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Abstract 

Forests in subtropical China were undergoing great changes in the last decades, main-

ly caused by extensive deforestation. Afforestation in turn can help not only to increase 

the production of timber but also to enhance forest ecosystem services such as soil 

erosion control, soil properties, carbon storage and thus help mitigating climate change. 

However, even after long-term afforestation projects the hilly red soil region in southern 

China is still facing serious soil erosion. This might result from structural shortcomings 

of the tree species chosen and tree species richness planed for afforestation. There-

fore, it is urgent to answer the question how tree species and tree diversity and espe-

cially the relationship between diversity and ecosystem functioning affect soil erosion. 

In addition, little research addresses the role of afforestation for carbon (C) and nitro-

gen (N) turnover and transport by soil erosion under forest, which is important for soil 

fertility and the assessment of carbon and nitrogen fluxes from soil to adjacent aquatic 

ecosystems as well as to the atmosphere. Moreover, in the earlier stage of afforesta-

tion after deforestation, soil organic carbon (SOC) dynamics are still unclear, especially 

in subtropical areas with intensive human impacts on forest ecosystems. 

Based on a biodiversity and ecosystem functioning project in China (BEF China), this 

dissertation firstly used point cloud data from terrestrial laser scanners (TLS) and 

splash cups to analyze spatial leaf area index (LAI) and to predict the potential of 

splash erosion in subtropical forests. Measurements of sediment delivery were con-

ducted during the rainy seasons from 2013 to 2015 to detected temporal changes of 

soil erosion and soil carbon and nitrogen fluxes and investigate the influences of tree 

species and diversity. Finally, 132 soil profiles at five increments (0-5 cm, 5-10 cm, 10-

20 cm, 20-30 cm, 30-50 cm) were sampled in 2010 and 2014 to assess changes of 

SOC stocks.  

Results showed that lognormal and exponential linear models were suitable to describe 

the vertical and horizontal LAI distribution of selected tree species, respectively. Verti-

cal distributions of LAI and throughfall kinetic energy (TKE) of different tree species 

were significantly different. BEF China is still suffering from severe soil erosion even 

after 6 years of tree growth. Leaf area index (LAI) and biological soil crusts (BSCs) 

were the two main factors driving soil erosion within tree stands of different species 

richness. Higher tree species richness lead to decreasing soil erosion by positive ef-

fects on tree canopies and surface covering BSCs. Sediment C and N concentrations 

increased while annual soil C and N fluxes significantly decreased at a rate of 50% in 

the observed three years together with sediment delivery. Soil C and N fluxes in the 

study were as high as in deforestation areas even after 6 years of tree growth. Earlier 
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afforestation in BEF China resulted in a reduction of approximately 274 Mg SOC from 

2010 to 2014 in total. The reduction of SOC is mainly from the 0-20 cm topsoil. Affor-

ested areas with higher original SOC stock showed higher losses. Tree growth and 

litter fall as an important carbon input to soil could not compensate SOC stock reduc-

tion in the earlier stage of the afforestation.  
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Zusammenfassung 

Die Wälder im subtropischen China erfuhren in den letzten Jahrzehnten große 

Veränderungen durch umfassende Entwaldungen. Aufforstungen können nicht nur 

dazu beitragen, die Holzproduktion zu steigern, sondern auch Dienstleistungen von 

Waldökosystemen wie z.B. Schutz gegen Bodenerosion, Verbesserung von 

Bodeneigenschaften oder Kohlenstoffspeicherung sicherzustellen und damit einen 

Beitrag zur Eindämmung des Klimawandels zu leisten. Die hügelige „Red Soil“ Region 

in Südchina ist auch trotz zahlreicher, langfristiger Aufforstungsprojekte nach wie vor 

mit hohen Bodenerosionsraten konfrontiert. Dies kann u.a. auf funktionelle Mängel der 

ausgewählten Baumarten und der für die Aufforstung geplanten Baumartendiversität 

zurückzuführen sein. Es ist daher von großem Interesse, wie Baumarten und 

Baumartenvielfalt, sowie insbesondere der Zusammenhang zwischen Artenvielfalt und 

Ökosystemfunktionen die Bodenerosion beeinflussen. Darüber hinaus befassen sich 

nur wenige Studien mit der Rolle der Aufforstung für den Kohlenstoff- und Stickstoff-

Haushalt, sowie deren Transport durch Bodenerosionsprozesse unter Wald. Diese 

Fragestellungen sind für die Bodenfruchtbarkeit und die Bewertung von Kohlenstoff- 

und Stickstoffflüssen vom Boden zu angrenzenden aquatischen Ökosystemen sowie 

zur Atmosphäre von großer Wichtigkeit. Weiterhin ist bisher auch nur wenig über die 

Dynamik des organischen Kohlenstoffs im Boden in frühen Phasen der Aufforstung 

bekannt. Dies gilt insbesondere für subtropische Waldökosysteme unter intensiver 

menschlicher Nutzung. 

Im Rahmen eines Biodiversitätsprojekts innerhalb eines subtropischen chinesischen 

Waldgebietes (BEF China) wurden in dieser Arbeit zunächst Punktwolkendaten von 

terrestrischen Laserscannern (TLS) und Splash Cups verwendet, um den räumlichen 

Blattflächenindex (LAI) zu analysieren und das Potenzial der Splash-Erosion im 

Bestandsniederschlag (TKE) vorherzusagen. Während der Regenzeiten von 2013 bis 

2015 wurden Messungen der Sedimentfracht mit Erosionsmessplots durchgeführt, um 

zeitliche Veränderungen der Erosionsraten und der Kohlenstoff- und Stickstoffflüsse im 

Boden zu erfassen und die Auswirkungen von Baumarten und Baumartendiversität auf 

diese zu untersuchen. In den Jahren 2010 und 2014 wurden 132 Bodenprofile in fünf 

Tiefenstufen (0-5 cm, 5-10 cm, 10-20 cm, 20-30 cm, 30-50 cm) untersucht, um die 

Veränderungen der Kohlenstoff-Bestände im Boden zu beurteilen.  

Die Ergebnisse zeigen, dass lognormale und exponentielle lineare Modelle geeignet 

sind, die vertikale und horizontale LAI-Verteilung ausgewählter Baumarten zu 

beschreiben. Die vertikalen Verteilungen von LAI und TKE verschiedener Baumarten 

waren signifikant unterschiedlich. Innerhalb des BEF China Projektes lassen sich auch 
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nach 6 Jahren Baumwachstum noch immer starke Erosionsraten nachweisen. LAI und 

biologische Bodenkrusten waren die beiden Haupteinflussfaktoren auf 

Bodenerosionsprozesse in Baumbeständen mit unterschiedlichem Artenreichtum. Eine 

höherer Baumartendiversität führte zu einer abnehmenden Bodenerosion durch 

positive Auswirkungen der Kronendächer und flächendeckender biologischer 

Bodenkrusten. Die Konzentrationen von C und N im Sedimentabtrag stiegen im 

Untersuchungszeitraum an, während die jährlichen Abflüsse von C und N in den 

beobachteten drei Jahren zusammen mit der Sedimentabgabe signifikant um 50 % 

zurückgingen. Die C- und N-Flüsse waren auch nach 6 Jahren Baumwachstum so 

hoch wie in Entwaldungsgebieten. Die junge Aufforstung im BEF China Experiment 

führte zu einer Reduktion von insgesamt ca. 274 Mg Bodenkohlenstoff von 2010 bis 

2014. Die Reduktion des Kohlenstoffs erfolgte hauptsächlich im Oberboden (0-20 cm). 

Aufgeforstete Flächen mit höheren ursprünglichen C-Beständen zeigten höhere 

Verluste. Baumwachstum und Streufall als wichtiger Kohlenstoffeintrag in den Boden 

konnten die Reduzierung des C-Bestands in der frühen Phase der Aufforstung nicht 

kompensieren.  
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1. Introduction and objectives 

Forests are undergoing great changes globally (Bonan, 2008; Smith et al., 2016). 

According to the data of FAO (2015), the natural forest area declined about 240 Mha 

between 1990 and 2015 while planted forest increased by 110 Mha (Keenan et al., 

2015). Many countries make great endeavors to afforest (Paul et al., 2002; Korkanç, 

2014; Yosef et al., 2018). China is one of the largest cultivators of forest plantations in 

the world and its forested area was increasing by 1.5 Mha a−1 between 2010 and 2015 

(FAO, 2015; Keenan et al., 2015). In subtropical China, the ecosystems are dominated 

by evergreen broad-leaved forests without human disturbance (Wang et al., 2007; 

Bruelheide et al., 2014a). However, in the last decades these areas were mostly 

cleared and have been converted into monospecific conifer stands for many reasons 

(Zhao, 2006; Wang et al., 2007; Li et al., 2014a). For instance, the two most important 

tree species for forest resources and ecological services in subtropical China, Chinese 

fir and Pinus massoniana, cover approximately 12.39 × 106 ha or 10% of the forest 

area and 6.78 × 105 ha or 27% of the forest area in the Three Gorges Reservoir area, 

respectively (Wang et al., 2012a; Huang et al., 2013; Wang, 2014). Apparently, affor-

ested areas attracted scientists’ attentions due to the impacts on forest ecosystem ser-

vices such as soil erosion control, soil properties improvement, C storage and mitiga-

tion of climate change (Piao et al., 2009; Assefa et al., 2017; de Araújo Filho et al., 

2018; Hong et al., 2018; Li et al., 2018b).  

Tree species structures and their contribution to splash erosion 

Soil erosion is a serious environmental hazard of global scale (Lal, 2003) and vegeta-

tion cover of the soil surface is one key factor in controlling soil erosion (Stednick, 1996; 

Cao et al., 2008; Shi et al., 2009; Chen et al., 2011; Filoso et al., 2017; Feng et al., 

2018). Forest vegetation cover affect splash erosion at the ground surface by the inter-

ception process from its structure, such as modifying drop size and speed, changing 

rainfall amount and spatial distribution (Nanko et al., 2006; Geißler et al., 2012b; 

Geißler et al., 2013; Goebes et al., 2015b). It is generally accepted that soil erosion is 

reduced under forests (Smith, 1914). Although great endeavors have been made to 

restore and afforest vast areas with commercial monocultures (Zhao, 2006; Wang et al., 

2007; Lei et al., 2009; Guo et al., 2015), soil erosion commonly occurs (cf. Figure 1) 

and highly varies even in forested areas of subtropical China ranging from 0 to 6.32 t 

ha-1 a-1. These current circumstances imply that monospecific plantations might be less 

suitable for soil erosion control. One reason is that effects of forest cover on splash 

erosion are dynamic in space as the structures of tree species differ. Hence, 

calculating an index that describes the ability of cover plants, especially trees, is 
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essential to analyze the splash erosion risk under forest and can help to better 

understand the relationship between cover plants and splash erosion. Such an index 

can also serve in planning and management of afforestation as part of soil and water 

conservation approaches, e.g. in the hilly red soil region in southern China. 

One well established index that describes the plant cover is the leaf area index (LAI, 

(Jordan, 1969)). It is defined as projected leaf area per unit ground area (Gower and 

Norman, 1991). As an important biophysical parameter, LAI is often used in 

quantitative analyses of processes related to vegetation dynamics such as rainfall 

interception (Maass et al., 1995), soil erosion modeling (Laflen et al., 1997; Zhou et al., 

2008; Zhang et al., 2014), land surface process models (Chen et al., 2011; Tesemma 

et al., 2015) and global climate change (Claverie et al., 2016). In the subtropical part of 

China, studies showed that LAI has a significant effect on throughfall kinetic energy 

(TKE) in secondary forest (Geißler et al., 2012a), on soil loss in 30-year afforestation 

(Sun et al., 2010; Zhang et al., 2011) and on sediment discharge and TKE in young 

afforestation (Goebes et al., 2015a; Seitz et al., 2016). Further vegetation factors that 

are correlated with TKE in forests are crown cover, leaf traits, tree height and branch 

architecture (Cao et al., 2008; Geißler et al., 2010; Geißler et al., 2012b; Goebes et al., 

2015a; Goebes et al., 2015b). Another important aspect is, that the process of free 

raindrops passing the tree canopies is dynamic (Nanko et al., 2006) and the canopy 

architecture can change the drop size and spatial distribution significantly at different 

positions and height of the tree canopy (Nanko et al., 2006; Goebes et al., 2015b). 

Hence, the relationship between general LAI values and splash erosion is questionable 

since it neglects the effects of spatial distributions of LAI. Also, most studies 

concentrate on mature forests (Cao et al., 2008; Geißler et al., 2013). Regarding 

afforestation measures on heavily eroded soils with a low structure stability and without 

shrubs or litter cover, like in the hilly red soil region in southern China (Zhao, 2006; Shi 

et al., 2009), the role of forests in their early stage of tree growth to protect the soil from 

erosion is of ample interest. Such research is still scarce. 

The development of sediment delivery and its relationship with tree diversity 

after afforestation 

High sediment delivery often occurs in forested catchments in subtropical regions 

(Marks, 1998; Molnar, 2004; Zhao, 2006). Along with soil erosion, growing concern 

about loss of biodiversity is emerging worldwide due to substantial contemporary de-

clines in biodiversity at different scales (Tittensor et al., 2014; Mori et al., 2017). As part 

of the heated scientific research, recently, different researchers focused on the effect of 

biodiversity on soil erosion control. Pohl et al. (2009); Martin et al. (2010) and Wang et 

al. (2012b) pointed out that plant species richness negatively correlated with runoff and 
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sediment delivery. TKE from splash cup measurements can decrease with higher tree 

species richness in forest stands (Geißler et al., 2013), but higher neighborhood 

diversity can increase TKE in young forest plantations (Goebes et al., 2015b). Mean-

while, TKE and sediment delivery are strongly affected by tree species, but the effect of 

tree species richness in early stage afforestation is not yet clear (Goebes et al., 2015b; 

Goebes et al., 2016; Seitz et al., 2016). Those findings suggested a high grade of 

uncertainty about the relationships between tree diversity and soil erosion. Additionally, 

they all focus on a single point in time and to our knowledge, measurements covering a 

longer period have not been conducted. Different tree species have different spatial 

distribution patters e.g. regarding leaf areas, leading to changing TKE (Song et al., 

2018). Thus, with ongoing tree growth the combination of different tree species tends to 

not only modify the vertical vegetation structure and increase the quantity of root and 

litter but also improve soil properties and consequently reduce soil erosion. At the 

same time, highly diverse biological soil crusts (BSCs) cover important areas in young 

subtropical forest plantations and have a high mitigating influence on soil losses (Seitz 

et al., 2017). Therefore, research on the temporal relationship between forest 

biodiversity, soil protecting vegetation patterns and soil losses is essential for 

understanding how biodiversity might sustain ecological services such as water erosion 

prevention. 

       

Figure 1 Sediment transport in the river Ganghang nearby the BEF China experimental site, 

Xingangshan, Jiangxi Province, PR China after high rainfall events in June 2014 (left) and July 

2015 (right). 

The development of soil carbon and nitrogen fluxes and its relationship with tree 

diversity after afforestation 

Soil erosion strongly affects the global carbon cycle as it redistributes soil and related 

soil C (Carpenter et al., 1998; McCorkle et al., 2016; García-Díaz et al., 2017; Poesen, 

2018; Lal, 2019). Around the world, 5.7 Pg C equivalent to 0.84% of global soil C stock 

(677 Pg in 0-30 cm soil depth) was displaced by soil erosion every year (Lal, 2003, 

2018). In China, water erosion induced 180 ± 80 Tg C equivalent to 0.41% of national 
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topsoil C stock (43.6 Pg in topsoil) of displacement per year between 1995 and 2015 

(Song et al., 2005; Ni, 2013; Yue et al., 2016). These results confirm the importance of 

soil C transported by erosion process on the global carbon balance. 

C and N displacement caused by soil erosion is a scientific research hotspot (Wang et 

al., 2013b). Many papers address land use change as driving factor of soil C alterations 

by soil erosion (Jacinthe et al., 2004; Martinez-Mena et al., 2008; Nadeu et al., 2012). 

This includes afforestation which increasingly spreads in many countries (Paul et al., 

2002; Korkanç, 2014; Keenan et al., 2015; Yosef et al., 2018). China as one of the 

largest cultivators of forest plantations in the world has approximately 90% of 

afforestation to its forest area expansion since the last 50 years (Piao et al., 2009). 

Generally, increased forest cover prolongs the process of throughfall reaching soil sur-

face by intercepting raindrops, modifying drop size and speed, and changing rainfall 

amount and energy (Nanko et al., 2006; Geißler et al., 2012b; Geißler et al., 2013; 

Masselink et al., 2016). In addition, afforestation can improve soil properties and struc-

ture such as soil water holding capacity and aggregate stability (Gol et al., 2010; 

Korkanç, 2014) and produce litter that covers the soil surface (Seitz et al., 2015). 

Therefore, it is accepted that afforestation is reducing soil erosion (Bonan, 2008; Zhao 

et al., 2013; Keesstra et al., 2017). However, recent examples from subtropical China 

show that afforestation can have an inconsistent effect on throughfall kinetic energy 

and sediment discharge (Goebes et al., 2015a; Seitz et al., 2016). Positive or negative 

effects of forests for soil erosion depend on many dynamic and species specific factors 

such as leaf area index, BSCs, tree height, spatial distribution of leafs and stand age 

(Goebes et al., 2015a; Seitz et al., 2016; Song et al., 2018). Over time after 

afforestation, sediment delivery decreases (Song et al., 2019). However, coupling of 

sediment and C and N fluxes during erosion events is still not well understood and 

studies on the carbon budget of forest ecosystems related to soil erosion are limited 

(Stacy et al., 2015). In addition, it is not reported how tree diversity affects sediment C 

and N fluxes.  

Soil carbon stock changes after afforestation  

Soil organic carbon (SOC) as the largest pool of terrestrial organic carbon accounts for 

approximate 40% of the whole C stock (to 1 m soil depth) in forest (Dixon et al., 1994; 

Jobbágy and Jackson, 2000; Pan et al., 2011). It is sensitive to land use changes such 

as deforestation and afforestation (Jandl et al., 2007; Laganiere et al., 2010). Defor-

estation could reduce SOC stock due to the decreased organic matter inputs to soil 

and the increase of decomposition rate and soil erosion caused by soil disturbance 

while no consistent effect of afforestation on SOC exists (Veldkamp, 1994; Murty et al., 

2002; Assefa et al., 2017; de Araújo Filho et al., 2018; Lal, 2019). Many studies ad-
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dress that positive or negative effects of afforestation on SOC stocks largely depend on 

factors such as previous land use, tree species, stand age, and site management (Paul 

et al., 2002; Laganiere et al., 2010; Shi and Cui, 2010; Li et al., 2012). For instance, a 

tendency of an initial loss in SOC are detected in the first few years of afforestation 

where soils are rich in original SOC (Paul et al., 2002; Laganiere et al., 2010; Shi and 

Cui, 2010). Therefore, influences of afforestation on SOC stocks in the earlier stage 

cannot be neglected due to the potential source of atmospheric CO2 and its large areas 

around the world. However, research on this process do not attract enough attention.  

BEF China 

BEF China is located in Xingangshan Town, Dexing City, Jiangxi Province, PR China 

(29.08°–29.11° N, 117.90°–117.93° E). It is not only one of the largest forest biodiversi-

ty experiments in the world but also the first tree diversity experiment in the humid sub-

tropics (Trogisch et al., 2017). The project includes two parallel sites (Site A and Site B, 

which is planted in 2009 and 2010, respectively, Figure 2) with an area of 50 ha 

(Bruelheide et al., 2014a). 

 

Figure 2 The distribution of plots structured on Site A and Site B in the BEF China project and 

Site A and B images from google earth in 2010, 2014 and 2017.  

The sites were established by transplanting forty broad-leaved tree species after logoff 

of original forest (Bruelheide et al., 2014a). The forty tree species were planted in mon-

ocultures and mixtures of 2, 4, 8, 16 and 24 species on 566 plots with each measuring 

25.8 × 25.8 m (667 m2) (Bruelheide et al., 2014a). For each plot, 400 tree individuals 
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were planted in 20 rows of 20 tree individuals with a planting distance of 1.29 m 

(Bruelheide et al., 2014a). With its unique feature of the large range of tree species 

richness levels, BEF China provides a platform to various research topics, especially 

on finding out the effects of tree species and its richness on primary productivity, 

carbon and nitrogen storage, and soil erosion. To our knowledge, at least fifteen stud-

ies and fourteen projects are conducted (Figure 3) (Trogisch et al., 2017). As an im-

portant research project in BEF China, Subproject 6 is mainly concerning on soil prop-

erties and soil erosion under afforestation and the role of biodiversity for soil erosion in 

forest ecosystems (Figure 4). 

 

Figure 3 a) Range of methodical approaches applied in BEF-China to study effects of tree di-

versity including leaf functional trait diversity (5) and genetic diversity (6) on plant biomass pro-

duction and tree growth (1+2=aboveground and belowground tree biomass and productivity, 

3=tree growth and canopy architecture, 4=herb-layer biomass and diversity), aboveground mul-

titrophic interactions (7=herbivory, 8=plant-fungal pathogens interactions, 9=trophobiosis), be-

lowground microbial interactions (10=microbial diversity, 11=microbial biomass and activity), 

nutrient cycling and soil erosion (12+13=leaf litter and deadwood decomposition, 14=soil fertility 

and C storage, 15=soil erosion) (Trogisch et al., 2017)  and  b) the list of projects involved in 

BEF China (http://www.bef-china.de). 

The objectives 

Previous research in our group have investigated the effects of species diversity, 

species Identity, functional traits on sediment discharge as well as on TKE (Goebes, 

2015; Seitz, 2015). Therefore, based on these findings, the objectives of this 

dissertation were to: 

http://www.bef-china.de/
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1) build up the spatial distributions of LAI in common tree species and find out its 

relationship with throughfall kinetic energy (Objective 1).  

2) investigate temporal changes of sediment delivery and its driving factors, as 

well as the underlying mechanism of tree diversity influences on sediment delivery after 

afforestation (Objective 2). 

3) detect temporal changes of soil C and N fluxes by water erosion and its driving 

factors, as well as its relationship with tree diversity after afforestation (Objective 3). 

4) monitor SOC changes and the driving factors (Objective 4). 

 

 

Figure 4 Subproject 6 conducted within BEF China (http://www.bef-china.de) 

 

http://www.bef-china.de/
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2. Materials and methods 

2.1. Study site 

All the research was conducted in the framework of the BEF China project, which is 

located in Xingangshan Town, Dexing City, Jiangxi Province, PR China (29.08°–29.11° 

N, 117.90°–117.93° E). The climate is dominated by subtropical monsoon with a mean 

annual temperature of 17.4 oC and a mean annual precipitation of 1635 mm with half of 

it falling from May to August (Goebes et al., 2015b). The natural vegetation is dominat-

ed by broadleaved forest with evergreen species (Trogisch et al., 2017). The area 

shows mainly hills at elevations from 105 m to 200 m with slopes from 15° to 41° 

(Scholten et al., 2017). Soils in the project are mainly Cambisols, with Anthrosols in 

downslope positions and Gleysols in valleys and the bedrock is non-calcareous slates 

weathered to saprolite (Scholten et al., 2017).  

The BEF China project includes two parallel sites (A and B) on which commercial mon-

ocultures were originally planted that were cut down in 2009 and 2010, respectively 

(Bruelheide et al., 2014a). Holes of 0.5 m (length) × 0.5 m (width) × > 0.2 m (depth) 

were dug for seedlings (Yang et al., 2013). Forty local tree species were replanted in 

monocultures and mixtures of 2, 4, 8, 16 and 24 species on 566 plots with each meas-

uring 25.8 × 25.8 m (667 m2) (Yang et al., 2013). For each plot, 400 tree individuals 

were planted in 20 rows of 20 tree individuals with a planting distance of 1.29 m 

(Bruelheide et al., 2014a) 

2.2. Objective 1 (Selected afforested tree species structures 

and their contributions to splash erosion) 

Tree parameters retrieval 

In this study, three subtropical tree species were selected, including evergreen broad-

leaved species (Lithocarpus glaber and Schima superba) and a deciduous broadleaved 

species (Sapindus saponaria). These three species are the recommended species for 

the afforestation project of water and soil conservation in the subtropical region of Chi-

na (The Ministry of Water Resources, 2013). For each tree species, three tree individu-

als were randomly selected. LAI measurements were carried out in October 2013 and 

point cloud data for each tree was obtained using a Terrestrial Laser Scanner (RIEGL 

VZ-400, Horn, Austria) (Figure 5). For each tree, 3 to 5 measurement positions were 

set at different directions with a horizontal distance ranging from 1.5 m to 8 m. The 

view zenith angle from the center of the scanner to the canopy was set to 60 degrees. 

Before the measurement, high reflectance sheets were stuck on pegs around the trees 
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at various distances, heights and directions, to guarantee that more than 6 common 

sheets were scanned for each two adjacent stations, which provided reference points 

to convert all data in the same coordinate. For the parameters of RIEGL VZ-400, scan-

ning angle resolution is 0.01° and measurement rate is 122000 points s-1. 

   

Figure 5 Terrestrial laser scanner (RIEGL VZ-400, Horn, Austria) and the flow chart of cloud 

point data process for tree parameters. 

TKE measurement 

TKE was measured using Tübingen Splash Cups (T-Cup, (Scholten et al., 2011)). The 

cup has a diameter of 4.6 cm and a height of 4 cm (Scholten et al., 2011). It is filled 

with uniform fine sand (0.125 mm) (Figure 6). The detached sand is calculated by the 

weight difference between the dry sand in the full-filled splash cup before 

measurements and the dry sand inside the cup after the rainfall event. Then kinetic 

energy of rainfall (KErf) is calculated by the detached sand (ds) per splash cup (sc) 

using the equation (Eq.1) below with a modified slope and standardization to 1 m2 

(Goebes et al., 2015b).  

( ) ( ) ( ) 2 2 20.1455 1000rf sc scKE Jm ds g cm r− =                                                   Eq.1 

Its application was approved in field studies in subtropical China (Geißler et al., 2012a; 

Geißler et al., 2012b; Goebes et al., 2015b). Five monoculture plots of Lithocarpus 

glaber (1 plot), Schima superba (2 plots) and Sapindus saponaria (2 plots) were 

selected to install splash cups under different tree individuals using the design of 

(Goebes et al., 2015b). The cup positions were 15 cm, 30 cm, 45 cm, 60 cm, 75 cm, 

and 95 cm from the stem respectively (Figure 6, six splash cups per plot). Five rainfall 

events from May to July in 2013 were measured (Table 1). In total, data from 150 

splash cups were collected. 
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Figure 6 Splash cup measurement design with six positions according to (Goebes et al., 2015b). 

Gray stars, black dots and red circle lines represent tree individuals, splash cup position and 

radius around tree stems, respectively. 

