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Abstract

Forests in subtropical China were undergoing great changes in the last decades, main-
ly caused by extensive deforestation. Afforestation in turn can help not only to increase
the production of timber but also to enhance forest ecosystem services such as soil
erosion control, soil properties, carbon storage and thus help mitigating climate change.
However, even after long-term afforestation projects the hilly red soil region in southern
China is still facing serious soil erosion. This might result from structural shortcomings
of the tree species chosen and tree species richness planed for afforestation. There-
fore, it is urgent to answer the question how tree species and tree diversity and espe-
cially the relationship between diversity and ecosystem functioning affect soil erosion.
In addition, little research addresses the role of afforestation for carbon (C) and nitro-
gen (N) turnover and transport by soil erosion under forest, which is important for soil
fertility and the assessment of carbon and nitrogen fluxes from soil to adjacent aquatic
ecosystems as well as to the atmosphere. Moreover, in the earlier stage of afforesta-
tion after deforestation, soil organic carbon (SOC) dynamics are still unclear, especially

in subtropical areas with intensive human impacts on forest ecosystems.

Based on a biodiversity and ecosystem functioning project in China (BEF China), this
dissertation firstly used point cloud data from terrestrial laser scanners (TLS) and
splash cups to analyze spatial leaf area index (LAI) and to predict the potential of
splash erosion in subtropical forests. Measurements of sediment delivery were con-
ducted during the rainy seasons from 2013 to 2015 to detected temporal changes of
soil erosion and soil carbon and nitrogen fluxes and investigate the influences of tree
species and diversity. Finally, 132 soil profiles at five increments (0-5 cm, 5-10 cm, 10-
20 cm, 20-30 cm, 30-50 cm) were sampled in 2010 and 2014 to assess changes of
SOC stocks.

Results showed that lognormal and exponential linear models were suitable to describe
the vertical and horizontal LAI distribution of selected tree species, respectively. Verti-
cal distributions of LAl and throughfall kinetic energy (TKE) of different tree species
were significantly different. BEF China is still suffering from severe soil erosion even
after 6 years of tree growth. Leaf area index (LAI) and biological soil crusts (BSCs)
were the two main factors driving soil erosion within tree stands of different species
richness. Higher tree species richness lead to decreasing soil erosion by positive ef-
fects on tree canopies and surface covering BSCs. Sediment C and N concentrations
increased while annual soil C and N fluxes significantly decreased at a rate of 50% in
the observed three years together with sediment delivery. Soil C and N fluxes in the

study were as high as in deforestation areas even after 6 years of tree growth. Earlier
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afforestation in BEF China resulted in a reduction of approximately 274 Mg SOC from
2010 to 2014 in total. The reduction of SOC is mainly from the 0-20 cm topsoil. Affor-
ested areas with higher original SOC stock showed higher losses. Tree growth and
litter fall as an important carbon input to soil could not compensate SOC stock reduc-
tion in the earlier stage of the afforestation.
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Zusammenfassung

Die Walder im subtropischen China erfuhren in den letzten Jahrzehnten grofR3e
Veranderungen durch umfassende Entwaldungen. Aufforstungen kénnen nicht nur
dazu beitragen, die Holzproduktion zu steigern, sondern auch Dienstleistungen von
Waldokosystemen wie z.B. Schutz gegen Bodenerosion, Verbesserung von
Bodeneigenschaften oder Kohlenstoffspeicherung sicherzustellen und damit einen
Beitrag zur Eindammung des Klimawandels zu leisten. Die hligelige ,Red Soil“ Region
in Sudchina ist auch trotz zahlreicher, langfristiger Aufforstungsprojekte nach wie vor
mit hohen Bodenerosionsraten konfrontiert. Dies kann u.a. auf funktionelle Méangel der
ausgewahlten Baumarten und der fur die Aufforstung geplanten Baumartendiversitat
zurtckzufiihren sein. Es ist daher von groRem Interesse, wie Baumarten und
Baumartenvielfalt, sowie insbesondere der Zusammenhang zwischen Artenvielfalt und
Okosystemfunktionen die Bodenerosion beeinflussen. Dariiber hinaus befassen sich
nur wenige Studien mit der Rolle der Aufforstung fir den Kohlenstoff- und Stickstoff-
Haushalt, sowie deren Transport durch Bodenerosionsprozesse unter Wald. Diese
Fragestellungen sind fiir die Bodenfruchtbarkeit und die Bewertung von Kohlenstoff-
und Stickstofffliissen vom Boden zu angrenzenden aquatischen Okosystemen sowie
zur Atmosphéare von groRer Wichtigkeit. Weiterhin ist bisher auch nur wenig tber die
Dynamik des organischen Kohlenstoffs im Boden in frihen Phasen der Aufforstung
bekannt. Dies gilt insbesondere fiir subtropische Waldékosysteme unter intensiver

menschlicher Nutzung.

Im Rahmen eines Biodiversitatsprojekts innerhalb eines subtropischen chinesischen
Waldgebietes (BEF China) wurden in dieser Arbeit zundchst Punktwolkendaten von
terrestrischen Laserscannern (TLS) und Splash Cups verwendet, um den raumlichen
Blattflachenindex (LAI) zu analysieren und das Potenzial der Splash-Erosion im
Bestandsniederschlag (TKE) vorherzusagen. Wahrend der Regenzeiten von 2013 bis
2015 wurden Messungen der Sedimentfracht mit Erosionsmessplots durchgefiihrt, um
zeitliche Veranderungen der Erosionsraten und der Kohlenstoff- und Stickstoffflisse im
Boden zu erfassen und die Auswirkungen von Baumarten und Baumartendiversitét auf
diese zu untersuchen. In den Jahren 2010 und 2014 wurden 132 Bodenprofile in finf
Tiefenstufen (0-5 cm, 5-10 cm, 10-20 cm, 20-30 cm, 30-50 cm) untersucht, um die

Verédnderungen der Kohlenstoff-Bestande im Boden zu beurteilen.

Die Ergebnisse zeigen, dass lognormale und exponentielle lineare Modelle geeignet
sind, die vertikale und horizontale LAI-Verteilung ausgewdahlter Baumarten zu
beschreiben. Die vertikalen Verteilungen von LAl und TKE verschiedener Baumarten

waren signifikant unterschiedlich. Innerhalb des BEF China Projektes lassen sich auch
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nach 6 Jahren Baumwachstum noch immer starke Erosionsraten nachweisen. LAI und
biologische  Bodenkrusten waren die beiden Haupteinflussfaktoren auf
Bodenerosionsprozesse in Baumbestanden mit unterschiedlichem Artenreichtum. Eine
hoherer Baumartendiversitat fuhrte zu einer abnehmenden Bodenerosion durch
positive Auswirkungen der Kronendacher und flachendeckender biologischer
Bodenkrusten. Die Konzentrationen von C und N im Sedimentabtrag stiegen im
Untersuchungszeitraum an, wahrend die jahrlichen Abflisse von C und N in den
beobachteten drei Jahren zusammen mit der Sedimentabgabe signifikant um 50 %
zuriickgingen. Die C- und N-Flusse waren auch nach 6 Jahren Baumwachstum so
hoch wie in Entwaldungsgebieten. Die junge Aufforstung im BEF China Experiment
fuhrte zu einer Reduktion von insgesamt ca. 274 Mg Bodenkohlenstoff von 2010 bis
2014. Die Reduktion des Kohlenstoffs erfolgte hauptsachlich im Oberboden (0-20 cm).
Aufgeforstete Flachen mit hoéheren urspringlichen C-Bestédnden zeigten hdhere
Verluste. Baumwachstum und Streufall als wichtiger Kohlenstoffeintrag in den Boden
konnten die Reduzierung des C-Bestands in der frihen Phase der Aufforstung nicht

kompensieren.
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1. Introduction and objectives

Forests are undergoing great changes globally (Bonan, 2008; Smith et al., 2016).
According to the data of FAO (2015), the natural forest area declined about 240 Mha
between 1990 and 2015 while planted forest increased by 110 Mha (Keenan et al.,
2015). Many countries make great endeavors to afforest (Paul et al., 2002; Korkanc,
2014; Yosef et al., 2018). China is one of the largest cultivators of forest plantations in
the world and its forested area was increasing by 1.5 Mha a™! between 2010 and 2015
(FAO, 2015; Keenan et al., 2015). In subtropical China, the ecosystems are dominated
by evergreen broad-leaved forests without human disturbance (Wang et al., 2007;
Bruelheide et al., 2014a). However, in the last decades these areas were mostly
cleared and have been converted into monospecific conifer stands for many reasons
(Zhao, 2006; Wang et al., 2007; Li et al., 2014a). For instance, the two most important
tree species for forest resources and ecological services in subtropical China, Chinese
fir and Pinus massoniana, cover approximately 12.39 x 10° ha or 10% of the forest
area and 6.78 x 10°ha or 27% of the forest area in the Three Gorges Reservoir area,
respectively (Wang et al., 2012a; Huang et al., 2013; Wang, 2014). Apparently, affor-
ested areas attracted scientists’ attentions due to the impacts on forest ecosystem ser-
vices such as soil erosion control, soil properties improvement, C storage and mitiga-
tion of climate change (Piao et al., 2009; Assefa et al., 2017; de Araugjo Filho et al.,
2018; Hong et al., 2018; Li et al., 2018b).

Tree species structures and their contribution to splash erosion

Soil erosion is a serious environmental hazard of global scale (Lal, 2003) and vegeta-
tion cover of the soil surface is one key factor in controlling soil erosion (Stednick, 1996;
Cao et al., 2008; Shi et al., 2009; Chen et al., 2011; Filoso et al., 2017; Feng et al.,
2018). Forest vegetation cover affect splash erosion at the ground surface by the inter-
ception process from its structure, such as modifying drop size and speed, changing
rainfall amount and spatial distribution (Nanko et al., 2006; Geil3ler et al., 2012b;
Geiller et al., 2013; Goebes et al., 2015b). It is generally accepted that soil erosion is
reduced under forests (Smith, 1914). Although great endeavors have been made to
restore and afforest vast areas with commercial monocultures (Zhao, 2006; Wang et al.,
2007; Lei et al., 2009; Guo et al., 2015), soil erosion commonly occurs (cf. Figure 1)
and highly varies even in forested areas of subtropical China ranging from 0 to 6.32 t
ha! al. These current circumstances imply that monospecific plantations might be less
suitable for soil erosion control. One reason is that effects of forest cover on splash
erosion are dynamic in space as the structures of tree species differ. Hence,

calculating an index that describes the ability of cover plants, especially trees, is
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essential to analyze the splash erosion risk under forest and can help to better
understand the relationship between cover plants and splash erosion. Such an index
can also serve in planning and management of afforestation as part of soil and water

conservation approaches, e.g. in the hilly red soil region in southern China.

One well established index that describes the plant cover is the leaf area index (LAI,
(Jordan, 1969)). It is defined as projected leaf area per unit ground area (Gower and
Norman, 1991). As an important biophysical parameter, LAl is often used in
guantitative analyses of processes related to vegetation dynamics such as rainfall
interception (Maass et al., 1995), soil erosion modeling (Laflen et al., 1997; Zhou et al.,
2008; Zhang et al., 2014), land surface process models (Chen et al., 2011; Tesemma
et al., 2015) and global climate change (Claverie et al., 2016). In the subtropical part of
China, studies showed that LAI has a significant effect on throughfall kinetic energy
(TKE) in secondary forest (Geil3ler et al., 2012a), on soil loss in 30-year afforestation
(Sun et al., 2010; Zhang et al., 2011) and on sediment discharge and TKE in young
afforestation (Goebes et al., 2015a; Seitz et al., 2016). Further vegetation factors that
are correlated with TKE in forests are crown cover, leaf traits, tree height and branch
architecture (Cao et al., 2008; Geiller et al., 2010; Geildler et al., 2012b; Goebes et al.,
2015a; Goebes et al., 2015b). Another important aspect is, that the process of free
raindrops passing the tree canopies is dynamic (Nanko et al., 2006) and the canopy
architecture can change the drop size and spatial distribution significantly at different
positions and height of the tree canopy (Nanko et al., 2006; Goebes et al., 2015b).
Hence, the relationship between general LAI values and splash erosion is questionable
since it neglects the effects of spatial distributions of LAI. Also, most studies
concentrate on mature forests (Cao et al.,, 2008; Geil3ler et al., 2013). Regarding
afforestation measures on heavily eroded soils with a low structure stability and without
shrubs or litter cover, like in the hilly red soil region in southern China (Zhao, 2006; Shi
et al., 2009), the role of forests in their early stage of tree growth to protect the soil from

erosion is of ample interest. Such research is still scarce.

The development of sediment delivery and its relationship with tree diversity

after afforestation

High sediment delivery often occurs in forested catchments in subtropical regions
(Marks, 1998; Molnar, 2004; Zhao, 2006). Along with soil erosion, growing concern
about loss of biodiversity is emerging worldwide due to substantial contemporary de-
clines in biodiversity at different scales (Tittensor et al., 2014; Mori et al., 2017). As part
of the heated scientific research, recently, different researchers focused on the effect of
biodiversity on soil erosion control. Pohl et al. (2009); Martin et al. (2010) and Wang et

al. (2012b) pointed out that plant species richness negatively correlated with runoff and
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sediment delivery. TKE from splash cup measurements can decrease with higher tree
species richness in forest stands (Gei3ler et al.,, 2013), but higher neighborhood
diversity can increase TKE in young forest plantations (Goebes et al., 2015b). Mean-
while, TKE and sediment delivery are strongly affected by tree species, but the effect of
tree species richness in early stage afforestation is not yet clear (Goebes et al., 2015b;
Goebes et al., 2016; Seitz et al., 2016). Those findings suggested a high grade of
uncertainty about the relationships between tree diversity and soil erosion. Additionally,
they all focus on a single point in time and to our knowledge, measurements covering a
longer period have not been conducted. Different tree species have different spatial
distribution patters e.g. regarding leaf areas, leading to changing TKE (Song et al.,
2018). Thus, with ongoing tree growth the combination of different tree species tends to
not only modify the vertical vegetation structure and increase the quantity of root and
litter but also improve soil properties and consequently reduce soil erosion. At the
same time, highly diverse biological soil crusts (BSCs) cover important areas in young
subtropical forest plantations and have a high mitigating influence on soil losses (Seitz
et al.,, 2017). Therefore, research on the temporal relationship between forest
biodiversity, soil protecting vegetation patterns and soil losses is essential for
understanding how biodiversity might sustain ecological services such as water erosion

prevention.

Figure 1 Sediment transport in the river Ganghang nearby the BEF China experimental site,
Xingangshan, Jiangxi Province, PR China after high rainfall events in June 2014 (left) and July
2015 (right).

The development of soil carbon and nitrogen fluxes and its relationship with tree

diversity after afforestation

Soil erosion strongly affects the global carbon cycle as it redistributes soil and related
soil C (Carpenter et al., 1998; McCorkle et al., 2016; Garcia-Diaz et al., 2017; Poesen,
2018; Lal, 2019). Around the world, 5.7 Pg C equivalent to 0.84% of global soil C stock
(677 Pg in 0-30 cm soil depth) was displaced by soil erosion every year (Lal, 2003,
2018). In China, water erosion induced 180 + 80 Tg C equivalent to 0.41% of national
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topsoil C stock (43.6 Pg in topsoil) of displacement per year between 1995 and 2015
(Song et al., 2005; Ni, 2013; Yue et al., 2016). These results confirm the importance of

soil C transported by erosion process on the global carbon balance.

C and N displacement caused by soil erosion is a scientific research hotspot (Wang et
al., 2013b). Many papers address land use change as driving factor of soil C alterations
by soil erosion (Jacinthe et al., 2004; Martinez-Mena et al., 2008; Nadeu et al., 2012).
This includes afforestation which increasingly spreads in many countries (Paul et al.,
2002; Korkang, 2014; Keenan et al., 2015; Yosef et al., 2018). China as one of the
largest cultivators of forest plantations in the world has approximately 90% of
afforestation to its forest area expansion since the last 50 years (Piao et al., 2009).
Generally, increased forest cover prolongs the process of throughfall reaching soil sur-
face by intercepting raindrops, modifying drop size and speed, and changing rainfall
amount and energy (Nanko et al., 2006; Geil3ler et al., 2012b; Geildler et al., 2013,
Masselink et al., 2016). In addition, afforestation can improve soil properties and struc-
ture such as soil water holding capacity and aggregate stability (Gol et al., 2010;
Korkang, 2014) and produce litter that covers the soil surface (Seitz et al., 2015).
Therefore, it is accepted that afforestation is reducing soil erosion (Bonan, 2008; Zhao
et al., 2013; Keesstra et al., 2017). However, recent examples from subtropical China
show that afforestation can have an inconsistent effect on throughfall kinetic energy
and sediment discharge (Goebes et al., 2015a; Seitz et al., 2016). Positive or negative
effects of forests for soil erosion depend on many dynamic and species specific factors
such as leaf area index, BSCs, tree height, spatial distribution of leafs and stand age
(Goebes et al.,, 2015a; Seitz et al,, 2016; Song et al., 2018). Over time after
afforestation, sediment delivery decreases (Song et al., 2019). However, coupling of
sediment and C and N fluxes during erosion events is still not well understood and
studies on the carbon budget of forest ecosystems related to soil erosion are limited
(Stacy et al., 2015). In addition, it is not reported how tree diversity affects sediment C

and N fluxes.
Soil carbon stock changes after afforestation

Soil organic carbon (SOC) as the largest pool of terrestrial organic carbon accounts for
approximate 40% of the whole C stock (to 1 m soil depth) in forest (Dixon et al., 1994,
Jobbagy and Jackson, 2000; Pan et al., 2011). It is sensitive to land use changes such
as deforestation and afforestation (Jandl et al., 2007; Laganiere et al., 2010). Defor-
estation could reduce SOC stock due to the decreased organic matter inputs to soll
and the increase of decomposition rate and soil erosion caused by soil disturbance
while no consistent effect of afforestation on SOC exists (Veldkamp, 1994; Murty et al.,
2002; Assefa et al., 2017; de Araujo Filho et al., 2018; Lal, 2019). Many studies ad-
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dress that positive or negative effects of afforestation on SOC stocks largely depend on
factors such as previous land use, tree species, stand age, and site management (Paul
et al., 2002; Laganiere et al., 2010; Shi and Cui, 2010; Li et al., 2012). For instance, a
tendency of an initial loss in SOC are detected in the first few years of afforestation
where soils are rich in original SOC (Paul et al., 2002; Laganiere et al., 2010; Shi and
Cui, 2010). Therefore, influences of afforestation on SOC stocks in the earlier stage
cannot be neglected due to the potential source of atmospheric CO; and its large areas
around the world. However, research on this process do not attract enough attention.

BEF China

BEF China is located in Xingangshan Town, Dexing City, Jiangxi Province, PR China
(29.08°-29.11° N, 117.90°-117.93° E). It is not only one of the largest forest biodiversi-
ty experiments in the world but also the first tree diversity experiment in the humid sub-
tropics (Trogisch et al., 2017). The project includes two parallel sites (Site A and Site B,
which is planted in 2009 and 2010, respectively, Figure 2) with an area of 50 ha
(Bruelheide et al., 2014a).

Figure 2 The distribution of plots structured on Site A and Site B in the BEF China project and
Site A and B images from google earth in 2010, 2014 and 2017.

The sites were established by transplanting forty broad-leaved tree species after logoff
of original forest (Bruelheide et al., 2014a). The forty tree species were planted in mon-
ocultures and mixtures of 2, 4, 8, 16 and 24 species on 566 plots with each measuring
25.8 x 25.8 m (667 m?) (Bruelheide et al., 2014a). For each plot, 400 tree individuals
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were planted in 20 rows of 20 tree individuals with a planting distance of 1.29 m
(Bruelheide et al., 2014a). With its unique feature of the large range of tree species
richness levels, BEF China provides a platform to various research topics, especially
on finding out the effects of tree species and its richness on primary productivity,
carbon and nitrogen storage, and soil erosion. To our knowledge, at least fifteen stud-
ies and fourteen projects are conducted (Figure 3) (Trogisch et al., 2017). As an im-
portant research project in BEF China, Subproject 6 is mainly concerning on soil prop-
erties and soil erosion under afforestation and the role of biodiversity for soil erosion in

forest ecosystems (Figure 4).
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Figure 3 a) Range of methodical approaches applied in BEF-China to study effects of tree di-
versity including leaf functional trait diversity (5) and genetic diversity (6) on plant biomass pro-
duction and tree growth (1+2=aboveground and belowground tree biomass and productivity,
3=tree growth and canopy architecture, 4=herb-layer biomass and diversity), aboveground mul-
titrophic interactions (7=herbivory, 8=plant-fungal pathogens interactions, 9=trophobiosis), be-
lowground microbial interactions (10=microbial diversity, 11=microbial biomass and activity),
nutrient cycling and soil erosion (12+13=leaf litter and deadwood decomposition, 14=soil fertility
and C storage, 15=soil erosion) (Trogisch et al., 2017) and b) the list of projects involved in
BEF China (http://www.bef-china.de).

The objectives

Previous research in our group have investigated the effects of species diversity,
species ldentity, functional traits on sediment discharge as well as on TKE (Goebes,
2015; Seitz, 2015). Therefore, based on these findings, the objectives of this

dissertation were to:
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1) build up the spatial distributions of LAl in common tree species and find out its
relationship with throughfall kinetic energy (Objective 1).

2) investigate temporal changes of sediment delivery and its driving factors, as
well as the underlying mechanism of tree diversity influences on sediment delivery after
afforestation (Objective 2).

3) detect temporal changes of soil C and N fluxes by water erosion and its driving

factors, as well as its relationship with tree diversity after afforestation (Objective 3).

4) monitor SOC changes and the driving factors (Objective 4).

Subproject 6: Soil Properties and Soil Erosion

At the Institute of Geography in Tubingen, Subproject 6 (Soil properties and soil erosion) is situated. Two
process systems will be analyzed in this subproject: (a) modification of kinetic energy of precipitation by
its pass through the tree canopy and the shrub layer, and (b) connection between surface runoff,
sediment transport and changing intrinsic soil properties as a function of biodiversity gradients. In the
framework of the Research Unit, Subproject 6 also covers spatial and pedological aspects of soil genesis,
substrate characteristics, landscape development, and land use history.

Overview

Project BEF China / DFG Research Unit 891 (& main project page)

Subproject Soil Properties and Soil Erosion

Start/End  2010-2015

Figure 4 Subproject 6 conducted within BEF China (http://www.bef-china.de)
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2. Materials and methods

2.1. Study site

All the research was conducted in the framework of the BEF China project, which is
located in Xingangshan Town, Dexing City, Jiangxi Province, PR China (29.08°-29.11°
N, 117.90°-117.93° E). The climate is dominated by subtropical monsoon with a mean
annual temperature of 17.4 °C and a mean annual precipitation of 1635 mm with half of
it falling from May to August (Goebes et al., 2015b). The natural vegetation is dominat-
ed by broadleaved forest with evergreen species (Trogisch et al., 2017). The area
shows mainly hills at elevations from 105 m to 200 m with slopes from 15° to 41°
(Scholten et al., 2017). Soils in the project are mainly Cambisols, with Anthrosols in
downslope positions and Gleysols in valleys and the bedrock is non-calcareous slates

weathered to saprolite (Scholten et al., 2017).

The BEF China project includes two parallel sites (A and B) on which commercial mon-
ocultures were originally planted that were cut down in 2009 and 2010, respectively
(Bruelheide et al., 2014a). Holes of 0.5 m (length) x 0.5 m (width) x > 0.2 m (depth)
were dug for seedlings (Yang et al., 2013). Forty local tree species were replanted in
monocultures and mixtures of 2, 4, 8, 16 and 24 species on 566 plots with each meas-
uring 25.8 x 25.8 m (667 m?) (Yang et al., 2013). For each plot, 400 tree individuals
were planted in 20 rows of 20 tree individuals with a planting distance of 1.29 m
(Bruelheide et al., 2014a)

2.2. Objective 1 (Selected afforested tree species structures

and their contributions to splash erosion)

Tree parameters retrieval

In this study, three subtropical tree species were selected, including evergreen broad-
leaved species (Lithocarpus glaber and Schima superba) and a deciduous broadleaved
species (Sapindus saponaria). These three species are the recommended species for
the afforestation project of water and soil conservation in the subtropical region of Chi-
na (The Ministry of Water Resources, 2013). For each tree species, three tree individu-
als were randomly selected. LAl measurements were carried out in October 2013 and
point cloud data for each tree was obtained using a Terrestrial Laser Scanner (RIEGL
VZ-400, Horn, Austria) (Figure 5). For each tree, 3 to 5 measurement positions were
set at different directions with a horizontal distance ranging from 1.5 m to 8 m. The
view zenith angle from the center of the scanner to the canopy was set to 60 degrees.

Before the measurement, high reflectance sheets were stuck on pegs around the trees
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at various distances, heights and directions, to guarantee that more than 6 common
sheets were scanned for each two adjacent stations, which provided reference points
to convert all data in the same coordinate. For the parameters of RIEGL VZ-400, scan-

ning angle resolution is 0.01° and measurement rate is 122000 points s™.
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Figure 5 Terrestrial laser scanner (RIEGL VZ-400, Horn, Austria) and the flow chart of cloud

point data process for tree parameters.
TKE measurement

TKE was measured using Tubingen Splash Cups (T-Cup, (Scholten et al., 2011)). The
cup has a diameter of 4.6 cm and a height of 4 cm (Scholten et al., 2011). It is filled
with uniform fine sand (0.125 mm) (Figure 6). The detached sand is calculated by the
weight difference between the dry sand in the full-filled splash cup before
measurements and the dry sand inside the cup after the rainfall event. Then kinetic
energy of rainfall (KEx) is calculated by the detached sand (ds) per splash cup (sc)
using the equation (Eg.1) below with a modified slope and standardization to 1 m?
(Goebes et al., 2015b).

KE, (Im™)=ds,, (9)x0.1455x{1000(cm’ ) + 712} Eq.1

Its application was approved in field studies in subtropical China (Geil3ler et al., 2012a;
Geildler et al., 2012b; Goebes et al., 2015b). Five monoculture plots of Lithocarpus
glaber (1 plot), Schima superba (2 plots) and Sapindus saponaria (2 plots) were
selected to install splash cups under different tree individuals using the design of
(Goebes et al., 2015b). The cup positions were 15 cm, 30 cm, 45 cm, 60 cm, 75 cm,
and 95 cm from the stem respectively (Figure 6, six splash cups per plot). Five rainfall
events from May to July in 2013 were measured (Table 1). In total, data from 150

splash cups were collected.
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Figure 6 Splash cup measurement design with six positions according to (Goebes et al., 2015b).
Gray stars, black dots and red circle lines represent tree individuals, splash cup position and

radius around tree stems, respectively.

Table 1 Characteristics of the five captured rainfall events (Goebes et al., 2015b)

Rainfall events Event 1 Event 2 Event 3 Event 4 Event 5
Rainfall amount (mm) 6.6 23.3 39.3 61.2 185.7
Rainfall duration (h) 2.33 10.16 115 14.5 30.58
Mean throughfall amount (mm) 5 28.3 47.9 73.8 192.7
TKE (Jm2) 78.8 255.3 354.7 553.7 1292.8

Data analysis

LAl was estimated using volume element model from the point cloud data (Hosoi and
Omasa, 2006; Zheng and Moskal, 2012) and was calculated with Matlab 2010b (The
Mathworks Inc., Natick, MA, USA). Basic parameters of trees (ground diameter, tree
height, first branch height, crown width, branch number and crown cover) were
measured with the laser scanner software RiScan Pro (http://www.riegl.com). A one-
way analysis of variance (ANOVA) was conducted to compare the mean value of
canopy structure parameters. Skewness of LAl vertical distribution and Pearson
correlation analyses to test LAl effects on TKE were conducted with IBM SPSS
Statistics for Windows Version 19.0 (IBM Corp., Armonk, NY, USA). Before the
Pearson correlation analyses, TKE was log10 transformed to normal distribution and
tested by Kolmogorov—Smirnov (Significance = 0.2). Graph and curves fitting were

processed in Origin 8.0 (Origin Lab Corporation, Northampton, MA, USA).
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2.3. Objective 2 and 3 (The development of sediment delivery

and soil carbon and nitrogen fluxes)

Research plot

For Objective 2 and 3, 45 of these plots were selected, 23 on Site A and 22 on Site B
with no tree planting and four tree species richness levels: monocultures, 8 tree spe-

cies, 16 tree species and 24 tree species stands (Table 2).

Table 2 Tree, topography and soil data (0-5 cm) of 45 selected research plots in the BEF China

project. (TSR: tree species richness; Soil BD: soil bulk density; SOC: soil organic carbon)

Plot TSR Tree species Site Slope Aspect Altitude BD pH SOC
© (m) (gm?) (%)
L20 O / A 24 w 229 0.86 3.68 3.96
Q23 O / B 23 N 153 0.78 3.39 347
D29 1 M. flexuosa B 31 N 159 0.90 3.68 2.77
125 1 M. yuyuanensis B 29 N 152 0.96 347 290
MO7 1 B. luminifera B 31 S 129 0.89 3.55 252
NO2 1 M. flexuosa B 41 S 129 0.89 3.61 3.01
NO5 1 A. altissima B 32 N 119 0.89 3.63 3.17
N28 1 I. polycarpa B 19 E 167 0.97 356 221
Q27 1 A. fortunei B 35 S 160 0.97 3.66 2.78
Q29 1 M. leptophylla B 33 E 144 0.90 3.74 242
R29 1 C. fargesii B 33 S 146 0.91 3.65 248
T13 1 M. thunbergii B 21 w 133 0.96 344 259
uie 1 E. japonicus B 20 w 147 0.94 344 265
V24 1 E. chinensis B 32 E 137 0.94 3.71 3.01
wio 1 Ph. bournei B 27 E 147 0.92 345 235
wiil 1 E. glabripetalus B 19 S 148 1.04 325 272
X21 1 M. grijsii B 24 N 132 0.91 3.65 254
Y09 1 C. biondii B 32 E 126 1.10 3.71 1.93
E31 1 Q. fabri A 22 S 144 0.95 3.86 2.48
E33 1 L. glaber A 19 S 144 1.12 3.94 218
E34 1 C. henryi A 21 S 125 1.06 409 284
G33 1 Q. serrata A 18 S 127 0.85 3.92 345
28 1 L. formosana A 26 S 163 0.90 3.81 3.29
K19 1 S. superba A 24 N 199 0.80 3.70 4.18
Lo 1 C. eyrie A 34 S 211 0.92 392 281
L11 1 C. sclerophylla A 28 S 201 1.04 3.87 295
N11 1 S. saponaria A 26 S 203 0.82 3.63 393
N13 1 S. sebiferum A 31 S 182 0.78 3.78 3.62
N17 1 R. chinensis A 28 w 221 0.91 3.79 3.39
022 1 C. myrsinaefolia A 21 w 229 0.86 3.80 354
027 1 Ch. axillaris A 21 w 185 1.07 412 241
Q13 1 K. bipinnata A 30 w 215 0.90 3.86 3.84
R14 1 C. glauca A 30 N 228 0.82 3.80 425
J29 8 1* B 31 N 182 0.81 3.39 485
Q17 8 2* B 22 N 131 0.99 352 291
S10 8 3* A 36 S 220 0.96 3.79 3.04
T15 8 4* A 30 N 244 0.87 3.67 342
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122 16 5* B 28 S 119 1.07 3.58 2.28
S22 16 5* B 33 w 145 1.00 3.61 3.26
L22 16 6* A 21 w 180 0.80 3.79 3.48
M22 16 6* A 23 W 221 0.95 3.79 3.48
Uuio 16 6* A 40 S 231 0.96 3.86 3.22
R30 24 7* B 27 S 136 0.95 3.67 2.46
NO9 24 8* A 33 S 218 0.86 3.58 3.60
R18 24 8* A 36 W 215 0.91 3.82 3.50

1*: 8 tree species from monocultures NO5, Y9, W11, U16, N28, X21, D29 and W10.

2*: 8 tree species from monocultures Q27, M07, R29, V24, Q29, T13, 125 and Q. phillyreoides.
3*: 8 tree species from monocultures E34, L11, 027, 128, G33, N11, N13 and N. sinensis.

4*; 8 tree species from monocultures E33, E31, N17, K19, L10, R14, 022 and Q13.

5*: 16 tree species from 1* and 2*.

6*: 16 tree species from 3* and 4*.

7*. 24 tree species from 5* from monocultures E33, K19, R14, L10, L11, and Cinnamomum camphora,
Daphniphyllum oldhamii and Diospyros glaucifolia.

8*: 24 tree species from 6* and Cinnamomum camphora, Daphniphyllum oldhamii, Diospyros glaucifolia,
Acer davidii, Castanopsis carlesii, Melia azedarach, Quercus acutissima and Sapium discolor.

Soil erosion and soil carbon and nitrogen fluxes measurement

Based on the design of BEF China and considering the various research topics investi-
gated, a selected area of each research plot was used for soil erosion measurements
(Bruelheide et al., 2014a; Trogisch et al., 2017). Five micro-scale runoff plots (ROP)
(0.4 m length x 0.4 m width x 0.1 m height) were randomly installed in 2013 and con-
nected to 20 L reservoirs to collect runoff and sediment delivery (Figure 7) (Seitz et al.,
2016). The runoff plots were operated from May to July during the rainy season in 2013,
2014 and 2015. Runoff volume was collected in situ and sediment delivery was
calculated after sampling. Dried sediment was carefully collected and grounded on a
ball mill for C and N analysis. Sediment C and N were measured with a CN-analyzer
(VARIO EL lll, Elementar, Hanau, Germany). In total, 550 valid measurements from
215 runoff plots were captured (182 in 2013, 158 in 2014 and 210 in 2015).
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Figure 7 Random positions of runoff plots for soil erosion measurements and soil samples in
one research plot of the BEF China project (0.4 m length x 0.4 m width x 0.1 m height).

Rainfall

Rainfall data during the soil erosion measurements was captured by climate stations on
both sites (ecoTech data logger with Vaisala weather transmitter and ecoTech tipping
bucket balance, Bonn, Germany). Daily accumulated precipitation curves and the ten
largest daily rainfall events during the three years were shown in Figure 8. Further data
on regional precipitation was used from the National Meteorological Information Center
(NMIC) of China and China Meteorological Administration (CMA).

Tree parameters

Tree measurements with laser scanning (FARO Laser Scanner Photon 120, FARO
Technologies Inc., FL, USA) at all plots started in September 2010 for both
experimental sites on a yearly base, which were determined by the central 6 x 6 trees
(36 trees) in the monocultures and the central 12 x 12 trees (144 trees) in the 8, 16 and
24 tree species stands (Li et al., 2014a; Li et al., 2017).

Crown cover and LAl were measured each May from 2013 to 2015 at the ROP scale
using a fish-eye camera system (Seitz et al., 2016). 552 valid pictures of forest canopy

at runoff plot scale were captured.
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Figure 8 (a) Daily accumulated precipitation and (b) The ten largest daily rainfall events in BEF
China from 2013 to 2015.

Soil surface cover and soil properties

Soil surface cover including BSCs and stone cover was surveyed yearly. BSCs were
measured photogrammetrically during the rainy seasons from 2013 to 2015 within the
runoff plots. Perpendicular images for each runoff plot were taken by a camera system
(Canon 350D, Tokio, Japan). The images were processed by the grid quadrat method
with 10 x 10 subdivisions of a digital grid in GIMP 3.0. BSCs and stone cover were
separated by hue distinction. Further soil surface cover by shrubs was not present due
to weeding according to the experimental design and a continuous leaf litter layer could
not be recorded during the first years of this early successional afforestation.

The soil sampling was conducted in 2014. Soil cores with 6 cm in diameter were taken
to a depth of 50 cm and then divided into five depth increments (0-5 cm, 5-10 cm, 10-
20 cm, 20-30 cm and 30-50 cm) (Scholten et al., 2017). For this study, soil properties
of the 0-5 cm increment were used (Table 2). For each plot, nine soil cores were
collected (Figure 7) and mixed. Soil samples were air-dried, sieved through a 2 mm
mesh, handpicked to remove plant and animal residuals and then grounded for soil

analyses. For total soil carbon analyses, about 40 mg of ground sample material was
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weighed into tin foil and analyzed using oxidative heat combustion at 1150 °C in a
helium atmosphere in a Vario EL lll elemental analyzer (Elementar Analysensysteme
GmbH, Hanau, Germany). Soil pH was determined with a 1 M KCI solution (soil-to-
solution ratio 1:2.5) by a WTW pH meter pH 340 (WTW GmbH, Weilheim, Germany)
using a Sentix 81 electrode according to DIN EN15933 (2012). Since pH is < 6.7 for all
samples, total soil carbon equals SOC. In addition, five replicates of bulk density
samples were obtained for each plot at the same depth increments in 2015. The soil
BD was gravimetrically determined from the five replicate volumetric samples per depth
increment (samples dried at 105 °C).

Data analysis
Annual sediment delivery and soil carbon and nitrogen fluxes

A rainfall threshold of 12.7 mm was applied to distinguish erosive rainfall amounts after
Wischmeier and Smith (1978a). Annual erosive rainfall amount (AER, mm) and erosive
rainfall during the runoff plot measurements (ERM, mm) in the rainy seasons were cal-
culated based on precipitation curves from climate stations (Figure 8). Then, with
sediment delivery acquired during the runoff plot measurements (SE, Mg ha?), an
annual sediment delivery (ASD, Mg ha') was calculated (Eg. 2). Then, with sediment C
and N concentrations (SCC and SNC, %) and annual sediment delivery (ASD, Mg ha),
annual soil C and N fluxes (ASC and ASN, Mg ha') were calculated by Eq. 3. To
illustrate C and N differences between sediment and soil, the enrichment ratio (ER) of
sediment C (N) concentration to soil C (N) concentration was calculated as given in Eq.
4,

AER

ASD=——xSE Eq.2
ERM
ASC(N)=ASDxSC(N)C Eq.3
SC(N)C
R=———— Eq.4
SoilC (N)

Statisstical analysis

For Objective 2, ANOVA and least significant difference (LSD) tests were conducted to
assess temporal changes of sediment delivery. Linear mixed effects (LME) models with
restricted maximum likelihood were used to detect driving factors on sediment delivery
changes. Before modelling, all factors were tested on normal distribution. Sediment

delivery was twice squared root transformed ( /ﬁ) to achieve normal distribution. Tree

height, stem diameter, crown width, crown cover, LAIl, BSCs, surface cover and soll
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properties were fitted as fixed factors, while site, runoff plots nested in plot and tree
species composition were fitted as random factors. If multi-collinearity (correlation in-
dex > 0.7) was detected among the fixed factors, correlated factors were fitted individ-

ually in exchange to the counterpart.

Then, for detecting the effects of tree species richness on sediment delivery, we used
linear mixed effects models to (I) analyse the temporal development of annual sedi-
ment delivery under changing tree species richness and to (ll) investigate driving fac-
tors on annual sediment delivery and how in turn those factors are influenced by tree
species richness. Before modelling, annual soil erosion rates from 2013 to 2015 were
twice square root transformed to fit normal distribution. A first model was calculated
with tree species richness, year and the interaction of tree species richness with year
as fixed factors, while site, plot, runoff plot nested in plot and tree species composition
were fitted as random factors. Finally, models were used to analyse the effects of tree
species richness on identified main influencing factors of soil erosion by using tree
species richness, year and the interaction of tree species richness with year as fixed
factors, while site, plot, runoff plot nested in plot and tree species composition were

used as random factors.

For Objective 3, ANOVA and LSD tests were conducted to assess temporal changes of
sediment C and N concentrations and annual soil C and N fluxes as well as the effect
of tree species richness. Multiple regression was used to detect significant predictors.
For each multiple linear regression model, all independent variables (terrain parame-
ters, soil properties, sediment delivery, surface cover, plant traits) were tested on nor-
mal distribution and transformed by square root when needed, and then z-scored (ze-
ro-mean normalization). Potential collinearity between independent variables was de-
tected by the Pearson correlation coefficient. One independent variable was fitted indi-
vidually in exchange to the other when their correlation coefficient was higher than
|£0.7|. Dependent variables (sediment C concentrations, sediment N concentrations,
annual soil C flux and annual soil N flux) were tested on normalized distribution and
annual soil C flux, annual soil N flux were square root transformed. Beta value as
standard regression coefficient from multiple regression models was used to illustrate

the importance of independent variables on dependent variables.

All statistical analyses were performed with R 3.4.3 (R Foundation for Statistical Com-
puting, Vienna, Austria) and SPSS 13.0 (SPSS Inc., Chicago, lllinois, USA). Graph and

curve fittings were processed in Origin 8.0 (OriginLab Corporation, Northampton, USA).
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2.4. Objective 4 (Soil carbon stock changes after afforestation)
Soil sampling

In this study, 132 of plots were selected for soil sampling (Table 3). Soil sampling was
conducted in September and October in 2010 and 2014, respectively. Soil core with 6
cm in diameter was taken at a depth of 50 cm and then divided into five depth incre-
ments (0-5 cm, 5-10 cm, 10-20 cm, 20-30 cm and 30-50 cm) (Scholten et al., 2017).
For each plot, nine soil cores were collected (Figure 9) and mixed resulting in five soil
samples. Soil samples were air-dried, sieved through a 2 mm mesh, handpicked to
remove plant and animal residuals and then grounded for soil properties analysis. SOC
and soil N was determined by a CN-analyzer (VARIO EL lll, Elementar, Hanau, Ger-
many) (Scholten et al., 2017). Soil pH was determined in 1M KCI (Scholten et al., 2017).
In addition, five replicates of BD sample for each plot were obtained at the same depth
increments as soil sampling in 2015 for soil BD determination. Soil organic carbon den-
sity (SOCD, kg m) of five depth increments and SOC stock (0-50 cm) were calculated
as given Eq. 5 and 6 (Don et al. 2009):

SOCD, =T, x BD, xSOC; x(100—C, ) %x0.1 Eq. 5

SOC stock,_goem = Y SOCD, Eq. 6
0

SOCD represents soil organic carbon density (kg m-?); i represents different five depth incre-
ments of 0-5 cm, 5-10 cm, 10-20 cm, 20-30 cm, 30-50 cm; T represents soil layer (cm); BD
represents soil bulk density (g cm=3); SOC represents soil organic content (%); C represents

stone percentage (%).
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Figure 9 Positions of soil sampling for soil properties and bulk density on one plot. Grey dot
means tree saplings. Black stars and triangles means the positions of soil samples (n =9,

subsamples) and bulk density (n = 5, subsamples), respectively.



Materials and methods 18

Tree and litter measurement

Tree height and diameter at breast height (DBH) as two important parameters for bio-
mass estimation were determined by the central 6 x 6 trees (36 trees) in the monocul-
tures and 2 species plots and the central 12 x 12 trees (144 trees) in the 4, 8, 16 and
24 species mixtures (Li et al., 2014a; Li et al., 2017). Tree measurement of all plots
started in September and October 2010 for Site A and in 2011 for Site B on a yearly
base. Aboveground biomass (AGB) (kg dry mass) and belowground biomass (BGB)
(kg dry mass) were calculated as given (Eq. 7 and 8) which were developed from 147
trees and 41 species in subtropical China (Xu et al., 2015).

For litter measurement, 56 plots on Site A and 45 plots on Site B (Table 3) with 1, 2, 4,
8 and 16 species were selected and equipped with litter traps (Huang, 2017). Litter trap
of 0.75 x 0.75 m was made of nylon nets (1 mm mesh) and fixed over a PVC frame at
a height from 1 m to 1.5 m aboveground under tree canopy (Huang, 2017). For each
plot, three litter traps were installed in the central area. The measurement started in
March 2014 for Site A and March 2015 for Site B. Litter collection was done every
month. Litter sample was put into oven and dried for 48 hours at 60 C and weighed.
The data was summed up for annual litter fall production. More details please see
Huang (2017). Then, biomass values (AGB, BGB and litter fall) were calculated to car-
bon stock using carbon conversion factor of 0.47 (IPCC) (Martin and Thomas, 2011).

AGB =exp[ -2.334+2.118xIn(D)+0.5436xIn(H)+0.5953x In(WD) | Eq.7

BGB =exp| —2.80346+2.004xIn (D) | Eq. 8

D represents diameter at breast height (cm), H represents tree height (m), WD represents wood
density (g cm3).

Soil erosion
Sediment delivery was determined as described in section 2.3.
Topography

Altitude, slope, terrain ruggedness index (TRI), Monte-Carlo based flow accumulation
(MCCA) were calculated (Scholten et al., 2017). Moreover, 10 geomorphological units
(geomorphons: flat, footslope, valley, peak, shoulder, ridge, spur, slope, pit and hollow)
was computed in our study area according to the concept of openness and geomor-
phons (Yokoyama et al., 2002; Jasiewicz and Stepinski, 2013; Scholten et al., 2017).
Depression, flat and valley summarized as valley while shoulder, peak and ridge sum-

marized as ridge for further processing (Scholten et al., 2017).
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Table 3 Plots information of soil survey, litter collection and soil erosion measurement

Soil samples Soil erosion Litter collection
Tree species richness Site A Site B Site A Site B Site A Site B
Bare plot 3 2 1 1 / /
1 31 20 15 16 31 19
2 16 15 / / 16 15
4 8 7 / / 8 8
Afforested plot 8 4 4 2 2 4 4
16 2 2 2 2 2 2
24 2 2 2 2 / /
In all 66 52 22 23 61 48
Failed afforested 1 13 / / / /

Statistical analysis

A one-sided, paired t-test was applied to determine the differences of SOCD, soil C/N
ratio and soil pH between 2010 and 2014 at different soil depth increments. Before
statistical analysis, normal distributions of variables were tested by Q-Q plot and
SOCD2010 and SOCD214 Were log transformed. All the factors applied were scaled.
Then, multiple regression was applied to detect the predictors of SOCD2p10, SOil erosion,
tree species richness, tree species, aboveground and belowground biomass, litter fall,
aspect, elevation, TRI, MAAC and geomorphy on changes of SOCD214-2010. In the mul-
tiple regression, tree species of monocultures were set as dummy variables while ge-
omorphy of summit ridge, spur, slope, hollow and valley in the study was set as 1, 2, 3,
4, 5 and 6, respectively. Variance inflation factors (VIFs) for each covariate in each
model were calculated and lower than 3 lower (Chen et al., 2017). All statistical anal-
yses were performed with R 3.4.3 (R Foundation for Statistical Computing, Vienna,
Austria) and SPSS 13.0 (SPSS Inc., Chicago, lllinois, USA). Graph and curve fittings
were conducted in Origin 8.0 (OriginLab Corporation, Northampton, USA).
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3. Results and discussion

3.1. Selected afforested tree species structures and their

contributions to splash erosion

Spatial distribution of LAl between different tree species

In the vertical direction (Figure 10), high LAI of Lithocarpus glaber and Schima superba
was mainly located at the middle-lower part of the trees (Skewness = 0.13 and -0.22,
respectively) while at Sapindus saponaria it was mainly found at the middle-upper part
(Skewness = 1.24). Lognormal equations were suitable to describe the vertical distribu-
tion LAI of Lithocarpus glaber, Schima superba (Figure 10, R?>> 0.9) and Sapindus sa-
ponaria (R?= 0.7). For LAI radial distribution, remarkable exponential decreasing trends
were observed from the tree stems to the edge of the canopy with the highest value at
the stems (Figure 11, R?> 0.9).
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Figure 10 LAl vertical distribution pattern of three tree species.
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Figure 11 LAI radial distribution patterns of three tree species.

Tree saplings growth and tree shape were significantly species-specific (Figure 10 and
Figure 11), indicating an interspecific variation in certain functional traits in BEF China
as described in detail by (Li et al., 2014a). In our research, the different leaf traits of
trees showed different vertical distribution patterns of LAI, while same leaf trait of trees
had similar distribution patterns, as it was shown that little difference between Lithocar-
pus glaber and Schima superba occurred (Figure 10 and Figure 12, Table 4).
Deciduous trees like Sapindus saponaria allocate more photosynthetic products in
height and branch growth with simple crown architecture, while evergreen trees such
as Lithocarpus glaber and Schima superba would consume more energy to branch
construction and leaves with complex crown architecture (Chave et al., 2009; Kang,
2010). Meanwhile, our results showed that a lognormal model can be used to predict
the vertical distribution of LAI for broadleaved species (Figure 11). This result was in
accordance with (Lu, 2011; Zhao et al., 2015), who found that foliage distribution of
major broadleaved species in secondary forest in northern China had the lognormal
patters. In our study, LAI vertical distribution and its skewness reflected the difference
in height of the first branch, number of branches and crown cover among the three
species, for Lithocarpus glaber and Schima superba both having lower skewness with
lower height of first branch, more branches and high crown cover comparing to Sapin-
dus saponaria (Table 4). Moreover, the skewness could also account for the
heterogeneity in horizontal and vertical leaf area distribution, which may provide a
better way to understand the species-specific relationship between LAI and canopy
water storage (Llorens and Gallart, 2000; Keim and Link, 2018) and tree diversity

effects on TKE (Geildler et al., 2013). Therefore, skewness of LAI vertical distribution
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might be a promising index comprehensively describing tree function in ecosystem,

especially the process of hydrology.

Lithocarpus glaber Schima superba Sapindus saponaria

-

Figure 12 Three single tree species images from point cloud data measured with the laser

scanner software RiScan Pro in Xingangshan, Jiangxi Province, PR China.

Table 4 Comparison of basic parameters of three investigated tree species in Xingangshan,

Jiangxi Province, PR China (n = 9).

Tree species Lithocarpus glaber  Schima superba Sapindus saponaria
Leaf habit E E D

Ground Diameter (m) 0.037+0.015a 0.071+0.037 a 0.049+0.007 a
First branch height (m) 0.30+0.04 b 0.15+0.13 b 1.13+0.45a

Tree height (m) 2.98%0.21a 3.14%+0.79 a 3.48£0.07 a
Crown Width (m) 1.70£0.23 a 2.12+0.36 a 1.91+0.28a
Number branches 33t4a 40+5a 7t5Db

Crown cover 0.38+0.03 a 0.42+0.09 a 0.28+0.02 b

E represents evergreen broadleaved species; D represents deciduous broadleaved species

Different lower letters in the same tree basic parameters denote significant difference at p < 0.05
Potential of splash erosion under different tree species

Sapindus saponaria had the highest values of TKE among the observed species and
events. Compared to TKE of open-field rainfalls, TKE was enhanced under Sapindus
saponaria and reduced under Lithocarpus glaber and Schima superba (Figure 13). For
all measured rainfall events, Sapindus saponaria increased by 60-80% compared to
TKE in open-field, while Lithocarpus glaber and Schima superba decreased
approximately 60% and 30% to 80%, respectively. With increasing radial distance from
the stem, TKE of all three species was generally increasing during different rainfall
events although significance of positive correlation was only detected with Lithocarpus
glaber (Table 5).
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Figure 13 Throughfall kinetic energy (TKE) changes with the distances from the stem under

different tree species in Xingangshan, Jiangxi Province, PR China.

