s underlying and the counterparty’s

other liabilities is −0.5 and +0.5, respectively. This result is obvious, since the

analytical approximation is based on the assumption of independence between these

returns. Compared to the base case scenario, the magnitude of the approximation

error considerably increases for out-of-the-money options (S ↓), an increased return

volatility of the option’s underlying (σS ↑), a longer time to maturity (T ↑) and

higher default cost (α ↑). In the fourth and fifth columns, the values of a vulnerable

European put computed by the approximate valuation formula and Monte Carlo

simulation (= numerical solution), respectively, are presented. In the sixth column,

the approximation error is given. Again, it is defined as the percentage deviation of

the approximate solution from the numerical solution. Most errors are smaller than

±0.3% with the highest errors being equal to −5.77% and +7.92%. These errors are

observed if the correlation between the return of the option’s underlying and the

counterparty’s other liabilities is 0.5 and −0.5, repsectively. This result is obvious,

since the analytical approximation is based on the assumption of independence

between these returns. Compared to the base case scenario, the magnitude of the

approximation error considerably increases for in-the-money and out-of-the-money

options (S ↓ and S ↑), an increased return volatility of the counterparty’s other

liabilities (σD ↑), a longer time to maturity (T ↑) and higher default cost (α ↑).

To conclude, the size of the approximation errors is relatively low for both vulnerable

European calls and puts which indicates that the approximate valuation formulas

of our general model work quite well for the given set of parameters. The size of the

observed approximation errors is similarly high as in the Klein-Inglis model.
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European Call European Put

Approx.

CF

Num.

Sol.

Approx.

Error

Approx.

CF

Num.

Sol.

Approx.

Error

Base Case 1.9277 1.9261 +0.09% 1.0876 1.0855 +0.19%

S = 45 5.1751 5.1790 −0.07% 0.1635 0.1646 −0.71%
S = 35 0.2794 0.2782 +0.41% 3.7664 3.7509 +0.41%

V = 105 2.0184 2.0164 +0.10% 1.1338 1.1318 +0.17%

V = 95 1.8166 1.8152 +0.08% 1.0290 1.0268 +0.21%

σS = 0.2 2.3465 2.3418 +0.20% 1.5484 1.5451 +0.22%

σS = 0.1 1.4932 1.4928 +0.03% 0.6218 0.6210 +0.14%

σV = 0.2 1.8962 1.8945 +0.09% 1.0684 1.0665 +0.18%

σV = 0.1 1.9576 1.9552 +0.12% 1.1059 1.1037 +0.20%

σD = 0.2 1.9143 1.9125 +0.09% 1.0793 1.0758 +0.32%

σD = 0.1 1.9410 1.9389 +0.11% 1.0961 1.0954 +0.07%

ρSV = 0.5 2.0576 2.0575 +0.01% 1.0053 1.0027 +0.26%

ρSV = −0.5 1.7923 1.7902 +0.12% 1.1604 1.1576 +0.24%

ρV D = 0.5 1.9719 1.9696 +0.12% 1.1165 1.1145 +0.18%

ρV D = −0.5 1.9003 1.8984 +0.10% 1.0701 1.0681 +0.19%

ρSD = 0.5 1.9277 1.8015 +7.01% 1.0876 1.1542 −5.77%
ρSD = −0.5 1.9277 2.0474 −5.85% 1.0876 1.0078 +7.92%

T − t = 1 2.8399 2.8353 +0.16% 1.2700 1.2663 +0.30%

T − t = 0.25 1.3304 1.3294 +0.08% 0.8850 0.8839 +0.13%

α = 0.5 1.7296 1.7278 +0.11% 0.9910 0.9884 +0.27%

α = 0 2.1258 2.1243 +0.07% 1.1842 1.1827 +0.13%

r = 0.08 2.2251 2.2238 +0.06% 0.8827 0.8815 +0.13%

r = 0.02 1.6524 1.6502 +0.13% 1.3235 1.3201 +0.25%

q = 0.02 1.7254 1.7234 +0.12% 1.2296 1.2267 +0.23%

Table 3.2: Approx. Error in the General Model

Unless otherwise noted, the calculations are based on the following parameters: S0 = 40, K = 40,

V0 = 100, D0 = 90, T − t = 0.5, r = 0.05, q = 0, σS = 0.15, σV = 0.15, σD = 0.15, ρSV = 0,

ρSD = 0, ρV D = 0 and α = 0.25. The approximate closed form solutions that are used to compute

the option values are given by Equations (3.54) and (3.55), respectively. The points of expansion

are chosen to be p1 = p2 = 1.5 in case of a European call and p1 = p2 = −1.5 in case of a European

put. The numerical solution is calculated by Monte Carlo simulation (N = 1 000 000).
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3.5 Numerical Examples

In this section, we present various numerical examples to compare the results of

the different valuation models for European options subject to counterparty risk.

Since the full payoff on the option cannot be made if the option writer defaults, it

should be expected that vulnerable options will have lower values than otherwise

identical non-vulnerable options. Thus, the upper limit for the option values is given

by the default-free option price obtained from the Black-Scholes model, in which

it is assumed that the counterparty cannot default. Consequently, the value of a

vulnerable European option can never be higher than the Black-Scholes option value

irrespective of the considered valuation model.

The starting point of the following comparative analysis is a typical market situation

for a European option. At time t = 0, the option is at the money (S0 = 40, K = 40)

and expires in six months (T = 0.5). The return volatility of the option’s underlying

equals 15% (σS = 0.15) and its dividend yield is zero (q = 0). The risk-free interest

rate is assumed to be 5% (r = 0.05). The option writer is assumed to be highly

levered (V0 = 100, D0 = 90). The return volatility of the counterparty’s assets and

liabilities is assumed to be 15% (σV = 0.15, σD = 0.15). The correlations between

the returns of the option’s underlying, the counterparty’s assets and liabilities are

assumed be zero (ρSV = ρV D = ρSD = 0). If the counterparty defaults, deadweight

costs of 25% are applied (α = 0.25).

Figures 3.5 and 3.6 depict the values of European calls and puts, respectively, as

functions of the price of the option’s underlying, the option’s time to maturity and

the value of the counterparty’s assets for the valuation models presented in previous

section. As expected, the option values obtained from the Klein, Klein-Inglis, Liu-Liu

and the general model are always lower than the default-free option value given by

the Black-Scholes model. The highest price reduction due to counterparty risk can

be observed for our general model followed by the models of Klein and Inglis (2001),

Liu and Liu (2011) and Klein (1996).

In the upper left diagram in Figures 3.5 and 3.6, the values of vulnerable European

calls and puts, respectively, are plotted against the price of the option’s underlying.

It is obvious that the price difference between default-free and vulnerable European
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options increases if the option is deeper in the money. This behavior is applicable

for all valuation models, but it is most prominent for the Klein-Inglis and the

general model. Furthermore, we observe that the price difference between these

two models and the other models increases substantially if the considered European

option is further in the money. This observation is attributed to the fact that both

the Klein-Inglis and our general model include the option itself directly in the

default boundary which additionally increases the counterparty’s default risk for

in-the-money options.

Figure 3.5: European Calls subject to Counterparty Risk

Unless otherwise noted, the calculations are based on the following parameters: St = 40, K = 40,

Vt = 100, Dt = 90, T − t = 0.5, r = 0.05, q = 0, σS = 0.15, σV = 0.15, σD = 0.15, ρSV = 0,

ρSD = 0, ρV D = 0 and α = 0.25. The option values are generated using the (approximate) closed

form solutions presented in Section 3.4. The analytical approximations of the Klein-Inglis and the

general model are based on p = 1.5 and p1 = p2 = 1.5, respectively.

Referring to the upper right diagram in Figures 3.5 and 3.6, the effect of the

time to maturity on the value of vulnerable European options is analyzed. If

the time to maturity decreases, the difference between the default-free and the
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vulnerable European call values is also reduced. This result is not surprising, since

the counterparty is less likely to default if the maturity date of the considered

European option gets closer.

The lower diagram in Figures 3.5 and 3.6 shows that the prices of a vulnerable

European option converge to the default-free option price with increasing values for

the counterparty’s assets, since the probability that the value of the counterparty’s

assets hits the default barrier decreases. Our general model has the lowest

convergence speed which is most likely explained by the fact that this model is the

only one that incorporates three sources of default risk simultaneously: a decrease

in the value of the counterparty’s assets, an increase in the counterparty’s other

liabilities and an increase in the option value.

Figure 3.6: European Puts subject to Counterparty Risk

Unless otherwise noted, the calculations are based on the following parameters: St = 40, K = 40,

Vt = 100, Dt = 90, T − t = 0.5, r = 0.05, q = 0, σS = 0.15, σV = 0.15, σD = 0.15, ρSV = 0,

ρSD = 0, ρV D = 0 and α = 0.25. The option values are generated using the (approximate) closed

form solutions presented in Section 3.4. The analytical approximations of the Klein-Inglis and the

general model are based on p = 1.5 and p1 = p2 = 1.5, respectively.
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General

Model
LL2011 KI2001 K1996 BS1973

Base Case 1.9277 2.0446 2.0110 2.1347 2.2108

S = 45 5.1751 5.7067 5.3869 5.9582 6.1707

S = 35 0.2794 0.2886 0.2912 0.3013 0.3121

V = 105 2.0184 2.1084 2.1011 2.1791 2.2108

V = 95 1.8166 1.9562 1.8847 2.0516 2.2108

σS = 0.2 2.3465 2.5483 2.4389 2.6606 2.7555

σS = 0.1 1.4932 1.5508 1.5614 1.6192 1.6769

σV = 0.2 1.8962 2.0065 1.9603 2.0776 2.2108

σV = 0.1 1.9576 2.0799 2.0740 2.1897 2.2108

σD = 0.2 1.9143 2.0193 2.0110 2.1347 2.2108

σD = 0.1 1.9410 2.0702 2.0110 2.1347 2.2108

ρSV = 0.5 2.0576 2.1289 2.1521 2.1935 2.2108

ρSV = −0.5 1.7923 1.9396 1.8567 2.0402 2.2108

ρV D = 0.5 1.9719 2.1081 2.0110 2.1347 2.2108

ρV D = −0.5 1.9003 2.0054 2.0110 2.1347 2.2108

ρSD = 0.5 1.9277 1.9396 2.0110 2.1347 2.2108

ρSD = −0.5 1.9277 2.1289 2.0110 2.1347 2.2108

T − t = 1 2.8399 3.0730 3.0009 3.2596 3.4367

T − t = 0.25 1.3304 1.3865 1.3770 1.4291 1.4540

α = 0.5 1.7296 1.9223 1.8560 2.0718 2.2108

α = 0 2.1258 2.1670 2.1660 2.1976 2.2108

r = 0.08 2.2251 2.3668 2.3553 2.4907 2.5593

r = 0.02 1.6524 1.7477 1.6968 1.8076 1.8898

q = 0.02 1.7254 1.8254 1.8000 1.9059 1.9739

Table 3.3: European Calls subject to Counterparty Risk

Unless otherwise noted, the calculations are based on the following parameters: St = 40, K = 40,

Vt = 100, Dt = 90, T − t = 0.5, r = 0.05, q = 0, σS = 0.15, σV = 0.15, σD = 0.15, ρSV = 0,

ρSD = 0, ρV D = 0 and α = 0.25. The option values are generated using the (approximate) closed

form solutions presented in Section 3.4. The analytical approximations of the Klein-Inglis and the

general model are based on p = 1.5 and p1 = p2 = 1.5, respectively. The abbreviations BS1973,

K1996, KI2001 and LL2011 stand for the models of Black and Scholes (1973), Klein (1996), Klein

and Inglis (2001) as well as Liu and Liu (2011).
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General

Model
LL2011 KI2001 K1996 BS1973

Base Case 1.0876 1.1313 1.1341 1.1811 1.2232

S = 45 0.1635 0.1693 0.1718 0.1768 0.1831

S = 35 3.7664 3.9993 3.9007 4.1756 4.3245

V = 105 1.1338 1.1666 1.1778 1.2057 1.2232

V = 95 1.0290 1.0824 1.0682 1.1351 1.2232

σS = 0.2 1.5484 1.6350 1.6102 1.7070 1.7679

σS = 0.1 0.6218 0.6375 0.6496 0.6656 0.6893

σV = 0.2 1.0684 1.1102 1.1032 1.1495 1.2232

σV = 0.1 1.1059 1.1508 1.1724 1.2116 1.2232

σD = 0.2 1.0793 1.1172 1.1341 1.1811 1.2232

σD = 0.1 1.0961 1.1454 1.1341 1.1811 1.2232

ρSV = 0.5 1.0053 1.0637 1.0409 1.1189 1.2232

ρSV = −0.5 1.1604 1.1829 1.2037 1.2159 1.2232

ρV D = 0.5 1.1165 1.1664 1.1341 1.1811 1.2232

ρV D = −0.5 1.0701 1.1096 1.1341 1.1811 1.2232

ρSD = 0.5 1.0876 1.1829 1.1341 1.1811 1.2232

ρSD = −0.5 1.0876 1.0637 1.1341 1.1811 1.2232

T − t = 1 1.2700 1.3286 1.3411 1.4093 1.4858

T − t = 0.25 0.8850 0.9127 0.9153 0.9408 0.9571

α = 0.5 0.9910 1.0636 1.0634 1.1463 1.2232

α = 0 1.1842 1.1990 1.2047 1.2159 1.2232

r = 0.08 0.8827 0.9163 0.9329 0.9643 0.9908

r = 0.02 1.3235 1.3796 1.3584 1.4269 1.4918

q = 0.02 1.2296 1.2802 1.2814 1.3366 1.3843

Table 3.4: European Puts subject to Counterparty Risk

Unless otherwise noted, the calculations are based on the following parameters: St = 40, K = 40,

Vt = 100, Dt = 90, T − t = 0.5, r = 0.05, q = 0, σS = 0.15, σV = 0.15, σD = 0.15, ρSV = 0,

ρSD = 0, ρV D = 0 and α = 0.25. The option values are generated using the (approximate) closed

form solutions presented in Section 3.4. The analytical approximations of the Klein-Inglis and the

general model are based on p = 1.5 and p1 = p2 = 1.5, respectively. The abbreviations BS1973,

K1996, KI2001 and LL2011 stand for the models of Black and Scholes (1973), Klein (1996), Klein

and Inglis (2001) as well as Liu and Liu (2011).
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Tables 3.3 and 3.4 present the option values for vulnerable European calls and puts,

respectively, which are obtained from valuation models presented in Section 3.4.

Once again it can be observed that the option values based on the Klein, Klein-Inglis,

Liu-Liu and the general valuation model are always lower than the Black-Scholes

option values. Furthermore, the option values obtained from our general model differ

substantially from those of the other valuation models in most situations. This

finding is explained by the construction of the general model’s default boundary. The

general model is the only one which incorporates three sources of risk simultaneously.

First, a decrease in the value of the counterparty’s assets might lead to the default

of the option writer like in all the other valuation models. Second, the general

model accounts for the potential increase in the default risk induced by the option

itself (unlike the Klein and the Liu-Liu model). Third, it is assumed that the

counterparty’s other liabilities are stochastic which creates an additional default

risk (unlike the Klein and the Klein-Inglis model). Consequently, the option values

based on our general model are the lowest, since it accounts for all possible sources

of the counterparty’s default risk.

3.6 Summary

In this chapter, the valuation models of Klein (1996), Klein and Inglis (2001) and Liu

and Liu (2011) were presented and discussed. Furthermore, we combied the features

of these models in a general valuation model. Therefore, it is the only model which

incorporates three sources of financial distress simultaneously: a decline in the value

of the counterparty’s assets, an increase in the value of the counterparty’s other

liabilities or an increase in the value of the option itself.

Despite the complexity of the default condition of our general model, we derived

an approximate closed form solution for vulnerable European calls and puts. In

particular, we approximated the default condition by employing a first order Taylor

series expansion and assumed that the returns of the option’s underlying and

the counterparty’s other liabilities are assumed to be uncorrelated. The obtained

approximate valuation formula depends on the two points around which the Taylor

series is expanded in the derivation. Choosing the points of expansion to be equal to

p1 = p2 = 1.5 in case of a European call and to be equal to p1 = p2 = −1.5 in case
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of a European put, respectively, the approximate analytical solution is quite close

to the numerical solution for a wide range of parameters.

Based on various numerical examples and graphical illustrations, we compared the

results of our general model with those of the alternative models for vulnerable

European options. All the considered valuation models have in common that the

reduction in the value of a vulnerable European option (compared to a default-free

European option) increases if the option is deeper in the money, the time to maturity

is longer and if the counterparty’s assets are decreased. The option values obtained

from the general model are typically the lowest, since it is the only model which

accounts for all possible sources of the counterparty’s default.
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4 European Options subject to Counterparty and

Interest Rate Risk

In this chapter, we present and discuss different valuation models for European

options subject to counterparty and interest rate risk. The counterparty’s default

risk is modeled using the structural approach suggested by Merton (1974). In this

context, the counterparty’s default may occur only at the option’s maturity and

is triggered by the value of the counterparty’s assets being below the value of the

counterparty’s total liabilities. In addition to that, it is assumed that the risk-free

interest rate is stochastic and follows the mean-reverting Ornstein-Uhlenbeck process

suggested by Vasicek (1977).

Klein and Inglis (1999) set up a valuation model for vulnerable European options

in the stochastic interest rate framework of Vasicek (1977) using the basic idea of

Klein (1996). In the following, we extend the valuation models of Klein and Inglis

(2001) and Liu and Liu (2011) to the stochastic interest rate framework in the same

way as Klein and Inglis (1999) extended the model of Klein (1996).8

Furthermore, we set up a general valuation model incorporating the features of the

other models. Despite the general model’s complexity, we derive an approximate

closed form solution. Monte Carlo simulation is used to price vulnerable European

options numerically. Comparing the approximate closed form with the numerical

solution shows that our valuation formula provides accurate values for vulnerable

European options in most situations.

Section 4.1 outlines and discusses the assumptions of the considered stochastic

interest rate framework. In Section 4.2, we derive the derivation of the partial

differential equation that characterizes the price of a European option subject to

counterparty and interest rate risk. Section 4.3 deals with the solution to this partial

differential equation. In Section 4.4, we discuss the considered valuation models

and derive the respective closed form solutions. Section 4.5 provides a comparative

analysis of the different valuation models based on numerical examples. Section 4.6

gives a summary of the main findings.

8 In Chapter 3, the valuation models of Klein (1996), Klein and Inglis (2001) as well as of Liu
and Liu (2011) are presented and discussed in greater details.
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4.1 Assumptions

The assumptions characterizing the valuation framework for European options

subject to counterparty and interest rate risk are based on the work of Black

and Scholes (1973), Merton (1973, 1974), Vasicek (1977), Rabinovitch (1989), Klein

(1996), Klein and Inglis (1999, 2001) as well as on Liu and Liu (2011).

1. The price of the option’s underlying St follows a continuous-time geometric

Brownian motion. Assuming that the option’s underlying is a dividend-paying

stock, its dynamics are given by

dSt = (µS − q)St dt+ σS St dWS , (4.1)

where µS indicates the expected instantaneous return of the option’s

underlying, q denotes the continuous dividend yield, σS is the instantaneous

return volatility and dWS represents the standard Wiener process.

2. Likewise, the market value of the counterparty’s assets Vt follows a

continuous-time geometric Brownian motion. Its dynamics are given by

dVt = µV Vt dt+ σV Vt dWV , (4.2)

where µV is the expected instantaneous return of the counterparty’s assets,

σV gives the instantaneous return volatility and dWV is a standard Wiener

process. The instantaneous correlation between dWS and dWV equals ρSV .

3. The total liabilities Dt comprise all the obligations of the counterparty’s, i.e.

debt, short positions in financial securities and accruals. The dynamics follow

a continuous-time geometric Brownian motion which is given by

dDt = µD Dt dt+ σD Dt dWD , (4.3)

where µD is the expected instantaneous return of the counterparty’s liabilities,

σD indicates the instantaneous return volatility and dWD represents the

standard Wiener process. The instantaneous correlation between dWS and

dWD equals ρSD and ρV D between dWV and dWD, respectively.
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If the counterparty’s total liabilities, however, are given by a zero bond only

and the risk-free interest rate follows the Ornstein-Uhlenbeck, the expected

instantaneous return µD as well as the instantaneous return volatility σD

cannot be chosen arbitrarily anymore. In particular, µD and σD become

time-dependent parameters which are given by the expressions specified in

Equation (4.6).9

4. The market is perfect and frictionless, i.e. it is free of transaction costs or taxes

and the available securities are traded in continuous time.

5. The instantaneous risk-free interest rate rt is stochastic and follows the

Ornstein-Uhlenbeck process suggested by Vasicek (1977). The mean-reverting

dynamics of rt are given by

drt = κ (θ − rt) dt+ σr dWr , (4.4)

where κ is the speed of reversion, θ represents the long-term mean of the

risk-free interest rate, σr is the instantaneous volatility of the risk-free interest

rate and dWr represents the standard Wiener process. The instantaneous

correlations between dWr and dWS, between dWr and dWV as well as between

dWr and dWD are equal to ρSr, ρV r and ρDr, respectively.

In the considered stochastic interest rate framework, a closed form solution

for the price of a risk-free zero bond paying one dollar at maturity T can be

derived (Vasicek, 1977; Mamon, 2004). Denoting the price at time t of a zero

bond by Bt,T , the analytical bond price formula is given by

Bt,T = eAt,T rt+Ct,T (4.5)

where

At,T =
1

κ

(

1− e−κ (T −t)
)

Ct,T =

(

θ − σ2
r

2κ2

)

(At,T − (T − t))− σ2
rA2

t,T

4κ

9 This issue only affects the extended model of Liu and Liu (2011) as well as the general
model, since it is assumed that the counterparty’s liabilities are stochastic in these two models
exclusively (see Sections 4.4.4 and 4.4.5).
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The instantaneous expected return and the return volatility of the risk-free

zero bond are time-dependent. In particular, they are given as follows:

µB(t) = rt +
1− e−κ(T −t)

κ
σr, σB(t) =

1− e−κ(T −t)

κ
σr. (4.6)

6. The expected instantaneous return of the option’s underlying as well as of the

counterparty’s assets and liabilities (µS, µV and µD) are constant over time.

The same applies for the dividend yield of the option’s underlying.

7. The instantaneous return volatilities of the option’s underlying as well as of the

counterparty’s assets and liabilities (σS, σV and σD) are constant over time.

The same applies for the risk-free interest rate’s instantanenous volatility σr

as well as for the instantaneous correlations ρSV , ρSD, ρV D, ρSr, ρV r and ρDr.

8. All the liabilities of the counterparty (i.e. debt, short positions in financial

securties, etc.) are assumed to be of equal rank.

9. Default can only occur at the option’s maturity T . The counterparty is in

default, if the counterparty’s assets VT are less than the threshold level L:

VT < L̄ or VT < L(ST , DT ). (4.7)

Depending on the considered valuation model, the threshold level L is

characterized in different ways and is either a constant or a function of the

stochastic variables ST and DT .

10. If the counterparty is in default, the option holder’s claim must be determined.

In principle, the option holder’s claim is equal to the intrinsic value of the

European option at its maturity. In case of the counterparty’s default, however,

the option holder faces a percentage write-down ω on his claim. In default, the

holder of a European call or put receives

(1 − ω) max(ST − K, 0) or (1 − ω) max(K − ST , 0). (4.8)

The percentage write-down ω on the option holder’s claim in case of the

counterparty’s default can be endogenized. Assuming that all the liabilities
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of the counterparty are ranked equally, the amount payable to the holder of a

European call is given by

(1− ω) max (ST − K, 0) =
(1− α)VT

L(ST , DT )
max (ST − K, 0), (4.9)

whereas it is given by

(1− ω) max (K − ST , 0) =
(1− α)VT

L(ST , DT )
max (K − ST , 0) (4.10)

for the holder of a European put. The parameter α represents the cost

of default as a percentage of the counterparty’s assets and the ratio

VT /L(ST , DT ) gives the proportion of the option holder’s claim which can

be paid back.

Based on Assumptions 9 and 10, the counterparty can only default at the option’s

maturity which is in line with the valuation models of Klein (1996), Klein and Inglis

(1999, 2001) and Liu and Liu (2011). Due to this assumption, the valuation models

become mathematically tractable, i.e. analytical or approximate analytical solutions

can be derived. However, this assumption might be criticized as being too restrictive

and not taking into account the real-world circumstances of the default occurring

prior to the option’s maturity. Refering to Klein and Inglis (2001), the assumption

that default can only occur at the option’s maturity is less restrictive as it initially

seems due to the special treatment of OTC European options if the counterparty

defaults. Most OTC European option contracts are concluded in compliance with

the standards recommended by the International Swap and Derivatives Association

(ISDA). In contrast to other financial instruments subject to counterparty risk, the

option holder does not have to determine his claim associated with the considered

OTC option immediately at the default date but has the right to wait until the

maturity date is reached. Even if the option holder decides not to wait until the

option’s maturity to determine his claim, Assumptions 9 and 10 can still be valid.

Based on the ISDA standardized contract for OTC European options, the option

holder’s claim at the counterparty’s default is equal to the market value of the option

at that point in time. This market value, in turn, depends on the expected option

payoff at maturity. Another point in favor of assuming that default can only occur
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at option maturity is the fact that there is typically a time lag between the default

event and the point in time, at which the counterparty’s assets are distributed among

all claim holders. Consequently, the option’s maturity is a valid proxy for the date

at which it is determined whether the counterparty is in default or not.

4.2 Derivation of the Partial Differential Equation

Following the argument of Fang (2012), we derive the partial differential equation

governing the price evolution of a vulnerable European option under stochastic

interest rates. In the considered framework (see Section 4.1), the price of a vulnerable

European option Ft must be a function of the underlying St, the counterparty’s

assets Vt, the counterparty’s liabilities Dt, the risk-free interest rate rt and time t.

According to Itô’s lemma, the price evolution of a vulnerable European option is

given by the following stochastic differential equation:

dFt =
∂Ft

∂t
dt+ (µS − q)St

∂Ft

∂St

dt+
1

2
σ2

SS2
t

∂2Ft

∂S2
t

dt+ σSSt

∂Ft

∂St

dWS (4.11)

+ µV Vt

∂Ft

∂Vt

dt+
1

2
σ2

V V 2
t

∂2Ft

∂V 2
t

dt+ σV Vt

∂Ft

∂Vt

dWV + µDDt

∂Ft

∂Dt

dt

+
1

2
σ2

DD2
t

∂2Ft

∂D2
t

dt+ σDDt

∂Ft

∂Dt

dWD + κ(θ − rt)
∂Ft

∂rt

dt+
1

2
σ2

r

∂2Ft

∂r2t
dt

+ σr

∂Ft

∂rt

dWr + ρSV σSσV StVt

∂2Ft

∂St∂Vt

dt+ ρSDσSσDStDt

∂2Ft

∂St∂Dt

dt

+ ρV DσV σDVtDt

∂2Ft

∂Vt∂Dt

dt+ ρSrσSσrSt

∂2Ft

∂St∂rt

dt

+ ρV rσV σrVt

∂2Ft

∂Vt∂rt

dt+ ρDrσDσrDt

∂2Ft

∂Dt∂rt

dt.

To eliminate the four Wiener processes dWS, dWV , dWD and dWr, a portfolio Πt

which consists of the European option Ft, the underlying St, the counterparty’s

assets Vt, the counterparty’s liabilities Dt and the risk-free zero bond Bt,T is set

up.10 In particular, this portfolio consists of a short position in the European option

10 To construct such a portfolio, it is necessary to assume that option’s underlying, the
counterparty’s assets and liabilities as well as the risk-free zero bond are traded securities.
This assumption is not questionable for the option’s underlying and the risk-free zero bond,
but it is for both the counterparty’s assets and liabilities. As argued by Klein (1996), it is likely
that the counterparty’s assets and liabilities are not traded directly in the market, but that
their market values behave similarly as if they were traded securities.
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and long positions in the underlying, the counterparty’s assets and liabilities as well

as in the risk-free zero bond. The amount of shares in the long positions are equal

to ∂Ft/∂St, ∂Ft/∂Vt, ∂Ft/∂Dt and ∂Ft/∂rt ∂rt/∂Bt,T , respectively. Hence, the value

of the portfolio at time t is given by

Πt = −Ft +
∂Ft

∂St

St +
∂Ft

∂Vt

Vt +
∂Ft

∂Dt

Dt +
∂Ft

∂rt

∂rt

∂Bt,T

Bt,T . (4.12)

The change in the value of the portfolio over the time interval dt is characterized by

the total differential which is equal to

dΠt = −dFt +
∂Ft

∂St

dSt +
∂Ft

∂Vt

dVt +
∂Ft

∂Dt

dDt +
∂Ft

∂rt

∂rt

∂Bt,T

dBt,T . (4.13)

Using Itô’s lemma, the dynamics of the risk-free zero bond can be set up. The

dynamics dBt,T are given by

dBt,T =
∂Bt,T

∂t
dt+ κ(θ − rt)

∂Bt,T

∂rt

dt+ σr

∂Bt,T

∂rt

dWr +
1

2
σ2

r

∂2Bt,T

∂r2t
dt. (4.14)

Under the martingale measure, the dynamics of the risk-free zero bond given by

Equation (4.14) can be rewritten as follows (see Fang, 2012):

dBt,T = rtBt,T dt+ σr

∂Bt,T

∂rt

dWr. (4.15)

Substituting Equations (4.1) to (4.3), (4.11) and (4.15) into Equation (4.13) yields

the following expression:

dΠt = −∂Ft

∂t
dt+ qSt

∂Ft

∂St

dt − 1

2
σ2

SS2
t

∂2Ft

∂S2
t

dt − 1

2
σ2

V V 2
t

∂2Ft

∂V 2
t

dt (4.16)

− 1

2
σ2

DD2
t

∂2Ft

∂D2
t

dt − κ(θ − rt)
∂Ft

∂rt

dt − 1

2
σ2

r

∂2Ft

∂r2t
dt − ρSV σSσV StVt

∂2Ft

∂St∂Vt

dt

− ρSDσSσDStDt

∂2Ft

∂St∂Dt

dt − ρV DσV σDVtDt

∂2Ft

∂Vt∂Dt

dt − ρSrσSσrSt

∂2Ft

∂St∂rt

dt

− ρV rσV σrVt

∂2Ft

∂Vt∂rt

dt − ρDrσDσrDt

∂2Ft

∂Dt∂rt

dt+
∂Ft

∂rt

∂rt

∂Bt,T

rtBt,T dt.

Since the dynamics of portfolio Πt are independent of the four Wiener processes

dWS, dWV ,dWD and dWB, the portfolio must be riskless during the infinitesimal
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time interval dt. Consequently, the portfolio must earn the same return as other

short-term risk-free investments, namely the risk-free interest rate rt, to avoid

arbitrage opportunities:

rtΠdt = dΠt. (4.17)

We substitute Equations (4.12) and (4.16) into Equation (4.17) which yields the

following expression:

rt

(

−Ft +
∂Ft

∂St

St +
∂Ft

∂Vt

Vt +
∂Ft

∂Dt

Dt +
∂Ft

∂rt

∂rt

∂Bt,T

Bt,T

)

dt (4.18)

= −∂Ft

∂t
dt+ qSt

∂Ft

∂St

dt − 1

2
σ2

SS2
t

∂2Ft

∂S2
t

dt − 1

2
σ2

V V 2
t

∂2Ft

∂V 2
t

dt − 1

2
σ2

DD2
t

∂2Ft

∂D2
t

dt

− κ(θ − rt)
∂Ft

∂rt

dt − 1

2
σ2

r

∂2Ft

∂r2t
dt − ρSV σSσV StVt

∂2Ft

∂St∂Vt

dt

− ρSDσSσDStDt

∂2Ft

∂St∂Dt

dt − ρV DσV σDVtDt

∂2Ft

∂Vt∂Dt

dt − ρSrσSσrSt

∂2Ft

∂St∂rt

dt

− ρV rσV σrVt

∂2Ft

∂Vt∂rt

dt − ρDrσDσrDt

∂2Ft

∂Dt∂rt

dt+
∂Ft

∂rt

∂rt

∂Bt,T

rtBt,T dt.

Rewriting Equation (4.18), the partial differential equation that characterizes the

price of a European option whose payoff at time T is contigent upon the price of

the option’s underlying as well as upon the value of both the counterparty’s assets

and liabilities is obtained. It is given by

0 =
∂Ft

∂t
+ (rt − q)St

∂Ft

∂St

+
1

2
σ2

SS2
t

∂2Ft

∂S2
t

+ rtVt

∂Ft

∂Vt

+
1

2
σ2

V V 2
t

∂2Ft

∂V 2
t

(4.19)

+ rtDt

∂Ft

∂Dt

+
1

2
σ2

DD2
t

∂2Ft

∂D2
t

+ κ(θ − rt)
∂Ft

∂rt

+
1

2
σ2

r

∂2Ft

∂r2t

+ ρSV σSσV StVt

∂2Ft

∂St∂Vt

+ ρSDσSσDStDt

∂2Ft

∂St∂Dt

+ ρV DσV σDVtDt

∂2Ft

∂Vt∂Dt

+ ρSrσSσrSt

∂2Ft

∂St∂rt

+ ρV rσV σrVt

∂2Ft

∂Vt∂rt

+ ρDrσDσrDt

∂2Ft

∂Dt∂rt

− rtFt.

To obtain a unique solution to the above partial differential equation, we must set

up the boundary conditions which specify the value of the European option at the
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boundaries of St, Vt, Dt and t. The key boundary condition specifies the option payoff

at maturity. Based on Assumptions 10, the boundary condition for the European

call is thus equal to

FT = CT =



































ST − K if ST ≥ K, VT ≥ L(ST , DT )

(1− α)VT

L(ST , DT )
(ST − K) if ST ≥ K, VT < L(ST , DT )

0 otherwise

(4.20)

whereas the boundary condition for the vulnerable European put is given by

FT = PT =



































K − ST if ST ≤ K, VT ≥ L(ST , DT )

(1− α)VT

L(ST , DT )
(K − ST ) if ST ≤ K, VT < L(ST , DT )

0 otherwise

(4.21)

For both European calls and puts, the first line in the boundary condition refers to

the situation in which the option is in the money at maturity and the counterparty

does not default, i.e. ST − K and K − ST are paid out to the holder of a European

call and a European put, respectively. The second line indicates the option payoff if

the option expires in the money and the counterparty is in default. In this case,

the entire assets of the counterparty (less the default costs α) are distributed

to the creditors. Since all liabilities of the counterparty are ranked equally, all

creditors receive the same proportion of their claims. This proportional payout ratio

is given by ((1− α)VT ) /L(ST , DT ), i.e. the value counterparty’s assets available for

distribution is divided by the value of the counterparty’s total liabilities. Hence, the

holder of a European call receives ((1− α)VT (ST − K)) /L(ST , DT ), whereas the

holder of a European put receives ((1− α)VT (K − ST )) /L(ST , DT ). The third line

refers to the out-of-the-money scenario, in which the option holder receives nothing

irrespective of whether the counterparty defaults or not.

The actual characterization of the boundary conditions depends on the choice of

a specific valuation model (see Section 4.4). In particular, the variable L(ST , DT )

must be defined according to the chosen model.
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4.3 Solution to the Partial Differential Equation

The partial differential equation given by Equation (4.19) depends on the price

of the option’s underlying, the counterparty’s assets and liabilities, the risk-free

interest rate, the dividend yield of the option’s underlying as well as on the return

volatilities. All these variables and parameters are indepedent of the risk preferences

of the investors.11 Since the risk preferences of the investors do not enter the partial

differential equation, they cannot affect its solution. Consequently, any type of risk

preferences can be used when solving the partial differential equation.

Using the approach of Cox and Ross (1976) and Harrison and Pliska (1981), the

risk-neutral stochastic processes for the price of the option’s underlying as well as

for the market values of the counterparty’s assets and liabilities are equal to

dSt = (rt − q)St dt+ σS St dWS, (4.22)

dVt = rt Vt dt+ σV Vt dWV (4.23)

and

dDt = rt Dt dt+ σD Dt dWD, (4.24)

where rt denotes the risk-free interest rate and all other variables are defined as

before.

Applying Itô’s lemma to Equations (4.22) to (4.24), the stochastic processes for

lnSt, ln Vt and lnDt are obtained. They are given by

d lnSt =
(

rt − q − 1

2
σ2

S

)

dt+ σSdWS, (4.25)

d ln Vt =
(

rt − 1

2
σ2

V

)

dt+ σV dWV (4.26)

11 Following the argument of Hull (2012: 311–312), the partial differential equation given by
Equation (4.19) would not be independent of risk preferences if it included the expected returns
of the option’s underlying, the counterparty’s assets and the counterparty’s liabilities. These
parameters depend on risk preferences, since their magnitude represents the level of risk aversion
of the investor: the higher the level of the investor’s risk aversion, the higher the required
expected return.
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and

d lnDt =
(

rt − 1

2
σ2

D

)

dt+ σDdWD. (4.27)

Rewriting Equations (4.25) to (4.27), the expressions for the price of the option’s

underlying as well as for the values of the counterparty’s assets and liabilities at the

option’s maturity are obtained (see Kim & Kunitomo, 1999). They are equal to

ST =
St

Bt,T

e−0.5 σ̄2
S
+σ̄S xS , (4.28)

VT =
Vt

Bt,T

e−0.5 σ̄2
V
+σ̄V xV (4.29)

and

DT =
Dt

Bt,T

e−0.5 σ̄2
D
+σ̄D xD , (4.30)

where the three random variables xS, xV and xD are jointly standard normally

distributed and their respective correlations are given by ρ̄SV , ρ̄SD and ρ̄V D. The

adjusted variances, covariances and correlation coefficients in the stochastic interest

rate framework of Vasicek (1977) are given as follows:

σ̄2
S =

(

σ2
S +

σ2
r

κ2
+

2ρSrσSσr

κ

)

(T − t)

+
(

e−κ(T −t) − 1
)

(

2σ2
r

κ3
+

2ρSrσSσr

κ2

)

−
(

e−2κ(T −t) − 1
) σ2

r

2κ3
,

σ̄2
V =

(

σ2
V +

σ2
r

κ2
+

2ρV rσV σr

κ

)

(T − t)

+
(

e−κ(T −t) − 1
)

(

2σ2
r

κ3
+

2ρV rσV σr

κ2

)

−
(

e−2κ(T −t) − 1
) σ2

r

2κ3
,

σ̄2
D =

(

σ2
D +

σ2
r

κ2
+

2ρDrσDσr

κ

)

(T − t)

+
(

e−κ(T −t) − 1
)

(

2σ2
r

κ3
+

2ρDrσDσr

κ2

)

−
(

e−2κ(T −t) − 1
) σ2

r

2κ3
,

σ̄SV =

(

ρSV σSσV +
σ2

r

κ2
+

ρSrσSσr

κ
+

ρV rσV σr

κ

)

(T − t)

+
(

e−κ(T −t) − 1
)

(

ρSrσSσr

κ2
+

ρV rσV σr

κ2
+

2σ2
r

κ3

)

−
(

e−2κ(T −t) − 1
) σ2

r

2κ3
,
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σ̄SD =

(

ρSDσSσD +
σ2

r

κ2
+

ρSrσSσr

κ
+

ρDrσDσr

κ

)

(T − t)

+
(

e−κ(T −t) − 1
)

(

ρSrσSσr

κ2
+

ρDrσDσr

κ2
+

2σ2
r

κ3

)

−
(

e−2κ(T −t) − 1
) σ2

r

2κ3
,

σ̄V D =

(

ρV DσV σD +
σ2

r

κ2
+

ρV rσV σr

κ
+

ρDrσDσr

κ

)

(T − t)

+
(

e−κ(T −t) − 1
)

(

ρV rσV σr

κ2
+

ρDrσDσr

κ2
+

2σ2
r

κ3

)

−
(

e−2κ(T −t) − 1
) σ2

r

2κ3
,

ρ̄SV =
σ̄SV

σ̄S σ̄V

, ρ̄SD =
σ̄SD

σ̄S σ̄D

, ρ̄V D =
σ̄V D

σ̄V σ̄D

.

