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1. Introduction 

This thesis explores C-S bond scission and formation with homogeneous group 10 metal catalysts (Pd, 

Ni). To set the stage for the following chapters, the thiophilic interaction (section 1.1), differences 

between Ni and Pd catalysis (section 1.2) as well as current challenges in homogeneous catalysis 

(section 1.3) are discussed in short essays below. 

1.1. The connection between homogeneous catalysis and the thiophilic interaction 

The thiophilic interaction between organosulfur species and (late) transition metals or non-transition 

heavy metals can be classified as a Pearson soft-soft Lewis acid-base interaction. This interaction has 

been long recognized in the chemical history.[1] For example, mercaptide (meaning mercury capturing) 

is the historical name for a thiolate species. The Pearson Hard/Soft-Acid/Base (HSAB) concept allows a 

qualitative grouping of elements, ions and compounds as either soft, borderline cases or hard.  A more 

quantitative scale of thiophilicity has been presented by Kepp.[2] The thiophilic interaction has been 

employed by nature in the human olfactory perception of thiols,[3] in material science and 

nanotechnology for the construction of self-assembled monolayers of alkanethiols on gold surfaces,[4] 

in the design of organic reactions, such as the Barton-McCombie-desoxygenation, the Raney-Nickel-

mediated desulfurization reaction[5] or in homogeneous catalysis. The major problem associated with 

transition metal catalysis with thiol or thiolate actor ligands is deactivation, either by ligand 

displacement or energetic stabilization of transition metal organosulfides, hindering turnover.[6] Thus, 

choosing an appropriate ligand platform can prove decisive (e.g. by relying on a stabilizing chelate 

effect). Furthermore, organosulfur compounds are redox-active and do not conform to the octet rule, 

which opens a variety of competing processes and can complicate effective catalytic turnover. 

Nature has long harnessed thiophilic interactions to stabilize late-transition metal containing 

enzymes using cysteine residues as spectator ligands. Man-made homogeneous catalysts often feature 

thiolates as actor ligands, but the thiophilic interaction can be employed to confer exquisite 

chemoselectivity in catalytic processes by providing a unique recognition motif for C-S bond activation. 

On the other hand, the intermediacy of thiols and thiolates as actor ligands in homogeneous catalysis 

also provides opportunities in C-S bond formation where traditional organic transformations fail or are 

impractical. 

The catalytic C-S bond activation of thiols, thioesters, thiophenes, allyl-, benzyl-, (hetero)aryl- and 

alkenyl- sulfides has been reported using various low-valent transition metal complexes to give Csp2-

Csp2 cross-coupled products with organomagnesium, -zinc, -tin, and -boron reagents.[7] Due to the 

increased electron-withdrawing nature, the corresponding sulfoxides, sulfones, sulfoximines and 
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sulfonium salts represent more activated electrophiles than the sulfides. One recent advance has been 

the utilization of alkyl sulfones as electrophiles for desulfonylative Csp2-Csp3 coupling using either 

Grignard reagents (Fe-catalyzed)[8] or organozinc reagents (Ni- or Co-catalyzed)[9]. Depending on the 

reaction conditions, classical cross-coupling mechanisms or radical-based mechanisms haven been 

proposed. 

On the other hand, transition-metal catalyzed reactions, which target C-S bond formation usually 

benefit from two factors: 1. A potentially deactivating organosulfur species is incorporated into a more 

stable product and 2. Thiolates and thiols generally behave as nucleophilic species with stricter orbital 

control than ions. 
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1.2. Comparison of Ni and Pd homogeneous catalysis  

To the outsider, the choice of catalytic metal for C-S bond formation or activation, or perhaps for any 

catalytic homogeneous reaction, may seem arbitrary. A range of cross-coupling reactions have been 

developed and are now routinely used in academic laboratories, drug discovery and process chemistry 

(Scheme 1.1). The Pd-catalyzed variants of these coupling reactions have proven themselves especially 

versatile, and due to high impact of this synthetic method, some of the key players in the field (Negishi, 

Suzuki, Heck) were awarded with the Nobel prize in Chemistry in 2010. 

 

Scheme 1.1: Transition-metal catalyzed cross-coupling reactions are used in all branches of preparative organic chemistry. 
Reactions taken from cited references.[10] 

Besides cross-coupling reactions, which are the most impactful, a great amount of research has been 

concerned with various C-X- and C-C-bond forming transition metal-catalyzed reactions to enable 

transformations, which are not possible with standard organic transformations, e.g. alkene/alkyne 

hydro- or difunctionalizations, C-H activation, and heterocycle formation. Palladium is often the metal 

of choice for a variety of transition-metal catalyzed reactions, and it is not limited to activity in cross-

coupling chemistry. In contrast, other catalytic transition metals appear to have more specialized uses 

(e.g. Ru for metathesis, Rh for enantioselective alkene hydrogenations, etc.). 
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There are typically two arguments for the replacement of Pd with Ni in catalytic homogeneous 

reactions (Figure 1.1). The abundance of Ni in the earth crust is higher than that of Pd.[11] This fact is 

reflected in the current pricing of bulk metals, where Ni is available for a fraction of the cost of Pd. 

Obviously, such economic arguments have more weight in the process/production chemistry of fine 

chemicals. During a medicinal chemistry program or in the middle of a natural product synthesis, cost 

may be less of an issue whereas project progress is of importance. However, a holistic view of financial 

cost/benefits of transition metal catalysis in the process setting may be more realistic. For example, 

the cost of certain designer phosphines may exceed that of catalytic transition metals. In addition, 

purification of the products of TM-catalyzed reactions may become exceedingly costly and treatment 

of chemical waste rich in catalytic components could become challenging in order to comply with local 

environmental regulations. 

 

Figure 1.1: Comparison of Ni vs Pd in transition metal-catalyzed chemistry. Adapted from a cited reference[11] and with 
changes made by I. Fleischer. 

While the first perspective is certainly valid, Ni catalysis offers more than a cheap replacement of Pd 

catalysis. Ni (3d metal) is smaller than Pd (4d metal) and more electropositive. The most common 

oxidation states for Ni are 0, +I, +II, +III. For Pd, typical oxidation states are 0, +II, +IV. Going from Pd to 

Ni, the ligand field stabilization energy (LFSE) decreases. Therefore, the possibility of high-spin electron 

configurations and open-shell reaction pathways increases.  

Secondly, reactivity of the metal increases,[12] as the LFSE is associated with the activation barrier for 

associative, dissociative and associative/dissociative reaction mechanisms. For example, the Ni-C bond 
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dissociation energy ranges from 159.0 – 213.8 kJ mol-1 whereas the Pd-C bond strength ranges from 

202.1 - 231.0 kJ mol-1 (compared to the standard C-C BDE of 365.7 kJ mol-1).[12] Similarly, activation 

energies for reductive elimination (from a C-Met-C complex) and oxidative addition (into a C-C-bond) 

are the lowest for Ni in the group 10 metals, but there appears to be less thermodynamic drive for 

reductive elimination compared to Pd. Due to slow formation of a β-agostic complex, β-hydride 

elimination is kinetically disfavoured in Ni complexes compared to Pd complexes. [13] Finally, Ni is also 

the strongest binder of alkene and alkyne fragments from the group 10 metals.[12] In summary, Ni 

complexes significantly ease the activation of challenging electrophiles in cross-coupling reactions, but 

reductive elimination becomes more unfavourable. Besides the increased reactivity, the other unique 

properties reviewed above allow for the design of new reactivity. The higher propensity for 

paramagnetic complexes can be used in radical cross-coupling approaches such as dual photoredox-Ni 

catalysis, cross electrophile couplings and thermal Ni-catalyzed radical cross-couplings. The high 

affinity for alkenes and alkynes can be employed for the reductive couplings of π-systems. 

Although these behaviours allow for new reactivity, the development of new Ni-catalyzed methods 

targeting a single facet of the above reactivity also requires the possibility to shut down competing 

pathways, which can be accomplished by careful choice of reaction conditions and reaction 

partners.[14] A better choice to broaden substrate scope and condition space appears to be ancillary 

ligand choice or design.[15] For the reasons stated above, ligand frameworks successful in Pd-catalysis 

can not be generally transferred to Ni catalysis. 

Because of these aspects, a 2017 literature survey showed that Ni-catalysts have not yet approached 

catalyst loadings comparable to Pd-catalysis, which limits their adoption.[16] A second issue is the 

perceived higher toxicity of Ni salts versus Pd salts.[17] While the average toxicity of various Ni salts 

across several test systems (cell cultures or organisms) is higher than that of Pd salts, the residual limits 

which are currently recommended in approved pharmaceuticals are quite similar (Ni: 20 ppm, Pd: 10 

ppm, see Figure 1.2), based on animal study values, which were approximated to humans (ICH Q3D 

guideline for elemental impurities). 

Therefore, in production, similar hurdles exist in stripping final products from group 10 residual 

metals, which can induce significant cost especially with chelating, Lewis-basic molecules. An approach 

of recycling of catalytic metal would however be more convenient and cost-efficient than stripping 

residual metals and adding them to the waste stream. However, this requires specialized techniques 

in catalyst design to allow for recycleable homogeneous catalysis. In small-scale discovery chemistry, 

potential users of Ni-based replacement catalysts are often concerned with lack of chemical 

predictability of newly reported methods from an academic environment. 
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With all these differences in mind, there are some common challenges in modern homogeneous 

catalysis. These are elaborated below with selected applied examples.  

 

Figure 1.2: A selection of values for maximally allowed metal impurity concentrations in orally dosed pharmaceuticals (Data 
from ICH Q3D (Step 4) Guideline for elemental impurities). Cu (not shown) is listed with a max. impurity concentration of 300 
µg/g. Fe is not listed due to its low toxicity. 
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1.3. Current challenges in homogeneous catalysis 

In a recent perspective article,[18] the tolerance of a newly developed synthetic method towards 

heterocycles and polar functional groups, including polar protic functionality was identified as a key 

factor for uptake by industry users. These functional groups give compounds the important ability for 

directional intermolecular interactions and the desired physicochemical properties. In natural product 

synthesis, protecting group steps (which fall under the category of concession steps[19]) can be avoided 

by functional group-tolerant catalysis. However, such functionality is often detrimental for the activity 

of transition metal catalysts, either by protodemetalation of catalytic intermediates or Lewis-type 

interactions.  

Various tests (classic scope evaluation, additive screening[20] and complex libraries[21]) have been 

proposed to search for incompatibilities in catalysis. While additive tests will certainly gain importance, 

standard evaluation of scope remains important and can reflect so-called aggregate behaviours such 

as solubility or chelating effects. 

In some cases, incompatibilities are reaction-inherent, e.g. when highly basic Grignard reagents are 

employed in Kumada couplings. Thus, there is also an implicit drive towards milder reagents for organic 

synthesis. The popularity of boronic acid esters as synthetic intermediates is a testament to this fact. 

Increased robustness towards functional groups can also be achieved by lowering the reaction 

temperature, i.e. designing more effective catalysts. Faster reactions with the targeted functionality 

also mean less time available for catalyst deactivation processes.  

Robustness also extends to the reproducibility of the reaction in untrained hands. Specialized 

techniques such as high-pressure reactions with reactive gases or photo-redox catalysis can produce a 

barrier to adoption by the non-specialist. In the best case, catalytic reactions should become kit-like 

where crude mixtures of reactions with 1:1 stoichiometry can be directly adsorbed on 

chromatographic media for purification and funneling material to the next synthetic step.  

High-throughput experimentation for catalysis has become a common tool in the pharmaceutical 

industry to optimize problematic steps or allow for route re-design. For example, a Buchwald-Hartwig 

amination operant at room temperature in DMSO was found by evaluating all possible combinations 

of 6 bases with 16 precatalysts in a model reaction.[22] The screening was carried out in glass vials 

(manual dosing with multi-channel pipettes) or plasticware in well-plate format (robotic dosing, 

triplicate determination) located in a glovebox, and analysis was based on quantitative HPLC (Scheme 

1.2). Naturally, automation of this type can be extended to data analysis and even feedback designs 

are possible. Large datasets generated from high-throughput screening (output) were recently used to 

train a machine learning model for the prediction of cross-coupling reactions, the input to the model 
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being various molecular descriptors from DFT calculations.[23] It should be noted that automatization 

and miniaturization of reaction setups is typically easier in a monophasic (liquid) system. At larger 

scales, for example in process development groups, metal loading, catalyst cost and metal 

contamination of final products become important, inextricably linked factors (see above). 

 

Scheme 1.2: Condition-driven optimization of a Buchwald-Hartwig coupling conducted in microvials and plastic well-plates 
using very little material. 

In other circumstances, the desired transformation may not be feasible at all or unattractive from a 

cost-benefit standpoint. In a recent example from the literature (Scheme 1.3), the failure of an alkyl-

alkenyl Suzuki-Miyaura coupling (20 documented, evaluated attempts) forced a re-evaluation of the 

synthetic plan towards a series of diterpenoid natural products then completed by an alternate 

strategy.[24] 

 

Scheme 1.3: Attempted sp2-sp3 Suzuki coupling in the synthesis of various pyrone-diterpenoid natural products. 

Chemical literature steadily produces incremental advances in known catalytic methods, leading to a 

vast amount of successful conditions for often very specialized reactants. Dreher, Krska and co-workers 

have shown, through principal component analysis of raw data from cross-coupling reactions in the 

literature, that the chemical space examined in academic method development was often narrow and 

focused on low molecular weight, lipophilic, unfunctionalized examples compared to the chemical 

space populated by marketed drugs.[21] The comparison to the chemical space occupied by natural 

products would have been interesting but was not carried out by the industry-based researchers. This 
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fact may lead to the low predictability of group 10 TM-catalyzed reactions in a complex setting. At the 

same time, commercial providers aggressively market catalysts aimed at the production of fine 

chemicals. In the study cited above, the reaction of 24 structurally diverse, medicinal-chemistry like 

aryl boronic acid pinacol esters (ArBPin) with a bromoindole was carried out. Analysis of the obtained 

yields revealed that simple Pd(dppf)Cl2 could be efficiently employed (average yield 59%) without the 

need for a specialized precatalyst containing a designer phosphine ligand. Another example is the 

Buchwald-Hartwig amination. Across a similar set of 18 aryl halides and piperidine as a coupling 

partner, various (pre)catalysts were examined which exhibited all-around disappointing performance 

(highest average yield 19%). 

The Suzuki-Miyaura-, Sonogashira- and Buchwald-Hartwig-coupling are still the only cross-coupling 

methods routinely used in process chemistry,[25] underscoring the need for more predictable systems 

for other TM-catalyzed methods (Figure 1.4). Not surprisingly, all these couplings produce valuable C-

C or C-heteroatom bonds with usually air-stable reagents and these reactions only require an inert gas 

purge to operate. 

 

Figure 1.3: Relative frequency of transition metal catalyzed reactions in J. Med. Chem. (2014) subdivided into process 
(orange) and small-scale Medicinal Chemistry approaches (blue). SMC: Suzuki-Miyaura coupling, BHA: Buchwald-Hartwig 
amination, AHC: Aryl halide cyanation, MB: Miyaura borylation. Data taken from cited reference.[25] 

In conclusion, current challenges in homogeneous catalysis are: 1. functional group tolerance of new 

methods, including polar protic groups and heterocycles; 2. User-friendliness (e.g. glovebox-free 

setup); 3. Scalability (e.g. to conduct both process-scale as well as miniaturized reactions). 
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1.4. Aims of this work 

Of all the potential synthetic targets containing C-S bonds, thioesters are unique since they represent 

active intermediates for transfer of the acyl group, as inspired by nature where acyl coenzyme A 

species are employed to deliver this type of reactivity. Thus, the thioester is the central intermediate 

in this work (Scheme 1.4). The overall aim of these newly developed methods is to generate user-

friendly protocols with broad substrate scope, which operate at relatively mild conditions (compared 

to competitive methods). All the developed methods herein utilize the thiophilic interaction with late 

transition metals. 

These higher-energy bonds usually require a thermodynamic expenditure in the form of active ester 

intermediates (i.e. compared to the acid-catalyzed synthesis of oxoesters). Work leading up to the 

carbonylative Pd-catalyzed synthesis of thioesters from alkenes is presented in Chapter 2, which 

circumvents the use of active esters. 

In the following two chapters, the facile activation of challenging electrophiles with Ni catalysis is 

leveraged. Acyl group transfer from thioesters was developed as a Ni-catalyzed process in Chapter 3. 

Finally, Chapter 4 shows that thiolates, either generated from a thioester or from the free thiol, can be 

transferred under similar conditions onto chloroarenes, under overall substitution, a process which is 

not readily found in nature. 

 

Scheme 1.4: Conceptual overview of the work on catalytic method development presented in this thesis. The thioester is the 
central intermediate from which both the acyl and thiyl moiety can be utilized depending on the exact reagents employed. 
The coloured circles represent the utilized catalytic metals and the blue bonds highlight newly formed bonds in a step. 
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2. Pd-catalyzed hydro(thio)esterification of styrenes  

2.1. Introduction 

2.1.1. Carbonylative Hydrofunctionalizations 

The O,N,S-nucleophile-terminated transition metal-catalyzed (TM-catalyzed) carbonylation of alkynes 

or alkenes to give carboxylic acid (derivatives) is informally known as Reppe chemistry,[1] named after 

the industrial researcher Walter Reppe (BASF), who discovered this class of reactions with acetylene 

and catalytic Ni(CO)4.[2] Modern variants usually utilize catalytic Pd to give regioisomeric products 

(Scheme 2.1). As in hydroformylation, the typical challenge is to produce only one of the possible 

regioisomers. 

 

Scheme 2.1: Modern Reppe-type chemistry of alkenes giving both branched and linear carbonylated products. 

One area of application of Reppe processes is in the manufacture of bulk chemicals, such as the 

production of methyl propionate (MeP). MeP is a precursor to methyl methacrylate (MMA), the 

monomer of Plexiglass (polymethylmethacrylate, polyMMA) as shown below (Scheme 2.2).[3] 

 

Scheme 2.2: Ethene methoxycarbonylation leads to the production of methyl propionate (MeP), an important upstream 
precursor of plexiglass polymers. The box shows industrially important ancillary ligands for ethene methoxycarbonylation. 

The carbonylative route to MeP has been commercialized as the Lucite α-process, where methanol is 

reacted with ethene under a pressurized atmosphere of carbon monoxide (CO) using a homogeneous 

Pd catalyst in an acidic medium. An elaborate ancillary ligand design (such as in dtbpx, L1) is required 

to stabilize/destabilize key catalytic intermediates. This ligand was found in investigations of the 

perfectly alternating Pd-catalyzed CO/ethene co-polymerization. Newer ligand developments (L2 – L3) 
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aim to accelerate the final elementary step in catalysis, namely the attack of the nucleophile on a Pd-

acyl species.[4] 

However, conditions and ligand designs aimed at bulk chemical (commodity chemical) production are 

not easily transferable to the synthesis of fine chemicals, where the requirements are different. First, 

environmental, health and safety (HSE) issues with carbon monoxide, which is a highly toxic and 

flammable gas, are usually adequately handled in the commodity chemical industry. The use of 

carbonylative processes to produce fine chemicals in process development or in small-scale academic 

laboratories (Figure 2.1) usually has an entry barrier in terms of technical requirements (for pressurized 

reactions) or poses a significant safety hazard (i.e. “balloon” chemistry). 

 

Figure 2.1: Comparison of reaction-ware to contain CO gas and in some cases, maintain a certain CO partial pressure in order 
of increasing technical requirements. The blue sphere denotes CO gas or a source thereof, whereas the grey sphere denotes 
the reactive liquid. The typically associated risks are highlighted in red. The safety level of the reaction vessels shown on the 
right depends heavily on the technical expertise in setting such systems up correctly.  

A newer development is the utilization of flow chemistry in carbonylation chemistry. Pressure-resistant 

glass vessels can offer an alternative, if the reaction conditions allow the simultaneous generation and 

use of the CO gas from a CO surrogate (see section 2.1.2.).[5] In the Reppe-type reactions, an acidic 

environment is required, which is incompatible with the usually basic conditions required for CO 

release from various CO surrogates. Therefore, a compartmentalized reaction setup using a two-

chambered (Chamber A: CO generation chamber, Chamber B: Reaction chamber) pressure-resistant 

glass vessel has been developed and commercialized by Skrydstrup.[6] 

Second, the reactivity of polysubstituted alkenes is drastically lowered (in the order of ethene > 

terminal alkene > internal alkene > trisubstituted alkene > tetrasubstituted alkene), and side reactions 

such as non-carbonylative, acid-catalyzed hydrofunctionalization reactions become relevant.[4a] A 

similar influence of steric factors is found for the nucleophile.[7] Third, there is usually little control over 
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important selectivity issues, namely chemoselectivity (functional group tolerance), regioselectivity 

(branched vs. linear product ratio) and enantioselectivity (only for high-value products or 

intermediates). A recent advance in the area was described by the Beller group, which utilized a ligand 

design approach (L2) to achieve the successful alkoxycarbonylation of polysubstituted alkenes such as 

cholesterol, among many other examples. Despite the still harsh conditions (40 bar CO, 120 °C, 20 h), 

these overall excellent results showcase the power of ligand design in carbonylative reactions.[4a]  

Reppe chemistry has also been exploited in natural product synthesis to effect Pd-catalyzed 

carbonylative lactonizations of allene-ols, for example in the racemic synthesis of stemoamide.[8] 

Finally, the carbonylation of styrenes is also a potential area of interest, since it can furnish derivatives 

of 2-arylpropionic acids. These compounds constitute a subclass of non-steroidal anti-inflammatory 

drugs. Some of these drugs have been marketed in enantiopure form, giving incremental 

pharmacokinetic benefits. The typical synthetic routes towards these pharmaceuticals generally use 

Friedel-Crafts acylation as the first step, followed by several other steps depending on the exact 

process employed. In principle, the carbonylative regio- and enantioselective access to 2-arylpropionic 

acids and esters thereof would significantly simplify the production of this pharmaceutical class. A few 

reports on enantioselective synthesis of this product class exist.[9] Obviously, the feasibility of this route 

heavily depends on the availability/pricing of the corresponding styrenic intermediates, which are also 

high-energy, unstable products. The regioselectivity issue of Reppe chemistry on styrenes is thus 

clearly focused on the production of the potentially high-value branched product. Due to the 

stabilization of benzylic Pd complexes by a possible η3 coordination mode compared to the stabilization 

of purely aliphatic ligands, the regioselectivity is usually favoured towards the production of the 

branched product,[10] although the exact behavior is highly ligand-dependent.  

In contrast to alkoxycarbonylations, the reaction with thiols was investigated with allenes,[11] 

conjugated dienes,[12] allylic alcohols[13] and vinyl cyclopropanes[14], but not styrenes. The reported 

examples generally require thermal conditions (> 100 °C), higher Pd loadings (3 – 5 mol%), and 

moderate CO pressure (up to 27 bar). Terminal alkenes with aliphatic appendages only appeared as 

substrates for hydrothioesterification in the patent literature.[15] 
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2.1.2. CO surrogates  

Various CO surrogates have been developed to enable pressurized laboratory scale carbonylations, 

which can lower the entry barrier for small-scale chemistry groups to utilize such reactions in the 

appropriate glassware (Figure 1.2). A common point of comparison between these surrogates are their 

respective atom economies, i.e. the amount of CO transferred compared to the molecular weight of 

the surrogate. However, for small-scale laboratory scale reactions this might not be the most critical 

issue at hand. For example, the Wittig reaction produces considerable amounts of triphenyl phosphine 

oxide waste, which is also not easily reducible (and thus recyclable), yet it remains a standard 

laboratory reaction in organic chemistry. CO surrogates which have been employed with the 

Skrydstrup two-chamber system[6b] are shown below (Scheme 2.3). 

 

Scheme 2.3: Comparison of CO surrogates which were successfully utilized in Skrydstrup’s two chamber system. The activation 
triggers are depicted in black circles. The percentage numbers indicate how much CO is being transferred by the surrogate 
relative to its molecular weight. *: Assuming complete transfer of CO. 

Although various activation modes are possible (transition metal catalysis, oxidation/reduction, 

acid/base), the most commonly found activation mode involves treatment with a base. COgen (1) and 

the silacarboxylic acid 9 have been developed by Skrydstrup.[6b, 16] The same group also utilized glycerol 

(10) and CO2 as a CO source for the first time in a two-chamber setup.[17] N-formylsaccharin (NFS, 6), 

although employed in carbonylation reactions before, was first applied in a two-chamber system in 

this work. Larhed and co-workers applied 4 in the aminocarbonylation of aryl halides in the presence 

of challenging nitro functional groups.[18] Hull applied the base-mediated decomposition of chloroform 

(2) in another aminocarbonylation of aryl halides.[19] Gracza applied glyoxylic acid (5) as a CO surrogate 

in two-chamber reactions including aminocarbonylations, reductive formylations and carbonylative 

Heck/Suzuki/Sonogashira couplings of aryl halides.[20] Oxalyl chloride (3) can be employed as a CO 

surrogate either by reduction with Zn or treatment with base in a variety of transition-metal catalyzed 
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transformations.[21] Borggraeve reported the use of formic acid  as a CO surrogate by formation of a 

mesylate ester, which undergoes decarbonylative decomposition upon treatment with base.[22] 
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2.1.3 Aims of the chapter 

It was decided that for small scale reactions, a solid CO surrogate would be highly beneficial to allow 

for exact dosing. Furthermore, the decomposition products should be relatively easily recyclable and 

non-toxic. Thus, the choice fell on N-formylsaccharin (6) as the surrogate, which can be synthesized in 

one step from the widely available, non-expensive and non-toxic artificial sweetener saccharin and is 

also commercially available.[23] 

In summary, carbonylative hydrofunctionalizations are interesting examples of multicomponent 

reactions with high atom economy, despite the high toxicity of CO gas. Thus, the usual entry barrier to 

adoption in laboratory scale are technical issues (pressure and safety). In this chapter, a strategy for 

the safe generation of CO gas (ex situ) in a two chambered pressure vessel using N-formylsaccharin 6 

as a CO surrogate is to be developed and applied to the regioselective Pd-catalyzed 

hydro(thio)esterification of various vinyl arenes (styrenes), which is usually accomplished with much 

higher temperatures and CO partial pressures. The targeted products are oxo- and thio-esters of 

2-arylpropionic acids. This moiety is found in important generic NSAIDs and it also constitutes an 

interesting motif for small molecule building blocks. In the latter category, the introduction of 

thioesters would enable higher reactivity towards a downstream C-C coupling than with oxo-esters 

(see Chapter 3).  
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2.2. Results and discussion 

2.2.1. CO generation system 

The first aim was the development of reproducible system for the release of carbon monoxide from 

NFS. A major problem was the batch-to-batch variation of NFS from commercial suppliers, leading to 

reproducibility issues in the carbonylation reactions. Some freshly opened commercial samples of NFS 

did not give satisfactory NMR spectra in comparison to literature reports for spectra of pure NFS. 

Considering the instability of NFS towards bases, this is not surprising and poses a significant safety 

hazard on scale. The unsuitability of commercial NFS was corroborated by a literature report.[24] 

Additionally, the synthesis of NFS (6) was initially problematic since mixtures of NFS and N-

acetylsaccharin (NAS) were generated with the original procedure.[23] Based on a report detailing the 

successful formylation of an unrelated N-heterocycle,[25] it was however possible to successfully 

formylate saccharin without NAS impurities using a preformed solution of a mixed formic acid-acetic 

acid anhydride, which was added to a cooled basic solution of saccharin (9) in THF (up to 20 g isolated 

in a single batch, Scheme 2.4).  

 

Scheme 2.4: N-formylsaccharin is a recyclable CO surrogate when applied with a two-chamber reaction setup. The mixed 
anhydride can be accessed either from CO2 or formic acid.  

The product was isolated by filtration and washing. NFS should be handled with caution and stored 

under an inert atmosphere. It was also possible to synthesize the mixed anhydride by Rh-catalyzed 

hydrosilylation of CO2 using silane 7,[26] followed by a transesterification of the resulting silyl formate 

with acetic anhydride. The transesterification reaction with the silyl formate required a slightly 
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elevated temperature (40 °C). Thus, CO2 could be indirectly employed as a CO surrogate. However, a 

true tandem process would be more appealing in terms of overall efficiency and ease of handling since 

the isolation of the silyl formate required inert filtration technique.  

While the decarbonylation of aliphatic aldehydes does not occur easily, it proceeds rapidly with NFS 

due to good stabilization of the resulting anion. The resulting saccharinate salt (10) could be recovered 

by acidic work-up and washing. The overall recovery efficiency of the cycle (Scheme 2.4) amounts to 

80%.  

In this work, this known decarbonylation reaction was employed in the two-chambered reaction setup 

to give hydrofunctionalized products from various styrenes (see Scheme 2.5). The generated CO gas 

(chamber A) then can pressurize the glass vessel to a desired set partial CO pressure (approximated 

using the ideal gas law) and the second chamber (chamber B) containing the catalytic components and 

reagents for the carbonylation then can consume the generated gas. Additionally, the 

compartmentalization ensures facile recyclability of the CO surrogate and inhibits off-reactions caused 

by the surrogate in the reaction chamber. N-formylsaccharin (NFS) is decarbonylated by an inorganic 

or organic base to yield CO gas and the saccharinate anion. Initially, Et3N was used, but reproducibility 

issues were found. If Et3N is inadvertently added to quickly, volatile amine (due to heat evolution) will 

enter the reaction chamber and quench the co-catalytic acid, thus inhibiting the reaction. A work-

around was found by adding NFS and Na2CO3 to chamber A and finally adding solvent to start the 

decarbonylation reaction. 

 

Scheme 2.5: CO generation system employed throughout this chapter. CO generation (max 2.5 bar): 6 (2.13 mmol, 449 mg), 
Na2CO3 (3.19 mmol, 340 mg) in DMF (1 mL). 
 

2.2.2. Hydroesterification of styrenes 

The investigation started by the model reaction of styrene (11) with methanol (Table 2.1) to give the 

esters 13-b (the desired regioisomer) and 13-l (the undesired regioisomer) under a pressure of CO gas 

(generated as shown in Scheme 2.5). The industrial benchmark ligand dtbpx (L1) was employed 



Chapter 2 

26 

together with catalytic Pd(dba)2 and various acids in dichloromethane. In technical chemistry 

applications of hydroesterification, the alcohol (methanol) acts both as a solvent and as a reactant.  

Table 2.1: Optimization of the hydroesterification reaction of styrene and methanol under a CO atmosphere (2.5 bar) using 
various acids. 

 

Entry [Pd] HX pKa (DMSO) b:l[a]  Conv.[a] Yield[a] 

1 Pd(dba)2 pTsOH 7.1 71:29 27% 9% 

2 Pd(dba)2 MsOH 1.6 51:49 28% 6% 

3 Pd(dba)2 PhCOOH 11.1 51:49 21% 2% 

4 Pd(dba)2 TFA 3.5 95:5 64% 38% 

5 Pd(dba)2 rac-BNPA 3.4 88:12 57% 56% 

6 Pd(acac)2 rac-BNPA 3.4 - 14% 0% 

7 PdCl2 rac-BNPA 3.4 - 18% 0% 

8 Pd(PPh3)4 rac-BNPA 3.4 93:7 11% 1% 

9 Pd(OAc)2 rac-BNPA 3.4 92:8 16% 2% 

[a]: Determined by quantitative GC-FID. BNPA: 1,1'-Binaphthyl-2,2'-diyl hydrogen phosphate. Reaction conditions: CO 
generation as in Scheme 2.5. styrene (1.00 mmol, 115 mL, 1 M solution), 1 : 3 MeOH : DCM (v/v), 0.5 mol% [Pd], 2 mol% dtbpx 
(20 mmol, 7.9 mg), 7.5 mol% HX, RT, 2 h. 

The high concentration of the alcohol accelerates the catalytic reactions. To employ high-value 

alcohols, DCM was used as a replacement solvent and the reaction was carried out at room 

temperature to ensure user-friendliness. The typical acid co-catalysts exhibited unsatisfactory 

performance (entries 1 – 2). The use of a weak acid, such as benzoic acid, gave the expected negative 

outcome (entry 3). It was reasoned that an optimum acidity exists, which was found with the use of 

TFA (entry 4).  The high activity of racemic BINOL-derived phosphoric acid (BNPA, 12) with a similar pKa 

value was encouraging (entry 5). Although a decreased selectivity for the wanted branched isomer was 

attained with BNPA, it was chosen for further studies because of more convenient reaction setup by 
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using solid over liquid acid. Other Pd0 or PdII sources showed suboptimal performance (entries 6 – 9). 

Acid catalyzed etherification, a common side reaction in this type of chemistry, was not observed. 

Using the optimal conditions (Table 2.1, entry 5) with longer reaction time to ensure full conversion 

(14 h), a scope evaluation of both the alkene and the alcohol components was carried out to reveal 

steric and electronic factors of the reaction and to test functional group tolerance, giving products 13-

34 (Table 2.2). 

Table 2.2: Scope evaluation of vinyl arene and alcohol components in the found hydroesterification reaction.  

 

Entry Compound Ar R b:l[a] Yield 

1 13 Ph Me 88:12 76% 

2 [b] 13 Ph Me 87:13 80% 

3 14 Ph Et 93:7 84% 

4 15 Ph iPr 90:10 15% 

5 16 Ph tBu - 0% 

6 17 Ph Cy 93:7 21% 

7 18 Ph Bn 82:18 79% 

8 19 3-Me-C6H4 Me 91:9 92% 

9 20 3-OMe-C6H4 Me 89:11 76% 

10 21 4-Me-C6H4 Me 91:9 55% 

11[c]  22 4- tBu-C6H4 Me 94:6 89% 

12,  23 4-OMe-C6H4 Me 93:7 97% 

13[d] 24 4-COOH-C6H4 Me 77:23 21% 

14 25 4-NO2-C6H4 Me - 0% 
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Entry Compound Ar R b:l[a] Yield 

15[c] 26 4-Cl-C6H4 Me 92:8 90% 

16[c] 27 4-OAc-C6H4 Me 93:7 43% 

17[c][e] 28 4-OAc-C6H4 Me 86:14 57% 

18 29 2-OMe-C6H4 Me 64:56 66% 

19[c] 29 2-OMe-C6H4 Me 41:59 60% 

20 30 2-OAc-C6H4 Me 39:61 59% 

21 31 2-Me-C6H4 Me 50:50 5% 

22 32 2-CF3-C6H4 Me - 0% 

23 33 2-HO-C6H4 Me - 16% 

[a]: Determined by GC-FID. [b]: DCE as solvent instead. [c]: Doubled Pd loading, the relative catalyst amounts of the other 
components remained unchanged. [d]: The diester was isolated. [e]: At 50 °C, the phenolic ester was isolated. Reaction 
conditions: CO generation as in Scheme 2.5. Styrene (1.00 mmol, 115 mL, 1 M solution), 1 : 3 ROH : DCM (v/v), Pd(dba)2 (5.0 
mmol, 2.9 mg), dtbpx (20 mmol, 7.9 mg), rac-BNPA (75 mmol, 26 mg), RT, 14 h.  

Generally, the reaction was selective for the branched ester, typically with a b:l selectivity of 9:1. 

However, the products could not be isolated as pure regioisomers. The regioselectivity, determined by 

GC-FID was generally corroborated by peak ratios in 1H-NMR of the isolated products. The activity of 

different alcohols in the carbonylations decreases in the order primary (giving esters 13, 14) > 

secondary (giving esters 15, 17) >> tertiary (giving no product 16). The reaction is preparatively useful 

for primary alcohols. Less nucleophilic alcohols such as BnOH, gave similar yield such as aliphatic 

primary alcohols, but a decreased regioselectivity. Phenols were also inactive. The overall results point 

towards alcoholysis as the overall rate-determining step, which is in line with other experimental 

reports.[1] Alkyl, methoxy and chloro substituents in 3- or 4-position relative to the vinyl substituent 

were generally well-tolerated (giving products 19 – 23 and 26). Benzoic acids (see Table 2.1, entry 13), 

which gave low yields and diester formation (24) and nitro-vinylarenes (giving no product) are difficult 

substrates (entries 13 – 14). The nitro functional group is notoriously problematic in Pd- and Ni catalysis 

due to its redox activity. Acetoxy substituents also had a negative influence on the yield (giving 27). 

Using an elevated temperature with this substrate class (50 °C), acetoxy cleavage was observed, giving 

a phenolic ester 28 in moderate yield. Substituents in the 2-position were tolerated but gave 50:50 

regioisomeric mixtures (on average, products 29-31). Using 2-vinylphenol, a 5-membered lactone (33) 

was obtained, irrespective of the presence of MeOH. This type of reactivity (cyclocarbonylation) was 

explored in follow-up work by Hirschbeck and Fleischer.[27] In general, the activity decreased with 
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electron-withdrawing substituents on the arene, requiring higher catalyst loading. Combination of two 

challenging properties led to no conversion (e.g. hypothetical product 32). Basic functional groups are 

not tolerated (not shown) since inhibition of the acid co-catalyst occurs. 

Finally, the reactivity of non-styrenic olefins was also evaluated (Scheme 2.6) using either MeOH or 

BnOH as the nucleophile to allow for facile purification. The use of α-branched olefins (34, 44) led to 

the formation of the corresponding linear esters. Similarly, internal alkenes without directing benzylic 

positions (46, 48, 50) also provided the linear esters selectively. The internal olefins (48, 50) isomerized 

by hydride-chain walking mechanism to the terminal position. When a η3-benzyl palladium(II) complex 

can be formed (38, 40), the corresponding regioisomeric ester mixture is obtained, hinting at both 

factors (sterics and electronics) being influential. Vinyl acetate also appears to have directing group 

properties (alkene 36), whereas no effect was observed in case of  N-vinylphthalimide (42). The 

branched-selective methoxycarbonylation of 42 and analogues would be an interesting route to C,N-

protected α-amino acids. The use of phenylacetylene (52) mainly gave an unknown polymer (perhaps 

poly(phenylacetylene) or the alternating CO/phenylacetylene copolymer) as the product, together 

with minor amounts of the cinnamic acid ester 53. 

 

Scheme 2.6: Hydroesterification of non-styrenic olefins with MeOH or BnOH (only the starting materials are shown, the product 
structures are implicated and can be found in the experimental part). alkene (1.00 mmol, 1 M solution), 1 : 3 MeOH : DCM 
(v/v), 0.5 mol% Pd(dba)2 (5.0 mmol, 2.9 mg), 2 mol% dtbpx (20 mmol, 7.9 mg), 7.5 mol% rac-BNPA (75 mmol, 26 mg), RT, 14 
h. Isolated yields are shown and the bracketed ratio denotes b:l regioselectivity. 

In summary, the introduction of an aryl group in an olefinic substrate gives a significant directing group 

effect towards the benzylic position (presumably by formation of a η3-benzyl palladium(II) complex), 

which can compete with the usual selectivity of the Pd/dtbpx system towards the formation of linear 

esters. The latter type of selectivity is obtained with dtbpx under thermal conditions, probably due to 
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steric influence.[28] Branched selectivity in the case of styrenic substrates has also been documented 

by Tanaka (one synthetic example).[29] In cases where both driving forces can be found, synthetically 

less useful regioisomeric mixtures dominate. Hetero-atom directing groups produced mixed results 

but offer promising routes to high-value products such as amino acids. 
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2.2.3. Hydrothioesterification of styrenes 

While the benzylic oxo-esters of the previous section are valuable products, the corresponding thio-

esters should be easier to activate for follow-up transformations enabled by transition metal 

catalysis.[30] The initial attempts to transfer the previous system towards the hydrothioesterification of 

styrenes were met with mixed success. BINOL phosphoric acid (BNPA) of the previous section was 

replaced with diphenyl phosphoric acid in order to ensure full solubility of all components. With lighter 

thiols, reproducibility issues were encountered. It was hypothesized that more volatile thiols could 

enter the vessel headspace and be involved in an equilibrium over the two different liquid phases. In 

turn, the thiol concentration would vary over time, leading to the problematic reproducibility. 

This problem was successfully addressed by Hirschbeck through the choice of a non-volatile thiol for 

further optimization. A second problem was the observed side reaction of hydrothiolation, which 

occurred with anti-Markovnikov selectivity. This reactivity was excluded by careful purification of all 

reagents and solvents involved and performing the desired reaction under strictly inert conditions. 

Control experiments revealed that this type of reactivity was most likely radical-based. The 

transformation proceeded generally without Pd-catalysis at elevated temperatures in a polar solvent 

in the presence of air (not under pure O2 [thiol-olefin-cooxidation-conditions, TOCO] and not under N2 

or Ar). This hydrothiolation reaction (or thiol-ene reaction) has properties of a click reaction and has 

been reported with a variety of catalysts (including organic photo-redox catalysis[31], metal photo-

redox catalysis[32]) whereas the original approach (alkene and thiol, neat or in acetic acid / sulfuric acid 

mixtures, RT) developed by Posner (1905 at the University of Greifswald) has received less attention 

although it is certainly preparatively useful and has been shown to work with a variety of alkenes.[33] It 

only requires oxygen as the radical initiator in concentrations as found in ambient air (Scheme 2.7).  

 

Scheme 2.7: Mechanism of the radical hydrothiolation of styrenes with thiols. Air contains a concentration of oxygen to initiate 
the reaction efficiently whereas under nitrogen no reaction occurs and pure oxygen gives an unclean product profile. 

In fact, the practical advantage of the photocatalyzed versions of the thiol-ene reaction should be 

called into question in some cases (since the photocatalysts only provide a source of thiyl radicals). In 

fairness, at least one study by Stephenson concerned with photo-redox catalysis acknowledged “[…] a 

strong observed background reaction […]”[32b] but there are certainly cases where better reaction 

kinetics can be obtained with photocatalysts. 

In contrast to the previous section, a ligand screening in the hydrothioesterification of styrene with 

heptanethiol (54) to give the product 55 was conducted to highlight possible ligand structure-activity 
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relationship (Scheme 2.8). It was found that 1 mol% loading of the metal precursor was optimal for 

successful catalysis at room temperature. Interestingly, only the branched product could be detected 

in the hydrothioesterification reaction compared to the hydroesterification reaction using a variety of 

ligands (L1, L4 – L8, L12). 

 

Scheme 2.8: Screening of P-based bidentate ligands in the hydrothioesterification of styrene with heptanethiol (54). The 
reaction was carried out in the autoclave (2.5 bar of CO). Condtions:  styrene (115 μL, 1.0 mmol), 1 mol% Pd(dba)2 (5.8 mg, 10 
μmol), 4 mol% ligand (40 μmol), 15 mol% DPPA (38 mg, 150 μmol), HeptSH (210 μL, 177 mg, 1.3 mmol), 790 μL CH2Cl2, RT, 14 
h. Yields were determined by quantitative NMR. 

Bidentate ligands were chosen due to their similarity to the longtime benchmark ligand dtbpx (L1) and 

the ability to counter deactivation through the chelate effect. Overall, a strong bite angle effect was 

noticed (Figure 2.2), but also rigidity (L5 vs. L7) and σ donor capability (L6 vs. L12) play a role. In some 

cases (especially in L6 vs L12), several ligand properties can be confounded, i.e. steric bulk of a di-tert-

butylphosphino group is confounded with the strong basicity of the fragment. However, the observed 

regioselectivity effects (outliers L9 and L10) could not be readily rationalized. Ligand L11 is known to 

give trans-complexes, which explains the inactivity of this ligand in catalysis. Overall the ligand 1-di-

tert-butylphosphino-1’-di-phenylphosphinoferrocene (dppdtbpf, L6), previously described by 

Holzapfel and Bredenkamp,[34] gave the best performance. L6 exhibits the practical advantage of higher 

air stability (in the solid state) compared to L1 combined with a relatively facile synthesis. 
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Figure 2.2: The crystallographic bite angle of L2PdCl2 or L2PtCl2 model complexes correlates with the yield of a standard 
hydrothioesterification reaction under ligand screening conditions. The corresponding Cambridge Structural Database 
reference codes – L1: PEMCUH, L4: PEMDAO, L5: BICLOO, L7: KIBLUE, L8: DPPPDC, L9: GIBYOH, L10: ECOZEC, L12: PEMWIT. 
L6: own crystal structure. 

A screening of the acid co-catalyst revealed that a variety of acids were competent co-catalysts (MsOH, 

pTsOH) while TFA and benzoic acid were incompetent co-catalysts. Another source of Pd0, Pd(PPh3)4 

gave inferior results to Pd(dba)2. Interestingly, most PdII precatalysts (PdCl2, Pd(OAc)2, Pd(dppdtbpf)Cl2) 

failed to show the desired activity, but Pd(acac)2 singularly showed some activity. This further 

strengthens the accepted position of precatalyst activation by protonation of a weak ligand to give 

dbaH or acacH respectively, which must be followed by ligand dissociation to enable the phosphine 

ligand coordination. 

A survey of thiol nucleophiles revealed similar trends as in the previous section (Scheme 2.9): While 

primary thiols (giving products 55 - 57) were efficiently converted, a secondary thiol reacted sluggishly 

(giving product 59), and tertiary thiols were unreactive. An interesting synthetic example was the 

successful carbonylative installation of a cysteine thioester. The activity of thiophenol showed, by 

giving product 60, that the previous explanation of precatalyst activation through β-hydride 

elimination of a Pd-bound alcohol or thiol could not be the only explanation in the thiocarbonylation 

reaction. However, linear product was also obtained in this case, making this reaction less 

preparatively useful. The underlying factors for the branched-linear regioselectivity remain 

unexplained but must be clearly connected to an electronic factor, i.e. the nucleophilicity of the thiol 

or alcohol. A competition experiment where both n-heptanol and n-heptanethiol were present in the 

reaction mixture gave selectively the styrene-derived thioester 55 over the corresponding oxo-ester. 
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Scheme 2.9: Screening of thiol components in the hydrothioesterification of styrene. Reaction conditions: CO generation as in 
Scheme 2.5; styrene (115 μL, 1.0 mmol, 1 M solution), Pd(dba)2 (5.8 mg, 10 μmol), L6 (21 mg, 40 μmol), DPPA (38 mg, 150 
μmol), RSH (1.3 mmol), 790 μL CH2Cl2, RT, 14 h. 

A scope evaluation of the styrene component revealed that a variety of substituents were tolerated 

on the arene core in ortho- (products 76 – 79), meta- (products 74 and 75) or para-position (products 

55 – 73) without any detrimental effect to the regioselectivity. This is in strong contrast to the 

hydroesterification reaction of the previous section, where ortho-substituents led to a breakdown of 

regioselectivity (Scheme 2.10). Neither did the electronic nature of the substituents on the arene core 

influence the regioselectivity. However, the 4-CF3-substituent induced a reduced yield (thioester 65) 

and no observed product when placed in the 2-position. The corresponding thioesters were generally 

isolated in good to excellent yield after reaction at room temperature for 14 h under a pressure of CO 

in the apparatus previously described. In general, hydrogen-bond donors led to altered reactivity (such 

as cyclocarbonylation, giving product 76) or lowered yields, whereas hydrogen-bond acceptors inhibit 

the catalytic activity due to their basicity (i.e. hypothetical product 70). Pleasingly, halide substituents 

were generally tolerated (giving products 71 - 73). A negative correlation to the ease of oxidative 

addition of a Pd0 center into the respective halides was observed, which supports a mechanism 

involving zero-valent metal transition states or intermediates. Secondly, downstream cross-coupling 

chemistry is enabled by the found aryl halide tolerance. 
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Scheme 2.10: Screening of styrenic components in the hydrothioesterification reaction with heptanethiol. Reaction conditions: 
CO generation as in Scheme 2.5; vinyl arene (1.0 mmol), Pd(dba)2 (5.8 mg, 10 μmol), L6 (21 mg, 40 μmol), DPPA (38 mg, 150 
μmol), HeptSH (210 μL, 177 mg, 1.3 mmol), 790 μL CH2Cl2, RT, 14 h.  [a]: Cyclocarbonylation to the lactone was observed. 

In contrast to alkoxycarbonylation, no regioselectivity could be obtained in the hydrothioesterification 

of aliphatic alkenes, which provided regioisomeric mixtures. However, in the presence of a directing 

benzylic group, terminal olefins were selectively carbonylated in the benzylic position with the 

dppdtbpf/Pd system. Both aspects were investigated in more detail by Vera Hirschbeck.[35] 
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2.2.4. Mechanism 

The currently widely accepted mechanism for the hydroesterification of olefins[36] is shown below 

(“hydride mechanism”, Scheme 2.11) for the case of styrene substrates. A key factor for overall activity 

is the stability of the Pd hydride complex, which requires elaborate ligand design such as steric 

shielding. A suitable vinyl arene coordinates to the Pd hydride complex A and is subsequently 

hydropalladated to give complex B. As mentioned before, the regioselectivity of this step largely 

depends on two factors: 1. Minimization of steric strain, which is especially important for bulky 

phosphine ligands;[37] 2. Electronic stabilization such as the preferential formation of a benzylic 

complex due to two coordination modes being possible (η3/ η1).[10] All the complexes mentioned here 

exist both in their neutral or ion-pair form, depending on whether the acid counterion X- is coordinating 

or non-coordinating. In the extreme case of a highly coordinating counterion X -, the reactivity is 

inhibited completely. For simplicity, the neutral form is used below. 

 

Scheme 2.11: Proposed simplified mechanism of the Pd-catalyzed carbonylative hydro(thio)esterification of vinyl arenes. 

Next, CO first occupies a free coordination site, followed by migratory insertion of CO to form an acyl 

palladium(II) complex C, which undergoes alcoholysis to release the product and regenerate the 

starting palladium hydride complex A. It is unknown whether the alcoholysis proceeds intra- or 

intermolecularly. The transition state of the irreversible alcoholysis step exhibits Pd(0) character. The 

other elementary steps are assumed to be reversible.  he acid co-catalyst has several roles. First, it 

activates the acyl palladium complex by protonation. Secondly, additional Lewis basic functionality 

(e.g. as in BNPA or DPPA) present in the acid co-catalyst can aid the activation of the Nu-H bond. Finally, 

the acid co-catalyst can furnish a Pd-hydride species through oxidative addition of a Pd0 precursor into 

the HX bond.[38] Alternatively, the PdH species could be formed by β-hydride elimination from a 

suitable alcohol,[39] which would explain the inactivity of tertiary alcohols and phenols in the 
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hydroesterification reaction. In principle, the same mechanism could apply to the 

hydrothioesterification reaction, which shows better overall b-selectivity perhaps due to a kinetic 

effect of faster thiolysis than alcoholysis. In this reaction it was however found that thiophenol indeed 

gave product, which means that the activation of the Pd catalyst by oxidative addition is indeed 

occurring. To account for the high thiophilicity of Pd, it is not unreasonable to postulate an alternative 

mechanism for hydrothioesterification (Scheme 2.12). After oxidative addition of a Pd0 intermediate D 

into a H-SR bond, a hydridopalladium(II) thiolate E is generated. The mechanism involves ligand 

hemilability, where the weaker diphenylphosphino σ-donor arm of dppdtbpf decoordinates (via F) 

allowing for transient alkene coordination, which undergoes rapid hydropalladation to give the 

preferred benzylpalladium(II) thiolate complex G with the phosphino arm recoordinated. Finally, CO 

coordination and migratory insertion, followed by reductive elimination would regenerate the Pd0 

complex D. 

 

Scheme 2.12: Alternative mechanism for the Pd-catalyzed carbonylative hydrothioesterification of vinyl arenes involving 
ligand hemilability. 

In this scenario, the acid co-catalyst would simply accelerate the final reductive elimination by 

protonating the acylpalladium(II) complex since it is known that the reaction does not proceed in the 

absence of an acid co-catalyst. Both postulated cycles could also co-exist and appear equally 

reasonable. To strengthen the second mechanistic hypothesis, stoichiometric organometallic 

experiments should be carried out. For example, the feasibility of the hydropalladation step using the 

hydrido palladium(II) thiolate species should be central to second mechanism.  
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2.3. Conclusion 

In conclusion, highly active Pd-based systems for the regioselective (thio)esterification of vinyl arenes 

were developed using ex situ generation of CO. The reaction is performed in a simple two-chambered 

pressure vessel as originally devised by Skrydstrup, which significantly lowers the technical barrier to 

entry to this class of reactions. The introduction of a thioester moiety through carbonylative 

hydrofunctionalization of high-energy olefins bypasses the typical active ester route towards these 

functionalities, which enables facile downstream reactions (Chapter 3). There appear to be subtle 

mechanistic differences between hydroesterification and hydrothioesterification depending on the 

choice of the nucleophile, most likely through a strong thiophilic interaction in the case of thiol 

nucleophiles. 

While aryl thioesters can be synthesized from aryl halides and benzylic thioesters (as shown here) from 

styrenes, an unresolved problem remains the selective synthesis of branched or linear aliphatic 

thioesters from simple olefins. The development of such reactions would complete the toolbox of 

carbonylative thioester synthesis. The second major unsolved problem is the non-compatibility of 

highly basic functional groups, which inhibit the acid co-catalyst. 
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2.4. Experimental part 

2.4.1. General information 

All chemicals were purchased from ABCR, Acros, Merck, TCI, Aldrich or Fluka. The ligand dppdtbpf (L6) 

was either commercially obtained from Sigma-Aldrich or synthesized according to Cullen et al.[S1] The 

ligand dtbpt (L4) was synthesized from 2-bromobenzyl-di-tert-butylphosphine[S2] according to a 

procedure by Mecking.[S3] When necessary, purification of chemicals was carried out with the standard 

methods. Furthermore, degassed and dry solvents were used where necessary; specifically 

dichloromethane, diethyl ether and tetrahydrofuran were obtained pre-dried from a Grubbs-type 

solvent purification system (MBraun, MB SPS-800). Pre-dried dichloromethane was refluxed over CaH2, 

then distilled under nitrogen. Pre-dried diethyl ether and tetrahydrofuran were further dried with 

microwave-activated 3 Å molecular sieves (20% m/v, 3 days) and degassed when necessary by freeze-

pump- thaw cycles (3x). Dry hexane was obtained by refluxing hexane (p.A. grade) over CaH2, followed 

by distillation under N2.  

 Unless otherwise noted, all reactions were carried out air- and moisture-free under an atmosphere of 

dry nitrogen by employing Schlenk techniques. The reaction glassware was freed from residual 

moisture by heating under vacuum and subsequent cooling under dry N2 (3x); this treatment is called 

"flame-drying" below. 

Column chromatography was carried out using normal- (60 Å) or flash-grade (40 Å)  Silica gel (SiO2) 

either using gravity flow or air overpressure flow conditions in a standard glass column setup with 

isocratic or gradient elution (composition of mobile phase noted in each experiment). Chromatography 

solvents were distilled prior to use.   

For TLC analysis of reactions and purification processes, Kieselgel 60 F254 aluminium-backed plates 

were employed, visualization was carried out either by fluorescence quenching of UV active 

compounds or by dipping the developed plates in pre-made solutions of various TLC stains and heating 

the plate gently until maximum contrast occurred (used stain noted in each experiment). 

Uncorrected melting points were determined on an Optimelt MPA100 apparatus from Stanford 

Research Systems (heating rate 2 °C/min) or a Büchi Melting Point B-545 aparatus (5 °C/min).  

1H- and 13C-NMR spectra were recorded on Bruker Avance 400 or 300 MHz machines (400 or 300 MHz 

for 1H experiments; 101 or 75 MHz for 13C experiments) in commercially available deuterated solvents 

without TMS. 13C-NMR experiments were recorded in proton-decoupled mode, and this is not explicitly 

noted below. The chemical shift is noted as δ (ppm) and referenced to the trace solvent signals; these 

signals and their relation to the 0 ppm TMS signal are available in the literature.[S4] Coupling constants 

across bonds are given as J (Hz). The nomenclature for spin multiplicities is as follows: s = singlet; d = 
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doublet; t = triplet; q = quartet; quin = quintet; sext = sextet; hept = heptet; m = multiplet. Usually, 13C-

NMR measurements were accompanied by a 13C-DEPT135 experiment for further structural 

elucidation but are not noted explicitly in the experimental data. Occasionally, 2D-NMR experiments 

were carried out where assignments were ambiguous, but are not noted explicitly in the experimental 

data.  

Infrared spectra were measured on a Excalibur FTS3000 MX FT-IR spectrometer from BioRad. The 

samples were applied neat on an ATR setup. Absorption bands are given in wave numbers 𝑣̃ (cm-1) and 

peak intensities are abbreviated as follows: s - strong, m - medium, w - weak. Peak form descriptions 

are as follows: br - broad, sh - sharp. 

For GC/MS analysis of crude mixtures, an Agilent 6890 N Network GC with an Agilent 5975 Inert Mass 

Selective Detector was employed. Carrier gas: Dry Hydrogen. The stationary phase was a column type 

BPX5 (30 m X 0.25 mm X 0.25 µm [film thickness]) from SGE. Program 50-300M: From 50 °C (2 min) by 

heating 25 °C/min towards 300 °C (5 min). Total time: 17 min; flow rate: 1.0 mL/min. HR-MS and GC/MS 

analysis for purified compounds was carried out by the Central Analytical Department, University of 

Regensburg on a Agilent Q-TOF 6540 UHD (APCI/ESI-HRMS) and Finnigan MAT SSQ 710 A (EI/CI-LR-

GC/MS) machine respectively.  

Gas chromatography (flame ionization detection) was carried out on a HP6890 GC-System with injector 

7683B and Agilent 7820A System, carrier gas: Dry Hydrogen. Program 50-280M12: From 50 °C by 

heating towards 280 °C in 12 min after injection. In some cases, quantitative instrumental analysis was 

used to determine reaction yields and conversions by the internal standard method.  

Autoclave reactions were performed in a high pressure vessel from Parr Instrument Company (model: 

4774; volume: 0.16 L) with a metal inset for holding 6 septum-containing screw capped vials and 

controlled via a Parr reactor (model: 4838). Autoclave reactions with oven-dried screw-capped vials 

were set up under inert conditions by piercing the septum with a needle connected to a Schlenk line.  
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2.4.2. General procedures 

General procedure GP A for hydroesterification 

A two-chambered pressure vessel (COware 20 mL, SyTracks A/S, Sigma-Aldrich article #744077) 

equipped with stirring bars was charged with N-formylsaccharin (6) (450 mg, 2.13 mmol)  and sodium 

carbonate (339 mg, 3.20 mmol) in chamber A [Figure S1, a)]; chamber B was charged with BNPA (3) 

(7.5 mol% up to 15 mol%, 15 eq. relative to Pd(dba)2) [Figure S1, b)] and sealed with a septum-

containing screw cap assembly (COware type, Sigma-Aldrich articles #743852 and #743968). Chamber 

A was fitted with a vacuum adapter screw cap and the reaction vessel was evacuated for 10 min [Figure 

S1, c)]. Under a N2 backcurrent, Pd(dba)2 (0.5 mol% up to 1.0 mol%, amounts specified below and 

referred to in each single experiment), dtbpx (L1) (2.0 mol% up to 4.0 mol%, 4 eq. relative to Pd(dba)2) 

were added in chamber B [Figure S1, d)], the vessel was then subjected to evacuation/N2-backfilling 

(3x). 

 

Molar ratios Pd(dba)2 dtbpx BNPA 

1:4:15 (1 mmol 

starting material) 

0.5 mol%, 5 µmol, 2.9 

mg 

2.0 mol%, 20 µmol, 

7.9 mg 

7.5 mol%, 75 µmol, 

26.1 mg 

1:4:15 (1 mmol 

starting material) 

0.75 mol%, 7.5 µmol, 

4.4 mg 

3.0 mol%, 30 µmol, 

11.9 mg 

11.25 mol%, 11.3 

µmol, 39.2 mg 

1:4:15 (0.75 mmol 

starting material) 

0.75 mol%, 5.6 µmol, 

3.3 mg 

3.0 mol%, 22.5 µmol, 

8.9 mg 

11.25 mol%, 8.5 µmol, 

29.4 mg 

1:4:15 (1 mmol 

starting material) 

1.0 mol%, 10 µmol, 

5.8 mg 

4. mol%, 40 µmol, 

15.8 mg. 

15.0 mol%, 150 µmol, 

52.2 mg 

 

 Then, anhydrous DCM (750 µL) [Figure S1, e)], the alcohol (250 µL) [Figure S1, f)] and the olefin (1 

mmol or 0.75 mmol, 100 mol%) were added to chamber B in exactly this order (solid olefins can be 

added at the beginning), resulting in a dark-red solution which was stirred at 750 rpm. The vacuum 

adapter screw cap of chamber A was exchanged to a septum-containing screw cap under positive N2 

pressure (using the septum inlet of chamber B) [Figure S1, g) and h)]. To start the decarbonylation, dry 

DMF (1 mL) was added to chamber A via septum addition [Figure S1, i)]. This resulted in a suspension 

in chamber A where gas evolution could be observed. Both reaction chambers were stirred at 750 rpm 

for 14 h at RT [Figure S1, j) after 14 h reaction time]. 

To stop the reaction, the screw caps were loosened in a well-ventilated enviroment (CO evolution may 

occur!). Excess NaHCO3 in chamber A can be removed by addition of 1 M HCl, further addition of HCl 
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precipitates saccharin which can be recovered (340 mg, 1.83 mmol, 86%) by filtration, washing the 

filter cake with copious amounts of dist. H2O to remove NaCl and DMF, and finally drying the solid in 

vacuo. The crude product can be subjected to GC analysis at this point, by adding a Pd metal scavenger 

(QuadraSil MP) and then filtering the crude solution through a cotton-plugged pasteur pipette filled 

with celite and basic aluminium oxide. Reaction mixtures giving non-volatile products can be adsorbed 

on Silica gel without further workup. Generally, special care must be taken to separate the products 

from catalyst components, which in the case of styrene derivatives as starting materials, often show 

retention behaviour similar the corresponding products. These impurities may give spectroscopically 

pure products a yellow appearance. 
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Figure S1: Setup of an alkoxycarbonylation reaction in a two-chambered vessel. See "General Procedure A" for steps a) – j). 
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General procedure GP B for Brønsted acid and Pd-precursor screening  

General procedure A was followed using styrene as the olefin component and dist. MeOH as the 

alcohol, but with equimolar amounts of different acids or Pd precursors employed and 2 h reaction 

time. Solid acids (BNPA, pTsOH, PhCO2H) were added at the start, while liquid acids (TFA, MsOH) were 

added via microsyringe to the olefin/MeOH/Pd(dba)2/ligand DCM solution. 

For quantitative GC-FID analysis of these catalytic carbonylation reactions, n-pentadecane (76.9 mg, 

100 µL) was added to the crude reaction mixture with a 100 µL teflon microsyringe, the two-phase 

system vigorously stirred and diluted with DCM (2 mL) until a homogenous solution was obtained. A 

suitable Pd metal scavenger was added (QuadraSil MP) and the solution was then filtered through a 

cotton-plugged Pasteur pipette filled with celite and basic aluminium oxide and the sample in the GC 

vial was further diluted with DCM. The vial caps were sealed with parafilm to avoid evaporation of 

volatile components. Retention times under GC temperature program described above: tR(styrene) = 

2.99 min; tR(n-pentadecane) = 6.00 min; tR(methyl 2-phenylpropanoate 13-b) = 4.99 min; tR(methyl 3-

phenylpropanoate 13-l) = 5.32 min. 

Response factors employed for yield calculations were RStyrene = 0.924 and RProduct = 0.649 derived from 

calibration data by linear regression. b:l ratios were determined by comparison of the area integrals 

from the branched and linear product from the same GC-FID data. 

General procedure GP C for hydrothioesterification in a two-chambered pressure vessel 

A two-chambered pressure vessel (COware 20 mL, SyTracks A/S) equipped with stirring bars was 

charged with N-formylsaccharin (6) (450 mg, 2.13 mmol) and sodium carbonate (339 mg, 3.20 mmol) 

in chamber A; chamber B was charged with DPPA (15 mol%, 38 mg, 150 µmol) and sealed with a 

septum-containing screw cap assembly (COware type). Chamber A was fitted with a vacuum adapter 

screwcap and the reaction vessel was evacuated for 10 min. Under N2 atmosphere, Pd(dba)2 (1 mol%, 

5.8 mg, 10 µmol), dppdtbpf (L6) (4 mol%, 21 mg, 40 µmol) were added to chamber B, the vessel was 

then subjected to evacuation/N2-backfilling (3x). 

Then, anhydrous dist. CH2Cl2 the thiol (1.34 eq) and the olefin (100 mol%, 1 mmol) were added to 

chamber A, resulting in a dark-red solution which was stirred at 750 rpm. The vacuum adapter screw 

cap of chamber A was exchanged to a septum containing screw cap under positive N2 pressure (using 

the septum inlet of chamber B). To start the decarbonylation, dry DMF (1 mL) was added to chamber 

A via septum addition. Pictures of the two-chambered pressure vessel setup are available in the 

supporting information of our previous work.[4] Both reaction chambers were stirred at 750 rpm for 14 

h at RT. The reaction was stopped by opening the reaction vessel. The crude product was purified by 

column chromatography. The exact amounts of thiols and CH2Cl2 are shown in Table 2. 
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Table 2: Exact amounts of thiol and CH2Cl2 for thiocarbonylation reaction. 

Entry[a] thiol V(thiol)/ µL V(CH2Cl2)/ µL 

1 nC7H15SH 210 790 

2 nPrSH 125 875 

3 EtSH 100 900 

4 BnSH 160 840 

5 N-Boc-cysteine methyl ester 280 720 

6 CySH 165 835 

7 PhSH 140 860 
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2.4.3. Experimental procedures and analytical data 

2.4.3.1. Synthesis of N-formylsaccharin 

Dimethylphenylsilyl formate (quantitative 1H-NMR analysis by conversion into formic acid)[S5]  

 

A flame-dried 25 mL Schlenk tube with a stirring bar was charged with Rh2(OAc)4 (3.3 mg, 7.0 µmol, 

0.25 mol%) and K2CO3 (2.1 mg, 14 µmol, 0.5 mol%) and then fitted with a rubber septum. The 

atmosphere in the reaction vessel was exchanged to CO2 by triple evacuation and refilling with CO2 

(balloon reservoir). The solids were dissolved in dry MeCN (6 mL) by syringe addition under stirring, 

giving a purple solution. After dissolution of all solid components, the solution was heated to 50 °C and 

dimethylphenylsilane (460 µL, 3.00 mmol) was added via syringe (gas evolution occurs) and the 

reaction was further stirred at this temperature for 2 h.  

After this time, the reaction was allowed to come to room temperature and the solvent was removed 

in vacuo (110 mbar, tepid water bath) without subjecting the intermediate silyl formate to atmospheric 

conditions in the process. The catalyst components were then precipitated under N2 atmosphere by 

addition of dry hexane (3 mL) by syringe. The colourless solution was then transferred to a flame-dried 

25 mL Schlenk tube by cannula filtration under inert conditions and the solvent subsequently removed 

again as described above, giving the silyl formate as a colourless to bronze liquid with slight turbidity. 

A qualitative analysis by 1H-NMR  [400 MHz, CDCl3, δ (ppm): 8.12 (s, 1H, CHO), 7.50 (m, 5H, ArH), 0.63 

(s, 6H, Si(CH3)2] matched  with the reported literature data[S6] but contained traces of acetonitrile and 

an unknown impurity, indicating decomposition that occurred while preparing the NMR sample. 

For quantitative 1H-NMR analysis, the silyl formate was treated with 2 mL of dist. H2O for hydrolysis 

for 1 h at RT under stirring. As an internal standard, maleic acid (26 mg) was added. An aliquot of this 

mixture was taken up in D2O. 

