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Summary 

Staphylococcus aureus is a human commensal and major human pathogen. With the 

emergence of drug resistant strains, the development of alternative therapeutics 

becomes increasingly urgent. In order to adapt to the changing parameters of its 

surrounding S.  aureus must modulate its surface properties accordingly. A central 

component of the S. aureus cell wall is the wall teichoic acid (WTA) consisting of ribitol-

phosphate repeats that are further modified with D-alanine and N-acetylglucosamine 

(GlcNAc) residues. WTA has been identified as a crucial molecule for host colonization, 

β-lactam-resistance, bacteriophage-mediated horizontal gene transfer, and immune 

recognition. 

In our recent studies, we could provide insight into the biochemistry and physiological 

impact of WTA glycosylation by employing microbiological, structure biological, and 

immunological techniques. Attachment of β-1,4-GlcNAc to WTA occurs by the 

housekeeping enzyme TarS. This default glycosylation can be altered by certain 

accessory glycosyltransferases. By identifying the prophage-encoded 

glycosyltransferase TarP, attaching β-1,3-GlcNAc, we demonstrated how mobile 

genetic elements are able to manipulate the glycocode of their bacterial host. TarP 

glycosylation lead to reduced immunogenicity in mice, which was reflected by low anti 

TarP-WTA-antibodies present in human sera. This remarkable link between WTA-

glycosylation and the adaptive immune system might be exploited for the development 

of an S. aureus vaccine in the future. Furthermore, glycosylation by the alternative 

glycosyltransferases, TarM or TarP leads to podovirus resistance and, in case of TarP, 

weakened phage-mediated acquisition of genetic elements. 

WTA glycosyltransferases show homotrimeric superstructures that are formed by 

unique trimerization domains whose physiological role remains to be elucidated. The 

obtained high-resolution insights into the substrate enzyme complex could guide 

structure based-strategies to identify potential inhibitors of WTA glycosyltransferases, 

which potentially attenuate S. aureus virulence or resensibilize them to clinically used 

antibiotics. 

  



Summary 

3 
 

 



Zusammenfassung 

4 
 

Zusammenfassung 

Staphylococcus aureus ist ein Kommensal und bedeutsamer Krankheitserreger des 

Menschen. Mit dem Aufkommen von Antibiotika-resistenten Stämmen ist die 

Entwicklung von alternativen Therapeutika von zunehmender Wichtigkeit. Um sich 

ändernden Umweltzuständen anzupassen, muss S. aureus seine 

Oberflächeneigenschaften diesen anpassen. Eine zentrale Komponente der Zellwand 

von S. aureus sind Wandteichonsäuren (WTA), welche aus Ribitol-Phosphat-

Oligomeren bestehen. Diese sind durch D-Alanin- und N-Acetylglucosamin-Gruppen 

weiter modifiziert. WTA ist ein wichtiger Faktor für Wirtskolonisierung, β-Lactam-

Resistenz, horizontalen Gentransfer durch Bakteriophagen und Immunerkennung. 

In unseren jüngsten Untersuchungen konnten wir Einblicke in die Biochemie der WTA-

Glykosylierung und deren physikalischer Bedeutung gewinnen mit Hilfe 

mikrobiologischer, strukturbiologischer und immunologischer Techniken. Die 

Modifikation von WTA durch β-1,4-GlcNAc wird durch das Housekeeping-Enzym TarS 

bewerkstelligt. Diese Standard-Glykosylierung kann durch verschiedene alternative 

Glykosyltransferasen moduliert werden. Durch die Identifizierung der Prophagen-

kodierten β-1,3-Glykosieltransferase TarP zeigten wir, dass horizontal erworbene 

Elemente in der Lage sind, den Glykocode ihres bakteriellen Wirtes zu manipulieren. 

TarP-Glykosylierung zeigte reduzierte Immunogenität in Mäusen, was durch niedrige 

Konzentrationen von gegen TarP-WTA gerichteten, Antikörpern in menschlichen 

Seren wiedergespiegelt wurde. Diese beachtenswerte Verknüpfung von WTA-

Glykosylierung und adaptivem Immunsystem könnte für die zukünftige Entwicklung 

von S. aureus-Impfstoffen ausgenutzt werden. Des Weiteren führte die WTA-

Glykosylierung durch TarM und TarP zu einer Resistenz von S. aureus gegen 

Podoviren und, im Fall von TarP, zu einem abgeschwächten Phagen-vermittelten 

Transfer von genetischen Elementen. 

WTA-Glykosyltransferasen bestehen aus homotrimeren Quartärstrukturen, welche 

durch spezielle Trimerisierungsdomänen geformt werden. Die physiologische 

Bedeutung dieser Domänen ist noch nicht verstanden. Die erhaltenen 

hochauflösenden Einblicke in den Substrat-Enzym-Komplex könnte die Struktur-

basierte Identifizierung potentieller Inhibitoren von WTA Glykosieltransfasen erlauben. 



Zusammenfassung 

5 
 

  



General introduction 

6 
 

General introduction 

Staphylococcus aureus is a Gram-positive bacterium and major human pathogen. The 

emergence of methicillin-resistant S. aureus (MRSA) represents a global healthcare 

challenge to this day (Lee et al., 2018). Colonization of its natural niche, the human 

nares, provides S. aureus a jumping-off point for severe invasive infections (von Eiff et 

al., 2001; Wertheim et al., 2005). The S. aureus cell wall provides the necessary 

interface for interaction with the human host or the environment. Two in principle 

biochemically different macromolecules on the surface of S. aureus can be 

distinguished: proteinaceous and carbohydrate-based structures. Both can be either 

membrane-associated or covalently linked to the peptidoglycan to shape the 

pathogenic potential of S. aureus (Figure 1). 

 

Figure 1: Surface macromolecules of S. aureus. Carbohydrate-based polymers are either 

peptidoglycan linked, namely wall teichoic acid and Capsule polysaccharides, or, in case of 

lipoteichoic acid, membrane-anchored. Protein surface factors can be classified into membrane 

proteins, lipoproteins modified with lipid moieties or peptidoglycan-linked proteins, which can be 

decorated with aminosugar residues. 

 

Surface polymers of S. aureus 

S. aureus is equipped with a wide variety of proteinaceous factors that are covalently 

linked to the peptidoglycan or anchored to the cell membrane. These surface proteins 
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fulfill a multitude of functions including cell adhesion and immune evasion. They can 

be categorized into three subclasses: membrane proteins, lipoproteins and 

peptidoglycan. The first subclass, lipoproteins, usually possess several 

transmembrane helices. Lipoproteins are anchored to the cell membrane by a lipid 

moiety (Nakayama et al., 2012). Peptidoglycan-linked proteins are a key virulence trait 

of S. aureus. They fulfill a multitude of functions including cell adhesion, host 

colonization and immune evasion (Foster et al., 2014). 

The second subclass of cell-wall associated macromolecules are carbohydrate based, 

which is made up further of two major subclasses wall teichoic acids (WTA) and 

capsular polysaccharide (CPS). Both are bound covalently to the peptidoglycan 

(Weidenmaier and Lee, 2017). The structure of CPS varies significantly between 

bacterial species whereas some species such as Escherichia coli or Streptococcus 

pneumoniae express up to 80 or 93 different serogroups, respectively (Yother, 2011). 

The CPS of S. aureus shows less diversity and consists mainly of the two different 

serotypes, 5 and 8 (Fournier et al., 1987; Roghmann et al., 2005). The biosynthesis of 

CPS shares fundamental features with the biosynthesis of WTA and its intricacies are 

reviewed elsewhere in more detail (O'Riordan and Lee, 2004; Weidenmaier and Lee, 

2017). WTA is the other cell surface polymer expressed by Gram-positive bacteria 

(Brown et al., 2013). WTA among Gram-positive bacteria shows a remarkable 

structural diversity (Weidenmaier and Peschel, 2008), ranging from simple polyol 

phosphate repeats to elaborate glycosylpolyol phosphates. In most S. aureus strains, 

WTA consists of 20-40 polyribitol-phosphate (RboP) repeats that are linked to the 

bacterial cell wall via a linkage unit. This feature makes S. aureus unique among 

staphylococci since most coagulase-negative staphylococci express 

glycerolphosphate (GroP) based WTA (Endl et al., 1984). The general feature of 

polyol-phosphate-repeats is shared by another surface structure, lipoteichoic acids 

(LTA), consisting of poly-glycerol repeats (GroP), which are attached to the cell 

membrane (Figure 1) (Percy and Grundling, 2014). 

The linkage unit of WTA consists of N-acetylglucosamine (GlcNAc), N-

acetylmannosamine (ManNAc) and 2 glycerol-phosphate repeats. In recent years, the 

biosynthesis of WTA has been elucidated and described in detail (Brown et al., 2013; 

Weidenmaier and Lee, 2017). The assembly of the WTA polymer occurs in the cytosol, 

while being attached to an undecaprenyl-phosphate lipid carrier, a feature that is 
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shared by the biosynthesis of CPS. Subsequently, both polymers are transported to 

the outer leaflet of the membrane by distinct transporters: TagGH for WTA and CapK 

for CPS. WTA and LCP are subsequently attached to the peptidoglycan by the proteins 

LcpABC (Chan et al., 2014; Schaefer et al., 2017). 

WTA are integral components of the cell wall and are crucial for S. aureus physiology 

and pathogenicity. S. aureus devoid of WTA by deletion of the first gene, tagO (tarO), 

are viable under laboratory conditions (Weidenmaier et al., 2004). However, they show 

deficiencies in many physiological processes such as heat tolerance, biofilm formation 

and resistance to autolysis (Vergara-Irigaray et al., 2008). Additionally WTA appears 

to be crucial for proper peptidoglycan assembly by recruiting PBP4 to the division 

septum (Atilano et al., 2010). Regulation of WTA expression is mediated by the agr 

system, the quorum sensing system of S. aureus (Wanner et al., 2017). Upon reaching 

a considerable bacterial density, for example in an abscess, the agr system 

upregulates the membrane transporter constituent TarH, which leads to increased 

WTA presentation on the cell surface. This mode of regulation contrasts the usual 

regulation of bacterial biosynthetic pathways at the early enzymatic steps in order to 

avoid accumulation of metabolic products. Under anaerobic conditions WTA 

expression is repressed via the regulator SrrAB that influences early WTA biosynthesis 

genes (tarO, tarA, tarB), as well as late genes (tarH) (Mashruwala et al., 2017). 

 

Modification of teichoic acid surface structures 

Since WTA is the central surface polymer for the interaction of S. aureus with its 

environment, the derivatization of RboP repeats allows modulation of these processes. 

Two major types of WTA modification have been described: attachment of amino-

sugar residues (Winstel et al., 2014b) and D-alanine (D-Ala) groups (Neuhaus and 

Baddiley, 2003). The Dlt machinery whose genes are organized in a distinct operon 

(dltABCD) catalyzes D-alanylation of LTA and WTA. 

Decoration of negatively charged teichoic acids by positively charged D-Ala residues 

reduces the negative surface charge of the cell envelope, which leads to resistance to 

peptides such as defensins (Peschel et al., 1999) or glycopeptide antibiotics like 

vancomycin (Peschel et al., 2000). Additionally D-alanylation of LTA seems to be 
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important for the proper assembly and division of the cell envelope, since D-alanylated 

LTA is essential in WTA-lacking cells (Santa Maria et al., 2014). Attachment of D-Ala 

appears to be positively regulated by the graRS system (Herbert et al., 2007) and 

influenced by the Mg2+ concentration via the arlRS system (Koprivnjak et al., 2006). 

 

Glycosylation of WTA 

Early experiments with isolated WTA stated already the presence of 

glycosyltransferases in cell lysates that modify WTA with N-acetylglucosamine 

(GlcNAc) residues (Nathenson and Strominger, 1963). In recent years S. aureus WTA 

glycosyltransferases were identified on the genetic level (Winstel et al., 2014b) and for 

some of them an enzymatic activity could be demonstrated. All identified 

staphylococcal WTA glycosyltransferases are cytoplasmic proteins that modify WTA 

before it is transported to the cell surface. The enzyme TarS catalyzes the attachment 

of β-1,4 -GlcNAc to ribitol (Brown et al., 2012). The genetic locus of tarS is located in 

the tar cluster among other genes for the synthesis of RboP WTA. Hence, TarS can 

be considered as a housekeeping glycosyltransferase that is present in almost all 

S.  aureus lineages (Winstel Xia, Li 2015). Glycosylation by TarS seems to be crucial 

for the proper function of the alternative penicillin binding protein (PBP2a) (Brown et 

al., 2012). Interestingly, the tag gene cluster encodes an additional 

glycosyltransferase, termed tagX, for which no WTA glycosyltransferase activity could 

be demonstrated (Brown et al., 2012; Winstel et al., 2014b). The glycosyltransferase 

TarM catalyzes the attachment of 1,4 α-O-GlcNAc to ribitol by using the same substrate 

as TarS, UDP-GlcNAc (Xia et al., 2010). tarM is present in many S. aureus lineages, 

among them many highly pathogenic MRSA strains such as CC8 and CC30 (Li et al., 

2015; Winstel et al., 2014b). tarM is not part of the canonical WTA synthesis clusters 

but seems to be part of the S. aureus core genome and not encoded on a mobile 

genetic element (Winstel et al., 2014b). The absence of tarM in S. aureus CC5 and 

CC398 lineages probably has been caused by deletion events since ancestors of 

contemporary S. aureus strains encode tarM (Li et al., 2015). 

Besides the attachment of GlcNAc by TarS and TarM, a glycosylation reaction 

catalyzed by the glycosyltransferase TagN has been identified in S. aureus strains of 
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the lineage ST395. The WTA structure of ST395 differs fundamentally from those of 

other S. aureus lineages by consisting of GroP repeats modified with TagN-attached 

α-1,2-N-Acetyl Galactosamine residues (Winstel et al., 2013; Winstel et al., 2014a) 

resembling those of the WTA of coagulase-negative staphylococci. 

 

Function of WTA variation 

The decoration of wall teichoic acids allows S. aureus to adapt to changing 

environmental conditions of biological niches and facilitate distinct interactions within 

these areas. These specific spheres of interaction are discussed in the following 

sections. 

 

Interaction sphere: Cell adhesion and colonization 

S. aureus colonizes the anterior nares of up to 30% of the human population in a 

persistent manner (van Belkum et al., 2009; Wertheim et al., 2005). Nasal carriage is 

a risk factor for subsequent bacteremia by the same S. aureus clone (von Eiff et al., 

2001). In order to establish the humane nares as a habitat S. aureus must guarantee 

sufficient adhesion to the nasal epithelium. The nose can be divided into an anterior 

and a posterior cavity, which are characterized by different predominant tissues. 

S. aureus is believed to colonize both cavities. The anterior cavity of the nares contains 

mainly keratinized squamous epithelial cells, which likely interact with S. aureus via 

protein-protein interactions. Members of the S. aureus MSCRAMM (microbial surface 

components recognizing adhesive matrix molecules) protein family facilitate specific 

interactions with human proteins found in the anterior nares cavity. For instance  ClfB 

interacts with loricrin or cytokeratin 10 (Mulcahy et al., 2012). 

WTA is capable of mediating nasal colonization by adhering directly to epithelial cells 

(Weidenmaier 2004, Winstel 2015). WTA decoration heavily influences the degree of 

interaction with nasal tissue. SREC1 (scavenger receptor class F member 1) is located 

predominantly in the posterior nasal cavity and interacts via the zwitterionic properties 

of WTA (Baur et al., 2014). WTA glycosylation by TarM or TarS contributes to 
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adherence to epithelial cells and thereby to nasal colonization (Winstel et al., 2015). It 

appears that both described sugar decorations, namely α- and β-1,4-GlcNAc are 

equally important in facilitating cell adherence. However, it remains unclear how the 

glycosylation motifs of WTA influence receptor interaction due to the fact SRECI is 

lacking a distinct sugar-binding domain (Baur et al., 2014; Weidenmaier and Lee, 

2017). This means that further unidentified nasal receptors might facilitate sugar-

dependent binding of S. aureus. Additionally, it is unclear how alternative WTA 

structures consisting of GroP, found in S. aureus of sequence type ST395 (Winstel 

2013), might modulate the adhesive properties of S. aureus. 

S. aureus additionally facilitates binding to human immune cells by surface 

carbohydrate structures. LTA interacts directly with the CRIg receptor on Kupffer cells, 

stationary macrophages in the liver (Zeng et al., 2016). Capture of S. aureus in the 

liver is an important early process in S. aureus infection dynamic (Surewaard et al., 

2016). If S. aureus is not cleared from the liver it likely disseminates via leukocytes 

(Thwaites and Gant, 2011). However, it appears that Kuppfer cells and other 

macrophages are not essential for the subsequent dissemination of S. aureus 

infections to other organs (Pollitt et al., 2018). 

In general, WTA seems to be involved in the colonization of other human tissues such 

as those of the gastrointestinal tract by governing adhesion to epithelial cells and 

protecting from gut-associated defensins proteases and bile salts (Misawa et al., 

2015). Additionally, they facilitate binding to endothelial cells and are a virulence factor 

for the development of endocarditis (Weidenmaier et al., 2005). Furthermore, Suzuki 

et al. demonstrated that WTA is an essential factor in the manifestation of 

endophtalmitis (Suzuki et al., 2011). 

 

Interaction sphere: immune evasion 

The effectiveness of S. aureus as a major human pathogen relies on its 

immunomodulatory potential. WTA has been described to be an activator of the human 

immune system (Kurokawa et al., 2016). Thus, modulation of the WTA composition 

might be crucial for the immune evasion capability of S. aureus. Two direct ways of 

interaction of WTA with the human immune system have been described so far: 
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interaction of WTA with mannose-binding lectin (MBL) and recognition of WTA by 

immunoglobulins. 

The complement system is a crucial component of the innate immune system and links 

it to the adaptive immune system (Fujita, 2002; Ricklin et al., 2010). MBL is a C-type 

lectin, capable of binding to mannose and GlcNAc residues (Weis and Drickamer, 

1996) on bacterial surfaces. Park et al. demonstrated direct interactions between MBL 

and WTA (Park et al., 2010). For the related serum lectin L-ficolin no binding was 

observed. The modification of the WTA backbone with GlcNAc residues is essential 

for the recognition by MBL (Kurokawa et al., 2013), although GlcNAc and mannose 

residues are also present in the WTA linkage unit. Interestingly, there seems to be a 

stronger interaction with β-1,4-GlcNAc residues than with α-1,4-GlcNAc residues 

(Kurokawa et al., 2013). 

Similar to the opsonization initiated by the MBL-triggered complement cascade, 

secreted antibodies are able to recognize WTA surface epitopes as well, and are 

frequently found in human serum (Jung et al., 2012; Kurokawa et al., 2013; Lehar et 

al., 2015; Park et al., 2010). Surface-bound antibodies lead to activation of the classical 

complement pathway or can be directly sensed by Fcγ-receptors of phagocytes 

(Nimmerjahn and Ravetch, 2008). Most WTA-specific antibodies appear to 

preferentially bind to TarS-glycosylated β-1,4-WTA rather than the TarM product or 

unglycosylated WTA (Kurokawa et al., 2013). This speaks for stronger immunogenicity 

of certain WTA configurations. A common feature that is required for major 

histocompatibility complex (MHC) class II presentation of carbohydrates and 

subsequent T-cell stimulation is their zwitterionic property (Kalka-Moll et al., 2002). 

Zwitterionic properties are usually represented by positively charged amino groups and 

negatively charged phosphate or carboxyl functions (Tzianabos et al., 2001). Besides 

zwitterionic polysaccharides from Bacteroides fragilis and Streptococcus pneumoniae 

(Tzianabos et al., 2001), WTA and CPS from S. aureus also show zwitterionic 

properties and are able to stimulate T cells by a MHC class II-dependent mechanism 

(Wanner et al., 2017; Weidenmaier et al., 2010). Whether this T-cell stimulation 

additionally leads to IgG class switching and generation of a WTA specific IgG 

response is not understood. 
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Interaction sphere: phage interaction and horizontal gene transfer 

The extensive arsenal of immune evasion factors of S. aureus demonstrates its ability 

to constantly adapt to environmental challenges. By participating in horizontal gene 

transfer (HGT) S. aureus is able to modify its genetic information by integrating mobile 

genetic elements (MGE) that are made up of transposons, genomic islands, and 

prophages (Lindsay, 2014; Malachowa and DeLeo, 2010). MGEs govern many 

aspects of pathogenicity and host colonization capabilities (Richardson et al., 2018; 

Viana et al., 2010). Thus, HGT is a key mediator of bacterial evolution. Transducing 

bacteriophages are main drivers of HGT as S. aureus does not show frequent 

conjugation or natural transformation events (Lindsay 2010, Morikawa 2012). 

Interestingly S. aureus prophages are able to package and transduce even distal 

genomic regions further increasing its genetic variability (Chen et al., 2018). 

Furthermore, a S. aureus population is able to utilize prophages to acquire antibiotic 

resistance genes from other staphylococci (Haaber et al., 2016). 

All described S. aureus phages belong to the order Caudovirales, tailed phages, which 

can be further classified into three major morphological groups: Myoviridae, 

Siphoviridae and Podoviridae (Xia and Wolz, 2014). Staphylococcal phages utilize 

WTA as receptor (Xia et al., 2011). The abundance, accessibility and conservation of 

WTA render it a suitable interface for virus-host interaction. S. aureus phages 

demonstrate different receptor requirements. Myoviruses such as ФK and Ф812 show 

a broad host spectrum (Alves et al., 2014; O'Flaherty et al., 2004) comprising 

coagulase-negative and -positive staphylococci. ФK has been shown to attach to the 

RboP or GroP WTA backbone directly without interference by possible glycosylation 

(Winstel et al., 2014a; Xia et al., 2011). Some myoviruses seem to have developed 

additional receptor binding proteins (RBP) specific for sugar residues. For instance 

Myovirus Sa012 encodes at least two RBPs: one for the RboP backbone, the other for 

α1,4-GlcNAc-RboP (Takeuchi et al., 2016). 

In contrast to myoviruses, siphoviruses particularly of the well-studied serogroup B, 

depend on the presence of α-1,4 or β-1,4 GlcNAc WTA modifications for successful 
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adsorption and infection (Brown et al., 2012; Xia et al., 2011). A finding that was further 

supported by the identification of the RBP of Φ11, ORF45, which shows specificity for 

GlcNAcylated WTA (Li et al., 2016). S. aureus pathogenicity islands (SaPI) are genetic 

entities that utilize helper-phages for transfer (Penades and Christie, 2015). Because 

their structural proteins including RBPs are derived from helper phages (Tallent et al., 

2007), SaPIs adopt the receptor specificities of the respective helper phage (Winstel 

et al., 2013). 

As main vectors of HGT in S. aureus, siphoviruses rely on phage-WTA-compatibility 

for successful transduction as demonstrated by Winstel et al (Winstel et al., 2013). 

Even distantly related species such as Listeria monocytogenes are able to participate 

in HGT as long as their phage receptors are compatible (Chen and Novick, 2009; 

Winstel et al., 2013). Strains with incompatible WTA, i. e. WTA configurations that do 

not allow phage attachment, are excluded from HGT, which was demonstrated for 

PS187 expressing a GroP WTA. The presence of GroP WTA, however, allowes PS187 

exchange with coagulase-negative staphylococci, such as S. epidermidis, that express 

a similar WTA structure. This observation could be extrapolated to the potential 

development of subspecies among S. aureus that are genetically isolated from the rest 

of the species. 

Being susceptible to the uptake of genetic information via phages is a crucial 

prerequisite for S. aureus to maintain a role as human pathogen. Hence, this scarcity 

of glycoepitopes might explain why only few different WTA variants or lack of WTA 

glycosylation have been described for S. aureus (Winstel et al., 2014b), since WTA 

structure variations might lead to reduced siphovirus-mediated HGT. 
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Abstract 

Anionic glycopolymers known as wall teichoic acids (WTAs) functionalize the 

peptidoglycan layers of many Gram-positive bacteria. WTAs play central roles in many 

fundamental aspects of bacterial physiology, and they are important determinants of 

pathogenesis and antibiotic resistance. A number of enzymes that glycosylate WTA in 

S. aureus have recently been identified. Among these is the glycosyltransferase TarM, 

a component of the WTA de-novo biosynthesis pathway. TarM performs the synthesis 

of α-O-N-acetylglycosylated poly-5′-phosphoribitol in the WTA structure. We have 

solved the crystal structure of TarM at 2.4 Å resolution, and we have also determined 

a structure of the enzyme in complex with its substrate UDP-GlcNAc at 2.8 Å 

resolution. The protein assembles into a propeller-like homotrimer, in which each blade 

contains a GT-B-type glycosyltransferase domain with a typical Rossmann fold. The 

enzymatic reaction retains the stereochemistry of the anomeric center of the 

transferred GlcNAc-moiety on the polyribitol backbone. TarM assembles into a trimer 

using a novel trimerization domain, here termed the HUB domain. Structure-guided 

mutagenesis experiments of TarM identify residues critical for enzyme activity, assign 

a putative role for the HUB in TarM function, and allow us to propose a likely reaction 

mechanism. 

 

Main text 

Staphylococcus aureus is a leading cause of nosocomial pneumonia, surgical site 

infections, and blood stream infections. The bacterium remains a severe threat to 

human health, in part due to the continued emergence of strains that are resistant to 

existing antibiotics (Baron, 1996). To survive, S. aureus relies heavily on virulence and 

adaptability to its environment. The S. aureus cell envelope structure is highly complex, 

and this complexity is central to the survival and adaptability of the organism. Major 

components of the cell envelope are glycosylated structures (Schaffer and Messner, 

2005; Weidenmaier and Peschel, 2008), including glycoproteins, polysaccharide 

intracellular adhesin, capsular polysaccharides, peptidoglycan, lipoteichoic acid, and 

wall teichoic acid (WTA). The unique ability of methicillin- resistant S. aureus (MRSA) 

to develop resistance to β-lactams as well as other antibiotics (Leonard et al., 2013) is 
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in part due to the structure and composition of specific cell wall components (Brown et 

al., 2012; Maki et al., 1994; Qamar and Golemi-Kotra, 2012). The role of WTAs in these 

processes is complex and not well understood at the molecular level. WTAs serve to 

protect the cell from degradation through lysozyme (Bera et al., 2007) or from the 

action of cationic antimicrobial oligopeptides (Kristian et al., 2003). However, WTAs 

also assist in staphylococcal adhesion and colonization (Weidenmaier et al., 2004; 

Weidenmaier et al., 2005b). Furthermore, they play a critical role in cell division and 

biofilm formation (Atilano et al., 2010). The chemical structure of WTA varies 

substantially among Gram-positive bacteria (Brown et al., 2013), and this variability 

represents one strategy that allows these organisms to adapt to the environment or 

react to host defense systems (Weidenmaier and Peschel, 2008).  

Most of the S. aureus strains produce poly-ribitol-phosphate (RboP)-type WTA, which 

is composed of ~40 RboP units that are connected by 1,5-phosphodiester bonds. 