The Feynman-Kač theorem states that the solution to the partial differential

equation specified in Equation (4.19) is given by

Ft = E









e
−

T
∫

t

ru du

g (ST , VT , DT )









, (4.31)

where E[ · ] denotes the expectation under the risk-neutral measure and function g( · )
determines the payoff of the considered European option (Musiela & Rutkowski,

2005: 296; Pennacchi, 2008: 209–210; Fang, 2012). Consequently, the value of a

vulnerable European option is equal to the expected payoff at maturity which is

discounted at the risk-free interest rate.

According to Assumption 5, the dynamics of the risk-free interest rate are driven

by the Ornstein-Uhlenbeck process suggested by Vasicek (1977). Consequently,

Equation (4.31) can be rewritten as

Ft = Bt,T E

[

g (ST , VT , DT )
]

, (4.32)

where Bt,T represents the discount factor which is equal to the price of the risk-free

zero bond given by Equation (4.5).

Equation (4.32) can be used to set up the pricing equations for vulnerable European

calls and puts by specifying the payoff function g( · ) accordingly. In particular,

if the payoff function g( · ) is defined according to the boundary condition given by
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Equation (4.20), the pricing equation for vulnerable European calls is received which

is given by

Ct = Bt,T

(

E

[

(ST − K) · 1[ST ≥K, VT ≥L(ST , DT )]

]

(4.33)

+E

[

(1− α)VT

L(ST , DT )
(ST − K) · 1[ST ≥K, VT <L(ST , DT )]

])

.

In the same manner, the pricing equation for vulnerable European puts is obtained

if the boundary condition given by Equation (4.21) is used to specify the payoff

function g( · ):

Pt = Bt,T

(

E

[

(K − ST ) · 1[ST ≤K, VT ≥L(ST , DT )]

]

(4.34)

+E

[

(1− α)VT

L(ST , DT )
(K − ST ) · 1[ST ≤K, VT <L(ST , DT )]

])

.

In both pricing equations, the first line gives the expected payoff if the option is

in the money at maturity and to the counterparty does not default. The second

line, in turn, gives the expected payoff if the option expires in the money and the

counterparty is in default. The out-of-the-money scenario is only implicily specified,

since the option payoff is equal to zero in this case.

To derive analytic valuation formulas for both vulnerable European calls and puts

based on the above pricing equations, the following major steps must be performed.

First, the variable L(ST , DT ) indicating the default condition must be characterized

in accordance with the considered valuation model. Subsequently, the expected value

expressions in Equations (4.33) and (4.34) are rewritten as integrals, since ST , VT

and DT are continuous random variables. Afterwards, the expressions for the market

values of the option’s underlying, the counterparty’s assets and the counterparty’s

liabilities at the option’s maturity specified by Equations (4.28) and (4.30) are

inserted and the density function of the corresponding trivariate normal distribution

is standardized. Finally, the closed form solutions for vulnerable European options

are received after some algebraic transformations (see Section 4.4).
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4.4 Valuation Models

Various models to value vulnerable European options have been developed over

the last three decades assuming a deterministic and constant risk-free interest

rate. Klein and Inglis (1999) extend the valuation model of Klein (1996) to the

stochastic interest rate framework of Vasicek (1977). In the following, we extend the

valuation models of Klein and Inglis (2001) and Liu and Liu (2011) in the same way.

Furthermore, we set up a general valuation model incorporating the features of the

other models.

4.4.1 Absence of Default Risk

Rabinovitch (1989) extends the model of Black and Scholes (1973) to account for

stochastic interest rates driven by the Ornstein-Uhlenbeck process suggested by

Vasicek (1977). Consequently, the Rabinovitch model gives the default-free value

of a European option which serves as an upper price limit. The pricing equations

given by Equations (4.33) and (4.34) are substantially simplified, since the second

summand vanishes completely due to the absence of counterparty risk. The pricing

equation for a European call is given by

Ct = Bt,T E

[

(ST − K) · 1[ST ≥K]

]

. (4.35)

whereas the pricing equation for a European put is equal to

Pt = Bt,T E

[

(K − ST ) · 1[ST ≤K]

]

. (4.36)

Since the counterparty cannot default, the structure of the pricing equations is rather

simple. If the option expires in the money, the payoff of a European call is equal to

ST − K, whereas the payoff of the European put is given by K − ST . If the option

is out of the money at maturity, the option holder receives nothing.

Computing the expected values given by Equations (4.35) and (4.36), the closed-form

valuation formulas for default-free European options are derived (see Rabinovitch,

1989). For European calls and puts, these valuation formulas are given by

Ct = St e−q(T −t) N(a1)− Bt,T K N(a2) (4.37)
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and

Pt = Bt,T K N(−a2)− St e−q(T −t) N(−a1), (4.38)

where N( · ) represents the cumulative distribution function of the univariate

standard normal distribution and where a1 and a2 are given as follows:

a1 =
ln St

Bt,T K
− q(T − t) + 1

2
σ̄2

S

σ̄S

a2 =
ln St

Bt,T K
− q(T − t) − 1

2
σ̄2

S

σ̄S

.

4.4.2 Deterministic Liabilities

Klein and Inglis (1999) extend the model of Klein (1996) to the stochastic

interest rate framework suggested by Vasicek (1977), while the conditions for the

counterparty’s default are the same as in the original model. The counterparty is

in default if its assets are not sufficient to meet its total liabilities at the option’s

maturity. The total liabilities of the counterparty are assumed to be deterministic

and must include the short position in the option, since it obliges the option writer

to deliver or purchase the option’s underlying at maturity.

In particular, Klein and Inglis (1999) assume that the market value of the

counterparty’s total liabilities at the option’s maturity is equal to its initial market

value. To put it differently, the level of the counterparty’s total liabilities is therefore

constant over time. Consequently, the default boundary L(ST , DT ) must be given

by the following expression:

L(ST , DT ) = L̄ = D̄ = Dt. (4.39)

Inserting the above expression into Equations (4.33) and (4.34) yields the pricing

equations of the extended Klein model. The pricing equation for a vulnerable

European call equals

Ct = Bt,T

(

E

[

(ST − K) · 1[ST ≥K, VT ≥D̄]

]

(4.40)

+E

[

(1 − α)VT (ST − K)

D̄
· 1[ST ≥K, VT <D̄]

])

,
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whereas the pricing equation for a vulnerable European put is given by

Pt = Bt,T

(

E

[

(K − ST ) · 1[ST ≤K, VT ≥D̄]

]

(4.41)

+E

[

(1− α)VT (K − ST )

D̄
· 1[ST ≤K, VT <D̄]

])

.

In both pricing equations, the first line is related to the situation in which the option

expires in the money and the counterparty does not default. Hence, the payoff of a

European call is equal to ST − K, whereas the payoff of the European put is given

by K −ST . The second line gives the payoff if the option is in the money at maturity

and the counterparty is in default. In this case, the entire assets of the counterparty

(less the default costs α) are distributed to all the creditors. Since all liabilities of

the counterparty are ranked equally, all creditors receive the same proportion of

their claims. This proportion is given by the ratio ((1 − α)VT ) /D̄, i.e. the asset

value available for distribution is divided by the value of the counterparty’s total

liabilities. The holder of a European call receives ((1 − α)VT (ST − K)) /D̄, whereas

((1 − α)VT (K − ST )) /D̄ is paid out to the holder of a European put. If the option

expires out of the money, the option holder receives nothing irrespective of whether

the counterparty defaults or not.

Computing the expected values given by Equations (4.40) and (4.41), the closed-form

valuation formulas for vulnerable European options based on the model of Klein and

Inglis (1999) are obtained (see Klein & Inglis, 1999). They are given by

Ct = St e−q(T −t) N2(a1, b1, ρ̄SV ) − Bt,T K N2(a2, b2, ρ̄SV ) (4.42)

+
(1 − α)Vt St e−q(T −t)+ρ̄SV σ̄S σ̄V

Bt,T Dt

N2(a3, b3, −ρ̄SV )

− (1 − α)Vt K

Dt

N2(a4, b4, −ρ̄SV )

and

Pt = Bt,T K N2(−a2, b2, −ρ̄SV ) − St e−q(T −t) N2(−a1, b1, −ρ̄SV ) (4.43)

+
(1 − α)Vt K

Dt

N2(−a4, b4, ρ̄SV )

− (1 − α)Vt St e−q(T −t)+ρ̄SV σ̄S σ̄V

Bt,T Dt

N2(−a3, b3, ρ̄SV ),
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where N2( · ) is the cumulative distribution function of the bivariate standard normal

distribution and where a1, a2, a3, a4, b1, b2, b3 and b4 are given as follows:

a1 =
ln St

Bt,T K
− q(T − t) + 1

2
σ̄2

S

σ̄S

,

a2 =
ln St

Bt,T K
− q(T − t) − 1

2
σ̄2

S

σ̄S

,

a3 =
ln St

Bt,T K
− q(T − t) + 1

2
σ̄2

S + ρ̄SV σ̄Sσ̄V

σ̄S

,

a4 =
ln St

Bt,T K
− q(T − t) − 1

2
σ̄2

S + ρ̄SV σ̄Sσ̄V

σ̄S

,

b1 =
ln Vt

Bt,T Dt
− 1

2
σ̄2

V + ρ̄SV σ̄Sσ̄V )

σ̄V

,

b2 =
ln Vt

Bt,T Dt
+ 1

2
σ̄2

V

σ̄V

,

b3 = −
ln Vt

Bt,T Dt
+ 1

2
σ̄2

V + ρ̄SV σ̄Sσ̄V

σ̄V

,

b4 = −
ln Vt

Bt,T Dt
+ 1

2
σ̄2

V

σ̄V

.

4.4.3 Deterministic Liabilities and Option induced Default Risk

We extend the model of Klein and Inglis (2001) to the stochastic interest rate

framework suggested by Vasicek (1977) in the same way as Klein and Inglis (1999)

extended the model of Klein (1996). Like in the original model, we still assume that

the short position in the option itself may cause additional financial distress. To

account for this potential source of default risk, the counterparty’s total liabilities

are split into two components. In particular, the total liabilities now consist of the

short position in the option on the one hand and all the other liabilities on the

other.

Klein and Inglis (2001) assume that the market value of the counterparty’s total

liabilities at the option’s maturity is equal to its initial market value. To put it

differently, the level of the counterparty’s total liabilities is therefore constant over

time. The value of the short position in the option is taken into account separately.

Combining these two features, the counterparty’s total liabilities are given by either

D̄+ST −K or D̄+K−ST depending on whether the considered option is a European
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call or put. Consequently, the default boundary L(ST , DT ) depends on the type of

the considered option and is given by the following expressions:

L(ST , DT ) = L(ST ) = D̄ + ST − K = D0 + ST − K (4.44)

and

L(ST , DT ) = L(ST ) = D̄ + K − ST = D0 + K − ST . (4.45)

Inserting the expressions for L(ST , DT ) into Equations (4.33) and (4.34), the pricing

equations of the extended model of Klein and Inglis (2001) are obtained. The pricing

equation for a vulnerable European call is equal to

Ct = Bt,T

(

E

[

(ST − K) · 1[ST ≥K, VT ≥D̄+ST −K]

]

(4.46)

+E

[

(1 − α)VT (ST − K)

D̄ + ST − K
· 1[ST ≥K, VT <D̄+ST −K]

])

.

whereas the pricing equation for a vulnerable European put is given by

Pt = Bt,T

(

E

[

(K − ST ) · 1[ST ≤K, VT ≥D̄+K−ST ]

]

(4.47)

+E

[

(1 − α)VT (K − ST )

D̄ + K − ST

· 1[ST ≤K, VT <D̄+K−ST ]

])

.

The first line in both pricing equations refers to the situation in which the option

expires in the money and the counterparty does not default, i.e. ST −K and K −ST

are paid out to the holder of a European call and a European put, respectively.

The second line indicates the option payoff if the option expires in the money and

the counterparty is in default. In this case, the entire assets of the counterparty

(less the default costs α) are distributed to the creditors. Since all liabilities of the

counterparty are ranked equally, all creditors receive the same proportion of their

claims. This proportion is given by ((1 − α)VT ) /
(

D̄ + ST − K
)

for a European

call and by ((1 − α)VT ) /
(

D̄ + K − ST

)

for a European put. The holder of a

European call receives ((1 − α)VT (ST − K)) /
(

D̄ + ST − K
)

, whereas the holder

of a European put receives ((1 − α)VT (K − ST )) /
(

D̄ + K − ST

)

. If the option

expires out of the money, the option holder receives nothing irrespective of whether

the counterparty defaults or not.
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In Equations (4.46) and (4.47), the default boundary as well as the expression in the

denominator of the second summand of the the pricing equations are non-linear and

depend on a stochastic variable – namely on the price of the option’s underlying at

maturity. To cope with this issue when computing the expected values, we must be

linearize and approximate both the default boundary and the second summand’s

denominator. We achieve this approximation by employing a first order Taylor

series expansion. Subsequently, we obtain the approximate closed form solutions for

vulnerable European options based on the extended model of Klein and Inglis (2001)

by explicitly computing the expected value expressions given by Equations (4.46)

and (4.47) (see Appendix 2). The approximate valuation formula for vulnerable

European calls is equal to

Ct = St e−q(T −t) N2(a1, b1, δSV )− Bt,T K N2(a2, b2, δSV ) (4.48)

+
(1− α)Vt St e−q(T −t)+(ρ̄SV −m)σ̄S σ̄V + 1

2
σ̄2

V
(m2−2ρ̄SV m)−g p

Bt,T Dt + St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p − Bt,T K

N2(a3, b3, −δSV )

− (1− α)Vt Bt,T K e
1
2

σ̄2
V
(m2−2ρ̄SV m)−g p

Bt,T Dt + St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p − Bt,T K

N2(a4, b4, −δSV ),

whereas for a vulnerable European put it is given by

Pt = Bt,T K N2(−a2, b2, −δSV )− St e−q(T −t) N2(−a1, b1, −δSV ) (4.49)

+
(1− α)Vt Bt,T K e

1
2

σ̄2
V
(m2−2ρ̄SV m)−g p

Bt,T Dt +Bt,T K − St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p

N2(−a4, b4, δSV )

+
(1− α)Vt St e−q(T −t)+(ρ̄SV −m)σ̄S σ̄V + 1

2
σ̄2

V
(m2−2ρ̄SV m)−g p

Bt,T Dt +Bt,T K − St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p

N2(−a3, b3, δSV ) ,

where N2( · ) represents the cumulative distribution function of the bivariate

standard normal distribution and where a1, a2, a3, a4, b1, b2, b3 and b4 are given as

follows:

a1 =
ln St

Bt,T K
− q(T − t)− 1

2
σ̄2

S

σ̄S

+ σ̄S,

a2 =
ln St

Bt,T K
− q(T − t) − 1

2
σ̄2

S

σ̄S

,
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a3 =
ln St

Bt,T K
− q(T − t)− 1

2
σ̄2

S

σ̄S

+ σ̄S + m σ̄V + g + δSV

√

1 − 2ρ̄SV m + m2 σ̄V ,

a4 =
ln St

Bt,T K
− q(T − t) − 1

2
σ̄2

S

σ̄S

+ m σ̄V + g + δSV

√

1 − 2ρ̄SV m + m2 σ̄V ,

b1 = − −b − m p√
1 − 2ρ̄SV m + m2

+ δSV σ̄S,

b2 = − −b − m p√
1 − 2ρ̄SV m + m2

b3 =
−b − m p√

1 − 2ρ̄SV m + m2
−

√

1 − 2ρ̄SV m + m2 σ̄V ,

b4 =
−b − m p√

1 − 2ρ̄SV m + m2
−

√

1 − 2ρ̄SV m + m2 σ̄V , −δSV (m σ̄V + g) .

The parameter δSV gives the adjusted correlation between the return of the option’s

underlying and the counterparty’s assets. It is defined as

δSV =
ρ̄SV − m√

1 − 2ρ̄SV m + m2
.

The parameters b, m and g depend on the type of the considered option. For

vulnerable European calls, they are given by

bCall =

ln Vt

Bt,T Dt+St e
−q(T −t)− 1

2 σ̄2
S
+σ̄S p−Bt,T K

− 1
2
σ̄2

V

σ̄V

,

mCall =
σ̄S

σ̄V

St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p

Bt,T Dt + St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p − Bt,T K

,

gCall = −σ̄S

Bt,T St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p

Bt,T Dt + St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p − Bt,T K

,

whereas for vulnerable European puts they are equal to

bPut =

ln Vt

Bt,T Dt+Bt,T K−St e
−q(T −t)− 1

2 σ̄2
S
+σ̄S p

− 1
2
σ̄2

V

σ̄V

,

mPut = − σ̄S

σ̄V

St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p

Bt,T Dt + Bt,T K − St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p

,

gPut = σ̄S

St e−q(T −t)− 1
2

σ̄2
S
+σ̄Sp

Bt,T Dt + Bt,T K − St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p

.
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Since a first order Taylor series expansion is used in the derivation to linearize and

approximate both the default boundary and the denominator in the expected value’s

second summand, the valuation formulas given by Equations (4.48) and (4.49) are

only analytical approximations and depend on the point of expansion p. In principle,

the value for p can be chosen freely, however, it is important to note that this choice

might have a decisive impact on the accuracy of the obtained option values.

Figure 4.1: European Calls in the Extended Model of Klein and Inglis (2001)

Unless otherwise noted, the calculations are based on the following parameters: S0 = 40, K = 40,

V0 = 100, D0 = 90, T − t = 0.5, r0 = 0.05, q = 0, κ = 0.5, θ = 0.05, σS = 0.15, σV = 0.15,

σD = 0.15, σr = 0.05, ρSV = 0, ρSD = 0, ρV D = 0, ρSr = 0, ρV r = 0, ρDr = 0 and α = 0.25.

The option values (ochre line) are generated using the approximate closed form solution given by

Equation (4.48) based on p = 1.5. The numerical solution of the extended model of Klein and

Inglis (2001) (circles) is calculated by Monte Carlo simulation (N = 1 000 000). The shaded area

of the figure represents several possible approximate analytical solutions using different values for

the point of expansion p ranging from 0 to 4.

Figures 4.1 and 4.2 provide insights to the impact of choosing a particular value

for the point of expansion p. In these two figures, the option values are depicted as
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functions of the price of the option’s underyling, the time to maturity and the value

of the counterparty’s assets. These option values are obtained from the approximate

closed form solutions given by Equations (4.48) and (4.49) using different values

for the point of expansion. The approximate analytical solution and the numerical

solution are almost identical for p = 1.5 and p = −1.5 in case of vulnerable European
calls and puts, respectively. The same finding is also obtained based on several other

numerical examples. Hence, the approximate closed form solutions are quite accurate

for a wide range of moneyness, different times to maturity and various values of the

counterparty’s assets if the point of expansion is chosen appropriately.

Figure 4.2: European Puts in the Extended Model of Klein and Inglis (2001)

Unless otherwise noted, the calculations are based on the following parameters: S0 = 40, K = 40,

V0 = 100, D0 = 90, T − t = 0.5, r0 = 0.05, q = 0, κ = 0.5, θ = 0.05, σS = 0.15, σV = 0.15,

σD = 0.15, σr = 0.05, ρSV = 0, ρSD = 0, ρV D = 0, ρSr = 0, ρV r = 0, ρDr = 0 and α = 0.25.

The option values (ochre line) are generated using the approximate closed form solution given by

Equation (4.49) based on p = −1.5. The numerical solution of the extended model of Klein and

Inglis (2001) (circles) is calculated by Monte Carlo simulation (N = 1 000 000). The shaded area

of the figure represents several possible approximate analytical solutions using different values for

the point of expansion p ranging from −4 to 0.
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European Call European Put

Approx.

CF

Num.

Sol.

Approx.

Error

Approx.

CF

Num.

Sol.

Approx.

Error

Base Case 2.0168 2.0143 +0.13% 1.1385 1.1387 −0.02%
S = 45 5.3895 5.3781 +0.21% 0.1741 0.1745 −0.23%
S = 35 0.2945 0.2941 +0.13% 3.9044 3.9112 −0.17%
V = 105 2.1067 2.1047 +0.09% 1.1831 1.1830 0.00%

V = 95 1.8908 1.8878 +0.16% 1.0720 1.0726 −0.05%
T − t = 1 3.0262 3.0200 +0.20% 1.3607 1.3622 −0.10%
T − t = 0.25 1.3781 1.3770 +0.09% 0.9163 0.9161 0.02%

q = 0.02 1.8059 1.8034 +0.14% 1.2858 1.2861 −0.02%
r0 = 0.08 2.3197 2.3168 +0.13% 0.9595 0.9596 −0.01%
r0 = 0.02 1.7374 1.7349 +0.15% 1.3357 1.3364 −0.05%
κ = 0.8 2.0162 2.0137 +0.13% 1.1381 1.1383 −0.02%
κ = 0.2 2.0175 2.0150 +0.12% 1.1390 1.1392 −0.02%
θ = 0.08 2.0549 2.0523 +0.13% 1.1142 1.1143 −0.01%
θ = 0.02 1.9791 1.9766 +0.13% 1.1632 1.1634 −0.02%
σr = 0.08 2.0258 2.0232 +0.13% 1.1455 1.1457 −0.02%
σr = 0.02 2.0119 2.0094 +0.13% 1.1348 1.1349 −0.02%
ρSr = 0.5 2.0780 2.0750 +0.14% 1.1860 1.1865 −0.04%
ρSr = −0.5 1.9535 1.9509 +0.13% 1.0884 1.0885 −0.01%
ρV r = 0.5 2.0219 2.0192 +0.13% 1.1282 1.1286 −0.03%
ρV r = −0.5 2.0116 2.0089 +0.13% 1.1491 1.1493 −0.02%

Table 4.1: Approx. Error in the Extended Model of Klein and Inglis (2001)

Unless otherwise noted, the calculations are based on the following parameters: S0 = 40, K = 40,

V0 = 100, D0 = 90, T − t = 0.5, r0 = 0.05, q = 0, κ = 0.5, θ = 0.05, σS = 0.15, σV = 0.15,

σD = 0.15, σr = 0.05, ρSV = 0, ρSD = 0, ρV D = 0, ρSr = 0, ρV r = 0, ρDr = 0 and α = 0.25.

The approximate closed form solutions that are used to compute the option values are given by

Equations (4.48) and (4.49), respectively. The point of expansion are chosen to be p = 1.5 in case

of a European calll and p = −1.5 in case of a European put. The numerical solution is calculated

by Monte Carlo simulation (N = 1 000 000).

In Table 4.1, the values for vulnerable European calls and puts based on the extended

model of Klein and Inglis (2001) are presented. The first two columns give the values
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of a vulnerable European call computed by the approximate valuation formula and

Monte Carlo simulation (= numerical solution), respectively. The third column

reports the approximation error which is measured as the percentage deviation

of the approximate from the numerical solution. Most errors are smaller than

±0.2% with the highest error being +0.24%. Compared to the base case scenario,

the magnitude of the approximation error considerably increases for in-the-money

options (S ↑) and a longer time to maturity (T ↑). The parameters characterizing

the stochastic process of the risk-free interest rate do not influence the quality of

the analytical approximation substantially. In the fourth and fifth columns, the

values of a vulnerable European put computed by the approximate valuation formula

and Monte Carlo simulation (= numerical solution), respectively, are presented. In

the sixth column, the approximation error is given. Again, it is measured as the

percentage deviation of the approximate from the numerical solution. Most errors

are smaller than ±0.2% with the highest error being −0.26%. Compared to the base

case scenario, the magnitude of the approximation error considerably increases for

in-the-money and out-of-the-money options (S ↓ and S ↑), aas well as for a longer

time to maturity (T ↑). Like in the case of vulnerable European calls, the impact of

the parameters characterizing the stochastic process of the risk-free interest rate on

the quality of the analytical approximation is negligible.

To conclude, the magnitude of the approximation errors is relatively low for both

vulnerable European calls and puts which indicates that the approximate valuation

formulas of the extended model suggested by Klein and Inglis (2001) work quite well

for the given set of parameters.

4.4.4 Stochastic Liabilities

We also extend the model of Liu and Liu (2011) to the stochastic interest rate

framework suggested by Vasicek (1977). In contrast to the previous models, it is

assumed that the counterparty’s total liabilities may vary over time. In particular,

it is assumed that the market value of the counterparty’s total liabilities follows a

geometric Brownian motion (see Equation (4.3)). The market value at the option’s

maturity is denoted by DT . It is important to note that the short position in the

option is implicitly included in the counterparty’s total liabilities, since it is an
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obligation to the option writer. However, its impact on the value of the couterparty’s

total liabilities is not explicitly modeled. Since the value of the counterparty’s

total liabilities is assumed to be stochastic, the default boundary L(ST , DT ) in

the extended Liu-Liu model is defined as

L(ST , DT ) = L(DT ) = DT . (4.50)

Inserting this expression into Equations (4.33) and (4.34) yields the pricing equations

of the extended Liu-Liu model. The pricing equation for a vulnerable European call

equals

Ct = Bt,T

(

E

[

(ST − K) · 1[ST ≥K, VT ≥DT ]

]

(4.51)

+E

[

(1− α)VT (ST − K)

DT

· 1[ST ≥K, VT <DT ]

])

,

whereas the pricing equation for a vulnerable European put is given by

Pt = Bt,T

(

E

[

(K − ST ) · 1[ST ≤K, VT ≥DT ]

]

(4.52)

+E

[

(1− α)VT (K − ST )

DT

· 1[ST ≤K, VT <DT ]

])

.

The first line in both pricing equations still refers to the situation in which the

option expires in the money and the counterparty does not default, i.e. ST − K

and K − ST are paid out to the holder of a European call and a European put,

respectively. The second line gives the payoff if the option is in the money at

maturity and the counterparty is in default. In this case, the entire assets of the

counterparty (less the default costs α) are distributed to all the creditors. Since

all liabilities of the counterparty are ranked equally, all creditors receive the same

proportion of their claims. This proportion is given by the ratio ((1− α)VT ) /DT , i.e.

the asset value available for distribution is divided by the value of the counterparty’s

total liabilities. The holder of a European call receives ((1− α)VT (ST − K)) /DT ,

whereas ((1− α)VT (K − ST )) /DT is paid out to the holder of a European put. If

the option expires out of the money, the option holder receives nothing irrespective

of whether the counterparty defaults or not.
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In Equations (4.51) and (4.52), the default boundary and the denominator of the

pricing equations’ second summand depend on the value of the counterparty’s

liabilities which is a stochastic variable. To circumvent this issue, we introduce a new

variable, the debt ratio, which is defined as Rt = Vt/Dt. Using the debt ratio, we

analytically compute the expected values in Equations (4.51) and (4.52) and obtain

the valuation formulas for vulnerable European options based on the extended model

of Liu and Liu (2011) after some algebraic transformations (see Appendix 3). For

vulnerable European calls and puts, respectively, they are equal to

Ct = St e−q(T −t) N2(a1, b1, δSR)− Bt,T K N2(a2, b2, δSR) (4.53)

+
(1− α)Vt St e−q(T −t)+σ̄2

D
+ρ̄SV σ̄S σ̄V −ρ̄SDσ̄S σ̄D−ρ̄V Dσ̄V σ̄D

Dt

N2(a3, b3, −δSR)

− (1− α)Vt Bt,T K eσ̄2
D

−ρ̄V Dσ̄V σ̄D

Dt

N2(a4, b4, −δSR)

and

Pt = Bt,T K N2(−a2, b2, −δSR)− St e−q(T −t) N2(−a1, b1, −δSR) (4.54)

+
(1− α)Vt Bt,T K eσ̄2

D
−ρ̄V Dσ̄V σ̄D

Dt

N2(−a4, b4, δSR)

− (1− α)Vt St e−q(T −t)+σ̄2
D
+ρ̄SV σ̄S σ̄V −ρ̄SDσ̄S σ̄D−ρ̄V Dσ̄V σ̄D

Dt

N2(−a3, b3, δSR),

where N2( · ) is the cumulative distribution function of the bivariate standard normal

distribution and where a1, a2, a3, a4, b1, b2, b3 and b4 are given as follows:

a1 =
ln St

Bt,T K
− q(T − t) + 1

2
σ̄2

S

σ̄S

,

a2 =
ln St

Bt,T K
− q(T − t) − 1

2
σ̄2

S

σ̄S

,

a3 =
ln St

Bt,T K
− q(T − t) + 1

2
σ̄2

S + σ̄SV − σ̄SD

σ̄S

,

a4 =
ln St

Bt,T K
− q(T − t) − 1

2
σ̄2

S + σ̄SV − σ̄SD

σ̄S

,

b1 =
ln Vt

Dt
− 1

2
(σ̄2

V − σ̄2
D − 2σ̄SV + 2σ̄SD)

(σ̄SV − σ̄SD)
,
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b2 =
ln Vt

Dt
− 1

2
(σ̄2

V − σ̄2
D)

(σ̄SV − σ̄SD)
,

b3 = −
ln Vt

Dt
− 1

2
(σ̄2

V − σ̄2
D − 2σ̄SV + 2σ̄SD)

(σ̄SV − σ̄SD)
−

√

σ̄2
V + σ̄2

D − 2σ̄V D ,

b4 = −
ln Vt

Dt
− 1

2
(σ̄2

V − σ̄2
D)

(σ̄SV − σ̄SD)
−

√

σ̄2
V + σ̄2

D − 2σ̄V D .

The parameter δSR gives the adjusted correlation between the returns of the option’s

underlying and the counterparty’s debt ratio. It is defined as

δSR =
ρ̄SV σ̄V − ρ̄SDσ̄D

√

σ̄2
V + σ̄2

D − 2 ρ̄V Dσ̄V σ̄D

.

4.4.5 General Model

Our general model picks up on the ideas of both Klein and Inglis (2001) and Liu

and Liu (2011) and additionally accounts for the stochastic interest rate framework

suggested by Vasicek (1977). In particular, we assume that the short position in

the option may increase the counterparty’s default risk and the market value of the

counterparty’s other liabilities follows a geometric Brownian motion. At the option’s

maturity the counterparty’s total liabilities are given by DT +ST − K in the case of

a European call and DT +K − ST in the case of a European put. Hence, the default

boundary L(ST , DT ) depends on the type of the considered option. For European

calls and puts, respectively, it is given as follows:

L(ST , DT ) = DT + ST − K, (4.55)

L(ST , DT ) = DT + K − ST . (4.56)

Plugging these expressions into Equations (4.33) and (4.34) yields the pricing

equations of the general model. For vulnerable European calls, the pricing equation

is equal to

Ct = Bt,T

(

E

[

(ST − K) · 1[ST ≥K, VT ≥DT+ST −K]

]

(4.57)

+E

[

(1 − α)VT (ST − K)

DT + ST − K
· 1[ST ≥K, VT <DT+ST −K]

])

,
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whereas for a vulnerable European put it is given by

Pt = Bt,T

(

E

[

(K − ST ) · 1[ST ≤K, VT ≥DT+K−ST ]

]

(4.58)

+E

[

(1− α)VT (K − ST )

DT +K − ST

· 1[ST ≤K, VT <DT+K−ST ]

])

.

In analogy to the other valuation models, the first line of both pricing equations

refers to the situation in which the option expires in the money and the counterparty

does not default. Consequently, the corresponding payoff of a European call is

equal to ST − K, whereas it is given by K − ST for a European put. The second

line of both pricing equations indicates the payoff if the option expires in the

money and the counterparty is in default. In this case, the entire assets of the

counterparty (less the default cost α) are distributed to the creditors. Since all

liabilities of the counterparty are ranked equally, all creditors receive the same

proportion of their claims. This proportion is given by ((1− α)VT ) / (DT + ST − K)

in the case of a European call, whereas it is equal to ((1− α)VT ) / (DT +K − ST )

in the case of a European put. Consequently, the holder of a European call

receives ((1− α)VT (ST − K)) / (DT + ST − K), whereas the holder of a European

put receives ((1− α)VT (K − ST )) / (DT +K − ST ). If the option is, however, out

of the money at maturity, the option holder receives nothing irrespective of whether

the counterparty is in default or not.

Looking at Equations (4.57) and (4.58), it becomes clearly evident that our general

valuation model incorporates the previously presented valuation models as special

cases. The communalities and differences between these models are summarized as

follows:

1. If the counterparty’s other liabilities are assumed to be deterministic and

constant over time, our general model is reduced to the extended model of

Klein and Inglis (2001) represented by Equations (4.46) and (4.47), since then

the default condition is given by VT < D̄ + ST − K and VT < D̄ + K − ST ,

respectively.

2. If the option holder’s claim ST − K and K − ST , respectively, is removed

from the default condition and the market value of the counterparty’s other
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liabilities is still assumed to follow a geometric Brownian motion, our general

model collapses to the extended model of Liu and Liu (2011) which is specified

by Equations (4.51) and (4.52), since the default condition is equal to VT < DT

in this case.

3. If the option holder’s claim ST − K and K − ST , respectively, is removed from

the default condition and the counterparty’s other liabilities are assumed to

be constant over time, our general model is reduced to the model of Klein and

Inglis (1999) (i.e. the extended model of Klein (1996)) which is specified by

Equations (4.40) and (4.41), since the default condition is equal to VT < D̄ in

this case.

In Equations (4.57) and (4.58), the default boundary as well as the denominator of

the pricing equations’ second summand are non-linear and depend on two stochastic

variables – namely the price of the option’s underlying and the market value of the

counterparty’s other liabilities. Due to this issue, an exact analytical solution cannot

be derived. However, we are able to derive an approximate closed form solution if

the returns of the option’s underlying and the counterparty’s other liabilities are

assumed to be uncorrelated (ρSD = 0).

We employ a first order Taylor series expansion to linearize and approximate both

the default boundary and the second summand’s denominator. After some algebraic

transformations, we obtain the approximate valuation formulas for vulnerable

European options (see Appendix 4). For vulnerable European calls and puts,

respectively, these approximate closed form solutions are equal to

Ct = St e−q(T −t) N2(a1, b1, δSV ) − K e−r(T −t) N2(a2, b2, δSV ) (4.59)

+
(1 − α)Vt St e−q(T −t)+(ρ̄SV −m1)σ̄S σ̄V + 1

2
σ̄2

V
(m2

1+m2
2−2ρ̄SV m1−2ρ̄V Dm2)

Dt e− 1
2

σ̄2
D
+σ̄D p2 + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1 − Bt,T K

· e−g1 p1−g2 p2 N2(a3, b3, −δSV )

− (1 − α)Vt Bt,T K e
1
2

σ̄2
V
(m2

1+m2
2−2ρ̄SV m1−2ρ̄V Dm2)

Dt e− 1
2

σ̄2
D
+σ̄D p2 + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1 − Bt,T K

· e−g1 p1−g2 p2 N2(a4, b4, −δSV )
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and

Pt = Bt,T K N2(−a2, b2, −δSV )− St e−q(T −t) N2(−a1, b1, −δSV ) (4.60)

+
(1− α)Vt Bt,T K e

1
2

σ̄2
V
(m2

1+m2
2−2ρ̄SV m1−2ρ̄V Dm2)

Dt e− 1
2

σ̄2
D
+σ̄D p2 +Bt,T K − St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1

· e−g1 p1−g2 p2 N2(−a4, b4, δSV )

− (1− α)Vt St e−q(T −t)+(ρ̄SV −m1)σ̄S σ̄V + 1
2

σ̄2
V
(m2

1+m2
2−2ρ̄SV m1−2ρ̄V Dm2)

Dt e− 1
2

σ̄2
D
+σ̄D p2 +Bt,T K − St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1

· e−g1 p1−g2 p2 N2(−a3, b3, δSV ) ,

where N2( · ) represents the cumulative distribution function of the bivariate

standard normal distribution and where a1, a2, a3, a4, b1, b2, b3 and b4 are given as

follows:

a1 =
ln St

Bt,T K
− q(T − t)− 1

2
σ̄2

S

σ̄S

+ σ̄S,

a2 =
ln St

Bt,T K
− q(T − t) − 1

2
σ̄2

S

σ̄S

,

a3 =
ln St

Bt,T K
− q(T − t) − 1

2
σ̄2

S

σ̄S

+ σ̄S + m1 σ̄V + g1

+ δSV

√

1 − 2 ρ̄SV m1 − 2 ρ̄V D m2 + m2
1 + m2

2 σ̄V ,

a4 =
ln St

Bt,T K
− q(T − t) − 1

2
σ̄2

S

σ̄S

+ m1 σ̄V + g1

+ δSV

√

1 − 2 ρ̄SV m1 − 2 ρ̄V D m2 + m2
1 + m2

2 σ̄V ,

b1 = − −b − p1 m1 − p2 m2
√

1 − 2 ρ̄SV m1 − 2 ρ̄V D m2 + m2
1 + m2

2

+ δSV σ̄S,

b2 = − −b − p1 m1 − p2 m2
√

1 − 2 ρ̄SV m1 − 2 ρ̄V D m2 + m2
1 + m2

2

,

b3 =
−b − p1 m1 − p2 m2

√

1 − 2 ρ̄SV m1 − 2 ρ̄V D m2 + m2
1 + m2

2

−
√

1 − 2 ρ̄SV m1 − 2 ρ̄V D m2 + m2
1 + m2

2 σ̄V

− δSV (σ̄S + m1 σ̄V + g1) − δV D (m2 σ̄V + g2)
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b4 =
−b − p1 m1 − p2 m2

√

1− 2 ρ̄SV m1 − 2 ρ̄V D m2 + m2
1 + m2

2

−
√

1 − 2 ρ̄SV m1 − 2 ρ̄V D m2 + m2
1 + m2

2 σ̄V

− δSV (m1 σ̄V + g1) − δV D (m2 σ̄V + g2) .