Table 1 Characteristics of the five captured rainfall events (Goebes et al., 2015b) 

Rainfall events Event 1 Event 2 Event 3 Event 4 Event 5 

Rainfall amount (mm) 6.6 23.3 39.3 61.2 185.7 

Rainfall duration (h) 2.33 10.16 11.5 14.5 30.58 

Mean throughfall amount (mm) 5 28.3 47.9 73.8 192.7 

TKE (Jm-2) 78.8 255.3 354.7 553.7 1292.8 

 

Data analysis 

LAI was estimated using volume element model from the point cloud data (Hosoi and 

Omasa, 2006; Zheng and Moskal, 2012) and was calculated with Matlab 2010b (The 

Mathworks Inc., Natick, MA, USA). Basic parameters of trees (ground diameter, tree 

height, first branch height, crown width, branch number and crown cover) were 

measured with the laser scanner software RiScan Pro (http://www.riegl.com). A one-

way analysis of variance (ANOVA) was conducted to compare the mean value of 

canopy structure parameters. Skewness of LAI vertical distribution and Pearson 

correlation analyses to test LAI effects on TKE were conducted with IBM SPSS 

Statistics for Windows Version 19.0 (IBM Corp., Armonk, NY, USA). Before the 

Pearson correlation analyses, TKE was log10 transformed to normal distribution and 

tested by Kolmogorov–Smirnov (Significance = 0.2). Graph and curves fitting were 

processed in Origin 8.0 (Origin Lab Corporation, Northampton, MA, USA).  
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2.3. Objective 2 and 3 (The development of sediment delivery 

and soil carbon and nitrogen fluxes) 

Research plot 

For Objective 2 and 3, 45 of these plots were selected, 23 on Site A and 22 on Site B 

with no tree planting and four tree species richness levels: monocultures, 8 tree spe-

cies, 16 tree species and 24 tree species stands (Table 2).  

Table 2 Tree, topography and soil data (0-5 cm) of 45 selected research plots in the BEF China 

project. (TSR: tree species richness; Soil BD: soil bulk density; SOC: soil organic carbon) 

Plot TSR Tree species Site 
Slope Aspect Altitude BD pH SOC 

(o)  (m) (g m-3)  (%) 

L20 0 / A 24 W 229 0.86 3.68 3.96 

Q23 0 / B 23 N 153 0.78 3.39 3.47 

D29 1 M. flexuosa B 31 N 159 0.90 3.68 2.77 

I25 1 M. yuyuanensis B 29 N 152 0.96 3.47 2.90 

M07 1 B. luminifera B 31 S 129 0.89 3.55 2.52 

N02 1 M. flexuosa B 41 S 129 0.89 3.61 3.01 

N05 1 A. altissima B 32 N 119 0.89 3.63 3.17 

N28 1 I. polycarpa B 19 E 167 0.97 3.56 2.21 

Q27 1 A. fortunei B 35 S 160 0.97 3.66 2.78 

Q29 1 M. leptophylla B 33 E 144 0.90 3.74 2.42 

R29 1 C. fargesii B 33 S 146 0.91 3.65 2.48 

T13 1 M. thunbergii B 21 W 133 0.96 3.44 2.59 

U16 1 E. japonicus B 20 W 147 0.94 3.44 2.65 

V24 1 E. chinensis B 32 E 137 0.94 3.71 3.01 

W10 1 Ph. bournei B 27 E 147 0.92 3.45 2.35 

W11 1 E. glabripetalus B 19 S 148 1.04 3.25 2.72 

X21 1 M. grijsii B 24 N 132 0.91 3.65 2.54 

Y09 1 C. biondii B 32 E 126 1.10 3.71 1.93 

E31 1 Q. fabri A 22 S 144 0.95 3.86 2.48 

E33 1 L. glaber A 19 S 144 1.12 3.94 2.18 

E34 1 C. henryi A 21 S 125 1.06 4.09 2.84 

G33 1 Q. serrata A 18 S 127 0.85 3.92 3.45 

I28 1 L. formosana A 26 S 163 0.90 3.81 3.29 

K19 1 S. superba A 24 N 199 0.80 3.70 4.18 

L10 1 C. eyrie A 34 S 211 0.92 3.92 2.81 

L11 1 C. sclerophylla A 28 S 201 1.04 3.87 2.95 

N11 1 S. saponaria A 26 S 203 0.82 3.63 3.93 

N13 1 S. sebiferum A 31 S 182 0.78 3.78 3.62 

N17 1 R. chinensis A 28 W 221 0.91 3.79 3.39 

O22 1 C. myrsinaefolia A 21 W 229 0.86 3.80 3.54 

O27 1 Ch. axillaris A 21 W 185 1.07 4.12 2.41 

Q13 1 K. bipinnata A 30 W 215 0.90 3.86 3.84 

R14 1 C. glauca A 30 N 228 0.82 3.80 4.25 

J29 8 1* B 31 N 182 0.81 3.39 4.85 

Q17 8 2* B 22 N 131 0.99 3.52 2.91 

S10 8 3* A 36 S 220 0.96 3.79 3.04 

T15 8 4* A 30 N 244 0.87 3.67 3.42 
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I22 16 5* B 28 S 119 1.07 3.58 2.28 

S22 16 5* B 33 W 145 1.00 3.61 3.26 

L22 16 6* A 21 W 180 0.80 3.79 3.48 

M22 16 6* A 23 W 221 0.95 3.79 3.48 

U10 16 6* A 40 S 231 0.96 3.86 3.22 

R30 24 7* B 27 S 136 0.95 3.67 2.46 

N09 24 8* A 33 S 218 0.86 3.58 3.60 

R18 24 8* A 36 W 215 0.91 3.82 3.50 

1*: 8 tree species from monocultures N05, Y9, W11, U16, N28, X21, D29 and W10. 

2*: 8 tree species from monocultures Q27, M07, R29, V24, Q29, T13, I25 and Q. phillyreoides. 

3*: 8 tree species from monocultures E34, L11, O27, I28, G33, N11, N13 and N. sinensis. 

4*: 8 tree species from monocultures E33, E31, N17, K19, L10, R14, O22 and Q13. 

5*: 16 tree species from 1* and 2*. 

6*: 16 tree species from 3* and 4*. 

7*: 24 tree species from 5*, from monocultures E33, K19, R14, L10, L11, and Cinnamomum camphora, 

Daphniphyllum oldhamii and Diospyros glaucifolia. 

8*: 24 tree species from 6* and Cinnamomum camphora, Daphniphyllum oldhamii, Diospyros glaucifolia, 

Acer davidii, Castanopsis carlesii, Melia azedarach, Quercus acutissima and Sapium discolor. 

 

Soil erosion and soil carbon and nitrogen fluxes measurement  

Based on the design of BEF China and considering the various research topics investi-

gated, a selected area of each research plot was used for soil erosion measurements  

(Bruelheide et al., 2014a; Trogisch et al., 2017). Five micro-scale runoff plots (ROP) 

(0.4 m length × 0.4 m width × 0.1 m height) were randomly installed in 2013 and con-

nected to 20 L reservoirs to collect runoff and sediment delivery (Figure 7) (Seitz et al., 

2016). The runoff plots were operated from May to July during the rainy season in 2013, 

2014 and 2015. Runoff volume was collected in situ and sediment delivery was 

calculated after sampling. Dried sediment was carefully collected and grounded on a 

ball mill for C and N analysis. Sediment C and N were measured with a CN-analyzer 

(VARIO EL III, Elementar, Hanau, Germany). In total, 550 valid measurements from 

215 runoff plots were captured (182 in 2013, 158 in 2014 and 210 in 2015). 
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Figure 7 Random positions of runoff plots for soil erosion measurements and soil samples in 

one research plot of the BEF China project (0.4 m length × 0.4 m width × 0.1 m height). 

 

Rainfall  

Rainfall data during the soil erosion measurements was captured by climate stations on 

both sites (ecoTech data logger with Vaisala weather transmitter and ecoTech tipping 

bucket balance, Bonn, Germany). Daily accumulated precipitation curves and the ten 

largest daily rainfall events during the three years were shown in Figure 8. Further data 

on regional precipitation was used from the National Meteorological Information Center 

(NMIC) of China and China Meteorological Administration (CMA). 

Tree parameters  

Tree measurements with laser scanning (FARO Laser Scanner Photon 120, FARO 

Technologies Inc., FL, USA) at all plots started in September 2010 for both 

experimental sites on a yearly base, which were determined by the central 6 × 6 trees 

(36 trees) in the monocultures and the central 12 × 12 trees (144 trees) in the 8, 16 and 

24 tree species stands (Li et al., 2014a; Li et al., 2017).  

Crown cover and LAI were measured each May from 2013 to 2015 at the ROP scale 

using a fish-eye camera system (Seitz et al., 2016). 552 valid pictures of forest canopy 

at runoff plot scale were captured. 
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Figure 8 (a) Daily accumulated precipitation and (b) The ten largest daily rainfall events in BEF 

China from 2013 to 2015. 

Soil surface cover and soil properties  

Soil surface cover including BSCs and stone cover was surveyed yearly. BSCs were 

measured photogrammetrically during the rainy seasons from 2013 to 2015 within the 

runoff plots. Perpendicular images for each runoff plot were taken by a camera system 

(Canon 350D, Tokio, Japan). The images were processed by the grid quadrat method 

with 10 × 10 subdivisions of a digital grid in GIMP 3.0. BSCs and stone cover were 

separated by hue distinction. Further soil surface cover by shrubs was not present due 

to weeding according to the experimental design and a continuous leaf litter layer could 

not be recorded during the first years of this early successional afforestation. 

The soil sampling was conducted in 2014. Soil cores with 6 cm in diameter were taken 

to a depth of 50 cm and then divided into five depth increments (0-5 cm, 5-10 cm, 10-

20 cm, 20-30 cm and 30-50 cm) (Scholten et al., 2017). For this study, soil properties 

of the 0-5 cm increment were used (Table 2). For each plot, nine soil cores were 

collected (Figure 7) and mixed. Soil samples were air-dried, sieved through a 2 mm 

mesh, handpicked to remove plant and animal residuals and then grounded for soil 

analyses. For total soil carbon analyses, about 40 mg of ground sample material was 
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weighed into tin foil and analyzed using oxidative heat combustion at 1150 °C in a 

helium atmosphere in a Vario EL III elemental analyzer (Elementar Analysensysteme 

GmbH, Hanau, Germany). Soil pH was determined with a 1 M KCl solution (soil-to-

solution ratio 1:2.5) by a WTW pH meter pH 340 (WTW GmbH, Weilheim, Germany) 

using a Sentix 81 electrode according to DIN EN15933 (2012). Since pH is < 6.7 for all 

samples, total soil carbon equals SOC. In addition, five replicates of bulk density 

samples were obtained for each plot at the same depth increments in 2015. The soil 

BD was gravimetrically determined from the five replicate volumetric samples per depth 

increment (samples dried at 105 °C).  

Data analysis 

Annual sediment delivery and soil carbon and nitrogen fluxes 

A rainfall threshold of 12.7 mm was applied to distinguish erosive rainfall amounts after 

Wischmeier and Smith (1978a). Annual erosive rainfall amount (AER, mm) and erosive 

rainfall during the runoff plot measurements (ERM, mm) in the rainy seasons were cal-

culated based on precipitation curves from climate stations (Figure 8). Then, with 

sediment delivery acquired during the runoff plot measurements (SE, Mg ha-1), an 

annual sediment delivery (ASD, Mg ha-1) was calculated (Eq. 2). Then, with sediment C 

and N concentrations (SCC and SNC, %) and annual sediment delivery (ASD, Mg ha-1), 

annual soil C and N fluxes (ASC and ASN, Mg ha-1) were calculated by Eq. 3. To 

illustrate C and N differences between sediment and soil, the enrichment ratio (ER) of 

sediment C (N) concentration to soil C (N) concentration was calculated as given in Eq. 

4. 

AER
ASD SE

ERM
=                                                                                                    Eq.2 

( )( )ASC N ASD SC N C=                                                                                     Eq.3 

( )

( )

SC N C
ER

SoilC N
=                                                                                                       Eq.4 

Statisstical analysis  

For Objective 2, ANOVA and least significant difference (LSD) tests were conducted to 

assess temporal changes of sediment delivery. Linear mixed effects (LME) models with 

restricted maximum likelihood were used to detect driving factors on sediment delivery 

changes. Before modelling, all factors were tested on normal distribution. Sediment 

delivery was twice squared root transformed ( y ) to achieve normal distribution. Tree 

height, stem diameter, crown width, crown cover, LAI, BSCs, surface cover and soil 
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properties were fitted as fixed factors, while site, runoff plots nested in plot and tree 

species composition were fitted as random factors. If multi-collinearity (correlation in-

dex > 0.7) was detected among the fixed factors, correlated factors were fitted individ-

ually in exchange to the counterpart.  

Then, for detecting the effects of tree species richness on sediment delivery, we used 

linear mixed effects models to (I) analyse the temporal development of annual sedi-

ment delivery under changing tree species richness and to (II) investigate driving fac-

tors on annual sediment delivery and how in turn those factors are influenced by tree 

species richness. Before modelling, annual soil erosion rates from 2013 to 2015 were 

twice square root transformed to fit normal distribution. A first model was calculated 

with tree species richness, year and the interaction of tree species richness with year 

as fixed factors, while site, plot, runoff plot nested in plot and tree species composition 

were fitted as random factors. Finally, models were used to analyse the effects of tree 

species richness on identified main influencing factors of soil erosion by using tree 

species richness, year and the interaction of tree species richness with year as fixed 

factors, while site, plot, runoff plot nested in plot and tree species composition were 

used as random factors. 

For Objective 3, ANOVA and LSD tests were conducted to assess temporal changes of 

sediment C and N concentrations and annual soil C and N fluxes as well as the effect 

of tree species richness. Multiple regression was used to detect significant predictors. 

For each multiple linear regression model, all independent variables (terrain parame-

ters, soil properties, sediment delivery, surface cover, plant traits) were tested on nor-

mal distribution and transformed by square root when needed, and then z-scored (ze-

ro-mean normalization). Potential collinearity between independent variables was de-

tected by the Pearson correlation coefficient. One independent variable was fitted indi-

vidually in exchange to the other when their correlation coefficient was higher than 

|±0.7|. Dependent variables (sediment C concentrations, sediment N concentrations, 

annual soil C flux and annual soil N flux) were tested on normalized distribution and 

annual soil C flux, annual soil N flux were square root transformed. Beta value as 

standard regression coefficient from multiple regression models was used to illustrate 

the importance of independent variables on dependent variables. 

All statistical analyses were performed with R 3.4.3 (R Foundation for Statistical Com-

puting, Vienna, Austria) and SPSS 13.0 (SPSS Inc., Chicago, Illinois, USA). Graph and 

curve fittings were processed in Origin 8.0 (OriginLab Corporation, Northampton, USA).  
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2.4. Objective 4 (Soil carbon stock changes after afforestation) 

Soil sampling 

In this study, 132 of plots were selected for soil sampling (Table 3). Soil sampling was 

conducted in September and October in 2010 and 2014, respectively. Soil core with 6 

cm in diameter was taken at a depth of 50 cm and then divided into five depth incre-

ments (0-5 cm, 5-10 cm, 10-20 cm, 20-30 cm and 30-50 cm) (Scholten et al., 2017). 

For each plot, nine soil cores were collected (Figure 9) and mixed resulting in five soil 

samples. Soil samples were air-dried, sieved through a 2 mm mesh, handpicked to 

remove plant and animal residuals and then grounded for soil properties analysis. SOC 

and soil N was determined by a CN-analyzer (VARIO EL III, Elementar, Hanau, Ger-

many) (Scholten et al., 2017). Soil pH was determined in 1M KCl (Scholten et al., 2017). 

In addition, five replicates of BD sample for each plot were obtained at the same depth 

increments as soil sampling in 2015 for soil BD determination. Soil organic carbon den-

sity (SOCD, kg m-2) of five depth increments and SOC stock (0-50 cm) were calculated 

as given Eq. 5 and 6 (Don et al. 2009): 

( )100 % 0.1i i i i iSOCD T BD SOC C=    −                                                         Eq. 5 

0 50

0

n

cm iSOC stock SOCD− =                                                                                Eq. 6 

SOCD represents soil organic carbon density (kg m-2); i represents different five depth incre-

ments of 0-5 cm, 5-10 cm, 10-20 cm, 20-30 cm, 30-50 cm; T represents soil layer (cm); BD 

represents soil bulk density (g cm-3); SOC represents soil organic content (%); C represents 

stone percentage (%). 

 

Figure 9 Positions of soil sampling for soil properties and bulk density on one plot. Grey dot 

means tree saplings. Black stars and triangles means the positions of soil samples (n = 9, 

subsamples) and bulk density (n = 5, subsamples), respectively. 
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Tree and litter measurement 

Tree height and diameter at breast height (DBH) as two important parameters for bio-

mass estimation were determined by the central 6 × 6 trees (36 trees) in the monocul-

tures and 2 species plots and the central 12 × 12 trees (144 trees) in the 4, 8, 16 and 

24 species mixtures (Li et al., 2014a; Li et al., 2017). Tree measurement of all plots 

started in September and October 2010 for Site A and in 2011 for Site B on a yearly 

base. Aboveground biomass (AGB) (kg dry mass) and belowground biomass (BGB) 

(kg dry mass) were calculated as given (Eq. 7 and 8) which were developed from 147 

trees and 41 species in subtropical China (Xu et al., 2015).  

For litter measurement, 56 plots on Site A and 45 plots on Site B (Table 3) with 1, 2, 4, 

8 and 16 species were selected and equipped with litter traps (Huang, 2017). Litter trap 

of 0.75 × 0.75 m was made of nylon nets (1 mm mesh) and fixed over a PVC frame at 

a height from 1 m to 1.5 m aboveground under tree canopy (Huang, 2017). For each 

plot, three litter traps were installed in the central area. The measurement started in 

March 2014 for Site A and March 2015 for Site B. Litter collection was done every 

month. Litter sample was put into oven and dried for 48 hours at 60 ℃ and weighed. 

The data was summed up for annual litter fall production. More details please see 

Huang (2017). Then, biomass values (AGB, BGB and litter fall) were calculated to car-

bon stock using carbon conversion factor of 0.47 (IPCC) (Martin and Thomas, 2011). 

( ) ( ) ( )exp 2.334 2.118 ln 0.5436 ln 0.5953 lnAGB D H WD= − +  +  +           Eq. 7 

( )exp 2.80346 2.004 lnBGB D= − +                                                               Eq. 8 

D represents diameter at breast height (cm), H represents tree height (m), WD represents wood 

density (g cm-3). 

Soil erosion 

Sediment delivery was determined as described in section 2.3. 

Topography 

Altitude, slope, terrain ruggedness index (TRI), Monte-Carlo based flow accumulation 

(MCCA) were calculated (Scholten et al., 2017). Moreover, 10 geomorphological units 

(geomorphons: flat, footslope, valley, peak, shoulder, ridge, spur, slope, pit and hollow) 

was computed in our study area according to the concept of openness and geomor-

phons (Yokoyama et al., 2002; Jasiewicz and Stepinski, 2013; Scholten et al., 2017). 

Depression, flat and valley summarized as valley while shoulder, peak and ridge sum-

marized as ridge for further processing (Scholten et al., 2017).  
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Table 3 Plots information of soil survey, litter collection and soil erosion measurement 

 Soil samples Soil erosion Litter collection 

Tree species richness Site A Site B Site A Site B Site A Site B 

Bare plot 3 2 1 1 / / 

 1 31 20 15 16 31 19 
 2 16 15 / / 16 15 
 4 8 7 / / 8 8 
Afforested plot 8 4 4 2 2 4 4 
 16 2 2 2 2 2 2 
 24 2 2 2 2 / / 

In all 66 52 22 23 61 48 

Failed afforested 1 13 / / / / 

 

Statistical analysis 

A one-sided, paired t-test was applied to determine the differences of SOCD, soil C/N 

ratio and soil pH between 2010 and 2014 at different soil depth increments. Before 

statistical analysis, normal distributions of variables were tested by Q-Q plot and 

SOCD2010 and SOCD2014 were log transformed. All the factors applied were scaled. 

Then, multiple regression was applied to detect the predictors of SOCD2010, soil erosion, 

tree species richness, tree species, aboveground and belowground biomass, litter fall, 

aspect, elevation, TRI, MAAC and geomorphy on changes of SOCD2014-2010. In the mul-

tiple regression, tree species of monocultures were set as dummy variables while ge-

omorphy of summit ridge, spur, slope, hollow and valley in the study was set as 1, 2, 3, 

4, 5 and 6, respectively. Variance inflation factors (VIFs) for each covariate in each 

model were calculated and lower than 3 lower (Chen et al., 2017). All statistical anal-

yses were performed with R 3.4.3 (R Foundation for Statistical Computing, Vienna, 

Austria) and SPSS 13.0 (SPSS Inc., Chicago, Illinois, USA). Graph and curve fittings 

were conducted in Origin 8.0 (OriginLab Corporation, Northampton, USA).  
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3. Results and discussion   

3.1. Selected afforested tree species structures and their 

contributions to splash erosion 

Spatial distribution of LAI between different tree species  

In the vertical direction (Figure 10), high LAI of Lithocarpus glaber and Schima superba 

was mainly located at the middle-lower part of the trees (Skewness = 0.13 and -0.22, 

respectively) while at Sapindus saponaria it was mainly found at the middle-upper part 

(Skewness = 1.24). Lognormal equations were suitable to describe the vertical distribu-

tion LAI of Lithocarpus glaber, Schima superba (Figure 10, R2 > 0.9) and Sapindus sa-

ponaria (R2 = 0.7). For LAI radial distribution, remarkable exponential decreasing trends 

were observed from the tree stems to the edge of the canopy with the highest value at 

the stems (Figure 11, R2 > 0.9). 

 

Figure 10 LAI vertical distribution pattern of three tree species. 
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Figure 11 LAI radial distribution patterns of three tree species. 

Tree saplings growth and tree shape were significantly species-specific (Figure 10 and 

Figure 11), indicating an interspecific variation in certain functional traits in BEF China 

as described in detail by (Li et al., 2014a). In our research, the different leaf traits of 

trees showed different vertical distribution patterns of LAI, while same leaf trait of trees 

had similar distribution patterns, as it was shown that little difference between Lithocar-

pus glaber and Schima superba occurred (Figure 10 and Figure 12, Table 4). 

Deciduous trees like Sapindus saponaria allocate more photosynthetic products in 

height and branch growth with simple crown architecture, while evergreen trees such 

as Lithocarpus glaber and Schima superba would consume more energy to branch 

construction and leaves with complex crown architecture (Chave et al., 2009; Kang, 

2010). Meanwhile, our results showed that a lognormal model can be used to predict 

the vertical distribution of LAI for broadleaved species (Figure 11). This result was in 

accordance with (Lu, 2011; Zhao et al., 2015), who found that foliage distribution of 

major broadleaved species in secondary forest in northern China had the lognormal 

patters. In our study, LAI vertical distribution and its skewness reflected the difference 

in height of the first branch, number of branches and crown cover among the three 

species, for Lithocarpus glaber and Schima superba both having lower skewness with 

lower height of first branch, more branches and high crown cover comparing to Sapin-

dus saponaria (Table 4). Moreover, the skewness could also account for the 

heterogeneity in horizontal and vertical leaf area distribution, which may provide a 

better way to understand the species-specific relationship between LAI and canopy 

water storage (Llorens and Gallart, 2000; Keim and Link, 2018) and tree diversity 

effects on TKE (Geißler et al., 2013). Therefore, skewness of LAI vertical distribution 
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might be a promising index comprehensively describing tree function in ecosystem, 

especially the process of hydrology. 

 

Figure 12 Three single tree species images from point cloud data measured with the laser 

scanner software RiScan Pro in Xingangshan, Jiangxi Province, PR China. 

Table 4 Comparison of basic parameters of three investigated tree species in Xingangshan, 

Jiangxi Province, PR China (n = 9). 

Tree species Lithocarpus glaber Schima superba Sapindus saponaria 

Leaf habit E E D 

Ground Diameter (m) 0.037±0.015 a 0.071±0.037 a 0.049±0.007 a 

First branch height (m) 0.30±0.04 b 0.15±0.13 b 1.13±0.45 a 

Tree height (m) 2.98±0.21 a 3.14±0.79 a 3.48±0.07 a 

Crown Width (m) 1.70±0.23 a 2.12±0.36 a 1.91±0.28 a 

Number branches 33±4 a 40±5 a 7±5 b 

Crown cover 0.38±0.03 a 0.42±0.09 a 0.28±0.02 b 

E represents evergreen broadleaved species; D represents deciduous broadleaved species 

Different lower letters in the same tree basic parameters denote significant difference at p < 0.05 

Potential of splash erosion under different tree species 

Sapindus saponaria had the highest values of TKE among the observed species and 

events. Compared to TKE of open-field rainfalls, TKE was enhanced under Sapindus 

saponaria and reduced under Lithocarpus glaber and Schima superba (Figure 13). For 

all measured rainfall events, Sapindus saponaria increased by 60-80% compared to 

TKE in open-field, while Lithocarpus glaber and Schima superba decreased 

approximately 60% and 30% to 80%, respectively. With increasing radial distance from 

the stem, TKE of all three species was generally increasing during different rainfall 

events although significance of positive correlation was only detected with Lithocarpus 

glaber (Table 5). 
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Figure 13 Throughfall kinetic energy (TKE) changes with the distances from the stem under 

different tree species in Xingangshan, Jiangxi Province, PR China. 

Our results demonstrated that TKE was species-specific, with lower TKE of Lithocarpus 

glaber and Schima superba than Sapindus saponaria. On the one hand, it is assumed 

that if Lithocarpus glaber and Schima superba have higher LAI, they also show high 

rainfall interception. This is because canopy water storage increases with increasing 

LAI with a higher vertical distribution of foliage and canopy roughness (Aston, 1979; 

Marin et al., 2000; Fleischbein et al., 2005) and falling drops and drop sizes are more 

likely to be re-modified and split by lower parts of the canopy (Wiersum, 1985). On the 

other hand, for Sapindus saponaria and in the radial direction, high LAI is mainly 

located at the top height (Skewness = 1.24), which may lead to less interception and 

higher speed of falling drops reaching the soil surface and thus contribute to higher 

kinetic energy. Lognormal distribution LAI of Lithocarpus glaber and Schima superba 

with lower Skewness values indicated that the two species may have higher rainfall 

interception and lower speed of falling drops which contribute to reducing TKE.  

Table 5 Pearson Correlation between distances from the stem and throughfall kinetic energy 

(TKE). 

 Lithocarpus glaber Schima superba Sapindus saponaria 

Event 1 0.73＊ 0.02 0.14 

Event 2 0.51 0.67 0.28 

Event 3 0.44 -0.18 0.46 

Event 4 0.87＊ 0.23 0.25 

Event 5 0.88＊ 0.49 0.10 

＊ Significant level p < 0.05, ＊＊ Significant level p < 0.01. 
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3.2. Sediment delivery development after afforestation 

Temporal changes of sediment delivery  

In our afforested study area, the soil erosion rate was 47.5 Mg ha-1 a-1 in 2013 and then 

decreased to 24.5 Mg ha-1 a-1 in 2014 and 9.6 Mg ha-1 a-1 in 2015 with the annual mean 

of 27.2 Mg ha-1 a-1 in the observed three years (Figure 14). Those rates are importantly 

higher than generally assumed for forests in the south of China (Guo et al., 2015: 1.89 

Mg ha-1 a-1). In Europe, the annual soil erosion rate under forest was given as 0.7 Mg 

ha-1 a-1(Maetens et al., 2012) while in Australia it ranged from 0 to 8 Mg ha-1 a-1(Cerdan 

et al., 2010b). From these comparisons, it can be concluded that the BEF China exper-

iment is still suffering from severely high soil erosion even after six years of forest res-

toration. Considering thresholds for soil erosion rates assumed to be tolerable in gen-

eral of 1 Mg ha-1 a-1(Verheijen et al., 2009) and specifically under undisturbed forest of 

0.12 to 0.25 Mg ha-1 a-1 (Patric, 1976), we assume that BEF China will need five and 

nine more years under carefully managed forest practices, respectively to reach a tol-

erable soil erosion rate (Figure 14). 

 

Figure 14 Annual sediment delivery in BEF China. From 2013 to 2015 (gray bars), the values 

were calculated from the field observation. From 2016 to 2023 (white bars), the values were 

calculated by 60% of one year earlier based on the ratio of the three years field observation. 