Some of the C4 hydroxyl groups of the WTA RboP unit are either substituted with α-

O- or β-O-GlcNAc, whereas the C2 hydroxyls sometimes carry a D-alanine (Fig. 1).  

Biosynthesis of WTA in S. aureus is carried out by a cluster of enzymes belonging to 

the teichoic acid ribitol (Tar) synthesizing pathway, many of which have only been 

recently characterized. The polyribitol backbone is covalently attached to the N-

acetylmuramic acid moiety of the peptidoglycan via a disaccharide (ManNAc β(1,4)-

GlcNAc-1-P) linkage unit followed by two units of glycerol phosphates (Kojima et al., 

1985) as shown in Fig. 1. In concert with TarA, TarB, TarI, TarJ, and TarL, the main 

chain is synthesized on the lipid carrier undecaprenyl monophosphate (C55P), which 

is embedded in the inner leaflet of the cell membrane. After the completion of 

glycosylation, the main chain of WTA is flipped to the outer leaflet of the plasma 

membrane via the ABC-type transporter TarG/TarH (Brown et al., 2013; Brown et al., 

2008). 

The regulated addition of alanines at the ribitol 2-position by the D-alanyltransferase, 

one gene product of the dltABCD (Weidenmaier et al., 2005a) gene cluster, as a final 

modification counterbalances the predominant negative charge of the linking 

phosphate groups and results in WTA becoming zwitterionic. The evolvement of host-

pathogen interaction is thought to have led to the increase of positive charges in the 
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bacterial cell wall to circumvent the action of cationic antimicrobial peptides (Li et al., 

2007; Peschel and Sahl, 2006). 

The enzymes TarM and TarS decorate the WTA backbone with α-GlcNAc and β-

GlcNAc, respectively (Brown et al., 2012; Xia et al., 2010). The β- GlcNAcylation of 

RboP is critical for the resistance of S. aureus (MRSA) to β-lactams (Brown et al., 

2012). Furthermore β-GlcNAc residues on WTA are recognized by the mannose-

binding lectin, leading to complement activation pathway of the human innate immune 

system as well as by antibodies in the adaptive immune system (Kurokawa et al., 

2013). The role of the -GlcNAcylation is not yet known.  

To define the mechanism of RboP glycosylation, we have performed a structure-

function analysis of the glycosyltransferase TarM, a 171-kDa protein. Sequence 

analysis and database research predicted one domain of TarM to belong to the GT-B 

superfamily of glycosyltransferases (Breton et al., 2012), whereas the second domain 

was assigned DUF1975 (domain of unknown function) according to the Pfam database 

(Finn et al., 2014). The crystal structure of TarM reveals a propeller-like trimer, with the 

three GT-B domains arranged as blades around a central hub formed by the three 

DUF1975 domains. Accordingly, we suggest the name HUB for DUF1975. The 

structure analysis of TarM bound to its substrate UDP-GlcNAc identifies the active site, 

defines essential contacts with this ligand, and suggests a plausible reaction 

mechanism. As TarM is the first known enzyme structure in the biogenesis pathway of 

poly-RboP WTA, our work sheds light on an essential aspect of S. aureus glycosylation 

and provides an initial framework for investigating parameters that dictate glycosylation 

of WTAs in bacteria.  

 

FIGURE 1. Schematic representation of the reaction catalyzed by TarM in WTA biogenesis. Gro, 
glycerol; ManNAc, N-acetyl-D-mannosamine. 
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Experimental procedures 

Strains and Media—S. aureus strains were cultured in BM media (1% (w/v) Tryptone, 

0.5% (w/v) yeast extract, 0.5% (w/v) NaCl, 0.1% (w/v) glucose, 0.1% (w/v) K2HPO4, 

pH 7.2). Escherichia coli strains were cultivated in LB media (1% (w/v) casein 

hydrolysate peptone, 0.5% (w/v) yeast extract, 0.5% (w/v) NaCl, 1% (w/v) glucose, 1‰ 

(w/v) K2HPO4, pH 7.2).  

Cloning and Expression of tarM and Mutant tarM—Wildtype tarM (SACOL 1043) was 

subcloned as reported previously (19). QuikChange (Stratagene) was used to 

introduce point mutations into the glycosyltransferase active site in either pRB474-tarM 

or pBAD-TOPO-102/202-tarM (EcoRI/BamHI, Amp or Kan) as template. pRB474 

shuttle vectors containing tarM variants (wt or mutant) were transformed into S. aureus 

RN4220 mutant ΔtarMΔtarS for determining the efficiency of plaquing (EOP). Thus, 

tarM and tarM mutants were fused to a hexahistidine tag at the N terminus and 

subcloned into the pBADvector for recombinant expression in E. coli strain Top10 

(Table 1). 

Purification—Cells were lysed by ultrasonication (Digital Sonifer, Branson). After 

centrifugation at 38,000 x g for 55 min, the supernatant containing recombinant TarM 

was collected and used as the crude TarM preparation after dialyzing against 

imidazole, 1mMDTT). The crude preparation was applied onto a His-Trap-FF nickel-

chelate affinity column (GE Healthcare, 5 ml), and the column was subsequently 

washed with 30 column volumes of buffer C followed by another washing step with 10 

column volumes of buffer C containing 10 mM imidazole. Pure TarM was eluted using 

a gradient ranging from 36 to 400 mM imidazole in buffer C. The pure sample was then 

concentrated to 1 mg/ml (Sartorius vivaspin20 PES, 50.000 molecular weight cutoff), 

dialyzed against buffer D (50 mM triethanolamine, pH 8.5, 250 mM LiCl, 5 mM EDTA, 

1 mM DTT), and subjected to 2 successive treatments with enterokinase (Ekmax, 20 

°C, 15–20 h, 1.5 units/ mg; Life Technologies). Aggregated proteins and excess 

enterokinase were removed by gel filtration (Superdex200).Afinal concentration step 

yielded highly monodisperse pure protein that was then used for crystallization and 

biophysical characterization. Purity and homogeneity of TarM were assessed by SDS-

PAGE as well as dynamic light scattering (DLS).  
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Structure Determination—Initial small crystals grew as trapezoid- shaped plates 

(diameter ≈ 50 µm) in 600-nl drops containing 300 nl of TarM protein solution in buffer 

D and 300 nl of crystallizing buffer E (100 mM imidazole, pH 8.0, 200 mM Ca(OAc)2, 

20%(w/v) PEG-1000) in 96-well plates using the sitting- drop vapor diffusion method. 

Refinement yielded the final crystallization condition (100 mM imidazole, pH 7.7–8.2, 

18–21% (w/v) PEG-1000, 0.1–0.25 M Ca(OAc)2) which produced large, single crystals 

(diameter ≈ 250 µm). After soaking crystals in cryoprotection solution (buffer D:buffer 

E=1:1, 10% (v/v) (4s)-2-methyl-2,4-pentanediol) they were directly frozen in liquid 

nitrogen. Data were collected on a PILATUS 2 M hybrid pixel detector using 

synchrotron beam line X06DA at the Swiss Light Source (SLS) super-bending magnet 

(2.9 tesla), and they were processed with the XDS package (Kabsch, 2010). The 

crystals belong to spacegroup P6322 with cell parameters of ab 123.7 Å and c 223.3 

Å (Table 2). They contain one TarM monomer in their asymmetric unit, with a solvent 

content of 74%. For the determination of phases, crystals were soaked in crystallization 

condition containing the anomalous scatterer iodide (buffer D:buffer E=1:1, 400 mM 

KI). After soaking them for 30 min, the crystals were back-soaked in cryoprotection 

solution and frozen in liquid nitrogen. The autoSHARP routine protocol (Vonrhein et 

al., 2007) for SIRAS (single isomorphous replacement of anomalous scatterer) was 

used in conjunction with heavy atom detection implemented in SHELXDE (Schneider 

and Sheldrick, 2002) for initial phase calculation, and autoSHARP-implemented 

density modification package (DM) (Terwilliger, 2000) was employed to perform 

solvent flattening for phase improvement. ARP/wARP (Langer et al., 2008) was then 

used to trace the first 300 residues of the protein. Alternating cycles of COOT (Emsley 

et al., 2010) model building and REFMAC5 (Collaborative Computational Project, 

1994; Murshudov et al., 2011) PHENIX (Adams et al., 2010) refinement subsequently 

revealed additional residues, which were included in the refinement until convergence 

had been achieved. The final model includes residues 1–493 (PDB ID 4WAC). Data 

collection and re  finement statistics are given in Table 2. 

To solve the structure of the ligand-bound complex, purified TarM was preincubated 

with UDP-GlcNAc (15 mM, buffer D, 1 h, 4 °C) and then subjected to high throughput 

crystallization screening using a robot. Diffracting crystals were obtained with 

crystallization solution buffer F (100 mM Tris-HCl, pH 7.0, 200 mM MgCl2, 10% (w/v) 

PEG-8000). Although slightly smaller than the crystals obtained with unliganded TarM, 
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the complex crystals shared a similar morphology. The crystals were soaked in the 

new crystallization condition containing a higher amount of cocrystallant (buffer 

D:buffer F  1:1, 50 mM UDP-GlcNAc) and subsequently transferred to cryoprotectant-

containing solution (buffer D: buffer F 1:1, 50 mM UDP-GlcNAc, 10%(v/v) (4s)-2-

methyl-2,4-pentanediol) before freezing them in liquid nitrogen. Data were collected on 

a PILATUS 2M detector at beamline X06DA of the Swiss Light Source. Data processing 

using XDS (Kabsch, 2010) yielded the same space group as the crystals of unbound 

TarM, with slightly altered cell parameters of a = b = 122 Å and c = 212 Å. The unbiased 

whole native structure solution was used as a molecular replacement (Collaborative 

Computational Project, 1994; Vagin and Teplyakov, 2010) input model for phasing the 

new data. After one refinement run of the phased structure model, the UDP-- GlcNAc-

moiety was clearly visible in the unbiased electron density maps, and thus the ligand 

was incorporated into the model using the refmac library (Vagin et al., 2004) in COOT 

(Emsley et al., 2010). TLS refinement utilizing REFMAC5 and PHENIX yielded the final 

model for the binary complex (PDB ID 4WAD). Data collection and refinement statistics 

are given in Table 2. Figures were generated with PyMOL (DeLano, 2010). 

Dynamic Light Scattering—DLS measurements were performed on a Nano Zetasizer 

(Malvern) with purified TarM samples at 1 mg/ml in buffer D or buffer G (10 mM 

Na2HPO4, 0.01 mM NaH2PO4, pH 8.5, 200 mM NaF). Data were recorded and 

evaluated using Zeta Software (Malvern).  

Circular Dichroism—CD measurements were performed on a JASCO J-720 

spectropolarimeter with purified TarM samples at ~0.5 mg/ml in buffer G. A path length 

of 0.1 cm was used, and the samples were scanned at a speed of 50 nm/min. Data 

were recorded and evaluated using the software Spectra Manager (Jasco).  

Plaquing Efficiency of Ф11—To analyze the in vivo activity of TarM and its variants, the 

plaquing efficiency of bacteriophage 11 was determined by plating 11 on S. aureus 

mutant strain RN4220 ΔtarMΔtarS complemented with empty plasmid (pRB474), a 

plasmid encoding wt TarM (pRB474-tarM), or plasmids encoding TarM variants (see 

Table 1). To determine the plaquing efficiency, 100 µl of Φ11 lysate with 1000 plaque 

forming units (pfu) was mixed well with 100 µl of bacteria culture containing ~4 x 107 

colony forming units. After incubation at 25 °C for 10 min, the infection mixture was 

mixed well with 5 ml of soft agar and then poured onto BM plates containing 10 µg/ml 
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chloramphenicol. The plates stood at 37 °C overnight (16–24 h) and following up, the 

pfu was enumerated. The plaquing efficiency of Φ11 on tarM-complemented RN4220- 

ΔtarMΔtarS was set to 100%. 

WTA Glycosyltransferase Activity Assay—The colorimetric assay was prepared 

according to Mulder’s procedure (Mulder and van Doorn, 1975) with slight 

modifications. 1.5 µg of recombinant TarM variants (in 20 mM Tris, pH 8.0, 10 mM 

MgCl2) were incubated with UDP-GlcNAc (2 mM) and non-glycosylated WTA (25 M) 

that was isolated from RN4220 ΔtarMΔtarS (Winstel et al., 2014) and a reaction mixture 

consisting of phosphoenolpyruvate and NADH (0.2 mM each). The release of UDP by 

TarM was assayed through the coupled conversion of NADH to NAD+ (340 nm, 40 min, 

25 °C) by pyruvate kinase and lactate dehydrogenase (2 units each), leading to the 

decrease of absorbance. 

 

Results 

Overall Structure and Domain Organization of TarM— TarM assembles into a 

symmetric, propeller-like homotrimer, with three blades projecting from the central hub 

(Fig. 2, A and B). The three blades project at angles of ~120 degrees from the hub 

(Fig. 2A), giving the propeller a cradle-like appearance, with a large cavity at its center. 

Each TarM monomer can be divided into two regions (Fig. 2, C and D); the 

glycosyltransferase (GT) domain forms the blade, which can be further subdivided into 

an N-terminal domain (Gt-N; residues 1–80, 202– 309) and a C-terminal domain (Gt-

C; residues 310–493). The trimer is assembled by three copies of a domain (residues 

81–201) that was originally annotated as a domain of unknown function (DUF1975) 

and that is inserted into Gt-N. This domain features a 10-stranded antiparallel β-sheet 

composed of strands β4 through β13, with one face of the sheet covered by a single 

α-helix (α4). Given its function in TarM trimerization, we refer to this domain as 

theHUBdomain. The Gt-N andHUB domains are well ordered and exhibit low overall 

temperature factors (B-factors). In contrast, large portions of Gt-C display higher 

mobility and elevated B-factors, probably as a result of the larger surface-exposed area 

of this domain, the paucity of its interactions in the crystal lattice, and its flexible linkage 

to Gt-N. The Gt-N domain is positioned atop the HUB, whereas Gt-C projects away 
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from this assembly at an angle of ~40 degrees. Each TarM monomer, therefore, has a 

bent, hook-like conformation, giving rise to the cradle-like structure of the trimer (Fig. 

2). 

 

FIGURE 2. Overall structure and domain organization of TarM. A and B, ribbon representation 

of the TarM homotrimer viewed from two orthogonal angles. The molecular surface of the trimer is 

shown as a semitransparent surface. C, ribbon drawing of a TarM monomer, viewed from two 

orthogonal angles. D, topology drawing using topdraw of one TarM monomer. The Gt-N, Gt-C, and 

HUB domains are colored in blue, green, and red, respectively, in all panels. 

Together, subdomains Gt-N and Gt-C form the glycosyltransferase unit, referred to as 

GT-B. Gt-N consists of a parallel seven-stranded β-sheet (strands β1-β3 and β14-β17) 

connected by eight -helices (helices 1-3, 5-8 and 16), whereas Gt-C contains a central 

six-stranded parallel β-sheet (strands β18-β23) and seven flanking -helices (helices 9-

15) (Fig. 2D). The Gt-N and Gt-C domains are linked by ~10 solvent-exposed residues 

that connect strands β17 and β18. A DALI (Holm and Rosenstrom, 2010) query of the 

Gt-N/Gt-C-unit returned several hits for structural homologs in the GT-B 
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glycosyltransferase superfamily. The glycosyltransferases MshA from 

Corynebacterium glutamicum (Z-score 33.1, r.m.s.d. 2.9 Å, 334 aligned residues, 18% 

sequence identity, PDB ID 3C4Q (Vetting et al., 2008)) and BshA from Bacillus 

anthracis (Z-score 32.9, r.m.s.d. 3.2 Å, 336 aligned residues, sequence identity 18%, 

PDB 3MBO (Parsonage et al., 2010)) yielded the highest scores, directly followed by 

the streptococcal enzyme GtfA (Z-score 32.8, r.m.s.d. 2.8 Å, 361 aligned residues, 

sequence identity 23%, PDB 4PQG (Shi et al., 2014)). Other homologous proteins 

include PimB’ (Z-score of 30.6, r.m.s.d. of 3.0 Å, 331 aligned residues, 14% sequence 

identity, PDB 3OKA (Batt et al., 2010)) and chlorovirus NY-2A gene product B736L (Z-

score of 28.7, r.m.s.d. of 3.4 Å, 333 aligned residues, 14% sequence identity, PDB 

3OY7 (Xiang et al., 2010)). Table 3 lists the conservation of the binding pocket. 

The Oligomeric State of TarM—The asymmetric unit of the crystals contains one TarM 

monomer (58 kDa, 493 residues) that assembles into the trimeric structure shown in 

Fig. 2 through a crystallographic three-fold symmetry operator. Trimer contacts 

exclusively involve the HUB domains, which form a funnel-like arrangement that is ~30 

Å wide at one end. The other end of the funnel is almost closed as a result of three 

closely approaching Val-159 side chains (Fig. 3A). The trimer interface includes 

hydrogen bonds and salt bridges as well as hydrophobic interactions (Fig. 3B), and it 

buries a total surface area of 777 Å2 with a solvation free energy gain of9 kcal/M at 

each monomer-monomer contact. 

It is of course possible that the observed propeller-like trimer is a crystallization artifact. 

However, the PISA server (Krissinel and Henrick, 2007), which evaluates the 

physiologic relevance of crystallographic interfaces, classifies this interface as 

significant for complexation (css = 1), in contrast to all other contacts of TarM subunits 

in the crystals. To examine whether the trimer also exists in solution, we performed 

size-exclusion chromatography and dynamic light scattering with purified TarM. Both 

experiments provide evidence for a trimeric state of the enzyme in solution. TarM 

elutes as a single peak in gel filtration, with a hydrodynamic diameter of ~14 nm 

corresponding to a molecular mass of ~300 kDa. Although this value is higher than 

that calculated for the trimer (174 kDa), the protein deviates significantly from a 

globular shape (Fig. 2A) and would, therefore, be expected to elute at a higher 

apparent molecular weight. A calculated Perrin- factor of ~1.5 suggests a molecular 

shape deviant from a spherical protein (Wright et al., 1973). In accordance with this, 
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the molecular shape derived from the structural data is reminiscent of an oblate rather 

than a sphere. 

 

FIGURE 3. Close-up view of the HUB domain-generated trimer interface. A, view along the trimer 

axis showing three crystallographically related valines (Val-159) closing the HUB on the side 

opposite to the HUB maw. The color code is the same as in Fig. 2. B, close-up view showing the 

interface between two monomers. Three crystallographically related lysines (Lys-136) point with their 

side chains into the cavity. Other interfacing residues of relevance, determined by PISA, are 

represented as sticks. The TarM trimer interface is composed of 20 residues (amino acids 98, 100–

104, 110, 112–119, 136–139, and 159) in one monomer (orange) and 28 residues (amino acids 85, 

87, 88, 91, 136, 141, 142, 144, 154, 156–159, 164, 165, 167, 169, 174, 175, 178, 180, 190, 192–

194, and 197–199) in the other monomer (blue). Residues contributing to the interface are 

concentrated in loops β4′-β8′ and β9-β13. 

Architecture of the Active Site—Glycosyltransferases of the GT-B class typically bind 

their substrates at the interface between Gt-N and Gt-C. To characterize the ligand 

binding site of TarM, we solved the structure of the enzyme bound to its substrate UDP-

GlcNAc through incubation of soluble TarM with UDP-GlcNAc and subsequent 

cocrystallization of the complex. The overall structures of unbound and UDPGlcNAc- 
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bound TarM are highly similar (r.m.s.d. value of 0.81Å for 493 aligned residues, Fig. 

4A), and thus binding of UDP-GlcNAc does not lead to any larger structural 

rearrangements. Unambiguous electron density in the active site cleft allowed us to 

build the UDP-GlcNAc substrate and assign contacts (Fig. 4B). UDP-GlcNAc is located 

in a cleft formed by five loops (loops 1–5, Fig. 4C). 

 

FIGURE 4. The ligand-binding site of one TarM chain. A, superposition of free and UDP-GlcNAc-

bound structures in ribbon representation. The UDP-GlcNAc-bound TarM structure is shown in red, 

and unbound TarM is depicted in black. B, 2Fo − Fc map at 1.0 σ contour-level of UDP-GlcNAc in 

the active site of TarM, seen from the face-on side. C, representation of the bound sugar surrounded 

by five prominent and well conserved loops (loop-1 (residues 9–18), loop-2 (residues 248–251), loop-

3 (residues 324–332), loop-4 (residues 380–386), and loop-5 (residues 401–406)). Dashed lines 

indicate putative contacts with distances ranging from 2.2 to 4.5 Å. A distance cutoff of 4.5 Å was 

used to show hydrogen bonds and salt bridges. 

The GlcNAc moiety rests in a shallow pocket formed by residues in loops 1, 2, and 5, 

with one face of the sugar ring buried and the other exposed to solvent. The N-acetyl 

group faces into a small, hydrophobic pocket formed by Met-18 (loop 1), His- 249 (loop 

2), and Leu-407 (loop 5). The carbonyl oxygen as well as the C3 and C4 hydroxyl 

groups form hydrogen bonds to loop residues, whereas the anomeric center carbon 

C1 lies in close proximity to the carboxylate function of Glu-403. The negative charge 
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of the pyrophosphate unit is negated by salt bridges to the Arg-326 and Lys-331 side 

chains. One of the phosphates also forms contacts with the backbone amide of Gly-

17, whereas the other is hydrogen-bonded to Ser-408. Finally, the uridyl unit lies in a 

narrow pocket that is lined by residues from loops 1 and 3 and closed at the rear end 

by loop 4. The ribose faces toward the Glu-411 side chain. Specificity for uracil is 

generated through several polar and hydrophobic interactions with loop 4 residues Tyr-

382, Thr-383, and Pro-386 as well as the side chain of Ile-324 within loop 3. 

EOP—EOP was utilized to assess in vivo functionality of several TarM variants. 

Enzymatic activity of wild-type and mutant TarM was assayed using an established 

semiquantitative method that is based on a link between glycosylated WTA and 

bacteriophage adsorption to S. aureus hosts (Xia et al., 2011). Recently we showed 

sugar residues on WTAs served as the receptor of siphophage such as11. The 

laboratory strain RN4220 lacks all resistance mechanisms; hence, phage plaquing 

efficiency on strains derived from RN4220 indicates the abundance of GlcNAc residues 

on WTA, reflecting the in vivo activity of a WTA glycosyltransferase (Xia et al., 2011; 

Xia et al., 2010). We also showed that a double mutant RN4220 ΔtarMΔtarS, which 

lacks both α-O- and β-O-GlcNAc, did not only produce any GlcNAc on WTA but was 

resistant to 11 infection (Brown et al., 2012). In this study we complemented this mutant 

with various tarM variants, and the resulting complemented strains were used as hosts 

for plating Φ11 (Table 1). The efficiency of Φ11 plaquing reflects the level of WTA 

glycosylation in those tarM variant complemented strains. Cells expressing wild-type 

TarM, therefore, show the highest EOP, whereas cells lacking TarM activity do not 

show any plaque forming capacity. Falsifying concentration effects were ruled out by 

performing EOP experiments for each mutant at threshold titers from the same freshly 

prepared phage cultures. Structure-guided Mutagenesis of Active Site Residues—To 

obtain insight into the catalytic mechanism and assess the validity of the observed 

interactions, several of the amino acids that lie in close proximity to the bound UDP-

GlcNAc were mutated, and the enzymatic activities of the mutated proteins were 

analyzed in each case (“Experimental Procedures”). We specifically generated 

mutants E403A, K331S, R326S, and H249A, all of which probe interactions with 

substrate (Table 1). To confirm that the mutated proteins are still folded, each protein 

was purified and subjected to circular dichroism (CD) spectroscopy experiments and 

DLS analysis (Fig. 5, B and D). These data show that all mutants are structurally intact 
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and have secondary structure elements that are indistinguishable from those of WT 

TarM. Residue Glu-403 is clearly among the most important residues for catalysis. Its 

mutation to alanine essentially renders TarM inactive as it was not able to produce 

almost any observable spots on the bacterial lawn and generated no detectable output 

in the EOP-measurement (Fig. 5). The Glu-403 carboxyl group is thus essential for 

catalysis. Likewise, the mutation of Lys-331 to serine diminished all transferase activity 

in the EOP measurement. This mutation was aimed at removing a contact with the 

pyrophosphate group of UDP-GlcNAc as well as removing a potentially stabilizing 

interaction with Glu-403, as Lys-331 lies in close proximity to Glu-403, and the two 

residues could form a salt bridge during catalysis. Our results show that Lys-331 plays 

an essential role in substrate binding and/or catalysis. Residue Glu-411, which lies 

near the ribose of UDP, is also highly conserved. Its mutation to alanine also leads to 

severely reduced enzymatic activity, probably because the Glu- 411 side chain is an 

integral part of the UDP-GlcNAc-binding site. Mutations of Arg-326 to serine and His-

249 to alanine led to 20 and 30%, respectively, remaining WT activity. This suggests 

that both residues are important contact points that are, however, not essential for the 

reaction to proceed. After the phospholysis reaction, the activated GlcNAc oriented on 

Glu-403 has its anomeric carbon pointed to the gap between Gt-N and Gt-C, where 

the activated acceptor (polyribitol- phosphate) must be located for the chemical 

reaction of glycosylation to occur. Unfortunately we lack a structure of TarM bound to 

WTA fragments, which would shed light on the exact structure of the sugar-transfer 

transition state. 

Physiologic Role of the HUB and the Trimer—To obtain insight into the putative 

function of the novel HUB domain, we selected a small number of residues in this 

domain for sitedirected mutagenesis (Table 1). The rationale of these experiments was 

to subtly alter HUB regions mediating trimerization and to test the impact of these 

mutants on enzyme turnover efficiency. We generated single amino acid substitutions 

(K136S, N138Q, N180W) as well as a double (V159Y/C164R) and a triple 

(V159Y/C164R/K136S) mutation near the trimer interface. We observed a substantial 

decrease in TarM EOP (Fig. 5A) for K136S as well as the double and the triple mutant. 

We next selected the triple mutant and tested, alongside the wild type and E403A, its 

enzyme activity under in vitro conditions. Although E403A substantially decreased the 

EOP outcome and the enzymatic activity in the same order (Fig. 5E), indicating fully 
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impaired glycosylation of WTA, we could not observe a comparable outcome for the 

triple mutant. Thus, the triple mutant produces different results in vitro and in the EOP 

assay. To rationalize this, we hypothesize that the triple mutant may lead to a subtle 

alteration or destabilization of the TarM trimer structure. Such a subtle change might 

not affect the catalytic activity of the enzyme in solution, but it might elicit a more severe 

effect in a physiologic setting. In support of this hypothesis, the CD spectra of the 

double and the triple mutants (Fig. 5B) show an additional shoulder around 205 nm, 

indicating a small alteration of secondary structure elements in the HUBdomain. 

According to DLS and size exclusion chromatography analysis of recombinant TarM-

variants, the variations in molecular dimensions are at best marginal (Fig. 5), indicating 

that the putative alteration is small. 