The parameters δSV and δV D give the adjusted correlation between the return of

the option’s underlying and the counterparty’s assets and the adjusted correlation

between the return of the counterparty’s assets and liabilities, respectively:

δSV =
ρ̄SV − m1

√

1 − 2 ρ̄SV m1 − 2 ρ̄V D m2 + m2
1 + m2

2

,

δV D =
ρ̄V D − m2

√

1 − 2 ρ̄SV m1 − 2 ρ̄V D m2 + m2
1 + m2

2

.

The parameters b, m1, m2, g1 and g2 depend on the type of the considered option.

For European calls and puts, respectively, they are given as follows:

bCall =

ln Vt

Dt e
− 1
2 σ̄2

D
+σ̄D p2+St e

−q(T −t)− 1
2 σ̄2

S
+σ̄S p1−Bt,T K

− 1
2
σ̄2

V

σ̄V

,

mCall

1 =
σ̄S

σ̄V

St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p1

Dt e− 1
2

σ̄2
D
+σ̄D p2 + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1 − Bt,T K

,

mCall

2 =
σ̄D

σ̄V

Dt e− 1
2

σ̄2
D
+σ̄D p2

Dt e− 1
2

σ̄2
D
+σ̄D p2 + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1 − Bt,T K

,

gCall

1 =
−σ̄S St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1

Dt e− 1
2

σ̄2
D
+σ̄D p2 + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1 − Bt,T K

,

gCall

2 =
−σ̄D Dt e− 1

2
σ̄2

D
+σ̄D p2

Dt e− 1
2

σ̄2
D
+σ̄D p2 + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1 − Bt,T K

,

bPut =

ln Vt

Dt e
− 1
2 σ̄2

D
+σ̄D p2+Bt,T K−St e

−q(T −t)− 1
2 σ̄2

S
+σ̄S p1

− 1
2
σ̄2

V

σ̄V

,

mPut

1 = − σ̄S

σ̄V

St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p1

Dt e− 1
2

σ̄2
D
+σ̄D p2 + Bt,T K − St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1

,

mPut

2 =
σ̄D

σ̄V

Dt e− 1
2

σ̄2
D
+σ̄D p2

Dt e− 1
2

σ̄2
D
+σ̄D p2 + Bt,T K − St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1

,

gPut

1 =
σ̄S St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1

Dt e− 1
2

σ̄2
D
+σ̄D p2 + Bt,T K − St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1

,

gPut

2 =
−σ̄D Dt e− 1

2
σ̄2

D
+σ̄D p2

Dt e− 1
2

σ̄2
D
+σ̄D p2 + Bt,T K − St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1

.
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Since a first order Taylor series expansion is used in the derivation to linearize and

approximate both the default boundary and the denominator in the expected value’s

second summand, the valuation formulas given by Equations (4.59) and (4.60) are

analytical approximations and depend on the points of expansion p1 and p2. In

principle, the values for p1 and p2 can be chosen freely, however, this choice might

have a decisive impact on the accuracy of the obtained option values.

Figure 4.3: European Calls in the General Model

Unless otherwise noted, the calculations are based on the following parameters: S0 = 40, K = 40,

V0 = 100, D0 = 90, T − t = 0.5, r0 = 0.05, q = 0, κ = 0.5, θ = 0.05, σS = 0.15, σV = 0.15,

σD = 0.15, σr = 0.05, ρSV = 0, ρSD = 0, ρV D = 0, ρSr = 0, ρV r = 0, ρDr = 0 and α = 0.25.

The option values (red line) are generated using the approximate closed form solution given by

Equation (4.59) based on p1 = p2 = 1.5. The numerical solution of the general model (circles) is

calculated by Monte Carlo simulation (N = 1 000 000). The shaded area of the figure represents

several possible approximate analytical solutions using different values for the points of expansion

p1 and p2 ranging from 0 to 4.

Figures 4.3 and 4.4 provide insights to the impact of choosing a particular value

for the points of expansion p1 and p2. In these two figures, the option values are
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depicted as functions of the price of the option’s underlying, the time to maturity

and the value of the counterparty’s assets. These option values are obtained from

our approximate closed form solutions given by Equations (4.59) and (4.60) using

different values for the points of expansion. The approximate analytical solution and

the numerical solution are almost identical for p1 = p2 = 1.5 and p1 = p2 = −1.5
in case of vulnerable European calls and puts, respectively. The same finding is also

obtained based on several other numerical examples. Hence, the approximate closed

form valuation formulas of the general model work quite well for a wide range of

parameters if the values for the points of expansion are chosen appropriately.

Figure 4.4: European Puts in the General Model

Unless otherwise noted, the calculations are based on the following parameters: S0 = 40, K = 40,

V0 = 100, D0 = 90, T − t = 0.5, r0 = 0.05, q = 0, κ = 0.5, θ = 0.05, σS = 0.15, σV = 0.15,

σD = 0.15, σr = 0.05, ρSV = 0, ρSD = 0, ρV D = 0, ρSr = 0, ρV r = 0, ρDr = 0 and α = 0.25.

The option values (red line) are generated using the approximate closed form solution given by

Equation (4.60) based on p1 = p2 = −1.5. The numerical solution of the general model (circles)

is calculated by Monte Carlo simulation (N = 1 000 000). The shaded area of the figure represents

several possible approximate analytical solutions using different values for the points of expansion

p1 and p2 ranging from −4 to 0.
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European Call European Put

Approx.

CF

Num.

Sol.

Approx.

Error

Approx.

CF

Num.

Sol.

Approx.

Error

Base Case 1.9339 1.9303 +0.19% 1.0924 1.0914 +0.09%

S = 45 5.1786 5.1791 −0.01% 0.1658 0.1672 −0.86%
S = 35 0.2827 0.2812 +0.56% 3.7676 3.7544 +0.35%

V = 105 2.0246 2.0210 +0.18% 1.1391 1.1380 +0.09%

V = 95 1.8226 1.8190 +0.20% 1.0332 1.0323 +0.09%

ρSD = 0.5 1.9339 1.8058 +7.09% 1.0924 1.1603 −5.85%
ρSD = −0.5 1.9339 2.0516 −5.74% 1.0924 1.0136 +7.77%

T − t = 1 2.8673 2.8512 +0.56% 1.2911 1.2927 −0.13%
T − t = 0.25 1.3316 1.3303 +0.10% 0.8860 0.8851 +0.11%

q = 0.02 1.7316 1.7279 +0.21% 1.2343 1.2328 +0.13%

r0 = 0.08 2.1957 2.1924 +0.15% 0.9094 0.9092 +0.03%

r0 = 0.02 1.6892 1.6853 +0.23% 1.2995 1.2976 +0.15%

κ = 0.8 1.9333 1.9299 +0.18% 1.0919 1.0908 +0.10%

κ = 0.2 1.9346 1.9308 +0.20% 1.0930 1.0921 +0.08%

θ = 0.08 1.9670 1.9635 +0.18% 1.0672 1.0664 +0.08%

θ = 0.02 1.9010 1.8974 +0.19% 1.1180 1.1169 +0.09%

σr = 0.08 1.9434 1.9369 +0.34% 1.0998 1.1006 −0.07%
σr = 0.02 1.9287 1.9267 +0.10% 1.0884 1.0865 +0.18%

ρSr = 0.5 1.9923 1.9791 +0.67% 1.1386 1.1433 −0.41%
ρSr = −0.5 1.8734 1.8793 −0.31% 1.0439 1.0375 +0.62%

ρV r = 0.5 1.9430 1.9394 +0.19% 1.0858 1.0848 +0.09%

ρV r = −0.5 1.9247 1.9211 +0.19% 1.0990 1.0979 +0.10%

ρDr = 0.5 1.9348 1.9217 +0.68% 1.0930 1.0976 −0.41%
ρDr = −0.5 1.9329 1.9387 −0.30% 1.0918 1.0852 +0.60%

Table 4.2: Approx. Error in the General Model

Unless otherwise noted, the calculations are based on the following parameters: S0 = 40, K = 40,

V0 = 100, D0 = 90, T − t = 0.5, r0 = 0.05, q = 0, κ = 0.5, θ = 0.05, σS = 0.15, σV = 0.15,

σD = 0.15, σr = 0.05, ρSV = 0, ρSD = 0, ρV D = 0, ρSr = 0, ρV r = 0, ρDr = 0 and α = 0.25.

The approximate closed form solutions that are used to compute the option values are given by

Equations (4.59) and (4.60), respectively. The points of expansion are chosen to be p1 = p2 = 1.5

in case of a European call and p1 = p2 = −1.5 in case of a European put. The numerical solution

is calculated by Monte Carlo simulation (N = 1 000 000).

90



In Table 4.2, the option values for vulernable European calls and puts based

on our general model are presented. The first two columns give the values of a

vulnerable European call computed by the approximate valuation formula and

Monte Carlo simulation (= numerical solution), respectively. The third column

reports the approximation error which is measured as the percentage deviation

of the approximate from the numerical solution. Most errors are smaller than

±0.2% with the highest errors being equal to −5.74% and +7.09%. These errors

are observed if the correlation between the return of the option’s underlying and the

counterparty’s other liabilities is −0.5 and +0.5, respectively. This result is obvious,

since the analytical approximation is based on the assumption of independence

between these returns. Compared to the base case scenario, the magnitude of the

approximation error considerably increases for out-of-the-money options (S ↓), a

longer time to maturity (T ↑), an increased volatility of the risk-free interest

rate (σr ↑) as well as for stronger correlations betwenn the risk-free interest

rate and the return of both the option’s underlying and the counterparty’s other

liabilities (ρSr Ó= 0 and ρDr Ó= 0). The remaining parameters characterizing the

stochastic process of the risk-free interest rate do not influence the quality of the

analytical approximation substantially. In the fourth and fifth columns, the values

of a vulnerable European put computed by the approximate valuation formula and

Monte Carlo simulation (= numerical solution), respectively, are presented. In the

sixth column, the approximation error is given. Again, it is defined as the percentage

deviation of the approximate solution from the numerical solution. Most errors are

smaller than ±0.2% with the highest errors being equal to −5.85% and +7.77%.

These errors are observed if the correlation between the return of the option’s

underlying and the counterparty’s other liabilities is 0.5 and −0.5, repsectively. This

result is obvious, since the analytical approximation is based on the assumption

of independence between these returns. Compared to the base case scenario, the

magnitude of the approximation error considerably increases for in-the-money and

out-of-the-money options (S ↓ and S ↑), a longer time to maturity (T ↑) as well

as for for stronger correlations betwenn the risk-free interest rate and the return of

both the option’s underlying and the counterparty’s other liabilities (ρSr Ó= 0 and

ρDr Ó= 0). Like in the case of vulnerable European calls, the impact of the remaining
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parameters characterizing the stochastic process of the risk-free interest rate on the

quality of the analytical approximation is negligible.

To conclude, the size of the approximation errors is relatively low for both vulnerable

European calls and puts indicating that our general model’s approximate valuation

formulas work quite well for the given parameters. The size of the approximation

errors is similarly high as in the extended model of Klein and Inglis (2001).

4.5 Numerical Examples

In this section, various numerical examples are presented to compare the results of

the different valuation models for European options subject to counterparty risk.

Since the full payoff on the option cannot be made if the option writer defaults, it

should be expected that vulnerable options will have lower values than otherwise

identical non-vulnerable options. Hence, the upper price limit is given by the

default-free option value which is obtained from the model of Rabinovitch (1989) in

the considered famework. Consequently, the value of a vulnerable European option

can never be higher than this value irrespective of the considered valuation model.

The starting point of the following comparative analysis is a typical market situation

for a European option. At time t = 0, the option is at the money (S0 = 40, K = 40)

and expires in six months (T = 0.5). The return volatility of the option’s underlying

equals 15% (σS = 0.15) and its dividend yield is zero (q = 0). The option writer

is assumed to be highly levered (V0 = 100, D0 = 90). The return volatility of the

counterparty’s assets and liabilities is assumed to be 15% (σV = 0.15, σD = 0.15).

The correlations between the returns of the option’s underlying, the counterparty’s

assets and liabilities are zero (ρSV = ρV D = ρSD = 0). If the counterparty

defaults, deadweight costs of 25% are applied (α = 0.25). The risk-free interest rate

is assumed to follow an mean-reverting Ornstein-Uhlenbeck process. The current

risk-free interest rate equals 5% (r0 = 0.05). The long-term mean is also equal to 5%

(θ = 0.05), while the reversion speed is 0.5 (κ = 0.5). The volatility of the risk-free

interest rate is assumed to be 5% (σr = 0.05). The correlation between the risk-free

interest rate and the returns of the option’s underlying, the couterparty’s assets and

liabilities is assumed to be zero (ρSr = ρV r = ρDr = 0).
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Figures 4.5 and 4.6 depict the values of European calls and puts, respectively, as

functions of the price of the option’s underlying, the option’s time to maturity and

the value of the counterparty’s assets for the valuation models presented in previous

section. As expected, the option values obtained from the model of Klein and Inglis

(1999), the extended models of Klein and Inglis (2001) and Liu and Liu (2011) as

well as from the general model are always lower than the default-free option value

given by the model of Rabinovitch (1989). In particular, the highest price reduction

due to counterparty risk can be observed for our general model followed by the

extended models of Klein and Inglis (2001) and Liu and Liu (2011). The smallest

price reduction is found for the model of Klein and Inglis (1999).

Figure 4.5: European Calls subject to Counterparty and Interest Rate Risk

Unless otherwise noted, the calculations are based on the following parameters: S0 = 40, K = 40,

V0 = 100, D0 = 90, T − t = 0.5, r0 = 0.05, q = 0, κ = 0.5, θ = 0.05, σS = 0.15, σV = 0.15,

σD = 0.15, σr = 0.05, ρSV = 0, ρSD = 0, ρV D = 0, ρSr = 0, ρV r = 0, ρDr = 0 and α = 0.25. The

option values are generated using the (approximate) closed form solutions presented in Section 4.4.

The analytical approximations of the extended model of Klein and Inglis (2001) and the general

model are based on p = 1.5 and p1 = p2 = 1.5, respectively.
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Figure 4.6: European Puts subject to Counterparty and Interest Rate Risk

Unless otherwise noted, the calculations are based on the following parameters: S0 = 40, K = 40,

V0 = 100, D0 = 90, T − t = 0.5, r0 = 0.05, q = 0, κ = 0.5, θ = 0.05, σS = 0.15, σV = 0.15,

σD = 0.15, σr = 0.05, ρSV = 0, ρSD = 0, ρV D = 0, ρSr = 0, ρV r = 0, ρDr = 0 and α = 0.25. The

option values are generated using the (approximate) closed form solutions presented in Section 4.4.

The analytical approximations of the extended model of Klein and Inglis (2001) and the general

model are based on p = 1.5 and p1 = p2 = 1.5, respectively.

In the upper left diagram in Figures 4.5 and 4.6, the values of vulnerable European

calls and puts, respectively, is plotted against the price of the option’s underlying.

It is obvious that the price difference between default-free and vulnerable European

options increases if the option is deeper in the money. This behavior is applicable

for all valuation models, but it is most prominent for the extended model of Klein

and Inglis (2001) and the general model. We also observe that the price difference

between these two models and the other models increases substantially if the

considered European option is further in the money. This observation is attributed

to the fact that the extended model of Klein and Inglis (2001) as well as our general

model include the option itself directly in the default boundary which additionally
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increases the counterparty’s default risk for in-the-money options. Refering to the

upper right diagram in Figures 4.5 and 4.6, the effect of the time to maturity on

the value of vulnerable European options can be analyzed. If the time to maturity

decreases, the difference between the default-free and the vulnerable European call

values is also reduced. This result is not surprising, since the counterparty is less

likely to default if the option’s maturity date gets closer. The lower diagram in

Figures 4.5 and 4.6 shows the prices of a vulnerable European option converge to the

default-free option price with increasing values for the counterparty’s assets, since

the probability that the value of the counterparty’s assets hits the default barrier

decreases. Our general model has the lowest convergence speed which is most likely

explained by the fact that this model is the only one that incorporates three sources

of default risk: a decrease in the value of the counterparty’s assets, an increase in

the counterparty’s other liabilities and an increase in the option value.

Tables 4.3 and 4.4 present the option values for vulnerable European calls and puts,

respectively, which are obtained from valuation models presented in Section 4.4.

Once again it can be observed that the option values based on the model of Klein

and Inglis (1999), the extended models of Klein and Inglis (2001) and Liu and Liu

(2011) as well as based on the general model are always lower than the Rabinovitch

option values. Furthermore, the option values obtained from our general model differ

substantially from those of the other valuation models in most situations. This

finding is explained by the construction of the general model’s default boundary. The

general model is the only one which incorporates three sources of risk simultaneously.

First, a decrease in the value of the counterparty’s assets might lead to the default

of the option writer like in all the other valuation models. Second, the general model

accounts for the potential increase in the counterparty risk induced by the option

itself (unlike the model of Klein and Inglis (1999) and the extended model of Liu

and Liu (2011)). Third, it is assumed that the counterparty’s other liabilities are

stochastic which creates an additional default risk (unlike the model of Klein and

Inglis (1999) and the extended model of Klein and Inglis (2001)). Consequently, the

option values based on our general model are the lowest, since it accounts for all

possible sources of the counterparty’s default risk.
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General

Model

Ext.

LL2011

Ext.

KI2011
KI1999 R1989

Base Case 1.9339 2.0495 2.0168 2.1432 2.2161

S = 45 5.1786 5.7078 5.3895 5.9675 6.1719

S = 35 0.2827 0.2917 0.2945 0.3051 0.3154

V = 105 2.0246 2.1134 2.1067 2.1859 2.2161

V = 95 1.8226 1.9609 1.8908 2.0622 2.2161

T − t = 1 2.8673 3.0924 3.0262 3.2834 3.4584

T − t = 0.25 1.3316 1.3875 1.3781 1.4315 1.4551

α = 0.5 1.7362 1.9268 1.8622 2.0834 2.2161

α = 0 2.1315 2.1721 2.1714 2.2029 2.2161

q = 0.02 1.7316 1.8304 1.8059 1.9142 1.9793

r0 = 0.08 2.1957 2.3330 2.3197 2.4562 2.5227

r0 = 0.02 1.6892 1.7857 1.7374 1.8525 1.9309

κ = 0.8 1.9333 2.0490 2.0162 2.1426 2.2156

κ = 0.2 1.9346 2.0500 2.0175 2.1438 2.2167

θ = 0.08 1.9670 2.0853 2.0549 2.1827 2.2549

θ = 0.02 1.9010 2.0140 1.9791 2.1040 2.1778

σr = 0.08 1.9434 2.0571 2.0258 2.1518 2.2243

σr = 0.02 1.9287 2.0454 2.0119 2.1385 2.2117

ρSr = 0.5 1.9923 2.1059 2.0780 2.2078 2.2772

ρSr = −0.5 1.8734 1.9910 1.9535 2.0762 2.1528

ρV r = 0.5 1.9430 2.0570 2.0219 2.1426 2.2161

ρV r = −0.5 1.9247 2.0419 2.0116 2.1441 2.2161

ρDr = 0.5 1.9348 2.0419 2.0168 2.1432 2.2161

ρDr = −0.5 1.9329 2.0570 2.0168 2.1432 2.2161

Table 4.3: European Calls subject to Counterparty and Interest Rate Risk

Unless otherwise noted, the calculations are based on the following parameters: S0 = 40, K = 40,

V0 = 100, D0 = 90, T − t = 0.5, r0 = 0.05, q = 0, κ = 0.5, θ = 0.05, σS = 0.15, σV = 0.15,

σD = 0.15, σr = 0.05, ρSV = 0, ρSD = 0, ρV D = 0, ρSr = 0, ρV r = 0, ρDr = 0 and α = 0.25. The

option values are generated using the (approximate) closed form solutions presented in Section 4.4.

The analytical approximations of the extended model of Klein and Inglis (2001) and the general

model are based on p = 1.5 and p1 = p2 = 1.5, respectively. The abbreviations Ext. KI2001 and

Ext. LL2011 stand for the extended models of Klein and Inglis (2001) as well as Liu and Liu (2011),

whereas R1989 and KI1999 stand for Rabinovitch (1989) and Klein and Inglis (1999), respectively.
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General

Model

Ext.

LL2011

Ext.

KI2011
KI1999 R1989

Base Case 1.0766 1.1377 1.1028 1.1883 1.2302

S = 45 0.1619 0.1720 0.1655 0.1796 0.1860

S = 35 3.7351 4.0039 3.8238 4.1833 4.3295

V = 105 1.1236 1.1732 1.1560 1.2128 1.2302

V = 95 1.0189 1.0885 1.0327 1.1425 1.2302

T − t = 1 1.2598 1.3579 1.2890 1.4338 1.5186

T − t = 0.25 0.8783 0.9139 0.9016 0.9427 0.9585

α = 0.5 0.9710 1.0696 0.9956 1.1541 1.2302

α = 0 1.1822 1.2058 1.2100 1.2226 1.2302

q = 0.02 1.2172 1.2867 1.2470 1.3440 1.3914

r0 = 0.08 0.8959 0.9456 0.9300 0.9945 1.0224

r0 = 0.02 1.2813 1.3560 1.2935 1.4048 1.4662

κ = 0.8 1.0761 1.1371 1.1024 1.1878 1.2295

κ = 0.2 1.0771 1.1384 1.1033 1.1890 1.2310

θ = 0.08 1.0517 1.1112 1.0793 1.1618 1.2016

θ = 0.02 1.1019 1.1646 1.1267 1.2153 1.2593

σr = 0.08 1.0838 1.1477 1.1089 1.1970 1.2410

σr = 0.02 1.0727 1.1323 1.0995 1.1836 1.2244

ρSr = 0.5 1.1202 1.1942 1.1448 1.2436 1.2913

ρSr = −0.5 1.0304 1.0792 1.0581 1.1307 1.1669

ρV r = 0.5 1.0703 1.1324 1.0928 1.1810 1.2302

ρV r = −0.5 1.0829 1.1429 1.1133 1.1955 1.2302

ρDr = 0.5 1.0778 1.1429 1.1028 1.1883 1.2302

ρDr = −0.5 1.0753 1.1324 1.1028 1.1883 1.2302

Table 4.4: European Puts subject to Counterparty and Interest Rate Risk

Unless otherwise noted, the calculations are based on the following parameters: S0 = 40, K = 40,

V0 = 100, D0 = 90, T − t = 0.5, r0 = 0.05, q = 0, κ = 0.5, θ = 0.05, σS = 0.15, σV = 0.15,

σD = 0.15, σr = 0.05, ρSV = 0, ρSD = 0, ρV D = 0, ρSr = 0, ρV r = 0, ρDr = 0 and α = 0.25. The

option values are generated using the (approximate) closed form solutions presented in Section 4.4.

The analytical approximations of the extended model of Klein and Inglis (2001) and the general

model are based on p = 1.5 and p1 = p2 = 1.5, respectively. The abbreviations Ext. KI2001 and

Ext. LL2011 stand for the extended models of Klein and Inglis (2001) as well as Liu and Liu (2011),

whereas R1989 and KI1999 stand for Rabinovitch (1989) and Klein and Inglis (1999), respectively.
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4.6 Summary

In this chapter, different valuation models for vulnerable European options under

stochastic interest rates are presented and derived. First, the model of Klein and

Inglis (1999) which is an extension of the model of Klein (1996) was discussed

in greater deatils. Second, we extended the valuation models of Klein and Inglis

(2001) and Liu and Liu (2011) in the same way as Klein and Inglis (1999) extended

the model of Klein (1996). Third, we combined the features of these models in

a general valuation model. Therefore, the general model is the only model which

incorporates three sources of financial distress simultaneously: a decline in the value

of the counterparty’s assets, an increase in the value of the counterparty’s other

liabilities or an increase in the value of the option itself.

Despite the complexity of the default condition of our general model, we derived

an approximate closed form solution for vulnerable European calls and puts. In

particular, we approximated the default condition by employing a first order Taylor

series expansion and assumed that the returns of the option’s underlying and

the counterparty’s other liabilities are assumed to be uncorrelated. The obtained

approximate valuation formula depends on the two points around which the Taylor

series is expanded in the derivation. Choosing the points of expansion to be equal to

p1 = p2 = 1.5 in case of a European call and to be equal to p1 = p2 = −1.5 in case

of a European put, respectively, the approximate analytical solution is quite close

to the numerical solution for a wide range of parameters.

Based on various numerical examples and graphical illustrations, we compared the

option values obtained from our general model with those of the alternative models

for vulnerable European options under stochastic interest rates. All the considered

valuation models have in common that the reduction in the value of a vulnerable

European option (compared to a default-free European option) increases if the

option is deeper in the money, the time to maturity is longer and if the value of

the counterparty’s assets is low. The option values obtained from our general model

are typically the lowest, since it is the only model which accounts for all possible

sources of the counterparty’s default.
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5 American Options subject to Counterparty Risk

In this chapter, different valuation models for American options subject to

counterparty risk are presented and discussed. Due to the early exercise features

of American options, the counterparty’s default is modeled using the structural

approach of Black and Cox (1976) which allows for a default prior to the option’s

maturity. In particular, the counterparty’s default is triggered by the value of its

assets being below the value of its total liabilities for the first time.

Klein (1996), Klein and Inglis (2001) and Liu and Liu (2011) develop valuation

models for vulnerable European options assuming a deterministic risk-free interest

rate.12 In the following, we extend these models to analyze the properties of

American options subject to counterparty risk. In particular, we maintain their key

characteristics, especially with respect to the default condition, but adjust them to

be applicable in the context of vulnerable American options. Furthermore, we set

up a general valuation model which incorporates all the features and particularities

of the other models.

Due to the complexity of the models, closed form solutions cannot be derived.

Therefore, numerical methods have to be applied to compute the value of a

vulnerable American option. In particular, we use the least squares Monte Carlo

simulation approach suggested by Longstaff and Schwartz (2001) and adapt it

appropriately to be applicable to value vulnerable American options.

Section 5.1 outlines and discusses the assumptions of the considered theoretical

framework. In Section 5.2, we derive the partial differential equation characterizing

the price of an American option subject to counterparty risk. Section 5.3 explains

how the Longstaff-Schwartz approach can be used to solve this partial differential

equation in general. In Section 5.4, we extend the models of Klein (1996), Klein and

Inglis (2001) as well as Liu and Liu (2011) to be applicable for American options

subject to counterparty risk. Furthermore, we set up our general model. Section 5.5

provides a comparative analysis of the different valuation models based on numerical

examples. Section 5.6 gives a summary of the main findings.

12 In Chapter 3, the valuation models of Klein (1996), Klein and Inglis (2001) as well as of Liu
and Liu (2011) are presented and discussed in greater details.
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5.1 Assumptions

The assumptions that characterize the theoretical framework for the valuation of

European options subject to counterparty risk are based on Black and Scholes (1973),

Merton (1974), Black and Cox (1976), Klein (1996), Klein and Inglis (2001), Chang

and Hung (2006), Klein and Yang (2010, 2013) as well as on Liu and Liu (2011).

1. The price of the option’s underlying St follows a continuous-time geometric

Brownian motion. Assuming that the option’s underlying is a dividend-paying

stock, its dynamics are given by

dSt = (µS − q)St dt+ σS St dWS , (5.1)

where µS indicates the expected instantaneous return of the option’s

underlying, q denotes the continuous dividend yield, σS is the instantaneous

return volatility and dWS represents the standard Wiener process.

2. Likewise, the market value of the counterparty’s assets Vt follows a

continuous-time geometric Brownian motion. Its dynamics are given by

dVt = µV Vt dt+ σV Vt dWV , (5.2)

where µV is the expected instantaneous return of the counterparty’s assets,

σV gives the instantaneous return volatility and dWV is a standard Wiener

process. The instantaneous correlation between dWS and dWV equals ρSV .

3. The total liabilities Dt comprise all the obligations of the counterparty’s, i.e.

debt, short positions in financial securities and accruals. The dynamics follow

a continuous-time geometric Brownian motion which is given by

dDt = µD Dt dt+ σD Dt dWD , (5.3)

where µD is the expected instantaneous return of the counterparty’s liabilities,

σD indicates the instantaneous return volatility and dWD represents the

standard Wiener process. The instantaneous correlation between dWS and

dWD equals ρSD and ρV D between dWV and dWD, respectively.
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4. The market is perfect and frictionless, i.e. it is free of transaction costs or taxes

and the available securities are traded in continuous time.

5. The instantaneous risk-free interest rate r is assumed to be deterministic and

constant over time.

6. The expected instantaneous return of the option’s underlying as well as of

the counterparty’s assets and liabilities (µS, µV and µD) are deterministic and

constant over time. The same applies for the dividend yield q of the option’s

underlying.

7. The instantaneous return volatilities of the option’s underlying as well as of

the counterparty’s assets and liabilities (σS, σV and σD) are deterministic and

constant over time. The instantaneous correlations ρSV , ρSD and ρV D are also

constant and independent of time.

8. All the liabilities of the counterparty (i.e. debt, short positions in options, etc.)

are assumed to be of equal rank. Consequently, all creditors receive the same

proportion of their claim if the counterparty defaults.

9. Before the option’s maturity (i.e. t < T ), default occurs if the counterparty’s

assets Vt are less than the threshold level L:

Vt < L̄ or Vt < L(St, Dt). (5.4)

Depending on the considered valuation model, the threshold level L is

characterized in different ways and is either a constant or a function of the

stochastic variables St and Dt.

10. At the option’s maturity (i.e. t = T ), default occurs if the market value of the

counterparty’s assets VT are less than the threshold level L:

VT < L̄ or VT < L(ST , DT ). (5.5)

Depending on the considered valuation model, the threshold level L is

characterized in different ways and is either a constant or a function of the

stochastic variables ST and DT .
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11. If the counterparty is in default, the option holder receives the fraction 1− ωt

of the nominal claim, where ωt represents the precentage write-down on the

nominal claim at time t. The percentage write-down ωt can be endogenized.

Assuming that all the liabilities of the counterparty are ranked equally, the

proportion of the option holder’s claim which can be paid back is given by

(1− ωt) =
(1− α)Vt

L(St, Dt)
, (5.6)

where α represents the cost of default (e.g. bankruptcy or reorganization cost)

as a percentage of the counterparty’s assets.

5.2 Derivation of the Partial Differential Equation

Following the argument of Hull (2012: 309–312), we derive the partial differential

equation governing the price evolution of a vulnerable European option. In the

considered theoretical framework (see Section 5.1), the price of a vulnerable

American option Ft must be a function of the underlying St, the counterparty’s

assets Vt, the counterparty’s liabilities Dt and time t. According to Itô’s lemma, the

price evolution of a vulnerable American option is given by the following stochastic

differential equation:

dFt =
∂Ft

∂t
dt+ (µS − q)St

∂Ft

∂St

dt+
1

2
σ2

SS2
t

∂2Ft

∂S2
t

dt+ σSSt

∂Ft

∂St

dWS (5.7)

+ µV Vt

∂Ft

∂Vt

dt+
1

2
σ2

V V 2
t

∂2Ft

∂V 2
t

dt+ σV Vt

∂Ft

∂Vt

dWV + µDDt

∂Ft

∂Dt

dt

+
1

2
σ2

DD2
t

∂2Ft

∂D2
t

dt+ σDDt

∂Ft

∂Dt

dWD + ρSV σSσV StVt

∂2Ft

∂St∂Vt

dt

+ ρSDσSσDStDt

∂2Ft

∂St∂Dt

dt+ ρV DσV σDVtDt

∂2Ft

∂Vt∂Dt

dt.

To eliminate the Wiener processes dWS, dWV and dWD, a portfolio Πt consisting

of the American option Ft, the underlying St, the counterparty’s assets Vt and the

counterparty’s liabilities Dt must be set up.
13 In particular, this portfolio consists

13 To construct such a portfolio, it is necessary to assume that option’s underlying as well as the
counterparty’s assets and liabilities are traded securities. This assumption is not questionable
for the option’s underlying, but it is for both the counterparty’s assets and liabilities. As argued
by Klein (1996), it is likely that the counterparty’s assets and liabilities are not traded directly
in the market, but that their market values behave similarly as if they were traded securities.

102



of a short position in the American option and long positions in the underlying,

the counterparty’s assets and liabilities. The amount of shares in the long positions

are equal to ∂Ft/∂St, ∂Ft/∂Vt and ∂Ft/∂Dt, respectively. Hence, the value of the

portfolio at time t is given by

Πt = −Ft +
∂Ft

∂St

St +
∂Ft

∂Vt

Vt +
∂Ft

∂Dt

Dt. (5.8)

The change in the value of the portfolio over the time interval dt is characterized by

the total differential which is equal to

dΠt = −dFt +
∂Ft

∂St

dSt +
∂Ft

∂Vt

dVt +
∂Ft

∂Dt

dDt. (5.9)

Substituting Equations (5.1) to (5.3) and (5.7) into Equation (5.9) yields

dΠt = −∂Ft

∂t
dt+ qSt

∂Ft

∂St

− 1

2
σ2

SS2
t

∂2Ft

∂S2
t

dt − 1

2
σ2

V V 2
t

∂2Ft

∂V 2
t

dt (5.10)

− 1

2
σ2

DD2
t

∂2Ft

∂D2
t

dt − ρSV σSσV StVt

∂2Ft

∂St∂Vt

dt

− ρSDσSσDStDt

∂2Ft

∂St∂Dt

dt − ρV DσV σDVtDt

∂2Ft

∂Vt∂Dt

dt.

Since the portfolio dynamics are independent of the Wiener processes dWS, dWV

and dWD, the portfolio is riskless during the infinitesimal time interval dt. To avoid

arbitrage opportunities, the portfolio must earn the same return as other short-term

risk-free investments – namely the risk-free interest rate r:

rΠdt = dΠt. (5.11)

We substitute Equations (5.8) and (5.10) into Equation (5.11) which yields

r

(

−Ft +
∂Ft

∂St

St +
∂Ft

∂Vt

Vt +
∂Ft

∂Dt

Dt

)

dt (5.12)

=
∂Ft

∂t
dt − qSt

∂Ft

∂St

+
1

2
σ2

SS2
t

∂2Ft

∂S2
t

dt+
1

2
σ2

V V 2
t

∂2Ft

∂V 2
t

dt+
1

2
σ2

DD2
t

∂2Ft

∂D2
t

dt

+ ρSV σSσV StVt

∂2Ft

∂St∂Vt

dt+ ρSDσSσDStDt

∂2Ft

∂St∂Dt

dt

+ ρV DσV σDVtDt

∂2Ft

∂Vt∂Dt

dt.
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Rewriting Equation (5.12), the partial differential equation that characterizes the

price of an American option whose payoff at time T is contigent upon the price of

the option’s underlying as well as upon the value of both the counterparty’s assets

and liabilities is obtained. It is given by

0 =
∂Ft

∂t
− rFt + (r − q)St

∂Ft

∂St

+ rVt

∂Ft

∂Vt

+ rDt

∂Ft

∂Dt

(5.13)

+
1

2
σ2

SS2
t

∂2Ft

∂S2
t

+
1

2
σ2

V V 2
t

∂2Ft

∂V 2
t

+
1

2
σ2

DD2
t

∂2Ft

∂D2
t

+ ρSV σSσV StVt

∂2Ft

∂St∂Vt

+ ρSDσSσDStDt

∂2Ft

∂St∂Dt

+ ρV DσV σDVtDt

∂2Ft

∂Vt∂Dt

.

To obtain a unique solution to the partial differential equation, we must set up

the boundary conditions which specify the value of the American option based

on Assumptions 9 to 11 (see Section 5.1). For the American call, the boundary

conditions can be expressed as follows:

1. At the option’s maturity (i.e. t = T ), three different scenarios may occur.

If the option expires in the money and the counterparty does not default,

ST − K are paid out to the holder of an American call. If the option expires

in the money and the counterparty is in default, the entire assets of the

counterparty (less the default costs α) are distributed to the creditors. Since

all liabilities of the counterparty are ranked equally, all creditors receive

the same proportion of their claims. Hence, the holder of an American call

receives ((1− α)VT (ST − K)) /L(ST , DT ). If the option is out of the money

at maturity, the option holder receives nothing.

FT = CT =



































ST − K if ST ≥ K, VT ≥ L(ST , DT )

(1− α)VT

L(ST , DT )
(ST − K) if ST ≥ K, VT < L(ST , DT )

0 otherwise

(5.14)

2. If the counterparty defaults prior to maturity (i.e. t < T ), the American option

is immediately exercised. If the option is in the money at that point in time,

the entire assets of the counterparty (less the default costs α) are distributed

to the creditors. Since all liabilities of the counterparty are ranked equally, all
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creditors receive the same proportion of their claims. Hence, the holder of an

American call receives ((1− α)Vt (St − K)) /L(St, Dt). If the option is out of

the money at that point in time, the option holder receives nothing.

Ft = Ct =















(1− α)Vt

L(St, Dt)
(St − K) if St ≥ K, Vt < L(St, Dt)

0 otherwise

(5.15)

3. It may be optimal to exercise an American call prior to maturity (i.e. t < T )

even though the counterparty is not in default. Early exercise is optimal if

the early exercise payoff CEx

t = max(St − K, 0) is larger than the conditional

expected continuation value CCont

t , i.e. the expected future option payoff.

Ft = Ct =











St − K if CEx

t > CCont

t , Vt ≥ L(St, Dt)

No early exercise otherwise
(5.16)

The boundary conditions for the American put are given in analogy:

1. At the option’s maturity (i.e. t = T ), three different scenarios may occur.

If the option expires in the money and the counterparty does not default,

K − ST are paid out to the holder of an American put. If the option expires

in the money and the counterparty is in default, the entire assets of the

counterparty (less the default costs α) are distributed to the creditors. Since

all liabilities of the counterparty are ranked equally, all creditors receive

the same proportion of their claims. Hence, the holder of an American put

receives ((1− α)VT (K − ST )) /L(ST , DT ). If the option is out of the money

at maturity, the option holder receives nothing.

FT = PT =



































K − ST if ST ≤ K, VT ≥ L(ST , DT )

(1− α)VT

L(ST , DT )
(K − ST ) if ST ≤ K, VT < L(ST , DT )

0 otherwise

(5.17)

2. If the counterparty defaults prior to maturity (i.e. t < T ), the American put

is immediately exercised. If the option is in the money at that point in time,
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the entire assets of the counterparty (less the default costs α) are distributed

to the creditors. Since all liabilities of the counterparty are ranked equally, all

creditors receive the same proportion of their claims. Hence, the holder of an

American put receives ((1− α)Vt (K − St)) /L(St, Dt). If the option is out of

the money at that point in time, the option holder receives nothing.