Our results demonstrated that TKE was species-specific, with lower TKE of Lithocarpus
glaber and Schima superba than Sapindus saponaria. On the one hand, it is assumed
that if Lithocarpus glaber and Schima superba have higher LAI, they also show high
rainfall interception. This is because canopy water storage increases with increasing
LAl with a higher vertical distribution of foliage and canopy roughness (Aston, 1979;
Marin et al., 2000; Fleischbein et al., 2005) and falling drops and drop sizes are more
likely to be re-modified and split by lower parts of the canopy (Wiersum, 1985). On the
other hand, for Sapindus saponaria and in the radial direction, high LAl is mainly
located at the top height (Skewness = 1.24), which may lead to less interception and
higher speed of falling drops reaching the soil surface and thus contribute to higher
kinetic energy. Lognormal distribution LAl of Lithocarpus glaber and Schima superba
with lower Skewness values indicated that the two species may have higher rainfall
interception and lower speed of falling drops which contribute to reducing TKE.

Table 5 Pearson Correlation between distances from the stem and throughfall kinetic energy

(TKE).
Lithocarpus glaber Schima superba Sapindus saponaria
Event 1 0.73 % 0.02 0.14
Event 2 0.51 0.67 0.28
Event 3 0.44 -0.18 0.46
Event 4 0.87 % 0.23 0.25
Event 5 0.88 * 0.49 0.10

* Significant level p < 0.05, * * Significant level p < 0.01.
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3.2. Sediment delivery development after afforestation

Temporal changes of sediment delivery

In our afforested study area, the soil erosion rate was 47.5 Mg ha* at in 2013 and then
decreased to 24.5 Mg ha! at in 2014 and 9.6 Mg ha! a! in 2015 with the annual mean
of 27.2 Mg ha! a in the observed three years (Figure 14). Those rates are importantly
higher than generally assumed for forests in the south of China (Guo et al., 2015: 1.89
Mg ha? al). In Europe, the annual soil erosion rate under forest was given as 0.7 Mg
hal al(Maetens et al., 2012) while in Australia it ranged from 0 to 8 Mg ha! a*(Cerdan
et al., 2010b). From these comparisons, it can be concluded that the BEF China exper-
iment is still suffering from severely high soil erosion even after six years of forest res-
toration. Considering thresholds for soil erosion rates assumed to be tolerable in gen-
eral of 1 Mg ha! a(Verheijen et al., 2009) and specifically under undisturbed forest of
0.12 to 0.25 Mg ha* a (Patric, 1976), we assume that BEF China will need five and
nine more years under carefully managed forest practices, respectively to reach a tol-
erable soil erosion rate (Figure 14).

The tolerate soil 2rosion
rate of 1 Mg ha' 2’

35 A

-2 — Soil erosion rate of undiste
20 . -rbed forest 0.25 Mg ha'' 2!

A

ﬂ T m

”013 ”01—1 ”015 2016 ”01? ”018 ”019 ”D”D _021 202- _023 2024
Y ear

Annual sediment delivery (Mg ha)
|
]

Figure 14 Annual sediment delivery in BEF China. From 2013 to 2015 (gray bars), the values
were calculated from the field observation. From 2016 to 2023 (white bars), the values were

calculated by 60% of one year earlier based on the ratio of the three years field observation.
Driving factors on sediment delivery changes

Regarding the linear mixed effects model (Table 6), results showed tree canopy pa-
rameters and BSCs were the two main factors driving soil erosion. Vegetation cover of

the soil surface is a key control for soil erosion (Stednick, 1996; Zhou et al., 2008) and
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afforestation is a common measure to reduce sediment delivery (Zhang and Song,
2006; Zheng et al., 2008; Huang et al., 2017a). This point is proved by our results,
which show that bare plots consistently had higher sediment delivery than the afforest-

ed plots (Figure 15).

Table 6 Linear mixed effects models for annual soil erosion (n = 550). (LAI: leaf area index;
BSCs: biological soil crusts; soil BD: soil bulk density; SOC: soil organic carbon. ddf mean

denominator degree of freedom; F and P mean F-ratio and P-value of the significance test.)

Fixed effect ddf F P Estimate
LAI 340 22.49 0.000 -0.19
BSCs 523 198.28 0.000 -0.55
Soil BD 32 15.01 0.079 0.06
Soil pH 32 2.92 0.097 0.08
SocC 32 0.09 0.650 0.02
Slope 32 5.50 0.025 0.01
Altitude 31 0.08 0.228 0.04
Crown cover 400 20.675 0.011 -0.20
Tree height 61 2.021 0.001 -0.09
Crown width 61 2.034 0.001 -0.06
Stem diameter 64 9.959 0.002 -0.08

Random effects

Groups Variance S.D.

Plot 0.021 0.145
Tree composition 0.000 0.000
Site 0.000 0.000
Residual 0.066 0.258

Notes: Fixed effects were fitted sequentially as shown in the table while random effects are site,
plot, runoff plots nested in plot and tree species composition. As multicollinearity of fixed factors
(correlation index > 0.7) was detected among LAI, crown cover, tree height, crown width, and
stem diameter, one factor was fitted individually in exchange to the other in the linear mixed
effects model. All variables were tested on normal distribution. Annual soil erosion was twice
squared root scaled while BSC was square-root transformed with arcsign reconstruction. Then
all variables were scaled before modelling. Fixed effects were fitted sequentially as shown in the

table while random effects are site, plot, runoff plots nested in plot and tree species compaosition.
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Figure 15 Boxplot of annual sediment delivery under afforested plot and bare plot in 2013, 2014
and 2015. Black dot means the mean values; Black middle line in the box means the median values;

Gray dots mean measurements from ROPs. The box boundaries indicate the 75% and 25% quartiles; the
whisker caps indicate the 90% and 10% quartiles.

Forest canopies influence soil erosion mainly by intercepting the rainfall (Goebes et al.,
2015b). Before hitting the soil surface, raindrops are modified by the forest canopy
while rainfall amount is reduced by vertical distribution of foliage and canopy roughness.
There is no doubt that trees with high LAl have high rainfall interception (Aston, 1979;
Marin et al., 2000; Fleischbein et al., 2005) and several studies showed that LAl has a
significant negative effect on throughfall kinetic energy and soil erosion at different for-
est stages in the subtropical part of China (Zhang et al., 2011; GeiYler et al., 2013;
Seitz et al., 2016; Song et al., 2018). These results are in line with our finding that in-
creasing crown cover and LAl over time reduce sediment delivery (Table 6). Beside LAI,
tree height is considered as an important biotic factor on soil erosion (Cao et al., 2008;
Geiller et al., 2013; Goebes et al., 2015b). Higher tree height tends to produce faster
velocities of falling drops regaining high kinetic energy before reaching the soil surface
and thus causing more soil erosion (Cao et al., 2008; Geililer et al., 2013). However,
tree height was detected to negatively influence soil erosion in our research. It is as-
sumed that positive effects from tree growth such as fast increase of LAl might over-
weight its negative effects on soil erosion in this early stage. This finding indicates that
with ongoing tree growth vegetation parameters change and thus alter their erosion-

influencing characteristics.

In addition to the crown layer, the vegetation directly covering the forest floor is of great
importance for soil erosion control. In this context, BSCs were extensively occurring in
our experimental areas. They use the new habitat created by deforestation and spread

as pioneer vegetation in the resulting vegetation gap. These aggregations of biotic
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components including bacteria, fungi, mosses, lichens, algae and bryophytes in the
topsoil (Schulten, 1985b; Eldridge, 1993) are closely dependent on surrounding trees
and both their growth is closely linked. This study confirms findings from 2013 (Seitz et
al., 2017) for a now longer period and shows that BSCs are still competitive six years
after tree replantation and have a significant influence on soil erosion rates in early-
successional forests. BSCs absorb raindrop impacts on the soil surface (Eldridge, 1993;
Eldridge and Greene, 1994), aggregate soil particles and stabilize the upper soil sur-
face (Rodriguez-Caballero et al., 2012; Gao et al., 2017), reduce the surface water flow
by providing high infiltration and water storage capacity (Kidron et al., 1999; Gaur and
Mathur, 2003; Liu and Singh, 2004; Belnap, 2006) and consequently mitigate sediment
delivery (Seitz et al., 2017). Our study substantiates that this is also true for mesic for-
est environments over several years of tree growth, where BSCs play an even more
important role than LAI (Table 6). In plots without trees, 67% of the variability of sedi-
ment delivery could be explained by BSCs (Figure 16A). In addition, the nonlinear rela-
tionship between sediment delivery and BSCs cover (Figure 16A) implies that an ap-
proximately 40% coverage of BSCs will be a sufficient threshold for soil erosion control
on bare land. On the other hand, sediment delivery in afforested plots with BSCs cover
lower than 40% was even higher than in bareplot (Figure 16B). Further studies need to
concentrate on functional mechanisms of surface-covering vegetation and how they
influence sediment delivery.
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Figure 16 Relationships between annual sediment delivery and biological soil crusts (BSCs) in
bare plots (A) and afforested plots (B) in BEF China.

Sediment delivery under different tree species richness

In 2013, monocultures and 24 tree species stands had similar mean annual sediment
delivery, whereas 16 tree species stands showed lower rates and 8 tree species stands
showed the lowest value (Figure 17). From 2014 to 2015, the mean annual sediment
delivery decreased from monocultures to the 8 tree species stands, to the 16 tree spe-
cies stands and finally to the 24 tree species stands. Besides, the highest and lowest
annual sediment delivery measured during 2013-2015 were all detected in monocul-

tures (Figure 17), indicating that monocultures have a high variability regarding soil
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erosion. From linear mixed effects model, tree species richness reduced annual sedi-

ment delivery over the observed three years significantly (Table 7).
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Figure 17 Annual sediment delivery (Mg ha) in 2013, 2014 and 2015 under different tree spe-

cies richness in the BEF China experiment in Xingangshan, Jiangxi Province, PR China. Gray

points mean data collected from runoff plots (n = 535). Red spline dashed lines connected

mean £standard error of each tree species richness for each year.

Table 7 Linear mixed effects models for the effects of tree species richness (TSR), year and the

interaction tree species richness x year on annual sediment delivery (n = 535). (Annual sedi-

ment delivery were twice squared root scaled while tree species richness and year were scaled.

ddf mean denominator degree of freedom; F and P mean F-ratio and P-value of the significance

test.)
Fixed effect ddf F P
TSR 522 65.13 <0.001
year 529 262.60 <0.001
TSR x year 522 2.049 0.152

As one key factor on soil erosion, LAl at runoff plot scale was increasing every year

from 2013 to 2015 in the research area. This increase of LAl strengthened the

interception of rainfall and modified water fluxes. At the same time, tree species rich-

ness showed a significantly positive effect on LAl (Table 8 and Figure 18). Faster

increases of LAI in stands of higher tree species richness resulted in higher decrease

of annual soil erosion rates. In addition to this finding, previous investigations conduct-

ed in the same study area showed that tree species with different architecture and trait
forms (Geil3ler et al., 2012a; Goebes et al., 2015a; Li et al., 2017) such as Sapindus
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saponaria, Lithocarpus glaber and Schima superba planted in different tree species
richness levels have different patterns of spatial distribution for LAl (Song et al., 2018).
Thus, the combination of these differing tree species planted in mixtures leading to
more homogenous layering as well as the faster increase of LAI allocated from different
tree species collectively optimize patterns of spatial vegetation structures and distribu-
tion (Lang et al., 2012a; Lang et al., 2012b; Peng et al., 2016). These optimized
patterns could enhance the interception of rainfall within the tree canopies, prolong the
process of raindrops falling on surface soil and improve the efficiency of aboveground
vegetation in reducing rainfall kinetic energy and thus leading to a faster decrease of
annual soil erosion along a tree species richness gradient. Therefore, further studies on
positive effects of tree species richness on LAI appear to be necessary with particular
focus on underlying mechanisms within remote vegetation layers such as tree, branch

and leaf traits.

Furthermore, near-surface vegetation layers such as BSC communities are of great
importance for soil erosion control (Belnap and Gillette, 1997; Belnap, 2006; Belnap
and Budel, 2016). As another main factor on soil erosion in this study, BSCs showed
an increasing trend in coverage with higher tree species richness, which consequently
lead to a decrease in soil erosion rates (Table 8 and Figure 19). BSCs mitigate the ki-
netic energy of raindrop impacts on the soil surface and stabilize the upper soil surface
as well as they reduce the surface water flow (Liu and Singh, 2004; Belnap, 2006;
Rodriguez-Caballero et al., 2012; Gao et al., 2017; Seitz et al., 2017; Xiao et al., 2019).
Further research is necessary to understand the influence of higher diversity in tree
stands on the development of near-surface vegetation layers, but also on single traits
within BSC community species on raindrop impacts and interrill erosion. Moreover, a
positive relationship between BSCs and LAl was detected based on six years of field
observations in the BEF China experiment from 2010 to 2015 (Seitz et al., 2017).
Higher LAl in subtropical forests might contribute to humid conditions and higher inter-
ception of light (Chang et al., 1991; Yan et al., 2000), which is benefit for the mosses
and liverworts of BSCs (Seitz et al., 2017; Zhou et al., 2019). With the faster increase
of LAl within stands of higher tree species richness, BSCs would be accordingly
enhanced. Therefore, regarding the increase of LAl and BSCs and their correlation, we
assume that forest stands with higher tree species richness will reach the tolerable soll
erosion rate earlier. Thus, we recommend to consider the plantation of forest stands
with higher tree diversity in this area to actively counteract soil degradation and
improve ecosystem services, not only by the direct impact on the tree layer but also by

influences on near-surface vegetation.
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Table 8 Linear mixed-effects models for tree species richness (TSR), year and the interaction
tree species richness x year on leaf area index (LAI) and biological soil crusts (BSCs) (n = 552).
ddf mean denominator degree of freedom; F and P mean F-ratio and P-value of the significance

test.
Fixed LAI BSCs
effect ddf F P ddf F P
TSR 40 8.6 <0.01 40 1.0 0.32
Year 529 35.6 <0.001 535 92.5 <0.001
TSRx year 522 12.1 <0.01 536 1.4 0.245

Notes: Fixed effects were fitted sequentially as shown in the table while random effects are site, plot, runoff
plots nested in plot and tree species composition. LAl was scaled. BSCs were square-root transformed
with arcsign reconstruction and then scaled. Tree species richness and year were scaled.
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Figure 18 Leaf area index (LAI) in 2013, 2014 and 2015 under different tree species richness in
the BEF China experiment in Xingangshan, Jiangxi Province, PR China. Gray points mean data
collected at runoff plots scale (n = 552). Read spline dashed lines connected mean + standard

error of each tree species richness for each year.
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Figure 19 Biological soil crusts (BSCs) (%) within ROPs in 2013, 2014 and 2015 under different
tree species richness in the BEF China experiment in Xingangshan, Jiangxi Province, PR China.
Gray points mean data collected at runoff plots scale (n = 552). Read spline lines connected

mean * standard error of each tree species richness for each year.
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3.3. Soil carbon and nitrogen fluxes development after

afforestation

Temporal changes of soil carbon and nitrogen fluxes

Sediment C concentration increased every year (p < 0.05) and was significantly higher
than in the topsoil over the three years (p < 0.05) (Figure 20 and Figure 21). The same
general relations were observed for sediment N concentrations (Figure 20 and Figure
21). ER of C in sediment to soil were 1.5, 1.65 and 1.98 while for N they were 1.32,
1.73 and 2.23 in the observed three years. Topsoil C/N ratio was 13.9 and sediment
C/N ratio of 2013, 2014 and 2015 were 16.4, 13.3 and 14.0, respectively. Annual soil C

and N fluxes significantly decreased every year at a rate of 50% (p < 0.05) (Figure 22).
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Figure 20 C and N concentration and C/N ratio of soil sampled at 0-5 cm depth in 2014 and
sediment collected in 2013, 2014 and 2015 at the BEF China experiment in Xingangshan,
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Jiangxi Province, PR China. Triangles represent soil C and N concentration from plots (n = 45)
and sediment C and N concentration from plots (n = 45) based on 550 runoff plots measure-
ments. Horizontal lines within boxplot represent medians and diamonds represent means. Dif-

ferent small letters mean significant differences at p < 0.05.
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Figure 21 Means of carbon and nitrogen concentrations in soils and sediment sampled (0-5 cm)
within 45 selected plots at the BEF China experiment in Xingangshan, Jiangxi Province, PR
China.
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Figure 22 Annual soil C and N fluxes in 2013, 2014 and 2015 at the BEF China experiment in
Xingangshan, Jiangxi Province, PR China (n = 550). Triangles represent annual soil carbon and
nitrogen fluxes from runoff plots (n = 182 in 2013, n = 158 in 2014 and n = 210 in 2015). Hori-
zontal lines within boxplot represent medians and diamonds represent means. Different small

letters mean significant differences at p < 0.05.

Sediment transported by water erosion are normally enriched in C and N compared to
their source soils (Wang et al., 2013b). Our study confirmed these findings and showed
ER of C and N in sediment to soil ranging from 1.2 to 2.0 for afforested areas. This is
comparable with other land use systems which show ER varied from 1.2 to 4.0. For
example, in an agricultural catchment in the Belgian Loess Belt, ER was between 1.2
and 3.0 in simulated rainfall events captured by runoff plots (Wang et al., 2010). The
enrichment process of C and N in eroded sediments can be attributed to the preferen-
tial removal of fine particles higher in mineral-organic complexes than coarser particles
like sandy grains and micro-aggregates (Palis et al., 1997; Six et al., 2002; Zinn et al.,
2007). Another aspect is the transport of unprotected young organic material from the
free and/or light fraction of organic matter in soils. This fraction is easily detached by
water-induced surface erosion processes (Jacinthe et al., 2004; Stacy et al., 2015).
Before the BEF China experiment was established and since the study area was previ-
ously covered by secondary forest, the organic horizon and topsoil is likely to contain a
certain amount of unprotected organic materials with higher C/N ratio than the mineral
soils (Wang et al., 2014b; Stacy et al., 2015; McCorkle et al., 2016). Therefore, eroded
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sediment is not only richer in C and N but also shows a higher C/N ratio in the first year.
Then, with soil erosion processes ongoing, the organic horizon depleted and more
mineral soil was exposed to rainfall. Thus, eroded mineral soil was the dominate part
within sediments, which resulted in C/N ratio decreasing in the following years and get-
ting closer to topsoil ratio (Figure 20). Annual soil C and N fluxes in our study were
1.167 Mg ha! a! and 0.083 Mg ha? a® which is as much as in deforestation areas of
the Canary Islands (Spain), with an annual soil C flux caused by water erosion of 1.14
Mg ha! a! (Rodriguez et al., 2004), but far higher than in forested areas (Stacy et al.,
2015). Severe soil C and N fluxes within BEF China in 2013 (2.03 Mg ha ) mainly re-
sulted from high annual erosive rainfall amounts and less coverage of the soil surface
(LAl and BSC) (Table 9) which caused considerable sediment delivery (Song et al.,
2019). Besides, soil C and N fluxes caused by water erosion accounted for approxi-
mate 24% of the 0-5 cm topsoil C (14.03 Mg ha! a?!) and N (1.02 Mg ha* a?) (Li et al.,
2019), which occupied a considerable part of soil organic carbon stock. Therefore, the
study suggests that deforestation and afforestation both should be implemented with
caution as high nutrient losses and important differences between afforested areas and
the undisturbed forest might occur in the earlier years, although temporal forest recov-

ery can reduce soil C and N fluxes by controlling water erosion.

Table 9 AER, crown cover, LAl and BSC in the observed three years. (AER: annual erosive

rainfall amount; LAI: leaf area index; BSCs: biological soil crusts)

Year AER (mm) Crown cover (%) LAI BSC (%)
2013 1319 47 1.04 24
2014 1885 50 1.15 36
2015 1920 62 1.45 45

Influences of topography, soil properties, surface cover and plant

traits on soil carbon and nitrogen fluxes

Results from multiple linear regression models showed that topography does not play a
significant role for sediment C and N concentrations as well as for annual fluxes (p >
0.05) (Table 10). Soil properties (C and N concentrations), surface cover (BSC and
stone cover) and plant traits (diameter at breast height, crown cover, tree height, crown
width, LAI) could explain 39.7% of the variability of sediment C and N concentrations.
Soil C and N positively affected sediment C and N concentrations while sediment de-
livery showed a negative impact. BSC and plant traits had comparable positive effects

on sediment C and N concentrations. Regarding annual soil C and N fluxes, 93% of the



Results and discussion 36

variability was explained by sediment delivery, sediment C and N concentrations, BSC
and LA

Table 10 Multiple linear regression of factors on sediment carbon and nitrogen concentrations
and annual soil C and N fluxes. SCC: sediment carbon concentration; SNC: sediment nitrogen concen-
tration; SC: soil carbon; SN: soil nitrogen; ASD: annual sediment delivery; BSCs: biological soil crusts; LAI:
leaf area index. DBH: diameter at breast height; n.s.: no significance at p < 0.05; *: significance at p < 0.05;

**: significance at p < 0.01; ***: significance at p < 0.001. /: the variable not fitted into linear regression
models.

Sediment CN concentrations Annual soil CN fluxes

C N C N
Adj.R? 0.397 0.401 0.925 0.934
Factor Beta(Sig.)
Slope n.s. n.s. n.s. n.s.
Altitude n.s. n.s. n.s. n.s.
SCC / / 0.26*** /
SNC / / / 0.24***
ASD -0.05*** -0.05%** 1.02%** 1.02%**
SC 0.07* / n.s. /
SN / 0.08* / n.s.
BSC 0.18*** 0.22%** -0.04*** -0.04***
Stone cover -0.03*** -0.03*** -0.01*** -0.01***
Surface cover 0.18*** 0.23*** -0.04*** -0.04***
Tree species richness n.s. n.s. n.s. n.s.
LAI 0.07*** 0.05*** -0.03*** -0.03**
DBH 0.18*** 0.20*** n.s. n.s.
Crown cover 0.03*** 0.03*** n.s. n.s.
Tree height 0.10*** 0.09*** n.s. n.s.
Crown width 0.10* 0.10* n.s. n.s.

Topography (slope and altitude) did not play a significant role for sediment C and N
concentrations and annual soil C and N fluxes. This is surprising since many studies
have shown that gravity driven processes of particle movement along slopes are to a
large extend a function of slope angle (Wischmeier, 1965; Martz and De Jong, 1987;
Jain et al., 2001; Lal, 2001; Cerdan et al., 2010a; Sun et al., 2014; Hancock et al.,
2019). One explanation is the uniform inclination ranging from 20° to 40° for all plots
(Table 2). Further, the small size of our runoff plots does not allow rill formation and
splash erosion is the main active process of particle detachment (Seitz, 2015). Thus,
overland flow, the erosive power which is mainly controlled by slope (Wischmeier, 1965;
Morgan, 2009), does transport the sediment to the collector but could not contribute
significantly to erode topsoil during transport over such short transport distances of
max. 0.4 m. In addition, sediment C and N concentrations was found to inversely corre-
late with sediment delivery, which is in accordance with other research (Lal, 1976;
Owens et al., 2002; Nadeu et al., 2012; Wang et al., 2014a; Stacy et al., 2015). Given a
certain slope length, more carbon-rich fine aggregates are depleted in the earlier stage
of interill erosion (Lal, 1976; Polyakov and Lal, 2008; Jin et al., 2009; Martinez-Mena et
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al., 2012). Therefore, with the decrease of sediment delivery in BEF China every year,
associated sediment C and N concentrations were increasing. Furthermore, BSC and
plant traits were another two key factors on sediment C and N concentrations (Table
10). On the one hand, BSCs not only improve the labile organic carbon as they are
aggregating biotic components and soil particles in the topsoil but also reduce sedi-
ment delivery (Schulten, 1985a; Eldridge, 1993; Seitz et al., 2017). With increasing
BSC cover in the research plots every year from 2010 to 2015 (Seitz et al., 2017), once
water erosion occurred and BSCs were destroyed and detached, sediment C and N
concentrations would be enhanced. This also explained the increase of sediment C
and N concentrations in bare plots. On the other hand, tree growth increases litter and
root production in BEF China which can protect soil from splash erosion and reduce
sediment delivery (Seitz et al., 2015; Huang, 2017; Sun et al., 2017). Hence, sediment
C and N concentrations would be enhanced with sediment delivery decreasing.

Our measurements confirm that annual soil C and N fluxes in afforested areas are
strongly affected by sediment delivery, which was also shown for undisturbed forest
and agriculture and grassland ecosystems (Z6bisch et al., 1995; Owens et al., 2002;
Wang et al., 2013b; Stacy et al., 2015). This means that almost no dilution effects could
be observed during the erosive events and particulate transport is the main mechanism
of the C and N fluxes during erosion. From a soil conservation perspective, the results
suggest that the first years after afforestation are most important to prevent high C and
N fluxes due to erosion. One possible measure is to plant shrubs and to establish

BSCs in different species compositions on bare ground.
Soil carbon and nitrogen fluxes under different tree species richness

No significant effect of tree species richness but a tendency was detected reducing soil
C and N fluxes (Table 10 and Figure 23). This inspired the thinking of how the effect of
tree species richness is defined. As many researchers declare, it is difficult to identify
the impact of plant diversity as it interacts with other plant factors and soil properties
(Bezemer et al., 2006; Ponhl et al., 2009; Shrestha et al., 2010). In this study, BSC and
LAI as the two significantly negative factors on soil C and N fluxes (Table 10) were de-
tected to increase with tree species richness from 2014 (Song et al., 2019), which
masked the effect of tree species richness. Moreover, litter fall as a significant source
of soil C and vital protection of soil surface from rainfall was reported to increase with
tree species richness from 2015 (Seitz et al., 2015; Huang, 2017). Considering these
findings, we assume that tree species richness may reduce soil C and N fluxes in the

future.
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Finally, measurements of soil C and N fluxes caused by water erosion in our research

area need to be adapted for a potential assessment on a regional scale due to the run-

off treatment and measurement plot sizes. As we could not take the whole process of

soil erosion (detachment, transport, deposition and export from the watershed) into

consideration, further research is needed to accurately assess sediment export at af-

forested watershed scales. Furthermore, as remaining leaf litter and branches were

removed from the ROP before the measurements, it has to be stated that the residuals

protection on topsoil would improve erosion control by further decreasing sediment

delivery and elements fluxes in ROP.
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3.4. Soil carbon stock changes after afforestation

Changes of SOCD after five years of afforestation

A significant decrease of SOCD at topsoil depth 0-20 cm was detected across the af-
forested plots from 2010 to 2014 (Figure 24). Means of SOCD at 0-5 cm, 5-10 cm and
10-20 cm in 2010 and 2014 were 1.69 kg m? and 1.48 kg m2, 1.25 kg m2and1.12 kg
m2, 2.02 kg m2 and 1.82 kg m?, respectively. The decreasing rates of SOCD were
13%, 11%, 10% at soil depth 0-5 cm, 5-10 cm, 10-20 cm. At deeper soil depth (20-50
cm), SOCD showed no significant difference between 2010 and 2014 (Figure 24).
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Figure 24 SOCD at different soil depths in afforested plots in 2010 and 2014 in BEF China. Hor-
izontal lines in boxplot represent medians and black dots represent means with standard error
bars. Grey dots represent the SOCD of 113 plots and *** represent significant difference be-
tween 2010 and 2014 (paired t-tests p < 0.001). n.s represent no significance at p < 0.05.

The changes of soil C stocks depend on the balance of C inputs and outputs (Davis
and Condron, 2002). Our study showed SOCD significantly decreased in the afforested
areas where were covered by secondary forest in the first five years. The result was
reasonable: on the one hand, soil C decomposition was still continuing and might be
accelerated during site preparation and human disturbance in the first years. On the
other hand, limited C inputs from litter and fine roots due to the tree saplings were flow-
ing into soil from in the earlier stages of afforestation (Davis and Condron, 2002; Huang,
2017; Sun et al., 2017). Therefore, these processes led to the decrease of soil C stock.
Ad(ditionally, in the study the decreasing rate of SOC (87 g m2a! in the 0-10 cm and
137 g m2alin the 0-20 cm) was accordingly higher than findings from other studies
(Paul et al., 2002; Shi and Cui, 2010; Deng et al., 2016a; Moore et al., 2018). For ex-
ample, in afforestation areas less than < 5 years in China soil C reduced at an average
rate of 20 g m? a at 0-20 cm soil depth based on 55 observations (Shi and Cui, 2010).



Results and discussion 40

In another study, it could be shown that within the earlier ten years of a pasture con-
verted to a tree plantation soil C at the 0-10 cm showed a decreasing rate of 60 g m 2
al (Moore et al., 2018). Meanwhile, at global scale, in the afforested agricultural areas
less than < 5 years soil C in the < 10 cm layers generally decreased by 60.1 g m2a*
based on 73 observations (Paul et al., 2002). The higher decreasing rate of SOC in our
research was mainly caused by denser tree plantations. In BEF China, the density of
tree plantation (1.29 m x 1.29 m) implied more disturbance of soil and an accelerated
decomposition of SOC during site preparation (Turner and Lambert, 2000; Guo and
Gifford, 2002; Paul et al., 2002; Turner et al., 2005; Jandl et al., 2007; Laganiere et al.,
2010; Tosi et al., 2016). As shown in Figure 25A, bare plots without human disturbance
almost kept the same amount of SOC stock as before afforestation along the whole soil
profiles while failure afforested plots with soil disturbance had the decreased SOC.
Moreover, tree growth could accelerate soil C mineralization for nutrients supply from
soil. This point was enhanced by the finding that the afforested plots had a higher de-
creasing rate of SOC density than failure afforested plots (Figure 25). Besides, similar
to tropical areas, subtropical areas has warm temperatures and moist soils as well as
high soil microbial activity, which might facilitate high decomposition of organic matter,
especially in soils without forest cover (Giongo et al., 2011; Qiu et al., 2015; de Araujo
Filho et al., 2018). Therefore, an appropriate density of tree plantation, lower soil dis-
turbance and increased protection of soil surface should be considered during affor-
estation to reduce SOC depletion.

Table 11 Multiple regression analysis of key factors on SOCD changes

Factors 0-5cm 5-10 cm 10-20 cm 20-30cm  30-50 cm 0-50 cm
Adj. R?

SOCD2o010 -0.743*** -0.625*** -0.482*** -0.424*** -0.139*** -0.285***
Soil erosion n.s. / / / / n.s.
TSR n.s. n.s. n.s. n.s. n.s. n.s.
TS n.s. n.s. n.s. n.s. n.s. n.s.
AGB n.s. n.s. n.s. n.s. n.s. n.s.
BGB n.s. n.s. n.s. n.s. n.s. n.s.
Litter fall n.s. / / / / n.s.
Aspect n.s. n.s. n.s. n.s. n.s. n.s.
Elevation n.s. n.s. n.s. n.s. n.s. n.s.
TRI n.s. n.s. n.s. n.s. n.s. n.s.
MAAC n.s. n.s. n.s. n.s. n.s. n.s.
Geomorphy n.s. n.s. 0.065*** 0.092*** 0.126*** 0.050%***

n.s.: no significance at p < 0.05; ***: significance at p < 0.001. SOCDz2o10: Soil organic carbon density of
2010. TSR: tree species richness; TS: tree species; AGB: aboveground biomass; BGB: belowground bio-
mass; TRI: terrain ruggedness index; MCCA: Monte-Carlo based flow accumulation.
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Key factors driving SOCD changes

Multiple linear regression showed that SOCD2o10 could explain 75% to 14% of the vari-
ability of SOCD changes along soil profiles (p < 0.001). Geomorphy had no significant
effect on SOCD changes at the topsoil but subsoils. At 10-50 cm soil depth, 7% to13%
of the variabilities of SOCD could be explained by geomorphy (R?= 0.0710-20 cm, 0.0920-
soem and 0.13z050cm, P < 0.001, Table 11). Tree parameters (tree species, tree species
richness, AGB, BGB and litter fall), soil erosion, aspect, elevation, TRl and MAAC did
not play an important role in SOCD changes. Therefore, SOCD10 and geomorphy
were the main factors on SOCD changes at the earlier stage of afforested area in the
study.

Recent studies have shown that SOC decreases in soils with high original SOC and
increases in soils with lower original SOC (Garten Jr, 2002; Guo and Gifford, 2002;
Paul et al., 2002; Vesterdal et al., 2002; Stevens and Van Wesemael, 2008; Shi and
Cui, 2010; Chen et al., 2017). Our results confirmed this point showing that SOC densi-
ty changes in a strong negative relation with the original SOCD in 0-20 cm soil depth
(R? > 0.5). One explanation might be afforestation can stimulate microbial activity and
increase soil C decomposition by altering soil properties and microbial community
composition (Deng et al., 2016b; Pei et al., 2016; Tosi et al., 2016; Xu et al., 2017,
Hong et al., 2018; Zhou et al., 2018). For example, soil pH as an important index for
microbial activity was found to increase after afforestation in BEF China (Figure 25).
The increasing soil pH might improve total microbial biomass and the microbial activity
(Pei et al., 2016) and thus accelerate microbial respiration and soil C decomposition
rate which led to soil C and C/N decrease. This process was illustrated in Figure 26
and Figure 27 by significant decreases of soil C/N from 2010 to 2014 and negative re-
lationship between changes of soil C/N and SOCD2o10. In addition, the BEF China was
previously covered by secondary forest and therefore in topsoil layer organic soil tend-
ed to have a high proportion of slowly decaying organic matter which mineralization
rate is sensitive to temperature changes (Knorr et al., 2005; Xu et al., 2010; Wang et al.,
2013a; Li et al.,, 2018a). Considering the elevated soil temperature after secondary
forest clearance in the study area (Ma et al., 2013), SOC mineralization might be ac-
celerated and thus led to more soil C reduction. In general, topography as an important
environmental factor indirectly affects SOC dynamics by soil temperature, soil moisture,
soil fertility and vegetation (Raich et al., 2006; Yimer et al., 2006; Lybrand and
Rasmussen, 2015; Tesfaye et al., 2016; Tu et al., 2018). In our study area, topographic
heterogeneity leads to ecological gradients due to the significant relationships between
geomorphological positions and soil fertility and trees survival and growth (Yang et al.,

2013; Scholten et al., 2017). For instance, trees survival and growth increased with
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elevation decreasing. Therefore, hollow and valley areas with higher tree coverage
might have less changes of soil temperature and moisture and then SOC was decom-
posed less slowly to accumulate. Moreover, our result showed topography played a
stronger effect on SOC of the deeper soil layers (Table 11). This was mainly caused by:
Deeper soil had less human disturbance and site preparation. And, compared with sur-
face soils, deeper soils have a higher proportion of recalcitrant organic carbon which is
sensitive to soil temperature and moisture changes caused by topography (Xu et al.,
2010; Wang et al., 2013a).
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Figure 25 Means of SOC density (A) and soil pH (B) at different soil depths in bare, failed affor-

ested and afforested plots in 2010 and 2014 BEF-China, respectively.
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Trees affect SOC mainly by C inputs from AGB and BGB such as litter and fine root
(Kuzyakov and Domanski, 2000). For example, SOC in high forest productivity can be
improved due to abundant C inputs from plant residence returning to soil (Dyckmans et
al., 2000; Kuzyakov and Domanski, 2000). Additionally, tree species and tree species
richness can affect SOC by their impacts on the quality and quantity of litter production
as well as on the transfer rate of litter to SOC (Vesterdal and Raulund-Rasmussen,
1998; Paul et al., 2002; Huang et al., 2017b). This point was proved by many studies
showing that different tree species had different SOC changes in afforested area (Paul
et al., 2002; Laik et al., 2009; Laganiere et al., 2010; Shi and Cui, 2010). However, in
our research no significant relationships existed between SOCD changes and tree
species and tree species richness as well as forest biomass and litter fall (Table 11). It
could be explained by that five years was too short for tree growth and C inputs from
AGB and BGB transferring to SOC. As shown in Figure 29, limited C of AGB and BGB
with a range of 0 to 2 kg C m? would flow into soil. For instance, litter fall as an im-
portant source of C input to soil only produced max. 0.3 kg C m? after five years of
afforestation. Besides, tree not only allocates most of its biomass in the trunk but also
has a slow turnover rate of its root biomass to soil (Cerri et al., 1991; Kuzyakov and
Domanski, 2000; Guo et al., 2007; Laganiere et al., 2010), which suggests the in-
creased biomass C hardly contributes to SOC. Hence, in BEF China, the decrease of
SOC could not be compensated by the increased C from forest biomass in the earlier

stage of afforestation (Figure 29).
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Figure 29 Carbon stocks of aboveground biomass, belowground biomass (2015) and 0-50 cm
SOCD changes 2015-2010 in BEF China. C represent carbon. AGB represent aboveground

biomass. BGB represent belowground biomass.

Soil erosion did not influence SOCD changes in the study. We assume this was mainly
caused by our experiment settings. On the one hand, we did not take the whole pro-
cess of soil erosion into consideration (splash, transport, redistribution and deposition)
(Lal, 2003; Lal et al., 2015; Lal, 2019). The operable measurement unit of ROPs in the
experiment was 0.4 m x0.4 m, that is small and limited for water erosion process. On
the other hand, leaf litter and branches as a protective role against soil erosion (Seitz et
al., 2015), were removed from the ROPs, which is different from natural systems.
Therefore, no certain relationship might be found when we linked sediment delivery at
ROPs scale to SOC changes that were measured at plot scale (25 m x 25 m). In this
respect, further research should be concentrated on water erosion influencing on SOC

at the watershed scale.



Summary and outlook 46

4. Summary and outlook

Within the BEF China project, research was conducted to describe the influence of

afforestation on soil erosion and soil carbon in a subtropical Chinese forest ecosystem:

In an early stage of afforestation, splash erosion might be accelerated because of the
selected tree species. Results showed that vertical distributions of LAl and TKE of
Lithocarpus glaber, Schima superba and Sapindus saponaria were significantly differ-
ent. TKE was measured with splash cups and affected by LAI and its spatial distribu-
tion. Sapindus saponaria enhanced TKE while Lithocarpus glaber and Schima superba
reduced it. Skewness of LAI vertical distribution seems to be a suitable index to com-
prehensively describe tree functions within hydrological systems. However, many ques-
tions are still unclear, for example, to what extent the skewness values of LAl vertical
distribution have negative or positive effects on TKE under different ages of tree spe-
cies not only for broadleaved species but also for needle species. Some recent meas-
urements (Figure 30) showed that higher LAl of two needle species (Cunninghamia
lanceolata and Pinus massoniana) existed in the middle and lower parts of the trees,
which was similar to Lithocarpus glaber and Schima superba. Skewness of LAI vertical
distribution indicated these two needle species might produce lower TKE. However, it
is challenged when we consider that soil erosion is still severe, where monospecific
plantations are popular in subtropical China, as we declared before. Therefore, more
research should concentrate on the spatial distribution of LAl of different tree species

and its related hydrological process to address underlying mechanisms of soil erosion.
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BEF China is still suffering from severe soil erosion even after six years of tree growth.
It could be shown that mean annual soil erosion rates decreased with tree species
richness significantly over the observed three years. LAl and BSCs were the two main
factors driving soil erosion within tree stands of different species richness. Positive ef-
fects of tree species richness on tree canopy structure and BSCs might drive the re-
duction of soil erosion in the earlier successional stage after afforestation of tree plan-
tations. Therefore, the results not only highlight the importance of tree species richness
on soil erosion control, but also enhance the role of LAl and BSCs and their temporal
changes in the restoration of afforested ecosystems. However, research on LAl and
BSCs and their temporal and spatial changes is still lacking. For example, although we
found that LAl was increasing faster with higher tree species richness, the exact loca-
tions under the trees and amounts of increased LAI are still unclear (Figure 31). BSCs
were abundant in every year of measurements, however, BSC dynamics, development
patterns (e.g. in patches or area-wide) and species occurrence are still not known in
detail (Figure 32).

Figure 31 The development of leaf area at runoff plot scale (0.4 m x 0.4 m) of Plot R30 (24 tree
species richness) in 2013, 2014 and 2015 (from left to right) at the BEF China experiment.

Figure 32 The development of biological soil crusts (BSCs) in runoff plots (0.4 m x 0.4 m) of Plot
NO9 (24 tree species richness) in 2013, 2014 and 2015 (from left to right) at the BEF China

experiment.
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In BEF China, sediment C and N concentrations increased while annual soil C and N
fluxes decreased with sediment delivery decreasing every year. Soil C and N fluxes in
the study were as high as in deforestation areas even after six years of tree growth.
Therefore, afforestation should be regarded with care, as high soil nutrient fluxes may
result in the decrease of soil productivity in the earlier years. To reduce sediment deliv-
ery by increasing soil surface cover, BSC recovery is of particular interest. It is recom-
mended as a measure to conserve soil fertility and reduce C and N transported from
soil to aquatic ecosystems and the atmosphere. In addition, soil C fluxes caused by
water erosion are an important and dynamic component of terrestrial carbon stocks
and should be taken into consideration in the C budget of afforested area. Therefore,
using the current runoff treatment and measurement plot sizes (0.4 m x 0.4 m) is not
the only thinkable way, but further research is needed to accurately assess sediment
and nutrient transport export in afforested areas at watershed scales, and also using
DEMs with a cell size of 5 m x 5 m (Figure 33) and ArcGIS.

Afforestation significantly reduced SOC stocks in formerly deforested areas. Early-
stage afforestation in BEF China resulted in a reduction of approximately 274 Mg SOC
from 2010 to 2014 in total. Afforested areas with higher original SOC stock showed
higher SOC losses. Tree growth and litter fall as an important carbon input to soil could
not compensate SOC stock reduction in the earlier stage of afforestation. Therefore,
high original SOC stocks of an area need more attention in afforestation ecosystem.
Meanwhile, SOC changes within afforestation areas should be accounted for when the
contribution to atmospheric CO2 dynamics is evaluated. The results highlight that affor-
estation in deforested areas contribute to atmospheric carbon accumulation and the
original SOC stock could be an important parameter in modelling afforested ecosystem
carbon balances. Further studies should focus on how long the afforested area re-
quires to play a role as a carbon sink as well as SOC recovery at the pre-deforested
level by different models such as DNDC (Denitrification—Decomposition).

Figure 33 The elevation of Site A and Site B in the BEF China project.
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Abstract

The hilly red soil region in southern China is still facing serious soil erosion, even after
long-term afforestation projects. This might result from structural shortcomings of the
tree species chosen for afforestation. Within the Biodiversity and Ecosystem Function-
ing China project (BEF China), we used point cloud data from terrestrial laser scanners
(TLS) and splash cups to analyze spatial leaf area index (LAI) and to predict the poten-
tial of splash erosion in subtropical forests. High LAI of Lithocarpus glaber and Schima
superba was measured mainly at the middle and lower parts of the trees while for Sap-
indus saponaria it was found at the upper parts. LAl was decreasing from the tree
stems to the edges of the canopy. Lognormal and exponential linear models were suit-
able to describe the vertical and horizontal LAI distribution of selected tree species,
respectively. Sapindus saponaria generally had the highest values of throughfall kinetic
energy (TKE) among the analyzed tree species and measured rainfall events. In the
radial direction, higher LAI tended to produce lower TKE, whereas in the vertical direc-
tion, higher skewness of LAI distribution had higher TKE. LAl and its spatial distribution
both were important for TKE. These findings can help to understand mechanisms of
splash erosion in forest plantations related to unsuitable spatial LAl of tree species
planted. It might further improve our knowledge how tree diversity may influence splash
erosion by enriching the canopy layers in an early successional stage of subtropical

forest plantations.
Key words: BEF China, TLS, Tree species, Splash erosion, LAI, TKE
1. Introduction

Soil erosion is a serious environmental hazard of global scale (Lal, 2003) and vegeta-
tion cover of the soil surface is one key factor in controlling soil erosion (Stednick, 1996;
Cao et al., 2008; Shi et al., 2009; Chen et al., 2011; Filoso et al., 2017; Feng et al.,
2018). Forest vegetation cover affects splash erosion at the soil surface by intercepting
rainfall and thus modifying rain patters, such as adapted drop size and speed, chang-
ing rainfall amount and spatial distribution (Nanko et al., 2006; Geil3ler et al., 2012b;
Geiller et al., 2013; Goebes et al., 2015b). It is generally accepted that soil erosion is
reduced under forests (Smith, 1914). However, research showed that high sediment
delivery often occurred in forested catchments in subtropical regions (Marks, 1998;
Molnar, 2004; Zhao, 2006). One reason is that effects of forest cover on splash erosion
are dynamic in space as the structures of tree species differ. Hence, calculating an
index that describes the ability of cover plants, especially trees, is essential to analyze
the splash erosion risk under forest and can help to better understand the relationship

between cover plants and splash erosion. Such an index can also serve in planning
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and management of afforestation as part of soil and water conservation approaches,

e.g. in the hilly red soil region in southern China.

One well established index that describes the plant cover is the leaf area index (LAI,
(Jordan, 1969)). It is defined as projected leaf area per unit ground area (Gower and
Norman, 1991). As an important biophysical parameter, LAl is often used in quantita-
tive analyses of processes related to vegetation dynamics such as rainfall interception
(Maass et al.,, 1995), soil erosion modeling (Laflen et al., 1997; Zhou et al., 2008;
Zhang et al., 2014), land surface process models (Chen et al., 2011; Tesemma et al.,
2015) and global climate change (Claverie et al., 2016). In the subtropical part of China,
studies showed that LAl has a significant effect on throughfall kinetic energy (TKE) in
secondary forest (Geil3ler et al., 2012a), soil loss in 30-year afforestation (Sun et al.,
2010; Zhang et al.,, 2011) and sediment discharge and TKE in young afforestation
(Goebes et al., 2015a; Seitz et al., 2016). Further vegetation factors that are correlated
with TKE in forests are crown cover, leaf traits, tree height and branch architecture
(Cao et al., 2008; Geildler et al., 2010; Geil3ler et al., 2012b; Goebes et al., 2015a;
Goebes et al., 2015b). Another important aspect is, that the process of free raindrops
passing the tree canopies is dynamic (Nanko et al., 2006) and the canopy architecture
can change the drop size and spatial distribution significantly at different positions and
height of the tree canopy (Nanko et al., 2006; Goebes et al., 2015b). Hence, the rela-
tionship between general LAl values and splash erosion is questionable since it ne-
glects the effects of spatial distributions of LAI. Also, most studies concentrate on ma-
ture forests (Cao et al., 2008; Geildler et al., 2013). Regarding afforestation measures
on heavily eroded soils with a low structure stability and without shrubs or litter cover,
like in the hilly red soil region in southern China (Zhao, 2006; Shi et al., 2009), the role
of forests in their early stage of tree growth to protect the soil from erosion is of ample

interest. Such research is still scarce.

Generally, there are several methods to estimate LAI, such as determination from sat-
ellite images (Knyazikhin et al., 1998; Deng et al., 2006; Xiao et al., 2014), instrumental
measurements (Fassnacht et al., 1994; Chen et al., 1997; Gower et al., 1999), and
direct acquisition from destructive measures (Gower et al., 1999; Nanko et al., 2006).
As high-resolution, non-destructive and efficient tool, terrestrial laser scanners (TLS)
are increasingly applied in forest inventory for reliable three-dimensional (3D) data ac-
quisition and comparison (Clawges et al., 2007; Maas et al., 2008; Fleck et al., 2011,
Lovell et al., 2011), especially for indexes of difficult acquisition using traditional meth-
ods (Moorthy et al., 2011; Li et al., 2014b). In addition, TLS is a useful tool for the re-
trieval of LAI (Hosoi and Omasa, 2006; Moorthy et al., 2008; Zheng and Moskal, 2012).
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Using TLS to measure LAI also allows to precisely calculate the radial and vertical dis-

tribution of LAI for individual trees over the whole crown area.

The objectives of this study were (1) to assess the differences in the spatial distribution
of LAl among different common tree species and along the tree stem and height of
single species and (2) to explore the relationship between spatial distribution of LAl and

TKE for different rainfall events.
2. Materials and Methods
2.1 Study area

The field experiment was conducted in the context of the joint Sino—German—-Swiss
Research Unit “BEF China” (BEF, biodiversity and ecosystem functioning) (Bruelheide
et al., 2011). The BEF China project is located in Xingangshan Town, Dexing City,
Jiangxi Province, PR China (29.08°-29.11° N, 117.90°-117.93° E). The climate of the
area is dominated by subtropical monsoon, with mean annual temperature of 17.4 C

and mean annual precipitation of 1821 mm (Yang et al., 2013). The subtropical sum-
mer monsoon starts from May to July (Goebes et al., 2015a; Seitz et al., 2016). The
area is hilly with mean elevations of 189 m a.s.l. (site A) and 137 m a.s.l. (site B)
(Scholten et al., 2017). Soils in the region are mainly Cambisols, Acrisols and Fer-
ralsols (Scholten et al., 2017). The BEF China project is a forest experiment on approx-
imately 50 ha and includes two parallel sites, A and B, planted in 2009 and 2010, re-
spectively. These two sites were established by transplanting seedlings of 40 local
trees and shrubs after logging of the original secondary forest (Bruelheide et al.,
2014b).

2.2 Sample selection and data collection
2.2.1 Tree parameters retrieval

In this study, three subtropical tree species were selected, including evergreen broad-
leaved species (Lithocarpus glaber and Schima superba) and a deciduous broadleaved
species (Sapindus saponaria). These three species are recommended species for af-
forestation projects regarding water and soil conservation in the subtropical region of
China (The Ministry of Water Resources, 2013). For each tree species, three tree indi-
viduals were randomly selected. LAl measurements were carried out in October 2013
and point cloud data for each tree was obtained using a Terrestrial Laser Scanner
(RIEGL VZ-400, Horn, Austria). For each tree, 3 to 5 measurement positions were set
at different directions with a horizontal distance ranging from 1.5 to 8 m. The view zen-
ith angle from the center of the scanner to the canopy was set to 60 degrees. Before

the measurement, high reflectance sheets were stuck on pegs around the trees at vari-
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ous distances, heights and directions, to guarantee that more than 6 common sheets
were scanned for each two adjacent stations, which provided reference points to con-
vert all data in the same coordinate. The scanning angle resolution of the TLS was

0.01° and measurement rate was 122000 points s™.

2.2.2 TKE measurements

TKE was measured using Tubingen Splash Cups (T-Cup, (Scholten et al., 2011)). The
cup has a diameter of 4.6 cm and a height of 4 cm (Scholten et al., 2011). It is filled
with uniform fine sand (0.125 mm). The detached sand is calculated by the weight dif-
ference between the dry sand in the filled-up splash cup before measurements and the
dry sand inside the cup after the rainfall event. Then kinetic energy of rainfall (KEy) is
calculated by the detached sand (ds) per splash cup (sc) using the equation (Eq.1)

below with a modified slope and standardization to 1 m? (Goebes et al., 2015b).

KE (] m™) = ds_,(g) x 0.1455 x {1000(cm?) /nrz>]) Eq.1
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Fig. 1. Splash cup measurement design with six positions according to Goebes et al. (2015b).
Gray stars, black dots and red circle lines represent tree individuals, splash cup position and

radius around tree stems, respectively.