 

Discussion 

We have determined the first structure of an enzyme in the biogenesis pathway of poly-

RboP WTA, and we have characterized the ligand binding site of this enzyme. Our 

work sheds light on an essential aspect of S. aureus glycosylation and can be used as 

a template for understanding similar reactions in related organisms.  

Glycosyltransferases can be classified into two groups that either retain the 

stereochemistry of the donor anomeric bond (α → α) or that invert this bond during the 

transfer reaction (α → β). A common feature of GT-4 class enzymes is that they retain 

glycosyltransferases, and combined with previous biochemical data our structural 

analysis suggests that TarM is also a retaining glycosyltransferase that employs an 

Sn1-like mechanism in accordance with the widely acknowledged mechanism for a 

typical GT-4 class enzyme. The most salient structural features are shared by TarM 

and closely related GT-4 class enzymes MshA and BshA, and these latter enzymes 

can, therefore, serve as a useful basis for comparison. The reaction mechanism for 

this class of enzymes has been established for MshA (Vetting et al., 2008) and others 

(Greenfield et al., 2012; Martinez-Fleites et al., 2006; Steiner et al., 2010). The 

acceptor substrates of GT-4 enzymes range from small molecules such as inositol 

phosphate to lipopolysaccharides and to S-layer glycoproteins. Although the resolution 

of UDP-GlcNAc-bound TarM is only 2.8 Å and although the Gt-C domain is more 
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mobile and less well defined by electron density than the remainder of the protein, the 

electron density for UDP-- GlcNAc is nevertheless unambiguous and allows placement 

of the ligand into the structure in the conformation shown in Fig. 4. 

 

FIGURE 5. Plating assay & CD-spectra of active site variants. A, EOP assay for functional 

analysis of TarM point mutations. The histogram shows the effects of key amino acids of TarM on 

phage susceptibility, as probed by complementation of RN4220 Δ tarMtarS with TarM carrying 

specific point mutations. Approximately 1000 pfu of phage 11 were mixed with 100 μl of bacteria 

suspension of optical density 0.4. After a brief incubation, soft agar was applied, and mixture was 

poured onto agar plates followed by overnight incubation at 37 °C. pfu was counted, and EOP of 

ΔtarMtarS complemented with wild-type tarM was designated as 100%. Mutant-tarM complements 

are indicated in relation as the mean of four experiments ± S.D. Statistically significant differences 

of mutant TarM from wild-type TarM complementation were calculated by paired two-tailed Student's 

t test: ns, not significant, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001. B, overlaid CD spectra of 

recombinant TarM active site mutants H249A, R326S, K331S, and E403A and HUB domain mutants 

K136S, V159Y/C164R, and K136S/V159Y/C164R. Recombinant enzymes were purified according 

to the same protocol used for the wild-type enzyme (see “Experimental Procedures”). CD 

measurements were performed at concentrations ranging from 0.5 to 0.8 mg/ml in buffer G. C, 
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overlay of size exclusion chromatography (SD200 16/60, GE Healthcare) elution profiles from the 

last step of recombinant protein purification with buffer D at 4 °C. All TarM variants elute in a volume 

range with an average peak point corresponding to a molecular size estimated to be 300 kDa 

according to the size calibration proteins shown on top. Color coding is the same as in Fig. 5B. D, 

overlaid DLS spectra of recombinant wild type, E403A, and K136S/V159Y/C164R TarM at 

concentrations of 0.5–1 mg/ml performed at 20 °C in buffer D. The calculated radius for a spherical 

protein model of 170 kDa is 5.35 nm. Color coding is the same as in Fig. 5B. E, relative in vitro 

activity of TarM and selected TarM variants. Activity of wild-type TarM was set to 100%. Values are 

given as the mean of three experiments (n = 3) ±S.D. The reactions were carried out in the presence 

of 2 mm UDP-GlcNAc and 25 μm WTA at room temperature. The reaction was followed via a coupled 

enzymatic assay with non-saturating amounts of TarM variants. 

A critical difference to other GT-4 class enzymes such as MshA and BshA is that TarM 

has a HUB domain that is inserted into the Gt-N domain between helices 4 and 5 (Fig. 

2D) and that folds into a long antiparallel β-sheet. The point of insertion of the HUB 

domain into Gt-N also happens to be the dimerization site for MshA and BshA. The 

HUB domain gives rise to a unique trimeric, propeller-like assembly of three 

glycosyltransferase domains. Given the proximity of the three-fold symmetry axis to 

the active sites, the HUB-generated trimer may also participate in interactions with 

WTA and assist with catalysis. Our mutational analysis clearly implicates the HUB 

domain in this process. It is interesting that a BLAST (Altschul et al., 1997) sequence 

search of protein databases only finds HUB-like sequences in TarM homologs of other 

Gram-positive bacteria (NCBI# WP_029331270.1, identity 53%, similarity 71%; NCBI# 

WP_014124998.1, identity 43%, similarity 65%; NCBI# WP_ 025702814.1, identity 

27%, similarity 50%; NCBI# WP_003756742.1, identity 33%, similarity 55%). To 

analyze the level of conservation of residues in TarM and its homologs, we generated 

a sequence alignment (not shown) and colored the TarM surface according to the level 

of conservation (Fig. 6). As expected, the active site region and the UDP-GlcNAc 

binding site are rather conserved (red in Fig. 6). Interestingly, surface-exposed portions 

of the HUB domain that lie adjacent to the active site region are also well conserved, 

and because there is no obvious structural reason for this conservation, we predict that 

these regions might be involved in the binding of the second substrate, the RboP 

acceptor chain. As TarM-mediated WTA glycosylation is thought to constitute a general 

pathway in Grampositive bacteria with RboP-WTA (Xia et al., 2010), it seems likely 

that the HUB domain acts similarly in these related organisms. Our mutagenesis 
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results indirectly suggest a role for the HUB in WTA glycosylation, although the exact 

mechanism remains to be elucidated. 

A recent structural analysis of the streptococcal glycosyltransferase GtfA has identified 

a novel domain that is very similar in structure to the HUB domain and that is also 

inserted into a glycosyltransferase subdomain at a similar location (Shi et al., 2014). 

The GtfA domain is the only structure in the DALI database with any significant 

structural homology to the TarM HUB (Z-score 11.6, r.m.s.d. 2.1 Å, 103 aligned 

residues, sequence identity 16%, PDB 4PQG). However, GtfA is clearly monomeric, 

and the enzyme also does not act on WTA. A structural alignment shows that the novel 

GtfA domain is unlikely to form a similar trimeric arrangement due to an insertion 

sequence (PVDNK) that extends the turn connecting strands β9 and β10 (Fig. 7). This 

loop is much shorter in TarM, allowing trimer formation, and the tip of the loop moreover 

carries Val-159, which makes direct contacts to the two other Val-159 residues in the 

trimer and thus stabilizes the trimeric arrangement. Consistent with this, a mutation of 

Val-159 that would disrupt the trimer affects the ability of TarM to process WTA. It is 

possible that WTA-GTs such as TarM, and its relatives have evolved the HUB domain 

to assemble into trimers and thereby facilitate the glycosylation of complex 

glycopolymers. The direct distance of two neighboring active sites in the TarM trimer 

is 72 Å, which corresponds to about eight or nine ribitol units in an extended chain. 

Thus, a single TarM trimer could simultaneously glycosylate the same poly-RboP 

substrate at different locations. It is not currently known which RboP units in the long 

polyribitol-phosphate chain are glycosylated, but it is likely that the 

glycosyltransferases acting on WTA have a mechanism that enables them to move 

along the polyribitol chain and selectively glycosylate specific units. The result of such 

a glycosylation pattern is for example relevant for the selectivity of pattern recognition 

receptors. Future studies of TarM in complex with WTA components should help reveal 

the molecular details of this process. 
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FIGURE 6. Conservation of TarM. Conserved residues were identified via multiple alignment 

(ClustalW) of TarM with glycosyl transferase family 1 (Exiguobacterium oxidotolerans) (NCBI# 

WP_029331270.1), hypothetical protein (Paenibacillus forsythiae] (NCBI# WP_025702814.1), 

putative glycosyltransferase (Tetragenococcus halophilus) (NCBI# WP_014124998.1), glycosyl 

transferase (Listeria grayi) (NCBI# WP_003756742.1). Conserved residues were highlighted by 

coloring the TarM model surface according to the following scheme: 100% conserved (dark red), 

80% conserved (medium red), 60% conserved (light red), no significant conservation (white). 

 

FIGURE 7. Comparison of the HUB domain trimer of TarM with the monomeric DUF1975 

domain of SpGtfA. Superposition of the trimeric TarM HUB (red) with three monomeric DUF1975 

domains of GtfA (silver) (r.m.s.d. 2.2 Å, aligned residues 116). It is evident that a trimeric 

arrangement of the GtfA domains would lead to clashes. 
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By now only a handful of teichoic acid biogenesis-affiliated protein structures have 

been solved for either polyglycerol phosphate-type or complex-type WTA, e.g. TagF 

from Bacillus subtilis (Lovering et al., 2010), Streptococcus TarI (spr1149, PDB 2VSH) 

(Baur et al., 2009), MnaA (BA5590) from B. anthracis (PDB 3BEO) (Velloso et al., 

2008), putative WTA ligase from Streptococcus (Kawai et al., 2011), or lipoteichoic 

acid polymerase LtaS (Campeotto et al., 2015). TarM is the first enzyme structure in 

the biogenesis pathway of poly(RboP)-type WTA to be reported. 
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 TABLE 1 Design of TarM mutations 

  Mutation Location Rationale 

H249A Gt-N Removes contact with M18, possible indirect 
impact on catalytic activity 

R326S Gt-C Removes contact with UDP-GlcNAc phosphate 

K331S Gt-C Removes contact with UDP-GlcNAc phosphate, 
removes possible contact with Glu-403 

E403A Gt-C Removes carboxylic function, removes possible 
catalytic activity 

E411A Gt-C Removes interaction with UDP ribose 

K136S HUB Disrupts intra-HUB contacts, possible other 
function 

N138Q HUB Disrupts intra-HUB contacts 

N180W HUB Disrupts intra-HUB contacts 

V159Y/C164R HUB Disrupts intra-HUB contacts, possible other 
function 

K136S/V159Y/C164R HUB Disrupts intra-HUB contacts, possible other 
function 

Expression—Single colonies of E. coli transformants containing tarM variants were grown on 

antibiotics containing LB agar (1.5% (w/v) agar-agar in LB-medium). They were inoculated into 2 ml 

of LB medium and grown overnight at 37 °C. For large scale protein production, bacterial culture was 

induced at the log phase (A6000.5–1.0) with L-arabinose at a final concentration of 0.001% (w/v) at 

20 °C for 12–20 h before harvesting by centrifugation at 7,900g for 13 min. After washing once with 

buffer A (10 mM Tris-HCl, 100 mM NaCl, 1 mM EDTA), the cells were resuspended with buffer B 

(100 mM triethanolamine, pH 8.5, 500 mM LiCl, 5 mM EDTA, 1 mM DTT) for storage at 80 °C or for 

purification as described below. 
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TABLE 3 Alignment of conserved GT4 residues 

Conserved residues appear in columns with the numbering according to the deposited PDB files: 4WAD, TarM; 4PQG, GtfA; 3MBO, 

BshA; 3C4Q, MshA; 3OKA, PimB′; 3OY7, B736L. 

Structure Residue code 

TarM Gly-

16 

Gly-

17 

Met-

18 

His-

249 

Val-

250 

 Ile-

324 

Ser-

325 

Arg-

326 

Pro-

329 

Lys-

331 

Gly-

356 

Pro-

386 

Val-

396 

Gln-

401 

Glu-

403 

Gly-

404 

Gly-

406 

Leu-

407 

Glu-

411 

Ala-

412 

GtfA Ser-

14 

Ser-

15 

 His-

242 

Ala-

243 

Asp-

309 

Ala-

326 

Ser-

327 

Arg-

328 

 Lys-

333 

Gly-

358 

 Tyr-

397 

Thr-

402 

Glu-

404 

Gly-

405 

Gly-

407 

Leu-

408 

Glu-

412 

Ala-

413 

BshA Gly-

14 

Gly-

15 

Ser-

16 

His-

120 

Thr-

122 

Asp-

176 

Ile-

204 

Ser-

205 

Asn-

206 

 Lys-

211 

Gly-

235 

  Glu-

280 

Glu-

282 

Ser-

283 

Gly-

285 

Leu-

286 

Glu-

290 

Ala-

291 

MshA Gly-

22 

Gly-

23 

Met-

24 

His-

133 

Thr-

134 

Asp-

198 

Val-

229 

 Arg-

231 

Pro-

234 

Lys-

236 

Gly-

264 

Pro-

296 

Val-

309 

 Glu-

316 

Ser-

317 

Gly-

319 

Leu-

320 

Glu-

324 

Ala-

325 

PimB’ Gly-

19 

Gly-

20 

 His-

118 

 Asp-
173 

 Ser-

205 

Arg-

206 

Pro-

209 

Lys-

211 

Gly-

236 

 Phe-

276 

Arg-

281 

Glu-

290 

Gly-

291 

Gly-

293 

Ile-

294 

Glu-

298 

Ala-

299 

B736L  Gly-

15 

 Asp-

115 

Val-

117 

Asp-

165 

 Asn-

191 

Arg-

192 

Ala-

195 

Lys-

197 

 Val-

267 

Ile-

277 

Ser-

282 

Glu-

284 

Gly-

285 

Gly-

287 

Leu-

288 

Glu-

292 

Gly-

293 
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Abstract 

Many Staphylococcus aureus have lost a major genetic barrier against phage infection, 

termed clustered regularly interspaced palindromic repeats (CRISPR/cas). Hence, S. 

aureus strains frequently exchange genetic material via phage-mediated horizontal 

gene transfer events, but, in turn, are vulnerable in particular to lytic phages. Here, a 

novel strategy of S. aureus is described, which protects S. aureus against the lytic 

activity of Podoviridae, a unique family of staphylococcal lytic phages with short, non-

contractile tails. Unlike most staphylococcal phages, Podoviridae require a precise wall 

teichoic acid (WTA) glycosylation pattern for infection. Notably, TarM-mediated WTA 

α-O-GlcNAcylation prevents infection of Podoviridae while TarS-mediated WTA β-O-

GlcNAcylation is required for S. aureus susceptibility to podoviruses. Tracking the 

evolution of TarM revealed an ancient origin in other staphylococci and vertical 

inheritance during S. aureus evolution. However, certain phylogenetic branches have 

lost tarM during evolution, which rendered them podovirus-susceptible. Accordingly, 

lack of tarM correlates with podovirus susceptibility and can be converted into a 

podovirus-resistant phenotype upon ectopic expression of tarM indicating that a “glyco-

switch” of WTA O-GlcNAcylation can prevent the infection by certain staphylococcal 

phages. Since lytic staphylococcal phages are considered as anti-S. aureus agents, 

these data may help to establish valuable strategies for treatment of infections. 

 

Introduction 

Horizontal gene transfer (HGT) events are prerequisites for bacterial evolution. 

Bacteria, including many Gram-positive pathogens, employ different mechanisms for 

the exchange of genetic information. Major mechanisms include bacteriophage- 

(phage) mediated transduction, conjugation, and transformation (Popa and Dagan, 

2011; Thomas and Nielsen, 2005). These factors substantially contribute to bacterial 

evolution but vary in their impact depending on the bacterial species. 

During evolution, many bacteria evolved various protective mechanisms that interfere 

with or impede HGT events. “Clustered regularly interspaced palindromic repeats” 

(CRISPR/cas) loci, for example, recognize invading DNA and confer bacterial adaptive 



Chapter 3 

50 
 

immunity to phage infection (Barrangou and Marraffini, 2014). Other strategies to avoid 

HGT include restriction modification (R-M) systems, which most likely evolved in order 

to avoid uptake of foreign DNA from sources other than the same or related bacterial 

species (Corvaglia et al., 2010; Labrie et al., 2010; Thomas and Nielsen, 2005; 

Waldron and Lindsay, 2006). However, in many pathogenic bacteria including the 

major human pathogen Staphylococcus aureus, particular phage-mediated 

transduction is probably the most efficient and important mechanism to exchange 

genetic information (Brussow et al., 2004; Lindsay, 2010). Typically, S. aureus benefits 

from phage-mediated HGT events, since many staphylococcal phages mobilize 

resistance plasmids, genomic islands or other genomic loci with determinants of 

bacterial virulence (Malachowa and DeLeo, 2010; Moon et al., 2015), thus substantially 

contributing to the evolution, pathogenicity, and global spread of this pathogen. Hence, 

protective mechanisms, which interfere with or even completely prevent phage 

infection and phage-mediated HGT events, can appear disadvantageous and maintain 

pathogens such as S. aureus in an evolutionary “dead-end”. Such a scenario is 

probably a reason for the emergence of phylogenetically isolated branches, as 

reported recently for the unique S. aureus lineage sequence type (ST) 395, which 

completely changed the phage adsorption receptor properties rendering it resistant 

from HGT with other S. aureus lineages (Winstel et al., 2013; Winstel et al., 2014a). 

However, such dramatic changes in the phage receptor properties are probably very 

rare among S. aureus clones and do not represent a frequent strategy to prevent phage 

adsorption or other phage-mediated HGT events. 

Apart from ST395 isolates, which synthesize a unique glycerol-phosphate (GroP) WTA 

substituted with D-alanine and α-O-N-Acetylgalactosamine (GalNAc) (Winstel et al., 

2013; Winstel et al., 2014a), most S. aureus clones synthesize a ribitol-phosphate 

(RboP) WTA repeating unit substituted with three tailoring modifications, D-alanine, α-

O-N-acetylglucosamine (GlcNAc), and β-O-GlcNAc (Brown et al., 2013; Weidenmaier 

and Peschel, 2008). The GlcNAc moieties are attached to RboP by two independent 

enzymes, the α-O-GlcNAc WTA glycosyltransferase TarM (Xia et al., 2010), and the 

β-O-GlcNAc WTA transferase TarS (Brown et al., 2012). Most S. aureus phages and 

phage-related S. aureus pathogenicity island (SaPI) particles target these WTA O-

GlcNAc moieties for adsorption and subsequent infection (Brown et al., 2012; Winstel 

et al., 2013; Xia et al., 2011; Xia et al., 2010). Apparently, the stereochemical linkage 
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of WTA glycosylation is dispensable for the phage infection process since strains 

lacking one of the two WTA glycosyltransferases are still phage or SaPI-particle 

susceptible (Brown et al., 2012; Winstel et al., 2013). In contrast, staphylococcal 

Myoviridae simply require WTA polymers, regardless of the polyol type or WTA O-

GlcNAcylation (Winstel et al., 2013; Winstel et al., 2014a; Xia et al., 2011). 

Nevertheless, since WTA polymers have many other crucial functions in S. aureus 

pathogenesis and resistance (Brown et al., 2013; Weidenmaier and Peschel, 2008), 

most staphylococcal phages seem to be well-adapted to a rather conserved and 

important cell surface molecule, which S. aureus presumably does not mutate 

frequently. Accordingly, phage infection-preventing mutations in WTA biosynthesis 

genes have not been described so far. Thus, phage-mediated HGT events among S. 

aureus clones frequently occur and are rather beneficial for S. aureus evolution and 

adaptation to changing selection pressures, which is, conversely, also supported by 

the notion that many S. aureus clones if not all (as suggested by a recent in silico study 

(Yang et al., 2015)) have lost CRISPR/cas loci, which otherwise disable or even 

completely block HGT. Accordingly, staphylococcal phage protection mechanisms 

most likely evolved to prevent phage lysis, caused by lytic but not by transducing or 

beneficial phages. 

Here, a novel strategy of S. aureus is described to prevent adsorption and infection of 

Podoviridae, a specific class of staphylococcal lytic phages with very short, non-

contractile tails. This strain-specific barrier, which was lost by various S. aureus 

lineages during evolution, can completely block the Podoviridae infection process 

thereby providing new insights into bacterial strategies to counteract phage infections. 

 

Results 

Infection of S. aureus by Podoviridae is strain-dependent. Lytic S. aureus 

phages, for example staphylococcal Myoviridae, usually have a broad host-range and 

can even infect other staphylococcal species (Pantucek et al., 1998; Winstel et al., 

2014a). Accordingly, the broad host-range phages ΦK and Φ812 (Myoviridae) infected 

and lysed nearly all S. aureus test strains including strains of dominant MRSA linages, 

albeit with different potencies (Table 1). However, a collection of another family of lytic 
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staphylococcal phages (Podoviridae; here phages Φ44AHJD, Φ66 and ΦP68) failed 

to infect certain myovirus-susceptible strains, for instance the two American pandemic 

CA-MRSA clones USA300 (NRS384) and USA400 (MW2), and the HA-MRSA isolate 

605, a member of the predominant Asian ST239 lineage (Table 1). Even though some 

test strains were susceptible to Podoviridae, these phages seem to have a narrower 

host-range than other lytic staphylococcal phages. 

Table 1 – Lack of tarM in S. aureus correlates with susceptibility to Podoviridae 

S. aureus 

strain 

Sequence 

type 

 

tarM 

 

tarS 

Phage susceptibilityb 

Myoviridae Podoviridae 

ΦK Φ812 Φ44AHJD Φ66 ΦP68 

MW2 1 + + + + - - - 

Mu50 5 - + (+) + + + + 

USA300 8 + + + + - - - 

NRS184 22 - + (+) + + + + 

P68 25 - + (+) (+) + + + 

UAMS-1 30 + + + + - - - 

PS66 39 +  + + + + + + 

USA600 45 - + (+) - - - - 

JH1 105 - + + + + + + 

ED133 133 - - + (+) - - - 

RF122 151 + + + + + + + 

605 239 + + (+) (+) - - - 

Col 250 + + + + - - - 
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PS187a 395 - - + + - - - 

82086 398 - + + + + + + 

PS44A 707 - + + + + + + 

 

a PS187 synthesizes a poly-glycerol phosphate WTA type modified with α-O-N-acetylgalactosamine (mediated by 
the ST395-specific WTA glycosyltransferase TagN(Winstel et al., 2014b)). 
b Phage susceptibility was analyzed via soft agar overlay method. Phage susceptibility (+) or resistance is indicated 
(-). Diminished plaque formation (ΦK, Φ812) observed for strains Mu50, NRS184, P68, USA600, ED133, and 605 
is indicated with a bracketed plus symbol ((+)). 

 

Podovirus-susceptible S. aureus strains were found among several clonal lineages 

suggesting that Podoviridae probably do not require an ST-specific receptor for 

adsorption and infection, as reported recently for the S. aureus ST395-specific phage 

Φ187 (Winstel et al., 2013; Winstel et al., 2014a) (Table 1). In line with this notion, the 

strains PS44A, PS66, and P68 recommended for propagation of different podoviruses 

(Vybiral et al., 2003) were found to belong to different, unrelated STs, when they were 

multi locus sequence-typed (MLST) (Table 1). 

Thus, staphylococcal Podoviridae have a specific host-range different from that of 

other lytic staphylococcal phages such as Myoviridae. 

Peptidoglycan-anchored surface proteins are dispensable for host specificity of 

Podoviridae. The specific host-range of Podoviridae suggests that these 

phages might fail to infect and lyse certain S. aureus strains due to unique barriers 

preventing adsorption, infection, or reproduction. Since the commonly used laboratory 

and podovirus-resistant S. aureus strain RN4220 (see Fig. 1 and Supplementary Fig. 

S1) lacks R-M systems, prophages, and CRISPR/cas loci previously shown to impede 

HGT, an intracellular barrier facilitating resistance to Podoviridae seems implausible. 

More likely, alterations in peptidoglycan modifications, for example specific cell-surface 

exposed molecules such as peptidoglycan-anchored ‘microbial surface components 

recognizing adhesive matrix molecules’ (MSCRAMMs), might block adsorption and 

infection in certain S. aureus. However, S. aureus RN4220 mutants and mutants 

derived from the clinical CA-MRSA isolate USA300 lacking functional surface proteins 

(ΔsrtA) were resistant to Podoviridae indicating that factors other than MSCRAMMs 

interfere with the podovirus infection process (Supplementary Fig. S1). 
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Figure 1. The α-O-GlcNAc WTA glycosyltransferase TarM protects S. aureus from the lytic 

activityof Podoviridae.  (a) S. aureus RN4220 and USA300 susceptibility to the broad-host-

range lytic phage ΦK (Myoviridae), and to the lytic phages Φ44AHJD, Φ66 and ΦP68 (Podoviridae) 

was analyzed using a soft-agar overlay approach. A representative experiment is shown. (b) 

Podovirus ΦP68 adsorption rates (%) to S. aureus RN4220 and USA300 variants. S. aureus wild 

type and strains lacking WTA (ΔtagO), WTA α-O-GlcNAcylation (ΔtarM), WTA β-O-GlcNAcylation 

(ΔtarS), WTA glycosylation (ΔtarM ΔtarS), and the complemented mutants (ΔtarM ΔtarS pRB474-

tarM, ΔtarM ΔtarS pRB474-tarS) are indicated. Values are given as means and standard deviations 

(SD, n = 3). Statistical significant differences calculated by one-way ANOVA with Bonferroni’s 

multiple comparison test are indicated: not significant (ns), P > 0.05; *P < 0.05, **P < 0.01.  

Thus, S. aureus peptidoglycan-anchored surface proteins do not influence the unusual 

host-range of staphylococcal Podoviridae. 

The S. aureus α-O-GlcNAc WTA glycosyltransferase TarM prevents the lytic 

activity of Podoviridae. .Because all studied staphylococcal phages require WTA 

polymers or O-GlcNAcylated WTA polymers for adsorption and infection (Xia et al., 
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2011), adsorption of Podoviridae to their designated cell surface receptors may also 

be influenced by WTA polymers. Of note, all podovirus-susceptible strains were 

simultaneously susceptible to the WTA-dependent phages ΦK and Φ812, which 

excludes that podovirus-susceptible strains fail to produce WTA polymers (Table 1). In 

line with this assumption, Podoviridae still failed to adsorb to and infect S. aureus 

RN4220 or USA300 mutants lacking either WTA (ΔtagO) or WTA glycosylation (ΔtarM 

ΔtarS) (Fig. 1a,b). 

While well-studied WTA-GlcNAc dependent S. aureus phages such as phage Φ11 do 

not seem to require a specific stereochemistry of WTA O-GlcNAc for infection16 the 

tested podoviruses exhibited an unexpected preference for TarS-glycosylated but not 

TarM-glycosylated WTA. Strikingly, lack of WTA α-O-GlcNAcylation (ΔtarM) resulted 

in dramatically increased binding capacities of phage ΦP68 and rendered strain 

RN4220 ΔtarM highly susceptible to podovirus infection (Fig 1a,b). In contrast, lack of 

tarS did not lead to phage susceptibility of RN4220 (Fig. 1a). Complementation of the 

WTA-glycosylation deficient ΔtarM ΔtarS mutant with one of the two S. aureus WTA 

glycosyltransferases TarM or TarS demonstrated that, (i) Podoviridae require TarS-

mediated WTA β-O-GlcNAcylation, but (ii) are inhibited by TarM-mediated WTA β-O-

GlcNAcylation (Fig 1a,b). Similar results were obtained for S. aureus USA300 strongly 

suggesting that TarM diminishes the adsorption and infection of Podoviridae to S. 

aureus (Fig. 1a,b). Because TarM is an intracellular protein it appears highly unlikely 

that it interferes with podovirus binding directly but impedes podovirus binding by α-O-

GlcNAcylated WTA. 