Driving factors on sediment delivery changes 

Regarding the linear mixed effects model (Table 6), results showed tree canopy pa-

rameters and BSCs were the two main factors driving soil erosion. Vegetation cover of 

the soil surface is a key control for soil erosion (Stednick, 1996; Zhou et al., 2008) and 
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afforestation is a common measure to reduce sediment delivery (Zhang and Song, 

2006; Zheng et al., 2008; Huang et al., 2017a). This point is proved by our results, 

which show that bare plots consistently had higher sediment delivery than the afforest-

ed plots (Figure 15).  

Table 6 Linear mixed effects models for annual soil erosion (n = 550). (LAI: leaf area index; 

BSCs: biological soil crusts; soil BD: soil bulk density; SOC: soil organic carbon. ddf mean 

denominator degree of freedom; F and P mean F-ratio and P-value of the significance test.) 

Fixed effect ddf F  P Estimate 

LAI 340 22.49 0.000 -0.19 

BSCs 523 198.28 0.000 -0.55 

Soil BD 32 15.01 0.079 0.06 

Soil pH 32 2.92 0.097 0.08 

SOC 32 0.09 0.650 0.02 

Slope 32 5.50 0.025 0.01 

Altitude 31 0.08 0.228 0.04 

Crown cover 400 20.675 0.011  -0.20 

Tree height 61 2.021 0.001  -0.09 

Crown width 61 2.034 0.001  -0.06 

Stem diameter 64 9.959 0.002 -0.08 

Random effects    

Groups Variance S.D.  

Plot 0.021 0.145  

Tree composition 0.000 0.000  

Site 0.000 0.000  

Residual 0.066 0.258  

Notes: Fixed effects were fitted sequentially as shown in the table while random effects are site, 

plot, runoff plots nested in plot and tree species composition. As multicollinearity of fixed factors 

(correlation index > 0.7) was detected among LAI, crown cover, tree height, crown width, and 

stem diameter, one factor was fitted individually in exchange to the other in the linear mixed 

effects model. All variables were tested on normal distribution. Annual soil erosion was twice 

squared root scaled while BSC was square-root transformed with arcsign reconstruction. Then 

all variables were scaled before modelling. Fixed effects were fitted sequentially as shown in the 

table while random effects are site, plot, runoff plots nested in plot and tree species composition. 
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Figure 15 Boxplot of annual sediment delivery under afforested plot and bare plot in 2013, 2014 

and 2015. Black dot means the mean values; Black middle line in the box means the median values; 

Gray dots mean measurements from ROPs. The box boundaries indicate the 75% and 25% quartiles; the 

whisker caps indicate the 90% and 10% quartiles. 

Forest canopies influence soil erosion mainly by intercepting the rainfall (Goebes et al., 

2015b). Before hitting the soil surface, raindrops are modified by the forest canopy 

while rainfall amount is reduced by vertical distribution of foliage and canopy roughness. 

There is no doubt that trees with high LAI have high rainfall interception (Aston, 1979; 

Marin et al., 2000; Fleischbein et al., 2005) and several studies showed that LAI has a 

significant negative effect on throughfall kinetic energy and soil erosion at different for-

est stages in the subtropical part of China (Zhang et al., 2011; Geißler et al., 2013; 

Seitz et al., 2016; Song et al., 2018). These results are in line with our finding that in-

creasing crown cover and LAI over time reduce sediment delivery (Table 6). Beside LAI, 

tree height is considered as an important biotic factor on soil erosion (Cao et al., 2008; 

Geißler et al., 2013; Goebes et al., 2015b). Higher tree height tends to produce faster 

velocities of falling drops regaining high kinetic energy before reaching the soil surface 

and thus causing more soil erosion (Cao et al., 2008; Geißler et al., 2013). However, 

tree height was detected to negatively influence soil erosion in our research. It is as-

sumed that positive effects from tree growth such as fast increase of LAI might over-

weight its negative effects on soil erosion in this early stage. This finding indicates that 

with ongoing tree growth vegetation parameters change and thus alter their erosion-

influencing characteristics. 

In addition to the crown layer, the vegetation directly covering the forest floor is of great 

importance for soil erosion control. In this context, BSCs were extensively occurring in 

our experimental areas. They use the new habitat created by deforestation and spread 

as pioneer vegetation in the resulting vegetation gap. These aggregations of biotic 
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components including bacteria, fungi, mosses, lichens, algae and bryophytes in the 

topsoil (Schulten, 1985b; Eldridge, 1993) are closely dependent on surrounding trees 

and both their growth is closely linked. This study confirms findings from 2013 (Seitz et 

al., 2017) for a now longer period and shows that BSCs are still competitive six years 

after tree replantation and have a significant influence on soil erosion rates in early-

successional forests. BSCs absorb raindrop impacts on the soil surface (Eldridge, 1993; 

Eldridge and Greene, 1994), aggregate soil particles and stabilize the upper soil sur-

face (Rodríguez-Caballero et al., 2012; Gao et al., 2017), reduce the surface water flow 

by providing high infiltration and water storage capacity (Kidron et al., 1999; Gaur and 

Mathur, 2003; Liu and Singh, 2004; Belnap, 2006) and consequently mitigate sediment 

delivery (Seitz et al., 2017). Our study substantiates that this is also true for mesic for-

est environments over several years of tree growth, where BSCs play an even more 

important role than LAI (Table 6). In plots without trees, 67% of the variability of sedi-

ment delivery could be explained by BSCs (Figure 16A). In addition, the nonlinear rela-

tionship between sediment delivery and BSCs cover (Figure 16A) implies that an ap-

proximately 40% coverage of BSCs will be a sufficient threshold for soil erosion control 

on bare land. On the other hand, sediment delivery in afforested plots with BSCs cover 

lower than 40% was even higher than in bareplot (Figure 16B). Further studies need to 

concentrate on functional mechanisms of surface-covering vegetation and how they 

influence sediment delivery.  

 

Figure 16 Relationships between annual sediment delivery and biological soil crusts (BSCs) in 

bare plots (A) and afforested plots (B) in BEF China. 

Sediment delivery under different tree species richness 

In 2013, monocultures and 24 tree species stands had similar mean annual sediment 

delivery, whereas 16 tree species stands showed lower rates and 8 tree species stands 

showed the lowest value (Figure 17). From 2014 to 2015, the mean annual sediment 

delivery decreased from monocultures to the 8 tree species stands, to the 16 tree spe-

cies stands and finally to the 24 tree species stands. Besides, the highest and lowest 

annual sediment delivery measured during 2013-2015 were all detected in monocul-

tures (Figure 17), indicating that monocultures have a high variability regarding soil 
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erosion. From linear mixed effects model, tree species richness reduced annual sedi-

ment delivery over the observed three years significantly (Table 7). 

 

Figure 17 Annual sediment delivery (Mg ha-1) in 2013, 2014 and 2015 under different tree spe-

cies richness in the BEF China experiment in Xingangshan, Jiangxi Province, PR China. Gray 

points mean data collected from runoff plots (n = 535). Red spline dashed lines connected 

mean±standard error of each tree species richness for each year. 

Table 7 Linear mixed effects models for the effects of tree species richness (TSR), year and the 

interaction tree species richness × year on annual sediment delivery (n = 535). (Annual sedi-

ment delivery were twice squared root scaled while tree species richness and year were scaled. 

ddf mean denominator degree of freedom; F and P mean F-ratio and P-value of the significance 

test.) 

Fixed effect  ddf F P 

TSR 522 65.13 < 0.001 

year 529 262.60 < 0.001 

TSR × year 522 2.049 0.152 

 

As one key factor on soil erosion, LAI at runoff plot scale was increasing every year 

from 2013 to 2015 in the research area. This increase of LAI strengthened the 

interception of rainfall and modified water fluxes. At the same time, tree species rich-

ness showed a significantly positive effect on LAI (Table 8 and Figure 18). Faster 

increases of LAI in stands of higher tree species richness resulted in higher decrease 

of annual soil erosion rates. In addition to this finding, previous investigations conduct-

ed in the same study area showed that tree species with different architecture and trait 

forms (Geißler et al., 2012a; Goebes et al., 2015a; Li et al., 2017) such as Sapindus 
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saponaria, Lithocarpus glaber and Schima superba planted in different tree species 

richness levels have different patterns of spatial distribution for LAI (Song et al., 2018). 

Thus, the combination of these differing tree species planted in mixtures leading to 

more homogenous layering as well as the faster increase of LAI allocated from different 

tree species collectively optimize patterns of spatial vegetation structures and distribu-

tion (Lang et al., 2012a; Lang et al., 2012b; Peng et al., 2016). These optimized 

patterns could enhance the interception of rainfall within the tree canopies, prolong the 

process of raindrops falling on surface soil and improve the efficiency of aboveground 

vegetation in reducing rainfall kinetic energy and thus leading to a faster decrease of 

annual soil erosion along a tree species richness gradient. Therefore, further studies on 

positive effects of tree species richness on LAI appear to be necessary with particular 

focus on underlying mechanisms within remote vegetation layers such as tree, branch 

and leaf traits. 

Furthermore, near-surface vegetation layers such as BSC communities are of great 

importance for soil erosion control (Belnap and Gillette, 1997; Belnap, 2006; Belnap 

and Büdel, 2016). As another main factor on soil erosion in this study, BSCs showed 

an increasing trend in coverage with higher tree species richness, which consequently 

lead to a decrease in soil erosion rates (Table 8 and Figure 19). BSCs mitigate the ki-

netic energy of raindrop impacts on the soil surface and stabilize the upper soil surface 

as well as they reduce the surface water flow (Liu and Singh, 2004; Belnap, 2006; 

Rodríguez-Caballero et al., 2012; Gao et al., 2017; Seitz et al., 2017; Xiao et al., 2019). 

Further research is necessary to understand the influence of higher diversity in tree 

stands on the development of near-surface vegetation layers, but also on single traits 

within BSC community species on raindrop impacts and interrill erosion. Moreover, a 

positive relationship between BSCs and LAI was detected based on six years of field 

observations in the BEF China experiment from 2010 to 2015 (Seitz et al., 2017). 

Higher LAI in subtropical forests might contribute to humid conditions and higher inter-

ception of light (Chang et al., 1991; Yan et al., 2000), which is benefit for the mosses 

and liverworts of BSCs (Seitz et al., 2017; Zhou et al., 2019). With the faster increase 

of LAI within stands of higher tree species richness, BSCs would be accordingly 

enhanced. Therefore, regarding the increase of LAI and BSCs and their correlation, we 

assume that forest stands with higher tree species richness will reach the tolerable soil 

erosion rate earlier. Thus, we recommend to consider the plantation of forest stands 

with higher tree diversity in this area to actively counteract soil degradation and 

improve ecosystem services, not only by the direct impact on the tree layer but also by 

influences on near-surface vegetation. 
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Table 8 Linear mixed-effects models for tree species richness (TSR), year and the interaction 

tree species richness × year on leaf area index (LAI) and biological soil crusts (BSCs) (n = 552). 

ddf mean denominator degree of freedom; F and P mean F-ratio and P-value of the significance 

test. 

Fixed  LAI  BSCs 

effect ddf F P  ddf F P 

TSR 40 8.6 < 0.01  40 1.0 0.32 

Year 529 35.6 < 0.001  535 92.5 < 0.001 

TSR× year 522 12.1 < 0.01  536 1.4 0.245 

Notes: Fixed effects were fitted sequentially as shown in the table while random effects are site, plot, runoff 

plots nested in plot and tree species composition. LAI was scaled. BSCs were square-root transformed 

with arcsign reconstruction and then scaled. Tree species richness and year were scaled. 

 

 

Figure 18 Leaf area index (LAI) in 2013, 2014 and 2015 under different tree species richness in 

the BEF China experiment in Xingangshan, Jiangxi Province, PR China. Gray points mean data 

collected at runoff plots scale (n = 552). Read spline dashed lines connected mean ± standard 

error of each tree species richness for each year. 
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Figure 19 Biological soil crusts (BSCs) (%) within ROPs in 2013, 2014 and 2015 under different 

tree species richness in the BEF China experiment in Xingangshan, Jiangxi Province, PR China. 

Gray points mean data collected at runoff plots scale (n = 552). Read spline lines connected 

mean ± standard error of each tree species richness for each year. 
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3.3. Soil carbon and nitrogen fluxes development after 

afforestation 

Temporal changes of soil carbon and nitrogen fluxes 

Sediment C concentration increased every year (p < 0.05) and was significantly higher 

than in the topsoil over the three years (p < 0.05) (Figure 20 and Figure 21). The same 

general relations were observed for sediment N concentrations (Figure 20 and Figure 

21). ER of C in sediment to soil were 1.5, 1.65 and 1.98 while for N they were 1.32, 

1.73 and 2.23 in the observed three years. Topsoil C/N ratio was 13.9 and sediment 

C/N ratio of 2013, 2014 and 2015 were 16.4, 13.3 and 14.0, respectively. Annual soil C 

and N fluxes significantly decreased every year at a rate of 50% (p < 0.05) (Figure 22). 

 

Figure 20 C and N concentration and C/N ratio of soil sampled at 0-5 cm depth in 2014 and 

sediment collected in 2013, 2014 and 2015 at the BEF China experiment in Xingangshan, 
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Jiangxi Province, PR China. Triangles represent soil C and N concentration from plots (n = 45) 

and sediment C and N concentration from plots (n = 45) based on 550 runoff plots measure-

ments. Horizontal lines within boxplot represent medians and diamonds represent means. Dif-

ferent small letters mean significant differences at p < 0.05. 

 

Figure 21 Means of carbon and nitrogen concentrations in soils and sediment sampled (0-5 cm) 

within 45 selected plots at the BEF China experiment in Xingangshan, Jiangxi Province, PR 

China. 
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Figure 22 Annual soil C and N fluxes in 2013, 2014 and 2015 at the BEF China experiment in 

Xingangshan, Jiangxi Province, PR China (n = 550). Triangles represent annual soil carbon and 

nitrogen fluxes from runoff plots (n = 182 in 2013, n = 158 in 2014 and n = 210 in 2015). Hori-

zontal lines within boxplot represent medians and diamonds represent means. Different small 

letters mean significant differences at p < 0.05. 

Sediment transported by water erosion are normally enriched in C and N compared to 

their source soils (Wang et al., 2013b). Our study confirmed these findings and showed 

ER of C and N in sediment to soil ranging from 1.2 to 2.0 for afforested areas. This is 

comparable with other land use systems which show ER varied from 1.2 to 4.0. For 

example, in an agricultural catchment in the Belgian Loess Belt, ER was between 1.2 

and 3.0 in simulated rainfall events captured by runoff plots (Wang et al., 2010). The 

enrichment process of C and N in eroded sediments can be attributed to the preferen-

tial removal of fine particles higher in mineral-organic complexes than coarser particles 

like sandy grains and micro-aggregates (Palis et al., 1997; Six et al., 2002; Zinn et al., 

2007). Another aspect is the transport of unprotected young organic material from the 

free and/or light fraction of organic matter in soils. This fraction is easily detached by 

water-induced surface erosion processes (Jacinthe et al., 2004; Stacy et al., 2015). 

Before the BEF China experiment was established and since the study area was previ-

ously covered by secondary forest, the organic horizon and topsoil is likely to contain a 

certain amount of unprotected organic materials with higher C/N ratio than the mineral 

soils (Wang et al., 2014b; Stacy et al., 2015; McCorkle et al., 2016). Therefore, eroded 
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sediment is not only richer in C and N but also shows a higher C/N ratio in the first year. 

Then, with soil erosion processes ongoing, the organic horizon depleted and more 

mineral soil was exposed to rainfall. Thus, eroded mineral soil was the dominate part 

within sediments, which resulted in C/N ratio decreasing in the following years and get-

ting closer to topsoil ratio (Figure 20). Annual soil C and N fluxes in our study were 

1.167 Mg ha-1 a-1 and 0.083 Mg ha-1 a-1 which is as much as in deforestation areas of 

the Canary Islands (Spain), with an annual soil C flux caused by water erosion of 1.14 

Mg ha-1 a-1 (Rodrıguez et al., 2004), but far higher than in forested areas (Stacy et al., 

2015). Severe soil C and N fluxes within BEF China in 2013 (2.03 Mg ha-1 ) mainly re-

sulted from high annual erosive rainfall amounts and less coverage of the soil surface 

(LAI and BSC) (Table 9) which caused considerable sediment delivery (Song et al., 

2019). Besides, soil C and N fluxes caused by water erosion accounted for approxi-

mate 24% of the 0-5 cm topsoil C (14.03 Mg ha-1 a-1) and N (1.02 Mg ha-1 a-1) (Li et al., 

2019), which occupied a considerable part of soil organic carbon stock. Therefore, the 

study suggests that deforestation and afforestation both should be implemented with 

caution as high nutrient losses and important differences between afforested areas and 

the undisturbed forest might occur in the earlier years, although temporal forest recov-

ery can reduce soil C and N fluxes by controlling water erosion.  

Table 9 AER, crown cover, LAI and BSC in the observed three years. (AER: annual erosive 

rainfall amount; LAI: leaf area index; BSCs: biological soil crusts) 

Year AER (mm) Crown cover (%) LAI BSC (%) 

2013 1319 47 1.04 24  

2014 1885 50  1.15 36  

2015 1920 62  1.45 45  

 

Influences of topography, soil properties, surface cover and plant 

traits on soil carbon and nitrogen fluxes 

Results from multiple linear regression models showed that topography does not play a 

significant role for sediment C and N concentrations as well as for annual fluxes (p > 

0.05) (Table 10). Soil properties (C and N concentrations), surface cover (BSC and 

stone cover) and plant traits (diameter at breast height, crown cover, tree height, crown 

width, LAI) could explain 39.7% of the variability of sediment C and N concentrations. 

Soil C and N positively affected sediment C and N concentrations while sediment de-

livery showed a negative impact. BSC and plant traits had comparable positive effects 

on sediment C and N concentrations. Regarding annual soil C and N fluxes, 93% of the 
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variability was explained by sediment delivery, sediment C and N concentrations, BSC 

and LAI.  

Table 10 Multiple linear regression of factors on sediment carbon and nitrogen concentrations 

and annual soil C and N fluxes. SCC: sediment carbon concentration; SNC: sediment nitrogen concen-

tration; SC: soil carbon; SN: soil nitrogen; ASD: annual sediment delivery; BSCs: biological soil crusts; LAI: 

leaf area index. DBH: diameter at breast height; n.s.: no significance at p < 0.05; *: significance at p < 0.05; 

**: significance at p < 0.01; ***: significance at p < 0.001. /: the variable not fitted into linear regression 

models. 

 Sediment CN concentrations  Annual soil CN fluxes  

 C N C N 

Adj.R2 0.397 0.401 0.925 0.934 

Factor Beta(Sig.) 

Slope n.s. n.s. n.s. n.s. 
Altitude n.s. n.s. n.s. n.s. 
SCC / / 0.26*** / 
SNC / / / 0.24*** 
ASD -0.05*** -0.05*** 1.02*** 1.02*** 
SC 0.07* / n.s. / 
SN / 0.08* / n.s. 
BSC  0.18*** 0.22*** -0.04*** -0.04*** 
Stone cover -0.03*** -0.03*** -0.01*** -0.01*** 
Surface cover 0.18*** 0.23*** -0.04*** -0.04*** 
Tree species richness n.s. n.s. n.s. n.s. 

LAI 0.07*** 0.05*** -0.03*** -0.03** 
DBH 0.18*** 0.20*** n.s. n.s. 
Crown cover 0.03*** 0.03*** n.s. n.s. 
Tree height 0.10*** 0.09*** n.s. n.s. 
Crown width 0.10* 0.10* n.s. n.s. 

 

Topography (slope and altitude) did not play a significant role for sediment C and N 

concentrations and annual soil C and N fluxes. This is surprising since many studies 

have shown that gravity driven processes of particle movement along slopes are to a 

large extend a function of slope angle (Wischmeier, 1965; Martz and De Jong, 1987; 

Jain et al., 2001; Lal, 2001; Cerdan et al., 2010a; Sun et al., 2014; Hancock et al., 

2019). One explanation is the uniform inclination ranging from 20° to 40° for all plots 

(Table 2). Further, the small size of our runoff plots does not allow rill formation and 

splash erosion is the main active process of particle detachment (Seitz, 2015). Thus, 

overland flow, the erosive power which is mainly controlled by slope (Wischmeier, 1965; 

Morgan, 2009), does transport the sediment to the collector but could not contribute 

significantly to erode topsoil during transport over such short transport distances of 

max. 0.4 m. In addition, sediment C and N concentrations was found to inversely corre-

late with sediment delivery, which is in accordance with other research (Lal, 1976; 

Owens et al., 2002; Nadeu et al., 2012; Wang et al., 2014a; Stacy et al., 2015). Given a 

certain slope length, more carbon-rich fine aggregates are depleted in the earlier stage 

of interill erosion (Lal, 1976; Polyakov and Lal, 2008; Jin et al., 2009; Martínez-Mena et 
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al., 2012). Therefore, with the decrease of sediment delivery in BEF China every year, 

associated sediment C and N concentrations were increasing. Furthermore, BSC and 

plant traits were another two key factors on sediment C and N concentrations (Table 

10). On the one hand, BSCs not only improve the labile organic carbon as they are 

aggregating biotic components and soil particles in the topsoil but also reduce sedi-

ment delivery (Schulten, 1985a; Eldridge, 1993; Seitz et al., 2017). With increasing 

BSC cover in the research plots every year from 2010 to 2015 (Seitz et al., 2017), once 

water erosion occurred and BSCs were destroyed and detached, sediment C and N 

concentrations would be enhanced. This also explained the increase of sediment C 

and N concentrations in bare plots. On the other hand, tree growth increases litter and 

root production in BEF China which can protect soil from splash erosion and reduce 

sediment delivery (Seitz et al., 2015; Huang, 2017; Sun et al., 2017). Hence, sediment 

C and N concentrations would be enhanced with sediment delivery decreasing.  

Our measurements confirm that annual soil C and N fluxes in afforested areas are 

strongly affected by sediment delivery, which was also shown for undisturbed forest 

and agriculture and grassland ecosystems (Zöbisch et al., 1995; Owens et al., 2002; 

Wang et al., 2013b; Stacy et al., 2015). This means that almost no dilution effects could 

be observed during the erosive events and particulate transport is the main mechanism 

of the C and N fluxes during erosion. From a soil conservation perspective, the results 

suggest that the first years after afforestation are most important to prevent high C and 

N fluxes due to erosion. One possible measure is to plant shrubs and to establish 

BSCs in different species compositions on bare ground.  

Soil carbon and nitrogen fluxes under different tree species richness 

No significant effect of tree species richness but a tendency was detected reducing soil 

C and N fluxes (Table 10 and Figure 23). This inspired the thinking of how the effect of 

tree species richness is defined. As many researchers declare, it is difficult to identify 

the impact of plant diversity as it interacts with other plant factors and soil properties 

(Bezemer et al., 2006; Pohl et al., 2009; Shrestha et al., 2010). In this study, BSC and 

LAI as the two significantly negative factors on soil C and N fluxes (Table 10) were de-

tected to increase with tree species richness from 2014 (Song et al., 2019), which 

masked the effect of tree species richness. Moreover, litter fall as a significant source 

of soil C and vital protection of soil surface from rainfall was reported to increase with 

tree species richness from 2015 (Seitz et al., 2015; Huang, 2017). Considering these 

findings, we assume that tree species richness may reduce soil C and N fluxes in the 

future. 
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Finally, measurements of soil C and N fluxes caused by water erosion in our research 

area need to be adapted for a potential assessment on a regional scale due to the run-

off treatment and measurement plot sizes. As we could not take the whole process of 

soil erosion (detachment, transport, deposition and export from the watershed) into 

consideration, further research is needed to accurately assess sediment export at af-

forested watershed scales. Furthermore, as remaining leaf litter and branches were 

removed from the ROP before the measurements, it has to be stated that the residuals 

protection on topsoil would improve erosion control by further decreasing sediment 

delivery and elements fluxes in ROP.  

 

 

Figure 23 Annual soil carbon and nitrogen fluxes in 2013, 2014 and 2015 under different tree 

species richness in the BEF China experiment in Xingangshan, Jiangxi Province, PR China. 

Black circles, triangles and diamonds represent mean and error bars represent standard error. 

Spline dashed lines connect mean values of each tree species richness for each year. Different 

small letters mean significant differences at p < 0.05. 
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3.4. Soil carbon stock changes after afforestation 

Changes of SOCD after five years of afforestation 

A significant decrease of SOCD at topsoil depth 0-20 cm was detected across the af-

forested plots from 2010 to 2014 (Figure 24). Means of SOCD at 0-5 cm, 5-10 cm and 

10-20 cm in 2010 and 2014 were 1.69 kg m-2 and 1.48 kg m-2, 1.25 kg m-2 and1.12 kg 

m-2, 2.02 kg m-2 and 1.82 kg m-2, respectively. The decreasing rates of SOCD were 

13%, 11%, 10% at soil depth 0-5 cm, 5-10 cm, 10-20 cm. At deeper soil depth (20-50 

cm), SOCD showed no significant difference between 2010 and 2014 (Figure 24). 

 

Figure 24 SOCD at different soil depths in afforested plots in 2010 and 2014 in BEF China. Hor-

izontal lines in boxplot represent medians and black dots represent means with standard error 

bars. Grey dots represent the SOCD of 113 plots and *** represent significant difference be-

tween 2010 and 2014 (paired t-tests p < 0.001). n.s represent no significance at p < 0.05. 

The changes of soil C stocks depend on the balance of C inputs and outputs (Davis 

and Condron, 2002). Our study showed SOCD significantly decreased in the afforested 

areas where were covered by secondary forest in the first five years. The result was 

reasonable: on the one hand, soil C decomposition was still continuing and might be 

accelerated during site preparation and human disturbance in the first years. On the 

other hand, limited C inputs from litter and fine roots due to the tree saplings were flow-

ing into soil from in the earlier stages of afforestation (Davis and Condron, 2002; Huang, 

2017; Sun et al., 2017). Therefore, these processes led to the decrease of soil C stock. 

Additionally, in the study the decreasing rate of SOC (87 g m-2 a-1 in the 0-10 cm and 

137 g m-2 a-1 in the 0-20 cm) was accordingly higher than findings from other studies 

(Paul et al., 2002; Shi and Cui, 2010; Deng et al., 2016a; Moore et al., 2018). For ex-

ample, in afforestation areas  less than < 5 years in China soil C reduced at an average 

rate of 20 g m-2 a-1 at 0-20 cm soil depth based on 55 observations (Shi and Cui, 2010). 



Results and discussion                                                                                                                40 

In another study, it could be shown that within the earlier ten years of a pasture con-

verted to a tree plantation soil C at the 0-10 cm showed  a decreasing rate of 60 g m -2 

a-1 (Moore et al., 2018). Meanwhile, at global scale, in the afforested agricultural areas 

less than < 5 years soil C in the < 10 cm layers generally decreased by 60.1 g m-2 a-1 

based on 73 observations (Paul et al., 2002). The higher decreasing rate of SOC in our 

research was mainly caused by denser tree plantations. In BEF China, the density of 

tree plantation (1.29 m × 1.29 m) implied more disturbance of soil and an accelerated 

decomposition of SOC during site preparation (Turner and Lambert, 2000; Guo and 

Gifford, 2002; Paul et al., 2002; Turner et al., 2005; Jandl et al., 2007; Laganiere et al., 

2010; Tosi et al., 2016). As shown in Figure 25A, bare plots without human disturbance 

almost kept the same amount of SOC stock as before afforestation along the whole soil 

profiles while failure afforested plots with soil disturbance had the decreased SOC. 