Its application was approved in field studies in subtropical China (Geililer et al., 2012a;
Geil3ler et al., 2012b; Goebes et al., 2015b). Five monoculture plots of Lithocarpus gla-
ber (1 plot), Schima superba (2 plots) and Sapindus saponaria (2 plots) were selected
to install splash cups under different tree individuals using the design of (Goebes et al.,
2015b). The cup positions were 15 cm, 30 cm, 45 cm, 60 cm, 75 cm, and 95 cm from

the stem respectively (Fig 1, six splash cups per plot). Five rainfall events from May to
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July in 2013 were measured (Table. 1). In total, data from 150 splash cups were col-

lected.

Table 1 Characteristics of the five captured rainfall events (Goebes et al., 2015b).

Rainfall Rainfallamount  Rainfall duration Mean throughfall TKE
events (mm) (h) amount (mm) (J/Im2)
Event 1 6.6 2.33 5.0 78.8
Event 2 23.3 10.16 28.3 255.3
Event 3 39.3 11.5 47.9 354.7
Event 4 61.2 14.5 73.8 553.7
Event 5 185.7 30.58 192.7 1292.8

2.3 Data analysis

LAl was estimated using a volume element model from the point cloud data (Hosoi and
Omasa, 2006; Zheng and Moskal, 2012) and was calculated with Matlab 2010b (The
Mathworks Inc., Natick, MA, USA). Basic parameters of trees (ground diameter, tree
height, first branch height, crown width, branch number and crown cover) were meas-
ured with the laser scanner software RiScan Pro (http://www.riegl.com). A one-way
analysis of variance (ANOVA) was conducted to compare the mean value of canopy
structure parameters. Skewness of LAl vertical distribution and Pearson correlation
analyses to test LAl effects on TKE were conducted with IBM SPSS Statistics for Win-
dows Version 19.0 (IBM Corp., Armonk, NY, USA). Before the Pearson correlation
analyses, TKE was log10 transformed to normal distribution and tested with the Kol-
mogorov—Smirnov test (Significance = 0.2). Graphs and curve fittings were processed
in Origin 8.0 (Origin Lab Corporation, Northampton, MA, USA)

3. Results
3.1 Spatial distribution of LAl between different tree species

In the vertical direction (Fig 2), high LAI of Lithocarpus glaber and Schima superba was
mainly located at the middle-lower part of the trees (Skewness = 0.13 and -0.22, re-
spectively) while at Sapindus saponaria it was mainly found at the middle-upper part
(Skewness = 1.24). LAI of Schima superba and Lithocarpus glaber ranged from 0.05 to
0.15 at a tree height from 0.5 to 2 m, while Sapindus saponaria ranged from 0.02 to 0.2
at a tree height from 2 to 3 m. Lognormal equations were suitable to describe the verti-
cal distribution LAI of Lithocarpus glaber, Schima superba (Fig 2, R?> 0.9) and Sapin-

dus saponaria (R?= 0.7).
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For LAI radial distribution, remarkable exponential decreasing trends were observed
from the tree stems to the edge of the canopy with the highest value at the stems (Fig 3,
R2> 0.9). The order of the stem LAI value was ranked as Sapindus saponaria > Litho-
carpus glaber > Schima superba. From 0.1 m to 0.3 m along stem distance, LAI of

Sapindus saponaria decreased drastically.
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Fig. 2. LAl vertical distribution pattern of three tree species.
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3.2 Potential of splash erosion under different tree species

Sapindus saponaria had the highest values of TKE among the observed species and

events. Compared to TKE of open-field rainfalls, TKE was enhanced under Sapindus

saponaria and reduced under Lithocarpus glaber and Schima superba (Fig 4). For all

measured rainfall events, Sapindus saponaria increased by 60-80% compared to TKE

in open-field, while Lithocarpus glaber and Schima superba decreased approximately

60% and 30-80%, respectively. With increasing radial distance from the stem, TKE of

all three species was generally increasing during different rainfall events although sig-

nificance of positive correlation was only detected with Lithocarpus glaber (Table 2).
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Fig. 4. Throughfall kinetic energy (TKE) changes with the distances from the stem under differ-

ent tree species in Xingangshan, Jiangxi Province, PR China.

Table 2 Pearson Correlation between distance from the stem and TKE.

Lithocarpus glaber

Schima superba

Sapindus saponaria

Event 1

Event 2

Event 3

Event 4

Event 5

0.73 %

0.51

0.44

0.87*

0.88 *

0.02

0.67

-0.18

0.23

0.49

0.14

0.28

0.46

0.25

0.10

* Significant level p < 0.05

4. Discussion

4.1 Difference in spatial distribution of LAI
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Tree saplings growth and tree shape were significantly species-specific (Fig 2, 5), indi-
cating an interspecific variation in certain functional traits in BEF China as described in
detail by (Li et al., 2014a). Different growth in tree functional traits among specific spe-
cies might reflect their adaptive strategy related to the hereditary and environment.
According to classical life-history theory of plants (Pianka, 1970), light-demanding tree
species might be characterized by small values of leaf mass per area and maximum
adult height, while shade-tolerant species show the opposite trait values (Poorter et al.,
2008). In our research, the different leaf traits of trees showed different vertical distribu-
tion patterns of LAI, while same leaf trait of trees had similar distribution patterns, as it
was shown that little difference between Lithocarpus glaber and Schima superba oc-
curred (Fig 2 and 5, Table 3). Accordingly, shape and size of the leaves did not only
influence the LAl in general, but were also related to the spatial distribution of LAI along
tree height. Deciduous trees like Sapindus saponaria allocate more photosynthetic
products in height and branch growth with simple crown architecture, while evergreen
trees such as Lithocarpus glaber and Schima superba would consume more energy to
branch construction and leaves with complex crown architecture (Chave et al., 2009;
Kang, 2010). Leaf mass area distribution is correlated with light availability, moisture
and nutrients transportation and production of trees (Ellsworth and Reich, 1993). Our
results showed that a lognormal model can be used to predict the vertical distribution of
LAI for broadleaved species. This result was in accordance with Lu (2011) and Zhao et
al. (2015), who found that foliage distribution of major broadleaved species in second-
ary forest in northern China had the lognormal patters. As an important biophysical
parameter in ecology, LAl not only quantifies effects of canopy thickness, leaf mass
and branch count (Geil3ler et al., 2013), but also its vertical distribution illustrate the
distribution of tree height, first branch height and canopy thickness, indicating the pro-
cess of rain drops from tree canopy to surface soil. In our study, LAI vertical distribution
and its skewness reflected the difference in height of the first branch, number of
branches and crown cover among the three species, for Lithocarpus glaber and Schi-
ma superba both having lower skewness with lower height of first branch, more
branches and high crown cover comparing to Sapindus saponaria (Table 3). Moreover,
the skewness could also account for the heterogeneity in horizontal and vertical leaf
area distribution, which may provide a better way to understand the species-specific
relationship between LAl and canopy water storage (Llorens and Gallart, 2000; Keim
and Link, 2018) and tree diversity effects on TKE (Geil3ler et al., 2013). Therefore,
skewness of LAI vertical distribution might be a promising index comprehensively de-

scribing tree function in ecosystem, especially the process of hydrology. In further stud-
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ies, more tree species of LAl vertical distribution will be established to prove the availa-
bility.

Lithocarpus glaber Schima superba Sapindus saponaria

Fig. 5. Three single tree species images from point cloud data measured with the laser scanner

software RiScan Pro in Xingangshan, Jiangxi Province, PR China.

Table 3 Comparison of basic parameters of three investigated tree species in Xingangshan,
Jiangxi Province, PR China (n = 9).

Crown cover

Tree Leaf Ground First  branch Tree Crown Number
species habit  Diameter(m)  Me9nt(m height(m)  Width(m) branches
Lithocarpus glaber E 0.037+0.015a 0.30+0.04 b 2.98+0.21a 1.70+0.23a 33+4a
Schima superba E 0.071+0.037a  0.15+0.13 b 3.14+0.79a 2.12+0.36a 40+5a
Sapindus saponaria D 0.049+0.007a 1.13+0.45a 3.4840.07a 1.91+0.28a 745b

0.38+0.03a

0.42+0.09a

0.28+0.02b

E represents evergreen broadleaved species; D represents deciduous broadleaved species. Different

lower letters in the same tree basic parameters denote significant difference at p < 0.05

4.2 LAl effects on TKE

Leaf area index is regarded as a major influence on TKE of rainfall drops (Gémez et al.,
2001; Park and Cameron, 2008) and thus differences in LAl spatial distribution contrib-
ute to differences in TKE (Geil3ler et al., 2013), although they both have seasonal tem-
poral patterns (Levia Jr and Frost, 2006; Doughty and Goulden, 2008). TKE generally
increased as the radial distance from the trunk increased with the LAI decreasing dur-
ing different rainfall events. (Nanko et al., 2011) found that the TKE was positively cor-
related with the radial distance in a 9.8-m-tall transplanted Japanese cypress tree
(Chamaecyparis obtusa). Our results demonstrated that TKE was species-specific, with
lower TKE of Lithocarpus glaber and Schima superba than Sapindus saponaria. On the
one hand, it is assumed that if Lithocarpus glaber and Schima superba have higher LAI,
they also show high rainfall interception. This is because canopy water storage in-
creases with increasing LAl with a higher vertical distribution of foliage and canopy
roughness (Aston, 1979; Marin et al., 2000; Fleischbein et al., 2005) and falling drops
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and drop sizes are more likely to be re-modified and split by lower parts of the canopy
(Wiersum, 1985). On the other hand, for Sapindus saponaria and in the radial direction,
high LAI is mainly located at the top height (Skewness = 1.24), which may lead to less
interception and higher speed of falling drops reaching the soil surface and thus con-
tribute to higher kinetic energy. Lognormal distribution LAI of Lithocarpus glaber and
Schima superba with lower Skewness values indicated that the two species may have
higher rainfall interception and lower speed of falling drops which contribute to reducing
TKE. Research show that many factors affect TKE in forests such as crown cover and
thickness, leaf traits, leaf area index, first branch height, tree height and branch archi-
tecture (Cao et al., 2008; Geildler et al., 2012b; Goebes et al., 2015a; Goebes et al.,
2015b) . As we discuss above, skewness of LAI vertical distribution would be a better
index to exactly indicate the process of rain drops from tree canopy to surface soil by
combining the effects of many factors such as canopy thickness, leaf mass and branch
count, tree height and first branch height together. Also, our result show higher skew-
ness of LAI vertical distribution had higher TKE among the observed species and
events. Therefore, the importance of LAI spatial distribution should be emphasized for
TKE. Compared to open field, TKE of Lithocarpus glaber and Schima superba was
reduced while for Sapindus Saponaria it was enhanced. The finding reminded us that
afforestation in the first years might accelerate splash erosion because of structural
shortcomings of tree species chosen. It also gives the suggestion to improve the pro-
tection of soil in afforested area by combining different tree species and thus apply a
higher level of biodiversity. However, many questions are still unclear, for example, to
what extent the skewness values of LAI vertical distribution have negative or positive
effects on TKE under different ages of tree species not only for broadleaved species

but also for needle species.
5. Conclusions

Spatial distributions of LAI of Lithocarpus glaber, Schima superba and Sapindus sapo-
naria were determined by a terrestrial laser scanner (TLS) in a subtropical Chinese
afforestation. Vertical distributions of LAl and TKE of different tree species were signifi-
cantly different. TKE was measured with splash cups and affected by LAl and its spa-
tial distribution. Sapindus saponaria enhanced TKE while Lithocarpus glaber and
Schima superba reduced it. In an early stage of afforestation, splash erosion might be
accelerated because of tree species selected. Skewness of LAI vertical distribution
appears to be a suitable index to comprehensively describe tree functions within hydro-
logical systems. Combining LAl with its spatial distribution patters using a TLS could be

a promising method to evaluate potential splash erosion risk in afforested areas.
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Abstract

Biodiversity plays a crucial role in forest ecosystem sustainability. However, it is un-
clear how tree diversity and especially the relationship between diversity and ecosys-
tem functioning affect soil erosion. Based on a forest biodiversity and ecosystem func-
tioning experiment established in subtropical China (BEF China), we measured soil
erosion at four tree species richness levels (monocultures, 8 tree species, 16 tree spe-
cies and 24 species stands) during the rainy seasons from 2013 to 2015. The result
showed that mean annual soil erosion rates were detected to decrease with tree spe-
cies richness significantly over the observed three years. Leaf area index (LAI) and
biological soil crusts (BSCs) were the two main factors driving soil erosion within tree
stands of different species richness. Positive effects of tree species richness on tree
canopy structure and BSCs might drive the reduction of soil erosion in the earlier suc-
cessional stage after afforestation of tree plantations. Therefore, we highlight the im-
portant influence of tree species richness on soil erosion control, hydrologic processes

and thus sustainable ecology services.

Key words: BEF China, Soil loss, Tree species richness, Leaf area index, Biological

soil crust
1. Introduction

Growing concern about biodiversity is emerging worldwide due to substantial contem-
porary declines in species richness at different scales (Tittensor et al., 2014; Mori et al.,
2017). As part of recent scientific research, forest diversity has shown to promote bio-
mass production, carbon accumulation and nutrient cycling (Kelty, 2006; Cardinale et
al., 2012; Gamfeldt et al., 2013; Forrester, 2014; Btonska et al., 2018; Huang et al.,
2018). At the same time, the question how forest diversity might influence soil erosion
also attracts researchers’ attention. Answering this question is significant not only for
designing restoration and rehabilitation programs to achieve the sustainable goals for
ecosystem development but also for emphasizing the diversity of the biota in nature
based solutions when they will be designed (Keesstra et al., 2018a; Keesstra et al.,
2018b; Solomun et al., 2018). Recent studies pointed out that plant diversity could en-
hance soil stability and reduce soil erosion in different environments such as alpine
grasslands or on dyke slopes (Pohl et al., 2009; Martin et al., 2010; Wang et al., 2012b;
Geiller et al., 2013; Berendse et al., 2015).

Meanwhile, it was shown that in young forest plantations, soil erosion is strongly affect-
ed by tree species but a clear effect of tree diversity could not be found in early stage
forests (Goebes et al., 2015b; Goebes et al., 2016; Seitz et al., 2016). Those studies

suggested an unclear relationship between tree diversity and soil erosion during forest
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recovery. Therefore, research on the temporal development of soil losses under differ-
ent forest diversity levels is essential for understanding how biodiversity might sustain

ecological services such as water erosion prevention in forest plantations.

Subtropical forests as one of the most productive ecosystems in the world are closely
related with global biogeochemical cycles and climate change (Melillo et al., 1993; Bala
et al., 2007). They are increasingly suffering from intensive human activities such as
deforestation, but also human-induced afforestation with decreasing plant diversity
(Durieux et al., 2003; Malhi et al., 2008; Barrufol et al., 2013). Without human disturb-
ance, subtropical forests in China are dominated by evergreen broad-leaved species
(Wang et al., 2007; Bruelheide et al., 2014b). However, these areas were mostly
cleared and have been converted into monospecific conifer stands in the last decades
for many reasons such as economic benefits and easy management (Zhao, 2006;
Wang et al., 2007; Li et al., 2014a). For instance, the two most important tree species
for forest resources and ecological services in subtropical China, Chinese fir and Pinus
massoniana, cover approximately 12.39 x 10° ha or 10% of the total forest area and
6.78 x 10° ha or 27% of the forest area in the Three Gorges Reservoir area(Wang et al.,
2012a; Huang et al., 2013; Wang, 2014). Apparently, these monoculture plantations
bring with them a higher potential of ecological insecurity because of greater suscepti-
bility to adverse environmental conditions and negative effects on soil properties (Yang
et al., 2009; Li et al., 2014a). Moreover, soil erosion commonly occurs in forest planta-
tions and highly varies in forested areas of subtropical China ranging from 0 - 6.32t ha’
Lyr! (Hill and Peart, 1998; Guo et al., 2015; Seitz, 2015; Seitz et al., 2016). This re-
sults in high sediment load in rivers, although great endeavors have been made to re-
store and afforest vast areas with commercial monocultures (Zhao, 2006; Wang et al.,
2007; Lei et al., 2009; Guo et al., 2015). These current circumstances imply that mono-

specific plantations might be less suitable for soil erosion control.

Generally, tree diversity is assumed to affect soil erosion mainly by two aspects: First, it
optimizes patterns of spatial vegetation structures and distribution (e.g. by better gap
filling) and thus strengthens the interception of rainfall (Zheng et al., 2008; Geil3ler et al.,
2013; Liu et al., 2018). Second, it could reduce soil erosion by improving soil properties
and soil covering vegetation on the forest floor that attributes to the reduction of
raindrop impacts on the soil surface as well as enhancing soil water capacity and infil-
tration (Janssens et al., 1998; Bezemer et al., 2006; Pohl et al., 2009; Martin et al.,
2010; Wang et al., 2012b). Tree species richness has shown to increase canopy strati-
fication and growth rates, leading to a more homogenous canopy development due to a
higher number of functional traits (Lang et al., 2010; Lang et al., 2012a; Chisholm et al.,

2013). Recent research showed that different tree species have different spatial distri-



Publications 85

bution patterns in monocultures but also in mixtures, e.g. regarding leaf area, leading to
changing kinetic energy of raindrops and thus splash erosion rates (Goebes et al.,
2015a; Goebes et al., 2015b). Furthermore, tree traits such as leaf area or crown cover
affect the development of soil surface covering vegetation, in particular biological soil
crusts (BSCs), e.g. by modifying light conditions and thus the succession sequence
from cyanobacteria to bryophytes (Issa et al., 1999; Belnap et al., 2001; Zhang et al.,
2016). BSCs dominated by mosses and liverworts in turn, proved to effectively mitigate
soil losses in young forest plantations in subtropical China (Seitz et al., 2017).

Based on these findings, we assume that tree species richness reduces soil erosion
with ongoing tree growth by not only modifying the tree canopy structure but also im-
proving the soil surface coverage by BSCs. Thus, we hypothesize in this study that tree
species richness could affect soil erosion by altering vegetation patterns in the tree
canopy layer as well as in the vegetation layer directly covering the soil surface.

To answer those hypotheses, we made use of a Biodiversity and Ecosystem Function-
ing Experiment under forest in PR China using monocultures and three different tree
species richness levels (Bruelheide et al., 2014a). Soil erosion was measured as inter-
rill sediment delivery with micro-scale runoff plots which are commonly applied in cur-
rent studies (Seitz, 2015; Cerda et al., 2017; Rodrigo-Comino et al., 2018) and annual
soil erosion rates calculated after Wischmeier and Smith (1978a). Canopy traits, soil
surface cover and soil parameters were recorded and results obtained using linear

mixed effects models (Trogisch et al., 2017).
2. Materials and Methods
2.1 Study area

The research was conducted in the framework of the BEF China project, which is lo-
cated in Xingangshan Town, Dexing City, Jiangxi Province, PR China (29.08°-29.11° N,
117.90°-117.93° E). The climate is dominated by subtropical monsoon with a mean
annual temperature of 17.4 ‘C and a mean annual precipitation of 1635 mm with half of

it falling from May to August (Goebes et al., 2015b). The natural vegetation is dominat-
ed by broadleaved forest with evergreen species (Trogisch et al., 2017). The area
shows mainly hills at elevations from 105 to 200 m with slopes from 15° to 41° (Schol-
ten et al.,, 2017). Soils in the project are mainly Cambisols, with Anthrosols in
downslope positions and Gleysols in valleys and the bedrock is non-calcareous slates

weathered to saprolite (Scholten et al., 2017).
2.2 Experimental design and data collection

2.2.1 Research plots
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The BEF China project includes two parallel sites (A and B) on which commercial mon-
ocultures were originally planted that were cut down in 2009 and 2010, respectively
(Bruelheide et al., 2014a). Holes of 0.5 m (length) x 0.5 m (width) x > 0.2 m (depth)
were dug for seedlings (Yang et al., 2013). Forty local tree species were replanted in
monocultures and mixtures of 2, 4, 8, 16 and 24 species on 566 plots with each meas-
uring 25.8 x 25.8 m (667 m?) (Yang et al., 2013). For each plot (Fig. 1), 400 tree indi-
viduals were planted in 20 rows of 20 tree individuals with a planting distance of 1.29 m
(Bruelheide et al., 2014a). For this study, 43 of these plots were selected, 22 on Site A
and 21 on Site B with four tree species richness levels: monocultures, 8 tree species,
16 tree species and 24 tree species stands (Table 1).

0Am™
25.8 m (20%20) o

258m

@ Runoff plot O Runoff plot area ‘ Soil sampling point ® Tree sapling

Fig. 1. Random positions of runoff plots for soil erosion measurements and soil samples in one
research plot of the BEF China project (0.4 m length x 0.4 m width x 0.1 m height).

Table 1 Tree, topography and soil data (0-5 cm) of 43 selected research plots in the BEF China

project. (TSR: tree species richness; Soil BD: soil bulk density; SOC: soil organic carbon)

Topography Soil properties
Plot TSR Tree species Site  Slope  Aspect Altitude BD pH SOC
© m @m?) (%)
D29 1 M. flexuosa B 31 N 159 0.90 3.68 2.77
125 1 M. yuyuanensis B 29 N 152 0.96 3.47 2.90

MOo7 1 B. luminifera B 31 S 129 0.89 3.55 2.52
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NO2 1 M. flexuosa 41 S 129 0.89 3.61 3.01
NO5 1 A. altissima 32 N 119 0.89 3.63 3.17
N28 1 I. polycarpa 19 E 167 0.97 3.56 2.21
Q27 1 A. fortunei 35 S 160 0.97 3.66 2.78
Q29 1 M. leptophylla 33 E 144 0.90 3.74 2.42
R29 1 C. fargesii 33 S 146 0.91 3.65 2.48
T3 1 M. thunbergii 21 W 133 0.96 3.44 2.59
ule 1 E. japonicus 20 w 147 0.94 3.44 2.65
V24 1 E. chinensis 32 E 137 0.94 3.71 3.01
wio 1 Ph. bournei 27 E 147 0.92 3.45 2.35
wil 1 E. glabripetalus 19 S 148 1.04 325 272
xX21 1 M. grijsii 24 N 132 0.91 3.65 2.54
Y09 1 C. biondii 32 E 126 1.10 3.71 1.93
E31 1 Q. fabri 22 S 144 0.95 3.86 2.48
E33 1 L. glaber 19 S 144 1.12 3.94 2.18
E34 1 C. henryi 21 S 125 1.06 4.09 2.84
G33 1 Q. serrata 18 S 127 0.85 3.92 3.45
128 1 L. formosana 26 S 163 0.90 3.81 3.29
K19 1 S. superba 24 N 199 0.80 3.70 4.18
L10 1 C. eyrie 34 S 211 0.92 3.92 2.81
L11 1 C. sclerophylla 28 S 201 1.04 3.87 2.95
N11 1 S. saponaria 26 S 203 0.82 3.63 3.93
N13 1 S. sebiferum 31 S 182 0.78 3.78 3.62
N17 1 R. chinensis 28 W 221 0.91 3.79 3.39
022 1 C. myrsinaefolia 21 W 229 0.86 3.80 3.54
027 1 Ch. axillaris 21 W 185 1.07 4.12 241
Q13 1 K. bipinnata 30 W 215 0.90 3.86 3.84
R14 1 C. glauca 30 N 228 0.82 3.80 4.25
J29 8 1* 31 N 182 0.81 3.39 4.85
Q17 8 2% 22 N 131 0.99 3.52 291
S10 8 3* 36 S 220 0.96 3.79 3.04
T15 8 4* 30 N 244 0.87 3.67 3.42
122 16 5* 28 S 119 1.07 3.58 2.28
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S22 16 5* B 33 W 145 1.00 3.61 3.26
L22 16 6* A 21 W 180 0.8 3.79 3.48
M22 16 6* A 23 W 221 0.95 3.79 3.48
Uio 16 6* A 40 S 231 0.96 3.86 3.22
R30 24 * B 27 S 136 0.95 3.67 2.46
NO9 24 8* A 33 S 218 0.86 3.58 3.60
R18 24 8* A 36 W 215 0.91 3.82 3.50

1*: 8 tree species from monocultures NO5, Y9, W11, U16, N28, X21, D29 and W10.

2*: 8 tree species from monocultures Q27, M07, R29, V24, Q29, T13, 125 and Q. phillyreoides.
3*: 8 tree species from monocultures E34, L11, 027, 128, G33, N11, N13 and N. sinensis.

4*: 8 tree species from monocultures E33, E31, N17, K19, L10, R14, 022 and Q13.

5*: 16 tree species from 1* and 2*.

6*: 16 tree species from 3* and 4*.

7*. 24 tree species from 5*, from monocultures E33, K19, R14, L10, L11, and Cinnamomum camphora,
Daphniphyllum oldhamii and Diospyros glaucifolia.

8*: 24 tree species from 6* and Cinnamomum camphora, Daphniphyllum oldhamii, Diospyros glaucifolia,

Acer davidii, Castanopsis carlesii, Melia azedarach, Quercus acutissima and Sapium discolor.

2.2.2 Measurement of sediment delivery

Based on the design of BEF China and considering the various research topics investi-
gated, a selected area of each research plot was used for soil erosion measurements
(Bruelheide et al., 2014b; Trogisch et al., 2017). Five micro-scale runoff plots (0.4 m
length x 0.4 m width x 0.1 m height) were randomly installed in 2013 and connected to
20 L reservoirs to collect runoff and sediment delivery (Fig. 1) (Seitz et al., 2016). The
runoff plots were operated from May to July during the rainy season in 2013, 2014 and
2015. Runoff volume was collected in situ and sediment delivery was calculated after
sampling. In total, 535 valid measurements from 215 runoff plots were captured (180 in
2013, 152 in 2014 and 203 in 2015).

2.2.3 Tree parameters

Tree measurements with laser scanning (FARO Laser Scanner Photon 120, FARO
Technologies Inc., FL, USA) at all plots started in September 2010 for both experi-
mental sites on a yearly base, which were determined by the central 6 x 6 trees (36
trees) in the monocultures and the central 12 x 12 trees (144 trees) in the 8, 16 and 24
tree species stands (Li et al., 2014a; Li et al., 2017).
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Crown cover and leaf area index (LAI) were measured each May from 2013 to 2015 at
the ROP scale using a fish-eye camera system (Seitz et al., 2016). 552 valid pictures of

forest canopy at runoff plot scale were captured.
2.2.4 Soil surface cover

Soil surface cover including biological soil crusts (BSCs) and stone cover was surveyed
yearly. BSCs were measured photogrammetrically during the rainy seasons from 2013
to 2015 within the runoff plots. Perpendicular images for each runoff plot were taken by
a camera system (Canon 350D, Tokio, Japan). The images were processed by the grid
quadrat method with 10 x 10 subdivisions of a digital grid in GIMP 3.0. BSCs and stone
cover were separated by hue distinction. Further soil surface cover by shrubs was not
present due to weeding according to the experimental design and a continuous leaf
litter layer could not be recorded during the first years of this early successional affor-
estation (Seitz, 2015).

2.2.5 Soil properties

The soil sampling was conducted in 2014. Soil cores with 6 cm in diameter were taken
to a depth of 50 cm and then divided into five depth increments (0-5 cm, 5-10 cm, 10-
20 cm, 20-30 cm and 30-50 cm) (Scholten et al., 2017). For this study, soil properties
of the 0-5 cm increment were used (Table 1). For each plot, nine soil cores were col-
lected (Fig. 1) and mixed. Soil samples were air-dried, sieved through a 2 mm mesh,
handpicked to remove plant and animal residuals and then grounded for soil analyses.
For total soil carbon analyses, about 40 mg of ground sample material was weighed
into tin foil and analyzed using oxidative heat combustion at 1150 °C in a helium at-
mosphere in a Vario EL Il elemental analyzer (Elementar Analysensysteme GmbH,
Hanau, Germany). Soil pH was determined with a 1 M KCI solution (soil-to-solution
ratio 1:2.5) by a WTW pH meter pH 340 (WTW GmbH, Weilheim, Germany) using a
Sentix 81 electrode according to DIN EN15933 (2012). Since pH is < 6.7 for all sam-
ples: total soil carbon = soil organic carbon (SOC). In addition, five replicates of bulk
density samples were obtained for each plot at the same depth increments in 2015.
The soil bulk density (BD) was gravimetrically determined from the five replicate volu-

metric samples per depth increment (samples dried at 105 °C).
2.2.6 Rainfall characteristics

Rainfall data during the soil erosion measurements was captured by climate stations on
both sites (ecoTech data logger with Vaisala weather transmitter and ecoTech tipping
bucket balance, Bonn, Germany) (Fig. 2). Daily accumulated precipitation curves and

the ten largest daily rainfall events during the three years were shown in Fig. 2. a and b.
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Further data on regional precipitation was used from the National Meteorological Infor-
mation Center (NMIC) of China and China Meteorological Administration (CMA).
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Fig. 2 (a) Daily accumulated precipitation and (b) The ten largest daily rainfall events in BEF
China from 2013 to 2015.

2.3 Statistical methods
2.3.1 Annual soil erosion rate

A rainfall threshold of 12.7 mm was applied to distinguish erosive rainfall amounts after
Wischmeier and Smith (1978a). Annual erosive rainfall amount (AER, mm) and erosive
rainfall during the runoff plot measurements (ERM, mm) in the rainy seasons were cal-
culated based on precipitation curves from climate stations (Fig. 2). Then, with sedi-
ment delivery acquired during the runoff plot measurements (SE, Mg ha?), an annual
soil erosion rate (Mg ha') was calculated (Eq. 1).

Annual soil erosion = (AER / ERM) X SDE Eqg. 1

2.3.2 Data analysis

We used linear mixed effects models to (I) analyze the temporal development of annual
soil erosion rates under changing tree species richness and to (ll) investigate driving
factors on soil erosion rates and how in turn those factors are influenced by tree spe-

cies richness.
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Before modelling, annual soil erosion rates from 2013 to 2015 were twice square root

transformed (\"?) to fit normal distribution. A first model was calculated with tree spe-
cies richness, year and the interaction of tree species richness with year as fixed fac-
tors, while site, plot, runoff plot nested in plot and tree species composition were fitted

as random factors.

Further models were compiled to identify explaining parameters on soil erosion. Tree
height, stem diameter, crown width, crown cover, LAI, biological soil crusts, surface
cover and soil properties were fitted as fixed factors, while site, runoff plots nested in
plot and tree species composition were fitted as random factors. If multi-collinearity
(correlation index > 0.7) was detected among the fixed factors, correlated factors were
fitted individually in exchange to the counterpatrt.

Finally, models were used to analyze the effects of tree species richness on identified
main influencing factors of soil erosion by using tree species richness, year and the
interaction of tree species richness with year as fixed factors, while site, plot, runoff plot

nested in plot and tree species composition were used as random factors.

All statistical analyses were conducted with R 3.4.3 (R Foundation for Statistical Com-
puting, Vienna, Austria). Graph and curve fittings were processed in Origin 8.0

(OriginLab Corporation, Northampton, USA).
3. Results
3.1 Soil erosion under different tree species richness

In 2013, monocultures and 24 tree species stands had similar mean soil erosion rates
with 43.5+3.1 Mg ha! and 45.8+7.7 Mg ha, whereas 16 tree species stands showed
lower rates (28.7+8.3 Mg ha?) and 8 tree species stands showed the lowest value
with 22.5+3.4 Mg ha! (Fig. 3). From 2014 to 2015, the mean annual soil erosion de-
creased from monocultures (24.7+2.1 Mg ha?, 11.3+1.9 Mg ha?) to the 8 tree spe-
cies stands (20.8+4.6 Mg ha?, 7.94+2.6 Mg ha?), to the 16 tree species stands (18.2
+3.6 Mg ha?, 5.3+0.8 Mg ha?) and finally to the 24 tree species stands (17.5+5.6
Mg ha' and 2.7+0.8 Mg ha?). Besides, the highest and lowest annual soil erosion

rates measured during 2013-2015 were all detected in monocultures (Fig. 3), indicating
that monocultures have a high variability regarding soil erosion. From linear mixed ef-
fects model, tree species richness reduced annual soil erosion rates over the observed
three years significantly (Table 2, P <0.001, F = 65.13).
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Fig. 3. Annual soil erosion (Mg hat) in 2013, 2014 and 2015 under different tree species rich-
ness in the BEF China experiment in Xingangshan, Jiangxi Province, PR China. Gray points
mean data collected from runoff plots (n = 535). Red spline dashed lines connected

meanzstandard error of each tree species richness for each year.

Table 2 Linear mixed effects models for the effects of tree species richness (TSR), year and the
interaction tree species richness x year on annual soil erosion (n = 535). (Annual soil erosion
were twice squared root scaled while tree species richness and year were scaled. ddf mean

denominator degree of freedom; F and P mean F-ratio and P-value of the significance test.)

Fixed effect ddf F P

TSR 522 65.13 <0.001
year 529 262.60 <0.001
TSR x year 522 2.049 0.152

Notes: fixed effects were fitted sequentially as shown in the table while random effects are site, plot, runoff
plots nested in plot and tree species composition.

3.2 Factors driving changes of soil erosion with different tree species richness

Regarding the linear mixed effects model (Table 3), results showed that tree parame-
ters and BSC negatively affected soil erosion (P < 0.01). The estimate for LAl (P <
0.001), crown cover (P < 0.05), crown width (P < 0.01), tree height (P < 0.01), stem
diameter (P < 0.01) and BSC (P < 0.001) on soil erosion were -0.21, -0.20, -0.06, -0.09,
-0.08 and -0.52, respectively. Soil properties including soil BD, soil pH, SOC and topog-
raphy parameters including slope and altitude did not show significant effects on soil
erosion. Therefore, tree canopy parameters and BSCs were the two main factors driv-

ing soil erosion.
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Table 3 Linear mixed effects models for annual soil erosion (n = 535). (LAI: leaf area index;
BSCs: biological soil crusts; soil BD: soil bulk density; SOC: soil organic carbon. ddf mean de-

nominator degree of freedom; F and P mean F-ratio and P-value of the significance test.)

Fixed effect ddf F P Estimate
LAI 246 22.49 0.000 -0.21
BSCs 515 198.28 0.000 -0.52
Soil BD 32 15.01 0.079 0.06
Soil pH 32 2,92 0.097 0.08
SOC 32 0.09 0.650 0.02
Slope 32 5.50 0.025 0.01
Altitude 31 0.08 0.228 0.04
Crown cover 300 20.675 0.011 -0.20
Tree height 61 2.021 0.001 -0.09
Crown width 61 2.034 0.001 -0.06
Stem diameter 64 9.959 0.002 -0.08

Notes: Fixed effects were fitted sequentially as shown in the table while random effects are site, plot, runoff
plots nested in plot and tree species composition. As multicollinearity of fixed factors (correlation index >
0.7) was detected among LAI, crown cover, tree height, crown width, and stem diameter, one factor was
fitted individually in exchange to the other in the linear mixed effects model. All variables were tested on
normal distribution. Annual soil erosion was twice squared root scaled while BSCs were square-root trans-

formed with arcsign reconstruction. Then all variables were scaled before modelling.

A significantly positive effect of tree species richness on LAl was found and the size of
this effect increased with years (Table 4 and Fig. 4; Prsr < 0.001, Frsr = 7.6; Pyear <
0.001, Fyear = 24.6; Prsr:year < 0.01, Frsr:year = 9.1). Monocultures had the lowest LA,
with mean values of 0.95 in 2013, 1.02 in 2014 and 1.25 in 2015 (Fig. 4). 8 tree species
stands had the highest LAl in 2013 and 2014 with mean values of 1.43 and 1.66 and
lower in 2015 with a mean of 1.78. LAl of 16 tree species and 24 tree species stands
was increasing from 1.24 and 0.93 in 2013 to 1.93 and 1.65 in 2015 respectively, indi-

cating that they both have faster increase rate of LAI.

Regarding BSCs, an increasing trend with tree species richness was shown, although
no significant effect of tree species richness was detected (Table 4 and Fig. 5). 16 tree
species stands showed the highest coverage of BSCs with 32%, 48% and 57% from
2013 to 2015 (Fig. 5). Monocultures, 8 tree species and 24 tree species stands in 2013

had a similar BSCs coverage ranging from 16%-17%. Then, the ranges of their BSCs



Publications 94

coverage were 30%-35% in 2014 and 44%-52% in 2015 with the order of monocultures

< 8 tree species stands < 24 tree species stands.

Table 4 Linear mixed-effects models for tree species richness (TSR), year and the interaction
tree species richness x year on leaf area index (LAI) and biological soil crusts (BSCs) (n = 552).

ddf mean denominator degree of freedom; F and P mean F-ratio and P-value of the significance

test.
Fixed LAI Biological soil crusts
effect ddf F P ddf F P
TSR 40 8.6 <0.01 40 1.0 0.32
Year 529 35.6 <0.001 535 92,5 <0.001
TSRx year 522 12.1 <0.01 536 14 0.245

Notes: Fixed effects were fitted sequentially as shown in the table while random effects are site, plot, runoff
plots nested in plot and tree species composition. LAl was scaled. Biological soil crusts were square-root
transformed with arcsign reconstruction and then scaled. Tree species richness and year were scaled.

2013 : 2014 } 2015

—
<,
—
24 )
3 o by R <
1 Bl FNORS . T
pOREE N hi ) »
14 & Y ]
0+
: = = 5 = = = = ) =
& & & & & & & & & & & &
& 'Séﬂk & & & fs?%\ 'Séﬂ\ 'Séﬂk P e e e
\:‘\‘ S \"c ﬁl'k {‘\M EY NS Al > %é‘ \cé ﬁ'>k<'c

Fig. 4. Leaf area index (LAI) in 2013, 2014 and 2015 under different tree species richness in the
BEF China experiment in Xingangshan, Jiangxi Province, PR China. Gray points mean data
collected at runoff plots scale (n = 552). Read spline dashed lines connected mean + standard

error of each tree species richness for each year.
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Fig. 5. Biological soil crusts (BSCs) within runoff plots (%) in 2013, 2014 and 2015 under differ-
ent tree species richness in the BEF China experiment in Xingangshan, Jiangxi Province, PR
China. Gray points mean data collected at runoff plots scale (h = 552). Read spline lines con-

nected mean * standard error of each tree species richness for each year.

4. Discussion
4.1 Soil erosion under different tree species richness

Annual soil erosion rates in the afforested study area were 40.6 Mg ha! in 2013, 23.5
Mg ha? in 2014 and 9.7 Mg ha in 2015. Those rates are importantly higher than the
1.89 Mg ha'a? generally assumed for forests in the south of China (Guo et al., 2015),
even if we consider that measurements with micro-scale runoff plots were focusing on
interrill erosion only. In Europe, the annual soil erosion rate under forest was given as
0.7 Mg ha! al (Maetens et al., 2012), whereas it ranged from 0 to 8 Mg ha! atin Aus-
tralia (Cerdan et al., 2010b). Considering that soil erosion rates of 1 Mg ha?! a? are
assumed to be tolerable in general (Verheijen et al., 2009) and in the range of 0.12 to
0.25 Mg ha' a! particularly under undisturbed forests (Patric, 1976), we conclude that
the BEF China experiment is still suffering from severely high soil erosion even after 6
years of forest restoration.

Our study showed that higher tree species richness lead to decreasing soil erosion
rates during the three years of observation. These calculated rates suggest that higher
tree species richness could reduce soil erosion in subtropical Chinese forest planta-
tions. For instance, stands of tree species richness higher than eight with annual soil
erosion rate 16.1 Mg ha® a! showed to reduce soil erosion by 30% compared to mon-
ocultures (26.5 Mg ha! a!). Therefore, more diverse plantations should be considered

as an important afforestation policy in this region to help conserving soil and water re-
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sources. However, in 2013, tree species richness did not show a decreasing pattern
regarding soil erosion, as 24 tree species stands showed higher rates than 16 and 8
tree species stands and comparable rates to monocultures. This absence of a tree di-
versity effect was mainly caused by the early successional stage of the forest experi-
ment (Seitz et al., 2016). At this point, tree species richness had not yet contributed to
vegetation cover development both in the canopy and the biological soil crust layer in a
way that it affects soil erosion (Li et al., 2014a; Goebes et al., 2015b; Seitz et al., 2016).
In 2014, 24 tree species stands showed lowest erosion rates followed by 16 tree spe-
cies stands, 8 tree species stands and monocultures. This finding indicates that tree
diversity could alter soil erosion with ongoing tree growth and changing vegetation pa-
rameters, but forest ecosystems need several years of time for adaption. A similar re-
sult could be observed in land abandonment in the Mediterranean mountains of Spain
based on an 11 years observation, with agricultural abandonment increasing soil ero-
sion in the first two years due to low vegetation recovery and the development of a soil
crust then resulting in lower erosion rates afterwards (Cerda et al., 2018). Therefore, it
is necessary to monitor soil erosion in forest plantations for a longer term to identify the

effect of plants and tree diversity in particular (Seitz et al., 2016; Trogisch et al., 2017).

4.2 Tree species richness reduced soil erosion by positive effects on tree canopy

and biological soil crusts

In forests, natural rainfall passes through the vegetation cover before hitting the soil
surface and can potentially cause soil erosion. We assume that positive effects of tree
species richness on this vegetation cover above the soil surface result in a reduction of

soil erosion.

Forest canopies influence soil erosion mainly by intercepting rainfall and altering rainfall
patterns (Goebes et al., 2015b). Raindrops are modified by tree and leaf traits within
the forest canopy while rainfall amounts are reduced by vertical distribution of foliage
and canopy roughness. It has been shown that trees with high LAI have high rainfall
interception (Aston, 1979; Marin et al., 2000; Fleischbein et al., 2005) and several stud-
ies pointed out that LAI has a significant negative effect on throughfall kinetic energy
and thus soil erosion at different forest stages in the subtropical part of China (Zhang et
al., 2011; Geililer et al., 2013; Seitz et al., 2016; Song et al., 2018). These results are
in line with our finding that increasing LAI over time significantly reduced soil erosion.
As one key factor on soil erosion, LAI at runoff plot scale was increasing every year
from 2013 to 2015 in the research area. This increase of LAl strengthened the intercep-
tion of rainfall and modified water fluxes. At the same time, tree species richness
showed a significantly positive effect on LAI. Faster increases of LAl in stands of higher

tree species richness resulted in higher decrease of annual soil erosion rates. In addi-
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tion to this finding, previous investigations conducted in the same study area showed
that tree species with different architecture and trait forms (Geil3ler et al., 2012a;
Goebes et al., 2015a; Li et al., 2017) such as Sapindus saponaria, Lithocarpus glaber
and Schima superba planted in different tree species richness levels have different
patterns of spatial distribution for LAI (Song et al., 2018). Thus, the combination of
these differing tree species planted in mixtures leading to more homogenous layering
as well as the faster increase of LAl allocated from different tree species collectively
optimize patterns of spatial vegetation structures and distribution (Lang et al., 2012a;
Lang et al., 2012b; Peng et al., 2016). These optimized patterns could enhance the
interception of rainfall within the tree canopies, prolong the process of raindrops falling
on surface soil and improve the efficiency of aboveground vegetation in reducing rain-
fall kinetic energy and thus leading to a faster decrease of annual soil erosion along a
tree species richness gradient. Therefore, further studies on positive effects of tree
species richness on LAI appear to be necessary with particular focus on underlying

mechanisms within remote vegetation layers such as tree, branch and leaf traits.

Furthermore, near-surface vegetation layers such as BSC communities are of great
importance for soil erosion control (Belnap and Gillette, 1997; Belnap, 2006; Belnap
and Budel, 2016). They were abundant within the study area and used the new habitat
created by deforestation as pioneer vegetation in the resulting vegetation gap (Seitz et
al., 2017). These aggregations of biotic components including bacteria, fungi, mosses,
lichens, algae and bryophytes in the topsoil (Belnap and Budel, 2016; Bowker et al.,
2018) were temporally dynamic. As another main factor on soil erosion in this study,
BSCs showed an increasing trend in coverage with higher tree species richness, which
consequently lead to a decrease in soil erosion rates. BSCs mitigate the kinetic energy
of raindrop impacts on the soil surface and stabilize the upper soil surface as well as
they reduce the surface water flow (Liu and Singh, 2004; Belnap, 2006; Rodriguez-
Caballero et al., 2012; Gao et al., 2017; Seitz et al., 2017; Xiao et al., 2019). Further
research is necessary to understand the influence of higher diversity in tree stands on
the development of near-surface vegetation layers, but also on single traits within BSC

community species on raindrop impacts and interrill erosion.

Moreover, a positive relationship between BSCs and LAI was detected based on six
years of field observations in the BEF China experiment from 2010 to 2015 (Seitz et al.,
2017). Higher LAl in subtropical forests might contribute to humid conditions and higher
interception of light (Chang et al.,, 1991; Yan et al., 2000), which is benefit for the
mosses and liverworts of BSCs (Seitz et al., 2017; Zhou et al., 2019). With the faster
increase of LAI within stands of higher tree species richness, BSCs would be accord-

ingly enhanced. Therefore, regarding the increase of LAl and BSCs and their correla-
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tion, we assume that forest stands with higher tree species richness will reach the tol-

erable soil erosion rate earlier.

Thus, we recommend to consider the plantation of forest stands with higher tree diver-
sity in this area to actively counteract soil degradation and improve ecosystem services,
not only by the direct impact on the tree layer but also by influences on near-surface

vegetation.
5. Conclusions

The study area in subtropical China is still suffering from severe soil erosion even after
6 years of tree growth. It could be shown that higher tree species richness leads to
decreasing soil erosion by positive effects on tree canopies and surface covering BSCs.
Compared to monocultures, stands with tree species richness higher than eight could
reduce soil erosion by more than 30%. Therefore, plantations with higher diversity
should be regarded as an important afforestation policy in subtropical China for soil and
water conservation. Further research needs to concentrate on how tree diversity im-
pacts soil erosion at a watershed scale, but also on how different plant traits and char-

acteristics influence the erosion process and are in turn also influenced by diversity.
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Abstract

Afforestation helps worldwide not only to increase the production of timber but also to
enhance water and soil conservation and reduce atmospheric CO: levels. However,
little research addresses the role of afforestation for carbon (C) and nitrogen (N) turno-
ver and transport by soil erosion under forest, which is important for soil fertility and the
assessment of carbon and nitrogen fluxes from soil to adjacent aquatic ecosystems as
well as to the atmosphere. Based on the research platform of the BEF (Biodiversity and
ecosystem functioning) China project, we measured the amount of C and N transported
with sediment delivery from 550 runoff plots during 2013 and 2015. Our results show
that 116.7 g C m2a?! and 83 g N m2a? were transported by soil erosion between 2013
and 2015 in total. Although, eroded sediment C and N concentrations increased with
forest age and were higher than in topsoils (enrichment ratio ranging from 1.2 to 2.0),
annual soil C and N fluxes significantly decreased at a rate of 50% in the observed
three years together with sediment delivery. Soil properties and biological soil crusts
(BSCs) cover as well as plant traits mainly affect sediment C and N concentrations.
This study indicates that afforestation in the earlier stage should be done with great
caution as high nutrients loss by water erosion can occur. Further, our study highlights
the importance of accurate estimation of sediment delivery and C and N fluxes under

forest for assessing terrestrial C and N budget in afforested ecosystems.
Key words: Afforestation; Water erosion; Soil C and N fluxes; Runoff plots; BEF China
1. Introduction

Soil erosion significantly affects on-site soil properties like soil biodiversity, soil fertility,
soil water holding capacity as well as off-site sediment-related problems like surface
water pollution, muddy floods and eutrophication of shallow lakes (Quinton et al., 2010;
Gardi et al., 2013; Adhikari and Hartemink, 2016; Scholten et al., 2017). Further, soil
erosion strongly affects global carbon cycle as it redistributes top soil material which is
typically rich in soil carbon (C) and nitrogen (N) (Carpenter et al., 1998; McCorkle et al.,
2016; Garcia-Diaz et al., 2017; Poesen, 2018; Lal, 2019). Around the world, 5.7 Pg C
equivalent to 0.82% of global soil carbon stock (699 Pg in 0-30 cm soil depth) was es-
timated to be displaced by soil erosion every year (Lal, 2003, 2018). In China, water
erosion induced 180 + 80 Tg C equivalent to 0.41% of national topsoil C stock (43.6 Pg
in topsoil) of displacement per year between 1995 and 2015 (Song et al., 2005; Ni,
2013; Yue et al., 2016). These results confirm the importance of soil C transported by

erosion processes for the global carbon balance.

Many studies address land use change as driving factor of soil C alterations by soll
erosion (Jacinthe et al., 2004; Martinez-Mena et al., 2008; Nadeu et al., 2012). This
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includes afforestation which increasingly spreads in many countries (Paul et al., 2002;
Korkang, 2014; Keenan et al., 2015; Yosef et al., 2018). China as one of the largest
cultivators of forest plantations in the world has afforested approximately 90% of its
forest area expansion since the last 50 years (Piao et al., 2009; Hong et al., 2018).
Generally, increased forest cover prolongs the process of throughfall reaching soil sur-
face by intercepting raindrops, modifying drop size and speed, and changing through-
fall amount and energy (Nanko et al., 2006; Geiller et al., 2012b; Geiller et al., 2013;
Masselink et al., 2016). In addition, afforestation can improve soil properties and struc-
ture such as soil water holding capacity and aggregate stability (Gol et al., 2010; Kor-
kang, 2014; Garcia-Diaz et al., 2017) and produces litter that covers the soil surface
and protects against soil erosion (Seitz et al., 2015). Therefore, it is widely accepted
that afforestation could reduce soil erosion (Bonan, 2008; Zhao et al., 2013; Keesstra
et al., 2017). However, recent examples from subtropical China show that afforestation
has an inconsistent effect on throughfall kinetic energy and sediment delivery (Goebes
et al., 2015a; Seitz et al., 2016) and thus C and N fluxes. Positive or negative effects of
forests for soil erosion depend on many dynamic and species specific factors such as
leaf area index (LAI), BSC, tree height, spatial distribution of leafs, stand age and tree
species richness (Goebes et al., 2015a; Seitz et al., 2016; Song et al., 2018; Song et
al., 2019). Over time after afforestation, sediment delivery decreases (Song et al.,
2019). However, there is a lack of research on coupling of sediment and C and N flux-
es during erosion events under different land use especially in afforested areas (Stacy
et al., 2015; Doetterl et al., 2016).

Therefore, main objectives of this study are (i) to assess temporal changes of sediment
C and N concentrations and annual soil C and N fluxes by water erosion in afforested
areas and (ii) to determine which topographic features, soil properties and plant traits

control such C and N fluxes.
2. Materials and methods
2.1 Study area

The study was carried out as part of the BEF China experiment, located close to
Xingangshan Town, Dexing City, Jiangxi Province, PR China (29.08°-29.11° N,
117.90°-117.93° E). BEF China was established in 2009 (for more information see
Bruelheide et al. (2014b)). As a forest experiment, it provides a platform to study affor-
estation impacts on erosion-induced C and N fluxes and the underlying mechanisms.