For quantitative NMR data evaluation, all spectra were manually phase-corrected and the baseline 

automatically set. Chemical shifts of components used for evaluation in D2O (ppm): Formic acid 8.16 

(1H, s, HCO2H); Maleic acid 6.34 (2H, s, HO2C-CH=CH-CO2H). Regression analysis of data points from 

calibration gave a response factor RFormic acid =1.01, and by using the obtained integral ratios for 

calculation, 150 mg (3.25 mmol, quant.) of formic acid was yielded  after the hydrolysis. 

  



Chapter 2 

48 

N-Acetylsaccharin and N-Formylsaccharin 6[S7] 

 

A two-necked, flame-dried RBF equipped with a stirring bar and reflux condenser was charged with 

acetic anhydride (15.1 mL, 160 mmol, 4 Eqv.) and formic acid (7.80 mL, 208 mmol, 5.2 Eqv.) and heated 

to reflux for 5 h under stirring.  Then, saccharin (7.33 g, 40.0 mmol, 1 Eqv.) was added to the solution 

and stirred at 60 °C overnight. Then, the reaction vessel was cooled to RT, diluted with dist. H2O, the 

precipitate washed with dist. H2O over a Buchner funnel and the resulting filter cake dried in vacuo to 

afford a mixture of N-formyl- and N-acetylsaccharin as a colourless powder (5.10 g, 24 mmol, 60%). 

Each component matches with the reported literature data.[S7, 8]  

Rf : Decomposition on normal-phase SiO2. 

1H-NMR (300 MHz, CD3CN): δ (ppm): 9.15 (s, 1H, HetArCHO), 8.31 – 7.72 (m, 4H, HetArH); minor signals 

from N-acetylsaccharin: 8.31 – 7.72 (m, 4H, HetArH), ), 2.62 (s, 3H, N-COCH3). 

13C-NMR (75 MHz, CD3CN) δ (ppm): 157.6 , 157.4, 137.8, 137.2, 136.7, 135.3, 135.0, 134.1, 126.0, 125.8, 

124.6, 121.2, 120.7, 120.4, 25.1. 

GC/MS (ESI): tR = 1.63 min (NFS), m/z = 212 (32, [MH+]), 184 (100, [MH+]-[CO]); tR = 1.82 min (NAS), 

m/z = 226 (100, [MH+]).  
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N-Formylsaccharin 6 (from Formic acid) 

 

Using a modified procedure by Goto,[S9] a two-necked, flame-dried 500 mL RBF with a N2 inlet, rubber 

septum and stirring bar was charged with HCO2H (98 mL, 2.6 mol, 24 Eqv.) and Ac2O (113 mL, 1.2 mol, 

12 Eqv.) and the resulting solution was stirred vigourosly for 1 h at RT (slightly exothermic). Meanwhile, 

a flame-dried assembly of a three-necked 500 mL Schlenk RBF with N2 inlet, 100 mL dropping funnel 

and stirring bar and was charged with saccharin (18.3 g, 100 mmol, 1 Eqv.) and dissolved in dry THF 

(150 mL) under stirring. Upon the addition of pyridine (1.0 mL, 10 mmol, 10 mol%), the solution turned 

slightly cloudy and was further stirred. The formylating mixture prepared beforehand was then 

transferred via cannula into the dropping funnel and then added to the stirred saccharin solution 

dropwise at a rate which keeps the stirred saccharin solution at room temperature. After complete 

addition, precipitation occurs, and the white suspension is further stirred at RT for 3 h. The precipitate 

was collected by vacuum filtration, washed with MeOH p.A. (150 mL), then H2O (150 mL, caution: 

remaining AcOCHO decomposes exothermically in the filtrate under CO release), and the filter cake 

was dried in vacuo to yield a colourless crystalline powder (19.4 g, 92.0 mmol, 92%). The analytical 

data matches with reported literature data.[S7] 

Rf : Decomposition on normal-phase SiO2. 

Melting point: 227 °C (a change in crystallinity occurs between 120-150 °C, possibly due to 

decarbonylation). 

FT-IR (ATR) 𝑣̃ (cm-1):  1756 (s, sh), 1716 (s, sh), 1593 (m, sh), 1460 (m, sh), 1345 (s, sh), 1289 (s, sh), 

1249 (s), 1175 (s, sh), 1159 (s, sh), 1104 (s, sh), 746 (s, sh), 672 (s, sh), 574 (s, sh). 

1H-NMR (400 MHz, CD3CN) δ (ppm): 9.16 (s, 1H, N-CHO), 8.19 (d, J = 7.7 Hz, 1H, ArH), 8.14 – 8.07 (m, 

2H, ArH), 8.04 – 8.00 (m, 1H, ArH). 

13C-NMR (101 MHz, CD3CN) δ (ppm): 157.7 (C3), 157.4 (N-CHO), 137.9 (C3a), 137.3 (C6), 135.3 (C5), 126.0 

(C7), 124.6 (C7a), 121.2 (C4).   

HR-MS (ESI): [MH+] m/z = calc. for C8H6NO4S 212.0012; found 212.0010. 
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N-Formylsaccharin 6 (from CO2) 

 

A flame-dried 25 mL Schlenk tube with a stirring bar under N2  atmosphere was charged with Rh2(OAc)4 

(3.3 mg, 7.5 µmol, 0.25 mol%) and K2CO3 (2.1 mg, 15 µmol, 0.5 mol%) and then fitted with a rubber 

septum. The atmosphere in the reaction vessel was exchanged towards CO2 by triple evacuation and 

refilling with CO2 (balloon reservoir). The solids were dissolved in dry MeCN (6 mL) by syringe addition 

under stirring, giving a purple solution. After dissolution of all solid components, the solution was 

heated to 50 °C and dimethylphenylsilane (460 µL, 3.0 mmol) was added via syringe (gas evolution may 

occur) and the reaction was further stirred at this temperature for 2 h.  After this time, the reaction 

was allowed to cool down to room temperature and the solvent was removed in vacuo (110 mbar, 

tepid water bath) without subjecting the intermediate silyl formate to atmospheric conditions in the 

process. The catalyst components were then precipitated under N2 atmosphere by addition of dry 

hexane (6 mL) by syringe. The colourless solution was then transferred to a flame-dried 25 mL Schlenk 

tube by cannula filtration under inert conditions and the solvent subsequently removed again as 

described above, giving the silyl formate 9 as colourless to bronze liquid with slight turbidity. 

To the neat silyl formate, Ac2O (284 µL, 3.00 mmol) was added and stirred for 4 h at 40 °C to generate 

the formylating mixture. Meanwhile, an oven-dried 5 mL screw-capped glass vessel with septum inlet 

and stirring bar was filled with N2, then charged with saccharin (0.30 mmol, 55 mg) and imidazole (10 

mol%, 0.030 mmol, 2.0 mg). The solids were dissolved with dry THF (430 µL) under stirring. The 

formylating mixture was added dropwise under vigorous stirring via syringe. After complete addition, 

precipitation occurs, and the white suspension is further stirred at RT for 3 h. After the end of the 

reaction, the vessel contents were transferred to a Pasteur pipette plugged with cotton and filter 

paper. The resulting filter cake was washed with three pipette volumes of MeOH p.A., then three 

pipette volumes of cyclohexane, and the filtrate was discarded. The filter cake was then dissolved by 

addition of three pipette volumes MeCN, and the filtrate collected in a tared 5 mL RBF. The solvent 

was removed in vacuo to give the product as a colourless powder (36 mg, 0.17 mmol, 57% based on 

saccharin). Analytics as above. 
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2.4.3.2. Synthesis of oxoesters 

Methyl 2-Phenylpropanoate (13-b) and Methyl 3-Phenylpropanoate (13-l) 

 

Using dist. styrene (115 µL, 104 mg, 1.00 mmol; long-term storage in the dark under N2 at  

-20 °C) as the olefin component and dist. MeOH (250 µL, stored under N2) as the alcohol component, 

GP A was employed using 0.5 mol% [Pd]. The b/l ratio of the crude product product was determined 

by GC-FID analysis to be 88:12. Purification by flash chromatography on SiO2 (mobile phase: 95:5 

CyH:EtOAc) gave the regioisomeric compounds as a colourless oil (124 mg, 0.76 mmol, 76%, b/l ratio 

97:3 by NMR). The analytical data matches with reported literature data.[S10,11] 

 

Rf : 0.35  (mobile phase 9:1 CyH:EtOAc, KMnO4 stain)  

Melting point: Ambient temperature. 

1H-NMR (400 MHz, CDCl3) δ (ppm): 7.43 – 7.18 (m, 5H, ArH), 3.75 (q, J = 7.2 Hz, 1H, ArCH(CO2Me)CH3), 

3.67 (s, 3H, R-CO2CH3), 1.52 (d, J = 7.2 Hz, 3H, ArCH(CO2Me)CH3); minor signals for linear regioisomer 

2.99 (t, J = 7.8 Hz, 2H, ArCH2CH2CO2Me), 2.66 (t, J = 7.8 Hz, 2H, ArCH2CH2CO2Me). 

13C-NMR (101 MHz, CDCl3) δ (ppm): 175.0 (R-CO2CH3), 140.6 (ArC), 128.7 (ArC), 127.5 (ArC), 127.2 (ArC), 

52.0 (R-CO2CH3), 45.5 (ArCH(CO2Me)CH3), 18.6 (ArCH(CO2Me)CH3). 

minor signals for linear regioisomer: 128.5 (ArC), 128.3 (ArC), 126.3 (ArC), 51.6 (R-CO2CH3), 35.7 

(ArCH2CH2CO2Me), 31.0 (ArCH2CH2CO2Me). 

GC-FID (50-280M12, from crude): tR = 4.99 min (branched), tR = 5.32 min (linear). 

GC/MS (EI): tR = 6.61 min (branched), m/z = 164 (35, [MH+•]), 133 (1, [MH+•]-[OMe•]),  

104 (100, [MH+•]-[OMe•]-[CO]), tR = 7.37 min (linear), same m/z and intensity pattern. 
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Ethyl 2-phenylpropanoate (14-b) and Ethyl 3-phenylpropanoate (14-l) 

 

Using styrene (115 µL, 104 mg, 1.00 mmol) as the olefin component and dist. EtOH (250 µL, stored 

under N2) as the alcohol component, GP A was employed using 0.5 mol% [Pd]. The b/l ratio of the 

crude product was determined by GC-FID analysis to be 93:7. Purification by column chromatography 

on SiO2 (95:5 CyH:EtOAc) gave the regioisomeric compounds as a colourless oil (150 mg, 0.84 mmol, 

84%, b/l ratio 97:3 by NMR). Analytical data matched with the reported literature data.[S12,13] 

 

Rf : 0.44 (mobile phase 9:1 CyH:EtOAc), 0.34 (mobile phase 95:5 CyH:EtOAc), KMnO4 stain.  

Melting point: Ambient temperature. 

1H-NMR (400 MHz, CDCl3) δ (ppm): 7.40 - 7.17 (m, 5H, ArH), 4.20 – 4.06 (m, 2H, R-CO2CH2CH3), 3.71 (q, 

J = 7.2 Hz, 1H, ArCH(CO2Et)Me), 1.50 (d, J = 7.2 Hz, 3H, ArCH(CO2Et)CH3), 1.21 (t,  J = 7.1 Hz, 3H, R-

CO2CH2CH3); minor signals from linear regioisomer: 2.96 (t, J = 8.0 Hz,  2H, ArCH2CH2CO2Et), 2.63 (t, J = 

8.0 Hz, 2H, ArCH2CH2CO2Et). 

13C-NMR  (101 MHz, CDCl3) δ (ppm): 174.6 (C=O), 140.7 (ArC), 128.6 (ArC), 127.5 (ArC), 127.1 (ArC), 

60.7 (CO2CH2CH3), 45.6 (ArCH(CO2Et)Me), 18.6 (ArCH(CO2Et)CH3), 14.1 (CO2CH2CH3), minor signals from 

linear regioisomer were not detected due to low concentration. 

GC-FID (50-280M12): tR = 5.16 min (branched), tR = 5.55 min (linear). 

GC/MS (EI): tR = 7.30 min (branched), m/z = 178 (18, [M+•]), 105 (100, [C8H9
+]); tR = 8.22 min (linear), 

m/z = 178 (18, [M+•]), 133 (100, [M+•]-[OEt•]). 
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Isopropyl 2-phenylpropanoate (15-b) and Isopropyl 3-phenylpropanoate (15-l) 

 

Using styrene (115 µL, 104.2 mg, 1 mmol) at as the olefin component and dist. iPrOH (250 µL, stored 

under N2) as the alcohol component, GP A was employed with 0.5 mol% [Pd]. The b/l ratio of the crude 

product was determined by GC-FID analysis to be 89:11. Purification by flash chromatography on SiO2 

(mobile phase: 95:5 CyH:EtOAc) gave the regioisomeric compounds as a colourless oil (90 mg, 0.47 

mmol, 47%, b/l ratio 93:7 by NMR). Analytical data matched with the reported literature data. [S12,13]  

 

Rf : 0.56 (mobile phase 9:1 CyH:EtOAc, KMnO4 stain)  

Melting point: Ambient temperature. 

1H-NMR (300 MHz, CDCl3) δ (ppm): 7.40 – 7.18 (m, 5H, ArH), 5.01 (hept, J = 6.3 Hz, 1H, R-CO2CH(Me)2), 

3.68 (q, J = 7.2 Hz, 1H, ArCH(CO2
iPr)Me), 1.50 (d, J = 7.2 Hz, 3H, ArCH(CO2

iPr)CH3), 1.23 (d, J = 6.3 Hz, 

3H, R-CO2CH(CH3)2 diastereotopic), 1.14 (d, J = 6.3 Hz, 3H, R-CO2CH(CH3)2 diastereotopic); minor signals 

from linear regioisomer: 2.96 (t, J = 7.9 Hz, 2H, ArCH2CH2CO2
iPr), 2.61 (t, J = 7.9 Hz, 2H, 

ArCH2CH2CO2
iPr). 

13C-NMR  (75 MHz, CDCl3) δ (ppm): 174.1 (C=O), 140.8 (ArC), 128.6 (ArC), 127.5 (ArC), 127.0 (ArC), 67.9 

(R-CO2CH(Me)2), 45.8 (ArCH(CO2
iPr)CH3), 21.8 (R-CO2CH(CH3)2, 21.6 (R-CO2CH(CH3)2, 18.6 

(ArCH(CO2
iPr)CH3); minor signals from linear regioisomer: 140.6 (ArC), 128.5 (ArC), 128.4 (ArC), 126.2 

(ArC), 67.7 (R-CO2CH(Me)2), 36.3 (ArCH2CH2CO2
iPr), 31.1 (ArCH2CH2CO2

iPr). 

GC-FID (50-280M12): tR = 5.40 min (branched), tR = 5.85 min (linear). 

GC/MS (EI): tR = 7.58 min (branched), m/z = 192 (25, [M+•]), 105 (100, [C8H9
+]); tR = 8.59 min (linear), 

m/z = 192 (25, [M+•]). 
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Cyclohexyl 2-phenylpropanoate (17-b) and Cyclohexyl 3-phenylpropanoate (17-l) 

 

Using styrene (115 µL, 104 mg, 1.00 mmol) as the olefin component and cyclohexanol (250 µL) as the 

alcohol component, GP A was employed with 0.5 mol% [Pd]. The b/l ratio of the crude product was 

determined by GC-FID analysis to be 93:7. Purification by flash chromatography on SiO2 (mobile phase: 

95:5 CyH:EtOAc) gave the regioisomeric compounds as a colourless oil (48 mg, 0.21 mmol, 21%, b/l 

ratio 92:8 by NMR). The analytical data matches with reported literature data.[S14,15] 

 

Rf : 0.47 (mobile phase 9:1 CyH:EtOAc, KMnO4 stain)  

Melting point: Ambient temperature. 

1H-NMR (300 MHz, CDCl3) δ (ppm): 7.40 – 7.14 (m, 5H, ArH), 4.83 – 4.69 (m, 1H, Cyclohexyl-CH), 3.69 

(q, J = 7.2 Hz, 1H, ArCH(CO2Cy)CH3), 1.88 – 1.54 (m, 5H Cyclohexyl-CH2), 1.49 (d, J = 7.2 Hz, 3H, 

ArCH(CO2Cy)CH3), 1.43 – 1.17 (m, 5H, Cyclohexyl-CH2); minor signals from linear regioisomer: 2.95 (t, J 

= 7.8 Hz, 2H, ArCH2CH2CO2Cy), 2.61 (t, J = 7.8 Hz, 2H, ArCH2CH2CO2Cy). 

13C-NMR (75 MHz, CDCl3) δ (ppm): 174.0 (C=O), 140.9 (ArC), 128.5 (ArC), 127.5 (ArC), 127.0 (ArC), 72.7 

(Cyclohexyl-CH), 45.8 (ArCH(CO2Cy)CH3), 25.4 (Cyclohexyl-CH2), 23.6 (Cyclohexyl-CH2), 23.5 

(Cyclohexyl-CH2), 18.5 (ArCH(CO2Cy)CH3); minor signals from linear regioisomer: 128.5 (ArC), 128.3 

ArC), 126.2 (ArC), 31.5 (ArCH2CH2CO2Cy), 31.2 (ArCH2CH2CO2Cy). 

GC-FID (50-280M12): tR = 7.38 min (branched), tR = 7.82 min (linear). 

GC/MS (EI): tR = 11.86 min (branched), m/z = 232 (4, [M+•]); tR = 12.79 min (linear), m/z = 232 (8, [M+•]). 
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Benzyl 2-phenylpropanoate (18-b) and Benzyl 3-phenylpropanoate (18-l) 

 

Using styrene (115 µL, 104 mg, 1.00 mmol) as the olefin component and benzyl alcohol (250 µL) as the 

alcohol component, GP A was employed with 0.5 mol% [Pd]. The b/l ratio of the crude product was 

determined by GC-FID analysis to be 82:18. Purification by flash chromatography on SiO2 (mobile 

phase: 95:5 CyH:EtOAc) gave the regioisomeric compounds as a colourless oil with a pleasant smell 

(191 mg, 0.80 mmol, 80%, b/l ratio 77:23 by NMR). The analytical data matches with reported literature 

data.[S10, 11]  

 

Rf : 0.42 (mobile phase 9:1 CyH:EtOAc, KMnO4 stain)  

Melting point: Ambient temperature. 

1H NMR (300 MHz, CDCl3) δ (ppm): 7.50 – 7.22 (m, 10H, ArH), 5.19 (ABq, ΔδAB = 0.05, J = 12.9 Hz, 2H, 

CH2Ph), 3.86 (q, J = 7.2 Hz, 1H, ArCH(CO2CH2Ph)Me), 1.61 (d, J = 7.2 Hz, 3H, ArCH(CO2CH2Ph)CH3); minor 

signals from linear regioisomer: 3.06 (t, J = 7.8 Hz, 2H, ArCH2CH2CO2Bn), 2.76 (t, J = 7.8 Hz, 2H, 

ArCH2CH2CO2Bn). 

13C NMR (75 MHz, CDCl3) δ (ppm): 174.4 (C=O), 140.5 (ArC), 136.1 (ArC), 128.7 (ArC), 128.7 (ArC), 128.6 

(ArC), 128.4 (ArC), 128.3 (ArC), 128.2 (ArC), 128.0 (ArC), 127.7 (ArC), 127.3 (ArC), 126.4 (ArC), 66.5 

(ArCH(CO2CH2Ph)Me), 45.6 (ArCH(CO2CH2Ph)Me), 18.6 (ArCH(CO2CH2Ph)CH3); minor signals from 

linear regioisomer: 172.8 (C=O), 136.1 (ArC), 66.4 (ArCH2CH2CO2CH2Ph), 36.0 (ArCH2CH2CO2Bn), 31.1 

(ArCH2CH2CO2Bn). 

GC-FID (50-280M12): tR = 7.94 min (branched), tR = 8.35 min (linear). 

GC/MS (EI): tR = 13.00 min (branched), m/z = 240 (12, [M+•]), 105 (100, [C8H9
+]), 91 (75, [C7H7

+]); tR = 

13.91 min (linear), m/z = 240 (4, [M+•]), 107 (100, [C7H7O+]), 91 (100, [C7H7
+]). 
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Methyl 2-(m-tolyl)propanoate (19-b) and Methyl 3-(m-tolyl)propanoate (19-l) 

 

Using 3-methylstyrene (130 µL, 118 mg, 1.00 mmol) as the olefin component and dist. MeOH (250 µL, 

stored under N2) as the alcohol component, GP A was employed with 0.5 mol% [Pd]. The b/l ratio of 

the crude product was determined by GC-FID analysis to be 91:9. Purification by flash chromatography 

on SiO2 (mobile phase: 95:5 CyH:EtOAc) gave the regioisomeric compounds as a bright yellow oil (161 

mg, 0.92 mmol, 92%, b/l ratio 91/9 by NMR).  

 

Rf: 0.34 (mobile phase 95:5 CyH:EtOAc, KMnO4 stain) 

Melting point: Ambient temperature. 

FT-IR (ATR) v (cm-1): 2981 (w, br), 2952 (w, br), 1734 (s, sh), 1608 (w, sh), 1455 (m, br), 1376 (m, br), 

1335 (m, br), 1238 (m, br), 1196 (s, br), 1168 (s, br), 1067 (m, br). 

1H-NMR (300 MHz, CDCl3) δ (ppm): 7.25 – 7.17 (m, 1H, ArH), 7.12 – 6.99 (m, 3H, ArH), 3.70 (q, J = 7.2 

Hz, 1H, ArCH), 3.66 (s, 3H, OCH3), 2.34 (s, 3H, ArCH3), 1.49 (d, J = 7.2 Hz, 3H, ArCHCH3); minor signals 

from linear regioisomer: 2.33 (s, 3H, ArCH3), 2.92 (t,  

J = 7.5 Hz, 2H, ArCH2CH2CO2Me), 2.62 (t, J = 7.5 Hz, 2H, ArCH2CH2CO2Me). 

13C-NMR (101 MHz, CDCl3) δ (ppm): 175.1 (C=O), 140.5 (ArC), 138.3 (ArC), 128.5 (ArC), 128.2 (ArC), 

127.9 (ArC), 124.5 (ArC), 52.0 (ArCH(CO2CH3)Me), 45.4 (ArCH(CO2Me)Me), 21.4 (ArCH3), 18.6 

(ArCH(CO2Me)CH3). Due to low concentration no signals from the linear regioisomer were observed. 

GC-FID: (50-280M12): tR = 5.42 min (branched), tR = 5.75 min (linear). 

GC-MS: tR = 6.03 min (branched), m/z = 178 (33, [M+•]), 119 (100, [M+•]-[•CO2Me], 91 (28, [M+•]-

[CO2Me•]-[CH3
•]); tR = 6.77 min (linear), m/z = 178 (24, [M+•]), 147 (8, [M+•]-[OMe•]), 118 (100, 

[C9H10
+•]), 105 (54, [M+•]-[CH2CO2Me•]). 

HR-MS (APCI): m/z = [MH+] calc. for C11H14O2 179.1067, found 179.1067. 
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Methyl 2-(3-methoxyphenyl)propanoate (20-b) and methyl 3-(3-methoxyphenyl)propanoate (20-l) 

 

Using 3-vinylanisole (140 µL, 134 mg, 1.00 mmol) as the olefin component and dist. MeOH (250 µL, 

stored under N2) as the alcohol component, GP A was employed with 0.5 mol% [Pd]. The b/l ratio of 

the crude product was determined by GC-FID analysis to be 89:11. Purification by flash 

chromatography on SiO2 (mobile phase: 95:5 CyH:EtOAc) gave the regioisomeric compounds as a 

bright yellow oil (148 mg, 762 µmol, 76%, b/l ratio 88/12 by NMR). The analytical data for the linear 

product matches with reported literature.[S16] 

 

Rf: 0.21 (mobile phase 95:5 CyH:EtOAc, KMnO4 stain) 

Melting point: Ambient temperature. 

1H-NMR (400 MHz, CDCl3) δ (ppm): 7.25 – 7.18 (m, 1H, ArH), 6.91 – 6.73 (m, 3H, ArH), 3.80 (s, 3H, 

ArOCH3), 3.70 (q, J = 7.2 Hz, 1H, ArCH(CO2Me)Me), 3.67 (s, 3H, RCO2CH3), 1.49 (d, J = 7.2 Hz, 3H, 

ArCH(CO2Me)CH3); minor signals from linear regioisomer: 3.79 (s, 3H, ArOCH3), 3.68 (s, 3H, 

ArCH2CH2COOCH3), 2.93 (t, J = 7.9 Hz, 2H, ArCH2CH2CO2Me), 2.63 (t, J = 7.9 Hz, 2H, ArCH2CH2CO2Me). 

13C-NMR (101 MHz, CDCl3) δ (ppm): 174.9 (C=O), 159.8 (ArC), 142.1 (ArC), 129.6 (ArC), 119.9 (ArC), 

113.3 (ArC), 112.5 (ArC), 55.2 (ArOCH3), 52.1 (RCO2CH3), 45.4 (ArCH(CO2Me)Me), 18.6 

(ArCH(CO2Me)CH3); minor signals from linear regioisomer: 129.5 (ArC), 120.6 (ArC),114.1 (ArC), 111.6 

(ArC), 51.6 (RCO2CH3), 35.6 (ArCH2CH2CO2Me), 31.0 (ArCH2CH2CO2Me).  

GC-FID: (50-280M12): tR = 6.13 min (branched), tR = 6.47 min (linear). 

GC-MS: tR = 7.56 min (branched), m/z = 194 (40, [M+•]), 135 (100, [M+•]-[•CO2Me]; tR = 8.34 min (linear), 

m/z = 194 (46, [M+•]), 163 (11, [M+•]-[OMe•]), 134 (100, [C9H10O+•]). 
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Methyl 2-(p-tolyl)propanoate (21-b) and methyl 3-(p-tolyl)propanoate (21-l) 

 

Using 4-methylstyrene (130 µL, 118, 1.00 mmol) as the olefin component and dist. MeOH (250 µL, 

stored under N2) as the alcohol component, GP A was employed with 0.5 mol% [Pd]. The b/l ratio of 

the crude product was determined by GC-FID analysis to be 90:10. Purification by flash 

chromatography on SiO2 (mobile phase: 95:5 CyH:EtOAc) gave the regioisomeric compounds as a 

colorless oil (160 mg, 896 µmol, 91%, b/l ratio 91/9 by NMR). The analytical data for the branched 

product matches with reported literature. [S17] 

 

Rf: 0.32 (mobile phase 95:5 CyH:EtOAc, KMnO4 stain) 

Melting point: Ambient temperature. 

1H-NMR (400 MHz, CDCl3) δ  (ppm): 7.19 (d, J = 8.1 Hz, 2H, ArH), 7.13 (d, J = 8.1 Hz, 2H, ArH), 3.69 (q, J 

= 7.2 Hz, 1H, ArCH), 3.65 (s, 3H, ArCH(CO2CH3)Me), 2.33 (s, 3H, ArCH3), 1.48 (d, J = 7.2 Hz, 3H, 

ArCH(CO2Me)CH3); minor signals from linear regioisomer: 3.67 (s, 3H, ArCH2CH2CO2CH3), 2.32 (s, 3H, 

ArCH3), 2.92 (t, J = 7.9 Hz, 2H, ArCH2CH2CO2Me), 2.61 (t, J = 7.9 Hz, 2H, ArCH2CH2CO2Me). 

13C-NMR (101 MHz, CDCl3) δ (ppm): 175.2 (C=O), 137.6 (ArC), 136.8 (ArC), 129.3 (ArC), 127.3 (ArC), 52.0 

(RCO2CH3), 45.0 (ArCH(CO2CH3)CH3), 21.0 (ArCH3), 18.6 (ArCH(CO2CH3)CH3); minor signals from linear 

regioisomer: 129.2 (ArC), 128.2 (ArC), 52.0 RCO2CH3), 35.9 (ArCH2CH2CO2Me), 30.6 (ArCH2CH2CO2Me). 

GC-FID: (50-280M12): tR = 5.47 min (branched), tR = 5.79 min (linear). 

GC-MS: tR = 6.03 min (branched), m/z = 178 (17, [M+•]), 119 (100, [M+•]-[•CO2Me], 91 (19, [M+•]-

[CH2CH2CO2Me•]); tR = 6.87 min (linear), m/z = 178 (25, [M+•]), 118 (93, [C9H10
+•]), 105 (100, [M+•]-

[CH2CO2Me•]). 
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Methyl 2-(4-(tert-butyl)phenyl)propanoate (22-b) and methyl 3-(4-(tert-butyl)phenyl) propanoate 

(22-l) 

 

Using 4-tert-butylstyrene (200 µL, 163 mg, 1.00 mmol) as the olefin component and dist. MeOH (250 

µL, stored under N2) as the alcohol component, GP A was employed with 1.0 mol% [Pd]. The b/l ratio 

of the crude product was determined by GC-FID analysis to be 94:6. Purification by flash 

chromatography on SiO2 (mobile phase: 95:5 CyH:EtOAc) gave the regioisomeric compounds as a 

colorless oil (199 mg, 902 µmol, 89%, b/l ratio 93/7 by NMR). The analytical data for the linear product 

matches with reported literature. [S16] 

 

Rf: 0.32 (mobile phase 95:5 CyH:EtOAc, KMnO4 stain) 

Melting point: Ambient temperature. 

1H-NMR (400 MHz, CDCl3) δ (ppm): 7.34 (d, J = 8.4 Hz, 2H, ArH), 7.23 (d, J = 8.4 Hz, 2H, ArH), 3.72 (q, J 

= 7.2 Hz, 1H, ArCH(CO2CH3)Me), 3.66 (s, 3H, ArCH(CO2CH3)Me), 1.49 (d, J = 7.2 Hz, 3H, 

ArCH(CO2Me)CH3), 1.31 (s, 9H, Ar-C(CH3)3); minor signals from linear regioisomer: 3.68 (s, 2H, 

RCO2CH3), 2.93 (t, J = 7.8 Hz, 2H, ArCH2CH2CO2Me), 2.63 (t, J = 7.8 Hz, 2H, ArCH2CH2CO2Me). 

13C-NMR (101MHz, CDCl3) δ (ppm): 175.2 (C=O), 150.00 (ArC), 137.5 (ArC), 127.1 (ArC), 125.6 (ArC), 

52.0 (RCO2CH3), 44.9 (ArCH(CO2CH3)Me), 34.5 (Ar-C(CH3)3), 31.3 (Ar-C(CH3)3), 18.6 (ArCH(CO2Me)CH3); 

due to low concentration, signals from the minor regioisomer were not detected. 

GC-FID: (50-280M12): tR = 6.53 min (branched), tR = 6.84 min (linear). 

GC-MS: tR = 8.42 min (branched), m/z = 220 (25, [M+•]), 205 (100, [M+•]-[CH3
•]), 161 (75, [M+•]-

[•CO2Me]; tR = 9.11 min (linear), m/z = 220 (21, [M+•]), 205 (100, [M+•]-[CH3
•]). 
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Methyl 2-(4-methoxyphenyl)propanoate (23-b)  and Methyl 3-(4-ethoxyphenyl)propanoate (23-l) 

 

Using dist. 4-vinylanisole (135 µL, 134 mg, 1.00 mmol) as the olefin component and dist. MeOH (250 

µL, stored under N2) as the alcohol component, GP A was employed with 0.5 mol% [Pd]. The b/l ratio 

of the crude product was determined by GC-FID analysis to be 93:7. Purification by flash 

chromatography on SiO2 (mobile phase: 95:5 CyH:EtOAc) gave the regioisomeric compounds as a 

colourless oil (193 mg, 0.97 mmol, 97%, b/l ratio 93:7 by NMR). The analytical data matches with 

reported literature data.[S18-20] 

 

Rf : 0.31 (mobile phase 9:1 CyH:EtOAc, KMnO4 stain)  

Melting point: Ambient temperature. 

1H NMR (400 MHz, CDCl3) δ (ppm):  7.25 – 7.20 (m, 2H, ArH), 6.89 – 6.83 (m, 2H, ArH), 3.78 (s, 3H, 

ArOCH3), 3.69 (q, J = 7.2 Hz, 1H, ArCH(CO2Me)Me), 3.65 (s, 3H, ArCH(CO2CH3)Me), 1.48 (d, J = 7.2 Hz, 

3H, ArCH(CO2Me)CH3); minor signals for linear regioisomer: 2.90 (t, J = 7.8 Hz, 2H, ArCH2CH2CO2Me), 

2.60 (t, J = 7.8 Hz, 2H, ArCH2CH2CO2Me). 

13C NMR (101 MHz, CDCl3) δ (ppm): 175.3 (C=O), 158.7 (ArC), 132.7 (ArC), 128.5 (ArC), 114.0 (ArC), 55.2 

(ArOCH3), 51.9 (R-CO2CH3), 44.6 (ArCH(CO2Me)CH3), 18.7 (ArCH(CO2Me)CH3); minor signals for linear 

regioisomer: 129.2 (ArC), 113.9 (ArC), 55.3 (ArOCH3), 52.0 (RCO2CH3), 36.0 (ArCH2CH2CO2Me), 30.9 

(ArCH2CH2CO2Me). 

GC-FID (50-280M12, from crude): tR = 6.37 min (branched), tR = 6.61 min (linear). 

GC/MS (EI): tR = 9.46 min (branched), m/z = 194 (18, [MH+•]), 135 (100, [MH+•]-[CO2Me•]); tR = 10.14 

min (linear), m/z = 194 (18, [MH+•]), 121 (100, [MH+•]-[CH2CO2Me•]). 
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Methyl 4-(1-methoxy-1-oxopropan-2-yl)benzoate (24-b) and Methyl 4-(3-methoxy-3-

oxopropyl)benzoate (24-l) 

 

Using 4-vinylbenzoic acid (148 mg, 1.00 mmol) as the olefin component and dist. MeOH (250 µL, stored 

under N2) as the alcohol component, general procedure A was employed with 0.5 mol% [Pd]. The b/l 

ratio of the crude product was determined by GC-FID analysis to be 77:23.  Purification by flash 

chromatography on SiO2 (mobile phase: 90:10 DCM:MeOH) gave the regioisomeric compounds as a 

colourless solid paste (44 mg, 0.21 mmol, 21%, b/l ratio 91:9 by NMR). The analytical data matches 

with reported literature data.[S21, 22]  

 

Rf : 0.22 (mobile phase 8:2 DCM:MeOH, KMnO4 stain)  

1H-NMR (300 MHz, CDCl3) δ (ppm): 7.34 – 7.28 (m, 2H, ArH), 7.07 – 7.01 (m, 2H, ArH), 3.73 (q, J = 7.2 

Hz, 1H, ArCH(CO2Me)CH3), 3.63 (s, 3H, ArCH(CO2CH3)CH3), 2.29 (s, 3H, ArCO2CH3), 1.49 (d, J = 7.2 Hz, 

3H, ArCH(CO2CH3)CH3); minor signals from linear regioisomer: 3.65 (ArCH2CH2CO2CH3), 2.94 (t, J = 7.8 

Hz, 2H, ArCH2CH2CO2Me), 2.63 (t, J = 7.8 Hz, 2H, ArCH2CH2CO2Me). 

13C-NMR  (75 MHz, CDCl3) δ (ppm): 174.8 (C=O), 169.6 (C=O), 149.7 (ArC), 138.0 (ArC), 129.3 (ArC), 

128.6 (ArC), 121.7 (ArC), 121.6 (ArC), 52.1 (ArCH(CO2CH3)Me), 44.8 (ArCH(CO2CH3)CH3), 21.1 (Ar-

CO2CH3), 18.6 (ArCH(CO2CH3)CH3); minor signals from linear regioisomer: 51.7 (ArCH(CO2CH3)Me), 35.6 

(ArCH2CH2CO2Me), 30.3 (ArCH2CH2CO2Me). 

GC-FID (50-280M12): tR = 7.45 min (branched), tR = 7.73 min (linear). 

GC/MS (APCI): tR = 8.35 min (branched), m/z = 240.123 [M+NH4
+]; tR = 8.90 min (linear), m/z = 240.123 

[M+NH4
+]. 

HR-MS (APCI): [MH+] m/z = calc. for C12H14O4 223.0965; found 223.0968. 
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Methyl 2-(4-chlorophenyl)propanoate (26-b)  and  Methyl 3-(4-chlorophenyl)propanoate (26-l)   

 

Using 4-chlorostyrene (120 µL, 139 mg, 1.00 mmol) as the olefin component and dist. MeOH (250 µL, 

stored under N2) as the alcohol component, general procedure A was employed using 1.0 mol% [Pd]. 

The b/l ratio of the crude product was determined by GC-FID analysis to be 92:8. Purification by 

chromatography on SiO2 (mobile phase: 95:5 CyH:EtOAc) gave the regioisomeric compounds as a 

colourless oil (180 mg, 0.90 mmol, 90%, b/l ratio 96:4 by NMR). The analytical data matches with 

reported literature data.[S18, 23]  

 

Rf : 0.29 (mobile phase 9:1 CyH:EtOAc, KMnO4 stain) . 

Melting point: Ambient temperature. 

1H-NMR (400 MHz, CDCl3) δ (ppm): 7.31 – 7.27 (m, 2H, ArH), 7.25 – 7.21 (m, 2 H, ArH), 3.70 (q, J = 7.2 

Hz, 1H, ArCH(CO2Me)CH3), 3.66 (s, 3H, ArCH(CO2CH3)CH3), 1.48 (d, J = 7.2 Hz, 3H, ArCH(CO2Me)CH3); 

minor signals from linear regioisomer: 2.92 (t, J = 7.7 Hz, 2H, ArCH2CH2CO2Me), 2.61 (t, J = 7.7 Hz, 2H, 

ArCH2CH2CO2Me). 

13C-NMR (101 MHz, CDCl3) δ (ppm): 174.6 (C=O), 138.97 (ArC), 133.0 (ArC), 128.9 (ArC), 128.8 (ArC), 

52.1 (ArCH(CO2CH3)CH3), 44.8 ArCH(CO2Me)CH3), 18.5 ArCH(CO2Me)CH3); minor signals from linear 

regioisomer: 173.0 (C=O), 132.1 (ArC), 129.7 (ArC), 128.6 (ArC) 51.7 (ArCH2CH2CO2CH3), 35.5 

(ArCH2CH2CO2Me), 30.3 (ArCH2CH2CO2Me). 

GC-FID (50-280M12, from crude): tR = 5.99 min (branched), tR = 6.31 min (linear). 

GC/MS (EI): tR = 8.73 min (branched), m/z = 198 (21, [MH+•]), 139 (100, [MH+•]-[CO2Me•]); tR = 10.14 

min (linear), m/z = 198 (21, [MH+•]), 167 (17, [MH+•]-[OMe•]),  125 (80, [MH+•]-[CH2CO2Me•]). 
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Methyl 2-(4-acetoxyphenyl)propanoate (27-b) and Methyl 3-(4-acetoxyphenyl)propanoate (27-l) 

 

Using 4-vinylphenyl acetate (150 µL, 162 mg, 1.00 mmol) as the olefin component and dist. MeOH 

(stored under N2) as the alcohol component, general procedure A was employed using 1.0 mol% [Pd]. 

Purification by flash chromatography on SiO2 (mobile phase: 8:2 CyH:EtOAc) gave the regioisomeric 

compounds as a yellow oil (93 mg, 0.43 mmol, 43%) and the corresponding deacetylated byproducts 

(detected by NMR) as a yellow oil. The analytical data of the main product matches with reported 

literature data.[S24, 25]  

 

Rf : 0.31 (mobile phase 8:2 DCM:MeOH, KMnO4 stain). 

1H-NMR (300 MHz, CDCl3) δ (ppm):  7.30 (d, J = 8.5 Hz, 2H, ArH), 7.02 (d, J = 8.6 Hz, 2H, ArH), 3.71 (q, J 

= 7.2 Hz, 1H, ArCH(CO2Me)CH3), 3.63 (s, 3H, ArCH(CO2CH3)CH3), 2.26 (s, 3H, Acetyl-CH3), 1.47 (d, J = 7.2 

Hz, 3H, ArCH(CO2CH3)CH3); minor signals from linear regioisomer: 2.93 (t, J = 7.8 Hz, 2H, 

ArCH2CH2CO2Me), 2.61 (t, J = 7.8 Hz, 2H, ArCH2CH2CO2Me). 

13C-NMR  (75 MHz, CDCl3) δ (ppm): 174.8 (methyl ester C=O), 169.5 (acetyl C=O), 149.7 ArC), 138.0 

(ArC), 128.6 (ArC), 121.7 (ArC), 52.1 (R-CO2CH3), 44.8 ArCH(CO2Me)CH3, 21.1 (acetyl CH3), 18.6 

(ArCH(CO2Me)CH3); minor signals from linear regioisomer: 35.6 (ArCH2CH2CO2Me), 30.3 

(ArCH2CH2CO2Me). 

GC-FID (50-280M12, from crude):  tR = 6.80 min (branched), tR = 7.10 min (linear). 

GC/MS (EI): Main product - tR = 10.82 min (branched), m/z = 222 (8, [MH+•]), 180 (38, [MH+•]-[CH2CO]), 

121 (100, [MH+•]-[CH2CO]-[CO2Me•]); tR = 11.84 min (linear), m/z = 222 (8, [MH+•]), 180 (65, [MH+•]-

[CH2CO]), 107 (100, [MH+•]-[CH2CO]-[CH2CO2Me•]). Deacetylated product - tR = 10.01 min (branched), 

m/z = 180 (30, [MH+•]),  121 (100, [MH+•]-[CO2Me•]); tR = 10.80 min (linear), m/z = 180 (30, [MH+•]), 107 

(100, [MH+•]-[CH2CO2Me•]). 
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Methyl 2-(4-hydroxyphenyl)propanoate (28-b) and Methyl 3-(4-hydroxyphenyl)propanoate (28-l) 

 

Using 4-vinylphenyl acetate (150 µL, 162 mg, 1.00 mmol) as the olefin component and dist. MeOH (250 

µL, stored under N2) as the alcohol component, general procedure A was employed using 1.0 mol% 

[Pd] at 50 °C. Purification by flash chromatography on SiO2 (mobile phase: 8:2 CyH:EtOAc) gave the 

regioisomeric deacetylated compounds as a yellow oil (125 mg, 0.69 mmol, 69%) and the 

corresponding acetylated byproducts (27 mg, 0.12 mmol, 12%) as a yellow oil. The analytical data of 

the main product matches with reported literature data.[S24, 25]  

 

Rf : 0.20 (mobile phase 8:2 DCM:MeOH, KMnO4 stain). 

1H-NMR (300 MHz, CDCl3) δ (ppm):  7.30 (d, J = 8.5 Hz, 2H, ArH), 7.02 (d, J = 8.6 Hz, 2H, ArH), 3.71 (q, J 

= 7.2 Hz, 1H, ArCH(CO2Me)CH3), 3.63 (s, 3H, ArCH(CO2CH3)CH3), 1.47 (d, J = 7.2 Hz, 3H, 

ArCH(CO2CH3)CH3); minor signals from linear regioisomer: 2.93 (t, J = 7.8 Hz, 2H, ArCH2CH2CO2Me), 

2.61 (t, J = 7.8 Hz, 2H, ArCH2CH2CO2Me). 

13C-NMR  (75 MHz, CDCl3) δ (ppm): 174.8 (methyl ester C=O), 151.7 (ArC), 138.0 (ArC), 128.6 (ArC), 

121.7 (ArC), 52.1 (R-CO2CH3), 44.8 ArCH(CO2Me)CH3, 18.6 ArCH(CO2Me)CH3; minor signals from linear 

regioisomer: 35.6 (ArCH2CH2CO2Me), 30.3 (ArCH2CH2CO2Me). 

GC/MS (EI): tR = 10.01 min (branched), m/z = 180 (30, [MH+•]),  121 (100, [MH+•]-[CO2Me•]); tR = 10.80 

min (linear), m/z = 180 (30, [MH+•]), 107 (100, [MH+•]-[CH2CO2Me•]). 
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Methyl 2-(2-methoxyphenyl)propanoate (29-b) and Methyl 3-(2-methoxyphenyl)propanoate (29-l) 

 

Using 2-vinylanisole (135 µL, 134 mg, 1.00 mmol) as the olefin component and dist. MeOH (250 µL, 

stored under N2) as the alcohol component, general procedure A was employed using 0.5 mol% [Pd]. 

The b/l ratio of the crude product was determined by GC-FID analysis to be 46:54. Purification by flash 

chromatography on SiO2 (mobile phase: 95:5 CyH:EtOAc) gave the regioisomeric compounds as a 

colourless oil (126 mg, 0.66 mmol, 66%, b/l ratio 46:54 by NMR). The analytical data for the branched 

product matches with reported literature data.[S26] 

 

Rf : 0.22 (mobile phase 95:5 CyH:EtOAc, KMnO4 stain)  

Melting point: Ambient temperature. 

1H-NMR (400 MHz, CDCl3) δ (ppm): 7.29 – 7.11 (m, 2H, ArH), 6.99 – 6.82 (m, 2H, ArH), 4.08 (q, J = 7.2 

Hz, 1H, ArCH(CO2Me)CH3), 3.83 (s, 3H, R-CO2CH3) 3.67 (s, 3H, ArOCH3), 1.48 (d, J = 7.2 Hz, 3H, 

ArCH(CO2Me)CH3); signals from linear regioisomer: 3.68 (s, 3H, ArOCH3), 2.97 (t, J = 7.8 Hz, 2H, 

ArCH2CH2CO2Me), 2.64 (t, J = 7.8 Hz, 2H, ArCH2CH2CO2Me). 

13C-NMR  (101 MHz, CDCl3) δ (ppm): 174.5 (C=O), 155.6 (ArC), 128.9 (ArC), 128.5 (ArC), 127.1 (ArC), 

119.7 (ArC), 109.7 (ArC), 54.4 (ArOCH3), 50.8 (R-CO2CH3), 38.1 (ArCH(CO2CH3)CH3), 16.3 

(ArCH(CO2Me)CH3); signals from linear regioisomer: 172.2 (C=O), 156.4 (ArC), 127.8 (ArC), 126.9 (ArC), 

126.6 (ArC), 119.4 (ArC), 109.2 (ArC), 54.1 (ArOCH3), 50.4 (R-CO2CH3), 33.0 (ArCH2CH2CO2Me), 25.1 

(ArCH2CH2CO2Me).  

GC-FID (50-280M12, from crude): tR = 5.92 min (branched), tR = 6.27 min (linear). 

GC/MS (EI): tR = 8.88 min (branched), m/z = 194 (28, [M+•]), 135 (100, [M+•]-[•CO2Me]); tR = 9.67 min 

(linear), m/z = 194 (56, [M+•]), 163 (16, [M+•]-[OMe•]), 121 (100, [M+•]-[CH2CO2Me•]). 
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Methyl 2-(2-acetoxyphenyl)propanoate (30-b) and Methyl 3-(2-acetoxyphenyl)propanoate (30-l) 

 

Using 2-acetoxystyrene (117 mg, 720 µmol) as the olefin component and dist. MeOH (250 µL, stored 

under N2) as the alcohol component, GP A was employed using 0.75 mol% [Pd]. The b/l ratio of the 

crude product was determined by GC-FID analysis to be 39:61. Purification by flash chromatography 

on SiO2 (mobile phase: 80:20 CyH:EtOAc) gave the regioisomeric compounds as a bright yellow oil (94 

mg, 0.42 mmol, 59 %, b/l ratio 36/64 by NMR).  

 

Rf: 0.32 (mobile phase 80:20 CyH:EtOAc, KMnO4 stain) 

Melting point: Ambient temperature. 

FT-IR (ATR) v (cm-1): 3062 (w, sh), 2990 (w, sh), 2953 (w, sh), 1806 (w, sh), 1763 (s, br), 1734 (s, br), 

1585 (w, br), 1490 (m, sh), 1453 (m, sh), 1436 (m, sh), 1370 (m, sh), 1200 (s, br), 1170 (s, br), 1099 (m, 

sh), 1068 (w, sh), 1041 (m, sh), 1011 (m, sh), 913 (m, sh). 

1H-NMR (400 MHz, CDCl3) δ  (ppm): 7.37 – 7.27 (m, 1H, ArH), 7.25 – 7.15 (m, 2H, ArH), 7.09 – 7.01 (m, 

1H, ArH), 3.84 (q, J = 7.2 Hz, 1H, ArCH(CO2Me)Me), 3.64 (s, 3H, ArCH(COOCH3)Me), 2.31 (s, 3H, 

ArOCOCH3), 1.47 (d, J = 7.2 Hz, 3H, ArCH(CO2Me)CH3); signals from linear regioisomer: 3.67 (s, 3H, 

ArCH2CH2CO2CH3), 2.89 – 2.84 (m, 2H, ArCH2CH2CO2Me), 2.62 – 2.56 (m, 2H, ArCH2CH2CO2Me), 2.34 (s, 

3H, ArOCOCH3). 

13C-NMR (101 MHz, CDCl3) δ (ppm): 174.5 (methyl ester C=O), 169.3 (acetate C=O), 148.3 (ArC), 132.3 

(ArC), 128.7 (ArC), 128.1 (ArC), 126.4 (ArC), 122.8 (ArC), 52.1 (ArCH(CO2CH3)Me), 39.9 

(ArCH(CO2Me)Me), 20.8 (ArOCOCH3), 17.2 (ArCH(CO2Me)CH3); signals from linear regioisomer: 173.3 

(methyl ester C=O), 169.6 (acetate C=O), 149.0 (ArC), 132.6 (ArC), 130.1 (ArC), 127.6 (ArC), 126.3 (ArC), 

122.5 (ArC), 51.7 (ArCH2CH2CO2CH3), 34.2 (ArCH2CH2CO2CH3), 25.5 (ArCH2CH2CO2CH3), 20.9 

(ArOCOCH3). 

GC-FID (50-280M12): tR = 6.44 min (branched), tR = 6.84 min (linear). 
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GC-MS: tR = 7.54 min (branched), m/z = 223 (100, [MH+]), 163 (20, [MH+]-[•CO2Me]), 149 (31, [MH+]-

[CO2Me•]-[CH3
•]); tR = 8.20 min (branched), m/z = 223 (100, [MH+]), 163 (14, [MH+]-[•CO2Me]), 149 (64, 

[MH+]-[CH2CO2Me•].   

HR-MS (APCI): m/z = [MH+] calc. for C12H14O4 223.0965, found 233.0967 

 

Methyl 2-(o-tolyl)propanoate (31-b) and Methyl 2-(o-tolyl)propanoate (31-l) 

 

Using 2-methylstyrene (130 µL, 118 mg, 1.00 mmol) as the olefin component and dist. MeOH (250 µL, 

stored under N2) as the alcohol component, GP A was employed using 0.5 mol% [Pd]. The b/l ratio of 

the crude product was determined by GC-FID analysis to be 50:50. Purification by flash 

chromatography on SiO2 (mobile phase: 95:5 CyH:EtOAc) gave the regioisomeric compounds as a 

colourless oil (50 mg, 0.28 mmol, 28%, b/l ratio 20:80 by NMR). The analytical data matches with 

reported literature data.[S26, 27]  

 

Rf : 0.28 (mobile phase 95:5 CyH:EtOAc, KMnO4 stain)  

Melting point: Ambient temperature. 

1H-NMR (400 MHz, CDCl3) δ (ppm): 7.23 – 7.06 (m, 4H, ArH), 3.96 (q, J = 7.1 Hz, 1H, ArCH(CO2Me)Me), 

3.66 (s, 3H, ArCH(CO2CH3)Me), 2.37 (s, 3H, ArCH3), 1.48 (d, J = 7.1 Hz, 3H, ArCH(CO2Me)CH3); signals 

from linear regioisomer: 3.69 (s, 3H, ArCH2CH2CO2CH3), 2.95 (t, J = 8.1 Hz, 2H, ArCH2CH2CO2Me), 2.60 

(t, J = 8.1 Hz, 2H, ArCH2CH2CO2Me), 2.33 (s, 3H, ArCH3). 

13C-NMR (101 MHz, CDCl3) δ (ppm): 175.3 (C=O), 139.2 (ArC), 135.7 (ArC), 130.5 (ArC), 129.0 (ArC), 

127.0 (ArC), 126.5 (ArC), 52.0 (ArCH(CO2CH3)Me), 41.3 (ArCH(CO2CH3)Me), 19.6 (ArCH3), 18.0 

(ArCH(CO2CH3)CH3); signals from linear regioisomer: 173.5 (C=O), 138.6 (ArC), 136.0 (ArC), 130.3 (ArC), 

128.5 (ArC), 126.2 (ArC), 51.7 (RCO2CH3), 34.4 (ArCH2CH2CO2Me), 28.4 (ArCH2CH2CO2Me), 19.2 (ArCH3). 

GC-FID (50-280M12): tR = 4.58 min (branched), tR = 4.81 min (linear). 

GC/MS (EI): tR = 7.68 min (branched), m/z = 178 (18, [M+•]), 119 (100, [M+•]-[CO2Me•]); tR = 8.56 min 

(linear), m/z = 178 (18, [M+•]), 105 (100, [M+•]-[CH2CO2Me•]).  
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3-Methylbenzofuran-2(3H)-one (33) 

 

Using freshly purified (column chromatography) 2-vinylphenol (115 µL, 120 mg, 1.00 mmol; storage at 

6 °C) as the olefin component and dist. MeOH (50 µL; stored under N2) as the alcohol component to 

dissolve the organophosphoric acid, general procedure A was employed using 0.5 mol% [Pd]. 

Purification by flash chromatography on SiO2 (mobile phase: 95:5 CyH:EtOAc) gave the compound as a 

colourless oil (25 mg, 0.16 mmol, 16%). The analytical data matches with the reported literature 

data.[S28]  

 

Rf : 0.36 (mobile phase 8:2 CyH:EtOAc, KMnO4 stain)  

Melting point: Ambient temperature. 

1H NMR (400 MHz, CDCl3) δ (ppm):  7.35 – 7.23 (m, 2H, ArH), 7.18 – 7.08 (m, 2H, ArH), 3.73 (q, J = 7.6 

Hz, 1H, C9-H), 1.58 (d, J = 7.6 Hz, 3H, CH3). 

13C NMR (101 MHz, CDCl3) δ (ppm): 178.0 (C=O), 153.5 (ArC) , 131.7 (ArC), 128.8 (ArC), 124.2 (ArC), 

123.9 (ArC), 110.8 (ArC), 38.4 (C9), 15.9 (C10). 

GC/MS (EI): tR = 7.11, m/z = 148 (100, [MH+•]), 120 (78, [MH+•]-[CO]), 91 (80, [C7H7
+]). 
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Dimethyl 2-methylsuccinate (35) 

 

Using methyl methacrylate (34) (105 µL, 100 mg, 1.00 mmol) as the alkene component and dist. MeOH 

(250 µL; stored under N2) as the alcohol component, GP A was employed using 0.5 mol% [Pd]. 

Purification by flash column chromatography on SiO2 (mobile phase: 9:1 CyH:EtOAc) gave the 

compound  as a colourless liquid (74 mg, 0.46 mmol, 46%). The analytical data matches with the 

reported literature data.[S29]  

 

Rf : 0.30 (mobile phase 9:1 CyH:EtOAc, KMnO4 stain)  

Melting point: Ambient temperature. 

1H NMR (400 MHz, CDCl3) δ (ppm): 3.63 (s, 3H, RC1O2CH3), 3.61 (s, 3H, R-C4O2CH3), 2.94 – 2.78 (m, 1H, 

-C2H(C2'H3)-), 2.67 (m, 1H, diastereotopic -C3H2C4O2CH3-), 2.34 (m, 1H, diastereotopic -C3H2C4O2CH3-), 

1.15 (d, J = 7.2 Hz, 3H, -C2H-C2'H3). 

13C NMR (101 MHz, CDCl3) δ (ppm): 175.6 (C1), 172.2 (C4), 51.9 (C1-OCH3), 51.6 (C4-OCH3), 37.4 (C3), 

35.7 (C2), 16.9 (C2-CH3). 

GC/MS (EI): tR = 4.78 min, m/z = 129 (50, [M+•]-[OMe•]), 128 (36, [M+•]-[HOMe]), 59 (100, [CO2Me+]). 
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4-Benzyl 1-methyl 2-methylsuccinate (35-Bn)  

 

Using methyl methacrylate (11) (155 µL, 146.0 mg, 1.5 mmol) as the alkene component and degassed 

BnOH (250 µL; stored under N2) as the alcohol component, general procedure A was employed using 

0.75 mol% [Pd]. Purification by flash column chromatography on SiO2 (mobile phase: 95:5 CyH:EtOAc) 

gave the compound  as a colourless liquid (176 mg, 0.75 mmol, 51%).  

 

Rf: 0.10 (mobile phase 95:5 CyH:EtOAc, KMnO4 stain) 

Melting point: Ambient temperature. 

1H-NMR (400 MHz, CDCl3) δ (ppm): 7.44 – 7.29 (m, 5H, ArH), 5.12 (ABq, ΔδAB = 0.02, J = 12.3 Hz, 2H, 

CH2Ph), 3.65 (s, 3H, RC1O2CH3), 2.95 (sext, J = 7.2 Hz, 1H, -C2H(C2'H3)-), 2.80 (m, 1H, diastereotopic 

C3H2C4O2Bn-), 2.46 (m, 1H, diastereotopic C3H2C4O2Bn-), 1.22 (d, J = 7.2 Hz, 3H, -C2H-C2'H3). 

13C-NMR (101 MHz, CDCl3) δ (ppm): 175.7 (C1), 171.6 (C4), 135.8 (ArC), 128.6 (ArC), 128.3 (ArC), 128.3 

(ArC), 66.5 (ArCH2), 51.9 (C1-OCH3), 37.7 (C3), 35.8 (C2), 17.0 (C2-CH3). 

FT-IR (ATR) v (cm-1): 2953 (w, br), 1731 (s, sh), 1456 (m, sh), 1381 (m, sh), 1346 (m, sh), 1273 (m, br), 

1159 (s, sh), 1057 (m, sh), 990 (m, br). 

GC-MS: tR = 8.98 min, m/z = 237 (77, [MH+]), 129 (29, [MH+]-[BnO•]), 91 (100, [MH+]-[C7H7
•]). 

HR-MS (APCI): m/z = [MH+] calc. for C13H16O4 237.1121, found 237.1126. 
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Benzyl 2-acetoxypropanoate (37) 

 

Using vinyl acetate (36) (90 µL, 86 mg, 1.00 mmol) as the alkene component and BnOH (250 µL) as the 

alcohol component, GP A was employed using either with 0.5 or 1.0 mol% [Pd]. Purification by flash 

column chromatography on SiO2 (mobile phase: 95:5 CyH:EtOAc) gave the compound  as a colourless 

liquid (69 mg, 0.32 mmol, 32% with 0.5 mol% [Pd] and 93 mg, 0.43 mmol, 43% with 1.0 mol% [Pd]). 

The analytical data matched the data reported in the literature.[S27]  

 

Rf : 0.10 (mobile phase 95:5 CyH:EtOAc, KMnO4 stain)  

Melting point: Ambient temperature. 

1H NMR (400 MHz, CDCl3) δ (ppm): 7.57 – 7.17 (m, 5H, ArH), 5.18 (ABq, ΔδAB = 0.03, J = 12.3 Hz, 2H, 

CH2Ph), 5.13 (q, J = 7.1 Hz, 1H, -C2H-), 2.12 (s, 3H, Acetyl-CH3), 1.49 (d, J = 7.1 Hz, 3H,-C3H3). 

13C NMR (101 MHz, CDCl3) δ (ppm): 170.7 (C1), 170.4 (Acetyl C=O), 135.4 (ArC), 128.6 (ArC), 128.4 (ArC), 

128.1 (ArC), 68.6 (C2), 66.7 (CH2Ph), 20.7 (Acetyl-CH3), 16.0 (C3). 

GC/MS (EI): tR = 10.16 min, m/z = 162 (30, [M+•]-[AcOH]), 91 (80, [C7H7
+]), 43 (100, [AcO+]). 
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Methyl 2-Phenylbutanoate (39-b) and Methyl 4-Phenylbutanoate (39-l)  

 

Using β-methylstyrene (100 µL, 89 mg, 0.750 mmol) as the alkene component and dist. MeOH (250 µL; 

stored under N2) as the alcohol component, general procedure A was employed using 1.0 mol% [Pd]. 

Purification by flash column chromatography on SiO2 (mobile phase: 9:1 CyH:EtOAc) gave the 

regioisomeric compounds  as a colourless oil with a pleasant smell (48 mg, 29.3 mmol, 39%, b/l ratio 

53:47 by NMR1). The analytical data matched  the reported literature data.[S31-33] 

 

Rf  (linear isomer): 0.33 (mobile phase 9:1 CyH:EtOAc, KMnO4 stain). 

Rf  (C2-branched isomer): 0.42 (mobile phase 9:1 CyH:EtOAc, KMnO4 stain). 

Melting point: Ambient temperature. 

1H NMR (400 MHz, CDCl3) δ (ppm): signals from linear isomer: 7.44 – 7.09 (m, 5H, ArH), 3.67 (s, 3H, R-

CO2CH3), 2.71 – 2.59 (m, 2H, ArCH2CH2CH2CO2CH3), 2.34 (t, J = 7.5 Hz, 2H, ArCH2CH2CH2CO2CH3), 2.02 – 

1.88 (m, 2H, ArCH2CH2CH2CO2CH3); signals from C2-branched isomer: 3.47 (t, J = 7.7 Hz, 1H, 

ArCH(CO2Me)CH2CH3), 2.18 – 2.05 (m, 1H, diastereotopic ArCH(CO2Me)CH2CH3), 1.81 (m, 1H, 

diastereotopic ArCH(CO2Me)CH2CH3), 0.90 (t, J = 7.4 Hz, 3H, ArCH(CO2Me)CH2CH3).  

13C NMR (101 MHz, CDCl3) δ (ppm): 174.0 (C=O), 141.4 (ArC),  128.5 (ArC), 128.4 (ArC), 126.0 (ArC), 

51.6 (R-CO2CH3), 35.1 (ArCH2CH2CH2CO2CH3), 33.4 (ArCH2CH2CH2CO2CH3), 26.5 (ArCH2CH2CH2CO2CH3); 

signals from C2-branched isomer: 174.6 (C=O), 139.1 (ArC), 128.6 (ArC), 128.0 (ArC), 127.2 (ArC), 53.4 

(R-CO2CH3), 51.9 (ArCH(CO2Me)CH2CH3), 26.5 (ArCH(CO2Me)CH2CH3), 12.2 (ArCH(CO2Me)CH2CH3) 

GC/MS (EI): tR = 7.41 min (C2-branched), m/z = 178 (20, [M+•]), 163 (2, [M+•]-[Me•]), 150 (8, [M+•]-[CO]-

[OMe•]); tR = 8.58 min (linear), m/z = 178 (40, [M+•]), 147 (40, [M+•] -[OMe•]), 146 (40, [M+•]-[MeOH]). 

 

 

                                                            
1 The shown NMR spectra are not representative of the calculated regioselectivity by NMR due to differences in 
the regioisomeric composition of isolated product fractions. 
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Methyl 2-Phenylbutanoate (39-b) and Methyl 4-Phenylbutanoate (39-l) (from Allylbenzene) 

 

Using allylbenzene (130 µL, 118 mg, 0.750 mmol) as the alkene component and dist. MeOH (250 µL; 

stored under N2) as the alcohol component, GP A was employed using 0.5 mol% [Pd]. Purification by 

flash column chromatography on SiO2 (mobile phase: 95:5 CyH:EtOAc) gave the regioisomeric 

compounds  as a colourless oil (41 mg, 29 mmol, 29%, b/l ratio 56:44 by NMR).  

 

Analytical data as above. 
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Methyl 2-(1,3-dioxoisoindolin-2-yl)propanoate (43-b) and Methyl 2-(1,3-dioxoisoindolin-2-

yl)propanoate (43-l) 

 

Using N-vinylphthalimide (42) (173 mg, 1.00 mmol) as the alkene component and dist. MeOH (250 µL; 

stored under N2) as the alcohol component, GP A was employed using 0.5 or 1.0 mol% [Pd]. The b/l 

ratio of the crude product was determined by GC-FID analysis to be 44:56 (with both [Pd] loadings). 

Purification by flash column chromatography on SiO2 (mobile phase: 9:1 CyH:EtOAc) gave the 

regioisomeric compounds  as a brown solid (109 mg, 0.47 mmol, 47%, b/l ratio 85:15 by NMR with 0.5 

mol% [Pd] and 192 mg, 0.82 mmol, 82%, b/l 45:55 by NMR with 1.0 mol% [Pd]). The analytical data 

matches with the reported literature data.[S34, 35] 

 

Rf : 0.39 (mobile phase 9:1 CyH:EtOAc, KMnO4 stain)  

Melting point: 60 °C. 

1H NMR (400 MHz, CDCl3) δ (ppm): linear isomer: 7.80 – 7.72 (m, 2H, ArH), 7.69 – 7.61 (m, 2H, ArH), 

3.91 (t, J = 7.2 Hz, 2H, NCH2CH2CO2CH3), 3.60 (s, 3H, NCH2CH2CO2CH3), 2.65 (t, J = 7.2 Hz, 2H, 

NCH2CH2CO2CH3); minor signals from branched regioisomer: 4.97 (q, J = 7.3 Hz, 1H, NCH(CO2Me)CH3), 

3.74 (s, 3H, NCH(CO2CH3)CH3), 1.69 (d, J = 7.3 Hz, 3H, NCH(CO2CH3)CH3). 

13C NMR (101 MHz, CDCl3) δ (ppm): 171.2 (Ester C=O), 167.9 (Imide C=O), 134.0 (ArC), 132.0 (ArC), 

123.3 (ArC), 51.9 (NCH2CH2CO2CH3), 33.7 (NCH2CH2CO2CH3), 32.7 (NCH2CH2CO2CH3); minor signals from 

branched regioisomer: 170.2 (Ester C=O), 167.4 (Imide C=O), 134.2 (ArC), 132.0 (ArC), 123.5 (ArC), 52.8 

(NCH(CO2CH3)CH3), 47.4 (NCH(CO2CH3)CH3), 15.3 (NCH(CO2CH3)CH3). 

GC-FID (50-280M12, from crude): tR = 7.77 min (branched), tR = 8.12 (linear). 

GC/MS (EI): tR = 12.56 min (branched), m/z = 233 (2, [M+•]), 202 (1, [M+•]-[OMe•]), 174 (100, [M+•]-

[OMe•]-[CO]), tR = 13.45 min (linear), m/z = 233 (15, [M+•]), 202 (8, [M+•]-[OMe•]), 173 (100, [M+•]-

[OMe•]-[CO]), 160 (100, [PhthalN+=CH2]).  
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Methyl 3-Phenylbutanoate (45) (from α-Methylstyrene) 

 

Using α-methylstyrene (100 µL, 0.75 mmol [0.75 mol% [Pd]] or 130 µL, 1 mmol [1.0 mol% [Pd]]) as the 

alkene component and dist. MeOH (250 µL; stored under N2) as the alcohol component, GP A was 

employed at RT or 50 °C (in DCE), respectively. Purification by flash column chromatography on SiO2 

(mobile phase: 9:1 CyH:EtOAc) gave the compound as a colourless liquid (36 mg, 0.20 mmol, 20% with 

0.75 mol% [Pd] and 60 mg, 0.34 mmol, 34% with 1.0 mol% [Pd]). The analytical data matched the data 

reported in the literature.[S36]  

 

Rf : 0.48 (mobile phase 9:1 CyH:EtOAc, KMnO4 stain)  

Melting point: Ambient temperature. 