Moreover, tree growth could accelerate soil C mineralization for nutrients supply from 

soil. This point was enhanced by the finding that the afforested plots had a higher de-

creasing rate of SOC density than failure afforested plots (Figure 25). Besides, similar 

to tropical areas, subtropical areas has warm temperatures and moist soils as well as 

high soil microbial activity, which might facilitate high decomposition of organic matter, 

especially in soils without forest cover (Giongo et al., 2011; Qiu et al., 2015; de Araújo 

Filho et al., 2018). Therefore, an appropriate density of tree plantation, lower soil dis-

turbance and increased protection of soil surface should be considered during affor-

estation to reduce SOC depletion. 

Table 11 Multiple regression analysis of key factors on SOCD changes 

Factors 0-5 cm 5-10 cm 10-20 cm 20-30 cm 30-50 cm 0-50 cm 

   Adj. R2   

SOCD2010 -0.743*** -0.625*** -0.482*** -0.424*** -0.139*** -0.285*** 
Soil erosion n.s. / / / / n.s. 
TSR n.s. n.s. n.s. n.s. n.s. n.s. 
TS  n.s. n.s. n.s. n.s. n.s. n.s. 

AGB n.s. n.s. n.s. n.s. n.s. n.s. 

BGB n.s. n.s. n.s. n.s. n.s. n.s. 

Litter fall  n.s. / / / / n.s. 

Aspect n.s. n.s. n.s. n.s. n.s. n.s. 

Elevation  n.s. n.s. n.s. n.s. n.s. n.s. 

TRI n.s. n.s. n.s. n.s. n.s. n.s. 

MAAC n.s. n.s. n.s. n.s. n.s. n.s. 

Geomorphy n.s. n.s. 0.065*** 0.092*** 0.126*** 0.050*** 

n.s.: no significance at p < 0.05; ***: significance at p < 0.001. SOCD2010: soil organic carbon density of 

2010. TSR: tree species richness; TS: tree species; AGB: aboveground biomass; BGB: belowground bio-

mass; TRI: terrain ruggedness index; MCCA: Monte-Carlo based flow accumulation. 
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Key factors driving SOCD changes 

Multiple linear regression showed that SOCD2010 could explain 75% to 14% of the vari-

ability of SOCD changes along soil profiles (p < 0.001). Geomorphy had no significant 

effect on SOCD changes at the topsoil but subsoils. At 10-50 cm soil depth, 7% to13% 

of the variabilities of SOCD could be explained by geomorphy (R2 = 0.0710-20 cm, 0.0920-

30 cm and 0.1330-50 cm, p < 0.001, Table 11). Tree parameters (tree species, tree species 

richness, AGB, BGB and litter fall), soil erosion, aspect, elevation, TRI and MAAC did 

not play an important role in SOCD changes. Therefore, SOCD2010 and geomorphy 

were the main factors on SOCD changes at the earlier stage of afforested area in the 

study. 

Recent studies have shown that SOC decreases in soils with high original SOC and 

increases in soils with lower original SOC (Garten Jr, 2002; Guo and Gifford, 2002; 

Paul et al., 2002; Vesterdal et al., 2002; Stevens and Van Wesemael, 2008; Shi and 

Cui, 2010; Chen et al., 2017). Our results confirmed this point showing that SOC densi-

ty changes in a strong negative relation with the original SOCD in 0-20 cm soil depth 

(R2 > 0.5). One explanation might be afforestation can stimulate microbial activity and 

increase soil C decomposition by altering soil properties and microbial community 

composition (Deng et al., 2016b; Pei et al., 2016; Tosi et al., 2016; Xu et al., 2017; 

Hong et al., 2018; Zhou et al., 2018). For example, soil pH as an important index for 

microbial activity was found to increase after afforestation in BEF China (Figure 25). 

The increasing soil pH might improve total microbial biomass and the microbial activity 

(Pei et al., 2016) and thus accelerate microbial respiration and soil C decomposition 

rate which led to soil C and C/N decrease. This process was illustrated in Figure 26 

and Figure 27 by significant decreases of soil C/N from 2010 to 2014 and negative re-

lationship between changes of soil C/N and SOCD2010. In addition, the BEF China was 

previously covered by secondary forest and therefore in topsoil layer organic soil tend-

ed to have a high proportion of slowly decaying organic matter which mineralization 

rate is sensitive to temperature changes (Knorr et al., 2005; Xu et al., 2010; Wang et al., 

2013a; Li et al., 2018a). Considering the elevated soil temperature after secondary 

forest clearance in the study area (Ma et al., 2013), SOC mineralization might be ac-

celerated and thus led to more soil C reduction. In general, topography as an important 

environmental factor indirectly affects SOC dynamics by soil temperature, soil moisture, 

soil fertility and vegetation (Raich et al., 2006; Yimer et al., 2006; Lybrand and 

Rasmussen, 2015; Tesfaye et al., 2016; Tu et al., 2018). In our study area, topographic 

heterogeneity leads to ecological gradients due to the significant relationships between 

geomorphological positions and soil fertility and trees survival and growth (Yang et al., 

2013; Scholten et al., 2017). For instance, trees survival and growth increased with 
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elevation decreasing. Therefore, hollow and valley areas with higher tree coverage 

might have less changes of soil temperature and moisture and then SOC was decom-

posed less slowly to accumulate. Moreover, our result showed topography played a 

stronger effect on SOC of the deeper soil layers (Table 11). This was mainly caused by: 

Deeper soil had less human disturbance and site preparation. And, compared with sur-

face soils, deeper soils have a higher proportion of recalcitrant organic carbon which is 

sensitive to soil temperature and moisture changes caused by topography (Xu et al., 

2010; Wang et al., 2013a).  

 

Figure 25 Means of SOC density (A) and soil pH (B) at different soil depths in bare, failed affor-

ested and afforested plots in 2010 and 2014 BEF-China, respectively. 
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Figure 26 Soil C/N ratio at different soil depths in afforested plots of 2010 and 2014 in BEF Chi-

na.  Horizontal lines in boxplot represent medians and black dots represent means with stand-

ard error bars. Grey dots represent the Soil C/N ratio of 113 plots and *** represent significant 

difference between 2010 and 2014 (paired t-tests p < 0.001). 

 

 

Figure 27 Relationships between SOC density changes 2014-2010 and soil C/N ratios changes 

2014-2010 and 2010 SOC density in afforested plots of BEF China 
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Figure 28  SOC density changes at different soil depths under six geomorphons in afforested 

plots of 2010 and 2014 in BEF China. Horizontal lines in boxplot represent medians and black 

dots represent means with standard error bars. Grey dots represent the SOC density changes 

of 113 plots. Su = summit (n = 4); Ri = ridge (n = 18); Sp = spur (n = 18); Sl = slope (n = 44); Ho 

= hollow (n = 21); Va = valley (n = 8). 

Trees affect SOC mainly by C inputs from AGB and BGB such as litter and fine root 

(Kuzyakov and Domanski, 2000). For example, SOC in high forest productivity can be 

improved due to abundant C inputs from plant residence returning to soil (Dyckmans et 

al., 2000; Kuzyakov and Domanski, 2000). Additionally, tree species and tree species 

richness can affect SOC by their impacts on the quality and quantity of litter production 

as well as on the transfer rate of litter to SOC (Vesterdal and Raulund-Rasmussen, 

1998; Paul et al., 2002; Huang et al., 2017b).  This point was proved by many studies 

showing that different tree species had different SOC changes in afforested area (Paul 

et al., 2002; Laik et al., 2009; Laganiere et al., 2010; Shi and Cui, 2010). However, in 

our research no significant relationships existed between SOCD changes and tree 

species and tree species richness as well as forest biomass and litter fall (Table 11). It 

could be explained by that five years was too short for tree growth and C inputs from 

AGB and BGB transferring to SOC. As shown in Figure 29, limited C of AGB and BGB 

with a range of 0 to 2 kg C m-2 would flow into soil. For instance, litter fall as an im-

portant source of C input to soil only produced max. 0.3 kg C m-2 after five years of 

afforestation. Besides, tree not only allocates most of its biomass in the trunk but also 

has a slow turnover rate of its root biomass to soil (Cerri et al., 1991; Kuzyakov and 

Domanski, 2000; Guo et al., 2007; Laganiere et al., 2010), which suggests the in-

creased biomass C hardly contributes to SOC. Hence, in BEF China, the decrease of 

SOC could not be compensated by the increased C from forest biomass in the earlier 

stage of afforestation (Figure 29).  
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Figure 29 Carbon stocks of aboveground biomass, belowground biomass (2015) and 0-50 cm 

SOCD changes 2015-2010 in BEF China. C represent carbon. AGB represent aboveground 

biomass. BGB represent belowground biomass.  

 

Soil erosion did not influence SOCD changes in the study. We assume this was mainly 

caused by our experiment settings. On the one hand, we did not take the whole pro-

cess of soil erosion into consideration (splash, transport, redistribution and deposition) 

(Lal, 2003; Lal et al., 2015; Lal, 2019). The operable measurement unit of ROPs in the 

experiment was 0.4 m ×0.4 m, that is small and limited for water erosion process. On 

the other hand, leaf litter and branches as a protective role against soil erosion (Seitz et 

al., 2015), were removed from the ROPs, which is different from natural systems. 

Therefore, no certain relationship might be found when we linked sediment delivery at 

ROPs scale to SOC changes that were measured at plot scale (25 m × 25 m). In this 

respect, further research should be concentrated on water erosion influencing on SOC 

at the watershed scale. 
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4. Summary and outlook 

Within the BEF China project, research was conducted to describe the influence of 

afforestation on soil erosion and soil carbon in a subtropical Chinese forest ecosystem: 

In an early stage of afforestation, splash erosion might be accelerated because of the 

selected tree species. Results showed that vertical distributions of LAI and TKE of 

Lithocarpus glaber, Schima superba and Sapindus saponaria were significantly differ-

ent. TKE was measured with splash cups and affected by LAI and its spatial distribu-

tion. Sapindus saponaria enhanced TKE while Lithocarpus glaber and Schima superba 

reduced it. Skewness of LAI vertical distribution seems to be a suitable index to com-

prehensively describe tree functions within hydrological systems. However, many ques-

tions are still unclear, for example, to what extent the skewness values of LAI vertical 

distribution have negative or positive effects on TKE under different ages of tree spe-

cies not only for broadleaved species but also for needle species. Some recent meas-

urements (Figure 30) showed that higher LAI of two needle species (Cunninghamia 

lanceolata and Pinus massoniana) existed in the middle and lower parts of the trees, 

which was similar to Lithocarpus glaber and Schima superba. Skewness of LAI vertical 

distribution indicated these two needle species might produce lower TKE. However, it 

is challenged when we consider that soil erosion is still severe, where monospecific 

plantations are popular in subtropical China, as we declared before. Therefore, more 

research should concentrate on the spatial distribution of LAI of different tree species 

and its related hydrological process to address underlying mechanisms of soil erosion. 

 

Figure 30 LAI vertical distribution pattern of six tree species. 
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BEF China is still suffering from severe soil erosion even after six years of tree growth. 

It could be shown that mean annual soil erosion rates decreased with tree species 

richness significantly over the observed three years. LAI and BSCs were the two main 

factors driving soil erosion within tree stands of different species richness. Positive ef-

fects of tree species richness on tree canopy structure and BSCs might drive the re-

duction of soil erosion in the earlier successional stage after afforestation of tree plan-

tations. Therefore, the results not only highlight the importance of tree species richness 

on soil erosion control, but also enhance the role of LAI and BSCs and their temporal 

changes in the restoration of afforested ecosystems. However, research on LAI and 

BSCs and their temporal and spatial changes is still lacking. For example, although we 

found that LAI was increasing faster with higher tree species richness, the exact loca-

tions under the trees and amounts of increased LAI are still unclear (Figure 31). BSCs 

were abundant in every year of measurements, however, BSC dynamics, development 

patterns (e.g. in patches or area-wide) and species occurrence are still not known in 

detail (Figure 32).  

 

Figure 31 The development of leaf area at runoff plot scale (0.4 m × 0.4 m) of Plot R30 (24 tree 

species richness) in 2013, 2014 and 2015 (from left to right) at the BEF China experiment. 

 

Figure 32 The development of biological soil crusts (BSCs) in runoff plots (0.4 m × 0.4 m) of Plot 

N09 (24 tree species richness) in 2013, 2014 and 2015 (from left to right) at the BEF China 

experiment. 
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In BEF China, sediment C and N concentrations increased while annual soil C and N 

fluxes decreased with sediment delivery decreasing every year. Soil C and N fluxes in 

the study were as high as in deforestation areas even after six years of tree growth. 

Therefore, afforestation should be regarded with care, as high soil nutrient fluxes may 

result in the decrease of soil productivity in the earlier years. To reduce sediment deliv-

ery by increasing soil surface cover, BSC recovery is of particular interest. It is recom-

mended as a measure to conserve soil fertility and reduce C and N transported from 

soil to aquatic ecosystems and the atmosphere. In addition, soil C fluxes caused by 

water erosion are an important and dynamic component of terrestrial carbon stocks 

and should be taken into consideration in the C budget of afforested area. Therefore, 

using the current runoff treatment and measurement plot sizes (0.4 m × 0.4 m) is not 

the only thinkable way, but further research is needed to accurately assess sediment 

and nutrient transport  export in afforested areas at watershed scales, and also using 

DEMs with a cell size of 5 m × 5 m (Figure 33) and ArcGIS. 

Afforestation significantly reduced SOC stocks in formerly deforested areas. Early-

stage afforestation in BEF China resulted in a reduction of approximately 274 Mg SOC 

from 2010 to 2014 in total. Afforested areas with higher original SOC stock showed 

higher SOC losses. Tree growth and litter fall as an important carbon input to soil could 

not compensate SOC stock reduction in the earlier stage of afforestation. Therefore, 

high original SOC stocks of an area need more attention in afforestation ecosystem. 

Meanwhile, SOC changes within afforestation areas should be accounted for when the 

contribution to atmospheric CO2 dynamics is evaluated. The results highlight that affor-

estation in deforested areas contribute to atmospheric carbon accumulation and the 

original SOC stock could be an important parameter in modelling afforested ecosystem 

carbon balances. Further studies should focus on how long the afforested area re-

quires to play a role as a carbon sink as well as SOC recovery at the pre-deforested 

level by different models such as DNDC (Denitrification–Decomposition). 

              

Figure 33 The elevation of Site A and Site B in the BEF China project. 
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Abstract 

The hilly red soil region in southern China is still facing serious soil erosion, even after 

long-term afforestation projects. This might result from structural shortcomings of the 

tree species chosen for afforestation. Within the Biodiversity and Ecosystem Function-

ing China project (BEF China), we used point cloud data from terrestrial laser scanners 

(TLS) and splash cups to analyze spatial leaf area index (LAI) and to predict the poten-

tial of splash erosion in subtropical forests. High LAI of Lithocarpus glaber and Schima 

superba was measured mainly at the middle and lower parts of the trees while for Sap-

indus saponaria it was found at the upper parts. LAI was decreasing from the tree 

stems to the edges of the canopy. Lognormal and exponential linear models were suit-

able to describe the vertical and horizontal LAI distribution of selected tree species, 

respectively. Sapindus saponaria generally had the highest values of throughfall kinetic 

energy (TKE) among the analyzed tree species and measured rainfall events. In the 

radial direction, higher LAI tended to produce lower TKE, whereas in the vertical direc-

tion, higher skewness of LAI distribution had higher TKE. LAI and its spatial distribution 

both were important for TKE. These findings can help to understand mechanisms of 

splash erosion in forest plantations related to unsuitable spatial LAI of tree species 

planted. It might further improve our knowledge how tree diversity may influence splash 

erosion by enriching the canopy layers in an early successional stage of subtropical 

forest plantations. 

Key words:   BEF China, TLS, Tree species, Splash erosion, LAI, TKE 

1. Introduction 

Soil erosion is a serious environmental hazard of global scale (Lal, 2003) and vegeta-

tion cover of the soil surface is one key factor in controlling soil erosion (Stednick, 1996; 

Cao et al., 2008; Shi et al., 2009; Chen et al., 2011; Filoso et al., 2017; Feng et al., 

2018). Forest vegetation cover affects splash erosion at the soil surface by intercepting 

rainfall and thus modifying rain patters, such as adapted drop size and speed, chang-

ing rainfall amount and spatial distribution (Nanko et al., 2006; Geißler et al., 2012b; 

Geißler et al., 2013; Goebes et al., 2015b). It is generally accepted that soil erosion is 

reduced under forests (Smith, 1914). However, research showed that high sediment 

delivery often occurred in forested catchments in subtropical regions (Marks, 1998; 

Molnar, 2004; Zhao, 2006). One reason is that effects of forest cover on splash erosion 

are dynamic in space as the structures of tree species differ. Hence, calculating an 

index that describes the ability of cover plants, especially trees, is essential to analyze 

the splash erosion risk under forest and can help to better understand the relationship 

between cover plants and splash erosion. Such an index can also serve in planning 
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and management of afforestation as part of soil and water conservation approaches, 

e.g. in the hilly red soil region in southern China. 

One well established index that describes the plant cover is the leaf area index (LAI, 

(Jordan, 1969)). It is defined as projected leaf area per unit ground area (Gower and 

Norman, 1991). As an important biophysical parameter, LAI is often used in quantita-

tive analyses of processes related to vegetation dynamics such as rainfall interception 

(Maass et al., 1995), soil erosion modeling (Laflen et al., 1997; Zhou et al., 2008; 

Zhang et al., 2014), land surface process models (Chen et al., 2011; Tesemma et al., 

2015) and global climate change (Claverie et al., 2016). In the subtropical part of China, 

studies showed that LAI has a significant effect on throughfall kinetic energy (TKE) in 

secondary forest (Geißler et al., 2012a), soil loss in 30-year afforestation (Sun et al., 

2010; Zhang et al., 2011) and sediment discharge and TKE in young afforestation 

(Goebes et al., 2015a; Seitz et al., 2016). Further vegetation factors that are correlated 

with TKE in forests are crown cover, leaf traits, tree height and branch architecture 

(Cao et al., 2008; Geißler et al., 2010; Geißler et al., 2012b; Goebes et al., 2015a; 

Goebes et al., 2015b). Another important aspect is, that the process of free raindrops 

passing the tree canopies is dynamic (Nanko et al., 2006) and the canopy architecture 

can change the drop size and spatial distribution significantly at different positions and 

height of the tree canopy (Nanko et al., 2006; Goebes et al., 2015b). Hence, the rela-

tionship between general LAI values and splash erosion is questionable since it ne-

glects the effects of spatial distributions of LAI. Also, most studies concentrate on ma-

ture forests (Cao et al., 2008; Geißler et al., 2013). Regarding afforestation measures 

on heavily eroded soils with a low structure stability and without shrubs or litter cover, 

like in the hilly red soil region in southern China (Zhao, 2006; Shi et al., 2009), the role 

of forests in their early stage of tree growth to protect the soil from erosion is of ample 

interest. Such research is still scarce. 

Generally, there are several methods to estimate LAI, such as determination from sat-

ellite images (Knyazikhin et al., 1998; Deng et al., 2006; Xiao et al., 2014), instrumental 

measurements (Fassnacht et al., 1994; Chen et al., 1997; Gower et al., 1999), and 

direct acquisition from destructive measures (Gower et al., 1999; Nanko et al., 2006). 

As high-resolution, non-destructive and efficient tool, terrestrial laser scanners (TLS) 

are increasingly applied in forest inventory for reliable three-dimensional (3D) data ac-

quisition and comparison (Clawges et al., 2007; Maas et al., 2008; Fleck et al., 2011; 

Lovell et al., 2011), especially for indexes of difficult acquisition using traditional meth-

ods (Moorthy et al., 2011; Li et al., 2014b). In addition, TLS is a useful tool for the re-

trieval of LAI (Hosoi and Omasa, 2006; Moorthy et al., 2008; Zheng and Moskal, 2012). 
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Using TLS to measure LAI also allows to precisely calculate the radial and vertical dis-

tribution of LAI for individual trees over the whole crown area.  

The objectives of this study were (1) to assess the differences in the spatial distribution 

of LAI among different common tree species and along the tree stem and height of 

single species and (2) to explore the relationship between spatial distribution of LAI and 

TKE for different rainfall events. 

2. Materials and Methods  

2.1 Study area 

The field experiment was conducted in the context of the joint Sino–German–Swiss 

Research Unit “BEF China” (BEF, biodiversity and ecosystem functioning) (Bruelheide 

et al., 2011). The BEF China project is located in Xingangshan Town, Dexing City, 

Jiangxi Province, PR China (29.08°–29.11° N, 117.90°–117.93° E). The climate of the 

area is dominated by subtropical monsoon, with mean annual temperature of 17.4 ℃ 

and mean annual precipitation of 1821 mm (Yang et al., 2013). The subtropical sum-

mer monsoon starts from May to July (Goebes et al., 2015a; Seitz et al., 2016). The 

area is hilly with mean elevations of 189 m a.s.l. (site A) and 137 m a.s.l. (site B) 

(Scholten et al., 2017). Soils in the region are mainly Cambisols, Acrisols and Fer-

ralsols (Scholten et al., 2017). The BEF China project is a forest experiment on approx-

imately 50 ha and includes two parallel sites, A and B, planted in 2009 and 2010, re-

spectively. These two sites were established by transplanting seedlings of 40 local 

trees and shrubs after logging of the original secondary forest (Bruelheide et al., 

2014b).  

2.2 Sample selection and data collection 

2.2.1 Tree parameters retrieval 

In this study, three subtropical tree species were selected, including evergreen broad-

leaved species (Lithocarpus glaber and Schima superba) and a deciduous broadleaved 

species (Sapindus saponaria). These three species are recommended species for af-

forestation projects regarding water and soil conservation in the subtropical region of 

China (The Ministry of Water Resources, 2013). For each tree species, three tree indi-

viduals were randomly selected. LAI measurements were carried out in October 2013 

and point cloud data for each tree was obtained using a Terrestrial Laser Scanner 

(RIEGL VZ-400, Horn, Austria). For each tree, 3 to 5 measurement positions were set 

at different directions with a horizontal distance ranging from 1.5 to 8 m. The view zen-

ith angle from the center of the scanner to the canopy was set to 60 degrees. Before 

the measurement, high reflectance sheets were stuck on pegs around the trees at vari-
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ous distances, heights and directions, to guarantee that more than 6 common sheets 

were scanned for each two adjacent stations, which provided reference points to con-

vert all data in the same coordinate. The scanning angle resolution of the TLS was 

0.01°and measurement rate was 122000 points s-1. 

2.2.2 TKE measurements 

TKE was measured using Tübingen Splash Cups (T-Cup, (Scholten et al., 2011)). The 

cup has a diameter of 4.6 cm and a height of 4 cm (Scholten et al., 2011). It is filled 

with uniform fine sand (0.125 mm). The detached sand is calculated by the weight dif-

ference between the dry sand in the filled-up splash cup before measurements and the 

dry sand inside the cup after the rainfall event. Then kinetic energy of rainfall (KErf) is 

calculated by the detached sand (ds) per splash cup (sc) using the equation (Eq.1) 

below with a modified slope and standardization to 1 m2 (Goebes et al., 2015b).  

                                         Eq.1 

 

Fig. 1. Splash cup measurement design with six positions according to Goebes et al. (2015b). 

Gray stars, black dots and red circle lines represent tree individuals, splash cup position and 

radius around tree stems, respectively. 

Its application was approved in field studies in subtropical China (Geißler et al., 2012a; 

Geißler et al., 2012b; Goebes et al., 2015b). Five monoculture plots of Lithocarpus gla-

ber (1 plot), Schima superba (2 plots) and Sapindus saponaria (2 plots) were selected 

to install splash cups under different tree individuals using the design of (Goebes et al., 

2015b). The cup positions were 15 cm, 30 cm, 45 cm, 60 cm, 75 cm, and 95 cm from 

the stem respectively (Fig 1, six splash cups per plot). Five rainfall events from May to 
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July in 2013 were measured (Table. 1). In total, data from 150 splash cups were col-

lected. 

Table 1 Characteristics of the five captured rainfall events (Goebes et al., 2015b). 

Rainfall 

events 

Rainfall amount 

(mm) 

Rainfall duration 

(h) 

Mean throughfall 

amount (mm) 

TKE 

(J/m2) 

Event 1 6.6 2.33 5.0 78.8 

Event 2 23.3 10.16 28.3 255.3 

Event 3 39.3 11.5 47.9 354.7 

Event 4 61.2 14.5 73.8 553.7 

Event 5 185.7 30.58 192.7 1292.8 

 

2.3 Data analysis 

LAI was estimated using a volume element model from the point cloud data (Hosoi and 

Omasa, 2006; Zheng and Moskal, 2012) and was calculated with Matlab 2010b (The 

Mathworks Inc., Natick, MA, USA). Basic parameters of trees (ground diameter, tree 

height, first branch height, crown width, branch number and crown cover) were meas-

ured with the laser scanner software RiScan Pro (http://www.riegl.com). A one-way 

analysis of variance (ANOVA) was conducted to compare the mean value of canopy 

structure parameters. Skewness of LAI vertical distribution and Pearson correlation 

analyses to test LAI effects on TKE were conducted with IBM SPSS Statistics for Win-

dows Version 19.0 (IBM Corp., Armonk, NY, USA). Before the Pearson correlation 

analyses, TKE was log10 transformed to normal distribution and tested with the Kol-

mogorov–Smirnov test (Significance = 0.2). Graphs and curve fittings were processed 

in Origin 8.0 (Origin Lab Corporation, Northampton, MA, USA)  

3. Results 

3.1 Spatial distribution of LAI between different tree species 

In the vertical direction (Fig 2), high LAI of Lithocarpus glaber and Schima superba was 

mainly located at the middle-lower part of the trees (Skewness = 0.13 and -0.22, re-

spectively) while at Sapindus saponaria it was mainly found at the middle-upper part 

(Skewness = 1.24). LAI of Schima superba and Lithocarpus glaber ranged from 0.05 to 

0.15 at a tree height from 0.5 to 2 m, while Sapindus saponaria ranged from 0.02 to 0.2 

at a tree height from 2 to 3 m. Lognormal equations were suitable to describe the verti-

cal distribution LAI of Lithocarpus glaber, Schima superba (Fig 2, R2 > 0.9) and Sapin-

dus saponaria (R2 = 0.7).  
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For LAI radial distribution, remarkable exponential decreasing trends were observed 

from the tree stems to the edge of the canopy with the highest value at the stems (Fig 3, 

R2 > 0.9). The order of the stem LAI value was ranked as Sapindus saponaria > Litho-

carpus glaber > Schima superba. From 0.1 m to 0.3 m along stem distance, LAI of 

Sapindus saponaria decreased drastically. 

 

Fig. 2. LAI vertical distribution pattern of three tree species. 

 

Fig. 3. LAI radial distribution patterns of three tree species. 
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3.2 Potential of splash erosion under different tree species  

Sapindus saponaria had the highest values of TKE among the observed species and 

events. Compared to TKE of open-field rainfalls, TKE was enhanced under Sapindus 

saponaria and reduced under Lithocarpus glaber and Schima superba (Fig 4). For all 

measured rainfall events, Sapindus saponaria increased by 60-80% compared to TKE 

in open-field, while Lithocarpus glaber and Schima superba decreased approximately 

60% and 30-80%, respectively. With increasing radial distance from the stem, TKE of 

all three species was generally increasing during different rainfall events although sig-

nificance of positive correlation was only detected with Lithocarpus glaber (Table 2). 

  

Fig. 4. Throughfall kinetic energy (TKE) changes with the distances from the stem under differ-

ent tree species in Xingangshan, Jiangxi Province, PR China. 

Table 2 Pearson Correlation between distance from the stem and TKE. 