Subtropical monsoon dominates the area with a mean annual temperature of 17.4C

and a mean annual precipitation of 1635 mm which half of it falling from May to August

(Goebes et al., 2015b). Broadleaved forest with evergreen species is the natural vege-
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tation (Seitz et al., 2017). The hilly terrain with mean elevations of 189 m a.s.l. (site A)
and 137 m a.s.l. (site B) has steep slopes with inclinations from 15° to 41° (Scholten et
al., 2017). The Middle and Upper Proterozoic slightly metamorphosed sedimentary
bedrocks are covered from crest to valley by Regosols, Cambisols and Gleysols as

main soils types (Scholten et al., 2017).
2.2 Experiment design

Two parallel sites (A and B) are included in the BEF China project. After logging of
commercial monocultures, forty local tree species were replanted in different species
mixtures on 566 research plots (25.8 m x 25.8 m each) with 400 tree saplings per plot
(2.29 m x 1.29 m each) in 2009 and 2010 (Bruelheide et al., 2014a). In this study, 45 of
those plots were selected (see Supplementary 1). Five micro-scale runoff plots (ROP,
0.4 m x 0.4 m, cleared from leaf litter and branches) with 20 L reservoirs were random-
ly installed on each research plot in 2013 to collect runoff and sediment (Seitz et al.,
2016). 550 valid ROP measurements during the rainy seasons from May to July were
captured with 182 in 2013, 158 in 2014 and 210 in 2015, respectively. Runoff volume
was collected in situ and sediment delivery was determined after sampling, drying at
40°C and weighing (Seitz et al., 2016). Dried sediment was carefully collected and
grounded on a ball mill for carbon and nitrogen analysis. Sediment C and N were
measured with a CN-analyzer (VARIO EL lll, Elementar, Hanau, Germany). Soil prop-
erties (0-5 cm depth, soil bulk density, soil pH, soil C and N) and terrain parameters
(slope and altitude) were measured for each plot (Song et al., 2019). Soil surface cover
including BSCs and stone cover as well as crown cover and LAl were measured every
May from 2013 to 2015 at the ROP scale (Seitz et al., 2017). Tree height, crown width,
diameter at breast height were measured yearly (Li et al., 2014a). Mean values of soil
properties and plant traits during the observed three years were given in Supplemen-
tary 1. Rainfall amount and intensity was recorded for each erosion event by two cli-
mate stations on both sites (ecoTech data logger with Vaisala weather transmitter and
ecoTech tipping bucket balance). Regional precipitation data were measured by the
National Meteorological Information Center (NMIC) of China and the China Meteorolog-

ical Administration.
2.3 Data analysis
2.3.1 Annual soil C and N fluxes

Erosive rainfall amounts was defined as a threshold of 12.7 mm rainfall (Wischmeier
and Smith, 1978b). From precipitation curves of climate stations, erosive rainfall during
the measurement of runoff plots (ERM, mm) in rainy seasons and annual erosive rain-

fall amount (AER, mm) were calculated. Then, with sediment delivery acquired from
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runoff plots (SDE, g m?) and sediment C and N concentrations (SCC and SNC, %),
annual sediment delivery (ASD, g m2 al) and annual soil C and N fluxes (ASC and
ASN, g m2 a!) were calculated by Eq. 1 and Eq. 2, respectively. To illustrate C and N
differences between sediment and soil, the enrichment ratio of sediment C (N) concen-

tration to soil C (N) concentration (ER) was calculated as given in Eq. 3.

(SDE)
ASD = x AER
ERM Eq. 1
ASC(N) = ASDxSC(N)C Eq. 2
er . SC(N)C

SoilC(N) Eq. 3

2.3.2 Statistical methods

A one-way analysis of variance (ANOVA) and least significant difference (LSD) tests
were conducted to assess temporal changes of sediment C and N concentrations and
annual soil C and N fluxes as well as the effect of tree species richness. Multiple re-
gression was used to detect significant predictors. For each multiple linear regression
model, all independent variables (terrain parameters, soil properties, sediment delivery,
surface cover, plant traits) were tested on normal distribution and transformed by
square root when needed, and then z-scored (zero-mean normalization). Potential col-
linearity between independent variables was detected by the Pearson correlation coef-
ficient. One independent variable was fitted individually in exchange to the other when
their correlation coefficient was higher than |=0.7|. Dependent variables (sediment C
concentrations, sediment N concentrations, annual soil C flux and annual soil N flux)
were tested on normalized distribution and annual soil C flux, annual soil N flux were
square root transformed. Beta value as standard regression coefficient from multiple
regression models was used to illustrate the importance of independent variables on
dependent variables. All statistical analyses were performed with R 3.4.3 (R Founda-
tion for Statistical Computing, Vienna, Austria) and SPSS 13.0 (SPSS Inc., Chicago,
lllinois, USA). Graph and curve fittings were processed in Origin 8.0 (OriginLab Corpo-
ration, Northampton, USA).
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3. Results

3.1 Soil carbon and nitrogen fluxes

Sediment C concentration increased every year (p < 0.05) with means of 4.62% in
2013, 5.07% in 2014 and 6.95% in 2015 and was significantly higher than in the topsail
over the three years (p < 0.05) (Fig. 1 and Supplementary 2). Topsoil C concentrations
ranged from 1.93% to 4.85% with a mean of 3.08% while sediment C concentrations
showed a higher variability ranging from 1.83% to 14.59% in the observed three years.
The same general relations were observed for N concentrations. Mean value of N con-
centration in soil was 0.22% while in sediment it was 0.29%, 0.38% and 0.50% in 2013,
2014 and 2015. ER of C in sediment to soil were 1.5, 1.65 and 1.98 while for N they
were 1.32, 1.73 and 2.23 in the observed three years. Topsoil C/N ratio was 13.9 and
sediment C/N ratio of 2013, 2014 and 2015 were 16.4, 13.3 and 14.0, respectively.

Annual soil C and N fluxes significantly decreased every year at a rate of 50% (p <
0.05) (Fig. 2). The means of annual soil C and N fluxes were 116.7 g m? and 8.3 g m?,
respectively. In 2013, the means of soil C and N fluxes were 203 g m2 and 14 g m2,
respectively. Then, they declined to 95 g m2 and 7 g m? in 2014. In 2015, the means
were 52 g m?2and 4 g m? for soil C and N fluxes.

3.2 Influences of topography, soil properties, surface cover and plant traits on

soil carbon and nitrogen fluxes

Results from multiple linear regression models showed that topography does not play a
significant role for sediment C and N concentrations as well as for annual fluxes (p >
0.05). Soil properties (C and N concentrations), surface cover (BSC and stone cover)
and plant traits (diameter at breast height, crown cover, tree height, crown width, LAI)
could explain 39.7% of the variability of sediment C and N concentrations. Soil C and N
positively affected sediment C and N concentrations (Beta = 0.07, p < 0.05) while sed-
iment delivery showed a negative impact (Beta = -0.05, p < 0.001). BSC (Beta = 0.17,
p < 0.001) and plant traits (Beta = 0.07 ~ 0.18, p < 0.001) had comparable positive ef-
fects on sediment C and N concentrations. Regarding annual soil C and N fluxes, 93%
of the variability was explained by sediment delivery, sediment C and N concentrations,

BSC and LAI (Beta = 1.02, 0.24, -0.04 and -0.03 in the model, respectively, p < 0.01).
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Fig. 1 C and N concentration and C/N ratio of soil sampled at 0-5 cm depth in 2014 and sedi-
ment collected in 2013, 2014 and 2015 at the BEF China experiment in Xingangshan, Jiangxi
Province, PR China. Triangles represent soil C and N concentration from plots (n = 45) and
sediment C and N concentration from plots (n = 45) based on 550 runoff plots measurements.
Horizontal lines within boxplot represent medians and diamonds represent means. Different

small letters represent mean significant differences at p < 0.05.
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Fig. 2 Annual soil C and N fluxes in 2013, 2014 and 2015 at the BEF China experiment in
Xingangshan, Jiangxi Province, PR China (n = 550). Triangles represent annual soil carbon and
nitrogen fluxes from runoff plots (n = 182 in 2013, n = 158 in 2014 and n = 210 in 2015). Hori-
zontal lines within boxplot represent medians and diamonds represent means. Different small

letters mean significant differences at p < 0.05.
4. Discussion
4.1 Soil carbon and nitrogen fluxes

Sediment transported by water erosion are normally enriched in C and N compared to
their source soils (Wang et al., 2013b). Our study confirmed these findings and showed
ER of C and N in sediment to soil ranging from 1.2 to 2.0 for afforested areas. This is
comparable with other land use systems which show ER varied from 1.2 to 4.0. For
example, in an agricultural catchment in the Belgian Loess Belt, ER was between 1.2
and 3.0 in simulated rainfall events captured by runoff plots (Wang et al., 2010). The
enrichment process of C and N in eroded sediments can be attributed to the preferen-

tial removal of fine particles higher in mineral-organic complexes than coarser particles
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like sandy grains and micro-aggregates (Palis et al., 1997; Six et al., 2002; Zinn et al.,
2007). Another aspect is the transport of unprotected young organic material from the
free and/or light fraction of organic matter in soils. This fraction is easily detached by
water-induced surface erosion processes (Jacinthe et al.,, 2004; Stacy et al., 2015).
Before the BEF China experiment was established and since the study area was previ-
ously covered by secondary forest, the organic horizon and topsoil is likely to contain a
certain amount of unprotected organic materials with higher C/N ratio than the mineral
soils (Wang et al., 2014b; Stacy et al., 2015; McCorkle et al., 2016). Therefore, eroded
sediment is not only richer in C and N but also shows a higher C/N ratio in the first year.
Then, with soil erosion processes ongoing, the organic horizon depleted and more
mineral soil was exposed to rainfall. Thus, eroded mineral soil was the dominate part
within sediments, which resulted in C/N ratio decreasing in the following years and get-
ting closer to topsoil ratio (Fig. 3). Annual soil C and N fluxes in our study were 116.7 g
m=2 a® and 8.3 g m? a' which is as much as in deforestation areas of the Canary lIs-
lands (Spain), with annual soil C flux caused by water erosion of 114 g m2 (Rodriguez
et al., 2004), but far higher than in forested areas. In the southern Sierra Nevada (USA),
annual sediment C and N fluxes in forested catchments were between 0.0025 ~ 0.42 g
C m2 and 0.0001 ~ 0.004 g N m during 2005-2011 (Stacy et al., 2015). Severe soil C
and N fluxes within BEF China in 2013 (203 g m2) mainly resulted from high annual
erosive rainfall amounts and less coverage of the soil surface (LAl and BSC) (Table 2)
which caused considerable sediment delivery (Song et al., 2019). Although the annual
erosive rainfall amount increased in 2014 and 2015, LAl and BSC as the two main fac-
tors on soil erosion increased over time and contributed to decreasing sediment deliv-
ery and associated soil C and N fluxes in this early forest stage. Besides, soil C and N
fluxes caused by water erosion accounted for approximate 24% of the 0-5 cm topsoil C
(1403 g m?) and N (102 g m?2) (Li et al., 2019), which occupied a considerable part of
soil organic carbon stock. Therefore, the study suggests that deforestation and affor-
estation both should be implemented with caution as high nutrient losses and important
differences between afforested areas and the undisturbed forest might occur in the
earlier years, although temporal forest recovery can reduce soil C and N fluxes by con-

trolling water erosion.
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Table 1.  Multiple linear regression of factors on sediment carbon and nitrogen concentra-
tions and annual soil C and N fluxes. SCC: sediment carbon concentration; SNC: sediment
nitrogen concentration; SC: soil carbon; SN: soil nitrogen; ASD: annual sediment delivery; BSCs:
biological soil crusts; LAI: leaf area index. DBH: diameter at breast height; n.s. means no signifi-
cance at p < 0.05; * means significance at p < 0.05; ** means significance at p < 0.01; ***

means significance at p < 0.001. / means the variable not fitted into linear regression models.

Sediment CN concentrations Annual soil CN fluxes

C N C N
Adj.R? 0.397 0.401 0.925 0.934
Factor Beta (Sig.)
Slope n.s. n.s. n.s. n.s.
Altitude n.s. n.s. n.s. n.s.
SCC / / 0.26*** /
SNC / / / 0.24%+*
ASD -0.05%** -0.05*** 1.02%** 1.02%**
SC 0.07* / n.s. /
SN / 0.08* / n.s.
BSCs 0.18*** 0.22%** -0.04*** -0.04***
Stone cover -0.03*** -0.03*** -0.01%** -0.01%**
Surface cover 0.18*** 0.23%** -0.04%** -0.04%**
Tree species richness n.s. n.s. n.s. n.s.
LAI 0.07*** 0.05*** -0.03*** -0.03**
DBH 0.18*** 0.20*** n.s. n.s.
Crown cover 0.03*** 0.03*** n.s. n.s.
Tree height 0.10*** 0.09*** n.s. n.s.
Crown width 0.10* 0.10* n.s. n.s.

4.2 Influences on soil carbon and nitrogen fluxes

Topography (slope and altitude) did not play a significant role for sediment C and N
concentrations and annual soil C and N fluxes. This is surprising since many studies
have shown that gravity driven processes of particle movement along slopes are to a

large extend a function of slope angle (Wischmeier, 1965; Martz and De Jong, 1987;
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Jain et al., 2001; Lal, 2001; Cerdan et al., 2010a; Sun et al., 2014; Hancock et al.,
2019). One explanation is the uniform inclination ranging from 20° to 40° for all plots
(Supplementary 1). Further, the small size of our runoff plots does not allow rill for-
mation and splash erosion is the main active process of particle detachment (Seitz,
2015). Thus, overland flow, the erosive power which is mainly controlled by slope
(Wischmeier, 1965; Morgan, 2009), does transport the sediment to the collector but
could not contribute significantly to erode topsoil during transport over such short
transport distances of max. 0.4 m. In addition, sediment C and N concentrations was
found to inversely correlate with sediment delivery, which is in accordance with other
research (Lal, 1976; Owens et al., 2002; Nadeu et al., 2012; Wang et al., 2014a; Stacy
et al., 2015). Given a certain slope length, more carbon-rich fine aggregates are de-
pleted in the earlier stage of interill erosion (Lal, 1976; Polyakov and Lal, 2008; Jin et
al., 2009; Martinez-Mena et al., 2012). Therefore, with the decrease of sediment deliv-
ery in BEF China every year, associated sediment C and N concentrations were in-
creasing. Furthermore, BSC and plant traits were another two key factors on sediment
C and N concentrations (Table 1). On the one hand, BSC not only improves the labile
organic carbon as it is aggregating biotic components and soil particles in the topsoil
but also reducing sediment delivery (Schulten, 1985a; Eldridge, 1993; Seitz et al.,
2017). With increasing BSC in the research plots every year from 2010 to 2015 (Seitz
et al., 2017), once water erosion occurred and BSC was destroyed and detached, sed-
iment C and N concentrations would be enhanced. This also explained the increase of
sediment C and N concentrations in bare plots. On the other hand, tree growth in-
creases litter and root production in BEF China which can protect soil from splash ero-
sion and reduce sediment delivery (Seitz et al., 2015; Huang, 2017; Sun et al., 2017).
Hence, sediment C and N concentrations would be enhanced with sediment delivery

decreasing.

Table 2 AER, crown cover, LAl and BSC in the observed three years. (AER: annual erosive

rainfall amount; LAI: leaf area index; BSCs: biological soil crusts)

Year AER (mm) Crown cover (%) LAI BSCs (%)
2013 1319 47 1.04 24
2014 1885 50 1.15 36
2015 1920 62 1.45 45

Our measurements confirm that annual soil C and N fluxes in afforested areas are
strongly affected by sediment delivery, which was also shown for undisturbed forest

and agriculture and grassland ecosystems (Z6bisch et al., 1995; Owens et al., 2002;
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Wang et al., 2013b; Stacy et al., 2015). This means that almost no dilution effects could
be observed during the erosive events and particulate transport is the main mechanism
of the C and N fluxes during erosion. Moreover, dissolved organic C and N (DOC and
DON) contributing to less than 10% of the soil organic C and total N is regarded as an
unignorable component of eroded C and N (McClain et al., 1997; Cookson et al., 2007;
Doetterl et al., 2016; Ma et al., 2018). Many studies addressed that DOC fluxes under
erosion ranging from 0.2 to 5.0 g m2 a! in arable areas and forests (Kindler et al., 2011;
Graeber et al., 2012; Doetterl et al., 2016). For instance, Kindler et al. (2011) found
leaching of DOC was 3.5+1.3 g m? al in Europe forests. Considering the higher ero-
sion rate in BEF China and the ratio of DOC/DON in upland water (McClain et al., 1997;
Song et al., 2019), we assume that DOC and DON fluxes would be as high as 12 g m
al and 1.2 g m? al, respectively. From a soil conservation perspective, our results
suggest that the first years after afforestation are most important to prevent high C and
N fluxes due to erosion. One possible measure is to plant shrubs and to establish BSC

on bare ground.

No significant effect of tree species richness but a tendency was detected reducing soil
C and N fluxes (Table 1 and Fig. 3). This inspired the thinking of how the effect of tree
species richness is defined. As many researchers declare, it is difficult to identify the
impact of plant diversity as it interacts with other plant factors and soil properties
(Bezemer et al., 2006; Pohl et al., 2009; Shrestha et al., 2010). In this study, BSC and
LAI as the two significantly negative factors on soil C and N fluxes (P < 0.01, Table 1)
were detected to increase with tree species richness from 2014 (Song et al., 2019),
which masked the effect of tree species richness. Moreover, litter fall as a significant
source of soil C and vital protection of soil surface from rainfall was reported to in-
crease with tree species richness from 2015 (Seitz et al., 2015; Huang, 2017). Consid-
ering these findings, we assume that tree species richness may reduce soil C and N

fluxes in the future.

Finally, measurements of soil C and N fluxes caused by water erosion in our research
area need to be adapted for a potential assessment on a regional scale due to the run-
off treatment and measurement plot sizes. As we could not take the whole process of
soil erosion (detachment, transport, deposition and export from the watershed) into
consideration, further research is needed to accurately assess sediment export at af-
forested watershed scales. Furthermore, as remaining leaf litter and branches were
removed from the ROP before the measurements, it has to be stated that the residuals
protection on topsoil would improve erosion control by further decreasing sediment

delivery and elements fluxes in ROP.
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Fig. 3 Annual soil carbon and nitrogen fluxes in 2013, 2014 and 2015 under different tree spe-
cies richness in the BEF China experiment in Xingangshan, Jiangxi Province, PR China. Black
circles, triangles and diamonds represent mean and error bars represent standard error. Spline
dashed lines connect mean values of each tree species richness for each year. Different small
letters mean significant differences at p < 0.05.

5. Conclusions

At an early stage subtropical forest plantation in China, sediment C and N concentra-
tions increased while annual soil C and N fluxes decreased with sediment delivery de-
creasing every year. Soil C and N fluxes in the study were as high as in deforestation
areas even after 6 years tree growth. Therefore, afforestation areas should attract more
attention as rich nutrient soil flux in the earlier years. To reduce sediment delivery es-
pecially by increasing soil surface cover such as BSCs recovery is recommended to
conserve sail fertility and reduce C and N transported from soil to aquatic ecosystems
and the atmosphere. In addition, soil C and N fluxes caused by water erosion as an
important and dynamic component of terrestrial carbon stocks and should be taken into

consideration in the C budget of afforested area.
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Supplementary 1 Information of topography, mean of soil properties (0-5 cm) and plant traits
from 2013 to 2015 on 45 selected study plots at the BEF China experiment in Xingangshan,
Jiangxi Province, PR China. (TSR: tree species richness; BD: soil bulk density; SOC: soil organ-
ic carbon; SN: soil nitrogen; BSCs: biological soil crusts; DBH: diameter at breast height; LAI:

leaf area index. S.E: standard error)

Topography Soil properties (0-5cm) BSCs
Plot Slope Aspect Altitude BD (g pH SOC SN

© (m) m) %) (%) (Mean  S.E. %)
L20 24 w 229 0.86 3.68 3.96 0.23 8+3
Q23 23 N 153 0.78 3.39 347 0.21 39+11
D29 31 N 159 0.90 3.68 277 0.22 39+12
E31 22 S 144 0.95 3.86 248 0.19 4148
E33 19 S 144 1.12 3.94 2.18 0.18 36+13
E34 21 S 125 1.06 4.09 284 0.25 257
G33 18 S 127 0.85 3.92 345 0.22 14+7
22 28 S 119 1.07 3.58 228 021 39+12
125 29 N 152 0.96 3.47 29 0.22 45+12
28 26 S 163 0.90 381 329 021 49+9
J29 31 N 182 0.81 3.39 485 0.31 37+10
K19 24 N 199 0.80 3.70 418 0.3 54+8
L10 34 S 211 0.92 3.92 281 0.23 3948
L11 28 S 201 1.04 3.87 295 0.24 3416
L22 21 w 180 0.80 3.79 348 021 7+0
Mo7 31 S 129 0.89 3.55 252 0.18 16+4
M22 23 w 221 0.95 3.79 348 0.21 47+7
NO2 41 S 129 0.89 3.61 3.01 0.23 36+9
NO5 32 N 119 0.89 3.63 3.17 0.25 27+9
NO9 33 S 218 0.86 3.58 3.6 0.23 3448
N1l 26 S 203 0.82 3.63 3.93 0.23 50+8
N13 31 S 182 0.78 3.78 3.62 0.27 34+7
N17 28 w 221 0.91 3.79 3.39 0.25 6+2
N28 19 E 167 0.97 3.56 221 0.19 38+10

022 21 w 229 0.86 3.80 3.54 0.27 47+9
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027 21 w 185 1.07 412 241 0.17 224
Q13 30 w 215 0.90 3.86 3.84 0.28 2+1
Q17 22 N 131 0.99 3.52 291 0.21 2516
Q27 35 S 160 0.97 3.66 278 0.19 34+9
Q29 33 E 144 0.9 3.74 242 0.2 175
R14 30 N 228 0.82 3.8 425 0.29 14+3
R18 36 w 215 0.91 3.82 3.50 0.27 5+4
R29 33 S 146 0.91 3.65 248 0.19 26x7
R30 27 S 136 0.95 3.67 246 0.2 41+11
S10 36 S 220 0.96 3.79 3.04 0.25 36+6
S22 33 w 145 1.00 3.61 3.26 0.24 48+9
T3 21 w 133 0.96 3.44 259 0.18 30+8
T15 30 N 244 0.87 3.67 342 0.22 27+8
Uulio 40 S 231 0.96 3.86 3.22 0.25 25+8
ule 20 w 147 0.94 3.44 265 0.17 38+8
v24 32 E 137 0.94 3.71 3.01 0.23 4048
wio 27 E 147 0.92 3.45 235 0.17 63+8
w11l 19 S 148 1.04 3.25 272 0.18 52+10
X21 24 N 132 0.91 3.65 254 0.19 135
Y09 32 E 126 1.10 3.71 193 0.17 19+8
Tree DBH Crown cover LAl
height
Plot TSR Tree species
(Mean (Mean + S.E. (Mean + (Mean +
S.E. cm) cm) S.E) S.E)
L20 0 0 / / / /
Q23 0 0 / / / /
D29 1 M. flexuosa N N N N
E31 1 Q. fabri 160+10 0.9+0.1 0.31+0.06 0.43+0.11
E33 1 L. glaber 327131 2.610.4 0.6+0.11 1.46+0.33
E34 1 C. henryi 737136 4.610.2 0.92+0.01 2.66+0.16
G33 1 Q. serrata N N N N
122 16 a 363+1 5.240.1 0.68+0.06 1.22+0.21
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125
128
J29
K19
L10
L11
L22
M07
M22
NO2
NO5
NO9
N11
N13
N17
N28
022
027
Q13
Q17
Q27
Q29
R14
R18
R29
R30
S10
S22
T13
T15
u10
u16

V24

16

16

24

24

16

M. yuyuanensis
L. formosana
b
S. superba
C. eyrie
C. sclerophylla
c
B. luminifera
c
M. flexuosa
A. altissima
d
S. saponaria
S. sebiferum
R. chinensis
I. polycarpa
C. myrsinaefolia
Ch. axillaris
K. bipinnata
e
A. fortunei
M. leptophylla
C. glauca
d
C. fargesii
f
g
a
M. thunbergii
h
c
E. japonicus

E. chinensis

204+11

2738

21519

486+27

174+10

171+6

318+1

2338

351+16

N

124+3

264+11

178+2

364+13

198+3

N

254+16

799+18

20614

235+13

441+21

71£2

148+6

4131

184+10

248+20

492421

140+7

N

234+11

386+10

259+9

323+22

2.0£0.1

1.8+0.1

3.4+0.3

3.9+0.2

1.6+0.1

1.5+0.1

3.8+0.1

1.2+0.1

3.0+0.2

1.3#0.1

2.6x0.2

1.3#0.1

3.3+0.1

1.840.1

2.9+0.4

5.8+0.1

1.6+0.1

2.4+0.2

3.5+0.2

1.4+0.2

1.0+0.1

4.3+0.1

1.3#0.1

2.7+0.2

4.0+0.1

1.8+0.2

2.4+0.2

4.1+0.1

2.4+0.1

3.0+£0.1

0.16+0.04

0.79+0.06

0.66+0.07

0.73+0.09

N

0.76+0.06

0.78+0.05

0.45+0.05

0.87+0.02

N

0.03+0.01

0.48+0.08

0.47+0.02

0.15+0.03

0.4+0.04

N

0.22+0.09

0.9+0.01

0.24+0.02

0.55+0.07

0.72+0.04

0.02+0.01

0.39+0.08

0.85+0.04

0.14+0.03

0.64+0.08

0.95+0.01

0.38+0.09

N

0.38+0.06

0.8+0.07

0.35+0.07

0.62+0.07

0.25+0.09

2.07+0.15

1.44+0.29

2.96+0.29

N

1.89+0.23

1.87+0.15

0.65+0.08

2.31+0.22

N

0.03+0.01

0.92+0.21

0.65+0.05

0.18+0.04

0.54+0.07

N

0.28+0.12

2.35%0.05

0.28+0.03

1.01+0.17

1.38+0.11

0.02+0.01

0.66+0.17

2.13+0.18

0.16+0.04

1.31+0.26

3.29+0.20

0.66+0.17

N

0.60+0.08

2.16+0.46

0.61+0.14

1.32+0.11
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W10 1 Ph. bournei N N N N
W11 1 E. glabripetalus 285+7 2.81£0.1 0.64+0.08 1.48+0.12
X21 1 M. grijsii N N N N
Y09 1 C. biondii N N N N

a: 16 tree species from monocultures N05, Y9, W11, U16, N28, X21, D29, W10, Q27, M07, R29, V24, Q29,
T13, 125 and Q. phillyreoides.

b: 8 tree species from monocultures NO5, Y9, W11, U16, N28, X21, D29 and W10.

c: 16 tree species from monocultures E34, L11, 027, 128, G33, N11, N13, E33, E31, N17, K19, L10, R14,
022, Q13 and N. sinensis.

d: 24 tree species from ¢ and Cinnamomum camphora, Daphniphyllum oldhamii, Diospyros glaucifolia,
Acer davidii, Castanopsis carlesii, Melia azedarach, Quercus acutissima and Sapium discolor.

e: 8 tree species from monocultures Q27, M07, R29, V24, Q29, T13, 125 and Q. phillyreoides.

f: 24 tree species from a and monocultures E33, K19, R14, L10, L11, and Cinnamomum camphora, Daph-
niphyllum oldhamii and Diospyros glaucifolia.

g: 8 tree species from monocultures E34, L11, 027, 128, G33, N11, N13 and N. sinensis.

h: 8 tree species from monocultures E33, E31, N17, K19, L10, R14, 022 and Q13.
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(0-5 cm) within 45 selected plots at the BEF China experiment in Xingangshan, Jiangxi Province,
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Abstract

Forests in subtropical China were undergoing great changes in the last decades, main-
ly caused by extensive deforestation. Afforestation in turn can help to restore forest
ecosystem and its related services such as soil organic carbon (SOC) storage and thus
help to mitigate climate change. However, afforestation shows an inconsistent effect on
SOC. In this respect, SOC changes in the earlier stage of afforestation and the driving
factors on this process are still unclear. Therefore, based on a biodiversity and ecosys-
tem functioning project in China (BEF China), soil profiles of 132 plots including 113
afforested plots, 14 failed afforested plots and 5 bare plots at five increments (0-5 cm,
5-10 cm, 10-20 cm, 20-30 cm, 30-50 cm) were surveyed in 2010 and 2014 to assess
changes of SOC stocks and the driving factors. Results showed that SOC stock in 0-20
cm significantly decreased at a rate of 137 g m? al in afforested areas while in deeper
soils (20-50 cm) SOC stock suggested a slight difference between 2010 and 2014.
These SOC stock changes along soil profiles were strongly negatively related with orig-
inal SOC. However, geomorghy regarded as an important factor on SOC stock played
a significant role only in the deeper soil. Furthermore, other factors such as tree spe-
cies, tree species richness, aboveground biomass (AGB), belowground biomass (BGB),
litter fall and soil erosion showed negligible effects on SOC stock changes. In addition,
we found that approximately 274 Mg SOC reduction in total was caused in the earlier
stage of afforestation in BEF China. The majority of this SOC reduction came from top-
soils (0-20 cm). Hence, the study highlights afforestation in deforestation area contrib-
utes to atmospheric carbon accumulation in the first years and the original SOC could
be an important parameter in modelling afforested ecosystem carbon balance in sub-

tropical China.
Key words: afforestation, original SOC, tree species, biomass, soil erosion, topography
1. Introduction

Forests are undergoing great changes globally (Bonan, 2008; Smith et al., 2016). Ac-
cording to the data of FAO (2015), the natural forest area declined about 240 Mha be-
tween 1990 and 2015 while planted forest increased by 110 Mha (Keenan et al., 2015).
Many countries make great endeavors to afforest for ecological restoration and forestry
products (Paul et al., 2002; Korkang, 2014; Yosef et al., 2018). For example, China is
one of the largest cultivators of forest plantations in the world and its forested area was
increasing by 1.5 Mha a™* between 2010 and 2015 (FAO, 2015; Keenan et al., 2015).
Apparently, these areas attracted scientists’ attentions due to the impacts on forest

ecosystem services such as soil properties, C storage and climate change (Piao et al.,
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2009; Assefa et al., 2017; de Araujo Filho et al., 2018; Hong et al., 2018; Li et al.,
2018Db).

Soil organic carbon (SOC) as the largest pool of terrestrial organic carbon accounts for
approximate 40% of the whole C stock (to 1m soil depth) in forest (Dixon et al., 1994;
Jobbagy and Jackson, 2000; Pan et al., 2011). It is sensitive to land use changes such
as deforestation and afforestation (Jandl et al., 2007; Laganiere et al., 2010). Defor-
estation could reduce SOC stock due to the decreased organic matter inputs to soil
and the increased decomposition rate of soil organic matter as well as the transporta-
tion of accelerated soil erosion caused by soil disturbance (Veldkamp, 1994; Murty et
al., 2002; Assefa et al., 2017; de Araugjo Filho et al., 2018; Lal, 2019). However, no
consistent effect of afforestation on SOC exists. Recently, many studies address that
positive or negative effects of afforestation on SOC stocks largely depend on factors
such as previous land use, tree species, stand age, and site management (Paul et al.,
2002; Laganiere et al., 2010; Shi and Cui, 2010; Li et al., 2012). For instance, a ten-
dency of an initial loss in SOC is detected in the first few years of afforestation on for-
mer grassland where soils are rich in SOC (Paul et al., 2002; Laganiere et al., 2010;
Shi and Cui, 2010). Therefore, influences of afforestation on SOC stocks in the earlier
stage cannot be neglected due to the potential source of atmospheric CO; and its large
areas around the world. However, research on this process do not attract enough at-

tention.

Subtropical China with 70% coverage of mountains accounts for one quarter of the
country land but has a half of the whole population (Wang et al., 2007; Bruelheide et al.,
2014b). Due to economic benefits and ecology restoration measures, deforestation and
afforestation are often occurring in this area. These intensive anthropogenic modifica-
tions can influence SOC stocks in forests. Therefore, our research was conducted to 1.
quantify SOC stock changes and 2. detect driving factors on the process of the SOC
stock changes in the earlier stage of afforestation after deforestation.

2. Materials and Methods
2.1 Study area

The study area was in the platform of biodiversity and ecosystem functioning project
(BEF China), which is located in Xingangshan Town, Dexing City, Jiangxi Province, PR
China (29.08°-29.11° N, 117.90°-117.93° E). The dominated climate is subtropical
monsoon with mean annual temperature of 17.4 °C and mean annual precipitation of
1821 mm (Yang et al., 2013; Goebes et al., 2015b). The area is hilly with mean eleva-
tions of 189 m a.s.l. (Site A) and 137 m a.s.l. (Site B) (Scholten et al., 2017). Main soil

types are Cambisols, Acrisols and Ferralsols (Scholten et al., 2017).
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BEF China includes two parallel sites (Site A and Site B, which was planted in 2009
and 2010, respectively) with an area of 50 ha (Bruelheide et al., 2014a). The sites were
established by transplanting forty broad-leaved tree species after logoff of original for-
est (Bruelheide et al., 2014a). The forty tree species were planted in monocultures and
mixtures of 2, 4, 8, 16 and 24 species on 566 plots with each measuring 25.8 x 25.8 m
(667 m?) (Bruelheide et al., 2014a). For each plot, 400 tree individuals were planted in
20 rows of 20 tree individuals with a planting distance of 1.29 m (Bruelheide et al.,
2014a).

2.2 Soil sampling

In this study, 132 of plots were selected for soil sampling (Table 1). Soil sampling was
conducted in September and October in 2010 and 2014, respectively. Soil core with 6
cm in diameter was taken at a depth of 50 cm and then divided into five depth incre-
ments (0-5 cm, 5-10 cm, 10-20 cm, 20-30 cm and 30-50 cm) (Scholten et al., 2017).
For each plot, nine soil cores were collected (Figure 1) and mixed resulting in five soil
samples. Soil samples were air-dried, sieved through a 2 mm mesh, handpicked to
remove plant and animal residuals and then grounded for soil properties analysis. SOC
and soil N was determined by a CN-analyzer (VARIO EL lll, Elementar, Hanau, Ger-
many) (Scholten et al., 2017). Soil pH was determined in 1M KCI (Scholten et al., 2017).
In addition, five replicates of bulk density (BD) sample for each plot were obtained at
the same depth increments as soil sampling in 2015 for soil BD determination. Soil
organic carbon density (SOCD, kg m?) of five depth increments and SOC stock (0-50
cm) were calculated as given Eqg. 1 and 2 (Don et al. 2009):

SOCD, =T, x BD, xSOC; x(100—C, ) %x0.1 Eq.1

SOC stock, gy, = Y. SOCD, Eq.2
0

SOCD represents soil organic carbon density (kg m-2); i represents different five depth incre-
ments of 0-5 cm, 5-10 cm, 10-20 cm, 20-30 cm, 30-50 cm; T represents soil layer (cm); BD
represents soil bulk density (g cm=3); SOC represents soil organic content (%); C represents

stone percentage (%).
2.3 Tree and litter measurement

Tree height and diameter at breast height (DBH) as two important parameters for bio-
mass estimation were determined by the central 6 x 6 trees (36 trees) in the monocul-
tures and 2 species plots and the central 12 x 12 trees (144 trees) in the 4, 8, 16 and
24 species mixtures (Li et al., 2014a; Li et al., 2017). Tree measurement of all plots

started in September and October 2010 for Site A and in 2011 for Site B on a yearly
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base. Aboveground biomass (AGB) (kg dry mass) and belowground biomass (BGB)
(kg dry mass) were calculated as given (Eq. 3 and 4) which were developed from 147

trees and 41 species in subtropical China (Xu et al., 2015).

For litter measurement, 56 plots on Site A and 45 plots on Site B (Table 1) with 1, 2, 4,
8 and 16 species were selected and equipped with litter traps (Huang, 2017). Litter trap
of 0.75 x 0.75 m was made of nylon nets (1 mm mesh) and fixed over a PVC frame at
a height from 1 m to 1.5 m aboveground under tree canopy (Huang, 2017). For each
plot, three litter traps were installed in the central area. The measurement started in
March 2014 for Site A and March 2015 for Site B. Litter collection was done every
month. Litter sample was put into oven and dried for 48 hours at 60 °C and weighed.
The data was summed up for annual litter fall production. More details can be seen in
Huang (2017). Then, biomass values (AGB, BGB and litter fall) were calculated to car-
bon stock using carbon conversion factor of 0.47 (IPCC) (Martin and Thomas, 2011).

AGB =exp[ -2.334+2.118xIn(D)+0.5436 xIn(H )+0.5953xIn(WD) | Eq.3

BGB =exp| —2.80346+2.004xIn (D) | Eq.4

D represents diameter at breast height (cm), H represents tree height (m), WD represents wood

density (g cm3).
2.4 Soil erosion

Forty-five plots at five tree species richness levels (0sp, 1sp, 8sp, 16sp and 24sp) were
selected for sediment discharge measurement on both Site A and Site B (Table 1). For
each plot, five micro-scale runoff plots (ROP, 0.4 m x 0.4 m) with each of 20 L reservoir
were randomly installed in 2013 (Seitz et al., 2017). The measurement was operated
during the rainy seasons from May to June in 2013 and 2014. Runoff volume was col-
lected in situ and sediment discharge was calculated after sampling, drying at 40 °C
and weighing (Seitz et al., 2017). Then, annual erosive rainfall amount (AER, mm) and
erosive rainfall during the runoff plot measurements (ERM, mm) in the rainy seasons
were calculated based on precipitation curves from climate stations. Then, with sedi-
ment delivery acquired during the runoff plot measurements (SE, Mg ha'), an annual

sediment delivery (ASD, Mg ha') was calculated (Eq. 5).

asp = 2ER oE Eq.5
ERM

2.5 Topography

Altitude, slope, terrain ruggedness index (TRI), Monte-Carlo based flow accumulation

(MCCA) were calculated (Scholten et al., 2017). Moreover, 10 geomorphological units
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(geomorphons: flat, footslope, valley, peak, shoulder, ridge, spur, slope, pit and hollow)
was computed in our study area according to the concept of openness and geomor-
phons (Yokoyama et al., 2002; Jasiewicz and Stepinski, 2013; Scholten et al., 2017).
Depression, flat and valley summarized as valley while shoulder, peak and ridge sum-

marized as ridge for further processing (Scholten et al., 2017).
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Figure 1 Positions of soil sampling for soil properties and bulk density on one plot. Grey dot
means tree saplings. Black stars and triangles mean the positions of soil samples (n = 9, sub-

samples) and bulk density (n = 5, subsamples), respectively.

Table 1 Plots information of soil sampling, litter collection and soil erosion measurement

Soil samples Soil erosion Litter collection
Tree species richness  Site A Site B SiteA SiteB  Site A Site B
Bare plot 3 2 1 1 / /
1 31 20 15 16 31 19
2 16 15 / / 16 15
4 / /
8 4 4 2 2
16 2 2
24 2 2 2 2 / /
In all 63 50 22 23 61 48
113 45 109

Failed afforested 1 13 / / / /
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2.6 Statistical analysis

A one-sided, paired t-test was applied to determine the differences of SOCD, soil C/N
ratio and soil pH between 2010 and 2014 at different soil depth increments. Before
statistical analysis, normal distributions of variables were tested by Q-Q plot and
SOCD2010 and SOCD2014 were log transformed. All the factors applied were scaled.
Then, multiple regression was applied to detect the predictors of SOCD2o10, SOil erosion,
tree species richness, tree species, aboveground and belowground biomass, litter fall,
aspect, elevation, TRI, MAAC and geomorphy on changes of SOCDzo14-2010. In the mul-
tiple regression, tree species of monocultures were set as dummy variables while ge-
omorphy of summit ridge, spur, slope, hollow and valley in the study was set as 1, 2, 3,
4, 5 and 6, respectively. Variance inflation factors (VIFs) for each covariate in each
model were calculated and lower than 3 lower (Chen et al., 2017). All statistical anal-
yses were performed with R 3.4.3 (R Foundation for Statistical Computing, Vienna,
Austria) and SPSS 13.0 (SPSS Inc., Chicago, lllinois, USA). Graph and curve fittings
were conducted in Origin 8.0 (OriginLab Corporation, Northampton, USA).

3. Results
3.1 Changes of SOCD after 5 years of afforestation

A significant decrease of SOCD at topsoil depth 0-20 cm was detected across the af-
forested plots from 2010 to 2014 (Figure 2). Means of SOCD at 0-5 cm, 5-10 cm and
10-20 cm in 2010 and 2014 were 1.69 kg m? and 1.48 kg m2, 1.25 kg m2and1.12 kg
m=2, 2.02 kg m2 and 1.82 kg m?2, respectively. The decreasing rates of SOCD were
13%, 11%, 10% at soil depth 0-5 cm, 5-10 cm, 10-20 cm. At deeper soil depth (20-50
cm), SOCD showed no significant difference between 2010 and 2014 (Figure 2).

3.2 Key factors driving SOCD changes

Multiple linear regression showed that SOCD2o10 could explain 75% to 14% of the vari-
ability of SOCD changes along soil profiles (p < 0.001). Geomorphy had no significant
effect on SOCD changes at the topsoil but subsoils. At 10-50 cm soil depth, 7% to13%
of the variabilities of SOCD could be explained by geomorphy (R?= 0.0710-20 cm, 0.0920.
socm and 0.13z050 cm, P < 0.001, Table 2). Tree parameters (tree species, tree species
richness, AGB, BGB and litter fall), soil erosion, aspect, elevation, TRI and MAAC did
not play an important role in SOCD changes. Therefore, SOCD10 and geomorphy
were the main factors on SOCD changes at the earlier stage of afforested area in the

study.



Publications 137
5 -
[ ]2010
[ ]2014
a 4
g
=11]
o 3 n.s
=
4:: *kk
& x| X
5} 2+ *kk I n.s.
8 E F bl 1] | = |
3 Balz = &2
1 L
0 I I | 1
0-5cm 5-10 cm 10-20 cm 20-30 cm 30-50 cm
Soil depth

Figure 2 SOC density at different soil depths in afforested plots in 2010 and 2014 in BEF China.

Horizontal lines in boxplot represent medians and black dots represent means with standard

error bars. Grey dots represent the SOC density of 113 plots and *** represent significant differ-

ence between 2010 and 2014 (paired t-tests p < 0.001). n.s. mean no significance at p < 0.05.

Table 2 Multiple regression analysis of key factors on SOCD changes.

Factors 0-5cm 5-10 cm 10-20 cm 20-30cm  30-50cm  0-50 cm
Adj. R?
SOCD2010 -0.743*** -0.625*** -0.482*** -0.424***  -0.139*** -
0.285***
Soil erosion n.s. / / / / n.s.
TSR n.s. n.s. n.s. n.s. n.s. n.s.
TS n.s. n.s. n.s. n.s. n.s. n.s.
AGB n.s. n.s. n.s. n.s. n.s. n.s.
BGB n.s. n.s. n.s. n.s. n.s. n.s.
Litter fall n.s. / / / / n.s.
Aspect n.s. n.s. n.s. n.s. n.s. n.s.
Elevation n.s. n.s. n.s. n.s. n.s. n.s.
TRI n.s. n.s. n.s. n.s. n.s. n.s.
MAAC n.s. n.s. n.s. n.s. n.s. n.s.
Geomorphy n.s. n.s. 0.065*** 0.092*** 0.126***  0.050***

n.s. means no significance at p < 0.05; *** significance at p < 0.001. SOCDzo10: Soil organic carbon density

of 2010. TSR: tree species richness; TS: tree species; AGB: aboveground biomass; BGB: belowground

biomass; TRI: terrain ruggedness index; MCCA: Monte-Carlo based flow accumulation.
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4. Discussions
4.1 SOCD changes in afforestation areas

The changes of soil C stocks depend on the balance of C inputs and outputs (Davis
and Condron, 2002). Our study showed SOCD significantly decreased in the afforested
areas where were covered by secondary forest in the first five years. The result was
reasonable: on the one hand, soil C decomposition was still continuing and might be
accelerated during site preparation and human disturbance in the first years. On the
other hand, limited C inputs from litter and fine roots due to the tree saplings were flow-
ing into soil from in the earlier stages of afforestation (Davis and Condron, 2002; Huang,
2017; Sun et al., 2017). Therefore, these processes led to the decrease of soil C stock.
Additionally, in the study the decreasing rate of SOC (87 g m2a in the 0-10 cm and
137 g m2al in the 0-20 cm) was accordingly higher than findings from other studies
(Paul et al., 2002; Shi and Cui, 2010; Deng et al., 2016a; Moore et al., 2018). For ex-
ample, in afforestation areas less than < 5 years in China soil C reduced at an average
rate of 20 g m? a* at 0-20 cm soil depth based on 55 observations (Shi and Cui, 2010).
In another study, it could be shown that within the earlier ten years of a pasture con-
verted to a tree plantation soil C at the 0-10 cm showed a decreasing rate of 60 g m 2
al (Moore et al., 2018). Meanwhile, at global scale, in the afforested agricultural areas
less than < 5 years soil C in the < 10 cm layers generally decreased by 60.1 g m2a*
based on 73 observations (Paul et al., 2002). The higher decreasing rate of SOC in our
research was mainly caused by denser tree plantations. In BEF China, the density of
tree plantation (1.29 m x 1.29 m) implied more disturbance of soil and an accelerated
decomposition of SOC during site preparation (Turner and Lambert, 2000; Guo and
Gifford, 2002; Paul et al., 2002; Turner et al., 2005; Jandl et al., 2007; Laganiere et al.,
2010; Tosi et al., 2016). As shown in Figure 3A, bare plots without human disturbance
almost kept the same amount of SOC stock as before afforestation along the whole soil
profiles while failure afforested plots with soil disturbance had the decreased SOC.
Moreover, tree growth could accelerate soil C mineralization for nutrients supply from
soil. This point was enhanced by the finding that the afforested plots had a higher de-
creasing rate of SOC density than failure afforested plots (Figure 3). Besides, similar to
tropical areas, subtropical areas has warm temperatures and moist soils as well as
high soil microbial activity, which might facilitate high decomposition of organic matter,
especially in soils without forest cover (Giongo et al., 2011; Qiu et al., 2015; de Araujo
Filho et al., 2018). Therefore, an appropriate density of tree plantation, lower soil dis-
turbance and increased protection of soil surface should be considered during affor-

estation to reduce SOC depletion.
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Figure 3 Means of SOC density and soil pH at different soil depths in bare, failed afforested and
afforested plots in 2010 and 2014 BEF-China, respectively.

4.2 The driving factors on SOCD changes in afforestation areas

Recent studies have shown that SOC decreases in soils with high original SOC and
increases in soils with lower original SOC (Garten Jr, 2002; Guo and Gifford, 2002;
Paul et al., 2002; Vesterdal et al., 2002; Stevens and Van Wesemael, 2008; Shi and
Cui, 2010; Chen et al., 2017). Our results confirmed this point showing that SOC densi-
ty changes in a strong negative relation with the original SOCD in 0-20 cm soil depth
(R? > 0.5). One explanation might be afforestation can stimulate microbial activity and
increase soil C decomposition by altering soil properties and microbial community
composition (Deng et al., 2016b; Pei et al., 2016; Tosi et al., 2016; Xu et al., 2017,
Hong et al., 2018; Zhou et al., 2018). For example, soil pH as an important index for
microbial activity was found to increase after afforestation in BEF China (Figure 3). The
increasing soil pH might improve total microbial biomass and the microbial activity (Pei
et al.,, 2016) and thus accelerate microbial respiration and soil C decomposition rate
which led to soil C and C/N decrease. This process was illustrated in Figure 4 and Fig-
ure 5 by significant decreases of soil C/N from 2010 to 2014 and negative relationship
between changes of soil C/N and SOCD2o10. In addition, the BEF China was previously

covered by secondary forest and therefore in topsoil layer organic soils tended to have
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a high proportion of slowly decaying organic matter which mineralization rate is sensi-
tive to temperature changes (Knorr et al., 2005; Xu et al., 2010; Wang et al., 2013a; Li
et al., 2018a). Considering the elevated soil temperature after secondary forest clear-
ance in the study area (Ma et al., 2013), SOC mineralization might be accelerated and
thus led to more soil C reduction. In general, topography as an important environmental
factor indirectly affects SOC dynamics by soil temperature, soil moisture, soil fertility
and vegetation (Raich et al., 2006; Yimer et al., 2006; Lybrand and Rasmussen, 2015;
Tesfaye et al., 2016; Tu et al., 2018). In our study area, topographic heterogeneity
leads to ecological gradients due to the significant relationships between geomorpho-
logical positions and soil fertility and trees survival and growth (Yang et al., 2013;
Scholten et al., 2017). For instance, trees survival and growth increased with elevation
decreasing. Therefore, hollow and valley areas with higher tree coverage might have
less changes of soil temperature and moisture and then SOC was decomposed less
slowly to accumulate. Moreover, our result showed topography played a stronger effect
on SOC of the deeper soil layers (Table 2). This was mainly caused by: Deeper soll
had less human disturbance and site preparation. And, compared with surface soails,
deeper soils have a higher proportion of recalcitrant organic carbon which is sensitive
to soil temperature and moisture changes caused by topography (Xu et al., 2010;
Wang et al., 2013a).
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Figure 4 Soil C/N ratio at different soil depths in afforested plots of 2010 and 2014 in BEF Chi-

na. Horizontal lines in boxplot represent medians and black dots represent means with stand-

ard error bars. Grey dots represent the Soil C/N ratio of 113 plots and *** represent significant
difference between 2010 and 2014 (paired t-tests p < 0.001).
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Trees affect SOC mainly by C inputs from AGB and BGB such as litter and fine root
(Kuzyakov and Domanski, 2000). For example, SOC in high forest productivity can be

improved due to abundant C inputs from plant residence returning to soil (Dyckmans et
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al., 2000; Kuzyakov and Domanski, 2000). Additionally, tree species and tree species
richness can affect SOC by their impacts on the quality and quantity of litter production
as well as on the transfer rate of litter to SOC (Vesterdal and Raulund-Rasmussen,
1998; Paul et al., 2002; Huang et al., 2017b). This point was proved by many studies
showing that different tree species had different SOC changes in afforested area (Paul
et al., 2002; Laik et al., 2009; Laganiere et al., 2010; Shi and Cui, 2010). However, in
our research no significant relationships existed between SOCD changes and tree
species and tree species richness as well as forest biomass and litter fall (Table 2). It
could be explained by that five years was too short for tree growth and C inputs from
AGB and BGB transferring to SOC. As shown in Figure 7, limited C of AGB and BGB
with a range of 0 to 2 kg C m* would flow into soil. For instance, litter fall as an im-
portant source of C input to soil only produced max. 0.3 kg C m2 after five years of
afforestation. Besides, tree not only allocates most of its biomass in the trunk but also
has a slow turnover rate of its root biomass to soil (Cerri et al., 1991; Kuzyakov and
Domanski, 2000; Guo et al., 2007; Laganiere et al., 2010), which suggests the in-
creased biomass C hardly contributes to SOC. Hence, in BEF China, the decrease of
SOC could not be compensated by the increased C from forest biomass in the earlier

stage of afforestation (Figure 7).
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Figure 7 Carbon stocks of aboveground biomass (AGB), belowground biomass (BGB) (2015)
and 0-50 cm SOCD changes 2015-2010 in BEF China.