Ft = Pt =















(1− α)Vt

L(St, Dt)
(K − St) if St ≤ K, Vt < L(St, Dt)

0 otherwise

(5.18)

3. It may be optimal to exercise an American put prior to maturity (i.e. t < T )

even though the counterparty is not in default. Early exercise is optimal if

the early exercise payoff P Ex

t = max(K − St, 0) is larger than the conditional

expected continuation value P Cont

t , i.e. the expected future option payoff.

Ft = Pt =











K − St if P Ex

t > P Cont

t , Vt ≥ L(St, Dt)

No early exercise otherwise
(5.19)

The actual characterization of the boundary conditions depends on the choice of a

specific valuation model (see Section 5.4). In particular, the threshold level L(St, Dt)

must be defined according to the chosen model.

Referring to Equations (5.15) and (5.18), we assume that an American option is

immediately exercised if the counterparty defaults at a given time t prior to the

option’s maturity. Chang and Hung (2006) as well as Klein and Yang (2010) also

deal with the valuation of vulnerable American options. However, their assumptions

with respect to the option payoff if the counterparty defaults prior to maturity

differ from our assumption. In particular, Chang and Hung (2006) assume that the

American option is not necessarily exercised in the case of the counterparty’s default,

i.e. the option holder has the opportunity to keep the American option unexercised

until maturity, although the counterparty is insolvent. Klein and Yang (2010), in

turn, suppose that only in-the-money American options are immediately exercised

if the counterparty is in default prior to maturity. If the counterparty is in default

and the American option is out of the money, it is not exercised.
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5.3 Solution to the Partial Differential Equation

The partial differential equation given by Equation (5.13) depends on the price

of the option’s underlying, the counterparty’s assets and liabilities, the risk-free

interest rate, the dividend yield of the option’s underlying as well as on the return

volatilities. All these variables and parameters are independent of the risk preferences

of the investors.14 Since the risk preferences of the investors do not enter the partial

differential equation, they cannot affect its solution. Consequently, any type of risk

preferences can be used when solving the partial differential equation.

The partial differential equation given by Equation (5.13) subject to the boundary

conditions specified by Equations (5.14) to (5.16) and (5.17) to (5.19), respectively,

can be solved using the regression-based Monte Carlo simulation approach suggested

by Longstaff and Schwartz (2001). Even though this approach has originally been

derived to value plain vanilla American options, it can also be applied in more

complex theoretical frameworks in which the price of the considered option depends

on more than one stochastic variable (see Longstaff & Schwartz, 2001; Moreno &

Navas, 2003). It is optimal to exercise an American option prior to its maturity if the

option payoff based on the immediate exercise is greater than the option’s conditional

expected continuation value. Longstaff and Schwartz (2001) suggest to estimate the

conditional expectation by a least-squares regression based on the cross-sectional

information provided by Monte Carlo simulation. Consequently, sample paths need

to be generated for the price of the option’s underlying as well as for the market

value of the counterparty’s assets and liabilities.

Using the approach of Cox and Ross (1976) and Harrison and Pliska (1981), the

risk-neutral stochastic processes for the price of the option’s underlying as well as

for the market values of the counterparty’s assets and liabilities are equal to

dSt = (r − q)St dt+ σS St dWS, (5.20)

14 Following the argument of Hull (2012: 311–312), the partial differential equation given by
Equation (5.13) would not be independent of risk preferences if it included the expected returns
of the option’s underlying, the counterparty’s assets and the counterparty’s liabilities. These
parameters depend on risk preferences, since their magnitude represents the level of risk aversion
of the investor: the higher the level of the investor’s risk aversion, the higher the required
expected return.
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dVt = r Vt dt+ σV Vt dWV (5.21)

and

dDt = r Dt dt+ σD Dt dWD, (5.22)

where r denotes the risk-free interest rate and all other variables are defined as

before.

Applying Itô’s lemma to Equations (5.20) to (5.22), the stochastic processes for

lnSt, ln Vt and lnDt are obtained. They are given by

d lnSt =
(

r − q − 1

2
σ2

S

)

dt+ σSdWS, (5.23)

d ln Vt =
(

r − 1

2
σ2

V

)

dt+ σV dWV (5.24)

and

d lnDt =
(

r − 1

2
σ2

D

)

dt+ σDdWD. (5.25)

Rewriting Equations (5.23) to (5.25), expressions for the price of the option’s

underlying as well as for the market values of the counterparty’s assets and liabilities

at every point in time can be derived. Using ∆t as the time step, the evolution of

the stochastic variables over time is given by

St+∆t = St e(r−q− 1
2

σ2
S
)∆t+σS

√
∆t xS , (5.26)

Vt+∆t = Vt e(r− 1
2

σ2
V
)∆t+σV

√
∆t xV (5.27)

and

Dt+∆t = Dt e(r− 1
2

σ2
D
)∆t+σD

√
∆t xD , (5.28)

where the three random variables xS, xV and xD are jointly standard normally

distributed and their respective correlations are given by the coefficients ρSV , ρSD

and ρV D.

Equations (5.26) to (5.28) can be used in the Monte Carlo simulation to

generate sample paths for the price of the option’s underlying as well as for the
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market values of the counterparty’s assets and liabilities (S0, S∆t, ..., St, ..., ST ),

(V0, V∆t, ..., Vt, ..., VT ) and (D0, D∆t, ..., Dt, ..., DT ), where t denotes the time index

and ∆t is the discrete time step. At any time step t, the dynamic programming

recursion functions for American calls and puts, respectively, are given by

Ct =



















max
(

St − K, Et

[

e−r∆t Ct+∆t | St, Vt, Dt

])

if Vt ≥ L(St, Dt)

(1− α)Vt

L(St, Dt)
max (St − K, 0) if Vt < L(St, Dt)

(5.29)

and

Pt =



















max
(

K − St, Et

[

e−r∆t Pt+∆t | St, Vt, Dt

])

if Vt ≥ L(St, Dt)

(1− α)Vt

L(St, Dt)
max (K − St, 0) if Vt < L(St, Dt)

(5.30)

If the counterparty defaults, the option is immediately exercised irrespective of

whether the option is in the money or not. If the counterparty is not in default,

however, the option holder must decide whether he wants to exercise the option prior

to maturity. In particular, the option is exercised immediately if the option payoff

is greater than the conditional expectation of continuation under the risk-neutral

measure. Being at a given time step of the sample path, this decision, however,

cannot be taken along an individual sample path, since the option holder cannot

exploit knowledge of the future prices along that path. To avoid anticipativity,

the total set of sample paths is used to approximate the conditional expected

continuation value by regressing the conditional expectation against M basis

functions ψm( · ). At each time step, the same set of basis functions is used, but

the coefficients βm,t are time-dependent. Consequently, the relationship between the

expected option value one time step ahead and the basis functions are given by the

following expressions:

Et

[

e−r∆t Ct+∆t | St, Vt, Dt

]

≈ β0, t + β1, t ψ1(St, Vt, Dt) (5.31)

+ · · ·+ βM, t ψM(St, Vt, Dt),

Et

[

e−r∆t Pt+∆t | St, Vt, Dt

]

≈ β0, t + β1, t ψ1(St, Vt, Dt) (5.32)

+ · · ·+ βM, t ψM(St, Vt, Dt).
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Since the coefficients βm,t are not related to a particular sample path, the decisions

based on the approximated conditional expected continuation value of the considered

American option are non-anticipative. The coefficients βm,t can be estimated by a

simple least-squares regression minimizing the sum of the squared residuals. The

sample paths for the option’s underlying as well as for the counterparty’s assets and

liabilities are generated using Monte Carlo simulation, where Si
t , V i

t and Di
t give the

value of the respective stochastic variable at time t along sample path i = 1, ..., N .

Based on these considerations, the regression model is equal to

e−r∆t Ci
t+∆t = β0, t + β1, t ψ1(S

i
t , V i

t , Di
t) (5.33)

+ · · ·+ βM, t ψM(S
i
t , V i

t , Di
t) + εi

and

e−r∆t P i
t+∆t = β0, t + β1, t ψ1(S

i
t , V i

t , Di
t) (5.34)

+ · · ·+ βM, t ψM(S
i
t , V i

t , Di
t) + εi,

where εi is the residual for each sample path. The obtained estimators β̂k, t can be

used to approximate the conditional expected continuation value of the American

option for each sample path i. For vulnerable American calls and puts, respectively,

the approximation is given by

e−r∆t Ci
t+∆t = β̂0, t + β̂1, t ψ1(S

i
t , V i

t , Di
t) (5.35)

+ · · · + β̂M, t ψM(Si
t , V i

t , Di
t)

and

e−r∆t P i
t+∆t = β̂0, t + β̂1, t ψ1(S

i
t , V i

t , Di
t) (5.36)

+ · · · + β̂M, t ψM(Si
t , V i

t , Di
t).

Since the regression-based approach of Longstaff and Schwartz (2001) is a dynamic

programing method, the valuation problem must be solved recursively, i.e. the

procedure starts at the option’s maturity and goes backwards in time. Using the

generated sample paths for the option’s underlying as well as for the counterparty’s

assets and liabilities, the dynamic programming recursion functions at the option’s

maturity can be determined for each sample path i. At the option’s expiration,
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these functions are simply given by the payoff of the vulnerable American option.

For vulnerable American calls and puts, respectively, they are equal to

Ci
T =



















max
(

Si
T − K, 0

)

if V i
T ≥ L(Si

T , Di
T )

(1 − α)V i
T

L(Si
T , Di

T )
max

(

Si
T − K, 0

)

if V i
T < L(Si

T , Di
t)

(5.37)

and

P i
T =



















max
(

K − Si
T , 0

)

if V i
T ≥ L(Si

T , Di
T )

(1 − α)V i
T

L(Si
T , Di

T )
max

(

K − Si
T , 0

)

if V i
T < L(Si

T , Di
T )

(5.38)

Longstaff and Schwartz (2001) argue that it is more efficient to consider only the

subset of sample paths for which a decision must be taken at a given time step t when

regressing the conditional expectation against the basis functions. Consequently, this

subset must contain all the sample paths in which the option is in the money at

the given time step t. This subset is denoted by It. At the time step T − ∆t, the

regression model for American calls and puts, respectively, is thus given by

e−r∆t Ci
t = β0, T −∆t + β1, T −∆t ψ1(S

i
T −∆t, V i

T −∆t, Di
T −∆t) (5.39)

+ · · ·+ βM, T −∆t ψM(S
i
T −∆t, V i

T −∆t, Di
T −∆t) + εi i ǫ IT −∆t

and

e−r∆t P i
t = β0, T −∆t + β1, T −∆t ψ1(S

i
T −∆t, V i

T −∆t, Di
T −∆t) (5.40)

+ · · ·+ βM, T −∆t ψM(S
i
T −∆t, V i

T −∆t, Di
T −∆t) + εi i ǫ IT −∆t

The estimated parameters β̂m, T −∆t obtained from the least squares regression are

used to compute the approximate continuation value of the option. Comparing this

value with the payoff of immediate exercise, it can be decided whether the option

should be exercised early.

The above procedure is repeated going backwards in time. On each sample path

i, the cash flows resulting from early exercise decisions must be considered. At the

time step t on sample path i, there may be a time step t∗ ≥ t at which the American
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option has been exercised early. Taking this issue into account, the regression model

for American calls and puts, respectively, can be rewritten as

e−r(t∗−t) Ci
t∗ = β0, t + β1, t ψ1(S

i
t , V i

t , Di
t) (5.41)

+ · · · + βM, t ψM(Si
t , V i

t , Di
t) + εi i ǫ It

and

e−r(t∗−t) P i
t∗ = β0, t + β1, t ψ1(S

i
t , V i

t , Di
t) (5.42)

+ · · · + βM, t ψM(Si
t , V i

t , Di
t) + εi i ǫ It.

Since there is at most one exercise time for each path, it may be the case that after

comparing the payoff of immediate exercise with the approximate continuation value

on a particular path, the exercise time t∗ needs to be reset to a another period.

To apply the above approach to a valuation model for vulnerable American options,

the threshold level L(St, Dt) must be specified in accordance. Furthermore, the basis

functions used in the linear regression must be chosen appropriately.

5.4 Valuation Models

Various valuation models for vulnerable European options have been developed over

the last three decades based on the structural approach of Merton (1974). In this

framework, the predominant valuation models are those of Klein (1996), Klein and

Inglis (2001) and Liu and Liu (2011). In the following, we use the main ideas of

these models to set up equivalent models for vulnerable American options. Due to

the early exercise feature of American options, the counterparty’s default may occur

prior to maturity. Hence, the structural approach of Black and Cox (1976) need to

be considered. Furthermore, we set up a general valuation model incorporating the

features of the other models. To value the vulnerable American options, the least

squares Monte Carlo simulation by Longstaff and Schwartz (2001) is applied.

In Section 5.3, we generally showed how the Longstaff-Schwartz approach is adjusted

to value vulnerable American options. To apply this method to a particular valuation

model, the dynamic programming recursion functions in Equations (5.29) and (5.30)

as well as the basis functions ψm(St, Vt, Dt) must be specified accordingly.
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5.4.1 Absence of Default Risk

Longstaff and Schwartz (2001) originally derived the regression-based approach

to value American options in the absence of counterparty risk. The dynamic

programming recursion functions for default-free American calls and puts,

respectively, are given by

Ct = max
(

St − K, Et

[

e−r∆t Ct+∆t | St

])

(5.43)

and

Pt = max
(

K − St, Et

[

e−r∆t Pt+∆t | St

])

. (5.44)

An American option is exercised prior to maturity only if the payoff of an

immediate exercise is larger than the option’s continuation value. Consequently,

the crucial point in the Longstaff-Schwartz approach is the estimation of the

conditional expected continuation value. As shown in Equations (5.31) and (5.32),

an approximation for the conditional expected continutaion value can be obtained by

regressing the discounted expected future cash flows against a set of basis functions.

Longstaff and Schwartz (2001) use Laguerre polynomials for these functions and

argue that using more than three basis functions does not yield more accurate results.

In particular, the basis functions are given as follows:

ψ1 = 1 − St, (5.45)

ψ2 =
1

2

(

2 − 4St + S2t
)

,

ψ3 =
1

6

(

6 − 18St + 9S2t − S3t
)

.

5.4.2 Deterministic Liabilities

Originally, Klein (1996) deals with the valuation of vulnerable European options

and assumes that the counterparty defaults if its assets are lower than the total

liabilities. The total liabilities of the counterparty are constant over time and must

include the short position in the option by construction, since it obliges the option

writer to deliver or purchase the option’s underlying if the option is exercised. In

the context of American options, we must account for the counterparty’s default
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occuring prior to maturity and need adjust the default condition of Klein (1996)

accordingly. Hence, the default boundary L(St, Dt) must be given by

L(St, Dt) = L̄ = D̄ = D0. (5.46)

Inserting this expression into Equations (5.29) and (5.30), the dynamic programming

recursion functions for vulnerable American calls and puts, respectively, based on

the ideas of Klein (1996) are given by

Ct =



















max
(

St − K, Et

[

e−r∆t Ct+∆t | St, Vt

])

if Vt ≥ D̄

(1 − α)Vt

D̄
max (St − K, 0) if Vt < D̄

(5.47)

and

Pt =



















max
(

K − St, Et

[

e−r∆t Pt+∆t | St, Vt

])

if Vt ≥ D̄

(1 − α)Vt

D̄
max (K − St, 0) if Vt < D̄

(5.48)

Referring to the first line in Equations (5.47) and (5.48), the holder of an American

option must decide whether the option should be exercised early at the given

time step t if the counterparty is not in default. Early exercise is optimal only

if the conditional expected continuation value is lower than the option payoff of an

immediate exercise. If the counterparty, however, defaults at the given time step t,

the American option is immediately exercised irrespective of whether the option is in

the money or not according to the second line in Equations (5.47) and (5.48). In this

case, the entire assets of the counterparty (less the default costs α) are distributed

to all the creditors. Since all liabilities of the counterparty are ranked equally, all

creditors receive the same proportion of their claims. This proportion is given by

the ratio
(

(1 − α)Vt

)

/D̄. Consequently, the holder of a vulnerable American call

receives
(

(1 − α)Vt max(St − K, 0)
)

/D̄, whereas
(

(1 − α)Vt max(K − St, 0)
)

/D̄ is

paid out to the holder of a vulnerable American put.

To decide whether it is optimal to exercise the American option prior to maturity

if the counterparty is not in default, the conditional expected continuation value

must be determined by regressing the discounted future cash flows against a set of
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basis functions of the state variables as illustrated in Equations (5.31) and (5.32).

Referring to Moreno and Navas (2003) as well as to Chang and Hung (2006), it

is sufficient to use a total of nine basis functions in case of two state variables. In

particular, the following Laguerre polynomials are used:

ψ1 = 1 − St, (5.49)

ψ2 =
1

2

(

2 − 4St + S2
t

)

,

ψ3 =
1

6

(

6 − 18St + 9S2
t − S3

t

)

,

ψ4 = 1 − Vt,

ψ5 =
1

2

(

2 − 4Vt + V 2
t

)

,

ψ6 =
1

6

(

6 − 18Vt + 9V 2
t − V 3

t

)

,

ψ7 = 1 − StVt,

ψ8 =
1

2

(

2 − 4S2
t Vt + (S2

t Vt)
2
)

,

ψ9 =
1

6

(

6 − 18StV
2

t + 9 (StV
2

t )
2 − (StV

2
t )

3
)

.

5.4.3 Deterministic Liabilities and Option induced Default Risk

Like Klein (1996), Klein and Inglis (2001) originally set up a valuation model for

vulnerable European options in which the counterparty can only default at the

option’s maturity. They recognize that the short position in the option itself may

cause additional financial distress. To account for this potential source of default risk,

they split the counterparty’s total liabilities into two components. In particular, the

total liabilities consist of the short position in the option on the one hand and all

the other liabilities on the other which are assumed to be constant over time. When

dealing with the valuation of American options, it is reasonable to consider that the

counterparty may default prior to maturity. If we account for this issue and maintain

the key features of Klein and Inglis (2001), the time-dependent default boundary

L(St, Dt) for American calls and puts, respectively, is given as follows:

L(St, Dt) = L(St) = D̄ + St − K = D0 + St − K, (5.50)

L(St, Dt) = L(St) = D̄ + K − St = D0 + K − St. (5.51)
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Inserting the above expressions into Equations (5.29) and (5.30), the dynamic

programming recursion functions for the Longstaff-Schwartz approach based on the

ideas of Klein and Inglis (2001) are obtained. For vulnerable American calls and

puts, respectively, they are equal to

Ct =



















max
(

St − K, Et

[

e−r∆t Ct+∆t | St, Vt

])

if Vt ≥ D̄ + St − K

(1 − α)Vt

D̄ + St − K
max (St − K, 0) if Vt < D̄ + St − K

(5.52)

and

Pt =



















max
(

K − St, Et

[

e−r∆t Pt+∆t | St, Vt

])

if Vt ≥ D̄ + K − St

(1 − α)Vt

D̄ + K − St

max (K − St, 0) if Vt < D̄ + K − St

(5.53)

Like in the extended Klein model, the holder of the American option must decide

whether the option should be immediately exercised if the counterparty is not in

default at time t according to the first line in Equations (5.52) and (5.53). Early

exercise is optimal only if the conditional expected continuation value is lower

than the option payoff of an immediate exercise. The second line in Equations

(5.52) and (5.53) refers to the scenario in which the counterparty is in default at

time t. In this case, the American option is immediately exercised irrespective of

whether the option is in the money or not. The entire assets of the counterparty

(less the default costs α) are distributed to the creditors. Since all liabilities of the

counterparty are ranked equally, all creditors receive the same proportion of their

claims. Due to the construction of the default boundary, this proportion depends

on the type of the considered option. It is given by
(

(1 − α)Vt

)

/
(

D̄ + St − K
)

for a vulnerable American call, whereas it is equal to
(

(1 − α)Vt

)

/
(

D̄ + K − St

)

for a vulnerable American put. Consequently, the holder of a vulnerable American

call receives
(

(1 − α)Vt max(St − K, 0)
)

/
(

D̄ + St − K
)

, whereas the holder of a

vulnerable American put receives
(

(1 − α)Vt max(K − St)
)

/
(

D̄ + K − St

)

.

To decide whether it is optimal to exercise the American option prior to maturity if

the counterparty is not in default, the conditional expected continuation value must

be determined by regressing the discounted future cash flows against a set of basis

functions of the state variables as illustrated in Equations (5.31) and (5.32). Like
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in the extended Klein model, the value of the vulnerable American option based on

the extended Klein-Inglis model is driven by two state variables. Consequently, the

same Laguerre polynomials as before can be used as basis functions:

ψ1 = 1 − St, (5.54)
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(
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(
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2 − (StV

2
t )
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)
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5.4.4 Stochastic Liabilities

Liu and Liu (2011) also suggest a valuation model for vulnerable European options.

Like in the models of Klein (1996) and Klein and Inglis (2001), the counterparty’s

default can only occur at the option’s maturity and is triggered by the counterparty’s

assets being lower than the total liabilities. In contrast to the previous models, Liu

and Liu (2011) assume that the market value of the counterparty’s total liabilities

is stochastic and follows a geometric Brownian motion as given by Equation (5.3).

It is important to note that the short position in the option is implicitly included in

the counterparty’s total liabilities, but its impact on the value of the couterparty’s

total liabilities is not explicitly modeled (unlike in the Klein-Inglis model). In the

valuation of American options, it is important to consider that the counterparty

may also default prior to maturity. If we consider this issue and follow the key

aspects of Liu and Liu (2011), especially with respect to the default condition, the

time-dependent default boundary L(St, Dt) must be given by

L(St, Dt) = L(Dt) = Dt. (5.55)
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Inserting this expression into Equations (5.29) and (5.30), the dynamic programming

recursion functions for vulnerable American calls and puts, respectively, based on

the extended model of Liu and Liu (2011) are given by

Ct =



















max
(

St − K, Et

[

e−r∆t Ct+∆t | St, Vt, Dt

])

if Vt ≥ Dt

(1 − α)Vt

Dt

max (St − K, 0) if Vt < Dt

(5.56)

and

Pt =



















max
(

K − St, Et

[

e−r∆t Pt+∆t | St, Vt, Dt

])

if Vt ≥ Dt

(1 − α)Vt

Dt

max (K − St, 0) if Vt < Dt

(5.57)

Referring to the first line in Equations (5.56) and (5.57), the holder of an American

option must decide whether the option should be exercised early at the given

time step t if the counterparty is not in default. Early exercise is optimal only

if the conditional expected continuation value is lower than the option payoff of an

immediate exercise. If the counterparty, however, defaults at the given time step t,

the American option is immediately exercised irrespective of whether the option is in

the money or not according to the second line in Equations (5.56) and (5.57). In this

case, the entire assets of the counterparty (less the default costs α) are distributed

to all the creditors. Since all liabilities of the counterparty are ranked equally, all

creditors receive the same proportion of their claims. This proportion is given by

the ratio
(

(1 − α)Vt

)

/Dt. Consequently, the holder of a vulnerable American call

receives
(

(1 − α)Vt max(St − K, 0)
)

/Dt, whereas
(

(1 − α)Vt max(K − St, 0)
)

/Dt

is paid out to the holder of a vulnerable American put.

To decide whether it is optimal to exercise the American option prior to maturity

if the counterparty is not in default, the conditional expected continuation value

must be determined by regressing the discounted future cash flows against a set of

basis functions of the state variables as illustrated in Equations (5.31) and (5.32).

Unlike in the previously presented models, the value of the vulnerable American

option is driven by three state variables in the extended Liu-Liu model, since the

price of the option’s underlying as well as the counterparty’s assets and liabilities

are stochastic. Consequently, more basis functions need to be used in the estimation
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of the option’s conditional expected continuation value. Setting up the Laguerre

polynomials in the trivariate case in analogy to the bivariate case of the extended

Klein and Klein-Inglis model results in a total of 18 basis functions.15 In particular,

they are given as follows:

ψ1 = 1 − St (5.58)
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15 In the course of this dissertation, we also tested a higher number of Laguerre polynomials as well
as different basis functions especially with respect to the combinations of the state variables’
cross products. However, the effect on the accuracy of the results was only marginal. This result
is consistent with Longstaff and Schwartz (2001), Moreno and Navas (2003) as well as Chang
and Hung (2006).
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5.4.5 General Model

In our general model, we pick up on the ideas of both Klein and Inglis (2001)

and Liu and Liu (2011). In particular, we assume that the short position in the

option may increase the counterparty’s default risk and the market value of the

counterparty’s other liabilities follows a geometric Brownian motion as given by

Equation (5.3). At time t, the counterparty’s total liabilities are given by Dt+St −K

in the case of an American call and Dt + K − St in the case of an American put,

respectively. Consequently, the default boundary L(St, Dt) indicating the default

boundary depends on the type of the considered option. For vulnerable American

calls and puts, respectively, it is given by the following expressions:

L(St, Dt) = Dt + St − K (5.59)

L(St, Dt) = Dt + K − St. (5.60)

Plugging these expressions into Equations (5.29) and (5.30), the dynamic

programming recursion functions for vulnerable American calls and puts,

respectively, based on the ideas of the general model are given as follows:

Ct =



















max
(

St − K, Et

[

e−r∆t Ct+∆t | St, Vt, Dt

])

if Vt ≥ Dt + St − K

(1 − α)Vt

Dt + St − K
max (St − K, 0) if Vt < Dt + St − K

(5.61)

Pt =



















max
(

K − St, Et

[

e−r∆t Pt+∆t | St, Vt, Dt

])

if Vt ≥ Dt + K − St

(1 − α)Vt

Dt + K − St

max (K − St, 0) if Vt < Dt + K − St

(5.62)

In analogy to the previously presented valuation models, the holder of the American

option must decide whether the option should be immediately exercised if the

counterparty is not in default at time t. According to the first line in Equations (5.61)

and (5.62), early exercise is optimal only if the conditional expected continuation

value is lower than the option payoff of an immediate exercise. The second line

in Equations (5.61) and (5.62) refers to the scenario in which the counterparty is

in default at time t. In this case, the American option is immediately exercised

irrespective of whether the option is in the money or not. The counterparty’s entire

assets (less the default costs α) are distributed to the creditors. Since all liabilities of
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the counterparty are ranked equally, all creditors receive the same proportion of their

claims. Due to the construction of the default boundary, this proportion depends

on the type of the considered option. It is given by
(

(1 − α)Vt

)

/
(

Dt + St − K
)

for a vulnerable American call, whereas it is equal to
(

(1 − α)Vt

)

/
(

Dt + K − St

)

for a vulnerable American put. Consequently, the holder of a vulnerable American

call receives
(

(1 − α)Vt max(St − K, 0)
)

/
(

Dt + St − K
)

, whereas the holder of a

vulnerable American put receives ((1 − α)Vt max(K − St)) /
(

Dt + K − St

)

.

Looking at Equations (5.61) and (5.62), it becomes clearly evident that our general

valuation model incorporates the key features of Klein (1996), Klein and Inglis (2001)

and Liu and Liu (2011). The communalities and differences between these models

are summarized as follows:

1. If the counterparty’s other liabilities are assumed to be constant over time,

the general model is reduced to the extended model of Klein and Inglis (2001)

represented by Equations (5.52) and (5.53), since then the default condition

is given by Vt < D̄ + St − K and Vt < D̄ + K − St, respectively.

2. If the option holder’s claim ST − K and K − ST , respectively, is removed

from the default condition and the counterparty’s other liabilities still follow

a geometric Brownian motion, our general model collapses to the extended

model of Liu and Liu (2011) specified by Equations (5.56) and (5.57), since

the default condition is equal to Vt < Dt in this case.

3. If the option holder’s claim St−K and K−St, respectively, is removed from the

default condition and the market value of the counterparty’s other liabilities

is assumed to be constant over time, our general model is reduced to the

extended model of Klein (1996) specified by Equations (5.47) and (5.48), since

the default condition is equal to Vt < D̄ in this case.

To decide whether it is optimal to exercise the American option prior to maturity

if the counterparty is not in default, the conditional expected continuation value

must be determined by regressing the discounted future cash flows against a set of

basis functions of the state variables as illustrated in Equations (5.31) and (5.32).

In the general model, the value of a vulnerable American option is driven by the

same three state variables as in the Liu-Liu model. Consequently, the same 18 basis
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functions as in the model of Liu and Liu (2011) should be applied in the estimation

of the option’s conditional expected continuation value. These basis functions are

given as follows:

ψ1 = 1 − St (5.63)
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5.5 Numerical Examples

In this section, we present various numerical examples to compare the results of

the different valuation models for American options subject to counterparty risk.

Since the entire payoff of the option cannot be made if the option writer defaults,
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it should be expected that vulnerable options will have lower values than otherwise

identical non-vulnerable American options. Consequently, the upper limit for the

value of a vulnerable American option is given by the default-free option price

obtained from the standard Longstaff-Schwartz approach. Furthermore, a vulnerable

American option must have a higher value than an otherwise identical vulnerable

European option due to the early exercise features.

The starting point of the following comparative analysis is a typical market situation

for an American option. At today’s point in time (t = 0), the option is at the money

(S0 = 200, K = 200) and expires in six months (T = 0.5). The return volatility

of the option’s underlying equals 25% (σS = 0.25) and its dividend yield is zero

(q = 0). The risk-free interest rate is assumed to be 5% (r = 0.05). The option

writer is assumed to be highly levered (V0 = 1000, D0 = 900). The return volatility

of both the counterparty’s assets and liabilities is assumed to be 25% (σV = 0.25,

σD = 0.25). The correlations between the returns of the option’s underlying, the

counterparty’s assets and liabilities are assumed to be zero (ρSV = ρV D = ρSD = 0).

If the counterparty defaults, deadweight costs of 25% are applied (α = 0.25).

The price of the vulnerable American option is computed based on the different

valuation models presented in Section 5.4 using the least squares Monte Carlo

simulation. We use 10 000 sample paths with 50 time steps (NSim = 10 000, NT = 50)

and obtain the value of the American option by computing the mean over 100 re-runs

of the algorithm (n = 100).

In a first step, we analyze whether the parameters for the least squares Monte Carlo

simulation are appropriately chosen and whether the obtained results are reasonably

accurate. The confidence interval, for instance, can be used to examine the accuracy

of the estimated option value. Assuming that the option values obtained from the

least squares Monte Carlo simulation are normally distributed, the two-sided 95%

confidence interval for the option value is given by

CI =
1

n

n
∑

j=1

AOj ± 1.96 · σ√
n

, (5.64)

where AOj gives the value of the American option based on run j = 1, ..., n and σ

is the standard deviation of the obtained option values.
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Table 5.1 gives the option value as well as the corresponding 95% confidence interval

for the different valuation models using the previously mentioned numerical example.

The confidence intervals of all the considered valuation models are relatively tight

indicating that the computed option values are quite accurate. Hence, the parameters

for the least squares Monte Carlo simulation (NSim = 10 000, NT = 50, n = 100)

seem to be reasonably chosen.

American Call

Option Value 95% Confidence Interval

Longstaff & Schwartz (2001) 16.4951 [16.4867; 16.5435]

Ext. Klein (1996) 12.6375 [12.6027; 12.6723]

Ext. Klein & Inglis (2001) 12.0900 [12.0579; 12.1221]

Ext. Liu & Liu (2011) 10.8535 [10.8240; 10.8830]

General Model 10.4402 [10.4131; 10.4673]

American Put

Option Value 95% Confidence Interval

Longstaff & Schwartz (2001) 12.0813 [12.0521; 12.1105]

Ext. Klein (1996) 9.7293 [9.7037; 9.7549]

Ext. Klein & Inglis (2001) 9.5210 [9.4955; 9.5465]

Ext. Liu & Liu (2011) 8.5211 [8.4972; 8.5450]

General Model 8.3441 [8.3221; 8.3661]

Table 5.1: Confidence Intervals for the Monte Carlo Simulation

Unless otherwise noted, the calculations are based on the following parameters: S0 = 200, K = 200,

V0 = 1 000, D0 = 900, T − t = 0.5, r = 0.05, q = 0, σS = 0.25, σV = 0.25, σD = 0.25, ρSV = 0,

ρSD = 0, ρV D = 0 and α = 0.25. The option values for the different valuation models are computed

by the least squares Monte Carlo simulation approach described in Sections 5.3 and 5.4. The

simulation is based on 10 000 sample paths with 50 time steps. To improve the accuracy of the

obtained option values the algorithm is re-run 100 times.

Figures 5.1 and 5.2 depict the values of American calls and puts, respectively, as

functions of the price of the option’s underlying, the option’s time to maturity

and the value of the counterparty’s assets for the valuation models presented in
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the previous section. As expected, the option values obtained from the extended

Klein, the extended Klein-Inglis, the extended Liu-Liu and our general model are

always lower than the default-free option value given by the model of Longstaff and

Schwartz (2001).

Figure 5.1: American Calls subject to Counterparty Risk

Unless otherwise noted, the calculations are based on the following parameters: S0 = 200, K = 200,

V0 = 1 000, D0 = 900, T − t = 0.5, r = 0.05, q = 0, σS = 0.25, σV = 0.25, σD = 0.25, ρSV = 0,

ρSD = 0, ρV D = 0 and α = 0.25. The option values for the different valuation models are computed

by the least squares Monte Carlo simulation approach described in Sections 5.3 and 5.4. The

simulation is based on 10 000 sample paths with 50 time steps. To improve the accuracy of the

obtained option values the algorithm is re-run 100 times.

In the upper left diagram of Figure 5.1, the value of the vulnerable American call

is plotted against the price of the option’s underlying. It can be seen that the

price difference between default-free and vulnerable American calls is largest for

at-the-money options. This price difference decreases if the American call is either

further out of the money or further in the money. Additionally, it can be observed

that option values obtained from the extended Klein-Inglis and our general model
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converge if the price of the option’s underlying increases, i.e. if the American call

is further in the money. This observation is attributed to the fact the option itself

is included in the default boundary of both models. For deep in-the-money options,

the counterparty’s default risk is predominantly driven by the short position in

the American option, since it takes an increasing share of the counterparty’s total

liabilities.

Referring to the upper left diagram of Figure 5.1, the effect of the time to maturity on

the value of vulnerable American calls is analyzed. If the time to maturity decreases,

the difference between the default-free and the vulnerable American call values is

also reduced. This result is not surprising, since the counterparty is less likely to

default if the option’s maturity date gets closer.

The lower diagram of Figure 5.1 shows that the price of a vulnerable American

call converges to the default-free option price if the value of the counterparty’s

assets increases, since the probability of hitting the default boundary is decreased in

this case. Our general model has the lowest convergence speed which is most likely

explained by the fact that this model is the only one that incorporates three sources

of default risk simultaneously: a decrease in the value of the counterparty’s assets,

an increase in the counterparty’s other liabilities as well as an increase in the option

value itself.

A similar analysis can also be done for vulnerable American puts. In the upper left

diagram of Figure 5.2, the value of the vulnerable American put is plotted against

the price of the option’s underlying. It can be seen that the price difference between

default-free and vulnerable American puts is largest for at-the-money options. This

price difference decreases if the American call is either further out of the money

or further in the money. Moreover, it can be observed that option values obtained

from the different valuation models converge if the price of the option’s underlying

decreases, i.e. if the American put is in the money. This observation is attributed to

the fact it is optimal to immediately exercise the American put if it is sufficiently

deep in the money.

Referring to the upper left diagram of Figure 5.2, the effect of the time to maturity on

the value of vulnerable American puts is analyzed. If the time to maturity decreases,
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the difference between the default-free and the vulnerable American put values is

also reduced. This result is not surprising, since the counterparty is less likely to

default if the option’s maturity date gets closer.

The lower diagram of Figure 5.2 shows that the price of a vulnerable American

put converges to the default-free option price if the value of the counterparty’s

assets increases, since the probability of hitting the default boundary is decreased in

this case. Our general model has the lowest convergence speed which is most likely

explained by the fact that this model is the only one that incorporates three sources

of default risk simultaneously: a decrease in the value of the counterparty’s assets,

an increase in the counterparty’s other liabilities as well as an increase in the option

value itself.

Figure 5.2: American Puts subject to Counterparty Risk

Unless otherwise noted, the calculations are based on the following parameters: S0 = 200, K = 200,

V0 = 1 000, D0 = 900, T − t = 0.5, r = 0.05, q = 0, σS = 0.25, σV = 0.25, σD = 0.25, ρSV = 0,

ρSD = 0, ρV D = 0 and α = 0.25. The option values for the different valuation models are computed

by the least squares Monte Carlo simulation approach described in Sections 5.3 and 5.4. The

simulation is based on 10 000 sample paths with 50 time steps. To improve the accuracy of the

obtained option values the algorithm is re-run 100 times.
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General

Model

Ext.

LL2011

Ext.

KI2001

Ext.

K1996
LS2001

Base Case 10.4402 10.8535 12.0900 12.6375 16.4951

S0 = 220 23.4981 24.5592 25.0038 26.2932 30.3642

S0 = 180 3.6585 3.7473 4.5756 4.7222 7.0391

V0 = 1050 12.3895 12.7508 14.0343 14.4394 16.4951

V0 = 950 7.5379 7.9800 8.8310 9.4802 16.4951

σS = 0.3 12.1776 12.7606 14.0768 14.8312 19.2536

σS = 0.2 8.6648 8.9539 10.1145 10.4801 13.7848

σV = 0.3 9.8798 10.2648 11.1291 11.6032 16.4951

σV = 0.2 10.9263 11.3786 13.2189 13.8150 16.4951

σD = 0.3 10.0513 10.4272 12.0900 12.6375 16.4951

σD = 0.2 10.8137 11.2653 12.0900 12.6375 16.4951

ρSV = 0.5 11.1566 11.4190 13.2129 13.4413 16.4951

ρSV = −0.5 9.7761 10.3426 11.2376 12.1270 16.4951

ρV D = 0.5 12.0035 12.5222 12.0900 12.6375 16.4951

ρV D = −0.5 9.5581 9.9021 12.0900 12.6375 16.4951

ρSD = 0.5 9.7782 10.3323 12.0900 12.6375 16.4951

ρSD = −0.5 11.0972 11.3691 12.0900 12.6375 16.4951

T − t = 1 12.9193 13.6092 15.2919 16.3010 24.7401

T − t = 0.25 8.3443 8.5748 9.4283 9.6747 11.1693

α = 0.5 9.9718 10.4567 11.6996 12.3361 16.4951

α = 0 11.2220 11.5015 12.8458 13.2100 16.4951

r = 0.08 11.0936 11.6053 13.2037 13.8931 18.1183

r = 0.02 9.8001 10.1396 11.1302 11.5642 15.0602

q = 0.05 9.2600 9.5494 10.6439 10.9841 13.8602

Table 5.2: American Calls subject to Counterparty Risk

Unless otherwise noted, the calculations are based on the following parameters: S0 = 200, K = 200,

V0 = 1 000, D0 = 900, T − t = 0.5, r = 0.05, q = 0, σS = 0.25, σV = 0.25, σD = 0.25,

ρSV = 0, ρSD = 0, ρV D = 0 and α = 0.25. The option values for the different valuation models are

computed by the least squares Monte Carlo simulation approach described in Sections 5.3 and 5.4.