1H NMR (400 MHz, CDCl3) δ (ppm): 7.37 – 7.16 (m, 5H, ArH), 3.63 (s, 3H, R-CO2CH3), 3.34 – 3.24 (m, 1H, 

ArCH(Me)CH2CO2Me), 2.60 (m, 2H, ArCH(Me)CH2CO2Me), 1.31 (d, J = 7.0 Hz, 3H, ArCH(CH3)CH2CO2Me). 

13C NMR (101 MHz, CDCl3) δ (ppm): 172.9 (ArCH(Me)CH2CO2Me), 145.7 (ArC), 128.5 (ArC), 126.7 (ArC), 

126.4 (ArC), 51.5 (ArCH(Me)CH2CO2CH3), 42.8 (ArCH(Me)CH2CO2Me),  36.5 (ArCH(Me)CH2CO2Me),  

21.8 (ArCH(CH3)CH2CO2Me). 

GC/MS (EI): tR = 7.80 min, m/z = 178 (20, [M+•]), 147 (5, [M+•]-[OMe•]), 105 (100, [C8H9
+]). 
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Methyl nonanoate (47) (from 1-octene 46) 

 

Using 1-octene (160 µL, 114 mg, 1.00 mmol) as the alkene component and dist. MeOH (250 µL; stored 

under N2) as the alcohol component, GP A was employed using 0.5 mol% [Pd]. Purification by flash 

column chromatography on SiO2 (mobile phase: 95:5 CyH:EtOAc) gave the compound  as a colourless 

liquid (91 mg,  0.53 mmol, 53%). The analytical data matches with the reported literature data.[S37]  

 

Rf : 0.50 (mobile phase 9:1 CyH:EtOAc, KMnO4 stain)  

Melting point: Ambient temperature. 

1H NMR (300 MHz, CDCl3) δ (ppm): 3.59 (s, 3H, RCO2CH3), 2.23 (t, J = 7.5 Hz, 2H,  

RCH2-CO2Me), 1.55 (sext, J = 7.5 Hz, 2H, R-CH2-CH2-CO2Me), 1.20 (s br, 10H, Alkane-CH2), 0.87 – 0.75 

(t, J = 6 Hz, 3H, terminal CH3). 

13C NMR (75 MHz, CDCl3) δ (ppm): 174.3 (C1), 51.4 (R-CO2CH3), 34.1 (C2), 31.8 (C3), 29.2 (C4), 29.2 (C5), 

29.1 (C6), 25.0 (C7), 22.6 (C8), 14.1 (C9). 

GC/MS (EI): tR = 6.70 min, m/z = 172 (2, [M+•]). 

  



Pd-catalyzed hydro(thio)esterification of styrenes  

   77 

Methyl nonanoate (47) (from 2-octene 18) 

 

Using 2-octene (155 µL, 111 mg, 1.00 mmol) as the alkene component and dist. MeOH (250 µL; stored 

under N2) as the alcohol component, general procedure A was employed using 0.5 mol% [Pd]. 

Purification by flash column chromatography on SiO2 (mobile phase: 95:5 CyH:EtOAc) gave the 

compound  as a colourless liquid (67 mg, 0.39 mmol, 39%).  

Analytical data as above. 

 

Benzyl nonanoate (47-Bn) (from 1-octene)  

 

Using 1-octene (160 µL, 113 mg, 1.00 mmol) as the alkene component and degassed BnOH (250 µL; 

stored under N2) as the alcohol component, general procedure C was employed using 1 mol% [Pd] at 

50 °C in DCE instead of DCM. Purification by flash column chromatography on SiO2 (mobile phase: 95:5 

CyH:EtOAc) gave the compound as a colourless liquid (229 mg, 0.91 mmol, 91%). The analytical data is 

in agreement with the reported literature.[S38] 

 

Rf: 0.40 (mobile phase 95:5 CyH:EtOAc, KMnO4 stain) 

Melting point: Ambient temperature. 

1H-NMR (400 MHz, CDCl3) δ (ppm): 7.41 – 7.29 (m, 5H, ArH), 5.12 (s, 2H, CH2Ph), 2.35 (t, J = 7.6 Hz, 2H, 

PhCH2OCOCH2-R), 1.64 (quin, J = 7.6 Hz, 2H, ArCH2OCOCH2CH2-R), 1.36 – 1.19 (m, 10H, remaining CH2), 

0.88 (t, J = 6.9 Hz, 3H,terminal CH3). 

13C-NMR (101 MHz, CDCl3) δ (ppm): 173.7 (C=O), 136.2 (ArC), 128.6 (ArC), 128.2 (ArC), 128.2 (ArC), 66.1 

(R-CH2Ph), 34.4 (CH2), 31.8 (CH2), 29.2 (CH2), 29.2 (CH2), 29.1 (CH2), 25.0 (CH2), 22.7 (CH2), 14.1 (terminal 

CH3). 

GC-MS: tR = 9.16 min, m/z = 266 (60, [MNH4
+]), 249 (17, [MH+]), 91 (100, [MH+]-[BnO•]). 
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Benzyl nonanoate (47-Bn) (from (E)-2-octene)  

 

Using 2-octene (155 µL, 111 mg, 1.00 mmol) as the alkene component and degassed BnOH (250 µL; 

stored under N2) as the alcohol component, general procedure A was employed using 1 mol% [Pd] at 

50 °C in DCE instead of DCM. Purification by flash column chromatography on SiO2 (mobile phase: 95:5 

CyH:EtOAc) gave the compound as a colourless liquid (225 mg, 0.89 mmol, 89%). 

Analytical data as above.  

 

Dimethyl nonadecanedioate (51) 

 

 

Using methyl oleate (340 µL, 297 mg, 1.00 mmol) as the alkene component and dist. MeOH (250 µL; 

stored under N2) as the alcohol component, GP A was employed using 0.5 mol% [Pd]. Purification by 

flash column chromatography on SiO2 (mobile phase: 95:5 CyH:EtOAc) gave the compound bright 

yellow liquid (57 mg, 0.16 µmol, 16%).  

 

Rf: 0.18 (CyH/ EtOAc 95:5) 

m.p.: 58.5 °C (lit: 56-58°C)36 

1H-NMR (400 MHz, CDCl3) δ (ppm): 3.66 (s, 6H, R-CO2CH3), 2.30 (t, J = 7.3 Hz, 4H, MeO2C-CH2-R), 1.67 

– 1.56 (quin, J = 7.3 Hz, 4H, MeO2C-CH2CH2-R), 1.35 – 1.20 (m, 26H, remaining CH2). 

13C-NMR (75 MHz, CDCl3) δ (ppm): 174.4 (C=O), 51.5 (RCO2CH3), 34.1 (CH2), 29.7 (CH2), 29.6 (CH2), 29.5 

(CH2), 29.3 (CH2), 29.2 (CH2), 25.0 (CH2). 
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FT-IR (ATR) v (cm-1): 3024 (w, br), 2918 (s, sh), 2850 (m, sh), 1736 (s, sh), 1463 (w, br), 1437 (m, sh), 

1419 (w, sh), 1381 (w, sh), 1343 (w, sh), 1269 (w, sh), 1231 (m, sh), 1215 (m, sh), 1200 (m, br), 1174 

(m, br), 1117 (w, br), 1026 (w, br). 

GC-FID: (50-280M12): tR = 10.50 min. 

GC-MS: tR = 14.22 min, m/z = 357 (100, [MH+]), 325 (22, [MH+]-[•OMe]), 279 (7, [MH+]-[•CO2Me]. 

HR-MS (APCI): m/z = [MH+] calc. for C21H40O4 357.2999, found 357.3004. 

 

(E)-Methyl cinnamate (53) 

 

Using ethinylbenzene (52) (80 µL, 102 mg, 0.750 mmol) as the alkyne component and dist. MeOH (250 

µL; stored under N2) as the alcohol component, GP A was employed using 0.75 mol% [Pd]. Upon 

addition of ethinylbenzene a highly exothermic process set in. During workup, an unknown yellow 

polymeric byproduct was noted. Purification by flash column chromatography on SiO2 (mobile phase: 

95:5 CyH:EtOAc) gave the compound as an off-white solid (13 mg, 0.08 mmol, 11%). The analytical data 

matches with the reported literature data.[S40]  

 

Rf : 0.26 (mobile phase 8:2 CyH:EtOAc, KMnO4 stain)  

Melting point: 34 °C. 

1H NMR (400 MHz, CDCl3) δ (ppm): 7.70 (d, J = 16.0 Hz, 1H, ArCHCHCO2Me), 7.55 - 7.51 (m, 2H, ArH), 

7.41 – 7.37 (m, 3H, ArH), 6.45 (d, J = 16.0 Hz, 1H, ArCHCHCO2Me), 3.81 (s, 3H, ArCHCHCO2CH3). 

13C NMR (101 MHz, CDCl3) δ (ppm): 167.5 (C=O), 144.9 (ArCHCHCO2Me), 134.4 (ipso-ArC), 130.3 (meta-

ArC), 128.9 (ortho-ArC), 128.1 (para-ArC), 117.8 (ArCHCHCO2Me), 51.7 (ArCHCHCO2CH3). 

GC/MS (EI): tR = 8.60 min, m/z = 162 (49, [M+•]), 131 (100, [M+•]-[OMe•]), 103 (61, [M+•]-[OMe•]-[CO]). 
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2.4.3.3. Synthesis of thioesters 

S-Ethyl 2-phenylpropanethioate (56) 

 

GP C was used to carbonylate dist. styrene (115 µL, 1.00 mmol) with 1.0 mol% catalyst and EtSH (100 

µL, 1.35 eq) as the thiol component at RT. Purification by column chromatography (gradient CyH/ 

EtOAc 100:0 to 95:5) provided 56 as a bright yellow oil (186 mg, 957 µmol, 96%).  

 

C11H14OS (194.29 g/mol) 

Rf: 0.43 (CyH/ EtOAc 95:5) 

m.p.: Ambient temperature. 

1H-NMR (300 MHz, CDCl3) δH/ppm: 7.38 – 7.27 (m, 5H, ArH), 3.88 (q, J = 7.1 Hz, 1H, ArCH), 2.89 – 2.78 

(m, 2H, SCH2), 1.54 (d, J = 7.1 Hz, 3H, ArCHCH3), 1.21 (t, J = 7.4 Hz, 3H, SCH2CH3). 

13C-NMR (75 MHz, CDCl3) δC/ppm: 201.3 (q), 140.0 (q), 128.7 (+), 127.9 (+), 127.4 (+), 54.2 (+), 23.5 (–

), 18.4 (+), 14.5 (+). 

FT-IR (ATR) 𝑣̃ (cm-1): 3030 (w, sh), 2933 (m, sh), 2974 (m, sh), 2878 (w, sh), 1685 (s, sh), 1454 (m, sh), 

1264 (m, sh), 947 (s, sh), 757 (s, sh).  

GC-FID: (50-280M12): tR = 6.19 min. 

HR-MS (APCI): m/z = [MH+] calc. for C11H15OS 195.0838, found 195.0841. 
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S-Propyl 2-phenylpropanethioate (57) 

 

GP C was used to carbonylate dist. styrene (115 µL, 1.00 mmol) with 1.0 mol% catalyst and PrSH (125 

µL, 1.35 eq) as a thiol component at RT. Purification by column chromatography (gradient CyH/ EtOAc 

100:0 to 95:5) provided 57 as a bright yellow oil (191 mg, 918 µmol, 92%).  

 

C12H16OS (208.32 g/mol) 

Rf: 0.50 (CyH/ EtOAc 95:5) 

m.p.: Ambient temperature. 

1H-NMR (300 MHz, CDCl3) δH/ppm: 7.38 – 7.26 (m, 5H, ArH), 3.89 (q, J = 7.1 Hz, 1H, ArCH), 2.90 – 2.74 

(m, 2H, ArCHCOSCH2), 1.49 – 1.59 (m, 2H, ArCHCOSCH2CH2), 1.54 (d, J = 7.1 Hz, 3H, ArCHCH3), 0.92 (t, 

J = 7.3 Hz, 3H, ArCHCOSCH2CH2CH3). 

13C-NMR (101 MHz, CDCl3) δC/ppm: 201.3 (q), 140.1 (q), 128.7 (+), 128.5 (+), 128.4 (+), 127.9 (+), 127.4 

(+), 54.3 (+), 31.0 (–), 22.9 (–), 18.5 (+), 13.3 (+). 

FT-IR (ATR) 𝑣̃ (cm-1): 2967 (m, sh), 2933 (m, sh), 2874 (w, sh), 1685 (s, sh), 1454 (m, sh), 995 (m, sh), 

947 (s, sh). 

HR-MS (APCI): m/z = [MH+] calc. for C12H17OS 209.0995, found 209.0995. 

S-Heptyl 2-phenylpropanethioate (55) 

 

GP C was used to carbonylate dist. styrene (115 µL, 1.00 mmol) with 1.0 mol% catalyst and dist. HeptSH 

(210 µL, stored under N2, 1.34 eq) as a thiol component at RT.  Purification by column chromatography 

(gradient CyH → CyH/ EtOAc 95:5) provided 55 as a bright yellow oil (253 mg, 958 µmol, 95%). 

C16H24OS (264.43 g/mol) 
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Rf: 0.50 (CyH/ EtOAc 95:5) 

m.p.: Ambient temperature. 

1H-NMR (300 MHz, CDCl3) δH/ppm:  7.37 – 7.27 (m, 5H, ArH), 3.88 (q, J = 7.1 Hz, 1H, ArCH), 2.91 – 2.73 

(m, 2H, ArCHCOSCH2), 1.53 (d, J = 7.1 Hz, 3H, ArCHCH3), 1.52 – 1.45 (m, 2H, SCH2CH2(CH2)4CH3), 1.37 – 

1.16 (m, 8H, SCH2(CH2)4CH3), 0.86 (t, J = 6.8 Hz, 3H, SCH2(CH2)5CH3). 

13C-NMR (101 MHz, CDCl3) δC/ppm: 201.3 (q), 140.1 (q), 128.7 (+), 127.9 (+), 127.4 (+), 54.3 (+), 31.7 (–

), 29.4 (–), 29.1 (–), 28.8 (–), 28.8 (–), 22.6 (–), 18.5 (+), 14.1 (+). 

FT-IR (ATR) 𝑣̃ (cm-1): 2930 (s, br), 2855 (m, sh), 1689 (s, sh), 1454 (m, sh), 995 (w, sh), 947 (s, sh), 701 

(s, sh). 

HR-MS (APCI): m/z = [MH+] calc. for C16H25OS 265.1621, found 265.1624. 

 

S-Phenyl 2-phenylpropanethioate (60-b) and phenethyl(phenyl)sulfane (60-l) 

 

GP C was used to carbonylate dist. styrene (115 µL, 1.00 mmol) with 1.0 mol% catalyst and dist. PhSH 

(140 µL, stored under N2, 1.37 eq) as a thiol component at RT. Purification by column chromatography 

(gradient CyH → CyH/ EtOAc 95:5) provided an inseparable mixture of 60 and 60’ as a bright yellow oil 

(135 mg, ether/ester = 41/59 → 60: 80 mg, 329 µmol, 33%, 60’: 55 mg, 259 µmol, 26%). 

 

C15H14OS (242.34 g/mol) and C14H14S (214.33 g/mol) 

Rf: 0.35, 0.20 (CyH/ EtOAc 95:5) 

m.p.: Ambient temperature. 

1H-NMR (300 MHz, CDCl3) δH/ppm: 7.42 – 7.27 (m, 14H, ArH), 7.24 – 7.15 (m, 3H, ArH), 4.01 (q, J = 7.1 

Hz, 1H, ArCH), 3.24 – 3.12 (m, 2H, ArCH2), 2.94 (dd, J = 9.3, 6.4 Hz, 2H, ArCH2CH2), 1.59 (d, J = 7.1 Hz, 

3H, ArCHCH3). 

13C-NMR (75 MHz, CDCl3) δC/ppm: 199.1 (q), 140.2 (q), 139.6 (q), 136.4 (q), 134.5 (+), 129.3 (+), 129.2 

(+), 129.1 (+), 129.0 (+), 128.8 (+), 128. 6 (+), 128.1 (+), 127.9 (q), 127.6 (+), 126.5 (+), 126.0 (+), 54.1 

(+), 35.7 (–), 35.1 (–), 18.7 (+). 

FT-IR (ATR) 𝑣̃ (cm-1): 3027 (w, br), 2930 (w, br), 2974 (w, br), 1700 (s, sh), 1580 (m, sh), 1476 (s, sh), 

1439 (s, sh), 932 (s, sh), 738 (s, sh), 690 (s, sh). 
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GC-MS (EI) 2ag: 242 (2, [M+•]), 133 (10, [M+•]-[PhS•]), 105 (100, [M+•]-[PhSCO•]). 

GC-MS (EI) 2ag’: 214 (75, [M+•]), 123 (100, [M+•]-[PhCH2•]), 105 (25, [M+•]-[PhS•]). 

HR-MS (EI) 2ag: m/z = [M+•] calc. for C15H14OS 242.0760, found 242.0767.  

HR-MS (EI) 2ag’: m/z = [M+•] calc. for C14H14S 214.0811, found 214.0814. 

 

S-Benzyl 2-phenylpropanethioate (58)  

 

 

GP C was used to carbonylate dist. styrene (115 µL, 1.00 mmol) with 1.0 mol% catalyst and dist. BnSH 

(160 µL, 1.34 mmol, 1.34 eqv. stored under N2) as the thiol component at RT. Purification by column 

chromatography (gradient CyH → CyH/ EtOAc 95:5) provided 58 as a colourless oil (210 mg, 820 µmol, 

82%). 

 

C16H16OS (256.36 g/mol)  

Rf: 0.39 (CyH/ EtOAc 95:5) 

m.p.: Ambient temperature. 

1H-NMR (300 MHz, CDCl3) δH/ppm: 7.41 – 7.16 (m, 10H, ArH), 4.09 (ABq, ΔδAB = 0.09, JAB = 13 Hz, 2H, 

PhCH2SR), 3.92 (q, J = 7.1 Hz, 1H, ArCHCH3), 1.57 (d, J = 7.1 Hz, 3H, ArCHCH3). 

13C-NMR (75 MHz, CDCl3) δC/ppm: 200.6 (q), 139.7 (q), 137.4 (q), 128.9 (+), 128.7 (+), 128.6 (+), 128.0 

(+), 127.6 (+), 127.3 (+), 54.1 (+), 33.5 (-), 18.5 (+). 

FT-IR (ATR) 𝑣̃ (cm-1): 3063 (w), 3030 (w), 2978 (w), 2933 (w), 1681 (s, sh), 1602 (m), 1494 (m, sh), 1453 

(m, sh), 1099 (m, sh), 1069 (m, sh), 995 (m, sh), 939 (s, sh), 693 (s, sh). 

 HR-MS (APCI): m/z = [MH+] calc. for C16H17OS 257.0995, found 257.0995.  
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Methyl N-(tert-butoxycarbonyl)-S-(2-phenylpropanoyl)-L-cysteinate (61)  

 

 

 

GP C was used to carbonylate dist. styrene (115 µL, 1.00 mmol) with 1.0 mol% catalyst and freshly 

opened N-Boc-L-cysteine methyl ester (205 µL, 1.00 mmol, 1 eqv., stored under N2) as the thiol 

component at RT. The crude reaction mixture was treated with Et3N (160 µL, 1.15 mmol) and stirred 

for 15 min at RT in order to remove the unreacted thiol. Purification by column chromatography 

(CyH/EtOAc 9:1) provided 61 as a colourless oil (227 mg, 620 µmol, 62%). 

 

C18H25NO5S (367.46 g/mol)  

Rf: 0.16 (CyH/ EtOAc 9:1) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3) δH/ppm: 7.43 – 7.11 (m, 5H, ArH), 5.23 (dd, J = 15.0, 8.1 Hz, 1H, NH), 4.47 (s 

br,  1H, RCOS-CH2-CH(NHBoc)(CO2Me)),), 3.87 (q, J = 7.1 Hz, 1H, Ph-CH(CH3)(COS-cysteine)), 3.62 (2x s, 

3H, RCOS-CH2-CH(NHBoc)(CO2CH3)),), 3.36 – 3.19 (m, 2H, RCOS-CH2-CH(NHBoc)(CO2Me)), 1.50 (dd, J = 

7.1, 2.2 Hz, 3H, Ph-CH(CH3)(COS-cysteine)), 1.41 – 1.39 (2x s, 9H, C(CH3)3). 

13C-NMR (101 MHz, CDCl3) δC/ppm: 200.1 (q), 200.0 (q), 170.9 (q), 139.4 (q), 128.7 (+), 128.7 (+), 128.0 

(+), 127.9 (+), 127.6 (q), 80.1 (q), 54.3 (+), 53.1 (+), 53.0 (+), 52.6 (+), 52.5 (+), 31.2 (-), 31.1 (-), 28.3 (+),  

18.4 (+). 

FT-IR (ATR) 𝑣̃ (cm-1): 3373 (w, br), 2978 (w, sh), 2937 (w, sh), 1748 (m, sh), 1700 (s, sh), 1692 (s, sh), 

1494 (m, sh), 1453 (m, sh), 1394 (w, sh), 1364 (m, sh), 1244 (m, sh), 1215 (m, sh), 1159 (s, sh),  1054 

(m, sh), 1010 (m, sh), 943 (s, sh), 864 (m), 775 (m), 730 (m), 700 (s, sh). 

HR-MS (ESI): m/z = [MNa+] calc. for C18H25NNaO5S 390.1346, found 390.1352.  
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S-Cyclohexyl 2-phenylpropanethioate (59)  

 

 

 

GP C was used to carbonylate dist. styrene (115 µL, 1.00 mmol) with 1.0 mol% catalyst and freshly 

opened cyclohexanethiol (165 µL, stored under N2) as the thiol component at RT. Purification by 

column chromatography (gradient CyH → CyH/ EtOAc 95:5) provided 59 as a colourless oil  (70 mg, 

820 µmol, 28%). 

 

C15H20OS (248.38 g/mol)  

Rf: 0.47 (CyH/ EtOAc 95:5) 

m.p.: Ambient temperature. 

1H-NMR (300 MHz, CDCl3) δH/ppm: 7.42 – 7.09 (m, 5H, ArH), 3.86 (q, J = 7.1 Hz, 1H, ArCH(COSR)CH3), 

3.57 – 3.36 (m, 1H, cyclohexyl CH), 2.06 – 1.57 (m, 5H, cyclohexyl CH2), 1.53 (d, J = 7.1 Hz, 3H, 

ArCH(COSR)CH3), 1.48 – 1.08 (m, 5H, cyclohexyl CH2). 

13C-NMR (75 MHz, CDCl3) δC/ppm: 201.0 (q), 140.1 (q), 128.6 (+), 127.9 (+), 127.3 (+), 54.3 (+), 42.5 (+), 

33.06 (-), 32.89 (-), 26.02 (-), 26.00 (-), 25.56 (-), 18.55 (+). 

FT-IR (ATR) 𝑣̃ (cm-1): 3030 (w, br), 2929 (s, sh), 2855 (m, sh),  1700 (s, sh), 1681 (s, sh), 1494 (w, sh), 

1449 (m, sh), 1263 (w, sh), 995 (m, sh), 943 (s, sh), 730 (m, sh), 697 (s, sh).  

HR-MS (APCI): m/z = [MH+] calc. for C15H21OS 249.1308, found 249.1315.  

 

S-Heptyl 2-(o-tolyl)propanethioate (79) 

 

GP C was used to carbonylate dist. ortho-methylstyrene (130 µL, 1.00 mmol) with 1.0 mol% catalyst 

and dist. HeptSH (210 µL, stored under N2, 1.34 eq) as a thiol component at RT.  

Purification by column chromatography (gradient CyH → CyH/ EtOAc 95:5) provided 79 as a bright 

yellow oil (248.6 mg, 893 µmol, 89%). 

 

C17H26OS (278.45 g/mol) 
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Rf: 0.48 (CyH/ EtOAc 95:5) 

m.p.: Ambient temperature. 

1H-NMR (300 MHz, CDCl3) δH/ppm: 7.31 – 7.27 (m, 1H, ArH), 7.25 – 7.15 (m, 3H, ArH), 4.10 (q, J = 7.1 

Hz, 1H, ArCH), 2.89 – 2.75 (m, 2H, SCH2), 2.37 (s, 3H, ArCH3), 1.51 (d, J = 7.1 Hz, 3H, ArCHCH3), 1.56 – 

1.47 (m, 2H, SCH2CH2(CH2)4CH3), 1.34 – 1.17 (m, 8H, SCH2CH2(CH2)4CH3), 0.86 (t, J = 6.8 Hz, 3H, 

SCH2(CH2)5CH3). 

13C-NMR (75 MHz, CDCl3) δC/ppm: 201.8 (q), 138.3 (q), 136.2 (q), 130.5 (+), 127.3 (+), 127.2 (+), 126.4 

(+), 50.1 (+), 31.7 (–), 29.5 (–), 29.1 (–), 28.78 (–), 28.77 (–), 22.6 (–), 19.9 (+), 18.1 (+), 14.1 (+). 

FT-IR (ATR) 𝑣̃ (cm-1): 2926 (s, sh), 2855 (m, sh), 1681 (s, sh), 1491 (w, sh), 1457 (m, sh), 999 (m, sh), 939 

(s, sh), 738 (s, br). 

GC-MS (EI): tR = 8.83 min, m/z = 119 (100, [M+•]-[•COSHept]), 91 (9, [M+•]-[•COSHept]-[CH3]), 250 

(0.4, [M+•]-[CO]). 

HR-MS (EI): m/z = [M+•] calc. for C17H26OS 278.1699, found 278.1702. 

 

S-Heptyl 2-(m-tolyl)propanethioate (74) 

 

GP C was used to carbonylate dist. meta-methylstyrene (130 µL, 990 µmol) with 1.0 mol% catalyst and 

dist. HeptSH (210 µL, stored under N2, 1.34 eq) as a thiol component at RT.  

Purification by column chromatography (gradient CyH → CyH/ EtOAc 95:5) provided 74 as a bright 

yellow oil (274 mg, 984 µmol, 99%). 

 

C17H26OS (278.45 g/mol) 

Rf: 0.53 (CyH/ EtOAc 95:5) 

m.p.: Ambient temperature. 

1H-NMR (300 MHz, CDCl3) δH/ppm: 7.25 – 7.18 (m, 1H, ArH), 7.14 – 7.04 (m, 3H, ArH), 3.84 (q, J = 7.1 

Hz, 1H, ArCH), 2.92 – 2.73 (m, 2H, SCH2), 2.35 (s, 3H, ArCH3), 1.51 (d, J = 7.1 Hz, 3H, ArCHCH3), 1.57 – 

1.47 (m, 2H, SCH2CH2(CH2)4CH3), 1.36 – 1.15 (m, 8H, SCH2CH2(CH2)4CH3)), 0.86 (t, J = 6.8 Hz, 3H, 

SCH2(CH2)5CH3). 

13C-NMR (75 MHz, CDCl3) δC/ppm: 201.4 (q), 140.0 (q), 138.3 (q), 128.6 (+), 128.5 (+), 128.2 (+), 124.9 

(+), 54.2 (+), 31.7 (–), 29.4 (–), 29.1 (–), 28.80 (–), 28.77 (–), 22.6 (–), 21.5 (+), 18.5 (+), 14.1 (+). 

FT-IR (ATR) 𝑣̃ (cm-1): 2926 (s, sh), 2855 (s, sh), 1684 (s, sh), 1607 (w, sh), 1454 (m, br), 947 (s, sh), 734 

(m, br).  
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GC-MS (EI): tR = 8.78 min, m/z = 119 (100, [M+•]-[•COSHept]), 91 (8, [M+•]-[•COSHept]-[CH3]), 250 (4, 

[M+•]-[CO]), 180 (3, [M+•]-[•Hept]). 

HR-MS (EI): m/z = [M+•] calc. for C17H26OS 278.1699, found 278.1702. 

 

S-Heptyl 2-(p-tolyl)propanethioate (62) 

 

GP C was used to carbonylate dist. para-methylstyrene (130 µL, 990 µmol) with 1.0 mol% catalyst and 

dist. HeptSH (210 µL, stored under N2, 1.34 eq) as a thiol component at RT.  

Purification by column chromatography (gradient CyH → CyH/ EtOAc 95:5) provided 62 as a bright 

yellow oil (275 mg, 988 µmol, 99%). 

 

C17H26OS (278.45 g/mol) 

Rf: 0.57 (CyH/ EtOAc 95:5) 

m.p.: Ambient temperature. 

1H-NMR (300 MHz, CDCl3) δH/ppm: 7.23 – 7.11 (m, 4H, ArH), 3.84 (q, J = 7.1 Hz, 1H, ArCH), 2.90 – 2.72 

(m, 2H, SCH2), 2.33 (s, 3H, ArCH3), 1.51 (d, J = 7.1 Hz, 3H, ArCHCH3), 1.57 – 1.47 (m, 2H, 

SCH2CH2(CH2)4CH3), 1.38 – 1.17 (m, 8H,SCH2CH2(CH2)4CH3), 0.86 (t, J = 6.8 Hz, 3H, SCH2(CH2)5CH3). 

13C-NMR (75 MHz, CDCl3) δC/ppm: 201.6 (q), 137.10 (q), 137.07 (q), 129.4 (+), 127.8 (+), 53.9 (+), 31.7 

(–), 29.4 (–), 29.1 (–), 28.8 (–), 28.8 (–), 22.6 (–), 21.1 (+), 18.5 (+), 14.1 (+). 

FT-IR (ATR) 𝑣̃ (cm-1): 2926 (s, sh), 2855 (m, sh), 1681 (s, sh), 1513 (m, sh), 1454 (m, sh), 1003 (m, sh), 

943 (s, sh), 753 (m, sh). 

GC-MS (EI): tR = 8.871 min, m/z = 119 (100, [M+•]-[•COSHept]), 91 (7, [M+•]-[•COSHept]-[CH3]), 250 

(2, [M+•]-[CO]). 

HR-MS (EI): m/z = [M+•] calc. for C17H26OS 278.1699, found 278.1699. 

 

S-Heptyl 2-(2-methoxyphenyl)propanethioate (77) 

 

GP C was used to carbonylate dist. ortho-vinylanisole (135 µL, 1.01 mmol) with 1.0 mol% catalyst and 

dist. HeptSH (210 µL, stored under N2, 1.34 eq) as a thiol component at RT.  
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Purification by column chromatography (gradient CyH → CyH/ EtOAc 95:5) provided 77 as a bright 

yellow oil (287 mg, 975 µmol, 97%). 

 

C17H26O2S (294.45 g/mol) 

Rf:  0.40 (CyH/ EtOAc 95:5) 

m.p.: Ambient temperature. 

1H-NMR (300 MHz, CDCl3) δH/ppm: 7.32 – 7.20 (m, 2H, ArH), 7.03 – 6.82 (m, 2H, ArH), 4.26 (q, J = 7.1 

Hz, 1H, ArCH), 3.83 (s, 3H, ArOCH3), 2.81 (t, J = 7.3 Hz, 2H, SCH2), 1.54 – 1.44 (m, 2H, SCH2CH2(CH2)4CH3), 

1.48 (d, J = 7.1 Hz, 3H, ArCHCH3), 1.34 – 1.18 (m, 8H, SCH2CH2(CH2)4CH3), 0.86 (t, J = 6.8 Hz, 3H, 

SCH2(CH2)5CH3). 

13C-NMR (75 MHz, CDCl3) δC/ppm: 202.2 (q), 157.0 (q), 128.6 (q), 128.5 (+), 128.4 (+), 120.7 (+), 110.7 

(+), 55.5 (+), 47.3 (+), 31.7 (–), 29.6 (–), 28.9 (–), 28.81 (–), 28.80 (–), 22.6 (–), 17.3 (+), 14.1 (+). 

FT-IR (ATR) 𝑣̃ (cm-1): 2926 (s, br), 2855 (m, sh), 1685 (s, sh), 1599 (w, sh), 1491 (s, sh), 1461 (s, br), 1245 

(s, sh), 1122 (m, br), 1029 (s, sh), 943 (s, sh), 753 (s, sh). 

GC-MS (CI): tR = 9.207 min, m/z = 135 (100, [MH+]-[•COSHept], 295 (75, [MH+]), 163 (6, [MH+]-

[•SHept). 

HR-MS (APCI): m/z = [MH+] calc. for C17H27O2S 295.1726, found 295.1737. 

 

S-Heptyl 2-(3-methoxyphenyl)propanethioate (75) 

 

GP C was used to carbonylate dist. meta-vinylanisole (140 µL, 1.01 mmol) with 1.0 mol% catalyst and 

dist. HeptSH (210 µL, stored under N2, 1.34 eq) as a thiol component at RT. Purification by column 

chromatography (gradient CyH → CyH/ EtOAc 95:5) provided 75 as a bright yellow oil (287 mg, 906 

µmol, 90%). 

 

C17H26O2S (294.45 g/mol) 

Rf: 0.42 (CyH/ EtOAc 95:5) 

m.p.: Ambient temperature. 

1H-NMR (300 MHz, CDCl3) δH/ppm: 7.24 – 7.17 (m, 1H, ArH), 6.88 – 6.73 (m, 3H, ArH), 3.81 (q, J = 7.1 

Hz, 1H, ArCH), 3.76  (s, 3H, ArOCH3), 2.88 – 2.67 (m, 2H, SCH2), 1.52 – 1.42 (m, 2H, SCH2CH2(CH2)4CH3), 
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1.46 (d, J = 7.1 Hz, 3H, ArCHCH3), 1.33 – 1.11 (m, 8H, SCH2CH2(CH2)4CH3), 0.82 (t, J = 6.8 Hz, 3H, 

SCH2(CH2)5CH3). 

13C-NMR (75 MHz, CDCl3) δC/ppm: 201.2 (q), 159.7 (q), 141.6 (q), 129.6 (+), 120.3 (+), 113.6 (+), 112.7 

(+), 55.2 (+), 54.3 (+), 31.7 (–), 29.4 (–), 29.1 (–), 28.80 (–), 28.77 (–), 22.6 (–), 18.4 (+), 14.1 (+). 

FT-IR (ATR) 𝑣̃ (cm-1): 2926 (s, sh), 2855 (m, sh), 1681 (s, sh), 1599 (s, sh), 1454 (s, sh), 1260 (s, br), 1044 

(s, sh), 950 (s, sh), 753 (s, sh), 697 (s, sh). 

GC-MS (EI): tR = 9.439 min, m/z = 135 (100, [M+•]-[•COSHept], 105 (9, [M+•]-[•COSHept]-[•OMe]), 

296 (0.7, [M+•]). 

HR-MS (EI): m/z = [M+•] calc. for C17H26O2S 294.1648, found 294.1646. 

 

S-Heptyl 2-(4-methoxyphenyl)propanethioate (63) 

 

GP C was used to carbonylate dist. para-vinylanisole (140 µL, 1.01 mmol) with 1.0 mol% catalyst and 

dist. HeptSH (210 µL, stored under N2, 1.34 eq) as a thiol component at RT. Purification by column 

chromatography (gradient CyH → CyH/ EtOAc 95:5) provided 63 as a bright yellow oil (295 mg, 1.00 

µmol, 99%). 

 

C17H26O2S (294.45 g/mol) 

Rf: 0.38 (CyH/ EtOAc 95:5) 

m.p.: Ambient temperature. 

1H-NMR (300 MHz, CDCl3) δH/ppm: 7.25 – 7.20 (m, 2H, ArH), 6.90 – 6.83 (m, 2H, ArH), 3.82 (q, J = 7.1 

Hz, 1H, ArCH), 3.80 (s, 3H, ArOCH3) 2.91 – 2.70 (m, 2H, SCH2), 1.58 – 1.43 (m, 2H, SCH2CH2(CH2)4CH3), 

1.50 (d, J = 7.1 Hz, 3H, ArCHCH3), 1.37 – 1.14 (m, 8H, SCH2CH2(CH2)4CH3), 0.86 (t, J = 6.7 Hz, 3H, 

SCH2(CH2)5CH3). 

13C-NMR (75 MHz, CDCl3) δC/ppm: 201.8 (q), 158.9 (q), 132.1 (q), 129.0 (+), 114.0 (+), 55.3 (+), 53.4 (+), 

31.7 (–), 29.4 (–), 29.1 (–), 28.8 (–), 28.8 (–), 22.6 (–), 18.5 (+), 14.1 (+). 

 FT-IR (ATR) 𝑣̃ (cm-1):  2926 (s, sh), 2855 (m, sh), 1677 (s, sh), 1610 (m, sh), 1513 (s, sh), 1461 (m, br), 

1245 (s, sh), 1178 (s, sh), 943 (s, br), 831 (s, sh).  

GC-MS (EI): tR = 9.589 min, m/z = 135 (100, [M+•]-[•COSHept], 105 (6, [M+•]-[•COSHept]-[•OMe]), 

295 (0.4, [M+•]). 

HR-MS (EI): m/z = [M+•] calc. for C17H26O2S 294.1648, found 294.1646. 
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2-(1-(Heptylthio)-1-oxopropan-2-yl)phenyl acetate (78) 

 

GP C was used to carbonylate dist. ortho-acetoxystyrene (162 mg, 1.00 mmol) with 1.0 mol% catalyst 

and dist. HeptSH (210 µL, stored under N2, 1.34 eq) as a thiol component at RT.  

Purification by column chromatography (gradient CyH → CyH/ EtOAc 95:5) provided 78 as a bright 

yellow oil (158 mg, 489 µmol, 49%). 

 

C18H26O3S (322.46 g/mol) 

Rf: 0.29 (CyH/ EtOAc 95:5) 

m.p.: Ambient temperature. 

1H-NMR (300 MHz, CDCl3) δH/ppm: 7.39 (dd, J = 7.5, 1.8 Hz, 1H, ArH), 7.34 – 7.20 (m, 2H, ArH), 7.09 

(dd, J = 7.9, 1.5 Hz, 1H, ArH), 4.02 (q, J = 7.1 Hz, 1H, ArCH), 2.96 – 2.72 (m, 2H, SCH2), 2.34 (s, 3H, 

ArOCOCH3), 1.61 – 1.45 (m, 2H, SCH2CH2(CH2)4CH3), 1.50 (d, J = 7.1 Hz, ArCHCH3), 1.26 (m, 8H, 

SCH2CH2(CH2)4CH3), 0.87 (t, J = 7.0 Hz, 3H, SCH2(CH2)5CH3). 

13C-NMR (75 MHz, CDCl3) δC/ppm: 200.7 (q), 169.2 (q), 148.5 (q), 131.9 (q), 128.7 (+), 128.4 (+), 126.4 

(+), 122.7 (+), 47.9 (+), 31.7 (–), 29.4 (–), 29.1 (–), 28.8 (–), 22.6 (–), 21.0 (+), 17.5 (+), 14.1 (+). 

FT-IR (ATR) 𝑣̃ (cm-1): 2930 (m, sh), 2855 (w, sh), 1767 (s, sh), 1685 (s, sh), 1491 (w, sh), 1454 (w, br), 

1372 (m, sh), 1193 (s, sh), 947 (s, sh), 910 (s, sh), 746 (s, br). 

GC-MS (CI): tR = 9.549 min, m/z = 149 (100, [MH+]-[•SHept]-[•CH3CO]), 191 (18, [MH+]-[•SHept]), 323 

(7, [MH+]), 263 (4, [MH+]-[•CH3COO]). 

HR-MS (APCI): m/z = [MH+] calc. for C18H27O3S 323.1675, found 323.1682. 

 

4-(1-(Heptylthio)-1-oxopropan-2-yl)phenyl acetate (64) 

 

GP C was used to carbonylate dist. para-acetoxystyrene (155 µL, 1.01 mmol) with 1.0 mol% catalyst 

and dist. HeptSH (210 µL, stored under N2, 1.34 eq) as a thiol component at RT.  

Purification by column chromatography (gradient CyH → CyH/ EtOAc 95:5) provided 64 as a bright 

yellow oil (304 mg, 942 µmol, 93%). 
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C18H26O3S (322.46 g/mol) 

Rf: 0.19 (CyH/ EtOAc 95:5) 

m.p.: Ambient temperature. 

1H-NMR (300 MHz, CDCl3) δH/ppm: 7.36 – 7.28 (m, 2H, ArH), 7.08 – 7.00 (m, 2H, ArH), 3.88 (q, J = 7.1 

Hz, 1H, ArCH), 2.91 – 2.73 (m, 2H, SCH2), 2.30 (s, 3H, ArOCOCH3), 1.50 (d, J = 7.1 Hz, 3H, ArCHCH3), 1.58 

– 1.45 (m, 2H, SCH2CH2(CH2)4CH3), 1.37 – 1.15 (m, 8H, SCH2CH2(CH2)4CH3), 0.86 (t, J = 6.7 Hz, 3H, 

SCH2(CH2)5CH3). 

13C-NMR (75 MHz, CDCl3) δC/ppm: 201.1 (q), 269.5 (q), 149.9 (q), 137.5 (q), 128.9 (+), 121.7 (+), 53.6 

(+), 31.7 (–), 29.4 (–), 29.1 (–), 28.8 (–), 28.8 (–), 22.6 (–), 21.2 (+), 18.6 (+), 14.1 (+).  

FT-IR (ATR) 𝑣̃ (cm-1): 2930 (m, sh), 2855 (w, sh), 1763 (s, sh), 1681 (s, sh), 1506 (m, sh), 1368 (m, sh), 

1193 (s, br), 947 (s, sh), 910 (s, sh). 

GC-MS (EI): tR = 10.16 min, m/z = 121 (100, [M+•]-[•COSHept]-[•CH2CO]), 163 (21, [M+•]-[•COSHept]), 

280 (2, [M+•]-[•CH2CO]), 322 (1, [M+•]). 

HR-MS (EI): m/z = [M+•] calc. for C18H26O3S 322.1597, found 322.1591. 

 

S-Heptyl 2-(4-(trifluoromethyl)phenyl)propanethioate (65) 

 

GP C was used to carbonylate dist. para-trifluoromethyl-styrene (150 µL, 1.02 mmol) with 1.0 mol% 

catalyst and dist. HeptSH (210 µL, stored under N2, 1.34 eq) as a thiol component at RT. Purification by 

column chromatography (gradient CyH → CyH/ EtOAc 95:5) provided 65 as a bright yellow oil (168 mg, 

504 µmol, 50%). 

 

C17H23F3OS (332.43 g/mol) 

Rf: 0.32 (CyH/ EtOAc 95:5) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3) δH/ppm: 7.62 – 7.56 (m, 2H, ArH), 7.46 – 7.41 (m, 2H, ArH), 3.95 (q, J = 7.1 

Hz, 1H, ArCH), 2.90 – 2.78 (m, 2H, SCH2), 1.55 (d, J = 7.1 Hz, 3H, ArCHCH3), 1.53 – 1.47 (m, 2H, 

SCH2CH2(CH2)4CH3), 1.33 – 1.19 (m, 8H, SCH2CH2(CH2)4CH3), 0.86 (t, J = 6.9 Hz, 3H, SCH2(CH2)5CH3).   

13C-NMR (101 MHz, CDCl3) δC/ppm: 200.4 (q), 143.95 (q), 129.7 (quartet, J = 32.5 Hz, q), 128.2 (+), 125.6 

(quartet, J = 3.8 Hz, +), 124.1 (quartet, J = 272.0 Hz, q), 54.0 (+), 31.7 (–), 29.4 (–), 29.2 (–), 28.7 (–), 

28.7 (–), 22.6 (–), 18.5 (+), 14.0 (+). 

19F-NMR (282 MHz, CDCl3) δC/ppm: - 62.9 (CF3). 
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FT-IR (ATR) 𝑣̃ (cm-1): 2929 (w, br), 2858 (w, sh), 1684 (m, sh), 1323 (s, sh), 1162 (m, sh), 1118 (s, sh), 

1169 (m, sh), 946 (m, sh), 842 (m, sh). 

HR-MS (APCI): m/z = [MH+] calc. for C17H24F3OS 332.1494, found 332.1499. 

 

S-Heptyl 2-([1,1'-biphenyl]-4-yl)propanethioate (66) 

 

GP C was used to carbonylate dist. para-phenylstyrene (181 mg, 1.00 mmol) with 1.0 mol% catalyst 

and dist. HeptSH (210 µL, stored under N2, 1.34 eq) as a thiol component at RT.  

Purification by column chromatography (gradient CyH → CyH/ EtOAc 95:5) provided 66 as a bright 

yellow oil (293 mg, 860 µmol, 86%). 

 

C22H28OS (340.53 g/mol) 

Rf: 0.51 (CyH/ EtOAc 95:5) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3) δH/ppm:  7.61 – 7.54 (m, 4H, ArH), 7.46 – 7.31 (m, 5H, ArH), 3.93 (q, J = 7.1 

Hz, 1H, ArCH), 2.92 – 2.77 (m, 2H, SCH2), 1.57 (d, J = 7.1 Hz, 3H, ArCHCH3), 1.55 – 1.48 (m, 2H, 

SCH2CH2(CH2)4CH3), 1.35 – 1.19 (m, 8H, SCH2CH2(CH2)4CH3), 0.86 (t, J = 6.9 Hz, 3H, SCH2(CH2)5CH3). 

13C-NMR (101 MHz, CDCl3) δC/ppm: 201.3 (q), 140.8 (q), 140.3 (q), 139.1 (q), 128.8 (+), 128.3 (+), 127.4 

(+), 127.3 (+), 127.1 (+), 54.0 (+), 31.7 (–), 29.4 (–), 29.2 (–), 28.8 (–), 28.8 (–), 22.6 (–), 18.5 (+), 14.1 (+). 

FT-IR (ATR) 𝑣̃ (cm-1): 2926 (m, br), 2855 (w, sh), 1685 (s, sh), 1454 (m, sh), 980 (m, sh), 812 (w, sh), 738 

(s, sh), 697 (s, sh). 

HR-MS (APCI): m/z = [MH+] calc. for C22H29OS 341.1934, found 341.1941. 

 

S-Heptyl 2-(4-(tert-butyl)phenyl)propanethioate (69) 

 

GP C was used to carbonylate dist. para-tert-butylstyrene (185 µL, 1.01 mmol) with 1.0 mol% catalyst 

and dist. HeptSH (210 µL, stored under N2, 1.34 eq) as a thiol component at RT.  

Purification by column chromatography (gradient CyH → CyH/ EtOAc 95:5) provided 69 as a bright 

yellow oil (307 mg, 957 µmol, 95%). 
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C20H32OS (320.54 g/mol) 

Rf: 0.55 (CyH/ EtOAc 95:5) 

m.p.: Ambient temperature. 

1H-NMR (300 MHz, CDCl3) δH/ppm:  7.38 – 7.31 (m, 2H, ArH), 7.25 – 7.21 (m, 2H, ArH), 3.86 (q, J = 7.1 

Hz, 1H, ArCH), 2.91 – 2.72 (m, 2H, SCH2), 1.52 (d, J = 7.1 Hz, 3H, ArCHCH3), 1.58 – 1.46 (m, 2H, 

SCH2CH2(CH2)4CH3), 1.31 (s, 9H, ArC(CH3)3), 1.38 – 1.16 (m, 8H, SCH2CH2(CH2)4CH3), 0.86 (t, J = 6.8 Hz, 

3H, SCH2(CH2)5CH3). 

13C-NMR (75 MHz, CDCl3) δC/ppm: 201.6 (q), 150.2 (q), 136.9 (q), 127.5 (+), 125.6 (+), 53.8 (+), 31.7 (–

), 31.4 (+), 29.4 (–), 29.1 (–), 28.81 (–), 28.78 (–), 22.6 (–), 18.5 (+), 14.1 (+). 

FT-IR (ATR) 𝑣̃ (cm-1): 2960 (s, sh), 2930 (s, sh), 2855 (m, sh), 1685 (s, sh), 1461 (m, br), 1364 (m, sh), 999 

(m, sh), 943 (s, sh), 835 (m, sh), 768 (m, sh). 

GC-MS (EI): tR = 9.79 min, m/z = 161 (100, [M+•]-[•COSHept], 146 (10, [M+•]-[•COSHept]-[•CH3]), 320 

(1, [M+•]). 

HR-MS (EI): m/z = [M+•] calc. for C20H32OS 320.2168, found 320.2160. 

 

S-Heptyl 2-(4-hydroxyphenyl)propanethioate (68) 

 

A flame dried RBF was treated with 4-acetoxysyrene (155 µL, 1.01 mmol, 1.0 eq.) which was dissolved 

in THFdry (2 mL) and was chilled in an ice bath. Afterwards, a degassed solution of sodium hydroxide 

(102 mg, 2.53 mmol, 2.5 eq) in water (0.5 mL) was added dropwise to the styrene solution and was 

stirred of 4 h. The reaction mixture was neutralized with HCl (2.5 mL, 1 M) and water (4 mL). The 

mixture was extracted with diethyl ether (2 x 5 mL). The combined organic phases were washed with 

brine (2 x 50 mL), dried over MgSO4, DCE (790 µL) was added via syringe and diethyl ether and THF 

were removed under reduced pressure.  

GP C was used to carbonylate 4-hydroxysyrene with 1.0 mol% catalyst and dist. HeptSH (210 µL, stored 

under N2, 1.34 eq) as a thiol component at RT by adding the DCE/4-hydroxysyrene solution directly to 

chamber B. No further CH2Cl2 was used.  

Purification by column chromatography (gradient CyH → CyH/ EtOAc 95:5) provided 68 as a bright 

yellow liquid (137 mg, 488 µmol, 48%)). Additionally, also the the acetylated product 64 was isolated 

as a bright yellow oil (91 mg, 283 µmol, 28%). 

 

C16H24O2S (280.43 g/mol) 
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Rf: 0.47 (CyH/ EtOAc 80:20) 

m.p.: Ambient temperature. 

1H-NMR (300 MHz, CDCl3) δH/ppm: 7.17 – 7.09 (m, 2H, ArH), 6.78 – 6.71 (m, 2H, ArH), 4.85 (br, s, 1H, 

OH), 3.76 (q, J = 7.1 Hz, 1H, ArCH), 2.85 – 2.68 (m, 2H, SCH2), 1.52 – 1.41 (m, 5H, ArCHCH3, 

SCH2CH2(CH2)4CH3), 1.31 – 1.10 (m, 8H, SCH2CH2(CH2)4CH3), 0.82 (t, J = 6.8 Hz, 3H, SCH2(CH2)5CH3). 

13C-NMR (101 MHz, CDCl3) δC/ppm: 201.9 (q), 154.9 (q), 132.3 (q), 129.2 (+), 115.5 (+), 53.4 (+), 31.7 

(-), 29.4 (-), 29.1 (-), 28.80 (-), 28.76 (-), 22.6 (-), 18.5 (+), 14.1 (+). 

FT-IR (ATR) 𝑣̃ (cm-1): 3399 (m, br), 2926 (s, br), 2855 (m, sh), 1655 (s, br), 1614 (m, sh), 1513 (s, sh), 

1446 (m, sh), 1215 (s, br), 947 (s, sh), 835 (s, sh), 764 (m, sh). 

GC-MS (CI): tR = 9.749 min, m/z = 281 (100, [MH+]), 121 (64, [MH+]-[•COSHept]). 

HR-MS (APCI): m/z = [MH+] calc. for C16H25O2S 281.1570, found 281.1581. 

 

S-Heptyl 2-(4-fluorophenyl)propanethioate (71) 

 

 

GP C was used to carbonylate dist. para-fluorostyrene (120 µL, 1.01 mmol) with 1.0 mol% catalyst and 

dist. HeptSH (210 µL, stored under N2, 1.34 eq) as a thiol component at RT.  

Purification by column chromatography (gradient CyH → CyH/ EtOAc 95:5) provided 71 as a bright 

yellow oil (257 mg, zz µmol, 91%). 

 

C16H23FOS (282.42 g/mol) 

Rf: 0.48 (CyH/ EtOAc 95:5) 

m.p.: Ambient temperature. 

1H-NMR (300 MHz, CDCl3) δH/ppm:  7.32 – 7.22 (m, 2H, ArH), 7.07 – 6.96 (m, 2H, ArH), 3.86 (q, J = 7.1 

Hz, 1H, ArCHCH3), 2.90 – 2.74 (m, 2H, SCH2), 1.51 (d, J = 7.1 Hz, 3H, ArCHCH3), 1.57 – 1.45 (m, 2H, 

SCH2CH2(CH2)4CH3), 1.34 – 1.18 (m, 8H, SCH2CH2(CH2)4CH3), 0.86 (t, J = 6.7 Hz, 3H, SCH2(CH2)5CH3). 

13C-NMR (75 MHz, CDCl3) δC/ppm: 201.2 (q), 162.1 (doublet, J = 245.8 Hz, q), 135.7 (doublet, J = 3.3 Hz, 

q), 129.4 (doublet, J = 8.0 Hz, +), 115.5 (doublet, J = 21.4 Hz, +), 53.4 (+), 31.7 (–), 29.4 (–), 29.1 (–), 28.8 

(–), 22.6 (–), 18.6 (+), 14.1 (+). 

19F-NMR (282 MHz, CDCl3) δC/ppm: - 115.8 (CF). 

FT-IR (ATR) 𝑣̃ (cm-1): 2930 (s, br), 2855 (m, sh), 1681 (s, sh), 1603 (w, sh), 1510 (s, sh), 1457 (m, br), 

1226 (s, sh), 1159 (m, sh), 999 (m, sh), 947 (s, sh), 835 (s, sh), 760 (s, sh). 
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GC-MS (EI): tR = 8.347 min, m/z = 123 (100, [M+•]-[•COSHept], 184 (3, [M+•]-[•Hept]). 

HR-MS (EI): m/z = [M+•] calc. for C16H23FOS 282.1448, found 282.1444. 

 

S-Heptyl 2-(4-chlorophenyl)propanethioate (72) 

 

GP C was used to carbonylate dist. para-chlorostyrene (120 µL, 1.00 mmol)  with 1.0 mol% catalyst and 

dist. HeptSH (210 µL, stored under N2, 1.34 eq) as a thiol component at RT.  Purification by column 

chromatography (gradient CyH → CyH/ EtOAc 95:5) provided 72 as a bright yellow oil (242 mg, 811 

µmol, 81%). 

 

C16H23ClOS (298.87 g/mol) 

Rf: 0.51 (CyH/ EtOAc 95:5) 

m.p.: Ambient temperature. 

1H-NMR (300 MHz, CDCl3) δH/ppm: 7.32 – 7.22 (m, 4H, ArH), 3.85 (q, J = 7.1 Hz, 1H, ArCH), 2.82 (m, 2H, 

SCH2), 1.50 (d, J = 7.1 Hz, 3H, ArCHCH3), 1.55 – 1.47 (m, 2H, SCH2CH2(CH2)4CH3), 1.33 – 1.18 (m, 8H, 

SCH2CH2(CH2)4CH3), 0.86 (t, J = 6.8 Hz, 3H, SCH2(CH2)5CH3). 

13C-NMR (75 MHz, CDCl3) δC/ppm: 200.9 (q), 138.5 (q), 133.3 (q), 129.2 (+), 128.8 (+), 53.6 (+), 31.7 (–

), 29.4 (–), 29.2 (–), 28.8 (–), 22.6 (–), 18.5 (+), 14.1 (+).  

FT-IR (ATR) 𝑣̃ (cm-1): 2926 (s, sh), 2855 (m, sh), 1685 (s, sh), 1491 (s, sh), 1457 (m, br), 1092 (s, sh), 943 

(s, br), 821 (s, sh), 757 (s, sh). 

GC-MS (EI): tR = 9.329 min, m/z = 139 (100, [M+•]-[•COSHept], 103 (24, [M+•]-[•COSHept]-[HCl]). 

HR-MS (EI): m/z = [M+•] calc. for C16H23ClOS 298.1153, found 298.1155. 

 

S-Heptyl 2-(4-bromophenyl)propanethioate (73) 

 

GP C was used to carbonylate dist. para-bromostyrene (130 µL, 1.00 mmol) with 1.0 mol% catalyst and 

dist. HeptSH (210 µL, stored under N2, 1.34 eq) as a thiol component at RT.  

Purification by column chromatography (gradient CyH → CyH/ EtOAc 95:5) provided 73 as a bright 

yellow oil (248 mg, 722 µmol, 72%). 
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C16H23BrOS (343.32 g/mol) 

Rf: 0.46 (CyH/ EtOAc 95:5) 

m.p.: Ambient temperature. 

1H-NMR (300 MHz, CDCl3) δH/ppm:  7.49 – 7.42 (m, 2H, ArH), 7.22 – 7.15 (m, 2H, ArH), 3.84 (q, J = 7.1 

Hz, 1H, ArCHCH3), 2.81 (m, 2H, SCH2), 1.50 (d, J = 7.1 Hz, 3H, ArCHCH3), 1.55 – 1.46 (m, 2H, 

SCH2CH2(CH2)4CH3), 1.34 – 1.18 (m, 8H, SCH2CH2(CH2)4CH3), 0.86 (t, J = 6.8 Hz, 3H, SCH2(CH2)5CH3). 

13C-NMR (75 MHz, CDCl3) δC/ppm: 200.8 (q), 139.0 (q), 131.8 (+), 129.6 (+), 121.4 (q), 53.7 (+), 31.7 (–

), 29.4 (–), 29.2 (–), 28.8 (–), 22.6 (–), 18.4 (+), 14.1 (+). 

FT-IR (ATR) 𝑣̃ (cm-1): 2926 (s, br), 2855 (m, sh), 1685 (s, sh), 1487 (s, sh), 1457 (m, sh), 1074 (s, sh), 1010 

(s, br), 947 (s, sh), 828 (s, sh), 753 (s, sh). 

GC-MS (CI): tR = 9.683 min, m/z = 343 (97, [MH+]), 183 (26, [MH+]-[•COSHept). 

HR-MS (APCI): m/z = [MH+] calc. for C16H24BrOS 343.0726, found 343.0727. 

 

S-Heptyl 2-(6-methoxynaphthalen-2-yl)propanethioate (80) 

 

 

GP C was used to carbonylate 2-methoxy-6-vinylnaphthalene[35] (184 mg, 1.00 mmol) with 1.0 mol% 

catalyst and dist. HeptSH (210 µL, stored under N2, 1.34 eq) as a thiol component at RT.  

Purification by column chromatography (gradient CyH → CyH/ EtOAc 95:5) provided 80 as a as a white 

solid (317 mg, 919 µmol, 92%). 

 

C21H28O2S (344.51 g/mol) 

Rf: 0.32 (CyH/ EtOAc 95:5) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3) δH/ppm:  7.74 – 7.66 (m, 3H, ArH), 7.40 (dd, J = 8.5, 1.8 Hz, 1H, ArH), 7.17 – 

7.10 (m, 2H, ArH), 4.01 (q, J = 7.1 Hz, 1H, ArCH), 3.92 (s, 3H, ArOCH3), 2.90 – 2.75 (m, 2H, SCH2), 1.60 

(d, J = 7.1 Hz, 3H, ArCHCH3), 1.57 – 1.47 (m, 2H, SCH2CH2(CH2)4CH3), 1.35 – 1.15 (m, 8H, 

SCH2CH2(CH2)4CH3), 0.85 (t, J = 6.9 Hz, 3H, SCH2(CH2)5CH3). 

13C-NMR (101 MHz, CDCl3) δC/ppm: 201.5 (q), 157.8 (q), 135.2 (q), 133.9 (q), 129.4 (+), 129.0 (q), 127.2 

(+), 126.6 (+), 126.5 (+), 119.0 (+), 105.7 (+), 55.3 (+), 54.3 (+), 31.7 (–), 29.4 (–), 29.2 (–), 28.80 (–), 

28.77 (–), 22.6 (–), 18.5 (+), 14.1 (+). 
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FT-IR (ATR) 𝑣̃ (cm-1): 2926 (m, br), 2855 (w, sh), 1681 (s, sh), 1607 (m, sh), 1461 (m, sh), 1390 (m, sh), 

1267 (s, sh), 1033 (m, sh), 947 (s, sh), 850 (m, sh).  

HR-MS (APCI): m/z = [MH+] calc. for C21H29O2S 345.1883, found 345.1891. 

  

3-Methylbenzofuran-2(3H)-one (76) 

 

GP C was used to carbonylate dist. ortho-vinylphenol (121 mg, 1.00 mmol) with 1.0 mol% catalyst and 

dist. HeptSH (210 µL, stored under N2, 1.34 eq) as a thiol component at RT.  

Purification by column chromatography (gradient CyH → CyH/ EtOAc 95:5) provided 76 as a bright 

yellow oil (82.3 mg, 556 µmol, 56%). 

 

C9H8O2 (148.16 g/mol) 

Rf: 0.18 (CyH/ EtOAc 95:5) 

m.p.: Ambient temperature. 

1H-NMR (300 MHz, CDCl3) δH/ppm:  7.35 – 7.23 (m, 2H, ArH), 7.19 – 7.06 (m, 2H, ArH), 3.74 (q, J = 7.6 

Hz, 1H, ArCH), 1.58 (d, J = 7.6 Hz, 3H, ArCHCH3). 

13C-NMR (75 MHz, CDCl3) δC/ppm: 178.0 (q), 153.5 (q), 128.8 (q), 128.8 (+) 124.2 (+), 123.9 (+), 110.8 

(+), 38.4 (+), 15.9 (+). 
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2.4.3.4. Hydrothiolation control experiments 

Under inert conditions with a dtbpx/Pd/DPPA system, the presence of only one or two catalyst 

components usually gives a decreased yield (Table 4, entries 2-7) whereas if no catalyst components 

are present thioether is obtained in low yield ( Table 4, entry 1), possibly due to the presence of trace 

oxygen brought in during reaction set-up. If all the catalytic components are present under strictly 

inert conditions, no thioether is formed (Table 4, entry 8). The same applies to the dppdtbpf 

(L2)/Pd/DPPA system (Table 4, entries 9-10). We never found the corresponding branched thioether, 

which hints at the classical hydrothiolation pathway via a stabilized benzyl radical intermediate. 

We additionally screened for metal-catalyzed hydrothiolation activity in air by using inhibitor-

containing styrene (Sigma-Aldrich reagent grade plus) which slows down any radical chain mechanism. 

We obtained only a low yield of the thioether using our standard hydrothioesterification conditions 

(however in air in a pressure tube) when no catalyst was present (Table 4, entry 11).   A higher yield 

was obtained when all catalyst components were present (Table 4, entry 12). A ligand screening (not 

shown) did not give any improved results. We found that the same result could be obtained with 

palladium acetate (Table 4, entry 13). A solvent screening revealed that polar solvents increased the 

yield (not shown), the best being alcoholic solvents. At higher temperatures, the yield further increased 

(Table 4, entry 13), however it seems that the background reaction without any catalyst component is 

fast enough at this temperature (Table 4, entry 14) and becomes preparatively useful at 80 °C (Table 

4, entry 15). We interpret this as follows: A metal-catalyzed hydrothiolation pathway might be 

operative at lower temperatures with oxygen concentrations found in air whereas trace oxygen as 

found under "inert" conditions (even with inhibitor-free styrene) is not sufficient for such a reaction. 

At higher temperatures, the oxygen-initiated radical-chain hydrothiolation pathway is sufficiently fast 

enough to outcompete any metal-catalyzed hydrothiolation even in the presence of inhibitor. We did 

not exclude the possibility of other trace metals found in commercial palladium acetate or Pd(dba)2 

being responsible for hydrothiolation activity. 
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Supplementary Table 1: Hydrothiolation of styrene with heptanethiol under different conditions as shown below. 

 

 [Pd] L HX 
T 

(°C) 
Solv. t (h) 

eqv. 

RSH 

c. 

(%)[a] 

y. 

(%)[a] 
remarks 

1 - - - RT DCM 24 1.0 54 8 

dist Styrene, 

dist HeptSH, 

dry CH2Cl2 

2 - - 

7.5 

mol% 

DPPA 

RT CH2Cl2 24 1.0 52 3 

dist Styrene, 

dist HeptSH, 

dry CH2Cl2 

3 - 

2 

mol

% 

(L1) 

- RT CH2Cl2 24 1.0 53 7 

dist Styrene, 

dist HeptSH, 

dry CH2Cl2 

4 
0.5 mol% 

Pd(dba)2 
- - RT CH2Cl2 24 1.0 63 6 

dist Styrene, 

dist HeptSH, 

dry CH2Cl2 

5 - 

2 

mol

% 

(L1) 

7.5 

mol% 

DPPA 

RT CH2Cl2 24 1.0 57 3 

dist Styrene, 

dist HeptSH, 

dry CH2Cl2 

6 
0.5 mol% 

Pd(dba)2 

2 

mol

% 

(L1) 

- RT CH2Cl2 24 1.0 56 9 

dist Styrene, 

dist HeptSH, 

dry CH2Cl2 

7 
0.5 mol% 

Pd(dba)2 
- 

7.5 

mol% 

DPPA 

RT CH2Cl2 24 1.0 48 2 

dist Styrene, 

dist HeptSH, 

dry CH2Cl2 

8 
0.5 mol% 

Pd(dba)2 

2 

mol

7.5 

mol% 

DPPA 

RT CH2Cl2 24 1.0 46 0 

dist Styrene, 

dist HeptSH, 

dry CH2Cl2 
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 [Pd] L HX 
T 

(°C) 
Solv. t (h) 

eqv. 

RSH 

c. 

(%)[a] 

y. 

(%)[a] 
remarks 

% 

(L1) 

9[b] 
1.0 mol% 

Pd(dba)2 

4 

mol

% 

(L2) 

15 

mol% 

DPPA 

RT CH2Cl2 18 1.34 41 0 

dist Styrene, 

dist HeptSH, 

dry CH2Cl2 

10[b] 
1.0 mol% 

Pd(dba)2 

4 

mol

% 

(L2) 

- RT CH2Cl2 18 1.34 37 1 

dist Styrene, 

dist HeptSH, 

dry CH2Cl2 

11[c] - - - RT CH2Cl2 18 1.34 19 2 

Styrene + 

inhibitor, 

undist. 

HeptSH, "wet" 

CH2Cl2 

12[c] 
0.5 mol% 

Pd(dba)2 

2 

mol

% 

(L2) 

7.5 

mol% 

DPPA 

RT CH2Cl2 18 1.34 31 10 

Styrene + 

inhibitor, 

undist. 

HeptSH, "wet" 

CH2Cl2 

13[c] 
0.5 mol% 

Pd(OAc)2 

2 

mol

% 

(L2) 

7.5 

mol% 

DPPA 

RT CH2Cl2 18 1.34 33 10 

Styrene + 

inhibitor, 

undist. 

HeptSH, "wet" 

CH2Cl2 

14[c] 
0.5 mol% 

Pd(OAc)2 

2 

mol

%  

(L2) 

7.5 

mol% 

DPPA 

50 iPrOH 18 1.34 57 48 

Styrene + 

inhibitor, 

undist. 

HeptSH, "wet" 

iPrOH 

15[c] - - - 50 iPrOH 18 1.34 58 49 
Styrene + 

inhibitor, 
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 [Pd] L HX 
T 

(°C) 
Solv. t (h) 

eqv. 

RSH 

c. 

(%)[a] 

y. 

(%)[a] 
remarks 

undist. 

HeptSH, "wet" 

iPrOH 

16[c] - - - 80 iPrOH 18 1.34 95 79 

Styrene + 

inhibitor, 

undist. 