Soil erosion did not influence SOCD changes in the study. We assume this was mainly
caused by our experiment settings. On the one hand, we did not take the whole pro-

cess of soil erosion into consideration (splash, transport, redistribution and deposition)
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(Lal, 2003; Lal et al., 2015; Lal, 2019). The operable measurement unit of ROPs in the
experiment was 0.4 m x0.4 m, that is small and limited for water erosion process. On
the other hand, leaf litter and branches as a protective role against soil erosion (Seitz et
al., 2015), were removed from the ROPs, which is different from natural systems.
Therefore, no certain relationship might be found when we linked sediment delivery at
ROPs scale to SOC changes that were measured at plot scale (25 m x 25 m). In this
respect, further research should be concentrated on water erosion influencing on SOC
at the watershed scale.

5. Conclusions

We sampled soil profiles of 132 plots at five increments in BEF China from 2010 and
2014 to assess the changes of SOC stocks after afforestation on deforestation areas.
Overall, afforestation in BEF China resulted in approximately 274 Mg SOC reduction in
total in the earlier stage. Meanwhile, 90% of the total SOC reduction occurred in top-
soils. In addition, afforested areas with higher original SOC stock had a higher de-
crease rate of SOC. Therefore, afforestation on where soils are rich in SOC should be
taken seriously. Although C of forest biomass increase with tree growth, the amount of
SOC stock reduction could not be compensated in the first years. Afforested areas in
the earlier stage act as an atmospheric CO; source. Hence, further studies will be keen
on how long the afforested area requires to play a role of carbon sink as well as SOC

recovery at the pre-deforested level by different models.
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Abstract
Aims

The aim of our research was to understand small-scale effects of topography and soil
fertility on tree growth in a forest biodiversity and ecosystem functioning (BEF) experi-

ment in subtropical SE China.
Methods

Geomorphometric terrain analyses were carried out at a spatial resolution of 5x5 m.
Soil samples of different depth increments and data on tree height were collected from
a total of 566 plots (667 m? each). The soils were analyzed for carbon (soil organic car-
bon SOC), nitrogen, acidity, cation exchange capacity (CEC), exchangeable cations
and base saturation as soil fertility attributes. All plots were classified into geomorpho-
logical units. Analyses of variance and linear regressions were applied to all terrain, soil
fertility and tree growth attributes.

Important Findings

In general, young and shallow soils and relatively small differences in stable soil prop-
erties suggest that soil erosion has truncated the soils to a large extent over the whole
area of the experiment. This explains the concurrently increasing CEC and SOC stocks
downslope, in hollows and in valleys. However, colluvial, carbon-rich sediments are
missing widely due to the convexity of the footslopes caused by uplift and removal of
eroded sediments by adjacent waterways. The results showed that soil fertility is mainly
influenced by topography. Monte—Carlo flow accumulation (MCCA), curvature, slope
and aspect significantly affected soil fertility. Furthermore, soil fertility was affected by
the different geomorphological positions on the experimental sites with ridge and spur
positions showing lower exchangeable base cation contents, especially potassium (K),
due to leaching. This geomorphological effect of soil fertility is most pronounced in the
topsoil and decreases when considering the subsoil down to 50cm depth. Few soil fer-
tility attributes affect tree height after 1-2 years of growth, among which C stocks
proved to be most important while pHkc and CEC only played minor roles. Neverthe-
less, soil acidity and a high proportion of Al on the exchange complex affected tree
height even after only 1-2 years growth. Hence, our study showed that forest nutrition
is coupled to a recycling of litter nutrients, and does not only depend on subsequent
supply of nutrients from the mineral soil. Besides solil fertility, topography affected tree
height. We found that especially MCCA as indicator of water availability affected tree
growth at small-scale, as well as aspect. Overall, our synthesis on the interrelation be-
tween fertility, topography and tree growth in a subtropical forest ecosystem in SE Chi-

na showed that topographic heterogeneity lead to ecological gradients across geomor-
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phological positions. In this respect, small-scale soil-plant interactions in a young forest
can serve as a driver for the future development of vegetation and biodiversity control
on soil fertility. In addition, it shows that terrain attributes should be accounted for in
ecological research.
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Aims

carbon [SOC]), nitrogen, acidity, cation exchange capacity (CEC),

The aim of our research was to understand small-scale effects of
topography and soil fertility on tree growth in a forest biodiversity
and ecosystem functioning (BEF) experiment in subtropical SE China.

Methods

Geomorphometric terrain analyses were carried out at a spatial
resolution of 5x5 m. Soil samples of different depth increments
and data on tree height were collected from a total of 566 plots
(667 m? each). The soils were analyzed for carbon (soil organic

exchangeable cations and base saturation as soil fertility attributes.
All plots were classified into geomorphological units. Analyses of
variance and linear regressions were applied to all terrain, soil fertil-
ity and tree growth attributes.

Important Findings

In general, young and shallow soils and relatively small differences
in stable soil properties suggest that soil erosion has truncated
the soils to a large extent over the whole area of the experiment.

©The Author 2017. Published by Oxford University Press on behalf of the Institute of Botany, Chinese Academy of Sciences and the Botanical Society of China.
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This explains the concurrently increasing CEC and SOC stocks
downslope, in hollows and in valleys. However, colluvial, carbon-
rich sediments are missing widely due to the convexity of the foot-
slopes caused by uplift and removal of eroded sediments by adjacent
waterways. The results showed that soil fertility is mainly influenced
by topography. Monte—Carlo flow accumulation (MCCA), curvature,
slope and aspect significantly affected soil fertility. Furthermore, soil
fertility was affected by the different geomorphological positions
on the experimental sites with ridge and spur positions showing
lower exchangeable base cation contents, especially potassium
(K), due to leaching. This geomorphological effect of soil fertility
is most pronounced in the topsoil and decreases when considering
the subsoil down to 50cm depth. Few soil fertility attributes affect
tree height after 1-2 years of growth, among which C stocks proved
to be most important while pHye and CEC only played minor
roles. Nevertheless, soil acidity and a high proportion of Al on the
exchange complex affected tree height even after only 1-2 years
growth. Hence, our study showed that forest nutrition is coupled to

Journal of Plant Ecology

a recycling of litter nutrients, and does not only depend on subse-
quent supply of nutrients from the mineral soil. Besides soil fertility,
topography affected tree height. We found that especially MCCA as
indicator of water availability affected tree growth at small-scale, as
well as aspect. Overall, our synthesis on the interrelation between
fertility, topography and tree growth in a subtropical forest ecosys-
tem in SE China showed that topographic heterogeneity lead to eco-
logical gradients across geomorphological positions. In this respect,
small-scale soil-plant interactions in a young forest can serve as
a driver for the future development of vegetation and biodiversity
control on soil fertility. In addition, it shows that terrain attributes
should be accounted for in ecological research.

Keywords: soil fertility, topography, soil erosion, matter transport,
biodiversity, DSM, carbon stocks, tree, forest, BEF-China, China

Received: 12 November 2015, Revised: 19 April 2016, Accepted:
17 June 2016

INTRODUCTION

Most theories and concepts of soil formation (Glinka 1927;
Hilgard 1914; Jenny 1941; McBratney ef al. 2003) include the
shape of the land surface as essential variable, which has been
captured in the catena concept developed by Milne (1935).
Topography as a primary terrain attribute is one of the most
relevant soil-forming factors. Therefore, geomorphometric
variables have been used successtully in numerous studies
to predict soil attributes, soil classes and soil formation (e.g.
Behrens et al. 2014; Hugget 1975; Pennock ef al. 1987). With
regard to soil chemical properties, e.g. Anderson and Furley
(1975) found a negative effect of slope angle on soil organic
carbon (SOC), nitrogen (N) and pH of topsoil horizons of
Chalk soils in Berkshire and Wiltshire Downs in southern
England. Wu et al. (2013) and Gao et al. (2015) found in a
forest at Gutianshan National Nature Reserve that elevation
of the study plots, SOC, soil moisture and total phosphorous
content of the topsoil were important factors shaping the fun-
gal community composition, and soil pH was correlated signif-
icantly to microbial biomass (Wu et al. 2012). The relationship
between soil fertility and slope position has been described for
upland soils under a tropical climate in northwest Vietnam
(Clemens et al. 2010; Wezel et al. 2002) with fertile soils
occurring on less eroded upper parts of hills. Concerning tree
growth, the magnitude of phosphorous (P), N and K fluxes
from leaf litter nutrient cycling in a tropical rain forest in
Cosla Rica varied significantly between Inceptisols with high-
est average leaf litter concentrations in valleys and Ultisols
on slopes and plateaus, which showed lowest concentrations
(Wood ef al. 2006). In addition, terrain attributes were closely
related to soil fertility and plant growth when Rossel et al.
{2010) used visible near-infrared diffuse reflectance spectra
of soils to develop a soil fertility index for sugarcane in Sao

Paulo State, Brazil. Legendre et al. (2009) found in a close-
by nature conservation area with comparable geomorphology
that topography was a key factor explaining species richness
and beta diversity.

The role of topography and soil fertility for tree growth
has been described in many studies along large-scale climatic,
altitudinal and topography transects (e.g. Griffiths ef al. 2009;
Hairston and Grigal 1991; Homeier ef al. 2010). The same
holds true for landscape-scale studies on the relation between
terrain attributes, soil properties, soil classes and pedodiver-
sity (Behrens ef al. 2010a, b; Schmidt et al. 2008; Scholten
et al. 1997). In general, landscapes with spatially heterogene-
ous abiotic site conditions provide a greater diversity of soil
properties, and thus, offer more niches for different plant and
animal species than homogeneous landscapes (Burnett et al.
1998; Schmidt et al. 2009). However, studies on small-scale
heterogeneity of soil properties over distances of tens to hun-
dreds of meters along slopes usually focus on crop land and
precision agriculture (e.g. Qin et al. 2011; Blasch et al. 2015).
Only a few studies investigated small-scale effects of elevation
or slope position on decomposition (Enoki and Kawaguchi
2000; Gosz et al. 1973). Therefore, spatially-explicit analysis of
topographic effects on soil fertility and nutrient cycling con-
sidering a large number of terrain and landform variables at
different scales are rare.

Tt is clear that abiotic conditions, such as soil fertility, affect
individual-tree growth (Baribault ef al. 2012; van Breugel ef al.
2011) and thus the productivity of forest stands, but also other
ecosystem functions, such as nutrient cycling. More recently,
the influence of biodiversity on ecosystem functions such as
productivity has been studied intensively, mainly in grass-
land ecosystems (for recent reviews, see e.g. Cardinale ef al.
2011; Tilman et al. 2014), but also in forests (Nadrowski et al.
2010; Scherer-Lorenzen 2014). Although several studies have
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documented a significant relationship between tree diversity
and functions related to soil properties on a landscape scale,
many studies also found strong effects of species identity
(Goebes et al. 2015a; Li et al. 2017; Seitz et al. 2016). Such
tree growth variations between tree species can be caused
by differences in resource use efficiency and allocation pat-
terns (Forrester ef al. 2006; Riedel et al. 2013). However, we
assume that local abiotic site conditions are very important
for tree growth and may superimpose stand composition and
structure (McNab 1989; McKenney and Pedlar 2003; Pretzsch
and Dieler 2011; Forrester 2014). Under natural conditions,
soil nutrient availability and water availability often showed
a high small-scale variability (Boyden ef al. 2012) and topog-
raphy is considered to be a major controlling factor (Behrens
et al. 2014). In this respect, terrain influences the spatial distri-
bution of soil fertility given by SOC, soil pH, cation exchange
capacity (CEC) and nutrients (e.g. Officer ef a/. 2004).

Soil fertility as such is not a technical term in soil sciences
but describes a soil feature by an interchangeable set of soil
properties and soil functions (Patzel et a/. 2000). In our study,
it integrates soil state variables, which characterize soil nutri-
ent supply to plants and provides a framework to differentiate
and valuate site conditions for tree growth. In our paper, we
apply this framework to a biodiversity and ecosystem func-
tioning forest experiment in subtropical China (BEF China,
Bruelheide ef a/. 2011). Therefore, the main objective of this
study was to investigate whether topography controls tree
growth by small-scale differences of soil fertility expressed
in soil texture, soil pH, SOC, N, CEC, base saturation (BS),
exchangeable sodium (Na), K, Mg, Ca, Fe and Mn in a hilly
forest area in subtropical China. We address three hypotheses
about topographic effects on soil fertility and tree growth:

1. Topography affects soil fertility with increasing fertility
from ridge to valleys, because of soil erosion processes and
matter transport,

2. Individual soil fertility variables are explained by terrain
attributes, and

3. Tree growth is positively influenced by soil fertility, and
thus also by terrain attributes.

To test these hypotheses, soil fertility attributes and tree height
were measured on two experimental sites A and B with 275
and 291 plots, respectively, in SE China, 18.4 and 20.0 ha in
size, along a 200 m and 114 m elevation gradient at a spatial
resolution of square plots of 667 m?. Terrain attributes were
calculated from a digital elevation model (DEM) with a spatial
resolution of 5x 5 m. BEF-China is the only biodiversity-eco-
system functioning experiment with such a large varation in
topography. Thus, this is the first attempt to describe environ-
mental heterogeneity in detail in the context of BEF research.

MATERIAL AND METHODS

Environmental settings

The research area of the BEF experiment established in a
highly heterogeneous environment in subtropical China
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(Bruelheide et a/. 2011) is located in SE China about 400 km
west of Shanghai and situated close to the border between the
two counties Dexing (Jiangxi Province) and Kaihua (Zhejiang
Province). The two experimental sites A and B of the so-called
Main Experiment are located close to Xingangshan Township
at the eastern rim of Jiangxi Province (29°08-11 N, 117°90—
93 E), China. Both sites belong to the colline altitudinal zone
with mean elevations of 189 m a.s.l. (site A) and 137 m a.s.l.
(site B) and a mean slope of 25° (site A) and 30° (site B).

Tectonically, both study sites are part of the Neo-
Proterozoic Jiangnan belt located between the Yangtze cra-
ton in the northwest and the Cathaysia block in the SE, a
Neo-Proterozoic orogenic belt (Shu and Charvet 1996)
uplifted at about 1000 Ma ago. In the study area, the Middle
and Upper Proterozoic sedimentary bedrocks are composed
of a series of slightly metamorphosed (greenschist facies)
gray-green sandstone, siltstone, and slate deposited between
1400 and 1050 Ma (Lengjiaxi group, Pt2ln) and gray-green
and purplish red graywacke, siltstone, sandy slate, and slate
(Banxi Group, Pt3bn) deposited between 1000 and 800 Ma
ago (Gu et al. 2002). Due to rapid uplift of the area since
the late Mesozoic (Xiao and He 2005), the structure of the
fold-and-thrust belt are characterized by multifold duplexes
and individual folds zoned from SE to NW with very steep
to almost vertical angles of dip of the sedimentary rocks.
Rock outcrops appear at shoulder positions and as spurs.
The slopes are typically convex-shaped with inclinations
of about «10° in the upper part and 20-35° at midslope
positions with more pronounced convexity. The footslopes
form the steepest part of the slope with a mean inclination
of 30-40° and showed undercutting. Main drainage lines
orientate along the striking lines fed by almost orthogonal
tributaries that intersect the slopes.

Climatically, the Jiangxi and Zhejiang Provinces belong
to the subtropics with moderately cold and dry winters and
warm summers. Site A is located on a generally south fac-
ing part of a larger mountain chain. Site B is located within
a smaller mountain range facing towards east and west. The
mean annual temperature is 17.4°C and mean annual rain-
fall is 1635mm (Yang et al. 2013). The climate of the study
area is characterized by subtropical summer monsoon with a
wet season from May to July and a dry winter (Goebes et al.
2015b, Seitz et al. 2015).

Experimental design

After the clear-felling of a Cumninghamia lanceolata planta-
tion in 2008 (site A) and 2009 (site B), experimental forests
were planted on a plot-level based approach (Bruelheide ef a/.
2014). In total, 40 broad-leaved tree species were planted
on 566 plots on a net area of about 38 ha, each measuring
25.82%25.82 m (667 m?), which corresponds to the tra-
ditional Chinese unit for area of 1 mu. Per plot, 400 tree
individuals were planted in 20 rows of 20 tree individu-
als each, using a planting distance of 1.29 m. Species were
planted in monocultures and mixtures of 2, 4, 8, 16 and 24
species. Species compositions of the different diversity levels
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were based on random and trait-informed (non-random)
extinction scenarios. The random extinction scenarios were
constructed by a broken stick design, starting from three dif-
ferent but overlapping sets of 16 species per site. The first set
at each site was subjected to further subplot treatments by
planting additional shrub species between tree positions (Very

Intensively Studied Plots [VIPs]). For details on the design see
Bruelheide et al. (2014).

Field methods

Soils were mapped and classified according to IUSS Working
Group WRB (2014) and a geomorphological survey includ-
ing landslides was carried out on both experimental sites
(Fig. 1). Soil sampling was split into two parts: horizon-wise
sampling for pedogenesis and soil classification using soil
pits and schematic sampling conducted by drilling for soil
physical and chemical analyses. In 2010 and 2011 on Site
A and B, respectively, we sampled nine and seven key soil
pits (pedons) and 275 and 291 plots. On each plot, nine soil
cores (diameter of 3c¢m), were taken to a depth of 50cm and
pooled. Soil cores were bulked to five depth increments (0-5,

Journal of Plant Ecology

5-10, 10-20, 20-30, 30-50cm) resulting in five soil samples
for each plot. Additionally, volumetric samples were taken on
all VIP plots in 2014 and 2015 at equal depths for bulk density
(BD). Tree height, which is an integral measure of growth
performance and commonly used to indicate site quality for
even-aged forest stands (e.g. Chen ef al. 1998; McNab 1989),
was determined for the central 6 x 6 trees in the monocultures
and two-species mixtures (total = 36 trees) and the central
12x 12 trees (total = 144 trees) in the 4-, 8-, 16- and 24-spe-
cies mixtures (Li et al. 2014a, 2014b). Data were sampled for
site A in September and October 2010 and for site B in 2011.
Tree height was determined with a measuring pole as the

length from stem base to the apical meristem at every plot (Li
etal 2014a).

Laboratory analysis

Soil sample preparation included hand sorting of coarse
plant and animal residuals, sieving (<2mm) and grinding
of air-dried soil samples. Particle size analysis was done
by combined pipette and sieving method (seven fractions,
Koehn, DIN 19683-1) for all soil horizons sampled from
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Figure 1: soil-geomorphological map of the experimental sites A (left) and B (right).
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the pedons. Soil pH was measured in both 1M KCl and bi-
distilled H,O potentiometrically and was determined for all
plot samples. Total organic carbon (TOC) and total nitrogen
(TN) were measured with a CN-analyzer (VARIO EL III,
Elementar, Hanau, Germany) for all plot samples. Given
the acidic soil conditions on both experimental sites, inor-
ganic C does not occur and TOC represents the soil organic
carbon content (SOC,,). SOC stocks (t ha™') to a depth
of 50 cm were calculated according to equation 1 (cf. Don
et al. 2009):

n

50C, 4 = Y _(Depth; x SOC,,,, x BD x(1—(CM /100))) (1)

i=]

where Depth, is a specific depth increment (m), SOC,,; (g C
kg™!) represents the SOC content related to the increment,
BD (kg m™?) is the mean BD weighted by depth increment
lengths, and CM (%) is the fraction of coarse material >2mm
in diameter, estimated following the German guidelines for
soil description (Ad-hoc-AG Boden 2005). BD was deter-
mined gravimetrically on volumetric samples (five replicated
per plot). As BD was sampled only on VIP plots, we used a
Random Forest approach (Breiman 2001) to predict BD for
all plots on both sites to obtain a consistent data set. CEC
and concentrations of exchangeable Na, K, Mg, Ca, H and
Al were measured with an ICP-OES (Perkin Elmer DV 5300
ICP OES) for sample from all VIP plots. The soil samples were
percolated with an unbuffered 1 M NH,CI solution (effective
CEC) to assess the potential fertility of the soil. BS percent-
age was calculated as proportion of the CEC accounted for by
exchangeable bases Na, K, Mg and Ca, used as an indication
for plant available base cations and soil acidification.

Terrain and landform analysis

A DEM with a cell size of 5x5 m was interpolated from
elevation measurements with differential global positioning
system (DGPS) using the ordinary kriging algorithm (Krige
1951). Based on the DEM we derived 30 terrain attributes to
characterize the local, regional, climatic and complex features
of the landscape. To avoid multicollinearity, we chose seven
terrain attributes that (i) cover each feature of the landscape
at least once, (ii) showed the highest correlation to all soil
fertility indicators within each feature (averaging the abso-
lute correlation coefficient over all soil fertility indicators
and correlating this value to each terrain attribute) and (iii)
are not correlated to each other with r > 0.7. The resulting
attributes cover the local terrain attributes upstream steep-
est slope (USSSLP), downstream steepest slope (DSSSLP, both
Tarboton 1997), and planform curvature (Zevenbergen and
Thorne 1987). The heterogeneity of the terrain is described by
the regional terrain attributes terrain ruggedness index (TRI,
Riley et al. 1999) and relative richness (RR, Behrens 2003).
Eastness and northness (Roberts 1986) were used to describe
slope aspect indicating plant related climatic conditions.
Monte—Carlo based flow accumulation (MCCA, Behrens et al.
2008) was used as complex terrain attribute to identify terrain
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driven water availability. Landform segmentation is based on
the concept of openness and geomorphons (Jasiewicz and
Stepinsky 2013; Yokoyama et al. 2002). These pattern rec-
ognition approaches compute elevation differences in the
local neighborhood according to the line-of-sight principle
and quantify local landform characteristics. The algorithm of
Jasiewicz and Stepinsky (2013), which was used here, differ-
entiates between 10 geomorphological units (geomorphons:
flat, peak, ridge, shoulder, spur, slope, pit, valley, footslope
and hollow). For further processing, we combined depression,
flat and valley (resulting in valley) and shoulder, peak and
ridge (resulting in ridge) since each of these single geomor-
phons cover a small number of 5x5 m cells on both experi-
mental sites only. Geomorphons were allocated to plots using
the spatial majority of one single unit within a specific plot.

Data analysis and statistical applications

Correlation analyses were done for all terrain and soil fertility
attributes using the Spearman correlation coefficient. The influ-
ence of terrain attributes on soil fertility were investigated using
the residuals of analysis of variance (ANOVA) models that were
fitted for each soil fertility attribute used as dependent varia-
ble with tree species richness (factor) and tree composition as
independent variables to account for treatment effects within
the experiment. The adjusted residuals were further used to
build linear models that consist of each soil fertility residual as
dependent variable and all seven terrain attributes as independ-
ent variables. Model simplification was done using the step-
wise backward selection method by deleting the least significant
variable. CEC, K, Mn, Ca, Mg and BS were log-transformed to
obtain normality. In total, we fitted 22 models for 11 soil fertility
indicators on both experimental sites (#g 4 = 135, #giter = 135).

ANOVA models were used to test for effects of different geo-
morphological positions (Geomorphons, factor levels: Hollow,
Spur, Ridge, Valley (only Site B) and Slope) on soil fertility
attributes (dependent variable). We used the residuals of each
soil fertility attribute that resulted from the models specified
above which accounted for experimental treatments. In case of
significant effects of geomorphons, Tukey Honest Significant
Differences tests were used to distinguish between different
landform segmentations factor levels. Within this approach,
we fitted ANOVA models for the topsoil (0-5cm), the deepest
sampled soil depth increment (30-50 cm) and the entire soil
(0-50cm, averaged using depth increment weighted means)
on both sites resulting in six models (# of each model = 135).
Goodness of fit was measured as the adjusted R-squared.

To identify differences between site A and site B in soil fer-
tility attributes, we fitted each soil fertility attribute against the
two-level factor site with tree species richness as fixed and tree
composition as random effects (see also Peng et al. 2017). To
identify the influence of soil fertility and terrain attributes on
tree growth, we fitted two linear mixed effect models using all
soil fertility and all terrain attributes and tree species richness as
fixed variables, respectively and tree species composition as ran-
dom factors. In those models, tree height was log-transformed.
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Figure 2: spatial distribution of geomorphological units, soil fertility attributes and C stocks for experimental sites A and B.

For each model, residuals met the requirements of normal-
ity and homogeneity of variances after outlier dismission due
to cook’s distance plots. All analyses were done using R 2.15.3
(R Development Core Team 2013) together with the ‘Asreml’
package to fit linear mixed effect models (Butler 2009) and the
‘RandomForest” package to predict BD (Liaw and Wiener 2002).

RESULTS

Landform analysis

One of the most obvious differences between the two sites
is that site A defines a valley while site B comprises a ridge
(Fig. 2). The average elevation of site B is about 50 m a.s.l.
lower compared to site A. In terms of standard deviation of
the elevation values, site B gains only half of the relief energy.
Site B showed a more structured relief and topographic het-
erogeneity (Fig. 2, online supplementary Fig. S1) as revealed
by standard deviation (SD) alone and planform curvature
cover a much larger range and, together with RR and TRI,
showed a higher mean than at site A (Table 1). Furthermore,
site B is more exposed to the west with mean values close to
zero for northness and eastness as compared to site A with
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0.18 for eastness and 0.32 for northness displaying a larger
portion of NE facing slopes. MCCA is slightly higher for site B
corresponding to slope length and catchment size. The plots
at site A do not cover valley positions since the central valley
is a swamp land and not part of the Main Experiment while
site B has a number of plots in slightly inclined valley cuttings
(Figs 1 and 2). The distribution of geomorphological positions
across the total area given by geomorphons differs for hollows
(site A: 14%, site B: 8%), ridge (site A: 13%, site B 37%),
spur (site A: 24%, site B 5%) and valley (site A: 0%, site B
6%). On both sites, slope positions are dominant with 49% at
site A and 44% at site B (Fig. 2).

The regular spatial distribution of rectangular experi-
mental plots across a natural surface leads to mixing of
members of different geomorphological units within one
plot (Fig. 1). Site B contains more such intermediate plots
that consist of more than one landform unit because the
relief has a higher level of detail. With one well-defined
valley situation, fewer small landslides and a larger spa-
tial extent of homogenous surface areas, the delineation of
geomorphological units per plot is more precise and unique
at site A than at site B.
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Table 1: terrain parameters of experimental sites A and B

Minimum Maximum Mean SD
Site A
DSSSLP (radiants) 0.19 0.72 051 0.11
MCCA (-log,,[Sum Px]) 0.87 4.47 225 0.73
RR (%) 0 30.90 21.46 4.82
TRI (m) 0.72 3.82 253 0.66
Eastness (—) —1.00 1.00 0.18 0.68
Northness (—) -1.00 1.00 0.32 0.58
Planform curvature (rad m™') -3.04 2.83 0.25 0.99
Site B
USSSLP (rad) 0.18 0.81 052 0.13
MCCA (=log,s[Sum Px]) 0.91 3.91 1.77  0.62
RR (%) 21.40 56.58 3593 76l
TRI (m) 1.20 4.44 2.80 0.65
Eastness (-) -1.00 0.99 0.05 0.64
Northness (-) -0.96 1.00 -0.04 0.57
Planform curvature (rad m™')  -4.37 5.47 0.55 2.02

Abbreviations: MCCA = Monte-Carlo based flow accumulation
expressed as the sum of pixels above each pixel of the DEM; TRI = top-
ographic roughness index, planform curvature after Zevenbergen and
Thorne.

Key soil profiles (pedons)

The soils cover the reference soil groups Regosols, Cambisols,
Acrisols, Gleysols and Anthrosols (Fig. 1, TUSS Working
Group WRB 2014), with Cambisols and Regosols on ridges,
spurs and crests, Cambisols and Acrisols along slopes and col-
luvic Cambisols and Gleysols predominantly on footslopes
and in valleys. Additionally, hydragric Anthrosols (paddy
soils) are present in some valley cuttings and on lower foot-
slopes (Fig. 1). Most soils are qualified as dystric, having a
BS below 50%, and siltic with silt contents of 50.0% at site
A and 43.5% at site B (online supplementary Table S1). At
site A, brownish to yellowish Munsell soil colors dominated,
whereas the soils at site B showed more reddish colors (online
supplementary Table S1). Hydragric Anthrosols were located
on abandoned rice terraces and terrace remnants indicative
of past human activity. They have been modified profoundly
through human activities, such as addition of organic materi-
als or household wastes, and cultivation. Soil depth increases
typically from several centimeters at steep upslope positions,
on ridges and on spurs to more than 200cm at downslope
positions, in hollows and in valleys (online supplementary
Table S1). The mean soil thickness, calculated as depth to the
upper boundary of the C-horizon, was 66 cm at site A and
more than double at site B with 143 cm.

In relation to the wide distribution of Jurassic sand and silt
stones, the substrate composition, as well as the particle size
distribution of all pedons on both experimental sites were
quite similar having loam as the main texture class (online
supplementary Table S1). Only at site A, a small NNW/SSE
facing band represented by pedon 7 (online supplementary

mz

Table S1) showed distinctly lower clay and higher silt con-
tents for all soil horizons. The main heterogeneity is related
to the thickness of the soil cover (online supplementary
Fig. S1) and downslope-increasing C contents, especially
at site A (Fig. 2). Soil erosion led to a transport of topsoil
material and soil components from ridge to valley positions.
However, colluvial sediments were missing widely due to the
convexity of the footslopes caused by uplift and removal of
croded sediments by adjacent waterways. Therefore, collu-
vial sediments occurred only in valleys and on concave foot-
slopes connected to small valley incisions like pedons 2, 5,
8 at site B (Fig. 3). They showed higher C contents of about
1% below 50cm depth (Table 1). Landslides are a common
geomorphic feature at both experimental sites (Fig. 1) form-
ing hollows and small spurs.

Soil fertility attributes

The soils are generally acidic at both experimental sites vary-
ing for pHyg values from 3.2 to 4.7 and pHy,o from 3.9 to
6.0 (online supplementary Table S1). In general, soils at site
B are more acidic than soils at site A with lower values of
about 0.3 pH units (online supplementary Table S2). At site A,
soil pH values showed a slight decrease with increasing eleva-
tion, whereas such a trend was not observed at site B (Fig. 2).
Even though we measured nearly the same range of pH units
for both experimental sites, the spatial extent of very acidic
plots is much higher at site B with 37% of the area covered
by ridges compared to site A with 13% only. Low pH values
are typically accompanied by high exchangeable Al contents
(r=0.7).

Exchangeable bases were dominated by bivalent cations
(online supplementary Tables S1 and $2) with maximum val-
ues of 53.2 (site A) and 52.8 pmol. g (site B) for Ca and
32.5 (site A) and 11.0 pmol, g' (site B) for Mg. Potassium
concentrations were slightly higher at site A compared to site
B with a maximum of 3.2 pmol, g™' for all VIP plots. Sodium
was negligible with maximum values below 2 pmol, g™' and
a mean of 0.4 and 0.1 pmol, g™' at site A and site B, respec-
tively. Contrary to Ca and K, Mn reaches higher values at
site B compared to site A while Fe does not differ between
both sites. Al is the dominant cation of the exchange com-
plex of the soils accounting for 71% of the CEC at site A and
significantly more, 84%, at site B. Together with high H con-
centrations of 1.7 (site A) and 3.1 pmol, g™ (site B), the low
BS (18.8% and 8.4%, respectively) reflects strongly acidic soil
conditions accompanied by a limited availability of Ca, Mg,
Na and K. The CEC is almost equal at both experimental sites.

Generally, C and N contents are highest in the upper 5cm
of the soil and decrease continuously with depth at both sites
(Fig. 3, online supplementary Tables S1 and S2). The pedons
at site A showed slightly higher C and N contents (4.9% to
2.7% tor C, 0.5% t0 0.2% for N) in A horizons and within the
upper 40 cm of the soil compared to site B. One outlier (site
A P06, 10.7% C) may have been caused by incorporation of
material from the humus layer during sampling. The mean
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Figure 3: depth functions of soil fertility attributes on both experimental sites.

C contents of the upper 50 cm of all plots (1.7% at site A sig-
nificantly higher than 1.3% P B) and a uniform BD of 1.3g
cm™? results in mean C stocks of about 70.0 t ha™' on both
experimental sites. According to the small variability in BD,
the spatial distribution of soil C content and C stocks coin-
cide within the upper 50 cm (Fig. 2), with stocks showing an
overall range from 50.0 to 150.8 t ha™!. C stocks are lower on
ridges and upper slopes than in hollows and valleys.

Terrain attributes and landform characteristics

Generally, all local terrain attributes showed significant rela-
tionships to soil fertility (Table 2). The majority of the 11 fer-
tility attributes is closely related to planform curvature (eight
at site A and six at site B). Slope significantly explains eight
fertility attributes at site B, but only N at site A. MCCA as

complex terrain attribute to identify terrain driven water
availability and potential overland flow was of equal impor-
tance as planform curvature (six at site A and seven at site B).
In contrast to all other fertility attribute, the spatial distribu-
tion of C/N ratio was not explained by any terrain attribute
and CEC had only a weak relationship to relief at site A. Both
regional terrain attributes RR (0 at site A and three at site B)
and TRI (three on each site) had minor influence on the spa-
tial distribution of soil fertility distribution. Due to the overall
exposure of the experimental sites, northness played a more
pronounced role at site A and eastness at site B.

Comparable to terrain attributes, typical landform seg-
ments clearly differentiate soil fertility on both experi-
mental sites. Taking the residual of the ANOVAs (Fig. 4),
ridge and spur positions were significantly different from
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Table 2: results of multiple linear regressions (MLR) using soil fertility attributes as dependent and terrain attributes as independent

variables for site A and site B

pH pH IECa IEK IEMn CECq  BS Corg N C/N  Cestock
H,0 K [amol. g7] [%] [mass—%]

Site A
DSSSLP (radiants) NS NS NS NS NS NS NS NS 0.003*** NS NS
MCCA (-log,o[Sum Px]) 0.032***  Q.011*%** 0.003** NS 0.043*** NS 0.026%** NS —0.003*** NS NS
RR (%) NS NS NS NS NS NS NS NS NS NS NS
TRI (m) NS NS 0.026% NS NS NS 0.033% NS 0.016** NS NS
Bastness (—) NS NS NS NS NS NS NS NS NS NS NS
Northness (—) NS NS NS NS NS —0.013% NS —0.049% —-0.038* NS -0.239*
Planform curvature NS —0.015%  0.123* —0.057** —-0.089** NS —0.082%*  —0.068*** —0.074*** NS —0.649%**
(radiants m™!)

Site B
USSSLP (radiants) 0.005%**  0.042*** NS 0.137** 0Q.277**%  0.0009%** 0.035***  (Q.055%** 0.003*** NS NS
MCCA (—logjo[Sum Px]) 0.075%*%  0.051%%* 0.247***  0.068* 0.286*** —0.050%**  (0.223*** NS 0.0005** NS NS
RR (%) NS —0.023** NS NS —0.126** NS —0.041* NS NS NS NS
TRI (m) NS NS NS —0.083*** NS NS —0.004*** NS NS 0.137* NS
Eastness (—) 0.018* NS 0.073** NS 0.099*** NS 0.059*** NS NS NS NS
Northness (—) NS NS NS NS NS NS —0.004* NS NS NS NS
Planform curvature NS NS NS —0.019***  0.065*** —0.009*** —0.017*** NS —0.004* NS —0212*

(radiants m™')

It was accounted for the experimental treatments tree species richness and tree species composition before fitting the MLR models for each soil

fertility attribute.
2P0,05, 2 Pi0:0], ** ¥ P<i0.001,

Abbreviations: MCCA = Monte Carlo based flow accumulation expressed as the sum of pixels above each pixel of the DEM; NS = not significant.

all other segments, except for C/N ratios and C stocks,
which were distributed evenly over all landforms (Table 3).
Interestingly, slopes tended to show similar behavior for soil
fertility attributes as hollows and valleys, except for K at
site B.

This overall spatial pattern applies to the total upper
50 cm of the soil and was also valid for specific depth incre-
ments of CEC on both experimental sites (Table 3, CEC not
affected by geomorphological position at site A, but affected
at site B for all depth increments). However, all other soil
fertility attributes showed a depth-specific effect, which can
explain up to 48% of the spatial distribution. This relation
to geomorphons is confirmed for soil pH and exchangeable
K only for 0-5cm at site A. Differences between the experi-
mental sites were best explained by exchangeable base cati-
ons Na, Ca, Mg and BS, with higher values at site B than
at site A.

Both soil fertility and terrain attributes affected tree height
(Table 4). Tree height was significantly related to C stocks at
both sites while pHx, Mn and CEC affected tree height only
at site A. MCCA and planform curvature as terrain attributes
affected height growth at both sites while the geomorphologi-
cal position showed an effect on tree height only at site A. At
the time of this study, trees height was on average 120cm
(SD = 65.1cm) and 74cm (SD = 28.9cm) at site A and site B,
respectively.
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DISCUSSION

Small-scale environmental gradients along land
surfaces affects soil fertility

The topography of the study area reflects the geological
and geomorphological history of folded sedimentary and
slightly metamorphosed rocks. This might explain the
much higher silt content in pedon 7 at site A representing
a silty phase during sedimentation of the slates which is
now exposed to the surface as narrow folding band. Joints
are filled with siliceous-rich material, mainly quartz. Since
slates weather easily under subtropical climate conditions
and quartz is much more resistant to weathering (e.g.
Scholten 1997), several cm-thick quartz veins cross the
strongly isomorphic weathered slate (saprolite) shaping the
large number of ridges and long spurs on both sites with
37 % of the total area at site B and 42% at site B (Fig. 2).
At site B, the higher values for RR and TRI compared to
site A and the reddish Munsell colors of the soils (online
supplementary Table S1) indicate that this site has been
exposed to weathering processes for a longer time (Giaccio
et al. 2002) supported by its lower height above sea level as
a result of denudation and thus older land surface.
Typically situated at midslope positions, landslides
affected substrate thickness and inclination with gently slop-
ing flat surfaces and steep shoulders at the tear-off edge and
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Figure 4: residuals of soil fertility attributes related to geomorphological position for both experimental sites (IE K: ion equivalent of potassium,

C: carbon, N: nitrogen, CEC: cation exchange capacity).
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Table 3: results of ANOVA using soil fertility attribute residuals as dependent and geomorphological units (factor with four and five
different units for site A and site B, respectively) as independent variable for two depth increments and the complete profile

Depth 0-5 cm

Depth 30-50 cm

Depth 0-50 cm

Geomorph. unit Expl. 8§ [%] Geomorph. unit Expl. S§ [%] Geomorph. unit Expl. SS [%]
Site A
pH KCI ok 25 NS — o 12
pH H,0 sk 19 NS — NS —
IE Ca [pmol, g7 ek 13 * 7 ok 17
IE K [pmol, g7'] e 13 NS — * 8
1E Mn [pmol. g™'] NS — wiE 13 HrE 18
CEC NS NS * 7 * 5
BS [%] wE 26 NS — rEE 18
Copy [mass—%] * 7 ek 16 o 10
N [mass—%]| NS —_ s 25 rxE 24
C/N i 27 * 8 NS —_
C stocks * 8 ok 14 e 14
Site B
pH KCI ok 47 ke 41 o 46
PH H,0 b 44 e 26 . 36
IE Ca [pmol, g7'] ek 20 ik 35 wE 39
IE K [pmol, g'] ik 32 NS NS o 40
IE Mn [pmol, g7'] wrx 36 rx 43 wxE 48
CEC.q sk 19 *hke 16 ok 23
BS [%] wEE 41 HEE 43 rEE 48
C [mass—%] o 11 e 25 NS —_
N [mass—%] NS — wa 32 e 25
CIN i 32 * 8 NS —
C stocks o 16 ok 17 NS —

Explained Sum of Squares (Expl. $S) were calculated as percentage of total Sum of Squares.

*P < 0.05 **P < 0.01, P < 0.001.
Abbreviations: NS = not significant; — = not calculated.

the lid of the landslide. At the scale of investigation, they
interfere with slope formation caused by uplift and erosion
over longer periods of time and can explain the high SD for
most soil fertility attributes along slopes (online supplemen-
tary Table S2) and the irregular small-scale distribution of
C at site B (Fig. 2). Also Zhang ef al. (2012) found such a
scattered spatial distribution for soil pH, C and N mainly
affected by terrain convexity in a broad-leaved forest in
Tiantong, Zhejiang Province, geologically belonging to the
Neo-Proterozoic Jiangnan belt, as well as the experimental
sites of BEF China.

Significant interrelationships between soil fertility and
topography could be discovered by geomorphons (Table 3). In
general, site A showed a more heterogeneous distribution of
terrain attribute while site B was predominated by ridge posi-
tions (37% of the total area). Furthermore, many plots at site
B belong to more than one specific geomorphon with high
SD for terrain attributes. This is especially true for plots that
cover both footslope and valley positions. Thus, site A showed
a more precise image of how soil fertility attributes are related
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to terrain attributes since plot sizes of a regular grid without
gaps were too large for the higher geomorphological hetero-
geneity at site B.

However, minor soil formation and relatively small dif-
ferences in stable soil properties on both experimental sites
suggest that soil erosion has truncated the soils largely over
the whole area of the experiment. Soil horizonation pro-
cesses such as advanced mineral weathering, clay translo-
cation and ferralitization, which are typical for subtropical
environments, are missing. Even if soil formation processes
are generally proceeding at fast rates in this subtropical
environment (IUSS Working Group WRB 2014), soil forma-
tion is still young and stable soil attributes like particle size
distribution and BD vary only slightly (Fig. 3). Generally,
the geomorphological units represent the recent function
of relief for matter translocation processes rather than ter-
rain attributes, which reflect small-scale redistribution of soil
fertility attributes within such units (Table 2). The cumu-
lated appearance of colluvic Cambisols on footslopes and
weakly developed Regosols, as well as the scarce appearance
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of further developed Acrisols underpin the actual influence
of erosion processes. In valleys, the natural and man-made
(former paddy soils from rice cultivation) influence ot sur-
face and groundwater forms gleyic properties.

A gently sloping relief with predominantly steep inclina-
tions from 25° to 30° characterizes the study area. Many
forest stands on such slopes have been cleared during the
Great Leap Forward in the 1950s followed by severe soil
erosion in particular in SE China and probably earlier peri-
ods of felling (e.g. Aldhous 1993; Huang 1987; Schiénbrodt
et al. 2013; Wang et al. 2005). The experimental sites might
inherit such erosion pattern especially for SOC stocks at site
A (Fig. 2). If we assume an erosion potential of 0.3-3.4cm
yr~!' after felling in humid subtropical regions (Jien et al.
2015), a mean topsoil SOC content of 2% (online supple-
mentary Table §2), and 2 years’ time between felling and
soil sampling at both experimental sites, about 1.8-20.4 t
ha~' SOC could have been eroded since the establishment of
the main experiment. In this respect, soil erosion explains
the concurrently increasing CEC and SOC stocks along
slopes, in hollows and in valleys, where deprotonating of
carboxyl groups provides additional CEC. With an overall
mean of 67.8 t ha™! (site A) and 71.2 t ha™! (site B) for
the top 50cm (25.9 and 25.1 t ha™!' for 0-10cm and 52.7
and 53.7 for 0-30cm, respectively), the recent SOC stocks
are distinctly lower than for soils under forest in China in
general. They showed 137.3 t ha™! SOC for average soil
depths of 75-88cm, with 54.8 1 ha ' in surface soil hori-
zons and 82.5 t ha™! in subsurface soil horizons (Xie et al.
2007). Analyses of soils in subtropical forest plantations in
China (e.g. monocultures of Pinus massoniana, Castanopsis
hystrix, Michelia macclurei and Mytilaria laosensis) showed
SOC stocks of 56-68 t ha™' for the upper 30 cm (Wang ef al.
2010). Subtropical hammock ecosystems at MacArthur
Agro-ecological Research Centre, Florida, store about 34 t
ha™' (0-10cm, Frank et al. 2012). Significant depth gradi-
ents and slope gradients both atfected SOC stocks on slopes
in C. Lanceolata stands in near-by Zhejiang Province, where
the upper 40 cm of the soils accounted for 55% of the total
C storage of 100 cm soil depth and significant differences in
SOC stocks were measured for upper and lower slopes (Xue
et al. 2012). The moderate SOC stocks at both experimental
sites suggest that accumulation of SOC has taken place in a
considerable amount since the last erosion events. The sta-
ble SOC turnover rate at MacArthur of 59 years suggest that
the depletion of SOC in the soils of the experimental sites
of BEF China by severe soil erosion cannot be explained by
recent erosion events after the last felling and the establish-
ment of the main experiment alone but should be inherited
from former land use systems to a certain extent. It can be
expected that the experimental forest will supply the soil
with organic carbon over time at high rates through litter
and fine roots (Sun et al. 2017; Bu et al. 2017). Near-by eco-
logical service forests in Zhejiang Province stored 54 to 89 t
C ha™! in their biomass (Zhang et al. 2007).
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Individual soil fertility attributes are specifically
related to terrain attributes

The presence of hollows and spurs significantly affects hydro-
logic and sedimentary processes like hillslope discharge
(O'Loughlin 1973). Since the total proportion of these land-
forms are equal for both sites (14% of the total area), the
extent of eroded area is supposed to be similar and explain the
only small differences (less than 0.5 times) between the exper-
imental sites for C stocks, C/N ratio and CEC (Fig. 2, online
supplementary Table S2). However, planform curvature or
transverse curvature across slope direction covers a wider
range and is much higher at site B, Discharge and erosion are
more pronounced and explain the occurrence of deposition
areas in valley positions as a typical geomorphological fea-
ture of site B. Higher rates of potential overland flow at site B
given by MCCA support this finding. We assume that leaching
and downslope interflow transported base cations downslope
followed by accumulation on concave footslopes, in hollows
and in valleys. This leads to distinctly lower K, Mg, Ca and
Mn contents on ridge and spur positions (for K see Fig. 4).
Especially at site B, exchangeable Mg and Ca is almost double
in hollows and valley compared to ridge, spur and slope posi-
tions where these cations replace Al and H at the exchange
complex. Further, desorption of these cations fixed on soil
particles can result in significant loss of base cations from the
catchment (Pacés 1985). Although a natural process in forest
soils, depletion of base cations can be accelerated by harvest
and leaching especially under acidic deposition (Huntington
2003), a process that was shown for the Hubbard Brook
Experimental Forest (Bormann and Likens 1966) and many
other forest ecosystems like the Solling Region in Germany
(Matzner and Ulrich 1981) and the Strengbach catchment in
NE France (Stille et al. 2009). However, some of the mobi-
lized K, Ca, Mg and Mn might be absorbed by vegetation and
partly returned to the soil through canopy leaching and lit-
ter decomposition as part of a closed plant-soil nutrient cycle
(Likens ef al. 1996; Perakis et al. 2006; Poszwa et al. 2000).
Among others, already Jenny (1941) stated that topogra-
phy modifies the water relationships in soils to a consider-
able extent, and influences soil erosion and thus soil depth.
Plots on ridges and spurs have a very low contributing area
and limited depth and may suffer both from nutrient leach-
ing and from water shortage during dry and hot periods of
the year. Matter transport along slopes is likely for K on both
experimental sites were K contents are significantly related
to topography in the upper depth increment (0-5c¢m), but
decreased with increasing soil depth (Table 2). Such depth-
dependend relationships between terrain attributes and
soil nutrients were also observed for total N and P in soils
of mixed forests of Pinus tabuliformis and Quercus aliena var.
accuteserrata in Qinling Mountains (Wu 2015). The significant
correlation of soil pH with MCCA at site A indicates that mat-
ter fluxes by interflow control spatial differences of soil acid-
ity more than CEC (Table 2). Ridge and spur are higher in
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elevation compared to all other geomorphons of site A and
site B. Leaching and downslope transport of base cations
led to favorable soil conditions for tree growth in adjacent
geomorphons at lower elevations. These processes explain
why elevation was the only terrain attribute with a signifi-
cant positive effect on seedling survival within the BEF China
in June 2010 in contrast to aspect, slope and curvature as
reported by Yang ef al. (2013). TRI does not affect soil acidity
since this regional terrain attribute is predominately related to
structural features of the surface like the spatial distribution
of quartz veins and faults, as well as the duration of weath-
ering and soil formation rather than erosion and landslides,
which are better reflected by RR. However, minimum, maxi-
mum and mean soil pH ol the upper 50¢m tend to slightly
lower values of about 0.2 pH units at site B compared to
site A (Fig. 2, online supplementary Table S2), which might
reflect the higher degree of weathering at site B as well. The
low CEC (about 56 pmol. g™' soil) and percent BS (<20%)
at both experimental sites result in small exchangeable Ca
pools, and are indicative of only slightly weathered, young
mineral soil. These soils might be highly sensitivity to inten-
sive forest harvesting practices, if most nutrient rich biomass
is removed (Federer et al. 1989). The small depth gradients of
most terrain attributes correspond to this finding and support
the important role of soil erosion on both experimental sites.

Soil fertility on both experimental sites can be regarded as low
when following criteria given for soil survey and agricultural
land evaluation in the subtropics and tropics (Landon 1991). The
soils are very acid, the CEC is low to very low with little differ-
ence over all geomorphic units, and base cations are deficient.
BS is <50% on all plots emphasizing dystric properties through-
out the whole experimental area. With bulk densities below
1.4g cm™ the soils are not compacted indicating that the area of
the experiment has not been cultivated recently. The Ca/Al ratio
of the exchange complex on both experimental sites is below 0.2
on most plots and in accordance with the very low pH values
(Gruba eral. 2013). This can cause inhibition of Ca uptake by tree
roots and the very high Al saturation of the exchange complex
probably indicate Al stress to fine roots influencing tree growth
(De Wit et al. 2010; Kinraide 2003; Marschner 1991). However,
the Ca/Al rations in foliage are higher than 12.5 in most cases
and BS is less than 15 only on four single plots, especially on site
B, and do not indicate adverse impacts on tree growth or nutri-
tion in general (Cronan and Grigal 1995).

Tree growth is affected by soil fertility at
small-scale

The main experiment of BEF China represents a random
spatial configuration of diversity treatments projected onto a
heterogencous and complex real-world landscape. Because
topography and soil fertility attributes vary at the same spa-
tial scale as the plot dimension, which could be shown by
a large number of significant correlations between topog-
raphy and soil fertility attributes, it is difficult to isolate the
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biotic signal from the environmental signal (Bruelheide
et al. 2014; Healy et al. 2008). However, in the experimental
framework of BEF China soil fertility and terrain affected
tree height significantly (Table 4) after accounting for tree
composition and tree species richness effects. Further inter-
actions between biotic and abiotic control mechanisms were
evident through altitudinal differences in survival rates of
seedlings (Yang ef al. 2013, 2017). Results from the mixed
etfects models for sapling growth responses at site A showed
significant correlation to the local abiotic variables north-
ness, N content and C/N ratio (Li et al. 2014a). However,
Krober et al. {(2015) found only marginal effects of environ-
mental variables on crown growth at site A, with slope being
the best environmental predictor. According to our findings,
soil C stocks were most closely related to tree height at this
early stage ol tree growth (1-2 years), whereas soil acidity,
Mn and CEC were related to tree height only at site A. As
trees at site A were planted 1 year earlier, we found more
interactions between soil fertility and tree height growth at
this experimental site. Soil acidification and high contents
of exchangeable Al in the lower soil horizons could lead to
restriction of nutrient uptake due to a poor replacement of
base cations (Marschner 1991). Both nutrient deficiency
and high Al contents can constrain fine root growth with
soil depth, and cause a close dependence of tree growth on
nutrient availability in topsoils, which showed higher C and
N contents. Thus, plant nutrition most likely is coupled to
a recycling of litter nutrients and root exudates rather than
on supply of nutrients from the mineral soil and some trees
might be able to bypass the common mineralization path-
way by using a significant proportion of organic N as amino
acids and proteins (Ndsholm er al. 1998).