 Lithocarpus glaber Schima superba Sapindus saponaria 

Event 1 0.73＊ 0.02 0.14 

Event 2 0.51 0.67 0.28 

Event 3 0.44 -0.18 0.46 

Event 4 0.87＊ 0.23 0.25 

Event 5 0.88＊ 0.49 0.10 

＊ Significant level p < 0.05 

4. Discussion  

4.1 Difference in spatial distribution of LAI 
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Tree saplings growth and tree shape were significantly species-specific (Fig 2, 5), indi-

cating an interspecific variation in certain functional traits in BEF China as described in 

detail by (Li et al., 2014a). Different growth in tree functional traits among specific spe-

cies might reflect their adaptive strategy related to the hereditary and environment. 

According to classical life-history theory of plants (Pianka, 1970), light-demanding tree 

species might be characterized by small values of leaf mass per area and maximum 

adult height, while shade-tolerant species show the opposite trait values (Poorter et al., 

2008). In our research, the different leaf traits of trees showed different vertical distribu-

tion patterns of LAI, while same leaf trait of trees had similar distribution patterns, as it 

was shown that little difference between Lithocarpus glaber and Schima superba oc-

curred (Fig 2 and 5, Table 3). Accordingly, shape and size of the leaves did not only 

influence the LAI in general, but were also related to the spatial distribution of LAI along 

tree height. Deciduous trees like Sapindus saponaria allocate more photosynthetic 

products in height and branch growth with simple crown architecture, while evergreen 

trees such as Lithocarpus glaber and Schima superba would consume more energy to 

branch construction and leaves with complex crown architecture (Chave et al., 2009; 

Kang, 2010). Leaf mass area distribution is correlated with light availability, moisture 

and nutrients transportation and production of trees (Ellsworth and Reich, 1993). Our 

results showed that a lognormal model can be used to predict the vertical distribution of 

LAI for broadleaved species. This result was in accordance with Lu (2011) and Zhao et 

al. (2015), who found that foliage distribution of major broadleaved species in second-

ary forest in northern China had the lognormal patters. As an important biophysical 

parameter in ecology, LAI not only quantifies effects of canopy thickness, leaf mass 

and branch count (Geißler et al., 2013), but also its vertical distribution illustrate the 

distribution of tree height, first branch height and canopy thickness, indicating the pro-

cess of rain drops from tree canopy to surface soil. In our study, LAI vertical distribution 

and its skewness reflected the difference in height of the first branch, number of 

branches and crown cover among the three species, for Lithocarpus glaber and Schi-

ma superba both having lower skewness with lower height of first branch, more 

branches and high crown cover comparing to Sapindus saponaria (Table 3). Moreover, 

the skewness could also account for the heterogeneity in horizontal and vertical leaf 

area distribution, which may provide a better way to understand the species-specific 

relationship between LAI and canopy water storage (Llorens and Gallart, 2000; Keim 

and Link, 2018) and tree diversity effects on TKE (Geißler et al., 2013). Therefore, 

skewness of LAI vertical distribution might be a promising index comprehensively de-

scribing tree function in ecosystem, especially the process of hydrology. In further stud-
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ies, more tree species of LAI vertical distribution will be established to prove the availa-

bility. 

 

Fig. 5. Three single tree species images from point cloud data measured with the laser scanner 

software RiScan Pro in Xingangshan, Jiangxi Province, PR China. 

Table 3 Comparison of basic parameters of three investigated tree species in Xingangshan, 

Jiangxi Province, PR China (n = 9). 

Tree  

species 

Leaf  

habit 

Ground 

Diameter(m) 

First branch 

height(m) 

Tree  

height(m) 

Crown  

Width(m) 

Number 

branches 

Crown cover 

Lithocarpus glaber E 0.037±0.015a 0.30±0.04 b 2.98±0.21 a 1.70±0.23 a 33±4 a 0.38±0.03a 

Schima superba E 0.071±0.037a 0.15±0.13 b 3.14±0.79 a 2.12±0.36 a 40±5 a 0.42±0.09a 

Sapindus saponaria D 0.049±0.007 a 1.13±0.45 a 3.48±0.07 a 1.91±0.28 a 7±5b 0.28±0.02b 

E represents evergreen broadleaved species; D represents deciduous broadleaved species. Different 

lower letters in the same tree basic parameters denote significant difference at p < 0.05 

4.2 LAI effects on TKE 

Leaf area index is regarded as a major influence on TKE of rainfall drops (Gómez et al., 

2001; Park and Cameron, 2008) and thus differences in LAI spatial distribution contrib-

ute to differences in TKE (Geißler et al., 2013), although they both have seasonal tem-

poral patterns (Levia Jr and Frost, 2006; Doughty and Goulden, 2008). TKE generally 

increased as the radial distance from the trunk increased with the LAI decreasing dur-

ing different rainfall events. (Nanko et al., 2011) found that the TKE was positively cor-

related with the radial distance in a 9.8-m-tall transplanted Japanese cypress tree 

(Chamaecyparis obtusa). Our results demonstrated that TKE was species-specific, with 

lower TKE of Lithocarpus glaber and Schima superba than Sapindus saponaria. On the 

one hand, it is assumed that if Lithocarpus glaber and Schima superba have higher LAI, 

they also show high rainfall interception. This is because canopy water storage in-

creases with increasing LAI with a higher vertical distribution of foliage and canopy 

roughness (Aston, 1979; Marin et al., 2000; Fleischbein et al., 2005) and falling drops 
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and drop sizes are more likely to be re-modified and split by lower parts of the canopy 

(Wiersum, 1985). On the other hand, for Sapindus saponaria and in the radial direction, 

high LAI is mainly located at the top height (Skewness = 1.24), which may lead to less 

interception and higher speed of falling drops reaching the soil surface and thus con-

tribute to higher kinetic energy. Lognormal distribution LAI of Lithocarpus glaber and 

Schima superba with lower Skewness values indicated that the two species may have 

higher rainfall interception and lower speed of falling drops which contribute to reducing 

TKE. Research show that many factors affect TKE in forests such as crown cover and 

thickness, leaf traits, leaf area index, first branch height, tree height and branch archi-

tecture (Cao et al., 2008; Geißler et al., 2012b; Goebes et al., 2015a; Goebes et al., 

2015b) . As we discuss above, skewness of LAI vertical distribution would be a better 

index to exactly indicate the process of rain drops from tree canopy to surface soil by 

combining the effects of many factors such as canopy thickness, leaf mass and branch 

count, tree height and first branch height together. Also, our result show higher skew-

ness of LAI vertical distribution had higher TKE among the observed species and 

events. Therefore, the importance of LAI spatial distribution should be emphasized for 

TKE. Compared to open field, TKE of Lithocarpus glaber and Schima superba was 

reduced while for Sapindus Saponaria it was enhanced. The finding reminded us that 

afforestation in the first years might accelerate splash erosion because of structural 

shortcomings of tree species chosen. It also gives the suggestion to improve the pro-

tection of soil in afforested area by combining different tree species and thus apply a 

higher level of biodiversity. However, many questions are still unclear, for example, to 

what extent the skewness values of LAI vertical distribution have negative or positive 

effects on TKE under different ages of tree species not only for broadleaved species 

but also for needle species. 

5. Conclusions 

Spatial distributions of LAI of Lithocarpus glaber, Schima superba and Sapindus sapo-

naria were determined by a terrestrial laser scanner (TLS) in a subtropical Chinese 

afforestation. Vertical distributions of LAI and TKE of different tree species were signifi-

cantly different. TKE was measured with splash cups and affected by LAI and its spa-

tial distribution. Sapindus saponaria enhanced TKE while Lithocarpus glaber and 

Schima superba reduced it. In an early stage of afforestation, splash erosion might be 

accelerated because of tree species selected. Skewness of LAI vertical distribution 

appears to be a suitable index to comprehensively describe tree functions within hydro-

logical systems. Combining LAI with its spatial distribution patters using a TLS could be 

a promising method to evaluate potential splash erosion risk in afforested areas. 
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Abstract 

Biodiversity plays a crucial role in forest ecosystem sustainability. However, it is un-

clear how tree diversity and especially the relationship between diversity and ecosys-

tem functioning affect soil erosion. Based on a forest biodiversity and ecosystem func-

tioning experiment established in subtropical China (BEF China), we measured soil 

erosion at four tree species richness levels (monocultures, 8 tree species, 16 tree spe-

cies and 24 species stands) during the rainy seasons from 2013 to 2015. The result 

showed that mean annual soil erosion rates were detected to decrease with tree spe-

cies richness significantly over the observed three years. Leaf area index (LAI) and 

biological soil crusts (BSCs) were the two main factors driving soil erosion within tree 

stands of different species richness. Positive effects of tree species richness on tree 

canopy structure and BSCs might drive the reduction of soil erosion in the earlier suc-

cessional stage after afforestation of tree plantations. Therefore, we highlight the im-

portant influence of tree species richness on soil erosion control, hydrologic processes 

and thus sustainable ecology services. 

Key words:   BEF China, Soil loss, Tree species richness, Leaf area index, Biological 

soil crust 

1. Introduction 

Growing concern about biodiversity is emerging worldwide due to substantial contem-

porary declines in species richness at different scales (Tittensor et al., 2014; Mori et al., 

2017). As part of recent scientific research, forest diversity has shown to promote bio-

mass production, carbon accumulation and nutrient cycling (Kelty, 2006; Cardinale et 

al., 2012; Gamfeldt et al., 2013; Forrester, 2014; Błońska et al., 2018; Huang et al., 

2018). At the same time, the question how forest diversity might influence soil erosion 

also attracts researchers’ attention. Answering this question is significant not only for 

designing restoration and rehabilitation programs to achieve the sustainable goals for 

ecosystem development but also for emphasizing the diversity of the biota in nature 

based solutions when they will be designed (Keesstra et al., 2018a; Keesstra et al., 

2018b; Solomun et al., 2018). Recent studies pointed out that plant diversity could en-

hance soil stability and reduce soil erosion in different environments such as alpine 

grasslands or on dyke slopes (Pohl et al., 2009; Martin et al., 2010; Wang et al., 2012b; 

Geißler et al., 2013; Berendse et al., 2015).  

Meanwhile, it was shown that in young forest plantations, soil erosion is strongly affect-

ed by tree species but a clear effect of tree diversity could not be found in early stage 

forests (Goebes et al., 2015b; Goebes et al., 2016; Seitz et al., 2016). Those studies 

suggested an unclear relationship between tree diversity and soil erosion during forest 
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recovery. Therefore, research on the temporal development of soil losses under differ-

ent forest diversity levels is essential for understanding how biodiversity might sustain 

ecological services such as water erosion prevention in forest plantations. 

Subtropical forests as one of the most productive ecosystems in the world are closely 

related with global biogeochemical cycles and climate change (Melillo et al., 1993; Bala 

et al., 2007). They are increasingly suffering from intensive human activities such as 

deforestation, but also human-induced afforestation with decreasing plant diversity 

(Durieux et al., 2003; Malhi et al., 2008; Barrufol et al., 2013). Without human disturb-

ance, subtropical forests in China are dominated by evergreen broad-leaved species 

(Wang et al., 2007; Bruelheide et al., 2014b). However, these areas were mostly 

cleared and have been converted into monospecific conifer stands in the last decades 

for many reasons such as economic benefits and easy management (Zhao, 2006; 

Wang et al., 2007; Li et al., 2014a). For instance, the two most important tree species 

for forest resources and ecological services in subtropical China, Chinese fir and Pinus 

massoniana, cover approximately 12.39 × 106 ha or 10% of the total forest area and 

6.78 × 105 ha or 27% of the forest area in the Three Gorges Reservoir area(Wang et al., 

2012a; Huang et al., 2013; Wang, 2014). Apparently, these monoculture plantations 

bring with them a higher potential of ecological insecurity because of greater suscepti-

bility to adverse environmental conditions and negative effects on soil properties (Yang 

et al., 2009; Li et al., 2014a). Moreover, soil erosion commonly occurs in forest planta-

tions and highly varies in forested areas of subtropical China ranging from 0 - 6.32 t ha-

1 yr-1 (Hill and Peart, 1998; Guo et al., 2015; Seitz, 2015; Seitz et al., 2016). This re-

sults in high sediment load in rivers, although great endeavors have been made to re-

store and afforest vast areas with commercial monocultures (Zhao, 2006; Wang et al., 

2007; Lei et al., 2009; Guo et al., 2015). These current circumstances imply that mono-

specific plantations might be less suitable for soil erosion control. 

Generally, tree diversity is assumed to affect soil erosion mainly by two aspects: First, it 

optimizes patterns of spatial vegetation structures and distribution (e.g. by better gap 

filling) and thus strengthens the interception of rainfall (Zheng et al., 2008; Geißler et al., 

2013; Liu et al., 2018). Second, it could reduce soil erosion by improving soil properties 

and soil covering vegetation on the forest floor that attributes to the reduction of 

raindrop impacts on the soil surface as well as enhancing soil water capacity and infil-

tration (Janssens et al., 1998; Bezemer et al., 2006; Pohl et al., 2009; Martin et al., 

2010; Wang et al., 2012b). Tree species richness has shown to increase canopy strati-

fication and growth rates, leading to a more homogenous canopy development due to a 

higher number of functional traits (Lang et al., 2010; Lang et al., 2012a; Chisholm et al., 

2013). Recent research showed that different tree species have different spatial distri-
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bution patterns in monocultures but also in mixtures, e.g. regarding leaf area, leading to 

changing kinetic energy of raindrops and thus splash erosion rates (Goebes et al., 

2015a; Goebes et al., 2015b). Furthermore, tree traits such as leaf area or crown cover 

affect the development of soil surface covering vegetation, in particular biological soil 

crusts (BSCs), e.g. by modifying light conditions and thus the succession sequence 

from cyanobacteria to bryophytes (Issa et al., 1999; Belnap et al., 2001; Zhang et al., 

2016). BSCs dominated by mosses and liverworts in turn, proved to effectively mitigate 

soil losses in young forest plantations in subtropical China (Seitz et al., 2017).  

Based on these findings, we assume that tree species richness reduces soil erosion 

with ongoing tree growth by not only modifying the tree canopy structure but also im-

proving the soil surface coverage by BSCs. Thus, we hypothesize in this study that tree 

species richness could affect soil erosion by altering vegetation patterns in the tree 

canopy layer as well as in the vegetation layer directly covering the soil surface.  

To answer those hypotheses, we made use of a Biodiversity and Ecosystem Function-

ing Experiment under forest in PR China using monocultures and three different tree 

species richness levels (Bruelheide et al., 2014a). Soil erosion was measured as inter-

rill sediment delivery with micro-scale runoff plots which are commonly applied in cur-

rent studies (Seitz, 2015; Cerdà et al., 2017; Rodrigo-Comino et al., 2018) and annual 

soil erosion rates calculated after Wischmeier and Smith (1978a). Canopy traits, soil 

surface cover and soil parameters were recorded and results obtained using linear 

mixed effects models (Trogisch et al., 2017).  

2. Materials and Methods  

2.1 Study area 

The research was conducted in the framework of the BEF China project, which is lo-

cated in Xingangshan Town, Dexing City, Jiangxi Province, PR China (29.08°–29.11° N, 

117.90°–117.93° E). The climate is dominated by subtropical monsoon with a mean 

annual temperature of 17.4 ℃ and a mean annual precipitation of 1635 mm with half of 

it falling from May to August (Goebes et al., 2015b). The natural vegetation is dominat-

ed by broadleaved forest with evergreen species (Trogisch et al., 2017). The area 

shows mainly hills at elevations from 105 to 200 m with slopes from 15° to 41° (Schol-

ten et al., 2017). Soils in the project are mainly Cambisols, with Anthrosols in 

downslope positions and Gleysols in valleys and the bedrock is non-calcareous slates 

weathered to saprolite (Scholten et al., 2017).  

2.2 Experimental design and data collection 

2.2.1 Research plots 
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The BEF China project includes two parallel sites (A and B) on which commercial mon-

ocultures were originally planted that were cut down in 2009 and 2010, respectively 

(Bruelheide et al., 2014a). Holes of 0.5 m (length) × 0.5 m (width) × > 0.2 m (depth) 

were dug for seedlings (Yang et al., 2013). Forty local tree species were replanted in 

monocultures and mixtures of 2, 4, 8, 16 and 24 species on 566 plots with each meas-

uring 25.8 × 25.8 m (667 m2) (Yang et al., 2013). For each plot (Fig. 1), 400 tree indi-

viduals were planted in 20 rows of 20 tree individuals with a planting distance of 1.29 m 

(Bruelheide et al., 2014a). For this study, 43 of these plots were selected, 22 on Site A 

and 21 on Site B with four tree species richness levels: monocultures, 8 tree species, 

16 tree species and 24 tree species stands (Table 1).  

 

Fig. 1. Random positions of runoff plots for soil erosion measurements and soil samples in one 

research plot of the BEF China project (0.4 m length × 0.4 m width × 0.1 m height). 

Table 1 Tree, topography and soil data (0-5 cm) of 43 selected research plots in the BEF China 

project. (TSR: tree species richness; Soil BD: soil bulk density; SOC: soil organic carbon) 

Plot TSR Tree species Site 

Topography Soil properties 

Slope 

(o) 

Aspect Altitude 

(m) 

BD 

(g m-3) 

pH SOC 

(%) 

D29 1 M. flexuosa B 31 N 159 0.90 3.68 2.77 

I25 1 M. yuyuanensis B 29 N 152 0.96 3.47 2.90 

M07 1 B. luminifera B 31 S 129 0.89 3.55 2.52 
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N02 1 M. flexuosa B 41 S 129 0.89 3.61 3.01 

N05 1 A. altissima B 32 N 119 0.89 3.63 3.17 

N28 1 I. polycarpa B 19 E 167 0.97 3.56 2.21 

Q27 1 A. fortunei B 35 S 160 0.97 3.66 2.78 

Q29 1 M. leptophylla B 33 E 144 0.90 3.74 2.42 

R29 1 C. fargesii B 33 S 146 0.91 3.65 2.48 

T13 1 M. thunbergii B 21 W 133 0.96 3.44 2.59 

U16 1 E. japonicus B 20 W 147 0.94 3.44 2.65 

V24 1 E. chinensis B 32 E 137 0.94 3.71 3.01 

W10 1 Ph. bournei B 27 E 147 0.92 3.45 2.35 

W11 1 E. glabripetalus B 19 S 148 1.04 3.25 2.72 

X21 1 M. grijsii B 24 N 132 0.91 3.65 2.54 

Y09 1 C. biondii B 32 E 126 1.10 3.71 1.93 

E31 1 Q. fabri A 22 S 144 0.95 3.86 2.48 

E33 1 L. glaber A 19 S 144 1.12 3.94 2.18 

E34 1 C. henryi A 21 S 125 1.06 4.09 2.84 

G33 1 Q. serrata A 18 S 127 0.85 3.92 3.45 

I28 1 L. formosana A 26 S 163 0.90 3.81 3.29 

K19 1 S. superba A 24 N 199 0.80 3.70 4.18 

L10 1 C. eyrie A 34 S 211 0.92 3.92 2.81 

L11 1 C. sclerophylla A 28 S 201 1.04 3.87 2.95 

N11 1 S. saponaria A 26 S 203 0.82 3.63 3.93 

N13 1 S. sebiferum A 31 S 182 0.78 3.78 3.62 

N17 1 R. chinensis A 28 W 221 0.91 3.79 3.39 

O22 1 C. myrsinaefolia A 21 W 229 0.86 3.80 3.54 

O27 1 Ch. axillaris A 21 W 185 1.07 4.12 2.41 

Q13 1 K. bipinnata A 30 W 215 0.90 3.86 3.84 

R14 1 C. glauca A 30 N 228 0.82 3.80 4.25 

J29 8 1* B 31 N 182 0.81 3.39 4.85 

Q17 8 2* B 22 N 131 0.99 3.52 2.91 

S10 8 3* A 36 S 220 0.96 3.79 3.04 

T15 8 4* A 30 N 244 0.87 3.67 3.42 

I22 16 5* B 28 S 119 1.07 3.58 2.28 
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S22 16 5* B 33 W 145 1.00 3.61 3.26 

L22 16 6* A 21 W 180 0.8 3.79 3.48 

M22 16 6* A 23 W 221 0.95 3.79 3.48 

U10 16 6* A 40 S 231 0.96 3.86 3.22 

R30 24 7* B 27 S 136 0.95 3.67 2.46 

N09 24 8* A 33 S 218 0.86 3.58 3.60 

R18 24 8* A 36 W 215 0.91 3.82 3.50 

1*: 8 tree species from monocultures N05, Y9, W11, U16, N28, X21, D29 and W10. 

2*: 8 tree species from monocultures Q27, M07, R29, V24, Q29, T13, I25 and Q. phillyreoides. 

3*: 8 tree species from monocultures E34, L11, O27, I28, G33, N11, N13 and N. sinensis. 

4*: 8 tree species from monocultures E33, E31, N17, K19, L10, R14, O22 and Q13. 

5*: 16 tree species from 1* and 2*. 

6*: 16 tree species from 3* and 4*. 

7*: 24 tree species from 5*, from monocultures E33, K19, R14, L10, L11, and Cinnamomum camphora, 

Daphniphyllum oldhamii and Diospyros glaucifolia. 

8*: 24 tree species from 6* and Cinnamomum camphora, Daphniphyllum oldhamii, Diospyros glaucifolia, 

Acer davidii, Castanopsis carlesii, Melia azedarach, Quercus acutissima and Sapium discolor. 

 

2.2.2 Measurement of sediment delivery 

Based on the design of BEF China and considering the various research topics investi-

gated, a selected area of each research plot was used for soil erosion measurements 

(Bruelheide et al., 2014b; Trogisch et al., 2017). Five micro-scale runoff plots (0.4 m 

length × 0.4 m width × 0.1 m height) were randomly installed in 2013 and connected to 

20 L reservoirs to collect runoff and sediment delivery (Fig. 1) (Seitz et al., 2016). The 

runoff plots were operated from May to July during the rainy season in 2013, 2014 and 

2015. Runoff volume was collected in situ and sediment delivery was calculated after 

sampling. In total, 535 valid measurements from 215 runoff plots were captured (180 in 

2013, 152 in 2014 and 203 in 2015). 

2.2.3 Tree parameters  

Tree measurements with laser scanning (FARO Laser Scanner Photon 120, FARO 

Technologies Inc., FL, USA) at all plots started in September 2010 for both experi-

mental sites on a yearly base, which were determined by the central 6 × 6 trees (36 

trees) in the monocultures and the central 12 × 12 trees (144 trees) in the 8, 16 and 24 

tree species stands (Li et al., 2014a; Li et al., 2017).  
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Crown cover and leaf area index (LAI) were measured each May from 2013 to 2015 at 

the ROP scale using a fish-eye camera system (Seitz et al., 2016). 552 valid pictures of 

forest canopy at runoff plot scale were captured. 

2.2.4 Soil surface cover 

Soil surface cover including biological soil crusts (BSCs) and stone cover was surveyed 

yearly. BSCs were measured photogrammetrically during the rainy seasons from 2013 

to 2015 within the runoff plots. Perpendicular images for each runoff plot were taken by 

a camera system (Canon 350D, Tokio, Japan). The images were processed by the grid 

quadrat method with 10 × 10 subdivisions of a digital grid in GIMP 3.0. BSCs and stone 

cover were separated by hue distinction. Further soil surface cover by shrubs was not 

present due to weeding according to the experimental design and a continuous leaf 

litter layer could not be recorded during the first years of this early successional affor-

estation (Seitz, 2015). 

2.2.5 Soil properties  

The soil sampling was conducted in 2014. Soil cores with 6 cm in diameter were taken 

to a depth of 50 cm and then divided into five depth increments (0-5 cm, 5-10 cm, 10-

20 cm, 20-30 cm and 30-50 cm) (Scholten et al., 2017). For this study, soil properties 

of the 0-5 cm increment were used (Table 1). For each plot, nine soil cores were col-

lected (Fig. 1) and mixed. Soil samples were air-dried, sieved through a 2 mm mesh, 

handpicked to remove plant and animal residuals and then grounded for soil analyses. 

For total soil carbon analyses, about 40 mg of ground sample material was weighed 

into tin foil and analyzed using oxidative heat combustion at 1150 °C in a helium at-

mosphere in a Vario EL III elemental analyzer (Elementar Analysensysteme GmbH, 

Hanau, Germany). Soil pH was determined with a 1 M KCl solution (soil-to-solution 

ratio 1:2.5) by a WTW pH meter pH 340 (WTW GmbH, Weilheim, Germany) using a 

Sentix 81 electrode according to DIN EN15933 (2012). Since pH is < 6.7 for all sam-

ples: total soil carbon = soil organic carbon (SOC). In addition, five replicates of bulk 

density samples were obtained for each plot at the same depth increments in 2015. 

The soil bulk density (BD) was gravimetrically determined from the five replicate volu-

metric samples per depth increment (samples dried at 105 °C).  

2.2.6 Rainfall characteristics  

Rainfall data during the soil erosion measurements was captured by climate stations on 

both sites (ecoTech data logger with Vaisala weather transmitter and ecoTech tipping 

bucket balance, Bonn, Germany) (Fig. 2). Daily accumulated precipitation curves and 

the ten largest daily rainfall events during the three years were shown in Fig. 2. a and b. 
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Further data on regional precipitation was used from the National Meteorological Infor-

mation Center (NMIC) of China and China Meteorological Administration (CMA). 

 

Fig. 2 (a) Daily accumulated precipitation and (b) The ten largest daily rainfall events in BEF 

China from 2013 to 2015. 

2.3 Statistical methods 

2.3.1 Annual soil erosion rate 

A rainfall threshold of 12.7 mm was applied to distinguish erosive rainfall amounts after 

Wischmeier and Smith (1978a). Annual erosive rainfall amount (AER, mm) and erosive 

rainfall during the runoff plot measurements (ERM, mm) in the rainy seasons were cal-

culated based on precipitation curves from climate stations (Fig. 2). Then, with sedi-

ment delivery acquired during the runoff plot measurements (SE, Mg ha-1), an annual 

soil erosion rate (Mg ha-1) was calculated (Eq. 1). 

Annual soil erosion = (AER／ERM) × SDE                                                          Eq. 1  

2.3.2 Data analysis 

We used linear mixed effects models to (I) analyze the temporal development of annual 

soil erosion rates under changing tree species richness and to (II) investigate driving 

factors on soil erosion rates and how in turn those factors are influenced by tree spe-

cies richness. 
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Before modelling, annual soil erosion rates from 2013 to 2015 were twice square root 

transformed ( ) to fit normal distribution. A first model was calculated with tree spe-

cies richness, year and the interaction of tree species richness with year as fixed fac-

tors, while site, plot, runoff plot nested in plot and tree species composition were fitted 

as random factors. 

Further models were compiled to identify explaining parameters on soil erosion. Tree 

height, stem diameter, crown width, crown cover, LAI, biological soil crusts, surface 

cover and soil properties were fitted as fixed factors, while site, runoff plots nested in 

plot and tree species composition were fitted as random factors. If multi-collinearity 

(correlation index > 0.7) was detected among the fixed factors, correlated factors were 

fitted individually in exchange to the counterpart.  

Finally, models were used to analyze the effects of tree species richness on identified 

main influencing factors of soil erosion by using tree species richness, year and the 

interaction of tree species richness with year as fixed factors, while site, plot, runoff plot 

nested in plot and tree species composition were used as random factors. 

All statistical analyses were conducted with R 3.4.3 (R Foundation for Statistical Com-

puting, Vienna, Austria). Graph and curve fittings were processed in Origin 8.0 

(OriginLab Corporation, Northampton, USA). 