The simulation is based on 10 000 sample paths with 50 time steps. To improve the accuracy of

the obtained option values the algorithm is re-run 100 times. The abbreviations Ext. K1996, Ext.

KI2001 and Ext. LL2011 stand for the extended models of Klein (1996), Klein and Inglis (2001) as

well as Liu and Liu (2011), whereas LS2001 indicates the model of Longstaff and Schwartz (2001).
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General

Model

Ext.

LL2011

Ext.

KI2001

Ext.

K1996
LS2001

Base Case 8.3441 8.5211 9.5210 9.7293 12.0813

S0 = 220 3.0955 3.1413 3.8209 3.8835 5.5936

S0 = 180 20.9189 21.2153 21.5239 21.8079 23.2997

V0 = 1050 9.6470 9.7743 10.7077 10.8332 12.0813

V0 = 950 6.2159 6.4380 7.2067 7.5106 12.0813

σS = 0.3 10.1236 10.3936 11.5733 11.8974 14.8312

σS = 0.2 6.5227 6.6240 7.4299 7.5485 9.3347

σV = 0.3 7.9640 8.1282 8.8576 9.0508 12.0813

σV = 0.2 8.7177 8.8978 10.2903 10.4883 12.0813

σD = 0.3 8.0569 8.2222 9.5210 9.7293 12.0813

σD = 0.2 8.6093 8.8023 9.5210 9.7293 12.0813

ρSV = 0.5 8.0593 8.3453 9.2075 9.6262 12.0813

ρSV = −0.5 8.6409 8.7297 9.9799 10.0485 12.0813

ρV D = 0.5 9.4759 9.6841 9.5210 9.7293 12.0813

ρV D = −0.5 7.6867 7.8382 9.5210 9.7293 12.0813

ρSD = 0.5 8.6390 8.7327 9.5210 9.7293 12.0813

ρSD = −0.5 8.0720 8.3485 9.5210 9.7293 12.0813

T − t = 1 9.6148 9.8661 11.1577 11.4836 15.9446

T − t = 0.25 7.0369 7.1527 7.8350 7.9455 8.9611

α = 0.5 8.0467 8.2771 9.2809 9.5352 12.0813

α = 0 8.7679 8.8656 9.8824 9.9804 12.0813

r = 0.08 7.7776 7.9200 8.9500 9.1113 11.0517

r = 0.02 8.9126 9.1362 10.0826 10.3476 13.2374

q = 0.05 9.2480 9.4960 10.6528 10.9485 13.8716

Table 5.3: American Puts subject to Counterparty Risk

Unless otherwise noted, the calculations are based on the following parameters: S0 = 200, K = 200,

V0 = 1 000, D0 = 900, T − t = 0.5, r = 0.05, q = 0, σS = 0.25, σV = 0.25, σD = 0.25,

ρSV = 0, ρSD = 0, ρV D = 0 and α = 0.25. The option values for the different valuation models are

computed by the least squares Monte Carlo simulation approach described in Sections 5.3 and 5.4.

The simulation is based on 10 000 sample paths with 50 time steps. To improve the accuracy of

the obtained option values the algorithm is re-run 100 times. The abbreviations Ext. K1996, Ext.

KI2001 and Ext. LL2011 stand for the extended models of Klein (1996), Klein and Inglis (2001) as

well as Liu and Liu (2011), whereas LS2001 indicates the model of Longstaff and Schwartz (2001).
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Tables 5.2 and 5.3 present the option values for vulnerable American calls and puts,

respectively, which are obtained from the least squares Monte Carlo simulation based

on the valuation models presented in Section 5.4. Once again it can be observed

that the option values based on the extended Klein, the extended Klein-Inglis,

the extended Liu-Liu and our general valuation model are always lower than the

default-free option value of the Longstaff-Schwartz model. Furthermore, the option

values obtained from the extended general model are substantially lower than those

of the other valuation models in most situations. This finding is explained by the

construction of the general model’s default boundary. Our general model is the only

one which incorporates three sources of risk simultaneously. First, a decrease in the

value of the counterparty’s assets might lead to a default of the option writer like in

all the other valuation models. Second, our general model accounts for the potential

increase in the default risk induced by the option itself (unlike the extended Klein

and the extended Liu-Liu model). Third, it is assumed that the counterparty’s other

liabilities are stochastic which creates an additional default risk (unlike the extended

Klein and the extended Klein-Inglis model). Consequently, the option values based

on our general model are the lowest, since it accounts for all possible sources of the

counterparty’s default risk.

Table 5.4 provides the values of default-free and vulnerable American puts for

different prices of the option’s underlying. Figure 5.2 already showed that the price

of American puts obtained from the different valuation models converge if the price

of the option’s underlying decreases. This observation is attributed to the fact it is

optimal to immediately exercise the American put if it is sufficiently deep in the

money. Having a closer look at Table 5.4, it can easily be seen that all valuation

models suggest an immediate exercise of the American put if the current price of

the option’s underlying is lower than 160. Furthermore, it can be observed that the

critical stock price for which the American put is immediately exercised is highest

for our general model (S0 = 170). This aspect is explained by the fact that our

model is the only one that incorporates three sources of default risk simultaneously.

A similar analysis could also be performed for American calls. However, the option

will only be exercised immediately if both the current price and the dividend yield

of the option’s underlying are sufficiently large (i.e. S0 ≫ K and q ≫ 0).
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General

Model

Ext.

LL2011

Ext.

KI2001

Ext.

K1996
LS2001

S0 = 157 43∗ 43∗ 43∗ 43∗ 43∗

S0 = 158 42∗ 42∗ 42∗ 42∗ 42∗

S0 = 159 41∗ 41∗ 41∗ 41∗ 41∗

S0 = 160 40∗ 40∗ 40∗ 40∗ 40.0475

S0 = 161 39∗ 39∗ 39∗ 39∗ 39.0759

S0 = 162 38∗ 38∗ 38∗ 38.0176 38.1193

S0 = 163 37∗ 37.0124 37∗ 37.0203 37.1874

S0 = 164 36∗ 36.0199 36∗ 36.0341 36.2632

S0 = 165 35∗ 35.0259 35∗ 35.0538 35.3347

S0 = 166 34∗ 34.0441 34.0231 34.1017 34.4545

S0 = 167 33∗ 33.0547 33.0332 33.1170 33.5448

S0 = 168 32∗ 32.0884 32.0765 32.1853 32.7039

S0 = 169 31∗ 31.1301 31.1182 31.2458 31.8282

S0 = 170 30∗ 30.1560 30.1765 30.3220 30.9697

S0 = 171 29.0247 29.2067 29.2487 29.4142 30.1459

S0 = 172 28.0645 28.2910 28.3474 28.5101 29.3389

S0 = 173 27.1231 27.3571 27.4326 27.6434 28.5377

S0 = 174 26.2069 26.4562 26.5700 26.7804 27.7414

S0 = 175 25.2875 25.5495 25.6913 25.9156 26.9836

S0 = 176 24.3775 24.6372 24.8181 25.0606 26.2034

S0 = 177 23.5018 23.7640 23.9611 24.2091 25.4654

S0 = 178 22.6254 22.9058 23.1535 23.4232 24.7358

S0 = 179 21.7483 22.0340 22.3165 22.5879 23.9899

S0 = 180 20.9006 21.1860 21.5213 21.8107 23.2900

Table 5.4: Analysis of In-the-Money American Puts

Unless otherwise noted, the calculations are based on the following parameters: S0 = 200, K = 200,

V0 = 1 000, D0 = 900, T − t = 0.5, r = 0.05, q = 0, σS = 0.25, σV = 0.25, σD = 0.25, ρSV = 0,

ρSD = 0, ρV D = 0 and α = 0.25. The option values for the different valuation models are computed

by the least squares Monte Carlo simulation approach described in Sections 5.3 and 5.4. The

simulation is based on 10 000 sample paths with 50 time steps. To improve the accuracy of the

obtained option values the algorithm is re-run 100 times. The immediate exercise of the American

put is indicated by an asterisk. The abbreviations Ext. K1996, Ext. KI2001 and Ext. LL2011 stand

for the extended models of Klein (1996), Klein and Inglis (2001) as well as Liu and Liu (2011),

whereas LS2001 indicates the model of Longstaff and Schwartz (2001).
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In Table 5.5, we compare the values of American options with those of the

corresponding European options for a selected set of parameters. For non-vulnerable

American calls, we find the well-known result that the early exercise is not optimal as

long as the dividend yield of the option’s underlying is zero. In this case, the values

of American and European calls are identical. If the dividend yield is positive, the

value of an American call is greater than the value of a European call, i.e. the

early exercise of the American call is optimal. The early exercise of non-vulnerable

American puts is always optimal, since their values are higher than those of the

corresponding European puts.

In contrast to that, we observe that the values of vulnerable American options

are always greater than the values of the corresponding European options for all

the considered valuation models. Hence, the early exercise may be optimal for

both American calls and puts subject to counterparty risk irrespective of the used

parameters.

Furthermore, the price difference between the vulnerable American options and

the corresponding vulnerable European options is greater than the price difference

between non-vulnerable American options and the correpsonding non-vulnerable

European options. Consequently, we may conclude that the early exercise feature

receives a greater recognition in case of vulnerable American options, since the option

holder has the opportunity to avoid a potential write-down on his claim.

5.6 Summary

In this chapter, we picked up on the fundamental ideas of Klein (1996), Klein and

Inglis (2001) and Liu and Liu (2011) and set up equivalent models for vulnerable

American options. Furthermore, we combine the features of these models in a

general valuation model for vulnerable American options. It is the only model which

incorporates three sources of financial distress simultaneously: a decline in the value

of the counterparty’s assets, an increase in the value of the counterparty’s other

liabilities or an increase in the value of the option itself.

Due to the early exercise feature of American options, the counterparty’s default

may occur prior to maturity. Consequently, the structural approach of Black and
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Cox (1976) need to be considered. To value vulnerable American options in this

framework using the different valuation models, we adjusted the least squares Monte

Carlos simulation suggested by Longstaff and Schwartz (2001) to be applicable to

the considered valuation problem.

Based on various numerical examples and graphical illustrations, we compared the

results of our general model with those of the alternative models for vulnerable

American options. All the considered valuation models have in common that the

reduction in the value of a vulnerable American option (compared to a default-free

American option) increases if the time to maturity is longer and if the value of

the counterparty’s assets is low. The deepest price reduction is oberserved for

at-the-money options. The values for vulnerable American options obtained from

our general model are typically the lowest, since it is the only model which accounts

for all possible sources of the counterparty’s default.
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6 American Options subject to Counterparty and

Interest Rate Risk

In this chapter, valuation models for American options subject to counterparty and

interest rate risk are set up. Due to the early exercise features of American options,

the counterparty’s default is modeled using the structural approach of Black and

Cox (1976) allowing for default prior to the option’s maturity. In particular, the

counterparty’s default is triggered by the value of its assets being below the value

of its total liabilities for the first time.

Klein (1996), Klein and Inglis (2001) and Liu and Liu (2011) develop valuation

models for vulnerable European options under a deterministic interest rate.16 In the

following, we extend these models to analyze the properties of American options

subject to counterparty risk. In particular, we maintain their key characteristics,

especially with respect to the default condition, but adjust them to be applicable in

the context of vulnerable American options. Additionally, we account for stochastic

interest rates based on the model of Vasicek (1977). Finally, we develop a general

model which incorporates the features of the other models.

Due to the complexity of the models, closed form solutions cannot be derived.

Thus, numerical methods have to be applied to compute the value of a vulnerable

American option. In particular, we use the least squares Monte Carlo simulation

approach suggested by Longstaff and Schwartz (2001) and adapt it appropriately to

be applicable to value vulnerable American options under stochastic interest rates.

Section 6.1 presents the considered theoretical framework. In Section 6.2, we derive

the partial differential equation characterizing the price of a vulnerable American

option under interest rate risk. Section 6.3 explains how this partial differential

equation can be solved by the Longstaff-Schwartz approach. In Section 6.4, we extend

the models of Klein (1996), Klein and Inglis (2001) as well as Liu and Liu (2011) to

be applicable for American options subject to counterparty and interest rate risk.

Moreover, we set up our general model. Section 6.5 provides a comparative analysis

of the different valuation models. Section 6.6 summarizes the main findings.

16 In Chapter 3, the valuation models of Klein (1996), Klein and Inglis (2001) as well as of Liu
and Liu (2011) are presented and discussed in greater details.
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6.1 Assumptions

The assumptions for the valuation of American options subject to counterparty and

interest rate risk are based on Merton (1973), Black and Cox (1976), Vasicek (1977),

Rabinovitch (1989), Klein (1996), Klein and Inglis (1999, 2001), Chang and Hung

(2006), Klein and Yang (2010, 2013) as well as on Liu and Liu (2011).

1. The price of the option’s underlying St follows a continuous-time geometric

Brownian motion. Assuming that the option’s underlying is a dividend-paying

stock, its dynamics are given by

dSt = (µS − q)St dt + σS St dWS , (6.1)

where µS indicates the expected instantaneous return of the option’s

underlying, q denotes the continuous dividend yield, σS is the instantaneous

return volatility and dWS represents the standard Wiener process.

2. Likewise, the market value of the counterparty’s assets Vt follows a

continuous-time geometric Brownian motion. Its dynamics are given by

dVt = µV Vt dt + σV Vt dWV , (6.2)

where µV is the expected instantaneous return of the counterparty’s assets,

σV gives the instantaneous return volatility and dWV is a standard Wiener

process. The instantaneous correlation between dWS and dWV equals ρSV .

3. The total liabilities Dt comprise all the obligations of the counterparty’s, i.e.

debt, short positions in financial securities and accruals. The dynamics follow

a continuous-time geometric Brownian motion which is given by

dDt = µD Dt dt + σD Dt dWD , (6.3)

where µD is the expected instantaneous return of the counterparty’s liabilities,

σD indicates the instantaneous return volatility and dWD represents the

standard Wiener process. The instantaneous correlation between dWS and

dWD equals ρSD and ρV D between dWV and dWD, respectively.
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If the counterparty’s total liabilities, however, are given by a zero bond only

and the risk-free interest rate follows the Ornstein-Uhlenbeck, the expected

instantaneous return µD as well as the instantaneous return volatility σD

cannot be chosen arbitrarily anymore. In particular, µD and σD become

time-dependent parameters which are given by the expressions specified in

Equation (6.6).17

4. The market is perfect and frictionless, i.e. it is free of transaction costs or taxes

and the available securities are traded in continuous time.

5. The instantaneous risk-free interest rate rt follows the Ornstein-Uhlenbeck

process of Vasicek (1977). The mean-reverting dynamics are given by

drt = κ (θ − rt) dt + σr dWr , (6.4)

where κ is the speed of reversion, θ represents the long-term mean of the

risk-free interest rate, σr is the instantaneous volatility of the risk-free interest

rate and dWr represents the standard Wiener process. The instantaneous

correlations between dWr and dWS, between dWr and dWV as well as between

dWr and dWD are equal to ρSr, ρV r and ρDr, respectively.

In the considered stochastic interest rate framework, a closed form solution

for the price of a risk-free zero bond paying one dollar at maturity T can be

derived (Vasicek, 1977; Mamon, 2004). Denoting the price at time t of a zero

bond by Bt,T , the analytical bond price formula is given by

Bt,T = eAt,T rt+Ct,T (6.5)

where

At,T =
1

κ

(

1 − e−κ (T −t)
)

Ct,T =

(

θ − σ2
r

2κ2

)

(At,T − (T − t)) − σ2
rA2

t,T

4κ

17 This issue only affects the extended model of Liu and Liu (2011) as well as the general
model, since it is assumed that the counterparty’s liabilities are stochastic in these two models
exclusively (see Sections 5.4.4 and 5.4.5).
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The instantaneous expected return and the return volatility of the risk-free

zero bond are time-dependent. In particular, they are given as follows:

µB(t) = rt +
1 − e−κ(T −t)

κ
σr, σB(t) =

1 − e−κ(T −t)

κ
σr. (6.6)

6. The expected instantaneous return of the option’s underlying as well as of the

counterparty’s assets and liabilities (µS, µV and µD) are constant over time.

The same applies for the dividend yield of the option’s underlying.

7. The instantaneous return volatilities of the option’s underlying as well as of the

counterparty’s assets and liabilities (σS, σV and σD) are constant over time.

The same applies for the risk-free interest rate’s instantanenous volatility σr

as well as for the instantaneous correlations ρSV , ρSD, ρV D, ρSr, ρV r and ρDr.

8. All the liabilities of the counterparty (i.e. debt, short positions in financial

securties, etc.) are assumed to be of equal rank.

9. Before the option’s maturity (i.e. t < T ), default occurs if the counterparty’s

assets Vt are less than the threshold level L:

Vt < L̄ or Vt < L(St, Dt). (6.7)

Depending on the considered valuation model, the threshold level L is

characterized in different ways and is either a constant or a function of the

stochastic variables St and Dt.

10. At the option’s maturity (i.e. t = T ), default occurs if the market value of the

counterparty’s assets VT are less than the threshold level L:

VT < L̄ or VT < L(ST , DT ). (6.8)

Depending on the considered valuation model, the threshold level L is

characterized in different ways and is either a constant or a function of the

stochastic variables ST and DT .

11. If the counterparty is in default, the option holder receives the fraction 1− ωt

of the nominal claim, where ωt represents the precentage write-down on the

nominal claim at time t. The percentage write-down ω can be endogenized.
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Assuming that all the liabilities of the counterparty are ranked equally, the

amount payable to the holder of an American option is given by

(1 − ωt) =
(1 − α)Vt

L(St, Dt)
, (6.9)

where α represents the cost of default (e.g. bankruptcy or reorganization cost)

as a percentage of the counterparty’s assets.

6.2 Derivation of the Partial Differential Equation

Following the argument of Fang (2012), we derive the partial differential equation

governing the price evolution of a vulnerable American option under stochastic

interest rates. The the price of a vulnerable American option Ft must be a function

of the underlying St, the counterparty’s assets Vt, the counterparty’s liabilities Dt,

the risk-free interest rate rt and time t. According to Itô’s lemma, the corresponding

stochastic differential equation for an American option is given as follows:

dFt =
∂Ft

∂t
dt + (µS − q)St

∂Ft

∂St

dt +
1

2
σ2

SS2
t

∂2Ft

∂S2
t

dt + σSSt

∂Ft

∂St

dWS (6.10)

+ µV Vt

∂Ft

∂Vt

dt +
1

2
σ2

V V 2
t

∂2Ft

∂V 2
t

dt + σV Vt

∂Ft

∂Vt

dWV + µDDt

∂Ft

∂Dt

dt

+
1

2
σ2

DD2
t

∂2Ft

∂D2
t

dt + σDDt

∂Ft

∂Dt

dWD + κ(θ − rt)
∂Ft

∂rt

dt +
1

2
σ2

r

∂2Ft

∂r2t
dt

+ σr

∂Ft

∂rt

dWr + ρSV σSσV StVt

∂2Ft

∂St∂Vt

dt + ρSDσSσDStDt

∂2Ft

∂St∂Dt

dt

+ ρV DσV σDVtDt

∂2Ft

∂Vt∂Dt

dt + ρSrσSσrSt

∂2Ft

∂St∂rt

dt

+ ρV rσV σrVt

∂2Ft

∂Vt∂rt

dt + ρDrσDσrDt

∂2Ft

∂Dt∂rt

dt.

To eliminate the four Wiener processes dWS, dWV , dWD and dWB, a portfolio Πt

which consists of the American option Ft, the underlying St, the counterparty’s

assets Vt, the counterparty’s liabilities Dt and the risk-free zero bond Bt,T must

be constructed.18 In particular, this portfolio consists of a short position in the

18 To set up such a portfolio, it is necessary to assume that option’s underlying, the counterparty’s
assets and liabilities as well as the risk-free zero bond are traded securities. This assumption
is not questionable for the option’s underlying and the risk-free zero bond, but it is for
both the counterparty’s assets and liabilities. As argued by Klein (1996), it is likely that the
counterparty’s assets and liabilities are not traded directly in the market, but that their market
values behave similarly as if they were traded securities.
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American option and long positions in the underlying, the counterparty’s assets

and liabilities as well as in the risk-free zero bond. The amount of shares in the

long positions are equal to ∂Ft/∂St, ∂Ft/∂Vt, ∂Ft/∂Dt and ∂Ft/∂rt ∂rt/∂Bt,T ,

respectively. Hence, the value of the portfolio at time t is given by

Πt = −Ft +
∂Ft

∂St

St +
∂Ft

∂Vt

Vt +
∂Ft

∂Dt

Dt +
∂Ft

∂rt

∂rt

∂Bt,T

Bt,T . (6.11)

The change in the value of the portfolio over the time interval dt is characterized by

the total differential which is equal to

dΠt = −dFt +
∂Ft

∂St

dSt +
∂Ft

∂Vt

dVt +
∂Ft

∂Dt

dDt +
∂Ft

∂rt

∂rt

∂Bt,T

dBt,T . (6.12)

Using Itô’s lemma, the dynamics of the risk-free zero bond can be set up. The

dynamics dBt,T are given by

dBt,T =
∂Bt,T

∂t
dt+ κ(θ − rt)

∂Bt,T

∂rt

dt+ σr

∂Bt,T

∂rt

dWr +
1

2
σ2

r

∂2Bt,T

∂r2t
dt. (6.13)

Under the martingale measure, the dynamics of the risk-free zero bond given by

Equation (6.13) can be rewritten as follows (see Fang, 2012):

dBt,T = rtBt,T dt+ σr

∂Bt,T

∂rt

dWr. (6.14)

Substituting Equations (6.1) to (6.3), (6.10) and (6.14) into Equation (6.12) yields

the following expression:

dΠt = −∂Ft

∂t
dt+ qSt

∂Ft

∂St

dt − 1

2
σ2

SS2
t

∂2Ft

∂S2
t

dt − 1

2
σ2

V V 2
t

∂2Ft

∂V 2
t

dt (6.15)

− 1

2
σ2

DD2
t

∂2Ft

∂D2
t

dt − κ(θ − rt)
∂Ft

∂rt

dt − 1

2
σ2

r

∂2Ft

∂r2t
dt

− ρSV σSσV StVt

∂2Ft

∂St∂Vt

dt − ρSDσSσDStDt

∂2Ft

∂St∂Dt

dt

− ρV DσV σDVtDt

∂2Ft

∂Vt∂Dt

dt − ρSrσSσrSt

∂2Ft

∂St∂rt

dt

− ρV rσV σrVt

∂2Ft

∂Vt∂rt

dt − ρDrσDσrDt

∂2Ft

∂Dt∂rt

dt+
∂Ft

∂rt

∂rt

∂Bt,T

rtBt,T dt.
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Since the dynamics of portfolio Πt are independent of the four Wiener processes

dWS, dWV ,dWD and dWB, the portfolio must be riskless during the infinitesimal

time interval dt. Consequently, the portfolio must earn the same return as other

short-term risk-free investments, namely the risk-free interest rate rt, to avoid

arbitrage opportunities:

rtΠdt = dΠt. (6.16)

We substitute Equations (6.11) and (6.15) into Equation (6.16) which yields the

following expression:

rt

(

−Ft +
∂Ft

∂St

St +
∂Ft

∂Vt

Vt +
∂Ft

∂Dt

Dt +
∂Ft

∂rt

∂rt

∂Bt,T

Bt,T

)

dt (6.17)

= −∂Ft

∂t
dt+ qSt

∂Ft

∂St

dt − 1

2
σ2

SS2
t

∂2Ft

∂S2
t

dt − 1

2
σ2

V V 2
t

∂2Ft

∂V 2
t

dt − 1

2
σ2

DD2
t

∂2Ft

∂D2
t

dt

− κ(θ − rt)
∂Ft

∂rt

dt − 1

2
σ2

r

∂2Ft

∂r2t
dt − ρSV σSσV StVt

∂2Ft

∂St∂Vt

dt

− ρSDσSσDStDt

∂2Ft

∂St∂Dt

dt − ρV DσV σDVtDt

∂2Ft

∂Vt∂Dt

dt − ρSrσSσrSt

∂2Ft

∂St∂rt

dt

− ρV rσV σrVt

∂2Ft

∂Vt∂rt

dt − ρDrσDσrDt

∂2Ft

∂Dt∂rt

dt+
∂Ft

∂rt

∂rt

∂Bt,T

rtBt,T dt.

Rewriting Equation (6.17), the partial differential equation that characterizes the

price of an American option whose payoff is contigent upon the price of the option’s

underlying as well as upon the value of both the counterparty’s assets and liabilities

is obtained. It is given by

0 =
∂Ft

∂t
+ (rt − q)St

∂Ft

∂St

+
1

2
σ2

SS2
t

∂2Ft

∂S2
t

+ rtVt

∂Ft

∂Vt

+
1

2
σ2

V V 2
t

∂2Ft

∂V 2
t

(6.18)

+ rtDt

∂Ft

∂Dt

+
1

2
σ2

DD2
t

∂2Ft

∂D2
t

+ κ(θ − rt)
∂Ft

∂rt

+
1

2
σ2

r

∂2Ft

∂r2t

+ ρSV σSσV StVt

∂2Ft

∂St∂Vt

+ ρSDσSσDStDt

∂2Ft

∂St∂Dt

+ ρV DσV σDVtDt

∂2Ft

∂Vt∂Dt

+ ρSrσSσrSt

∂2Ft

∂St∂rt

+ ρV rσV σrVt

∂2Ft

∂Vt∂rt

+ ρDrσDσrDt

∂2Ft

∂Dt∂rt

− rtFt.
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To obtain a unique solution to the partial differential equation, we must set up

the boundary conditions which specify the value of the American option based

on Assumptions 9 to 11 (see Section 6.1). For the American call, the boundary

conditions can be expressed as follows:

1. At the option’s maturity (i.e. t = T ), three different scenarios may occur.

If the option expires in the money and the counterparty does not default,

ST − K are paid out to the holder of an American call. If the option expires

in the money and the counterparty is in default, the entire assets of the

counterparty (less the default costs α) are distributed to the creditors. Since

all liabilities of the counterparty are ranked equally, all creditors receive

the same proportion of their claims. Hence, the holder of an American call

receives ((1 − α)VT (ST − K)) /L(ST , DT ). If the option is out of the money

at maturity, the option holder receives nothing.

FT = CT =



































ST − K if ST ≥ K, VT ≥ L(ST , DT )

(1 − α)VT

L(ST , DT )
(ST − K) if ST ≥ K, VT < L(ST , DT )

0 otherwise

(6.19)

2. If the counterparty defaults prior to maturity (i.e. t < T ), the American option

is immediately exercised. If the option is in the money at that point in time,

the entire assets of the counterparty (less the default costs α) are distributed

to the creditors. Since all liabilities of the counterparty are ranked equally, all

creditors receive the same proportion of their claims. Hence, the holder of an

American call receives ((1 − α)Vt (St − K)) /L(St, Dt). If the option is out of

the money at that point in time, the option holder receives nothing.

Ft = Ct =















(1 − α)Vt

L(St, Dt)
(St − K) if St ≥ K, Vt < L(St, Dt)

0 otherwise

(6.20)

3. It may be optimal to exercise an American call prior to maturity (i.e. t < T )

even though the counterparty is not in default. Early exercise is optimal if
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the early exercise payoff CEx

t = max(St − K, 0) is larger than the conditional

expected continuation value CCont

t , i.e. the expected future option payoff.

Ft = Ct =











St − K if CEx

t > CCont

t , Vt ≥ L(St, Dt)

No early exercise otherwise
(6.21)

The boundary conditions for the American put are given in analogy:

1. At the option’s maturity (i.e. t = T ), three different scenarios may occur.

If the option expires in the money and the counterparty does not default,

K − ST are paid out to the holder of an American put. If the option expires

in the money and the counterparty is in default, the entire assets of the

counterparty (less the default costs α) are distributed to the creditors. Since

all liabilities of the counterparty are ranked equally, all creditors receive

the same proportion of their claims. Hence, the holder of an American put

receives ((1 − α)VT (K − ST )) /L(ST , DT ). If the option is out of the money

at maturity, the option holder receives nothing.

FT = PT =



































K − ST if ST ≤ K, VT ≥ L(ST , DT )

(1 − α)VT

L(ST , DT )
(K − ST ) if ST ≤ K, VT < L(ST , DT )

0 otherwise

(6.22)

2. If the counterparty defaults prior to maturity (i.e. t < T ), the American put

is immediately exercised. If the option is in the money at that point in time,

the entire assets of the counterparty (less the default costs α) are distributed

to the creditors. Since all liabilities of the counterparty are ranked equally, all

creditors receive the same proportion of their claims. Hence, the holder of an

American put receives ((1 − α)Vt (K − St)) /L(St, Dt). If the option is out of

the money at that point in time, the option holder receives nothing.

Ft = Pt =















(1 − α)Vt

L(St, Dt)
(K − St) if St ≤ K, Vt < L(St, Dt)

0 otherwise

(6.23)
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3. It may be optimal to exercise an American put prior to maturity (i.e. t < T )

even though the counterparty is not in default. Early exercise is optimal if

the early exercise payoff P Ex

t = max(K − St, 0) is larger than the conditional

expected continuation value P Cont

t which is given by the expected future option

payoff.

Ft = Pt =











K − St if P Ex

t > P Cont

t , Vt ≥ L(St, Dt)

No early exercise otherwise
(6.24)

The actual characterization of the boundary conditions depends on the choice of

a specific valuation model (see Section 6.4). In particular, the variable L(ST , DT )

must be defined according to the chosen model in order to value vulnerable American

options using the least squares Monte Carlo simulation.

Referring to Equations (6.20) and (6.23), we assume that an American option is

immediately exercised if the counterparty defaults at a given time t prior to the

option’s maturity. Chang and Hung (2006) as well as Klein and Yang (2010) also

deal with the valuation of vulnerable American options. However, their assumptions

with respect to the option payoff if the counterparty defaults prior to maturity

differ from our assumption. In particular, Chang and Hung (2006) assume that

the American option is not necessarily exercised in the case of the counterparty’s

default, i.e. they assume that the option holder has the opportunity to keep the

American option unexercised until maturity, although the counterparty is insolvent.

Klein and Yang (2010), in turn, suppose that only in-the-money American options

are immediately exercised if the counterparty is in default prior to maturity. If the

counterparty is in default and the American option is out of the money, the option

is not exercised.

6.3 Solution to the Partial Differential Equation

The partial differential equation given by Equation (6.18) depends on the price

of the option’s underlying, the counterparty’s assets, the counterparty’s liabilities,

the risk-free interest rate, the dividend yield of the option’s underlying as well as

on the return volatilities. All these variables and parameters are independent of
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the investors’ risk preferences.19 Since the risk preferences of the investors do not

enter the partial differential equation, they cannot affect its solution. Consequently,

any type of risk preferences can be assumed when solving the partial differential

equation.

The partial differential equation given by Equation (6.18) subject to the boundary

conditions specified by Equations (6.19) to (6.21) and (6.22) to (6.24), respectively,

can be solved using the regression-based Monte Carlo simulation approach suggested

by Longstaff and Schwartz (2001). Even though this approach has originally been

derived to value plain vanilla American options, it can also be applied in more

complex theoretical frameworks in which the price of the considered option depends

on more than one stochastic variable (see Longstaff & Schwartz, 2001; Moreno &

Navas, 2003).

It is optimal to exercise an American option prior to its maturity if the option

payoff based on the immediate exercise is greater than the option’s conditional

expected continuation value. Longstaff and Schwartz (2001) suggest to estimate the

conditional expectation by a least-squares regression based on the cross-sectional

information provided by Monte Carlo simulation. Consequently, sample paths need

to be generated for the price of the option’s underlying as well as for the market

value of the counterparty’s assets and liabilities.

Using the approach of Cox and Ross (1976) and Harrison and Pliska (1981), the

risk-neutral stochastic processes for the price of the option’s underlying as well as

for the market values of the counterparty’s assets and liabilities can be obtained.

They are equal to

dSt = (rt − q)St dt + σS St dWS, (6.25)

dVt = rt Vt dt + σV Vt dWV (6.26)

19 Following the argument of Hull (2012: 311–312), the partial differential equation given by
Equation (6.18) would not be independent of risk preferences if it included the expected returns
of the option’s underlying, the counterparty’s assets and the counterparty’s liabilities. These
parameters depend on risk preferences, since their magnitude represents the level of risk aversion
of the investor: the higher the level of the investor’s risk aversion, the higher the required
expected return.
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and

dDt = rt Dt dt + σD Dt dWD, (6.27)

where rt is the risk-free interest rate at time t and all other variables are defined as

before.

Applying Itô’s lemma to Equations (6.25) to (6.27), the stochastic processes for

lnSt, ln Vt and lnDt are obtained. They are given by

d lnSt =
(

rt − q − 1

2
σ2

S

)

dt + σSdWS, (6.28)

d ln Vt =
(

rt − 1

2
σ2

V

)

dt + σV dWV (6.29)

and

d lnDt =
(

rt − 1

2
σ2

D

)

dt + σDdWD. (6.30)

Rewriting Equations (6.28) to (6.30), expressions for the price of the option’s

underlying as well as for the market values of the counterparty’s assets and liabilities

at every point in time can be derived. Using ∆t as the time step, the evolution of

the stochastic variables over time is given by

St+∆t = St e(rt−q− 1
2

σ2
S
)∆t+σS

√
∆t xS , (6.31)

Vt+∆t = Vt e(rt− 1
2

σ2
V
)∆t+σV

√
∆t xV (6.32)

and

Dt+∆t = Dt e(rt− 1
2

σ2
D
)∆t+σD

√
∆t xD , (6.33)

where the three random variables xS, xV and xD are jointly standard normally

distributed and their respective correlations are given by the coefficients ρSV , ρSD

and ρV D.

To set up sample paths for the price of the option’s underlying as well as for the

market value of both the counterparty’s assets and liabilities, the evolution of the

risk-free interest rate rt is needed as well. Since the risk-free interest rate follows
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Vasicek’s Ornstein-Uhlenbeck process (see Equation (6.4)), its dynamics in discrete

time are given by

∆rt = κ (θ − rt) ∆t+ σr

√
∆t xr , (6.34)

where the random xr is standard normally distributed and its correlation to xS, xV

and xD are equal to ρSr, ρV r and ρDr, respectively.

Integrating Equation (6.34), the evolution of the risk-free interest rate over time can

be computed using the following expression:

rt+∆t = rt e−κ∆t + θ
(

1 − e−κ∆t
)

+

√

σ2r (1 − e−2κ∆t)

2κ
xr . (6.35)

Equations (6.31) to (6.35) can be used in the Monte Carlo simulation to

generate sample paths for the price of the option’s underlying, the market values

of the counterparty’s assets and liabilities as well as for the risk-free interest

rate(S0, S∆t, ..., St, ..., ST ), (V0, V∆t, ..., Vt, ..., VT ), (D0, D∆t, ..., Dt, ..., DT ) and

(r0, r∆t, ..., rt, ..., rT ), where t denotes the time index and ∆t is the discrete time

step. At any time step t, the dynamic programming recursion functions for American

calls and puts, respectively, are given by

Ct =



















max
(

St − K, Et

[

e−rt∆t Ct+∆t | St, Vt, Dt

])

if Vt ≥ L(St, Dt)

(1− α)Vt

L(St, Dt)
max (St − K, 0) if Vt < L(St, Dt)

(6.36)

and

Pt =



















max
(

K − St, Et

[

e−rt∆t Bt+∆t | St, Vt, Dt

])

if Vt ≥ L(St, Dt)

(1− α)Vt

L(St, Dt)
max (K − St, 0) if Vt < L(St, Dt)

(6.37)

If the counterparty defaults, the option is immediately exercised irrespective of

whether the option is in the money or not. If the counterparty is not in default,

however, the option holder must decide whether he wants to exercise the option prior

to maturity. In particular, the option is exercised immediately if the option payoff

is greater than the conditional expectation of continuation under the risk-neutral
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measure. Being at a given time step of the sample path, this decision, however,

cannot be taken along an individual sample path, since the option holder cannot

exploit knowledge of the future prices along that path. To avoid anticipativity,

the total set of sample paths is used to approximate the conditional expected

continuation value by regressing the conditional expectation against M basis

functions ψm( · ). At each time step, the same set of basis functions is used, but

the coefficients βm,t are time-dependent. Consequently, the relationship between the

expected option value one time step ahead and the basis functions are given by the

following expressions:

Et

[

e−rt∆t Ct+∆t | St, Vt, Dt

]

≈ β0, t + β1, t ψ1(St, Vt, Dt) (6.38)

+ · · · + βM, t ψM(St, Vt, Dt),

Et

[

e−rt∆t Bt+∆t | St, Vt, Dt

]

≈ β0, t + β1, t ψ1(St, Vt, Dt) (6.39)

+ · · · + βM, t ψM(St, Vt, Dt).

The stochastic risk-free interest rate directly enters the price of the option’s

underlying as well as the market value of the counterparty’s assets and liabilities.

Therefore, the basis need not expliclity include the risk-free interest rate at the given

time step t.

Since the coefficients βm,t are not related to a particular sample path, the decisions

based on the approximated conditional expected continuation value of the considered

American option are non-anticipative. The coefficients βm,t can be estimated by a

simple least squares regression minimizing the sum of the squared residuals. The

sample paths for the option’s underlying as well as for the counterparty’s assets

and liabilities are generated using Monte Carlo simulation, where Si
t , V i

t and Di
t

give the value of the respective stochastic variable at time t along a sample path

i = 1, ..., N .

Based on these considerations, the least squares regression model for the conditional

expected continuation value at time t is equal to

e−ri
t∆t Ci

t+∆t = β0, t + β1, t ψ1(S
i
t , V i

t , Di
t) (6.40)

+ · · · + βM, t ψM(Si
t , V i

t , Di
t) + εi
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and

e−ri
t∆t Bi

t+∆t = β0, t + β1, t ψ1(S
i
t , V i

t , Di
t) (6.41)

+ · · · + βM, t ψM(Si
t , V i

t , Di
t) + εi,

where εi is the residual for each sample path. The obtained estimators β̂m, t can be

used to approximate the conditional expected continuation value of the American

option for each sample path i. For vulnerable American calls and puts, respectively,

the approximation is given by

e−ri
t∆t Ci

t+∆t = β̂0, t + β̂1, t ψ1(S
i
t , V i

t , Di
t) (6.42)

+ · · · + β̂M, t ψM(Si
t , V i

t , Di
t)

and

e−ri
t∆t Bi

t+∆t = β̂0, t + β̂1, t ψ1(S
i
t , V i

t , Di
t) (6.43)

+ · · · + β̂M, t ψM(Si
t , V i

t , Di
t).