However, as shown before soil fertility was significantly
affected by several terrain attributes and those additionally
affect tree height. MCCA as indicator of water availability
had a negative impact on tree growth, as well as the cli-
matic terrain attribute northness showing the importance
of irradiance for photosynthesis (see also Eichenberg ef al.
2017). Planform curvature as a measure of soil erosion
processes and matter transport showed that tree growth
was reduced on very steep slopes. As tree heights varied
more at site A, they also showed a relation to the geomor-
phological positions at which each tree grows. This again
can be linked to erosion and accumulation processes along
slopes in these two small catchments (Seitz ef al. 2016).
Generalized mixed-eflects models showed that survival
rates of tree seedlings were affected by species richness and
negatively correlated to elevation (Yang ef al. 2013). This
can be explained by transport of base cations from ridge
top and upper slopes downwards through interflow and
erosion. Yang et al. (2017) found that tree richness did not
affect shrub survival at this early stage of the experiment
but single abiotic lactors explained up to 5% ol species sur-
vival, with a negative effect of slope inclination and a posi-
tive effect of the topsoil carbon to nitrogen ratio.
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CONCLUSIONS

Our synthesis on the interrelation of soil fertility, topogra-
phy and tree growth in a subtropical forest ecosystem in SE
China showed that topographic heterogeneity led to ecologi-
cal gradients across geomorphological positions. Although
multilayered, the experimental design of BEF China with a
high resolution of both terrain (5 m) and soil fertility attrib-
utes (approximately 25 m) allows to propose soil erosion
and matter transport as key mechanisms for soil fertility
and, thus, determine tree growth. Accordingly, we can con-
firm our first hypothesis. Our findings indicate low avail-
ability of exchangeable base cations and acid conditions in
soils accompanied with high Al contents on both experi-
mental sites, which could lead to limited tree growth due
to insufficient soil nutrient supply. Especially plots on ridges
and spurs may suffer both from nutrient leaching and from
water shortage during dry and hot periods of the year. Such
small-scale soil-plant interrelations in a young forest can
serve as originator for the furure development of vegetation
and biodiversity control on soil properties in near-natural
forest ecosystems. In addition, it showed that terrain attrib-
utes constitute an important predictor for the interpretation
of soil fertility and tree growth in ecological research and it
confirmed our second and third hypotheses that individual
soil fertility variables are explained by terrain attributes and
that tree growth is positively influenced by soil fertility, and
thus also by terrain attributes. Nevertheless, in future years
also the planted plot diversity may contribute to soil fertility
besides topography.
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Abstract

This study investigated the development of biological soil crust (biocrust) covers in an
early successional subtropical forest ecosystem and their impact on soil erosion. Within
a biodiversity and ecosystem functioning experiment in Southeast China (BEF China),
sediment discharge and runoff measurements were conducted with micro-scale runoff
plots under natural rainfall and biocrust covers were surveyed over a five-year period.
Results showed that biocrusts occurred widely in our experimental forest ecosystem
and developed from initial light cyanobacteria- and algae-dominated crusts to later-
stage bryophyte-dominated crusts in only three years. Biocrust covers were still in-
creasing after six years of tree growth. Within later stage crusts, 25 bryophyte species
were determined. The development of biocrusts was significantly influenced by the
surrounding vegetation cover and terrain attributes. Besides high crown cover and leaf
area index, the development of biocrusts was favoured by low slope gradients, slope
orientations towards the incident sunlight and the altitude of the research plots. Our
measurements showed, that bryophyte-dominated biocrusts were importantly decreas-
ing soil erosion and more effective in erosion reduction than abiotic soil surface covers.
Hence, their significant role to mitigate sediment discharge and runoff generation in
mesic forest environments and their ability to quickly colonize gaps in higher vegetation
layers are of particular interest for soil erosion control in early stage forest plantations.
A detailed record of different biocrust species and their functional influence on soil ero-
sion processes as well as a thorough monitoring of biocrust covers under closing tree

canopy in subtropical forests is required in further studies.
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Abstract. This study investigated the development of bio-
logical soil crusts (biocrusts) in an early successional sub-
tropical forest plantation and their impact on soil erosion.
Within a biodiversity and ecosystem functioning experiment
in southeast China (biodiversity and ecosystem functioning
(BEF) China), the effect of these biocrusts on sediment deliv-
ery and runoff was assessed within micro-scale runoff plots
under natural rainfall, and biocrust cover was surveyed over
a 5-year period.

Results showed that biocrusts occurred widely in the ex-
perimental forest ecosystem and developed from initial light
cyanobacteria- and algae-dominated crusts to later-stage
bryophyte-dominated crusts within only 3 years. Biocrust
cover was still increasing after 6 years of tree growth. Within
later-stage crusts, 25 bryophyte species were determined.
Surrounding vegetation cover and terrain attributes signif-
icantly influenced the development of biocrusts. Besides
high crown cover and leaf area index, the development of
biocrusts was favoured by low slope gradients, slope ori-
entations towards the incident sunlight and the altitude of
the research plots. Measurements showed that bryophyte-
dominated biocrusts strongly decreased soil erosion, being
more effective than abiotic soil surface cover. Hence, their
significant role in mitigating sediment delivery and runoff
generation in mesic forest environments and their ability to

quickly colonise soil surfaces after disturbance are of par-
ticular interest for soil erosion control in early-stage forest
plantations.

1 Introduction

Biological soil crusts (hereinafter referred to as biocrusts)
are a living soil cover, which plays significant functional
roles in many environments (Weber et al., 2016). In ini-
tial ecosystems, communities of cyanobacteria, algae, fungi,
lichens, bryophytes and bacteria in varying combinations
are the first to colonise the substrate (Evans and Johansen,
1999). Biocrusts are often dominated by one organism group,
with cyanobacterial crusts being indicators of early-stage
crusts and drier conditions (Malam Issa et al., 1999, 2007)
and bryophyte-dominated crusts being indicators of later-
stage crusts and moister conditions (Colesie et al., 2016;
Seppelt et al., 2016). These highly specialised communities
form a biological crust immediately on top of or within the
first millimetres of the soil surface (Biidel, 2005). Biocrusts
preferably occur under harsh conditions of temperature or
light, where vascular vegetation tends to be rare (Allen,
2010). Therefore, biocrusts are generally widespread under
dryland conditions (Berkeley et al., 2005; Belnap, 2006;

Published by Copernicus Publications on behalf of the European Geosciences Union.



Publications

182

5776

Biidel et al., 2009), whereas under mesic conditions they
mostly occur as a successional stage after disturbance or in
environments under regularly disturbed regimes (Biidel et al.,
2014).

In direct competition with phanerogamic plants, biocrusts
are generally in an inferior position, and thus their devel-
opment is limited under closed plant canopies or when leaf
litter layers occur (Belnap et al., 2003a). This limitation is
due to the competition for light (Malam Issa et al., 1999)
and nutrients (Harper and Belnap, 2001). Disturbance of
the phanerogamic vegetation layers, however, changes this
competitive situation. Such disturbances can occur in for-
est ecosystems by natural tree fall or human-induced clear-
cutting (Barnes and Spurr, 1998). Complete removal of
a forest causes a harsh shift in vegetation development and
creates a starting point for new vascular plant as well as
biocrust communities (Bormann et al., 1968; Keenan and
Kimmins, 1993; Beck et al., 2008). Biocrusts are able to
quickly colonise natural clearances in tree layers (Belnap
et al., 2003a) as well as gaps appearing after human distur-
bance (Dojani et al., 2011; Chiquoine et al., 2016). Generally,
it can be stated that current knowledge on the relation be-
tween the development of biocrust cover and vascular plant
cover leaves room for further research (Kleiner and Harper,
1977; Belnap et al., 2003b; Zhang et al., 2016). In particular,
there are only few studies on the development of biocrusts in
early successional forest ecosystems (Su et al., 2007; Zhang
et al., 2016), but we assume that biocrusts are able to co-
exist in these mesic environments shortly after deforestation.
Furthermore, descriptions of different biocrust types in mesic
vegetation zones and investigations in southeast Asia are rare
(Biidel, 2003; Bowker et al., 2016).

Functional roles of biocrusts have been investigated for
decades, but less attention has been paid to their spatial dis-
tribution and characteristics (Allen, 2010). Biocrust cover
varies across spatial scales (from centimetres to kilometres),
and it could be shown that it depends not only on the sur-
rounding vascular vegetation cover but also on soils, geomor-
phology, and (micro-)topography or terrain (Evans and Jo-
hansen, 1999; Ullmann and Biidel, 2003; Kidron et al., 2009;
Bowker et al., 2016) in arid, semi-arid, temperate and boreal
environments. Different biocrust distributions have been re-
lated to elevation and terrain-influenced microclimatic gra-
dients (Kutiel et al., 1998), different geomorphic zones (El-
dridge, 1999), varying aspects (George et al., 2000) and soil
types (Bu et al., 2016). We assume that this is also true for
mesic subtropical forest environments. To our knowledge, in-
vestigations of the influence of small-scale (centimetres to
metres) topographic variations in biocrust development are
rare, and further studies will help to understand the role of
these small-scale factors (Garcia-Pichel and Belnap, 2003;
Bu et al., 2016; Bowker et al., 2016). Furthermore, as the
development of biocrusts is characterised by a high com-
plexity and spatial heterogeneity with many microclimatic
and micro-environmental factors, it is of great significance
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to conduct comparative studies on the spatial distribution of
biocrusts (Bu et al., 2013).

Biocrusts were recognised as having a major influence
on terrestrial ecosystems (Buscot and Varma, 2005; Belnap,
2006) as they protect soil surfaces against erosive forces by
both wind and water (Bowker et al., 2008; Zhao et al., 2014).
They can absorb the kinetic energy of rain drops (splash ef-
fect), decrease shear forces and stabilise soil particles with
protonemal mats and fine rhizoids and thus decrease parti-
cle detachment and enhance soil stability (Malam Issa et al.,
2001; Warren, 2003; Belnap and Lange, 2003). These effects
differ with regard to soil texture, surface roughness, water re-
pellency and finally different crust species and developmen-
tal stages (Warren, 2003; Belnap and Biidel, 2016). However,
studies that directly relate different types of biocrust cover to
rates of soil erosion are few (Allen, 2010). Furthermore, the
influence of biocrusts on sediment delivery and runoff has
mostly been investigated in arid and semi-arid climates and
humid climates have been largely disregarded (Belnap and
Lange, 2003; Weber et al., 2016).

This study aims to investigate the development of biocrust
cover in an early successional subtropical forest ecosystem
after human disturbance and the impact of those biocrusts on
soil erosion. Therefore, interrill erosion was measured with
runoff plots and the occurrence, distribution and develop-
ment of biocrusts was recorded. The study was conducted in
an experimental forest plantation, which aims to study bio-
diversity and ecosystem functioning relationships in south-
east China (biodiversity and ecosystem functioning (BEF)
China; for further information see Yang et al., 2013; Bru-
elheide et al., 2014; Trogisch et al., 2017). During the study,
the following hypotheses were addressed:

1. Biocrusts are able to coexist in mesic early successional
subtropical forest ecosystems, but crust cover decreases
with ongoing canopy closure and decreasing light inten-
sity.

2. The development of biocrusts in mesic subtropical
forests is not only influenced by the surrounding veg-
etation cover but also by major soil attributes which in-
fluence biocrust growth and by terrain attributes which
affect microclimatic conditions.

3. Biocrusts mitigate interrill soil erosion in early succes-
sional subtropical forest plantations.

2 Material and methods

2.1 Study site and experimental design

The study was carried out within the BEF China experiment
(Bruelheide et al., 2014) in Xingangshan, Jiangxi Province,
PR China (29°06.450' N, 117°55.450' E). The experimental
area is located in a mountainous landscape at an elevation
of 100 to 265 ma.s.l. with slopes from 15° to 41° (Scholten

www.biogeosciences.net/14/5775/2017/
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et al., 2017). The bedrock is non-calcareous sandstones, silt-
stones and slates weathered to saprolite, and the predom-
inant soil types are Cambisols with Anthrosols in downs-
lope positions and Gleysols in valleys (Scholten et al., 2017).
The particle size distribution was quite homogenous through-
out the experimental area, having loam as the main texture
class (Scholten et al., 2017). The mean annual temperature
is 17.4°C, and the annual precipitation is 1635 mm with
about 50 % falling during May to August (Goebes et al.,
2015). The climate is typical for summer monsoon subtropi-
cal regions. The potential natural vegetation of this region is
a subtropical broadleaved forest with dominating evergreen
species. It was widely replaced by tree plantations of mostly
Cunninghamia lanceolata for the purpose of commercial
forestry in the 1980s (Bruelheide et al., 2014). The experi-
mental area (approx. 38 ha) is structured in 566 research plots
(25.8m x 25.8 m each) at two sites (A and B) and was clear-
cut and replanted with 400 tree saplings per plot in different
tree species mixtures in 2009 and 2010 (Yang et al., 2013).
A selection of 34 research plots was used for this study (cf.
Seitz et al., 2016). Shrubs and coppices were weeded once
a year from 2010 to 2012 to help the tree saplings grow, fol-
lowing common practice in forest plantations of this area.

2.2 Field methods

Biocrust cover was determined photogrammetrically in 70
selected micro-scale runoff plots (ROPs; 0.4m x 0.4 m; Seitz
et al., 2015; Trogisch et al., 2017) at five time steps (Novem-
ber 2011, May 2012, May 2013, May 2014 and May 2015).
Biocrust species were first described in the field based on
appearance and functional groups. Biocrust types were then
determined based on the dominating autotrophic component
(highest share of total biocrust cover per ROP). During the
rainy season in summer 2013, an extended survey together
with soil erosion measurements (see below) was conducted
in five ROPs on 34 research plots each (170 ROPs in to-
tal; Table 1). At each ROP, perpendicular images were taken
with a single-lens reflex camera system (Canon 350D, Tokio,
Japan) and processed by the grid quadrat method in GIMP
2.8 using a digital grid overlay with 100 subdivisions (cf.
Belnap et al., 2001). Stone cover and biocrust cover were
separated by hue distinction. A continuous leaf litter cover,
which may impede analyses, was not present during mea-
surements. Biocrusts were collected in 2013, and samples
were dried at 40 °C (Dérrex drying unit, Netstal, Switzer-
land). The identification of these sampled species was car-
ried out by morphological characteristics using a stereomi-
croscope (Leitz TS, Wetzlar, Germany), a transmitted-light
microscope (Leitz Laborlux S, Wetzlar, Germany) and ul-
traviolet light. Bryophytes (dominating taxa in 2013) were
determined to the species level, wherever possible, and sep-
arated into mosses (Bischler-Causse, 1989; Moos flora of
China: Gao et al., 1999, 2001; 2002, 2003; 2005, 2007; 2008,
2011) and liverworts (Zhu, 2006; Séderstrom et al., 2016; A.
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Table 1. Erosion, soil, soil cover, vegetation and terrain attributes in
170 runoff plots (ROPs) and on 34 research plots (with five ROPs
each) in Xingangshan, Jiangxi Province, PR China, in 2013.

Min  Mean Max SD

Runoff plots (four measured rainfall events, n = 334)

Sediment delivery (g m~2) 21.6 1955 989.0 165.8
Surface runoff (Lm’2) 3.1 403 1118 21.7
Rainfall amount (mm} 25 94 178 28
Runoff plots (ROPs in use, n = 170)
Slope (°) 5 29 60 6
Soil cover (%) 0 19 62 14
— Biological soil crust cover (%) 0 24 62 14
— Stone cover (%) 0 4 42 6
Crown cover (%) 0.00 0.32 1.00 0.34
Leaf area index (LAI) 0.00 0.73 5.35 1.04
Research plots (n = 34)
Bulk soil density (g em=2) 0.83 0.98 1.12 0.06
Soil organic matter (%) 4.2 6.5 9.7 1.7
pH (KCl) 3.24 3.66 4.00 0.18
Altitude (m) 119 167 244 37
MCCA 0.98 2.07 3.81 0.83
TRI 0.72 2.39 3.86 0.59
Eastness —0.86 0.09 0.99 0.56

Northness —0.87 0.23 0.99 0.62
Tree height (m) 1.0 2.2 7.4 1.7
Crown width (m) 0.4 1.2 3.0 0.8

Soil cover: proportion of soil surface area covered by biocrusts or stones; crown cover:
proportion of soil surface area covered by crowns of live trees; leaf area index: one-sided
green leaf area per unit soil surface area; MCCA: Monte Carlo based flow accumulation
(Behrens et al., 2008); TRI: terrain ruggedness index (Riley et al., 1999); eastness and
northness: state of being east or north (Roberts, 1986); tree height: distance from stem base
to apical meristem; crown width: length of longest spread from edge to edge across the
crown; min: minimum; max: maximum; SD: standard deviation.

Schifer-Verwimp, personal communication, 2016). Compar-
isons were conducted with specimens hosted in the herbar-
ium of the State Museum of Natural History in Stuttgart,
Germany (Herbarium STU).

Sediment delivery and surface runoff were measured
within 170 ROPs in summer 2013 together with an ex-
tended biocrust survey (see above and Table 1), when tree
saplings did not exceed 3 years of age and leaf litter fall
was still marginal. After four time steps, 334 valid ROP mea-
surements entered the analysis (for detailed information see
Seitz et al., 2016). Sediment delivery was sampled, dried
at 40°C and weighed, whereas surface runoff and rainfall
amount were measured in situ. At every ROP, crown cover
and leaf area index (LAI) were measured with a fish-eye
camera system (Nikon D100 with Nikon AF G DX 180°,
Tokio, Japan) and calculated with HemiView V.8 (Delta-T
devices, Cambridge, UK). Measurements of tree height and
crown width were provided by Li et al. (2014) on a research
plot scale (n = 34). Tree species richness and tree compo-
sition resulted from the experimental set-up of BEF China
(Bruelheide et al., 2014).

Biogeosciences, 14, 5775-5788, 2017
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Soil attributes (Table 1) were determined for every re-
search plot (n = 34, sampling in 2013) using pooled sam-
ples from nine point measurements each (sampling depth
0-5cm). Soil pH was measured in KCl (WTW pH meter
with Sentix electrodes, Weilheim, Germany), bulk soil den-
sity was determined by the mass-per-volume method, and to-
tal organic carbon (TOC) was measured using heat combus-
tion (Elementar Vario EL 111, Hanau, Germany). Soil organic
matter (SOM) was calculated by multiplying TOC by a factor
of 2 (Pribyl, 2010).

2.3 Digital terrain analysis

Terrain attributes (Table 1) were derived from a digital el-
evation model (DEM; 5m x 5m; Scholten et al., 2017) on
a research plot scale (n = 34). Attributes were the terrain
ruggedness index (TRI; Riley et al., 1999) to describe the
heterogeneity of the terrain, the Monte Carlo based flow ac-
cumulation (MCCA: Behrens et al., 2008) to diagnose terrain
driven water availability, altitude above sea level to address
elevation effects, and the eastness and the northness (Roberts,
1986) to describe plant-related climatic conditions. These
terrain attributes cover major landscape features of the exper-
imental area and were not correlated. Slope was additionally
measured with an inclinometer at every ROP (n = 170; see
Seitz et al., 2016).

2.4 Statistical methods

The temporal development of biocrust cover (hypothesis 1,
above) from 2011 to 2015 was assessed at five time steps
within 70 ROPs (see above) by an analysis of variance
(ANOVA) and Tukey’s honestly significant difference (HSD)
test (n = 350).

The influences of vegetation, soil and topographic at-
tributes on biocrust cover (hypothesis 2) in 170 ROPs (see
above) were assessed by linear mixed effects (LME) mod-
els (n = 334). Crown cover, bulk soil density, SOM, pH, alti-
tude, slope, MCCA, TRI, eastness, northness and tree species
richness were fitted as fixed effects and biocrust cover as a
response variable. The attributes were tested with Pearson’s
correlation coefficient before fitting. LAI was fitted individ-
ually in exchange with crown cover due to multicollinearity.
The experimental site and research plot were fitted as random
effects, and hypotheses were tested with an ANOVA type |
with a Satterthwaite approximation for degrees of freedom.

The influences on soil erosion (hypothesis 3) were as-
sessed by LME models with a restricted maximum likeli-
hood (n = 334) and sediment delivery and surface runoff as
response variables. Crown cover, slope, surface cover, SOM,
rainfall amount and tree species richness were fitted as fixed
effects. Surface cover was then split into surface cover by
biocrusts and by stones, which entered the analysis as fixed
conjoined factors. Precipitation events nested in plot, tree
species composition, experimental site and ROP nested in
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Figure 1. The development of biological soil crust cover in runoff
plots of the BEF China experiment from 2011 to 2015 in Xingang-
shan, Jiangxi Province, PR China (n = 350). Horizontal lines within
box plots represent medians, and diamonds represent means with
standard error bars. Points signify outliers and small letters signifi-
cant differences (p < 0.001).

plot were fitted as random effects. Attributes were not cor-
related. The hypothesis was tested with an ANOVA type 1
with a Satterthwaite approximation for degrees of freedom.
Moreover, the Wilcoxon rank sum test was applied to test for
differences between biocrust cover and stone cover on sedi-
ment delivery and surface runoff. Therefore, the dataset was
split into data points where biocrust cover exceeded stone
cover (n = 281) and data points where stone cover exceeded
biocrust cover (n = 53).

All response variables were log-transformed before mod-
elling. The dataset was tested for multicollinearity and met
all prerequisites to carry out ANOVAs. All analyses were
performed with R 3.1.2 (R Core Team, 2014). LME mod-
elling was conducted with “ImerTest” (Kuznetsova et al.,
2014) and rank sum tests with “exactRankTests” (Hothorn
and Hornik, 2015). Figures were designed with “ggplot2”
(Wickham, 2009).

3 Results
3.1 Temporal development of biocrust cover

Biocrusts occurred in 94 % of all ROPs, and their cover
within ROPs ranged between 1 and 88 % over the course
of 5 years. The mean biocrust cover of all ROPs more than
tripled from their installation in 2011 to the last measurement
in 2015 (Fig. 1). The increases were significant from 2011 to
2015 and from 2012 to 2013, 2013 to 2014 and 2014 to 2015
(p < 0.001).

Whereas a clear bryophyte dominance of biocrusts was ev-
ident at the time of sampling in 2013 (average ROP surface
cover 24 %), different successional stages were identified in

www.biogeosciences.net/14/5775/2017/
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Figure 2. Successional stages of biological soil crusts in two exemplary runoff plots (top row and bottom row, 0.4 m x 0.4 m each) in 2011,

2013 and 2015 (from left to right) at the BEF China experiment in Xingangshan, Jiangxi Province, PR China.

Table 2. Liverwort and moss species sampled in the BEF China experiment in Xingangshan, Jiangxi Province, PR China, in 2013.

Family Species Author

Liverworts

Calypogeiaceae Calypogeia fissa (L.) Raddi
Conocephalaceaec  Conocephallum  salebrosum Szweyk., Buczk. et Odrzyk.
Lophocoleaceae  Heteroscyphus  zollingeri (Gottsche) Schiffn.
Marchantiaceae Marchantia emarginata Reinw., Blume et Nees
Acrobolbaceae Notoscyphus lutescens (Lehm. et Lindenb.) Mitt.
Mosses

Polytrichaceae Atrichum subserratum (Harv. et Hook. f.) Mitt.
Pottiaceae Barbula unguiculata Hedw.

Bryaceae Bryum argenteum Hedw.

Leucobryaceae Campylopus atrovirens De Not.

Dicranellaceae Dicranella heteromalla (Hedw.) Schimp.
Pottiaceae Didymodon constrictus (Mitt.) K. Saito
Pottiaceae Didymodon ditrichoides (Broth.) X.J. Liet S. He
Ditrichaceae Ditrichum pallidum (Hedw.) Hampe
Entodontaceae Entodon spec. sterile

Hypnaceae Hypnum cupressiforme ~ Hedw.

Hypnaceae Hypnum macrogynum Besch.

Leucobryaceae Leucobryum Juniperoideum  (Brid.) Miill. Hal.
Bartramiaceae Philonotis marchica (Hedw.) Brid.
Bartramiaceae Philonotis mollis (Dozy et Molk.) Mitt.
Bartramiaceae Philonotis roylei (Hook. f.) Mitt.
Mhniaceae Plagiomnium acutum (Lindb.) T. J. Kop.
Polytrichaceae Pogonatum inflexum (Lindb.) Sande Lac.
Thuidiaceae Thuidium glaucinoides Broth.

Mniaceae Trachycystis microphylla (Dozy et Molk.) Lindb.
Pottiaceae Trichostomum crispulum Bruch
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Figure 3. The influence of runoff plots dominated by biological soil
crust cover (n = 281) and stone cover (n = 53) on sediment delivery
and surface runoff in Xingangshan, Jiangxi Province, PR China, in
2013. Horizontal lines within box plots represent medians, and dia-
monds represent mean with standard error bars.

the field and on ROP photos from 2011 to 2015 (Fig. 2). In
2011, a smooth, light cyanobacteria- and algae-dominated
crust with few lichens and bryophytes indicated an earlier
stage of biocrust development (Colesie et al., 2016). In 2013,
25 moss and liverwort species were classified (Table 2) and
formed a bryophyte-dominated crust, with some cyanobac-
teria, algae, lichens and micro-fungi still observed within
ROPs. The same was true in 2015, but the first evidence of
vascular plants (Selaginella and Poaceae) indicated a further
change in the vegetation cover of the soil surface.

3.2 The influence of vegetation, soil and terrain on
biocrust cover

The development of biocrust cover in 2013 was positively
influenced by crown cover and LAI as attributes of the sur-
rounding vegetation (Table 3). Furthermore, it was negatively
affected by slope and northness and slightly positively af-
fected by the altitude of the research plots as terrain attributes
(Table 3). Further terrain attributes or any soil attributes did
not affect the development of biocrust cover.

3.3 The impact of biocrust cover on soil erosion

Results reveal that biocrusts strongly affect soil erosion.
ROPs with biocrust cover below 10 % showed a mean sed-
iment delivery of 302 gm~2 and a mean runoff volume of
39Lm*2, whereas ROPs with biocrust cover above 50 %
showed a mean sediment delivery of 74 gm~2 and a mean
runoff volume of 29 L m~2. Both biocrust and stone cover,
as well as total soil surface cover (comprising both biocrust
and stone cover; p < (.001) negatively affected sediment
delivery (Table 4). In addition, soil surface cover nega-
tively affected surface runoff (p =0.003). However, only
biocrust but not stone cover mediated the effect of runoff.
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Table 3. Results of the final linear mixed effects (LME) model for
vegetation, soil and terrain attributes on biological soil crust cover
in Xingangshan, Jiangxi Province, PR China, in 2013.

Biological soil crust cover

denDF F Pr estim,
Fixed effects
Crown cover 136 129 *k* 10.8
Bulk soil density 37 0.03 ns 3.65
SOM 39 111 ns  (=)0.95
pH (KCI) 38 247 ns (—)16.7
Altitude 37 3.69 0.80
Slope 191 7.53 (=272
MCCA 39 0.02 ns 0.33
TRI 38 0.04 ns  (—)0.40
Eastness 37 273 ns (—)4.23
Northness 37 9.14  ** 5.99
Tree species richness 38 1.22 ns (—)0.27
Random effects SD  Variance
Site <0.01 <0.01
Plot < 0.01 < 0.01

Vegetation attribute fitted in exchange to crown cover
Leaf area index 107 428 R 5.98

SOM: soil organic matter; MCCA: monte carlo based flow accumulation; TRI:
terrain ruggedness index; denDF: denominator degrees of freedom; F: F value;
Pr: significance; estim.: estimates; SD: standard deviation; *** p < 0.001;

** p<0.01:% p<0.05* p <0.1; ns: not significant, n = 215.

Furthermore, crown cover, SOM and rainfall amount affected
sediment delivery, whereas runoff was affected by crown
cover and rainfall amount. ROPs with increased stone cover
showed higher sediment delivery and surface runoff com-
pared to those with increased biocrust cover (Fig. 3).

4 Discussion
4.1 Temporal development of biocrust cover

Biocrusts were detected widely within the experiment and
occupied a considerable area in the interspaces of the grow-
ing tree community. Thus, the first part of hypothesis 1, stat-
ing that biocrusts are able to coexist in mesic early succes-
sional subtropical forests, can be confirmed, as they success-
fully colonised the newly created habitats originating from
the disturbance by forest clear-cutting and weeding (Bruel-
heide et al., 2014). Although biocrusts have been mainly de-
fined to occur in dryland regions (Weber et al., 2016), they
can also appear as a transient feature in mesic environments
after major singular or repeated disturbance events (Biidel
et al., 2014; Fischer et al., 2014). In the current study, de-
forestation provided a local arid micro-environment, which
initiated early biocrust development. At this young stage of
forest development, biocrusts were able to coexist with up-
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Table 4. Results of the final lincar mixed effects (LME) models for sediment delivery and surface runoff, with surface cover split into
biological soil crust cover and stone cover in Xingangshan, Jiangxi Province, PR China, in 2013.

Sediment delivery

Surface runoff

denDF F Pr estim.  denDF F Pr estim.
Fixed effects
Crown cover 130 6.53 *(=)0.15 173 9.11 (9014
Slope 151 1.23 ns (—)0.06 168 2.25 <ns (—)0.06
Surface cover
— Biocrust 151 502 **  (-)0.38 159 8.11 (9012
— Stone 136 10.3 (9019 188 1.66 <ns (—)0.06
SOM 44 571 *(=)0.08 72 243 <ns 0.12
Rainfall 95 5.46 * (—)0.08 302 13.2 ok 0.14
Tree species richness 22 046 ns (—)0.05 68 0.11 <ns (—)0.03
Random effects SD var. SD var.
Precip. event: plot 0.199 0.040 0.537  0.288
Tree composition 0.292 0.085 0.000  0.000
Site 0.466 0.217 0.443  0.196
Plot: ROP 0.441 0.195 0.269 0.073

SOM: soil organic matter; denDF: denominator degrees of freedom; F: F value; Pr: significance; estim.: estimates; SD: standard
deviation; var.: variance; *** p < 0.001; ** p <0.01;* p <0.05; * p < 0.1; ns: not significant, n = 334.

coming tree saplings and formed a pioneer vegetation on the
soil surface (Langhans et al., 2009), which provides the ba-
sis for the growth of other plants by the input of carbon and
nitrogen (West, 1990; Evans and Johansen, 1999). Biocrusts
are known to facilitate the succession of vascular plants to
more advanced stages (Bowker, 2007), but tree growth and
thus crown cover can also lead to an advancement in biocrust
development, e.g. due to the protection from direct sunlight
(Zhao et al., 2010; Tinya and Odor, 2016). The bryophyte
dominance of biocrusts in 2013 documented this develop-
ment into a later and somewhat moister successional stage.
Later-stage bryophytes have received comparatively little at-
tention in forest understorey (Gilliam, 2007) and biocrust
studies (Weber et al., 2016), and in Asia only 23 different
species have been reported within biocrusts up to now (Sep-
peltet al., 2016). Thus, this study with 25 recorded moss and
liverwort species, most of them being new records within
Asian biocrusts (Burkhard Biidel, personal communication,
2016), substantially increases the knowledge on biocrusts of
this region.

The extent of biocrusts has been strongly increasing since
2012, i.e. 3 years after tree replantation, and was still gain-
ing coverage in the sixth year after the experimental set-up.
Thus, the second part of hypothesis 1, stating that crust cover
decreases with ongoing canopy closure, has to be rejected.
Even if single trees were already up to 7.4 m high (Li et al.,
2014) and LAI was up to 5.35 in 2013, biocrusts still re-
mained coexisting within the early-stage forest ecosystem.
Furthermore, increasing crown cover and LLAI seemed to fos-
ter the development of bryophyte-dominated biocrusts at this
ecological stage. By the end of this study in summer 2016
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(LAI up to 6.18), there were indications that biocrust cover
may start to be pushed back, as the first vascular plants ap-
peared in between. This is in line with the existing litera-
ture, demonstrating that continuing tree growth will cause
biocrust communities to adapt with an altered composition
of moss and liverwort species (Eldridge and Tozer, 1997;
Fenton and Frego, 2005; Goffinet and Shaw, 2009). It has
been shown that bryophytes switch from species favouring
sunny habitats to more shade-tolerant species (Zhao et al.,
2010; Miiller et al., 2016). In addition, there might also be
a reduction in bryophyte diversity due to shady conditions,
where only a smaller number of species could prevail. In later
stages, biocrust cover will be replaced by vascular vegetation
(in light forests) or buried under persisting leaf litter (un-
der darker conditions). In this context, the ecological roles of
biocrusts in succession models and plant restoration are of in-
terest (Hawkes, 2004; Bowker, 2007). In particular, biocrust
succession in temperate climates has received limited sci-
entific attention (Read et al., 2016). Furthermore, there are
several projects underway to establish successful restoration
techniques in arid and semi-arid environments (Rosentreter
et al., 2003; Bowker, 2007; Chiquoine et al., 2016; Condon
and Pyke, 2016), which could be adapted to mesic environ-
ments. Nevertheless, it has to be stated that biocrust restora-
tion might be dispensable in some mesic systems, as natural
reestablishment appeared to be very fast in this study.
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4.2 The influence of vegetation, soil and terrain on
biocrust cover

In the current study, the development of biocrusts was in-
fluenced by vegetation and terrain but not by the three
soil attributes investigated in this study. Thus, hypothesis
2, stating that the biocrust development is not only influ-
enced by surrounding vegetation but also by soil and ter-
rain, can only partly be confirmed for this ecosystem. As
demonstrated above, high crown cover and LAI positively
affected the development of biocrust cover in 2013. This in-
crease in biocrust cover is likely caused by successional al-
teration of biocrusts towards bryophyte dominance. Mosses
and liverworts profit from humid conditions and a higher
protection from light compared to cyanobacteria- or lichen-
dominated crusts (Ponzetti and McCune, 2001; Marsh et al.,
2006; Williams et al., 2013). The successional development
of biocrusts within the BEF China experiment was faster than
reported by Zhao et al. (2010) for Chinese grasslands (Loess
Plateau), who claimed biocrusts from a 3-year-old site were
early successional and dominated by cyanobacteria. The re-
covery rate was also faster than described by Eldridge (1998)
and Read et al. (2011) for semi-arid Australia, two of the
very few studies on biocrust recovery under woodland. In
the study presented here, the rapid change in biocrust com-
munity composition is mainly linked to the growth rates of
surrounding trees in this subtropical forest. As functions of
biocrusts, such as erosion reduction, are species-dependent,
the rapid change in species composition might also lead to
considerable variations in functional responses. Further stud-
ies are required to investigate species changeover times in
different environments and particularly in disturbed mesic
ecosystems.

Furthermore, several terrain attributes affected biocrust
cover. Slope was the most prominent of those factors, caus-
ing a considerable decline in biocrust cover with increasing
slope. This finding was explained by their decreasing ability
to fix themselves on the soil surface at high slope angles and
thus their tendency to erode from the soil surface when large
surface water flows occur during rainfall events (Chamizo
et al., 2013; Bu et al., 2016). Thus, the surface-protecting
effect of biocrusts decreases at steep plantation sites and dur-
ing heavy monsoon rainfall events, which frequently occur
in the broader research area in Jiangxi Province, PR China
(Yang et al., 2013; Goebes et al., 2015). Moreover, microcli-
matic factors played a role in the development of biocrusts.
Northness showed a positive impact on biocrust cover and in-
dicated that slope orientations towards the incident sunlight
directly influence the biocrust development. This was also
observed in other studies in arid and semi-arid areas (Bowker
et al., 2002; Zaady et al., 2007). Furthermore, biocrust devel-
opment depended on the altitude, which probably also affects
microclimatic conditions (Kutiel et al., 1998; Chamizo et al.,
2016; Bu et al., 2016). Those microclimatic factors are addi-
tionally altered by the growing tree vegetation itself.
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Interestingly, SOM and pH did not affect biocrust cover
in this study, whereas generally, underlying substrates are
a main factor for bryophyte development (Spitale, 2017) and
soil attributes are known to strongly influence biocrust cover
(Bowker et al., 2016). In the experimental area, increased or-
ganic matter contents and acidic conditions have been de-
termined (Scholten et al., 2017) which favour the develop-
ment of bryophyte-dominated biocrusts (Eldridge and Tozer,
1997; Seppelt et al., 2016). Nevertheless, the variation be-
tween the research plots was small and apparently not large
enough to cause prominent differences in biocrust develop-
ment. Comparisons between forest plantations on different
substrates would help to clarify the influence of soil attributes
on biocrust development in those environments and to as-
sess their effect in a broader environmental context (Spi-
tale, 2017). Furthermore, a broader range of soil parameters
should be included in future studies.

4.3 The impact of biocrust cover on soil erosion

Biocrust cover clearly mitigated interrill soil erosion in this
early-stage ecosystem, and thus hypothesis 3 was confirmed.
Sediment delivery was strongly reduced with increasing
biocrust cover. For arid environments, Cantén et al. (2011)
and Maestre et al. (2011), for example, showed that sedi-
ment delivery from soil surfaces covered with biocrusts de-
creases compared to bare soil surfaces with physical crusting
(from 20 to < 1gm~2 and 40 to < 5 gm™~2, respectively),
both studies using micro-scale runoff plots (0.25m?). Bu
et al. (2015) and Zhao and Xu (2013) found similar erosion-
reducing patterns for the subarid temperate Chinese Loess
Plateau. The study presented here shows that biocrusts ful-
fil this key ecosystem service also within a particular mesic
habitat, even if their biomass and soil penetration depth is
low compared to trees. This functional role is due to the fact
that biocrusts attenuate the impact of raindrops on the soil
surface and greatly improve its resistance against sediment
detachment (Eldridge and Greene, 1994; Goebes et al., 2014;
Zhao et al., 2014). Moreover, they have the ability to glue
loose soil particles together with polysaccharides extruded
by cyanobacteria and green algae (Buscot and Varma, 2005).
In the current study, protonemata and rhizoids of mosses and
liverworts were observed to be most effective by weaving
and thus fixing the first millimetres of the topsoil, as also
described by Bowker et al. (2008). Pogonatum inflexum and
Atrichum subserratum, for example, have shown positive ef-
fects on erosion control due to their sustained protonema sys-
tem (present authors’ personal observation, 2014). Further-
more, bryophytes increase the formation of humus, which
in turn assists with binding primary particles into aggregates
(Scheffer et al., 2010; Zhang et al., 2016).

Whereas a partial stone cover did not decrease surface
runoff in this study, bryophyte-dominated biocrusts posi-
tively influenced the hydrological processes in the topsoil
layer regarding erosion control. Thus, they actively mitigated
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initial soil erosion compared to abiotic components such as
stones and pebbles. Biocrusts have been frequently shown
to influence hydrological processes such as surface runoff
and infiltration rates (Cantén et al., 2011; Chamizo et al.,
2012; Rodriguez-Caballero et al., 2013). Recently, Chamizo
et al. (2016) showed that biocrusts decrease runoff genera-
tion on a larger scale (> 2 m?), but the converse behaviour
has also been found (Cantén et al., 2002; Maestre et al.,
2011). Reducing effects on runoff are related to biocrusts
species composition (Belnap and Lange, 2003), and later de-
velopmental biocrust stages with higher biomass levels pro-
vide more resistance to soil loss (Belnap and Biidel, 2016).
Bryophyte-dominated crusts in particular have shown to en-
hance infiltration and reduce runoff due to their rhizome sys-
tem, causing soil erosion rates to stay low (Warren, 2003;
Yair et al., 2011). Other field studies also revealed that later-
stage biocrusts, containing both lichens and bryophytes, of-
fer more protection against soil erosion than cyanobacte-
rial crusts (Belnap and Gillette, 1997) as they provide a
higher infiltration potential (Kidron, 1995). On the other
hand, Drahorad et al. (2013) found an increase in water re-
pellency and a decrease in water sorptivity with ongoing
biocrust succession in a temperate forest glade, which could
also strongly affect runoff and sediment transport on sub-
tropical forest soil surfaces. Moreover, biocrusts dominated
by bryophytes increase surface roughness and thus slow
down runoff (Kidron et al., 1999; Rodriguez-Caballero et al.,
2012). Finally, biocrusts also absorb water and provide a
comparably high water storage capacity (Warren, 2003; Bel-
nap, 2006). For example, Leucobryum juniperoideum, which
was widely found in the study area, showed a high water
absorbing capacity (present authors’ personal observation,
2014). Thus, the observed rapid change in biocrust compo-
sition from cyanobacteria to bryophyte dominance improved
soil erosion control in this forest environment. This effect
should be considered for the replantation of forests in regions
endangered by soil erosion.

5 Conclusions

This study investigated the development and distribution of
biocrusts in an early-stage subtropical forest plantation as
well as their impact on interrill soil erosion after human dis-
turbance. The following conclusions were drawn:

1. Biocrusts occurred widely in this mesic early suc-
cessional forest ecosystem in subtropical China and
were already dominated by bryophytes after 3 years of
tree growth (25 bryophyte species classified). After 6
years of continuing canopy closure, biocrust cover was
still increasing. Further monitoring under closing tree
canopy is of importance to detect changes in biocrust
cover and species composition. As this study discusses
a very particular subtropical forest environment, where
trees were replanted after clear-cutting, results have to
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be viewed with this particular set-up in mind. Further
studies on biocrust development in different disturbed
forest ecosystems appear to be of high interest.

2. The surrounding vegetation and underlying terrain af-
fected biocrust development, whereas soil attributes did
not have an effect on this small experimental scale. Be-
sides high crown cover and LAI, the development of
biocrusts was favoured by a low slope gradient and
slope orientations towards the incident sunlight and alti-
tude. Further research appears to be necessary to explain
effects of terrain attributes such as aspect or elevation
and effects of underlying soil and substrates.

3. Soil surface cover of biocrusts largely affected soil
erosion control in this early stage of the forest plan-
tation. Bryophyte-dominated crusts showed erosion-
reducing characteristics with regard to both sediment
delivery and surface runoff. Furthermore, they more ef-
fectively decreased soil losses than abiotic soil surface
covers. The erosion-reducing influence of bryophyte-
dominated biocrusts and their rapid development from
cyanobacteria-dominated crusts should be considered in
management practices in early-stage forest plantations.
Further research is required on functional mechanisms
of different biocrust and bryophyte species and their im-
pact on soil erosion processes.
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Abstract

Biodiversity—ecosystem functioning (BEF) research has extended its scope from com-
munities that are short- lived or reshape their structure annually to structurally complex
forest ecosystems. The establishment of tree diversity experiments poses specific-
methodological challenges for assessing the multiple functions provided by forest eco-
systems. In particular, methodological inconsistencies and nonstandardized protocols
impede the analysis of multifunctionality within, and comparability across the increas-
ing number of tree diversity experiments. By providing an overview on key methods
currently applied in one of the largest forest biodiversity experiments, we show how
methods differing in scale and simplicity can be combined to retrieve consistent data
allowing novel insights into forest ecosystem functioning. Furthermore, we discuss and
develop recommendations for the integration and transferability of diverse methodical
approaches to present and future forest biodiversity experiments. We identified four
principles that should guide basic decisions concerning method selection for tree diver-
sity experiments and forest BEF research: (1) method selection should be directed to-
ward maximizing data density to increase the number of measured variables in each
plot. (2) Methods should cover all relevant scales of the experiment to consider scale
dependencies of biodiversity effects. (3) The same variable should be evaluated with
the same method across space and time for adequate larger-scale and longer- time
data analysis and to reduce errors due to changing measurement protocols. (4) Stand-
ardized, practical and rapid methods for assessing biodiversity and ecosystem func-
tions should be promoted to increase comparability among forest BEF experiments.
We demonstrate that currently available methods provide us with a sophisticated
toolbox to improve a synergistic understanding of forest multifunctionality. However,
these methods require further adjustment to the specific requirements of structurally
complex and long- lived forest ecosystems. By applying methods connecting relevant
scales, trophic levels, and above- and belowground ecosystem compartments,

knowledge gain from large tree diversity experiments can be optimized.
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1 | INTRODUCTION

Biodiversity-ecosystem functioning (BEF) research requires compre-
hensive methodical approaches to study overall ecosystem function-
ing based on the simultaneous assessment of multiple functions and

Abstract

Biodiversity—ecosystem functioning (BEF) research has extended its scope from com-
munities that are short-lived or reshape their structure annually to structurally com-
plex forest ecosystems. The establishment of tree diversity experiments poses specific
methodological challenges for assessing the multiple functions provided by forest eco-
systems. In particular, methodological inconsistencies and nonstandardized protocols
impede the analysis of multifunctionality within, and comparability across the increas-
ing number of tree diversity experiments. By providing an overview on key methods
currently applied in one of the largest forest biodiversity experiments, we show how
methods differing in scale and simplicity can be combined to retrieve consistent data
allowing novel insights into forest ecosystem functioning. Furthermore, we discuss and
develop recommendations for the integration and transferability of diverse methodical
approaches to present and future forest biodiversity experiments. We identified four
principles that should guide basic decisions concerning method selection for tree di-
versity experiments and forest BEF research: (1) method selection should be directed
toward maximizing data density to increase the number of measured variables in each
plot. (2) Methods should cover all relevant scales of the experiment to consider scale
dependencies of biodiversity effects. (3) The same variable should be evaluated with
the same method across space and time for adequate larger-scale and longer-time data
analysis and to reduce errors due to changing measurement protocols. (4) Standardized,
practical and rapid methods for assessing biodiversity and ecosystem functions should
be promoted to increase comparability among forest BEF experiments. We demon-
strate that currently available methods provide us with a sophisticated toolbox to im-
prove a synergistic understanding of forest multifunctionality. However, these methods
require further adjustment to the specific requirements of structurally complex and
long-lived forest ecosystems. By applying methods connecting relevant scales, trophic
levels, and above- and belowground ecosystem compartments, knowledge gain from

large tree diversity experiments can be optimized.

KEYWORDS
BEF-China, forest biodiversity experiments, high-throughput methods, multitrophic interactions,
standardized protocols

services. Integral approaches that include species interactions and
trophic networks are especially important because ecosystem perfor-
mance strongly depends on complex interactions among organisms
with tight interconnections of above- and belowground systems (De
Deyn & van der Putten, 2005; Kardol & Wardle, 2010; Soliveres et al.,
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2016). This is particularly true for forests, which represent long-lived
and highly complex dynamic systems (Scherer-Lorenzen, Kérner, &
Schulze, 2005).

Forests support a wealth of ecosystem functions and services,
such as biomass production, carbon storage, and prevention of soil
erosion, and promote the diversity of coexisting taxa (Pan, Birdsey,
Phillips, & Jackson, 2013). Tree diversity has been shown to affect this
multifunctionality at local and larger spatial scales (Gamfeldt et al.,
2013; van der Plas et al., 2016; Scherer-Lorenzen, 2014). However,
experimental research on the relationships between biodiversity
and multiple ecosystem functions in forests has begun only recently
(Scherer-Lorenzen et al., 2005; Verheyen et al., 2016). Considering
the complexity of forest ecosystems, it is clear that the role of tree
species richness and associated diversity of microorganisms and an-
imal taxa, including their interactions, for ecosystem functioning can
only be studied adequately in a multifunctional framework (Gamfeldt,
Hillebrand, & Jonsson, 2008; Hector & Bagchi, 2007).

Although observational studies along natural forest diversity gra-
dients have offered new insights into BEF relationships, their informa-
tion value is often limited by inseparable effects of species diversity
and identity as well as confounding abiotic factors (Nadrowski, Wirth,
& Scherer-Lorenzen, 2010; Vila etal., 2005). Thus, well-designed
biodiversity experiments are required to study causal tree diversity
effects on ecosystem functioning and the underlying mechanisms
(Hector et al., 2011; Nadrowski et al., 2010). Over the last 15 years, an
increasing number of large-scale forest diversity experiments has been
established in different parts of the world, forming a growing global
collaborative experimental network (www.treedivnet.ugent.be) of cur-
rently 25 tree diversity experiments (Verheyen et al., 2016). Despite
their relatively young age, these planted forests already allow the eval-
uation of a large range of ecosystem functions also encountered in
mature forests. In addition, they represent a unique large-scale field
network to study tree establishment as a function of forest diversity
soon after planting and during canopy closure (Scherer-Lorenzen,
Potvin, et al., 2005).

One of the most striking features of many forest BEF exper-
iments, in which tree species richness and composition are ma-
nipulated deliberately, is their much larger spatial dimension than
comparable grassland BEF experiments. Forest BEF experiments
with up to several hundred thousands of tree individuals planted
often extend to the landscape scale. In small-scale grassland BEF
experiments with fast-growing herbaceous species, environmental
factors can be controlled reasonably well through applying a ran-
domized block design. In contrast, at the landscape scale and in
long-lived tree communities, it is more difficult to ensure spatial and
temporal homogeneity within the necessarily larger blocks (and plots
within blocks), thus increasing the chances of accidental confound-
ing of randomized planting with abiotic environmental variables.
Thus, the separation of treatment (biodiversity) factors and environ-
mental covariates in explaining the variation in measured ecosystem
functions remains challenging in forest BEF experiments (Balvanera
et al., 2006; Bruelheide et al., 2014; Caspersen & Pacala, 2001;
Healy, Gotelli, & Potvin, 2008). Consequently, the methods applied

to assess ecosystem functions must be applicable to capture the
variation in environmental gradients and the effects of tree diversity
at the different spatial scales between and within blocks (and plots).
Therefore, practical, repeatable, and standardized high-throughput
methods are required to quantify ecosystem functions or variables
on a large set of plots and across the network of diversity exper-
iments. However, many currently applied BEF methods strongly
differ in terms of scope and scale, complicating efficient cross-site
comparisons and synthesis approaches.

In principle, measurements of processes in forest BEF experiments
typically focus on two or three spatial scales corresponding to tree
community organizational levels: the individual tree, the local neigh-
borhood of the individual tree, and the plot or community level. The
level of the individual tree is used, for example, to measure species-
specific tree growth (Li, Hardtle, et al., 2014), herbivory (Schuldt,
Bruelheide, et al., 2015), or fungal infestation (Hantsch, Bien, et al.,
2014). Moreover, the assessment of functional plant traits is based
on the measurement of individual trees with a strong focus on species
identity (Krdber, Li, et al., 2015). Even if measurements are carried out
on single leaves or branches, they will also refer to a particular tree
individual (Brezzi, Schmid, Niklaus, & Schuldt, 2017). The local neigh-
borhood comprises all immediate neighbor trees of a focal tree individ-
ual (Fichtner et al., 2017). Defining neighborhood in this way makes it
independent of tree size. How the local neighborhood influences in-
dividual tree performance is of particular importance because positive
tree-tree interactions at the local scale may translate into positive bio-
diversity effects at community scale (Forrester & Bauhus, 2016; Potvin
& Dutilleul, 2009). In contrast, plot-level measurements integrate eco-
system functions over the entire tree community. Such measurements
are used, for example, to quantify the impact of tree species richness
and composition on decomposition processes (Eichenberg et al., 2017;
Seidelmann, Scherer-Lorenzen, & Niklaus, 2016). Plot-level measure-
ments also apply to mobile organisms at higher trophic levels that are
not confined to particular trees (Vehvildinen, Koricheva, & Ruohomaki,
2008) and to combined effects of soil fertility and topography on tree
growth (Scholten et al., 2017).