3. Results 

3.1 Soil erosion under different tree species richness 

In 2013, monocultures and 24 tree species stands had similar mean soil erosion rates 

with 43.5±3.1 Mg ha-1 and 45.8±7.7 Mg ha-1, whereas 16 tree species stands showed 

lower rates (28.7±8.3 Mg ha-1) and 8 tree species stands showed the lowest value 

with 22.5±3.4 Mg ha-1 (Fig. 3). From 2014 to 2015, the mean annual soil erosion de-

creased from monocultures (24.7±2.1 Mg ha-1, 11.3±1.9 Mg ha-1) to the 8 tree spe-

cies stands (20.8±4.6 Mg ha-1, 7.9±2.6 Mg ha-1), to the 16 tree species stands (18.2

±3.6 Mg ha-1, 5.3±0.8 Mg ha-1) and finally to the 24 tree species stands (17.5±5.6 

Mg ha-1 and 2.7±0.8 Mg ha-1). Besides, the highest and lowest annual soil erosion 

rates measured during 2013-2015 were all detected in monocultures (Fig. 3), indicating 

that monocultures have a high variability regarding soil erosion. From linear mixed ef-

fects model, tree species richness reduced annual soil erosion rates over the observed 

three years significantly (Table 2, P < 0.001, F = 65.13). 
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Fig. 3. Annual soil erosion (Mg ha-1) in 2013, 2014 and 2015 under different tree species rich-

ness in the BEF China experiment in Xingangshan, Jiangxi Province, PR China. Gray points 

mean data collected from runoff plots (n = 535). Red spline dashed lines connected 

mean±standard error of each tree species richness for each year.  

Table 2 Linear mixed effects models for the effects of tree species richness (TSR), year and the 

interaction tree species richness × year on annual soil erosion (n = 535). (Annual soil erosion 

were twice squared root scaled while tree species richness and year were scaled. ddf mean 

denominator degree of freedom; F and P mean F-ratio and P-value of the significance test.) 

Fixed effect  ddf F P 

TSR 522 65.13 < 0.001 

year 529 262.60 < 0.001 

TSR × year 522 2.049 0.152 

Notes: fixed effects were fitted sequentially as shown in the table while random effects are site, plot, runoff 

plots nested in plot and tree species composition. 

 

3.2 Factors driving changes of soil erosion with different tree species richness 

Regarding the linear mixed effects model (Table 3), results showed that tree parame-

ters and BSC negatively affected soil erosion (P < 0.01). The estimate for LAI (P < 

0.001), crown cover (P < 0.05), crown width (P < 0.01), tree height (P < 0.01), stem 

diameter (P < 0.01) and BSC (P < 0.001) on soil erosion were -0.21, -0.20, -0.06, -0.09, 

-0.08 and -0.52, respectively. Soil properties including soil BD, soil pH, SOC and topog-

raphy parameters including slope and altitude did not show significant effects on soil 

erosion. Therefore, tree canopy parameters and BSCs were the two main factors driv-

ing soil erosion. 
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Table 3 Linear mixed effects models for annual soil erosion (n = 535). (LAI: leaf area index; 

BSCs: biological soil crusts; soil BD: soil bulk density; SOC: soil organic carbon. ddf mean de-

nominator degree of freedom; F and P mean F-ratio and P-value of the significance test.)  

Fixed effect ddf F  P Estimate 

LAI 246 22.49 0.000 -0.21 

BSCs 515 198.28 0.000 -0.52 

Soil BD 32 15.01 0.079 0.06 

Soil pH 32 2.92 0.097 0.08 

SOC 32 0.09 0.650 0.02 

Slope 32 5.50 0.025 0.01 

Altitude 31 0.08 0.228 0.04 

Crown cover 300 20.675 0.011  -0.20 

Tree height 61 2.021 0.001  -0.09 

Crown width 61 2.034 0.001  -0.06 

Stem diameter 64 9.959 0.002 -0.08 

Notes: Fixed effects were fitted sequentially as shown in the table while random effects are site, plot, runoff 

plots nested in plot and tree species composition. As multicollinearity of fixed factors (correlation index > 

0.7) was detected among LAI, crown cover, tree height, crown width, and stem diameter, one factor was 

fitted individually in exchange to the other in the linear mixed effects model. All variables were tested on 

normal distribution. Annual soil erosion was twice squared root scaled while BSCs were square-root trans-

formed with arcsign reconstruction. Then all variables were scaled before modelling. 

 

A significantly positive effect of tree species richness on LAI was found and the size of 

this effect increased with years (Table 4 and Fig. 4; PTSR < 0.001, FTSR = 7.6; Pyear < 

0.001, Fyear = 24.6; PTSR : year < 0.01, FTSR : year = 9.1). Monocultures had the lowest LAI, 

with mean values of 0.95 in 2013, 1.02 in 2014 and 1.25 in 2015 (Fig. 4). 8 tree species 

stands had the highest LAI in 2013 and 2014 with mean values of 1.43 and 1.66 and 

lower in 2015 with a mean of 1.78. LAI of 16 tree species and 24 tree species stands 

was increasing from 1.24 and 0.93 in 2013 to 1.93 and 1.65 in 2015 respectively, indi-

cating that they both have faster increase rate of LAI.  

Regarding BSCs, an increasing trend with tree species richness was shown, although 

no significant effect of tree species richness was detected (Table 4 and Fig. 5). 16 tree 

species stands showed the highest coverage of BSCs with 32%, 48% and 57% from 

2013 to 2015 (Fig. 5). Monocultures, 8 tree species and 24 tree species stands in 2013 

had a similar BSCs coverage ranging from 16%-17%. Then, the ranges of their BSCs 
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coverage were 30%-35% in 2014 and 44%-52% in 2015 with the order of monocultures 

< 8 tree species stands < 24 tree species stands. 

Table 4 Linear mixed-effects models for tree species richness (TSR), year and the interaction 

tree species richness × year on leaf area index (LAI) and biological soil crusts (BSCs) (n = 552). 

ddf mean denominator degree of freedom; F and P mean F-ratio and P-value of the significance 

test. 

Fixed  LAI  Biological soil crusts 

effect ddf F P  ddf F P 

TSR 40 8.6 < 0.01  40 1.0 0.32 

Year 529 35.6 < 0.001  535 92.5 < 0.001 

TSR× year 522 12.1 < 0.01  536 1.4 0.245 

Notes: Fixed effects were fitted sequentially as shown in the table while random effects are site, plot, runoff 

plots nested in plot and tree species composition. LAI was scaled. Biological soil crusts were square-root 

transformed with arcsign reconstruction and then scaled. Tree species richness and year were scaled. 

 

Fig. 4. Leaf area index (LAI) in 2013, 2014 and 2015 under different tree species richness in the 

BEF China experiment in Xingangshan, Jiangxi Province, PR China. Gray points mean data 

collected at runoff plots scale (n = 552). Read spline dashed lines connected mean ± standard 

error of each tree species richness for each year. 
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Fig. 5. Biological soil crusts (BSCs) within runoff plots (%) in 2013, 2014 and 2015 under differ-

ent tree species richness in the BEF China experiment in Xingangshan, Jiangxi Province, PR 

China. Gray points mean data collected at runoff plots scale (n = 552). Read spline lines con-

nected mean ± standard error of each tree species richness for each year. 

 

4. Discussion 

4.1 Soil erosion under different tree species richness 

Annual soil erosion rates in the afforested study area were 40.6 Mg ha-1 in 2013, 23.5 

Mg ha-1 in 2014 and 9.7 Mg ha-1 in 2015. Those rates are importantly higher than the 

1.89 Mg ha-1 a-1 generally assumed for forests in the south of China (Guo et al., 2015), 

even if we consider that measurements with micro-scale runoff plots were focusing on 

interrill erosion only. In Europe, the annual soil erosion rate under forest was given as 

0.7 Mg ha-1 a-1 (Maetens et al., 2012), whereas it ranged from 0 to 8 Mg ha-1 a-1 in Aus-

tralia (Cerdan et al., 2010b). Considering that soil erosion rates of 1 Mg ha-1 a-1 are 

assumed to be tolerable in general (Verheijen et al., 2009) and in the range of 0.12 to 

0.25 Mg ha-1 a-1 particularly under undisturbed forests (Patric, 1976), we conclude that 

the BEF China experiment is still suffering from severely high soil erosion even after 6 

years of forest restoration. 

Our study showed that higher tree species richness lead to decreasing soil erosion 

rates during the three years of observation. These calculated rates suggest that higher 

tree species richness could reduce soil erosion in subtropical Chinese forest planta-

tions. For instance, stands of tree species richness higher than eight with annual soil 

erosion rate 16.1 Mg ha-1 a-1 showed to reduce soil erosion by 30% compared to mon-

ocultures (26.5 Mg ha-1 a-1). Therefore, more diverse plantations should be considered 

as an important afforestation policy in this region to help conserving soil and water re-
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sources. However, in 2013, tree species richness did not show a decreasing pattern 

regarding soil erosion, as 24 tree species stands showed higher rates than 16 and 8 

tree species stands and comparable rates to monocultures. This absence of a tree di-

versity effect was mainly caused by the early successional stage of the forest experi-

ment (Seitz et al., 2016). At this point, tree species richness had not yet contributed to 

vegetation cover development both in the canopy and the biological soil crust layer in a 

way that it affects soil erosion (Li et al., 2014a; Goebes et al., 2015b; Seitz et al., 2016). 

In 2014, 24 tree species stands showed lowest erosion rates followed by 16 tree spe-

cies stands, 8 tree species stands and monocultures. This finding indicates that tree 

diversity could alter soil erosion with ongoing tree growth and changing vegetation pa-

rameters, but forest ecosystems need several years of time for adaption. A similar re-

sult could be observed in land abandonment in the Mediterranean mountains of Spain 

based on an 11 years observation, with agricultural abandonment increasing soil ero-

sion in the first two years due to low vegetation recovery and the development of a soil 

crust then resulting in lower erosion rates afterwards (Cerdà et al., 2018). Therefore, it 

is necessary to monitor soil erosion in forest plantations for a longer term to identify the 

effect of plants and tree diversity in particular (Seitz et al., 2016; Trogisch et al., 2017). 

4.2 Tree species richness reduced soil erosion by positive effects on tree canopy 

and biological soil crusts 

In forests, natural rainfall passes through the vegetation cover before hitting the soil 

surface and can potentially cause soil erosion. We assume that positive effects of tree 

species richness on this vegetation cover above the soil surface result in a reduction of 

soil erosion. 

Forest canopies influence soil erosion mainly by intercepting rainfall and altering rainfall 

patterns (Goebes et al., 2015b). Raindrops are modified by tree and leaf traits within 

the forest canopy while rainfall amounts are reduced by vertical distribution of foliage 

and canopy roughness. It has been shown that trees with high LAI have high rainfall 

interception (Aston, 1979; Marin et al., 2000; Fleischbein et al., 2005) and several stud-

ies pointed out that LAI has a significant negative effect on throughfall kinetic energy 

and thus soil erosion at different forest stages in the subtropical part of China (Zhang et 

al., 2011; Geißler et al., 2013; Seitz et al., 2016; Song et al., 2018). These results are 

in line with our finding that increasing LAI over time significantly reduced soil erosion. 

As one key factor on soil erosion, LAI at runoff plot scale was increasing every year 

from 2013 to 2015 in the research area. This increase of LAI strengthened the intercep-

tion of rainfall and modified water fluxes. At the same time, tree species richness 

showed a significantly positive effect on LAI. Faster increases of LAI in stands of higher 

tree species richness resulted in higher decrease of annual soil erosion rates. In addi-
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tion to this finding, previous investigations conducted in the same study area showed 

that tree species with different architecture and trait forms (Geißler et al., 2012a; 

Goebes et al., 2015a; Li et al., 2017) such as Sapindus saponaria, Lithocarpus glaber 

and Schima superba planted in different tree species richness levels have different 

patterns of spatial distribution for LAI (Song et al., 2018). Thus, the combination of 

these differing tree species planted in mixtures leading to more homogenous layering 

as well as the faster increase of LAI allocated from different tree species collectively 

optimize patterns of spatial vegetation structures and distribution (Lang et al., 2012a; 

Lang et al., 2012b; Peng et al., 2016). These optimized patterns could enhance the 

interception of rainfall within the tree canopies, prolong the process of raindrops falling 

on surface soil and improve the efficiency of aboveground vegetation in reducing rain-

fall kinetic energy and thus leading to a faster decrease of annual soil erosion along a 

tree species richness gradient. Therefore, further studies on positive effects of tree 

species richness on LAI appear to be necessary with particular focus on underlying 

mechanisms within remote vegetation layers such as tree, branch and leaf traits. 

Furthermore, near-surface vegetation layers such as BSC communities are of great 

importance for soil erosion control (Belnap and Gillette, 1997; Belnap, 2006; Belnap 

and Büdel, 2016). They were abundant within the study area and used the new habitat 

created by deforestation as pioneer vegetation in the resulting vegetation gap (Seitz et 

al., 2017). These aggregations of biotic components including bacteria, fungi, mosses, 

lichens, algae and bryophytes in the topsoil (Belnap and Büdel, 2016; Bowker et al., 

2018) were temporally dynamic. As another main factor on soil erosion in this study, 

BSCs showed an increasing trend in coverage with higher tree species richness, which 

consequently lead to a decrease in soil erosion rates. BSCs mitigate the kinetic energy 

of raindrop impacts on the soil surface and stabilize the upper soil surface as well as 

they reduce the surface water flow (Liu and Singh, 2004; Belnap, 2006; Rodríguez-

Caballero et al., 2012; Gao et al., 2017; Seitz et al., 2017; Xiao et al., 2019). Further 

research is necessary to understand the influence of higher diversity in tree stands on 

the development of near-surface vegetation layers, but also on single traits within BSC 

community species on raindrop impacts and interrill erosion.  

Moreover, a positive relationship between BSCs and LAI was detected based on six 

years of field observations in the BEF China experiment from 2010 to 2015 (Seitz et al., 

2017). Higher LAI in subtropical forests might contribute to humid conditions and higher 

interception of light (Chang et al., 1991; Yan et al., 2000), which is benefit for the 

mosses and liverworts of BSCs (Seitz et al., 2017; Zhou et al., 2019). With the faster 

increase of LAI within stands of higher tree species richness, BSCs would be accord-

ingly enhanced. Therefore, regarding the increase of LAI and BSCs and their correla-
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tion, we assume that forest stands with higher tree species richness will reach the tol-

erable soil erosion rate earlier.  

Thus, we recommend to consider the plantation of forest stands with higher tree diver-

sity in this area to actively counteract soil degradation and improve ecosystem services, 

not only by the direct impact on the tree layer but also by influences on near-surface 

vegetation. 

5. Conclusions  

The study area in subtropical China is still suffering from severe soil erosion even after 

6 years of tree growth. It could be shown that higher tree species richness leads to 

decreasing soil erosion by positive effects on tree canopies and surface covering BSCs. 

Compared to monocultures, stands with tree species richness higher than eight could 

reduce soil erosion by more than 30%. Therefore, plantations with higher diversity 

should be regarded as an important afforestation policy in subtropical China for soil and 

water conservation. Further research needs to concentrate on how tree diversity im-

pacts soil erosion at a watershed scale, but also on how different plant traits and char-

acteristics influence the erosion process and are in turn also influenced by diversity. 
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Abstract  

Afforestation helps worldwide not only to increase the production of timber but also to 

enhance water and soil conservation and reduce atmospheric CO2 levels. However, 

little research addresses the role of afforestation for carbon (C) and nitrogen (N) turno-

ver and transport by soil erosion under forest, which is important for soil fertility and the 

assessment of carbon and nitrogen fluxes from soil to adjacent aquatic ecosystems as 

well as to the atmosphere. Based on the research platform of the BEF (Biodiversity and 

ecosystem functioning) China project, we measured the amount of C and N transported 

with sediment delivery from 550 runoff plots during 2013 and 2015. Our results show 

that 116.7 g C m-2 a-1 and 83 g N m-2 a-1 were transported by soil erosion between 2013 

and 2015 in total. Although, eroded sediment C and N concentrations increased with 

forest age and were higher than in topsoils (enrichment ratio ranging from 1.2 to 2.0), 

annual soil C and N fluxes significantly decreased at a rate of 50% in the observed 

three years together with sediment delivery. Soil properties and biological soil crusts 

(BSCs) cover as well as plant traits mainly affect sediment C and N concentrations. 

This study indicates that afforestation in the earlier stage should be done with great 

caution as high nutrients loss by water erosion can occur. Further, our study highlights 

the importance of accurate estimation of sediment delivery and C and N fluxes under 

forest for assessing terrestrial C and N budget in afforested ecosystems.  

Key words:  Afforestation; Water erosion; Soil C and N fluxes; Runoff plots; BEF China 

1. Introduction 

Soil erosion significantly affects on-site soil properties like soil biodiversity, soil fertility, 

soil water holding capacity as well as off-site sediment-related problems like surface 

water pollution, muddy floods and eutrophication of shallow lakes (Quinton et al., 2010; 

Gardi et al., 2013; Adhikari and Hartemink, 2016; Scholten et al., 2017). Further, soil 

erosion strongly affects global carbon cycle as it redistributes top soil material which is 

typically rich in soil carbon (C) and nitrogen (N) (Carpenter et al., 1998; McCorkle et al., 

2016; García-Díaz et al., 2017; Poesen, 2018; Lal, 2019). Around the world, 5.7 Pg C 

equivalent to 0.82% of global soil carbon stock (699 Pg in 0-30 cm soil depth) was es-

timated to be displaced by soil erosion every year (Lal, 2003, 2018). In China, water 

erosion induced 180 ± 80 Tg C equivalent to 0.41% of national topsoil C stock (43.6 Pg 

in topsoil) of displacement per year between 1995 and 2015 (Song et al., 2005; Ni, 

2013; Yue et al., 2016). These results confirm the importance of soil C transported by 

erosion processes for the global carbon balance. 

Many studies address land use change as driving factor of soil C alterations by soil 

erosion (Jacinthe et al., 2004; Martinez-Mena et al., 2008; Nadeu et al., 2012). This 
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includes afforestation which increasingly spreads in many countries (Paul et al., 2002; 

Korkanç, 2014; Keenan et al., 2015; Yosef et al., 2018). China as one of the largest 

cultivators of forest plantations in the world has afforested approximately 90% of its 

forest area expansion since the last 50 years (Piao et al., 2009; Hong et al., 2018). 

Generally, increased forest cover prolongs the process of throughfall reaching soil sur-

face by intercepting raindrops, modifying drop size and speed, and changing through-

fall amount and energy (Nanko et al., 2006; Geißler et al., 2012b; Geißler et al., 2013; 

Masselink et al., 2016). In addition, afforestation can improve soil properties and struc-

ture such as soil water holding capacity and aggregate stability (Gol et al., 2010; Kor-

kanç, 2014; García-Díaz et al., 2017) and produces litter that covers the soil surface 

and protects against soil erosion (Seitz et al., 2015). Therefore, it is widely accepted 

that afforestation could reduce soil erosion (Bonan, 2008; Zhao et al., 2013; Keesstra 

et al., 2017). However, recent examples from subtropical China show that afforestation 

has an inconsistent effect on throughfall kinetic energy and sediment delivery (Goebes 

et al., 2015a; Seitz et al., 2016) and thus C and N fluxes. Positive or negative effects of 

forests for soil erosion depend on many dynamic and species specific factors such as 

leaf area index (LAI), BSC, tree height, spatial distribution of leafs, stand age and tree 

species richness (Goebes et al., 2015a; Seitz et al., 2016; Song et al., 2018; Song et 

al., 2019). Over time after afforestation, sediment delivery decreases (Song et al., 

2019). However, there is a lack of research on coupling of sediment and C and N flux-

es during erosion events under different land use especially in afforested areas (Stacy 

et al., 2015; Doetterl et al., 2016).  

Therefore, main objectives of this study are (i) to assess temporal changes of sediment 

C and N concentrations and annual soil C and N fluxes by water erosion in afforested 

areas and (ii) to determine which topographic features, soil properties and plant traits 

control such C and N fluxes. 

2. Materials and methods 

2.1 Study area 

The study was carried out as part of the BEF China experiment, located close to 

Xingangshan Town, Dexing City, Jiangxi Province, PR China (29.08°–29.11° N, 

117.90°–117.93° E). BEF China was established in 2009 (for more information see 

Bruelheide et al. (2014b)). As a forest experiment, it provides a platform to study affor-

estation impacts on erosion-induced C and N fluxes and the underlying mechanisms. 

Subtropical monsoon dominates the area with a mean annual temperature of 17.4℃ 

and a mean annual precipitation of 1635 mm which half of it falling from May to August 

(Goebes et al., 2015b). Broadleaved forest with evergreen species is the natural vege-
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tation (Seitz et al., 2017). The hilly terrain with mean elevations of 189 m a.s.l. (site A) 

and 137 m a.s.l. (site B) has steep slopes with inclinations from 15° to 41° (Scholten et 

al., 2017). The Middle and Upper Proterozoic slightly metamorphosed sedimentary 

bedrocks are covered from crest to valley by Regosols, Cambisols and Gleysols as 

main soils types (Scholten et al., 2017). 

2.2 Experiment design  

Two parallel sites (A and B) are included in the BEF China project. After logging of 

commercial monocultures, forty local tree species were replanted in different species 

mixtures on 566 research plots (25.8 m × 25.8 m each) with 400 tree saplings per plot 

(1.29 m × 1.29 m each) in 2009 and 2010 (Bruelheide et al., 2014a). In this study, 45 of 

those plots were selected (see Supplementary 1). Five micro-scale runoff plots (ROP, 

0.4 m × 0.4 m, cleared from leaf litter and branches) with 20 L reservoirs were random-

ly installed on each research plot in 2013 to collect runoff and sediment (Seitz et al., 

2016). 550 valid ROP measurements during the rainy seasons from May to July were 

captured with 182 in 2013, 158 in 2014 and 210 in 2015, respectively. Runoff volume 

was collected in situ and sediment delivery was determined after sampling, drying at 

40℃ and weighing (Seitz et al., 2016). Dried sediment was carefully collected and 

grounded on a ball mill for carbon and nitrogen analysis. Sediment C and N were 

measured with a CN-analyzer (VARIO EL III, Elementar, Hanau, Germany). Soil prop-

erties (0-5 cm depth, soil bulk density, soil pH, soil C and N) and terrain parameters 

(slope and altitude) were measured for each plot (Song et al., 2019). Soil surface cover 

including BSCs and stone cover as well as crown cover and LAI were measured every 

May from 2013 to 2015 at the ROP scale (Seitz et al., 2017). Tree height, crown width, 

diameter at breast height were measured yearly (Li et al., 2014a). Mean values of soil 

properties and plant traits during the observed three years were given in Supplemen-

tary 1. Rainfall amount and intensity was recorded for each erosion event by two cli-

mate stations on both sites (ecoTech data logger with Vaisala weather transmitter and 

ecoTech tipping bucket balance). Regional precipitation data were measured by the 

National Meteorological Information Center (NMIC) of China and the China Meteorolog-

ical Administration. 

2.3 Data analysis 

2.3.1 Annual soil C and N fluxes 

Erosive rainfall amounts was defined as a threshold of 12.7 mm rainfall (Wischmeier 

and Smith, 1978b). From precipitation curves of climate stations, erosive rainfall during 

the measurement of runoff plots (ERM, mm) in rainy seasons and annual erosive rain-

fall amount (AER, mm) were calculated. Then, with sediment delivery acquired from 
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runoff plots (SDE, g m-2) and sediment C and N concentrations (SCC and SNC, %), 

annual sediment delivery (ASD, g m-2 a-1) and annual soil C and N fluxes (ASC and 

ASN, g m-2 a-1) were calculated by Eq. 1 and Eq. 2, respectively. To illustrate C and N 

differences between sediment and soil, the enrichment ratio of sediment C (N) concen-

tration to soil C (N) concentration (ER) was calculated as given in Eq. 3. 

SDE
ASD AER

ERM
= 
 
 
                                                                                                 Eq. 1 

( )( )ASC N ASD SC N C= 
                                                                                          Eq. 2 

( )

( )

SC N C
ER

SoilC N
=

                                                                                                         Eq. 3 

2.3.2 Statistical methods  

A one-way analysis of variance (ANOVA) and least significant difference (LSD) tests 

were conducted to assess temporal changes of sediment C and N concentrations and 

annual soil C and N fluxes as well as the effect of tree species richness. Multiple re-

gression was used to detect significant predictors. For each multiple linear regression 

model, all independent variables (terrain parameters, soil properties, sediment delivery, 

surface cover, plant traits) were tested on normal distribution and transformed by 

square root when needed, and then z-scored (zero-mean normalization). Potential col-

linearity between independent variables was detected by the Pearson correlation coef-

ficient. One independent variable was fitted individually in exchange to the other when 

their correlation coefficient was higher than |±0.7|. Dependent variables (sediment C 

concentrations, sediment N concentrations, annual soil C flux and annual soil N flux) 

were tested on normalized distribution and annual soil C flux, annual soil N flux were 

square root transformed. Beta value as standard regression coefficient from multiple 

regression models was used to illustrate the importance of independent variables on 

dependent variables. All statistical analyses were performed with R 3.4.3 (R Founda-

tion for Statistical Computing, Vienna, Austria) and SPSS 13.0 (SPSS Inc., Chicago, 

Illinois, USA). Graph and curve fittings were processed in Origin 8.0 (OriginLab Corpo-

ration, Northampton, USA).  
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3. Results  

3.1 Soil carbon and nitrogen fluxes  

Sediment C concentration increased every year (p < 0.05) with means of 4.62% in 

2013, 5.07% in 2014 and 6.95% in 2015 and was significantly higher than in the topsoil 

over the three years (p < 0.05) (Fig. 1 and Supplementary 2). Topsoil C concentrations 

ranged from 1.93% to 4.85% with a mean of 3.08% while sediment C concentrations 

showed a higher variability ranging from 1.83% to 14.59% in the observed three years. 

The same general relations were observed for N concentrations. Mean value of N con-

centration in soil was 0.22% while in sediment it was 0.29%, 0.38% and 0.50% in 2013, 

2014 and 2015. ER of C in sediment to soil were 1.5, 1.65 and 1.98 while for N they 

were 1.32, 1.73 and 2.23 in the observed three years. Topsoil C/N ratio was 13.9 and 

sediment C/N ratio of 2013, 2014 and 2015 were 16.4, 13.3 and 14.0, respectively. 

Annual soil C and N fluxes significantly decreased every year at a rate of 50% (p < 

0.05) (Fig. 2). The means of annual soil C and N fluxes were 116.7 g m-2 and 8.3 g m-2, 

respectively. In 2013, the means of soil C and N fluxes were 203 g m-2 and 14 g m-2, 

respectively. Then, they declined to 95 g m-2 and 7 g m-2 in 2014. In 2015, the means 

were 52 g m-2 and 4 g m-2 for soil C and N fluxes. 

3.2 Influences of topography, soil properties, surface cover and plant traits on 

soil carbon and nitrogen fluxes 

Results from multiple linear regression models showed that topography does not play a 

significant role for sediment C and N concentrations as well as for annual fluxes (p > 

0.05). Soil properties (C and N concentrations), surface cover (BSC and stone cover) 

and plant traits (diameter at breast height, crown cover, tree height, crown width, LAI) 

could explain 39.7% of the variability of sediment C and N concentrations. Soil C and N 

positively affected sediment C and N concentrations (Beta = 0.07, p < 0.05) while sed-

iment delivery showed a negative impact (Beta = -0.05, p < 0.001). BSC (Beta = 0.17, 

p < 0.001) and plant traits (Beta = 0.07 ~ 0.18, p < 0.001) had comparable positive ef-

fects on sediment C and N concentrations. Regarding annual soil C and N fluxes, 93% 

of the variability was explained by sediment delivery, sediment C and N concentrations, 

BSC and LAI (Beta = 1.02, 0.24, -0.04 and -0.03 in the model, respectively, p < 0.01).  
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Fig. 1 C and N concentration and C/N ratio of soil sampled at 0-5 cm depth in 2014 and sedi-

ment collected in 2013, 2014 and 2015 at the BEF China experiment in Xingangshan, Jiangxi 

Province, PR China. Triangles represent soil C and N concentration from plots (n = 45) and 

sediment C and N concentration from plots (n = 45) based on 550 runoff plots measurements. 