HeptSH, "wet" 

iPrOH 

Unless otherwise noted, reactions were carried out in argon-filled septum-capped vials using 1 mmol of styrene. Solid catalyst 

components were placed into the glass vials and then dissolved in CH2Cl2 (to give a 1 M solution of the styrene) and stirred 

for 2 min. Then, styrene and heptanethiol were added under Argon via the septum. Inhibitor means 4-tert-butyl catechol in 

the levels present in a bottle from Sigma-Aldrich (Reagent plus grade, >99%).  [a]: Determined by quantitative GC-FID analysis. 

[b]: Carried out with Schlenk technique under argon. [c]: Carried out under air in a pressure tube.  
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3. Nickel-catalyzed coupling of aryl zinc halides with thioesters 

3.1. Introduction 

3.1.1. Properties and uses of thioesters 

Thioesters are carboxylic acid derivatives, which are more reactive towards addition-elimination 

reactions than oxo-esters. Thus, the order of reactivity of carbonyl compounds towards nucleophiles 

is: amides < esters = carboxylic acids < thioesters < ketones < aldehydes < anhydrides < carboxylic acid 

halides. Along this reactivity order, the corresponding wavenumber of the C=O stretching IR-induced 

vibration increases as delocalization of C=O bond π electrons into the appended group decreases. 

Similarly, decreased delocalization strengthens the C=O bond by lesser donation of electrons from the 

appended group into the antibonding π*C=O orbital. The problem with the delocalization argument is 

that oxygen atoms are more electronegative than sulfur atoms, giving the latter more power for 

delocalization and thus C-O bond weakening, which is not observed experimentally (Scheme 3.1, top). 

 

Scheme 3.1: Using a combination of mesomeric structures and electronegativity arguments, one arrives at a prediction of 
reactivity that is contradicted by experimental results (top). Using the hybrid orbital approach (and remaining non-hybridized 
atomic orbitals) the increased reactivity of thioesters relative to oxoesters is explained by a partially disrupted delocalization 
due to orbital size differences (bottom). In terms of mesomeric structure arguments, the right-hand side structure becomes 
less important in the thioester case. 

 For carboxylic acid derivatives, which react by addition-elimination (as opposed to simpler addition 

reactions of aldehydes and ketones), the leaving group ability of the attached group is also a decisive 

factor. The leaving group ability of anions is often judged by the acid strength of the conjugate acid, 

i.e. a strong acid will have a conjugate base of excellent leaving group ability. In fact, thiols are stronger 

acids than alcohols (when the organic appendages are the same). On a molecular level, the relatively 

better leaving group ability of the thiolate anion could be explained by better delocalization of a 

negative charge on the larger sulfur atom (compared to the oxygen atom). 
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A similar reasoning and conclusion is found in a purely orbital-based analysis (Scheme 3.1, bottom), 

based on the interaction of the sp2-hybrid orbital of the carbonyl C-atom with the interaction of the 

sp2-hybrid orbital of the appended group heteroatom. Since hybrid orbitals are linear combinations of 

atomic orbitals, both 3s- and 3p-type atomic orbitals are employed for the construction of the S-atom 

centered sp2-hybrid orbital, whereas 2s- and 2p-type atomic orbitals are used for the construction of 

the O-atom centered sp2-hybrid orbital. The latter sort of atomic orbital is smaller than the former type 

(i.e. in 90% density isosurface) and has one more node. Thus, the C-S sp2-sp2 hybrid orbital overlap will 

be less efficient than the C-O sp2-sp2 hybrid orbital overlap. The same applies to the overlap of the 

remaining pz-orbitals of carbon and sulfur, which results in the decreased π-character of the C-S bond. 

This explains both the better leaving group ability of the thiolate (due to negative charge stabilization 

on the larger sp3-hybrid orbital centered on the heteroatom, compared to the alkoxide) and the higher 

electrophilicity of the thioester (due to disrupted delocalization, compared to the ester). A 2pz (on 

carbon) to 3d (on sulfur) interaction could also weaken the C=O bond, but such an interaction would 

have to rely on the correct orbital alignment as well as a favorable, small energetic difference between 

the 2p and 3d orbital, which is commonly thought to be not the case. 

The disrupted delocalization also causes an increased acidity of the α-anions of thioesters, which can 

aid in the so-called soft-enolization of thioesters, which can also be exploited in the laboratory.[1] This 

property is used by the enzyme citrate synthase, where a catalytic histidine residue causes soft 

enolization of acetyl-S-CoA (coenzyme A) to trigger aldol chemistry. The final, irreversible hydrolysis 

(around 31.4 kJ mol-1 in acetyl-S-CoA) of the high energy C-S bond drives the equilibrium aldol reaction 

to the product side. The high energy associated with thioester hydrolysis, which is comparable in 

exergonicity to ATP hydrolysis, has led to theories, which implicate thioesters in the emergence of early 

life and/or prebiotic self-replicators. In short,[2] thioester formation would occur near hot (to overcome 

the endergonicity of the reaction) deep sea vents rich in H2S (to facilitate thiol production). The 

reductive power necessary to explain the formation of H2S could then be explained by an inorganic 

process, namely the oxidation of Fe2+ to Fe3+ (resulting in large deposits of iron oxides found today). In 

this way, the thioester world elegantly link to the so-called iron-sulfur world.[3] The so-formed 

thioesters could then have acted as precursors for the formation of esters, amides and polymers 

thereof (giving a possibility for abiotic protein synthesis), which is known to occur experimentally. 

More speculatively, acyl phosphates and aldehydes have been proposed as prebiotic products of 

thioesters by de Duve.[2] In this world-view of life emergence, thioesters are ancient relicts in metabolic 

processes, much like the ribonucleic component in the ribosome is put forward by proponents of the 

RNA world.[4] However, due to lack of clear evidence pointing in only one direction, the thioester world 

and competing theories are under constant scrutiny and proponents of these theories engage in 

heated debates.  
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The comparison of such theories is beyond the scope of this thesis. It is however interesting to note, 

that many of the (pre)biotic reactions of thioesters have emerged as immensely useful laboratory 

reactions when catalyzed by transition metals (see sections below).[5] Thus, it is tempting to speculate 

that, should the thioester world theory be right, these reactions were likely catalyzed by transition 

metals, which would give an early prebiotic-chemical evolutionary advantage for faster (catalyzed) 

thioester-forming and breaking reactions. Besides utilization of thioesters in biological and synthetic 

aldol chemistry (both as nucleophiles and electrophiles), the transition-metal catalyzed activation of 

thioesters (leading to organometallic intermediates) in nature is not too common. In this context, it 

should be noted that a recent (2016) genetic analysis concluded that the last universal common 

ancestor likely utilized CO2 (carbon source) and H2 (reductant) in the established Wood-Ljungdahl 

pathway to generate acetyl-S-CoA by Nickel catalysis (acyl CoA synthase, coupled with CO 

dehydrogenase, see Scheme 3.2).[6] The reverse pathway is utilized by methanogenic bacteria, which 

then must include cleavage of the thioester bond by this Ni-containing enzyme.[7]  

 Acetyl CoA synthase (ACS) is a tetrameric protein with a total mass of 310 kDa.[7] The organometallic 

active site is called the A-cluster. It is a protein-complexed (through the backbone atoms and cysteine 

residues) assembly of a cubane-type [Fe4S4]-cluster, linked by a bridging thiolate (from a Cys residue) 

to the proximal Ni atom (termed Nip), which is in turn connected via bridging thiolates (again from Cys 

residues) to a distal Ni atom (termed Nid). Only Nip is catalytically active. Both diamagnetic (Ni0/II redox 

cycles) and paramagnetic (NiI/II/III) catalytic mechanisms are under discussion, but Ni(0) states are 

suspected to be improbable under physiological conditions and near other electropositive metal 

centers in the cluster.[7] The paramagnetic mechanism is depicted (Scheme 3.2). The A-cluster is initially 

reduced at the proximal site from Ni(II) to Ni(I) (complex A), followed by recombination with an acetyl 

radical, which is generated from reductive cleavage of acetyl-S-CoA to regenerate a Ni(II) acetyl species 

B. This undergoes migratory deinsertion to give a Ni(II) methyl carbonyl species C, which is able to 

deliver the electron necessary for initial thioester reduction (internal SET), giving a Ni(III) methyl 

carbonyl intermediate (not shown). This intermediate undergoes a redox reaction with a Co(I) species 

(found in the corrinoid iron-sulfur protein, CFeSP) to give a Co(III) methyl species and a Ni(I) carbonyl 

species D. The Ni(I) carbonyl must undergo thermodynamically unfavourable ligand loss to restart the 

cycle. 
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Scheme 3.2: Paramagnetic mechanism of Acetyl-CoA synthase in the unusual reversed direction utilized by methanogenic 
bacteria, which involves cleavage of acetyl-CoA by a Ni(I) species. 

The complex enzymatic machinery capable of activation of thioesters using Ni-based organometallic 

chemistry is clearly an inspiration for developing Ni-based catalytic methods, which utilize thioesters 

in decarbonylative and CO-retentive couplings for the formation of C-C bonds. However, the synthesis 

of thioesters requires more energy than the synthesis of oxo-esters, and commonly active esters are 

employed for the synthesis of thioesters from a carboxylic acid and a thiol. Metal-catalyzed synthetic 

methods also offer active-ester-free routes towards thioesters, e.g. the oxidation of a thiol and an 

aldehyde to give a thioester and H2,[8] or the hydrothioesterification of alkenes (Chapter 2),[9] among 

others.[5] Methods, which do not require covalent chemical energy for the dehydratization reaction 

would be highly attractive, e.g. coupling the activity of acylases with regeneratable molecular sieves 

to achieve thioesterification.[10] 

3.1.2. Synthesis of ketones by reaction of thioesters with organometallic reagents 

The reaction between selected organometallic reagents (d1 type) and some carboxylic acid derivatives 

(a1 reagents) can selectively furnish ketones (Scheme 3.3). The general text book known challenge is 

that the formed ketones are usually more reactive and often alcohols are formed as main products. 

Compounds such as Weinreb amide[11] 1 or Staab-Jost imidazolide[12] 2 are examples of amides that 

furnish ketones with Grignard reagents in the absence of any catalyst due to the formation of a chelate 

intermediate. Thioesters 3 constitute attractive alternatives to these compounds. While the 
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significantly more activated S-(2-pyridyl)thioesters, which presumably can also form a stoichiometric 

chelate,[13] fall partially into the area of classical a1 reagents, other thioesters can be employed in the 

presence of a transition metal catalyst. In this case, two mechanistic scenarios are plausible: low-valent 

transition metal species undergo oxidative addition into the C-S bond (Scheme 3.3, A) or the thioester 

is the acceptor in a single electron transfer (SET) event (Scheme 3.3, B). It should be noted that a DFT-

based computational comparison of C-S bond dissociation energies (BDE’s) versus C-S bond activation 

energies by a Pd0 model complex of various thioesters has shown only a weak correlation.[14] It was 

then proposed, at least for the more noble transition metals, that a general cross-coupling catalytic 

mechanism is followed. Transmetalation liberates a thiolate from the complex, which is followed by 

reductive elimination to regenerate the low-valent transition metal complex and release the product.  

In the absence of a transition metal catalyst, only organocuprates were shown by Rosenblum to react 

cleanly with thioesters to give ketones,[15] presumably via a Cu(III) intermediate,[16] and not an 

addition/elimination sequence. This shows that effects other than the extent of C-M bond polarization 

of the organometallic coupling partner are relevant for a successful reaction of thioesters. On the other 

hand, it is also obvious that highly polar organometallic species (RLi, RMgX) should react with the 

formed ketones, which makes them disfavoured in ketone synthesis from thioesters in any case.  Other 

effects could for example be the thiophilicity[17] of the stoichiometrically employed metal to influence 

the thermodynamics of the transmetalation step. Liberation of the thiolate during a reaction is the 

central problem when thioesters are employed as acylating agents since effective sequestration of this 

species must take place during the reaction to avoid a poisoning effect, a problem highly pronounced 

with late, thiophilic transition metals. In the following sections, selected examples on successful 

utilization of thioesters in ketone synthesis in metal-catalysed reactions will be discussed. 
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Scheme 3.3: Thioesters are alternatives to classic reagents for the a1 synthon in the synthesis of ketones. Activation with 
group 10 metals is proposed to follow pathway A, whereas activation with low-valent base metals could follow pathway B.  
BDE: Bond dissociation energy. SET: Single electron transfer. TE: Thioester. 
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3.1.2.1. Pd-catalyzed reactions 

In 1998, Fukuyama and co-workers reported a seminal Pd-catalyzed ketone synthesis from S-ethyl 

thioesters employing primary alkyl- and aryl zinc reagents (1.5 to 3.0 equivalents) – now known as the 

Fukuyama coupling.[18] As expected with organozinc reagents, the functional group tolerance is 

excellent both in nucleophile as well as electrophile. The reaction proceeded with 5 – 10 mol% 

PdCl2(PPh3)2 in THF or toluene at RT in 5 min to 3 h, giving isolated yields ranging from 50 to 99%. This 

reaction has been applied by Fukuyama in his synthesis of (+)-Haplophytine (Scheme 3.4).[19] The 

thioester group was carried through two synthetic steps unharmed, and then engaged in coupling with 

a functionalized alkylzinc iodide reagent to give compound 6.  

 

Scheme 3.4: Fukuyama's total synthesis of (+)-haplophytine employs the Fukuyama coupling reaction to give a synthetic 
fragment 6 in the early stages. Ms: Mesyl, PhthN: Phthalimide. 

This reaction has been found in additional reports to proceed without ancillary ligand[20] or even with 

Pd/C,[21] from which was inferred by further experimentation that both heterogeneous and 

homogenous catalytic cycles are operative in the Pd/C-catalyzed Fukuyama coupling.[22] The reaction 

has since then been expanded to accommodate secondary organozinc coupling partners.[23] Notably, 

a highly stereoconvergent catalytic system, which forms tertiary stereocenters from racemic benzyl 

zinc reagents and thioesters 7, has been disclosed by Maulide’s group (Scheme 3.5).[24] They employed 

an enantiopure chiral phosphoramidite ligand (L1) as the stereoinducing element to affect a dynamic 

kinetic resolution (DKR) of the zinc reagent to give compounds of the type 8.  

Kishi pointed out that in the late stages of complex molecule synthesis, acylation chemistry should 

occur with optimally 1:1 stoichiometry of the coupling partners due to their high value with an 

additional high functional group tolerance. Thus, a one-pot Fukuyama reaction was developed by the 

group employing Pd2dba3 (5 mol%) and P(Cyclopentyl)3 (10 mol%) in DMI at RT for 1 day (Scheme 

3.6).[25] The aim was to extend the methodology into a macroketocyclization method in the synthesis 

of Eribulin. It should be noted that this reaction is not only one-pot but it also belongs to the class of 

cross-electrophile couplings. Presumably, the alkyl bromide is converted to the alkyl iodide in the 
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presence of LiI, followed by insertion of Zn dust (activated by stoichiometric triethylsilyl chloride). 

Either the lithium iodide or lithium bromide present could additionally facilitate zinc insertion, as this 

is a well-known salt effect in organozinc preparations.[26] Depending on the exact substrate class, a 

combination of various metal-containing additives (Co-Phthalocyanine or NbCpCl4 as SET mediators, 

CrCl2 as a deaggregating species and alkyl radical trap) in substoichiometric amounts were necessary 

for consistent results with the most challenging substrates. The cross-electrophile coupling of 

fragments 9 and 10 (Scheme 3.6) shows an impressive functional group tolerance and insensitivity to 

detrimental aggregate effects, which can occur when coupling fragments with large molecular weights 

and different solubility behaviours. 

 

Scheme 3.5: Maulide’s synthesis of tertiary stereocenters by an enantioconvergent Fukuyama reaction. MTBE: methyl-tert-
butyl ether. 

These studies on intermolecular reactions were followed by a synthesis of the microtubule-

modulatory chemotherapeutic agent Eribulin (Halaven™, against breast cancer) featuring a 

macroketocyclization at a remarkably high concentration of 27 mM in DMI/THF. However, (super-

)stoichiometric amounts of Pd, ligand and additives were required for attaining an acceptable yield.[27] 

Other catalytic (Fe, Ni) variants of this cross-electrophile coupling have been published by Kishi using 

S-(2-pyridyl)thioesters[28] and subsequently applied in the total synthesis to some members of the 

halichondrin natural product series.[28b] 

Another milestone in this area is the Liebeskind-Srogl coupling, which was disclosed in 2000 (Scheme 

3.7).[29] Here, aryl boronic acids were employed to render the transformation especially facile with 



Chapter 3 

114 

respect to the stoichiometric coupling partner. In this case however, Pd-S bond activation in the 

transmetalation (or maybe C-S activation in the oxidative addition) step must be facilitated by an 

additional stoichiometric Cu(I) source (13). The copper-bound carboxylate anion is proposed to 

activate the boronic acid reagent; hence the transmetalation step is thought to encompass a ternary 

complex. Thirteen preparative examples with diverse functional groups were shown in isolated yields 

up to 93% using low catalyst loading in THF at 50 °C for 18 h.  

 

Scheme 3.6: Fukuyama-type cross-electrophile coupling of complex thioesters and alkyl bromides reported by Kishi.[61] 
TBDPS: Tert-butyl-diphenylsilyl, dba: dibenzylidenacetone, Cyp: cyclopentyl, Cp: cyclopentadienyl. 

Since then, the scope of stoichiometric coupling partners has been extended towards 9-BBN-based 

alkylboronates,[30] organostannanes[31] and organoindium[32] reagents. The indium variation does not 

require a stoichiometric Cu(I) source, which highlights again the requirement of sufficient thiophilicity 

of the stoichiometric transmetalating agent. A significant advance in this area has been made by 

Villalobos and the original inventors of the reaction, which now allows a Cu-catalyzed (5 mol%) aerobic 

variation of the reaction by fine tuning the thioester moiety to an S-acyl thiosalicylamide.[33]  An 

exhaustive description of the advances and variations in this area is not the aim of this chapter; the 

reader is referred to a specialized review.[34] 
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Scheme 3.7: The Pd-catalyzed, Cu-mediated Liebeskind-Srogl coupling of arylboronic acids with thioesters. TFP: tris(2-
furyl)phosphine. 

Similarly non-polarized stoichiometric coupling partners are organosilanes, which were employed 

(1.1 to 1.2 equivalents) by Van der Eyckens and co-workers in a thioester-Hiyama coupling.[35] This 

method requires stoichiometric activation by fluoride (2.0 equiv.) as well as copper iodide (1.0 equiv.) 

in THF at 60 °C combined with Pd(PPh3)4 (5 mol%) to give products ranging from 79% to 98% isolated 

yields in 0.5–3.5 h. The other end of the polarity scale concerning the organometallic partner was 

covered by the same group by developing a thioester-Kumada coupling,[36] where slow addition of the 

Grignard solution (1.2 equivalents) by a syringe pump at room temperature was key to success 

combined with a catalytic system consisting of Pd(dba)2 (5 mol%) and tris(2-furyl)phosphine (TFP) (10 

mol%) in a THF/N-methylpyrrolidone (NMP) solvent mixture with isolated yields ranging from 23–96%. 
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3.1.2.1. Ni-catalyzed reactions 

Seki and Shimizu were the first to report a mild Ni-catalyzed variant of the Fukuyama reaction by 

coupling (functionalized) aryl- and alkylzinc iodides with non-activated S-alkyl thioesters in 2002.[37] 

Interestingly, the reaction proceeds with simple Ni(acac)2  (10 mol% loading) without the need for 

ancillary ligands. Various alkyl/alkyl, aryl/alkyl and aryl/aryl ketones were obtained using this method 

in yields ranging from 33% to 89%. This method was applied by the authors to obtain a late stage vinyl 

sulfide intermediate 16 in the synthesis of (+)-biotin by a one-pot Fukuyama coupling/condensation 

sequence (Scheme 3.8). 

 

Scheme 8: Synthesis of the alkenyl sulfide intermediate 16 by a Ni-catalyzed Fukuyama coupling of thiolactone 15. acac: 
acetylacetonate, pTsOH: para-toluenesulfonic acid. 

Zhang and Rovis reported, rather as a side note in a study on the reactivity of acyl fluorides, a Ni-

catalysed variant of the Fukuyama coupling employing thioesters with diphenylzinc  at room 

temperature with short reaction times.[38] We think the comparison in reaction times between 

carboxylic acid derivatives conducted by the authors is highly instructive and highlights the differences 

in thioester activation. The reaction times with S-(2-pyridyl)thioesters are significantly shorter, hinting 

at their different intrinsic reactivity and/or ability of the corresponding thiolates to transmetalate at a 

transition metal center. Key to a successful reaction was the use of the highly active bidentate P,N-

ligand L2 together with 4-fluorostyrene as a transient -acidic ligand to facilitate reductive elimination 

from complex 19 (Scheme 3.9). 

The first Ni-catalysed cross-electrophile coupling of a S-(2-pyridyl)thioester with an alkyl iodide was 

described by Mukaiyama et al., who employed NiCl2 (10 mol%) in DMF at 50 °C together with three 

equivalents of zinc dust to afford a dialkyl ketone in 46% yield after 5 h, whereas reactions with the 

corresponding carboxylates were usually higher yielding.[39] Weix and Wotal significantly improved this 

reaction by employing NiCl2(dme)/L3 as the catalytic system with Zn as the reductant (Scheme 3.10).[40] 
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Scheme 3.9: Ni-catalysed coupling of thioesters using electron-withdrawing transient ligands. cod: 1,5-cyclooctadiene, 
pyphos (L2): 2-[2-(diphenylphosphanyl)ethyl]pyridine. 

The method was applied to generate valuable polyfunctional compounds, such as “clickable” Biotin 

derivative 21. In contrast to other organometallic functionalizations of Biotin, N-protection was not 

necessary, and the modest yield should be seen in relation with the reduced step count. The ketone 

linkage is an alternative to the usual amide bonds found in biotin derivatives, which are susceptible to 

hydrolysis by biotinidase. The possibility to employ downstream cross-coupling chemistry can also be 

introduced with no detriment as shown by the synthesis of a keto-boronate ester 23. 

 

Scheme 3.10: Ni-catalysed cross-electrophile coupling for the synthesis of highly functional ketones amenable to click-
chemistry (21) or cross-coupling (23). dtbpy: 4,4’-di-tert-butyl-2,2’-bipyridine, dme: 1,2-dimethoxyethane, DMAc: 
dimethylacetamide. 
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3.1.2.1. Fe-catalyzed reactions 

In 1985, Marchese and co-workers presented an Fe(acac)3-catalyzed (4.2 mol%) synthesis of ketones 

from S-phenyl thioesters by reaction with Grignard reagents (1.4 equiv.) at 0 °C in THF for 5–10 min 

(Scheme 3.11).[41] The obtained yields in 8 mmol scale were very good to excellent for primary, 

secondary and aromatic Grignard reagents, with the same variation possible in the thioester structure. 

Notably, the formation of a tertiary alcohol as a byproduct was not reported in this finding, meaning 

that the coupling reaction must be faster by several orders of magnitude. The reaction mechanism is 

unknown, but it stands to reason that low-valent ate species could be formed from a Grignard 

reagent/Fe(acac)3 mixture.[42] Despite the operational advantages of this method, the use of Grignard 

reagents limits the functional group tolerance that has become important in the synthesis of complex 

structures or generally for late stage functionalization approaches. 

 

Scheme 3.11: Convenient iron-catalyzed coupling of S-aryl thioesters with Grignard reagents shown by Marchese et al..acac: 
acetylacetonate. 

In addition, Oppolzer, de Brabander and co-workers could show that S-benzyl thioesters can also be 

applied using the same methodology (albeit with 10 mol% loading of Fe(acac)3, and slightly different 

conditions).[43] More importantly, enantiopure thioesters with enolizable stereogenic centers (α-

substituted thioesters) were converted to ketones with no erosion in enantiopurity observed. S-

Benzylic thioesters were chosen as substrates due to easy access from N-acylsultam chiral auxiliaries 

by ate-complex mediated thiolysis. However, the use of methyl-, vinyl- and allyl magnesium halides 

primarily led to the corresponding tertiary alcohols. This strategy was elaborated to produce more 

complex building blocks, e.g. an enantiopure intermediate 29 in the synthesis of (-)-serricorole, which 

contained an ester as well as a silyl ether-protected alcohol (Scheme 3.12). 



Nickel-catalyzed coupling of aryl zinc halides with thioesters 

   119 

 

Scheme 3.12: Synthesis of functionalized, stereopure fragements 29 and 31 employing the Marchese-Fiandese cross-
coupling. The thioesters were obtained by thiolytic cleavage of the amide-based chiral auxiliary. 
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3.1.4. Aims of this chapter 

It is known that, in comparison to organolithium and organomagnesium chemistry, organozinc 

reagents are generally well-behaved and do not show a strong background reaction with carbonyl 

groups.[44] On the other hand, organozinc reagents are still more reactive than metalloid-based 

organometallics and transmetalate well at transition metal centers. This makes them predestined for 

functional-group tolerant catalysis in complex molecule synthesis. The thioester group is stable to air 

and normal-phase chromatography and tolerates some orthogonal chemistries. 

Compared to the Pd-catalyzed Fukuyama reaction, the Ni-catalyzed Fukuyama reaction is less 

explored, and the mechanism is poorly understood in both cases. The major advantage is the presumed 

easier activation of the thioester C-S bond by low valent Ni compared to Pd complexes (see Chapter 

1). This type of catalysis is inspired by the Ni-containing enzyme acetyl-CoA synthase, and in principle, 

decarbonylative coupling pathways should be possible as well. Knochel described a facile preparation 

of turbo-aryl zinc reagents (LiCl-complexed) from turbo-aryl Grignard species,[45] which is so far 

unexplored in the Fukuyama reaction. The combination of this salt effect with Ni-based catalysts 

should result in a highly active Fukuyama catalytic system for the coupling of aryl zinc halides and 

challenging S-ethyl thioesters at moderate loadings of Ni metal at room temperature, which is 

investigated in this chapter. 
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3.2 Results and discussion 

3.2.1. Initial screening 

The Ni-catalyzed Fukuyama reaction (FR) was investigated using hexanoic acid S-ethyl ester (32) and 

the LiCl-adducted phenyl zinc chloride (33) to give hexanophenone (34) under various conditions 

(Table 3.1). 

The S-ethyl thioester (32) was chosen to ease purification. This choice deserves a short comment. A 

major drawback of the intermolecular Fukuyama reaction (in its original form) at the process scale is 

the generation of volatile, malodorous and toxic ethanethiol after acidic quenching. This means that 

the Fukuyama reaction will most likely stay a mainly laboratory-scale reaction unless major advances 

are made. In fact, the only reported process development-scale Fukuyama reaction is concerned with 

the activation of a thiolactone in the production of biotin.[46] The pendant thiolate re-attacks the 

formed ketone intermediate. Not only is this reaction relatively atom-economic but it also avoids the 

smell problem. Several attempts have been reported to counter above problems. Long-chain 

alkylthiols are known to be odourless due to their low volatility and have been employed in Fukuyama-

type reactions.[47] However, chromatographic elimination of these byproducts (together with the 

corresponding disulfides) can be troublesome, especially with low-polarity products.[48] Thiophenols, 

although more activated, usually combine the most unfavourable features, namely extreme malodour 

coupled with relatively low volatility. Thus, S-ethyl thioesters were chosen in this work. These 

represent the most challenging coupling partners (in the context of successful activation and leaving 

group ability) and yet afford the most straightforward purification (rotary evaporation after acidic 

quench). An unexplored alternative is the use of solid-phase bound thiols. 

33 was obtained by transmetalation from PhMgBr•LiCl with dry ZnCl2 in THF. The aryl zinc halide was 

chosen over the diaryl zinc since the latter was reported to be inactive in the Pd-catalyzed Fukuyama 

reaction.[18, 24] While the actual composition after transmetalation is PhZnX•LiX•MgX2 (with X = Br, Cl), 

the reagent will be abbreviated below as PhZnCl•LiCl. To the best of the authors knowledge, the 

structural details of such mixtures (containing both MgX2 and LiX salts) have not yet been elucidated. 

Like other salt-adducted organozinc reagents, such mixtures will likely have ate-type character.[49] The 

corresponding Grignard was obtained by direct insertion of Mg turnings in the presence of LiCl, which 

is an established procedure from the Knochel group.[45] The presence of LiCl accelerates the direct 

synthesis route so that Mg insertion often occurs at lowered temperatures (as opposed to reflux 

conditions), which broadens the scope of compatible electrophiles in the Grignard reagent. To achieve 

a stoichiometric transmetalation, the resulting Grignard reagents were titrated with I2/LiCl in THF.[50]  
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Table 3.1: Optimization of the Ni-catalyzed Fukuyama reaction of phenyl zinc chloride (33) with thioester 32 under various 
conditions. 

 

Entry Deviation from standard conditions Conv. 32[a]  Yield 34[a] Yield 35[a][b] 

1 1.2 equiv. 33 instead 82% 77% 14% 

2 Dropwise addn. of 33 70% 54% 7% 

3 0 °C, 2 h instead 79% 63% 10% 

4 No metal, no ligand 0% 0% 0% 

5 Addition of 32 to 33 86% 70% 16% 

6 5 mol% Ni(acac)2 instead 95% 87% 15% 

7 +5 mol% dtbbpy (L3) 95% 83% 19% 

8 5 mol% Fe(acac)3 instead 1% 1% 6% 

9 10 mol% Ni-NP instead 94% 76% 12% 

10 5 mol% Ni(xant)Cl2 (C1) instead 61% 61% 11% 

11 5 mol% Ni(xant)(oTol)Cl (C2) instead 89% 81% 9% 

12 5 mol% Ni(dppf)(oTol)Cl (C3) instead 72 59 10 

13 As 11, 1.5 h, 1.86 equiv. 33 97 91 5 

Reagents and conditions for standard run: 32 (63 mg, 333 µmol, 1equiv.), PhZnCl·LiCl (1.5 equiv.based on titre [typically 

0.25 M], in THF), anhydrous NiCl2 (2.2 mg, 16.6 mmol,5 mol%), dry THF (300 µL), RT, 30 min. [a] Determined by quantitative 

GC-FID analysis. [b] Based on 0.5*nPhZnCl. Acac:Acetylacetonate. dppf:1,1’-Diphenylphosphinoferrocene. dtbbpy: 4,4’-Di-tert-

butyl-2,2’-dipyridyl. NP: Nanoparticles. oTol: ortho-Tolyl, Xant:Xantphos (L4) 
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Another advantage of LiCl-adducted Grignard reagents is their increased reactivity towards 

electrophiles, although this behavior is not well-documented for organozinc reagents. Lewis-type 

activation of electrophiles and/or deaggregation of organozinc aggregates (to form ate-type species) 

are possible explanations for this behavior. 

Interestingly, the reaction catalyzed by NiCl2 (5 mol%) gave an acceptable yield of 34 at room 

temperature within 0.5 h reaction time. However, the discrepancy between conversion and yield was 

not satisfactory. During the reaction, the mixture turned deep black in color and a small exotherm was 

noted. After acidic quenching, organic-soluble dark precipitate was formed. Additionally, biphenyl (35) 

was detected as a byproduct. Maximally 10 mol% of biphenyl should form to reduce 5 mol% of Ni(II) 

precatalyst to active Ni(0) with 33. The formation of biphenyl was initially attributed to the fast 

addition of 33 carried out by syringe. However, the yield was worse than when slow addition was 

employed (entry 2). It was concluded at this stage that a large transient excess of 33 (due to fast 

addition) may be beneficial to overall yield. Similarly, lower amounts of 33 did not lead to an 

improvement in the selectivity profile (entry 2). Kinetic control (entry 3) combined with longer reaction 

time also led to no improvement. The possibility of a Lewis-acid catalyzed background reaction was 

also ruled out (entry 5). To enforce an artificial transient excess, the electrophile 32 was added to the 

solution of 33, but no improvement was found. Other Nickel salts were tested and exhibited no large 

difference in performance, whether in conjunction with diimine-type ligands or not (entries 6 and 7, 

further experiments shown in the experimental section). To test whether the coupling activity is due 

to residual Grignard reagent, iron catalysis was evaluated as a previously reported option.[41] Only 

traces of the product could be found in this case (entry 8).  

From these experiments, the question was raised if a heterogeneous catalytic mode was operating 

or at least partially relevant for productive turnover, as is the case in the Pd-catalyzed Fukuyama 

reaction. The insensitivity to ligand and salt variation, the insolubility of Ni salts, as well as particle 

formation were interpreted as hints towards this.[51] Thus, Ni boride nanoparticles (Ni-NPs) were 

prepared through the reduction of NiCl2 with sodium borohydride in THF under strictly inert conditions, 

as previously reported (and characterized).[52] The THF slurry of these nanoparticles proved to be 

catalytically active (entry 9), although the overall efficiency appears to be lowered (higher loading 

necessary). One advantage of employing NP as catalysts is their facile removal from the reaction 

mixture, since in this case no organic-soluble particles were noted and the NPs were simply filtered off 

with the aid of SiO2/celite. 

It was hypothesized that bidentate phosphine-ligated Ni complexes might hinder metal cluster 

formation and subsequently nanoparticle formation. Xantphos (L4) is a wide-bite angle diphosphine 

already known to be active in various Ni-catalyzed transformations (hydrocyanation,[53] alkyne 
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cyclizations[53]). The known, air-stable complex (as solid) C1 was synthesized by reaction of NiCl2(H2O)6 

with xantphos in boiling, degassed n-butanol. Although the activity of C1 was disappointing (entry 10), 

the amount of biphenyl (35) was much closer to the possible theoretical amount (10 mol%). Even more 

promising was the excellent conversion-to-yield selectivity (1:1). The Jamison group has reported 

several highly active precatalysts of the type L2Ni(oTol)Cl,[54] which require only a 

transmetalation/reductive elimination sequence to generate L2Ni(0). It was thought that rapid catalyst 

activation might be beneficial to overall reaction yield (as is the fast addition of 33), and indeed the 

use of C2 (synthesized from C1 by treatment with oTolMgCl in THF at low temperature) led to an 

improvement in overall yield, although the discrepancy between yield and conversion began to 

decrease again (entry 11). The commercially available dppf-based analogue C3 (also a wide-bite angle 

ligand) showed less satisfactory catalytic performance. A slight increase in the excess of 33 and 

extending the reaction time led to an excellent overall yield of 34, a smaller amount of biphenyl 35 and 

a small difference between yield and selectivity (entry 12). 

In conclusion, the high activity of bare nickel chloride in the Fukuyama reaction is tempting but is 

associated with selectivity issues. Thus, to achieve acceptable levels of selectivity, activity was tamed 

slightly using C2. Although this line of optimization is uncommon in Pd-catalyzed cross-couplings 

(where elaborate ligand design is used to activate challenging electrophiles), it appears to be 

worthwhile in Ni-catalysis.[55] The successful use of both a molecular precatalyst C2 (entry 12) and a 

heterogeneous (heterotopic) Ni-NP precatalyst (entry 9) is strongly similar to the Pd-catalyzed FR, 

where Pd/C (in various forms) was an equally effective catalyst. The only conclusion from these 

experiments is that the Ni-catalyzed FR may operate on both homotopic and heterotopic reaction 

pathways, which either intersect (termed “cocktail catalysis”[56]) or exist independently of each other. 

The question of open-shell reaction pathways will be addressed further below (section 3.2.4.). 
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3.2.2. Scope of thioesters 

With optimized conditions in hand, the FR of structurally varied thioesters with aryl zinc reagents was 

explored (Scheme 3.13). The S-ethyl thioesters were prepared from the corresponding carboxylic acids 

by Steglich esterification, which usually proceeded well (shown in the experimental part) and allowed 

purification by filtration over SiO2. In some cases, the N-acylurea byproduct had to be removed by 

chromatography. The synthesis of 34 was repeated on 1 g scale, giving a similar yield to the experiment 

evaluated with quantitative GC-FID. Various electrophilic groups are well-tolerated (40, 41, 46), 

although the yields are moderate. This is the major advantage over Grignard-based approaches, where 

the synthesis of bifunctional ketones would require protecting group operations. 

 

Scheme 3.13: Scope of the Ni-catalyzed Fukuyama reaction of S-alkyl thioesters with phenyl zinc chloride. Yields given are 
isolated unless stated otherwise. Reagents and conditions for standard run: Thioester (333 µmol, 1 eqv.), ArZnCl•LiCl (1.86 
eqv. based on titre [typically 0.25 M], in THF), C2 (12.7 mg, 16.6 µmol, 5 mol%), dry THF (300 µL), RT, 1.5 h. [a]: 2.86 eqv. of 4 
were employed. [b]: The thioester could not be isolated in pure form. Hence, the yield given is over two steps. [c] From Knochel-
type 4-Cl-C6H4ZnCl under standard conditions. [d] NMR yield. 

Similarly, heterocycles are well-tolerated (42 and 43) in this reaction. Although the synthesis of 43 

required a sacrificial amount of zinc reagent to deprotonate the indole ring, the yield was satisfactory. 

After chromatography, the product spontaneously crystallized from CDCl3. Again, this result highlights 

the advantage of zinc reagents in conjunction with Ni catalysis since protecting group operations are 

limited. Since Ni catalysts are known to tightly bind to alkene groups, the effect of these groups was 

also tested in catalysis to give the corresponding ketones (45 and 47). Usually, the reaction mixture 

rapidly darkens upon addition of the arylzinc reagent. In the presence of alkenes, the darkening of the 

reaction mixture was delayed compared to the usual case. Interestingly, alkene migration to the 

thermodynamically favoured position was noted in product 45, concomitant with the formation of 

both possible stereoisomers. A classical chain-walking mechanism with nickel hydride intermediates 
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appears unlikely due to the absence of obvious hydride donors. Thus, a Ni-catalyzed 1,3-H-shift to the 

thermodynamically more stable alkene is proposed which would involve nickel hydride intermediates 

(Scheme 3.14). 

  

Scheme 3.14: Explanation for the formation of product 45 by a Nickel-catalyzed 1,3-H-shift to the thermodynamically stable 
alkene regioisomer observed when terminal alkenes are employed as starting materials. 

Regioisomerization was not noted with product 47, although the thermodynamic sink in this case 

would be the formation of a conjugated product. In this case, the first isomerization step offers no 

thermodynamic stabilization and makes this pathway unfavourable. Additionally, the internal alkene 

is more hindered towards coordination by Ni compared to the terminal alkene.  

Although the yield was moderate, the successful synthesis of ketone 48 enables the use of fluorous-

ponytail tagging of aryl zinc reagents as a purification strategy.[57] Sterically challenging substituents 

were equally tolerated with only one methylene spacer, as in compound 49. However, more 

challenging acyclic secondary and tertiary thioesters gave the corresponding ketones in lower yield (50 

and 52). When cyclic secondary and tertiary thioesters were employed, the yields were even worse, 

and no product 53 was observed. When a mixture of terpyridine and NiCl2 was employed as the catalyst 

under otherwise same conditions, 51 was isolated in 87% yield and 53 in 62% yield. A strong ligand 

effect seems to be operative in the case of hindered thioesters. 
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3.2.3. Scope of aryl zinc reagents 

Next, structurally varied organozinc reagents were reacted with thioester 55 (Scheme 3.15) under 

optimized conditions with the aim to synthesize ketones 56 – 69. The results were compared to the 

yield of 50.  

 

Scheme 3.15: Scope of the Ni-catalyzed Fukuyama reaction of secondary thioester 55 with structurally varied aryl zinc halides 
leading to products 56 – 69. Thioester (333 µmol, 1 eqv.), ArZnCl•LiCl (1.86 eqv. based on titre [typically 0.25 M], in THF), C2 
(12.7 mg, 16.6 µmol, 5 mol%), dry THF (300 µL), RT, 1.5 h. 

Electron-donating aryl zinc reagents generally resulted in increased yields relative to compound 50 

(e.g. compounds 56, 67, 63), whereas electron-poor arylzinc reagents gave usually no product (60, 64, 

65, 67). The same conclusion can be made about coordinating 2-heteroarylzinc reagents, where the 

electron-rich reagent leading to the product 62 was successful whereas the electron-poor reagent 

leading to hypothetical product 69 was not successful. The similar performance of 4-fluorophenyl zinc 

chloride compared to phenyl zinc chloride can be explained by looking at the Hammett ϭ constant of 

both aryl residues, which is very similar.[58] Relatively bulky arylzinc reagents were also not effective, 

and the desired products 61, 65 and 66 could not be isolated. In these cases, the starting thioester 55 

and the respective aromatic hydrocarbons derived from the zinc reagents were detected by GC/MS 

after acidic quenching. 

Interestingly, a tandem Fukuyama-Migita reaction was observed when 4-chlorophenylzinc chloride 

was employed as the aryl zinc coupling partner. Intermediately formed EtSZnX presumably reacted 

with the 4-chloroarylketone to give 58. This reaction is explored in more detail in the next chapter. 

Disappointingly, alkyl-, alkenyl- and alkinylzinc reagents proved to be unreactive with 55 under 

standard conditions. There is generally no correlation between basicity of the carbanion to organozinc 
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reactivity, as there is in Grignard reagents. The reactivity order in organozinc reagents is general allyl 

> benzyl > aryl > alkenyl > alkyl > alkinyl.[44] 

In conclusion, the combined evidence points towards the transmetalation step as overall rate-

determining, since electron-poor organozinc reagents are weaker transmetalators. This result is also 

in line witch chemical intuition, since the high thiophilicity of Ni stabilizes an oxidative addition complex 

containing a Ni-bound thiolate anion, which must be displaced in an endothermic process to produce 

EtSZnX (X: Halide). 
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3.2.4. Mechanistic scenarios 

While there have been proposals for a possible mechanism of the Fukuyama reaction, a complete 

investigation to elucidate has not been reported in the literature (Pd- or Ni-catalysis) so far. A detailed 

examination of the mechanism is out of the scope of this work as well. The generally postulated 

mechanism for both Pd- and Ni-based FR follows a classic two valence electron (2 ve) cross coupling 

cycle, involving oxidative addition into the thioester, transmetalation and reductive elimination.  

Literature concerned with stoichiometric organometallic investigations of thioester activation 

however notes the occurrence of decarbonylation. Kundu reported that defined Pt-based oxidative 

addition complexes of thioesters underwent thermal decarbonylation (160 °C).[59] As can be expected 

for a 5d transition metal, thioester activation itself proceeded sluggishly (100 °C) and only with a five-

fold excess of thioester. Riordan reported the decarbonylative activation of S-aryl thioesters to alkyl 

nickel thiolates with stoichiometric (dppe)Ni(cod) or (depe)Ni(cod) (dppe: diphenylphosphinoethane, 

depe: diethylphosphinoethane).[60] Acyl nickel thiolate intermediates were only detected at low 

temperature by 31P-NMR. Various amounts of (dRpe)Ni(CO)2  and (dRpe)Ni (R = p, e) were detected as 

side products (not explicitly quantitated in the report). Love reported decarbonylative S-ethyl and -aryl 

thioester activation to alkyl nickel thiolates with (dtbpe)Ni(C6H6).[61] The reversibility of the reaction 

was also shown under CO atmosphere (1 atm). Again, the corresponding dicarbonyl complex was 

isolated. 

Based on the high stability of Nickel carbonyl complexes, it seems likely that such poisoned species 

are thermodynamic sinks and might offer a pathway to irreversible deactivation of FR catalysts. 

Secondly, no cross-coupled products derived from the corresponding alkyl nickel thiolates (from 

decarbonylation) were detected by GC/MS during this work, which would have implied a buildup of 

catalytically active (xant)Ni(CO)2. Thus, this species perhaps acts as a CO-reservoir for reversible 

decarbonylation occurring in the Ni-catalyzed FR.  

An alternative explanation for decarbonylation under reductive conditions is the existence of open-

shell (radical) reaction pathways. In the beginning of this work, a C-C-coupled product 72 from a 

decarbonylative processes was detected by GC/MS from the reaction with 70 and PhZnCl•LiCl with 

various Ni(II) salts and bipyridine-type ligands (Scheme 16a). The same behavior was not observed in 

the same extent with C2 as the catalyst. No decarbonylation of primary, secondary or tertiary 

thioesters was observed on attempted Ni-catalyzed FR with C2 or Ni(II)/bipyridine combinations. The 

initial hypothesis was that this occurred due to a single electron transfer (SET) reduction of the 

thioester, which produces first a ketyl radical anion,[62] which then fragments to an acyl radical and a 

thiolate anion. This proposed key step has precedent,[62] and both redox-neutral homolytic and 

photochemical activation of thioesters as well as reductive electrolysis of thioesters have been 
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reported to yield acyl radicals as highly reactive intermediates. The rest of this mechanism would then 

follow closely related couplings with redox active esters,[63] with the key difference that inhibitory CO 

is released as opposed to relatively innocent CO2 as in all modern redox-active ester (RAE) couplings.  

The difference in decarbonylative to non-decarbonylative product ratio with C2 vs. Ni(II)/diimine 

systems was then explained by a difference in ligand field strength, where the strong-field phosphine 

ligand would make an open-shell pathway unfavourable due to a high ligand-field stabilization energy 

(the energetical separation of the metal HOMO and LUMO), whereas the diimine-type ligands would 

provide lower ligand-field stabilization energy and thus allow radical pathways. 

However, a reaction with 2,2,6,6-tetramethyl-piperidine-N-oxide (TEMPO) as a radical trap led to a 

shutdown of reactivity both with C2 and Ni diimine complexes, which was a first warning sign that 

there might be another aspect to the previous analysis based on ligand-field arguments. It could be 

argued however, that TEMPO reacts with a variety of organometallic species and thus may poison any 

Ni-based catalytic cycle under formally reducing conditions. For example, the reaction of Et2Zn with 

TEMPO was reported.[64] Wolf reported the reaction of TEMPO with a Ni(I) complex.[65] In light of the 

oxidizing ability of electron-deficient radicals, this might not be surprising. In contrast, no 

decomposition of C2 was noted in the presence of TEMPO in THF overnight (conducted in air), again 

underlining the high stability of this precatalyst. Since oxidation through TEMPO might effect both 

catalyst deactivation by quenching Ni(I, II) states or consuming the organometallic reagent, another 

radical trap was investigated. 

It was found that the addition of ethyl acrylate to the reaction mixture leads to formation of product 

74 (detected by GC/MS) both with C2 or NiCl2 (Scheme 16b). There are two possible explanations for 

this behavior. First, there is the possibility of a radical (paramagnetic) pathway, where the previously 

mentioned acyl radical undergoes addition to ethyl acrylate, producing a stabilized radical which 

undergoes further coupling to give 74. The overall process would amount to a Fukuyama-Giese hybrid 

mechanism. The other possibility to generate this product would be the carbonickelation of ethyl 

acrylate, followed by further coupling to give 74 (diamagnetic mechanism). Both processes appear 

equally reasonable.  

However, the combined evidence from both types of experiments points towards a mechanism 

involving acyl radicals. While the detection of ethyl-acrylate trapped product alone may not be 

conclusive, the observation of decarbonylation for only one type of substrate is insightful. If the 

decarbonylative process was due to migratory deinsertion of a acylnickel(II) species, then the 

decarbonylation, at least in minor amounts would have been observed for all types of structurally 

varied thioesters, which was not the case. This is the strongest argument against a diamagnetic 

pathway being operative. 
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Scheme 3.16: Mechanistic investigations to discern open-shell reaction pathways (paramagnetic) from closed-shell pathways 
(diamagnetic). 

This conclusion is supported by the rate of decarbonylation of acyl radicals. Generally, the stability of 

acyl radicals decreases with increasing stability of the resulting decarbonylated radical,[66] which is also 

connected to the reaction rate. Most of these decarbonylations are endothermic, apart from the 

decarbonylation of benzylic-connected acyl radicals,[67] which is not only an exothermic process but 

also the fastest (kDCO = 8.1 x 106 – 1.5 x 108 s-1, depending on the benzylic substituents) of all acyl radical 

decarbonylation reactions (compared to 2.1 x 102 s-1 [primary], 1.4 x 104 s-1 [secondary] and 8.3 x 105 

s-1  [tertiary]).[66] Dimers of the acyl radical were not detected due to the Fischer-Ingold persistent 

radical effect, where the NiI complex is the persistent radical. The generated CO gas would then be 

instantly trapped by the Ni complex due to high affinity of Ni to form carbonyl complexes. This in turn 
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poisons the catalyst. In fact, none of the Ni-catalyzed Fukuyama reactions, which feature benzylic-

attached thioesters were particularly effective.  

The interesting feature of a ligand framework, which supports migratory insertion, such as xantphos, 

is that an intermediate decarbonylated product can be “rescued” by migratory insertion of the Ni-

bound CO into the Ni-C bond of the benzyl ligand. In turn, the rates of both irreversible decarbonylation 

and on-metal migratory (de)insertion will influence the product ratio of 71 to 72. Where the ancillary 

ligand might not be as effective in promoting migratory insertion, such as for 2,2’-bipyridine or 

analogues, the product ratio could then be changed, leading to the observed differences in product 

ratio shown in Scheme 16a. 

 

Scheme 3.17: A decarbonylated product is not direct proof of a radical pathway being operative. Ligand-dependent relative 
rates of migratory (de)insertion as well as the likelihood of Ni-C bond homolysis will affect the product distribution of 71 to 
72.  

The last question is what redox states of Ni are involved in the Fukuyama reaction catalyzed by C2 

when a SET step is included. The most likely candidates are NiI/II/III or Ni0/I/II cycles. A NiIII intermediate, 

which features three possible actor X-type ligands, would also give reductive elimination products of 

the type ArSR. These products were not observed with C2. It is known that the activation pathway of 

C2 by action of phenyl zinc reagents gives Ni(xant) by a transmetalation/reductive elimination 

sequence. Furthermore, a NiI state would readily react with an acyl radical, since it has inherent open-

shell character, whereas a NiII state would require a high-spin electron configuration. In summary, the 

combined evidence points to a Ni0/I/II cycle (Scheme 3.18). At the beginning of the reaction, C2 is 

activated by an aryl zinc reagent to give Ni(xant), which then promotes a SET reduction-fragmentation 

of the thioester to give an acyl radical and a NiI thiolate complex. This complex is short-lived since 

recombination with the acyl radical occurs generally before solvent cage escape and decarbonylation 

can take place. 
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Scheme 3.18: Proposed mechanism of the Fukuyama reaction catalyzed by C2. L2: xantphos. 

Only in extreme cases, where the decarbonylation is thermodynamically favoured and kinetically the 

fastest of all possible acyl radicals, decarbonylation takes place. In this case, the formed benzyl radical 

then recombines with NiI complex as the acyl radical would and is carried through the remaining cycle 

in the same manner. The oxidative addition NiII complex then undergoes a transmetalation step, 

followed by reductive elimination to release the coupled product and regenerate the Ni0 species. In 

summary, a classic cross-coupling mechanism is proposed, which however features a two-step SET 

oxidative addition microscopically. In Ni catalysis, such behavior is not unusual[68] and has been 

described early by Kochi in studies concerned with oxidative addition of Ni0 phosphine complexes into 

aryl halides.[69] 

To further strengthen this position, the following mechanistic experiments are proposed for follow-

up work: 1. Synthesis of the oxidative addition complex (xant)Ni(SR)(COR’) (77), from Ni(cod)2, 

xantphos and a simple thioester. Keeping the literature in mind, this complex may not be stable and 

lead to decarbonylated products. However, the sensitivity of oxidative addition to radical traps could 

be tested in this manner (as in the work of Kochi); 2. If complex 77 is sufficiently stable, it would be 

interesting to see if upon exposure to ethyl acrylate, carbonickelation to 78 occurs; 3. Attempt to carry 

out a Giese-Fukuyama reaction on conformationally locked dihydropyrone 79 (Scheme 16, bottom 

box). In the case of a diamagnetic mechanism involving carbonickelation, the product 80-syn would be 

obtained selectively; 4. Attempt to carry out a Giese-Fukuyama reaction with a tertiary thioester, 

where the Fukuyama reaction alone was sluggish presumably for steric reasons. By shutting down the 

competing pathway, more of the Giese-Fukuyama product should be obtained, since the intermediate 

radical formed by addition is less sterically hindered than the initial acyl radical. 
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3.3 Conclusion 

In summary, it was shown that a Xantphos-based Jamison pre-catalyst C2 (5 mol%) catalyzes 

operationally homogeneous Fukuyama reactions of LiCl-adducted aryl zinc halides with challenging S-

ethyl thioesters at room temperature within 1.5 h. So far, the reaction conditions limit the organozinc 

component to aryl zinc halides (the most reactive in the organozinc series), where electron-rich, non-

sterically hindered reagents perform best, as is usual for cross-coupling. However, the coupling of 

alkylzinc reagents with thioesters would be especially appealing in the context of natural product 

synthesis and is currently easily achievable with the Pd-catalyzed variant of the Fukuyama reaction. An 

increased molecular understanding of the differences between the Pd- and the Ni-based Fukuyama 

system concerning alkylzinc species is the most pressing issue of all in this area. 

There is a strong dependence of the thioester structure (primary > secondary > tertiary = aryl) on the 

overall yield using the Jamison precatalyst, which cannot be completely explained by steric effects. As 

expected for organozinc reactions, the functional group tolerance is excellent, and a variety of 

polyfunctional ketones could be synthesized in this manner. 

The first experimental proof that the Ni-catalyzed Fukuyama reaction features free acyl radical 

intermediates during a two-step SET-based oxidative addition of Ni(xant) into the thioester C-S bond 

was provided in this work. Previously, such intermediates could only be accessed by non-catalytic 

methods, except for one example employing photoredox catalysis. Further work should aim to 

strengthen this position, such as the further development of a hybrid Giese-Fukuyama reaction or the 

development of decarbonylative Fukuyama couplings. Furthermore, there are indications, but not 

proof, that the rate-determining step in the Ni-catalyzed FR could be transmetalation. Changing the 

stoichiometric metal or the ligand framework on Ni should give further insights in this area.  
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3.4. Experimental part 

3.4.1. General information 

All reactions with organometallic species were carried out under Ar atmosphere using dry glassware 

with the usual air-free techniques, unless noted otherwise. Dry THF was obtained either: by distillation 

of THF p.A. from purple-coloured sodium/benzophenone pots and stored over 3 Å MS (10 w/v%) in 

grease-free Strauß-type Schlenk flasks; use of Sigma-Aldrich anhydrous grade THF; storage of freshly 

distilled THF over microwave-activated 3 Å MS (20 w/v%, 3 days) in an Ar-flushed container with no 

large difference in performance. Chemicals were purchased from ABCR, Acros, Sigma-Aldrich, TCI or 

Merck. LiCl, Magnesium turnings and NiCl2(H2O)6 (p.A. grade) were supplied by the central chemical 

storage, University of Tübingen. ZnCl2 was supplied by either Sigma-Aldrich (anhydrous, >99.999% 

trace metals basis, stored in Schlenk tube) or Merck (Ph. Eur. Reagent grade) with no differences in 

activity; technical grade ZnCl2 proved to be unsuitable for the preparation of aryl zinc halide solutions. 

1,1-Diphenylethane (72) and 1,2-diphenylpropan-1-one (71) were obtained independently as 

calibration standards following literature procedures[S1]. Solvents for chromatography were distilled 

prior to use. NMR spectra were recorded using a Bruker Avance 400 (1H: 400 MHz, 13C: 101 MHz), 13C-

NMR and 31P-NMR experiments were performed in proton-decoupled mode, which is not noted 

explicitly. Chemical shifts are reported in parts per million relative to the residual NMR solvent signals 

and the J-coupling constants are given in Hertz with the usual designations for splitting patterns. HR-

MS and LR-MS(ESI) analysis was carried out by the mass spectrometry department of the Institute of 

Organic Chemistry, University of Tübingen. 

GC-MS was recorded on an Agilent 7820A GC system with Quadrupole MS Agilent 7820A (EI) by using 

dry hydrogen as carrier gas. An Agilent 190915-433UI column (30 m x 250 µm x 0.25 µm) was used. 

Program: Heating from 50 °C to 280 °C within 15 minutes. Constant column flow mode: 1.2 mL/min. 

 

GC-FID (flame ionization detection) analysis was carried out on an Agilent 7820A system using dry 

hydrogen as carrier gas. An Agilent 19091J-431 column (30 m x 320 µm x 0.25  µm) was used. Program 

50-280M12: Heating from 50 °C to 280 °C within 12 minutes. Constant column flow mode: 2.3 mL/min. 

In order to determine yields and conversions the internal standard method was used for quantitative 

GC-FID, see section 4 for determination of the respective response factors. 

 

Column chromatography was carried out using flash-grade SiO2 either manually or by a Puriflash 

system (Interchim), and TLC analysis was carried out using aluminium-backed plates coated with SiO2 

60 F254 (0.2 mm thickness) and the compounds detected under UV light (254 nm) or after staining with 

a KMnO4, Vanilin or Anisaldehyde TLC dip solution and gentle heating. 
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Definition of “Gradient” used below: In separations with the Puriflash system, a gradient was 

developed around a suitable (target spot Rf ~ 0.3) binary eluent combination X:Y (where the latter is 

the strong solvent, X+Y=100) that entailed the following program – 0 to 1 CV: isocratic Y/4, 1 to 11 CV: 

gradient to Y*2, 11 to 12 CV isocratic Y*2.  Flow rates: 23 g SiO2 50 µm - 15 mL/min, 37 g SiO2 50 µm – 

26 mL/min. 
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3.4.2. General procedures 

General procedure A (GP A): Steglich thioesterification[S²] 

Steglich esterifications were carried out with distilled dichloromethane under air. A RBF of suitable 

size with stirring bar was charged with a 0.1 - 1 M solution of the respective carboxylic acid (1.0 eqv.) 

in dichloromethane, followed by DMAP (5 - 10 mol%) and the thiol (1.0 – 4.0 eqv., noted in each 

experiment depending on the volatility of the free thiol and its disulfide and the volatility of the 

product). The flask was cooled to 0 °C, followed by addition of DIC (1.0 – 1.1 eqv.) by syringe. The flask 

was stoppered, stirred for 5 min at 0 °C, the ice bath removed and the reaction mixture allowed to 

warm to RT. The reaction mixture was stirred for 24 h or until completion as determined by TLC 

analysis. Dichloromethane was removed by careful rotary evaporation (especially important for 

volatile thioesters), followed by purification as detailed in individual experiments. 

General procedure B (GP B): Preparation of Knochel-type aryl zinc reagents 

Following a literature procedure[S3], Mg turnings (219 mg, 9.0 mmol, 1.5 eqv.) and LiCl (318 mg, 7.5, 

1.25 eqv.) were placed in a septum-capped oven-dried 25 mL Schlenk RBF with stirring bar which was 

flame-dried with a propane torch. After evacuating/refilling the still-warm (not hot) flask with Ar (3x 

repeated), the vessel contents were suspended in dry THF (3 mL), followed by addition of DIBAL-H (60 

µL of a 1.0 M solution in THF, 60 µmol, 1 mol%) at RT and stirring for 5 min (gas evolution may occur). 

The reaction vessel was cooled to 0 °C and the corresponding aryl bromide (6.0 mmol, 1.0 eqv.) was 

added (if liquid – if solid, a concentrated solution of the aryl bromide in dry THF was used instead). The 

reaction mixture was stirred for 10 min at 0 °C, then for 1 h at RT to give Grignard reagents with 0.7 M 

– 1.3 M concentration as determined by titration with I2/LiCl[50], which should be used immediately for 

transmetalation. 

The Knochel-Grignard reagents were transmetalated by addition to a dry THF solution of an 

equimolar amount of ZnCl2 (prepared by charging ZnCl2 into an oven-dried Schlenk RBF, flame-drying 

until the zinc chloride begins to melt, followed by vacuum/argon refilling cycles (3x) while the flask is 

still warm and dissolving the zinc chloride in the appropriate amount of dry THF by syringe addition) at 

RT, then stirring at the same temperature for 15 min, targeting a concentration of 0.25 M. During 

addition, precipitates formed in some, which redissolved when an equimolar amount of Grignard 

reagent was added. The reagents were in some cases titrated with the I2/LiCl method[50] or the 

concentration determined by calculation of the dilution after transmetalation from the titrated 

concentration of the corresponding Grignard reagent. 
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General procedure C (GP C): Ni(xant)(oTol)Cl-catalyzed Fukuyama reaction (0.333 mmol) 

A heat gun-dried 10 mL Schlenk tube with stirring bar and rubber septum under Ar was charged with 

C2 (5 mol%), the thioester (1 eqv., 333 µmol) and dry THF (300 µL). The resulting orange-red solution 

was stirred rapidly, followed by addition of the respective Knochel-type aryl zinc halide in THF (1.86 

eqv. based on the calculated titre., see GP B) by syringe. In most cases, a deep black color developed 

within seconds. The reaction mixture is stirred for 1.5 h at RT and quenched with 1 M aq. HCl (1 – 2 

mL) and diluted with diethyl ether (4 mL). The phases are separated and the organic phase washed 

with sat. aq. NaHCO3 (5 mL), then sat. brine (5 mL). The combined aq. Phases were re-extracted with 

diethyl ether (4 mL). The combined organic phases were dried over MgSO4 and filtered to give the 

crude products after solvent removal by rotary evaporation. The crude products were purified by 

distillation or column chromatography.  

General procedure C (GP D): NiCl2/terpy-catalyzed Fukuyama reaction (0.333 mmol) 

A heat gun-dried 10 mL Schlenk tube with stirring bar and rubber septum containing anhydrous NiCl2 

(2.2 mg, 16.65 µmol, 5 mol%) under Ar was charged with terpyridine (3.9 mg, 16.65 µmol, 5 mol%), 

thioester (1 eqv., 333 µmol) and dry THF (300 µL). The resulting suspension was stirred rapidly, 

followed by addition of the respective Knochel-type aryl zinc halide in THF (1.86 eqv. based on the 

calculated titre., see GP B) by syringe. In most cases, a deep black color developed within seconds. The 

reaction mixture is stirred for 1.5 h at RT and quenched with 1 M aq. HCl (1 – 2 mL) and diluted with 

diethyl ether (4 mL). The phases are separated and the organic phase washed with sat. aq. NaHCO3 (5 

mL), then sat. brine (5 mL). The combined aq. Phases were re-extracted with diethyl ether (4 mL). The 

combined organic phases were dried over MgSO4 and filtered to give the crude products after solvent 

removal by rotary evaporation. The crude products were purified by distillation or column 

chromatography.  
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3.4.3. Experimental procedures and analytical data 

3.4.3.1. Synthesis of Ni(xantphos)(oTol)Cl (C2)  

Step 1, Ni(xant)Cl2 

An n-Butanol (25 mL) solution of NiCl2 hexahydrate (p.a. grade, 798 mg, 3.36 mmol, 1 eqv.) was 

sparged with Argon for 15 min (step A). The resulting green solution was added to Xantphos (2.06 g, 

3.36 mmol, 1 eqv.) contained in a dry, Argon-flushed three-necked RBF with stir bar and attached 

condenser. The reaction mixture was heated for 2 h in an oil bath (120 °C) under Ar (step B), then 

allowed to cool down to RT by removal from the oil bath. A purple suspension slowly formed (step C). 

The suspension was cooled to 0 °C for 10 min, then quickly filtered under air by vacuum over a P3 frit 

(step D). The product was collected and immediately placed under high vacuum vacuum to dry for 1 h, 

then was backfilled with Ar. The final paramagnetic product (2.14 g, 3.02 mmol, 90%) has a grey-purple 

appearance and was carried on to the next step without further analysis. 

Step 2, Ni(xant)(oTol)Cl (C2) 

A 50 mL Schlenk RBF with a 1.5 cm long teflon stirring bar and rubber septum was flame dried with a 

propane torch under vacuum and then refilled with Ar (step A). While the glass was still warm, the 

rubber septum was removed, and Ar flow was stopped. Using a solid addition funnel, Ni(xant)Cl2 (1.04 

g, 1.47 mmol, 1 eqv.) was charged into the RBF (step B). The flask was refitted with the rubber septum 

and evacuated for 5 min, then refilled with Ar (repeated twice, step C).  The purple-grey solid was 

suspended in dry THF (30 mL, Aldrich anhydrous), cooled to 0 °C (ice-water bath) and stirred vigorously 

(~1000 rpm, steps D and E). Ortho-Tolylmagnesium chloride (2.46 mL of a 0.6 M solution [freshly 

titrated] in THF, Aldrich) was added by a gas-tight Hamilton Luer-Lock syringe in a dropwise manner 

into the center of the vortex of the stirred suspension (step F). A colour change towards dark red 

occurred during addition. The mixture was stirred at 0 °C for 15 min. Under an Ar flow, the stirring bar 

was removed magnetically (step G). THF was removed by careful vacuum evaporation using a tepid 

water bath (a filter frit is recommended, step H), leaving behind an orange-red residue (step I) which 

was suspended in Ar-sparged (15 min) MeOH (5 mL added by syringe, HPLC grade). The suspension 

was agitated by sonication and swirling to remove most of the residue from the Schlenk RBF walls (step 

J). The suspension was cooled to 0 °C briefly, then rapidly vacuum filtered over a P3 glass frit under air, 

followed by washing with cold diethyl ether (dist., 2x 15 mL from a -20 °C freezer). The filter cake was 

dried in high vacuum to yield a fine orange-yellow powder (991 mg, 1.30 mmol, 88%) as the product 

(step K).  We were unable to record a standard 13C-NMR spectrum for this compound. 13C-NMR analysis 

is also absent from other literature reports concerning C2. 
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m.p.: 195 °C (dec.) [Lit.: 194 – 196 °C (dec.)] 

1H-NMR (400 MHz, Tol-D8, δ): 8.64 – 8.57  (m, 4H), 7.22 – 7.18 (m, 2H), 7.27 – 7.22 (m, 2H), 7.09 – 7.07 

(m, 6H, overlaps with residual toluene signals), 6.84 – 6.75 (m, 4H), 6.65 (t, J = 7.5 Hz, 5H), 6.60 – 6.54 

(m, 4H), 6.51 (d, J = 7.3 Hz, 1H), 6.31 (t, J = 6.2 Hz, 1H), 5.64 – 5.56 (m, 2H), 3.71 (s, 3H), 1.55 (s, 3H), 

1.51 (s, 3H). Contains THF solvate: 3.45 (m, 4H), 1.45 (m, 4H). 

31P-NMR (162 MHz, Tol-D8, δ): 7.42 (s, major), 2.10 (s, minor).  

MS (ESI): m/z 727.1 ([M+-Cl]) 
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3.4.3.2. Screening, optimization and control experiments 

Supplementary Table 1:  Results from screening/optimization and control experiments obtained by quantitative GC-FID 

 

Screening procedure 

A heat gun-dried 10 mL Schlenk tube with stirring bar and rubber septum under Ar was charged with 

the appropriate catalyst, the thioester 32 (1 eqv., 333 µmol) and dry THF (300 µL). The resulting 

solution or suspension was stirred rapidly, followed by addition of the Knochel-type phenyl zinc halide 

33 in THF (the appropriate indicated equivalents based on the calculated titre., see GP B) by syringe. 

The reaction mixture was stirred for the indicated time at the indicated temperature and quenched 

with 1 M aq. HCl (1 – 2 mL) and diluted with diethyl ether (3 mL), followed by addition of a carefully 

measured amount of n-pentadecane (50 or 100 µL, dispensed by Hamilton microliter syringe) as the 

internal standard.  An aliquot of the organic phase was filtered over a pasteur pipette plug of MgSO4, 

basic Aluminium oxide and flash grade SiO2 into a GC vial (ca. ¼ full) followed by addition of dist. 

dichloromethane into the vial. The prepared sample was analysed by quantitative GC-FID to determine 

yield, conversion and biphenyl byproduct. 