Since the regression-based approach of Longstaff and Schwartz (2001) is a dynamic

programing method, the valuation problem must be solved recursively, i.e. the

procedure starts at the option’s maturity and goes backwards in time. Using the

generated sample paths for the option’s underlying as well as for the counterparty’s

assets and liabilities, the dynamic programming recursion functions at the option’s

maturity can be determined for each sample path i. At the option’s expiration,

these functions are simply given by the payoff of the vulnerable American option.

For vulnerable American calls and puts, respectively, they are given by

Ci
T =



















max
(

Si
T − K, 0

)

if V i
T ≥ L(Si

T , Di
T )

(1 − α)V i
T

L(Si
T , Di

T )
max

(

Si
T − K, 0

)

if V i
T < L(Si

T , Di
T )

(6.44)

and

Bi
T =



















max
(

K − Si
T , 0

)

if V i
T ≥ L(Si

T , Di
T )

(1 − α)V i
T

L(Si
T , Di

T )
max

(

K − Si
T , 0

)

if V i
T < L(Si

T , Di
T )

(6.45)
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Longstaff and Schwartz (2001) argue that it is more efficient to consider only the

subset of sample paths for which a decision must be taken at a given time t when

regressing the conditional expectation against the basis functions. Consequently, this

subset must contain all the sample paths in which the option is in the money at the

given time step t. This subset is denoted by It. For time step T −∆t, the regression

model is thus given by

e−ri
T −∆t

∆t Ci
T = β0, T −∆t + β1, T −∆t ψ1(S

i
T −∆t, V i

T −∆t, Di
T −∆t) (6.46)

+ · · ·+ βM, T −∆t ψM(S
i
T −∆t, V i

T −∆t, Di
T −∆t) + εi i ǫ IT −∆t

and

e−ri
T −∆t

∆t Bi
T = β0, T −∆t + β1, T −∆t ψ1(S

i
T −∆t, V i

T −∆t, Di
T −∆t) (6.47)

+ · · ·+ βM, T −∆t ψM(S
i
T −∆t, V i

T −∆t, Di
T −∆t) + εi i ǫ IT −∆t

for American calls and puts, respectively. The estimated parameters β̂m, T −∆t

obtained from the least squares regression are used to compute the approximate

continuation value of the option. Comparing this value with the payoff of immediate

exercise, it can be decided whether the option should be exercised early.

The above procedure is repeated going backwards in time. On each path i, the cash

flows resulting from early exercise decisions must be considered. At the time step t

on sample path i, there may be a time step t∗ ≥ t at which the American option

has been exercised early. Taking this issue into account, the regression model can

be rewritten as

Bi
t, t∗ Ci

t∗ = β0, t + β1, t ψ1(S
i
t , V i

t , Di
t) (6.48)

+ · · ·+ βM, t ψM(S
i
t , V i

t , Di
t) + εi i ǫ It

and

Bi
t, t∗ Bi

t∗ = β0, t + β1, t ψ1(S
i
t , V i

t , Di
t) (6.49)

+ · · ·+ βM, t ψM(S
i
t , V i

t , Di
t) + εi i ǫ It.

for American calls and puts, respectively. The discount factor Bi
t, t∗ is different for

each sample path i and is given by the value of a risk-free zero bond at time t paying
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one dollar at maturity t∗ for the given interest rate ri
t on sample path i. Referring

to Equation (6.5)), the value of this zero bond is given by

Bt, t∗ = eAt, t∗ rt+Ct, t∗ (6.50)

where

At, t∗ =
1

κ

(

1 − e−κ (t∗−t)
)

Ct, t∗ =

(

θ − σ2
r

2κ2

)

(At, t∗ − (t∗ − t)) − σ2
rA2

t, t∗

4κ

Since there is at most one exercise time t∗ for each sample path i, it may be the

case that after comparing the payoff of immediate exercise with the approximate

continuation value on a particular path, the exercise time t∗ needs to be reset to a

another period.

To apply the above approach to a valuation model for vulnerable American options,

the threshold level L(St, Dt) must be specified in accordance. Furthermore, the basis

functions used in the linear regression must be chosen appropriately.

6.4 Valuation Models

Various valuation models for vulnerable European options have been developed over

the last three decades based on the structural approach of Merton (1974). The

predominant valuation models are those of Klein (1996), Klein and Inglis (2001)

and Liu and Liu (2011). However, these models do not account for stochastic

interest rates. In the following, we use the main ideas of these models to set up

equivalent models for vulnerable American options. Additionally, we assume that

the risk-free interest rate follows the mean-reverting Ornstein-Uhlenbeck process

of Vasicek (1977). Finally, we set up a general valuation model incorporating the

features of the other models.

When dealing with vulnerable American options, it is important to consider that

the counterparty’s default may occur prior to the option’s maturity. Hence, the

structural approach of Black and Cox (1976) need to be considered. To value the

vulnerable American options in such a framework, the least squares Monte Carlo

simulation by Longstaff and Schwartz (2001) is applied.
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In Section 6.3, we generally showed how the Longstaff-Schwartz approach is used

to value American options subject to counterparty and interest rate risk. To apply

this method to a particular valuation model, the dynamic programming recursion

functions in Equations (6.36) and (6.37) as well as the basis functions ψm(St, Vt, Dt)

must be specified accordingly.

6.4.1 Absence of Default Risk

Longstaff and Schwartz (2001) originally derived the least squares Monte Carlo

simulation to value American options in the absence of counterparty and interest

rate risk. Nevertheless, the approach can also be applied in a stochatsic interest rate

framework (see Section 6.3). In a first step, the dynamic programming recursion

functions for default-free American calls and puts, respectively, need to be set up:

Ct = max
(

St − K, Et

[

e−r∆t Ct+∆t | St

])

(6.51)

Pt = max
(

K − St, Et

[

e−r∆t Bt+∆t | St

])

. (6.52)

An American option is exercised prior to maturity only if the payoff of an immediate

exercise is larger than the option’s continuation value. Otherwise, the option is kep

unexercised. Consequently, the crucial point in the Longstaff-Schwartz approach is

the estimation of the conditional expected continuation value. As shown in Equations

(6.38) and (6.39), an approximation for the conditional expected continutaion value

can be obtained by regressing the discounted expected future cash flows against a

set of basis functions. Since the stochastic interest rates are implicitly included in

the price of the option’s underlying, they do not have to be explicitly considered in

the construction of the basis functions. Hence, the same basis functions as in the

deterministic interest rate framework can be used. Longstaff and Schwartz (2001)

choose the first three Laguerre polynomials as basis functions and argue that more

than three basis functions do not yield more accurate results:

ψ1 = 1 − St, (6.53)

ψ2 =
1

2

(

2 − 4St + S2t
)

,

ψ3 =
1

6

(

6 − 18St + 9S2t − S3t
)

.
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6.4.2 Deterministic Liabilities

In his original paper, Klein (1996) deals with the valuation of vulnerable European

options under deterministic interest rates and assumes that the counterparty defaults

if its assets are lower than the total liabilities at the option’s maturity. The

counterparty’s total liabilities are assumed to be constant and must include the

short position in the option by construction, since it obliges the option writer to

deliver or purchase the option’s underlying if the option is exercised.

In the context of American options, it is necessary to account for the counterparty’s

default occuring prior to maturity. If we adopt the core idea of Klein (1996) to the

American option framework, the default barrier L(St, Dt) must be given by

L(St, Dt) = L̄ = D̄ = D0. (6.54)

Inserting this expression into Equations (6.36) and (6.37), the dynamic programming

recursion functions for vulnerable American calls and puts, respectively, for the

extended model of Klein (1996) are given by

Ct =



















max
(

St − K, Et

[

e−r∆t Ct+∆t | St, Vt

])

if Vt ≥ D̄

(1 − α)Vt

D̄
max (St − K, 0) if Vt < D̄

(6.55)

and

Pt =



















max
(

K − St, Et

[

e−r∆t Bt+∆t | St, Vt

])

if Vt ≥ D̄

(1 − α)Vt

D̄
max (K − St, 0) if Vt < D̄

(6.56)

Referring to the first line in Equations (6.55) and (6.56), the holder of an American

option must decide whether the option should be exercised early at the given

time step t if the counterparty is not in default. Early exercise is optimal only

if the conditional expected continuation value is lower than the option payoff of an

immediate exercise. If the counterparty, however, defaults at the given time step t,

the American option is immediately exercised irrespective of whether the option is in

the money or not according to the second line in Equations (6.55) and (6.56). In this

case, the entire assets of the counterparty (less the default costs α) are distributed
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to all the creditors. Since all liabilities of the counterparty are ranked equally, all

creditors receive the same proportion of their claims. This proportion is given by

the ratio
(

(1 − α)Vt

)

/D̄. Consequently, the holder of a vulnerable American call

receives
(

(1 − α)Vt max(St − K, 0)
)

/D̄, whereas
(

(1 − α)Vt max(K − St, 0)
)

/D̄ is

paid out to the holder of a vulnerable American put.

To decide whether it is optimal to exercise the American option prior to maturity

if the counterparty is not in default, the conditional expected continuation value

must be determined by regressing the discounted future cash flows against a set of

basis functions as illustrated in Equations (6.38) and (6.39). Since the stochastic

interest rates are implicitly included in the price of the option’s underlying and the

value of the counterparty’s assets, they do not have to be explicitly considered in

the basis functions. Consequently, the basis functions for the extended model of

Klein (1996) must contain the price of the option’s underlying, the market value

of the counterparty’s assets as well as their cross product. In this case, a total of

nine basis functions is obtained.20 Like in the case of default-free American options,

Laguerre polynomials are used as basis functions. In particular, the following nine

basis functions are applied:

ψ1 = 1 − St, (6.57)

ψ2 =
1

2

(

2 − 4St + S2
t

)

,

ψ3 =
1

6

(

6 − 18St + 9S2
t − S3

t

)

,

ψ4 = 1 − Vt,

ψ5 =
1

2

(

2 − 4Vt + V 2
t

)

,

ψ6 =
1

6

(

6 − 18Vt + 9V 2
t − V 3

t

)

,

ψ7 = 1 − StVt,

ψ8 =
1

2

(

2 − 4S2
t Vt + (S2

t Vt)
2
)

,

ψ9 =
1

6

(

6 − 18StV
2

t + 9 (StV
2

t )
2 − (StV

2
t )

3
)

.

20 According to Moreno and Navas (2003) as well as Chang and Hung (2006), it is sufficient to
use a total of nine basis functions if the option price is driven by two stochastic variables.
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6.4.3 Deterministic Liabilities and Option induced Default Risk

Like Klein (1996), Klein and Inglis (2001) originally set up a valuation model for

vulnerable European options in which the counterparty can only default at the

option’s maturity and the risk-free interest rate is deterministic. They recognize

that the short position in the option itself may cause additional financial distress.

To account for this potential source of default risk, they split the counterparty’s

total liabilities into two components. In particular, the total liabilities consist of the

short position in the option on the one hand and all the other liabilities on the other

which are assumed to be constant over time. When dealing with the valuation of

American options, it is reasonable to consider that the counterparty may default

prior to maturity. If we account for this issue and maintain the key features the key

features of Klein and Inglis (2001), the time-dependent default barrier L(St, Dt) for

American calls and puts, respectively, is given as follows:

L(St, Dt) = L(St) = D̄ + St − K = D0 + St − K, (6.58)

L(St, Dt) = L(St) = D̄ + K − St = D0 + K − St. (6.59)

Inserting the above expressions into Equations (6.36) and (6.37), the dynamic

programming recursion functions for the Longstaff-Schwartz approach based on the

extended model of Klein and Inglis (2001) are obtained. For vulnerable American

calls and puts, respectively, they are equal to the following expressions:

Ct =



















max
(

St − K, Et

[

e−r∆t Ct+∆t | St, Vt

])

if Vt ≥ D̄ + St − K

(1 − α)Vt

D̄ + St − K
max (St − K, 0) if Vt < D̄ + St − K

(6.60)

Pt =



















max
(

K − St, Et

[

e−r∆t Bt+∆t | St, Vt

])

if Vt ≥ D̄ + K − St

(1 − α)Vt

D̄ + K − St

max (K − St, 0) if Vt < D̄ + K − St

(6.61)

The holder of the American option must decide whether the option should be

immediately exercised if the counterparty is not in default at the given time step t

according to the first line in Equations (6.60) and (6.61). Early exercise is optimal

only if the conditional expected continuation value is lower than the option payoff
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of an immediate exercise. The second line in Equations (6.60) and (6.61) refers to

the scenario in which the counterparty is in default at the given time step t. In

this case, the American option is immediately exercised irrespective of whether

the option is in the money or not. The entire assets of the counterparty (less

the default costs α) are distributed to the creditors. Since all liabilities of the

counterparty are ranked equally, all creditors receive the same proportion of their

claims. Due to the construction of the default boundary, this proportion depends

on the type of the considered option. It is given by
(

(1 − α)Vt

)

/
(

D̄ + St − K
)

for a vulnerable American call, whereas it is equal to
(

(1 − α)Vt

)

/
(

D̄ + K − St

)

for a vulnerable American put. Consequently, the holder of a vulnerable American

call receives
(

(1 − α)Vt max(St − K, 0)
)

/
(

D̄ + St − K
)

, whereas the holder of a

vulnerable American put receives
(

(1 − α)Vt max(K − St)
)

/
(

D̄ + K − St

)

.

To decide whether it is optimal to exercise the American option prior to maturity

if the counterparty is not in default, the conditional expected continuation value

must be determined by regressing the discounted future cash flows against a set of

basis functions of the state variables as illustrated in Equations (6.38) and (6.39).

The stochastic interest rates are implicitly included in the price of the option’s

underlying as well as in the market values of the counterparty’s assets and liabilities

and therefore need not be explicitly considered in the construction of the basis

functions. Since the option price is governed by the same two stochastic variables

as in the extended model of Klein (1996), the same Laguerre polynomials as before

can be used as basis functions:

ψ1 = 1 − St, (6.62)

ψ2 =
1

2

(

2 − 4St + S2
t

)

,

ψ3 =
1

6

(

6 − 18St + 9S2
t − S3

t

)

,

ψ4 = 1 − Vt,

ψ5 =
1

2

(

2 − 4Vt + V 2
t

)

,

ψ6 =
1

6

(

6 − 18Vt + 9V 2
t − V 3

t

)

,

ψ7 = 1 − StVt,
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ψ8 =
1

2

(

2 − 4S2
t Vt + (S2

t Vt)
2
)

,

ψ9 =
1

6

(

6 − 18StV
2

t + 9 (StV
2

t )
2 − (StV

2
t )

3
)

.

6.4.4 Stochastic Liabilities

Liu and Liu (2011) also suggest a valuation model for vulnerable European options.

Like in the models of Klein (1996) and Klein and Inglis (2001), the counterparty’s

default can only occur at the option’s maturity and is triggered by the counterparty’s

assets being lower than the total liabilities. In contrast to the previous models, Liu

and Liu (2011) assume that the market value of the counterparty’s total liabilities

is stochastic and follows a geometric Brownian motion as given by Equation (6.3).

It is important to note that the short position in the option is implicitly included in

the counterparty’s total liabilities, but its impact on the value of the couterparty’s

total liabilities is not explicitly modeled (unlike in the Klein-Inglis model).

When pricing American options, it is important to consider that the counterparty

may also default prior to maturity. If we consider this issue and follow the key

aspects of Liu and Liu (2011), especially with respect to the default condition, the

time-dependent default barrier L(St, Dt) must be given by

L(St, Dt) = L(Dt) = Dt. (6.63)

Inserting this expression into Equations (6.36) and (6.37), the dynamic programming

recursion functions for vulnerable American calls and puts, respectively, based on

the extended model of Liu and Liu (2011) are given as follows:

Ct =



















max
(

St − K, Et

[

e−r∆t Ct+∆t | St, Vt, Dt

])

if Vt ≥ Dt

(1 − α)Vt

Dt

max (St − K, 0) if Vt < Dt

(6.64)

Pt =



















max
(

K − St, Et

[

e−r∆t Bt+∆t | St, Vt, Dt

])

if Vt ≥ Dt

(1 − α)Vt

Dt

max (K − St, 0) if Vt < Dt

(6.65)

Referring to the first line in Equations (6.64) and (6.65), the holder of an American

option must decide whether the option should be exercised early at the given
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time step t if the counterparty is not in default. Early exercise is optimal only

if the conditional expected continuation value is lower than the option payoff of an

immediate exercise. If the counterparty, however, defaults at the given time step t,

the American option is immediately exercised irrespective of whether the option is in

the money or not according to the second line in Equations (6.64) and (6.65). In this

case, the entire assets of the counterparty (less the default costs α) are distributed

to all the creditors. Since all liabilities of the counterparty are ranked equally, all

creditors receive the same proportion of their claims. This proportion is given by

the ratio
(

(1 − α)Vt

)

/Dt. Consequently, the holder of a vulnerable American call

receives
(

(1 − α)Vt max(St − K, 0)
)

/Dt, whereas
(

(1 − α)Vt max(K − St, 0)
)

/Dt

is paid out to the holder of a vulnerable American put.

To decide whether it is optimal to exercise the American option prior to maturity

if the counterparty is not in default, the conditional expected continuation value

must be determined by regressing the discounted future cash flows against a set of

basis functions of the state variables as illustrated in Equations (6.38) and (6.39).

Since the stochastic interest rates are implicitly included in the price of the option’s

underlying as well as in the value of the counterparty’s assets and liabilities, they do

not have to be explicitly considered in the construction of the basis functions. Based

on the extended model of Liu and Liu (2011), the value of a vulnerable American

option is driven by the price of the option’s underlying as well as by the value of the

counterparty’s assets and liabilities. Consequently, the basis functions must contain

these three stochastic variables as well as their cross products which results in a

total of 18 basis functions.21 In particular, they are given as follows:

ψ1 = 1 − St (6.66)

ψ2 =
1

2

(

2 − 4St + S2
t

)

ψ3 =
1

6

(

6 − 18St + 9S2
t − S3

t

)

ψ4 = 1 − Vt

21 In the course of this dissertation, we also tested a higher number of Laguerre polynomials as well
as different basis functions especially with respect to the combinations of the state variables’
cross products. However, the effect on the accuracy of the results was only marginal. This result
is consistent with Longstaff and Schwartz (2001), Moreno and Navas (2003) as well as Chang
and Hung (2006).
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ψ5 =
1

2

(

2 − 4Vt + V 2
t

)

ψ6 =
1

6

(

6 − 18Vt + 9V 2
t − V 3

t

)

ψ7 = 1 − Dt

ψ8 =
1

2

(

2 − 4Dt + D2
t

)

ψ9 =
1

6

(

6 − 18Dt + 9D2
t − D3

t

)

ψ10 = 1 − StVt

ψ11 =
1

2

(

2 − 4S2
t Vt + (S2

t Vt)
2
)

ψ12 =
1

6

(

6 − 18StV
2

t + 9 (StV
2

t )
2 − (StV

2
t )

3
)

ψ13 = 1 − StDt

ψ14 =
1

2

(

2 − 4S2
t Dt + (S2

t Dt)
2
)

ψ15 =
1

6

(

6 − 18StD
2
t + 9 (StD

2
t )

2 − (StD
2
t )

3
)

ψ16 = 1 − VtDt

ψ17 =
1

2

(

2 − 4V 2
t Dt + (V 2

t Dt)
2
)

ψ18 =
1

6

(

6 − 18VtD
2
t + 9 (VtD

2
t )

2 − (VtD
2
t )

3
)

6.4.5 General Model

In our general model, we pick up on the ideas of both Klein and Inglis (2001) and Liu

and Liu (2011). In particular, it is assumed that the short position in the option may

increase the counterparty’s default risk and the market value of the counterparty’s

other liabilities follows a geometric Brownian motion as given by Equation (6.3).

At time t, the counterparty’s total liabilities are given by Dt +St − K in the case of

an American call and Dt + K − St in the case of an American put, respectively.

Consequently, the default boundary L(St, Dt) indicating the default boundary

depends on the type of the considered option. For vulnerable American calls and

puts, respectively, it is given as follows:

L(St, Dt) = Dt + St − K (6.67)

L(St, Dt) = Dt + K − St. (6.68)
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Plugging the above expressions into Equations (6.36) and (6.37), the dynamic

programming recursion functions for the least squares Monte Carlo simulation based

on the general model are obtained. They are given by

Ct =



















max
(

St − K, Et

[

e−r∆t Ct+∆t | St, Vt, Dt

])

if Vt ≥ Dt + St − K

(1 − α)Vt

Dt + St − K
max (St − K, 0) if Vt < Dt + St − K

(6.69)

and

Pt =



















max
(

K − St, Et

[

e−r∆t Bt+∆t | St, Vt, Dt

])

if Vt ≥ Dt + K − St

(1 − α)Vt

Dt + K − St

max (K − St, 0) if Vt < Dt + K − St

(6.70)

for vulnerable American calls and puts, respectively.

In analogy to the previously presented valuation models, the holder of the American

option must decide whether the option should be immediately exercised if the

counterparty is not in default at the given time step t. According to the first line

in Equations (6.69) and (6.70), early exercise is optimal only if the conditional

expected continuation value is lower than the option payoff of an immediate

exercise. The second line in Equations (6.69) and (6.70) refers to the scenario

in which the counterparty is in default at time t. In this case, the American

option is immediately exercised irrespective of whether the option is in the money

or not. The entire assets of the counterparty (less the default costs α) are

distributed to the creditors. Since all liabilities of the counterparty are ranked

equally, all creditors receive the same proportion of their claims. Due to the

construction of the default boundary, this proportion depends on the type of

the considered option. It is given by
(

(1 − α)Vt

)

/
(

Dt + St − K
)

for a vulnerable

American call, whereas it is equal to
(

(1 − α)Vt

)

/
(

Dt + K − St

)

for a vulnerable

American put. Consequently, the holder of a vulnerable American call receives
(

(1 − α)Vt max(St − K, 0)
)

/
(

Dt + St − K
)

, whereas the holder of a vulnerable

American put receives ((1 − α)Vt max(K − St)) /
(

Dt + K − St

)

.

Looking at Equations (6.69) and (6.70), it is obvious that our general valuation

model incorporates the extended models of Klein (1996), Klein and Inglis (2001)
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and Liu and Liu (2011) as special cases. The communalities and differences between

these models are summarized as follows:

1. If the market value of the counterparty’s other liabilities is assumed to be

constant over time, our general model is reduced to the extended model of

Klein and Inglis (2001) specified by Equations (6.60) and (6.61). In this case,

the condition for the counterparty’s default is given by either Vt < D̄+St − K

or Vt < D̄ + K − St for American calls and puts, respectively.

2. If the option holder’s claim (St−K or K−St) is not explicitly considered in the

counterparty’s total liabilities and if the counterparty’s liabilities still follow

a geometric Brownian motion, our general model collapses to the extended

model of Liu and Liu (2011) represented by Equations (6.64) and (6.65). In

this case, the condition for the counterparty’s default is given by to Vt < Dt.

3. If the option holder’s claim (St − K or K − St) is not explicitly considered in

the counterparty’s total liabilities and if the market value of the counterparty’s

liabilities is constant over time, our general model is reduced to the extended

model of Klein (1996) which is specified by Equations (6.55) and (6.56).

Consequently, the condition for the counterparty’s default is equal to Vt < D̄

in this case.

To decide whether it is optimal to exercise the American option prior to maturity

if the counterparty is not in default, the conditional expected continuation value

must be determined by regressing the discounted future cash flows against a set of

basis functions as illustrated in Equations (6.38) and (6.39). The stochastic interest

rates are implicitly included in the price of the option’s underlying as well as in the

value of the counterparty’s assets and liabilities. Therefore, they do not have to be

explicitly considered in the construction of the basis functions. Since the price of

the vulnerable American option is governed by the same three stochastic variables

as in the extended model of Liu and Liu (2011), the same Laguerre polynomials as

before can be used as basis functions:

ψ1 = 1 − St (6.71)

ψ2 =
1

2

(

2 − 4St + S2
t

)
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ψ3 =
1

6

(

6 − 18St + 9S2
t − S3

t

)

ψ4 = 1 − Vt

ψ5 =
1

2

(

2 − 4Vt + V 2
t

)

ψ6 =
1

6

(

6 − 18Vt + 9V 2
t − V 3

t

)

ψ7 = 1 − Dt

ψ8 =
1

2

(

2 − 4Dt + D2
t

)

ψ9 =
1

6

(

6 − 18Dt + 9D2
t − D3

t

)

ψ10 = 1 − StVt

ψ11 =
1

2

(

2 − 4S2
t Vt + (S2

t Vt)
2
)

ψ12 =
1

6

(

6 − 18StV
2

t + 9 (StV
2

t )
2 − (StV

2
t )

3
)

ψ13 = 1 − StDt

ψ14 =
1

2

(

2 − 4S2
t Dt + (S2

t Dt)
2
)

ψ15 =
1

6

(

6 − 18StD
2
t + 9 (StD

2
t )

2 − (StD
2
t )

3
)

ψ16 = 1 − VtDt

ψ17 =
1

2

(

2 − 4V 2
t Dt + (V 2

t Dt)
2
)

ψ18 =
1

6

(

6 − 18VtD
2
t + 9 (VtD

2
t )

2 − (VtD
2
t )

3
)

6.5 Numerical Examples

In this section, we present various numerical examples to compare the results of

the different valuation models for American options subject to counterparty and

interest rate risk. Since the entire payoff on the option cannot be made if the option

writer defaults, it should be expected that vulnerable options will have lower values

than otherwise identical non-vulnerable options. Consequently, the upper limit for

the value of a vulnerable American option is given by the default-free option price

obtained from the Longstaff-Schwartz approach which is adjusted to the stochastic

interest rate framework.
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The following comparative analysis of the different valuation models is based on a

typical market situation for an American option. At today’s point in time (t = 0), the

option is at the money (S0 = 200, K = 200) and expires in six months (T = 0.5).

The return volatility of the option’s underlying equals 25% (σS = 0.25) and its

dividend yield is zero (q = 0). The option writer is assumed to be highly levered

(V0 = 1000, D0 = 900). The return volatility of both the counterparty’s assets and

liabilities is assumed to be 25% (σV = 0.25, σD = 0.25). The correlations between

the returns of the option’s underlying, the counterparty’s assets and liabilities are

assumed to be zero (ρSV = ρV D = ρSD = 0). If the counterparty defaults, deadweight

costs of 25% are applied (α = 0.25). The risk-free interest rate is assumed to follow

an mean-reverting Ornstein-Uhlenbeck process. The current risk-free interest rate

equals 5% (r0 = 0.05). The long-term mean is also equal to 5% (θ = 0.05), while

the reversion speed is 0.5 (κ = 0.5). The volatility of the risk-free interest rate is

assumed to be 5% (σr = 0.05). The correlation between the risk-free interest rate

and the returns of the option’s underlying, the couterparty’s assets and liabilities is

assumed to be zero (ρSr = ρV r = ρDr = 0).

The price of the vulnerable American option is computed based on the different

valuation models presented in Section 5.4 using the least squares Monte Carlo

simulation. We use 10 000 sample paths with 50 time steps (NSim = 10 000, NT = 50)

and obtain the value of the American option by computing the mean over 100 re-runs

of the algorithm (n = 100).

In a first step, we analyze whether the parameters for the least squares Monte Carlo

simulation are appropriately chosen and whether the obtained results are reasonably

accurate. The confidence interval, for instance, can be used to examine the accuracy

of the estimated option value. Assuming that the option values obtained from the

least squares Monte Carlo simulation are normally distributed, the two-sided 95%

confidence interval for the option value is given by

CI =
1

n

n
∑

j=1

AOj ± 1.96 · σ√
n

, (6.72)

where AOj gives the value of the American option based on run j = 1, ..., n and σ

is the standard deviation of the obtained option values.
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Table 6.1 gives the option value as well as the corresponding 95% confidence interval

for the different valuation models using the previously mentioned numerical example.

The confidence intervals of all the considered valuation models are relatively tight

indicating that the computed option values are quite accurate. Hence, the parameters

for the least squares Monte Carlo simulation (NSim = 10 000, NT = 50, n = 100)

seem to be reasonably chosen.

American Call

Option Value 95% Confidence Interval

Ext. Longstaff & Schwartz (2001) 16.5424 [16.4860; 16.5988]

Ext. Klein (1996) 12.6369 [12.5943; 12.6795]

Ext. Klein & Inglis (2001) 12.0933 [12.0545; 12.1321]

Ext. Liu & Liu (2011) 10.8314 [10.7980; 10.8648]

General Model 10.4139 [10.3842; 10.4436]

American Put

Option Value 95% Confidence Interval

Ext. Longstaff & Schwartz (2001) 12.0840 [12.0516; 12.1164]

Ext. (1996) 9.7314 [9.7034; 9.7594]

Ext. Klein & Inglis (2001) 9.5287 [9.5028; 9.5546]

Ext. Liu & Liu (2011) 8.5265 [8.5033; 8.5497]

General Model 8.3509 [8.3287; 8.3731]

Table 6.1: Confidence Intervals for the Monte Carlo Simulation

Unless otherwise noted, the calculations are based on the following parameters: S0 = 200, K = 200,

V0 = 1 000, D0 = 900, T − t = 0.5, r0 = 0.05, q = 0, κ = 0.5, θ = 0.05, σS = 0.25, σV = 0.25,

σD = 0.25, σr = 0.05, ρSV = 0, ρSD = 0, ρV D = 0, ρSr = 0, ρV r = 0, ρDr = 0 and α = 0.25. The

option values for the different valuation models are computed by the least squares Monte Carlo

simulation approach described in Sections 6.3 and 6.4. The simulation is based on 10 000 sample

paths with 50 time steps. To improve the accuracy of the obtained option values the algorithm is

re-run 100 times.

Figures 6.1 and 6.2 depict the values of American calls and puts, respectively, as

functions of the price of the option’s underlying, the option’s time to maturity

and the value of the counterparty’s assets for the valuation models presented in
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the previous section. As expected, the option values obtained from the extended

Klein, the extended Klein-Inglis, the extended Liu-Liu and our general model are

always lower than the default-free option value given by the model of Longstaff and

Schwartz (2001).

Figure 6.1: American Calls subject to Counterparty and Interest Rate Risk

Unless otherwise noted, the calculations are based on the following parameters: S0 = 200, K = 200,

V0 = 1 000, D0 = 900, T − t = 0.5, r0 = 0.05, q = 0, κ = 0.5, θ = 0.05, σS = 0.25, σV = 0.25,

σD = 0.25, σr = 0.05, ρSV = 0, ρSD = 0, ρV D = 0, ρSr = 0, ρV r = 0, ρDr = 0 and α = 0.25. The

option values for the different valuation models are computed by the least squares Monte Carlo

simulation approach described in Sections 6.3 and 6.4. The simulation is based on 10 000 sample

paths with 50 time steps. To improve the accuracy of the obtained option values the algorithm is

re-run 100 times.

In the upper left diagram of Figure 6.1, the value of the vulnerable American call

is plotted against the price of the option’s underlying. The price difference between

default-free and vulnerable American calls is largest for at-the-money options. This

price difference decreases if the American call is either further out of the money

or further in the money. Moreover, it can be observed that option values obtained

from the extended Klein-Inglis and our general model converge if the price of the
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option’s underlying increases, i.e. if the American call is further in the money. This

observation is attributed to the fact the option itself is included in the default

boundary of both models. For deep in-the-money options, the counterparty’s default

risk is predominantly driven by the short position in the American option, since it

takes an increasing share of the counterparty’s total liabilities.

Refering to the upper left diagram of Figure 6.1, the effect of the time to maturity

on the value of vulnerable American calls can be analyzed. If the time to maturity

decreases, the difference between the default-free and the vulnerable American call

values is also reduced. This result is not surprising, since the counterparty is less

likely to default if the option’s maturity date gets closer.

The lower diagram of Figure 6.1 shows that the price of a vulnerable American

call converges to the default-free option price if the value of the counterparty’s

assets increases, since the probability of hitting the default boundary is decreased in

this case. Our general model has the lowest convergence speed which is most likely

explained by the fact that this model is the only one that incorporates three sources

of default risk simultaneously: a decrease in the value of the counterparty’s assets,

an increase in the counterparty’s other liabilities as well as an increase in the option

value itself.

A similar analysis can also be done for vulnerable American puts. In the upper left

diagram of Figure 6.2, the value of the vulnerable American put is plotted against

the price of the option’s underlying. It can be seen that the price difference between

default-free and vulnerable American puts is largest for at-the-money options. This

price difference decreases if the American call is either further out of the money or

further in the money. Additionally, it can be observed that option values obtained

from the different valuation models converge if the price of the option’s underlying

decreases, i.e. if the American put is in the money. This observation is attributed to

the fact it is optimal to immediately exercise the American put if it is sufficiently

deep in the money.

Refering to the upper left diagram of Figure 6.2, the effect of the time to maturity

on the value of vulnerable American puts can be analyzed. If the time to maturity

decreases, the difference between the default-free and the vulnerable American put
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values is also reduced. This result is not surprising, since the counterparty is less

likely to default if the option’s maturity date gets closer.

The lower diagram of Figure 6.2 shows that the price of a vulnerable American

put converges to the default-free option price if the value of the counterparty’s

assets increases, since the probability of hitting the default boundary is decreased in

this case. Our general model has the lowest convergence speed which is most likely

explained by the fact that this model is the only one that incorporates three sources

of default risk simultaneously: a decrease in the value of the counterparty’s assets,

an increase in the counterparty’s other liabilities as well as an increase in the option

value itself.

Figure 6.2: American Puts subject to Counterparty and Interest Rate Risk

Unless otherwise noted, the calculations are based on the following parameters: S0 = 200, K = 200,

V0 = 1 000, D0 = 900, T − t = 0.5, r0 = 0.05, q = 0, κ = 0.5, θ = 0.05, σS = 0.25, σV = 0.25,

σD = 0.25, σr = 0.05, ρSV = 0, ρSD = 0, ρV D = 0, ρSr = 0, ρV r = 0, ρDr = 0 and α = 0.25. The

option values for the different valuation models are computed by the least squares Monte Carlo

simulation approach described in Sections 6.3 and 6.4. The simulation is based on 10 000 sample

paths with 50 time steps. To improve the accuracy of the obtained option values the algorithm is

re-run 100 times.
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General

Model

Ext.

LL2011

Ext.

KI2001

Ext.

K1996

Ext.

LS2001

Base Case 10.4139 10.8314 12.0933 12.6369 16.5424

S0 = 220 23.4667 24.5009 24.9658 26.2454 30.3421

S0 = 180 3.6591 3.7519 4.5811 4.7263 7.0328

V0 = 1050 12.3674 12.7275 14.0076 14.4192 16.5424

V0 = 950 7.5110 7.9489 8.8202 9.4617 16.5424

T − t = 1 12.9130 13.6198 15.3350 16.3624 24.8664

T − t = 0.25 8.3474 8.5738 9.4417 9.7043 11.1950

α = 0.5 9.9773 10.4633 11.7324 12.3795 16.5424

α = 0 11.2030 11.4920 12.8445 13.2046 16.5424

q = 0.02 9.2657 9.5479 10.6507 10.9925 13.9069

r0 = 0.08 11.0743 11.5744 13.1359 13.8088 17.9090

r0 = 0.02 9.8474 10.1916 11.2100 11.6533 15.2097

κ = 0.8 10.4439 10.8547 12.1293 12.6710 16.5655

κ = 0.2 10.4065 10.8165 12.0826 12.6065 16.5264

θ = 0.08 10.5106 10.9345 12.2091 12.7515 16.7517

θ = 0.02 10.3618 10.7726 12.0483 12.5758 16.3620

σr = 0.08 10.4073 10.8361 12.1218 12.6771 16.5426

σr = 0.02 10.4498 10.8557 12.1152 12.6586 16.5348

ρSr = 0.5 10.5439 10.9825 12.2712 12.8859 16.9627

ρSr = −0.5 10.3383 10.7270 11.9974 12.4938 16.1528

ρV r = 0.5 10.5606 10.9837 12.3003 12.8550 16.5424

ρV r = −0.5 10.3120 10.7189 11.9251 12.4639 16.5424

ρDr = 0.5 10.3205 10.7226 12.0933 12.6369 16.5424

ρDr = −0.5 10.5365 10.9622 12.0933 12.6369 16.5424

Table 6.2: American Calls subject to Counterparty and Interest Rate Risk

Unless otherwise noted, the calculations are based on the following parameters: S0 = 200, K = 200,

V0 = 1 000, D0 = 900, T − t = 0.5, r0 = 0.05, q = 0, κ = 0.5, θ = 0.05, σS = 0.25, σV = 0.25,

σD = 0.25, σr = 0.05, ρSV = 0, ρSD = 0, ρV D = 0, ρSr = 0, ρV r = 0, ρDr = 0 and α = 0.25. The

option values for the different valuation models are computed by the least squares Monte Carlo

simulation approach described in Sections 6.3 and 6.4. The simulation is based on 10 000 sample

paths with 50 time steps. To improve the accuracy of the obtained option values the algorithm is

re-run 100 times. The abbreviations Ext. LS2001, Ext. K1996, Ext. KI2001 and Ext. LL2011 stand

for the extended models of Longstaff and Schwartz (2001), Klein (1996), Klein and Inglis (2001)

as well as Liu and Liu (2011).
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General

Model

Ext.

LL2011

Ext.

KI2001

Ext.

K1996

Ext.