Horizontal lines within boxplot represent medians and diamonds represent means. Different 

small letters represent mean significant differences at p < 0.05. 
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Fig. 2 Annual soil C and N fluxes in 2013, 2014 and 2015 at the BEF China experiment in 

Xingangshan, Jiangxi Province, PR China (n = 550). Triangles represent annual soil carbon and 

nitrogen fluxes from runoff plots (n = 182 in 2013, n = 158 in 2014 and n = 210 in 2015). Hori-

zontal lines within boxplot represent medians and diamonds represent means. Different small 

letters mean significant differences at p < 0.05. 

4. Discussion  

4.1 Soil carbon and nitrogen fluxes  

Sediment transported by water erosion are normally enriched in C and N compared to 

their source soils (Wang et al., 2013b). Our study confirmed these findings and showed 

ER of C and N in sediment to soil ranging from 1.2 to 2.0 for afforested areas. This is 

comparable with other land use systems which show ER varied from 1.2 to 4.0. For 

example, in an agricultural catchment in the Belgian Loess Belt, ER was between 1.2 

and 3.0 in simulated rainfall events captured by runoff plots (Wang et al., 2010). The 

enrichment process of C and N in eroded sediments can be attributed to the preferen-

tial removal of fine particles higher in mineral-organic complexes than coarser particles 
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like sandy grains and micro-aggregates (Palis et al., 1997; Six et al., 2002; Zinn et al., 

2007). Another aspect is the transport of unprotected young organic material from the 

free and/or light fraction of organic matter in soils. This fraction is easily detached by 

water-induced surface erosion processes (Jacinthe et al., 2004; Stacy et al., 2015). 

Before the BEF China experiment was established and since the study area was previ-

ously covered by secondary forest, the organic horizon and topsoil is likely to contain a 

certain amount of unprotected organic materials with higher C/N ratio than the mineral 

soils (Wang et al., 2014b; Stacy et al., 2015; McCorkle et al., 2016). Therefore, eroded 

sediment is not only richer in C and N but also shows a higher C/N ratio in the first year. 

Then, with soil erosion processes ongoing, the organic horizon depleted and more 

mineral soil was exposed to rainfall. Thus, eroded mineral soil was the dominate part 

within sediments, which resulted in C/N ratio decreasing in the following years and get-

ting closer to topsoil ratio (Fig. 3). Annual soil C and N fluxes in our study were 116.7 g 

m-2 a-1 and 8.3 g m-2 a-1 which is as much as in deforestation areas of the Canary Is-

lands (Spain), with annual soil C flux caused by water erosion of 114 g m-2 (Rodrıguez 

et al., 2004), but far higher than in forested areas. In the southern Sierra Nevada (USA), 

annual sediment C and N fluxes in forested catchments were between 0.0025 ~ 0.42 g 

C m-2 and 0.0001 ~ 0.004 g N m-2 during 2005-2011 (Stacy et al., 2015). Severe soil C 

and N fluxes within BEF China in 2013 (203 g m-2 ) mainly resulted from high annual 

erosive rainfall amounts and less coverage of the soil surface (LAI and BSC) (Table 2) 

which caused considerable sediment delivery (Song et al., 2019). Although the annual 

erosive rainfall amount increased in 2014 and 2015, LAI and BSC as the two main fac-

tors on soil erosion increased over time and contributed to decreasing sediment deliv-

ery and associated soil C and N fluxes in this early forest stage. Besides, soil C and N 

fluxes caused by water erosion accounted for approximate 24% of the 0-5 cm topsoil C 

(1403 g m-2 ) and N (102 g m-2 ) (Li et al., 2019), which occupied a considerable part of 

soil organic carbon stock. Therefore, the study suggests that deforestation and affor-

estation both should be implemented with caution as high nutrient losses and important 

differences between afforested areas and the undisturbed forest might occur in the 

earlier years, although temporal forest recovery can reduce soil C and N fluxes by con-

trolling water erosion. 
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Table 1. Multiple linear regression of factors on sediment carbon and nitrogen concentra-

tions and annual soil C and N fluxes. SCC: sediment carbon concentration; SNC: sediment 

nitrogen concentration; SC: soil carbon; SN: soil nitrogen; ASD: annual sediment delivery; BSCs: 

biological soil crusts; LAI: leaf area index. DBH: diameter at breast height; n.s. means no signifi-

cance at p < 0.05; * means significance at p < 0.05; ** means significance at p < 0.01; *** 

means significance at p < 0.001. / means the variable not fitted into linear regression models. 

 Sediment CN concentrations Annual soil CN fluxes 

 C N C N 

Adj.R2 0.397 0.401 0.925 0.934 

Factor Beta (Sig.) 

Slope n.s. n.s. n.s. n.s. 

Altitude n.s. n.s. n.s. n.s. 

SCC / / 0.26*** / 

SNC / / / 0.24*** 

ASD -0.05*** -0.05*** 1.02*** 1.02*** 

SC 0.07* / n.s. / 

SN / 0.08* / n.s. 

BSCs 0.18*** 0.22*** -0.04*** -0.04*** 

Stone cover -0.03*** -0.03*** -0.01*** -0.01*** 

Surface cover 0.18*** 0.23*** -0.04*** -0.04*** 

Tree species richness n.s. n.s. n.s. n.s. 

LAI 0.07*** 0.05*** -0.03*** -0.03** 

DBH 0.18*** 0.20*** n.s. n.s. 

Crown cover 0.03*** 0.03*** n.s. n.s. 

Tree height 0.10*** 0.09*** n.s. n.s. 

Crown width 0.10* 0.10* n.s. n.s. 

 

4.2 Influences on soil carbon and nitrogen fluxes  

Topography (slope and altitude) did not play a significant role for sediment C and N 

concentrations and annual soil C and N fluxes. This is surprising since many studies 

have shown that gravity driven processes of particle movement along slopes are to a 

large extend a function of slope angle (Wischmeier, 1965; Martz and De Jong, 1987; 
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Jain et al., 2001; Lal, 2001; Cerdan et al., 2010a; Sun et al., 2014; Hancock et al., 

2019). One explanation is the uniform inclination ranging from 20° to 40° for all plots 

(Supplementary 1). Further, the small size of our runoff plots does not allow rill for-

mation and splash erosion is the main active process of particle detachment (Seitz, 

2015). Thus, overland flow, the erosive power which is mainly controlled by slope 

(Wischmeier, 1965; Morgan, 2009), does transport the sediment to the collector but 

could not contribute significantly to erode topsoil during transport over such short 

transport distances of max. 0.4 m. In addition, sediment C and N concentrations was 

found to inversely correlate with sediment delivery, which is in accordance with other 

research (Lal, 1976; Owens et al., 2002; Nadeu et al., 2012; Wang et al., 2014a; Stacy 

et al., 2015). Given a certain slope length, more carbon-rich fine aggregates are de-

pleted in the earlier stage of interill erosion (Lal, 1976; Polyakov and Lal, 2008; Jin et 

al., 2009; Martínez-Mena et al., 2012). Therefore, with the decrease of sediment deliv-

ery in BEF China every year, associated sediment C and N concentrations were in-

creasing. Furthermore, BSC and plant traits were another two key factors on sediment 

C and N concentrations (Table 1). On the one hand, BSC not only improves the labile 

organic carbon as it is aggregating biotic components and soil particles in the topsoil 

but also reducing sediment delivery (Schulten, 1985a; Eldridge, 1993; Seitz et al., 

2017). With increasing BSC in the research plots every year from 2010 to 2015 (Seitz 

et al., 2017), once water erosion occurred and BSC was destroyed and detached, sed-

iment C and N concentrations would be enhanced. This also explained the increase of 

sediment C and N concentrations in bare plots. On the other hand, tree growth in-

creases litter and root production in BEF China which can protect soil from splash ero-

sion and reduce sediment delivery (Seitz et al., 2015; Huang, 2017; Sun et al., 2017). 

Hence, sediment C and N concentrations would be enhanced with sediment delivery 

decreasing.  

Table 2 AER, crown cover, LAI and BSC in the observed three years. (AER: annual erosive 

rainfall amount; LAI: leaf area index; BSCs: biological soil crusts) 

Year AER (mm) Crown cover (%) LAI BSCs (%) 

2013 1319 47 1.04 24 

2014 1885 50 1.15 36 

2015 1920 62 1.45 45 

 

Our measurements confirm that annual soil C and N fluxes in afforested areas are 

strongly affected by sediment delivery, which was also shown for undisturbed forest 

and agriculture and grassland ecosystems (Zöbisch et al., 1995; Owens et al., 2002; 
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Wang et al., 2013b; Stacy et al., 2015). This means that almost no dilution effects could 

be observed during the erosive events and particulate transport is the main mechanism 

of the C and N fluxes during erosion. Moreover, dissolved organic C and N (DOC and 

DON) contributing to less than 10% of the soil organic C and total N is regarded as an 

unignorable component of eroded C and N (McClain et al., 1997; Cookson et al., 2007; 

Doetterl et al., 2016; Ma et al., 2018). Many studies addressed that DOC fluxes under 

erosion ranging from 0.2 to 5.0 g m-2 a-1 in arable areas and forests (Kindler et al., 2011; 

Graeber et al., 2012; Doetterl et al., 2016). For instance, Kindler et al. (2011) found 

leaching of DOC was 3.5±1.3 g m-2 a-1 in Europe forests. Considering the higher ero-

sion rate in BEF China and the ratio of DOC/DON in upland water (McClain et al., 1997; 

Song et al., 2019), we assume that DOC and DON fluxes would be as high as 12 g m-2 

a-1 and 1.2 g m-2 a-1, respectively. From a soil conservation perspective, our results 

suggest that the first years after afforestation are most important to prevent high C and 

N fluxes due to erosion. One possible measure is to plant shrubs and to establish BSC 

on bare ground.  

No significant effect of tree species richness but a tendency was detected reducing soil 

C and N fluxes (Table 1 and Fig. 3). This inspired the thinking of how the effect of tree 

species richness is defined. As many researchers declare, it is difficult to identify the 

impact of plant diversity as it interacts with other plant factors and soil properties 

(Bezemer et al., 2006; Pohl et al., 2009; Shrestha et al., 2010). In this study, BSC and 

LAI as the two significantly negative factors on soil C and N fluxes (P < 0.01, Table 1) 

were detected to increase with tree species richness from 2014 (Song et al., 2019), 

which masked the effect of tree species richness. Moreover, litter fall as a significant 

source of soil C and vital protection of soil surface from rainfall was reported to in-

crease with tree species richness from 2015 (Seitz et al., 2015; Huang, 2017). Consid-

ering these findings, we assume that tree species richness may reduce soil C and N 

fluxes in the future. 

Finally, measurements of soil C and N fluxes caused by water erosion in our research 

area need to be adapted for a potential assessment on a regional scale due to the run-

off treatment and measurement plot sizes. As we could not take the whole process of 

soil erosion (detachment, transport, deposition and export from the watershed) into 

consideration, further research is needed to accurately assess sediment export at af-

forested watershed scales. Furthermore, as remaining leaf litter and branches were 

removed from the ROP before the measurements, it has to be stated that the residuals 

protection on topsoil would improve erosion control by further decreasing sediment 

delivery and elements fluxes in ROP.  
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Fig. 3 Annual soil carbon and nitrogen fluxes in 2013, 2014 and 2015 under different tree spe-

cies richness in the BEF China experiment in Xingangshan, Jiangxi Province, PR China. Black 

circles, triangles and diamonds represent mean and error bars represent standard error. Spline 

dashed lines connect mean values of each tree species richness for each year. Different small 

letters mean significant differences at p < 0.05. 

 

5. Conclusions  

At an early stage subtropical forest plantation in China, sediment C and N concentra-

tions increased while annual soil C and N fluxes decreased with sediment delivery de-

creasing every year. Soil C and N fluxes in the study were as high as in deforestation 

areas even after 6 years tree growth. Therefore, afforestation areas should attract more 

attention as rich nutrient soil flux in the earlier years. To reduce sediment delivery es-

pecially by increasing soil surface cover such as BSCs recovery is recommended to 

conserve soil fertility and reduce C and N transported from soil to aquatic ecosystems 

and the atmosphere. In addition, soil C and N fluxes caused by water erosion as an 

important and dynamic component of terrestrial carbon stocks and should be taken into 

consideration in the C budget of afforested area. 
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Supplementary 1 Information of topography, mean of soil properties (0-5 cm) and plant traits 

from 2013 to 2015 on 45 selected study plots at the BEF China experiment in Xingangshan, 

Jiangxi Province, PR China. (TSR: tree species richness; BD: soil bulk density; SOC: soil organ-

ic carbon; SN: soil nitrogen; BSCs: biological soil crusts; DBH: diameter at breast height; LAI: 

leaf area index. S.E: standard error) 

Plot 

Topography  Soil properties (0-5cm) BSCs 

 

(Mean ± S.E. %) 

Slope 

(o) 

Aspect Altitude 

(m) 

 BD (g 

m-3) 

pH SOC 

(%) 

SN 

(%) 

L20 24 W 229  0.86 3.68 3.96 0.23 8±3 

Q23 23 N 153  0.78 3.39 3.47 0.21 39±11 

D29 31 N 159  0.90 3.68 2.77 0.22 39±12 

E31 22 S 144  0.95 3.86 2.48 0.19 41±8 

E33 19 S 144  1.12 3.94 2.18 0.18 36±13 

E34 21 S 125  1.06 4.09 2.84 0.25 25±7 

G33 18 S 127  0.85 3.92 3.45 0.22 14±7 

I22 28 S 119  1.07 3.58 2.28 0.21 39±12 

I25 29 N 152  0.96 3.47 2.9 0.22 45±12 

I28 26 S 163  0.90 3.81 3.29 0.21 49±9 

J29 31 N 182  0.81 3.39 4.85 0.31 37±10 

K19 24 N 199  0.80 3.70 4.18 0.3 54±8 

L10 34 S 211  0.92 3.92 2.81 0.23 39±8 

L11 28 S 201  1.04 3.87 2.95 0.24 34±6 

L22 21 W 180  0.80 3.79 3.48 0.21 7±0 

M07 31 S 129  0.89 3.55 2.52 0.18 16±4 

M22 23 W 221  0.95 3.79 3.48 0.21 47±7 

N02 41 S 129  0.89 3.61 3.01 0.23 36±9 

N05 32 N 119  0.89 3.63 3.17 0.25 27±9 

N09 33 S 218  0.86 3.58 3.6 0.23 34±8 

N11 26 S 203  0.82 3.63 3.93 0.23 50±8 

N13 31 S 182  0.78 3.78 3.62 0.27 34±7 

N17 28 W 221  0.91 3.79 3.39 0.25 6±2 

N28 19 E 167  0.97 3.56 2.21 0.19 38±10 

O22 21 W 229  0.86 3.80 3.54 0.27 47±9 



Publications                                                                                                                               126 

O27 21 W 185  1.07 4.12 2.41 0.17 22±4 

Q13 30 W 215  0.90 3.86 3.84 0.28 2±1 

Q17 22 N 131  0.99 3.52 2.91 0.21 25±6 

Q27 35 S 160  0.97 3.66 2.78 0.19 34±9 

Q29 33 E 144  0.9 3.74 2.42 0.2 17±5 

R14 30 N 228  0.82 3.8 4.25 0.29 14±3 

R18 36 W 215  0.91 3.82 3.50 0.27 5±4 

R29 33 S 146  0.91 3.65 2.48 0.19 26±7 

R30 27 S 136  0.95 3.67 2.46 0.2 41±11 

S10 36 S 220  0.96 3.79 3.04 0.25 36±6 

S22 33 W 145  1.00 3.61 3.26 0.24 48±9 

T13 21 W 133  0.96 3.44 2.59 0.18 30±8 

T15 30 N 244  0.87 3.67 3.42 0.22 27±8 

U10 40 S 231  0.96 3.86 3.22 0.25 25±8 

U16 20 W 147  0.94 3.44 2.65 0.17 38±8 

V24 32 E 137  0.94 3.71 3.01 0.23 40±8 

W10 27 E 147  0.92 3.45 2.35 0.17 63±8 

W11 19 S 148  1.04 3.25 2.72 0.18 52±10 

X21 24 N 132  0.91 3.65 2.54 0.19 13±5 

Y09 32 E 126  1.10 3.71 1.93 0.17 19±8 

 

Plot TSR Tree species 

Tree 

height 

DBH Crown cover LAI 

(Mean ± 

S.E. cm) 

(Mean ± S.E. 

cm) 

(Mean ± 

S.E.) 

(Mean ± 

S.E.) 

L20 0 0 / / / / 

Q23 0 0 / / / / 

D29 1 M. flexuosa N N N N 

E31 1 Q. fabri 160±10 0.9±0.1 0.31±0.06 0.43±0.11 

E33 1 L. glaber 327±31 2.6±0.4 0.6±0.11 1.46±0.33 

E34 1 C. henryi 737±36 4.6±0.2 0.92±0.01 2.66±0.16 

G33 1 Q. serrata N N N N 

I22 16 a 363±1 5.2±0.1 0.68±0.06 1.22±0.21 
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I25 1 M. yuyuanensis 204±11 2.0±0.1 0.16±0.04 0.25±0.09 

I28 1 L. formosana 273±8 1.8±0.1 0.79±0.06 2.07±0.15 

J29 8 b 215±19 3.4±0.3 0.66±0.07 1.44±0.29 

K19 1 S. superba 486±27 3.9±0.2 0.73±0.09 2.96±0.29 

L10 1 C. eyrie 174±10 1.6±0.1 N N 

L11 1 C. sclerophylla 171±6 1.5±0.1 0.76±0.06 1.89±0.23 

L22 16 c 318±1 3.8±0.1 0.78±0.05 1.87±0.15 

M07 1 B. luminifera 233±8 1.2±0.1 0.45±0.05 0.65±0.08 

M22 16 c 351±16 3.0±0.2 0.87±0.02 2.31±0.22 

N02 1 M. flexuosa N N N N 

N05 1 A. altissima 124±3 1.3±0.1 0.03±0.01 0.03±0.01 

N09 24 d 264±11 2.6±0.2 0.48±0.08 0.92±0.21 

N11 1 S. saponaria 178±2 1.3±0.1 0.47±0.02 0.65±0.05 

N13 1 S. sebiferum 364±13 3.3±0.1 0.15±0.03 0.18±0.04 

N17 1 R. chinensis 198±3 1.8±0.1 0.4±0.04 0.54±0.07 

N28 1 I. polycarpa N N N N 

O22 1 C. myrsinaefolia 254±16 2.9±0.4 0.22±0.09 0.28±0.12 

O27 1 Ch. axillaris 799±18 5.8±0.1 0.9±0.01 2.35±0.05 

Q13 1 K. bipinnata 206±4 1.6±0.1 0.24±0.02 0.28±0.03 

Q17 8 e 235±13 2.4±0.2 0.55±0.07 1.01±0.17 

Q27 1 A. fortunei 441±21 3.5±0.2 0.72±0.04 1.38±0.11 

Q29 1 M. leptophylla 71±2 1.4±0.2 0.02±0.01 0.02±0.01 

R14 1 C. glauca 148±6 1.0±0.1 0.39±0.08 0.66±0.17 

R18 24 d 413±1 4.3±0.1 0.85±0.04 2.13±0.18 

R29 1 C. fargesii 184±10 1.3±0.1 0.14±0.03 0.16±0.04 

R30 24 f 248±20 2.7±0.2 0.64±0.08 1.31±0.26 

S10 8 g 492±21 4.0±0.1 0.95±0.01 3.29±0.20 

S22 16 a 140±7 1.8±0.2 0.38±0.09 0.66±0.17 

T13 1 M. thunbergii N N N N 

T15 8 h 234±11 2.4±0.2 0.38±0.06 0.60±0.08 

U10 16 c 386±10 4.1±0.1 0.8±0.07 2.16±0.46 

U16 1 E. japonicus 259±9 2.4±0.1 0.35±0.07 0.61±0.14 

V24 1 E. chinensis 323±22 3.0±0.1 0.62±0.07 1.32±0.11 
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W10 1 Ph. bournei N N N N 

W11 1 E. glabripetalus 285±7 2.8±0.1 0.64±0.08 1.48±0.12 

X21 1 M. grijsii N N N N 

Y09 1 C. biondii N N N N 

  

a: 16 tree species from monocultures N05, Y9, W11, U16, N28, X21, D29, W10, Q27, M07, R29, V24, Q29, 

T13, I25 and Q. phillyreoides. 

b: 8 tree species from monocultures N05, Y9, W11, U16, N28, X21, D29 and W10. 

c: 16 tree species from monocultures E34, L11, O27, I28, G33, N11, N13, E33, E31, N17, K19, L10, R14, 

O22, Q13 and N. sinensis. 

d: 24 tree species from c and Cinnamomum camphora, Daphniphyllum oldhamii, Diospyros glaucifolia, 

Acer davidii, Castanopsis carlesii, Melia azedarach, Quercus acutissima and Sapium discolor. 

e: 8 tree species from monocultures Q27, M07, R29, V24, Q29, T13, I25 and Q. phillyreoides. 

f: 24 tree species from a and monocultures E33, K19, R14, L10, L11, and Cinnamomum camphora, Daph-

niphyllum oldhamii and Diospyros glaucifolia. 

g: 8 tree species from monocultures E34, L11, O27, I28, G33, N11, N13 and N. sinensis. 

h: 8 tree species from monocultures E33, E31, N17, K19, L10, R14, O22 and Q13. 
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Supplementary 2 Means of carbon and nitrogen concentrations in soils and sediment sampled 

(0-5 cm) within 45 selected plots at the BEF China experiment in Xingangshan, Jiangxi Province, 

PR China.  
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Abstract  

Forests in subtropical China were undergoing great changes in the last decades, main-

ly caused by extensive deforestation. Afforestation in turn can help to restore forest 

ecosystem and its related services such as soil organic carbon (SOC) storage and thus 

help to mitigate climate change. However, afforestation shows an inconsistent effect on 

SOC. In this respect, SOC changes in the earlier stage of afforestation and the driving 

factors on this process are still unclear. Therefore, based on a biodiversity and ecosys-

tem functioning project in China (BEF China), soil profiles of 132 plots including 113 

afforested plots, 14 failed afforested plots and 5 bare plots at five increments (0-5 cm, 

5-10 cm, 10-20 cm, 20-30 cm, 30-50 cm) were surveyed in 2010 and 2014 to assess 

changes of SOC stocks and the driving factors. Results showed that SOC stock in 0-20 

cm significantly decreased at a rate of 137 g m-2 a-1 in afforested areas while in deeper 

soils (20-50 cm) SOC stock suggested a slight difference between 2010 and 2014. 

These SOC stock changes along soil profiles were strongly negatively related with orig-

inal SOC. However, geomorghy regarded as an important factor on SOC stock played 

a significant role only in the deeper soil. Furthermore, other factors such as tree spe-

cies, tree species richness, aboveground biomass (AGB), belowground biomass (BGB), 

litter fall and soil erosion showed negligible effects on SOC stock changes. In addition, 

we found that approximately 274 Mg SOC reduction in total was caused in the earlier 

stage of afforestation in BEF China. The majority of this SOC reduction came from top-

soils (0-20 cm). Hence, the study highlights afforestation in deforestation area contrib-

utes to atmospheric carbon accumulation in the first years and the original SOC could 

be an important parameter in modelling afforested ecosystem carbon balance in sub-

tropical China. 

Key words: afforestation, original SOC, tree species, biomass, soil erosion, topography 

1. Introduction  

Forests are undergoing great changes globally (Bonan, 2008; Smith et al., 2016). Ac-

cording to the data of FAO (2015), the natural forest area declined about 240 Mha be-

tween 1990 and 2015 while planted forest increased by 110 Mha (Keenan et al., 2015). 

Many countries make great endeavors to afforest for ecological restoration and forestry 

products (Paul et al., 2002; Korkanç, 2014; Yosef et al., 2018). For example, China is 

one of the largest cultivators of forest plantations in the world and its forested area was 

increasing by 1.5 Mha a−1 between 2010 and 2015 (FAO, 2015; Keenan et al., 2015). 

Apparently, these areas attracted scientists’ attentions due to the impacts on forest 

ecosystem services such as soil properties, C storage and climate change (Piao et al., 
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2009; Assefa et al., 2017; de Araújo Filho et al., 2018; Hong et al., 2018; Li et al., 

2018b).  

Soil organic carbon (SOC) as the largest pool of terrestrial organic carbon accounts for 

approximate 40% of the whole C stock (to 1m soil depth) in forest (Dixon et al., 1994; 

Jobbágy and Jackson, 2000; Pan et al., 2011). It is sensitive to land use changes such 

as deforestation and afforestation (Jandl et al., 2007; Laganiere et al., 2010). Defor-

estation could reduce SOC stock due to the decreased organic matter inputs to soil 

and the increased decomposition rate of soil organic matter as well as the transporta-

tion of accelerated soil erosion caused by soil disturbance (Veldkamp, 1994; Murty et 

al., 2002; Assefa et al., 2017; de Araújo Filho et al., 2018; Lal, 2019). However, no 

consistent effect of afforestation on SOC exists. Recently, many studies address that 

positive or negative effects of afforestation on SOC stocks largely depend on factors 

such as previous land use, tree species, stand age, and site management (Paul et al., 

2002; Laganiere et al., 2010; Shi and Cui, 2010; Li et al., 2012). For instance, a ten-

dency of an initial loss in SOC is detected in the first few years of afforestation on for-

mer grassland where soils are rich in SOC (Paul et al., 2002; Laganiere et al., 2010; 

Shi and Cui, 2010). Therefore, influences of afforestation on SOC stocks in the earlier 

stage cannot be neglected due to the potential source of atmospheric CO2 and its large 

areas around the world. However, research on this process do not attract enough at-

tention. 

Subtropical China with 70% coverage of mountains accounts for one quarter of the 

country land but has a half of the whole population (Wang et al., 2007; Bruelheide et al., 

2014b). Due to economic benefits and ecology restoration measures, deforestation and 

afforestation are often occurring in this area. These intensive anthropogenic modifica-

tions can influence SOC stocks in forests. Therefore, our research was conducted to 1. 

quantify SOC stock changes and 2. detect driving factors on the process of the SOC 

stock changes in the earlier stage of afforestation after deforestation. 

2. Materials and Methods  

2.1 Study area 

The study area was in the platform of biodiversity and ecosystem functioning project 

(BEF China), which is located in Xingangshan Town, Dexing City, Jiangxi Province, PR 

China (29.08°–29.11° N, 117.90°–117.93° E). The dominated climate is subtropical 

monsoon with mean annual temperature of 17.4 OC and mean annual precipitation of 

1821 mm (Yang et al., 2013; Goebes et al., 2015b). The area is hilly with mean eleva-

tions of 189 m a.s.l. (Site A) and 137 m a.s.l. (Site B) (Scholten et al., 2017). Main soil 

types are Cambisols, Acrisols and Ferralsols (Scholten et al., 2017).  
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BEF China includes two parallel sites (Site A and Site B, which was planted in 2009 

and 2010, respectively) with an area of 50 ha (Bruelheide et al., 2014a). The sites were 

established by transplanting forty broad-leaved tree species after logoff of original for-

est (Bruelheide et al., 2014a). The forty tree species were planted in monocultures and 

mixtures of 2, 4, 8, 16 and 24 species on 566 plots with each measuring 25.8 × 25.8 m 

(667 m2) (Bruelheide et al., 2014a). For each plot, 400 tree individuals were planted in 

20 rows of 20 tree individuals with a planting distance of 1.29 m (Bruelheide et al., 

2014a).  