Thus, the α-O-GlcNAc WTA glycosyltransferase TarM prevents the adsorption and 

infection by staphylococcal Podoviridae. 

Lack of tarM correlates with susceptibility to Podoviridae. In order to 

confirm the inhibitory effect of TarM on podovirus susceptibility, genomes of S. aureus 

test strains were screened for the presence or absence of the genes encoding WTA 

glycosyltransferases TarM and TarS via PCR or BLASTN of available genomes 

(Altschul et al., 1990). Most strains contained tarS except for strains PS187, which 

produce an entirely different type of WTA (Winstel et al., 2013; Winstel et al., 2014a), 

and ED133, which does not encode any of the so far described WTA 

glycosyltransferases (Table 1). In contrast, several strains lacked tarM. As proposed, 
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most tarM- plus tarS-encoding S. aureus strains were podovirus-resistant (Table 1). 

Conversely, S. aureus strains exclusively encoding tarS and even other staphylococcal 

species such as Staphylococcus xylosus or Staphylococcus equorum, which encode 

tarS homologues with high similarity, but lack tarM, were susceptible indicating that 

Podoviridae specifically sense β-O-GlcNAcylated WTA (Table 1 and Supplementary 

Fig. S2). In line with this, the designated podovirus propagation strains PS44A 

(Φ44AHJD) and P68 (ΦP68) exclusively encoded tarS (Table 1). However, strain PS66 

(Φ66) encoded both WTA glycosyltranserases, TarM and TarS, which did not align 

with the assumption that tarM interferes with podovirus susceptibility. Nevertheless, 

even though tarM was expressed at good levels during logarithmic growth phase, tarS 

was significantly higher expressed than tarM during early growth stages, which 

probably promotes the infection by Podoviridae (Supplementary Fig. S3). Moreover, 

the S. aureus PS66 tarM gene was sequenced and found to contain two non-

synonymous point mutations (Q453K and A464E), which may compromise the TarM 

function and capacity to interfere with podovirus infection (Fig. 2a). Indeed, podovirus 

resistance of RN4220 ∆tarM, whose WTA contains only β-O-GlcNAc could be restored 

completely by complementation with a wild-type tarM but only partially by the mutated 

tarM (Fig. 2b). In addition, deletion of tarS in PS66 resulted in drastically reduced 

binding capacity of ΦP68 and rendered PS66 resistant to Podoviridae (Supplementary 

Fig. S4) suggesting that podovirus sensitivity of PS66 is linked to tarS-mediated β-O-

GlcNAcylated WTA and to a strain-specific dysfunction of TarM. 

 

Figure 2. Point mutations in TarM render Φ66 propagation strain PS66 susceptible to 

Podoviridae. (a) A sequence alignment of wild-type TarM and PS66 TarM is shown. Position of 

mutations (Gln-453 with Lys; Ala-464 with Glu) and the end of the open reading frame (493) are 
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indicated. (b) S. aureus RN4220 susceptibility to the broad host-range lytic phage ΦK (Myoviridae), 

and to the lytic phages Φ44AHJD, Φ66, and ΦP68 (Podoviridae) was analyzed using a soft-agar 

overlay approach. S. aureus RN4220 wild type and strains lacking WTA α-O-GlcNAcylation (ΔtarM), 

and the complemented mutants (ΔtarM pRB474-tarM, ΔtarM pRB474-tarM (Q453K; A464E) are 

indicated. A representative experiment is shown. 

Next, tarM was expressed in various podovirus-susceptible strains, including the 

Φ44AHJD and Φ66 propagation strains PS44A and PS66. Even at very high phage 

titers, expression of tarM rendered most susceptible strains completely resistant, 

confirming the importance of tarM in diminishing infection by staphylococcal 

Podoviridae (Fig. 3). In addition, the expression of a plasmid-born copy of tarM in strain 

PS66 also caused complete resistance to Podoviridae, further suggesting that the tarM 

gene of PS66 is most likely non-functional or less active (Fig. 3). 

Thus, Podoviridae require β-O-GlcNAcylated WTA but cannot infect S. aureus with α-

O-GlcNAcylated WTA. 

 

Figure 3. Ectopic expression of TarM protects podovirus-susceptible S. aureus against 

Podoviridae. The α-O-GlcNAc WTA glycosyltransferase TarM was ectopically expressed in various 

tarM-lacking and podovirus-susceptible S. aureus strains, and the phage susceptibility using a phage 

panel encompassing the lytic phages Φ44AHJD, Φ66 and ΦP68 (Podoviridae) was analyzed using 

a soft-agar overlay approach. Various dilutions of phage lysates, S. aureus wild type strains (tarS 
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positive, but tarM negative (or encoding a mutated tarM, strain PS66)), and engineered strains 

expressing tarM (pRB474-tarM), or empty plasmid control (pRB474) are indicated. A representative 

experiment is shown. 

Tracking the evolution of TarM reveals an ancient origin in other staphylococcal 

species and vertical inheritance during S. aureus evolution. TarM is encoded 

outside of the S. aureus WTA gene clusters but does not appear to be encoded on a 

mobile genetic element (Winstel et al., 2014c). Nevertheless, it is tempting to assume 

that it has been acquired by S. aureus at some point in evolution to interfere with 

podovirus infection. 

To track the emergence of TarM in S. aureus, the genome sequences of 98 S. aureus 

strains including those of most S. aureus laboratory test strains used in this study were 

obtained to infer their genetic relatedness (Fig. 4a,b). Of note, the presence of tarM in 

the most deeply branching S. aureus isolates MSHR1132 and FSA084, which were 

recently proposed as novel staphylococcal species Staphylococcus argenteus sp. nov. 

and Staphylococcus schweitzeri sp. nov. (Tong et al., 2015), revealed that the 

presence of tarM is probably an ancient genetic trait of S. aureus (Fig. 4a). Still, 

homologues of tarM are also encoded by certain coagulase-negative staphylococci 

(e.g. specific S. epidermidis isolates) and even by non-staphylococcal species such as 

Exiguobacterium oxidotolerans and Tetragenococcus halophilus. Thus, the early 

evolution of tarM probably involved an ancient HGT event to the last common ancestor 

of contemporary S. aureus clones, further supported by the notion that tarM is flanked 

by a gene possibly related to conjugation (SACOL1042) (Fig. 4c). However, at a later 

stage of S. aureus evolution, different types of genetic rearrangements occurred in 

emerging phylogenetic branches such as CC5 or CC398, leading to a deletion of tarM, 

which rendered these podovirus-susceptible (Fig. 4c). 
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Figure 4. Phylogenetic distribution of tarM reveals an ancient origin in other staphylococci 

and vertical inheritance during S. aureus evolution. (a,b) Phylogenetic network representing the 

inferred relationship of 98 S. aureus strains and two closely related species, S. argenteus and S. 

schweitzeri. Strains are indicated by their multilocus sequence types (STs). ST* and ST** are single-

locus variants of ST30 and ST1148, respectively. Strains encoding tarM are indicated in black, while 

strains lacking tarM are indicated in red, purple, and blue. (c) Genetic organization of the tarM region 

in S. aureus. The intact tarM region is shown in the upper cluster. Gene locus numbers refer to S. 

aureus strain COL (GenBank accession no. CP000046). Lower clusters indicate distinct deletion 

events involving tarM. 

 

Discussion 

Staphylococcal Podoviridae infect an unusually wide panel of staphylococcal species 

but remain avirulent for certain S. aureus lineages probably as a result of the activity 
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of the α-O-GlcNAc WTA glycosyltransferase TarM. In tarM-encoding strains, WTA 

polymers are probably glycosylated preferentially with α-O-GlcNAc, suggesting that 

TarM might be more active than TarS. Consequently, TarS-mediated β-O-

GlcNAcylation is probably affected by the activity of TarM, thus preventing the 

adsorption and infection of Podoviridae. Even though it cannot be excluded that TarM 

potentially has additional and undiscovered functions, which may interfere with the 

adsorption or infection process, the drastically increased adsorption of ΦP68 in 

isogenic ΔtarM mutants suggests that α-O-GlcNAcylated WTA prevents the adsorption 

of Podoviridae to S. aureus. Nevertheless, one of the designated podovirus 

propagation strains (PS66) encoded both WTA glycosyltransferases suggesting that 

certain strains, despite encoding tarM, are potentially podovirus-susceptible. Here, 

TarM might be non-functional, dis-regulated, or mutated as observed in PS66, and 

cannot interfere with the activity of TarS. Nevertheless, this TarM-mediated 

phenomenon limits the host-range of Podoviridae, and thus, their therapeutic potential 

compared to other lytic staphylococcal phages such as Myoviridae. 

Apart from this, it remains intriguing as to why certain strains and lineages have lost 

tarM during evolution to become podovirus-susceptible. Since both S. aureus and 

S.  aureus-like species such as S. schweitzeri and S. argenteus encode tarM and tarS, 

and many human-associated S. aureus lineages have lost tarM during evolution, it can 

be assumed that tarM is probably not essential for continued adaptation to the human 

host. This is in agreement with the observation that both types of WTA O-

GlcNAcylation, can mediate S. aureus binding to nasal epithelial cells and thus nasal 

colonization (Winstel et al., 2015b). Also, human sera contain preferentially serum 

antibodies directed against TarS-dependent β-O-GlcNAcylated WTA, but not against 

TarM-mediated α-O-GlcNAcylated WTA25, suggesting that tarM may be down-

regulated or less immunogenic than β-O-GlcNAcylated WTA during infections. It can 

be assumed that some S. aureus lineages did not eliminate tarM because WTA α-O-

GlcNAcylation may provide S. aureus with a fitness benefit, whose basis remains to 

be identified in the future. 

However, bearing tarM and TarM-mediated α-O-GlcNAcylated WTA protects S. aureus 

at least against the lytic activity of staphylococcal Podoviridae via a modification of the 

designated phage adsorption receptor. Such alterations of cell-surface structures 

serving as viral receptors are only one of many bacterial strategies to counteract phage 
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infection and have also been described for other bacterial species (Avrani et al., 2011; 

Qimron et al., 2006; Wilkinson and Holmes, 1979), but does not seem a general 

strategy of S. aureus to avoid phage adsorption and infection. Since other lytic 

staphylococcal phages such as Myoviridae are capable of infecting tarM-encoding 

S.  aureus isolates, prevention of podovirus infection could be the result of a highly 

specific WTA-dependent mechanism in S. aureus, presumably as the result of 

adaptation to specific podovirus-rich environmental niches. In addition, altered phage-

receptor binding proteins may easily change the host-range of Podoviridae to render 

tarM-bearing clones susceptible. Whereas bacterial phage resistance mechanisms 

such as CRISPR interference appear more efficient and widespread in prokaryotes 

these can also be bypassed, for example, by CRISPR-evading phages29 suggesting 

that host-virus interaction is a constantly evolving process. 

 

Methods 

Bacterial strains and growth conditions. All bacterial strains used in this study 

are listed in Supplementary Table S1. Unless otherwise noted, bacteria were grown in 

basic medium (BM) (1% tryptone, 0.5% yeast extract, 0.5% NaCl, 0.1% K2HPO4, 0.1% 

glucose) or lysogeny broth (Becton Dickinson) supplemented with appropriate 

antibiotics (Chlorampenicol 10 μg/ml, Ampicillin 100 μg/ml). 

 

Molecular genetic methods. S. aureus RN4220 and USA300 ΔtarM, ΔtarS, 

ΔtarM ΔtarS, and ΔtagO deletion mutants were described elsewhere (Brown et al., 

2012; Winstel et al., 2015b; Winstel et al., 2013). For the construction of marker-less 

RN4220 ΔsrtA mutant, or a PS66 ΔtarS mutant, the previously described E. 

coli/S. aureus shuttle vectors pIMAY or pKOR1 were used (Bae and Schneewind, 

2006; Monk et al., 2012). The corresponding primers are listed in Supplementary Table 

S2. Gene disruption by using pKOR1 or pIMAY was performed as described before 

(Bae and Schneewind, 2006; Monk et al., 2012). Briefly, pKOR1-tarS, or pIMAY-srtA 

were isolated from an appropriate E. coli strain, and transformed into electrocompetent 

S. aureus RN4220 cells (and reisolated and transformed into PS66). Electroporation 

conditions were described before(Winstel et al., 2014a). Knock-out plasmids were 
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integrated onto the S. aureus genome at the permissive temperatures (37 °C, pIMAY; 

43 °C, pKOR1) and in the presence of chloramphenicol (10 μg/ml). Counterselection 

was performed by using anhydrotetracycline (1 μg/ml). Resulting colonies were 

patched onto BM agar plates with and without chloramphenicol (10 μg/ml) and 

screened for plasmid loss. Gene deletion was confirmed via PCR in chloramphenicol-

sensitive colonies. 

For complementation studies (or tarM expression in tarM-lacking strain backgrounds), 

the previously described E. coli/S. aureus shuttle vector pRB474 was used (Bruckner, 

1992). pRB474-tarM (Q453K; A464E) has been described elsewhere (formerly 

pRB474-H-tarM) (Xia et al., 2010). 

 

PCR-typing, sequencing, and multiple locus sequence typing (MLST). For 

verification (and sequencing) of tarM and tarS in S. aureus genomes, PCR analysis 

using primers listed in Supplementary Table S2 was used. MLST typing of podovirus 

propagation strains PS44A, PS66 and P68 was performed as described previously 

using published primers (Enright et al., 2000). 

 

Experiments with phages. All phages used in this study are listed in 

Supplementary Table S1. Phages were propagated on S. aureus strains P68 or 

RN4220 ∆tarM (Φ44AHJD, Φ66 and ΦP68), or RN4220 wild type (ΦK, Φ812) as 

described previously (Winstel et al., 2015a). Briefly, the cognate S. aureus host strains 

were grown overnight at 37 °C in BM and diluted in phage-containing lysates 

(approximately 1 × 109 plaque forming units (PfU) per milliliter; titrated on cognate host 

strains) to a final optical density OD 600 nm of 0.4. Subsequently, CaCl2 was added to 

a final concentration of 4 mM. The bacteria/phage mixture was incubated for 30 min at 

37 °C without agitation and afterwards for at least 3 h at 30 °C with mild agitation until 

complete lysis occurred. In order to remove cell debris, the lysate was centrifuged for 

10 min (5,000 × g, 4 °C). Lysates were filter-sterilized (0.22 μm) and stored at 4 °C. 

Phage susceptibility was analyzed as described elsewhere (Xia et al., 2011). Briefly, a 

phage panel encompassing the broad host-range phages ΦK and Φ812 (Myoviridae), 

and three serogroup G phages Φ44AHJD, Φ66 and ΦP68 (Podoviridae) were used. 
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6 μl (approximately 1 × 109 PfU/ml, or appropriate dilutions) of freshly propagated 

phage lysates were spotted onto bacterial lawns using the soft-agar overlay method 

described by Xia et al. (Xia et al., 2011). 

Phage adsorption to S. aureus strains was analyzed as described previously (Xia et 

al., 2011). Briefly, the phage adsorption rate was analyzed using a multiplicity of 

infection (MOI) of 0.01 for phage ΦP68. Adsorption rate (%) was calculated by 

determining the number of unbound PfU in the supernatant and subtracting from the 

total number of input PfU as a ratio to the total number of input PfU. 

 

Phylogenetic analysis. The chromosomes of all S. aureus and S. argenteus and 

S. schweitzeri labelled as complete were obtained from GenBank (Supplementary 

Table S3) and aligned against the chromosome of S. aureus CC45 strain CA-347 

(GenBank accession ID NC_021554) after identification and deletion of duplicated 

regions using MUMmer v 3.22 (Kurtz et al., 2004). The 98 publicly available genomes 

were aligned using MUMmer. Based on the identified core of ~1,9 Mb (67%) among all 

strains, a total of 312,427 SPNs was identified, from which the phylogenetic 

relationship was inferred using the NeighbourNets algorithm in SplitsTree 

v4.13.1(Huson and Bryant, 2006). 

 

RNA isolation and preparation.  RNA was isolated as described previously 

(Winstel et al., 2015b). Briefly, BM over-night cultures were diluted in BM. Bacteria 

were grown at 37 °C until lag, log, or stationary growth phases. Subsequently, bacteria 

were harvested and resolved in 1 ml TRIzol (Invitrogen/Life Technologies, Karlsruhe, 

Germany). Next, bacteria were mechanically disrupted by using a FastPrep24 

homogenizer (MP Biomedicals) (2 cycles, 20 sec. at 6500 rpm each, with 0.5 ml 

Zirconia/Silica beads (0.1 mm in diameter; Carl-Roth, Karlsruhe, Germany)). Samples 

were either stored at −80 °C or subsequently used for further preparation. To each 

sample, 200 μl chloroform was added and samples were thoroughly mixed for 60 s, 

and incubated for 3 min at room temperature. Samples were centrifuged at 4 °C 

(12,000 × g, 15 min) and the supernatant was mixed with 500 μl isopropanol. Next, 

samples were incubated for 10 min at room temperature and centrifuged (12,000 × g, 
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30 min, 4 °C). Each pellet was washed with 500 μl ethanol (70%) and the sample was 

centrifuged (7,500 × g, 5 min, 4 °C). Finally, the pellet was air-dried and dissolved in 

50 μl nuclease-free water. After incubation at 55 °C for 10 min, the sample was mixed 

well for 4 min. 5 μg RNA was digested with DNAse I (Roche) and stored at −80 °C. 

 

Quantitative real time PCR (qRT-PCR). qRT-PCR was performed as 

described previously (Winstel et al., 2015b). Briefly, RNA was transcribed into cDNA 

and qRT-PCR was performed according to the manufactures instructions using the 

Brilliant II SYBR© Green 1-Step Master Mix (Agilent). Relative quantifications were 

analyzed by using Roche’s LightCylcer480II. Transcription levels of target genes 

analyzed in this study were normalized against the expression of the housekeeping 

gene gyrB. All primers used for qRT-PCR are listed in Supplementary Table S2. 

 

Statistical analysis. Statistical analysis was performed using GraphPad Prism 

(GraphPad Software, Inc., La Jolla USA, Version 5.04). Statistically significant 

differences were calculated by using appropriate statistical methods as indicated. P 

values < 0.05 were considered significant. 
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Supplementary Figure S1 – Impact of peptidoglycan-anchored surface proteins on host-

specificity of Podoviridae. S. aureus RN4220 and USA300 susceptibility to the broad host- range 

lytic phage ΦK (Myoviridae), and to the lytic phages Φ44AHJD, Φ66 and ΦP68 (Podoviridae) was 

analyzed using a soft-agar overlay approach. S. aureus podovirus propagation strains (PS44A, 

PS66, and P68), S. aureus wild type, and mutants lacking peptidoglycan-anchored surface proteins 

(ΔsrtA) are indicated. A representative experiment is shown. 
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Supplementary Figure S2 – Susceptibility of selected staphylococcal species to Podoviridae. 

Susceptibility of selected staphylococcal species to the broad host-range lytic phage ΦK 

(Myoviridae), and to the lytic phages Φ44AHJD, Φ66 and ΦP68 (Podoviridae) was analyzed using a 

soft-agar overlay approach. A representative experiment is shown. 
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Supplementary Figure S3 – qRT-PCR analysis of WTA glycosyltransferases in Φ66 

propagation strain PS66. mRNA was isolated from lag-, log-, or stationary (stat.)-phase-grown 

bacteria. Values are given as means and standard deviations (SD; n = 3). Statistically significant 

differences calculated using an unpaired two-tailed Student’s t test are indicated as follows: ns (not 

significant), P > 0.05; *, P < 0.05; ***, P < 0.001. 
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Supplementary Figure S4 – Lack of the β-O-GlcNAc WTA glycosyltransferase TarS renders 

Φ66 propagation strain PS66 resistant to Podoviridae. (a) S. aureus PS66 susceptibility to the 

broad host-range lytic phage ΦK (Myoviridae), and to the lytic phages Φ44AHJD, Φ66 and ΦP68 

(Podoviridae) was analyzed using a soft-agar overlay approach. A representative experiment is 

shown. (b) Podovirus ΦP68 adsorption rate (%) to S. aureus PS66 variants. S. aureus wild type, the 

strain lacking WTA β-O-GlcNAcylation (ΔtarS), and the complemented ΔtarS mutant (ΔtarS pRB474-

tarS) are indicated. Values are given as means and standard deviations (SD, n = 3). Statistical 

significant differences calculated by one-way ANOVA with Bonferroni’s multiple comparison test are 

indicated: not significant (ns), P > 0.05; *, P < 0.05, **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.  
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Supplementary Table S1 - Bacterial strains and phages used in this study 

Bacterial strain or phage Description Source 

E. coli TOP10 One Shot® TOP10 chemically 
competent E. coli 

Invitrogen 

E. coli DB 3.1 pKOR1 DB3.1 strain, bears pKOR1 plasmid (Bae and Schneewind, 
2006) 

E. coli DC10B pIMAY DH10B Δdcm; Dam methylation only, 
bears pIMAY plasmid 

(Monk et al., 2012) 

S. aureus RN4220 Wild type, deficient in restriction, 
capsule, and prophage 

(Kreiswirth et al., 1983) 

S. aureus RN4220 ∆tagO RN4220 ∆tagO (Xia et al., 2011) 

S. aureus RN4220 ∆tarM RN4220 ∆tarM (Winstel et al., 2013) 

S. aureus RN4220 ∆tarS RN4220 ∆tarS (Winstel et al., 2013) 

S. aureus RN4220 ∆tarM ∆tarS RN4220 ∆tarM ∆tarS (Winstel et al., 2013) 

S. aureus RN4220 ∆tarM ∆tarS 
pRB474-tarM 

RN4220 ∆tarM ∆tarS 
complemented with tarM 

(Winstel et al., 2013) 

S. aureus RN4220 ∆tarM ∆tarS 
pRB474-tarS 

RN4220 ∆tarM ∆tarS 
complemented with tarS 

(Winstel et al., 2013) 

S. aureus RN4220 ∆srtA RN4220 ∆srtA This study 

S. aureus USA300  Wild type, NRS384, ST8, CA-MRSA NARSA strain 
collection 

S. aureus USA300 ∆tagO USA300 ∆tagO (Winstel et al., 2015) 

S. aureus USA300 ∆tarM USA300 ∆tarM (Winstel et al., 2015) 

S. aureus USA300 ∆tarS USA300 ∆tarS (Brown et al., 2012) 

S. aureus USA300 ∆tarM ∆tarS USA300 ∆tarM ∆tarS (Winstel et al., 2015) 

S. aureus USA300 ∆tarM ∆tarS 
pRB474-tarM 

USA300 ∆tarM ∆tarS complemented 
with tarM 

(Winstel et al., 2015) 

S. aureus USA300 ∆tarM ∆tarS 
pRB474-tarS 

USA300 ∆tarM ∆tarS complemented 
with tarS 

(Winstel et al., 2015) 

S. aureus USA300 ∆srtA USA300 ∆srtA (Winstel et al., 2015) 

S. aureus PS44A Wild type, PS44A, NCTC 8369, ST707, 
designated propagation strain for 
Φ44AHJD 

NCTC collection 

S. aureus PS66 Wild type, PS66, NCTC 8288, ST39, 
designated propagation strain for Φ66 

Obtained from Udo 
Bläsi, Vienna 

S. aureus PS66 ∆tarS PS66 ∆tarS This study 

S. aureus PS66 ∆tarS  
pRB474-tarS 

PS66 ∆tarS complemented with tarS This study 

S. aureus P68 Wild type, P68, ST25, designated 
propagation strain for ΦP68 

Obtained from Udo 
Bläsi, Vienna 

S. aureus RF122 Wild type, bovine isolate, ST151 (Fitzgerald et al., 2000) 

S. aureus USA600 Wild type, NRS22, ST45 NARSA strain 
collection 

S. aureus ED133 Wild type, ovine isolate, ST133 (Ben Zakour et al., 
2008) 

S. aureus Col Wild type, clinical isolate, ST250 (Dyke et al., 1966) 

S. aureus PS187 Wild type, PS187, ST395 (Asheshov and 
Jevons, 1963) 

S. aureus MW2 Wild type, MW2, ST1 (Centers for Disease 
and Prevention, 1999) 

S. aureus Mu50 Wild type, Mu50, ST5 (Kuroda et al., 2001) 

S. aureus NRS184 Wild type, NRS184, ST22 NARSA strain 
collection 

S. aureus JH1 Wild type, JH1, ST105 (Mwangi et al., 2007) 

S. aureus 605 Wild type, 605, ST239 (Li et al., 2012) 

S. aureus 82086 Wild type, 82086, ST398 (Winstel et al., 2015) 

S. aureus 82086 pRB474-tarM Wild type, 82086, bears pRB474-tarM This study 

S. aureus 82086 pRB474 Wild type, 82086, bears pRB474 This study 
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S. aureus Mu50 pRB474-tarM Wild type, Mu50, bears pRB474-tarM This study 

S. aureus Mu50 pRB474 Wild type, Mu50, bears pRB474 This study 

S. aureus JH1 pRB474-tarM Wild type, JH1, bears pRB474-tarM This study 

S. aureus JH1 pRB474 Wild type, JH1, bears pRB474 This study 

S. aureus PS44A pRB474-tarM Wild type, PS44A, bears pRB474-tarM This study 

S. aureus PS44A pRB474 Wild type, PS44A, bears pRB474 This study 

S. aureus PS66 pRB474-tarM Wild type, PS66, bears pRB474-tarM This study 

S. aureus PS66 pRB474 Wild type, PS66, bears pRB474 This study 

S. xylosus C2a Wild type, human skin isolate, 
DSM20267 

(Schleifer and Kloos, 
1975) 

S. equorum LTH5015 Wild type Obtained from 
Friedrich Götz, 
Tuebingen 

S. epidermidis 1457 Wild type, clinical isolate (Mack et al., 1992) 

S. saprophyticus BK6292/13 Wild type, clinical isolate Obtained from Holger 
Rohde, Hamburg 

Phage ΦK Myoviridae, Serogroup D (O'Flaherty et al., 
2005) 

Phage Φ812 Myoviridae, Serogroup D (Pantucek et al., 1998) 

Phage Φ44AHJD Podoviridae, Serogroup G Obtained from Udo 
Bläsi, Vienna 

Phage Φ66 Podoviridae, Serogroup G  Obtained from Udo 
Bläsi, Vienna 

Phage Φ68 Podoviridae, Serogroup G  Obtained from Udo 
Bläsi, Vienna 

 