Anhydrous NiCl2 

Obtained by heating green NiCl2(H2O)6 in a Schlenk vessel under vacuum until a yellow solid was 

obtained. The Schlenk vessel was then refilled with Ar gas and allowed to cool to RT. 
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NiB nanoparticles, THF suspension 

The procedure by Sato, Mashima and co-workers, who characterized the nanoparticles so obtained, 

was followed[52]: Sodium borohydride (1.4 mg, 38 µmol, 1.5 eqv.) and Ni(acac)2 (6.4 mg, 25 µmol, 1 

eqv.) were charged into a flame-dried Schlenk RBF with stirring bar under nitrogen. The solids were 

treated with dry THF (1.25 mL) and the reaction mixture stirred for 4 h at RT. A deep black suspension 

slowly formed. The nanoparticles were immediately used without further characterization as a 20 mM 

suspension (stirred!) in THF under nitrogen. 
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3.4.3.3. Detection of an acrylate-trapped acyl radical by GC/MS(EI) and NMR 

The screening procedure was performed with added ethyl acrylate (2 eqv. relative to the thioester, 

0.666 mmol, 71 µL added before addition of the zinc reagent) both with NiCl2 and C2. The Fukuyama 

product was quantitated by our normal GC-FID method and the acrylate-trapped byproduct 33 was 

analyzed qualitatively by GC/MS and NMR of an enriched column chromatography fraction. The 

byproduct was formed in both cases, hinting at a radical pathway operative with the two Ni catalysts. 

 

 

Supplementary Scheme 1: Detection of the molecular ion of the intercepted acyl radical and fragments thereof by GC/MS 
(EI). 
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3.4.3.4. Synthesis of thioesters 

S-Ethyl hexanoic acid thioester (32) 

 

Obtained through GP A by employing hexanoic acid (10.75 mL, 86.1 mmol, 1 eqv.), DMAP (1.05 g, 8.6 

mmol, 10 mol%), EtSH (25.5 mL, 344.4 mmol, 4 eqv.) and 5 h reaction time in DCM (87 mL). The 

resulting precipitate was filtered over a P3 glass frit, the filtrate was freed from solvent and excess 

EtSH by rotary evaporation. The crude product was purified by column chromatography on SiO2 

(PE:Et2O 97.5:2.5 – 95:5 v/v), giving the product 1 as a colourless liquid (7.3 g, 45.6 mmol, 53%) with a 

distinct light sweet odor. 

160.28 g/mol 

Rf: 0.23 (PE:Et2O 97.5:2.5) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 2.80 (q, J = 7.4 Hz, 2H), 2.51 – 2.41 (m, 2H), 1.67 – 1.53 (m, 2H), 1.24 
(dq, J = 7.5, 3.4 Hz, 4H), 1.18 (t, J = 7.4 Hz, 3H), 0.87 – 0.76 (m, 3H). 
 
13C-NMR (101 MHz, CDCl3, δ):  199.7, 44.1, 31.1, 25.4, 23.2, 22.3, 14.8, 13.9. 
 
HR-MS (APCI): calc. for [M+H]+ m/z 161.09946, found  161.09977. 
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S-Ethyl 2-ethylhexanoic acid thioester (55) 

 

Following GP A, 2-ethyl hexanoic acid (1.58 mL, 10 mmol, 1 eqv.) was coupled with EtSH (721 µL, 10 

mmol, 1 eqv) using DIC (1.57 mL, 10 mmol, 1 eqv.) and catalytic DMAP (61 mg, 0.5 mmol, 5 mol%) in 

DCM (50 mL) for 24 h to give the product as a colourless oil, having a sweet odor, (1.86 g, 9.88 mmol, 

99%) after the usual workup and column chromatography on SiO2 (PE:EA 97.5:2.5 v/v). 

188.33 g/mol 

Rf: 0.64 (UV, PE:Et2O 97.5:2.5) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 2.80 (q, J = 7.4 Hz, 2H), 2.38 (tt, J = 8.6, 5.4 Hz, 1H), 1.67 – 1.52 (m, 2H), 
1.50 – 1.32 (m, 2H), 1.29 – 1.13 (m, 7H), 0.88 – 0.76 (m, 6H). 

 

13C-NMR (101 MHz, CDCl3, δ): 203.7, 56.1, 32.3, 29.4, 26.0, 23.0, 22.7, 14.9, 13.9, 11.7. 
 

HR-MS (APCI): calc. for [M+H]+ m/z 189.13076, found  189.13099. 

S-Ethyl gemfibrozil thioester (SM52) 

 
 
Following GP A, gemfibrozil (2.5 g, 10 mmol, 1 eqv.) was coupled with EtSH (721 µL, 10 mmol, 1 eqv.) 

using DIC (1.57 mL, 10 mmol, 1 eqv.) and catalytic DMAP (122 mg, 1 mmol, 10 mol%) in DCM (50 mL) 

for 24 h to give the product as a colourless oil (280 mg, 1.12 mmol, 11%) after removal of volatiles, 

absorbing the crude product on SiO2 and flash chromatography on SiO2 (gradient PE:EA 98:2 v/v). 

 
294.45 g/mol 

Rf: 0.32 (97.5:2.5 PE:EA) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.07 (d, J = 7.0 Hz, 1H), 6.73 (d, J = 7.7 Hz, 1H), 6.68 (s, 1H), 3.98 (t, J = 5.4 
Hz, 2H), 2.93 (q, J = 7.4 Hz, 2H), 2.38 (s, 3H), 2.27 (s, 3H), 1.92 – 1.72 (m, 4H), 1.38 – 1.28 (m, 9H). 

 
13C-NMR (101 MHz, CDCl3, δ):) 206.3, 157.0, 136.4, 130.4, 123.6, 120.8, 112.0, 67.9, 49.5, 37.6, 25.4, 
24.9, 23.0, 21.5, 14.8. 
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HR-MS (ESI): calc. for [M+Na]+ m/z 317.15457, found  317.15484 

 
S-Ethyl 1-adamantylcarboxylic acid thioester (SM53) 

 

 
Following GP A, 1-Adamantylcarboxylic acid (1.8 g, 10 mmol, 1 eqv.) was coupled with EtSH (721 µL, 

10 mmol, 1 eqv.) using DIC (1.57 mL, 10 mmol, 1 eqv.) and catalytic DMAP (122 mg, 1 mmol, 10 mol%) 

in DCM (50 mL) for 24 h to give the product as a colourless oil (1.45 g, 6.47 mmol, 65%) after removal 

of volatiles, followed by filtration over SiO2 (PE:Et2O 95:5 v/v). 

224.36 g/mol 

Rf: 0.67 (PE:DCM 8:2). 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ):  2.76 (q, J = 7.4 Hz, 2H), 2.02 – 1.92 (m, 3H), 1.89 – 1.80 (m, 6H), 1.74 – 
1.59 (m, 6H), 1.16 (t, J = 7.4 Hz, 3H). 

 

13C-NMR (101 MHz, CDCl3, δ):  206.63, 48.39, 39.27, 38.27, 36.49, 36.31, 28.21, 27.68, 22.42, 14.70. 
 

HR-MS (ESI): calc. for [M+Na]+  m/z 247.11271, found 247.11301 
 

S-Ethyl N-tosyl isonepecotic acid thioester (SM51) 
 

 
 
Following GP A, N-Tosyl isonepecotic acid[S4][73] (1.0 g, 3.53 mmol, 1 eqv.) was coupled with EtSH (1020 

µL, 14.12 mmol, 4 eqv.) using DIC (550 µL, 3.53 mmol, 1 eqv.) and catalytic DMAP (43 mg, 353  µmol, 

10 mol%) in DCM (20 mL) for 24 h to give the product as white crystals (581 mg, 1.77 mmol, 50%) after 

removal of volatiles, followed by flash column chromatography (SiO2, gradient PE:EA 8:2 v/v). 

 
327.46 g/mol 

Rf: 0.48 (UV, PE:EA 8:2). 

m.p.: 108 °C. 

1H-NMR (400 MHz, CDCl3, δ): 7.59 – 7.54 (m, 2H), 7.28 – 7.23 (m, 2H), 3.77 – 3.54 (m, 2H), 2.78 (q, J = 
7.4 Hz, 2H), 2.40 – 2.26 (m, 6H), 1.93 – 1.70 (m, 4H), 1.15 (t, J = 7.4 Hz, 3H). 
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13C-NMR (101 MHz, CDCl3, δ): 201.0, 143.6, 133.1, 129.7, 127.8, 49.1, 45.4, 28.0, 23.1, 21.5, 14.6. 
 

HR-MS (ESI): calc. for [M+Na]+ m/z 350.08551, found  350.08542.  
 
S-Ethyl 3-(3-pyridyl)propionic acid thioester (SM42) 

 

3-(3-Pyridyl)propionic acid  (467 mg, 3.09 mmol) was partially dissolved in DMF (7 mL) and DCM  (10 

mL), followed by the addition of DMAP (37.8 mg, 310 µmol, 0.1 eqv.) and EtSH (835 µL, 11.59 mmol, 

3.75 eqv.). The resulting suspension was cooled to 0 °C, to which DIC was added (484 µL, 3.09 mmol, 

1.0 eqv.). The reaction mixture was stirred at 0 °C for 5 min, then 18 h at RT. The solvents were removed 

by rotary evaporation. The residue was adsorbed on SiO2 (500 mg), followed by flash column 

chromatography (37 g SiO2, Gradient PE:EtOAc 8:2) to furnish the product as a colourless oil (170 mg, 

871 µmol, 28%) after solvent removal in vacuo.  

195.28 mg/mmol 

Rf: 0.14 (8:2 PE:EtOAc). 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 8.58 – 8.26 (m, 2H), 7.44 (d, J = 7.9 Hz, 1H), 7.14 (dd, J = 7.8, 4.8 Hz, 1H), 
2.91 (t, J = 7.5 Hz, 2H), 2.84 – 2.75 (m, 4H), 1.15 (t, J = 7.4, 3H). 

 
13C-NMR (101 MHz, CDCl3, δ): 198.1, 149.8, 147.8, 135.8, 135.5, 123.4, 44.8, 28.5, 23.4, 14.7. 

 
HR-MS (ESI): calc. for [M+H]+ m/z 196.07906, found  196.07930. 

 

S-Ethyl 3-(1H-Indol-3-yl)-propionic acid thioester (SM43) 

 

Following GP A, 3-(1H-Indol-3-yl)-propionic acid (1.89 g, 10 mmol, 1 eqv.) was coupled with EtSH (721 

µL, 10 mmol, 1 eqv) using DIC (1.57 mL, 10 mmol, 1 eqv.) and catalytic DMAP (122.2 mg, 1 mmol, 10 

mol%) in DCM (50 mL) for 24 h to give the product as a yellow oil (1.94 g, 8.31 mmol, 83%) after the 

usual workup and filtration over a pad of SiO2 (8:2 PE:EA v/v), followed by removal of solvent by rotary 

evaporation. Conforms to reported analytical data.[S5] 
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233.33 g/mol 

Rf: 0.44 (8:2 PE:EA). 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.90 (br s, 1H), 7.51 (d, J = 6.7 Hz, 1H), 7.24 (d, J = 8.0 Hz, 1H), 7.16 – 7.02 
(m, 2H), 6.88 (s, 1H), 3.05 (t, J = 7.8 Hz, 2H), 2.91 – 2.76 (m, 4H), 1.16 (t, J = 7.4 Hz, 3H). 

 
13C-NMR (101 MHz, CDCl3, δ):  199.4, 136.3, 127.2, 122.1, 121.5, 119.4, 118.7, 114.6, 111.2, 44.6, 23.3, 
21.3, 14.8. 

 
GC-MS (EI): m/z 233, 143, 130. 

 
S-Ethyl O-Ethyl adipic acid diester (SM40) 

 

Following GP A, adipic acid monoethyl ester (1.74 g, 10 mmol, 1 eqv.) was coupled with EtSH (721 µL, 

10 mmol, 1 eqv) using DIC (1.57 mL, 10 mmol, 1 eqv.) and catalytic DMAP (122 mg, 1 mmol, 10 mol%) 

in DCM (50 mL) for 24 h to give the product as a colourless oil (1.81 g, 8.86 mmol, 89%) after the 

removal of solvent and excess EtSH, followed by filtration over a short pad of SiO2 (PE:Et2O 9:1 v/v). 

218.31 g/mol 

Rf: 0.38 (85:15 PE:EA). 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ) 4.06 (q, J = 7.1 Hz, 2H), 2.80 (q, J = 7.4 Hz, 2H), 2.49 (t, J = 7.0 Hz, 2H), 2.24 
(t, J = 7.0 Hz, 2H), 1.69 – 1.54 (m, 4H), 1.22 – 1.13 (m, 6H). 

 
13C-NMR (101 MHz, CDCl3, δ) 199.2, 173.2, 60.3, 43.6, 33.9, 25.0, 24.2, 23.2, 14.8, 14.2. 

 
HR-MS (ESI): calc. for [M+Na]+ m/z 241.08689, found 241.08713. 
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S-ethyl 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecanoic acid thioester (SM48) 

 
Following GP A, 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecanoic acid (984 mg, 2 

mmol, 1 eqv.) was coupled with EtSH (432 µL, 6 mmol, 1 eqv) using DIC (310 mL, 2 mmol, 1 eqv.) and 

catalytic DMAP (12.21 mg, 0.1 mmol, 5 mol%) in DCM (10 mL) for 30 h to give the product as a 

crystalline solid (350 mg, 0.63 mmol, 32%) after the removal of solvent and excess EtSH, followed by 

column chromatography in 100% CyH. 

536.25 mg/mmol 

Rf: 0.14 (CyH)  

m.p.: 36-38 oC 

1H-NMR (400 MHz, CDCl3, δ) δ 2.97 – 2.81 (m, 4H), 2.56 – 2.41 (m, 2H), 1.26 (t, J = 7.4 Hz, 3H). 

13C-NMR (101 MHz, CDCl3 δC) : δ 196.4, 34.5, 26.5 (t, J = 22.5 Hz), 23.5, 14.5. 

19F NMR (376 MHz, CDCl3) δ -81.02, -114.61, -121.84, -122.07, -122.88, -123.58, -126.30. 

HR-MS (ESI): calc. for [M+Na]+ m/z 558.99949, found 559.00008 
 

S-Ethyl dehydrocholic acid thioester (SM46) 

 

Following GP A, dehydrocholic acid (4.03 g, 10 mmol, 1 eqv.) was coupled with EtSH (722 µL, 10 mmol, 

1 eqv.) using DIC (1.57 mL, 10 mmol, 1 eqv.) and catalytic DMAP in DCM (50 mL) for 24 h to give the 

product as a white solid (2.45 g, 5.49 mmol, 55%) after the removal of solvent and excess EtSH, 

followed by flash column chromatography (SiO2, gradient 6:4 PE:EA). 

 

446.65 g/mol 

Rf : 0.60 (97.5:2.5 DCM:MeOH) 
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m.p.: 252 °C. 

1H-NMR (400 MHz, CDCl3, δ): 2.90 – 2.73 (m, 5H), 2.55 (ddd, J = 14.9, 9.6, 5.2 Hz, 1H), 2.43 (ddd, J = 
15.3, 9.3, 6.8 Hz, 1H), 2.32 – 1.72 (m, 14H), 1.55 (td, J = 14.2, 5.1 Hz, 1H), 1.33 (m, 4H), 1.29 – 1.21 (m, 
2H), 1.18 (t, J = 7.4 Hz, 3H), 1.00 (s, 3H), 0.79 (d, J = 6.6 Hz, 3H). 

 
13C-NMR (101 MHz, CDCl3, δ) δ 211.9, 209.0, 208.7, 200.0, 56.9, 51.8, 49.0, 46.9, 45.6, 45.0, 42.8, 41.3, 
38.6, 36.5, 36.0, 35.4, 35.3, 31.1, 27.6, 25.1, 23.3, 21.9, 18.7, 14.8, 11.9. 

 
HR-MS (ESI): calc. for [M+Na]+ m/z 469.23830, found 469.23892. 

 
S-heptyl naphth-2-yl carboxylic acid thioester (SM54) 

 

Following GP A, naphth-2-yl carboxylic acid (8.78 g, 51 mmol, 1 eqv.) was coupled with heptanethiol 

(7.99 mL, 51 mmol, 1 eqv) using DIC (7.9 mL, 51 mmol, 1 eqv.) and catalytic DMAP (624 mg, 5.1 mmol, 

10 mol%) in DCM (50 mL) for 24 h to give the product as a colourless oil (10.2 g, 35.6 mmol, 70%) after 

the removal of solvent, followed by filtration over a short pad of SiO2 (PE:EA 95:5). 

286.43 g/mol 

Rf: 0.47 (PE:Et2O 97.5:2.5). 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ):  8.54 (s, 1H), 8.00 (dd, J = 8.6, 1.8 Hz, 1H), 7.97 (d, J = 8.2 Hz, 1H), 7.93 – 
7.82 (m, 2H), 7.57 (dddd, J = 17.7, 8.1, 6.8, 1.4 Hz, 1H), 3.26 – 3.03 (m, 2H), 1.80 – 1.65 (m, 2H), 1.52 – 
1.40 (m, 2H), 1.39 – 1.25 (m, 7H), 0.95 – 0.81 (m, 3H). 

 

13C-NMR (101 MHz, CDCl3, δ): 199.2, 173.2, 60.3, 43.6, 33.9, 25.0, 24.2, 23.2, 14.8, 14.2. 
 

HR-MS (ESI): calc. for [M+Na]+ m/z 309.12836, found  309.12867. 
 
 

S-ethyl 2-phenylpropionic acid thioester (70) 

 

Following GP A, 2-phenylpropionic acid (1.37 mL, 10 mmol, 1 eqv.) was coupled with EtSH (721 µL, 

10 mmol, 1 eqv) using DIC (1.57 mL, 10 mmol, 1 eqv.) and catalytic DMAP (61 mg, 500 µmol, 10 mol%) 

in DCM (50 mL) for 24 h to give the product as a colourless oil (1.88 g, 35.6 mmol, 97%) after the 
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removal of solvent and excess EtSH, followed by filtration over a short pad of SiO2 (PE:EA 95:5). 

Conforms to reported analytical data.[9] 

194.29 g/mol 

Rf: 0.59 (PE:Et2O 97.5:2.5) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ) 7.32 – 7.12 (m, 5H), 3.80 (q, J = 7.1 Hz, 1H), 2.83 – 2.68 (m, 2H), 1.46 (d, J 
= 7.1 Hz, 3H), 1.13 (t, J = 7.4 Hz, 3H). 

 

13C-NMR (101 MHz, CDCl3, δ):  201.2, 140.0, 128.7, 127.9, 127.4, 54.2, 23.5, 18.4, 14.5. 
 

GC-MS (EI):  m/z 77 (C6H5
+), 105 (C8H9

+), 117 (C5H9OS+), 165 ([M+●]-[Et●]). 

 

S-ethyl 3-phenylpropionic acid thioester (SM36) 

 

Following GP A, 3-phenylpropionic acid (601 mg, 4 mmol, 1 eqv.) was coupled with EtSH (865 mL, 12 

mmol, 3 eqv.) using DIC (625 µL, 4 mmol, 1 eqv.) and catalytic DMAP (49 mg, 400 µmol, 1 eqv.)  in DCM 

(20 mL) for 24 h to give the product as a colourless oil (105 mg, 540 µmol, 14%) after the removal of 

solvent and excess EtSH, followed by flash column chromatography (SiO2, gradient 97.5:2.5 to 95:5 

PE:EA). Conforms to reported analytical data.[S6][75] 

194.29 g/mol 

Rf:  0.54 (PE:EA 9:1). 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ) 7.25 – 7.16 (m, 2H), 7.15 – 7.07 (m, 3H), 2.95 – 2.86 (m, 2H), 2.86 – 2.73 
(m, 4H), 1.16 (t, J = 7.4 Hz, 3H). 

 

13C-NMR (101 MHz, CDCl3, δ) 198.7, 140.2, 128.5, 128.3, 126.3, 45.5, 31.5, 23.3, 14.8. 
 

GC-MS (EI):  m/z 194. 
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S-heptyl 3-(3-fluorophenyl)propionic acid thioester (SM37) 

 

Following GP A, 3-(3-Fluorophenyl)propionic acid (500 mg, 2.97 mmol, 1 eqv.) was coupled with 

HeptSH (2.97 mmol, 1 eqv.) using DIC ( 3.27 mmol, 1.1 eqv.) and catalytic DMAP (32 mg, 208 µmol, 10 

mol%) in DCM (10 mL) for 16 h to give the product as a colourless oil (590 mg, 2.08 mmol, 70%) after 

removal of volatiles, followed by filtration over SiO2 (DCM). 

 

282.42 g/mol 

Rf: 0.73 (PE:EA 95:5). 

m.p: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ) 7.16 (ddd, J = 9.0, 7.4, 5.8 Hz, 1H), 6.88 (dt, J = 7.8, 1.2 Hz, 1H), 6.85 – 6.76 
(m, 2H), 2.94 – 2.86 (m, 2H), 2.83 – 2.72 (m, 2H), 1.63 – 1.41 (m, 2H), 1.36 – 1.10 (m, 10H), 0.84 – 0.77 
(m, 3H). 

 

13C-NMR (101 MHz, CDCl3, δ) 198.4, 162.9 (d, 1JCF = 245.7 Hz), 142.6 (d, J = 7.3 Hz), 129.9 (d, J = 8.4 Hz), 
124.0 (d, J = 2.9 Hz), 115.3 (d, J = 21.1 Hz), 113.2 (d, J = 21.0 Hz), 45.1, 31.7, 31.1 (d, J = 1.8 Hz), 29.5, 
29.0, 28.8 , 28.8, 22.6, 14.1. 

 

19F-NMR (376 MHz, CDCl3, δ): -113.34. 

HR-MS (ESI): calc. for [M+Na]+ m/z 305.1346, found  305.1350. 
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S-ethyl 3-(4-methoxyphenyl)propionic acid thioester (SM39) 

 

 

 

Following GP A, 3-(4-methoxyphenyl) propanoic acid (360.40 mg, 2 mmol, 1 eqv.) was coupled with 

EtSH (6 mmol, 3 eqv.) using DIC (2 mmol, 1 eqv.) and catalytic DMAP (12.21 mg, 100 µmol, 5 mol%) in 

DCM (10 mL) for 16 h to give the product as a colourless oil (226 mg, 1.04 mmol, 50.44%) after removal 

of volatiles, followed by filtration over SiO2 (gradient 97.5:2.5 to 95:5 PE : EtOAc). 

MW: 224.31 g/mol 

Rf: 0.84 (PE:EA 8:2)  

m.p: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): δ 7.10 (d, J = 8.9 Hz, 2H), 6.83 (d, J = 8.6 Hz, 2H), 3.78 (s, 3H), 2.98 – 2.77 

(m, 6H), 1.24 (t, J = 7.4 Hz, 3H) 

13C-NMR (101 MHz, CDCl3, δ): 198.78, 158.11, 132.19, 129.27, 113.92, 55.25, 45.83, 30.65, 23.30, 14.78 

HR-MS (ESI): calc. for [M+Na]+ m/z 247.07632, found 247.07663 
 

S-heptyl 3-methylpent-4-enoic acid thioester (SM45) 

 

228.39 g/mol 

Rf: 0.82  (PE:EA 95:5). 

m.p: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 5.68 (ddd, J = 17.2, 10.3, 6.9 Hz, 1H), 4.95 (dt, J = 17.2, 1.4 Hz, 1H), 4.89 
(dt, J = 10.3, 1.3 Hz, 1H), 2.84 – 2.77 (m, 2H), 2.73 – 2.60 (m, 1H), 2.52 (dd, J = 14.5, 6.8 Hz, 1H), 2.41 
(dd, J = 14.5, 7.5 Hz, 1H), 1.55 – 1.43 (m, 2H), 1.32 – 1.13 (m, 8H), 0.98 (d, J = 6.8 Hz, 3H), 0.85 – 0.76 
(m, 3H). 

 

13C-NMR (101 MHz, CDCl3, δ): 198.4, 142.1, 113.5, 50.6, 35:0, 31.7, 29.6, 28.9, 28.8, 28.8, 22.6, 19.4, 
14.1. 

 
HR-MS (ESI): calc. for [M+Na]+ m/z 251.14401, found 251.14441 
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S-ethyl 3,3,3-triphenylpropanoic acid thioester (SM49) 

 

 

 

Following GP A, 3,3,3-triphenylpropanoic acid (1.209 g, 4 mmol, 1 eqv.) was coupled with EtSH (12 

mmol, 3 eqv.) using DIC (4 mmol, 1 eqv.) and catalytic DMAP (24.42 mg, 200 µmol, 5 mol%) in DCM 

(20 mL) for 6 h to give the product as a white solid (420 mg, 1.21 mmol, 30%) after removal of volatiles, 

followed by column chromatography over SiO2 (gradient PE: EtOAc 97:3 to 92:8 v/v) 

 

MW: 346.48 g/mol 

Rf: 0.52 (PE:Et2O 9:1)  

m.p: 81-83 oC 

1H-NMR (400 MHz, CDCl3, δ): 7.26 (m, 15H), 4.07 (s, 2H), 2.75 (q, J = 7.4 Hz, 2H), 1.12 (t, J = 7.4 Hz, 3H) 

13C-NMR (101 MHz, CDCl3, δ): 196.60, 146.39, 129.26, 127.84, 126.29, 56.73, 54.90, 23.62, 14.64  

HR-MS:  calc. for [M+Na]+ m/z 369.12836, found 369.12870 

 

S-Ethyl octadec-9-enoic acid thioester (SM47) 

 

Following GP A, octadec-9-enoic acid (1.47 g, 5.20 mmol, 1 eqv.) was coupled with EtSH (1.5 mL, 20.82 

mmol, 4 eqv.) using DIC (890 µL, 5.72 mmol, 1.1 eqv.) and catalytic DMAP (64 mg, 520 µmol, 10 mol%) 

in DCM (25 mL) for 16 h to give the product as a colourless oil (1.3 g, 3.98 mmol, 77%) after removal 

of volatiles, followed by filtration over SiO2 (DCM). 

326.58 g/mol 

Rf: 0.33 (PE:EA 97.5:2.5). 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ) 5.34 – 5.25 (m, 2H), 2.80 (q, J = 7.4 Hz, 2H), 2.51 – 2.41 (m, 2H), 2.03 – 
1.83 (m, 4H), 1.64 – 1.47 (m, J = 6.9 Hz, 2H), 1.29 – 1.14 (m, 23H), 0.87 – 0.73 (m, 3H). 
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13C-NMR (101 MHz, CDCl3, δ) 13C NMR (101 MHz, CDCl3) δ 199.8, 130.5, 130.2, 130.0, 129.7, 44.1, 31.9, 
29.8, 29.7, 29.5, 29.3, 29.2, 29.1, 28.9, 27.2, 25.7, 23.2, 22.7, 14.8, 14.1. 

 

HR-MS (ESI): calc. for [M+Na]+ m/z 349.25356, found 349.25376 

3.4.3.5. Synthesis of ketones 

1-Phenyl-hexan-1-one (34), 1 g scale 

 

GP C was scaled to 1 g of 32 (6.24 mmol) using phenyl zinc chloride (GP B) as the nucleophile in 

glassware of appropriate size. After the usual workup, the volatiles were removed and the black 

residual oil purified by Kugelrohr distillation (280 °C oven temperature, 80 mbar) to give the product 

(964 mg, 5.47 mmol, 88%) as a colourless oil. Conforms to reported analytical data[S7][76]. 

176.12 g/mol 

Rf : 0.5 (PE:EA 95:5)  

m.p.: Ambient temperature.  

1H NMR (400 MHz, CDCl3, δ) 7.96 – 7.86 (m, 2H), 7.50 – 7.44 (m, 1H), 7.41 – 7.34 (m, 2H), 2.95 – 2.83 
(m, 2H), 1.75 – 1.57 (m, 2H), 1.35 – 1.21 (m, 4H), 0.90 – 0.78 (m, 3H). 

 

13C NMR (101 MHz, CDCl3, δ) 200.6, 137.1, 132.9, 128.5, 128.1, 38.6, 31.6, 24.1, 22.6, 14.0. 
 

GC-MS (EI): m/z 176.1, 120, 105.  

 

2-Ethyl-1-phenylhexan-1-one (50) 

 

Following GP C, the thioester SM56 (63 mg, 333 µmol, 1 eqv.) was coupled with with phenyl zinc 

chloride (0.25 M in THF, by GP B). The crude product was purified by flash column chromatography 

(SiO2, PE:EA gradient  98:2 v/v) to give the product as a brownish oil (35 mg, 171 µmol, 51%).  

204.31 g/mol 
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Rf : 0.27 (PE:Et2O 9:1)  

m.p.: Ambient temperature.  

1H NMR (400 MHz, CDCl3, δ) 7.89 (d, J = 7.8 Hz, 2H), 7.48 (t, J = 7.4 Hz, 1H), 7.39 (t, J = 7.6 Hz, 2H), 3.41 
– 3.18 (m, 1H), 1.80 – 1.59 (m, 2H), 1.58 – 1.33 (m, 2H), 1.28 – 1.11 (m, 4H), 0.87 – 0.72 (m, 6H). 

 
13C NMR (101 MHz, CDCl3, δ) 204.7, 137.8, 132.8, 128.6, 128.2, 47.6, 31.7, 29.8, 25.4, 22.9, 13.9, 11.9. 

 
HR-MS (ESI): calc. for [M+Na]+ m/z 227.14064, found 227.14099. 

 

2-Ethyl-1-(2-methoxyphenyl)hexan-1-one (68) 

 

Following GP C, the thioester SM56 (63 mg, 333 µmol, 1 eqv.) was coupled with with ortho-anisyl zinc 

chloride (0.25 M in THF, by GP B). The crude product was purified by flash column chromatography 

(SiO2, PE:Et2O gradient  95:5 v/v) to give the product as a colourless oil (40 mg, 171 µmol, 51%).  

234.34 g/mol 

Rf : 0.57 (PE:Et2O 85:15)  

m.p.: Ambient temperature.  

1H NMR (400 MHz, CDCl3, δ) 7.43 (dd, J = 7.6, 1.8 Hz, 1H), 7.35 (ddd, J = 8.2, 7.3, 1.8 Hz, 1H), 6.92 (td, J 
= 7.5, 1.0 Hz, 1H), 6.87 (d, J = 8.3 Hz, 1H), 3.80 (s, 3H), 3.25 (tt, J = 7.1, 5.8 Hz, 1H), 1.76 – 1.60 (m, 2H), 
1.48 – 1.29 (m, 2H), 1.26 – 1.12 (m, 4H), 0.80 (dt, J = 8.8, 7.1 Hz, 6H). 

 
13C NMR (101 MHz, CDCl3, δ) 207.8, 157.8, 132.5, 130.2, 129.9, 120.7, 111.5, 55.4, 52.1, 30.8, 29.7, 
24.5, 22.9, 14.0, 11.8. 

 
HR-MS (ESI): calc. for [M+Na]+ m/z  257.15120, found 257.15154. 
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2-Ethyl-1-(4-methylphenyl)hexan-1-one (84) 

 

Following GP C, the thioester SM56 (63 mg, 333 µmol, 1 eqv.) was coupled with with para-tolyl zinc 

chloride (0.25 M in THF, by GP B). The crude product was purified by flash column chromatography 

(SiO2, PE:Et2O gradient  98:2 v/v) to give the product as a colourless oil (50 mg, 171 µmol, 69%).  

218.34 g/mol 

Rf 0.39 (97.5:2.5 PE:Et2O). 

m.p.: Ambient temperature. 

1H NMR (400 MHz, CDCl3, δ) : 7.79 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 3.26 (tt, J = 7.8, 5.5 Hz, 
1H), 2.33 (s, 3H), 1.80 – 1.57 (m, 1H), 1.56 – 1.33 (m, 1H), 1.27 – 1.06 (m, 2H), 0.78 (q, J = 7.4 Hz, 3H). 

 
13C NMR (101 MHz, CDCl3, δ): 204.3, 143.5, 135.4, 129.3, 128.3, 47.5, 31.8, 29.8, 25.5, 22.9, 21.6, 14.0, 
12.0. 

 
HR-MS (ESI): m/z =  calc. for [M+Na]+

  241.15629, found 251.15665. 
 

2-Ethyl-1-((4-ethylthio)phenyl)hexan-1-one (58) 

 

Following GP C, the thioester SM56 (63 mg, 333 µmol, 1 eqv.) was coupled with with para-

chlorophenyl zinc chloride (0.25 M in THF, by GP B). The crude product was purified by flash column 

chromatography (SiO2, PE:Et2O gradient  98:2 v/v) to give the product as a colourless oil (41 mg, 155 

µmol, 47%).  

 

264.43 g/mol 

Rf 0.25 (97.5:2.5 PE:Et2O). 

m.p.: Ambient temperature. 
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1H NMR (400 MHz, CDCl3, δ) 7.80 (d, J = 8.5 Hz, 2H), 7.24 (d, J = 8.5 Hz, 2H), 3.23 (tt, J = 7.8, 5.5 Hz, 1H), 
2.95 (q, J = 7.4 Hz, 2H), 1.77 – 1.62 (m, 2H), 1.57 – 1.35 (m, 2H), 1.31 (t, J = 7.3 Hz, 2H), 1.26 – 1.08 (m, 
4H), 0.83 – 0.71 (m, 7H). 
 

13C NMR (101 MHz, CDCl3, δ) 203.7, 144.2, 134.4, 128.6, 126.4, 47.4, 31.8, 29.8, 26.1, 25.5, 22.9, 14.0, 
13.9, 12.0. 

 
HR-MS (ESI): m/z =  calc. for [M+Na]+

 : 287.14401, found: 287.14409. 

 

2-Ethyl-1-(4-fluorophenyl)hexan-1-one (59) 

 

Following GP C, the thioester SM56 (63 mg, 333 µmol, 1 eqv.) was coupled with with para-

fluorophenyl zinc chloride (0.25 M in THF, by GP B). The crude product was purified by flash column 

chromatography (SiO2, PE:Et2O gradient  98:2 v/v) to give the product as a colourless oil (35 mg, 155 

µmol, 47%).  

 

222.30 g/mol 

Rf 0.42 (97.5:2.5 PE:EtOAc). 

m.p.: Ambient temperature. 

1H NMR (400 MHz, CDCl3, δ) 8.02 – 7.83 (m, 2H), 7.15 – 7.01 (m, 2H), 3.23 (tt, J = 7.7, 5.5 Hz, 1H,), 1.77 
– 1.62 (m, 2H), 1.58 – 1.36 (m, 2H), 1.29 – 1.08 (m, 4H), 0.87 – 0.73 (m, 6H). 

 
13C NMR (101 MHz, CDCl3, δ) 203.0, 165.6 (d, 1JCF = 254.2 Hz), 134.2 (d, 4JCF = 3.1 Hz), 130.8 (d, JCF = 9.2 
Hz), 115.7 (d, JCF = 21.7 Hz), 47.6, 31.7, 29.8, 25.4, 22.9, 13.9, 11.9. 

 
19F NMR (376 MHz, CDCl3, δ) -106.00 (m). 

 
HR-MS (ESI): m/z =  calc. for [M+Na]+

 : 245.13121, found: 245.13155. 
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2-Ethyl-1-(3-methoxyphenyl)hexan-1-one (63) 

 

Following GP C, the thioester SM56 (63 mg, 333 µmol, 1 eqv.) was coupled with with meta-

methoxyphenyl zinc chloride (0.25 M in THF, by GP B). The crude product was purified by flash 

chromatography (SiO2 97.5:2.5  PE:EtOAc gradient) to give the product as a colourless oil (53 mg, 226 

µmol, 68%).  

234.34 g/mol 

Rf 0.42 (97.5:2.5 PE:EtOAc). 

m.p.: Ambient temperature 

1H NMR (400 MHz, CDCl3, δ)  7.46 (d, J = 7.8 Hz, 1H), 7.42 (dd, J = 2.7, 1.5 Hz, 1H), 7.30 (t, J = 7.9 Hz, 
1H), 7.03 (ddd, J = 8.2, 2.7, 0.9 Hz, 1H), 3.79 (s, 3H), 3.25 (tt, J = 7.7, 5.5 Hz, 1H), 1.78 – 1.63 (m, 2H), 
1.54 – 1.36 (m, 2H), 1.28 – 1.10 (m, 4H), 0.83 – 0.74 (m, 6H). 

 
13C NMR (101 MHz, CDCl3, δ) 204.5, 159.9, 139.2, 129.5, 120.7, 119.2, 112.6, 55.4, 47.8, 31.8, 29.8, 

25.5, 22.9, 13.9, 12.0. 
 
HR-MS (ESI): m/z =  calc. for [M+Na]+

 : 257.15120, found: 257.15164. 

 

2-Ethyl-1-(4-methoxyphenyl)hexan-1-one (57) 

 

Following GP C, the thioester SM56 (63 mg, 333 µmol, 1 eqv.) was coupled with with para-

methoxyphenyl zinc chloride (0.25 M in THF, by GP B). The crude product was purified by flash 

chromatography (SiO2 95:5 PE:EtOAc gradient) to give an impure residue which was treated with dist. 

EtOH and filtered to remove the insoluble biaryl byproduct, giving the product as a brown oil (48 mg, 

203 µmol, 61%).  

234.34 g/mol 

Rf 0.14 (97.5:2.5 PE:EtOAc). 

m.p.: Ambient temperature. 
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1H NMR (400 MHz, CDCl3) δ 7.89 (d, J = 8.8 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 3.80 (s, 3H), 3.23 (tt, J = 7.8, 
5.4 Hz, 1H), 1.75 – 1.63  (m, 2H), 1.58 – 1.33 (m, 2H), 1.28 – 1.06 (m, 4H), 0.78 (m, 6H). 

 

13C NMR (101 MHz, CDCl3) δ 203.2, 163.3, 130.9, 130.4, 113.7, 55.5, 47.2, 32.0, 29.8, 25.6, 22.9, 14.0, 
12.0. 

 
HR-MS (ESI): m/z =  calc. for [M+Na]+

 : 257.15120, found: 257.15150. 

 

2-ethyl-1-(thiophen-2-yl)hexan-1-one (62)  

 

Following GP C, the thioester SM56 (63 mg, 333 µmol, 1 eqv.) was coupled with with thien-2-yl zinc 

chloride (0.25 M in THF, by GP B). The crude product was purified by flash chromatography (SiO2 

97.5:2.5 PE:Et2O isocratic) to give the product as a brown oil (45 mg, 213 µmol, 64%).  

210.34 g/mol 

Rf: 0.3 (97.5:2.5 PE:EtOAc). 

m.p.: Ambient temperature. 

1H NMR (400 MHz, CDCl3, δ) 7.66 (dd, J = 3.8, 1.1 Hz, 1H), 7.56 (dd, J = 5.0, 1.1 Hz, 1H), 7.07 (dd, J = 4.9, 
3.8 Hz, 1H), 3.07 (tt, J = 8.2, 5.4 Hz, 1H), 1.82 – 1.63 (m, 2H), 1.60 – 1.28 (m, 2H), 1.30 – 1.10 (m, 4H), 
0.89 – 0.69 (m, 6H). 

 
13C NMR (101 MHz, CDCl3, δ) 197.5, 163.5, 145.7, 133.6, 131.6, 128.1, 50.1, 32.2, 29.9, 25.9, 22.9, 13.9, 
12.1. 

  
HR-MS (ESI): calc. for [M+Na]+ m/z 233.09706, found 255.09742. 
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5-(2,5-dimethylphenoxy)-2,2-dimethyl-1-phenylpentan-1-one (52) 

 

Following GP C, the thioester SM52 (98 mg, 333 µmol, 1 eqv.) was coupled with with phenyl zinc 

chloride (0.25 M in THF, by GP B). The crude product was purified by flash chromatography (SiO2 95:5 

PE:Et2O  gradient) to give the product as a colourless oil (28 mg, 90 µmol, 27%).  

310.44 g/mol 

Rf: 0.15 (97.5:2.5 PE:EA) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.67 – 7.56 (m, 2H), 7.42 – 7.35 (m, 1H), 7.35 – 7.28 (m, 2H), 6.92 (dd, J 
= 7.5, 1.0 Hz, 1H), 6.63 – 6.54 (m, 1H), 6.53 – 6.45 (m, 1H), 3.82 (t, J = 6.1 Hz, 2H), 2.22 (s, 3H), 2.06 (s, 
3H), 1.96 – 1.80 (m, 2H), 1.74 – 1.59 (m, 2H), 1.29 (s, 6H). 

 
13C-NMR (101 MHz, CDCl3, δ): 208.9, 156.9, 139.0, 136.5, 130.9, 130.3, 128.2, 127.6, 123.5, 120.7, 
111.8, 67.8, 47.6, 37.5, 26.2, 25.1, 21.4, 15.8. 

 
HR-MS (ESI): calc. for [M+Na]+ m/z 333.18250, found 333.18250. 

Phenyl(1-tosylpiperidin-4-yl)methanone (51) 

 

Following GP C, the thioester SM51 (109 mg, 333 µmol, 1 eqv.) was coupled with with phenyl  zinc 

chloride (0.25 M in THF, by GP B). The crude product was purified by flash chromatography (SiO2 8:2 

PE:Et2O gradient) to give the product as a white solid (26 mg, 76 µmol, 23%). Conforms to reported 

analytical data[S8]. 

343.44 g/mol 

Rf: 0.17 (8:2 PE:Et2O) 

m.p.: 130 °C (Lit. [S8]: 90 – 91 °C) 

1H-NMR (400 MHz, CDCl3, δ):  7.87 – 7.82 (m, 2H), 7.66 (d, J = 8.2 Hz, 2H), 7.57 – 7.52 (m, 1H), 7.43 (dd, 
J = 8.3, 7.0 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 3.85 – 3.70 (m, 2H), 3.19 (tt, J = 10.2, 4.3 Hz, 1H), 2.59 – 
2.48 (m, 2H), 2.45 (s, 3H), 1.98 – 1.80 (m, 4H). 
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13C-NMR (101 MHz, CDCl3, δ):  201.4, 143.6, 135.6, 133.3, 133.1, 129.7, 128.8, 128.2, 127.7, 45.6, 42.3, 
27.9, 21.6. 

 
LR-MS (ESI): (m/z) 382.0 ([M+K]+), 366.0 ([M+Na]+), 344.1 ([M+H]+) 

 
1-Phenyl-3-(pyridin-3-yl)propan-1-one (42) 

 

Following GP C, the thioester SM42 (65.1 mg, 333 µmol, 1 eqv.) was coupled with with phenyl zinc 

chloride (0.25 M in THF, by GP B). The crude product was purified by flash column chromatography 

(SiO2, DCM:MeOH gradient  95:5 v/v) to give the product as a white solid (67 mg, 317 µmol, 95%). 

Conforms to reported analytical data[S9]. 

211.26 g/mol 

Rf: 0.1 (7:3 PE:EtOAc) 

m.p.: 86 °C (Lit.[S9]: 84 – 86 °C). 

1H-NMR (400 MHz, CDCl3, δ):  8.43 (d, J = 33.8 Hz, 2H), 7.90 – 7.84 (m, 2H), 7.57 – 7.50 (m, 1H), 7.49 – 
7.45 (m, 1H), 7.45 – 7.35 (m, 2H), 7.15 (s, 1H), 3.24 (t, J = 7.4 Hz, 2H), 3.01 (t, J = 7.4 Hz, 2H). 

 

13C-NMR (101 MHz, CDCl3, δ):  198.4, 149.8, 147.5, 136.6, 136.3, 133.3, 128.7, 128.0, 123.5, 39.7, 27.1. 
 

GC-MS: (m/z) 211.1, 207, 105, 91. 

4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoro-1-phenylundecan-1-one (48) 

 

Following GP C, the thioester SM48 (179 mg, 333 µmol, 1 eqv.) was coupled with with phenyl  zinc 

chloride (0.25 M in THF, by GP B). The crude product was purified by flash chromatography (SiO2 

97.5:2.5 PE:Et2O gradient) to give the product as a white solid (74 mg, 160 µmol, 48%).  

The 13C-resonances of quarternary fluorocarbons were not detected by our standard 13C-NMR 

method. This is in accordance with standard 13C-NMR analysis of the parent acid and a reported 

decarboxylated-alkylated derivative. Two factors play a role in giving particularly weak signals: 19F 

induced signal splitting and long relaxation times typical for quarternary fluorocarbon signals. 

462.63 g/mol 
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Rf: 0.40 (97.5:2.5 PE:Et2O) 

m.p.: 55 °C. 

1H-NMR (400 MHz, CDCl3, δ): 7.99 – 7.84 (m, 2H), 7.60 – 7.48 (m, 1H), 7.42 (dd, J = 8.4, 7.1 Hz, 2H), 
3.31 – 3.16 (m, 2H), 2.54 (tt, J = 19.1, 7.8 Hz, 2H). 

 
13C-NMR (101 MHz, CDCl3, δ): 196.4, 136.1, 133.6, 128.8, 128.0, 29.5, 25.6 (t, J = 21.9 Hz). 

 
19F-NMR (376 MHz, CDCl3, δ): -80.82, -114.13, -114.84, -121.68, -121.92, -122.73, -123.42, -126.14. 

 

HR-MS (ESI): calc. for [M+Na]+ m/z 575.02742, found 575.02750. 

 

(8R,9S,10S,13R,14S,17R)-10,13-Dimethyl-17-((R)-5-oxo-5-phenylpentan-2-yl)dodecahydro-3H-

cyclopenta[a]phenanthrene-3,7,12(2H,4H)-trione (46)  

 

Following GP C, the thioester SM46 (149 mg, 333 µmol, 1 eqv.) was coupled with with phenyl zinc 

chloride (0.25 M in THF, by GP B). The crude product was purified by flash column chromatography 

(SiO2, PE:EtOAc gradient  6:4 v/v) to give the product as a white solid (103 mg, 223 µmol, 67%). 

Conforms to reported analytical data[S10]. 

462.63 g/mol 

Rf: 0.46 (97.5:2.5 DCM:MeOH) 

m.p.: 229 °C (dec.) 

1H-NMR (400 MHz, CDCl3, δ): 7.92 – 7.86 (m, 2H), 7.52 – 7.45 (m, 1H), 7.39 (t, J = 7.6 Hz, 2H), 3.03 – 
2.93 (m, 1H), 2.92 – 2.74 (m, 4H), 2.34 – 1.86 (m, 12H), 1.80 (td, J = 11.5, 7.1 Hz, 1H), 1.55 (td, J = 14.2, 
5.1 Hz, 1H), 1.49 – 1.38 (m, 1H), 1.33 (s, 3H), 1.27 – 1.16 (m, 2H), 1.02 (s, 3H), 0.85 (d, J = 6.6 Hz, 3H). 

 

13C-NMR (101 MHz, CDCl3, δ): 212.0, 209.0, 208.7, 200.7, 137.1, 132.9, 128.6, 128.0, 56.9, 51.8, 49.0, 
46.9, 45.7, 45.6, 45.0, 42.8, 38.7, 36.5, 36.0, 35.5, 35.3, 29.8, 27.6, 25.2, 21.9, 18.9, 11.9. 

 

HR-MS (ESI): calc. for [M+Na]+  m/z 485.26623, found 485.26645. 
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3-methyl-1-phenylpent-3-en-1-one (45)  

 

Following GP C, the thioester SM45 (58 mg, 333 µmol, 1 eqv.) was coupled with with phenyl  zinc 

chloride (0.25 M in THF, by GP B). The crude product was purified by filtration over a pad of SiO2 (95:5 

PE:Et2O ) to give the product 17 as a colourless oil (55 mg, 316 µmol, 95%). Conforms to reported 

analytical data[S11]. 

 

174.23 g/mol 

Rf: 0.41 (95:5 PE:Et2O) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ):   7.92 – 7.87 (m, 2H), 7.51 – 7.44 (m, 1H), 7.42 – 7.34 (m, 2H), 5.43 (dddt, 
J = 8.1, 6.8, 5.5, 1.3 Hz, 1H, Diastereomer 1), 5.31 (dddq, J = 8.0, 6.7, 5.3, 1.3 Hz, 1H, Diastereomer 2), 
3.64 (s, 2H, Diastereomer 1), 3.59 – 3.55 (m, 2H, Diastereomer 2), 1.66 (t, J = 1.5 Hz, 3H, Diastereomer 
1), 1.62 – 1.60 (m, 3H, Diastereomer 2), 1.58 – 1.57 (m, 3H, Diastereomer 1), 1.56 – 1.55 (m, 1H, 
Diastereomer 2). 

 
13C-NMR (101 MHz, CDCl3, δ): 198.8, 198.2, 137.1, 133.0, 130.1, 129.7, 128.5, 128.2, 123.7, 122.8, 49.3, 
41.8, 24.1, 16.3, 13.8, 13.7. 

 

GC-MS: (m/z) 174.1, 160.1, 143.1, 131.1, 105, 91.1, 77.1 (the isomers were separated on the GC 

column and gave identical fragmentation patterns). 

3-(3-fluorophenyl)-1-phenylpropan-1-one (37) 

 

Following GP C, thioester SM37 (71 mg, 0.333 mmol, 1 eqv.) was coupled with phenyl zinc chloride 

(0.25 M in THF, by GP B). The crude product was purified by column chromatography (SiO2, PE:EtOAc  

97.5:2.5 v/v) to give the product  as a colorless oil (32 mg, 140 µmol, 42%). Conforms to reported 

analytical data[S12]. 

228.27 g/mol 
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Rf: 0.24 (97.5:2.5 PE:EA) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.92 – 7.84 (m, 2H), 7.53 – 7.44 (m, 1H), 7.43 – 7.33 (m, 2H), 7.23 – 7.13 
(m, 1H), 6.96 (dd, J = 7.7, 0.8 Hz, 1H), 6.92 – 6.87 (m, 1H), 6.82 (tdd, J = 8.6, 2.7, 1.0 Hz, 1H), 3.23 (t, J = 
7.7 Hz, 2H), 3.00 (t, J = 7.6 Hz, 2H). 

 

13C-NMR (101 MHz, CDCl3, δ): 198.8, 162.9 (d, J = 245.5 Hz), 143.8 (d, J = 7.3 Hz), 136.8 , 133.2, 129.9 
(d, J = 8.3 Hz), 124.1 (d, J = 2.9 Hz), 115.3 (d, J = 21.0 Hz), 113.0 (d, J = 21.0 Hz), 40.0, 29.8. 

 
19F-NMR (376 MHz, CDCl3, δ): -113.5. 

 

GC-MS: (m/z) 228.1, 212.1, 197.1, 109.1, 105.1, 77.1. 

1-(4-methoxyphenyl)pentane-1,4-dione (41) 

 

Following GP A, 4-Oxopentanoic acid (1.0 g, 881 µL, 8.61 mmol, 1 eqv.) was coupled with EtSH (2.49 

mL, 34.45 mmol, 4 eqv.) using DIC (1.35 mL, 8.61 mmol, 1 eqv.) and catalytic DMAP (105 mg, 861 µmol, 

10 mol%) in DCM (20 mL) for 24 h. After the usual workup, the crude material was passed over a pad 

of SiO2 (95:5 CyH:EtOAc) to give a crude material (825 mg, 5.25 mmol, 61%) which could not be purified 

further and was thus directly used in the next step assuming full purity. 

Following GP C, crude SM41 (53 mg, 0.333 mmol, 1 eqv.) was coupled with 4-methoxyphenyl zinc 

chloride (0.25 M in THF, by GP B). The crude product was purified by column chromatography (SiO2, 

PE:EtOAc  gradient 95:5 v/v) to give the productas a paste (44 mg, 213 µmol, 64% over two steps). 

Conforms to reported analytical data[S13] with the exception that the product did not solidify in our 

hands. 

206.24 g/mol 

Rf: (9:1 PE:EA) 

1H-NMR (400 MHz, CDCl3, δ):  δ 7.89 (d, J = 8.9 Hz, 2H), 6.86 (d, J = 8.9 Hz, 2H), 3.80 (s, 3H), 3.17 (t, J = 
6.4 Hz, 2H), 2.80 (t, J = 6.3 Hz, 2H), 2.19 (s, 3H). 
 
13C-NMR (101 MHz, CDCl3, δ): 207.5, 197.0, 163.5, 130.3, 129.8, 113.7, 55.5, 37.2, 32.1, 30.2. 

 

GC-MS: (m/z) 206.1, 188.1, 173.1, 135.1, 77.1. 
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1-(4-methoxyphenyl)-3,3,3-triphenylpropan-1-one (49) 

 

Following GP C, the thioester SM49 (115 mg, 333 µmol, 1 eqv.) was coupled with with phenyl  zinc 

chloride (0.25 M in THF, by GP B). The crude product was purified by flash chromatography (SiO2 9:1 

PE:EA gradient) to give the product as an amorphous white paste (113 mg, 287 µmol, 87%).  

392.50 g/mol 

Rf:  0.42 (9:1 PE:EA) 

1H-NMR (400 MHz, CDCl3, δ):  7.73 (d, J = 8.9 Hz, 2H), 7.23 – 7.01 (m, 15H), 6.75 (d, J = 8.9 Hz, 2H), 
4.31 (s, 2H), 3.73 (s, 3H). 
 
13C-NMR (101 MHz, CDCl3, δ): 195.6, 163.2, 147.1, 131.2, 130.2, 129.3, 127.8, 126.0, 113.5, 56.0, 55.5, 
48.9. 

 
HR-MS: calc. for [M+Na]+ m/z 415.16685, found 415.16695. 

1-phenyloctadec-9-en-1-one (47) 

 

Following GP C, thioester SM47(109 mg, 0.333 mmol, 1 eqv.) was coupled with phenyl zinc chloride 

(0.25 M in THF, by GP B). The crude product was purified by column chromatography (SiO2, PE:EtOAc  

97.5:2.5 v/v) to give the product as a colorless oil (59 mg, 172 µmol, 52%). Conforms to reported 

analytical data[S14]. 

342.57 g/mol 

Rf: 0.22 (97.5:2.5 PE:EA) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.88 (d, J = 7.2 Hz, 2H), 7.51 – 7.44 (m, 1H), 7.38 (t, J = 7.6 Hz, 2H), 5.38 – 
5.21 (m, 2H), 2.88 (t, J = 7.4 Hz, 2H), 2.05 – 1.80 (m, 4H), 1.70 – 1.58 (m, 2H), 1.62 – 1.50 (m, J = 7.1 Hz, 
1H), 1.36 – 1.14 (m, 19H), 0.80 (td, J = 6.9, 1.7 Hz, 3H). 
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13C-NMR (101 MHz, CDCl3, δ): 200.5, 137.1, 132.8, 130.5, 123.0, 128.5, 128.1, 60.1, 38.6, 34.4, 32.6, 

31.9, 29.8, 29.7, 29.7, 29.7, 29.6, 29.6, 29.5, 29.5, 29.4, 29.4, 29.3, 29.2, 29.2, 29.1, 29.0, 27.2, 24.99, 

24.4, 22.7, 14.7, 14.1. 

GC-MS: (m/z) 342.2. 

Ethyl 6-oxo-6-phenylhexanoate (40) 

 

Following GP C, thioester SM40 (72 mg, 0.333 mmol, 1 eqv.) was coupled with phenyl zinc chloride 

(0.25 M in THF, by GP B). The crude product was purified by column chromatography (SiO2, PE:EtOAc  

9.5:0.5 v/v) to give the product as a colorless oil (41 mg, 175 µmol, 52%). Conforms to reported 

analytical data.[S15] 

234.30 g/mol 

Rf: 0.22 (9:1 PE:EA) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.97 – 7.93 (m, 2H), 7.58 – 7.53 (m, 1H), 7.48 – 7.43 (m, 2H), 4.12 (q, J = 

7.1 Hz, 2H), 2.99 (t, J = 7.0 Hz, 2H), 2.36 (t, J = 7.1 Hz, 2H), 1.84 – 1.66 (m, 4H), 1.25 (t, J = 7.1 Hz, 3H) 

13C-NMR (101 MHz, CDCl3, δ): 199.8, 173.5, 136.9, 133.0, 128.6, 128.0, 60.3, 38.2, 34.2, 24.6, 23.7, 14.3 

GC-MS: (m/z) 233.1 

3-(1H-indol-3-yl)-1-phenylpropan-1-one (43) 

 

Following GP C, thioester SM43 (77 mg, 0.333 mmol, 1 eqv.) was coupled with phenyl zinc chloride 

(2.86 eqv. instead, 0.25 M in THF, by GP B). The crude product was purified by column chromatography 

(SiO2, PE:EtOAc  95:5 v/v) to give the product as a maroon colored solid (58 mg, 233 µmol, 70%). 

Conforms to reported analytical data[S16] with the exception that a white solid was expected. 

249.31 g/mol 
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Rf : 0.43 (PE:EA 85:15) 

mp: 128-130 oC  (Lit.[S16]: 124 – 126 °C). 

1H NMR (400 MHz, CDCl3, δ) 8.02 – 7.90 (m, 3H), 7.64 (d, J = 7.8 Hz, 1H), 7.55 (t, J = 7.4 Hz, 1H), 7.45 (t, 

J = 7.7 Hz, 2H), 7.37 (d, J = 8.3 Hz, 1H), 7.21 (ddd, J = 8.2, 7.0, 1.3 Hz, 1H), 7.14 (ddd, J = 8.0, 6.9, 1.1 Hz, 

1H), 7.06 (t, J = 1.4 Hz, 1H), 3.43 – 3.36 (dd, 2H), 3.23 (dd, J = 8.2, 6.8 Hz, 2H). 

13C NMR (101 MHz, CDCl3, δ) δ 199.9, 137.0, 136.3, 133.3, 133.0, 128.6, 128.1, 127.3, 122.1, 121.6, 

119.4, 118.7, 115.5, 111.2, 39.4, 19.7. 

GC-MS (EI): (m/z) 249.1. 

3-(4-methoxyphenyl)-1-phenylpropan-1-one (39) 

   

 

Following GP C, thioester SM39 (74 mg, 0.333 mmol, 1 eqv.) was coupled with phenyl zinc chloride 

(0.25 M in THF, by GP B). The crude product was purified by column chromatography (SiO2, PE: EtOAc  

97 : 3 to 90 : 10 v/v) to give the product as a light yellow solid (58 mg, 241 µmol, 73.23 %). Conforms 

to reported analytical data[S17] with the exception that a colourless solid was expected. 

240.302 g/mol     

Rf : 0.24 (PE:EA 9:1)  

mp:  63-65 oC. (Lit.[S17]: 66 °C). 

1H NMR (400 MHz, CDCl3, δ)  8.02 – 7.92 (m, 2H), 7.59 – 7.51 (m, 1H), 7.46 (ddt, J = 8.2, 6.7, 1.1 Hz, 2H), 

7.23 – 7.13 (m, 2H), 6.85 (d, J = 8.6 Hz, 2H), 3.79 (s, 3H), 3.33 – 3.22 (t, 2H), 3.02 (t, J = 8.3, 7.0 Hz, 2H). 

13C NMR (101 MHz, CDCl3, δ) δ 199.4, 158.0, 136.9, 133.3, 133.0, 129.4, 128.6, 128.1, 114.0, 55.3, 40.7, 

29.3. 

GC-MS (EI): m/z 240.1 
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3-cyclopentyl-1-phenylpropan-1-one (44) 

                                                                         

Following GP A, 3-cyclopentylpropanoic acid (0.568 g, 4 mmol, 1 eqv.) was coupled with EtSH (0.86 

mL, 12 mmol, 3 eqv.) using DIC (618 µL, 4 mmol, 1 eqv.) and catalytic DMAP (24.42 mg,  µmol, 5 mol%) 

in DCM (20 mL) for 24 h. All attempts towards purification of crude S-ethyl 3-

cyclopentylpropanethioate failed. The result was isolation of (246 mg, 1.32 mmol, 33%) crude S-ethyl 

3-cyclopentylpropanethioate. Hence, the crude thioester was used for the next step.  

Assuming complete purity, following GP C, S-ethyl 3-cyclopentylpropanethioate (61 mg, 0.333 mmol, 

1 eqv.) was coupled with 4-methoxy phenyl zinc chloride (0.25 M in THF, by GP B). The crude product 

was purified by column chromatography (SiO2, PE:EtOAc  98:2 to 95:5 v/v) to give the product as a light 

yellow solid (34.8 mg, 149 µmol, 67%) over two steps. Conforms to reported analytical data[S18] 

232.32 g/mol 

Rf : 0.45 (CyH: EA 9:1) 

m.p.: Ambient temperature. 

1H NMR (400 MHz, CDCl3, δ)  7.94 (d, J = 8.8 Hz, 2H), 6.92 (d, J = 8.8 Hz, 2H), 3.86 (s, 3H), 2.96 – 2.87 

(m, 2H), 2.16 (s, 1H), 1.84 – 1.70 (m, 5H), 1.61 (dt, J = 7.2, 2.7 Hz, 1H), 1.55 – 1.45 (m, 2H), 1.18 – 1.10 

(m, 2H). 

13C NMR (101 MHz, CDCl3, δ) 199.4, 163.3, 130.3, 130.2, 113.7, 55.4, 39.9, 37.6, 32.6, 30.9, 25.2. 

GC-MS (EI): m/z 232.1 

HRMS (ESI): calc. for [M+Na]+ m/z 255.13555, found 255.13588. 
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1-(4-methoxyphenyl)-3-phenylpropan-1-one (38) 

                                                                           

Following GP C, thioester SM36 (64 mg, 0.333 mmol, 1 eqv.) was coupled with 4-methoxyphenyl zinc 

chloride (0.25 M in THF, by GP B). The crude product was purified by column chromatography (SiO2, 

PE:EtOAc  97:3 to 85:15 v/v) to give the product as a colourless oil (70 mg, 266 µmol, 88%). Conforms 

to reported analytical data[S19] but the product did not solidify in our hands. 

240.30 g/mol 

Rf : 0.17 (PE: EA 9:1) 

m.p.: Ambient temperature. 

1H NMR (400 MHz, CDCl3, δ) 7.96 (d, J = 8.9 Hz, 2H), 7.26 (m, 5H), 6.94 (d, J = 8.9 Hz, 2H), 3.88 (s, 3H), 

3.27 (t, J = 7.9 Hz, 2H), 3.12 – 3.01 (t, 2H). 

13C NMR (101 MHz, CDCl3, δ) 197.8, 163.5, 141.5, 130.3, 130.0, 128.5, 128.4, 126.1, 113.7, 55.5, 40.1, 

30.4. 

GC-MS (EI): (m/z) 240.1. 

 

1,3-Diphenylpropan-1-one (36) 

 

Following GP C, thioester SM36 (78 mg, 0.333 mmol, 1 eqv.) was coupled with phenyl zinc chloride 

(0.25 M in THF, by GP B). The crude product was purified by column chromatography (SiO2, PE:EtOAc  

97.5:2.55 v/v) to give the product as a colourless solid (56 mg, 266 µmol, 80%). Conforms to reported 

analytical data[S20]. 

210.28 g/mol 

Rf : 0.48 (PE: EA 9:1) 

m.p.: 73-75 oC 
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1H NMR (400 MHz, Chloroform-d): δ 7.97 (dd, J = 8.4, 1.4 Hz, 2H), 7.61 – 7.52 (m, 1H), 7.50 – 7.43 (m, 

2H), 7.26 (m, 5H), 3.31 (d, J = 1.7 Hz, 2H), 3.09 (d, J = 8.0 Hz, 2H). 

13C NMR (101 MHz, CDCl3): δ 199.2, 141.3, 136.9, 133.1, 128.6, 128.5, 128.4, 128.1, 126.1, 40.5, 30.2. 

GC-MS (EI): m/z 210.2 

3.4.3.6 Tolerance of steric hindrance by catalysts other than Ni(xant)(oTol)Cl 

To prove that that other catalysts do not show the preference for primary thioesters as C2 does, we 

selected a model catalyst consisting of NiCl2 and terpy (as outlined in GP D) and conducted some 

comparative experiments (same timescale, starting material scale and catalyst loading) with one 

secondary and one tertiary thioester. 

Phenyl(1-tosylpiperidin-4-yl)methanone (51) by GP D 

GP D was followed using thioester SM51. Isolation was carried out as detailed in section 3.5 for 

compound 51. The product was isolated in 87% yield with the same analytical data as above, compared 

to a yield of 23% when C2 was used as catalyst. 

(Adamantan-1-yl)(phenyl)methanone (53) by GP D 

 

Following GP D, the thioester SM53 (98 mg, 333 µmol, 1 eqv.) was coupled with with phenyl  zinc 

chloride (0.25 M in THF, by GP B). The crude product was purified by flash chromatography (SiO2 

97.5:2.5 PE:Et2O isocratic) to give the product as a white solid (50 mg, 206 µmol, 62%). Conforms to 

reported analytical data[S21]. No product is obtained when C2 was used as catalyst (GP C). 

240.34 g/mol 

Rf: 0.23 (9:1 PE:DCM) 

m.p.: 51 °C (Lit.[S22]: 50-52 °C)  

1H-NMR (400 MHz, CDCl3, δ):  7.50 – 7.43 (m, 2H), 7.39 – 7.24 (m, 3H), 1.99 (s, 3H), 1.93 (s, 6H), 1.67 
(s, 6H). 

 
13C-NMR (101 MHz, CDCl3, δ): 210.1, 139.6, 130.1, 127.9, 127.1, 46.9, 39.1, 36.6, 28.2. 

 

GC-MS: (m/z) 240.2, 224, 135.1. 
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Data 

generation % 

Analysis & 

Interpretation 
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Paper writing 
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P.H. Gehrtz First  87.5% 87.5% 87.5% 100% 

V. Geiger Second 5% 5% 5% 0% 

T. Schmidt Second 5% 5% 5% 0% 

L. Srsan Third 2.5% 2.5% 2.5% 0% 

I. Fleischer Supervisor     

      

Title of paper: Cross-coupling of chloro(hetero)arenes with thiolates employing 

a well-defined Ni catalyst, Org. Lett. 2019, 21, 50-55 

Status in publication process: Published 
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4. Nickel-catalyzed coupling of zinc thiolates with chloroarenes 

4.1. Introduction 

4.1.1. Aryl thioethers in pharmaceuticals, agrochemicals and materials 

Aryl thioethers - meaning either diaryl thioethers or aryl alkyl thioethers - are a common structural 

motif in functional, non-natural organic compounds with applications in pharmaceutical chemistry, 

agrochemistry and material design (Figure 4.1). For example, aryl alkyl thioethers as well as diaryl 

thioethers are found in pharmaceuticals across several medical indications (1, axitinib: anti-tumoral; 

2, 2C-T-7: psychotomimetic; 3, vortioexetin: anti-depressant; 4, cangrelor: thrombocyte aggregation 

inhibitor) with diverse biomacromolecular targets. A 2014 analysis has shown that of the Top 200 US 

drugs by prescription or retail sales, 25% and 23% respectively of these sets contain a sulfur 

heteroatom.[1] Of all sulfur-containing FDA-approved drugs, the thioether functional group is the third 

most prevalent (8.8% of the total share) after sulfonamides (29%) and β-lactams (10.5%).[1]  

To understand the unique structural properties conferred by introduction of the aryl thioether motif, 

a comparison to the oxygen analogues is warranted in the context of medicinal chemistry. As an 

example, albendazole (9, a microtubule-modifying antihelminthic) was chosen (Scheme 4.1).[2] The 

hypothetic oxygen analogue 10 is less lipophilic (as seen by the decreased logD value) than 9. This has 

important effects on membrane permeability, absorption and metabolism of the compound in 

humans.  