2.2 Soil sampling  

In this study, 132 of plots were selected for soil sampling (Table 1). Soil sampling was 

conducted in September and October in 2010 and 2014, respectively. Soil core with 6 

cm in diameter was taken at a depth of 50 cm and then divided into five depth incre-

ments (0-5 cm, 5-10 cm, 10-20 cm, 20-30 cm and 30-50 cm) (Scholten et al., 2017). 

For each plot, nine soil cores were collected (Figure 1) and mixed resulting in five soil 

samples. Soil samples were air-dried, sieved through a 2 mm mesh, handpicked to 

remove plant and animal residuals and then grounded for soil properties analysis. SOC 

and soil N was determined by a CN-analyzer (VARIO EL III, Elementar, Hanau, Ger-

many) (Scholten et al., 2017). Soil pH was determined in 1M KCl (Scholten et al., 2017). 

In addition, five replicates of bulk density (BD) sample for each plot were obtained at 

the same depth increments as soil sampling in 2015 for soil BD determination. Soil 

organic carbon density (SOCD, kg m-2) of five depth increments and SOC stock (0-50 

cm) were calculated as given Eq. 1 and 2 (Don et al. 2009): 

( )100 % 0.1i i i i iSOCD T BD SOC C=    −                                                            Eq.1 

0 50

0

n

cm iSOC stock SOCD− =                                                                                   Eq.2 

SOCD represents soil organic carbon density (kg m-2); i represents different five depth incre-

ments of 0-5 cm, 5-10 cm, 10-20 cm, 20-30 cm, 30-50 cm; T represents soil layer (cm); BD 

represents soil bulk density (g cm-3); SOC represents soil organic content (%); C represents 

stone percentage (%). 

2.3 Tree and litter measurement 

Tree height and diameter at breast height (DBH) as two important parameters for bio-

mass estimation were determined by the central 6 × 6 trees (36 trees) in the monocul-

tures and 2 species plots and the central 12 × 12 trees (144 trees) in the 4, 8, 16 and 

24 species mixtures (Li et al., 2014a; Li et al., 2017). Tree measurement of all plots 

started in September and October 2010 for Site A and in 2011 for Site B on a yearly 
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base. Aboveground biomass (AGB) (kg dry mass) and belowground biomass (BGB) 

(kg dry mass) were calculated as given (Eq. 3 and 4) which were developed from 147 

trees and 41 species in subtropical China (Xu et al., 2015).  

For litter measurement, 56 plots on Site A and 45 plots on Site B (Table 1) with 1, 2, 4, 

8 and 16 species were selected and equipped with litter traps (Huang, 2017). Litter trap 

of 0.75 × 0.75 m was made of nylon nets (1 mm mesh) and fixed over a PVC frame at 

a height from 1 m to 1.5 m aboveground under tree canopy (Huang, 2017). For each 

plot, three litter traps were installed in the central area. The measurement started in 

March 2014 for Site A and March 2015 for Site B. Litter collection was done every 

month. Litter sample was put into oven and dried for 48 hours at 60 oC and weighed. 

The data was summed up for annual litter fall production. More details can be seen in 

Huang (2017). Then, biomass values (AGB, BGB and litter fall) were calculated to car-

bon stock using carbon conversion factor of 0.47 (IPCC) (Martin and Thomas, 2011). 

( ) ( ) ( )exp 2.334 2.118 ln 0.5436 ln 0.5953 lnAGB D H WD= − +  +  +           Eq.3 

( )exp 2.80346 2.004 lnBGB D= − +                                                               Eq.4 

D represents diameter at breast height (cm), H represents tree height (m), WD represents wood 

density (g cm-3). 

2.4 Soil erosion 

Forty-five plots at five tree species richness levels (0sp, 1sp, 8sp, 16sp and 24sp) were 

selected for sediment discharge measurement on both Site A and Site B (Table 1). For 

each plot, five micro-scale runoff plots (ROP, 0.4 m × 0.4 m) with each of 20 L reservoir 

were randomly installed in 2013 (Seitz et al., 2017). The measurement was operated 

during the rainy seasons from May to June in 2013 and 2014. Runoff volume was col-

lected in situ and sediment discharge was calculated after sampling, drying at 40 oC  

and weighing (Seitz et al., 2017). Then, annual erosive rainfall amount (AER, mm) and 

erosive rainfall during the runoff plot measurements (ERM, mm) in the rainy seasons 

were calculated based on precipitation curves from climate stations. Then, with sedi-

ment delivery acquired during the runoff plot measurements (SE, Mg ha-1), an annual 

sediment delivery (ASD, Mg ha-1) was calculated (Eq. 5). 

AER
ASD SE

ERM
=                                                                                                   Eq.5 

2.5 Topography 

Altitude, slope, terrain ruggedness index (TRI), Monte-Carlo based flow accumulation 

(MCCA) were calculated (Scholten et al., 2017). Moreover, 10 geomorphological units 
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(geomorphons: flat, footslope, valley, peak, shoulder, ridge, spur, slope, pit and hollow) 

was computed in our study area according to the concept of openness and geomor-

phons (Yokoyama et al., 2002; Jasiewicz and Stepinski, 2013; Scholten et al., 2017). 

Depression, flat and valley summarized as valley while shoulder, peak and ridge sum-

marized as ridge for further processing (Scholten et al., 2017).  

 

Figure 1 Positions of soil sampling for soil properties and bulk density on one plot. Grey dot 

means tree saplings. Black stars and triangles mean the positions of soil samples (n = 9, sub-

samples) and bulk density (n = 5, subsamples), respectively. 

Table 1 Plots information of soil sampling, litter collection and soil erosion measurement  

 Soil samples  Soil erosion  Litter collection  

Tree species richness Site A Site B Site A Site B Site A Site B 

Bare plot 3 2 1 1 / / 

1 31 20 15 16 31 19 

2 16 15 / / 16 15 

4 8 7 / / 8 8 

8 4 4 2 2 4 4 

16 2 2 2 2 2 2 

24 2 2 2 2 / / 

In all 63 50 22 23 61 48 

 113 45 109 

Failed afforested  1 13 / / / / 
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2.6 Statistical analysis 

A one-sided, paired t-test was applied to determine the differences of SOCD, soil C/N 

ratio and soil pH between 2010 and 2014 at different soil depth increments. Before 

statistical analysis, normal distributions of variables were tested by Q-Q plot and 

SOCD2010 and SOCD2014 were log transformed. All the factors applied were scaled. 

Then, multiple regression was applied to detect the predictors of SOCD2010, soil erosion, 

tree species richness, tree species, aboveground and belowground biomass, litter fall, 

aspect, elevation, TRI, MAAC and geomorphy on changes of SOCD2014-2010. In the mul-

tiple regression, tree species of monocultures were set as dummy variables while ge-

omorphy of summit ridge, spur, slope, hollow and valley in the study was set as 1, 2, 3, 

4, 5 and 6, respectively. Variance inflation factors (VIFs) for each covariate in each 

model were calculated and lower than 3 lower (Chen et al., 2017). All statistical anal-

yses were performed with R 3.4.3 (R Foundation for Statistical Computing, Vienna, 

Austria) and SPSS 13.0 (SPSS Inc., Chicago, Illinois, USA). Graph and curve fittings 

were conducted in Origin 8.0 (OriginLab Corporation, Northampton, USA).  

3. Results  

3.1 Changes of SOCD after 5 years of afforestation 

A significant decrease of SOCD at topsoil depth 0-20 cm was detected across the af-

forested plots from 2010 to 2014 (Figure 2). Means of SOCD at 0-5 cm, 5-10 cm and 

10-20 cm in 2010 and 2014 were 1.69 kg m-2 and 1.48 kg m-2, 1.25 kg m-2 and1.12 kg 

m-2, 2.02 kg m-2 and 1.82 kg m-2, respectively. The decreasing rates of SOCD were 

13%, 11%, 10% at soil depth 0-5 cm, 5-10 cm, 10-20 cm. At deeper soil depth (20-50 

cm), SOCD showed no significant difference between 2010 and 2014 (Figure 2). 

3.2 Key factors driving SOCD changes  

Multiple linear regression showed that SOCD2010 could explain 75% to 14% of the vari-

ability of SOCD changes along soil profiles (p < 0.001). Geomorphy had no significant 

effect on SOCD changes at the topsoil but subsoils. At 10-50 cm soil depth, 7% to13% 

of the variabilities of SOCD could be explained by geomorphy (R2 = 0.0710-20 cm, 0.0920-

30 cm and 0.1330-50 cm, p < 0.001, Table 2). Tree parameters (tree species, tree species 

richness, AGB, BGB and litter fall), soil erosion, aspect, elevation, TRI and MAAC did 

not play an important role in SOCD changes. Therefore, SOCD2010 and geomorphy 

were the main factors on SOCD changes at the earlier stage of afforested area in the 

study. 
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Figure 2 SOC density at different soil depths in afforested plots in 2010 and 2014 in BEF China. 

Horizontal lines in boxplot represent medians and black dots represent means with standard 

error bars. Grey dots represent the SOC density of 113 plots and *** represent significant differ-

ence between 2010 and 2014 (paired t-tests p < 0.001). n.s. mean no significance at p < 0.05. 

Table 2 Multiple regression analysis of key factors on SOCD changes. 

Factors 0-5 cm 5-10 cm 10-20 cm 20-30 cm 30-50 cm 0-50 cm 

   Adj. R2   

SOCD2010 -0.743*** -0.625*** -0.482*** -0.424*** -0.139*** -
0.285*** 

Soil erosion n.s. / / / / n.s. 
TSR n.s. n.s. n.s. n.s. n.s. n.s. 
TS  n.s. n.s. n.s. n.s. n.s. n.s. 

AGB n.s. n.s. n.s. n.s. n.s. n.s. 

BGB n.s. n.s. n.s. n.s. n.s. n.s. 

Litter fall  n.s. / / / / n.s. 

Aspect n.s. n.s. n.s. n.s. n.s. n.s. 

Elevation  n.s. n.s. n.s. n.s. n.s. n.s. 

TRI n.s. n.s. n.s. n.s. n.s. n.s. 

MAAC n.s. n.s. n.s. n.s. n.s. n.s. 

Geomorphy n.s. n.s. 0.065*** 0.092*** 0.126*** 0.050*** 

n.s. means no significance at p < 0.05; *** significance at p < 0.001. SOCD2010: soil organic carbon density 

of 2010. TSR: tree species richness; TS: tree species; AGB: aboveground biomass; BGB: belowground 

biomass; TRI: terrain ruggedness index; MCCA: Monte-Carlo based flow accumulation. 
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4. Discussions  

4.1 SOCD changes in afforestation areas 

The changes of soil C stocks depend on the balance of C inputs and outputs (Davis 

and Condron, 2002). Our study showed SOCD significantly decreased in the afforested 

areas where were covered by secondary forest in the first five years. The result was 

reasonable: on the one hand, soil C decomposition was still continuing and might be 

accelerated during site preparation and human disturbance in the first years. On the 

other hand, limited C inputs from litter and fine roots due to the tree saplings were flow-

ing into soil from in the earlier stages of afforestation (Davis and Condron, 2002; Huang, 

2017; Sun et al., 2017). Therefore, these processes led to the decrease of soil C stock. 

Additionally, in the study the decreasing rate of SOC (87 g m-2 a-1 in the 0-10 cm and 

137 g m-2 a-1 in the 0-20 cm) was accordingly higher than findings from other studies 

(Paul et al., 2002; Shi and Cui, 2010; Deng et al., 2016a; Moore et al., 2018). For ex-

ample, in afforestation areas less than < 5 years in China soil C reduced at an average 

rate of 20 g m-2 a-1 at 0-20 cm soil depth based on 55 observations (Shi and Cui, 2010). 

In another study, it could be shown that within the earlier ten years of a pasture con-

verted to a tree plantation soil C at the 0-10 cm showed a decreasing rate of 60 g m -2 

a-1 (Moore et al., 2018). Meanwhile, at global scale, in the afforested agricultural areas 

less than < 5 years soil C in the < 10 cm layers generally decreased by 60.1 g m-2 a-1 

based on 73 observations (Paul et al., 2002). The higher decreasing rate of SOC in our 

research was mainly caused by denser tree plantations. In BEF China, the density of 

tree plantation (1.29 m × 1.29 m) implied more disturbance of soil and an accelerated 

decomposition of SOC during site preparation (Turner and Lambert, 2000; Guo and 

Gifford, 2002; Paul et al., 2002; Turner et al., 2005; Jandl et al., 2007; Laganiere et al., 

2010; Tosi et al., 2016). As shown in Figure 3A, bare plots without human disturbance 

almost kept the same amount of SOC stock as before afforestation along the whole soil 

profiles while failure afforested plots with soil disturbance had the decreased SOC. 

Moreover, tree growth could accelerate soil C mineralization for nutrients supply from 

soil. This point was enhanced by the finding that the afforested plots had a higher de-

creasing rate of SOC density than failure afforested plots (Figure 3). Besides, similar to 

tropical areas, subtropical areas has warm temperatures and moist soils as well as 

high soil microbial activity, which might facilitate high decomposition of organic matter, 

especially in soils without forest cover (Giongo et al., 2011; Qiu et al., 2015; de Araújo 

Filho et al., 2018). Therefore, an appropriate density of tree plantation, lower soil dis-

turbance and increased protection of soil surface should be considered during affor-

estation to reduce SOC depletion. 
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Figure 3 Means of SOC density and soil pH at different soil depths in bare, failed afforested and 

afforested plots in 2010 and 2014 BEF-China, respectively. 

 

4.2 The driving factors on SOCD changes in afforestation areas 

Recent studies have shown that SOC decreases in soils with high original SOC and 

increases in soils with lower original SOC (Garten Jr, 2002; Guo and Gifford, 2002; 

Paul et al., 2002; Vesterdal et al., 2002; Stevens and Van Wesemael, 2008; Shi and 

Cui, 2010; Chen et al., 2017). Our results confirmed this point showing that SOC densi-

ty changes in a strong negative relation with the original SOCD in 0-20 cm soil depth 

(R2 > 0.5). One explanation might be afforestation can stimulate microbial activity and 

increase soil C decomposition by altering soil properties and microbial community 

composition (Deng et al., 2016b; Pei et al., 2016; Tosi et al., 2016; Xu et al., 2017; 

Hong et al., 2018; Zhou et al., 2018). For example, soil pH as an important index for 

microbial activity was found to increase after afforestation in BEF China (Figure 3). The 

increasing soil pH might improve total microbial biomass and the microbial activity (Pei 

et al., 2016) and thus accelerate microbial respiration and soil C decomposition rate 

which led to soil C and C/N decrease. This process was illustrated in Figure 4 and Fig-

ure 5 by significant decreases of soil C/N from 2010 to 2014 and negative relationship 

between changes of soil C/N and SOCD2010. In addition, the BEF China was previously 

covered by secondary forest and therefore in topsoil layer organic soils tended to have 
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a high proportion of slowly decaying organic matter which mineralization rate is sensi-

tive to temperature changes (Knorr et al., 2005; Xu et al., 2010; Wang et al., 2013a; Li 

et al., 2018a). Considering the elevated soil temperature after secondary forest clear-

ance in the study area (Ma et al., 2013), SOC mineralization might be accelerated and 

thus led to more soil C reduction. In general, topography as an important environmental 

factor indirectly affects SOC dynamics by soil temperature, soil moisture, soil fertility 

and vegetation (Raich et al., 2006; Yimer et al., 2006; Lybrand and Rasmussen, 2015; 

Tesfaye et al., 2016; Tu et al., 2018). In our study area, topographic heterogeneity 

leads to ecological gradients due to the significant relationships between geomorpho-

logical positions and soil fertility and trees survival and growth (Yang et al., 2013; 

Scholten et al., 2017). For instance, trees survival and growth increased with elevation 

decreasing. Therefore, hollow and valley areas with higher tree coverage might have 

less changes of soil temperature and moisture and then SOC was decomposed less 

slowly to accumulate. Moreover, our result showed topography played a stronger effect 

on SOC of the deeper soil layers (Table 2). This was mainly caused by: Deeper soil 

had less human disturbance and site preparation. And, compared with surface soils, 

deeper soils have a higher proportion of recalcitrant organic carbon which is sensitive 

to soil temperature and moisture changes caused by topography (Xu et al., 2010; 

Wang et al., 2013a).  

 

 

Figure 4  Soil C/N ratio at different soil depths in afforested plots of 2010 and 2014 in BEF Chi-

na.  Horizontal lines in boxplot represent medians and black dots represent means with stand-

ard error bars. Grey dots represent the Soil C/N ratio of 113 plots and *** represent significant 

difference between 2010 and 2014 (paired t-tests p < 0.001). 
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Figure 5  Relationships between SOC density changes 2014-2010 and soil C/N ratios changes 

2014-2010 and 2010 SOC density in afforested plots of BEF China 

 

Figure 6  SOC density changes at different soil depths under six geomorphons in afforested 

plots of 2010 and 2014 in BEF China. Horizontal lines in boxplot represent medians and black 

dots represent means with standard error bars. Grey dots represent the SOC density changes 

of 113 plots. Su = summit (n = 4); Ri = ridge (n = 18); Sp = spur (n = 18); Sl = slope (n = 44); Ho 

= hollow (n = 21); Va = valley (n = 8). 

Trees affect SOC mainly by C inputs from AGB and BGB such as litter and fine root 

(Kuzyakov and Domanski, 2000). For example, SOC in high forest productivity can be 

improved due to abundant C inputs from plant residence returning to soil (Dyckmans et 
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al., 2000; Kuzyakov and Domanski, 2000). Additionally, tree species and tree species 

richness can affect SOC by their impacts on the quality and quantity of litter production 

as well as on the transfer rate of litter to SOC (Vesterdal and Raulund-Rasmussen, 

1998; Paul et al., 2002; Huang et al., 2017b).  This point was proved by many studies 

showing that different tree species had different SOC changes in afforested area (Paul 

et al., 2002; Laik et al., 2009; Laganiere et al., 2010; Shi and Cui, 2010). However, in 

our research no significant relationships existed between SOCD changes and tree 

species and tree species richness as well as forest biomass and litter fall (Table 2). It 

could be explained by that five years was too short for tree growth and C inputs from 

AGB and BGB transferring to SOC. As shown in Figure 7, limited C of AGB and BGB 

with a range of 0 to 2 kg C m-2 would flow into soil. For instance, litter fall as an im-

portant source of C input to soil only produced max. 0.3 kg C m-2 after five years of 

afforestation. Besides, tree not only allocates most of its biomass in the trunk but also 

has a slow turnover rate of its root biomass to soil (Cerri et al., 1991; Kuzyakov and 

Domanski, 2000; Guo et al., 2007; Laganiere et al., 2010), which suggests the in-

creased biomass C hardly contributes to SOC. Hence, in BEF China, the decrease of 

SOC could not be compensated by the increased C from forest biomass in the earlier 

stage of afforestation (Figure 7).  

 

Figure 7 Carbon stocks of aboveground biomass (AGB), belowground biomass (BGB) (2015) 

and 0-50 cm SOCD changes 2015-2010 in BEF China. 

 

Soil erosion did not influence SOCD changes in the study. We assume this was mainly 

caused by our experiment settings. On the one hand, we did not take the whole pro-

cess of soil erosion into consideration (splash, transport, redistribution and deposition) 
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(Lal, 2003; Lal et al., 2015; Lal, 2019). The operable measurement unit of ROPs in the 

experiment was 0.4 m ×0.4 m, that is small and limited for water erosion process. On 

the other hand, leaf litter and branches as a protective role against soil erosion (Seitz et 

al., 2015), were removed from the ROPs, which is different from natural systems. 

Therefore, no certain relationship might be found when we linked sediment delivery at 

ROPs scale to SOC changes that were measured at plot scale (25 m × 25 m). In this 

respect, further research should be concentrated on water erosion influencing on SOC 

at the watershed scale. 

5. Conclusions  

We sampled soil profiles of 132 plots at five increments in BEF China from 2010 and 

2014 to assess the changes of SOC stocks after afforestation on deforestation areas. 

Overall, afforestation in BEF China resulted in approximately 274 Mg SOC reduction in 

total in the earlier stage. Meanwhile, 90% of the total SOC reduction occurred in top-

soils. In addition, afforested areas with higher original SOC stock had a higher de-

crease rate of SOC. Therefore, afforestation on where soils are rich in SOC should be 

taken seriously. Although C of forest biomass increase with tree growth, the amount of 

SOC stock reduction could not be compensated in the first years. Afforested areas in 

the earlier stage act as an atmospheric CO2 source. Hence, further studies will be keen 

on how long the afforested area requires to play a role of carbon sink as well as SOC 

recovery at the pre-deforested level by different models.  
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Abstract 

Aims 

The aim of our research was to understand small-scale effects of topography and soil 

fertility on tree growth in a forest biodiversity and ecosystem functioning (BEF) experi-

ment in subtropical SE China. 

Methods 

Geomorphometric terrain analyses were carried out at a spatial resolution of 5×5 m. 

Soil samples of different depth increments and data on tree height were collected from 

a total of 566 plots (667 m2 each). The soils were analyzed for carbon (soil organic car-

bon SOC), nitrogen, acidity, cation exchange capacity (CEC), exchangeable cations 

and base saturation as soil fertility attributes. All plots were classified into geomorpho-

logical units. Analyses of variance and linear regressions were applied to all terrain, soil 

fertility and tree growth attributes. 

Important Findings 

In general, young and shallow soils and relatively small differences in stable soil prop-

erties suggest that soil erosion has truncated the soils to a large extent over the whole 

area of the experiment. This explains the concurrently increasing CEC and SOC stocks 

downslope, in hollows and in valleys. However, colluvial, carbon-rich sediments are 

missing widely due to the convexity of the footslopes caused by uplift and removal of 

eroded sediments by adjacent waterways. The results showed that soil fertility is mainly 

influenced by topography. Monte–Carlo flow accumulation (MCCA), curvature, slope 

and aspect significantly affected soil fertility. Furthermore, soil fertility was affected by 

the different geomorphological positions on the experimental sites with ridge and spur 

positions showing lower exchangeable base cation contents, especially potassium (K), 

due to leaching. This geomorphological effect of soil fertility is most pronounced in the 

topsoil and decreases when considering the subsoil down to 50cm depth. Few soil fer-

tility attributes affect tree height after 1-2 years of growth, among which C stocks 

proved to be most important while pHKCl and CEC only played minor roles. Neverthe-

less, soil acidity and a high proportion of Al on the exchange complex affected tree 

height even after only 1-2 years growth. Hence, our study showed that forest nutrition 

is coupled to a recycling of litter nutrients, and does not only depend on subsequent 

supply of nutrients from the mineral soil. Besides soil fertility, topography affected tree 

height. We found that especially MCCA as indicator of water availability affected tree 

growth at small-scale, as well as aspect. Overall, our synthesis on the interrelation be-

tween fertility, topography and tree growth in a subtropical forest ecosystem in SE Chi-

na showed that topographic heterogeneity lead to ecological gradients across geomor-
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phological positions. In this respect, small-scale soil–plant interactions in a young forest 

can serve as a driver for the future development of vegetation and biodiversity control 

on soil fertility. In addition, it shows that terrain attributes should be accounted for in 

ecological research. 
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Abstract 

This study investigated the development of biological soil crust (biocrust) covers in an 

early successional subtropical forest ecosystem and their impact on soil erosion. Within 

a biodiversity and ecosystem functioning experiment in Southeast China (BEF China), 

sediment discharge and runoff measurements were conducted with micro-scale runoff 

plots under natural rainfall and biocrust covers were surveyed over a five-year period. 

Results showed that biocrusts occurred widely in our experimental forest ecosystem 

and developed from initial light cyanobacteria- and algae-dominated crusts to later-

stage bryophyte-dominated crusts in only three years. Biocrust covers were still in-

creasing after six years of tree growth. Within later stage crusts, 25 bryophyte species 

were determined. The development of biocrusts was significantly influenced by the 

surrounding vegetation cover and terrain attributes. Besides high crown cover and leaf 

area index, the development of biocrusts was favoured by low slope gradients, slope 

orientations towards the incident sunlight and the altitude of the research plots. Our 

measurements showed, that bryophyte-dominated biocrusts were importantly decreas-

ing soil erosion and more effective in erosion reduction than abiotic soil surface covers. 

Hence, their significant role to mitigate sediment discharge and runoff generation in 

mesic forest environments and their ability to quickly colonize gaps in higher vegetation 

layers are of particular interest for soil erosion control in early stage forest plantations. 

A detailed record of different biocrust species and their functional influence on soil ero-

sion processes as well as a thorough monitoring of biocrust covers under closing tree 

canopy in subtropical forests is required in further studies. 
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Abstract  

Biodiversity–ecosystem functioning (BEF) research has extended its scope from com-

munities that are short- lived or reshape their structure annually to structurally complex 

forest ecosystems. The establishment of tree diversity experiments poses specific-

methodological challenges for assessing the multiple functions provided by forest eco-

systems. In particular, methodological inconsistencies and nonstandardized protocols 

impede the analysis of multifunctionality within, and comparability across the increas- 

ing number of tree diversity experiments. By providing an overview on key methods 

currently applied in one of the largest forest biodiversity experiments, we show how 

methods differing in scale and simplicity can be combined to retrieve consistent data 

allowing novel insights into forest ecosystem functioning. Furthermore, we discuss and 

develop recommendations for the integration and transferability of diverse methodical 

approaches to present and future forest biodiversity experiments. We identified four 

principles that should guide basic decisions concerning method selection for tree diver-

sity experiments and forest BEF research: (1) method selection should be directed to-

ward maximizing data density to increase the number of measured variables in each 

plot. (2) Methods should cover all relevant scales of the experiment to consider scale 

dependencies of biodiversity effects. (3) The same variable should be evaluated with 

the same method across space and time for adequate larger-scale and longer- time 

data analysis and to reduce errors due to changing measurement protocols. (4) Stand-

ardized, practical and rapid methods for assessing biodiversity and ecosystem func-

tions should be promoted to increase comparability among forest BEF experiments. 

We demonstrate that currently available methods provide us with a sophisticated 

toolbox to improve a synergistic understanding of forest multifunctionality. However, 

these methods require further adjustment to the specific requirements of structurally 

complex and long- lived forest ecosystems. By applying methods connecting relevant 

scales, trophic levels, and above- and belowground ecosystem compartments, 

knowledge gain from large tree diversity experiments can be optimized. 
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Abstract 

Soil erosion is seriously threatening ecosystem functioning in many parts of the world. 

In this context, it is assumed that tree species richness and functional diversity of tree 

communities can play a critical role in improving ecosystem services such as erosion 

control. An experiment with 170 micro-scale runoff plots was conducted to investigate 

the influence of tree species richness and identity as well as tree functional traits on 

interrill erosion in a young forest ecosystem. An interrill erosion rate of 47.5 t ha-1 a-1 

was calculated. This study provided evidence that different tree species affect interrill 

erosion, but higher tree species richness did not mitigate soil losses in young forest 

stands. Thus, different tree morphologies have to be considered, when assessing ero-

sion under forest. High crown cover and leaf area index reduced soil losses in initial 

forest ecosystems, whereas rising tree height increased them. Even if a leaf litter cover 

was not present, remaining soil surface cover by stones and biological soil crusts was 

the most important driver for soil erosion control. Furthermore, soil organic matter had 

a decreasing influence on soil loss. Long-term monitoring of soil erosion under closing 

tree canopies is necessary and a wide range of functional tree traits should be taken 

into consideration in future research. 
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