Given that each method aims to contribute information at the
respective scale, a well-balanced mixture of methods is required to
maximize knowledge gain from cost- and labor-intensive (land rent,
plot clearing, tree planting, and weeding) forest BEF experiments.
Therefore, a wide spectrum of easy and sophisticated BEF measure-
ments must be combined in a multifunctional framework to quantify
ecosystem functioning on a large set of plots. Standardized methods
for key ecosystem functions (Meyer, Koch, & Weisser, 2015) and
rapid biodiversity assessments (Obrist & Duelli, 2010) need to be de-
veloped or adapted for forest ecosystems to promote synthesis stud-
ies across tree diversity experiments. Because these experiments are
commonly used by many research teams from different disciplines
and backgrounds, careful consideration of the applied methods is re-
quired to measure and analyze data jointly and effectively. Together
with an integrated project data management ensuring data harmoni-
zation, data validation, and metadata quality, synthesis projects can
be catalyzed in a multifunctional context (Nadrowski et al., 2013).
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Only if we succeed in combining the results obtained by different
methods, a coherent account of forest ecosystem functioning can be
achieved.

Based on an illustrative example of a forest BEF experiment (BEF-
China), we provide an overview on state-of-the-art methods currently
applied in one of the largest forest biodiversity experiments worldwide.
Given the increasing number of tree diversity experiments and cross-site
synthesis approaches (Verheyen et al., 2016), the present work is a first
attempt to develop standardized BEF methods to measure forest multi-
functionality. Methods for the assessment of multiple ecosystem func-
tions and variables are briefly described with focus on their practicability
as well as their challenges that have been encountered. In a second step,
we outline how methods differing in scope and complexity can be com-
bined to retrieve consistent data allowing novel insights into forest eco-
system functioning. Finally, we discuss and develop recommendations for
the integration and transferability of diverse methodological approaches
across present and future forest diversity experiments.

2 | BEF-CHINA AS A CASE STUDY OF A
LARGE TREE DIVERSITY EXPERIMENT

BEF-China is the first tree diversity experiment in the humid sub-
tropics, established 2009/2010 in southeast China (Xingangshan,
Jiangxi Province) with a total net area of 38.4 ha (Figure 1) dis-
tributed across two hilly landscapes (site A and B). The overall
design and establishment success of the experiment are provided
by Bruelheide et al. (2014) and Yang et al. (2013). A unique fea-
ture of the experiment is the large range of tree species richness
levels and different nonoverlapping species combinations within
different random and nonrandom (trait-driven) extinction sce-
narios. The size of the total species pool is 40 tree species, and

FIGURE 1 Example of a large tree
diversity experiment: (a) partial view of
site A and (b) site B of the BEF-China
experiment seven and six years after
planting, respectively. (c) Monoculture
plot of Triadica cochinchinensis (site A)
and (d) eight-species tree mixture of
Castanea henryi, Castanopsis sclerophylla,
Choerospondias axillaris, Liquidambar
formosana, Nyssa sinensis, Quercus
serrata, Sapindus saponaria, and Triadica
sebifera (site A). To increase generality of
BEF relationships, the experiment was
established at two sites (about 5 km apart)
with only small overlap of species pools.
Photographs: S. Trogisch
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richness is varied along a log-2 series from monocultures up to
16 species with an additional richness level of 24 species for the
most diverse plots. The experiment contains more than 500 plots
of 25.82 m x 25.82 m area (in horizontal projection), each planted
with 400 trees in a regular grid of 20 rows x 20 columns. In two
of the random extinction scenarios, tree diversity is factorially
crossed with shrub diversity planted in between the trees at the
same density as those. The experiment has been established on
sloped terrain that allows assessing plant diversity effects on the
reduction in soil erosion—an ecosystem service of high environ-
mental importance in rain-laden southeast China.

To separate tree diversity effects from influences of abiotic en-
vironmental covariates, environmental heterogeneity was quanti-
fied by assessing local and regional topography, microclimate, and
edaphic conditions at the beginning of the experiment; in relation
to the term landscape, we refer to this environmental heterogeneity
as “ecoscape” (Bruelheide et al., 2014; Scholten et al., 2017). A wide
range of functional responses and processes is being studied, such as
tree growth, soil erosion, plant functional traits, importance of plant
genetic diversity, plant-insect interactions, and nutrient cycling, in-
cluding trophic interactions with microbial and animal decomposers.
Rather than presenting an exhaustive compilation of currently ob-
tained measurements, we provide a concise overview on key aspects
of forest ecosystem functioning to illustrate the broad range of meth-
ods applied (Figure 2, Table 1). It is clear that the presented methods
cannot serve as a blueprint for other tree diversity experiments but
should be rather regarded as stimulus to rethink methodical con-
cepts and approaches for large cooperative projects and networks.
We begin with methods for assessing plant growth and facets of tree
diversity (leaf functional trait diversity and tree genetic diversity) and
extend the scope to multitrophic interactions, nutrient cycling, and

soil erosion.

(b)
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2.1 | Plant biomass production and tree growth

2.1.1 | Aboveground tree biomass and productivity

The adequate assessment of tree biomass production in large BEF
experiments is critical to investigate the influence of different facets
of tree diversity (species richness, presence of particular species, spe-
cies composition, functional diversity, and genetic diversity) on tree
growth at the individual, neighborhood, and plot (= community) scale.
Basically, tree biomass production is quantified by repeated meas-
urements of tree size variables and subsequent calculation of tree
biomass based on allometric equations, avoiding artefactual species
identity effects which can be a result of using different functions
for different species (e.g., Forrester, Benneter, Bouriaud, & Bauhus,
2017). However, comprehensive annual inventories with measure-
ment of basal diameter, diameter at breast height (DBH, caliper, and
measurement tape), and tree height (graduated pole for small trees
and hypsometer) for all planted trees often exceed available project
resources such as workforce and time. Therefore, in most cases, there
is a trade-off between the number of sampled plots and the number
of sampled trees. One solution is to carry out these measurements
on a section within plots. In BEF-China, the central 16 of the 400
trees in every plot were defined as a core area and chosen for annual
measurements.

In addition to quantifying woody biomass, leaf turnover has to
be considered as a significant part of net primary production. Leaf

FIGURE 2 Range of methodical
approaches applied in BEF-China to study
effects of tree diversity including leaf
functional trait diversity (5) and genetic
diversity (6) on plant biomass production
and tree growth (1 + 2 = aboveground
and belowground tree biomass and
productivity, 3 = tree growth and canopy
architecture, 4 = herb-layer biomass and
diversity), aboveground multitrophic
interactions (7 = herbivory, 8 = plant-fungal
pathogens interactions, 9 = trophobiosis),
belowground microbial interactions

(10 = microbial diversity, 11 = microbial
biomass and activity), nutrient cycling
and soil erosion (12 + 13 = leaf litter

and deadwood decomposition, 14 = soil
fertility and C storage, 15 = soil erosion).
Numbers in this figure reflect numbering
of ecosystem functions and variables in
Table 1

production, herbivory, and mortality can be determined easily and
cost-effectively by regular monitoring of marked leaf cohorts on se-
lected tree individuals (Brezzi et al., 2017; X. Li, unpublished data).
At the beginning of the observation period, branches are marked and
leaves counted. Subsequent censuses can follow at for example half-
yearly intervals, but interval length can be shorter during times of in-
tensive growth because variable interval lengths can be accounted for
using offsets in the data analysis (Egli & Schmid, 2001). Effects of tree
species richness and time-dependent covariates on leaf demographic
patterns can then be estimated (Castro-lzaguirre, 2016). Once trees
have reached a certain height, community litter and seed production
can be determined with litter traps (Huang et al., 2017).

The leaf area index (LAI), defined as the ratio of projected foliage
area to ground area, is an important structural variable for key eco-
physiological processes (e.g., energy interception and transpiration).
Most commonly, LAl is indirectly measured as interception of pho-
tosynthetically active radiation (PAR) or by analysis of hemispherical
photographs (Castro-lzaguirre et al., 2016; Peng, Schmid, Haase, &
Niklaus, 2017). Both methods have their advantages and disadvan-
tages, which are further discussed in Asner, Scurlock, and Hicke (2003)
and Bréda (2003),

2.1.2 | Belowground tree biomass and productivity

Fine roots (diameter < 2 mm) are the most active part of the root
system (Asaye & Zewdie, 2013), interacting with soil microflora and
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TABLE 1 Overview of methods for the assessment of key ecosystem functions and variables in tree diversity experiments. The spatial
assessment level can be the individual tree (T), the local neighborhood (N) for studying tree-tree interactions, and the plot (P). References
specific to the BEF-China tree diversity experiment are marked with an asterisk. Temporal scope and measurement intervals for respective
methods have been adapted to the requirements of BEF-China and may depend on research focus and environmental setting

No.

Ecosystem
function/
variable

Method

Plant biomass production and tree growth

1

2

3

4

Aboveground
biomass and
productivity

Belowground
biomass and
productivity

Tree growth
and canopy
architecture

Herb-layer
biomass and
diversity

Repeated measure-
ment of DBH (caliper,
measurement tape,
and dendrometer)
and height (graduated
pole and hypsometer)

Repeated assessment
of marked leaf
cohorts

Litter traps

Leaf area index (LAl)/
hemispheric
photography

Soil cores

Ingrawth cores

Minirhizotrons

Terrestrial laser
scanning (TLS)

Herb-layer monitoring

Details/considerations

Often only applicable for a subset
of inventoried tree individuals
(e.g., central 4 x 4 individuals).
Allometric equations required for
biomass calculation.

Species-specific leaf formation and
longevity can be studied. Method
restricted to young trees due to
limited canopy access.

Determination of litter production
and shed leaf area. Allows
quantification of nutrient fluxes
from canopy to soil.

Litter collection from traps on
regular basis time-consuming.
Three litter traps per plot in core
area (4 x 4 trees)

Repeated measurements in central
plot area (6 x 6 trees) allow LAI
quantification during stand
development.

Digital hemispherical photogra-
phy using a fish-eye device less
sensitive to uneven sky
brightness.

Destructive method for measuring
root biomass, root distribution,
and nutrient content. Image
analyses of root scans can
provide additional information on
root diameter and length.

Destructive method for measuring
root productivity.

Nondestructive
assessment of fine-root dynamics
in situ.

Three-dimensional (3D) structural
elements of trees.
Rapid, nondestructive, accurate,
and extensive measurements of a
large number of individual trees
over time possible.

Vegetation survey by
transect-method
(for inventory data). Additional
composition analysis in
subplot surveys.
Biomass harvest
in 0.5 m x 0.5 m quadrates.

Temporal scope

Annual
inventory.

Half-yearly
intervals.

Biweekly litter
collection over
several years.

Annual
measurement.

Annually or less
frequently.

Ingrowth core
retrieval after
1 year.

Pictures taken
twice per year.

Annually or less
frequently.

Annually or less
frequently.

Spatial
assessment
level (T/N/P)

N/P

N/P

T/N/P

T/N/P

T/N/P

T/N

N/P

References

Clark, Wynne, and
Schmoldt (2000)

Clark et al. (2001)

Li, Hardtle, et al. (2014)*

Reich, Uhl, Walters,
Prugh, and Ellsworth
(2004)

Bernier, Hanson, and
Curtis (2008)

Asner et al. (2003)
Jonckheere et al. (2004)
Peng et al. (2017)*

Sun et al. (2017)*

Lei, Scherer-Lorenzen,
and Bauhus (2012)
Sun et al. (2017)*

Taylor et al. (2014)

Li, Hess, et al. (2014)*

Both et al. (2011)*
Ampoorter et al, (2015)
Germany et al. (2017)*

(Continues)
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TABLE 1 (Continued)

Ecosystem
function/
variable

No. Method

Facets of tree diversity

5 Leaf Near-infrared
functional spectroscopy (NIRS)
trait
diversity

6 Genetic Maternal seed families,
diversity phytometer plants

Aboveground multitrophic interactions

7 Herbivory Quantification of leaf

damage (one-time

measurement)
8 Plant—fungal Foliar fungal
pathogens pathogens
interactions assessment

9 Trophobiosis ~ Trophobiosis as model

system

Belowground microbial interactions

10 Micrabial
diversity

Meta-barcoding of
rhizosphere soils
using next-generation
sequencing platforms

TROGISCH et AL

[Open Acces=]

Details/considerations

Rapid and cost-effective
assessment of important leaf
traits to identify linkages
between functional traits and
ecosystem processes.

Portable NIRS allows nondestruc-

tive and highly repeated
measurements in situ.

Trait-specific calibration required.

Influence of seed family identity/
genetic diversity on tree
performance.

Allows quick assessment of
herbivory on a large number of
trees.

Leaf age important, thus
assessment of only young and
fully expanded leaves.

Visually estimated leaf damage
verified by leaf scans.
Assessment of 6 x 6 trees in
monocultures to 12 x 12 trees in
more species-rich plots.

Quantification of pathogen
infestation using a percentage
class system of leaf damage with
six damage classes.
Susceptibility to pathogens as an
additional species trait.
Assessment of 6 x 6 trees in
monocultures to 12 x 12 trees in
more species-rich plots.

Systematic survey of aphids and
tending ants on at least 20 young
leaves per tree. Ideal model
system to quantify multitrophic
interactions.

Assessment of 6 x 6 trees in
monocultures to 12 x 12 trees in
more species-rich plots.

Determine the structural and
functional diversity and
community composition of soil
microbes (mainly fungi and
bacteria).

Central plot area (12 x 12 trees).

Spatial
assessment
Temporal scope  level (T/N/P)
Intraday to T
annual
measurements.
Annual T
measurements.

Annually orless T
frequently.

Annually orless T
frequently.

Monthly survey T
during growing
season.

Annual
measurements
or less
frequently.

T/N

References

Serbin et al. (2014)

Avolio, Beaulieu, Lo, and
Smith (2012)

Zeng, Durka, & Fischer,
(2017)*

Zeng, Durka, Welk, et al.
(2017)

Hahn et al. (2017)*

Schuldt et al. (2012)*
Schuldt, Bruelheide,
etal. (2015)*

Hantsch, Bien, et al.
(2014)*

Staab et al. (2015)*

Wau et al. (2013)*
Lentendu et al. (2014)

(Continues)
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TABLE 1

Ecosystem
function/
No. variable

11 Microbial
biomass and
activity

Nutrient cycling

12 Leaf litter
decomposi-
tion

13 Deadwood
decomposi-
tion

14 Soil fertility
and C
storage

Soil erosion control

15 Throughfall
kinetic
energy

15 Soil erosion
(interrill)

15 Soil erosion
(slope scale)

(Continued)

Method

Phospholipid fatty acid

analysis (PLFA)
combined with
high-throughput
method of lipid
extraction; 15N
dilution method,
extracellular enzyme
activity assays (EEA)

Litterbags with
site-specific or
standardized leaf
litter

Litterbags with
standard-sized wood
pieces

Schematic soil
sampling combined
with near-infrared
spectroscopy (NIRS)

Splash cups

Microscale runoff
plots

Erosion sticks

Details/considerations

Determination of microbial
community composition and total
microbial biomass.

Measurement of gross rates of N
mineralization.
Central plot area (12 x 12 trees).

Inexpensive, highly repeatable and
time-efficient.
Standardized litter substrates
(e.g., tea bags) facilitate global
synthesis studies.
Neglects effects of soil
macrofauna.

Limited to smaller wood pieces.
Size of wood samples important
for decomposer fauna.

Easy exclusion of certain
decomposers (termites) by mesh
size.

Facilitate inexpensive analyses and
rapid assessment of large number
of samples in subsequent
inventories.

Allow indirect determination of
rainfall kinetic energy at many
measurement points in parallel
during single rainfall events.
Calibration by laser distrometer
required. Eight splash cups in
central plot area (6 x 6 trees).

Determination of surface runoff
and sediment discharge.
Suitable to study vegetation
effects on soil erosion processes.
Five runoff plots per plot.

Simple and cost-effective method
to quantify large-scale and
long-term soil erosion. Nine
erosion sticks per plot.

Ecology and Evolution ! Jﬂ
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Spatial
assessment

Temporal scope  level (T/N/P)  References

Annual T/N Oates et al. (2017)
measurements Pei et al. (2016)*
or less Pei et al. (2017)*
frequently.

Duration about N/P Keuskamp et al. (2013)
12 months Trogisch et al. (2016)*
with usually Seidelmann et al. (2016)*
several
retrieval dates.

Wood pieces N/P Russell et al. (2015)
retrieval after Eichenberg et al. (2017)"
one and
3 years.

Annual N/P Scholten et al. (2017)*
measurements Ludwig et al. (2002)
or less
frequently.

Series of rain T/N/P Scholten et al. (2011)*
events. Goebes, Bruelheide,

et al. (2015)*

Series of rain T/N/P Seitz et al. (2015)*
events, Seitz et al. (2016)"

Reading of the N/P Shi et al. (2011)

height above
ground once
per year.

fauna and being involved in nutrient and water uptake (Jackson et al.,
1996). Thus, understanding fine-root dynamics is pivotal for under-
standing belowground interactions as well as tree growth and survival
(McCormack et al., 2015). However, measuring belowground bio-
mass and productivity is challenging as usually destructive sampling
is required to separate the roots from the soil (Brassard et al., 2013).
Furthermore, on sloped plots, such those in BEF-China, an important
question regarding comparability with other experiments is whether
layers of soil depth should be measured perpendicular to the soil

surface or to its horizontal projection. Here, our recommendation is
to use a direction perpendicular to the soil surface (Sun et al., 2017).
Standing fine-root biomass can be measured using the soil core
method. Soil cores (10 cm in diameter, 30 cm in depth) are usually
taken in the middle of two neighboring trees standing in the same
horizontal row (Sun et al., 2017). Depending on soil type, fine roots
should be sampled by soil depth increment to estimate the vertical
variance of standing biomass. In BEF-China, we were able to assign
washed roots to each of the 40 species using root morphology. This



Publications

206

TROGISCH ET AL

10660 Wi LEY_Ecology and Evolution

allowed us to estimate the contribution of different species to ove-
ryielding of total community-level fine-root biomass in mixtures (Bu
et al., 2017; Sun et al., 2017). In addition, roots can be scanned for
analysis of diameter and specific root length (Bu et al., 2017; Sun
etal.,, 2017). For estimation of annual production of fine roots, we
recommend the traditional method of ingrowth cores (Sun et al.,
2017). Right after taking the soil core for standing biomass, the cav-
ity is refilled with sieved soil from the same plot. Ingrowth cores are
resampled after 1 year, and biomass of both live and dead fine roots
is measured.

As a nondestructive method, minirhizotrons have been developed
to monitor fine-root dynamics along time intervals (Guo et al., 2008;
Majdi, 1996; Taylor, Beidler, Strand, & Pritchard, 2014). Minirhizotron
tubes (typically length 20 cm and diameter 7 cm) are installed in the
middle of two conspecific (in monoculture) or heterospecific (in mix-
tures) neighbored trees in an angle of 45° to the soil surface. Tubes
are scanned at intervals, for example, twice per year in May and
November, and pictures analyzed for fine-root length, area, amount,
longevity, and turnover rate.

2.1.3 | Tree growth and crown architecture

Understanding the mechanisms of biodiversity effects in forests re-
quires information about crown structure and space partitioning be-
tween trees within and between species (Jucker, Bouriaud, Coomes,
& Baltzer, 2015; Niklaus, Baruffol, He, Ma, & Schmid, 2017; Pretzsch,
2014; Schmid & Niklaus, 2017; Williams, Paquette, Cavender-Bares,
Messier, & Reich, 2017). However, conventional measurements are
time-consuming and do not deliver much detail. In recent years, ter-
restrial laser scanning (TLS) has been established as a time-efficient
and nondestructive approach for the measurement of the 3D struc-
tural elements of trees (Calders et al., 2015; Liang et al., 2016). Based
on static laser range measurements, TLS delivers high-resolution 3D
point clouds with accuracies in the range of millimeters. In order to ob-
tain a complete 3D picture of all focal trees in each plot, several scans
from different angles are required (Watt & Donoghue, 2005). Setting
up the instrument and acquiring the 3D data are generally straightfor-
ward and fast. In the case of the BEF-China experiment, the central
part of a plot with 6 x 6 trees can be captured in high detail (more than
100,000 points per tree) from nine scans within 45 min (Li, Hess, von
Wehrden, Hardtle, & von Oheimb, 2014). Strong winds and occlusion
by foliage may adversely affect the point cloud quality (Coté, Fournier,
& Egli, 2011). Therefore, scans should to be performed under wind-
less and—if possible—under leaf-off conditions. Thus, in stands with
deciduous trees, the preferred time for applying TLS is winter. From
the resulting point clouds, a number of conventional (i.e., height and
DBH), but also more complex variables (i.e., branch demography,
crown volume, and wood volume), can be obtained for every tree
(Kunz et al., 2017; Raumonen et al., 2013). Meanwhile, the extrac-
tion of these variables has become highly automated. However, the
separation of tree individuals from a large point cloud with many trees
still is a challenge, and so far, is predominantly carried out manually.
With repeated TLS measurements, it is possible to quantify spatial

dynamics of individual crowns and canopy filling using cylinder-based
(Raumonen et al., 2013) or voxel-based (Hess, Bienert, Hardtle, & von
Oheimb, 2015) point cloud modeling approaches.

2.1.4 | Herb-layer biomass and diversity

It has been shown that trees exert strong controls on herb-layer bio-
mass, composition, richness, and invasibility (e.g., by altering resource
availability and variability) (Ampoorter et al., 2015; Barbier, Gosselin,
& Balandier, 2008; Knight, Oleksyn, Jagodzinski, Reich, & Kasprowicz,
2008; Mélder, Bernhardt-Rémermann, & Schmidt, 2008). Considering
the special role of the herb layer in maintaining the structure and func-
tion of forests (Gilliam, 2007), improved understanding of how tree
diversity affects herb-layer attributes and seedling establishment is
critical. In this respect, tree diversity experiments allow for assess-
ing the relationships between forest overstory and understory species
richness, composition, and productivity, and how these relationships
are influenced by spatial environmental heterogeneity and forest
stand age (Both et al., 2012).

In large-scale forest experiments, full-vegetation relevés are
laborious and time-consuming. At the plot level, W-transects (i.e.,
linear transects in the shape of a W) provide a time- and resource-
efficient method for repetitively assessing herb-layer species in-
ventory as species richness and composition with information on
estimated proportions in cover on a large number of plots. In ad-
dition, herb-layer vegetation surveys performed on separate and
integrated subplots (Germany, Bruelheide, & Erfmeier, 2017) can
be used to explicitly test if the relationships between tree diversity
and herb-layer attributes change under variable environmental con-
ditions (Reich et al., 2001; Weigelt, Weisser, Buchmann, & Scherer-
Lorenzen, 2009).

We recommend an integrated manipulation of resource supply and
biotic impact (e.g., fertilization, annual weeding, no weeding, and func-
tional group removal) at the subplot level. Biomass harvest by plant
functional groups (forbs, grasses, climbers, and woody seedlings) on
randomly located quadrates within each subplot can serve as a proxy
for overall herb-layer productivity and its functional group compo-
nents. In combination with a vegetation survey, this approach allows
assessing relationships between tree species richness and the pres-
ence of particular tree species in a plot with the richness, composition,
and productivity of the herb layer. Such a combined approach reveals
the extent to which these relationships change at different environ-
mental settings when taking spatial heterogeneity at the site level into
account.

2.2 | Facets of tree diversity

2.2.1 | Leaf functional trait diversity

A primary goal of BEF research is to identify linkages between func-
tional plant traits and ecosystem processes (de Bello et al., 2010; Diaz
et al., 2007). In particular, the detection of key functional traits and
their interrelationships and trade-offs is of great importance to derive
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a mechanical understanding of ecosystem functioning. For example,
the link between key functional leaf traits (e.g., nitrogen concentration
and specific leaf area) and photosynthetic capacity as well as carbon
capture has been well established in across-site studies (Wright et al.,
2004), but also occurs among subtropical forest tree species within
sites. However, destructive sampling and time-consuming analyses
often limit sample size. Thus, it is desirable to assess plant traits in-
cluding intraspecific trait variation in high spatial and temporal resolu-
tion by nondestructive and cost-efficient high-throughput methods.
Near-infrared reflectance spectroscopy (NIRS) has only recently been
introduced to ecological research (e.g., Serbin, Singh, McNeil, Kingdon,
& Townsend, 2014; Zuppinger-Dingley, Flynn, Brandl, & Schmid,
2015), although it is a well-established method for plant chemical
analyses. As many leaf properties such as foliar C, N, phenolics, or leaf
dry-matter content show specific NIR reflectance spectra, target leaf
traits can be easily assessed at different scales, from ground leaf pow-
der to fresh leaves, entire tree canopies or forest ecosystems, once
compound-specific calibrations have been established (Couture et al.,
2016; Foley et al., 1998). However, calibration requires a sufficiently
high number of reference samples (approx. 200-300) with known
trait information to vyield reliable predictions for NIR spectrometry
(Eichenberg et al., 2015).

Special attention has been given recently to field portable instru-
ments which allow on-site and nondestructive measurements, thereby
making sample preparation and transport unnecessary (Galuszka,
Migaszewski, & Namiesnik, 2015; Serbin et al., 2014). Portable spec-
trometers accelerate data collection and make it possible to consider
intraspecific trait variation, for example, within-canopy variation or
temporal variation of leaf traits. An initial study conducted in the BEF-
China experiment on 4,892 leaves from 2,759 trees showed that im-
portant leaf traits (e.g., leaf dry-matter content, specific leaf area, and
C:N ratio) could be reliably predicted by portable field spectroscopy
(Tobias ProB, unpublished data). It has been shown that quality of pre-
diction differs among leaf traits because the high NIR absorption of
water can reduce spectral information of other target components in
fresh leaf samples. However, high measuring resolution outperforms
potential drawbacks such as lower data quality and calibration efforts
(Galuszka et al., 2015), which makes portable field spectroscopy an ef-
fective high-throughput method for assessing leaf traits in large tree
diversity experiments.

2.2.2 | Genetic diversity

Genetic diversity, especially heritable genetic variation in plant traits
and in trait plasticity, causes large variation in plant performance
(Frankham, 1999; Zeng, Durka, Welk, & Fischer, 2017) and repre-
sents the raw material for future adaptive evolution. Genetic diversity
should therefore be considered as an additional facet of diversity that
can influence plant performance in biodiversity experiments (Booth &
Grime, 2003; Hahn et al., 2017; Schmid, 1994; Zeng, Durka, & Fischer,
2017). Genetic variation is generally found in studies on variation be-
tween plants from different genetic entities, such as provenances,
populations, or maternal seed families. Moreover, different genotypes
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often respond differently to environmental variation resulting in gen-
otype-environment interactions (Stearns, 1992).

In experimental analyses of biodiversity-functioning relation-
ships, two issues should be considered. First, controlling for varia-
tion among genetic entities of the planted material (e.g., seed families
and provenances) very much increases the resolution and statistical
power for finding variation at the species level. Thus, in tree diversity
experiments, the genetic identity of planted trees should be consid-
ered, for example using maternal seed families. Seeds of a maternal
plant representing a seed family need to be collected, and seedlings
need to be raised with recorded seed family identity. Seed family
identity then needs to be considered during the experimental set-up
to control genetic variation, for example, by planting representatives
of an equal number of seed families in all plots. Moreover, genetic
variation can be manipulated using different numbers of seed fami-
lies, for example, in order to assess the relative role of genetic vari-
ation at the inter- and intraspecific level (Hahn et al., 2017; Zeng,
Durka, & Fischer, 2017).

Second, the omnipresence of genotype-by-environment interac-
tions suggests that different genotypes may respond differently to ex-
perimental environments. Thus, members of seed families planted into
experimental plots of different species diversity may serve as phytom-
eter plants (Gibson, 2002; Mwangi et al., 2007) for diversity effects.
Such phytometer plants offer the advantage that they can be planted
into all experimental plots.

In the BEF-China experiment, trees of known seed family were
used (1) as matrix species in the main experiment, where for 12 species
(~58.000 planting positions), seed family identity was recorded; (2) in
a factorial species diversity x genetic diversity experiment, where ge-
netic variation was manipulated using different numbers of seed fam-
ilies (Hahn et al., 2017); (3) as an additional phytometer by planting
Machilus thunbergii seed families into each plot of the experiment.

Using seed families as matrix species or as phytometers allows to
assess the heritability, that is, the amount of heritable genetic vari-
ation, in plant performance or plant traits using quantitative genetic
methods and assuming a certain sibship coefficient between maternal
seed families (e.g., % for the case of half-sib relations; Falconer, 1989;
Lynch & Walsh, 1998; Zeng, Durka, Welk, et al., 2017). Moreover, ge-
netic variation in phenotypic trait plasticity will become apparent, if
seed families respond differently to differences between experimental
treatments (Scheiner & Lyman, 1989). In conclusion, the use of multi-
ple maternal seed families is a powerful experimental tool to increase
the statistical power to detect variation at the species level, to quan-
tify the heritability of plant traits and their plasticity, and to experi-
mentally manipulate genetic variation.

2.3 | Aboveground multitrophic interactions

2.3.1 | Herbivory

Herbivory directly affects resource allocation, trait expression, and
plant growth (Agrawal, 2007; Coley & Barone, 1996; Viola et al,,
2010). These factors all influence plant community composition,
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primary production, and nutrient cycling (Schmitz, 2008). Large-
scale herbivory assessments often trade-off time efficiency and
sampling accuracy, and quantification of leaf damage has become
a standard method. Leaf damage is measured by either record-
ing herbivory rates (increase in damage between two time points)
or by measuring standing damage levels (i.e., one-time measure-
ments). For large-scale BEF experiments, we recommend the lat-
ter, less time-consuming method as a quick assessment tool (see
also Johnson, Bertrand, & Turcotte, 2016). However, care needs to
be taken as differences in leaf age can compromise comparisons
among species (Poorter, van de Plassche, Willems, & Boot, 2004).
We therefore recommend to use young (current season) leaves. If
time of leaf flush differs substantially among tree species (which is
not the case in BEF-China; Schuldt et al., 2012), these differences
need to be considered in assessment timing and data interpreta-
tion. Most studies visually estimate leaf damage, by either com-
paring total and damaged leaf area (Poorter et al., 2004) or using
predefined damage classes (Schuldt, Bruelheide, et al., 2015; Sobek,
Scherber, Steffan-Dewenter, & Tscharntke, 2009; Unsicker et al.,
2006; Vehvildinen, Koricheva, & Ruohomaiki, 2007). For the BEF-
China project, predefined damage classes (0%, <5%, <25%, <50%,
<75%, and >75%) have proven useful. Estimation accuracy has been
assessed with digital scans of randomly collected leaves (Schuldt
et al, 2012). For each tree, seven young, fully expanded leaves
are screened on each of three randomly selected branches. With
increasing tree height, branches are selected to represent upper,
mid, and lower crown conditions. The sampling design follows the
assessment of tree growth, comprising 6 x 6 individuals in mono-
cultures and two-species mixtures and up to 12 x 12 individuals in
the more species-rich plots. As the number of trees of a certain
species per plot decreases with increasing tree diversity (because
of constant planting density), an increase in the number of sampled
trees per plot is necessary to allow for species-level analysis at the
tree level. Such analysis requires that all species are represented
by a similar amount of tree individuals irrespective of the level of
tree diversity (Bruelheide et al., 2014; Schmid, Baruffol, Wang, &
Niklaus, 2017).

2.3.2 | Plant-fungal pathogens interactions

Parasitic interactions between plant hosts and fungal pathogens often
cause a reduction in individual plant fitness by fungal consumption of
photosynthetic products and negatively affect photosynthesis rates
(Alves, Guimaraes, Chaves, DaMatta, & Alfenas, 2011; Berger, Sinha,
& Roitsch, 2007; Mitchell, 2003). The diversity and species compo-
sition of the plant host community affect fungal dispersal, infection,
and infestation, mainly through negative density effects (Hantsch,
Bien, et al., 2014; Hantsch, Braun, et al., 2014; Moore & Borer, 2012;
Ostfeld & Keesing, 2012).

One advantage of a noninvasive rapid leaf damage assessment is
the investigation of a high number of leaves and individuals of differ-
ent plant species. For species comparability, we only use well-formed
leaves from the current year which are macroscopically screened for

leaf damage caused by fungal spot and lesion symptoms, mildews,
rusts, and sooty molds, respectively, at the end of the vegetation pe-
riod. Similar to the herbivory assessment, total fungal damage is evalu-
ated by damage classes (i.e., 0%, <5%, £25%, <50%, <75%, and >75%)
on seven leaves randomly chosen from three different branches (rep-
resenting different crown conditions), which were randomly selected
per tree individual. The fungal damage assessment included (like other
tree-level measurements) an increasing number of tree individuals
with increasing tree diversity to ensure a representative number of
individuals per tree species per plot (i.e., 6 x 6 individuals in mono-
cultures and two-species mixtures, 9 x 2 individuals in four-species
mixtures, 12 x 12 individuals in eight-, 16-, and 24-species mixtures).

In contrast to the more common microscopic in-depth investi-
gation of fungal pathogens (Hantsch, Braun, Scherer-Lorenzen, &
Bruelheide, 2013; Hantsch, Bien, et al.,, 2014) or identification of fo-
liar fungi with molecular high-throughput sequencing (Nguyen et al.,
2017), fungal damage assessment needs not only less time allowing
a higher sample size, but also works without specific expertise about
fungal species.

2.3.3 | Trophobiosis

Tritrophic interactions between plants, sap-sucking Hemiptera (e.g.,
aphids), and tending ants, so-called trophobioses, are common in for-
ests across climate zones (lvens, von Beeren, Bliithgen, & Kronauer,
2016) and thus an ideal model system to quantify multitrophic interac-
tions in forest BEF experiments.

We suggest and use in BEF-China the following simple protocol
for trophobiotic interactions that allows time-efficient sampling of
large numbers of trees (Staab, Bliithgen, & Klein, 2015). On each
tree, at least 20 young leaves together with the attached branch sec-
tions are visually inspected for the occurrence of sucking Hemiptera
and tending ants. If possible, surveys should be carried out monthly
covering the main growing season, For Hemiptera and ant species
that cannot be reliably identified in the field, voucher specimens are
collected and stored in 70% ethanol for later identification. To en-
sure the sampling of a sufficiently large number of individuals of all
tree species also in high-diversity plots, we suggest increasing the
number of sampled tree individuals with the tree diversity level of
a given plot (see Herbivory). The data can be analyzed for the effect
of tree species identity and tree species diversity. The R-package
“bipartite” offers all tools for ecological network analyses (Dormann,
Friind, Bluthgen, & Gruber, 2009). From our experience, network-
level specialization H," (Bliithgen, Menzel, & Bliithgen, 2006) and
weighted generality G, (Bersier, Banasek-Richter, & Cattin, 2002)
are particularly useful to analyze the specificity and generality of
plant-Hemiptera and Hemiptera-ant associations in response to
tree diversity.

Besides simple and efficient sampling and data evaluation, a great
advantage of trophobioses is that two fundamentally different forms
of trophic interactions, consumption and mutualism (Thébault &
Fontaine, 2010), can be studied simultaneously. If aphids are attacked
by parasitoids, another trophic interaction can be added to the study
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system allowing an assessment of the ecosystem function parasitism
(e.g., Gagic et al., 2011).

2.4 | Belowground microbial interactions

2.4.1 | Microbial diversity

Soil microbes are crucial components of terrestrial ecosystems. They
deliver key ecosystem functions and influence important ecosystem
processes, including nutrient cycling and nutrient acquisition (Bardgett
& van der Putten, 2014). Recent advances in next-generation se-
quencing (NGS) techniques coupled with meta-barcoding approaches
and the associated bioinformatics and statistical analysis tools enabled
microbial ecologists to work in large-scale tree diversity experiments
to shed light on the poorly understood role of microbial diversity on
BEF relationships in forest ecosystems.

Although the advance in NGS and the possibility to analyze a large
number of samples have led to large-scale and integrated biodiver-
sity studies at the global scale (Shoemaker, Locey, & Lennon, 2017),
standardized soil sampling, storage, and transportation across conti-
nents still are a challenge. Accordingly, we developed a soil sampling,
freeze-drying, and preservation protocol that guarantees transporta-
tion of soil samples without nucleic acid degradation between labo-
ratories across continents (WeiBbecker, Buscot, & Wubet, 2017). The
soil microbial nucleic acid extraction protocols have been optimized
to a high-throughput protocol, and the classical PCR-based microbial
diversity analysis protocols using microbial rDNA-based barcodes
(e.g., 16S for bacteria and ITS for fungi) have been adapted to meta-
barcoding protocols using NGS platforms (Lentendu et al., 2014; Wu
etal., 2013).

Another crucial point is the sampling strategy. Soils are anything
but a homogenous compartment, and even within each horizon, they
are a complex patchwork of microhabitats with variable levels of re-
sources and very specific communities. In BEF experiments, a crucial
decision is whether to sample the roots and rhizosphere of each plant
species used in the design or to sample the bulk soil. The rhizosphere
has a selective filtering effect differing between plant species, while
the bulk soil may better reflect the general effect of a plant biodiver-
sity level on the whole microbial community. Even for mycorrhizal
fungi directly linked to plant roots, it was shown in grassland studies
that analyzing bulk soil better captures biodiversity than focusing on
roots (Hempel, Renker, & Buscot, 2007). In addition, preliminary anal-
yses in BEF-China found not only the highest soil microbial biomass
and activities in the uppermost horizon under the plant litter, but also
that this was the most reactive soil layer to variations in the biodiver-
sity and age structure of the trees and understory (Wu et al.,, 2012).
Based on our experience, we recommend that broad analyses of soil
microbial communities in BEF experiments should be based on multi-
ple samples from the upper soil layer at equal distance from neighbor
plants. These samples can be pooled into a composite sample from
which the DNA is extracted and analyzed (Wu et al., 2013).

Integrating the microbial species (operational taxonomic units—
OTU) abundance matrices with other co-occurring organisms and
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environmental variables and using ecological statistical analysis tools
enabled us to assess the significance of soil microbes on inter- and
intrakingdom interaction networks, multitrophic interactions, forest
ecosystem functions, and multifunctionality.

2.4.2 | Microbial biomass and activity

The effects of tree species diversity on soil microbial community
structure and activity remain poorly understood, despite the impor-
tant role of soil microorganisms for ecosystem functioning (Naeem
et al., 2000; Zak, Holmes, White, Peacock, & Tilman, 2003).

Phospholipid fatty acid analysis (PLFA) has been validated as a
valuable approach of investigating soil microbial community com-
position and viable microbial biomass (Bartelt-Ryser, Joshi, Schmid,
Brandl, & Balser, 2005; Frostegard & Baath, 1996; Frostegard, Tunlid,
& Baath, 2011; Pei et al,, 2016; Vestal & White, 1989). Recently, a
high-throughput method of lipid extraction and analysis has been de-
veloped, which allows for lipid profiling for large ecosystem studies
(Gutknecht, Field, & Balser, 2012; Oates et al., 2017). In this method,
the initial soil chloroform extraction is carried out in the standard
procedure (“modified” Bligh and Dyer (1959) extraction) and then fol-
lowed by the FAME procedure of saponification, acid methylation, and
extraction (Schutter & Dick, 2000). This high-throughput method re-
tains the sensitivity of traditional PLFA methods, but allows for much
more rapid analysis of a large number of samples, for example enabling
us to demonstrate how tree species identity and growth traits inter-
act with soil characteristics across a large number of tree species to
shape soil microbial growth (Pei et al., 2016). Another benefit of PLFA
analysis is that the bacterial, fungal, or total microbial carbon pools
can be calculated, for comparison with other measures of productivity
and carbon cycling (Schmidt, Schulz, Michalzik, Buscot, & Gutknecht,
2015).

Besides, microbial species composition it is also important to un-
derstand how forest diversity alters microbial functional processes.
To do this, we used a modification of the *N pool dilution approach
(Stange, Spott, Apelt, & Russow, 2007) based on traditional methods
(Booth, Stark, & Rastetter, 2005; Hart, Stark, Davidson, & Firestone,
1994). The N isotope pool dilution approach can quantify gross
rates of N mineralization, nitrification, and microbial immobilization.
The limitation of this method is that it necessitates the usage of fresh
soil and the usually laborious process of precipitating salt extractions
for isotopic analysis (Hart et al., 1994). For analysis of extractions, we
used a new spin mass system to analyze ®NO, and "”NH, directly
from liquid samples (Stange et al., 2007), nearly halving the processing
effort.

In addition to microbial nitrogen processing rates, soil microbial
decomposition potential, measured through extracellular enzyme ac-
tivities, is an important functional trait of microbial communities. For
example, we are using this method to establish how forest and litter
diversity alter decomposition through changes in soil microbial activ-
ities (Z. Pei, unpublished data). We examine extracellular enzyme ac-
tivity according to the method described by Saiya-Cork, Sinsabaugh,
and Zak (2002) and recently modified by DeForest (2009) and German
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et al. (2011). Due to the small-scale analysis in 26-well plates and the
use of multiwell plate-reader technology, rapid processing of a large
number of samples is feasible. With these methods, we are able to
process several hundred soil samples per campaign in order to capture
both individual-species and plot-level changes in microbial growth and
activity (Pei et al., 2016).

2.5 | Nutrient cycling

2.5.1 | Leaf litter decomposition

Decomposition of organic matter is a highly integrative process in
ecosystem biogeochemistry, which replenishes the pool of plant avail-
able nutrients, and releases photosynthetically fixed carbon back to
the atmosphere (Berg & McClaugherty, 2008). Species diversity ef-
fects on litter mass loss and nutrient release have been reported at the
level of plants and detritivores (Gessner et al., 2010; Hattenschwiler,
Tiunov, & Scheu, 2005).

Litterbags filled with a standard litter substrate are commonly used
to study diversity effects that act via changes in the microenvironment
induced by tree diversity or species composition. If leaf litter of tree
species planted in the experiment serves as standard substrate, the
home-field advantage should be considered as potential bias because
decomposition of plant litter might be faster on plots where the same
species is planted (Ayres et al., 2009; Freschet, Aerts, & Cornelissen,
2012). To increase comparability across decomposition studies, com-
mon tea bags have recently been suggested as standardized litterbags
and fast assessment tool (Keuskamp, Dingemans, Lehtinen, Sarneel,
& Hefting, 2013). This low-cost and time-efficient approach allows a
large sample size and can thus help to assess tree diversity effects on
decomposition dynamics by combining data from experiments across
the globe. However, the standard material used (green tea, rooibos
tea) is absent from the studied ecosystem, hence it will be difficult
to infer the multitude of mechanisms by which tree diversity may in-
fluence litter decomposition. Magnitude and direction of tree diver-
sity effects can also differ among litter substrates. Thus, to account
for possible species identity effects, plant litter with contrasting lit-
ter quality should be employed together as standard litter substrates
(Seidelmann et al., 2016). As with any other standard material used
(e.g., wheat straw, cotton strips, and standard litter of one species),
only tree diversity effects that act via changes in the microenviron-
ment can be assessed, but not any effects that act via the quality of
litter present in the ecosystem (Scherer-Lorenzen, 2008). Thus, in ad-
dition, we suggest to measure community-specific litter decomposi-
tion in the corresponding plots to account for the combined effect of
microenvironment and litter quality. Finally, to isolate the effects of
litter quality, single-species litterbags can be incubated in a common
plot providing a homogeneous environment (Trogisch, He, Hector, &
Scherer-Lorenzen, 2016).

In large tree diversity experiments, a high number of litterbags are
required to include as many plots as possible. For example, we used
a total of 3,618 bags which were exposed on 402 subplots in the
BEF-China experiment with bags retrieved after 2, 6, and 11 months

(Seidelmann et al., 2016). Thus, preparation time of litterbags includ-
ing collection of site-specific plant litter should not be underestimated.

The mesh should be UV-resistant in case bags are not buried but
are exposed to high solar radiation. The chosen mesh size strongly con-
trols the access for decomposer organisms, and a trade-off between
small mesh size (excluding macrofauna, but minimizing the loss of litter
fragments) and large mesh size (allowing access of most organisms, but
increasing the risk of losing litter fragments) exists (Bradford, Tordoff,
Eggers, Jones, & Newington, 2002; Prescott, 2005). To cope with this
trade-off, litter bags with a micromesh (e.g., 50 pm) at the bottom part
of the bag that has contact to the soil, and larger macromesh (e.g.,
5 mm) at the top of the bag can be used (Harmon, Nadelhoffer, & Blair,
1999).

2.5.2 | Deadwood decomposition

Deadwood is a key driver of ecosystem functioning in forests
(Cornwell et al., 2009; Harmon et al., 1986; Wirth, 2009) and one
of the most important components of forest ecosystem biodiver-
sity, carbon and nutrient cycling, energy flows, and soil-forming
processes (Harmon et al., 1986; Laiho & Prescott, 1999; Lindahl,
Taylor, & Finlay, 2002). On the one hand, care must be taken when
choosing the size of wood samples with respect to the scope of
individual studies. Smaller pieces allow a larger sample size with
a feasible amount of labor and space requirements in the field.
On the other hand, larger pieces can carry a higher diversity of
decomposers due to the fact that especially larger decomposer
species (e.g., cerambycid beetles) prefer larger wood pieces for
development. We chose standard-sized stem wood of 25 + 1 cm
length and 8 + 2 cm diameter (Eichenberg et al., 2017). The influ-
ence of certain deadwood decomposer organisms such as termites
and other invertebrates is studied using different mesh sizes in
a litterbag approach (Eichenberg et al.,, 2017). This allows a fast
assessment of abiotic controls on wood decomposition in rela-
tion to invertebrate plus fungal- and microbial-mediated versus
exclusively fungal- and microbial-mediated decay. Litterbags also
ensure that no samples or fragments of samples are lost in steep
terrain over the course of the experiment. In our case, replicated
bags with wood pieces were retrieved one and 3 years after depo-
sition. Similar to the tea bag index for leaf litter (Keuskamp et al.,
2013), a common protocol defining standard wood substrates (i.e.,
ice cream sticks from birch wood and chopsticks) would greatly
expand the comparability of wood decomposition rates for better
global predictions.

2.5.3 | Soil fertility and C storage

Soil fertility is an important covariate in the analysis of effects of
tree species richness on ecosystem functioning. Large forest BEF ex-
periments, in particular those in geomorphologically heterogeneous
landscapes, have inherently a considerable spatial variation in many
attributes that also influence soil nutrient availability and fertility (e.g.,
Scholten et al., 2017).
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Quantifying abiotic site conditions including soil nutrients is there-
fore critical for interpreting biodiversity effects on forest stand perfor-
mance. Moreover, regular inventories of sensitive soil nutrient pools
(e.g., content of available and N and P) in 5-year intervals may yield
important insights into how tree species richness and composition
modify soils during stand development. Tracking these plant-induced
temporal changes in soil properties (see ecoscape approach above)
permits the identification of forest compositions promoting nutrient
cycling and nutrient use efficiency (Richards, Forrester, Bauhus, &
Scherer-Lorenzen, 2010) and also the quantification of soil C accu-
mulation—an important ecosystem service (Diaz, Hector, & Wardle,
2009).

In the BEF-China experiment, initial soil conditions have been thor-
oughly mapped before forest establishment (Scholten et al., 2017).
Systematic soil sampling included taking nine soil cores in each plot
to a depth of 50 cm which were pooled per plot and soil layer (0-5,
5-10, 10-20, 20-30, and 30-50 cm). Soil fertility has been character-
ized by measuring total soil carbon, nitrogen, soil pH, cation-exchange
capacity, exchangeable cations, and base saturation. Many of these
properties can also be determined with sufficient accuracy through
near-infrared spectroscopy (NIRS) and mid-infrared spectroscopy
(MIRS), once calibrated for the particular soil property, to facilitate
inexpensive analyses and rapid assessment of large numbers of sam-
ples in subsequent inventories (e.g., Chen, Dong, Li, & Wang, 2017;
Ludwig, Khanna, Bauhus, & Hopmans, 2002), Where information is to
be gathered for entire soil profiles, the soils still need to be sampled
conventionally (e.g., with corers) before soil samples can be analyzed
with these indirect methods. For soils of the BEF-China experiment,
NIRS models were developed to replace the onerous Hedley method
employing a wet-chemical process of determining fractions of soil P
corresponding with different plant availability through sequential ex-
traction of samples (Niederberger et al., 2015). The potential of NIRS
to save time and costs is particularly high for soil properties that can-
not be determined through a single chemical analysis but require incu-
bation approaches or repeated extractions, for example, nitrogen and
carbon mineralization rates (e.g., Ludwig et al., 2002). In the context of
BEF experiments, the approach may also be very interesting to trace
the species origin of soil organic matter to disentangle the influence
of tree diversity on soil carbon stocks (e.g., Dobarco, van Miegroet,
Gruselle, & Bauhus, 2014).

2.6 | Soil erosion control

Large tree diversity experiments require a broad range of combined
techniques to assess soil erosion processes. Measurements address
the kinetic energy of raindrops (splash cups), runoff and sediment dis-
charge (runoff plots), and long-term monitoring (erosion sticks).
Splash cups consist of a plastic flask attached to a carrier system,
filled with a unit sand of 125-200 um particle size (Scholten, Geifler,
Goc, Kihn, & Wiegand, 2011). The sand loss calculated from the
amount of sand remaining after exposition of the cup to rainfall is
converted to kinetic energy using a linear calibration function derived
from laser precipitation monitor measurements (Lanzinger, Theel, &
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Windolph, 2006). Splash cups are light, reliable and allow a high num-
ber of replications on different positions under a tree. Results permit
detecting differences in kinetic energy between different tree species
and diversity levels (GeiBler et al., 2013; Goebes, Bruelheide, et al.,
2015; Goebes, Seitz, et al., 2015).

Surface runoff and sediment discharge are observed using mi-
croscale runoff plots (ROPs) sized 0.16 m? (0.4 m x 0.4 m) and bor-
dered by stainless steel panels in which soil surface cover (e.g., by
stones or biological soil crusts) is recorded photogrammetrically (Seitz
et al., 2016). ROPs can be equipped with pitfall traps to implement
a soil fauna treatment (Seitz et al., 2015). Runoff is collected in 20-L
containers connected to covered triangular gutters. Both sediment
discharge and runoff are analyzed for C, N, and P contents. The small
ROP size allows investigating interrill erosion precisely as other pro-
cesses like rill erosion do not occur on such short flow distances
(Agassi & Bradford, 1999) and those small ROPs are particularly appro-
priate to compare different diversity treatments (Wainwright, Parsons,
& Abrahams, 2000). A further advantage is the possibility to use a high
number of randomized replications at a time (220 ROPs in BEF-China),
which is an important precaution in the design of ROP measurements
(cf. Hudson, 1993).

Long-term monitoring of soil erosion characteristics on over
500 plots in the BEF-China experiment requires a reliable and cost-
efficient technique (Shi, Wen, Zhang, & Yan, 2011). Erosion sticks, 1-m
long UV-resistant PVC rods, are pushed into the soil at nine positions
in each plot. Approximately 4,500 erosion sticks have been installed in
the BEF-China experiment, and the length of the sticks above the soil
surface is measured once per year.