Supplementary Table S2 – Oligonucleotides used in this study 

Primer Sequence Application Reference 
tarM-up ATGAAAAAAATATTTATGATGGTACATGAGTTAGA PCR-typing tarM (Winstel et 

al., 2015) 

tarM-dn TTAGCTATTGAAAAGATTTAACCATTTTTCTAATA PCR-typing tarM (Winstel et 
al., 2015) 

tarS-up ATGATGAAATTTTCAGTAATAGTTCCAACATACAA PCR-typing tarS (Winstel et 
al., 2015) 

tarS-dn TTATTTTAGCGAGTAAGTCATATGTGCAGT PCR-typing tarS (Winstel et 
al., 2015) 

tarM-for2 TAATGCTAATAATGGTGCTG qRT-PCR (Brown et al., 
2012) 

tarM-rev2    GGTCCATCACAAATCATAAT qRT-PCR (Brown et al., 
2012) 

tarS-for2  CACGAAACAAGAAGCACA qRT-PCR (Brown et al., 
2012) 

tarS-rev2   TGATTACCAACACGCACT qRT-PCR (Brown et al., 
2012) 

gyrBF GGTGGCGACTTTGATCTAGC 
qRT-PCR (Goerke et 

al., 2005) 

gyrBRv TTATACAACGGTGGCTGTGC 
qRT-PCR (Goerke et 

al., 2005) 
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Supplementary Table S3 – Genome sequences used for phylogenetic analysis 

Species Strain Accession Total length ST tarM tarS 

S. aureus MW2 BA000033 2820462 bp 1 + + 

S. aureus MSSA476 BX571857 2799802 bp 1 + + 

S. aureus Mu3 AP009324 2880168 bp 5 - + 

S. aureus Mu50 BA000017 2878529 bp 5 - + 

S. aureus N315 BA000018 2814816 bp 5 - + 

S. aureus ED98 CP001781 2824404 bp 5 - + 

S. aureus 502A CP007454 2764699 bp 5 - + 

S. aureus ECT-R 2 FR714927 2729540 bp 5 - + 

S. aureus M0628 KB821506  2828436 bp 5 - + 

S. aureus NCTC 8325 CP000253 2821361 bp 8 + + 

S. aureus USA300_FPR375
7 

CP000255 2872769 bp 8 + + 

S. aureus USA300_TCH151
6 

CP000730 2872915 bp 8 + + 

S. aureus VC40 CP003033 2692570 bp 8 + + 

S. aureus USA300-ISMMS1 CP007176 2921008 bp 8 + + 

S. aureus 2395 USA500 CP007499 2955646 bp 8 + + 

S. aureus M1216 CP007670 2896143 bp 8 + + 

S. aureus CA15 CP007674 2839253 bp 8 + + 

S. aureus UA-
S391_USA300 

CP007690 2872916 bp 8 + + 

S. aureus 29b_MRSA 
(ATCC BAA-1680) 

CP010295 2872768 bp 8 + + 

S. aureus 31b_MRSA 
(ATCC BAA-1680) 

CP010296 2872779 bp 8 + + 

S. aureus 33b (ATCC BAA-
1680) 

CP010297 2872764 bp 8 + + 

S. aureus 26b_MRSA 
(ATCC BAA-1680) 

CP010298 2872779 bp 8 + + 

S. aureus 25b_MRSA 
(ATCC BAA-1680) 

CP010299 2872781 bp 8 + + 

S. aureus 27b_MRSA 
(ATCC BAA-1680) 

CP010300 2872771 bp 8 + + 

S. aureus DSM 20231 CP011526 2755072 bp 8 + + 

S. aureus M1 HF937103 2864125 bp 8 + + 

S. aureus W48872 KK022849  2859671 bp 8 + + 

S. aureus T87526 KK027252 2867276 bp 8 + + 

S. aureus F26088 KK029104  2859631 bp 8 + + 

S. aureus W15997 KK032093  2860093 bp 8 + + 

S. aureus M49474 KK072349  2859938 bp 8 + + 

S. aureus T36111 KK073475  2859914 bp 8 + + 

S. aureus T83543 KK095312  2860767 bp 8 + + 

S. aureus NCTC8532 LN831049 2709282 bp 8 + + 

S. aureus H-EMRSA-15 CP007659 2846320 bp 22 - + 

S. aureus 71A_S11 CP010940 2756431 bp 22 - + 
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S. aureus HO 5096 0412 HE681097 2832299 bp 22 - + 

S. aureus RKI4 CP011528 2725654 bp 27 - + 

S. aureus 55/2053 CP002388  2756919 bp 30 + + 

S. aureus FORC_001 CP009554 2886017 bp 30 + + 

S. aureus UAMS-1 JTJK00000000 2763963 bp 30 + + 

S. aureus ILRI_Eymole1/1 LN626917 2874302 bp 30 + + 

S. aureus MRSA252 BX571856 2902619 bp 36 + + 

S. aureus M0513 KB821413  2932850 bp 36 + + 

S. aureus CA-347 CP006044 2850503 bp 45 - + 

S. aureus NRS22 JYAG00000000 2922078 bp 45 - + 

S. aureus 6850 CP006706 2736560 bp 50 - + 

S. aureus M013 CP003166 2788636 bp 59 - + 

S. aureus SA957 CP003603 2789538 bp 59 - + 

S. aureus SA40 CP003604 2728308 bp 59 - + 

S. aureus SA268 CP006630 2833899 bp 59 - + 

S. aureus TMUS2126 AP014652 2770164 bp 72 - + 

S. aureus TMUS2134 AP014653 2770164 bp 72 - + 

S. aureus CN1 CP003979 2751266 bp 72 - + 

S. aureus 11819-97 CP003194 2846546 bp 80 + + 

S. aureus NCTC13435 LN831036 2797452 bp 80 + + 

S. aureus JKD6159 CP002114 2811435 bp 93 + + 

S. aureus JH9 CP000703  2906700 bp 105 - + 

S. aureus JH1 CP000736  2906507 bp 105 - + 

S. aureus FCFHV36 CP011147 2849811 bp 105 - + 

S. aureus 93b_S9 CP010952 2788353 bp 121 + + 

S. aureus ED133 CP001996 2832478 bp 133 - - 

S. aureus RF122 AJ938182 2742531 bp 151 + + 

S. aureus SA17_S6 CP010941 2672185 bp 152 - + 

S. aureus 04-02981 CP001844 2821452 bp 225 - + 

S. aureus 10388 HE579059 2759510 bp 228 - + 

S. aureus 10497 HE579061 2759512 bp 228 - + 

S. aureus 15532 HE579063 2759883 bp 228 - + 

S. aureus 16035 HE579065 2759835 bp 228 - + 

S. aureus 16125 HE579067 2759457 bp 228 - + 

S. aureus 18341 HE579069 2759473 bp 228 - + 

S. aureus 18412 HE579071 2759263 bp 228 - + 

S. aureus 18583 HE579073 2759328 bp 228 - + 

S. aureus JKD6008 CP002120  2924344 bp 239 + + 

S. aureus T0131 CP002643 2913900 bp 239 + + 

S. aureus Bmb9393 CP005288 2980548 bp 239 + + 

S. aureus Z172 CP006838 2987966 bp 239 + + 

S. aureus XN108 CP007447 3052055 bp 239 + + 

S. aureus Gv69 CP009681 3046210 bp 239 + + 
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S. aureus TW20 FN433596 3043210 bp 239 + + 

S. aureus ATCC 25923 CP009361 2778854 bp 243 + + 

S. aureus Col CP000046 2809422 bp 250 + + 

S. aureus NRS 100 CP007539 2823087 bp 250 + + 

S. aureus Newman AP009351 2878897 bp 254 + + 

S. aureus PS187 ARPA00000000 2781079 bp 395 - - 

S. aureus SO385 AM990992 2872582 bp 398 - + 

S. aureus 71193 CP003045 2715000 bp 398 - + 

S. aureus 08BA02176 CP003808 2782313 bp 398 - + 

S. aureus LGA251 FR821779 2750834 bp 425 - + 

S. aureus M0831 KB821688  2957781 bp 609 + + 

S. aureus DAR4145 CP010526 2860508 bp 772 - + 

S. aureus 144_S7 CP010943 2730860 bp 772 - + 

S. aureus 79_S10 CP010944 2726524 bp 772 - + 

S. aureus SASCBU26 CDLR00000000 2862578 bp 2371 - + 

S. aureus TCH60 CP002110  2802675 bp * + + 

S. aureus M1216 KB822075  2793375 bp ** - + 

S. argenteus MSHR1132 FR821777 2762785 bp 1850 + + 

S. schweitzeri FSA084 CCEL00000000 2748405 bp 2022 + + 
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Abstract 

Methicillin-resistant Staphylococcus aureus (MRSA) is a frequent cause of difficult-to-

treat, often fatal infections in humans (Lee et al., 2018; Tong et al., 2015). Most humans 

have antibodies against S. aureus, but these are highly variable and often not 

protective in immunocompromised patients (Stentzel et al., 2015). Previous vaccine 

development programs have not been successful (Missiakas and Schneewind, 2016). 

A large percentage of human antibodies against S. aureus target wall teichoic acid 

(WTA), a ribitol-phosphate (RboP) surface polymer modified with N-acetylglucosamine 

(GlcNAc) (Lehar et al., 2015; Weidenmaier and Peschel, 2008). It is currently unknown 

whether the immune evasion capacities of MRSA are due to variation of dominant 

surface epitopes such as those associated with WTA. Here we show that a 

considerable proportion of the prominent healthcare-associated and livestock-

associated MRSA clones CC5 and CC398, respectively, contain prophages that 

encode an alternative WTA glycosyltransferase. This enzyme, TarP, transfers GlcNAc 

to a different hydroxyl group of the WTA RboP than the standard enzyme TarS (Brown 

et al., 2012), with important consequences for immune recognition. TarP-glycosylated 

WTA elicits 7.5–40-fold lower levels of immunoglobulin G in mice than TarS-modified 

WTA. Consistent with this, human sera contained only low levels of antibodies against 

TarP-modified WTA. Notably, mice immunized with TarS-modified WTA were not 

protected against infection with tarP-expressing MRSA, indicating that TarP is crucial 

for the capacity of S. aureus to evade host defences. High-resolution structural 

analyses of TarP bound to WTA components and uridine diphosphate GlcNAc (UDP-

GlcNAc) explain the mechanism of altered RboP glycosylation and form a template for 

targeted inhibition of TarP. Our study reveals an immune evasion strategy of S. aureus 

based on averting the immunogenicity of its dominant glycoantigen WTA. These 

results will help with the identification of invariant S. aureus vaccine antigens and may 

enable the development of TarP inhibitors as a new strategy for rendering MRSA 

susceptible to human host defences. 
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Main text 

Novel prevention and treatment strategies against major antibiotic-resistant pathogens 

such as MRSA are urgently needed but are not within reach because some of the most 

critical virulence strategies of these pathogens are not understood (Tacconelli et al., 

2018). The pathogenic potential of prominent healthcare-associated (HA)-MRSA and 

recently emerged livestock-associated (LA)-MRSA strains is thought to rely on 

particularly effective immune evasion strategies, whereas community-associated (CA)-

MRSA strains often produce more aggressive toxins (Lee et al., 2018; Tong et al., 

2015). Most humans have high overall levels of antibodies against S. aureus as a 

consequence of preceding infections, but antibody titres differ strongly for specific 

antigens and are often not protective in immunocompromised patients, for reasons that 

are not clear (Stentzel et al., 2015). A large percentage of human antibodies against 

S. aureus is directed against WTA (Kurokawa et al., 2013; Lee et al., 2015; Lehar et 

al., 2015), which is largely invariant. However, some S. aureus lineages produce 

altered WTA, which modulates, for instance, phage susceptibility (Brown et al., 2012; 

Winstel et al., 2013). 

To investigate whether some prevalent S. aureus lineages use additional WTA-

targeted strategies to increase their fitness and pathogenicity, we screened S. aureus 

genomes for potential additional paralogues of WTA biosynthesis genes. We found 

three S. aureus prophages that encoded a protein, TarP, that has 27% identity to the 

WTA-β-GlcNAc transferase TarS (Brown et al., 2012) (Fig. 1a). tarP was found 

exclusively in isolates of the prominent HA-MRSA CC5 (Nubel et al., 2008), on a 

prophage that also encoded the scn, chp and sak immune evasion genes (McCarthy 

and Lindsay, 2013), and on two other prophages in the emerging LA-MRSAs CC398 

(Bal et al., 2016) and CC5. All tarP-harbouring genomes also contained tarS (Hau et 

al., 2017). 
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Fig. 1: The phage-encoded TarP can replace the housekeeping WTA β-GlcNAc transferase 

TarS. a, TarP is encoded next to different integrase types (int gene) in prophages ΦtarP-Sa3int (with 

immune evasion cluster scn, chp, sak, sep), found in HA-MRSA, and ΦtarP-Sa1int and ΦtarP-Sa9int, 

identified in LA-MRSA. TarP variants in ΦtarP-Sa1int and ΦtarP-Sa9int differed from TarP in ΦtarP-

Sa3int in one amino acid each (I8M and D296N, respectively). Both residues are distant from the 

catalytic centre. b, Complementation of S. aureus RN4420 ΔtarM/S with either tarS or tarP restores 

susceptibility to infection by WTA GlcNAc-binding siphophages, as indicated by plaque formation on 

bacterial lawns. Data shown are representative of three independent experiments. c, tarP expression 

reduces siphophage Φ11-mediated transfer of SaPIbov in N315. Values indicate the ratio of 

transduction units (TrU) to plaque-forming units (PFU) given as mean ± s.d. of three independent 

experiments. Statistical significances when compared to wild type were calculated by one-way 

ANOVA with Dunnett’s post-test (two-sided) and significant P values (P ≤ 0.05) are indicated. NO 

(none obtained) indicates no obtained transductants. 

 

When tarP from CC5 HA-MRSA strain N315 was expressed in a WTA glycosylation-

deficient mutant of laboratory strain RN4220 (Brown et al., 2012), it restored WTA 

glycosylation (Extended Data Fig. 1a) and susceptibility to siphophages, which need 

RboP WTA GlcNAc as a binding motif16 (Fig. 1b). The presence of β-GlcNAc on WTA 

is essential for full β-lactam resistance in MRSA strains (Brown et al., 2012). When 

tarP was expressed in a WTA glycosylation-deficient mutant of CA-MRSA strain MW2 

(CC1), it restored full oxacillin resistance (Extended Data Fig. 1b), confirming that tarP 

can replace tarS in several key interactions. 
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The expression of TarP led to susceptibility to siphophages, albeit to a lower extent 

than TarS (Extended Data Fig. 1c), although TarP did not incorporate less GlcNAc into 

WTA than TarS (Extended Data Fig. 1d, Supplementary Table 3). Similarly, the 

siphophage-mediated horizontal transfer of an S. aureus pathogenicity island was 

reduced about tenfold in S. aureus N315 expressing tarP, compared to the same strain 

expressing only tarS (Fig. 1c), suggesting that TarP and TarS glycosylate WTA 

differently. Notably, N315 was resistant to podophages, but inactivation of tarP (but not 

of tarS) rendered it susceptible to podophages (Fig. 2a). We analysed the overall effect 

of tarP on podophage susceptibility patterns in 90 clinical CC5 and CC398 isolates and 

found that none of the tarP-containing strains, but all of the tarP-lacking strains, were 

susceptible to podophages (Extended Data Table 1). Thus, TarP causes podophage 

resistance and TarP-mediated modification of WTA is distinct from that mediated by 

TarS. Nuclear magnetic resonance (NMR) analyses revealed that both TarP and TarS 

add GlcNAc to WTA in the β-configuration. However, the attachment site in RboP 

differs: TarS glycosylates the C4 position (Vinogradov et al., 2006) whereas TarP 

attaches GlcNAc to C3 (Fig. 2b, Extended Data Fig. 2, Supplementary Table 2). This 

difference may be crucial for impairing phage infection. Moreover, NMR analysis 

revealed that TarP is dominant over TarS because in N315, which bears both genes, 

GlcNAc was almost exclusively attached to RboP C3 (Fig. 2b). 
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Fig. 2: TarP protects N315 from podophage infection by alternative glycosylation of WTA at 

RboP C3. a, Expression of tarP renders N315 resistant to podophages. Representative data from 

three independent experiments are shown. b, 1H NMR spectra reveal different ribitol hydroxyl 

glycosylation of N315 WTA by TarS (C4) or TarP (C3). The RboP units with attached GlcNAc are 

depicted above the corresponding proton resonances. Representative data from three experiments 

are shown. In-depth description of the structural motifs identified in the spectra is given in 

the Supplementary Information. c, Crystal structure of TarP homotrimer (pink, orange, grey) bound 

to UDP-GlcNAc (yellow) and two Mn2+ ions (lime green). The nucleotide-binding domain (NBD), 

acceptor-binding domain (ABD), and C-terminal trimerization domain (CTD) of the pink monomer are 

labelled. d, Views into the trimer interface (boxed in c). Left, polar interactions. Hydrogen bonds and 

https://www.nature.com/articles/s41586-018-0730-x#MOESM1
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salt bridges are shown as black dashed lines. The Mn2+ is 2.1 Å from each Asp316 carboxylate. 

Right, hydrophobic interactions, with the mutated residue Ile322 highlighted in red. e, Size-exclusion 

chromatography elution profiles. Based on calibration of the column, the TarP wild-type and I322E 

mutant proteins have estimated molecular weights of 138 kDa (n = 8) and 42 kDa (n = 3), 

respectively, in agreement with the calculated molecular weights of 120 kDa for a TarP trimer and 

40 kDa for monomeric TarP. 

 

We solved the TarP structure at high resolution to elucidate how TarP generates a 

different glycosylation product from TarS. Like TarS (Sobhanifar et al., 2016), TarP 

forms stable homotrimers, but it uses a different trimerization strategy because it 

lacks the C-terminal trimerization domain found in TarS (Fig. 2c, Extended Data 

Fig. 3). Instead, hydrophobic and polar interactions of a small helical C-terminal 

domain generate the TarP trimer (Fig. 2d, e). WTA polymers comprising three or six 

RboP repeating units (3RboP or 6RboP-(CH2)6NH2, respectively) were synthesized 

and used for soaking TarP crystals (Supplementary Information Fig. 2, 3), yielding 

the first protein structure visualizing the binding of a WTA-based polymer (Fig. 3, 

Extended Data Fig. 4). In the ternary complex TarP–UDP-GlcNAc–3RboP, the 

distance between the C3-hydroxyl of the third unit of 3RboP (RboP3) and the 

anomeric C1 of GlcNAc is 4.2 Å. Furthermore, at 3.1 Å, Asp181 is well within 

hydrogen bonding distance of the C3-hydroxyl of RboP3. The observed distances 

and geometry nicely explain the unusual glycosylation of WTA at the C3-hydroxyl. 

We propose that TarP uses a direct SN2-like glycosyltransferase reaction, as 

discussed for other inverting GT-A fold enzymes (Kozmon and Tvaroska, 2006; 

Lairson et al., 2008). In this mechanism, Asp181 would act as the catalytic base, 

deprotonating the C3-hydroxyl on RboP3 and enabling a nucleophilic attack on the 

GlcNAc C1, thus yielding a β-O-GlcNAcylated polyRboP (Fig. 3c). Mutagenesis of 

Asp181 to alanine rendered TarP inactive, supporting this putative mechanism 

(Extended Data Table 2). 

 

 

 

https://www.nature.com/articles/s41586-018-0730-x#Fig2
https://www.nature.com/articles/s41586-018-0730-x#Fig7
https://www.nature.com/articles/s41586-018-0730-x#Fig2
https://www.nature.com/articles/s41586-018-0730-x#MOESM1
https://www.nature.com/articles/s41586-018-0730-x#Fig2
https://www.nature.com/articles/s41586-018-0730-x#Fig3
https://www.nature.com/articles/s41586-018-0730-x#Fig3
https://www.nature.com/articles/s41586-018-0730-x#Fig8
https://www.nature.com/articles/s41586-018-0730-x#Fig3
https://www.nature.com/articles/s41586-018-0730-x#Tab2
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Fig. 3: Interactions of TarP with UDP-GlcNAc and D-ribitol-5-phosphate trimer (3RboP), and 

comparison of polyRboP binding sites of TarP and TarS. a, 3RboP binding site in the TarP–

3RboP complex, with key amino acids shown (cyan). Asp181 is highlighted in red. The ribitol of 

3RboP is coloured green and D-ribitol-5-phosphate units 1, 2 and 3 (RboP1, RboP2, and RboP3) 
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are labelled. Hydrogen bonds and salt bridges are shown as black dashed lines. b, Ternary complex 

of TarP with UDP-GlcNAc and 3RboP. UDP-GlcNAc, Mg2+ and 3RboP are shown as full-atom models 

coloured yellow, magenta, and green, respectively. c, View into the active site of TarP. C1 of UDP-

GlcNAc and Asp181 are highlighted with red labels. The arrow indicates how the C3-hydroxyl in 

RboP3 could nucleophilically attack GlcNAc C1. d, Comparison of the polyRboP-binding site of TarP 

with the corresponding region in TarS. Residues of TarP and 3RboP are coloured as in  a. TarS 

residues are coloured violet and the two sulfates are labelled S1 and S2. Only residues of TarP are 

labelled, for clarity. Key TarP and TarS residues lining the polyRboP-binding site are shown at the 

bottom, with three identical (red) and one conserved amino acids (blue). e, Superposition of UDP-

GlcNAc-bound TarS with the ternary TarP–UDP-GlcNAc–3RboP complex. UDP-GlcNAc and 3RboP 

bound to TarP are coloured as in b, whereas UDP-GlcNAc bound to TarS is coloured in cyan. Only 

the TarS residues are shown (coloured as in d), for clarity. The arrows indicate the C1 positions of 

UDP-GlcNAc in TarP and TarS. 

The ternary structure of TarP–UDP-GlcNAc–3RboP allows us to predict how polyRboP 

binds to the homologous TarS enzyme. Three residues that are critical for binding and 

catalysis (including Asp181) are identical in TarP and TarS, while five other residues 

differ (Sobhanifar et al., 2016) (Fig. 3d). Lys255 and Arg262, for instance, which 

interact electrostatically with a WTA phosphate group in TarP, are replaced with 

Glu248 and Ser255, respectively, in TarS, which may lead to reduced affinity for WTA 

and might explain why TarP is dominant over TarS in vivo. On the basis of the location 

of UDP-GlcNAc, the identical Tyr149, Asp178 and Arg252 side chains, the conserved 

aromatic side chain of Phe256, and a site that contains a bound sulfate ion from the 

crystallization solution (S1) and probably binds phosphate in TarS (Fig. 3e), the 

polyRboP chain would be shifted to the upper right, and the relative position of RboP 

units in the binding site would be altered in TarS. Such an altered binding mode would 

move the C4-hydroxyl of the target RboP towards C1 of GlcNAc, allowing TarS to 

glycosylate at the C4 position. 

S. aureus WTA is a dominant antigen for adaptive immune responses (Kurokawa et 

al., 2013; Lehar et al., 2015). The observation that the position of GlcNAc on RboP had 

a profound impact on binding by podophage receptors raises the question of whether 

human antibodies also discriminate between the two isomeric polymers and whether 

MRSA clones use TarP to subvert immune recognition. We analysed several human 

antibody preparations for their capacity to opsonize a panel of N315 strains with or 

without tarP and/or tarS. The mutant lacking any WTA glycosylation bound the lowest 

https://www.nature.com/articles/s41586-018-0730-x#Fig3
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amount of IgG compared to WTA glycosylation-positive strains (Fig. 4a), 

demonstrating that glycosylated WTA is a prominent S. aureus antigen in humans. 

Exclusive expression of tarS led to strongly increased IgG binding compared to the 

glycosylation-deficient mutant, indicating that β-GlcNAc on RboP C4 is an important 

epitope for human anti-S. aureus antibodies. By contrast, expression of tarP in the 

presence or absence of tarS led to only slightly increased IgG binding compared to the 

glycosylation-deficient mutant. The capacity of TarP to impair the deposition of IgG 

on S. aureus differed with individual serum donors and reached average levels in 

pooled serum preparations (Fig. 4a). When tarP was deleted in three further CC5 

isolates, they showed similarly increased capacities to bind human serum antibodies 

compared to the wild-type strains (Extended Data Fig. 1e). Additionally, tarP deletion 

led to a substantially increased capacity of human neutrophils to phagocytose 

opsonized S. aureus (Fig. 4b, Extended Data Fig. 1g). Thus, only a small percentage 

of S. aureus-specific antibodies can bind WTA with β-GlcNAc on RboP C3, and tarP-

expressing S. aureus are less likely to be detected and eliminated by human 

phagocytes. 

 

Fig. 4: TarP attenuates immunogenicity of WTA. a, TarP expression reduces deposition of IgG 

from human serum on N315 cells. The protein A gene spa was deleted in all strains. Top, human 

IgG isolated from three individual healthy donors (A, B, and C; n = 4); bottom, left, IgG from human 

https://www.nature.com/articles/s41586-018-0730-x#Fig4
https://www.nature.com/articles/s41586-018-0730-x#Fig4
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serum enriched for RN4220 WTA binding (n = 4); middle and right, pooled human IgG from different 

suppliers (Abcam, n = 4; Athens R&T, n = 6). Results were normalized against wild type and shown 

as means with s.d. of n experiments. P values for comparison with wild type were calculated by one-

way ANOVA with Dunnett’s post-test (two-sided), and P ≤ 0.05 was considered significant. 

Significant P values are displayed. b, TarP reduces neutrophil phagocytosis of N315 strains lacking 

protein A, opsonized with indicated concentrations of IgG enriched for WTA binding. Values are 

depicted as mean fluorescence intensity (MFI). Means of two dependent replicates of a 

representative experiment are shown. The other two representative experiments can be found in 

Extended Data Fig. 1g. c, TarP abrogates IgG response of mice towards WTA. For each experiment, 

WTA from N315 ΔtarP or ΔtarS was isolated independently. At least three mice per group were 

vaccinated and analysed for specific IgG at indicated time points after vaccination. Results are 

depicted as mean absorbance with s.d. Individual mice are indicated by colour. Increase in IgG levels 

was assessed by one-way ANOVA with Tukey’s post-test (two-sided). Significant differences 

(P ≤ 0.05) are indicated with corresponding P values. d, Vaccination with WTA does not protect mice 

against tarP-expressing N315, as shown for bacterial loads in kidney upon intravenous infection. No 

significant differences between groups of either five vaccinated mice or four mice for the a lum control 

group (means indicated), calculated by one-way ANOVA, were observed. 

We purified N315 WTA that had been glycosylated by TarS or TarP and used it to 

immunize mice. Antibodies binding to regular (TarS-modified) WTA increased 

continuously over three weeks after vaccination (Fig. 4c). By contrast, no or only very 

low amounts of IgG directed against TarP-glycosylated WTA emerged, indicating that 

WTA modified at RboP C3 is much less immunogenic than WTA modified at RboP C4. 

This experiment was repeated three times with three different WTA preparations and 

yielded broadly similar data. 