Furthermore, the oxygen atom has a stronger H-bonding acceptor ability than the sulfur atom and 

thus may engage in completely different intermolecular interactions, which can have important effects 

in target selectivity. However, anti-bonding σ* C-S orbitals have been postulated as stereolectronic 

design elements for medicinal chemistry as well.[3] While having a similar mesomeric effect, the oxygen 

atom possesses a more distinct negative inductive effect, which can impact the pKa or pKaH of 

neighbouring functional groups (e.g. making the second-most acidic proton slightly less acidic by 

oxygen-to-sulfur switch). Compared to the oxoethers, thioethers have a reduced C-S-C bond angle, 

approaching a right angle. Finally, the incorporation of sulfur atoms allows fine-tuning of metabolism, 

including shortening of blood plasma half-life (t1/2) and reducing bioavailability (%F) through oxidation 

to the sulfoxide and sulfone. In conclusion, a seemingly innocent structural change can influence 

pharmacodynamics and pharmacokinetic parameters of a drug in a drastic manner.  
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Figure 4.1: Diaryl sulfides and aryl alkyl sulfides as common motifs in non-natural functional molecules. 
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Scheme 4.1: Physicochemical differences imparted by oxygen-to-sulfur exchange and possible effects in metabolic profiles 
using albendazole (9) as an exemplary bioactive compound. 

The possibility of isosteric replacement is formalized in the classic divalent series -CH2-, -O-, -S-, -NH-.[4]  

Thioethers can also be found in various materials (Figure 4.1, compounds 5 – 6) and agrochemicals 

(Figure 4.1, compounds 7 – 8). A famous example is poly-phenylsulfide (PPS, 5), a high-performance 

polymer. Selectivity for soft Mercury ions in metal-organic-frameworks has been achieved by 

incorporating aryl thioether structural motifs.[5] Recently, efficient polymeric organic solar cell 

components have been developed, which contain aryl alkyl thioether motifs in the monomer unit, such 

as in 6.[6] 

 

Scheme 4.2: Metabolic activation of the insecticide Fenthion (8) by oxidation to a highly active electrophile 11 for inhibition 
of insect acetylcholine esterase (denoted as Enz-OH). 

In the insecticidal agrochemical Fenthion (8, Bayer AG), oxidative metabolism of the thioether 

(transport form) to the sulfoxide generates the active toxic substance by increasing the leaving group 

ability of the phenolate (Scheme 4.2). Disappointingly, both forms of Fenthion still display high toxicity 

towards other organisms; it is currently not approved for use.  

Aryl thioethers appear to be less common in natural products, but are not completely absent (Figure 

4.2, compounds 12 to 14). Lissoclibadin 5 (12) belongs to a series of sulfur-rich dopamine-derived 

alkaloid natural products,[7] some of which have displayed anti-tumoral properties in cell culture 

experiments.[8] Chuangxinmycin (13) is an microbially produced antibiotic compound, derived from 

tryptophan.[9] In this case, it is known that the final Caryl-S bond formation is carried out by a 

Cytochrome P450 enzyme catalyzed oxidation and that the sulfur originates from cystein. A total 
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synthesis has been achieved by Greco and Kozikowski in 1980.[10] Nasturlexin B (14) is biosynthetically 

derived from tyrosine.[11] Compound 14 belongs to the class of phytoalexins, showing antimicrobial 

activity, which are produced by certain plants in response to (a)biotic stressors. Thus, the biosynthetic 

genes for phytoalexins have attracted interest as potential resistance traits transferable to 

agriculturally relevant plants by breed crossing.[12] 

 

Figure 4.2: Exemplary natural products containing diaryl sulfides or alkyl aryl sulfides. 
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4.1.2. Synthetic methods to access aryl thioethers 

In the following section, common methods for the construction of aryl thioethers (diaryl sulfides and 

aryl alkyl sulfides of the type 15) will be critically discussed, meaning that their practicality will be 

assessed together with their mechanistic uniqueness, while a focus on transition-metal catalyzed 

methods will be laid. Mechanistically similar variants of parent reactions will not be discussed.  

The most obvious disconnection of an aryl alkyl sulfide functionality is to cut retrosynthetically at the  

Csp3-S bond, but a discussion of available synthetic methods for this disconnection is outside of the 

scope of this introduction. However, a range of classic organic reactions (SN2, Michael addition, etc.) is 

applicable in this case. This is also relevant for the disconnection of dialkyl sulfides. Depending on the 

synthetic strategy, or the structural features of the reactant, this disconnection may not be available. 

 

Scheme 4.3: Synthesis of alkyl aryl sulfides or diaryl sulfides: an overview of Csp2-S disconnections leading to five unique 
synthon combinations, which are discussed below. [TM]: Transition metal; [Ox]: Oxidant; [Red]: Reductant. 

The alternative disconnection (Csp2-S) then might become attractive (Scheme 4.3). In general, for all 

hypothetic synthons (ionic-polar and radical) and their shown combinations, a real forward 

transformation exists (synthetic methods 1 – 10). For aryl halides, the SNAr pathway is only efficient in 

the presence of electron-withdrawing groups on the arene, and still may require forcing conditions 

even with reactive, nucleophilic thiolates (Synthetic method 1). Polarity reversal of inherently 
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nucleophilic thiols has been achieved with oxidizing agents (synthetic method 2). N-Chlorosuccinimide 

was used by Lee and co-workers to give sulfenyl chlorides, which showed excellent reactivity with aryl 

Grignard reagents to give aryl alkyl sulfides.[13]  

The Migita and Ullmann reactions are C-S cross-coupling reactions, which in a broad sense follow the 

general mechanistic steps of late-transition metal-catalyzed cross-couplings with 2 valence-electron 

redox cycles (synthetic method 3). The Migita reaction is closely related mechanistically to the 

Buchwald-Hartwig amination and etherification and will be discussed in more detail later (sections 

4.1.2.1.-4.1.2.3.). It is known to be catalyzed by several different transition metals whereas the 

Ullmann reaction refers specifically to catalysis by copper species. Various Ullmann C-heteroatom 

cross-couplings have been comprehensively reviewed.[14] An interesting example was presented by 

Snieckus demonstrating high tolerance of the Ullman method towards protic functionality (Scheme 

4.4).[15] 

 

Scheme 4.4: Functional-group tolerant Ullman thiolation reported by Snieckus. 

Arenediazonium salts can be conveniently exploited as facile sources of aryl radicals by single electron 

transfer (SET) reductants, such as excited state organic photocatalysts or simply by thermo- or 

photoinitiation - the thermodynamic driving force being the formation of nitrogen. This reaction type 

shares mechanistic similarities with the Sandmeyer-reaction (synthetic method 4). The aryl radicals 

combine with thiyl radicals (recombination) or disulfides (recombination and chain elongation by 

production of another thiyl radical) to give the desired aryl sulfide products. Jacobi von Wangelin and 

co-workers have shown a broad scope of these dark and photocatalyzed reactions in a series of 

articles,[16] including an interesting trifluoromethylthiolation reaction of relevance in an agrochemical 

and pharmaceutical context.  

Morandi recently reported a Pd-catalyzed (0.4 – 0.8 mol%) single bond metathesis approach to alkyl 

aryl sulfides from other alkyl aryl sulfides or thiophenols by applying an excess of lithium thiolate (2.6 

to 3.9 eqv.) and allowing thermal equilibration (synthetic method 5).[17] The key to designing successful 

single-bond metathesis catalysts for C-S bond formation is complete reversibility of the elementary 

organometallic steps. So far, relatively harsh thermal conditions (100 °C for thioethers, 160 °C for 

thiophenols) were required to access the target structures. The most impressive feature of this 
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reaction is however the demonstrated success in depolymerizing polyphenyl sulfide 5 to a single non-

polymeric dithioether. 

Sanford has reported the redox neutral, thermal (130 – 150 °C) Pd- and Ni-catalyzed (10 mol%) 

decarbonylation of S-aryl thioesters to yield diaryl sulfides after 20 h reaction time (synthetic method 

6).[18] Szostak and Liu have reported a similar Ni-catalyzed reaction.[19] The reaction is mechanistically 

intriguing since the final thermodynamic fate of the catalysts appear to be the corresponding metal 

carbonyls, which seems to be countered by the high temperature to enable thermolysis of the Metal-

CO bond. S-alkyl thioesters proved to be unreactive under the conditions reported by Sanford. 

Although the reaction is redox neutral, the preparation of thioesters as starting materials is necessary. 

This can be an advantage considering the wide availability of benzoic acid derivatives. 

The Copper-catalyzed Chan-Lam reaction (synthetic method 7) is a cross-nucleophile coupling 

between an organoboronic acid (18) or ester (19) and a heteroatom nucleophile (amine or thiol such 

as 20) requiring an oxidant (Scheme 4.5).  

 

Scheme 4.5: Generalized scheme for the reported crossed-nucleophile Chan-Lam Cu-catalyzed reaction of aryl boronic acid(s) 
(esters) with thiophenols. A simplified mechanism is shown on the right. 

From a handling perspective, it is an attractive alternative since it can be conducted in aerobic 

conditions (or in an atmosphere of pure oxygen). It has therefore gained attention from the 

pharmaceutical industry. Significant advances have been made in the Chan-Lam coupling of 

thiophenols with arylboronic acids. Fang, Xu and co-workers reported a CuSO4/Phenanthroline 

catalyzed system (5 mol%) each to give a large set of diaryl sulfides (48 examples, 40 – 85% yield) at 

RT under an oxygen atmosphere in EtOH solvent within 8 h.[20] Watson and co-workers at 

GlaxoSmithKline reported in a mainly mechanistic study the Chan-Lam coupling of aryl boronic pinacol 

esters with thiophenols (2 examples) using Cu(OAc)2 (20 mol%) under an oxygen atmosphere at 80 °C 

in acetonitrile solvent in the presence of powdered molecular sieves and boric acid for 24 h.[21] The 

Chan-Lam coupling of aliphatic thiols with aryl boronic acids is currently only possible by employing 

stoichiometric copper, which is an unsolved severe limitation of this otherwise attractive synthetic 

method. 
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Cross-electrophile thiolations (synthetic method 8) combine disulfides and aryl halides in the 

presence of a metallic reducing agent. Only aryl iodides have been shown to be competent coupling 

partners under Ni catalysis (with various ligand frameworks) and elemental Zn as the reductant.[22] It 

has been shown for related cross-electrophile couplings that the mechanism may diverge from simple 

metalation of the stronger electrophile, followed by a classical cross-coupling mechanism. Indeed, all 

the above cited studies propose various mechanisms that diverge completely from the typical cross-

coupling mechanism by accounting for single electron transfer reductions. For example, Nevado has 

shown an organic reductant to be highly active in a Ni-catalyzed cross-electrophile coupling.[23] 

A mechanistically interesting example was presented by Miyake and co-workers for the synthesis of 

diaryl sulfides under visible light irradiation from electronically differentiated coupling partners 22 and 

23 in basic conditions at RT (Scheme 4.6).[24] 

 

Scheme 4.6: Mechanistic proposal of a transition-metal-free, light-mediated charge transfer from an electron donor-
acceptor-complex (EDA complex) to give aryl-thiyl radical coupling products as reported by Miyake. 

An electron-donor-acceptor (EDA) complex 24 was proposed, which after charge-transfer would give 

two radical species (complex 25), which would recombine to give the desired product 26 (synthetic 

method 9). The proposed mechanism was supported by UV/Vis experiments and the fact that 

alkanethiols were incompetent nucleophiles. The possibility of “hidden” transition-metal catalysis was 

ruled out using high purity cesium carbonate as base. While the reaction represents an interesting 

alternative to thermal SNAr reactions, it is still limited by the necessary electronic differentiation of the 

substrates into electron-rich nucleophile (23) combined with electron-poor electrophile (22).  

Before the report of Miyake, approaches utilizing photoredox catalysis (synthetic method 10) to 

produce aryl sulfides have been published. Fu and co-workers reported an effective combination of 

the photoredox catalyst [fac-Ir(ppy)3] and Cs2CO3 to generate thiyl radicals from the excited state 

photocatalyst and cesium thiolate.[25] The reduced photocatalyst then reduces the aryl halide (X= I, Br, 

Cl) to an aryl halide radical anion, which couples with the thiyl radical to give a thioether radical, which 

undergoes oxidation to generate the diaryl thioether product and another thiolate equivalent (Scheme 

4.7). 
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Scheme 4.7: General mechanistic proposal for the Ir-photoredox catalyzed thiolation of aryl halides as reported by Fu and 
co-workers. SET: single electron transfer. 

However, there are similarities between Fu’s and Miyake’s work. Interestingly, control experiments 

in Fu’s work without added photocatalyst did not give appreciable yields of aryl sulfide. Additionally, 

aliphatic thiols were rather incompetent coupling partners, giving only 52% isolated yield with less 

challenging aryl iodide partners.  

In a related approach reported by Johannes, dual photoredox-nickel catalysis was employed (Scheme 

4.8).[26] Again, a photoexcited Ir catalyst was used as an oxidant to generate a thiyl radical which 

oxidizes a Ni(I) species to give a Ni(II) complex carrying the thiolate. Reduction of the Ni species by the 

reduced photocatalyst gives a Ni(I) thiolate which undergoes a typical cross-coupling sequence leading 

to the desired thioether product and a Ni(I) halide ready to reenter the catalytic cycle by 

combination/SET with a thiyl radical.  While aliphatic thiols were well-tolerated, the electrophile scope 

was limited to aryl iodides. While photo-mediated or photo-catalytic synthetic methods have their 

unique advantages, technical issues can arise upon scale-up by action of the Lambert-Beer law. 
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Scheme 4.8: General mechanistic proposal for the dual Ir-photoredox/Ni-catalyzed thiolation of aryl iodides as reported by 
Johannes and co-workers. SET: single electron transfer; o.a.: oxidative addition; r.e: reductive elimination. 

Molander used a base-free approach by combining dual photoredox-nickel catalysis with H-atom 

transfer reagents. A hypervalent alkylsilicate reagent 27 is reduced by a photoexcited Ruthenium 

catalyst, to give an alkyl radical which rapidly generates a thiyl radical by H-atom abstraction (Scheme 

4.9).[27] These thiyl radicals then enter a Ni-catalyzed cross-coupling cycle similar as to the one reported 

by Johannes and co-workers.  

 

Scheme 4.9: General mechanistic proposal for the dual Ir-photoredox/Ni-catalyzed thiolation of aryl iodides as reported by 
Molander and co-workers. SET: single electron transfer; o.a.: oxidative addition; r.e: reductive elimination; HAT: H-atom 
transfer.  

Thiophenols were unreactive coupling partners, and the aryl halide scope is currently limited to aryl 

bromides and iodides. Since the reaction is occurring base-free, interesting applications in bioorganic 

chemistry are opened up and have been reported subsequently by Molander.[28] A highlight in the 

follow-up publication is the selective arylation of a cysteine residue in a highly functionalized, 

unprotected linear octapeptide within 1.5 h at RT in DMF. 



Chapter 4   

186 

4.1.2.1. Pd-catalyzed Migita reactions 

In 1978, Toshihiko Migita and co-workers from Gunma University in Japan reported the 

Pd(PPh3)4-catalyzed (4 mol%) reaction of aryl iodides and bromides with sodium alkyl- and arylthiolates 

in DMSO for 18 h at 100 °C.[29] Aryl chlorides were reported to be unreactive under these conditions. 

The chemical literature in some cases does not acknowledge this historic development, and the Migita 

reaction is in some cases confusingly referenced as the Buchwald-Hartwig(-Migita) thiolation.[30] 

Interestingly, Migita also contributed heavily to the development of the Pd-catalyzed Buchwald-

Hartwig amination of aryl halides through discovery of the Pd-catalyzed reaction of tin amides with 

aryl halides.[31] It was found by the same group that alcoholic solvents exhibit an overall better 

performance than DMSO.[32] In the following years, the reaction scope was extended towards other 

metal thiolates, as well as alkenyl and alkynyl bromides and iodides by various groups. Progress in this 

area has been reviewed up to 2011.[33] A generally accepted mechanism for Pd(0/II) systems is 

presented below (Scheme 4.10) and is basically equivalent to the Buchwald-Hartwig amination. It 

consists of oxidative addition to an Csp2-X electrophile, transmetalation of a metal thiolate and 

reductive elimination to release the product and regenerate the Pd0 species. 

 

Scheme 4.10: General mechanism of the Pd-catalyzed Migita reaction with a 2-valence electron redox cycle. In some cases, 
an adduct of the thiol with the oxidative addition complex was detected. 

The first reports of successful aryl chloride activation in the Pd-catalyzed Migita reaction appeared 

from 2000 onwards. In 2001, Li and co-workers at DuPont Company reported air-stable dimeric PdII 

complexes from secondary phosphine oxides, which were active in the Migita reaction of some aryl 

chlorides.[34] Electron rich aryl chlorides showed less satisfactory performance.[35]  

In 2004, Buchwald disclosed a Pd(OAc)2/dippf-catalyzed Migita reaction (dippf: 

1,1’-bis(diisopropylphosphino)ferrocene) for the transformation of various aryl chlorides at 100 °C for 

18 h.[36] Hartwig reported on a Pd-catalyzed Migita reaction of aryl chlorides with Pd loadings as low as 

0.01 mol% (usually 0.5 – 2 mol%) in various solvents at 110 °C for 2 – 24 h.[37] In this case, a Josiphos-

type chiral ligand showed superior performance to other bidentate phosphines, however the chiral 

information was obviously not necessary per se. The last two systems are generally the strongest 
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performers in the area of Pd-catalysis. A minor drawback is the requirement for air-sensitive and costly 

designer phosphine ligands. 

In 2018, the Schönebeck group reported a Migita reaction of aryl bromides and iodides selectively 

over aryl triflates (e.g. DPEphos/Pd mixtures were reported to selectively activate aryl triflates over 

bromides) with pre-formed sodium thiolates by using air- and moisture-stable [(µ-Br)Pd(PtBu3)]2 (5 

mol%) at 40 - 60 °C in toluene for 3 – 12 hours.[38] A major advantage of the method appears to be the 

tolerance of the reaction towards reactants with protic functionality. The proposed catalytic cycle 

differs from the standard cross-coupling cycle; transmetalation is followed by oxidative addition to give 

a dinuclear Pd(II) complex which undergoes reductive elimination. 

 

Scheme 4.11: Uses of the Pd-catalyzed Migita reaction in the process development and commercial manufacture of a 
lipoxygenase inhibitor 30 from Pfizer. 

It is interesting to note that the Pd-catalyzed Migita reaction has found its way into pharmaceutical 

process chemistry.[39] Pfizer developed the Lipoxygenase inhibitor PF-04191834 (30) containing a 

central diaryl sulfide motif, which required changes to the discovered medicinal chemistry synthetic 
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route to facilitate multi-kg production for clinical trials. The chemical evolution of the route into 

commercial production has been documented by two published reports. Initially, the medicinal 

chemistry route used (iPr)3SiSH (TIPS-SH) as a sulfide surrogate to construct the central C-S bonds in 

two subsequent Migita reactions. While the overall strategy was kept in the subsequent process 

development, the Buchwald catalytic system (Pd(OAc)2/dippf) was exchanged due to scale-up and cost 

problems towards a more robust dppf-based precatalyst operating at lower loadings (from 28 to 29).[40] 

A similar tactic was executed for the second step (from 29 to 30).  

Finally, in the commercial route, 3-mercaptopropionate (32) was chosen as a sulfide surrogate 

instead and a one-pot process was developed with an excellent overall yield.[41] The propionate moiety 

is eliminated as an acrylate under the basic conditions of the second step (from 33 to 30). Again, this 

was achieved by a re-evaluation of catalytic systems for the Migita reaction. A Xantphos-based system 

was found to be equally potent to the Hartwig system (Josiphos-based), and thus the former was 

selected based on estimated operating costs. The conclusion from this case study is that in process 

chemistry robustness and cost are key issues in transition metal catalysis, leading to the preference 

towards non-designer ligands, low metal loadings, short reaction times and process-friendly solvents 

over highly performant catalytic systems. 

4.1.2.2. Ni-catalyzed Migita reactions 

Cristau reported the first Ni-catalyzed Migita reaction of aryl bromides using 0.3 mol% of Ni(dppBz)Br2 

(dppBz: 1,2-bis(diphenylphosphino)benzene) at 200 °C in glycol for 24 h.[42] Following this seminal 

report, Ni-catalyzed Migita couplings generally remained limited to aryl bromides, iodides and 

mesylates as the electrophilic coupling partner; the progress up to 2011 has been reviewed.[33] While 

a 2 valence-electron redox cycle similar to the Pd-catalyzed Migita reaction appears likely, other 

mechanistic scenarios (such as the involvement of Ni(I) species) should not be ruled out. 

In 2015, the Schönebeck group discovered a Ni-catalyzed trifluoromethylthiolation of aryl chlorides 

at 45 °C in toluene for 24 h using Ni(cod)2/dppf (10 mol% each) to form the active catalyst in situ.[43] 

The resulting aryl trifluoromethyl sulfides are high-value structures in medicinal chemistry. Some key 

discoveries were made: 1. The addition of nitrile additives lowers the energetic span of the catalytic 

cycle by destabilizing the zerovalent Ni complex relative to the cod-ligated analogue, thus leading to a 

lower barrier for oxidative addition, which was rationalized by DFT calculations; 2. Ni(dppf)Cl was 

formed from the oxidative addition of Ni(dppf)(cod) into chlorobenzene 3. Ni(dppf)Cl was catalytically 

inactive, which supports a Ni(0/II) redox cycle analogous to the Pd-catalyzed process. 

In 2017, the Stewart group and co-workers at Bayer reported the Ni-catalyzed Migita coupling of 

arylthiols with chloroarenes using Ni[P(OpTol)3]4 (5 – 10 mol%) and Xantphos (5 – 10 mol%) in toluene 

at 110 °C for 16 h.[44] Alkylthiols were unsuitable coupling partners. Interestingly, the Xantphos ligand 
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was found the most effective by simple empirical screening of 28 bidentate commercially available 

phosphine ligands using a GC/MS-based assay. Stoichiometric zinc was necessary as an additive to 

suppress the formation of aryl disulfides. 

Table 4.1 reviews all reported Ni-catalyzed Migita reactions of aryl halides (and some alkenyl halides) 

with thiols or thiolates by comparing all important reaction parameters. To allow for a fair comparison, 

an idealized turnover frequency (TOF) was calculated from the turnover number (TON) assuming 

complete catalyst selectivity and no deactivation over the course of the reaction over time t. This TOF 

value should not be confused with a rate based TOF, which changes over the course of a reaction. It 

should be noted that no normalization of temperature was carried out. 

TOF (h-1) = TON/t = (100%/[Ni loading])/t   (Equation 1) 

There are two overall themes: Most reactions are performed in polar aprotic solvents (e.g DMF) and 

secondly most reactions target aryl iodides and bromides. The average (considering all electrophiles) 

Ni-catalyzed Migita reaction is performed at around 90 °C, for 13 hours with a Ni loading of 

approximately 7 mol% and a TOF of 18 h-1.  These benchmark values allow for method comparison and 

highlight the underdeveloped status of Migita reactions targeting aryl chlorides and operating under 

milder conditions, most desirably at room temperature. For an exemplary comparison, Hartwigs 

Pd/Josiphos-catalyzed Migita reaction of chloroarenes typically operates at 0.1 mol% metal loading, 

going to completion within 4 h (at 110 °C), giving an idealized TOF of 250 h-1.[37b] 

 



 

Table 4.1: Comparison of literature-known Ni-catalyzed Migita reactions of aryl halides with thiols or thiolates in various reaction parameters. 

 ArX [a] RSH Base Reductant Catalyst Ni loading (mol%)[b] Ligand Ligand loading (mol%) Solvent 
T (°C) 

[b] 
t (h)[b] 

TOF 

(h-1)[c] 

1[44] Cl Ar KOtBu Zn (100 mol%) Ni[P(OpTol)3]4 10 Xantphos 20 Toluene 110 16.0 0.6 

2[45] I Ar, Alkyl Pyridine Zn (200 mol%) [Ni•Py•2EC] 30  90 MeOH 25 5.0 0.7 

3[42] Br Ar NaSR  Ni(dppBz)Br2 0.3   Glycol 200 24.0 13.9 

4[46] OMs Ar NaSR Zn Ni(dppf)Cl2 10 dppf 20 DMF 80 21.5 0.5 

5[43] Cl CF3 Me4NSCF3  Ni(cod)2 10 dppf 10 Toluene/MeCN 45 15.0 0.7 

6[47] Br* Ar, Alkyl KOtBu  Ni(OAc)2 10 IPr 5 DMF 70 2.0 5.0 

7[48] Br** Ar K2CO3 Zn (20 mol%) NiBr2 4 dppf 8 NMP 60 10.0 2.5 

9[49] Br Ar, Alkyl NaH or Et3N or PhNEt2  Ni[P(OEt)3]4 5   DMF/(THF) 120 24.0 0.8 

10[50] I Ar, Alkyl KOH  NiCl2(H2O)6 5   TBAB molten salt 110 10.0 2.0 

11[51] Br Ar, Alkyl KOtBu  (34)2Ni 4   DMF 110 16.0 1.6 

12[52] Cl Ar KOH  (35)2Ni 5   DMF 70 2.0 10.0 

13[53] Br** Ar NaOtBu  (36)Ni(allyl)Cl 1   DMF 100 24.0 4.2 

14[54] I Ar KOH  NiCl2/Ni(cod)2 1 Ph2P(O)H 10 DMF 80 2.0 50.0 

15[55] I*** Ar KOH  Ni(cod)2 0.5 37 0.5 DMF 80 1.0 200.0 

16[56] Br Ar, Alkyl NaOH Zn (15 mol%) NiBr2 10   PEG400 120 12.0 0.8 

17[57] Br Ar NaOtBu  (IPr)Ni(allyl)Cl 5   DMF 100 24.0 0.8 

Average      6.9    92.5 13.0 18.4 

[a]: Only the aryl halide with the strongest C-X bond is mentioned. [b]: Highest value during substrate screening. [c]: Assuming complete conversion after the reaction and complete product selectivity 

per mol% of catalyst during all stages of the reaction. *: ArCl examples are reported only with strongly electron-withdrawing nitro groups. **: ArCl examples below 15% yield. ***: One example with 

ArBr. cod: 1,8-cyclooctadiene; dppBz: 1,2-bis(diphenylphosphino)benzene; dppf: 1,1’-diphenylphosphinoferrocene;  IPr: 1,3-Bis(2,6-diisopropylphenyl)imidazolylidene; TBAB: tetrabutyl ammonium 

bromide; pTol: para-tolyl; PEG400: polyethylene glycol of average molecular weight 400; NMP: N-Methylpyrrolidine; DMF: N,N-Dimethylformamide; EC: Ethylcrotonate; Py: Pyridine; 34: 

1,3-Bis[benzyl]imidazolylidene 35: 2-(((2-(benzylthio)phenyl)imino)methyl)phenolate 36: 1,3-Bis[2,6-bis(diphenylmethyl)-4-methoxy-phenyl]imidazolylidene; 37: 

1,1’-Bis(phenylphosphineoxide)diphenylether. 
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4.1.2.3. Migita reactions catalyzed by other (transition) metals 

The iron-catalyzed Migita reaction is a highly attractive method. The high earth-crust abundance of this 

metal coupled with its low toxicity makes it attractive for pharmaceutical process chemistry. In 2009, Bolm 

reported the Fe-catalyzed (10 mol%) Migita coupling of aryl iodides with various (hetero)arenethiols at 

135 °C for 24 h in toluene employing a diamine ligand.[58] Lee extended the scope to alkylthiols with a 

similar system using Xantphos as a ligand.[59] It was however conclusively shown copper contamination 

present in non-high-purity commercial batches of iron precursor salts is causing the cross-coupling 

activity.[60] The copper-catalyzed Migita reaction is synonymous to the Ullmann thiolation and was briefly 

discussed above. It is currently unclear if an iron-catalyzed Migita reaction is feasible at all, and significant 

experimental work will have to be dedicated to exclude catalysis by transition metal contaminants. 

In 2008, Rao and co-workers presented an Indium-catalyzed Migita reaction of aryl iodides with 

thiophenols and alkanethiols in DMSO at 135 °C for 24 h.[61] The necessity of an amine ligand and the fact 

that Indium is a simple Lewis acid unable to undergo typical transition metal redox cycles make the 

mechanism of this reaction intriguing and calls for investigation of “hidden” metal catalysis in this case. 

Rao has since then shown that indium oxide nanoparticles alone are able to catalyze similar Migita 

reactions.[62] 

In 2006, Cheng and co-workers reported an attractive Cobalt-catalyzed (1-2 mol%) Migita reaction 

operant on aryl iodides and bromides in acetonitrile at 80 °C.[63] Various alkanethiols and thiophenols were 

efficiently coupled using simple pyridine as the stoichiometric base. However, a stoichiometric reductant 

(Zn) was required. The authors postulated a CoI/III 2-valence electron redox cycle where the reductant 

performs an initial reduction of a CoII precursor salt. 

4.1.3. Aims of the chapter 

As can be seen from the preceding sections, the Migita reaction can be a valuable tool in the synthesis 

of non-natural aryl thioether compounds, up to process chemistry scale. A rather large set of methods is 

available, which utilize Pd or Ni catalysts to activate aryl bromides or iodides, whereas the activation of 

chloroarenes is relatively underdeveloped. 

The typically observed activity row ArI > ArBr = ArOTf > ArCl (which corresponds to the reported bond 

dissociation energy trend)[64] in Pd-catalyzed cross-coupling (there are exceptions to the presented order) 

is appealing to the synthetic chemist, allowing in principle programmable, sequential functionalizations 

of polyhalogenated arenes,[38] especially in the context of increasing automatization of cross-coupling 
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sequences.[65] However, cross-coupling systems for functionalizing stable chloroarenes remain rare and 

may require designer phosphine ligands (e.g. Josiphos)[37b] or air-sensitive ligands (e.g. dippf)[36] in the 

realm of Pd catalysis. Ni catalysis offers the opportunity to activate challenging electrophiles with ease 

(see chapter 1), but severe limitations exist which may hinder method uptake by the wider synthetic 

community, including: 1. limited functional group and heterocycle tolerance, 2. high Nickel loadings, 3. 

harsh thermal conditions and prolonged reaction times. 

Thus, in this chapter, an exceptionally mild Migita reaction of zinc thiolates with chloroarenes was 

discovered as a side-reaction of the Ni-catalyzed Fukuyama reaction (Chapter 3). A similar observation has 

been made by Stambuli during investigation of the Pd-catalyzed Fukuyama reaction, where aryl bromides 

were activated. Thus, a robust Ni-catalyzed Migita reaction of challenging chloroarenes with in situ 

generated zinc alkyl- and arylthiolates will be presented in the following sections, which compares 

favorably in various metrics to established Pd and Ni-based systems. 
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4.2. Results and discussion 

4.2.1. Initial optimization 

Based on the initial observation of the Migita coupling in the context of the Fukuyama coupling using C1, 

a set of screening reactions between chlorobenzene (38) and heptane-1-thiol (HeptSH, 39) was conducted 

in THF at RT using 0.5 mol% C1 loading. The results were analyzed by quantitative GC-FID (Table 4.2).  

Table 4.2: Initial optimization of the Migita coupling of chlorobenzene with heptane-1-thiol. 

 

Entry RMX Cat. Conditions Conv.a Yield 

a 

1 PhMgBr•LiCl (1.1 

eqv) 

C1 (0.5 mol%) 15 min, 0°C to RT 100% 93% 

2 PhMgBr•LiCl (1.1 

eqv) 

C1 (0.5 mol%) 5 min, 0 °C to RT 36% 33% 

3 PhMgBr•LiCl (1.1 

eqv) 

C1 (0.5 mol%) 15 min, 0 °C to RT, in air 13% 13% 

4 PhMgBr•LiCl (1.1 

eqv) 

NiCl2 (0.5 mol%) 15 min, 0 °C to RT 35% 0% 

5 PhMgBr•LiCl (1.5 

eqv) 

None 15 min, 0 °C to RT 6% 1% 

6 PhMgBr•LiCl (1.1 

eqv) 

Ni-NP (0.5 mol%)b 30 min, 0 °C to RT 31% 0% 

7 PhMgBr•LiCl (1.1 

eqv) 

C1 (0.5 mol%) 30 min, 0°C to RT, 

dark 

100% 65% 

PhCl (50 µL, 500 µmol), heptane-1-thiol (80 µL, 500 µmol) PhMCl·LiCl (1.2 mmol based on titre [typically 0.5 M], in THF), C1 (2.0 
mg, 2.5 µmol, 0.5 mol%), dry THF (500 µL), 0 °C to RT, 15 or 30 min. aDetermined by quant. GC-FID analysis. bPrepared as a THF 
slurry by a literature procedure (SI).  
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PhMgBr•LiCl (41) was chosen as a readily accessible organometallic base, which was added with ice-

water bath cooling to avoid undesired Kumada-coupled side products. Pleasingly, full conversion of 38 

and an excellent yield of the aryl sulfide 40 was observed after 15 min reaction time with only 0.5 mol% 

catalyst loading (entry 1). Shorter reaction times proved detrimental (entry 2), perhaps since the reaction 

required warming to RT to achieve full catalytic efficiency. To rule out a mechanism involving oxidation of 

the thiolate to deliver a potent disulfide electrophile which would be attacked by the Grignard reagent to 

give the desired product 40, the reaction was conducted in air, which gave the expected negative result 

(entry 3). The use of ligand-free anhydrous NiCl2 as a substitute for C1 resulted in a negative result as well, 

pointing towards a strong ligand effect (entry 4). Similarly, the use of preformed NiB nanoparticles or 

metal-free conditions did not lead to any significant product formation (entries 5 and 6). Curiously, under 

dark (laboratory lights turned off & reaction vessel shielded by a cardboard box) conditions, a lowered 

yield was observed (entry 7). However, removal of the ice bath under dark conditions proved to be difficult 

and this result may be accounted by a simple experimental error. However, re-evaluation of this result 

might represent a future direction of mechanistic research.  The photocatalyst-free acceleration of the 

organozinc-mediated reduction of NiII salts to Ni0 catalysts in flow-reactor Negishi Ni-catalyzed reactions 

has been conclusively proven by NMR experiments.[66] MacMillan and co-workers have proposed 

photoexcited states driving thermodynamically unfavoured C-O reductive elimination from NiII alkoxide 

complexes.[67]

Next, ligand effects were investigated (Table 4.3). The selection encompassed the small bite angle ligand 

dppe, monodentate PPh3 and the wide bite angle ligand dppf. To allow for a fair comparison, the 

corresponding L2Ni(oTol)Cl complexes were synthesized (C2 – C3) by the Jamison route[68] or acquired 

(C4). It was found that only the Xantphos-ligated precatalyst C1 gave the desired product in the required 

timeframe. Use of the dppf-ligated prectalyst C4 furnished little product, whereas the dppe- and PPh3-

ligated complexes C2 and C3 were inactive. The conclusion from these experiments is that a wide bite 

angle bidentate phosphine seems to be a prerequisite for high activity in the Migita reaction. However, 

further requirements seem to be either the rigidity afforded by the Xantphos backbone (compared to 

dppf, which has Fe-Cp rotatable axes) or the possibility of a hemilabile κ3-P,O,P coordination mode.[69] 
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Table 4.3: Screening of L2Ni(oTol)Cl-based complexes with different phosphane ligands in the Migita reaction. 

 

Entry Cat. Conv. a Yielda 

1 C1 (0.5 mol%) 100% 93% 

2 C2 (0.5 mol%) 2% 0% 

3 C3 (0.5 mol%) 10% 0% 

4 C4 (0.5 mol%) 8% 7% 

PhCl (50 µL, 500 µmol), heptane-1-thiol (80 µL, 500 µmol) PhMgBr·LiCl (1.2 mmol based on titre [typically 1.3 M], in THF), C1 – 
C4 (2.5 µmol, 0.5 mol%), dry THF (500 µL), 0 °C to RT, 30 min. aDetermined by quant. GC-FID analysis.  

To avoid a competing Kumada coupling occurring with Grignard bases, aryl zinc halides were chosen as 

substitutes. In this case, the reaction could be carried out at room temperature without a competing 

Negishi reaction taking place (Table 4.4, entry 1). Despite repeated attempts, reactions with preformed 

thiolates or substitution of the reductant with a simpler inorganic base led to inferior results (entry 2). 

Furthermore, arylzinc bases seem to be optimal, and use of highly reactive turbo-Grignard base did not 

lead to product formation (entry 3). It was concluded that the organometallic base fulfills a dual role of 

pre-catalyst reductant and stoichiometric base. 
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Table 4.4: Screening of different bases in the Ni-catalyzed Migita reaction. 

 

Entry RMX Cat. Conditions Conv.a Yielda 

1 PhZnCl•LiCl (2.0 eqv.) C1 (0.5 mol%) 15 min, RT 96% 96% 

2 HeptSZnCl•LiCl (1.28 eqv.)b C1 (0.5 mol%) 10 min, RT 18% 18% 

3 iPrMgCl•LiCl (1.1 eqv.) C1 (0.5 mol%) 60 min, 0 °C to RT 3% 2% 

PhCl (50 µL, 500 µmol), heptane-1-thiol (80 µL, 500 µmol), base/reductant, C1 (2.0 mg, 2.5 µmol, 0.5 mol%), dry THF (500 µL), 
0 °C to RT or RT, 10, 15 or 30 min. aDetermined by quant. GC-FID analysis bHeptSZnCl·LiCl was generated from thiol and 
PhZnCl·LiCl, which was prepared from PhMgBr·LiCl. 
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4.2.2. Scope of chloro(hetero)arenes 

Next, the scope of electrophilic reaction partners was studied (Scheme 4.12). Electron-poor and 

electron-rich chloroarenes are equally well-tolerated. Various monosubstituted chloroarenes reacted 

with heptanethiol using either organozinc or organomagnesium bases.  Protic functionality was not 

tolerated. 

 

Scheme 4.12: The Ni-catalyzed Migita reaction of various monosubstituted chloroarenes with heptane-1-thiol. Conditions: 

Chloroarene (1.0 mmol), thiol (1.0 mmol), PhZnCl·LiCl or PhMgBr·LiCl (1.2 mmol of a titrated solution in THF), dry NMP or THF (400 

µL), C1 or C5 (0.5–2.0 mol%), 0.5 to 4.0 h, RT–60 °C (for RZnX) or 0 °C–RT (for RMgX, removal of ice-water bath after Grignard 

addition).  

Pleasingly, electrophilic (e.g. in compounds 42 and 47) as well as Lewis-basic functionality (e.g. in 

compound 46 or 41) was generally tolerated. The presence of Michael acceptors as in 4-trimethylsilyl-

ethynyl-chlorobenzene led to product mixtures as determined by qualitative GC/MS analysis, which did 

not enable isolation. Some Lewis-basic functionalized chloroarenes (e.g. 3-chloropyridine, 

N-acetyl-N-methyl-4-chloroaniline) did not show any reactivity in pure THF. Catalyst poisoning by 

coordination of Lewis-basic (or π-basic) functionalities to low-valent Ni0 complexes was considered a 

possibility. Schönebeck employed nitrile additives to displace inhibitory cod ligand (originating from the 

use of Ni(cod)2 as a precatalyst), which lowered the overall energetic span of oxidative addition 

(determined computationally).[43] Applying this strategy in the present work did not lead to an improved 

outcome. Either, inhibitory Lewis-basic substituents were not easily replaced by nitrile functionality, or 
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the origin of inhibition was to be found elsewhere. The second option could be deleterious coordination 

of Lewis-basic groups to the zinc thiolate, which could inhibit its reactivity by aggregation in solution. 

Indeed, by addition of a polar-aprotic additive (N-methylpyrrolidinone) the reactivity of Lewis-basic 

chloroarenes in the Migita reaction could be restored. It was found during the scope evaluation that 

organozinc bases generally possess higher functional group tolerance, as magnesium thiolates were found 

to cause transesterification of carboxylic acid derivatives.  

Ortho-substituted chloroarenes proved to be highly problematic substrates. Using catalyst C1, no 

reactivity of these substrates even under forcing conditions was found. Sawatzky and Stradiotto reported 

the use of C5 in cross-coupling chemistry. Interestingly, the tolyl-based analogue of C5 was not stable 

upon isolation, which required the use of mesityl-substitution. It was speculated that the decreased 

stability of ortho-substituted oxidative addition complexes with the DPEPhos framework would lead to a 

catalytic activity of ortho-substituted chloroarenes. Indeed, this tactic proved to be valuable in converting 

two ortho-substituted chloroarenes to the corresponding heptyl aryl sulfides 49 and 50 in excellent yields. 

However, there might be alternative explanations for the increased performance of the complex C5 rather 

than the simple stability arguments presented here. 

The reactivity of heterocyclic chloroarenes was evaluated as well (Scheme 4.13). Such motifs are widely 

found in pharmaceutical chemistry and often cause problematic behavior in cross-coupling chemistry. 

Pleasingly, the found system was quite robust to various heterocyclic electron-rich and electron-poor 

systems under the previously established more robust conditions (2 mol% Ni, 60 °C, THF/NMP, 4 h). The 

presence of Michael acceptor systems was not tolerated well due to competing 1,4-addition of the 

thiolate under the reaction conditions. However, this may be dependent on the exact electronic and steric 

requirements of the electrophilic conjugate position. For example, compound 59 still gave acceptable 

yields of the cross-coupled product, whereas compound 58 was isolated in poor yield. Finally, potentially 

bioactive compounds were also converted in moderate to good yield, such as 8-chlorocaffeine (to 

thioether B1) or indomethacin ethyl ester (to thioether B2). 

 



Nickel-catalyzed coupling of zinc thiolates with chloroarenes 

199 

 

Scheme 4.13: The Ni-catalyzed Migita reaction of various heterocyclic chloroarenes with heptane-1-thiol. Conditions: Chloroarene 

(1.0 mmol), thiol (1.0 mmol), PhZnCl·LiCl or PhMgBr·LiCl (1.2 mmol of a titrated solution in THF), dry NMP or THF (400 µL), C1 or 

C5 (0.5–2.0 mol%), 0.5 to 4.0 h, RT–60 °C (for RZnX) or 0 °C–RT (for RMgX, removal of ice-water bath after Grignard addition).  
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Figure 4.3: Chloro(hetero)arenes which showed no reactivity or deleterious side reactions upon attempted reaction with HeptSH 

under various conditions and catalysts. The molecules are grouped based on their presumed mode of failure. One group of 

molecules with an unexplained failure mode remained. 

Analysis of the aryl chlorides (61 – 73) that showed no reactivity with HeptSH led to the identification of 

several problematic properties (Figure 4.3): 1. Redox active substituents (e.g. 61), 2. Substituents which 

compete with HeptSH for reaction with PhZnCl due to their high electrophilicity (e.g. 62 - 63), 3. Sterically 

demanding systems (65) – although coordinative effects in this case can be not ruled out (e.g. 64), 4. Protic 

functionality – the activity of chloroarenes with such functionality can be observed after addition of more 

base. However, the approximate conversion by GC/MS remains at an unsatisfactory 50% in the same 

timeframe (tested by GC/MS for compound 66). The reaction of 2-chloropyrimidine (68) under robust 

conditions led to the formation of the Negishi product mixed with the desired aryl sulfide as determined 

by GC/MS analysis. Knochel reported the Negishi-type reaction of 2-heteroaryl alkyl thioethers with 

organozinc reagents, which would explain this peculiar behavior.[70] Five unreactive chloroarenes remain, 

which elude this simple analysis (compounds 69 – 73). The common denominator in this series is the 

presence of heterocycles having free electrons available for metal coordination. Only in the case of 2-

chloropyridine (73) is the reactive site only one bond away from a Lewis-basic heteroatom. However, a 

range of other chloroheteroarenes posed no problem in the Ni-catalyzed MR. 
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To aid an understanding of the relationship between aryl chloride structure and observed yield in the 

catalytic reactions, several descriptive values were generated from the set of 20 successfully converted 

chloroarenes with the help of an online tool.1 The observed yield of a given substrate was plotted against 

the value of the descriptor in question. Then, a simple linear regression model was constructed for every 

descriptor generated (see Figures 4.5 – 4.8 for models with explanatory power). Division of the data into 

training and evaluation sets was not carried out. The fraction of sp3-hybridized atoms (Fsp3), computed 

lipophilicity (cLogP), atom count polarizability and molecular weight as descriptors possess little to no 

explanatory power. A measure of π-bond distalness (for an explanation, see Figure 4.4) to the reactive 

center (ArC-Cl) was introduced as a descriptor (Figure 4.7), which however showed only a weak 

correlation, similarly to the negative correlation of the observed yield with increasing computed 13C-NMR 

shift at the ArC-Cl position (Figure 4.8). This descriptor is supbar since it is strongly related to the number 

of Lewis-basic sites in a molecule as well. A stronger negative correlation was found with the number of 

hydrogen bond acceptors present in the chloroarene (Figure 4.9). This correlation perhaps has the causal 

background that Lewis basic sites non-productively compete for binding sites on the active Ni center.  

 

Figure 4.4: Visual explanation of new molecular descriptors for data analysis. 

This led to the manual introduction of a descriptor that counts the number of atoms connecting two 

Lewis basic sites and selects the largest count number below 7, which showed an even stronger negative 

correlation to the observed yield (Figure 4.10). The reasoning behind this descriptor was to account for 

the formation of inhibitory metallacycles, which however are less common for metallacycle sizes of 9 and 

larger (see Figure 4.6). 

 
1 The tool used was ChemAxon. The outliers were removed since competing mechanisms (non-chemoselective 

oxidative addition in 48 and Michael addition in 58) were suspected. 
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Figure 4.5: Plot of π-Bond distalness of the aryl chloride set against isolated yield and results of a linear regression. 

 

Figure 4.6: Plot of the computed 13C-NMR shift of the aryl chloride set against isolated yield and results of a linear regression. 

 

Figure 4.7: Plot of the H-bond acceptor count of the aryl chloride set against isolated yield and results of a linear regression. 
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Figure 4.8: Plot of the size of the largest bidentate Lewis basic motif of the aryl chloride set against isolated yield and results of 

a linear regression. 

While these models lack predictive power to account for the failure of several heterocyclic chloroarenes 

in the Migita reaction (so-called activity cliffs), a clear negative influence of Lewis basic atoms on the 

overall yield can be seen. The situation seems to be aggravated in the presence of bidentate motifs of an 

appropriate size. The formation of transient off-cycle species may lead to various irreversible deactivation 

pathways, which may cause no conversion of the observed extreme examples. One possibility to rationally 

overcome this problem by catalyst design is to speed up productive reactions and thereby to distribute 

the total catalyst amount mainly on-cycle. Another possibility would be to employ appropriate solvent 

mixtures which lead to deaggregation (solvation). It is reasonable to assume that polar co-solvents not 

only deaggregate zinc thiolate species, but also change the interaction energies between bidentate motifs 

and the Ni active center. Another approach would be to establish an H-bonding network between the 

Lewis-basic H-bond acceptors and an H-bond donor cosolvent. In turn, the H-bonding network would have 

to reorganize before any interaction with the Ni center could take place, which may come with a 

thermodynamic penalty. This idea is not new and has been brought forward in the context of Pd-catalyzed 

cross coupling in a review by Fleckenstein and Plenio.[71] Solvents with heteroatom-bound protons (e.g. 

water, ethanol) are ruled out since they interfere with the catalytic process. A relatively straightforward 

measure of the ability of a solvent to act as an H-bond donor is the Kamlet-Taft α parameter.[72] Using the 

preceding criterion, suitable cosolvents for establishing an H-bond network could be chloroform (α = 

0.44), methylene chloride (α = 0.30), nitromethane (α = 0.22), acetonitrile (α = 0.19) and acetone (α = 

0.08). 
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4.2.4. Scope of alkylthiols 

The scope of alkylthiols was evaluated next. The yields of the reaction of ethyl 4-chlorobenzoate with 

thiols follow the trend secondary > primary >> tertiary thiol (Scheme 4.14). The reaction of primary and 

secondary thiols is preparatively useful, whereas the tertiary thiols would require longer reaction times. 

 

Scheme 4.14: The Ni-catalyzed Migita reaction of ethyl 4-chlorobenzoate with structurally varied alkylthiols. Conditions: 

Chloroarene (1.0 mmol), thiol (1.0 mmol), PhZnCl·LiCl (1.2 mmol of a titrated solution in THF), dry NMP or THF (400 µL), C1 or C5 

(0.5–2.0 mol%), 0.5 to 4.0 h, RT–60 °C. 

The reaction of the electronically less activated benzylthiol with ethyl 4-chlorobenzoate provided the 

product 79 in only moderate yield. It appears that the high nucleophilicity and moderate steric bulk of 

secondary thiols allow for optimal yields (aryl sulfides 77 and 78), whereas sterically demanding tertiary 

thiols give decreased yields of the corresponding products (compounds 80 and 81). While there is no 

difference between the performance of acyclic and cyclic secondary thiols (compare yield of 77 to 78), the 

performance of cyclic tertiary thiols is significantly worse than that of the acyclic ones (compare yield of 

80 to 81). Mechanistically, structural variation of the thiolate will impact the rates of transmetalation and 

reductive elimination at the Ni center. 
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4.2.5. Scope of arylthiols 

In line with the observation of diminished yields with electronically deactivated thiols, thiophenols gave 

no conversion with ethyl 4-chlorobenzoate under robust conditions (2 mol% Ni, NMP cosolvent, 60 °C, 

4 h). Since thiophenols have a similar steric profile compared to secondary alkylthiols, this should be an 

exclusively electronic effect. It was suspected that the problem simply resided in slow transmetalation. As 

such, magnesium thiolates were evaluated as alternatives. The addition of Grignard reagents as bases 

however gave complex product mixtures containing symmetric and asymmetric sulfides and biaryls. The 

situation did not improve when highly hindered aryl Grignard reagents were employed as bases (e.g. 

MesMgBr). One of the side reactions led to asymmetric biaryls (a desulfenylative Kumada cross-coupling) 

and was explored seperately (see section 4.2.6.). During screening of Grignard bases, it was found by 

chance that toluene had a positive influence on the product distribution – more of the targeted 

asymmetric sulfide was produced with commercial aryl Grignards supplied in toluene independent of the 

Grignard structure. 

 

Scheme 4.15: The Ni-catalyzed Migita reaction of various chloroarenes with structurally varied thiophenols. Conditions: 
Chloroarene (1.0 mmol), arenethiol (1.0 mmol), BuZnCl·LiCl (1.2 mmol of a THF solution [typically 0.5 M]), C1 (2 mol%), toluene 
(usually 2.4 mL, equal to THF volume), 1 h, 110 °C. 

 The use of PhZnCl•LiCl (prepared in THF) at 110 °C in toluene for 1 h led to the formation of the desired 

non-symmetric sulfide, together with formation of the non-symmetric biaryl. The transition-metal free 

desulfenylative coupling of Knochel-type aryl zinc reagents with thiophenols has been recently 

described.[73] In this study was observed that no coupling occurred with alkyl zinc bases. Thus, BuZnCl•LiCl 

(conveniently prepared from nBuLi and ZnCl2 in THF) was used as a base at 110 °C for 1 h. To our delight, 

it led to the formation of the desired disulfides (82 – 86) with no Negishi-type alkyl-aryl-coupled byproduct 

(Scheme 4.15).  
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However, depending on the electronic structure of the coupling partners, symmetric sulfides are still 

produced, especially with electron-poor coupling partners (e.g. leading to product 83). Two independent 

literature reports arrived at the same explanation for this phenomenon.[48]  

It is argued that product activation by oxidative addition of intermediate LnNi0 occurs in the initially 

formed non-symmetric diaryl sulfide compounds at both possible sites (Scheme 4.16). Transmetalation of 

the oxidative addition complex 87a by transient (e.g. in the beginning stages of the reaction, where a large 

amount of thiolate is available) excess zinc benzenethiolate (89) leads to complex 88a that will generate 

the first symmetric sulfide (Ph2S, 82) upon reductive elimination. At the same time, another thiolate 90 is 

formed which is then transferable to the other possible oxidative addition complex (87b) of the initial 

product 83, to give the intermediate 88b, which after reductive elimination will give the other possible 

symmetric disulfide 91, under the presumption that all these processes are in equilibrium. 

 

Scheme 4.16: Mechanistic explanation of thiolate scrambling using the observed behaviour of compound 82 as an example. 

The interplay between relative C-S bond strengths at the different possible insertion sites in 83 in 

combination with the relative nucleophilicities of the intermediate thiolates 89, 90 and the kinetic effects 

will determine the final relative composition of all possible products. In the example case presented here, 

the low nucleophilicity (and relatively better leaving group ability of thiolate 90) leads to the situation that 

formation of symmetric Ph2S is favoured over formation of the symmetric sulfide 91. The relatively bad 

leaving group ability of of 4-methoxy-thiophenolate coupled with the disfavoured insertion into the 

electron-rich C-S bond explains the predominant formation of the desired non-symmetric coupling 

product 84 over the possible symmetric sulfides. 
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This deleterious behavior was reported in the case for Ni-based catalysts. Interestingly, symmetrical 

sulfide byproducts were not noted by Stewart and co-workers at Bayer concerning the Migita reaction of 

chloroarenes with thiophenols.[44, 46] A dedicated study in comparing reaction parameters could reveal 

additives used in the work by Stewart which inhibit thiolate scrambling. Thiolate scrambling can be driven 

in one predominant direction by applying Le Chateliers principle. This has been employed by Morandi to 

effect single bond metathesis to give Migita-type products via Pd-catalyzed reversible arylation.[17] For the 

aforementioned reasons, this only works selectively when alkanethiols are employed as coupling partners. 

Symmetrical disulfide formation has also been reported in the Pd/Josiphos-catalyzed Migita reaction by 

Hartwig.[37b]   
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4.2.6. Desulfenylative Kumada-type reaction 

 

Scheme 4.17: Wenkert performed the first desulfenylative Ni-catalyzed Kumada reaction in 1979. 

In 1979, Wenkert described the Ni-catalyzed desulfenylative Kumada coupling (Scheme 4.17) of 

benzenethiol (92) and 4-tert-butylbenzenethiol (95) with MeMgBr and PhMgBr in refluxing benzene 

requiring in some cases prolonged reaction times (1 – 72 h, unspecified for the examples shown) to give 

C-C coupled products (93, 94, 96 and 97).[74] During the reaction, the generated sulfide anion is stabilized 

by magnesium (to give MgS), which upon acidic workup releases H2S.  

 

Scheme 4.18: The Ni-catalyzed desulfenylative Kumada reaction of thiophenols with Knochel-type Grignard reagents.aConditions: 
Arenethiol (1.0 mmol), ArMgBr·LiCl (2.2 mmol of a THF solution [typically 1 M]), C1 (2 mol%), THF (0.5–1.0 mL), 4.0 h, 60 °C. aThe 
product could not be completely purified. In these cases, yields were determined by quantitative NMR methods. 

 

Two equivalents of the Grignard are necessary for an effective conversion based on the kinetically fast 

deprotonation of the thiophenol component with organometallic bases. During this work, Wenkert’s 
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desulfenylative Kumada reaction catalyzed by C1 was observed even in the presence of competing 

chloroarene electrophiles.  

In frame of a master thesis, Valentin Geiger confirmed the presence of hydrogen sulfide after acidic 

workup by precipitation of lead sulfide (by passing the reaction headspace gas over lead acetate). The 

reaction scope was studied in more depth, which furnished several biaryls (99 – 107) after isolation in 

poor to good yield (Scheme 4.18). The reaction generally works excellent with electron-rich Grignard 

reagents and electron-poor thiophenols and vice versa, which is a common observation in cross-coupling 

method development. 

While the present work using catalytic C1 displays better parameters (Ni loading, reaction times) than 

the original report, the question of synthetic utility of this method remains. Thiophenols are non-natural 

air-sensitive compounds. Compared to air-stable aryl halides, easily prepared by SEAr methods, 

benzenethiols seem to be inferior cross-coupling partners.  
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4.2.7. Tandem Fukuyama-Migita reaction 

Based on the best performing substrates for the Fukuyama reaction (primary thioesters) and the Migita 

reaction (primary thiols) an intramolecular tandem Fukuyama-Migita reaction was investigated using the 

thioester 108 and a zinc reagent 109 containing the required chloride functionality. The reaction was 

performed under conditions optimized for the Fukuyama coupling. The overall yield of the thioketone 110 

(62%) is moderate.  

 

Scheme 4.19: Intramolecular tandem Fukuyama-Migita reaction of thioester 107 with a chloro-functionalized aryl zinc reagent 
108 to give the thioketone 109. Conditions: 107 (0.5 mmol), 4-Cl-C6H4ZnCl·LiCl (3.6 mL of a 0.25 M THF solution), C1 (2 mol%), THF 
(0.5 mL), 1.5 h, RT. 

Considering the isolated yields of the single reactions, the expected yield should be at least 75%. The 

possible explanation arises from closer look at possible catalytic species. NiI intermediates were 

postulated for the Ni-catalyzed Fukuyama reaction (Chapter 3). However, NiI precatalysts have shown an 

inhibitory effect in Ni-catalyzed Suzuki-Miyaura couplings[75] or Buchwald-Hartwig aminations[76] involving 

Ni0/II redox cycles. The same situation could apply to the present system. In conclusion, a deeper 

mechanistic understanding may be required to achieve an efficient tandem process.  

However, the potential rewards are opportunities in biological and medicinal chemistry as well as the 

streamlining of synthetic sequences. This will be briefly elaborated below.  

Linker chemistry in biological chemistry heavily relies on the ease and modularity of amide bond 

formation via the assistance of active ester methods. While the amide bond is usually regarded as 

relatively inert to chemical cleavage by laboratory methods, the half-life of these molecules in biological 

systems can be reduced by action of amidases. This behavior can be a problem in bioconjugate chemistry 

and the design of biologically active chimeric molecules for targeted protein degradation. One well-known 

example is the action of biotinidase upon amide-bond connected conjugates of biotin. Strategies to 

combat this have usually employed introduction of steric bulk around the amide bond, e.g. by amide bond 

formation with valine derivatives or other bulky amino acids.[77] Since the intramolecular F-MR reaction 

results in the formal insertion of a phenylene spacer into the C-S bond of the thioester, the resulting 

keto-thioethers should exhibit improved metabolic stability compared to the starting material. Therefore, 



Nickel-catalyzed coupling of zinc thiolates with chloroarenes 

211 

a reaction sequence to design metabolically stable linkers ready for further reaction is presented using 

biotin as an example (Scheme 4.20, top). A similar idea has been executed by Weix, [78] however in their 

case, the thiolate moiety was not incorporated into the final product (a TIPS-alkyne-terminated keto-

biotin).  

 

Scheme 4.20: Possible applications of the tandem Fukuyama-Migita reaction (F-MR). Top: The intramolecular F-MR results in 

the insertion of a phenyl spacer into a thioester C-S bond. The resulting keto-thioethers could be a replacement for metabolically 

labile amide bonds in bioconjugation chemistry. Bottom: The intermolecular F-MR would allow direct use of S-acyl thiols as 

air-stable thiol surrogates. Secondly, it would enable the facile transfer of unstable or high-value thiolates for medicinal chemistry 

programs. 

Since the F-MR reaction conditions will not be tolerant towards protic functionality, the biotin 

recognition element needs to be protected as the N,N-dibenzylated version (111). For the same reasons, 

the other coupling partner of the linker element needs to be attached after the F-MR, which requires the 

introduction of a further aprotic functional group (either chloro-substituted, or a terminal alkene/alkyne) 
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at the thiol.  Then, the thioester of the type 112 would be formed by a reliable Steglich coupling reaction, 

followed by phenylene insertion by the F-MR to give 113 - 115. N-Deprotection, followed by a Finkelstein 

reaction of 113 using NaI in acetone would give a highly reactive electrophile for bioconjugation. Similarly, 

the alkene 114 could be used in cross-metathesis, although applications of this reaction in aqueous 

systems remain rare.[79] Most importantly, desilylation and N-debenzylation of 115 would give a building 

block ready for click chemistry which is known to be generally compatible in biological, aqueous systems. 

The longest sequence possible consists of five synthetic steps until the ready-to-use biotin derivative 

would be available. Synthesis of such building blocks furthermore allow for further functionalization at 

the keto group (e.g. hydrazone formation) or at the sulfur atom (oxidation).  

Secondly, the F-MR would allow a step count reduction if thiols were to be synthesized via their S-acyl 

protected form (Scheme 4.20, bottom). This approach is commonplace for the preparation of functional 

thiols from the corresponding functional alkyl halides. In this case, reaction of a thioacyl acid 116 with the 

appropriate functional electrophile 117 yields S-acylthiols 118, which require separate deprotection 

before they can be employed in a Migita reaction. The F-MR would make this deprotection step 

unnecessary. However, a ketone 120 is produced as stoichiometric waste. Thus, any development in this 

area should aim at the production of volatile waste to aid purification of the Migita product. The optimal 

waste product would therefore be acetone, which would require however the development of an efficient 

Ni-catalyzed Fukuyama reaction with alkylzinc reagents. Such a reaction is currently not possible with the 

Ni-catalyzed approach. 

In other circumstances, the usage of S-acyl protected thiols for the Migita reaction could circumvent 

tedious technical or synthetic issues. For example, trifluoromethanethiol is a toxic, unstable gas. Due to 

its unique high lipophilicity coupled with a strong electron-withdrawing ability, it is a sought-after motif 

in pharmaceutical and agrochemical research.[80] While various electrophilic and nucleophilic SCF3 transfer 

reagents exist, these differ in stability and synthetic tractability. The Glorius group has reported the 

photocatalytic synthesis of air- and chromatography-stable S-trifluoromethanethioesters (124),[81] which 

could be used as SCF3 transfer reagents in the F-MR. 

Another example would be the use of bicyclo[1.1.1]pentane-1-thiol (BCP-1-thiol) in Migita reactions. 

Based on recent successes in medicinal chemistry with bioisosteric switches using strained 

bicycloalkyls,[82] BCP-1-thiol would represent a new bioisostere of thiophenol with similar steric, but not 

electronic properties. Besides various changes in physicochemical properties, the main difference would 

be the removal of π-interactions with other compounds while keeping the spatial properties of 
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thiophenol. Undoubtedly, such bioisosteres are useful tools for drug discovery. The phenyl-to-BCP switch 

has been reported by various medicinal chemistry research groups, including teams from the 

pharmaceutical industry.[83] However, the synthesis of such exotic and strained compounds is often 

tedious. For example, the phenyl-to-cubane bioisosteric switch is even better in the sense that the steric 

properties of phenyl ring are more closely replicated,[84] but the synthesis of such building blocks is 

cumbersome, which is reflected in the pricing of functionalized cubanes. Fortunately, the BCP motif is 

readily available from [1.1.1]propellane (122) by various reactions with the main thermodynamic driving 

force being the alleviation of ring strain. Bräse and co-workers investigated the known, but not thoroughly 

investigated reaction of [1.1.1]propellane with various thiols.[85] The group was able to confirm the 

previously suspected free-radical addition mechanism by labeling experiments. A fast click-type reaction 

(Et2O as solvent, 15 min, RT) was found with generally good yields for various thiols. Although attempted, 

BCP-1-thiol could not be easily accessed from 122 by reaction with hydrogen sulfide (a symmetric BCP-

sulfide was formed) or benzylthiol (the deprotection led to decomposition). Based on S-H bond 

dissociation energy considerations,[86] the reaction of 122 with thioacetic acid should be feasible. The 

produced building block 121 could then be utilized in a F-MR sequence to produce aryl BCP sulfides, an 

unexplored substance class. 

 

Scheme 4.21: Synthesis of S-acetyl-BCP-1-thiol () from a commercially available precursor in two steps and subsequent use in an 
intermolecular tandem Fukuyama-Migita reaction. 

In a brief investigation, it was found that the formation of S-acetyl-BCP-1-thiol (128) indeed succeeded 

in two steps from the commercially available building block 123 via the propellane intermediate.[87] The 

reactivity of 128 was then tested in the F-MR reaction of chloroquinoline 129. The expected m/z pattern 

of 131 was confirmed by qualitative GC/MS analysis. This minor peak in the chromatogram was however 
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accompanied by the major peak corresponding to the Negishi product 130. The sluggish reactivity of 

tertiary thiols in the found MR explains why leftover PhZnCl (the excess found to be necessary to give 

efficient Fukuyama couplings, see Chapter 3) preferably reacted with 129. 

While this is a promising result, the F-MR clearly deserves further attention to achieve selectivities that 

would warrant isolation of the aryl sulfide products. Based on the premise that the Negishi reaction of 

alkylzincs would be disfavoured over the coupling with arylzincs (as seen in section 4.2.6.), further 

improvements will most likely hinge again on the development of an efficient Ni-catalyzed Fukuyama 

reaction with alkylzinc reagents.  
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4.2.8. Mechanistic scenarios 

The obtained results suggest that a classical group 10 metal cross-coupling mechanism consisting of 

oxidative addition, transmetalation and reductive elimination is operative (Scheme 4.22, right-hand 

cycle). Additional details on the various elementary steps are provided below. 

 

Scheme 4.22: Proposed possible mechanisms of the Ni-catalyzed Migita reaction involving 2 valence electron redox cycles. Ni(I) 

species can be obtained from Ni(0) by comproportionation or solvent-interrupted stepwise oxidative addition. O.a.: Oxidative 

addition; r.e.: reductive elimination; SET: single electron transfer; t.m.: transmetalation. 

Oxidative addition of Ni(0) into aryl halides can occur via three distinct mechanisms: 1. Concerted three-

centre-, 2. Stepwise SNAr-type-, 3. Stepwise double SET-oxidative addition (Kochi-type). For the reaction 

of Ni(cod)(dppf) with ArBr, the first possibility was found to be the most likely from kinetic studies by 

Nelson and Sproules.[88] The exact mechanism may however be strongly ligand-dependent and is unknown 

for the present system. 

The zinc thiolate is generated by organometallic deprotonation. In contrast to other heteroatom cross-

coupling reactions, this is not an equilibrium reaction, which results in a high concentration of the reactive 

zinc thiolate and an alkane or arene as the organic byproduct. In other heteroatom cross-couplings using 
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equilibrium bases, such as in the Pd-catalyzed Buchwald-Hartwig amination, a pre-equilibrium step is 

invoked consisting of a coordination of the nucleophile to the Pd center before deprotonation takes place, 

which then leads to transmetalation.[89] In other cases, bases were postulated to coordinate to the active 

site first, which then deprotonates the nucleophile. For group 10 metals, such a mechanism would require 

a third vacant coordination site, which can be easily achieved for sterically bulky monodentate phosphines 

in Pd catalysis. In Ni-catalysis using bidentate ligands, this behavior however would imply ligand 

hemilability to provide a vacant coordination site.  