3 | DISCUSSION

Based on methods currently applied in one of the world's largest tree
diversity experiments, we highlighted how methods can be com-
bined to simultaneously address multiple ecosystem functions and
consequently maximize synergy in forest biodiversity research. By
implementing harmonized methods, scientific knowledge gain can
be optimized while simultaneously using the specific expertise of in-
volved research teams efficiently. Only if consistent datasets for es-
sential ecosystem functions can be amalgamated within and across
tree diversity experiments, progress in BEF research can be achieved.
For example, understanding how herbivory and leaf pathogens are
influenced by tree diversity can provide deeper insights into the
importance of multitrophic interactions for tree biomass (Schuldt,
Bruelheide, et al., 2015) (Figure 3). Similarly, decomposition dynamics
along tree diversity gradients can only be explained when we know
how tree diversity affects microbial activity and the diversity and com-
position of decomposer communities. Ultimately, the combination of
above- and belowground processes can help to identify direct and in-
direct drivers of vital ecosystem functions such as biomass production
across ecosystem subsystems (Figure 3).

In order to fully explore the potentials of tree diversity
studies that aim to quantify effects on multifunctionality, an
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“all-measurements-on-all-plots philosophy” should be adopted, de-
spite the large number of plots (Baeten et al., 2013). This strategy
might, however, restrict the choice of methods, as often such high-
throughput methods can rather be seen as “proxies” for the ecosystem
function of interest, because more sophisticated or detailed measure-
ments are too time-consuming or expensive. Based on the knowledge
we have gained from the BEF-China and other forest BEF exper-
iments, we propose the following guidelines for present and future
tree diversity experiments.

3.1 | Maximizing data density

Given the high number of tree individuals planted in tree diversity
experiments, often only a subset of individuals can be measured in
each plot. In particular, this is true for ecosystem functions like tree
growth that require annual or even more frequent measurements of
individual trees. Different methods therefore have a different range in
terms of their spatial and temporal resolution. Whereas some meth-
ods are easily applicable to a relatively large subset of tree individuals
per plot (e.g., portable spectrometers), others are restricted to only a
few individuals due to high work intensity and time constraints (e.g.,
minirhizotrons). Thus, methods with a high sample size should always
comprise those tree individuals or plot areas that are assessed by
methods with a smaller range. The goal should be to maximize data
density, that is, the number of measured variables, for a given subset

Aboveground Herbivory
/ Leaf pathogens \
Tree diversity / -

________ +-_____-...

Microbial diversity

N

Microbial biomass +

\

...s

Belowground

Tree biomass

composition

of tree individuals in each plot. For example, in BEF-China, most meas-
urement activities focus on the central 4 x 4 to 12 x 12 tree individu-
als in each plot. This means that for a certain subset of individuals,
data on productivity, litter production, tree growth, microbial biomass,
the plant microbiome, herbivory, or foliar fungal pathogen infestation
are available and can be correlated at the tree level.

Furthermore, the combination of several rapid nondestructive
methods allows measurements even on the same branches or leaves
(e.g., leaf trait assessment using NIRS combined with herbivory sur-
vey). Ideally, aboveground and belowground methods should focus on
the same tree individuals to increase data density across subsystems.
In monocultures and low-diversity mixtures, the number of measured
tree individuals can be reduced because of the high number of repli-
cates (see above). The guantification of multifunctional responses at
individual tree level to neighborhood- or plot-level implies that vari-
ables must be measured on the same tree individuals, which requires
well-coordinated and time-adjusted measurement campaigns among
involved research teams. Sampling effort can be considerably reduced
if collected samples are shared among project partners. For example,
subsamples of soil cores taken for nutrient analysis can be used for
investigating soil microbial communities (Pei et al., 2016). Similar, dif-
ferent aspects such as nutrient cycling and microbial community com-
position can be effectively studied in joint decomposition experiments
when taking a shared sampling strategy into account (Pei et al., 2017;
Purahong et al., 2017).

FIGURE 3 Identifying the links and
underlying mechanisms between tree
diversity and key ecosystem functions
requires the coordinated assessment of
forest multifunctionality across trophic
levels and ecosystem subsystems. For
example, consistent datasets of relevant
ecosystem functions are needed to analyze
the effect of tree diversity on tree biomass
using structural equation modeling.
Shown is a simplified conceptual structural

‘ equation model which links aboveground
(herbivory, leaf pathogen infestation)
+ and soil-related processes (soil microbial

biomass and diversity, decomposition

of leaves and roots and deadwood
decomposition) affecting tree biomass.
Solid and dashed arrows show hypothetical
significant and nonsignificant positive or
negative effects, respectively. Increasing
arrow width specifies hypothetical strength
of causal relationship between variables.
Positive and negative relationships are

w_n

indicated by “+" and “~" signs, respectively
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3.2 | Applied methods should cover relevant scales

Tree diversity experiments with their large spatial extent are usually
established with a long-term view on measurement activities and data
acquisition. Thus, chosen methods should consider relevant spatial
and temporal scales. The relationship between biodiversity and eco-
system functioning has been predominantly analyzed at the level of
the community or plot, thereby neglecting the scale dependency of
diversity effects (Chisholm et al., 2013; Schuldt, Wubet, et al., 2015).
However, biotic interactions which determine the strength of biodi-
versity effects occur at the tree individual scale (Potvin & Dutilleul,
2009) and can be influenced by intraspecific (genotypic) trait varia-
tion (Johnson, Lajeunesse, & Agrawal, 2006) as well as the direct
tree neighborhood (Barbosa et al., 2009). In BEF experiments, fully
mapped and geo-referenced tree positions allow testing for neigh-
borhood relationships at different scales. Thus, it is not necessary to
decide beforehand which scale is appropriate, but instead it is best
to apply a spectrum of methods that can capture local neighborhood
interactions up to stand-level dynamics. For example, upscaling water
use from individual trees to neighborhoods to plot (community) level
needs data on xylem flow rates measured on individual trees and relia-
ble estimates of sapwood area at plot level (Kunert, Schwendenmann,
Potvin, & Hélscher, 2012).

It is clear that each method tends to focus either on individual
trees (e.g., herbivory assessment) or on the plot (community) level (e.g.,
litterbags, erosion sticks), which might require a trade-off between
generality and precision for the large number of trees to be measured.
Thus, methods should be ideally combined in a way that they bridge
precision and generality, This critical trade-off between precision and
generality should be methodologically addressed in order to allow reli-
able upscaling of the BEF relationship to relevant scales for ecosystem
management.

3.3 | Consistency in method selection in
time and space

It is necessary to adapt methods to tree size and forest development
stage. For some ecosystem functions, this sometimes requires an in-
evitable change in methods. For example, while tree canopy meas-
urements are easily carried out in the first years after planting, this
is usually not the case anymore after trees have reached a certain
height. Leaf demographic assessments using marked leaf cohorts are
not practical anymore after trees have reached a certain height and
are replaced by collecting leaf and fine twig litter fall in litter traps.
Similarly, sampling for herbivory or plant pathogen assessment needs
to be adapted to increasing tree height by considering lower, mid, and
upper canopy layers. However, newly introduced methods or adapted
sampling designs should always be consistent, that is, calibrated and
validated compared to previously used approaches. Consistency in
applied methods should be promoted to ensure adequate data analy-
sis of long-time series and to reduce ecological uncertainty (Schimel
& Keller, 2015). This is especially important given that biodiversity
effects may develop and become stronger over time. For example,
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microbial adaptation to certain tree species over time can alter above-
ground-belowground interactions and could influence or reinforce
biodiversity effects (Mangan et al., 2010). However, consistency of
time series measurements may be compromised by fluctuation in the
composition of research teams, available funding, or adjustment of re-
search questions during the lifetime of the experimental platform. To
ensure that knowledge on respective methods is not lost with time,
collected datasets should be linked to respective technical protocols
in the platform’s database. Publishing methods in novel formats such
as scientific video journals could further promote reproducibility and
consistency of measurements (Kréber, Plath, Heklau, & Bruelheide,
2015). On a wider level, reducing ecological uncertainty by application
of consistent and standardized methods across globally distributed ex-
perimental forest sites would improve the evaluation of general tree
diversity effects (Fraser et al., 2012). In the long run, we think that a
central web platform that compiles innovative methods and provides
detailed protocols would largely promote data harmonization in cross-
site experimental studies on forest multifunctionality.

Moreover, large BEF experiments offer an ideal test platform for
introducing new emerging methods in forest diversity research. For
instance, drone-based remote sensing is currently a rapidly develop-
ing technology (Tang & Shao, 2015). Drone remote sensing has been
successfully tested for example in forest inventories and to estimate
tree canopy height and canopy closure (Getzin, Wiegand, & Schoning,
2012; Torresan et al., 2017). As tree positions in BEF experiments are
fully mapped, remote sensing data can be easily related to ground-
based measurements such as of DBH or LA In this way, the overlap
with already well-established approaches not only ensures better cal-
ibration and consistency but also promotes the establishment of new
technologies.

3.4 | Promoting rapid assessment of biodiversity and
ecosystem functions

The scale of sampling in large tree diversity experiments necessitates
rapid, standardized, and cost-effective assessment of biodiversity.
These have been successfully developed for taxa such as arthropods
(Obrist & Duelli, 2010; Oliver & Beattie, 1996; Yu et al., 2012), and
meta-genomic methods are used for rapid multitaxa assessment of
microbial and fungal diversity (Cannon, 1997; Gao et al., 2015). The
bottleneck of the “taxonomic imperative” can be addressed with
DNA-based methods, particularly those based on NGS of pooled com-
munities (Yu et al., 2012). These use quantified criteria for delineation
of species diversity (Pons et al., 2006) and assignment of taxonomic
names (Hebert, Ratnasingham, & deWaard, 2003), allow a greatly in-
creased throughput (Ji et al., 2013), and are amenable to digital stor-
age and meta-analysis in a web-based framework (Ratnasingham &
Hebert, 2013). DNA barcoding can be adapted to take advantage of
greater information content of multigene and PCR-free sequence data
(Chesters, Zheng, Zhu, & Yu, 2015). Additionally, wiki-based descrip-
tions allow for integration with morphological taxonomy without im-
posing excessive time constraints (Riedel, Sagata, Suhardjono, Tanzler,
& Balke, 2013).
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With respect to plant functional diversity, morphological, and bio-
chemical leaf traits that are known to be important for driving eco-
system functions can be quickly assessed by portable NIRS in the
field, once calibration is established (see above). With its high sample
throughput, NIRS makes it possible to study, for example, seasonal
dynamics of leaf nutrients, which can offer new insights into trait vari-
ation at much finer temporal and spatial scales. NIRS can also help
to resolve species composition in fine-root mixtures (Lei & Bauhus,
2010) and to determine some soil properties such as available P,
which are otherwise only quantifiable with onerous laboratory meth-
ods (Niederberger et al., 2015). In this way, high spatial and temporal
resolution of trait measurements can be achieved which will improve
trait-based predictions of ecosystem functioning. The identification
of easily measurable plant trait syndromes which reflect ecophysio-
logical key functions could further strengthen this approach.

Besides rapid assessment of biodiversity there is a clear need
to develop easy-to-use and quick methods for the measurement of
key ecosystem functions. A standardized rapid ecosystem function
assessment (REFA) has been recently suggested and conceptual-
ized by Meyer et al. (2015). Low-tech, easy-to-use, repeatable, and
cost-efficient measurements allow the harmonized assessment of
ecosystem functions (e.g., biogeochemical cycles, tree productiv-
ity, or consumer-plant interactions) across a large number of plots
and experimental sites. This approach is especially beneficial in a
multifunctional context as the number of ecosystem functions con-
sidered in an experiment can be increased. Furthermore, in con-
trast to more traditional approaches, functions can be studied at
the same spatial resolution, preferably on all plots or levels of tree
diversity, due to reduced measurement effort. In this way, inherent
interrelationships in multitrophic networks (Staab et al., 2015) or
across below- and aboveground subsystems could be more ade-
quately considered in BEF research. However, the measurement
of ecosystem functions in structurally complex forest systems im-
poses special requirements in terms of spatial and temporal scale.
This means that REFA methods and sampling designs need to be
specifically adapted or developed for assessing forest multifunc-
tionality. In this respect, our compilation of methods could serve
as a first contribution for the development of a REFA framework
for forests.

4 | OUTLOOK

The majority of previous studies in forest BEF research have focused
on single ecosystem functions, thereby neglecting inherent feedback
mechanisms, essential connections between above- and below-
ground subsystems, and important trophic relationships. However,
knowledge of these interdependencies among multiple functions is
crucial to understand and predict the responses of forest ecosystems
to species loss. Considerable progress in forest BEF experiments
can be promoted by applying harmonized methodical approaches to
comprehensively assess forest multifunctionality. Method selection
should therefore be guided by major principles such as consistent

application of methods across spatial and temporal scales, maximizing
data density and rapid assessment strategies to increase the num-
ber of replicates. Another important issue is to ensure data compa-
rability across tree diversity experiments for the growing number of
synthesis initiatives. Ideally, this requires space- and time-aligned
measurement campaigns and common agreement on standardized
protocols. Current methods need to be adapted to account for the
specific requirements of structurally complex and long-lived forest
ecosystems. New innovative approaches such as the identification of
easy-to-measure indicators for ecosystem functioning or other rapid
assessment strategies have to be developed. With these challenges
ahead, we hope that our outline of key methods currently applied
in one of the largest tree diversity experiments will help to promote
synergy and comprehensive assessment of multifunctionality in for-
est biodiversity research.
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Abstract

Soil erosion is seriously threatening ecosystem functioning in many parts of the world.
In this context, it is assumed that tree species richness and functional diversity of tree
communities can play a critical role in improving ecosystem services such as erosion
control. An experiment with 170 micro-scale runoff plots was conducted to investigate
the influence of tree species richness and identity as well as tree functional traits on
interrill erosion in a young forest ecosystem. An interrill erosion rate of 47.5 t ha' a*
was calculated. This study provided evidence that different tree species affect interrill
erosion, but higher tree species richness did not mitigate soil losses in young forest
stands. Thus, different tree morphologies have to be considered, when assessing ero-
sion under forest. High crown cover and leaf area index reduced soil losses in initial
forest ecosystems, whereas rising tree height increased them. Even if a leaf litter cover
was not present, remaining soil surface cover by stones and biological soil crusts was
the most important driver for soil erosion control. Furthermore, soil organic matter had
a decreasing influence on soil loss. Long-term monitoring of soil erosion under closing
tree canopies is necessary and a wide range of functional tree traits should be taken

into consideration in future research.
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Abstract. Soil erosion is seriously threatening ecosystem functioning in many parts of the world. In this context,
it is assumed that tree species richness and functional diversity of tree communities can play a critical role in
improving ecosystem services such as erosion control. An experiment with 170 micro-scale run-off plots was
conducted to investigate the influence of tree species and tree species richness as well as functional traits on
interrill erosion in a young forest ecosystem. An interrill erosion rate of 47.5 Mg ha=!a~! was calculated. This
study provided evidence that different tree species affect interrill erosion differently, while tree species richness
did not affect interrill erosion in young forest stands. Thus, different tree morphologies have to be considered,
when assessing soil erosion under forest. High crown cover and leaf area index reduced interrill erosion in
initial forest ecosystems, whereas rising tree height increased it. Even if a leaf litter cover was not present, the
remaining soil surface cover by stones and biological soil crusts was the most important driver for soil erosion
control. Furthermore, soil organic matter had a decreasing influence on interrill erosion. Long-term monitoring
of soil erosion under closing tree canopies is necessary, and a wide range of functional tree traits should be
considered in future research.

Soil erosion can negatively influence biodiversity (Pi-

Soil erosion is considered as one of the most severe envi-
ronmental challenges globally (Morgan, 2005). It is also a
serious challenge in the PR China, especially in the south-
ern tropical and subtropical zone. Although important im-
provements in erosion control have been achieved in this area
in the last decades (Zhao et al., 2013), the annual soil loss
rates range between (.28 and 113 Mg ha—! (Guo et al., 2015).
Thereby, soil erosion negatively affects, e.g., soil fertility and
nutrient cycling (Pimentel et al., 1995; Richter, 1998).

mentel and Kounang, 1998), but it is assumed that this re-
lationship also acts vice versa (Korner and Spehn, 2002;
GeiBler et al., 2012b; Brevik et al., 2015). It has been
shown that a change in biodiversity can have remarkable ef-
fects on ecosystem functions and stability (e.g. Hooper et
al., 2005; Scherer-Lorenzen, 2005). In many cases, increas-
ing biodiversity enhanced ecosystem productivity and sta-
bility (Loreau, 2001; Jacob et al., 2010). In particular, tree
species richness (the diversity of tree species) as well as func-
tional diversity (the diversity of functional traits as morpho-
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physiophenological attributes of a given species; cf. Violle
et al., 2007) of tree communities can play a critical role in
improving ecosystem services such as water filtration or cli-
mate regulation (Quijas et al., 2012; Chisholm et al., 2013;
Scherer-Lorenzen, 2014), As forests are generally consid-
ered beneficial for erosion control, afforestation is a com-
mon measure in soil protection (Romero-Diaz et al., 2010;
Jiao et al., 2012). This also applies to the south-eastern part
of China, which is known to be a hotspot of biodiversity and
especially tree species richness (Barthlott et al., 2005; Bru-
elheide et al., 2011). Guo et al. (2015) showed that forests
in this area experienced the lowest soil loss rates of all land
use types. Considering that studies on soil erosion under for-
est have mostly focused on deforestation (Blanco-Canqui and
Lal, 2008) and that counteracting measures such as afforesta-
tion often result in monoculture stands (Puettmann et al.,
2009), it appears that the role of tree species richness for
soil erosion has been largely disregarded. Zhou et al. (2002)
and Tsujimura et al. (2006) demonstrated that tree monocul-
tures have only limited mitigation potential for soil losses,
but further research is scarce. Nevertheless, there is growing
evidence that a higher species richness can reduce soil ero-
sion (Korner and Spehn, 2002). Bautista et al. (2007) pointed
out that an increase in functional diversity within a perennial
vegetation cover decreased soil losses in a semiarid Mediter-
ranean landscape. Pohl et al. (2009) showed that an increase
in the diversity of root types led to higher soil stability on
an alpine grassy hillslope, and most recently Berendse et
al. (2015) found that a loss of grass species diversity reduced
erosion resistance on a dike slope.

Conceivable mechanisms underlying positive species rich-
ness effects on soil erosion are that vegetation cover with a
high number of species includes a high number of plant func-
tional groups which complement one another. Thus, they are
more effective in controlling erosion processes than vegeta-
tive cover with few species (Pohl et al., 2012). For example,
high tree species richness can result in an increased stratifi-
cation of canopy layers (Lang et al., 2010) and a higher total
canopy cover (Lang et al., 2012). In addition, a highly diverse
structure within the leaf litter layer on the forest floor seems
to improve its protective effect (Martin et al., 2010). Further
research on the influence of tree species richness on erosion
control appears to be necessary, but the complex system of
interacting functional groups within the vegetation cover is
also of great interest.

Vegetation cover is generally considered a key factor for
the occurrence and extent of soil erosion (Thornes, 1990;
Hupp et al., 1995; Morgan, 2005). A leaf litter layer on the
forest floor, for example, protects the soil from direct rain-
drop impact and modifies the water flow and storage capac-
ities at the soil surface (Kim et al., 2014). Moreover, forests
can provide a multistorey canopy layer which largely in-
fluences rain throughfall patterns and leads to the capture
of raindrops as well as the storage of water within the tree
crown (Puigdefabregas, 2005). Nevertheless, large drops can

be formed at leaf apexes of tall trees (Geilller et al., 2012a)
and thus may increase the kinetic energy of throughfall in
older forest stands by a factor of up to 2 to 3 compared to
open fields (Nanko et al., 2008, 2015). This leads to con-
siderable soil loss if the forest floor is unprotected, which
may be the case if protective layers diminish, e.g. under
shady conditions (Onda et al., 2010) or fast decomposition
(Razafindrabe et al., 2010). While the effects of soil sur-
face cover on soil erosion are well studied (Thornes, 1990;
Blanco-Canqui and Lal, 2008), much less is known about
the influence of species-specific functional traits of the tree
layer such as crown or stem characteristics (Lavorel and Gar-
nier, 2002; Guerrero-Campo et al., 2008). Moreover, most re-
search on the latter aspects was performed in old, full-grown
forests (e.g. Zhou et al.,, 2002; Nanko et al., 2008; GeiBler
et al., 2012a), whereas forests at an early successional stage
are rarely mentioned. In these young forests, tree heights are
lower than at later stages, but structural and spatial complex-
ity is high and species-specific growth rates differ consider-
ably (Swanson et al., 2011). It is assumed that these species-
specific differences in structure and growth will influence
soil erosion rates.

This research focused on the influence of tree species, tree
species richness and species-specific functional traits on in-
terrill erosion in young forests, when a leaf litter cover is not
present. Testing for these effects on soil erosion requires a
common garden situation, in which confounding factors such
as different tree ages and sizes, inclination or soil conditions
can be monitored in detail. These requirements were met in
the forest-biodiversity—ecosystem-functioning experiment in
subtropical China (BEF China; cf. Bruelheide et al., 2014).
Within this experiment, 170 micro-scale run-off plots were
established in a randomly dispersed and replicated design.
Thereby, the following hypotheses were postulated:

1. Increasing tree species richness decreases interrill ero-
sion rates.

2. Tree species differ in their impact on interrill erosion
rates.

3. The effects of different tree species on interrill erosion
rates can be explained by species-specific functional
traits.

2 Methodology

2.1 Study site and experimental design

The study was conducted in Xingangshan, Jiangxi Province,
PR China (29°06.450'N, 117°55.450"E) at the experimen-
tal sites A and B of the BEF China project (Bruelheide et al.,
2014). Together, both sites comprise an area of about 50 ha in
a mountainous landscape with an elevation range of 100 m to
265 ma.s.l. Slopes range from 15 to 41°. The bedrock of the
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experimental site consists of non-calcareous slates with vary-
ing sand and silt contents and is interspersed by siliceous-rich
joints. Prevailing soil types are Cambisols with Anthrosols in
downslope positions and Gleysols in valleys (cf. [USS, 2006)
covering saprolites. Soil bulk density is low (0.98 gecm ™)
and soil reaction acidic (mean pH in KCI 3.68). Soil texture
ranges from silt loam to silty clay loam. The climate in Xin-
gangshan is humid and subtropical and ranked as Cwa after
the Kdppen—Geiger classification. It is characterized by an
annual average temperature of 17.4°C and a mean annual
rainfall of 1635 mm (Goebes et al., 2015b).

The experimental area has been used as a commercial for-
est plantation (Cunninghamia lanceolata and Pinus massoni-
ana) until 2007. It was clear-cut and replanted in 2009-2010
following an experimental-plot-based design with different
extinction scenarios (Bruelheide et al., 2014). The experi-
mental site represented an early successional stage with tree
ages from 4 to S years at the time of measurements. Trees
were planted randomly in different species richness levels
with a planting distance of 1.29 m, following a broken-stick
design. This study focused on the very intensively studied
plots (VIPs; cf. Bruelheide et al., 2014) of which 34 were
used (Table 1). The selected set comprised a bare-ground
feature (4 x div0) and four levels of tree species richness
(20 x div1, 4 x div8, 4 x divl6 and 2 x div24) with a total
of 26 tree species, 6 of which only appeared in mixtures
(Table 2). Monocultures with tree heights lower than 1 m
or crown covers of less than 10 % were excluded before the
analysis.

2.2 Erosion measurements

To determine sediment delivery (as initial interrill erosion)
and surface run-off volume, micro-scale run-off plots (ROPs,
0.4m x 0.4 m) were used (cf. Seitz et al., 2015; without fauna
treatment). Each ROP was connected to a 20 L reservoir and
a rainfall gauge was placed next to it (Fig. 1). All 34 VIPs
were equipped with five ROPs each, resulting in a total num-
ber of 170 ROPs. Within each VIP, areas of 220 m? were
sectioned for ROP measurements to avoid interferences with
other BEF China experiments. The selected areas were rep-
resentative of the range of surface properties in the plot, and
the ROPs were placed randomly therein. All leaf litter was
removed from the ROPs prior to measurements. The ROPs
were operated in May and June 2013 during the rainy sea-
son. Run-off volume and rainfall amount were determined in
situ and sediment was assessed after sampling by drying at
40 °C and weighing. The capacity of the reservoirs was not
exceeded in any rainfall event.

At each ROP, tree crown cover, leaf area index (LAI),
soil surface cover, slope and rainfall amount were measured.
Crown cover and LAI were determined using a fish-eye cam-
era system (Nikon D100 with Nikon AF G DX 180°) and
the HemiView V.8 software (Delta-T devices, Cambridge,
UK) adjusted to the canopy area vertically above the ROP.

Figure 1. Measurement set-up showing a run-off plot (ROP,
0.4m x 0.4 m) with reservoir and rainfall gauge at the experimental
site in Xingangshan, Jiangxi Province, PR China.

Soil surface cover was measured photogrammetrically (grid
quadrat method with GIMP 2.8) and separated into organic
and inorganic cover by colour distinction. Slope was mea-
sured with an inclinometer. The rainfall amount at each ROP
was determined by rainfall gauges (see above). At each VIP,
total tree height, stem diameter at 5 cm above ground (here-
after, stem diameter) and crown width were measured and
calculated as the mean of 36 tree individuals per VIP (Li et
al., 2014). Additionally, soil organic matter (SOM) was iden-
tified for each VIP (5 cm depth, nine replicates) by measur-
ing total organic carbon with a Vario EL III elemental anal-
yser (Elementar, Hanau, Germany) and multiplying it by the
conversion factor 2 (Pribyl, 2010). Tree species richness was
known from the VIP set-up.

2.3 Rainfall patterns

Weather conditions were recorded by an on-site climate sta-
tion (ecoTech data logger with Vaisala weather transmitter
and ecoTech tipping bucket balance) at 5 min intervals. In
2013, the total precipitation in the study area was 1205 mm
and lower than the mean of the preceding 3 years (1635 mm).
In May and June, 10 rainfall events were captured with ROP
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Table 1. Mean characteristics of the 34 selected very intensively studied plots (VIPs) in 2013 in the BEF China experiment, Xingangshan,

Jiangxi Province, PR China.

VIP  Species Crown Leaf Tree Stem Crown Slope Surface Soil
no. number cover area  height diameter  width ) cover organic

(%) index (m) (m) (m) (%)  matter (%)
F27 0 - - - - - 26 10 5.4
H28 0 - - - - - 34 15 5.9
L20 0 - - - - - 24 11 8.3
Q23 0 - - - - - 15 23 6.2
E31 1 16 0.19 1.25 0.02 0.80 22 39 5.5
E33 1 20 028 2.32 0.03 1.09 19 41 44
E34 1 87 207 5.96 0.06 3.00 21 11 6.1
125 1 11 0.14 1.62 0.04 0.96 29 11 53
128 1 15 0.19 2.28 0.04 1.64 26 32 8.9
K19 1 93 420 3.67 0.06 1.66 24 32 83
L1 1 10 0.11 1.36 0.02 0.90 28 19 7.1
M7 1 46 0.62 2.01 0.03 1.28 31 8 6.8
NO5 1 9 0.10 1.16 0.03 0.40 32 0 6.3
NI11 1 42 055 1.68 0.03 0.96 26 32 9.7
N13 1 13 013 3.05 0.05 1.56 31 30 7.9
N17 1 47 0.85 1.82 0.03 1.62 28 1 7.9
027 1 90 227 7.40 0.07 2.21 21 9 5.7
QI3 1 19 030 1.97 0.03 1.15 30 1 6.9
Q27 1 24 047 3.37 0.04 1.37 35 3 6.0
R14 1 51 0.93 1.25 0.02 0.64 30 1 7.6
R29 1 21 0.24 1.44 0.03 0.95 33 18 6.3
Ule 1 10 0.14 2.26 0.05 1.10 20 5 4.7
V24 1 64 1.02 2.19 0.05 0.96 32 11 4.3
W11 1 34 043 2.61 0.06 1.13 19 6 6.0
129 8 29 034 1.47 0.05 0.76 31 13 9.4
Q17 8 30 037 1.74 0.05 1.05 22 6 5.2
S10 8 99 535 3.85 0.05 2.19 36 29 42
T15 8 31 0.38 1.96 0.03 1.15 30 20 4.8
M22 16 87  2.06 4.35 0.06 2.09 23 44 7.2
$22 16 34 042 1.07 0.04 0.56 33 24 6.6
ul10 16 48  0.56 3.06 0.06 1.56 22 10 6.0
V27 16 42 054 2.09 0.05 0.99 34 9 6.4
NO09 24 11 0.17 2.08 0.04 1.29 33 38 8.8
R30 24 37 046 1.67 0.04 0.97 27 19 4.2

measurements in the study area. Events were determined by
breaks in rainfall of at least 6h. Four of these events (E1-
E4) were strong enough to trigger soil erosion (out of 33
events over the entire year of 2013) following Wischmeier
and Smith (1978), who used an event threshold of 12.7 mm.
The total rainfall amount from May to June was 185 mm, of
which 135 mm fell during erosive rainfall events. The mean
and peak intensities as well as the total rainfall amount (ex-
cept for E4) increased from May to June (Table 3), reflecting
a growing monsoon influence from the beginning to the mid-
dle of summer.

2.4 Statistical analysis

Linear mixed effects models with restricted maximum like-
lihood were used with R 3.0.2 (R Core Team, 2013) and
“ImerTest” (Kuznetsova et al., 2014) to investigate the influ-
ences on sediment delivery. Models were fitted with crown
cover, leaf area index, trec height, stem diameter, crown
width, slope, surface cover, SOM, amount of precipitation
and tree species richness as fixed effects. As random ef-
fects, precipitation event (E1-E4) nested in plot, tree com-
position (species pool), site (A or B) and ROP nested in
plot were used. Nesting was introduced to avoid pseudorepli-
cation considering the degrees of freedom in our hypothe-
ses tests. Tree and crown characteristics were fitted one at-
ter the other because they were highly correlated. Contrasts
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Table 2. Twenty-six selected tree species used in the experiment according to the Flora of China web page (http://www.efloras.org). Asterisks

(*) mark species which only appear in mixtures.

Species name and author

Ailanthus altissima (Miller) Swingle
Alniphyllum fortunei (Hemsl.) Makino
Betula luminifera H. Winkl.

Castanea henryi (Skan) Rehd. et Wils.
Castanopsis fargesii Franch.
Castanopsis sclerophylla (Lindl.) Schott.
Celtis biondii Nakai*

Choerospondias axillaris (Roxb.) Burtt et Hill.

Cyclobalanopsis glauca (Thunb.) Oerst.
Elaeocarpus chinensis Gardn. et Chanp.
Elaeocarpus glabripetalus Merr.
Elaeocarpus japonicus Sieb. et Zucc.
Idesia polycarpa Maxim.*

Koelreuteria bipinnata Franch.
Liguidambar formosana Hance
Lithocarpus glaber (Thunb.) Nakai
Machilus grijsii Hance™®

Machilus leptophylla Hand.-Mazz.*
Magnolia vuvuanensis Hu

Nyssa sinensis Oliver™

Rhus chinensis Mill.

Sapindus saponaria Gaertn.
Schima superba Gardn. et Champ.
Triadica sebifera (L.) Roxb.
Quercus fabri Hance

Quercus phillyreoides A. Gray™

Table 3. Characteristics of rainfall events considered erosive
(threshold 12.7mm) in Xingangshan, Jiangxi Province, PR China
in May and June 2013.

Event Mean intensity  Peak intensity  Total rainfall

(mmh™1) (mmh™!)  amount (mm)
El 1.38 11.4 20.29
E2 234 23.04 25.74
E3 3.19 45.24 54.42
E4 14.60 83.04 34.01

between diversity levels (div0 to divl-div24, divl to div8—
div24) were introduced to quantify the effects of bare plots
vs. tree plots and tree monocultures vs. mixtures, respec-
tively. The effect of individual tree species (div1) was tested
separately against the mean sediment delivery using crown
cover, slope, surface cover, SOM and amount of precipitation
as fixed factors and site and ROP nested in plot as random
factors (n =200). The maximum-likelihood approach was
used to obtain model simplification by stepwise backward
selection, eliminating the least significant variable except for
tree species richness. If multicolinearity was detected (Spear-
man p > 0.7), co-variables were omitted. All variables were
continuous and scaled, so model estimates could be com-
pared. The data was log-transformed and the residuals did not
show any deviation from normality. Hypotheses were tested
with an analysis of variance (ANOVA) type 3 with a Satterth-
waite approximation for degrees of freedom, and p values
were obtained by likelihood ratio tests.

3 Results

The results were based on 334 ROP measurements out of
a total of 378 measurements. Invalid measurements were
caused by technical constraints such as plugged tubes or top-

pled rainfall gauges. Sediment delivery over all VIPs and
rainfall events ranged from 14 to 920 gm~2 per ROP. Event-
based mean sediment delivery increased with peak intensity
from precipitation event 1 to event 4 with 42gm~2 (E1),
85gm 2 (E2), 120gm 2 (E3) and 283 gm~2 (E4). The in-
terrill soil erosion rate determined by micro-scale ROPs and
extrapolated for all erosive precipitation events (> 12.7 mm
rainfall amount) in 2013 was estimated to be 47.5 Mgha™'.

3.1 Species richness effects on interrill erosion
processes

Tree species richness did not affect sediment delivery or run-
off volume (Table 4 and Fig. 2). Sediment delivery and run-
off volume did not differ between bare plots (div0) and plots
with trees (divl—div24) nor between monocultures (divl)
and species mixtures (div8, divl6, div24). The standard de-
viations of sediment delivery (gm~2) and run-off volume
(Lm~2) in relation to diversity levels were high (Fig. 2 and
Table 5). Mean crown cover in mixed stands was 44 % and
mean tree height was 2.30 m compared to monocultures with
22% and 1.63 m. In this experiment tree height in mixed
stands was not lower than 1.07 m and crown cover achieved
at least 29 %.

3.2 Species effects on interrill erosion processes

Individual tree species in monocultures showed signifi-
cant differences in sediment delivery (Fig. 3) ranging from
90gm~2 (L. formosana) to 560 gm™> (Ch. axillaris) per
rainfall event.

The mean sediment delivery is 199 gm~2 across all tree
monocultures, among which Ch. axillaris, C. glauca, R. chi-
nensis and K. bipinnata showed above average and M. yuyua-
nensis, L. glaber, E. chinensis and L. formosana below av-
erage sediment delivery. The growth characteristics of these
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Table 4. Results of the basic linear mixed effect model for sediment delivery (*: p < 0.001; °: p <0.01; ¢ p <0.05; 9 p < 0.1; ns.:
not significant; n = 334). Crown cover was highly correlated with the four other vegetation characteristics, and, therefore, they have been
exchanged and fitted in separate models (“denDF”: denominated degrees of freed; “F”: F value; “Pr”: probability).

denDF F Pr  Estimates
Fixed Run-off volume 204 49.0  <0.001? 0.33
effects Crown cover 120 7.25 0.008" (-)0.18
Slope 141 133 0.250 n.s. 0.05
Surface cover 140 56.1 <0.0018 (-)0.46
Soil organic matter 42 5.61 0.022¢ (-) 0.07
Precipitation 70 0.12  0.733 n.s. (=) 0.01
Tree species richness 25 0.30  0.589 n.s. 0.05
SD  Variance
Random  Precipitation event: plot ~ 0.204 0.042
effects Tree composition 0.332 0.110
Site 0.577 0.333
Plot: ROP 0.503 0.253

Vegetation characteristics fitted in exchange for crown cover

Leaf area index
Tree height

Tree stem diameter
Tree crown width

95 5.16 0.026° (=) 0.17
31 3.58 0.0694 0.10
30 020 0.66lns. () 0.04
31 0.79 0.383ns. () 0.08

Table 5. Mean sediment delivery in g m~2 and surface run-off volume in L m 2 (standard deviation in brackets; n = 334) for tree species

richness in May and June 2013.

Diversity  Diversity Diversity Diversity —Diversity Diversity  Diversity

0-24 0 1-24 1 8 16 24

Sediment 199 361 188 202 103 135 204
delivery (106) (187) (90) (105) (57) (123) (107)
Run-off 32.6 47.8 29.8 31.9 275 225 30.2
volume (21.4) (32.1) (18.5) (20.9) (14.5) (15.7) (19.7)

tree species differed considerably between the species (Ta-
ble 6).

3.3 Effects of species-specific functional traits and site
characteristics

Crown cover was highly correlated with LAI, tree height,
stem diameter and crown width (r = 0.82, 0.80, 0.75, 0.77,
respectively). Crown cover (p < 0.01) and LAI (p < 0.05)
negatively affected sediment delivery. Tree height marginally
positively affected sediment delivery (p < 0.1), whereas
stem diameter and crown width had no influence (Fig. 4, Ta-
ble 4). The soil surface cover consisted of stones and bio-
logical soil crusts and covered on average one fifth of the
ROP surfaces in May and June 2013, It affected sediment de-
livery negatively (p < 0.001). Sediment delivery decreased
with increasing SOM content (p < 0.05). An indication of
hydrophobic surface coatings and a significant role of water

repellency could not be found. The mean slope angle did not
affect sediment delivery (Fig. 4, Table 4).

Growth characteristics were highly variable between tree
species, which was reflected by high standard deviations of
the respective variables. In contrast, site characteristics of
these plots showed a low variability (Table 7).

4 Discussion

The soil loss rate determined by micro-scale ROPs
(47.5Mgha—"a~") for 2013 was considerably higher than
the average rate Guo et al. (2015) recently calculated for
southern China (approx. 20Mgha ' a~!) in a study based
on small-scale and field ROPs. Pimentel (1993) reported an
average rate of 36 Mgha~'a~! for the same area. Zheng et
al. (2007) stated an average soil loss rate of 31 Mgha=!a™!
determined with 137Cs / 21°Pb tracing techniques in Sichuan
Province, PR China. These different rates are due to different
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Table 6. Sediment delivery and growth characteristics (means) of tree species with significant differences in delivery at the experimental site

in Xingangshan, Jiangxi Province, PR China.

Sediment Crown Leafarea Tree Stem  Crown
delivery cover index height diameter width
em™) (%) (m) m  (m)
Mean 199 32 0.75 1.84 0.03 0.94
Monocultures 202 22 0.63 1.63 0.02 0.78
Tree mixtures 135 44 1.18 2.30 0.04 1.26
Ch. axillaris 566 90 2.27 7.40 0.07 221
C. glauca 556 51 0.93 1.25 0.02 0.65
R. chinensis 502 47 0.85 1.82 0.03 1.62
K. bipinnata 378 19 0.30 1.97 0.03 1.15
M. yuyuanensis 64 11 0.14 1.62 0.04 0.95
L. glaber 114 20 0.28 2.32 0.03 1.09
E. chinensis 66 64 1.02 2.19 0.05 0.97
L. formosana 91 15 0.19 2.28 0.04 1.64
79 Table 7. Growth characteristics of the 20 tree species in monocul-
251 s tures analysed and associated plot characteristics in Xingangshan,
25y $ Jiangxi Province, PR China (mean, standard deviation (SD), maxi-
VEE«-_ @ EI T mum (max) and minimum (min)).
22 : Mean SD  Max Min
0 i 8 1 P -
Vegetation
— Crown cover (%) 37 31 93 1
54 " Leaf area index 088 1.08 420 003
gl -+ E Tree height (m) 255 164 740 116
g | Stem diameter (m) 0.04 0.02 007 0.02
gz‘ i Crown width (m) 1.25  0.61  3.00 040
[1] ; 8 16 24 Sl[e
Tree species richness
Soil surface cover (%) 16 14 55 1
Figure 2. Sediment delivery and run-off volume at five diver- Soil organic matter (%) 6.4 1.4 94 4.3
sity levels based on four rainfall events in May and June 2013 Slope (%) 27 5 35 19

in Xingangshan, Jiangxi Province, PR China (n.s.: not significant;
n = 334). Horizontal line within box plot represents median and di-
amond represents mean.

land use types and measurement techniques but also to the
scale-dependent nature of soil erosion and run-off generation
(cf. Boix-Fayos et al., 2006; Canton et al., 2011). The micro-
scale ROPs used in this study quantified interrill wash and
sediment detachment by raindrop impact (Agassi and Brad-
ford, 1999; cf. Cerda, 1999; Parsons et al., 2003; Garcia-
Orenes et al., 2012). However, a significant amount of ero-
sion occurs in the rilling system, and the influence of interrill
processes on soil erosion varies greatly (Govers and Poesen,
1988). Nevertheless, Mutchler et al. (1994) stated that micro-
scale ROPs are suitable to study basic aspects of soil erosion,
and, furthermore, these measurements are particularly appro-

Crown cover: proportion of soil surface area covered by crowns of live trees
(%); leaf area index: one-sided green leaf area per unit soil surface area
(dimensionless); tree height: distance from stem base to apical meristem
(m); stem diameter: cross-section dimension of the tree stem at 5 cm above
ground (m); erown width: length of longest spread from edge to edge across
the crown (m); soil surface cover: proportion of soil surface area covered by
stones, biocrusts and litter (%); soil organic matter: fraction of organic
carbon containing substances in the soil (%); slope: inclination ().

priate when defining impacts of vegetation through an inter-
plot comparison (Wainwright et al., 2000).

4.1 Species richness effects on interrill erosion
processes

Tree species richness did not affect sediment delivery or
run-off volume, and thus the first hypothesis has to be re-
jected. Nevertheless, a trend of decreasing sediment delivery
and run-off volume from diversity level 0 to 8 was visible.
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Figure 4. Effects of species-specific functional traits and site characteristics on sediment delivery. Analyses were based on four rainfall

events in May and June 2013 in Xingangshan, Jiangxi Province, PR

However, both parameters were nearly the same at diversity
level 1 and 24 and standard deviations were high. In contrast
to tree growth patterns in monocultures, which were highly
variable, mixed stands indicated a more balanced develop-
ment (cf. Kelty, 2006). All species mixtures in this experi-
ment ensured a high level of tree height and ground cover-
age after 4 to 5 years of tree growth, whereas in monocul-
tures the canopy cover was lower and highly tree-species-
specific. Thus, several monoculture plots were excluded be-
fore measurements because some species could not provide
enough ground coverage. At the same time, sediment deliv-
ery in 8- and 16-species mixtures was lower than in mono-
cultures. Nevertheless, contrasts in the model could not show

China. Black lines represent linear trends.

any statistical difference between monocultures and mixtures
or bare and covered plots.

The absence of a species richness effect on interrill erosion
is likely attributable to the early successional stage of the for-
est experiment with low tree ages. Full canopy cover with
high stratification and overlap has not yet been developed at
the study site and the trees were far from reaching terminal
height (Goebes et al., 2015b; Li et al., 2014). It is assumed
that these vegetation characteristics will change with increas-
ing tree age and tree species richness may become evident in
adult stands. Young trees are functionally more equivalent to
one another than older trees (Barnes and Spurr, 1998), and
specific crown traits may emerge more distinctly in later suc-
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cessional stages. Geililer et al. (2013) found that the erosion
potential was higher in medium and old, full-grown forests
than in young forests. This effect is caused by raindrop trans-
formation processes during the canopy passage, resulting in
higher throughfall kinetic energy under forest than on fal-
low land (GeiBler et al., 2010) and has only been proved
for advanced successional forest stages (Nanko et al., 2008;
Geilller et al., 2013). As the experiment progresses and tree
height increases, increasing throughfall kinetic energy is ex-
pected, which in turn increases the general soil erosion po-
tential if an understorey is missing.

4.2 Species effects on interrill erosion processes

Trees in monocultures differed in their impact on interrill
erosion and thus hypothesis 2 can be confirmed. In a study
on common European tree species, Augusto et al. (2002)
showed that the tree species composition of forests has an
impact on chemical, physical and biological soil properties.
Several studies revealed that individual plants are important
for erosion control in arid and semi-arid Mediterranean land-
scapes (e.g. Bochet et al., 2006; cf. Duran Zuazo and Ro-
driguez Pleguezuelo, 2008) and Xu et al. (2008) showed that
different plant morphologies may control soil loss and im-
proved soil properties in a dry river valley in China.

In this study, four tree species (Ch. axillaris, C. glauca,
R. chinensis, K. bipinnata) seemed to promote interrill ero-
sion rates, whereas another four species (M. yuyuanensis,
L. glaber, E. chinensis, L. formosana) showed a mitigat-
ing effect on interrill erosion at this initial stage of the
forest ecosystem. Thus, a species-specific effect on sedi-
ment delivery for this subtropical experimental area can be
confirmed. Species-specific effects can result from differ-
ent throughfall kinetic energy, which was recently shown by
Goebes et al. (2015a) at the same study site in China. The
effect of throughfall kinetic energy was ascribed to differ-
ent tree architectural characteristics and leaf traits. The au-
thors found 3 out of 11 tree species to have distinct differ-
ences in mean throughfall kinetic energy. Ch. axillaris and
S. saponaria showed higher values, whereas S. superba was
characterized by lower values of throughfall kinetic energy.
At the experimental site, varying tree species revealed het-
erogeneous growth patterns, which were caused by species-
specific growth variation and abiotic site conditions (Li et al.,
2014). Ch. axillaris was the tallest tree species with a nearly
closed canopy and caused the highest amount of sediment
delivery in this study. Raindrops falling from leaves of this
species nearly reached terminal velocity and hence through-
fall kinetic energy was high (Morgan, 2005; Goebes et al.,
2015a). This finding explained the high erosion rates below
this fast-growing species. Further stands with significantly
higher erosion rates and the four tree species with a mitigat-
ing effect on interrill erosion showed lower tree heights and
thus lower throughfall kinetic energy. Their effect on sedi-
ment delivery has to be explained by further functional traits.

4.3 Effects of species-specific functional traits and site
characteristics

Tree species differed widely in canopy characteristics and
sediment delivery was significantly related to crown cover,
LAl and tree height. Therefore, the species-specific effects of
interrill erosion can be partially attributed to species-specific
functional traits, which confirms hypothesis 3. The falling
velocities of throughfall drops are highly variable under dif-
ferent tree species due to the species-specific growth pattern
and crown characteristics (Goebes et al., 2015a). Frasson and
Krajewski (2011) showed that the mechanisms of intercep-
tion are manifold even within a single canopy, and varying
canopy levels create different drop size distributions.

Increasing crown cover and LAl were mitigating inter-
rill erosion in this early ecosystem stage. The magnitude
of canopy cover determines the proportion of raindrops in-
tercepted (Blanco-Canqui and Lal, 2008), and it has been
shown that drop size distributions differ between different
canopy species (Nanko et al., 2006). High crown cover and
leaf area increase the interception of rain drops and the stor-
age capacity of water in the canopy (Aston, 1979; Geililer
et al., 2012a), which can lead to higher stemflow and thus
decreasing throughfall (Herwitz, 1987). Nevertheless, Her-
witz (1987) also showed that canopy drainage can lead to
larger throughfall drops and thus to increasing throughfall ki-
netic energy depending on the leaf species (Hall and Calder,
1993; GeiBler et al., 2012a; Goebes et al., 2015a). In any
case, LAI showed a weaker significance than crown cover,
probably because many trees had not yet developed a multi-
layered canopy structure.

It has been shown that tree height is an import factor
for sediment detachment under forest (Geililer et al., 2013),
mostly due to increasing drop falling heights (Gunn and
Kinzer, 1949). As trees had not yet reached adult height
(mean height < 2 m) in this study, the kinetic energy of rain-
drops formed at leaf tips was lower than in full-grown tree
stands and drops did not reach terminal velocities (Morgan,
2005; GeiBler et al., 2013; Goebes et al., 2015a). Therefore,
tree height had a weak effect on sediment delivery (p < 0.1)
in this study and delivery under trees did not exceed sedi-
ment delivery on bare ground. Nevertheless, high sediment
delivery under Ch. axillaris, by far the fastest-growing tree
in this experiment, showed the potential of high trees to in-
crease soil erosion on uncovered forest floors.

Stem diameter and crown width did not seem to influence
erosion processes in early-stage forest ecosystems. Several
other tree-related functional traits (Pérez-Harguindeguy et
al., 2013) could be used to explain sediment delivery such
as branching architecture, specific leaf area and root system
morphology. Especially studies on leaf traits (Nanko et al.,
2013) as well as belowground stratification (Gyssels et al.,
2005; Stokes et al., 2009) showed the potential of these fea-
tures to influence soil loss and highlighted the complexity of
factors mitigating soil erosion in forest ecosystems.
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Results showed that soil surface cover and SOM affect in-
terrill erosion. Even though a leaf litter cover was not present
in this experiment, the remaining soil surface cover by stones
and biological soil crusts was the most important driver to
reduce sediment delivery. This finding underlines the gen-
eral importance of covered soil surfaces for erosion control
(cf. Thornes, 1990; Morgan, 2005) and shows that the pro-
tective effect of leaf litter could not only be replaced by
soil skeleton but also by topsoil microbial communities in
young forest stands. The mitigating effect of leaf litter on
soil losses has not been in the focus of this experimental ap-
proach, but it is presumed that the fall of leaves even in young
forests reduces soil erosion considerably compared to bare
land (Blanco-Canqui and Lal, 2008; Seitz et al., 2015). Fur-
thermore, SOM reduced interrill erosion, which could be ex-
plained by its ability to bind primary particles into aggregates
(Blanco-Canqui and Lal, 2008). If we assume that SOM
increases with increasing species richness, as was recently
demonstrated in a grassland study by Cong et al. (2014), an
indirect effect of biodiversity on soil erosion could be sup-
posed. Finally, slope angle did not affect interrill erosion due
to the short plot length that limits run-off velocities (cf. Seitz
etal., 2015).

5 Synthesis and conclusions

An experiment with 170 micro-scale run-off plots was con-
ducted to investigate the influence of tree species and tree
species richness as well as species-specific functional traits
on interrill soil erosion processes in a young forest ecosys-
tem. The results led to the following conclusions.

Tree species richness did not affect sediment delivery and
run-off volume, although mixed stands showed a more bal-
anced and homogenous vegetation development than mono-
cultures. This finding was ascribed to the young successional
stage of the forest experiment. Future research should con-
centrate on how erosion rates change with increasing stand
age. Therefore, long-term monitoring of soil erosion under
closing tree canopies is necessary.

This study provided evidence that different tree species af-
fect interrill erosion processes. Different tree morphologies
have to be considered when regarding erosion in young for-
est ecosystems. The appropriate choice of tree species for
afforestation as a measure against soil erosion becomes im-
portant already at an early successional stage.

Species-specific functional traits and site characteristics
affected interrill erosion rates. High crown cover and leaf
area index reduced soil erosion, whereas it was slightly in-
creased by increasing tree height. Thus, low tree stands with
high canopy cover were effectively counteracting soil loss
in initial forest ecosystem. In further studies, a wider range
of functional tree traits such as leaf habitus or belowground
stratification should be taken into consideration. Moreover,
investigations into the influence of biological soil crusts,

topsoil microbial communities and their impact on organic-
matter accumulation will open the way to new insights on
soil erosion processes.
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