Vaccination with S. aureus WTA bearing GlcNAc at RboP C4 protects mice against 

infection by CA-MRSA strains USA300 (CC8) or USA400 (CC1), which both lack tarP 

(Lehar et al., 2015; Takahashi et al., 2013). Remarkably, vaccination with regular 

(TarS-modified) or TarP-modified WTA did not lead to any notable protection against 

subsequent infection with tarP-expressing N315 compared to mock vaccination, 

despite the robust antibody response against regular WTA (Fig. 4d). Together, our 

results demonstrate that tarP protects S. aureus against adaptive host defences by 

allowing bacteria to evade recognition by preexisting anti-S.  aureus antibodies and by 

exploiting the poor immunogenicity of TarP-modified WTA. 

It is possible that TarP-modified WTA mimics a currently unknown autoantigen and is 

therefore hardly immunogenic. On the other hand, regular S. aureus WTA can be 

ingested by antigen-presenting cells and presented to T cells, in a largely unexplored 

way, thereby evoking specific immunoglobulins and immunological memory (Wanner 

https://www.nature.com/articles/s41586-018-0730-x#Fig5
https://www.nature.com/articles/s41586-018-0730-x#Fig4
https://www.nature.com/articles/s41586-018-0730-x#Fig4
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et al., 2017; Weidenmaier et al., 2010). It is possible that TarP-modified WTA is 

refractory to this process. Thus, TarS- and TarP-modified WTA could be helpful for 

decoding glycopolymer presentation pathways and for defining the most promising 

WTA epitopes for the development of protective vaccines against S. aureus. 

Protection against S. aureus infections is urgently needed, in particular for hospitalized 

and immunocompromised patients (Lee et al., 2018; Missiakas and Schneewind, 

2016). Antibodies can in principle protect against S. aureus, but their titres and 

specificities vary largely among humans and they are often not protective in 

immunocompromised patients (Stentzel et al., 2015), probably in particular against S. 

aureus clones that mask dominant epitopes, for instance using TarP. Unfortunately, all 

previous human vaccination attempts with protein or glycopolymer antigens have 

failed, for reasons that are unclear (Pozzi et al., 2017). Our study identifies a new 

strategy used by pandemic MRSA clones to subvert antibody-mediated immunity, 

which should be considered in future vaccination approaches. S. aureus WTA with 

GlcNAc at RboP C3 has been reported as a type-336 antigen, but was not further 

explored (Fattom et al., 2006). We found that tarP is present in type-336 S. aureus 

(Extended Data Fig. 1f). However, TarP-modified WTA is a very poor antigen and 

vaccines directed against GlcNAc at WTA RboP C3 or C4 may fail against many of the 

pandemic MRSA clones. The structural characterization of TarP will instruct the 

development of specific TarP inhibitors that could become important in combination 

with anti-WTA vaccines or antibiotic therapies. We found tarP-encoding prophages in 

70–80% of south-west German HA-MRSA CC5 and 40% of Danish LA-MRSA CC398 

isolates (Extended Data Table 1), pointing to a crucial role of tarP in the fitness of these 

lineages and raising concerns of further dissemination by horizontal gene transfer. 

TarP is a new and probably crucial component of the S. aureus virulence factor arsenal 

(Spaan et al., 2013; Thammavongsa et al., 2015), highlighting the important roles of 

adaptive immunity and its evasion in S. aureus infections. 

  

https://www.nature.com/articles/s41586-018-0730-x#Fig5
https://www.nature.com/articles/s41586-018-0730-x#Tab1
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Methods 

No statistical methods were used to predetermine sample size. The experiments were 

not randomized. The investigators were not blinded to allocation during experiments 

and outcome assessment. 

Bacterial strains and growth conditions. S. aureus strains N315, RN4220, and 

MW2 (wild type and mutants) were used for this study. Collections of CC5 isolates of 

the Rhine-Hesse pulsed-field gel electrophoresis type (Schulte et al., 2013) and of the 

LA-MRSA lineage CC398 from the Danish Statens Serum Institut (Larsen et al., 2015; 

Sieber et al., 2018) were analysed for the presence of tarP and for podophage 
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susceptibility. Additionally, 48 spa-type t002 (ST5) and 16 spa-type t003 (ST225) 

isolates were obtained from the MRSA collection of the University Hospital Tübingen 

and analysed for tarP presence by PCR. S. aureus strains were cultivated in tryptic 

soy broth (TSB) or basic medium (BM; 1% tryptone, 0.5% yeast extract, 0.5% NaCl, 

0.1% glucose, 0.1% K2HPO4, w/v). MICs of oxacillin were determined by microbroth 

dilution according to established guidelines ((ESCMID), 2003). 

Experiments with phages. tarP-encoding phages were identified in genome 

sequences using the webtool Phaster (Arndt et al., 2016) in representative strains 

listed with GenBank accession: ΦtarP-Sa3int with immune evasion cluster (IEC) in 

CC5 (strain N315, BA000018.3), ΦtarP-Sa1int, found in LA-MRSA of CC5 (strain 

ISU935, CP017090), and ΦtarP-Sa9int found in CC398 (strain E154, CP013218). 

Phage susceptibility was determined using a soft-agar overlay method16. In brief, 10 

µl phage lysate of 104–106 PFU was dropped onto soft agar containing 100 µl bacterial 

suspension (OD600 of 0.1). Plates were incubated at 37 °C overnight. The efficiency 

of plating was determined as described (Winstel et al., 2014). Transfer of SaPIs was 

determined according to previously described methods (Winstel et al., 2013). In brief, 

SaPI particle lysates were generated from S. aureus strain JP1794, which encodes a 

SaPI with a resistance marker for tetracycline (Tormo et al., 2008). PFU of SaPI lysate 

was determined on RN4220. 200 µl bacterial culture (OD600 of 0.5) was mixed with 

100 µl of SaPI particle lysate (SaPIbov1 (Φ11), 106 PFU/ml), incubated at 37 °C for 15 

min. Appropriate dilutions were plated on TSB plates containing 3 µg/ml of tetracycline, 

and CFU were checked after overnight incubation. 

WTA isolation and structure analysis. WTA from S. aureus was isolated and purified 

according to previously described methods11. In brief, WTA was released from purified 

peptidoglycan by treatment with 5% trichloroacetic acid and dialysed extensively 

against water using a Spectra/Por3 dialysis membrane (MWCO of 3.5 kDa; VWR 

International GmbH). Obtained soluble WTA was quantified by determining the content 

of phosphate (Chen, 1956) and GlcNAc (Smith LR, 1979). For PAGE analysis of WTA, 

samples (400 nmol of phosphate per lane) were applied to a 26% polyacrylamide 

(Rotiphorese Gel 40 (19:1)) resolving gel and separated at 25 mA for 16 h (Xia et al., 

2010). The gel was equilibrated in a solution of 40% ethanol and 5% acidic acid at 
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room temperature for 1 h and the WTA ladders were visualized by incubation with 

alcian blue (0.005%) for several hours. 

NMR spectroscopy experiments were carried out on a Bruker DRX-600 spectrometer 

equipped with a cryo-probe, at 288 K (WT-WTA, TarS-WTA, and TarP-WTA) or 298 K 

(double-mutant WTA lacking any glycosylation). Chemical shifts of spectra recorded in 

D2O were calculated in p.p.m. relative to internal acetone (2.225 and 31.45 p.p.m.). 

The spectral width was set to 10 p.p.m. and the frequency carrier placed at the residual 

HOD peak, suppressed by pre-saturation. Two-dimensional spectra (TOCSY, gHSQC, 

gHMBC, and HSQC-TOCSY) were measured using standard Bruker software. For all 

experiments, 512 FIDs of 2,048 complex data points were collected, 32 scans per FID 

were acquired for homonuclear spectra, and 20 or 100 ms of mixing time was used for 

TOCSY spectra. Heteronuclear 1H-13C spectra were measured in the 1H-detected 

mode, gHSQC spectrum was acquired with 40 scans per FID, the GARP sequence 

was used for 13C decoupling during acquisition; gHMBC scans doubled those of 

gHSQC spectrum. As for HSQC-TOCSY, the multiplicity editing during selection step 

version was used, scans tripled those of the HSQC spectrum and two experiments 

were acquired by setting the mixing time to 20 or 80 ms. During processing, each data 

matrix was zero-filled in both dimensions to give a matrix of 4K × 2K points and was 

resolution-enhanced in both dimensions by a cosine-bell function before Fourier 

transformation; data processing and analysis were performed with the Bruker Topspin 

3 program. 

Molecular biology. All primers used for PCR, cloning, and mutagenesis are listed in 

Supplementary Table 1. tarP (UniProt A0A0H3JNB0, NCBI Gene ID 1260584) was 

amplified using genomic DNA of S. aureus N315 and inserted in Eschericha coli/S. 

aureus shuttle vector pRB474 (Bruckner, 1992) at the BamHI and SacI sites, to 

transform S. aureus, or into pQE80L at BamH1 and HindIII sites, to transform E. coli 

BL21(DE3). A thrombin cleavage site was inserted between the His-tag and mature 

protein in pQE80L. Single mutations of TarP were introduced by PCR-based site-

directed mutagenesis (Liu and Naismith, 2008). The obtained amplicons were 

confirmed by sequencing. For the construction of marker-less S. aureus deletion 

mutants of tarS or tarP, the pIMAY shuttle vector was used (Monk et al., 2012). The 

IgG-binding surface protein A gene (spa) was deleted using the pKORI shuttle vector 
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(Bae and Schneewind, 2006). Protein A deletion had no impact on phage siphophage 

or podophage susceptibility, indicating that it did not alter WTA amount or structure. 

Protein expression, purification, and activity assay. E. coli BL21(DE3) were grown 

in LB medium at 30 °C. Expression of tarP was induced with 1 mM IPTG at 22 °C at an 

OD600 of 0.6. After 15 h, cells were harvested, washed with wash buffer (50 mM Tris-

HCl, pH 8.0, 1 mM EDTA), and lysed by sonication with lysis buffer (70 mM NaH2PO4, 

pH 8.0, 1 M NaCl, 20% glycerol, 10 U/ml of benzonase nuclease). After centrifugation 

(15,000g), the supernatant was filtered with a 0.45 µm filter, loaded onto a His Trap FF 

column (GE Healthcare, 5 ml), and washed with buffer A (50 mM NaH2PO4, pH 8.0, 1 

M NaCl, 20% glycerol) supplemented with 45 mM imidazole and buffer B (buffer A with 

90 mM imidazole). Finally, the protein was eluted with buffer C (buffer A with 500 mM 

imidazole), and the fractions were pooled, and further purified by size-exclusion 

chromatography on a Superdex 200 10/30 column equilibrated with buffer D (20 mM 

MOPS, pH 7.6, 400 mM LiCl, 10 mM MgCl2, 5 mM β-mercaptoethanol, 5% glycerol). 

The peak fractions were pooled and concentrated to 1.4 mg/ml for crystallization. For 

selenomethionyl-form TarP production, bacteria were grown in a selenomethionine-

containing medium (Molecular Dimension) and auto-induction was carried out. The 

protein was purified as described above. The activity of wild-type and mutated TarP, 

as well as donor substrate specificity of TarP were determined with the ADP Quest 

Assay kit (DiscoverRx, Extended Data Tables 2, 3). The reaction volume was 20 µl 

with 1 mM UDP-GlcNAc, 1.5 mM purified WTA from RN4220 ΔtarM/S. The reaction 

was started with protein and incubated at room temperature for 1 h. Released UDP, 

coupled into a fluorescence signal, was detected in a 384-well black assay plate with 

530 nm excitation and 590 nm emission wavelengths using TECAN Infinite M200. 

Crystallization and data collection. Crystals were obtained by vapour diffusion at 

20 °C. 1 µl protein solution was mixed with 1 µl reservoir solution containing 25% PEG 

3350, 250 mM MgCl2, and 0.1 M sodium citrate, pH 5.7. The selenomethionyl-form 

protein was crystallized under the same conditions. For crystals of TarP with UDP-

GlcNAc, 27 mM UDP-GlcNAc was introduced in the reservoir solution containing 250 

mM MgCl2 or 230 mM MnCl2. Crystals of TarP with Mg2+ were used for soaking of 

synthetic 3RboP (60 mM), 6RboP-(CH2)6NH2 (41 mM), or UDP-GlcNAc (20 mM) 

combined with 3RboP (52 mM) for 5 min. For data collection the crystals were cryo-

protected with 20% glycerol in reservoir solution and flash-frozen in liquid nitrogen. 
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Diffraction data were collected at beamline X06DA of Swiss Light Source in Villigen, 

Switzerland, or at beamline BL14.1 at BESSY-II, Helmholtz Zentrum Berlin. 

Phasing, model building, and refinement. For phase determination, two data sets 

from a selenomethionine-containing TarP crystal were collected at wavelengths of 

0.97941 Å (peak) and 0.97952 Å (inflection). The structure was solved by multi-

wavelength anomalous dispersion (MAD) at 2.60 Å resolution. All data were reduced 

using XDS/XSCALE software packages (Kabsch, 2010). Initial phases were derived 

from the substructure of 26 selenium atom sites per asymmetric unit with the program 

suite SHELX C/D/E (Sheldrick, 2010). The heavy atom parameters were further refined 

and the initial phases were improved by SHARP/autoSHARP (Vonrhein et al., 2007). 

The initial model was generated with PHENIX (Adams et al., 2010) and the final model 

was achieved by cycles of iterative model modification using COOT (Emsley et al., 

2010), and restrained refinement with REFMAC. TLS was used in the later stages 

(Murshudov et al., 2011). The four binary and one ternary complex structures were 

solved by molecular replacement using PHASER (McCoy et al., 2007) and the 

unliganded TarP structure was used as a search model. UDP-GlcNAc, 3RboP, Mg2+, 

or Mn2+ were removed from the models to calculate the simulated annealing (mFo − 

DFc) omit maps using PHENIX. The anomalous difference map of Mn2+ at 1.89259 Ǻ 

was generated by FFT within CCP4, from which two Mn2+ in the active site and one 

Mn2+ at the trimer interface were identified. The coordinate and parameter files for 

3RboP and 6RboP-(CH2)6NH2 were calculated using the PRODRG server 

(Schuttelkopf and van Aalten, 2004). The structure figures were generated by PyMOL 

(Schrodinger, 2015) and the models were evaluated using MolProbity (Chen et al., 

2010). Statistics for the data collection, phasing, and refinement are reported in 

Extended Data Tables 4 and 5. 

Synthesis of ribitol phosphate oligomers. Synthesis of 3RboP. Target compound 

1, D-ribitol-5-phosphate trimer (3RboP), was prepared by the phosphoramidite method 

(Beaucage and Caruthers, 1981; Elie et al., 1989) (Supplementary Fig. 2). In brief, the 

primary alcohol of commercially available compound 2 was converted into levulinoyl 

ester by using levulinic acid and N,N'-dicyclohexylcarbodiimide (DCC), and the allyl 

group of 3 was removed with tetrakis(triphenylphosphine)palladium to produce 

compound 4. The primary alcohol of 4 reacted with phosphine derivative 5 in the 

presence of diisopropylammonium tetrazolide(Dreef et al., 1988) to generate 
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phosphoramidite 6. At the same time, compound 4 was coupled with dibenzyl N,N-

diisopropylphosphoramidite 7, which was catalysed by 1H-tetrazole, and the product 

was further oxidized by tert-butyl hydroperoxide, yielding protected D-ribitol-5-

phosphate 8. Cleavage of the levulinoyl ester of 8 with hydrazine hydrate resulted in 

benzyl protected D-ribitol-5-phosphate 9, which was further coupled with 

phosphoramidite 6 and oxidized with tert-butyl hydroperoxide to yield protected dimers 

of D-ribitol-5-phosphate 10. After removal of the levulinoyl group, the dimer 11 was 

coupled with phosphoramidite 6 using the same conditions as above to obtain a 

protected trimer of D-ribitol-5-phosphate 12. Subsequent removal of the levulinoyl 

group and hydrogenolysis of 13 to remove all benzyl groups yielded 3RboP 1. All 

chemicals and experimental procedures as well as characterization of products can be 

found in the Supplementary Methods. 

Synthesis of 6RboP-(CH2)6NH2. Aminohexyl D-ribitol-5-phosphate hexamer (6RboP-

(CH2)6NH2) was synthesized using a new method (Supplementary Fig. 3). All 

chemicals (Acros, Biosolve, Sigma-Aldrich and TCI) for the synthesis were used as 

received and all reactions were performed under a protective argon atmosphere at 

room temperature, unless otherwise stated. Procedures for phosphoramidite coupling, 

oxidation, detritylation, global deprotection, TLC analysis and characterization of these 

compounds can be found in Supplementary Methods. 

Human samples. Venous blood samples were obtained from male and female healthy 

volunteers (20–50 years) with protocols approved by the Institutional Review Board for 

Human Subjects at the University of Tübingen (014/2014BO2 und 549/2018BO2). 

Informed written consent was obtained from all volunteers. Blood samples were used 

for purification of either serum IgGs or neutrophils as described below. 

IgG from human plasma. IgG was purified from plasma of human donors using the 

NAb Protein G Spin Kit (ThermoFisher), purity was checked by SDS PAGE, and protein 

concentration was determined using Bradford assay. Anti-WTA-IgG was prepared as 

described9. To analyse the IgG-binding capacity of S. aureus cells, exponentially 

growing bacterial cultures were adjusted to an OD600 of 0.5, diluted 1:10 in PBS, and 

100 µl of diluted bacteria was mixed with 100 µl of IgG diluted in PBS with 1% BSA. 

The concentration of IgG was 250 ng/ml for IgG enriched for WTA binding, 10 µg/ml 

for IgG from pooled human serum (Athens R&T 16-16-090707, Abcam ab98981), or 5 
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µg/ml for single-donor IgG preparations. A control without IgG was included in all 

experiments for all mutants. Samples were incubated at 4 °C for 1 h, centrifuged, 

washed 2–3 times with PBS, and further incubated with 100 µl FITC-labelled anti-

human IgG (Thermo Scientific, 62-8411, 1:100 in PBS with 1% BSA, 62-8411) at 4 °C 

for 1 h. Bacteria were centrifuged, washed 2–3 times with PBS, and fixed with 2% 

paraformaldehyde (PFA). Surface-bound IgG was quantified by flow cytometry using 

a BD FACSCalibur. For all flow cytometry experiments a mutant panel lacking spa, the 

gene for the IgG-binding protein A, was used. The subsequent gating strategy is 

exemplified in Extended Data Fig. 5a. 

IgG-mediated phagocytosis. Stationary-phase S. aureus cells were washed once 

with PBS and labelled by incubation in PBS containing 10 µM carboxyfluorescein 

succinimidyl ester (CFSE; OD600 of 1.7) at 37 °C for 1 h. The bacteria were washed 

three times and resuspended in PBS. CFU were determined by plating on TSB plates 

and bacteria were heat-inactivated at 70 °C for 20 min. CFSE-labelled S. aureus 

(1 × 107 cells/ml) in PBS with 0.5% BSA were opsonized with anti-WTA-IgG (0.15 or 

0.3 ng/µl) at 4 °C for 40 min. Neutrophils from human donors, isolated via Ficoll-

Histopaque density gradient centrifugation (Durr et al., 2006), were diluted to a 

concentration of 2.5 × 106/ml in neutrophil medium (10% HSA, 2 mM L-glutamine, 2 

mM sodium pyruvate, 10 mM HEPES). 200 µl neutrophil suspension was incubated 

with 25 µl opsonized bacteria (final MOI 0.5) in a 96-well plate at 37 °C for 30 min, 

centrifuged (350g, 10 min), washed once with 200 µl PBS, and fixed with 2% PFA at 

room temperature for 15 min. Cells were washed twice with PBS and analysed by flow 

cytometry, whereby surface-bound and ingested bacteria were measured without 

discrimination. An example of the neutrophil gating strategy can be found in Extended 

Data Fig. 5b. 

Mice. Six-week-old sex-matched wild-type C57BL/6J mice, purchased from ORIENT 

BIO (Charles River Breeding Laboratories in Korea), were kept in micro-isolator cages 

in a pathogen-free animal facility. The conducted experiments were performed 

according to guidelines and approval (PNU-2017-1503) by the Pusan National 

University-Institutional Animal Care and Use Committee (PNU-IACUC). Sample size 

was chosen to obtain significant outcomes (alpha error ≤ 5%), based on results from 

previous experiments21. Experiments were performed in a non-blinded, non-

randomized fashion. 
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Mouse vaccination and infection. 30 µg of purified WTA from S. aureus N315 wild-

type or isogenic ΔtarP, or ΔtarS mutants was dissolved in 15 µl PBS and mixed with 

the same volume of aluminium hydroxide gel adjuvant (Alhydrogelr 1.3%, 6.5 mg/ml, 

Brennatag). The mixtures were incubated at 37 °C with agitation for 1 h and injected 

three times at one-week intervals via mouse footpads. Seven days after the third 

injection, blood was obtained from the retro-orbital sinus and centrifuged (9,000g) at 

4 °C for 10 min. The supernatants were aliquoted (50 µl) and stored at –80 °C for ELISA 

quantification of WTA-binding IgG as described (Caulfield et al., 2010). Sera were 

diluted 1:100 and tested by ELISA on 96-well plates coated with 2.5 µg/ml sonicated 

WTA preparations (WTA from N315, ΔtarS or ΔtarP, respectively). 

To prepare an inoculum for infection, N315 wild-type bacteria were grown in TBS at 

37 °C with agitation (180 r.p.m.) until they reached an OD600 of 1.0. After 

centrifugation (3,500g) at 4 °C for 10 min, bacteria adjusted to 5 × 107 CFU in 50 µl 

PBS containing 0.01% BSA were intravenously injected (n = 5 per group). Injected 

bacterial numbers were verified by plating serial dilutions of the inoculum onto TSA 

plates. To determine residual bacterial dissemination to kidneys, challenged mice were 

euthanized, and organs were extracted aseptically and homogenized in 1 ml of saline 

using a Polytron homogenizer (PT3100). The homogenates were serially diluted and 

plated on TSA to determine CFU counts. CFU were calculated per 1 ml of kidney. 

Statistical analyses. Statistical analysis was performed by using GraphPad Prism 

(GraphPad Software, Inc.). Statistically significant differences were calculated by 

appropriate statistical methods as indicated. P values of ≤ 0.05 were considered 

significant. 

 

Data availability 

All major data generated or analysed in this study are included in the article or its 

supplementary information files. The coordinates and structure factors were deposited 

in the Protein Data Bank under accession numbers 6H1J, 6H21, 6H2N, 6H4F, 6H4M 

and 6HNQ. Source data for experiments with animals (Fig. 4c, d) are provided. 

Additionally, a gel image of Extended Data Fig. 1f is supplied as Supplementary Fig. 
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1. All other data relating to this study are available from the corresponding authors on 

reasonable request. 
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Extended Data 

 

Extended Data Fig. 1 Characterization of TarP, deposition of human IgGs, and presence of 

tarP in the producer of antigen 336. a, Analysis of WTA by PAGE. WTA from RN4220 ΔtarM/S 
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expressing either tarP or tarS was compared with non-glycosylated WTA. Data shown are 

representative of two experiments. b, MIC values of oxacillin against MW2 wild type, tarS mutant, 

and tarP-complemented tarS mutant. Data are medians of ten independent experiments. c, 

Efficiency of plating (EOP) of phage Φ11 against tarS or tarP-expressing RN4420 ΔtarM/S. Values 

of tarP relative to tarS expression are given as mean ± s.d. (n = 3). Statistical significance was 

calculated by paired Student’s t-test (two-sided) with significant P values (P ≤ 0.05) indicated. d, The 

level of WTA glycosylation catalysed by TarP or TarS was determined by analysing the GlcNAc and 

phosphate content of WTA isolated from a N315 strain panel. Depicted is the ratio of GlcNAc and 

phosphate as mean with s.d. of three technical replicates. The values are in good agreement with 

NMR data (Supplementary Table 3). e, Relative deposition of IgG from intravenous immunoglobulins 

enriched for WTA binding on different CC5 wild-type and tarP mutant cells. Values are given as mean 

percentage ± s.d. of four independent experiments. Statistical significance was calculated by paired 

Student’s t-test (two-sided). P values ≤ 0.05 were considered significant and are indicated. f, 

Presence of tarP and tarS in S. aureus ATCC55804, expressing antigen 336, described as 3-O-

GlcNAc-WTA (Fattom et al., 2006). Shown is a representative of two independent replicates. g, TarP 

reduces neutrophil phagocytosis of N315 strains lacking protein A, opsonized with indicated 

concentrations of IgG enriched for WTA binding. Values are depicted as mean fluorescence intensity 

(MFI). Shown are two independent experiments with neutrophils from different donors. These data 

supplement data presented in Fig. 4b: upper panel, mean of three technical replicates of an 

independent experiment, lower panel, mean of two technical replicates. 
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Extended Data Fig. 2 NMR analysis of WTA from N315 mutant panel. All depicted experiments 

were repeated twice. y-axes and x-axes show 13C and 1H chemical shifts, respectively. a–d, NMR 

spectra of non-glycosylated WTA (ΔtarSΔtarP mutant). a, HSQC expansion of the region containing 

the ribitol and glycerol protons shifted by acylation; b, c, HSQC-TOCSY-20 and HSQC-TOCSY-80 

spectra, respectively. d, HSQC area of the non-acylated ribitol and glycerol proton. e–h, NMR 

spectra of TarS-WTA (ΔtarP mutant). e, HSQC expansion of the region containing the ribitol and 

glycerol protons shifted by acylation. f, g, HSQC-TOCSY-20 and HSQC-TOCSY-80, respectively. h, 

HSQC area of the non-acylated ribitol and glycerol proton. i–o, NMR spectra of TarP-WTA (ΔtarS 
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mutant). i, HSQC expansion of the region containing the ribitol and glycerol protons shifted by 

acylation. j, k, HSQC-TOCSY-20 and HSQC-TOCSY-80 spectra, respectively. l, HSQC area of the 

non-acylated ribitol and glycerol protons. m, Expansion of l with HSQC (black/grey) overlapped with 

HSQC-TOCSY-20 (cyan). n, Overlap of HSQC-TOCSY-20 (cyan) and HSQC-TOCSY-80 (black). o, 

HSQC (black) and HMBC (grey) detailing the GlcNAc signals. p, NOESY expansion detailing the 

correlations of the β-GlcNAc anomeric protons: GlcNAc ‘b*’ differs from unit ‘b’, which has the same 

anomeric proton chemical shift, but is linked to a different ribitol unit. All densities are labelled with 

the letters used in Supplementary Table 2. The density marked with an asterisk in m is consistent 

with ribitol glycosylated at O-4. 