LS2001

Base Case 8.3509 8.5265 9.5287 9.7314 12.0840

S0 = 220 3.0974 3.1451 3.8343 3.8960 5.6035

S0 = 180 20.9163 21.2060 21.5388 21.8201 23.2999

V0 = 1050 9.6657 9.7987 10.7228 10.8480 12.0840

V0 = 950 6.2186 6.4390 7.1970 7.4973 12.0840

T − t = 1 9.6856 9.9380 11.1855 11.5016 15.9894

T − t = 0.25 7.0366 7.1483 7.8316 7.9397 8.9591

α = 0.5 8.0424 8.2626 9.2727 9.5313 12.0840

α = 0 8.7601 8.8605 9.8805 9.9746 12.0840

q = 0.02 9.2320 9.4891 10.6191 10.9132 13.8661

r0 = 0.08 7.8277 7.9727 8.9986 9.1636 11.1570

r0 = 0.02 8.8725 9.0836 10.0136 10.2705 13.1226

κ = 0.8 8.3817 8.5319 9.5471 9.7471 12.0908

κ = 0.2 8.3378 8.5021 9.5007 9.7035 12.0708

θ = 0.08 8.2885 8.4573 9.4638 9.6644 11.9935

θ = 0.02 8.3694 8.5523 9.5502 9.7628 12.1841

σr = 0.08 8.3628 8.5414 9.5266 9.7295 12.1077

σr = 0.02 8.3201 8.4972 9.4991 9.7014 12.0655

ρSr = 0.5 8.3815 8.5622 9.5523 9.7669 12.1516

ρSr = −0.5 8.2842 8.4571 9.4499 9.6463 11.9859

ρV r = 0.5 8.2722 8.4485 9.4206 9.6219 12.0840

ρV r = −0.5 8.4071 8.5831 9.6160 9.8199 12.0840

ρDr = 0.5 8.3932 8.5747 9.5287 9.7314 12.0840

ρDr = −0.5 8.2716 8.4529 9.5287 9.7314 12.0840

Table 6.3: American Puts subject to Counterparty and Interest Rate Risk

Unless otherwise noted, the calculations are based on the following parameters: S0 = 200, K = 200,

V0 = 1 000, D0 = 900, T − t = 0.5, r0 = 0.05, q = 0, κ = 0.5, θ = 0.05, σS = 0.25, σV = 0.25,

σD = 0.25, σr = 0.05, ρSV = 0, ρSD = 0, ρV D = 0, ρSr = 0, ρV r = 0, ρDr = 0 and α = 0.25. The

option values for the different valuation models are computed by the least squares Monte Carlo

simulation approach described in Sections 6.3 and 6.4. The simulation is based on 10 000 sample

paths with 50 time steps. To improve the accuracy of the obtained option values the algorithm is

re-run 100 times. The abbreviations Ext. LS2001, Ext. K1996, Ext. KI2001 and Ext. LL2011 stand

for the extended models of Longstaff and Schwartz (2001), Klein (1996), Klein and Inglis (2001)

as well as Liu and Liu (2011).
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Tables 6.2 and 6.3 present the option values for vulnerable American calls and puts,

respectively, which are obtained from the least squares Monte Carlo simulation based

on the valuation models presented in Section 6.4. Once again it can be observed

that the option values based on the extended Klein, the extended Klein-Inglis,

the extended Liu-Liu and our general valuation model are always lower than the

default-free option value of the Longstaff-Schwartz model. Furthermore, the option

values obtained from our general model are substantially lower than those of

the other valuation models in most situations. This finding is explained by the

construction of the general model’s default boundary. Our general model is the only

one which incorporates three sources of risk simultaneously. First, a decrease in the

value of the counterparty’s assets might lead to a default of the option writer like in

all the other valuation models. Second, the general model accounts for the potential

increase in the default risk induced by the option itself (unlike the extended Klein

and the extended Liu-Liu model). Third, it is assumed that the counterparty’s other

liabilities are stochastic which creates an additional default risk (unlike the extended

Klein and the extended Klein-Inglis model). Consequently, the option values based

on the general model are the lowest, since it accounts for all possible sources of the

counterparty’s default risk.

Table 6.4 provides the values of default-free and vulnerable American puts for

different prices of the option’s underlying. Figure 6.2 already showed that the price

of American puts obtained from the different valuation models converge if the price

of the option’s underlying decreases. This observation is attributed to the fact it is

optimal to immediately exercise the American put if it is sufficiently deep in the

money. Having a closer look at Table 6.4, it can easily be seen that all valuation

models suggest an immediate exercise of the American put if the current price of

the option’s underlying is lower than 160. Furthermore, it can be observed that the

critical stock price for which the American put is immediately exercised is highest

for our general model (S0 = 168). This aspect is explained by the fact that this

model is the only one that incorporates three sources of default risk simultaneously.

A similar analysis could also be performed for American calls. However, the option

will only be exercised immediately if both the current price and the dividend yield

of the option’s underlying are sufficiently large (i.e. S0 ≫ K and q ≫ 0).
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General

Model

Ext.

LL2011

Ext.

KI2001

Ext.

K1996

Ext.

LS2001

S0 = 158 42∗ 42∗ 42∗ 42∗ 42∗

S0 = 159 41∗ 41∗ 41∗ 41∗ 41.0232

S0 = 160 40∗ 40∗ 40∗ 40∗ 40.0447

S0 = 161 39∗ 39∗ 39∗ 39∗ 39.0755

S0 = 162 38∗ 38∗ 38∗ 38.0148 38.1106

S0 = 163 37∗ 37.0175 37∗ 37.0317 37.2035

S0 = 164 36∗ 36.0208 36∗ 36.0445 36.2413

S0 = 165 35∗ 35.0363 35.0127 35.0690 35.3613

S0 = 166 34∗ 34.0455 34.0240 34.0917 34.4421

S0 = 167 33∗ 33.0611 33.0404 33.1297 33.5627

S0 = 168 32∗ 32.0905 32.0730 32.1837 32.6957

S0 = 169 31.0187 31.1306 31.1255 31.2472 31.8257

S0 = 170 30.0227 30.1788 30.1815 30.3354 30.9917

S0 = 171 29.0302 29.2284 29.2554 29.4213 30.1529

S0 = 172 28.0526 28.2838 28.3382 28.5176 29.3305

S0 = 173 27.1107 27.3511 27.4361 27.6119 28.5237

S0 = 174 26.2020 26.4331 26.5500 26.7539 27.7198

S0 = 175 25.2824 25.5321 25.6814 25.9015 26.9667

S0 = 176 24.3845 24.6552 24.8137 25.0542 26.1978

S0 = 177 23.4853 23.7601 23.9714 24.2110 25.4605

S0 = 178 22.6149 22.8983 23.1358 23.4027 24.7359

S0 = 179 21.7631 22.0480 22.3311 22.6018 24.0018

S0 = 180 20.9145 21.2074 21.5337 21.8225 23.3154

Table 6.4: Analysis of In-the-Money American Puts

Unless otherwise noted, the calculations are based on the following parameters: S0 = 200, K = 200,

V0 = 1 000, D0 = 900, T − t = 0.5, r0 = 0.05, q = 0, κ = 0.5, θ = 0.05, σS = 0.25, σV = 0.25,

σD = 0.25, σr = 0.05, ρSV = 0, ρSD = 0, ρV D = 0, ρSr = 0, ρV r = 0, ρDr = 0 and α = 0.25. The

option values for the different valuation models are computed by the least squares Monte Carlo

simulation approach described in Sections 6.3 and 6.4. The simulation is based on 10 000 sample

paths with 50 time steps. To improve the accuracy of the obtained option values the algorithm

is re-run 100 times. The immediate exercise of the American put is indicated by an asterisk. The

abbreviations Ext. LS2001, Ext. K1996, Ext. KI2001 and LL2011 stand for the extended models of

Longstaff and Schwartz (2001), Klein (1996), Klein and Inglis (2001) as well as Liu and Liu (2011).
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Table 6.5 provides a comparative analysis of American and European options based

on the considered stochastic interest rate framework. Like in Chapter 5, we find that

the values of American and European calls are identical if the dividend yield of the

option’s underlying is zero. In this case, it is not optimal to exercise the American call

prior to maturity. In contrast to that, the early exercise of non-vulnerable American

puts is optimal, since their values are always higher than those of the corresponding

European puts.

For American options subject to counterparty and interest rate risk, we find different

results. In particular, we observe that the values of vulnerable American options are

always greater than the values of the corresponding European options for all the

considered valuation models. This observation is consistent with Chapter 5.

Furthermore, the price difference between the American and the corresponding

European option seems to be greater for vulnerable than for non-vulnerable options.

Based on this finding, we may conclude that the early exercise feature receives a

greater recognition in case of vulnerable American options. In particular, the holder

of an American option subject to counterparty risk gets the opportunity to avoid a

potential write-down on his claim by exercising the option prior to maturity.

6.6 Summary

In this chapter, we picked up on the fundamental ideas of Klein (1996), Klein and

Inglis (2001) and Liu and Liu (2011) to develop equivalent models for vulnerable

American options. Furthermore, we accounted for stochastic interest rates which

are modelled using the Ornstein-Uhlenbeck process suggested by Vasicek (1977).

Finally, we set up a general valuation model for American options subject to

counterparty and interest rate risk which combines the key characteristics of the

other models. Our general model is the only model incorporating three sources of

financial distress simultaneously: a decline in the counterparty’s assets, an increase

in the counterparty’s other liabilities or an increase in the value of the option itself.

Due to the early exercise feature of American options, the counterparty’s default

may occur also prior to maturity. Consequently, the structural approach of Black

and Cox (1976) need to be considered. To value vulnerable American options in
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this framework, the least squares Monte Carlos simulation suggested by Longstaff

and Schwartz (2001) is extended to the stochastic interest rate framework and

additionally adopted to the different valuation models for vulnerable American

options.

Based on various numerical examples and graphical illustrations, we compared the

results of our general model with those of the alternative models for American

options subject to counterparty and interest rate risk. All the considered valuation

models have in common that the reduction in the value of a vulnerable American

option (compared to a default-free American option) increases if the time to

maturity is longer and if the value of the counterparty’s assets is low. The deepest

price reduction is oberserved for at-the-money options. The values for vulnerable

American options obtained from our general model are typically the lowest, since

it is the only model which accounts for all possible sources of the counterparty’s

default.
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7 Conclusion

In this dissertation, we addressed the valuation of European and American options

subject to counterparty risk under deterministic and stochastic interest rate

frameworks. Due to the lack of a central clearing house, the risk of the option

writer’s default must be taken into consideration when valuing OTC options. Based

on the structural model of Merton (1974) and Black and Cox (1976), we presented

and discussed several valuation models in the previous chapters.

First, we introduced the valuation models of Klein (1996), Klein and Inglis

(2001) and Liu and Liu (2011) for vulnerable European options. Combining the

key characteristics of these models, we developed a general valuation model for

European options subject to counterparty risk. Despite the complexity, we derived

an approximate closed form solution for our general model. Numerical examples show

that the price of vulnerable European options is substantially lower than the price of

otherwise identical default-free European options. The option values obtained from

our general model are the lowest, since it is the only model that accounts for three

potential sources of the counterparty’s default simultaneously. An overview of the

different valuation models for European options subject to counterparty risk as well

as of my personal contributions is given in Table 7.1.

Model Default Condition Remarks

Klein (1996) VT < D̄
D̄ is constant: D̄ = D0.

r is constant.

Klein & Inglis (2001)
VT < D̄ + ST − K

VT < D̄ + K − ST

D̄ is constant: D̄ = D0.

r is constant.

Liu & Liu (2011) VT < DT

DT is driven by a GBM.

r is constant.

General Model∗
VT < DT + ST − K

VT < DT + K − ST

DT is driven by a GBM.

r is constant.

Table 7.1: Overview of the Models presented in Chapter 3

The considered valuation models are intensively discussed in Chapter 3. The risk-free interest rate

is deterministic and constant over time. Personal contributions are indicated by an asterisk.
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Second, we extended the valuation models of Klein (1996), Klein and Inglis (2001)

and Liu and Liu (2011) to a stochastic interest rate framework. In particular, it was

assumed that the interest rate is governed by the Ornstein-Uhlenbeck process of

Vasicek (1977). Once again, we set up a general model incorporating the fundamental

ideas of the other models and derived the corresponding approximate closed form

solution. Using numerical examples, the impact of stochastic interest rates on the

value of vulnerable European options was analyzed. Table 7.2 gives an overview of

the different valuation models for European options subject to counterparty and

interest rate risk as well as of my personal contributions.

Model Default Condition Remarks

Klein & Inglis (1999) VT < D̄
D̄ is constant: D̄ = D0.

rt is driven by an OU.

Extended Version of

Klein & Inglis (2001)∗

VT < D̄ + ST − K

VT < D̄ + K − ST

D̄ is constant: D̄ = D0.

rt is driven by an OU.

Extended Version of

Liu & Liu (2011)∗
VT < DT

DT is driven by a GBM.

rt is driven by an OU.

General Model∗
VT < DT + ST − K

VT < DT + K − ST

DT is driven by a GBM.

rt is driven by an OU.

Table 7.2: Overview of the Models presented in Chapter 4

The considered valuation models are intensively discussed in Chapter 4. The risk-free interest rate

follows the Ornstein-Uhlenbeck process (OU) of Vasicek (1977): drt = κ(θ−rt)dt+σrdWr. Personal

contributions are indicated by an asterisk.

Third, the valuation of vulnerable American options was addressed. In particular,

we picked up on the key features of Klein (1996), Klein and Inglis (2001) as well

as Liu and Liu (2011) to set up their equivalent models for American options.

Furthermore, we developed a general valuation model. Due to the early exercise

features of American options, closed form solutions could not be derived. Instead,

the options are priced using the least squares Monte Carlo simulation suggested

by Longstaff and Schwartz (2001). This approach was originally designed to value

American options, but can also be applied to more complex problems such as the
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valuation of vulnerable American options. Based on numerical examples, we observed

that the price for vulnerable American options is substantially lower than the price of

otherwise identical default-free American options. The sharpest price reduction was

found for our general model, since it is the only model considering three potential

sources of the counterparty’s default simultaneously. An overview of the different

valuation models for American options subject to counterparty risk as well as of my

personal contributions is given in Table 7.3.

Model Default Condition Remarks

Extended Version of

Klein (1996)∗
Vt < D̄

D̄ is constant: D̄ = D0.

r is constant.

Extended Version of

Klein & Inglis (2001)∗

Vt < D̄ + St − K

Vt < D̄ + K − St

D̄ is constant: D̄ = D0.

r is constant.

Extended Version of

Liu & Liu (2011)∗
Vt < Dt

Dt is driven by a GBM.

r is constant.

General Model∗
Vt < Dt + St − K

Vt < Dt + K − St

Dt is driven by a GBM.

r is constant.

Table 7.3: Overview of the Models presented in Chapter 5

The considered valuation models are intensively discussed in Chapter 5. The risk-free interest rate

is deterministic and constant over time. Personal contributions are indicated by an asterisk.

Finally, we discussed the valuation of American options subject to counterparty

and interest rate risk. Assuming that the risk-free interest rate follows an

Ornstein-Uhlenbeck process, we set up models to price vulnerable American options

built on the ideas of Klein (1996), Klein and Inglis (2001) as well as Liu and

Liu (2011). Moreover, we developed a general model combining the features of the

previously mentioned models. The least squares Monte Carlo simulation suggested

by Longstaff and Schwartz (2001) was adapted to the considered framework and used

to price the vulnerable American options. Several numerical examples showed the

impact of stochastic interest rates on the option values. Table 7.4 gives an overview

of the discussed models for American options subject to counterparty and interest

rate risk as well as of my personal contributions.
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Model Default Condition Remarks

Extended Version of

Klein (1996)∗
Vt < D̄

D̄ is constant: D̄ = D0.

rt is driven by an OU.

Extended Version of

Klein & Inglis (2001)∗

Vt < D̄ + St − K

Vt < D̄ + K − St

D̄ is constant: D̄ = D0.

rt is driven by an OU.

Extended Version of

Liu & Liu (2011)∗
Vt < Dt

Dt is driven by a GBM.

rt is driven by an OU.

General Model∗
Vt < Dt + St − K

Vt < Dt + K − St

Dt is driven by a GBM.

rt is driven by an OU.

Table 7.4: Overview of the Models presented in Chapter 6

The considered valuation models are intensively discussed in Chapter 6. The risk-free interest rate

follows the Ornstein-Uhlenbeck (OU) process of Vasicek (1977): drt = κ(θ−rt)dt+σrdWr. Personal

contributions are indicated by an asterisk.

As discussed in Chapter 2, valuation models on vulnerable American options

are rather scarce. Consequently, this area offers broad research opportunities. In

particular, the existing models for vulnerable American options can be extended to

other price processes (e.g. jump diffusion processes), other stochastic interest rate

or stochastic volatility models. Furthermore, an imperfect market framework can

be considered to additionally account for liquidity risk. In the context of vulnerable

European options, extensions to other stochastic interest rate models are possible.

Furthermore, the valuation of exotic options (e.g. barrier or binary options) subject

to counterparty risk can be addressed.
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Appendix

Appendix 1

In the following, the approximate closed form valuation formula of the general model

for vulnerable European options under deterministic interest rates is derived based

on the general model. The derivation of the valuation formula is only given for

vulnerable European calls, but the same procedure can also be used to get the

valuation formula for vulnerable European puts. To obtain the valuation formula, it

must be assumed that the returns of the option’s underlying and the counterparty’s

other liabilities are uncorrelated (i.e. ρSD = 0).

The pricing equation for a vulnerable European call based on the general model can

be written as follows:

C = e−r(T −t)
(

E
[

ST − K | ST ≥ K, VT ≥ DT + ST − K
]

+ E

[

(1 − α)VT (ST − K)

DT + ST − K
| ST ≥ K, VT < DT + ST − K

])

.

Using the risk-neutral pricing approach, the value of the vulnerable European call

is given by

C = e−r(T −t)







∞
∫

K

∞
∫

DT+ST −K

∞
∫

0

ST Φ(ST , VT , DT ) dDT dVT dST

−
∞

∫

K

∞
∫

DT+ST −K

∞
∫

0

K Φ(ST , VT , DT ) dDT dVT dST

+

∞
∫

K

DT+ST −K
∫

0

∞
∫

0

(1− α)VT ST

DT + ST − K
Φ(ST , VT , DT ) dDT dVT dST

−
∞

∫

K

DT+ST −K
∫

0

∞
∫

0

(1− α)VT K

DT + ST − K
Φ(ST , VT , DT ) dDT dVT dST





 ,

where Φ( · ) is the joint trivariate lognormal distribution function of the random

variables ST , VT and DT .
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Applying the standard log transformation, standardizing the normal distribution

and collecting terms yields

C =

∞
∫

−a

∞
∫

f(u,w)

∞
∫

−∞

St e(−q− 1
2

σ2
S
)(T −t)+σS

√
T −t u n3(u, v, w) dw dv du

−
∞

∫

−a

∞
∫

f(u,w)

∞
∫

−∞

e−r(T −t) K n3(u, v, w) dw dv du

+

∞
∫

−a

f(u,w)
∫

−∞

∞
∫

−∞

(1 − α)St Vt e(r−q− 1
2

σ2
S

− 1
2

σ2
V )(T −t)+σS

√
T −t u+σV

√
T −t v

Dt e(r− 1
2

σ2
D)(T −t)+σD

√
T −t w + St e(r−q− 1

2
σ2

S)(T −t)+σS

√
T −t u − K

· n3(u, v, w) dw dv du

−
∞

∫

−a

f(u,w)
∫

−∞

∞
∫

−∞

(1 − α)K Vt e(r− 1
2

σ2
V )(T −t)+σV

√
T −t v

Dt e(r− 1
2

σ2
D)(T −t)+σD

√
T −t w + St e(r−q− 1

2
σ2

S) (T −t)+σS

√
T −t u − K

· n3(u, v, w) dw dv du,

where n3( · ) is the joint trivariate standard normal density function of the random

variables u, v and w which is given by

n3(u, v, w) = n3(u, v, w, 0, 0, 0, 1, 1, 1, ρSV , ρSD = 0, ρV D)

=
e

− 1

2(1−ρ2
SV

−ρ2
V D)

((1−ρ2
V D

)u2+v2+(1−ρ2
SV

)w2−2ρSV uv+2ρSV ρV Duw−2ρV Dvw)

√
8π3

√

1 − ρ2SV − ρ2V D

The parameter a as well as the function f( · ) are given as follows:

a =
ln St

K
+

(

r − q − 1
2
σ2

S

)

(T − t)

σS

√
T − t

f(u, w) =
ln Dt e

(r− 1
2σ2

D)(T −t)+σD
√

T −t w
+St e

(r−q− 1
2σ2

S)(T −t)+σS
√

T −t u
−K

Vt
−

(

r − 1
2
σ2

V

)

(T − t)

σV

√
T − t
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In the next step, the function f(u, w) is linearized using Taylor series expansion.

f(u, w) ≈ f(p1, p2) +
∂f(p1, p2)

∂p1
(u − p1) +

∂f(p − 1, p2)

∂p2
(w − p2)

= b + m1(u − p1) + m2(w − p2)

where the parameters b, m1 and m2 are given as follows:

b =
ln Dt e

(r− 1
2σ2

D)(T −t)+σD
√

T −t p2+St e
(r−q− 1

2σ2
S)(T −t)+σS

√
T −t p1−K

Vt
−

(

r − 1
2
σ2

V

)

(T − t)

σV

√
T − t

,

m1 =
σS

σV

St e(r−q− 1
2

σ2
S)(T −t)+σS

√
T −t p1

Dt e(r− 1
2

σ2
D)(T −t)+σD

√
T −t p2 + St e(r−q− 1

2
σ2

S)(T −t)+σS

√
T −t p1 − K

,

m2 =
σD

σV

Dt e(r− 1
2

σ2
D)(T −t)+σD

√
T −t p2

Dt e(r− 1
2

σ2
D)(T −t)+σD

√
T −t p2 + St e(r−q− 1

2
σ2

S)(T −t)+σS

√
T −t p1 − K

.

Furthermore, the denominator in the third and fourth integral needs to be modified

as well using the first order Taylor series expansion.

F (u, w) =
1

Dt e(r− 1
2

σ2
D)(T −t)+σD

√
T −t w + St e(r−q− 1

2
σ2

S)(T −t)+σS

√
T −t u − K

G(u, w) = ln
1

Dt e(r− 1
2

σ2
D)(T −t)+σD

√
T −t w + St e(r−q− 1

2
σ2

S)(T −t)+σS

√
T −t u − K

≈ G(p1, p2) +
∂G(p1, p2)

∂p1
(u − p1) +

∂G(p1, p2)

∂p2
(w − p2)

= h + g1(u − p1) + g2(w − p2)

with

h = ln
1

Dt e(r− 1
2

σ2
D)(T −t)+σD

√
T −t p2 + St e(r−q− 1

2
σ2

S)(T −t)+σS

√
T −t p1 − K

g1 =
−σS

√
T − t St e(r−q− 1

2
σ2

S)(T −t)+σS

√
T −t p1

Dt e(r− 1
2

σ2
D)(T −t)+σD

√
T −t p2 + St e(r−q− 1

2
σ2

S)(T −t)+σS

√
T −t p1 − K

g2 =
−σD

√
T − t Dt e(r− 1

2
σ2

D)(T −t)+σD

√
T −t p2

Dt e(r− 1
2

σ2
D)(T −t)+σD

√
T −t p2 + St e(r−q− 1

2
σ2

S)(T −t)+σS

√
T −t p1 − K
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Using the Taylor series approximations, the pricing equation for a vulnerable

European call can be rewritten as follows:

C = Ste
(−q− 1

2
σ2

S
)(T −t)

∞
∫

−a

∞
∫

b+m1(u−p1)+m2(w−p2)

∞
∫

−∞

eσS

√
T −t u n3(u, v, w) dw dv du

− Ke−r(T −t)

∞
∫

−a

∞
∫

b+m1(u−p1)+m2(w−p2)

∞
∫

−∞

n3(u, v, w) dw dv du

+
(1 − α)StVt e(r−q 1

2
σ2

S
− 1

2
σ2

V )(T −t)−g1p1−g2p2

Dt e(r− 1
2

σ2
D)(T −t)+σD

√
T −t p2 + St e(r−q− 1

2
σ2

S)(T −t)+σS

√
T −t p1 − K

∞
∫

−a

b+m1(u−p1)+m2(w−p2)
∫

−∞

∞
∫

−∞

e(g1+σS

√
T −t)u+σV

√
T −t v+g2w n3(u, v, w) dw dv du

− (1 − α)KVt e− 1
2

σ2
V
(T −t)−g1p1−g2p2

Dt e(r− 1
2

σ2
D)(T −t)+σD

√
T −t p2 + St e(r−q− 1

2
σ2

S)(T −t)+σS

√
T −t p1 − K

∞
∫

−a

b+m1(u−p1)+m2(w−p2)
∫

−∞

∞
∫

−∞

eg1u+σV

√
T −t v+g2w n3(u, v, w) dw dv du

Using appropriate substitutions for u, v and w, the stochastic component in the

integral boundaries can be eliminated. The random variables u, v and w are

substituted by

u =
x

√

1 + m2
1

,

v = y +
m1x

√

1 + m2
1

+
m2z

√

1 + m2
2

and

w =
z

√

1 + m2
2

,

where x, y and z are also jointly standard normally distributed.
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Applying these substitutions to the pricing equation yields

C = Ste
(−q− 1

2
σ2

S
)(T −t)

∞
∫

−a
√

1+m2
1

∞
∫

b−m1p1−m2p2

∞
∫

−∞

e

σS
√

T −t√
1+m2

1

x Ω(x, y, z)

Θ
dz dy dx

− Ke−r(T −t)

∞
∫

−a
√

1+m2
1

∞
∫

b−m1p−m2p2

∞
∫

−∞

Ω(x, y, z)

Θ
dz dy dx

+
(1− α)StVt e(r−q− 1

2
σ2

S
− 1

2
σ2

V )(T −t)−g1p1−g2p2

Dt e(r− 1
2

σ2
D)(T −t)+σD

√
T −t p2 + St e(r−q− 1

2
σ2

S)(T −t)+σS

√
T −t p1 − K

∞
∫

−a
√

1+m2
1

b−m1p1−m2p2
∫

−∞

∞
∫

−∞

e

g1+(σS+m1σV )
√

T −t√
1+m2

1

x+σV

√
T −t y+

g2+m2σV
√

T −t√
1+m2

2

z

Ω(x, y, z)

Θ
dz dy dx

− (1− α)KVt e− 1
2

σ2
V
(T −t)−g1p1−g2p2

Dt e(r− 1
2

σ2
D)(T −t)+σD

√
T −t p2 + St e(r−q− 1

2
σ2

S)(T −t)+σS

√
T −t p1 − K

∞
∫

−a
√

1+m2
1

b−m1p−m2p2
∫

−∞

∞
∫

−∞

e

g1+m1σV
√

T −t√
1+m2

1

x+σV

√
T −t y+

g2+m2σV
√

T −t√
1+m2

2

z

Ω(x, y, z)

Θ
dz dy dx,

where

Ω(x, y, z) = e
− 1

2(1−ρ2
SV

−ρ2
V D) e

(1−ρ2
V D

)

(

x√
1+m2

1

)2

+

(

y+
m1x√
1+m2

1

+
m2z√
1+m2

2

)2

+(1−ρ2
SV

)

(

z√
1+m2

2

)2

e
−2 ρSV

x√
1+m2

1

(

y+
m1x√
1+m2

1

+
m2z√
1+m2

2

)

e
2 ρSV ρV D

x√
1+m2

1

z√
1+m2

2

e
−2 ρV D

z√
1+m2

2

(

y+
m1x√
1+m2

1

+
m2z√
1+m2

2

)

and

Θ =
√

1 +m2
1

√

1 +m2
2

√
8π3

√

1− ρ2SV − ρ2V D.
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The previous expression can be rewritten as follows:

C = Ste
(−q− 1

2
σ2

S
)(T −t)

∞
∫

−a
√

1+m2
1

∞
∫

b−m1p1−m2p2

∞
∫

−∞

e

σS
√

T −t√
1+m2

1

x Ψ(x, y, z)

Θ
dz dy dx

− Ke−r(T −t)

∞
∫

−a
√

1+m2
1

∞
∫

b−m1p−m2p2

∞
∫

−∞

Ψ(x, y, z)

Θ
dz dy dx

+
(1− α)StVt e(r−q− 1

2
σ2

S
− 1

2
σ2

V )(T −t)−g1p1−g2p2

Dt e(r− 1
2

σ2
D)(T −t)+σD

√
T −t p2 + St e(r−q− 1

2
σ2

S)(T −t)+σS

√
T −t p1 − K

∞
∫

−a
√

1+m2
1

b−m1p1−m2p2
∫

−∞

∞
∫

−∞

e

g1+(σS+m1σV )
√

T −t√
1+m2

1

x+σV

√
T −t y+

g2+m2σV
√

T −t√
1+m2

2

z

Ψ(x, y, z)

Θ
dz dy dx

− (1− α)KVt e− 1
2

σ2
V
(T −t)−g1p1−g2p2

Dt e(r− 1
2

σ2
D)(T −t)+σD

√
T −t p2 + St e(r−q− 1

2
σ2

S)(T −t)+σS

√
T −t p1 − K

∞
∫

−a
√

1+m2
1

b−m1p−m2p2
∫

−∞

∞
∫

−∞

e

g1+m1σV
√

T −t√
1+m2

1

x+σV

√
T −t y+

g2+m2σV
√

T −t√
1+m2

2

z

Ψ(x, y, z)

Θ
dz dy dx,

where

Ψ(x, y, z) = e
− 1

2(1−δ2
SV

−δ2
V D) e

(1−δ2
V D

)

(

x√
1+m2

1

)2

e

(

y√
1−2 ρSV m1−2 ρV D m2+m2

1
+m2

2

)2

e
(1−δ2

SV
)

(

z√
1+m2

2

)2

e
−2 δSV

x√
1+m2

1

y√
1−2 ρSV m1−2 ρV D m2+m2

1
+m2

2

e
2 δSV δV D

x√
1+m2

1

z√
1+m2

2 e
−2 δV D

z√
1+m2

2

y√
1−2 δSV m1−2 δV D m2+m2

1
+m2

2
and

δSV =
ρSV − m1

√

1− 2 ρSV m1 − 2 ρV D m2 +m2
1 +m2

2

,

δV D =
ρV D − m2

√

1− 2 ρSV m1 − 2 ρV D m2 +m2
1 +m2

2

.
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Using appropriate substitutions for x, y and z, the previous expression can be

rewritten once again. In particular, the variables x, y and z are substituted by

x =
√

1 +m2
1 u,

y =
√

1− 2 ρSV m1 − 2 ρV D m2 +m2
1 +m2

2 v

and

z =
√

1 +m2
2 w,

where u, v and w are also jointly standard normally distributed.

Applying these substitutions to the pricing equation yields

C = Ste
(−q− 1

2
σ2

S
)(T −t)

∞
∫

−a

∞
∫

c

∞
∫

−∞

eσS

√
T −tu Γ(u, v, w) dw dv du

− Ke−r(T −t)

∞
∫

−a

∞
∫

c

∞
∫

−∞

Γ(u, v, w) dw dv du

+
(1− α)StVt e(r−q− 1

2
σ2

S
− 1

2
σ2

V )(T −t)−g1p1−g2p2

Dt e(r− 1
2

σ2
D)(T −t)+σD

√
T −t p2 + St e(r−q− 1

2
σ2

S)(T −t)+σS

√
T −t p1 − K

∞
∫

−a

c
∫

−∞

∞
∫

−∞

e(g1+(σS+m1σV )
√

T −t)u eσV

√
T −t

√
1−2 ρSV m1−2 ρV D m2+m2

1+m2
2 v

e(g2+m2σV

√
T −t)w Γ(u, v, w) dw dv du

− (1− α)KVt e− 1
2

σ2
V
(T −t)−g1p1−g2p2

Dt e(r− 1
2

σ2
D)(T −t)+σD

√
T −t p2 + St e(r−q− 1

2
σ2

S)(T −t)+σS

√
T −t p1 − K

∞
∫

−a

c
∫

−∞

∞
∫

−∞

e(g1+m1σV

√
T −t)u eσV

√
T −t

√
1−2 ρSV m1−2 ρV D m2+m2

1+m2
2 v

e(g2+m2σV

√
T −t)w Γ(u, v, w) dw dv du

where

c =
b − m1p1 − m2p2

√

1− 2 ρSV m1 − 2 ρV D m2 +m2
1 +m2

2
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and

Γ(u, v, w) = n3(u, v, w, 0, 0, 0, 1, 1, 1, δSV , δSD = 0, δV D)

=
e

− 1

2(1−δ2
SV

−δ2
V D)

((1−δ2
V D

)u2+v2+(1−δ2
SV

)w2−2δSV uv+2δSV δV Duw−2δV Dvw)

√
8π3

√

1− δ2SV − δ2V D

Completing the square yields

C = Ste
−q(T −t)

∞
∫

−a

∞
∫

c

∞
∫

−∞

n3(u, v, w, σs

√
T − t, δSV σs

√
T − t, 0, 1, 1, 1, δSV , 0, δV D) dw dv du

− Ke−r(T −t)

∞
∫

−a

∞
∫

c

∞
∫

−∞

n3(u, v, w, 0, 0, 0, 1, 1, 1, δSV , 0, δV D) dw dv du

+
(1− α)StVt e(r−q− 1

2
σ2

S
− 1

2
σ2

V )(T −t)−g1p1−g2p2 e
1
2(η2+φ2+λ2+2δSV η φ+2 δV D φ λ)

Dt e(r− 1
2

σ2
D)(T −t)+σD

√
T −t p2 + St e(r−q− 1

2
σ2

S)(T −t)+σS

√
T −t p1 − K

∞
∫

−a

c
∫

−∞

∞
∫

−∞

n3(u, v, w, η + δSV φ, φ+ δSV η + δV D λ, λ+ δV D φ, ...

..., 1, 1, 1, δSV , 0, δV D) dw dv du

− (1− α)KVt e− 1
2

σ2
V
(T −t)−g1p1−g2p2 e

1
2(ξ2+φ2+λ2+2δSV ξ φ+2 δV D φ λ)

Dt e(r− 1
2

σ2
D)(T −t)+σD

√
T −t p2 + St e(r−q− 1

2
σ2

S)(T −t)+σS

√
T −t p1 − K

∞
∫

−a

c
∫

−∞

∞
∫

−∞

n3(u, v, w, ξ + δSV φ, φ+ δSV ξ + δV D λ, λ+ δV D φ, ...

..., 1, 1, 1, δSV , 0, δV D) dw dv du,

where

η = g1 + σS

√
T − t+m1 σV

√
T − t,

ξ = η − σS

√
T − t,

φ = σV

√
T − t

√

1− 2 ρSV m1 − 2 ρV D m2 +m2
1 +m2

2,

λ = g2 +m2 σV

√
T − t.
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Standardizing the normal distribution yields

C = Ste
−q(T −t)

∞
∫

−a−σs

√
T −t

∞
∫

c−δSV σs

√
T −t

∞
∫

−∞

n3(u, v, w, 0, 0, 0, 1, 1, 1, δSV , 0, δV D) dw dv du

− Ke−r(T −t)

∞
∫

−a

∞
∫

c

∞
∫

−∞

n3(u, v, w, 0, 0, 0, 1, 1, 1, δSV , 0, δV D) dw dv du

+
(1− α)StVt e(r−q− 1

2
σ2

S
− 1

2
σ2

V )(T −t)−g1p1−g2p2 e
1
2(η2+φ2+λ2+2δSV η φ+2 δV D φ λ)

Dt e(r− 1
2

σ2
D)(T −t)+σD

√
T −t p2 + St e(r−q− 1

2
σ2

S)(T −t)+σS

√
T −t p1 − K

∞
∫

−a−η−δSV φ

c−φ−δSV η−δV D λ
∫

−∞

∞
∫

−∞

n3(u, v, w, 0, 0, 0, 1, 1, 1, δSV , 0, δV D) dw dv du

− (1− α)KVt e− 1
2

σ2
V
(T −t)−g1p1−g2p2 e

1
2(ξ2+φ2+λ2+2δSV ξ φ+2 δV D φ λ)

Dt e(r− 1
2

σ2
D)(T −t)+σD

√
T −t p2 + St e(r−q− 1

2
σ2

S)(T −t)+σS

√
T −t p1 − K

∞
∫

−a−ξ−δSV φ

c−φ−δSV ξ−δV D λ
∫

−∞

∞
∫

−∞

n3(u, v, w, 0, 0, 0, 1, 1, 1, δSV , 0, δV D) dw dv du.

Computing the triple integrals yields the approximate closed form solution for

vulnerable European calls based on the general model. It is given by

C = Ste
−q(T −t) N3(a+ σS

√
T − t, −c+ δSV σS

√
T − t,+∞, δSV , 0, δV D)

− Ke−r(T −t) N3(a, −c,+∞, δSV , 0, δV D)

+ (1− α)
StVt e(r−q− 1

2
σ2

S
− 1

2
σ2

V )(T −t)−g1p1−g2p2 e
1
2(η2+φ2+λ2+2δSV η φ+2 δV D φ λ)

Dt e(r− 1
2

σ2
D)(T −t)+σD

√
T −t p2 + St e(r−q− 1

2
σ2

S)(T −t)+σS

√
T −t p1 − K

N3(a+ η + δSV φ, c − φ − δSV η − δV Dλ,+∞, −δSV , 0, −δV D)

− (1− α)
KVt e− 1

2
σ2

V
(T −t)−g1p1−g2p2 e

1
2(ξ2+φ2+λ2+2δSV ξ φ+2 δV D φ λ)

Dt e(r− 1
2

σ2
D)(T −t)+σD

√
T −t p2 + St e(r−q− 1

2
σ2

S)(T −t)+σS

√
T −t p1 − K

N3(a+ ξ + δSV φ, c − φ − δSV ξ − δV Dλ,+∞, −δSV , 0, −δV D),

where N3( · ) gives the trivariate cumulative normal distribution function.

187



Since the stochastic variable lnDt can assume any value between −∞ and +∞,

the trivariate cumulative normal ditribution becomes a bivariate cumulative normal

distribution. Hence, the approximate closed form solution is given by

C = Ste
−q(T −t) N2(a+ σS

√
T − t, −c+ δSV σS

√
T − t, δSV )

− Ke−r(T −t) N2(a, −c, δSV )

+ (1− α)
StVt e(r−q− 1

2
σ2

S
− 1

2
σ2

V )(T −t)−g1p1−g2p2 e
1
2(η2+φ2+λ2+2δSV η φ+2 δV D φ λ)

Dt e(r− 1
2

σ2
D)(T −t)+σD

√
T −t p2 + St e(r−q− 1

2
σ2

S)(T −t)+σS

√
T −t p1 − K

N2(a+ η + δSV φ, c − φ − δSV η − δV Dλ, −δSV )

− (1− α)
KVt e− 1

2
σ2

V
(T −t)−g1p1−g2p2 e

1
2(ξ2+φ2+λ2+2δSV ξ φ+2 δV D φ λ)

Dt e(r− 1
2

σ2
D)(T −t)+σD

√
T −t p2 + St e(r−q− 1

2
σ2

S)(T −t)+σS

√
T −t p1 − K

N2(a+ ξ + δSV φ, c − φ − δSV ξ − δV Dλ, −δSV )

where N2( · ) gives the bivariate cumulative normal distribution function.