To answer the question whether Ni(xant)(oTol)Cl requires base for transmetalation, a toluene-d8 solution 

of the complex in air was treated with an excess of base-free HeptSH, followed by the acquisition of 

31P-NMR spectra. The mixture darkened over the course of several hours, while the 31P-NMR signals 

characteristic of C1 disappeared and the signals corresponding to free xantphos enhanced. The organic 

phase contained HeptS(oTol) as the major organic product (besides excess HeptSH). This proves that C1 

is a competent intermediate for transmetalation with alkanethiols even under aerobic, neutral conditions 

in a relatively non-polar solvent, with subsequent fast reductive elimination (the combined process was 

finished within a few hours) at room temperature. This reaction provided the cross-coupled aryl sulfide 

and a Ni(0) species, which rapidly decomposed in air to give unidentified Ni products and free xantphos 

(C1 does not decompose in a THF solution under air overnight, nor in the presence of TEMPO as a single-

electron oxidant). This implies that transmetalation of simple alkanethiolates should be even faster due 

to the increased nucleophilicity of the anionic form. Secondly, it shows that the precatalyst should not be 

stirred too long in the presence of thiols before the start of the reaction. Notably, this opens up 

opportunities in stoichiometric Ni-mediated bioconjugation chemistry of Cysteine residues in peptides or 

proteins, similar to the system reported by Buchwald.[90] 

The organozinc reactant can activate the precatalyst by a transmetalation/reductive elimination 

sequence to give Ph(oTol) and a zerovalent Ni species. Alternatively, the zinc thiolate may transmetalate 

at the precatalyst species to generate RS(oTol) and the same Ni species. Both activation byproducts were 

detected qualitatively by a GC/MS assay of a standard reaction with PhCl, HeptSH as the nucleophile and 

PhZnCl•LiCl as the base.  

It remains puzzling why preformed zinc thiolates perform significantly worse in catalysis compared to 

their in situ formation by an excess of reductant (20 mol%). A variety of Ni-catalyzed Migita reactions 

operate in the presence of added reductant. An exciting, if less likely, possibility would be catalysis by 

anionic nickelate complexes (giving a redox cycle involving 0/II oxidation states at formally anionic Ni). 
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Anionic transition states have been invoked in Pd-catalyzed cross coupling reactions.[91] The existence of 

nickelates is implied from computational studies by Wang and Uchiyama in the Kumada reaction of aryl 

methyl ethers.[92] Oxidative addition would give a Ni(II) biaryl complex, which would require 

transmetalation by the zinc thiolate to explain aryl sulfide formation. However, this mechanism would 

lead to scrambled aryl sulfide products if the transmetalation is not controlled adequately by electronic 

factors. Since such scrambled products were not observed, an anionic mechanism is currently ruled out. 

Finally, the possibility of Ni(I) species as active catalysts should be considered (Scheme 4.22, left-hand 

cycle), where the order of elementary steps is shuffled. Ni(I) species can be generated from Ni(II) oxidative 

addition complexes by ligand scrambling/comproportionation[93] or from Ni(0) species by solvent-

interrupted stepwise oxidative addition as suggested by Kochi (Scheme 4.22., bottom).[94] The composition 

ratio of organic byproducts (ArH or ArAr) may be a hint towards which mechanism is operative. 

Hydrodehalogenated compounds or symmetric biaryls resulting from aryl chlorides were not isolated 

during the scope evaluation. The catalytic competency of Ni(I) species could be evaluated in the future by 

testing Ni(xantphos)(Cl) or Ni(dpephos)(Cl) as precatalysts, which however would require the synthesis of 

these previously unreported, air-sensitive compounds. Stolley has accessed Ni(xantphos)Br from 

comproportionation of Ni(xantphos)Br2 with Ni(cod)2 in THF.[95]  

The question of homo- vs. heterotopicity of the catalytic system was also briefly investigated. No visible 

bulk particles or metal mirror were formed during the reaction or after aqueous workup. A strong ligand 

effect was observed, with many other phosphine-based precatalysts being completely inactive. 

Preformed NiB nanoparticles were also catalytically incompetent. A lag phase during time-point kinetic 

measurements, which is typical for heterogeneous catalysis, was not observed. Furthermore, time-point 

kinetic studies with added DCT (result: inhibition) or Hg (result: no inhibition) gave clear-cut results. With 

the possible interpretative pitfalls of these latter experiments in mind, the combined evidence strongly 

points towards an exclusively molecular mechanism of catalysis. These results however do not rule out 

the existence of catalytically inactive Ni thiolate clusters, nanoparticles or sparsely visible bulk particles. 

Thiols are often implicated as poisons for transition metals. Therefore, a short discussion of possible off-

cycle species is necessary (Scheme 4.23). Alvaro and Hartwig conducted a detailed mechanistic study 

concerning off-cycle species in the Pd-catalyzed Migita reaction.[96] The team identified Pd dithiolates and 

hydrido palladium thiolates as key off-cycle species. Whether the same situation exists for the present 

catalytic system is unknown so far. The existence of hydrido nickel thiolates is a possibility. However, two 

extremes of coordination are possible, and in the case of a side-on sigma complex formation, the Ni center 
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simply acts as an acidifying agent to ease deprotonation of the thiol. Since deprotonation by the 

organometallic base is a non-equilibrium reaction, the existence of these hydrido Nickel thiolate off-cycle 

species is less of a concern. 

The existence of L2Ni(SR)2 complexes could, upon ligand loss lead to the formation of soluble Nickel 

thiolate clusters up to the formation of insoluble polymeric forms. This presents a problem since these 

complexes can be remarkably stable and may be a thermodynamic sink, which slowly, but irreversibly 

reduces the concentration of on-cycle catalyst. Highly lipophilic impurities were noted during 

chromatography (no retention on normal-phase SiO2 upon elution with hexane) of Migita reactions with 

primary and secondary alkanethiols. The discoloration was not observed with tertiary alkanethiols or 

thiophenols. It is likely that cyclic hexameric clusters of the type Ni6(SR)12 or higher order versions of these 

form as deactivation products. For example, cyclic Ni6(SEt)12 is described as an air-stable black diamagnetic 

compound which is soluble (wine-red solution) in aromatic solvents, dichloromethane but not in acetone, 

MeCN, DMSO and water.[97] Cyclic Ni6(SCH2CH2Ph)12 exhibits similar properties.[98] Nickel thiolate clusters 

containing secondary and tertiary thiolates have also been isolated, but their degree of air-sensitivity was 

not reported.[99] The similarities to the observed impurities in chromatography are striking and deserve 

further study. The first experiment in this direction could be to test if a defined, hexameric Ni cluster is 

able to catalyze the Migita reaction in the presence of xantphos, i.e. if cluster formation is reversible under 

catalytically relevant conditions. 

Such clusters are simply prepared from alcoholic solutions of NiCl2 in air by reaction with metal thiolates, 

although the formation of pure Ni6(SEt)12 without the excessive formation of insoluble polymers required 

reaction with (EtS)2SnMe2.[100] Considering this, it becomes clear why L2Ni(oTol)(Cl) precatalysts may be 

superior to L2NiCl2 precatalysts in the presence of metal thiolates. Secondly, the requirement for purified 

thiols is explained. 

The reinsertion of L2Ni0 into the Csp2-S bond of sulfide products was proven by the observation of thiolate 

scrambling when thiophenols underwent Migita coupling (see Section 4.2.5.). The scrambling did not 

occur when alkanethiols underwent coupling which proves that Csp3-S bonds of sulfide products are not 

activated. The inhibition by Lewis basic sites most likely affects the zerovalent state of Ni. The transient 

off-cycle complexes may be involved in irreversible deactivation pathways (e.g. ligand exchange or 

cyclometalation). A countering strategy by establishing an H-bonding network was discussed in section 

4.2.2. 
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Scheme 4.23: Possible off-cycle species and deactivation modes for the Ni-catalyzed Migita reaction. Dashed lines represent 

non-proven, but likely reactions. o.a.: oxidative addition; t.m.: transmetalation; r.e.: reductive elimination. L2: Xantphos or 

DPEPhos. 

In conclusion, two plausible off-cycle species were identified that could lead to irreversible catalyst 

deactivation. While non-productive coordination may be inhibited by solvent choice and Ni dithiolate 

formation by controlling reagent purity, the most likely successful strategy will be to make the productive 

cycle faster by ligand design. This requires identification of the rate-determining (r.d.) step. Compared to 

catalysis by Pd, oxidative addition is favoured with Ni complexes. The rate of transmetalation in PdII 

complexes follows the trend Cl > Br > I for the leaving group, indicating that polarization of the metal 

centre is a major determinant for successful transmetalation.[93] Thus, the first two steps should be 

favoured in the present system, but it is not known whether reductive elimination is rate-determining. 

However, the exceptional activity of wide-bite angle ligands in the discovered system hints at reductive 

elimination as the r.d.-step. Wide-bite angle ligands enhance reductive elimination by a stereoelectronic 

(as can be seen from a qualitative Walsh diagram[101]) as well as a steric effect (relief of intra- or interligand 

steric strain by reducing the coordination number).[102]  

One strategy, which has been elegantly shown to work for Ni-catalyzed Buchwald-Hartwig-

aminations[103] and -etherifications[104] by the group of Stradiotto, is to reduce electron density on the 

ligand phosphorus atoms, which would speed up transmetalation (to compensate a negative partial 

charge at Nickel in the transition state), as well as reductive elimination (to compensate for the extra 

electron pair after reduction of Nickel). Stradiotto introduced further steric bulk by ligand design to favour 

reductive elimination (low coordination reduces steric strain). At the same time, steric bulk disfavours 
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transmetalation (increase of steric strain in the transition state). The combination of a relatively bulky, 

electron-poor organophosphine was found in the 1,3,5,7-tetramethyl-2,4,8-trioxa-6-phosphaadamantane 

fragment (CgP). The Stradiotto group then designed bidentate ligands containing the CgP fragment in 

combination with a “normal” phosphine arm to not overload on steric bulk. To transfer this concept to 

the xantphos-type ligands, synthetic tractability needs to be evaluated as well (Scheme 4.24). Thus, first 

one electron-rich and one electron-poor symmetric xantphos-type ligand should be evaluated, possibly 

the Furyl-Xantphos (135) as well as the para-Anisyl-Xantphos (136)[105] by the double Directed-ortho-

metalation (DoM) route typical for the synthesis of Xantphos ligands.  

 

Scheme 4.24: Proposed ligand structures to be synthesized to facilitate mechanistic understanding of the Migita reaction. The 

construction of non-symmetric Xantphos-type ligands will require considerable synthetic effort, as shown by a simple 

retrosynthetic analysis (top). Other ligands are commercially available or require high synthetic effort. 

Both chlorodiorganophosphines should be readily available from reaction of the corresponding 

Grignards with PCl3. The synthesis of electronically and sterically differentiated Xantphos-type ligands 

appears more complicated (137). The double DoM route should be replaced by sequential metal-halogen 

exchange. To avoid double DoM to introduce the necessary halogens, a SEAr reaction is required, which 

however requires the blockage of the activated para-oxy position. After bromination (134), and the first 

metal halogen exchange followed by chlorophosphine quench, the CgP fragment could be introduced by 

cross-coupling. Another question that could be answered by ligand synthesis is the importance of 

flexibility and alternative coordination modes. Thus the synthesis or acquisition of M-Xantphos (138)[106], 
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S-Xantphos (139)[107], POP-Ph (140, commercially available) and tBu-Xantphos (141, commercially 

available) as well as the DPEPhos-type analogues, is proposed. To reduce the workload for screening the 

corresponding L2Ni(oTol)(Cl) complexes, in situ ligand exchange of trans-(Ph3P)2Ni(oTol)(Cl) or 

(tmeda)Ni(oTol)(Cl)[108] is proposed instead of the dedicated synthesis of the corresponding complexes via 

the Jamison route.[68] While Ni(cod)2 is the most obvious pre-catalyst for screening in a glovebox, the 

presence of cod could inhibit catalysis. 

To gain further mechanistic insight, a series of DFT calculations were carried out, assuming a Ni0/II redox 

cycle with concerted oxidative addition and reductive elimination steps. The calculation was carried out 

at the B3LYP/6-31G* level of theory since it is common in the literature, offers a good mixture of speed 

and accuracy and allows modeling of first row transition metals. It is acknowledged at this point that more 

accurate methods exist, but the application and comparison of such methods is outside the scope of this 

experimentally focused work.  

 A thermodynamic cycle was established by modeling PhCl, PhSMe, ZnCl2 and MeSZnCl and calculating 

the respective thermodynamic energies (after vibrational analysis). The presented results hold true to a 

reaction in the gas phase, and dispersion interactions are not accounted for (for further details, see the 

experimental part). The overall free Gibbs energy under standard conditions for the reaction of 

chlorobenzene with zinc chloride methanethiolate amounts to ΔG0
total = -47.90 kJ mol-1, meaning the 

reaction should occur spontaneously at room temperature, which is in line with the experimental result 

in liquid phase. 

Next, the above cycle was broken down by adding intermediates corresponding to the oxidative addition 

complex, the transmetalated complex and finally, the zerovalent complex Ni(xant). In the same manner, 

the overall energies were calculated using the previous results. Oxidative addition was calculated to be 

exergonic (ΔG0
OA = -192.89 kJ mol-1), whereas transmetalation (ΔG0

TM = +51.82 kJ mol-1) and reductive 

elimination (ΔG0
RE= +93.16 kJ mol-1) were calculated to be endergonic. Consequently, the oxidative 

addition complex 143 should be the resting state of the catalytic cycle (the catalytic intermediate with the 

highest concentration during the reaction), which should be verified experimentally.  One problem with 

this type of energy calculation, while thermodynamically correct, is that it may not reproduce the actual 

intermediates crossed by the reaction on the potential energy surface. In the gas phase, chlorobenzene 

and phenyl methyl sulfide may coordinate to the zerovalent Ni(xant) (14 ve) and exert a stabilizing effect 

to give a post- and pre-reaction complex (post- and pre-RC, 145 and 142 both 16 ve) lower in energy. 

Therefore, the geometries and energies of the post- and pre-RC were calculated by the same method. The 
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overall results are presented below (Figure 4.9.). They are similar to the calculation, which excluded pre- 

and post-reaction complexes. The transition state for transmetalation could not be located readily and 

appears to be rarely modeled in the literature. 

 

Figure 4.9: Energy profile (qualitative, axes not to scale) of the Migita reaction of chlorobenzene with zinc methylthiolate 
catalyzed by Ni(xant) in the gas phase at the B3LYP/6-31G* level of theory. 

While the overall reaction thermochemistry is favorable, there are low-energy intermediates, which 

means that the following reactions are endergonic. Addition of an excess amount of thiolate may be 

helpful to shift the equilibrium of the reaction from 143 to 144. While this is intuitively clear for the Ni-

arylthiolate 144 (due to the strong thiophilic interaction), the low energy of the oxidative addition complex 

143 is surprising, but perhaps reflects the instability of Ni(0) complexes in general. However, these results 

are in line with calculations of Shaik who modeled the Pd-catalyzed reaction of chlorobenzene with HS- at 

the same level of theory, also in the gas phase, which gave the same overall qualitative result. [109] The 

Schönebeck group arrived at a slightly endergonic thermochemistry result of the oxidative addition of 

Ni(dppf) into chlorobenzene, however their model accounted for solvation and dispersion effects.[43] The 

Stradiotto group also calculated  the oxidative addition of a bidentate phosphine (or dppf) Ni(0) complex 

into PhCl, and arrived at the result that oxidative addition is exergonic (-109.20 kJ/mol for the former and 

-88.33 kJ/mol for the latter) in the gas phase with corrections for dispersion interactions.[76] The results 

presented here are interesting starting points for further calculations which include such important 

effects. 
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4.3. Conclusion 

In conclusion, a general Ni-catalyzed Migita reaction of chloro(hetero)arenes with in situ formed zinc or 

magnesium thiolates by employing organometallic bases was developed. Unfunctionalized reaction 

partners show high turnover frequencies with alkylthiols (15 min reaction time, TOFmax = 800 h-1) even at 

low catalyst loading (0.5 mol%) at room temperature in THF. Functionalized electrophilic and Lewis basic 

coupling partners as well as heterocycles relevant to pharmaceutical chemistry were reacted with 

alkylthiols to the aryl sulfides under slightly more demanding, but still moderate conditions (2 mol% 

catalyst, 60 °C, 4 h, THF/NMP solvent mixture).  

Arylthiols reacted sluggishly and required harsh thermal conditions (2 mol% catalyst, 110 °C, 1 h, 

THF/Toluene solvent mixture) for turnover. Even in the presence of chloroarenes, thiophenols undergo a 

desulfenylative Kumada coupling when a Grignard reagent was chosen as the basic component. A small 

scope evaluation was carried out for the first time, and the typical electronic trends influencing cross-

coupling were found to be operative. The developed system (2 mol% catalyst, 4 h, 60 °C, THF) is generally 

superior to the singular example reported earlier.[74] Although unsolved problems remain, the tandem 

Fukuyama-Migita reaction offers a promising route to access either the keto-thioether substance class in 

an atom-economic fashion or make use of air-stable S-acylthiols as latent thiolates for the transfer of high-

value building blocks. 

A possible mechanism was presented together with preliminary mechanistic investigations (catalyst 

topicity and precatalyst activation). The available evidence points towards a classical C-heteroatom group 

10 metal cross-coupling cycle being active with a clear molecular mode of catalysis.  Possible deactivation 

pathways were discussed. Based on the hypothesis that reductive elimination is the rate-determining 

step, several close analogues to xantphos were suggested for synthesis and screening in the Ni-catalyzed 

Migita reaction to interrogate the mechanism and generate more robust catalysts. 

The use of stoichiometric organometallic bases to effect cross-coupling presents a cost disadvantage on 

scale. The use of substoichiometric reducing agents in the presence of stoichiometric inorganic bases is 

certainly another avenue for future investigations. On the other hand, the reaction takes place in a single 

phase (as opposed to cross-couplings with insoluble inorganic bases), which positions this system as 

inherently suitable for scale-down (i.e. high-throughput experimentation) or for liquid-liquid flow reactor 

setups. 
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4.4. Experimental part 

4.4.1. General information 

All reactions with organometallic species and catalytic Ni were carried out under Ar or N2 atmosphere 

using dry glassware with the usual air-free techniques, unless noted otherwise. Dry THF was obtained 

either: by use of Sigma-Aldrich or Acros anhydrous grade THF in septum capped-bottles; storage of freshly 

distilled THF over microwave-activated 3 Å MS (20 w/v%, 3 days) in an Ar-flushed container with no large 

difference in performance. PhMgBr solution in THF, iPrMgCl•LiCl solution in THF and N-Methylpyrrolidone 

(SureSeal) and C4 were obtained from Sigma-Aldrich. C1, C2, C3 and C5 were prepared according to 

published procedures[S1] (additionally, a visual guide on the preparation of C1 is available from our 

group[S2] and the procedure can be carried out analogously for the preparation other precatalysts). 

8-Chlorocaffeine was prepared from 8-chlorotheophylline by a literature procedure.[S3] 6-chloro-9-

tosyl-9H-purine was prepared from 6-chloro-9H-purine by a literature procedure.[S4] LiCl, Magnesium 

turnings and NiCl2(H2O)6 (p.A. grade) were supplied by the central chemical storage, University of 

Tübingen. ZnCl2 was supplied by either Sigma-Aldrich (anhydrous, >99.999% trace metals basis, stored in 

Schlenk tube or reagent grade, stored in a screw-capped plastic bottle), TCI or Merck (Ph. Eur. Reagent 

grade) with no differences in activity; technical grade ZnCl2 proved to be unsuitable for the preparation of 

aryl zinc halide solutions. Other chemicals were purchased from ABCR, Acros, Sigma-Aldrich, TCI, 

ChemPUR or Merck. Thiols were either distilled under inert atmosphere/vacuum and stored at -10 °C in 

Schlenk vessels or transferred to an Ar-filled Glovebox for handling and storage. Aryl chlorides were 

handled in air and stored at the supplier-recommended temperature in screw-capped bottles. 

Solvents for chromatography were distilled prior to use. NMR spectra were recorded using a Bruker 

Avance 400 (1H: 400 MHz, 13C: 101 MHz), 13C-NMR and 31P-NMR experiments were performed in proton-

decoupled mode, which is not noted explicitly. Chemical shifts are reported in parts per million relative to 

the residual NMR solvent signals and the J-coupling constants are given in Hertz with the usual 

designations for splitting patterns. HR-MS(ESI, APCI, EI) and LR-MS(ESI, APCI) analysis was carried out by 

the mass spectrometry department of the Institute of Organic Chemistry, University of Tübingen. LR-

MS(EI) analysis was carried out by our standard GC/MS method (see below). 

Melting point determination was carried out using a MPM HV 3 machine with automated or visual 

detection (heating rate 1 °C/min). FT-IR spectra were recorded using a Cary 630 FTIR by applying the 

sample neat on a diamond ATR sampler.  
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GC-MS was recorded on an Agilent 7820A GC system with Quadrupole MS Agilent 7820A (EI) by using 

dry hydrogen as carrier gas. An Agilent 190915-433UI column (30 m x 250 µm x 0.25 µm) was used. 

Program: Heating from 50 °C to 280 °C within 15 minutes. GC-FID (flame ionization detection) analysis was 

carried out on an Agilent 7820A system using dry hydrogen as carrier gas. An Agilent 19091J-431 column 

(30 m x 320 µm x 0.25 µm) was used. Program 50-280M12: Heating from 50 °C to 280 °C within 12 minutes. 

Preparative TLC was carried out on 20 x 20 cm glass plates with a 1 mm layer of SiO2 containing 

fluorescence indicator (F254) by applying a concentrated DCM solution of the crude product as a thin band, 

development in the appropriate solvent system in a large TLC tank, scraping off the appropriate band, 

extracting the product with MeOH (HPLC grade) and filtering off SiO2, followed by solvent removal. 

Column chromatography was carried out using flash-grade SiO2 either manually or by a Puriflash system 

(Interchim), and TLC analysis was carried out using aluminium-backed plates coated with SiO2 60 F254 (0.2 

mm thickness) and the compounds detected under UV light (254 nm) or after staining with a KMnO4, 

Vanilin or Anisaldehyde TLC dip solution and gentle heating.  

Definition of “Gradient” used below: In separations with the Puriflash system, a gradient was developed 

around a suitable (target spot Rf ~ 0.3) binary eluent combination X:Y (where the latter is the strong 

solvent, X+Y=100) that entailed the following program – 0 to 1 CV: isocratic Y/4, 1 to 11 CV: gradient to 

Y*2, 11 to 12 CV isocratic Y*2.  Flow rates: 23 g SiO2 50 µm - 15 mL/min, 37 g SiO2 50 µm – 26 mL/min. 
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4.4.2. General procedures 

General procedure A (GP A): Preparation of PhZnCl•LiCl from PhMgBr•LiCl or PhMgBr 

Following a literature procedure[S5], Mg turnings (219 mg, 9.0 mmol, 1.5 eqv.) and LiCl (318 mg, 7.5, 

1.25 eqv.) were placed in a septum-capped oven-dried 25 mL Schlenk RBF with stirring bar, which was 

flame-dried with a propane torch. After evacuating/refilling the still-warm (not hot) flask with Ar 

(3× repeated), the vessel contents were suspended in dry THF (3 mL), followed by addition of DIBAL-H (60 

µL of a 1.0 M solution in THF, 60 µmol, 1 mol%) at RT and stirring for 5 min (gas evolution may occur). The 

reaction vessel was cooled to 0 °C and bromobenzene (6.0 mmol, 1.0 eqv.) was added. The reaction 

mixture was stirred for 10 min at 0 °C (or until the major exotherm subsided), then for 1 h at RT to give a 

solution of PhMgBr•LiCl in THF, typically in a concentration of 1.3 M as determined by titration with 

I2/LiCl[S6], which should be used immediately for reaction or transmetalation.2 

The Grignard reagents were transmetalated by addition to a dry THF solution of ZnCl2 (1.1 eqv. relative 

to the amount of Grignard to be transmetalated; prepared by charging ZnCl2 into an oven-dried Schlenk 

RBF with stir bar, flame-drying until the zinc chloride began to melt, followed by vacuum/argon refilling 

cycles (3×) while the flask is still warm and dissolving the zinc chloride in the appropriate amount of dry 

THF by syringe addition) at RT, then stirring at the same temperature for 15 min, targeting a concentration 

of 0.5 M in THF. During the early stages of Grignard addition, a precipitate formed, which redissolved in 

the later stages of addition. The obtained reagent in THF (clear brown-metallic solution) was usually not 

again titrated, but should be used immediately for best results. para-anisylmagnesium bromide lithium 

chloride adduct and its corresponding zinc reagent were prepared analogously using the procedure 

outlined above.  

General procedure B (GP B): Ni-catalyzed Migita reaction with alkylthiols (1 mmol scale) 

A 10 to 20 mL Schlenk tube with stir bar was dried under vacuum using a heat gun and then refilled with 

Ar. The cooled vessel was charged with the appropriate catalyst C1 or C5 (0.5 – 2.0 mol% relative to the 

aryl chloride), followed by the aryl chloride (1.0 mmol, 1.0 eqv., if solid) and thiol (1.0 mmol, 1.0 eqv., if 

solid). The vessel was then evacuated and backfilled with Ar (2× repeated), followed the addition of aryl 

chloride (1.0 mmol, 1.0 eqv., if liquid) and thiol (1.0 mmol, 1.0 eqv., if liquid). The contents were then 

dissolved or suspended under stirring by addition of either dry THF or NMP (400 µL). Grignard reagents 

 
2 In our hands, scaling up this reaction tenfold did not lead to major problems besides a more defined exotherm 

and slightly lower final Grignard concentrations. At large scale, it became important to dry the inorganic salts 
thoroughly. 
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(2.4 mL of a 0.5 M THF solution, 1.2 mmol, 1.2 eqv.) were added dropwise under rapid stirring and ice-

water bath cooling, followed by removal of the ice bath and stirring for 15 min to 1 h at room temperature. 

Organozinc reagents (2.4 mL of a 0.5 M THF solution, 1.2 mmol, 1.2 eqv.) were added dropwise under 

rapid stirring at room temperature, followed by stirring at the same temperature for 15 min to 4 h or 

heating to 60 °C using an oil bath or aluminum heating block. After the appropriate reaction time, any 

heating source was removed and the reaction solution allowed to cool to RT. The Mg thiolates were 

quenched with sat. aq. NH4Cl solution (2 mL, dropwise), the Zn thiolates with brine (2 mL) under rapid 

stirring. The reaction mixture was diluted with EtOAc (5 mL). After phase separation, the aqueous phase 

was removed and the organic phase washed with brine (5 mL). If required, the combined aqueous phases 

can be re-extracted with EtOAc. The (combined) organic phase(s) were dried over MgSO4 or Na2SO4, 

followed by solvent removal using a rotary evaporator or directly adsorbed on SiO2. The products were 

isolated by chromatography. 

General procedure C (GP C): Ni-catalyzed Migita reaction with arylthiols (1 mmol scale) 

Couplings were carried out analogously to GP B, with the following differences: The reaction was carried 

out at 110 °C for 1 h using catalyst C1 (2 mol% relative to the aryl chloride) in a 20 mL Schlenk-type 

pressure vessel using BuZnCl•LiCl as the base (1.2 eqv. of a THF solution, usually 0.5 M) with toluene as 

the cosolvent (equal to the THF volume). BuZnCl•LiCl was prepared as a 0.5 M THF solution from the 

reaction of commercially available, freshly titrated nBuLi with a dry THF solution of ZnCl2. 

Caution: Butane formation occurs! Do not carry out the thiol deprotonation in a closed vessel! On larger 

scale, BuLi should be replaced with HexLi. 

General procedure D (GP D): Ni-catalyzed desulfenylative Kumada reaction (1 mmol scale) 

Under nitrogen atmosphere, C1 (2 mol% relative to thiol), thiol (1.00 mmol, 1 equiv.) and dry and 

degassed THF (0.5 mL) are placed in a heat gun dried 10 mL Schlenk tube with stir bar and sealed with a 

rubber septum. While stirring, a freshly titrated solution of Knochel-type Grignard reagent (2.20 mmol, 

2.2 equiv.) is added via a syringe at room temperature. The reaction mixture is placed in an oil bath and 

stirred for 4 h at 60 °C. Then, the reaction is quenched by addition of saturated NH4Cl solution (3 mL). 

Diethyl ether (3 mL) is added and the organic layer is separated from the aqueous layer. The aqueous 

phase is extracted with diethyl ether (3×5 mL). The collected organic phases are dried over anhydrous 

MgSO4, filtered and purified by chromatography. 
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General procedure E (GP E): Ni-catalyzed Migita reaction with alkylthiols (screening/controls) 

Couplings were carried out analogously to GP B, with the following differences: The reaction was carried 

out at 0.5 mmol scale with the appropriate catalyst (or no catalyst) and reaction 

condition/temperature/time. After the reaction, an accurately measured volume of n-pentadecane was 

added via a microliter syringe to the reaction mixture, followed by quenching and dilution with EtOAc or 

Et2O as in GP B.  A sample (approximately 1 mL) of the organic phase was dried over MgSO4, filtered over 

a Pasteur pipette plug of MgSO4 and SiO2 into a 2 mL GC vial, which was filled to about 1/4 of its height. 

The filtrate was diluted with methylene chloride until the vial was full and analysed by GC-FID. In order to 

determine yields and conversions, the internal standard method was used for quantitative analysis, see 

section 5 for determination of the respective response factors. See section 1 for GC-FID parameters. 
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4.4.3. Experimental procedures and analytical data 

4.4.3.1. Synthesis of thioethers 

Heptyl(phenyl)sulfane (45) 

 

The product (190 mg, 911 µmol, 91%) was obtained as a colourless oil by GP B from chlorobenzene 

(100 µL, 1 mmol) and dist. HeptSH (160 µL, 1 mmol,  1 eqv.), with 4-methoxyphenyl-MgBr•LiCl as the base, 

THF (400 µL) as solvent at RT for 0.5 h catalyzed by C1 (0.5 mol%), followed by flash column 

chromatography (37 g SiO2, gradient to 95:5 PE:EA over 10 CV). Conforms to reported analytical data.[S7] 

 

208.36 g/mol 

Rf: 0.47 (Cyclohexane) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.27 – 7.16 (m, 4H), 7.11 – 7.06 (m, 1H), 2.87 – 2.81 (t, J = 7.2 Hz, 2H), 1.58 
(m, 2H), 1.41 – 1.29 (m, 2H), 1.28 – 1.09 (m, 6H), 0.86 – 0.76 (m, 3H). 

13C-NMR (101 MHz, CDCl3, δ): 137.1, 128.8, 128.8, 125.6, 33.6, 31.7, 29.2, 28.9, 28.8, 22.6, 14.1. 

GC-MS (EI): m/z 208.1, 123.0, 110.1. 
 

N,N-Dimethyl-3-(heptylthio)aniline (41) 

 

The product (227 mg, 904 µmol, 90%) was obtained as a black oil by applying GP B using N,N-Dimethyl-

3-chloroaniline (140 µL, 1 mmol, 1 eqv.) and dist. HeptSH (160 µL, 1 mmol,  1 eqv.), with PhZnCl•LiCl as 

the base, NMP (400 µL) as co-solvent at 60 °C for 4 h catalyzed by C1 (2 mol%), followed by flash column 

chromatography (24 g SiO2, gradient to 9:1 Hexane:EtOAc over 10 CV).  

251.43 g/mol 
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Rf: 0.59 (PE:EtOAc 9:1) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.13 – 7.01 (m, 1H), 6.62 (m, 2H), 6.47 (d, J = 2.6 Hz, 1H), 2.87 (s, 6H), 1.67 – 
1.50 (m, 2H), 1.41 – 1.29 (m, 2H), 1.26 – 1.14 (m, 6H), 0.91 – 0.69 (m, 3H). 

13C-NMR (101 MHz, CDCl3, δ): 137.6, 129.3, 117.0, 113.1, 110.4, 40.6, 33.7, 31.7, 29.3, 28.9, 22.6, 14.1. 

HR-MS (EI): m/z calc. for [M]+● 251.170221, found 251.17135.   

IR (ATR, 𝑣̃ [cm-1]):  1587, 1490, 1438, 1345, 1230, 1177, 1103, 1062, 987, 957, 827, 760, 685. 

 

4’-(Heptylthio)acetophenone (42) 

 

The product (216 mg, 863 µmol, 86%) was obtained as a colourless crystalline solid by GP A from 

4’-chloroacetophenone (210 µL, 1 mmol, 1 eqv.) and dist. HeptSH (160 µL, 1 mmol, 1 eqv.), with 

PhZnCl•LiCl as the base, THF (400 µL) as solvent at RT for 0.5 h catalyzed by C1 (0.5 mol%),   followed by 

flash column chromatography (24 g SiO2, gradient to 85:15 Hexane:Et2O over 15 CV). Conforms to 

reported analytical data.[S8] 

250.40 g/mol 

Rf: 0.20 (PE:Et2O 95:5) 

m.p.: 58 °C (Lit.[S8]: 60 – 61 °C). 

1H-NMR (400 MHz, CDCl3, δ): 7.75 (d, J = 8.5 Hz, 2H), 7.19 (d, J = 8.5 Hz, 2H), 2.89 (t, J = 7.5 Hz, 2H), 2.47 
(s, 3H), 1.61 (p, J = 7.3 Hz, 2H), 1.42 – 1.31 (m, 2H), 1.28 – 1.14 (m, 6H), 0.83 – 0.74 (m, 3H). 

13C-NMR (101 MHz, CDCl3, δ): 197.0, 145.0, 133.7, 128.7, 126.2, 31.9, 31.7, 28.9, 28.8, 28.7, 26.4, 22.6, 
14.1. 

GC-MS (EI): m/z 250.2, 235.2, 152.1, 137.1. 
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Heptyl-(4-trifluoromethyl)phenylsulfane (43) 

 

The product (267 mg, 966 µmol, 97%) was obtained as a black oil by applying GP B using 

4-chlorobenzotrifluoride (135 µL, 1 mmol, 1 eqv.) and dist. HeptSH (160 µL, 1 mmol, 1 eqv.), with 4-

methoxyphenyl-MgBr•LiCl as the base, THF (400 µL) as solvent at RT for 0.5 h catalyzed by C1 (0.5 mol%), 

followed by standard workup and removal of volatiles. The crude mixture was partially dissolved in 

cyclohexane, followed by vacuum filtration over a pad of SiO2 (1. 50 mL CyH; 2. CyH:Et2O 95:5 v/v until the 

first brown brown band elutes).  

276.36 g/mol 

Rf: 0.39 (Cyclohexane) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.50 (d, J = 8.2 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 2.97 (t, J = 7.4 Hz, 2H), 1.69 
(p, J = 7.4 Hz, 2H), 1.50 – 1.39 (m, 2H), 1.36 – 1.11 (m, 6H), 0.89 (t, J = 6.7 Hz, 3H). 

13C-NMR (101 MHz, CDCl3, δ): 142.8 (d, J = 1.7 Hz, C1), 127.1 (s, C2), 127.1 (q, 2JCF = 32.6 Hz, C4) 125.6 (q, 
3JCF = 3.8 Hz, C3), 124.3 (q, 1JCF = 271.6 Hz, CF3)3 & [S9], 32.4, 31.7, 28.8, 28.8, 28.6, 22.6, 14.0. 

19F-NMR (377 MHz, CDCl3, δ): –62.4. 

HR-MS (EI): m/z calc. for [M]●+ 276.115407, found 276.11584. 

IR (ATR, 𝑣̃ [cm-1]): 2926, 2855, 1606, 1323, 1162, 1121, 1095, 1062, 1013, 820. 

 

 

 
3 Not all peaks of the quartet could be detected. The visible upfield shifted signal next to the visible peak at 122.9 

ppm is separated by 271.6 Hz, which is the coupling constant observed for the quartet CF3-signal in 
4-trifluoromethyl-thioanisole. The downfield shifted signal (separation by 271.6 Hz) to the visible peak at 122.9 ppm 
should have the same intensity (1:3:3:1 intensity pattern), but is not observed since it overlaps with the signal of C3. 
Based on these observations, the quartet should be centered at 124.2 ppm, which is agreement with the above 
mentioned compound (centered at 124.4 ppm). See the supporting information of reference 9 for more details. 
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Heptyl(4-methoxyphenyl)sulfane (44) 

 

The product (191 mg, 801 µmol, 80%) was obtained as a colourless oil by applying GP B using 4-

chloroanisole (125 µL, 1 mmol, 1 eqv.) and dist. HeptSH (160 µL, 1 mmol,  1 eqv.), with PhMgBr•LiCl as 

the base, THF (400 µL) solvent at RT for 1 h catalyzed by C1 (0.5 mol%), followed by flash column 

chromatography (37 g SiO2, gradient to 9:1 CyH:EtOAc over 10 CV).  

238.39 g/mol 

Rf: 0.67 (PE:EA 9:1) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.30–7.35 (d, J = 8.7 Hz, 2H), 6.80–6.86 (d, J = 8.7 Hz, 2H), 3.78 (s, 3H), 2.80 

(t, J = 7.4 Hz, 2H), 1.53–1.61 (m, 2H), 1.18–1.43 (m, 8H), 0.83–0.90 (m, 3H). 

13C-NMR (101 MHz, CDCl3, δ): 158.7, 132.9, 127.0, 114.5, 55.3, 35.8, 31.7, 29.3, 28.8, 28.6, 22.6, 14.0. 

HR-MS (APCI): m/z calc. for [M+H]+  239.14641, found 239.14676. 

IR (ATR, 𝑣̃ [cm-1]): 2922, 2855, 1591, 1490, 1461, 1282, 1241, 1174, 1032, 823. 

 

N-(4-(heptylthio)phenyl)-N-methylacetamide (46) 

 

The product (193 mg, 691 µmol, 69%) was obtained as a colourless oil by applying GP C using SM10 

(184 mg, 1 mmol, 1 eqv.) and dist. HeptSH (160 µL, 1 mmol,  1 eqv.), with PhZnCl•LiCl as the base, NMP 

(400 µL) as cosolvent at 60 °C for 4 h catalyzed by C1 (2 mol%), followed by flash column chromatography 

(24 g SiO2, 75:25 Hexane:EtOAc to 50:50 Hexane:EtOAc over 15 CV).  

279.44 g/mol 
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Rf: 0.39 (PE:EA 1:1) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ):  7.25 (d, J = 8.4 Hz, 2H), 7.02 (d, J = 8.4 Hz, 2H), 3.17 (s, 3H), 2.87 (t, J = 7.4 
Hz, 2H), 1.80 (s, 3H), 1.60 (p, J = 7.3 Hz, 2H), 1.42 – 1.31 (m, 2H), 1.29 – 1.15 (m, 6H), 0.87 – 0.75 (m, 3H). 

13C-NMR (101 MHz, CDCl3, δ):  170.6, 142.0, 137.2, 129.3, 127.4, 37.1, 33.4, 31.7, 29.0, 28.8, 22.6, 14.1. 

HR-MS (ESI): m/z calc. for [M+Na]+   302.15491, found 302.15513.  

IR (ATR, 𝑣̃ [cm-1]):  2922, 2855, 1654, 1490, 1371, 1345, 1293, 1140, 1095, 1013, 972, 827, 745. 

 

4-(Heptylthio)benzonitrile (47) 

 

The product (181 mg, 776 µmol, 78%) was obtained as a colourless oil by GP B from 4-chlorobenzonitrile 

(137.57 mg, 1 mmol, 1 eqv.) and dist. HeptSH (160 µL, 1 mmol,  1 eqv.), with PhZnCl•LiCl as the base, THF 

(400 µL) as solvent at RT for 0.5 h catalyzed by C1 (2 mol%), followed by flash column chromatography (24 

g SiO2, 5 CV 100% Hexane, over 10 CV to 80:20 Hexane:Et2O ).  

233.37 g/mol 

Rf: 0.36 (PE:EtOAc 95:5) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.41 (d, J = 8.5 Hz, 2H), 7.19 (d, J = 8.5 Hz, 2H), 2.87 (t, J = 7.4 Hz, 2H), 1.60 
(p, J = 7.2 Hz, 2H), 1.41 – 1.30 (m, 2H), 1.28 – 1.06 (m, 6H), 0.86 – 0.71 (m, 3H). 

13C-NMR (101 MHz, CDCl3, δ): 145.4, 132.1, 126.6, 118.9, 107.8, 31.9, 31.7, 28.8, 28.8, 28.6, 22.6, 14.1. 

HR-MS (EI): m/z calc. for [M]•+   233.123271, found 233.12413. 

IR (ATR, 𝑣̃ [cm-1]): 2926, 2855, 2225, 1725, 1591, 1483, 1088, 820. 
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4-(Heptylthio)pentafluorosulfanylbenzene (48) 

 

The product (150 mg, 448 µmol, 45%) was obtained as a colourless oil by GP B from 

4-chloropentafluorosulfanylbenzene (239 mg, 1 mmol, 1 eqv.) and dist. HeptSH (160 µL, 1 mmol, 1 eqv.), 

with PhZnCl•LiCl as the base, NMP (400 µL) as cosolvent at 60 °C for 4 h catalyzed by C1 (2 mol%), followed 

by preparative TLC (Hexane).  

334.41 g/mol 

Rf: 0.6 (Hexane) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.55 (d, J = 8.8 Hz, 2H), 7.21 (d, J = 8.8 Hz, 2H), 2.89 (t, J = 7.4 Hz, 2H), 1.62 
(p, J = 7.4 Hz, 2H), 1.45 – 1.32 (m, 2H), 1.29 – 1.17 (m, 6H), 0.81 (t, J = 6.7 Hz, 3H). 

13C-NMR (101 MHz, CDCl3, δ): 143.1, 128.0 (d, J = 159.4 Hz), 126.5, 126.2 (t, J = 4.7 Hz), 32.3, 31.7, 28.8, 
28.8, 28.7, 22.6, 14.1. 

19F-NMR (659 MHz, CDCl3, δ): 85.07 (p, J = 150.6 Hz), 63.33 (d, J = 150.7 Hz).4 

HR-MS (EI): m/z calc. for [M]•+ 334.084284, found 334.08090. 

IR (ATR, 𝑣̃ [cm-1]):  2926, 2855, 1580, 1487, 1397, 1080, 823, 723, 663. 

  

 
4 We were unable to record a standard 19F-NMR spectrum for this compound. This spectrum was acquired by Priska 

Kolb from the NMR department, Central Chemical Institute, University of Tübingen on a 700 MHz NMR 
spectrometer. The observed signals and splitting patterns are typical for Aryl-SF5 compounds. 
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2-(Heptylthio)anisole (49) 

 

The product (231 mg, 969 µmol, 97%) was obtained as a black oil by GP B from 2-chloroanisole (130 µL, 

1 mmol, 1 eqv.) and dist. HeptSH (160 µL, 1 mmol, 1 eqv.), with PhZnCl•LiCl as the base, NMP (400 µL) as 

cosolvent at 60 °C for 4 h catalyzed by C1 (2 mol%), followed by flash column chromatography (24 g SiO2, 

5 CV hexane, then gradient to 8:2 Hexane:Et2O over 10 CV).  

238.39 g/mol 

Rf: 0.58 (95:5 Hexane:Et2O) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.18 (d, J = 8.5 Hz, 1H), 7.09 (t, J = 7.8 Hz, 1H), 6.85 (t, J = 7.5 Hz, 1H), 6.77 
(d, J = 8.2 Hz, 1H), 3.82 (s, 3H), 2.81 (t, J = 7.4 Hz, 2H), 1.59 (p, J = 7.5 Hz, 2H), 1.42 – 1.31 (m, 2H), 1.22 (m, 
6H), 0.80 (t, J = 6.6 Hz, 3H). 

13C-NMR (101 MHz, CDCl3, δ): 157.1, 128.7, 126.6, 125.3, 121.0, 110.3, 55.8, 31.9, 31.7, 28.9, 28.9, 22.6, 
14.1. 

HR-MS (EI): m/z calc. for [M]•+ 238.138587, found 238.14131. 

IR (ATR, 𝑣̃ [cm-1]):  2922, 2851, 1576, 1461, 1271, 1237, 1073, 1025, 741, 685. 

 

2-(Heptylthio)toluene (50) 

 

The product (198 mg, 890 µmol, 89%) was obtained as a red-black oil by GP B from 2-chlorotoluene 

(115 µL, 1 mmol, 1 eqv.) and dist. HeptSH (160 µL, 1 mmol, 1 eqv.), with PhZnCl•LiCl as the base, NMP 

(400 µL) as cosolvent at 60 °C for 4 h catalyzed by C5 (2 mol%),  followed by flash column chromatography 

(wet load, 24 g SiO2, 10 CV 100% Hexane).  
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222.39 g/mol 

Rf: 0.48 (Hexane) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.20 – 7.15 (m, 1H), 7.08 (m, 2H), 7.00 (m, 1H), 2.80 (t, J = 7.4 Hz, 2H), 2.29 
(s, 3H), 1.59 (p, J = 7.2 Hz, 2H), 1.41 – 1.32 (m, 2H), 1.29 – 1.15 (m, 6H), 0.81 (t, J = 6.8 Hz, 3H). 

13C-NMR (101 MHz, CDCl3, δ):  137.2, 136.4, 123.0, 127.3, 126.3, 125.2, 32.8, 31.7, 29.0, 29.0, 28.9, 22.6, 
20.3, 14.1. 

HR-MS (EI): m/z calc. for [M]•+   222.143672, found 222.14529. 

IR (ATR, 𝑣̃ [cm-1]):  2922, 2855, 1587, 1464, 1379, 1274, 1066, 738. 

5-(Heptylthio)-1-methyl-1H-indole (51) 

 

The product (211 mg, 807 µmol, 81%) was obtained as a black oil by applying GP B using 5-chloro-1-

methylindole (166 mg, 1 mmol, 1 eqv.) and dist. HeptSH (160 µL, 1 mmol,  1 eqv.), with PhZnCl•LiCl as the 

base, NMP (400 µL) as cosolvent at 60 °C for 4 h catalyzed by C1 (2 mol%),  followed by flash column 

chromatography (24 g SiO2, from 100% hexane to 90:10 hexane:EtOAc over 10 CV). 

261.43 g/mol 

Rf: 0.64 (PE:Et2O 95:5) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.64 (dd, J = 1.7, 0.7 Hz, 1H), 7.23 (dd, J = 8.5, 1.7 Hz, 1H), 7.19 – 7.15 (m, 
1H), 6.96 (d, J = 3.0 Hz, 1H), 6.36 (dd, J = 3.2, 0.8 Hz, 1H), 3.70 (s, 3H), 2.79 (t, J = 7.4 Hz, 2H), 1.57 – 1.47 
(m, 2H), 1.32 (m, 2H), 1.25 – 1.12 (m, 6H), 0.79 (t, J = 6.8 Hz, 3H). 

13C-NMR (101 MHz, CDCl3, δ): 135.9, 129.5, 129.1, 126.0, 125.4, 124.7, 109.6, 100.7, 36.6, 32.9, 31.8, 29.5, 
28.9, 28.8, 22.6, 14.1. 

HR-MS (ESI):  m/z calc. for [M+Na]+ 284.14434, found 284.14448. 

IR (ATR, 𝑣̃ [cm-1]): 2922, 2851, 1509, 1472, 1375, 1274, 1241, 1080, 879, 793, 752, 715. 
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5-(heptylthio)-2-methylbenzo[d]thiazole (52) 

 

The product (243 mg, 871 µmol, 87%) was obtained as a colourless crystalline solid by applying GP B 

using 5-Chloro-2-methylbenzothiazole (184 mg, 1 mmol, 1 eqv.) and dist. HeptSH (160 µL, 1 mmol,  1 eqv.), 

with PhZnCl•LiCl as the base, NMP (400 µL) as cosolvent at 60 °C for 4 h catalyzed by C1 (2 mol%),  followed 

by flash column chromatography (24 g SiO2, 100% Hexane to 85:15 Hexane:EtOAc over 20 CV).  

279.44 g/mol 

Rf: 0.8 (PE:Et2O 8:2) 

m.p.: 43 °C. 

1H-NMR (400 MHz, CDCl3, δ): 7.90 (d, J = 1.8 Hz, 1H), 7.69 (d, J = 8.4 Hz, 1H), 7.31 (dd, J = 8.3, 1.8 Hz, 1H), 
2.95 (t, J = 7.5 Hz, 2H), 2.82 (s, 3H), 1.66 (p, J = 7.3 Hz, 2H), 1.41 (m, 2H), 1.27 (m, 6H), 0.89 – 0.82 (m, 3H). 

13C-NMR (101 MHz, CDCl3, δ): 167.8, 154.0, 135.1, 133.1, 126.3, 122.3, 121.4, 34.2, 31.7, 29.1, 28.8, 28.8, 
22.6, 20.2, 14.1. 

HR-MS (ESI): m/z calc. for [M+Na]+ 280.11882, found 280.11904.  

IR (ATR, 𝑣̃ [cm-1]): 1587, 1520, 1438, 1300, 1170, 1084, 995, 913, 846, 808, 723. 

 

3-(Heptylthio)pyridine (53) 

 

The product (202 mg, 965 µmol, 97%) was obtained as a colourless oil by applying GP B using 3-

chloropyridine (94 µL, 1 mmol, 1 eqv.) and dist. HeptSH (160 µL, 1 mmol,  1 eqv.), with PhZnCl•LiCl as the 

base, NMP (400 µL) as cosolvent at 60 °C for 4 h catalyzed by C1 (2 mol%), followed by flash column 

chromatography (24 g SiO2, 5 CV 100% Hexane, over 5 CV to 75:25 Hexane:EtOAc, hold 1 CV, over 1 CV to 

68:32 Hexane:EtOAc, hold 4 CV).  
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209.12 g/mol 

Rf: 0.25 (PE:Et2O 8:2) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 8.46 (s, 1H, H2), 8.30 (d, J = 3.6 Hz, 1H, H6), 7.53 (dd, 3JH4-H5 = 8.1, 4JH4-H2 = 1.8 
Hz, 1H, H4), 7.09 (dd, J = 8.1, 4.4 Hz, 1H, H5), 2.82 (t, J = 7.4 Hz, 2H), 1.54 (p, J = 7.3 Hz, 2H), 1.38 – 1.27 (m, 
6H), 1.26 – 1.10 (m, 6H), 0.81 – 0.76 (m, 3H). 

13C-NMR (101 MHz, CDCl3, δ): 149.9, 146.7, 136.5, 134.1, 123.4, 33.6, 31.6, 29.1, 28.7, 28.6, 22.5, 14.0. 

HR-MS (EI): m/z calc. for [M]•+   209.123271, found 209.12144. 

IR (ATR, 𝑣̃ [cm-1]):  2952, 2922, 2855, 1558, 1464, 1401, 1107, 1017, 790, 704. 

 

6-(heptylthio)quinoline (54) 

 

The product (245 mg, 944 µmol, 94%) was obtained as a turbid oil by applying GP B using 

6-chloroquinoline (164 mg, 1 mmol, 1 eqv.) and dist. HeptSH (160 µL, 1 mmol,  1 eqv.), with PhZnCl•LiCl 

as the base, NMP (400 µL) as cosolvent at 60 °C for 4 h catalyzed by C1 (2 mol%), followed by flash column 

chromatography (14 g SiO2, gradient to 6:4 Hexane:Et2O over 10 CV). The compound solidifies to a white 

paste after brief storage at -10 °C.  

259.41 g/mol 

Rf: 0.26 (PE:Et2O 8:2) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 8.97 – 8.60 (m, 1H), 7.95 – 7.85 (m, 2H), 7.57 – 7.49 (m, 2H), 7.26 (dd, J = 
8.3, 4.2 Hz, 1H), 2.93 (t, J = 7.4 Hz, 2H), 1.67 – 1.56 (p, J = 7.2 Hz,  2H), 1.41 – 1.31 (m, 2H), 1.19 (m, 6H), 
0.82 – 0.73 (m, 3H). 

13C-NMR (101 MHz, CDCl3, δ): 149.6, 146.6, 136.3, 134.9, 130.3, 129.7, 128.7, 125.0, 121.6, 33.2, 31.7, 
28.9, 28.8, 28.8, 22.6, 14.1. 
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HR-MS (ESI):  m/z calc. for [M+H]+   260.14675, found 260.14716. 

IR (ATR, 𝑣̃ [cm-1]): 2922, 2851, 1610, 1584, 1487, 1367, 1304, 1236, 1185, 1121, 1069, 1032, 943, 864, 827, 

790, 764, 723. 

 

9-Tosyl-6-heptylthio-9H-purine (55) 

 

The product (165 mg, 407 µmol, max. 41%, containing an unknown impurity) was obtained as an off-white 

solid by GP B from 9-Tosyl-6-chloro-9H-purine (309 mg, 1 mmol, 1 eqv.) and dist. HeptSH (160 µL, 1 mmol, 

1 eqv.), with PhZnCl•LiCl as the base, THF as solvent at 60 °C for 0.5 h catalyzed by C1 (0.5 mol%), after 

washing the crude solid obtained after workup, drying and solvent removal with dist. n-Hexane (4 x 5 mL).   

404.55 g/mol 

Rf: 0.44 (DCM:MeOH 9:1) 

m.p.: 115 °C (dec.) 

1H-NMR (400 MHz, CDCl3, δ): 8.78 (s, 1H), 8.51 (s, 1H), 8.10 (d, J = 8.4 Hz, 2H), 7.38 – 7.27 (m, 2H), 2.49 – 
2.41 (m, 2H), 2.37 (s, 3H), 1.54 (p, J = 7.2 Hz, 2H), 1.24 – 1.17 (m, 6H), 0.84 – 0.78 (m, 5H). 

13C-NMR (101 MHz, CDCl3, δ): 153.6, 152.3, 150.2, 147.6, 142.5, 133.2, 131.5, 130.4, 128.8, 34.1, 31.7, 
28.7, 28.4, 24.7, 22.6, 21.9, 14.1. 

HR-MS (ESI):  m/z calc. for [M+Na]+   427.12329, found 427.12389. 

IR (ATR, 𝑣̃ [cm-1]):  2995, 2922, 2851, 1558, 1438, 1334, 1162, 1069, 1013, 972, 928, 812, 704, 667. 

  



Chapter 4   

240 

10-ethyl-2-(heptylthio)-10H-phenothiazine (56) 

 

The product (284 mg, 794 µmol, 79%) was obtained as a colourless oil by applying GP B using 

2-Chloro-10-ethyl-10H-phenothiazine (262 mg, 1 mmol, 1 eqv.) and dist. HeptSH (160 µL, 1 mmol, 1 eqv.), 

with PhZnCl•LiCl as the base, NMP (400 µL) as cosolvent at 60 °C for 4 h catalyzed by C1 (2 mol%), followed 

by flash column chromatography (23 g SiO2, Hexane).  

 

357.57 g/mol 

Rf: 0.13 (Hexane) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.08 – 6.71 (m br, 7H), 2.80 (s br, 2H), 1.55 (p, J = 7.2 Hz, 2H), 1.39 – 1.28 (m, 
6H), 1.27 – 1.12 (m, 7H), 0.84 – 0.73 (m, 3H).5  

13C-NMR (101 MHz, CDCl3, δ): 145.4, 144.7, 135.9, 127.4, 127.3, 124.4, 123.3, 122.5, 116.6, 115.3, 41.9, 
34.3, 31.7, 29.7, 28.8, 28.8, 22.6, 14.1, 13.1. 

HR-MS (ESI):  m/z calc. for [M+Na]+ 357.15794, found 357.15796. 

IR (ATR, 𝑣̃ [cm-1]): 2922, 2851, 1565, 1449, 1401, 1315, 1278, 1230, 1133, 1039, 924, 801, 745. 

  

 
5 We observed line broadening in both 1H- and 13C-NMR spectra. Due to this, some 13C signals could not be detected.  
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5-(Heptylthio)-1-phenyl-1H-tetrazole (57) 

 

The product (169 mg, 611 µmol, 61%) was obtained as a colourless oil by applying GP B using (181 mg, 1 

mmol, 1 eqv.) and dist. HeptSH (160 µL, 1 mmol,  1 eqv.), with PhZnCl•LiCl as the base, NMP (400 µL) as 

cosolvent at 60 °C for 4 h catalyzed by C1 (2 mol%), followed by flash column chromatography (24 g SiO2, 

from 100% hexane to 70:30 hexane:Et2O over 10 CV). The analytical data conforms to the reported 

literature.[S10] 

276.40 g/mol 

Rf: 0.17 (PE:Et2O 9:1) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.56 – 7.42 (m, 5H), 3.32 (t, J = 7.4 Hz, 2H), 1.75 (p, J = 7.4 Hz, 2H), 1.42 – 
1.32 (m, 2H), 1.30 – 1.14 (m, 6H), 0.81 (t, J = 6.7 Hz, 3H). 

13C-NMR (101 MHz, CDCl3, δ): 154.5, 133.8, 130.1, 129.8, 123.9, 33.4, 31.6, 29.1, 28.7, 28.6, 22.6, 14.0. 

LR-MS (ESI): 277.1 (MH+) 

3-(Heptylthio)-coumarin (58) 

 

The product (63 mg, 227 µmol, 23%) was obtained as an off-white solid by applying GP C using 

3-Chloro-coumarin (181 mg, 1 mmol, 1 eqv.) and dist. HeptSH (160 µL, 1 mmol,  1 eqv.), with PhZnCl•LiCl 

as the base, NMP (400 µL) as cosolvent at 60 °C for 4 h catalyzed by C1 (2 mol%), followed by flash column 

chromatography (24 g SiO2, 100% Hexane to 70:30 Hexane:EtOAc over 20 CV).  

276.39 g/mol 

Rf: 0.12 (9:1 Hexane:EtOAc) 

m.p.: 97 °C. 
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1H-NMR (400 MHz, CDCl3, δ): 7.41 – 7.17 (m, 5H), 2.86 (t, J = 7.3 Hz, 2H), 1.67 (p, J = 8.8, 2H), 1.46 – 1.35 
(m, 2H), 1.33 – 1.13 (m, 6H), 0.82 (t, J = 6.7 Hz, 3H). 

13C-NMR (101 MHz, CDCl3, δ): 159.3, 151.7, 134.0, 130.1, 128.4, 126.3, 124.6, 119.6, 116.5, 31.7, 31.3, 
28.9, 28.8, 28.0, 22.6, 14.1. 

HR-MS (ESI): m/z calc. for [M+Na]+ 299.10762, found 299.10796.   

IR (ATR, 𝑣̃ [cm-1]): 2955, 2918, 2851, 1763, 1662, 1595, 1550, 1360, 1278, 1028, 984, 939, 905, 834, 749. 

 

6-(Heptylthio)-flavone (59) 

 

The product (279 mg, 673 µmol, 67%) was obtained as an off-white solid by applying GP B using 

6-Chloro-flavone (256 mg, 1 mmol, 1 eqv.) and dist. HeptSH (160 µL, 1 mmol,  1 eqv.), with PhZnCl•LiCl as 

the base, NMP (400 µL) as cosolvent at 60 °C for 4 h catalyzed by C1 (2 mol%), followed by flash column 

chromatography (24 g SiO2, 100% Hexane to 70:30 Hexane:EtOAc over 20 CV).  

279.44 g/mol 

Rf: 0.11 (PE:EtOAc 9:1) 

m.p.: 83 °C. 

1H-NMR (400 MHz, CDCl3, δ): 8.02 (d, J = 2.4 Hz, 1H), 7.88 – 7.80 (m, 2H), 7.54 (dd, J = 8.7, 2.4 Hz, 1H), 7.49 
– 7.38 (m, 4H), 6.77 (s, 1H), 2.94 (t, J = 7.4 Hz, 2H), 1.61 (tt, J = 7.5, 6.1 Hz, 2H), 1.43 – 1.31 (m, 2H), 1.28 – 
1.09 (m, 6H), 0.87 – 0.73 (m, 3H). 

13C-NMR (101 MHz, CDCl3, δ): 177.7, 163.4, 154.5, 135.2, 134.4, 131.7, 131.7, 129.1, 126.3, 124.3, 123.9, 
118.6, 107.6, 33.7, 31.7, 28.8, 28.8, 22.6, 14.1. 

HR-MS (ESI): m/z calc. for [M+Na]+   375.13892 found 375.13871.  

IR (ATR, 𝑣̃ [cm-1]): 1625, 1561, 1498, 1449, 1356, 1289, 1248, 1140, 1025, 909, 823, 767, 685. 
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5-(Heptylthio)pyrimidine (60) 

 

The product (173 mg, 822 µmol,  82%) was obtained as a colourless oil by applying GP B using (115 mg, 

1 mmol, 1 eqv.) and dist. HeptSH (160 µL, 1 mmol,  1 eqv.), with PhZnCl•LiCl as the base, NMP (400 µL) as 

cosolvent at 60 °C for 4 h catalyzed by C1 (2 mol%),  followed by flash column chromatography (24 g SiO2, 

from 100% hexane to 90:10 hexane:EtOAc over 10 CV).   

 

210.34 g/mol 

Rf: 0.55 (PE:EtOAc 8:2) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 8.95 (s, 1H), 8.60 (s, 2H), 2.88 (t, J = 7.4 Hz, 2H), 1.59 (p, J = 7.3 Hz, 2H), 1.43 
– 1.29 (m, 2H), 1.30 – 1.18 (m, 6H), 0.89 – 0.74 (m, 3H). 

13C-NMR (101 MHz, CDCl3, δ): 156.6, 155.6, 33.5, 31.6, 29.1, 28.7, 28.6, 22.6, 14.0. 

HR-MS (ESI): m/z calc. for [M+Na]+   211.12635 found 211.12640. 

IR (ATR, 𝑣̃ [cm-1]): 2922, 2855, 1539, 1461, 1401, 1155, 1073, 1028, 887, 719. 

 

8-(Heptylthio)caffeine (B1) 

 

The product (175 mg, 539 µmol, 54%) was obtained as a white solid by GP B from 8-chlorocaffeine 

(229 mg, 1 mmol, 1 eqv.) and heptanethiol (160 µL, 1 mmol, 1 eqv.) with PhMgBr•LiCl as the base, THF 

(400 µL) as solvent at RT for 1 h catalyzed by C1 (0.5 mol%), followed by flash column 
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chromatography (37 g SiO2, gradient to 8:2 PE:EA over 10 CV). The obtained spectroscopic data is in 

accordance with the literature.[S11] 

324.44 g/mol 

Rf: 0.65 (1:1 PE:EA) 

m.p.: 60 °C. 

1H-NMR (400 MHz, CDCl3, δ): 3.77 (s, 3H), 3.49 (s, 3H), 3.32 (s, 3H), 3.19 (t, J = 7.3 Hz, 2H), 1.68 (p, 
J = 7.4 Hz, 2H), 1.45 – 1.30 (m, 2H), 1.32 – 1.14 (m, 6H), 0.82 (t, J = 6.7 Hz, 3H). 

13C-NMR (101 MHz, CDCl3, δ): 154.6, 151.6, 151.4, 148.5, 108.5, 32.8, 32.2, 31.6, 29.7, 29.6, 28.7, 28.6, 

27.8, 22.6, 14.1. 

HR-MS (ESI): m/z calc. for [M+Na]+   347.15122, found 347.15164.  

IR (ATR, 𝑣̃ [cm-1]): 2955, 2914, 2851, 1695, 1662, 1453, 1401, 1364, 1285, 1218, 1032, 972, 745. 

 

Ethyl 2-(1-(4-(heptylthio)benzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate (B2) 

 

The product (206 mg, 855 µmol, 86%) was obtained as a yellow oil by GP B from Indometacin ethyl ester 

(SM26, 193 mg, 0.5 mmol, 1 eqv.) and dist. heptanethiol (80 µL, 0.5 mmol, 1 eqv.) with PhZnCl•LiCl as the 

base, NMP (400 µL) as cosolvent at 60 °C for 4 h catalyzed by C1 (2 mol%), followed by flash column 

chromatography (23 g SiO2, 4 CV Hexane, gradient to 75:25 Hexane:EtOAc over 6 CV, 1 CV hold, gradient 

to 65:35 Hexane:EtOAc over 4 CV, 2 CV hold). The product solidified at -10 °C. 

481.65 g/mol 

Rf: 0.23 (8:2 PE:Et2O) 

m.p.: 67 °C. 
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1H-NMR (400 MHz, CDCl3, δ): 7.62 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H), 6.97 (d, J = 2.5 Hz, 1H), 6.92 
(d, J = 9.0 Hz, 1H), 6.66 (dd, J = 9.0, 2.6 Hz, 1H), 4.16 (q, J = 7.1 Hz, 2H), 3.84 (s, 2H), 3.00 (t, J = 7.4 Hz, 2H), 
2.39 (s, 3H), 1.72 (p, J = 7.3 Hz, 2H), 1.52 – 1.40 (m, 2H), 1.37 – 1.21 (m, 9H), 0.94 – 0.84 (m, 3H). 

13C-NMR (101 MHz, CDCl3, δ):  171.0, 168.9, 155.8, 145.1, 136.0, 131.5, 131.0, 130.5, 130.4, 126.3, 114.9, 
112.1, 111.5, 101.1, 61.0, 55.7, 32.0, 31.7, 30.5, 28.9, 28.8, 28.7, 22.6, 14.3, 14.1, 13.3. 

HR-MS (ESI): m/z calc. for [M+Na]+   504.21790 found 504.21807. 

IR (ATR, 𝑣̃ [cm-1]): 2926, 2855, 1733, 1677, 1587, 1476, 1397, 1353, 1308, 1259, 1222, 1140, 1088, 1032, 

924, 827, 801, 752, 693. 

 

Ethyl 4-(heptylthio)benzoate (74) 

 

The product (246 mg, 877 µmol, 88%) was obtained as a colourless oil by applying GP B using ethyl 

4-chlorobenzoate (155 µL, 1 mmol, 1 eqv.) and heptanethiol (160 µL, 1 mmol, 1 eqv.) with PhZnCl•LiCl as 

the base, with NMP (400 µL) as cosolvent at 60 °C for 4 h catalyzed by C1 (2 mol%), followed by flash 

chromatography (14 g SiO2, 5 CV Hexane, gradient to 8:2 Hexane:EtOAc over 20 CV, hold 5 CV).  

280.43 g/mol 

Rf: 0.13 (95:5 PE:Et2O) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.82 (d, J = 8.5 Hz, 2H), 7.17 (d, J = 8.5 Hz, 2H), 4.25 (q, J = 7.1 Hz, 2H), 2.85 
(t, J = 7.4 Hz, 2H), 1.58 (p, J = 7.2 Hz, 2H), 1.39 – 1.11 (m, 11H), 0.83 – 0.74 (m, 3H). 

13C-NMR (101 MHz, CDCl3, δ):  166.2, 144.4, 129.8, 126.9, 126.2, 60.8, 32.1, 31.7, 28.9, 28.8, 28.8, 22.6, 
14.3, 14.0. 
 
HR-MS (EI): m/z calc. for [M]+●  280.149152, found 280.14748. 

IR (ATR, 𝑣̃ [cm-1]): 2926, 2855, 1714, 1591, 1461, 1397, 1364, 1267, 1103, 1017, 842, 760. 
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Ethyl 4-(phenethylthio)benzoate (75) 

 

The product (228 mg, 797 µmol, 80%) was obtained as a red-black oil by applying GP B using ethyl 

4-chlorobenzoate (155 µL, 1 mmol, 1 eqv.) and butyl 3-mercaptopropionate (160 µL, 1 mmol, 1 eqv.) with 

PhZnCl•LiCl as the base,  with NMP (400 µL) as cosolvent at 60 °C for 4 h catalyzed by C1 (2 mol%), followed 

by flash chromatography (14 g SiO2, Hexane).  