 

 

Extended Data Fig. 3 Secondary structure of a TarP monomer and interactions with UDP-

GlcNAc. a, Cartoon representation of a TarP monomer bound to UDP-GlcNAc (yellow) and Mn2+ 

(lime green). The CTD is coloured red. b, Interactions of TarP with UDP-GlcNAc and Mn2+, coloured 

as in a. Hydrogen bonds and salt bridges are shown as black dashed lines. c, Interactions of TarP 

with UDP-GlcNAc (yellow) and Mn2+  (magenta). d, Simulated-annealing (mFo − DFc) omit map of 

UDP-GlcNAc (grey mesh, contoured at 2.0σ) and Mn2+  (magenta mesh, at 3.0σ) in the TarP–UDP-

GlcNAc– Mn2+  complex structure. UDP-GlcNAc and Mn2+  are coloured as in a. e, Simulated-

annealing (mFo − DFc) omit map of UDP-GlcNAc (grey mesh, at 2.0σ) and Mn2+  (blue mesh, at 

2.0σ) in the TarP–UDP-GlcNAc– Mn2+  complex structure. UDP-GlcNAc and Mn2+  are coloured as 

in c.  
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Extended Data Fig. 4 Simulated-annealing (mFo − DFc) omit maps of 3RboP and UDP-GlcNAc, 

and characterization of TarP mutant proteins. a, Chemical structures of synthetic 3RboP and 

6RboP-(CH2)6NH2. The unit numbers are indicated. b, Simulated-annealing (mFo − DFc) omit map of 

3RboP (lime green) in the binary structure (magenta mesh, contoured at 2.0σ). c, Simulated-

annealing (mFo − DFc) omit map of UDP-GlcNAc (yellow), Mg2+ (magenta) and 3RboP (lime green) 

in the ternary complex structure (red mesh, at 1.8σ, blue mesh, at 2.0σ or magenta mesh, at 1.5σ). d, 

Circular dichroism spectra of wild-type and mutant TarP proteins (for wild type, R76A and 

D181A, n = 3; for D92A, Y152A and R259A, n = 2). e, Size-exclusion chromatography elution profiles 

of wild-type and mutant TarP proteins (for wild type, n = 8; for R76A, D181A and R259A, n = 3; for 

D92A and Y152A, n = 2, all with similar results). Mutant proteins D94A, E180A, D209A, K255A, 

R262A, and H263A showed similar circular dichroism spectra and size-exclusion chromatography 

elution profiles (data not shown). 

https://www.nature.com/articles/s41586-018-0730-x/figures/8
https://www.nature.com/articles/s41586-018-0730-x/figures/8
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Extended Data Fig. 5 Gating strategy for flow cytometry experiments. a, Gating strategy for IgG 

deposition experiments. To distinguish bacteria from background signals, pure PBS was measured. 

Left, bacterial gating occurred at the FSC/SCC density plot omitting PBS-derived signals. Bacterial 

aggregates of high SSC and FSC values were excluded from the gated population as well. Right, 

the mean fluorescence of the bacterial population (black) was determined and compared with non -

IgG-treated bacteria (grey) to control for nonspecific binding of the secondary FITC-labelled 

antibody. Subsequently, mean fluorescence values of individual mutants were compared relatively 

to the corresponding wild-type strain. b, Gating strategy for phagocytosis experiments. Neutrophi ls 

were separated by Histopaque/Ficoll gradient and subsequent gating of neutrophils occurred at the 

FSC/SCC density plot upon size and complexity (left). Histopaque/Ficoll gradient isolations showed 

a neutrophil purity of more than 80%. Using the CFSE-fluorescence channel, the gated population 

was subdivided into fluorescence-positive and -negative cells (right). Successful phagocytosis was 

indicated by uptake of CFSE-labelled bacteria. The phagocytic efficiency was expressed as product 
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of the mean fluorescence of the fluorescence-positive population and their relative abundance (mean 

fluorescence intensity, MFI). 
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Extended Data Table 1 | tarP presence and podophage susceptibility of CC5 strains, comprising 

sequence type (ST) 5 and 225, and CC398 isolates 

 

tarP presence in three different S. aureus collections was determined by PCR using primer pair 

TarP_Ty_Fw/Rv. Phage susceptibility to podophages Φ44, Φ66, and ΦP68 was determined by soft -

agar overlay. Plaque formation indicated susceptibility, absence of visible plaque formation indicated 

resistance. ND, not determined.  
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Extended Data Table 2 | Enzymatic activities of mutated TarP proteins 

 

 

 

Extended Data Table 3 | Donor substrate specificity of TarP 
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Extended Data Table 4 | Crystallographic data statistics for TarP and TarP–UDP-GlcNAc–Mg2+ 

 

Values in parentheses are for highest-resolution shell. Two data sets for TarP-SeMet were collected 
from the same single crystal. 
*I is the mean intensity, σ(I) is the standard deviation of reflection intensity I. 
**r.m.s.d., root-mean-square deviation of bond length or bond angle.  
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Extended Data Table 5 | Crystallographic data statistics for TarP–UDP-GlcNAc–Mn2+, TarP–

3RboP, TarP–6RboP-(CH2)6NH2 and TarP–UDP-GlcNAc–3RboP 

 

Values in parentheses are for highest-resolution shell. 
*I is the mean intensity, σ(I) is the standard deviation of reflection intensity I. 
**r.m.s.d., root-mean-square deviation of bond length or bond angle.   
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Supplementary information 

1) Information on the TarP-structure 

Overall structure of TarP homotrimer. To elucidate how TarP generates a different 

product compared to TarS, we solved the structures of unliganded TarP, binary 

complexes with (i) UDP-GlcNAc in the presence of Mn2+, (ii) UDP-GlcNAc in the 

presence of Mg2+, (iii) the acceptor substrate 3RboP,and (iv) a derivative of the 6RboP 

(6RboP-(CH2)6NH2), as well as a ternary complex containing both UDP-GlcNAc and 

3RboP. TarP forms a symmetric, propeller-like homotrimer that is held together by the 

C-terminal trimerization domain (CTD, residues 267 – 327). The remaining residues of 

the TarP monomers form three curved propeller blades, one for each monomer, that 

radially extend from the CTD. Each blade contains a catalytic domain with canonical 

GT-A fold, consisting of an N-terminal nucleotide-binding domain (NBD, residues 1 - 

95) and an acceptor substrate WTA binding domain (ABD, residues 96 – 266, Fig. 2c). 

The NBD folds into four parallel β-strands (β1-β4) flanked with helices α1, α2, and α3 

and possesses the signature DXD motif (Asp92 and Asp94) that immediately follows 

strand β4 and faces into the active site at the concave surface of each propeller blade. 

Residues 96 – 210 of the ABD assemble into a mixed β-sheet (β5a, β5b, β6, β7a, and 

β7b) that is flanked by helix α4, α5, and α6. Notably, a long flexible region containing 

32 amino acids and lacking any secondary structural elements connects β-strands β5b 

and β6 (L10, Extended Data Fig. 3a). Residues 221 - 327 form six α-helices that are 

organized in two bundles crossing each other with an angle of almost 90 degree. A 

flexible loop between Phe211 and Gly218 is not visible in the electron density map and 

has therefore not been included in the model (Fig. 2c and Extended Data Fig. 3a).  

 

The UDP-GlcNAc binding site. The two complex structures of TarP bound to UDP-

GlcNAc containing either two Mn2+ or one Mg2+ ions have resolutions of 1.80 Å or 1.95 

Å, respectively. The identity of the two Mn2+ ions was verified with the anomalous 

difference map of Mn2+ at 1.89259 (data not shown). These two structures are highly 

similar to each other and to unliganded TarP, suggesting that the binding of UDP-

GlcNAc does not induce structural rearrangements. The slightly better resolution of the 
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TarP structure bound to UDP-GlcNAc/Mn2+ is used for the description of the active site 

below. 

UDP-GlcNAc is firmly embedded in a large, extended groove through contacts with 

several loops (L1, L3, L5 and L7) and helix α3. The uracil ring is held in position by 

interactions that are largely conserved in GT-A enzymes (Charnock and Davies, 1999; 

Morgan et al., 2013)..The O2 and N3 atoms of the base form hydrogen bonds with the 

side chains of Asn68 and Asp41, and the base is further stabilized by stacking against 

the aromatic ring of the conserved Phe11. The ribose moiety makes three interactions 

with the protein. The C2 hydroxyl interacts with the Ser93 side chain, and the C3 

hydroxyl forms hydrogen bonds with the backbone carbonyl of Phe11 and the 

backbone amide of Ser93, respectively (Extended Data Fig. 3b).  

The two Mn2+ ions lie above the diphosphate moiety of UDP-GlcNAc. The first ion is 

coordinated by two oxygen atoms from the α- and β-phosphates, two water molecules, 

and the side chain of Asp94, resulting in octahedral coordination. Asp92 and Asp94 

are both strictly conserved in TarP and form the signature DXD motif. The second ion 

is coordinated by the side chains of Asp94 and Asp209, and four waters, completing 

the octahedral coordination (Extended Data Fig. 3b).  

The GlcNAc moiety adopts a conformation in which its β face is mostly exposed to 

solvent, whereas the C4 and C6 hydroxyl groups form contacts with the protein 

(Extended Data Fig. 3b). The equatorial C4 hydroxyl group is hydrogen-bonded to the 

side chains of Arg76 and Asp92. As an axial C4 hydroxyl as present in GalNAc would 

not be able to interact in the same manner, the observed interactions explain the 

enzyme’s narrow donor substrate specificity for UDP-GlcNAc (Extended Data Table 

3). The C6 hydroxyl of GlcNAc is hydrogen-bonded to Asp181 that is located in the 

vicinity of the C1 atom of GlcNAc; we therefore propose that the strictly conserved 

Asp181 acts as a catalytic base. The C3 hydroxyl and N-acetyl groups do not exhibit 

any interactions with the protein and are fully exposed to solvent.  

The polyRboP binding site. The overall structures of unliganded and 3RboP-bound 

TarP are highly similar, suggesting that 3RboP docks into a pre-formed binding site. 

The electron density for 3RboP is well defined and allows for unambiguous placement 

of the ligand, including its orientation (Extended Data Fig. 4b). 3RboP occupies a large 

portion of the extended groove that runs along the surface of TarP and engages UDP-
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GlcNAc at its other end (Fig. 3b). The third unit of 3RboP, RboP3, faces towards 

GlcNAc, and its C3 and C4 hydroxyls are hydrogen-bonded with Asp181, the putative 

catalytic base (Fig. 3a). The side chain of Arg259 extends towards RboP3, forming salt 

bridges with its phosphate. This residue may therefore be crucial for TarP function by 

helping to position RboP3. The backbone amides of Leu154 and Ser155 as well as 

Ser155 side chain form direct or water-mediated hydrogen bonds, respectively, with 

the same phosphate. Ser129 is hydrogen bonded to the C3 hydroxyl of RboP2, and 

the backbone amide groups of Lys132 and Ala133 form hydrogen bonds with its 

phosphate. Tyr152 located at the large flexible loop mediates three interactions. The 

hydroxyl group forms a hydrogen bond with the phosphate of RboP1, while its aromatic 

π-system interacts with a C-H bond of the same RboP and its backbone carbonyl is 

hydrogen-bonded to the C4 hydroxyl of RboP2. The His263 side chain is hydrogen-

bonded to the C2 hydroxyl of RboP1, and its aromatic π-system interacts with a C-H 

bond of RboP2. The charge of the RboP1 phosphate is neutralized by salt bridges with 

Lys255 and Arg262, and also stabilized by Thr302 (Fig. 3a). The structure of 6RboP-

(CH2)6NH2-bound TarP is similar to that of 3RboP. Little additional electron density was 

observed, suggesting that the TarP binding site accommodates three consecutive 

RboP units. 

 

Mutagenesis. To validate the observed interactions with substrates, and to probe the 

relevance of key residues for substrate binding and catalysis, we overexpressed and 

purified eleven TarP mutants (Extended Data Table 2). All mutant proteins are well-

folded and homotrimeric (Extended Data Fig. 4d, e). As expected, substitution of either 

Asp181 or Arg76 to alanine completely abolished enzyme activity, confirming that 

Asp181 is the likely catalytic base and Arg76 is crucial for donor substrate specificity. 

While mutation of the first aspartic acid of the DXD motif (D92A) renders the enzyme 

completely inactive, a D94A mutation showed 14% remaining activity, indicating a 

higher contribution of the first aspartic acid of the DXD motif to enzymatic activity. This 

is also in line with the structural data, as Asp92 mediates direct contacts to the C4 

hydroxyl of UDP-GlcNAc as well as to Arg76, while Asp94 indirectly coordinates the 

diphosphate group of UDP-GlcNAc. The E180A mutant protein displays 15% activity 

compared to the wild type, suggesting that Glu180 is important for helping to properly 

orient the neighboring Asp181 side chain for catalysis. Among residues that line the 
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3RboP-binding groove, Arg259 appears to be critical for catalysis as the R259A 

mutation results in only 3% activity. In line with this, the Arg259 side chain forms two 

contacts with RboP3 and thus helps to position RboP3 properly for catalysis. The side 

chain of Tyr152 lies underneath 3RboP and appears to provide a platform for orienting 

RboP1. Removing this platform Tyr152 probably reduces stereochemical constraints 

on the ligand, explaining the significantly reduced activity. Mutations R262A, H263A, 

and K255A result in only minor reductions of activity (Extended Data Table 2), 

indicating that a single mutation in this region is not sufficient to affect 3RboP binding 

due to the multiple interactions. 

 

Supplementary Discussion 

The comparison of TarP and TarS also shows that a copy of the CTD is present in both 

enzymes, but it does not function as trimerization domain in TarS. This suggests that 

the CTD domain of TarP may possess another function in addition to mediating 

trimerization. Mutation of Ile322, a residue mediating hydrophobic contacts at the 

trimer interface, to glutamate, leads to monomeric TarP and increased activity 

(Extended Data Table 2), indicating that trimerization is not essential for TarP function. 

Of note, the native TarP, TarS and TarM are all trimeric, and the trimer as well as 

monomer that was produced by mutagenesis (for TarP and TarM) or C-terminal 

truncation (for TarS) are both active in vitro (Sobhanifar et al., 2015; Sobhanifar et al., 

2016). Analysis of the enzymatic activities of monomer and trimer in vivo will be 

important for elucidating the physiological function of the homotrimer. 

2) Experimental Section 

Supplementary Table 1 | Primers used in this study 

Primer Primer sequence 5’-3’ Application   

SL-f (BamHI) ATCGGATCCAAAGGAGGTTATATAATGAAAAAAGTAAGT Construction of pRB474_tarP 

SL-rc (SacI) GTCGAGCTCCTATAATAGCTTATCTGCAATCATC Construction of pRB474_tarP 

TarP_R262A_FW_2 CAACTAGACTTTTAgcaCACGGTCAGAAAAAGAATTTTGC Mutagenesis TarP R262A  
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TarP_R262A_RV_2 CTGACCGTGtgcTAAAAGTCTAGTTGTATACTTCCCGGC Mutagenesis TarP R262A  

TarP_H263A_FW GGGAAGTATACAACTAGACTTTTAAGAgcaGGTCAGAAAAAG Mutagenesis TarP H263A  

TarP_H263A_RV CTAGTTGTATACTTCCCGGCAAGTTGGTGTCTTTTTTCTTG Mutagenesis TarP H263A 

TarP_D92A_FW GTATTCTTTTTAgcaTCTGATGATTTACTTCACG Mutagenesis TarP D92A 

TarP_D92A_RV TATATAAATCTTCTAGTGCTCTTTCGTGAAGTAA Mutagenesis TarP D92A  

TarP_D94A_FW GAGCAAAGCTGAATATGTATTCTTTTTAG Mutagenesis TarP D94A  

TarP_D94A_RV CTTTCGTGAAGTAAATCtgcAGAATCTAAAAAGAA Mutagenesis TarP D94A  

TarP_D181A_fw CAAAACATTCTCTAAAACTGCTGAAgcaCAATTATTT Mutagenesis TarP D181A  

TarP_D181A_rc CGAATTCATCAAAAATTCTATAGTAAATAATTGtgcTTC Mutagenesis TarP D181A  

TarP_D209A_Fw CTATATTGTAGTCAACgcaTTCGAGTCTAGC Mutagenesis TarP D209A 

TarP_D209A_Rv CTTTTATTTACTGACAAATGATTGCTAGACTCG Mutagenesis TarP D209A 

TarP_E180A_fw CATTCTCTAAAACTGCTGCAGACCAATTATTTAC Mutagenesis TarP E180A 

TarP_E180A_rv 

CGAGTAATTTTTCGAATTCATCAAAAATTCTATAGTAAATAATT

GG Mutagenesis TarP E180A 

TarP_R76A_fw CTAGCGTACCTgcaAATACAGGCTTAAAAATG Mutagenesis TarP R76A 

TarP_R76A_rv CTAAAAAGAATACATATTCAGCTTTGCTCATTTTTAAGC Mutagenesis TarP R76A 

TarP_R259A_Fw CCAACTTGCCGGGAAGTATACAACTgcaCTTTTAAG Mutagenesis TarP R259A 

TarP_R259A_RV GCAAAATTCTTTTTCTGACCGTGTCTTAAAAGtgcAGTTGTATAC Mutagenesis TarP R259A 

TarP_I322E_fw CTTAAAATTAGAAGCAATAAGACAAAACGATTTATTAGC Mutagenesis TarP I322E 

TarP_I322E_rc TAATAGCTTATCTGCttcCATCACAGCTAATAAATC Mutagenesis TarP I322E 

TarP_Y152A_FW GATATTATTGATAATAGTATTTTTgcaGCTTTATCAG Mutagenesis TarP Y152A 

TarP_Y152A_RV TACTATTATCAATAATATCAGCTTTCGCTACATTTC Mutagenesis TarP Y152A 

TarP_K255A_FW GCCGGGgcaTATACAACTAGACTTTTAAG Mutagenesis TarP K255A 

TarP_K255A_RV AGTTGTATAtgcCCCGGCAAGTTGGTG Mutagenesis TarP K255A 

A_fw_ERI_phiS GAGAGAATTCAGTACTAAAGAATAAACCAATCCATTATT Construction of pIMAY_ΔtarP 

A_rv_phiS CATTTTCATTTCTCCTTTGCTTACTT Construction of pIMAY_ΔtarP 

B_fw_phiS 

GTAAGCAAAGGAGAAATGAAAATGTAGGAGGAAAACAATGGA

AAA CTTTA Construction of pIMAY_ΔtarP 
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B_rv_ScI_phiS CAGgagctcTTTTCGAAGTATTCTTCAAGAGTTATATA Construction of pIMAY_ΔtarP 

Im_EcRI_Y_A_fw GAATTCCCATTTTTCAAAATTGATTTCGAACG Construction of pIMAY_ΔtarS 

Im_ScI_Y_B_rv GAGCTCTTTTAACTCGACTAAATATGGATGG Construction of pIMAY_ΔtarS 

Im_Y_A_rv CATTATACCTCTCCCACTTTGA Construction of pIMAY_ΔtarS 

Im_Y_B_fw 

CAAAGTGGGAGAGGTATAATGTAAATAATAAATGCCCTCAAAT

CT ATG Construction of pIMAY_ΔtarS 

TarS_up ATGATGAAATTTTCAGTAATAGTTCCAACATACAA Detection of tarS 

TarS_dn TTATTTTAGCGAGTAAGTCATATGTGCAGT Detection of tarS 

TarP_Ty_Fw ATGAAAAAAGTAAGTGTTATAATGCCAACATTC Detection of tarP 

TarP_Ty_Rv CTATAATAGCTTATCTGCAATCATCACAGC Detection of tarP 
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NMR analysis of WTA 

Supplementary Table 2| 1H (600 MHz, plain text) and 13C (150 MHz, numbers in 

italics) chemical shifts of WTA structural motifs found in S. aureus N315 wild 

type and mutants. By convention, C-1 of the ribitol or of glycerol unit is placed at the 

left of the structural formula; “P” stands for phosphate; a dotted linkage attached to 

phosphate indicates a phosphodiester linkage, otherwise phosphate is linked as 

monoester and the chain is truncated; when phosphate is absent, the chain terminates 

with an alcoholic function. Additional description can be found in the Supplementary 

Discussion. N315 ΔtarSΔtarP is composed of A-J motifs; N315 ΔtarP WTA is 

composed of B-F, I, and K-M motifs; N315 ΔtarS and wildtype WTA are identical and 

contain B-F, I, and N-R motifs.  

 

 

Residue 

label 

Structural motif 1 2 3 4 5 

A 

P P

O

O

OH

Ala

Ala  

4.26;4.16 5.60 5.45 3.93 ND 

 64.2 75.0 73.6 67.8 ND 

A’ 

P P

O

OH

O

Ala Ala

 

4.12 (2X) 5.28 4.32 5.28 4.12 (2X) 

 64.3 75.9 68.8 75.9 64.3 

B 

P P

O

OH

OH

Ala

 

4.20 (2X) 5.44 4.01 3.89 4.052;3.97 

 64.8 77.1 70.4 71.4 67.6 

C 

P P

O

Ala

 

4.11 (2X) 5.39 4.11 (2X)   

 64.9 75.3 64.9   

D 
P P

OH

O

OH

Ala  

4.05;3.95 4.23 5.26 4.23 4.05;3.95 

 67.3 69.9 76.3 69.9 67.3 
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E 

P P

OH

OH

OH

 

4.07;3.96 3.98 3.81 3.98 4.07;3.96 

 67.8 72.1 72.5 72.1 67.8 

F 

P OH

OH

OH

OH

 

3.81;3.66 3.86 3.75 3.94 3.95;3.98 

 63.5 73.1 73.0 72.2 67.8 

G 

P P

OH

OH

OH

 

4.49;4.39 4.12 3.81 3.96 4.07;3.96a 

 68.4 70.8 72.4 72.2 67.8a 

H 

HO P

O

OH

OH

Ala

 

3.88;3.82 4.35 3.97 3.95 4.07;3.96a 

 62.3 77.9 72.4 72.4 67.8a 

I 

P P

OH

 

3.89;3.96 4.05 3.89;3.96   

 67.3 70.8 67.3   

J 

P OH

OH

 

3.86 4.19 3.89;3.96   

 61.8 69.4 67.3   

K 

P P

OH

O

O

Ala

GlcNAc

 

3.92 (2X) 4.21 5.33 4.38 3.96 (2X) 

 67.2 69.4 75.4 77.7 65.7 

L 

P P

O

OH

O

Ala GlcNAc

 

4.17; 4.24 5.43 4.10 4.06 3.93; 4.11 

 64.6 76.1 70.0 79.0 65.6 

M 

P P

OH

OH

O

GlcNAc

 

3.91 (2X) 3.91 3.93 4.16 4.12; 3.96 

 67.3 71.3 72.1 80.8 66.0 

N 

P P

O

O

OH

Ala

GlcNAc  

4.22 (2X) 5.63 4.10 3.99 3.95;4.09 

 65.4 77.0 78.4 70.4 67.2 
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O  

P P

O

O

OH

Ala

GlcNAc  

4.17;4.09 5.48 4.17 4.01 ca 4.02b 

 65.0 76.3 78.6 70.8 67.6 

P 

P P

OH

O

OH

GlcNAc  

4.02;3.92 4.17c 3.89 3.98c 4.02;3.92 

 67.8 72.2 81.8 70.6 67.8 

Q 

P P

OH

O

OH

GlcNAc  

4.46;4.40 4.20 3.89 as P4 as P5 

 68.4 69.2 82.8 70.6  

R 

HO P

OH

O

OH

GlcNAc  

3.52;3.72 3.90 3.81 as P4 as P5 

 63.5 72.0 83.0   

 1 2 3 4 5 6 

Ala -- 4.30 1.63    

 ND 50.3 16.4    

a 4.73 3.76 3.56 3.50 3.47 3.94; 3.78 

ß-GlcNAc 102.5 56.8 75.1 71.0 77.0 61.8 

b 4.65 3.75 3.54 3.48 3.48 3.94;3.77 

ß-GlcNAc 103.0 56.8 75.0 70.9 77.0 61.6 

c 4.68 3.71 3.58 3.48 3.43 3.94;3.77 

ß-GlcNAc 102.1 56.8 74.9 70.9 76.9 61.6 

a Proton and carbon chemical shift similar to E5, correlations not easy to determine 

due to crowding in the spectrum 

b Proton chemical shifts difficult to assign due to crowding of signals 

c Attribution can be exchanged 
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Supplementary Table 3 | Proportions found for the structural units constituting 

each WTA samples. Each motif is indicated with the letter used during NMR attribution 

and structures can be found as insert in Supplementary Table 2. Values are calculated 

by integration of the opportune densities of the ribitol units in the HSQC spectra. 

Motif WT-WTA Not glycosylated WTA TarS-WTA TarP-WTA 

(NMR code) % % % % 

A ND 0.6 ND ND 

A’ ND 0.8 ND ND 

B 3.9 33.8 10.9 3.8 

C 6.9 5.3 4.3 6.7 

D 0.8 13.1 2.7 0.9 

E 5.7 27.6 16.0 6.3 

F 3.5 4.7 2.6 3.4 

G ND 2.7 ND ND 

H ND 3.3 ND ND 

I 5.6 6.0 3.1 3.7 

J ND 2.0 ND ND 

K ND ND 14.3 ND 

L ND ND 20.5 ND 

M ND* ND 25.5 ND* 

N 19.2 ND ND 20.4 

O 19.7 ND ND 20.8 
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P 29.8 ND ND 27.9 

Q 1.9 ND ND 2.8 

R 3.1 ND ND 3.3 

GlcNAc/ribitol** 84 0 65 84 

ND, not detected 

* Structural motif not attributed with confidence in WT- and TarP-WTA samples, 

therefore not included in the calculation of the relative amounts. However, its amount 

in both samples is about 3%. 

** Calculated without considering the glycerol motifs C and I 

 

Analysis of the non-glycosylated WTA sample from double 

mutant ΔtarPΔtarS by NMR. 

NMR analysis (in Supplementary Table 2) started on WTA sample of the double mutant 

(ΔtarPΔtarS), to identify the substitution pattern of the ribitol or glycerol units of the 

sample. The HSQC spectrum (not shown) displayed only two weak signals (1H/13C 

5.19/91.8 and 4.93/100.7 ppm) related to carbohydrate residues, in agreement with 

the mutations introduced in the bacterium. The region at high field (1H at 5.6-5.2 ppm, 

Fig. 2b and Extended Data Fig. 2a) displayed several protons shifted by acylation with 

Ala residue; analysis of the HSQC-TOCSY spectra recorded with different mixing time 

afforded the identification of the substitution pattern of both ribitol and glycerol units. 