Collecting and rearranging terms yields the approximate closed form valuation

formula given by Equation (3.54).
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Appendix 2

In the following, the approximate closed form valuation formula for vulnerable

European options under the stochastic interest rate framework of Vasicek (1977)

is derived based on the extended model of Klein and Inglis (2001). The derivation

of the valuation formula is only given for vulnerable European calls, but the same

procedure can also be used to get the valuation formula for vulnerable European

puts.

The pricing equation for a vulnerable European call based on the general model is

equal to

C = Bt, T

(

E
[

ST − K | ST ≥ K, VT ≥ D̄ + ST − K
]

+ E

[

(1 − α)VT (ST − K)

D̄ + ST − K
| ST ≥ K, VT < D̄ + ST − K

])

.

where D̄ = Dt.

Using the risk-neutral pricing approach, the value of the vulnerable European call

is given by

C = Bt, T







∞
∫

K

∞
∫

D̄+ST −K

ST Φ(ST , VT ) dVT dST

−
∞

∫

K

∞
∫

D̄+ST −K

K Φ(ST , VT ) dVT dST

+

∞
∫

K

D̄+ST −K
∫

0

(1 − α)VT ST

D̄ + ST − K
Φ(ST , VT ) dVT dST

−
∞

∫

K

D̄+ST −K
∫

0

(1 − α)VT K

D̄ + ST − K
Φ(ST , VT ) dVT dST





 ,

where Φ( · ) is the joint bivariate lognormal distribution function of the random

variables ST and VT .
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Applying the standard log transformation, standardizing the normal distribution

and collecting terms yields

C =

∞
∫

−a

∞
∫

f(u)

St e−q(T −t)− 1
2

σ̄2
S
+σ̄S u n2(u, v) dv du −

∞
∫

−a

∞
∫

f(u)

Bt, T K n2(u, v) dv du

+

∞
∫

−a

f(u)
∫

−∞

(1− α)St Vt e−q(T −t)− 1
2

σ̄2
S

− 1
2

σ̄2
V
+σ̄S u+σ̄V v

Bt, T D̄ + St e−q(T −t)− 1
2

σ̄2
S
+σ̄S u − Bt, T K

n2(u, v) dv du

−
∞

∫

−a

f(u)
∫

−∞

(1 − α)Bt, T K Vt e− 1
2

σ̄2
V
+σ̄V v

Bt, T D̄ + St e−q(T −t)− 1
2

σ̄2
S
+σ̄S u − Bt, T K

n2(u, v) dv du,

where n2( · ) is the joint bivariate standard normal density function of the random

variables u and v. It is given by

n2(u, v) = n2(u, v, 0, 0, 1, 1, ρ̄SV ) =
1

√
4π2

√

1 − ρ̄2SV

e
− 1

2(1−ρ̄2
SV )

(u2+v2−2ρ̄SV uv)

The parameter a and the function f( · ) are given as follows:

a =
ln St

Bt, T K
− q(T − t) − 1

2
σ̄2

S

σ̄S

f(u) =
ln

Bt, T D̄+St e
−q(T −t)− 1

2 σ̄2
S
+σ̄S u−Bt,T K

Vt
+ 1

2
σ̄2

V

σ̄V

In the next step, the function f(u, w) is linearized using Taylor series expansion.

f(u) ≈ f(p) +
∂f(p)

∂p
(u − p) = b + m(u − p)

where the parameters b and m are given as follows:

b =
ln

Bt, T D̄+St e
−q(T −t)− 1

2 σ̄2
S
+σ̄S p−Bt,T K

Vt
+ 1

2
σ̄2

V

σ̄V

,

m =
σ̄S

σ̄V

St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p

Bt, T D̄ + St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p1 − Bt,T K

,
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Furthermore, the denominator in the third and fourth integral needs to be modified

as well using the first order Taylor series expansion.

F (u) =
1

Bt, T D̄ + St e−q(T −t)− 1
2

σ̄2
S
+σ̄S u − Bt,T K

G(u) = ln
1

Bt, T D̄ + St e−q(T −t)− 1
2

σ̄2
S
+σ̄S u − Bt,T K

≈ G(p) +
∂G(p)

∂p
(u − p) = h + g(u − p)

with

h = ln
1

Bt, T D̄ + St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p − Bt,T K

g =
−σ̄S St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p

Bt, T D̄ + St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p − Bt,T K

Using the Taylor series approximations, the pricing equation for a vulnerable

European call can be rewritten as follows:

C = Ste
−q(T −t)− 1

2
σ̄2

S

∞
∫

−a

∞
∫

b+m(u−p)

eσ̄S u n2(u, v) dv du

− Bt,T K

∞
∫

−a

∞
∫

b+m(u−p)

n2(u, v) dv du

+
(1 − α)StVt e−q(T −t)− 1

2
σ̄2

S
− 1

2
σ̄2

V
−gp

Bt, T D̄ + St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p − Bt,T K

∞
∫

−a

b+m(u−p)
∫

−∞

e(g+σ̄S)u+σ̄V v n2(u, v) dv du

− (1 − α)Bt,T KVt e− 1
2

σ̄2
V

−gp

Bt, T D̄ + St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p − Bt,T K

∞
∫

−a

b+m(u−p)
∫

−∞

egu+σ̄V v n2(u, v) dv du
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Using appropriate substitutions for u and v, the stochastic component in the integral

boundaries can be eliminated. The random variables u, v and w are substituted by

u =
x√

1 +m2
,

and

v = y +
mx√
1 +m2

where x and y are also jointly standard normally distributed.

Applying these substitutions to the pricing equation yields

C = Ste
−q(T −t)− 1

2
σ̄2

S

∞
∫

−a
√
1+m2

∞
∫

b−mp

e
σ̄S√
1+m2

x Ω(x, y)

Θ
dy dx

− Bt,T K

∞
∫

−a
√
1+m2

∞
∫

b−mp−m2p2

Ω(x, y)

Θ
dy dx

+
(1− α)StVt e−q(T −t)− 1

2
σ̄2

S
− 1

2
σ̄2

V
−gp

Bt, T D̄ + St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p − Bt,T K

∞
∫

−a
√
1+m2

b−mp
∫

−∞

e
g+σ̄S+mσ̄V√

1+m2
x+σ̄V y Ω(x, y)

Θ
dy dx

− (1− α)Bt,T KVt e− 1
2

σ̄2
V

−gp

Bt, T D̄ + St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p − Bt,T K

∞
∫

−a
√
1+m2

b−mp
∫

−∞

e
g+mσ̄V√
1+m2

x+σ̄V y Ω(x, y)

Θ
dy dx,

where

Ω(x, y) = e
− 1

2(1−ρ̄2
SV )

(

x√
1+m2

)2

+

(

y+ mx√
1+m2

)2

−2 ρ̄SV
x√

1+m2

(

y+ mx√
1+m2

)

and

Θ =
√
1 +m2

√
4π2

√

1− ρ̄2SV .
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The previous expression can be rewritten as follows:

C = Ste
−q(T −t)− 1

2
σ̄2

S

∞
∫

−a
√
1+m2

∞
∫

b−mp

e
σ̄S

√
T −t√

1+m2
x Ψ(x, y)

Θ
dy dx

− Bt,T K

∞
∫

−a
√
1+m2

∞
∫

b−mp

Ψ(x, y)

Θ
dy dx

+
(1− α)StVt e−q(T −t)− 1

2
σ̄2

S
− 1

2
σ̄2

V
−gp

Bt, T D̄ + St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p − Bt,T K

∞
∫

−a
√
1+m2

b−mp
∫

−∞

e
g+σ̄S+mσ̄V√

1+m2
x+σ̄V y Ψ(x, y, z)

Θ
dy dx

− (1− α)Bt,T KVt e− 1
2

σ̄2
V

−gp

Bt, T D̄ + St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p − Bt,T K

∞
∫

−a
√
1+m2

b−mp
∫

−∞

e
g+mσ̄V√
1+m2

x+σ̄V y Ψ(x, y)

Θ
dy dx,

where

Ψ(x, y) = e
− 1

2(1−δ2
SV )

+

(

x√
1+m2

)2

+

(

y√
1−2 ρ̄SV m+m2

)2

−2 δSV
x√

1+m2

y√
1−2 ρ̄SV m+m2

and

δSV =
ρ̄SV − m√

1 − 2 ρ̄SV + m2
,
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Using appropriate substitutions for x, y and z, the previous expression can be

rewritten once again. In particular, the variables x, y and z are substituted by

x =
√
1 +m2 u,

and

y =
√

1− 2 ρ̄SV m − 2 ρ̄V D m2 + m2 + m2
2 v

where u and v are also jointly standard normally distributed.

Applying these substitutions to the pricing equation yields

C = Ste
−q(T −t)− 1

2
σ̄2

S

∞
∫

−a

∞
∫

c

eσ̄S u Γ(u, v) dv du

− Bt,T K

∞
∫

−a

∞
∫

c

Γ(u, v) dv du

+
(1− α)StVt e−q(T −t)− 1

2
σ̄2

S
− 1

2
σ̄2

V
−gp

Bt, T D̄ + St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p − Bt,T K

∞
∫

−a

c
∫

−∞

e(g+σ̄S+mσ̄V )u eσ̄V

√
1−2 ρ̄SV m+m2 v Γ(u, v) dv du

− (1− α)Bt,T KVt e− 1
2

σ̄2
V

−gp

Bt, T D̄ + St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p − Bt,T K

∞
∫

−a

c
∫

−∞

e(g+mσ̄V )u eσ̄V

√
1−2 ρ̄SV m+m2 v Γ(u, v) dv du

where

c =
b − mp√

1− 2 ρ̄SV mm2

and

Γ(u, v) = n2(u, v, 0, 0, 1, 1, δSV ) =
1

√
4π2

√

1− δ2SV

eu2+v2−2δSV uv
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Completing the square yields

C = Ste
−q(T −t)

∞
∫

−a

∞
∫

c

n2(u, v, σ̄s, δSV σ̄s, 1, 1, δSV ) dv du

− Bt,T K

∞
∫

−a

∞
∫

c

n2(u, v, 0, 0, 1, 1, δSV ) dv du

+
(1 − α)StVt e−q(T −t)− 1

2
σ̄2

S
− 1

2
σ̄2

V
−gp e

1
2(η2+φ2+2δSV η φ)

Bt, T D̄ + St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p − Bt,T K

∞
∫

−a

c
∫

−∞

n2(u, v, η + δSV φ, φ + δSV η, δSV ) dv du

− (1 − α)Bt,T KVt e− 1
2

σ̄2
V

−gp e
1
2(ξ2+φ2+λ2+2δSV ξ φ+2 δV D φ λ)

Bt, T D̄ + St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p − Bt,T K

∞
∫

−a

c
∫

−∞

n2(u, v, ξ + δSV φ, φ + δSV ξ, 1, 1, deltaSV ) dv du,

where

η = g + σ̄S + m σ̄V ,

ξ = η − σ̄S,

φ = σ̄V

√

1 − 2 ρ̄SV m + m2.
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Standardizing the normal distribution yields

C = Ste
−q(T −t)

∞
∫

−a−σ̄s

∞
∫

c−δSV σ̄s

n2(u, v, 0, 0, 1, 1, δSV ) dv du

− Bt,T K

∞
∫

−a

∞
∫

c

n2(u, v, 0, 0, 1, 1, δSV ) dv du

+
(1− α)StVt e−q(T −t)− 1

2
σ̄2

S
− 1

2
σ̄2

V
−gp e

1
2(η2+φ2+2δSV η φ)

Bt, T D̄ + St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p − Bt,T K

∞
∫

−a−η−δSV φ

c−φ−δSV η
∫

−∞

n2(u, v, 0, 0, 1, 1, δSV ) dv du

− (1 − α)Bt,T KVt e− 1
2

σ̄2
V

−gp e
1
2(ξ2+φ2+λ2+2δSV ξ φ+2 δV D φ λ)

Bt, T D̄ + St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p − Bt,T K

∞
∫

−a−ξ−δSV φ

c−φ−δSV ξ
∫

−∞

n2(u, v, 0, 0, 1, 1, δSV ) dv du.

Computing the double integrals yields the approximate closed form solution for

vulnerable European calls based on the extended model of Klein and Inglis (2001).

It is given by

C = Ste
−q(T −t) N2(a + σ̄S, −c + δSV σ̄S, δSV ) − Bt,T K N2(a, −c, δSV )

+
(1 − α)StVt e−q(T −t)− 1

2
σ̄2

S
− 1

2
σ̄2

V
−gp e

1
2(η2+φ2+2δSV η φ)

Bt, T D̄ + St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p − Bt,T K

N2(a + η + δSV φ, c − φ − δSV η, −δSV )

− (1 − α)Bt,T KVt e− 1
2

σ̄2
V

−gp e
1
2(ξ2+φ2+2δSV ξ φ)

Bt, T D̄ + St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p − Bt,T K

N2(a + ξ + δSV φ, c − φ − δSV ξ, −δSV )

where N2( · ) gives the bivariate cumulative normal distribution function.

Collecting and rearranging terms yields the approximate closed form valuation

formula given by Equation (4.48).
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Appendix 3

In the following, the closed form valuation formula for vulnerable European options

under the stochastic interest rate framework of Vasicek (1977) is derived based on

the extended model of Liu and Liu (2011). The derivation of the valuation formula

is only given for vulnerable European calls, but the same procedure can also be used

to get the valuation formula for vulnerable European puts.

The pricing equation for a vulnerable European call based on the extended model

of Liu and Liu (2011) can be written as follows:

C = Bt, T

(

E
[

ST − K | ST ≥ K, VT ≥ DT

]

+ E

[

(1− α)VT (ST − K)

DT

) | ST ≥ K, VT < DT

])

.

Defining the debt ratio as Rt = Vt/Dt, the pricing equation can be rewritten as

follows:

C = Bt, T

(

E
[

ST − K | ST ≥ K, RT ≥ 1
]

+ E [(1− α)RT (ST − K) | ST ≥ K, RT < 1]) .

Using the risk-neutral pricing approach, the value of the vulnerable European call

is given by

C = Bt, T





∞
∫

K

∞
∫

1

ST Φ(ST , RT ) dRT dST

−
∞

∫

K

∞
∫

1

K Φ(ST , RT ) dRT dST

+

∞
∫

K

1
∫

0

(1− α)RT ST Φ(ST , RT ) dRT dST

−
∞

∫

K

1
∫

0

(1− α)RT K Φ(ST , RT ) dRT dST



 ,

where Φ( · ) is the joint bivariate lognormal distribution function of ST and RT .
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Applying the standard log transformation, standardizing the normal distribution

and collecting terms yields

C =

∞
∫

−a

∞
∫

−b

St e−q(T −t)− 1
2

σ̄2
S
+σ̄S u n2(u, v) dv du

−
∞

∫

−a

∞
∫

−b

Bt, T K n2(u, v) dv du

+

∞
∫

−a

−b
∫

−∞

(1− α)St Rt e−q(T −t)− 1
2

σ̄2
S

− 1
2(σ̄2

V
−σ̄2

D)+σ̄S u+σ̄R v n2(u, v) dv du

−
∞

∫

−a

−b
∫

−∞

(1− α)Bt, T K Rt e− 1
2(σ̄2

V
−σ̄2

D)+σ̄R v n2(u, v) dv du,

where n2( · ) is the joint bivariate standard normal density function of the random

variables u and v which is given by

n2(u, v) = n2(u, v, 0, 0, 1, 1, δSR) =
1

√
4π2

√

1− δ2SR

e
− 1

2(1−δ2
SR)
(u2+v2−2δSR uv)

,

σ̄R =
√

σ̄2
V + σ̄2

D − 2ρ̄V Dσ̄V σ̄D

and

δSR =
ρ̄SV σ̄V − ρ̄SDσ̄D

σ̄R

.

The parameters a and b are given as follows:

a =
ln St

−bt, T K
− q(T − t) − 1

2
σ̄2

S

σ̄S

,

b =
lnRt − 1

2
(σ̄2

V − σ2
D)

σ̄R
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Completing the square yields

C = St e−q(T −t)

∞
∫

−a

∞
∫

−b

n2(u, v, σ̄S, δSRσ̄S, 1, 1, δSR) dv du

− Bt, T K

∞
∫

−a

∞
∫

−b

n2(u, v, 0, 0, 1, 1, δSR) dv du

+ (1 − α)St Rt e−q(T −t)+σ2
D
+ρ̄SV σ̄S σ̄V −ρ̄SDσ̄S σ̄D−ρ̄V Dσ̄V σ̄D

∞
∫

−a

−b
∫

−∞

n2(u, v, σ̄S + δSRσ̄R, σ̄R + δSRσ̄S, 1, 1, δSR) dv du

− (1 − α)Bt, T K Rt eσ̄2
D

−ρ̄V Dσ̄V σ̄D

∞
∫

−a

−b
∫

−∞

n2(u, v, δSRσ̄R, σ̄R, 1, 1, δSR) dv du.

Standardizing the normal distribution gives

C = St e−q(T −t)

∞
∫

−a−σ̄S

∞
∫

−b−δSRσ̄S

n2(u, v, 0, 0, 1, 1, δSR) dv du

− Bt, T K

∞
∫

−a

∞
∫

−b

n2(u, v, 0, 0, 1, 1, δSR) dv du

+ (1 − α)St Rt e−q(T −t)+σ2
D
+ρ̄SV σ̄S σ̄V −ρ̄SDσ̄S σ̄D−ρ̄V Dσ̄V σ̄D

∞
∫

−a−σ̄S−δSRσ̄R

−b−σ̄R−δSRσ̄S
∫

−∞

n2(u, v, 0, 0, 1, 1, δSR) dv du

− (1 − α)Bt, T K Rt eσ̄2
D

−ρ̄V Dσ̄V σ̄D

∞
∫

−a−δSRσ̄R

−b−σ̄R
∫

−∞

n2(u, v, 0, 0, 1, 1, δSR) dv du.
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Computing the double integrals yields

C = St e−q(T −t)N2 (a + σ̄S, b + δSRσ̄S, δSR)

− Bt, T KN2 (a, b, δSR)

+ (1 − α)St Rt e−q(T −t)+σ2
D
+ρ̄SV σ̄S σ̄V −ρ̄SDσ̄S σ̄D−ρ̄V Dσ̄V σ̄D

N2 (a + σ̄S + δSRσ̄R, −b − σ̄R − δSRσ̄S, −δSR)

− (1 − α)Bt, T K Rt eσ̄2
D

−ρ̄V Dσ̄V σ̄D

N2 (a + δSRσ̄R, −b − σ̄R, −δSR) ,

where N2( · ) gives the bivariate cumulative normal distribution function.

Collecting and rearranging terms yields the closed form valuation formula given by

Equation (4.53).
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Appendix 4

In the following, the approximate closed form valuation formula for vulnerable

European options under the stochastic interest rate framework of Vasicek (1977)

is derived based on the general model. The derivation of the valuation formula is

only given for vulnerable European calls, but the same procedure can also be used

to get the valuation formula for vulnerable European puts. To obtain the valuation

formula, it must be assumed that the returns of the option’s underlying and the

counterparty’s other liabilities are uncorrelated (i.e. ρSD = 0).

The pricing equation for a vulnerable European call based on the general model can

be written as follows:

C = Bt, T

(

E
[

ST − K | ST ≥ K, VT ≥ DT + ST − K
]

+ E

[

(1− α)VT (ST − K)

DT + ST − K
| ST ≥ K, VT < DT + ST − K

])

.

Using the risk-neutral pricing approach, the value of the vulnerable European call

is given by

C = Bt, T







∞
∫

K

∞
∫

DT+ST −K

∞
∫

0

ST Φ(ST , VT , DT ) dDT dVT dST

−
∞

∫

K

∞
∫

DT+ST −K

∞
∫

0

K Φ(ST , VT , DT ) dDT dVT dST

+

∞
∫

K

DT+ST −K
∫

0

∞
∫

0

(1− α)VT ST

DT + ST − K
Φ(ST , VT , DT ) dDT dVT dST

−
∞

∫

K

DT+ST −K
∫

0

∞
∫

0

(1− α)VT K

DT + ST − K
Φ(ST , VT , DT ) dDT dVT dST





 ,

where Φ( · ) represents the joint trivariate lognormal distribution function of ST , VT

and DT .
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Applying the standard log transformation, standardizing the normal distribution

and collecting terms yields

C =

∞
∫

−a

∞
∫

f(u,w)

∞
∫

−∞

St e−q(T −t)− 1
2

σ̄2
S
+σ̄S u n3(u, v, w) dw dv du

−
∞

∫

−a

∞
∫

f(u,w)

∞
∫

−∞

Bt, T K n3(u, v, w) dw dv du

+

∞
∫

−a

f(u,w)
∫

−∞

∞
∫

−∞

(1− α)St Vt e−q(T −t)− 1
2

σ̄2
S

− 1
2

σ̄2
V
+σ̄S u+σ̄V v

Dt e− 1
2

σ̄2
D
+σ̄D w + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S u − Bt, T K

· n3(u, v, w) dw dv du

−
∞

∫

−a

f(u,w)
∫

−∞

∞
∫

−∞

(1− α)Bt, T K Vt e− 1
2

σ̄2
V
+σ̄V v

Dt e− 1
2

σ̄2
D
+σ̄D w + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S u − Bt, T K

· n3(u, v, w) dw dv du,

where n3( · ) is the joint trivariate standard normal density function of the random

variables u, v and w which is given by

n3(u, v, w) = n3(u, v, w, 0, 0, 0, 1, 1, 1, ρ̄SV , ρ̄SD = 0, ρ̄V D)

=
e

− 1

2(1−ρ̄2
SV

−ρ̄2
V D)

((1−ρ̄2
V D

)u2+v2+(1−ρ̄2
SV

)w2−2ρ̄SV uv+2ρ̄SV ρ̄V Duw−2ρ̄V Dvw)

√
8π3

√

1 − ρ̄2SV − ρ̄2V D

The parameter a as well as the function f( · ) are given as follows:

a =
ln St

Bt, T K
− q(T − t) − 1

2
σ̄2

S

σ̄S

f(u, w) =
ln

Dt e
− 1
2 σ̄2

D
+σ̄D w

+St e
−q(T −t)− 1

2 σ̄2
S
+σ̄S u−Bt,T K

Vt
+ 1

2
σ̄2

V

σ̄V
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In the next step, the function f(u, w) is linearized using Taylor series expansion.

f(u, w) ≈ f(p1, p2) +
∂f(p1, p2)

∂p1
(u − p1) +

∂f(p − 1, p2)

∂p2
(w − p2)

= b+m1(u − p1) +m2(w − p2)

where the parameters b, m1 and m2 are given as follows:

b =
ln

Dt e
− 1
2 σ̄2

D
+σ̄D p2+St e

−q(T −t)− 1
2 σ̄2

S
+σ̄S p1−Bt,T K

Vt
+ 1

2
σ̄2

V

σ̄V

,

m1 =
σ̄S

σ̄V

St e−q(T −t)− 1
2

σ̄2
S
+σ̄S p1

Dt e− 1
2

σ̄2
D
+σ̄D p2 + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1 − Bt,T K

,

m2 =
σ̄D

σ̄V

Dt e− 1
2

σ̄2
D
+σ̄D p2

Dt e− 1
2

σ̄2
D
+σ̄D p2 + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1 − Bt,T K

.

Furthermore, the denominator in the third and fourth integral needs to be modified

as well using the first order Taylor series expansion.

F (u, w) =
1

Dt e− 1
2

σ̄2
D
+σ̄D w + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S u − Bt,T K

G(u, w) = ln
1

Dt e− 1
2

σ̄2
D
+σ̄D w + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S u − Bt,T K

≈ G(p1, p2) +
∂G(p1, p2)

∂p1
(u − p1) +

∂G(p1, p2)

∂p2
(w − p2)

= h + g1(u − p1) + g2(w − p2)

with

h = ln
1

Dt e− 1
2

σ̄2
D
+σ̄D p2 + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1 − Bt,T K

g1 =
−σ̄S St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1

Dt e− 1
2

σ̄2
D
+σ̄D p2 + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1 − Bt,T K

g2 =
−σ̄D Dt e− 1

2
σ̄2

D
+σ̄D p2

Dt e− 1
2

σ̄2
D
+σ̄D p2 + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1 − Bt,T K
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Using the Taylor series approximations, the pricing equation for a vulnerable

European call can be rewritten as follows:

C = Ste
−q(T −t)− 1

2
σ̄2

S

∞
∫

−a

∞
∫

b+m1(u−p1)+m2(w−p2)

∞
∫

−∞

eσ̄S u n3(u, v, w) dw dv du

− Bt,T K

∞
∫

−a

∞
∫

b+m1(u−p1)+m2(w−p2)

∞
∫

−∞

n3(u, v, w) dw dv du

+
(1− α)StVt e−q(T −t)− 1

2
σ̄2

S
− 1

2
σ̄2

V
−g1p1−g2p2

Dt e− 1
2

σ̄2
D
+σ̄D p2 + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1 − Bt,T K

∞
∫

−a

b+m1(u−p1)+m2(w−p2)
∫

−∞

∞
∫

−∞

e(g1+σ̄S)u+σ̄V v+g2w n3(u, v, w) dw dv du

− (1− α)Bt,T KVt e− 1
2

σ̄2
V

−g1p1−g2p2

Dt e− 1
2

σ̄2
D
+σ̄D p2 + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1 − Bt,T K

∞
∫

−a

b+m1(u−p1)+m2(w−p2)
∫

−∞

∞
∫

−∞

eg1u+σ̄V v+g2w n3(u, v, w) dw dv du

Using appropriate substitutions for u, v and w, the stochastic component in the

integral boundaries can be eliminated. The random variables u, v and w are

substituted by

u =
x

√

1 +m2
1

,

v = y +
m1x

√

1 +m2
1

+
m2z

√

1 +m2
2

and

w =
z

√

1 +m2
2

,

where x, y and z are also jointly standard normally distributed.
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Applying these substitutions to the pricing equation yields

C = Ste
−q(T −t)− 1

2
σ̄2

S

∞
∫

−a
√

1+m2
1

∞
∫

b−m1p1−m2p2

∞
∫

−∞

e

σ̄S√
1+m2

1

x Ω(x, y, z)

Θ
dz dy dx

− Bt,T K

∞
∫

−a
√

1+m2
1

∞
∫

b−m1p−m2p2

∞
∫

−∞

Ω(x, y, z)

Θ
dz dy dx

+
(1− α)StVt e−q(T −t)− 1

2
σ̄2

S
− 1

2
σ̄2

V
−g1p1−g2p2

Dt e− 1
2

σ̄2
D
+σ̄D p2 + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1 − Bt,T K

∞
∫

−a
√

1+m2
1

b−m1p1−m2p2
∫

−∞

∞
∫

−∞

e

g1+σ̄S+m1σ̄V√
1+m2

1

x+σ̄V y+
g2+m2σ̄V√

1+m2
2

z Ω(x, y, z)

Θ
dz dy dx

− (1− α)Bt,T KVt e− 1
2

σ̄2
V

−g1p1−g2p2

Dt e− 1
2

σ̄2
D
+σ̄D p2 + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1 − Bt,T K

∞
∫

−a
√

1+m2
1

b−m1p−m2p2
∫

−∞

∞
∫

−∞

e

g1+m1σ̄V√
1+m2

1

x+σ̄V y+
g2+m2σ̄V√

1+m2
2

z Ω(x, y, z)

Θ
dz dy dx,

where

Ω(x, y, z) = e
− 1

2(1−ρ̄2
SV

−ρ̄2
V D) e

(1−ρ̄2
V D

)

(

x√
1+m2

1

)2

+

(

y+
m1x√
1+m2

1

+
m2z√
1+m2

2

)2

+(1−ρ̄2
SV

)

(

z√
1+m2

2

)2

e
−2 ρ̄SV

x√
1+m2

1

(

y+
m1x√
1+m2

1

+
m2z√
1+m2

2

)

e
2 ρ̄SV ρ̄V D

x√
1+m2

1

z√
1+m2

2

e
−2 ρ̄V D

z√
1+m2

2

(

y+
m1x√
1+m2

1

+
m2z√
1+m2

2

)

and

Θ =
√

1 +m2
1

√

1 +m2
2

√
8π3

√

1− ρ̄2SV − ρ̄2V D.
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The previous expression can be rewritten as follows:

C = Ste
−q(T −t)− 1

2
σ̄2

S

∞
∫

−a
√

1+m2
1

∞
∫

b−m1p1−m2p2

∞
∫

−∞

e

σ̄S
√

T −t√
1+m2

1

x Ψ(x, y, z)

Θ
dz dy dx

− Bt,T K

∞
∫

−a
√

1+m2
1

∞
∫

b−m1p−m2p2

∞
∫

−∞

Ψ(x, y, z)

Θ
dz dy dx

+
(1− α)StVt e−q(T −t)− 1

2
σ̄2

S
− 1

2
σ̄2

V
−g1p1−g2p2

Dt e− 1
2

σ̄2
D
+σ̄D p2 + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1 − Bt,T K

∞
∫

−a
√

1+m2
1

b−m1p1−m2p2
∫

−∞

∞
∫

−∞

e

g1+σ̄S+m1σ̄V√
1+m2

1

x+σ̄V y+
g2+m2σ̄V√

1+m2
2

z Ψ(x, y, z)

Θ
dz dy dx

− (1− α)Bt,T KVt e− 1
2

σ̄2
V

−g1p1−g2p2

Dt e− 1
2

σ̄2
D
+σ̄D p2 + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1 − Bt,T K

∞
∫

−a
√

1+m2
1

b−m1p−m2p2
∫

−∞

∞
∫

−∞

e

g1+m1σ̄V√
1+m2

1

x+σ̄V y+
g2+m2σ̄V√

1+m2
2

z Ψ(x, y, z)

Θ
dz dy dx,

where

Ψ(x, y, z) = e
− 1

2(1−δ2
SV

−δ2
V D) e

(1−δ2
V D

)

(

x√
1+m2

1

)2

e

(

y√
1−2 ρ̄SV m1−2 ρ̄V D m2+m2

1
+m2

2

)2

e
(1−δ2

SV
)

(

z√
1+m2

2

)2

e
−2 δSV

x√
1+m2

1

y√
1−2 ρ̄SV m1−2 ρ̄V D m2+m2

1
+m2

2

e
2 δSV δV D

x√
1+m2

1

z√
1+m2

2 e
−2 δV D

z√
1+m2

2

y√
1−2 δSV m1−2 δV D m2+m2

1
+m2

2
and

δSV =
ρ̄SV − m1

√

1− 2 ρ̄SV m1 − 2 ρ̄V D m2 +m2
1 +m2

2

,

δV D =
ρ̄V D − m2

√

1− 2 ρ̄SV m1 − 2 ρ̄V D m2 +m2
1 +m2

2

.
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Using appropriate substitutions for x, y and z, the previous expression can be

rewritten once again. In particular, the variables x, y and z are substituted by

x =
√

1 +m2
1 u,

y =
√

1− 2 ρ̄SV m1 − 2 ρ̄V D m2 + m2
1 + m2

2 v

and

z =
√

1 + m2
2 w,

where u, v and w are also jointly standard normally distributed.

Applying these substitutions to the pricing equation yields

C = Ste
−q(T −t)− 1

2
σ̄2

S

∞
∫

−a

∞
∫

c

∞
∫

−∞

eσ̄S u Γ(u, v, w) dw dv du

− Bt,T K

∞
∫

−a

∞
∫

c

∞
∫

−∞

Γ(u, v, w) dw dv du

+
(1− α)StVt e−q(T −t)− 1

2
σ̄2

S
− 1

2
σ̄2

V
−g1p1−g2p2

Dt e− 1
2

σ̄2
D
+σ̄D p2 + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1 − Bt,T K

∞
∫

−a

c
∫

−∞

∞
∫

−∞

e(g1+σ̄S+m1σ̄V )u eσ̄V

√
1−2 ρ̄SV m1−2 ρ̄V D m2+m2

1+m2
2 v

e(g2+m2σ̄V )w Γ(u, v, w) dw dv du

− (1− α)Bt,T KVt e− 1
2

σ̄2
V

−g1p1−g2p2

Dt e− 1
2

σ̄2
D
+σ̄D p2 + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1 − Bt,T K

∞
∫

−a

c
∫

−∞

∞
∫

−∞

e(g1+m1σ̄V )u eσ̄V

√
1−2 ρ̄SV m1−2 ρ̄V D m2+m2

1+m2
2 v

e(g2+m2σ̄V )w Γ(u, v, w) dw dv du

where

c =
b − m1p1 − m2p2

√

1− 2 ρ̄SV m1 − 2 ρ̄V D m2 + m2
1 + m2

2
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and

Γ(u, v, w) = n3(u, v, w, 0, 0, 0, 1, 1, 1, δSV , δSD = 0, δV D)

=
e

− 1

2(1−δ2
SV

−δ2
V D)

((1−δ2
V D

)u2+v2+(1−δ2
SV

)w2−2δSV uv+2δSV δV Duw−2δV Dvw)

√
8π3

√

1− δ2SV − δ2V D

Completing the square yields

C = Ste
−q(T −t)

∞
∫

−a

∞
∫

c

∞
∫

−∞

n3(u, v, w, σ̄s, δSV σ̄s, 0, 1, 1, 1, δSV , 0, δV D) dw dv du

− Bt,T K

∞
∫

−a

∞
∫

c

∞
∫

−∞

n3(u, v, w, 0, 0, 0, 1, 1, 1, δSV , 0, δV D) dw dv du

+
(1 − α)StVt e−q(T −t)− 1

2
σ̄2

S
− 1

2
σ̄2

V
−g1p1−g2p2 e

1
2(η2+φ2+λ2+2δSV η φ+2 δV D φ λ)

Dt e− 1
2

σ̄2
D
+σ̄D p2 + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1 − Bt,T K

∞
∫

−a

c
∫

−∞

∞
∫

−∞

n3(u, v, w, η + δSV φ, φ + δSV η + δV D λ, λ + δV D φ, ...

..., 1, 1, 1, δSV , 0, δV D) dw dv du

− (1 − α)Bt,T KVt e− 1
2

σ̄2
V

−g1p1−g2p2 e
1
2(ξ2+φ2+λ2+2δSV ξ φ+2 δV D φ λ)

Dt e− 1
2

σ̄2
D
+σ̄D p2 + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1 − Bt,T K

∞
∫

−a

c
∫

−∞

∞
∫

−∞

n3(u, v, w, ξ + δSV φ, φ + δSV ξ + δV D λ, λ + δV D φ, ...

..., 1, 1, 1, δSV , 0, δV D) dw dv du,

where

η = g1 + σ̄S + m1 σ̄V ,

ξ = η − σ̄S,

φ = σ̄V

√

1 − 2 ρ̄SV m1 − 2 ρ̄V D m2 + m2
1 + m2

2,

λ = g2 + m2 σ̄V .
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Standardizing the normal distribution yields

C = Ste
−q(T −t)

∞
∫

−a−σ̄s

∞
∫

c−δSV σ̄s

∞
∫

−∞

n3(u, v, w, 0, 0, 0, 1, 1, 1, δSV , 0, δV D) dw dv du

− Bt,T K

∞
∫

−a

∞
∫

c

∞
∫

−∞

n3(u, v, w, 0, 0, 0, 1, 1, 1, δSV , 0, δV D) dw dv du

+
(1− α)StVt e−q(T −t)− 1

2
σ̄2

S
− 1

2
σ̄2

V
−g1p1−g2p2 e

1
2(η2+φ2+λ2+2δSV η φ+2 δV D φ λ)

Dt e− 1
2

σ̄2
D
+σ̄D p2 + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1 − Bt,T K

∞
∫

−a−η−δSV φ

c−φ−δSV η−δV D λ
∫

−∞

∞
∫

−∞

n3(u, v, w, 0, 0, 0, 1, 1, 1, δSV , 0, δV D) dw dv du

− (1− α)Bt,T KVt e− 1
2

σ̄2
V

−g1p1−g2p2 e
1
2(ξ2+φ2+λ2+2δSV ξ φ+2 δV D φ λ)

Dt e− 1
2

σ̄2
D
+σ̄D p2 + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1 − Bt,T K

∞
∫

−a−ξ−δSV φ

c−φ−δSV ξ−δV D λ
∫

−∞

∞
∫

−∞

n3(u, v, w, 0, 0, 0, 1, 1, 1, δSV , 0, δV D) dw dv du.

Computing the triple integrals yields the approximate closed form solution for

vulnerable European calls based on the general model. It is given by

C = Ste
−q(T −t) N3(a + σ̄S, −c + δSV σ̄S + ∞, δSV , 0, δV D)

− Bt,T K N3(a, −c,+∞, δSV , 0, δV D)

+
(1 − α)StVt e−q(T −t)− 1

2
σ̄2

S
− 1

2
σ̄2

V
−g1p1−g2p2 e

1
2(η2+φ2+λ2+2δSV η φ+2 δV D φ λ)

Dt e− 1
2

σ̄2
D
+σ̄D p2 + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1 − Bt,T K

N3(a + η + δSV φ, c − φ − δSV η − δV Dλ,+∞, −δSV , 0, −δV D)

− (1 − α)Bt,T KVt e− 1
2

σ̄2
V

−g1p1−g2p2 e
1
2(ξ2+φ2+λ2+2δSV ξ φ+2 δV D φ λ)

Dt e− 1
2

σ̄2
D
+σ̄D p2 + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1 − Bt,T K

N3(a + ξ + δSV φ, c − φ − δSV ξ − δV Dλ,+∞, −δSV , 0, −δV D),

where N3( · ) gives the trivariate cumulative normal distribution function.
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Since the stochastic variable lnDt can assume any value between −∞ and +∞,

the trivariate cumulative normal ditribution becomes a bivariate cumulative normal

distribution. Hence, the approximate closed form solution is given by

C = Ste
−q(T −t) N2(a + σ̄S, −c + δSV σ̄S, δSV )

− Bt,T K N2(a, −c, δSV )

+
(1 − α)StVt e−q(T −t)− 1

2
σ̄2

S
− 1

2
σ̄2

V
−g1p1−g2p2 e

1
2(η2+φ2+λ2+2δSV η φ+2 δV D φ λ)

Dt e− 1
2

σ̄2
D
+σ̄D p2 + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1 − Bt,T K

N2(a + η + δSV φ, c − φ − δSV η − δV Dλ, −δSV )

− (1 − α)Bt,T KVt e− 1
2

σ̄2
V

−g1p1−g2p2 e
1
2(ξ2+φ2+λ2+2δSV ξ φ+2 δV D φ λ)

Dt e− 1
2

σ̄2
D
+σ̄D p2 + St e−q(T −t)− 1

2
σ̄2

S
+σ̄S p1 − Bt,T K

N2(a + ξ + δSV φ, c − φ − δSV ξ − δV Dλ, −δSV )

where N2( · ) gives the bivariate cumulative normal distribution function.

Collecting and rearranging terms yields the approximate closed form valuation

formula given by Equation (4.59).
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