286.39 g/mol 

Rf: 0.27 (95:5 PE:Et2O) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.87 (d, J = 8.5 Hz, 2H), 7.27 – 7.21 (m, 4H), 7.19 – 7.12 (m, 3H), 4.29 (q, J = 
7.1 Hz, 2H), 3.21 – 3.12 (t, J = 7.8 Hz, 2H), 2.96 – 2.84 (t, J = 7.8 Hz, 2H), 1.31 (t, J = 7.1 Hz, 3H). 

13C-NMR (101 MHz, CDCl3, δ): 166.3, 143.5, 139.8, 130.0, 128.6, 128.5, 127.3, 126.7, 126.6, 60.9, 35.2, 
33.7, 14.4. 

HR-MS (ESI): m/z calc. for [M+Na]+ 309.09197, found 309.09220. 

IR (ATR, 𝑣̃ [cm-1]): 3060, 3026, 2978, 2929, 1707, 1591, 1490, 1453, 1397, 1364, 1267, 1177, 1103, 1013, 

842, 756, 693. 

 

Ethyl 4-((3-butoxy-3-oxopropyl)thio)benzoate (76) 

 

The product (229 mg, 737 µmol, 74%) was obtained as a red-black oil by applying GP B using ethyl 

4-chlorobenzoate (155 µL, 1 mmol, 1 eqv.) and butyl 3-mercaptopropionate (160 µL, 1 mmol, 1 eqv.) with 

PhZnCl•LiCl as the base,  with NMP (400 µL) as cosolvent at 60 °C for 4 h catalyzed by C1 (2 mol%), followed 

by flash chromatography (23 g SiO2, 5 CV Hexane, gradient to 87:13 Hexane:EtOAc over 4 CV, hold 1 CV, 

gradient to 8:2 Hexane:EtOAc over 2 CV, hold 2 CV, gradient to 7:3 Hexane over 4 CV, hold 1 CV).  
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310.41 g/mol 

Rf: 0.39 (9:1 Hexane:EtOAc) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.88 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H), 4.29 (q, J = 7.1 Hz, 2H), 4.03 
(t, J = 6.7 Hz, 2H), 3.18 (t, J = 7.4 Hz, 2H), 2.60 (t, J = 7.4 Hz, 2H), 1.60 – 1.50 (m, 2H), 1.32 (t, J = 7.1 Hz, 3H), 
0.86 (t, J = 7.4 Hz, 3H). 

13C-NMR (101 MHz, CDCl3, δ):  171.53, 166.21, 142.45, 130.03, 127.71, 127.16, 64.82, 60.96, 34.01, 30.59, 
27.46, 19.11, 14.34, 13.69. 

HR-MS (ESI): m/z calc. for [M+Na]+   333.11310, found 333.11365. 

IR (ATR, 𝑣̃ [cm-1]): 2959, 2870, 1710, 1595, 1461, 1397, 1364, 1267, 1177, 1105, 1013, 842, 760. 

 

Ethyl 4-(cyclohexylthio)benzoate (77) 

 

The product (232 mg, 878 µmol, 88%) was obtained as a red-black oil by applying GP B using ethyl 

4-chlorobenzoate (155 µL, 1 mmol, 1 eqv.) and cyclohexanethiol (120 µL, 1 mmol, 1 eqv.) with PhZnCl•LiCl 

as the base,  with NMP (400 µL) as cosolvent at 60 °C for 4 h catalyzed by C1 (2 mol%), followed by flash 

chromatography (23 g SiO2, 5 CV Hexane, gradient to 87:13 Hexane:EtOAc over 8 CV, hold 2 CV, gradient 

to 8:2 Hexane:EtOAc over 1 CV, hold 2 CV). The analytical data conforms to the reported literature.[S12] 

264.38 g/mol 

Rf: 0.62 (9:1 Hexane:EtOAc) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.93 (d, J = 8.5 Hz, 2H), 7.34 (d, J = 8.5 Hz, 2H), 4.36 (q, J = 7.1 Hz, 2H), 3.35 
– 3.22 (m, 1H), 2.09 – 1.98 (m, 2H), 1.85 – 1.74 (m, 2H), 1.67 – 1.58 (m, 1H), 1.50 – 1.11 (m, 8H). 

13C-NMR (101 MHz, CDCl3, δ): 166.3, 142.8, 129.8, 128.6, 127.5, 60.9, 45.2, 33.1, 26.0, 25.7, 14.4. 

LR-MS (EI): m/z 264, 219, 182, 154, 137, 122, 105, 83. 



Chapter 4   

248 

IR (ATR, 𝑣̃ [cm-1]): 2978, 2929, 2851, 1710, 1591, 1446, 1364, 1267, 1174, 1103, 1017, 842, 760, 693. 

 

Ethyl 4-(octan-3-ylthio)benzoate (78) 

 

The product (272 mg, 924 µmol, 92%) was obtained as a red-black oil by applying GP B using ethyl 

4-chlorobenzoate (155 µL, 1 mmol, 1 eqv.) and octane-3-thiol (145 µL, 1 mmol, 1 eqv.) with PhZnCl•LiCl 

as the base, with NMP (400 µL) as cosolvent at 60 °C for 4 h catalyzed by C1 (2 mol%), followed by flash 

chromatography (23 g SiO2, Hexane). 

294.45 g/mol 

Rf: 0.60 (9:1 Hexane:Et2O) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.85 (d, J = 8.5 Hz, 2H), 7.22 (d, J = 8.5 Hz, 2H), 4.28 (q, J = 7.1 Hz, 2H), 2.88 
(d, J = 6.3 Hz, 2H), 1.55 (p, J = 6.2 Hz, 1H), 1.46 – 1.33 (m, 3H), 1.31 (t, J = 7.1 Hz, 4H), 1.27 – 1.16 (m, 4H), 
0.88 – 0.78 (m, 6H). 

13C-NMR (101 MHz, CDCl3, δ): 166.4, 144.8, 129.8, 126.8, 126.4, 60.8, 38.7, 36.5, 32.5, 28.8, 25.7, 22.9, 
14.4, 14.1, 10.8. 

HR-MS (ESI): m/z calc. for [M+Na]+ 317.15457, found 317.15485. 

IR (ATR, 𝑣̃ [cm-1]): 2959, 2926, 2858, 1714, 1591, 1461, 1397, 1364, 1267, 1177, 1103, 1017, 842, 760. 
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Ethyl 4-(benzylthio)benzoate (79) 

 

The product (156 mg, 573 µmol, 57%) was obtained as a brownish solid by applying GP B using ethyl 

4-chlorobenzoate (155 µL, 1 mmol, 1 eqv.) and benzylthiol (120 µL, 1 mmol, 1 eqv.) with PhZnCl•LiCl as 

the base, with NMP (400 µL) as cosolvent at 60 °C for 4 h catalyzed by C1 (2 mol%), followed by flash 

chromatography (23 g SiO2, 5CV Hexane, gradient to 9:1 Hexane:EtOAc over 10 CV, hold for 5 CV). The 

analytical data conforms to the reported literature.[S13] 

272.36 g/mol 

Rf: 0.53 (9:1 Hexane:EtOAc) 

m.p.: 65 °C. 

1H-NMR (400 MHz, CDCl3, δ): 7.84 (d, J = 8.5 Hz, 2H), 7.34 – 7.12 (m, 7H), 4.28 (q, J = 7.1 Hz, 2H), 4.13 (s, 
2H), 1.30 (t, J = 7.1 Hz, 3H). 

13C-NMR (101 MHz, CDCl3, δ): 166.3, 143.5, 136.4, 129.9, 128.8, 128.7, 127.5, 127.5, 127.1, 60.9, 37.4, 
14.3. 

LR-MS (EI): m/z 272, 227, 182, 165, 150, 137, 122, 105, 91. 

IR (ATR, 𝑣̃ [cm-1]): 3026, 2981, 2933, 1699, 1587, 1442, 1397, 1364, 1271, 1185, 1110, 1025, 842, 756, 715, 

689. 

 

Ethyl 4-(tert-butylthio)benzoate (80) 

 

The product (115 mg, 483 µmol, 26%) was obtained as a colourless liquid by applying GP B using ethyl 

4-chlorobenzoate (155 µL, 1 mmol, 1 eqv.) and tert-butanethiol (110 µL, 1 mmol, 1 eqv.) with PhZnCl•LiCl 
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as the base, with NMP (400 µL) as cosolvent at 60 °C for 4 h catalyzed by C1 (2 mol%), followed by 

preparative TLC (9:1 Hexane:EtOAc). 

238.35 g/mol 

Rf: 0.69 (Hexane:EtOAc 9:1) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.98 (d, J = 8.3 Hz, 2H), 7.59 (d, J = 8.3 Hz, 2H), 4.38 (q, J = 7.1 Hz, 2H), 1.39 
(t, J = 7.1 Hz, 3H), 1.31 (s, 9H). 

13C-NMR (101 MHz, CDCl3, δ):  166.3, 138.8, 136.8, 130.5, 129.4, 61.1, 46.7, 31.1, 14.3. 

HR-MS (ESI): m/z calc. for [M+Na]+   261.09197, found 261.09196. 

IR (ATR, 𝑣̃ [cm-1]): 2963, 1714, 1595, 1457, 1394, 1364, 1267, 1107, 1017, 853, 764, 697.  

 

Ethyl 4-(adamant-1-ylthio)benzoate (81) 

 

The product (82 mg, 259 µmol, 26%) was obtained as a white solid by applying GP B using ethyl 

4-chlorobenzoate (155 µL, 1 mmol, 1 eqv.) and adamantane-1-thiol (168 mg, 1 mmol, 1 eqv.) with 

PhZnCl•LiCl as the base,  with NMP (400 µL) as cosolvent at 60 °C for 4 h catalyzed by C1 (2 mol%), followed 

by flash chromatography (23 g SiO2, 5 CV Hexane, gradient to 9:1 Hexane:Et2O over 18 CV). 

316.46 g/mol 

Rf: 0.54 (Hexane:Et2O 9:1) 

m.p.: 70 °C. 

1H-NMR (400 MHz, CDCl3, δ): 7.97 (d, J = 8.3 Hz, 2H), 7.56 (d, J = 8.3 Hz, 2H), 4.38 (q, J = 7.1 Hz, 2H), 2.04 
– 1.97 (m, 3H), 1.82 (d, J = 3.0 Hz, 6H), 1.69 – 1.50 (m, 6H), 1.39 (t, J = 7.1 Hz, 3H). 

13C-NMR (101 MHz, CDCl3, δ): 166.3, 137.2, 136.7, 130.4, 129.2, 61.1, 48.9, 43.7, 36.1, 30.0, 14.3. 

HR-MS (ESI): m/z calc. for [M+Na]+   339.13892, found 339.13932. 
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IR (ATR, 𝑣̃ [cm-1]): 2899, 2851, 1714, 1595, 1453, 1394, 1267, 1103, 1017, 853, 760, 697. 

 

4’-(Ethylthio)hexanophenone (110) 

 

Hexanoic acid S-ethyl thioester (108)[2] (73 mg, 0.5 mmol, 1.0 eqv.) and C1 (19 mg, 5 mol%) were 

dissolved in dry THF (500 µL) in a Schlenk vessel with stirring bar and rubber septum. 4-Chlorophenyl-

ZnCl•LiCl (3.6 mL of a 0.25 M solution in THF, 0.9 mmol, 1.8 eqv.) was added via syringe and the resulting 

reaction mixture stirred for 1.5 h at RT. The mixture was quenched with sat. aq. NH4Cl solution, extracted 

three times with EtOAc (5 mL each) and dried over MgSO4. The solvent was evaporated under reduced 

pressure. The crude product was purified by column chromatography (Hexane/Et2O 97.5:2.5) delivered 

the product as a crystalline solid (74 mg, 312 µmol, 62%).  

Rf:  0.17 (Hexane/Et2O 97.5:2.5) 

m.p.: 51 °C. 

1H-NMR (400 MHz, CDCl3, δ):  7.86 (dd, J = 8.60, 4.84 Hz, 2 H, Ar-H), 7.29 (dd, J = 8.60, 4.84 Hz, 2 H, Ar-H), 
3.02 (q, J = 7.38 Hz, 2 H, CH2SAr), 2.91 (t, J = 7.44 Hz, 2 H, CH2COAr), 1.76–1.69 (m, 2 H, CH2CH2COAr), 
1.39–1.33 (m, 7 H), 0.90 (t, J = 7.06 Hz, 3 H). 

13C-NMR (101 MHz, CDCl3, δ):  199.8, 144.3, 133.9, 128.7, 126.5, 38.5, 31.7, 26.2, 24.3, 22.7, 14.1 (2 C). 

LR-MS (EI): m/z 236, 220, 193, 180, 165, 151, 137, 120, 105, 91, 77. 

IR (ATR, 𝑣̃ [cm-1]):  3079, 2952, 2866, 1674, 1588, 1465, 1398, 1320, 1256, 1185, 1088, 1055, 1006, 977, 
813, 760, 731. 

 

(4-Methoxyphenyl)(phenyl)sulfane (84) 

 

Following GP C, thiophenol (100 µL, 1.0 mmol, 1.0 eqv.) was coupled with 4-chloroanisole (100 µL, 

1.0 mmol, 1.0 eqv.). Isolation by flash chromatography (23 g SiO2, Hexane) delivered the product 

(191 mg, 883 µmol, 88%) as a colourless oil. The analytical data conforms to the reported literature.[S14] 
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216.30 g/mol 

Rf: 0.62 (9:1 Hexane:EtOAc) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.32 (d, J = 8.8 Hz, 2H), 7.19 – 6.94 (m, 5H), 6.80 (d, J = 8.8 Hz, 2H), 3.72 (s, 
3H). 

13C-NMR (101 MHz, CDCl3, δ):  159.9, 138.6, 135.4, 129.0, 128.3, 125.8, 124.4, 115.0, 55.4. 

LR-MS (EI): m/z 216, 201, 184, 169, 141, 129, 115, 108, 78. 

 

Diphenylsulfane (82) 

 

Following GP C, thiophenol (100 µL, 1.0 mmol, 1.0 eqv.) was coupled with chlorobenzene (100 µL, 

1.0 mmol, 1.0 eqv.). Isolation by flash chromatography (23 g SiO2, Hexane) delivered the product 

(179 mg, 961 µmol, 96%) as a colourless oil. The analytical data conforms to the reported literature.[S14]  

186.27 g/mol 

Rf:  0.78 (9:1 Hexane:EtOAc)  

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.51 – 7.46 (m, 4H), 7.44 – 7.38 (m, 4H), 7.38 – 7.32 (m, 2H). 

13C-NMR (101 MHz, CDCl3, δ): 135.9, 131.1, 129.3, 127.1. 

LR-MS (EI): m/z 186, 171, 154, 78. 
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Ethyl 4-(phenylthio)benzoate (83) 

 

Following GP C, thiophenol (100 µL, 1.0 mmol, 1.0 eqv.) was coupled with ethyl 4-chlorobenzoate (155 

µL, 1.0 mmol, 1.0 eqv.). Isolation by flash chromatography (23 g SiO2, 3 CV Hexane, then gradient to 9:1 

Hexane:EtOAc over 11 CV) delivered the product (113 mg, 437 µmol,  44%) as a colourless oil. The 

analytical data conforms to the reported literature.[S15]  

258.34 g/mol 

Rf: 0.56 (9:1 Hexane:EtOAc) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.81 (d, J = 8.5 Hz, 2H), 7.41 – 7.34 (m, 2H), 7.31 – 7.25 (m, 3H), 7.12 (d, J = 
8.5 Hz, 2H), 4.26 (q, J = 7.1 Hz, 2H), 1.27 (t, J = 7.1 Hz, 3H). 

13C-NMR (101 MHz, CDCl3, δ): 166.2, 144.1, 133.6, 132.6, 130.1, 129.6, 128.6, 127.9, 60.9, 14.4. 

LR-MS (EI): m/z 258, 243, 230, 213, 198, 184, 152, 122, 105, 91, 78. 

 

(2,4-dimethylphenyl)(4-methoxyphenyl)sulfane (86) 

 

Following GP C, 2,4-dimethylthiophenol (135 µL, 1.0 mmol, 1.0 eqv.) was coupled with 4-chloroanisole 

(155 µL, 1.0 mmol, 1.0 eqv.). Isolation by flash chromatography (23 g SiO2, 18 CV Hexane) delivered the 

product (162 mg, 663 µmol, 66%) as a colourless oil. The analytical data conforms to the reported 

literature.[S16] 

244.35 g/mol 

Rf: 0.26 (Hexane) 
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m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.23– 7.20 (m, 2H), 7.00 – 6.99 (m, 2H), 6.88 – 6.85 (m, 1H), 6.82 – 6.79 (m, 
2H), 3.73 (s, 3H), 2.32 (s, 3H), 2.25 (s, 3H). 

13C-NMR (101 MHz, CDCl3, δ): 159.1, 138.2, 136.8, 133.2, 132.6, 131.3, 131.0, 127.4, 126.0, 114.9, 55.4, 
21.0, 20.4. 

LR-MS (EI): m/z 244, 229, 212, 197, 179, 171, 165, 136, 108, 91, 77. 

 

(2-methylphenyl)(4-methoxyphenyl)sulfane (85) 

 

Following GP C, 2 -methylthiophenol (118 µL, 1.0 mmol, 1.0 eqv.) was coupled with 4-chloroanisole 

(155 µL, 1.0 mmol, 1.0 eqv.). Isolation by flash chromatography (23 g SiO2, 18 CV Hexane, then gradient 

to 1:1 Hexane:EtOAc over 7 CV) delivered the product (162 mg, 703 µmol, 70%) as a colorless oil. The 

analytical data conforms to the reported literature.[S17] 

230.33 g/mol 

Rf: 0.28 (Hexane) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.29-7.25 (m, 2H), 7.12 – 7.10 (m, 1H), 7.05 – 6.97 (m, 2H), 6.94 – 6.92 (m, 
1H), 6.84 – 6.80 (m, 2H), 3.74 (s, 3H), 2.42 (s, 3H), 2.37 (s, 3H). 

13C-NMR (101 MHz, CDCl3, δ): 159.6, 137.2, 137.1, 134.7, 130.3, 129.2, 126.6, 126.2, 124.5, 115.1, 55.4, 
20.4. 

LR-MS (EI): m/z 230, 215, 198, 183, 171, 165, 153, 139, 122, 108, 91, 78. 
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4.4.3.2. Synthesis of biaryls 

4-Fluoro-4'-methoxy-1,1'-biphenyl (100)  

 

Using 4-methoxybenzenethiol (125 µL, 1.00 mmol, 1 equiv.) and 4-fluorophenylmagnesium bromide 

lithium chloride complex (1.23 M in THF; 1.79 mL, 2.20 mmol, 2.2 equiv.), GP D was followed. 

Purification by flash column chromatography (hexane to hexane:ethyl acetate 99:1 to 9:1) yielded the 

product (107 mg, 529 µmol, 53 %) as a white solid. The analytical data conforms to the reported 

literature.[S18] 

202.23 g/mol 

Rf: 0.59 (9:1 PE:EtOAc) 

m.p.:  89 °C (Lit.: 87-89 °C[18]) 

1H-NMR (400 MHz, CDCl3, δ): 7.52 – 7.43 (m, 4H), 7.10 (t, J = 8.7 Hz, 2H), 6.97 (d, J = 8.8 Hz, 2H), 3.85 
(s, 3H). 

13C-NMR (101 MHz, CDCl3, δ): 162.1 (d, J = 245.4 Hz), 159.1, 137.0 (d, J = 3.1 Hz), 132.8, 128.2 (d, J = 8.0 Hz), 
128.0, 115.5 (d, J = 21.3 Hz), 114.3, 55.4. 

19F-NMR (376 MHz, CDCl3, δ): -116.84 (m).   

LR-MS (EI): m/z 202, 187, 170, 159, 133, 101. 

 

2-Methyl-4'-methoxy-1,1'-biphenyl (101) 

 

Using 2-methylbenzenethiol (118 µL, 1.00 mmol, 1 equiv.) and 4-methoxyphenylmagnesium bromide 

lithium chloride complex (0.867 M in THF; 2.54 mL, 2.20 mmol, 2.2 equiv.), GP D was followed. Purification 
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by flash-column chromatography (hexane to hexane:ethyl acetate 9:1) yielded the product (163 mg, 

822 µmol, 82 %) as a colorless oil. The analytical data conforms to the reported literature.[S 18] 

198.27 g/mol 

Rf: 0.27 (Hexane) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.24 – 7.07 (m, 6H), 6.92 – 6.80 (m, 2H), 3.75 (s, 3H), 2.25 – 2.10 (m, 3H). 

13C-NMR (101 MHz, CDCl3, δ): 158.5, 141.6, 135.5, 134.4, 130.3, 129.9, 129.5, 127.0, 125.8, 113.9, 113.5, 
55.3, 20.6. 

LR-MS (EI): m/z 198, 183, 167, 155, 139, 128, 115. 

 

4-methoxy-1,1'-biphenyl (102)  

 

Using thiophenol (102 µL, 1.00 mmol, 1 equiv.) and 4-methoxyphenylmagnesium bromide lithium 

chloride complex (0.867 M in THF; 2.54 mL, 2.20 mmol, 2.2 equiv.), GP D was followed. Purification by 

preparative TLC (hexane) yielded the product (176 mg, 953 µmol, 95 %) as a white solid. The analytical 

data conforms to the reported literature.[S19] 

184.24 g/mol 

Rf: 0.69 (Hexane:EtOAc 9:1) 

m.p.: 84 °C  (Lit.[19]: 87-88 °C) 

1H-NMR (400 MHz, CDCl3, δ): 7.61 – 7.52 (m, 4H), 7.46 – 7.39 (m, 2H), 7.34 – 7.29 (m, 1H), 6.99 (d, 
J = 8.8 Hz, 2H), 3.86 (s, 3H). 

13C-NMR (101 MHz, CDCl3, δ): 159.2, 140.8, 133.8, 128.7, 128.2, 126.8, 126.7, 114.2, 55.4. 

 
LR-MS (EI): m/z 184, 169, 152, 141, 126, 115. 
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2-methoxy-6-phenylnaphthalene (104) 

 

Using thiophenol (100 µL, 1 mmol, 1 equiv.) and 6-Methoxynaphth-2-ylmagnesium bromide lithium 

chloride complex (1.0 M in THF; 2.2 mL, 2.2 mmol, 2.2 equiv.), GP D was followed. Purification by flash 

chromatography (23 g SiO2, 6 CV hexane, gradient to 95:5 hexane:EtOAc over 3 CV, hold 8 CV, gradient to 

9:1 hexane:EtOAc over 4 CV, hold 2 CV) yielded a mixture (141 mg) containing the product and 2-

methoxynaphthalene (identified by GC/MS). The mixture was placed in high vacuum at 40 °C overnight to 

remove the majority of the contaminant. DCE (30 µL, 37.5 mg, 379 µmol) was added to the impure 

compound as an internal standard, and the mixture dissolved in 1400 µL CDCl3.  

The sample concentration was determined by the formula: 

cP = IP/IS * Ns/NP * cs  

= 3/2.84 * 4/3 * (379 µmol/1400 µL) = 0.378 M 

nP = 529 µmol = 0.378 M * 1400 µL  

giving a NMR yield of 53%. 

N: Nuclei count 

I: NMR integral 

P: Product  

S: Standard 

 

234.30 g/mol 

Rf: 0.59 (9:1 Hexane:EtOAc) 

LR-MS (ESI): m/z  234, 219, 204, 191, 176, 165, 152, 139, 128, 117, 110. 
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4'-Methoxy-2,4-dimethyl-1,1'-biphenyl (105) 

 

Using 2,4-dimethylbenzenethiol (135 µL, 1.00 mmol, 1 equiv.) and para-anisylmagnesium bromide 

lithium chloride complex (0.867 M in THF; 2.54 mL, 2.20 mmol, 2.2 equiv.), GP D was followed. Purification 

by flash chromatography (23 g SiO2, gradient from Hexane to 95:5 Hexane:EtOAc over 18 CV) yielded the 

product (83 mg, 389 µmol, 39%) as a colourless oil. The analytical data conforms to the reported 

literature.[S20] 

212.29 g/mol 

Rf: 0.28 (Hexane) 

m.p.: 52 °C. 

1H-NMR (400 MHz, CDCl3, δ): 7.19 – 7.13 (m, 2H), 7.06 – 6.99 (m, 2H), 6.98 – 6.93 (m, 1H), 6.89 – 6.83 (m, 
2H), 3.76 (s, 3H), 2.27 (s, 3H), 2.17 (s, 3H). 

13C-NMR (101 MHz, CDCl3, δ): 158.4, 138.7, 136.6, 135.3, 134.4, 131.1, 130.3, 129.9, 126.5, 113.5, 55.3, 
21.2, 20.5. 

LR-MS (EI): m/z 212, 197, 181, 165, 154, 171, 128, 115, 105. 
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5-(o-tolyl)benzo[d][1,3]dioxole (106) 

 

Using 2-methylbenzenethiol (118 µL, 1.00 mmol, 1 equiv.) and 3,4-(methylenedioxy)-magnesium 

bromide lithium chloride complex (1.50 M in THF; 1.47 mL, 2.20 mmol, 2.2 equiv.), GP D was followed. 

Purification by flash chromatography (23 g SiO2, 1 CV Hexane, gradient from Hexane to 90:10 

Hexane:EtOAc over 3 CV, hold for 6 CV) yielded the product (97 mg, 461 µmol, 46%) as a colourless oil. 

The analytical data conforms to the reported literature.[S21] 

212.25 g/mol 

Rf: 0.48 (30:1 Hexane:EtOAc) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ): 7.42–7.37 (m, 4H), 7.04–6.92 (m, 3H), 6.16 (s, 2H), 2.45 (s, 3H). 

13C-NMR (101 MHz, CDCl3, δ): 147.4, 146.5, 141.7, 136.0, 135.6, 130.4, 129.9,127.3, 125.9, 122.6, 109.9, 
108.1, 101.1, 20.6. 

LR-MS (EI): 212, 181, 165, 153, 141, 139, 128, 115, 105, 91, 76. 

 

2-(4-methoxyphenyl)naphthalene (99) 

 

Using 2-naphtylthiol (160.3 mg, 1.00 mmol, 1 equiv.) and 4-methoxymagnesium bromide lithium 

chloride complex (0.867 M in THF; 2.54 mL, 2.20 mmol, 2.2 equiv.), GP D was followed. Purification by 

flash chromatography (23 g SiO2, 15 CV Hexane, gradient from Hexane to 70:30 Hexane:EtOAc over 10 CV) 

and additional recrystallization in pure Hexane yielded the product (190 mg, 810 µmol, 81%) as a 

crystalline solid. The analytical data conforms to the reported literature.[S22] 
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234.30 g/mol 

Rf: 0.37 (30:1 Hexane:EtOAc) 

m.p.: 136 °C  (Lit.[S22]: 130-132 °C) 

1H-NMR (400 MHz, CDCl3, δ): 7.99 (s, 1H), 7.90–7.84 (m, 3H), 7.72 (dd, J = 8.6, 1.8 Hz, 1H), 7.66 (m, 2H), 
7.52–7.43 (m, 2H), 7.03 (m, 2H), 3.88 (s, 3H). 

13C-NMR (101 MHz, CDCl3, δ): 159.3, 138.2, 133.8, 133.7, 132.3, 128.4, 128.3, 128.1, 127.6 126.2, 125.7, 
125.4, 125.0, 114.3, 55.4,  

 
LR-MS (EI): 234, 219, 202, 191,189, 165, 117, 101, 95, 88, 82.  

 

4-(benzyloxy)-1,1'-biphenyl (107) 

 

Using thiophenol (50 µL, 0.50 mmol, 1 equiv.) and 4-benzyloxyphenylmagnesium bromide lithium 

chloride complex (1.0 M in THF; 1.1 mL, 1.1 mmol, 2.2 equiv.), GP D was followed. Purification by flash 

chromatography yielded a mixture of the product contaminated with benzyl phenyl ether (identified by 

GC/MS) as a yellowish solid (mtotal = 161 mg). The mixture was analyzed by 1H-NMR to determine the 

relative composition R using the benzylic/methylene proton signal sets from both compounds. 

R = nP/nC = (IP /NP)/(IC/NC)=  2.00 / 1.57 = 1.27 

mtotal = mp + mc  

from which follows: 

mtotal = Mp*np + Mc*(np/R) 
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rearrangement gives: 

nP =  mtotal/((Mc/R)+Mp) = 161 mg/((184.24 mg mmol-1 / 1.27) + 260.34 mg mmol-1) = 397 µmol 

giving a NMR yield of 79%.  

N: Nuclei count 

I: NMR integral 

P: Product  

C: Contaminant 

 

260.34 g/mol 

Rf: 0.62 (9:1 Hexane:EtOAc) 

LR-MS (EI): m/z 260, 244, 207, 182, 170, 165, 154, 141, 121, 115, 91.  

 

N,N-dimethyl-[1,1'-biphenyl]-4-amine (103) 

 

Using thiophenol (100 µL, 1.00 mmol, 1 equiv.) and N,N-dimethyl-4-aminophenylmagnesium bromide 

lithium chloride complex (1.0 M in THF; 2.2 mL, 2.20 mmol, 2.2 equiv.), GP D was followed. Purification by 

flash chromatography (23 g SiO2, 2 CV hexane, gradient to 1:1 hexane:EtOAc over 13 CV, hold 2 CV) yielded 

the product (193 mg, 978 µmol, 98%) as a white solid. The analytical data conforms to the reported 

literature.[S23] 

197.28 g/mol 

Rf: 0.56 (9:1 Hexane:EtOAc) 

m.p.: 120 °C (Lit.[S24]: 121 – 122 °C) 
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1H-NMR (300 MHz, CDCl3, δ): 7.81 – 7.67 (m, 4H), 7.65 – 7.53 (m, 2H), 7.51 – 7.38 (m, 1H), 6.97 (dd, J = 
8.9, 2.0 Hz, 2H), 3.13 (s, 6H). 

13C-NMR (75 MHz, CDCl3, δ): 150.2, 141.4, 129.4, 128.9, 127.9, 126.5, 126.2, 113.0, 40.7. 

LR-MS (EI): m/z 197, 181, 167, 152, 139, 127, 115, 98, 90. 

 

4.4.3.3. Synthesis of starting materials and calibration standards 

Heptyl(phenyl)sulfane (40) (independent synthesis) 

 

A 50 mL RBF with stirring bar under air was charged with thiophenol (513 µL, 5 mmol, 1 eqv.), heptyl 

bromide (785 µL, 5 mmol, 1 eqv.) and K2CO3 (1.04 g, 7.5 mmol, 1.5 eqv), followed by addition of dist. 

acetone (20 mL). The reaction vessel was fitted with a glass stopper and stirred for 18 h at RT. K2CO3 was 

removed by vacuum filtration over a glass frit and acetone was removed by rotary evaporation to give the 

product as a colourless oil. 

Analytical data as above. 

Indometacin O-Ethyl ester (SM-B2) 

 

In a 25 mL RBF with stirring bar, Indometacin (647 mg, 1.81 mmol, 1 eqv.) and 

N,N-Dimethyl-4-aminopyridine (22 mg, 181 µmol, 10 mol%) were dissolved in DCM (9 mL) and EtOH (400 

µL) followed by the addition of N,N’-Diisopropylcarbodiimide (280 µL, 1.81 mmol, 1 eqv.). The resulting 

mixture was stirred for 16 h at room temperature. The precipitate was removed by filtration and the 

yellow filtrate freed from solvent and then filtered over SiO2 using DCM as the eluent. The solvent was 

removed to give the ethyl ester product as a light yellow solid (679 mg, 1.76 mmol, 97%). The analytical 

data conforms to the reported literature.[S25]  
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385.84 g/mol 

Rf: 0.39 (8:2 hexane:Et2O) 

m.p.: 97 °C. 

1H-NMR (400 MHz, CDCl3, δ):  7.66 (m, 2H), 7.47 (m, 2H), 6.97 (d, J = 2.5 Hz, 1H), 6.88 (d, J = 9.0 Hz, 1H), 
6.67 (dd, J = 9.0 Hz, 2.5 Hz, 1H), 4.16 (q, J = 7.1 Hz, 2H), 3.84 (s, 3H), 3.65 (s, 2H), 2.38 (s, 3H), 1.26 (t, J = 
7.1 Hz, 3H). 

13C-NMR (101 MHz, CDCl3, δ):  135.3, 130.2, 129.6, 125.2, 121.9, 120.3, 110.3, 100.7, 33.1. 

LR-MS (EI): 385, 371, 351, 337, 321, 299, 278, 264, 247, 234, 218, 207, 174, 139, 130, 11, 105, 91, 77. 

 

10-Ethyl-2-chlorophenothiazine (SM56)  

 

2-Chlorophenothiazine (2.38 g, 10.18 mmol) was dissolved in 30 mL DMF with stirring under air, followed 

by the addition of NaOH pellets (1.22 g, 30.55 mmol, 3 eqv.). The resulting reaction mixture was stirred 

for 1 h at RT, followed by the addition of EtI (1.22 mL, 15.28 mmol, 1.5 eqv.). A slight exotherm reaction 

resulted and the mixture was stirred for 18 h at RT. The reaction mixture was quenched with brine (50 mL) 

and extracted with diethyl ether (2 x 50 mL).  The aqueous phase appears bluish and the organic phase 

deep dark red, which can be hard to distinguish. The combined organic phases were dried over MgSO4 

and adsorbed on SiO2 (6 g), followed by vacuum filtration over SiO2 (80 g) with hexane (500 mL) and 

hexane/diethyl ether 95:5 (250 mL). All the collected filtrate was freed from solvent to give a white solid 

(1.2 g, 4.58 mmol, 45%). 

 

261.77 g/mol 

Rf: 0.34 (hexane) 

m.p.: 121 °C (Lit[S26]: 120 °C). 
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1H-NMR (400 MHz, CDCl3, δ):  7.12 – 7.03 (m, 1H), 7.03 (dd, J = 7.7, 1.5 Hz, 1H), 6.93 (d, J = 8.1 Hz, 1H), 
6.89 – 6.76 (m, 3H), 6.74 (d, J = 2.0 Hz, 1H), 3.81 (s br, 2H), 1.34 (t, J = 7.0 Hz, 3H). 

13C-NMR (101 MHz, CDCl3, δ):  146.2, 144.3, 133.2, 127.8, 127.4, 124.2, 122.9, 122.8, 122.1, 115.4, 41.9, 
12.9. 

HR-MS (ESI): m/z calc. for [M]+ 261.03735, found 261.03758. 

IR (ATR, 𝑣̃ [cm-1]): 2974, 2862, 1561, 1442, 1401, 1319, 1282, 1248, 1125, 1095, 1036, 950, 916, 861, 812, 

752, 678. 

 

4-Chloro-N-methylacetanilide (SM46) 

 

According to a known procedure[27], 4-Chloroacetanilide (5.00 g, 29.48 mmol) was dissolved in freshly 

distilled THF (50 mL) under stirring in an Ar-purged reaction vessel. The THF solution was sparged with Ar 

for 15 min, followed by the careful portionwise addition of NaH (1.49 g of a 57% w/w oil dispersion, 35.38 

mmol, 1.2 eqv.) with ice-bath cooling (Caution: gas evolution).  After complete addition, methyl iodide 

(2.20 mL, 35.38 mmol, 1.2 eqv.) was added dropwise with ice-bath cooling and stirred after complete 

addition for a further 30 min at the same temperature. The ice-bath was removed and the reaction stirred 

for 1 d at RT. The reaction mixture was diluted with EtOAc (20 mL) washed with sat. aq. NH4Cl (2 x 25 mL), 

the organic phase dried over MgSO4 and the solvent removed to give a crude yellow oil, which solidified 

at -20 °C within a few hours. The still-cold solid was washed with cold water (20 mL) over a fritted funnel 

and then thouroughly dried to yield a yellowish solid (3.84 g, m.p. 85 °C) which was recrystallized from 

boiling hexane (20 mL, the hot clear hexane solution is decanted off from a yellow oil into a hot beaker) 

to give the product as colourless plates (2.53 g, 13.77 mmol, 47%) after cooling to RT. The analytical data 

conforms to the reported literature.  

 

183.64 g/mol 

Rf: 0.27 (PE:EtOAc 1:1) 
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m.p.: 92 °C (Lit.[S28]: 91 °C). 

1H-NMR (400 MHz, CDCl3, δ): 7.31 (d, J = 8.5 Hz, 2H), 7.08 (d, J = 8.6 Hz, 2H), 3.16 (s, 3H), 1.79 (s, 3H). 

 
13C-NMR (101 MHz, CDCl3, δ): 170.2, 143.1, 133.4, 129.9, 128.4, 37.1, 22.3. 
 
GC-MS (EI): m/z 183.1, 168, 149, 141, 111. 

 

5-Chloro-1-methylindole (SM51) 

 

Sodium hydride (300 mg of 60% w/w mineral oil suspension, 7.5 mmol, 1.5 eqv.) was added in portions 

to a stirred solution of 5-chloroindole (755 mg, 5.0 mmol, 1 eqv.) in dry THF (17 mL) in a 50 mL Schlenk 

flask at 0 °C. After complete addition, the reaction mixture is stirred for 10 min at the same temperature. 

Methyl iodide (405 µL, 6.5 mmol, 1.3 eqv.) was added via syringe at the same temperature and the 

reaction mixture stirred for 16 h at room temperature. The reaction mixture was cooled to 0 °C and 

quenched by addition of water (10 mL). The mixture was extracted with Et2O (3 x 10 mL), the combined 

organic phases were dried in vacuo. The resulting yellow oil was taken up in a mixture of hexane/Et2O (8:2 

v/v), filtered over a pad SiO2 and freed from solvent in vacuo to give the product (662 mg, 4.0 mmol, 80%) 

as a yellow liquid. 

165.62 g/mol 

Rf: 0.71 (PE:Et2O 8:2) 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ):  7.59 (dd, J = 0.5 Hz, 1.9 Hz, 1H), 7.23 (d, J = 8.7 Hz, 1H), 7.17 (dd, J = 1.9 Hz, 

8.7 Hz, 1H), 7.07 (d, J = 3.1 Hz, 1H), 6.43 (dd, J = 3.1 Hz, 0.5 Hz, 1H), 3.78 (s, 3H). 

 
13C-NMR (101 MHz, CDCl3, δ): 135.3, 130.2, 129.6, 125.2, 121.9, 120.3, 110.3, 100.7, 33.1. 

GC-MS (EI): m/z  165.1, 150.1, 128.1. 
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S-acetyl-BCP-1-thiol (128)  

 

Tetrahalide 123 (2.08 g of a 96% purity material [2.00 g pure material], 6.74 mmol, Ark Pharm) was placed 

in a 50 mL flame-dried assembly of a three-necked RBF with stirring bar, dropping funnel and argon inlet. 

The starting material was suspended in 3 mL of dry n-Pentane, cooled to -84 °C (stirring can become 

problematic), followed by the addition of MeLi (8.5 mL of a 1.6 M solution in Et2O, 2.02 eqv., Aldrich) 

under stirring via the dropping funnel. The mixture was stirred for 15 min at the same temperature, then 

the cooling bath was replaced with an ice-water bath and the mixture was stirred for 1.5. The product was 

then distilled off in vacuo using a small distillation bridge (air-cooled) leading to the receiving flask which 

was cooled to -84 °C. 

The ether solution of the propellane intermediate was assayed with quantitative NMR, giving a 

concentration of 320 mM. A part of the propellane solution (8 mL, 2.56 mmol) was transferred to a Schlenk 

flask under Ar and then treated with thioacetic acid (180 µL, 2.56 mmol, 1.0 eqv.). The reaction mixture 

was stirred at RT for 15 min and the remaining ether was carefully distilled off by rotary evaporation. The 

final product (341 mg, 2.40 mmol, 94%) is a highly volatile colourless liquid with a sharp odour. 

142.22 g/mol 

m.p.: Ambient temperature. 

1H-NMR (400 MHz, CDCl3, δ):  2.73 (s, 1H), 2.19 (s, 3H), 2.13 (s, 6H). 

13C-NMR (101 MHz, CDCl3, δ): 196.6, 54.5, 42.0, 31.5, 31.2. 
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4.4.3.5. Computational details 

The calculations were carried out at the B3LYP/6-31G* level of theory using ORCA software. 

A typical approach in the literature concerning modeling of homogeneous catalytic species by DFT is to 

replace transition metal core electrons by an effective potential (termed effective core potential, ECP) as 

it saves computational time and can reflect relativistic effects, but this was not carried out here since 

attempted geometry optimizations failed with the LANL2DZ ECP for Ni. Dispersion and solvation 

interactions were not calculated to save computational effort. Initial geometry optimizations using the 

PM3 semi-empirical model were carried out starting from manually edited crystal structures (for Ni 

complexes) or from manually built pre-optimized models. Frequency analysis was carried out after 

geometry optimization to ensure a local minimum has been found. The obtained structures were 

visualized with the PYMOL software package. 

The modeling results below for complexes 142 – 145 show the respective structural model, followed by 

atomic coordinates in the xyz format and the total energy in hartrees after corrections obtained from 

frequency analysis. ZnCl2 and MeSZnCl were modeled similarly, but the results are not shown here 

explictely for brevity. 

Modeling results for complex 142 

 

Supplementary Figure 1: Structural model of complex 142 from the generated xyz file. 

Ni       0.430955     -1.033040      0.767956 

P       -1.709364     -0.936444      0.220994 
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P        1.613351      0.725088      0.133706 

O       -1.080813      1.843683     -0.283682 

C       -2.327695      1.784483      0.304213 

C       -2.817388      0.508853      0.591558 

C       -4.100278      0.440154      1.155991 

H       -4.539735     -0.524060      1.384688 

C       -4.810204      1.604424      1.450334 

H       -5.798612      1.531773      1.895693 

C       -4.263134      2.861461      1.184210 

H       -4.830913      3.751254      1.436130 

C       -3.001293      2.974772      0.594403 

C       -2.301433      4.285473      0.209923 

C       -0.807571      4.087168      0.504759 

C       -0.259138      2.830548      0.222531 

C        1.077135      2.484014      0.436540 

C        1.916755      3.500808      0.918736 

H        2.966064      3.295592      1.093240 

C        1.411495      4.768777      1.202497 

H        2.076812      5.537398      1.585949 

C        0.059477      5.059251      1.008046 

H       -0.311904      6.049769      1.250144 

C       -2.482758      4.516056     -1.318417 

H       -3.545679      4.626256     -1.562503 

H       -2.084399      3.677340     -1.896494 
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H       -1.958595      5.427300     -1.628871 

C       -2.882394      5.491353      0.963015 

H       -3.944380      5.618158      0.729986 

H       -2.382592      6.415463      0.656159 

H       -2.776246      5.384195      2.047714 

C       -1.954961     -1.151970     -1.600354 

C       -0.966993     -1.826397     -2.334162 

H       -0.081329     -2.201606     -1.830593 

C       -1.108425     -2.016736     -3.709270 

H       -0.328909     -2.535384     -4.260437 

C       -2.235672     -1.530610     -4.372638 

H       -2.341958     -1.671985     -5.445108 

C       -3.223665     -0.856294     -3.653201 

H       -4.103843     -0.471863     -4.162489 

C       -3.085299     -0.669426     -2.277485 

H       -3.860957     -0.140498     -1.731869 

C       -2.737736     -2.292859      0.948976 

C       -2.828615     -2.359109      2.349896 

H       -2.336725     -1.600925      2.955327 

C       -3.545047     -3.378645      2.973583 

H       -3.606203     -3.410855      4.058314 

C       -4.176337     -4.360480      2.204755 

H       -4.729851     -5.160976      2.688337 

C       -4.090306     -4.307132      0.813775 
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H       -4.579034     -5.066647      0.208634 

C       -3.379143     -3.278747      0.188762 

H       -3.318628     -3.250639     -0.894279 

C        1.924336      0.682580     -1.688305 

C        2.546311     -0.457720     -2.226507 

H        2.871655     -1.259080     -1.570992 

C        2.760993     -0.567103     -3.599889 

H        3.253077     -1.451728     -3.996089 

C        2.347691      0.452417     -4.460266 

H        2.510911      0.364708     -5.531265 

C        1.727632      1.586030     -3.935445 

H        1.405762      2.387272     -4.595789 

C        1.521020      1.703115     -2.559649 

H        1.048074      2.597942     -2.168543 

C        3.306678      0.833919      0.867023 

C        4.471780      1.081790      0.130592 

H        4.420809      1.177952     -0.949013 

C        5.706190      1.199430      0.772903 

H        6.601699      1.383524      0.184834 

C        5.791788      1.082604      2.160327 

H        6.753755      1.171539      2.658168 

C        4.634319      0.850022      2.906347 

H        4.690433      0.760618      3.988126 

C        3.403982      0.725991      2.263503 
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H        2.507083      0.545061      2.851961 

H       -0.028580     -2.709886      2.517766 

C        0.481194     -2.824360      1.558532 

C        2.318675     -4.040732     -0.246874 

C        1.826887     -2.278528      1.421787 

C        0.129296     -3.997526      0.800327 

C        0.991688     -4.549832     -0.108503 

C        2.709708     -2.985483      0.530960 

H        2.307615     -1.807935      2.278234 

H       -0.843297     -4.451169      0.964605 

H        0.699141     -5.420927     -0.689257 

H        3.030743     -4.530680     -0.903142 

Cl       4.419495     -2.510889      0.502465 

-4463.378363 hartrees 
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Modeling results for complex 143 

 

Supplementary Figure 2: Structural model of complex 143 from the generated xyz file. 

Cl      -0.005044      0.718310     -2.557422 

Ni      -0.003046     -0.681167     -0.705744 

C       -0.008646     -2.358273      0.121026 

C       -0.025422     -2.705474      1.478314 

C       -0.028990     -4.040989      1.894258 

H       -0.042026     -4.270406      2.957853 

C       -0.015183     -5.071655      0.954433 

H       -0.017841     -6.110945      1.274330 

C        0.001995     -4.751526     -0.405459 

H        0.013129     -5.543167     -1.151960 

C        0.005381     -3.414606     -0.813532 

P        2.122274     -0.265998     -0.257210 

C        3.442833     -0.765245     -1.443914 

C        3.114183     -0.864953     -2.805683 

H        2.104881     -0.632929     -3.130003 

C        4.083626     -1.236959     -3.737323 

H        3.815054     -1.308961     -4.787750 
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C        5.388056     -1.514614     -3.325941 

H        6.139997     -1.807550     -4.054079 

C        5.723553     -1.416465     -1.974815 

H        6.737058     -1.631586     -1.645903 

C        4.758282     -1.044401     -1.038086 

H        5.030081     -0.981055      0.010474 

C        2.759759     -0.835081      1.373167 

C        3.071387     -2.194388      1.543277 

H        2.951744     -2.885764      0.714684 

C        3.521009     -2.669741      2.773547 

H        3.759237     -3.723922      2.885249 

C        3.647421     -1.800621      3.859482 

H        3.993474     -2.173196      4.819983 

C        3.321666     -0.453406      3.706100 

H        3.412952      0.230330      4.546110 

C        2.883699      0.028201      2.470412 

H        2.644973      1.081332      2.364605 

C        2.279763      1.574921     -0.143453 

C        1.185313      2.362240      0.248327 

C        1.245240      3.757803      0.339129 

C        2.452046      4.375852     -0.000891 

H        2.537513      5.456148      0.043884 

C        3.557940      3.624065     -0.395725 

H        4.486532      4.122919     -0.657858 

C        3.472903      2.235744     -0.459823 

H        4.331904      1.657498     -0.782851 

C        0.008994      4.498529      0.862218 

C        0.001745      4.408488      2.415483 

H       -0.004560      3.368500      2.755868 

H       -0.887609      4.905361      2.819710 

H        0.892256      4.896887      2.827706 

C        0.015766      5.983131      0.459885 
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H        0.891967      6.492993      0.872111 

H       -0.860350      6.499334      0.864208 

H        0.021046      6.109945     -0.627889 

O        0.001226      1.715947      0.565310 

P       -2.123633     -0.253070     -0.260545 

C       -2.273375      1.589435     -0.157656 

C       -1.176538      2.370142      0.240195 

C       -1.227435      3.766100      0.328265 

C       -2.426504      4.391997     -0.024822 

H       -2.504856      5.472934      0.017289 

C       -3.533205      3.647105     -0.429961 

H       -4.455101      4.151910     -0.703688 

C       -3.457867      2.257923     -0.489413 

H       -4.317337      1.685912     -0.822219 

C       -2.770795     -0.806947      1.371573 

C       -2.851818      0.054912      2.474097 

H       -2.579607      1.100239      2.370695 

C       -3.290470     -0.417509      3.713056 

H       -3.347888      0.264942      4.557112 

C       -3.659861     -1.753584      3.865089 

H       -4.005791     -2.118693      4.828498 

C       -3.578139     -2.620891      2.773492 

H       -3.852108     -3.666496      2.883128 

C       -3.128777     -2.154859      1.539556 

H       -3.047294     -2.845019      0.705437 

C       -3.438694     -0.762646     -1.446966 

C       -4.773520     -0.959009     -1.055225 

H       -5.062429     -0.822002     -0.017805 

C       -5.735971     -1.343543     -1.989368 

H       -6.764759     -1.492182     -1.671492 

C       -5.377373     -1.541176     -3.323924 

H       -6.126841     -1.845153     -4.050029 
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C       -4.053430     -1.349046     -3.720932 

H       -3.766509     -1.499741     -4.758135 

C       -3.087431     -0.962054     -2.791494 

H       -2.062967     -0.794147     -3.107221 

H        0.018719     -3.201975     -1.882718 

H       -0.033719     -1.924004      2.233666 

-4463.427532 hartrees 
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Modeling results for complex 144 

 

Supplementary Figure 3: Structural model of complex 144 from the generated xyz file. 

 

Ni      -0.007356     -0.725372     -0.752634 

C       -0.006086     -2.392942      0.140296 

C       -0.030374     -2.731007      1.500667 

C       -0.032350     -4.062774      1.929003 

H       -0.052652     -4.283100      2.994494 

C       -0.008039     -5.102549      0.999530 

H       -0.009852     -6.138650      1.329887 

C        0.019262     -4.794911     -0.362839 

H        0.039490     -5.593093     -1.102216 

C        0.020243     -3.461566     -0.781959 

P        2.064844     -0.271833     -0.186835 

C        3.426104     -0.843142     -1.291948 
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C        3.094013     -1.265744     -2.587993 

H        2.056779     -1.219997     -2.913072 

C        4.084965     -1.730430     -3.454960 

H        3.811120     -2.056197     -4.454870 

C        5.415405     -1.781723     -3.039304 

H        6.185054     -2.147277     -3.714063 

C        5.755650     -1.367509     -1.749278 

H        6.789435     -1.409990     -1.416241 

C        4.768104     -0.906153     -0.879254 

H        5.040582     -0.608323      0.128946 

C        2.644131     -0.802137      1.483744 

C        3.065026     -2.128244      1.675537 

H        3.069231     -2.821001      0.839843 

C        3.468792     -2.568706      2.934417 

H        3.793339     -3.597743      3.062987 

C        3.440459     -1.699262      4.026847 

H        3.751604     -2.045540      5.008950 

C        3.006884     -0.385647      3.850667 

H        2.979032      0.299087      4.694404 

C        2.614495      0.061111      2.587368 

H        2.294041      1.090596      2.465674 

C        2.252134      1.568911     -0.082783 

C        1.159331      2.359578      0.306121 

C        1.219566      3.757108      0.392728 
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C        2.425356      4.374903      0.050356 

H        2.512445      5.455529      0.092089 

C        3.530377      3.619377     -0.342134 

H        4.460054      4.116596     -0.603879 

C        3.445243      2.230728     -0.401214 

H        4.306024      1.653140     -0.720102 

C       -0.025279      4.489720      0.905635 

C       -0.069758      4.357027      2.455436 

H       -0.081426      3.307244      2.763836 

H       -0.970638      4.840114      2.850434 

H        0.807976      4.836234      2.904139 

C       -0.008525      5.982904      0.544578 

H        0.859973      6.477987      0.989557 

H       -0.893807      6.485183      0.946023 

H        0.018780      6.141246     -0.538632 

O       -0.028689      1.719431      0.622213 

P       -2.100388     -0.258220     -0.260141 

C       -2.271822      1.587081     -0.197324 

C       -1.194632      2.371299      0.241336 

C       -1.245234      3.767679      0.321380 

C       -2.423830      4.396302     -0.090811 

H       -2.502714      5.477910     -0.059610 

C       -3.510403      3.648272     -0.541901 

H       -4.418337      4.152076     -0.861207 
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C       -3.437812      2.257586     -0.585945 

H       -4.285815      1.686982     -0.947914 

C       -2.678899     -0.750786      1.423143 

C       -2.653146      0.134102      2.509403 

H       -2.333608      1.161309      2.368649 

C       -3.051282     -0.287499      3.779892 

H       -3.025831      0.413821      4.609983 

C       -3.486818     -1.596860      3.980493 

H       -3.801497     -1.923399      4.968214 

C       -3.513280     -2.487259      2.904976 

H       -3.840150     -3.513031      3.052229 

C       -3.103645     -2.071878      1.639552 

H       -3.108723     -2.779900      0.816840 

C       -3.486101     -0.825900     -1.339821 

C       -4.818242     -0.849020     -0.891391 

H       -5.054952     -0.529469      0.118846 

C       -5.842247     -1.293390     -1.727468 

H       -6.866538     -1.306025     -1.364015 

C       -5.549548     -1.728566     -3.021777 

H       -6.346533     -2.080404     -3.671674 

C       -4.230511     -1.714651     -3.474059 

H       -3.992999     -2.052391     -4.479116 

C       -3.203606     -1.267851     -2.640626 

H       -2.184439     -1.253495     -3.010732 
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H        0.043415     -3.261450     -1.853430 

H       -0.046921     -1.945790      2.252433 

S       -0.170591      0.375145     -2.744431 

C        1.121600      1.589663     -3.229545 

H        0.974026      1.810720     -4.291009 

H        2.138623      1.211766     -3.090565 

H        1.010469      2.520699     -2.667123 

-4441.295331 hartrees 

  



Chapter 4   

282 

Modeling results for complex 145 

 

Supplementary Figure 4: Structural model of complex 145 from the generated xyz file. 

Ni       0.569507     -0.809554      0.792141 

P       -1.505209     -1.316112      0.228191 

P        1.220747      1.184985      0.118066 

O       -1.682377      1.530379     -0.305368 

C       -2.858235      1.128906      0.294524 

C       -2.973185     -0.232691      0.582815 

C       -4.184843     -0.653703      1.151713 

H       -4.340162     -1.702261      1.376815 

C       -5.185597      0.268889      1.456703 

H       -6.112539     -0.074577      1.907675 

C       -5.007345      1.628913      1.194702 

H       -5.795882      2.326859      1.457437 

C       -3.830866      2.087294      0.595860 

C       -3.522846      3.542445      0.216508 
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C       -2.027493      3.761382      0.487677 

C       -1.157389      2.703647      0.198645 

C        0.225212      2.736916      0.399364 

C        0.756393      3.949760      0.867343 

H        1.823154      4.045649      1.028923 

C       -0.074677      5.031649      1.153913 

H        0.358934      5.956258      1.524949 

C       -1.456583      4.937168      0.979520 

H       -2.084624      5.787186      1.225887 

C       -3.788269      3.726944     -1.304891 

H       -4.847197      3.554162     -1.529312 

H       -3.196082      3.025625     -1.899974 

H       -3.527496      4.745798     -1.613163 

C       -4.397401      4.537858      0.995060 

H       -5.458019      4.368125      0.786147 

H       -4.178761      5.565865      0.689483 

H       -4.240660      4.457785      2.075989 

C       -1.651200     -1.611242     -1.592499 

C       -0.528847     -2.103063     -2.277545 

H        0.393549     -2.299565     -1.738935 

C       -0.587002     -2.347142     -3.649899 

H        0.294535     -2.719663     -4.164578 

C       -1.762788     -2.098886     -4.359229 

H       -1.804474     -2.282358     -5.429806 
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C       -2.884496     -1.610522     -3.687394 

H       -3.805190     -1.414810     -4.231388 

C       -2.829821     -1.370808     -2.313640 

H       -3.710520     -0.993985     -1.802414 

C       -2.136937     -2.897943      0.954742 

C       -2.192290     -2.995724      2.355395 

H       -1.892765     -2.144745      2.963026 

C       -2.629045     -4.165303      2.975117 

H       -2.666150     -4.220253      4.060073 

C       -3.010081     -5.265859      2.202565 

H       -3.342967     -6.181956      2.683332 

C       -2.959175     -5.180665      0.811435 

H       -3.256130     -6.030760      0.202373 

C       -2.530145     -4.003907      0.190837 

H       -2.500271     -3.952312     -0.892664 

C        1.503675      1.172548     -1.708909 

C        2.450655      0.269441     -2.224820 

H        3.033285     -0.351110     -1.550291 

C        2.658947      0.169896     -3.599975 

H        3.400120     -0.528865     -3.979925 

C        1.920092      0.959007     -4.484285 

H        2.079658      0.876520     -5.556251 

C        0.976689      1.854117     -3.981423 

H        0.396658      2.474574     -4.659931 
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C        0.772202      1.963176     -2.604591 

H        0.039184      2.671423     -2.234209 

C        2.831853      1.792503      0.795614 

C        3.831432      2.394135      0.019303 

H        3.709193      2.468019     -1.056326 

C        4.988232      2.898163      0.616110 

H        5.756211      3.356047     -0.002305 

C        5.158186      2.818783      1.999086 

H        6.059476      3.211622      2.462556 

C        4.164510      2.231492      2.784389 

H        4.288099      2.165230      3.862160 

C        3.012357      1.722393      2.186446 

H        2.243299      1.267863      2.806453 

H        0.540850     -2.550916      2.550228 

C        1.081292     -2.521219      1.600892 

C        3.212851     -3.181734     -0.161727 

C        2.233931     -1.640761      1.493304 

C        1.070517     -3.743650      0.837959 

C        2.070623     -4.030663     -0.050629 

C        3.324815     -2.064459      0.633921 

H        2.533587     -1.071789      2.373719 

H        0.251113     -4.441908      0.978009 

H        2.038086     -4.945603     -0.638091 

H        4.020437     -3.479009     -0.822609 
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S        4.824703     -1.096985      0.743557 

C        6.087834     -2.197894      0.020534 

H        6.056694     -3.187241      0.485216 

H        7.052004     -1.728617      0.234523 

H        5.981826     -2.296698     -1.063808 

-4441.281230 hartrees  
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5. Summary / Zusammenfassung 

The thiophilic interaction between organosulfur compounds and late transition metals can be 

employed to achieve selective C-S bond formation or activation under mild reaction conditions; an 

overview of this theme was presented in Chapter 1. Both of these aspects were investigated in this 

thesis with focus on developing user-friendly synthetic methods with high functional group tolerance.  

In Chapter 2, work regarding the Pd-catalyzed hydro(thio)esterification reaction of (mainly) styrenes 

was presented. In contrast to previously published work, it was possible to conduct carbonylative 

(thio)esterifications at room temperature at 2.5 bar CO partial pressure in a two-chamber glassware 

system with N-formylsaccharin as an inexpensive CO surrogate to give selectively products of the 2-

arylpropionic acid (thio)ester product class, an underrepresented small molecule building block and 

NSAID structural motif. 

In Chapter 3, a Ni-catalyzed variant of the Fukuyama reaction was developed, which allowed the 

coupling of LiCl-adducted aryl zinc halides with challenging S-ethyl thioesters to give the corresponding 

ketones. The low reactivity of organozinc reagents enabled high functional group tolerance, and a 

variety of polyfunctional ketones could be synthesized, which enable facile downstream chemistry. In 

contrast to competing Ni-catalyzed Fukuyama coupling methods, relatively low metal loadings (5 

mol%), mild conditions (THF, RT) and short reaction times (1.5 h) could be achieved with more 

economical stoichiometry (1.86 eqv. of the organozinc reagent) than usual. Alkyl-, alkenyl- and alkinyl-

zinc reagents however did not show the desired reactivity. 

 In chapter 4, a Ni-catalyzed Migita reaction was shown, which activates challenging (hetero)aryl 

chlorides to give aryl thioethers, which have gained importance as structural motifs in non-natural 

functional molecules such as pharmaceuticals, with relative ease (RT – 60 °C, 15 min – 4 h, 0.5 – 2 mol% 

catalyst loading, depending on functionality in the substrate). The reaction was based on findings from 

Chapter 3, where a tandem Fukuyama-Migita reaction was observed. The reaction is unique in the 

sense that a stoichiometric organozinc reagent fullfils a dual role of reductant and base to generate 

the thiolate and reduce the Ni precatalyst. In comparison to published work, Ni-catalyzed Migita 

reactions of various aliphatic thiols are efficiently performed for the first time, but the reactivity of 

tertiary thiols in this reaction remains sluggish. Thiophenols are also competent coupling partners but 

require thermal conditions and carefully controlled reagent choice to avoid a competing 

desulfenylative Kumada coupling. 
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Die thiophile Wechselwirkung zwischen Organoschwefelverbindungen und späten 

Übergangsmetallen kann genutzt werden, um selektiv C-S-Bindungs-Bildung oder -Aktivierung zu 

erreichen; eine Übersicht dieser Thematik findet sich in Kapitel 1. Beide Aspekte wurden in der 

vorliegenden Arbeit untersucht, wobei der Fokus auf der Entwicklung von anwenderfreundlichen 

Synthesemethoden mit hoher Funktioneller-Gruppen-Toleranz gelegt wurde. 

 Arbeiten zur Pd-katalysierten Hydrothioesterifizierungsreaktion von Styrolen wurden in Kapitel 2 

präsentiert. Im Gegensatz zu vorher publizierten Arbeiten war es möglich, carbonylierende 

(Thio-)Esterifizierungen bei Raumtemperatur unter 2.5 bar CO-Partialdruck in einem Zweikammer-

Glasdruckgefäß mit N-Formylsaccharin als preisgünstiges CO-Surrogat durchzuführen, wobei 2-

Arylpropionsäure(thio)ester als Produktklasse erhalten wurden, welche unterrepräsentierte 

Synthesebausteine und Strukturmotiv in einigen NSAID sind.  

Eine Ni-katalysierte Variante der Fukuyama-Reaktion wurde in Kapitel 3 gezeigt, wobei LiCl-Addukte 

von Arylzinkhaliden mit schwer zu aktivierenden S-Ethylthioestern zu den entsprechenden Ketonen 

gekuppelt werden konnten. Die niedrige Reaktivität von Organozinkverbindungen erIaubte die 

Darstellung verschiedener polyfunktioneller Ketone, welche wiederum downstream-Chemie 

ermöglichen. Im Vergleich zu konkurrierenden Ni-katalysierten Fukuyama-Reaktionen, waren relative 

geringe Katalysatorbeladungen (5 mol%), milde Reaktionsbedingnungen (THF, Raumtemperatur) und 

kurze Reaktionszeiten (1.5 h) möglich, wobei allerdings auch eine ökonomischere Stöchiometrie (1.86 

Äqv. des Organozinkreagenzes) als üblich erreicht werden konnte. Bedauerlicherweise zeigten Alkyl- , 

Alkenyl- und Alkinylzinkverbindungen nicht die gewünschte Reaktivität.  

 Abschließend wurde in Kapitel 4 eine Ni-katalysierte Migita-Reaktion entwickelt, welche es 

ermöglicht, herausfordende (Hetero-)Arylchloride mit relativer Leichtigkeit (Raumtemperatur – 60 °C, 

15 min – 4 h, 0.5 – 2 mol% Katalysatorbeladung, abhängig von der Funktionalität im Substrat) zu den 

entsprechenden Arylthioethern zu transformieren, welche als Strukturmotive in verschiedenen 

nicht-natürlichen funktionalen Verbindungen wie z.B. Pharmazeutika Bedeutung erlangt haben. Die 

Reaktion wurde basierend auf einer Beobachtung einer Tandem-Fukuyama-Migita-Reaktion aus 

Kapitel 3 entwickelt. Die entwickelte Reaktion ist einzigartig in dem Sinne, dass das benötigte 

Organozinkreagenz sowohl die Rolle der stöchiometrischen Base zur Generierung des Thiolats als auch 

des Reduktionsmittels übernimmt. Im Vergleich zu bereits veröffentlichten Berichten zur Ni-

katalysierten Migita-Reaktion war es in dieser Arbeit zum ersten Mal möglich, aliphatische Thiole 

effizient zu kuppeln, wobei sich tertiäre Thiole aber dennoch als relativ reaktionsträge erwiesen. 

Thiophenole waren ebenfalls kompetente Kupplungspartner, benötigten aber starke thermische 

Aktivierung und eine sorgfältige Reagenzauswahl, um eine konkurrierende entschwefelnde Kumada-

Kupplung zu vermeiden.
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6. Appendix 

6.1. List of acronyms 

acac Acetylacetonate F-MR Fukuyama-Migita reaction 
ACS Acetyl-CoA synthase FR Fukuyama reaction 
APCI Atmospheric pressure chemical 

ionization 
GC-FID Gas chromatography with Flame 

ionization detection 
ATR Attenuated total reflection GC/MS Mass spectrometry-coupled gas 

chromatography 
BBN 9-Bora-bicyclononane HPLC High performance liquid 

chromatography 
BCP [1.1.1]bicyclopentane HRMS High resolution mass 

spectrometry 
BDE Bond dissociation energy HSAB Hard/Soft-Acid/Base 
BINOL 1,1′-Bi-2-naphthol IR Infrared spectroscopy 
BNPA BINOL phosphoric acid LD50 Median lethal dosis 
CFeSP Corrinoid Iron-Sulfur Protein LFSE Ligand field stabilization energy 
CoA Coenzyme A LRMS Low resolution mass 

spectrometry 
cod 1,8-Cyclooctadiene Mes Mesityl 
Cp Cyclopentadiene m.p. Melting point 
dba Dibenzylidenacetone MR Migita reaction 
DCM Dichlormethane NMI N-Methylimidazole 
DCT Dibenzo[a,e]cyclooctene NMP N-Methylpyrrolidinone 
DFT Density Functional Theory NMR Nuclear Magnetic Resonance 
DIBALH Diisobutyl-aluminiumhydride NP Nanoparticle 
DIC Diisopropylcarbodiimide oTol Ortho-Tolyl 
dippf 1,1‘-Diisopropylphosphinoferrocene ppy 2-phenylpyridine 
DMAP N,N-Dimethyl-4-aminopyridine RBF Round bottom flask 
DMF N,N-Dimethylformamide Rf Retention factor 
DMI 1,3-Dimethyl-2-imidazolidinone RNA Ribonucleic acid 
DKR Dynamic kinetic resolution SET Single electron transfer 
DMSO Dimethyl sulfoxide TBDPS Tert-butyl-diphenylsilyl 
DPEphos Bis[(2-diphenylphosphino)phenyl] ether TBS Tert-butyl-dimethylsilyl 
DPPA Diphenyl phosphoric acid TEMPO 2,2,6,6-Tetramethylpiperidine N-

oxide 
dppe 1,2-Diphenylphosphinoethane TFP Tris(2-furyl)phosphine 
dppf 1,1‘-Diphenylphosphinoferrocene THF Tetrahydrofuran 
dtbpt di-tert-butyl(2-(di-tert-

butylphosphaneyl)benzyl)phosphane 
TLC Thin layer chromatography 

ECP Effective core potential TM Transition metal 
EDA Electron donor acceptor TOF Turnover frequency 
ESI Electrospray ionization TON Turnover number 
FDA Federal drug administration Xant Xantphos 
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