HSQC-TOCSY spectrum recorded with 20 ms mixing time (HSQC-TOCSY-20, 

Extended Data Fig. 2b) connected the proton to the carbon directly attached and to 

those immediately adjacent, while the one with 80 ms mixing time (HSQC-TOCSY-80, 

Extended Data Fig. 2c) identified almost all the carbon nuclei of the polyalcohol spin 

system. Protons in the high field region were labeled with a capital letter in order of 

decreasing chemical shift; taking the most intense as example, B (5.45 ppm), it 
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correlated with a carbon at 77.2 ppm in the HSQC spectrum (Extended Data Fig. 2a) 

and with other two carbon signals at 70.5 and 64.9 ppm in the HSQC-TOCSY-20 

(Extended Data Fig. 2b). Therefore, B was identified as H-2 of a ribitol unit because it 

correlated to a methylene carbon (C-1) at 64.9 ppm, and to a carbon at 70.5 ppm, 

which was assigned to C-3. HSQC-TOCSY-80, displayed to additional correlations at 

67.7 and 71.4 ppm, assigned to C5 and C-4 of the ribitol unit based on their 

multiplicities. Thus, B was identified as a ribitol residue acylated at O-2, with the 

hydroxyl functions at both C-1 and C-5 involved in a phosphodiester linkage in 

agreement with published data(Potekhina et al., 2013). By the same approach, D (H-

3/C-3 at 4.23/76.3 ppm) was identified as a ribitol acylated at O-3, with its C-2 (70.0) 

and C-1 (67.2 ppm) coincident with C-4 and C-5, respectively, because of the 

symmetry of the residue. 

Residue C (H-2/C-2 at 5.39/75.2 ppm) was an acylated glycerol in agreement with 

published data(Vinogradov et al., 2006).  

As for unit A, the intensity of the proton signal at 5.60 ppm was too low to give the full 

set of correlations in the two HSQC-TOCSY spectra, however identification of this 

proton as H-2 was suggested by the correlation with a hydroxymethyl group at 64.1 

ppm in the HSQC-TOCSY-80 spectrum while TOCSY spectrum performed with 20 ms 

mixing time (TOCSY-20) identified H-3 at 5.44 ppm while TOCSY-80 gave an 

additional correlation with a proton at 3.93, attributed to H-4.  

Correlations with H-5 were not detected in the TOCSY-80 spectrum, therefore this unit 

is tentatively assigned to a ribitol acylated at both O-2 and O-3 with a phosphodiester 

linkage at both O-1 and O-5. Similarly, proton at 5.28 ppm was attributed to H-2 (or H-

4) of a ribitol acylated at both O-2 and O-4, labeled as unit A’.  

Identification of non acylated ribitol and glycerol moieties (E and I, respectively) was 

based on their characteristic chemical shifts (Tomita et al., 2013; Vinogradov et al., 

2006). The other polyols, namely F-H and L, were artifacts created from the TCA 

treatment used to isolate the WTA polymer, which cleaved some of the phosphodiester 

linkages. Indeed, ribitols F, H, and glycerol L lacked one of the phosphate residues 

while G was a ribitol unit with a phosphomonoester linkage at one extremity.  
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HSQC spectrum contained other signals in the high-field region of the spectrum (1H/13C 

3.3-1.0/50.0-20.0 ppm, not shown) with some correlated to carbon nuclei in the range 

of 58.0-48.0 ppm, typical of Cα of aminoacids. These signals along with those reporting 

two different monosaccharides (anomeric signals at 1H/13C 5.19/91.8 and 4.93/100.7 

ppm) were not investigated further due to their poor intensity. 

Evaluation of TarS glycosylation specificity by NMR analysis 

of the WTA of S. aureus mutant ΔtarP. 

NMR spectra of S. aureus mutant defective in the tarP gene (hereafter named TarS-

WTA) were recorded at 288 K to minimize the overlap of the residual water signal with 

the anomeric protons of the β-GlcNAc residues, centered at 1H/13C 4.73/102.5 ppm 

(Supplementary Table 2). Attribution started from the protons acylated with Ala (1H/13C 

5.50-5.20/78.0-74.0 ppm) and combined analysis of the HSQC-TOCSY-20 and -80 

identified some of the structural motifs already characterized in the double mutant 

(residues B-F and I) along with new ones. The signal at 1H/13C 5.43/76.1 ppm (residue 

L, Extended Data Fig. 2e) correlated in the HSQC-TOCSY-20 spectrum (Extended 

Data Fig. 2f) with a hydroxymethyl group at 13C 64.6 and a carbinolic carbon at 70.7 

ppm, indeed it was assigned to H-2 of L and analysis of HSQC-TOCSY-80 spectrum 

(Extended Data Fig. 2g) identified C-4 at 79.0 and C-5 at 65.6 ppm. Unit L is a ribitol 

acylated at O-2 with Ala and glycosylated at O-4 with β-GlcNAc, and the 13C value of 

C-4 is in agreement with the shift at low field induced by glycosylation (Bock, 1983). 

Residue K was acylated at O-3 and had a β-GlcNAc at O-4. 

Finally, HSQC spectrum (Extended Data Fig. 2h) contained the density of a carbon 

shifted by glycosylation at 1H/13C 4.16/80.8 ppm, which was attributed to C-4 of unit M, 

a ribitol glycosylated at O-4 with no additional substituents other than the two 

phosphodiester groups at O-1 and O-5, in agreement with the chemical shift reported 

in literature (Vinogradov et al., 2006). The β-GlcNAc unit was labeled with a lowercase 

letter, a, and its chemical shifts were similar to those reported elsewhere(Vinogradov 

et al., 2006). 
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Evaluation of TarP glycosylation specificity by NMR analysis 

of the WTA of S.  aureus ΔtarS. 

TarP glycosylation specificity was inferred by analyzing the WTA from the ΔtarS mutant 

(named TarP-WTA) and applying the same spectroscopical approach discussed for 

the other two samples. Comparison with TarP-WTA spectra with those acquired for the 

other samples, identified some of the motifs already characterized (residues B-F and 

I) along with new ones. For units N and O (1H/13C 5.63/77.0 and 5.48/76.3 ppm, 

respectively, Extended Data Fig. 2i and Supplementary Table 2), analysis of the 

HSQC-TOCSY-20 disclosed that each proton correlated with a hydroxymethyl group 

(C-1) and with a carbon at low field (C-3) because glycosylated, while C-4 and C-5 

chemical shifts were inferred from HSQC-TOCSY-80 analysis. Indeed, N and O were 

two ribitol units with an alanyl moiety at O-2 and glycosylated at O-3, equivalent in 

terms of substitution pattern and the different NMR pattern suggested that they were 

in a different structural environment, although no further information could be obtained 

on this issue. 

The HSQC spectrum contained signals of other carbons shifted because of 

glycosylation. They are labeled as P, Q and R (at 1H/13C 3.89/81.8, 3.89/82.8 and 

3.81/83.0 ppm, respectively, Extended Data Fig. 2). HSQC-TOCSY-20 analysis started 

from the most intense density at 1H/13C 3.89/81.8, and focused on the F1 dimension 

of the spectrum (Extended Data Fig. 2m) which reported no correlation with carbon 

signals at less than 66 ppm, the value diagnostic of C-5 in a ribitol glycosylated at C-

4. Accordingly, the density at 1H/13C 3.89/81.8 could not be assigned to H-4/C-4, but 

only to H-3/C-3. The other signals related to P were found by analyzing the F2 

dimension of the HSQCTOCSY-20 spectrum (Extended Data Fig. 2m), which had two 

correlations, one intense with a proton at 3.98 ppm and one weak with a proton at 4.17 

ppm, which crossed with a carbon at 70.6 and 72.2 ppm, respectively. The density at 

1H/13C 3.98/70.6 ppm was attributed to H-4/C-4 of the unit by analogy with the values 

found for N residue, accordingly, the density at 1H/13C 4.17/72.2 was attributed to H-

2/C-2 of the unit, however these two attributions maybe reversed. The HSQC-TOCSY-

80 spectrum from H-3/C-3 of P had some additional correlations (Extended Data Fig. 

2n) at 4.02 and 3.92 ppm, assigned to the hydrogens of the hydroxymethyl groups C-

1 and C-5. 
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As for the densities at 1H/13C 3.89/82.8 and 3.81/83.0 ppm, they were assigned to H-

3/C-3 of Q and R residues, respectively and combined analysis of all the 2D NMR 

spectra disclosed that these units were glycosylated at O-3 and that they were two 

artifacts generated from the TFA treatment of the polymer, with Q substituted at C-1 

with a phosphate monoester, and R not phosphorylated at all.  

Among the densities with low intensity and not assigned with confidence to any 

structural motif, the one at 1H/13C 4.13/81.1 ppm (starred in Extended Data Fig. 2m) 

was of interest because its chemical shifts were similar to H-4/C-4 of motif M, a ribitol 

with a GlcNAc at O-4 characteristic of TarS-WTA sample. However, due to the 

uncertainty in the attribution, this structural unit was not considered when calculating 

the proportions of the different motifs, although its amount was comparable to that of 

Q, indeed less than 3%. 

Last, analysis of the GlcNAc moieties, detected at least two classes of residues, b and 

c, differing for the proton and carbon chemical shifts of the anomeric center (Extended 

Data Fig. 2o,p and Supplementary Table 2). Analysis of the HMBC spectrum disclosed 

that c was linked at O-3 of ribitol O, while b included a group of GlcNAc residues, with 

b linked at O-3 of P and the other, indicated as b*, linked at O-3 of N. 

WTA structure from the wild-type strain S. aureus N315 and 

general considerations. 

Proton spectra measured for different preparations of WTA from the wild-type strain 

(WT-WTA, Fig 2b, Supplementary Table 2) were always nearly identical to that of TarP-

WTA, as confirmed by analysis of the HSQC spectra. Accordingly, the WT-WTA was 

composed of the same motifs described for TarP-WTA from N315 ΔtarS and in order 

to evidence any difference in their relative composition, integration of the appropriate 

densities in the HSQC spectra of the two samples was performed. This analysis was 

extended to the other samples and results are reported in Supplementary Table 3. 

As for WT-WTA and TarP-WTA, analysis of the integration data evidenced that the 

proportion between the different motifs had no significant differences, with the amount 

of β-GlcNAc-(1→4)-ribitol-phosphate barely detectable (about 3%) and not attributed 

with confidence due to the overlap of the ribitol protons of the unit with those, more 
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intense, of other structural motifs. The finding of poor, if any, glycosylation at O-4 of 

WT-WTA sample is interesting: the WT strain has a functional tarS gene, however its 

activity appears as secondary compared to that of tarP. 

Comparison of TarS- and TarP-WTA samples, disclosed a different degree of 

glycosylation. Indeed, the ratio GlcNAc/ribitol (independently from the presence of Ala 

residues) was 84 and 65% for TarP-WTA and TarS-WTA, respectively, indicating that 

TarP was more effective than TarS in transforming the polyribitol-phosphate substrate. 
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3) Synthesis of 3RboP and 6RboP-(CH2)6NH2 

Synthesis of 3RboP 

 

Supplementary Fig. 2 | Synthesis of target molecule 1. Conditions: a) LevOH, DMAP, DCC, DCM, 

3 h; b) Pd(PPh3)4, 1,3-dimethylbarbituric acid, MeOH, 40 oC, 24 h; c) diisopropylammonium 

tetrazolide, DCM, 2 h; d) 1H-tetrazole, MeCN, 2 h then t-BuOOH, 1 h; e) hydrazine hydrate, pyr, 

AcOH, DCM, 4 h; f) Pd-C, H2, EtOAc/MeOH/H2O, 24 h. (DMAP = 4-dimethylaminopyridine; DCC = 

N,N'-dicyclohexylcarbodiimide) 

 

General information 

Chemicals were purchased as reagent grade and used without further purification 

unless stated otherwise. Anhydrous solvents were obtained from Waters Dry Solvent 

systems. Reactions were carried out under argon atmosphere and monitored by thin-

layer chromatography (TLC) analysis, which was visualized by UV light (254 nm) and 

Hanessian’s stain (25 g ammonium molybdate, 5 g cerium(II) sulfate and 50 ml sulfuric 

acid in 450 ml water). Flash column chromatography was performed on Kieselgel 60 
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with 230-400 mesh (Sigma-Aldrich, St. Louis, USA). 1H-NMR, 13C-NMR and 31P-NMR 

spectra were recorded on a 400 MHz Varian spectrometer at room temperature. 

Chemical shifts (in ppm) were calibrated with the solvent residual peak (CDCl3: δ 7.26 

in 1H-NMR and 77.16 in 13C-NMR; D2O δ 4.79 in 1H-NMR). Coupling constants (J) are 

reported in Hertz (Hz). Optical rotations (OR) were measured with a Schmidt & 

Haensch UniPol L 1000 at 589 nm and concentration (c) expressed in g/100 ml. High 

resolution mass spectrometry (HRMS) was performed in Freie Universität Berlin, Mass 

Spectrometry Core Facility, with an Agilent 6210 ESI-TOF mass spectrometer. 

 

Experimental procedures 

5-O-Allyl-2,3,4-tri-O-benzyl-1-O-levulinoyl-D-ribitol (3) 

 

To a solution of commercially available 5-O-Allyl-2,3,4-tri-O-benzyl-D-ribitol 2 (463 mg, 

1.0 mmol) in DCM (5 ml) was added DMAP (12 mg, 0.1 mmol), levulinic acid (0.2 ml, 

2.0 mmol) and DCC (310 mg, 1.5 mmol). After stirring for 3 h at room temperature, the 

reaction mixture was filtered and concentrated in vacuo. The residue was purified by 

flash column chromatography (15% ethyl acetate in hexanes) to afford compound 3 

(549 mg, 0.98 mmol, 98%) as colorless oil. 

[α]
25
D  = -12.5o (c = 5.44, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.39 – 7.17 (m, 15H), 

5.88 (ddt, J = 17.2, 10.9, 5.5 Hz, 1H), 5.25 (ddd, J = 17.2, 3.3, 1.6 Hz, 1H), 5.15 (ddd, 

J = 10.4, 2.9, 1.3 Hz, 1H), 4.75 – 4.66 (m, 3H), 4.65 – 4.56 (m, 3H), 4.42 (dd, J = 12.0, 

2.7 Hz, 1H), 4.22 (dd, J = 12.0, 5.8 Hz, 1H), 3.95 (dt, J = 5.5, 1.4 Hz, 2H), 3.92 – 3.80 

(m, 3H), 3.71 – 3.65 (m, 1H), 3.61 (dd, J = 10.5, 5.1 Hz, 1H), 2.67 (t, J = 6.7 Hz, 2H), 

2.55 – 2.47 (m, 2H), 2.14 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 206.6, 172.7, 138.6, 

138.4, 138.3, 134.9, 128.4, 128.2, 128.1, 128.0, 127.7 (2C), 127.6, 117.0, 78.3, 78.2, 
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77.3, 73.9, 72.6, 72.4, 72.3, 69.8, 64.1, 38.0, 30.0, 28.1; HRMS (ESI) calcd for 

C34H40O7Na [M+Na]+ 583.2672; found: 583.2621. 

 

2,3,4-Tri-O-benzyl-1-O-levulinoyl-D-ribitol (4) 

 

Tetrakis(triphenylphosphine)palladium (113 mg, 0.098 mmol) and 1,3-

dimethylbarbituric acid (612 mg, 3.92 mmol) were added to a solution of compound 3 

(549 mg, 0.98 mmol) in MeOH (4 ml) at room temperature. The reaction mixture was 

stirred at 40 oC for 24 h. The solvent was removed in vacuo and the residue was 

dissolved with DCM and washed with saturated aqueous NaHCO3 solution. The 

organic layer was then washed with brine, dried over Na2SO4, filtered and 

concentrated. The residue was purified by flash column chromatography (30% ethyl 

acetate in hexanes) to give 4 (392 mg, 0.75 mmol, 77%) as pale yellow oil. 

[α]
25
D  = -4.16o (c = 1.54, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.42 – 7.25 (m, 15H), 

4.72 (s, 2H), 4.69 – 4.59 (m, 4H), 4.46 (dd, J = 11.9, 2.3 Hz, 1H), 4.24 (dd, J = 12.0, 

5.6 Hz, 1H), 3.89 (d, J = 3.9 Hz, 2H), 3.80 – 3.68 (m, 3H), 2.71 (t, J = 6.6 Hz, 2H), 2.55 

(t, J = 6.6 Hz, 2H), 2.17 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 206.6, 172.7, 138.0 

(2C), 137.9, 128.6 (2C), 128.5, 128.3, 128.2, 128.1, 128.0 (2C), 127.9, 78.7, 78.6, 77.2, 

74.1, 72.4, 72.2, 63.9, 61.3, 38.0, 30.0, 28.0; HRMS (ESI) calcd for C31H36O7Na 

[M+Na]+ 543.2359; found: 543.2340. 

 

Benzyl (2,3,4-tri-O-benzyl-1-O-levulinoyl-5-D-ribityl) N,N-

diisopropylphosphoramidite (6) 
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Benzyloxy[bis(diisopropylamino)]phosphine 5 (Dreef et al., 1988) (109 mg, 0.32 mmol) 

and diisopropylammonium tetrazolide(Caruthers et al., 1987) (41 mg, 0.24 mmol) were 

added to a solution of 4 (84 mg, 0.16 mmol) in anhydrous DCM (3 ml) at room 

temperature. After stirring for 2 h, the reaction mixture was poured into saturated 

aqueous NaHCO3 solution. The organic layer was separated, dried over Na2SO4, 

filtered and concentrated. The residue was purified by flash column chromatography 

(1% triethylamine, 20% ethyl acetate in hexanes) to afford compound 6 (121 mg, 0.158 

mmol, 98%) as colorless oil. 

1H NMR (400 MHz, CDCl3) δ 7.61 – 6.93 (m, 20H), 4.83 – 4.49 (m, 8H), 4.40 (d, J = 

11.9 Hz, 1H), 4.28 – 4.15 (m, 1H), 4.06 – 3.74 (m, 5H), 3.66 (m, 2H), 2.71 – 2.60 (m, 

2H), 2.50 (dt, J = 8.4, 4.3 Hz, 2H), 2.13 (s, 3H), 1.20 – 1.15 (m, 12H); 13C NMR (101 

MHz, CDCl3) δ 206.5, 172.6, 138.5 (2C), 138.2, 128.2 (2C), 128.1, 128.0, 127.9, 127.8 

(2C), 127.6, 127.5, 127.4, 127.2, 127.1, 126.9, 126.8, 78.8, 78.7, 78.3, 78.1, 77.3, 73.7, 

72.4, 72.1, 65.3, 65.1, 64.2, 63.0, 62.8, 43.1, 43.0, 37.9, 29.9, 27.9, 24.8, 24.7, 24.6; 

31P NMR (162 MHz, CDCl3) δ 147.51, 147.38. 

 

Dibenzyl (2,3,4-tri-O-benzyl-1-O-levulinoyl-5-D-ribityl) phosphate 

(8) 

 

Dibenzyl N,N-diisopropylphosphoramidite 7 (0.82 ml, 2.44 mmol) was slowly added to 

a solution of compound 4 (980 mg, 1.87 mmol) in anhydrous acetonitrile (10 ml) at 0 

oC followed by the addition of 1H-tetrazole (5.4 ml, 0.45 M in MeCN). The reaction 

mixture was stirred for 2 h and tert-butyl hydroperoxide (0.7 ml, 5.5 M in decane) was 

added. The reaction mixture was stirred for additional 1 h. The solvent was removed 

under vacuum and the residue was dissolved in DCM, washed with saturated aqueous 
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NaHCO3 solution, brine. The organic layer was then dried over Na2SO4, filtered and 

concentrated. The residue was purified by flash column chromatography (30% ethyl 

acetate in hexanes) to give compound 8 (1.25 g, 1.60 mmol, 85%) as colorless oil. 

[α]
25
D  = -4.01o (c = 2.30, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.61 – 6.96 (m, 25H), 

4.99 (t, J = 8.4 Hz, 4H), 4.70 – 4.51 (m, 6H), 4.42 – 4.30 (m, 2H), 4.24 – 4.14 (m, 2H), 

3.89 – 3.82 (m, 2H), 3.82 – 3.74 (m, 1H), 2.67 (t, J = 6.6 Hz, 2H), 2.51 (t, J = 6.6 Hz, 

2H), 2.16 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 206.6, 172.7, 138.1, 137.9, 136.0, 

135.9, 128.7, 128.6 (2C), 128.5 (2C), 128.4, 128.2, 128.1, 128.0 (2C), 127.9 (2C), 

127.8 (2C), 77.7, 77.6, 77.0, 73.8, 72.6, 72.4, 69.3 (d, J = 2.0 Hz), 69.3(d, J = 2.0 Hz), 

66.9 (d, J = 6.0 Hz), 63.8, 38.0, 29.9, 28.0; 31P NMR (162 MHz, CDCl3) δ -0.69; HRMS 

(ESI) calcd for C45H49O10PK [M+K]+ 819.2700; found: 819.2625. 

 

Dibenzyl (2,3,4-tri-O-benzyl-5-D-ribityl) phosphate (9) 

 

To a solution of compound 8 (1.15 g, 1.47 mmol) in DCM (15 ml) was added a mixture 

of pyridine (3.6 ml) and acetic acid (2.4 ml) followed by hydrazine hydrate (140 µl, 2.93 

mmol) at room temperature. After stirring for 4 h, the reaction mixture was quenched 

with acetone and diluted with ethyl acetate. The organic layer was then washed with 

saturated aqueous NaHCO3 solution, washed with brine, dried over Na2SO4, filtered 

and concentrated. The residue was purified by column chromatography (30% ethyl 

acetate in hexanes) to give compound 9 (931 mg, 1.36 mmol, 93%) as colorless oil. 

[α]
25
D  = -5.91o (c = 1.06, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.51 – 7.21 (m, 25H), 

5.00 (t, J = 7.2 Hz, 4H), 4.69 – 4.60 (m, 3H), 4.59 – 4.50 (m, 3H), 4.38 – 4.29 (m, 1H), 

4.25– 4.17 (m, 1H), 3.88 – 3.81 (m, 2H), 3.73 – 3.63 (m, 3H); 13C NMR (101 MHz, 

CDCl3) δ 138.0, 137.9, 137.8, 136.0(d, J = 2.0 Hz, 1C), 135.9 (d, J = 2.0 Hz, 1C), 128.7, 

128.6, 128.5 (3C), 128.4, 128.2, 128.1, 128.0, 127.9 (2C), 127.8, 78.7, 78.3, 77.9 (d, 

J = 8.0 Hz), 74.1, 72.5, 72.1, 69.4 (d, J = 4.0 Hz), 69.3 (d, J = 3.0 Hz), 66.9 (d, J = 5.0 
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Hz), 61.3; 31P NMR (162 MHz, CDCl3) δ -0.68; HRMS (ESI) calcd for C40H43O8PNa 

[M+Na]+ 705.2593; found: 705.2572. 

 

D-Ribitol-5-phosphate dimer (10) 

 

1H-Tetrazole (0.8 ml, 0.45 M in MeCN) was added to a solution of compound 9 (79.1 

mg, 0.116 mmol) and compound 6 (114.0 mg, 0.150 mmol) in anhydrous DCM (5 ml) 

at room temperature. The reaction mixture was stirred for 2 h, after which an excess 

amount of tert-butyl hydroperoxide (42 µl, 5.5 M in decane) was added. The reaction 

mixture was stirred for addtional 1 h. The reaction mixture was then diluted with DCM 

and washed with saturated aqueous NaHCO3 solution twice and brine. The organic 

layer was then dried over Na2SO4, filtered and concentrated. The residue was purified 

by flash column chromatography (25-30% acetone in hexanes) to give compound 10 

(135.1 mg, 99.7 µmol, 86%) as colorless oil. 

[α]
25
D  = -5.55o (c = 1.67, CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.11 – 6.50 (m, 45H), 

5.04 – 4.87 (m, 6H), 4.75 – 4.41 (m, 12H), 4.42 – 4.08 (m, 8H), 3.92 – 3.70 (m, 6H), 

2.66 (t, J = 6.5 Hz, 2H), 2.49 (t, J = 6.5 Hz, 2H), 2.14 (s, 3H); 13C NMR (101 MHz, 

CDCl3) δ 206.4, 172.5, 138.0, 137.8, 135.8 (2C), 135.7 (2C), 128.5 (2C), 128.4 (3C), 

128.3 (2C), 128.1, 128.0 (2C), 127.9 (4C), 127.8 (5C), 127.7 (3C), 127.6 (2C), 77.7, 

77.6, 77.5, 77.0, 76.9, 73.8, 73.7, 72.5 (3C), 72.4 (2C), 72.2 (2C), 69.2 (3C), 69.1, 69.0, 

66.8, 66.7, 66.6, 63.7, 37.8, 29.8, 27.8; 31P NMR (162 MHz, CDCl3) δ -0.33, -0.58, -

0.69; HRMS (ESI) calcd for C78H84O17P2K [M+K]+ 1393.4821; found: 1393.4815. 

 

Delevulinated-D-ribitol-5-phosphate dimer (11) 
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To a solution of compound 10 (302.0 mg, 0.223 mmol) in DCM (4 ml) was added a 

mixture of pyridine (0.54 ml) and acetic acid (0.36 ml) followed by the addition of 

hydrazine hydrate (22 µl, 0.446 mmol) at room temperature. After stirring for 4 h, the 

reaction mixture was quenched with acetone and diluted with ethyl acetate. The 

organic layer was then washed with saturated aqueous NaHCO3 solution, washed with 

brine, dried over Na2SO4, filtered and concentrated. The residue was purified by 

column chromatography (30% acetone in hexanes) to give compound 11 (262.2 mg, 

0.209 mmol, 94%) as colorless oil. 

[α]
25
D  = -8.76o (c = 1.09, CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.03 – 6.68 (m, 45H), 

5.06 – 4.86 (m, 6H), 4.71 – 4.43 (m, 12H), 4.39 – 4.14 (m, 6H), 3.94 – 3.57 (m, 9H); 

13C NMR (101 MHz, CDCl3) δ 138.0, 137.9 (2C), 136.0, 135.9, 128.7, 128.6, 128.4, 

128.2, 128.1, 128.0 (2C), 127.9, 127.8 (2C), 78.9, 78.8, 78.4, 77.8, 77.6, 74.1, 73.9, 

72.6, 72.5, 72.1, 69.3, 67.0, 61.2; 31P NMR (162 MHz, CDCl3) δ -0.39, -0.54, -0.72; 

HRMS (ESI) calcd for C73H78O15P2Na [M+Na]+ 1279.4714; found: 1279.4772. 

 

D-Ribitol-5-phosphate trimer (12) 

 

1H-Tetrazole (0.8 ml, 0.45 M in MeCN) was added to a solution of compound 11 (147.0 

mg, 0.117 mmol) and compound 6 (115.0 mg, 0.152 mmol) in anhydrous DCM (5 ml) 

at room temperature. The reaction mixture was stirred for 2 h, after which an excess 

amount of tert-butyl hydroperoxide (42 µl, 5.5 M in decane) was added. The reaction 

mixture was stirred for additional 1 h. The reaction mixture was then diluted with DCM 

and washed with saturated aqueous NaHCO3 solution twice and brine. The organic 

layer was dried over Na2SO4, filtered and concentrated. The residue was purified by 
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flash column chromatography (25-30% acetone in hexanes) to give compound 12 

(212.1 mg, 0.110 mmol, 94%) as colorless oil. 

[α] 
25
D  = -4.67o (c = 1.53, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.95 – 6.70 (m, 65H), 

5.01 – 4.82 (m, 8H), 4.66 – 4.36 (m, 18H), 4.36 – 4.09 (m, 12H), 3.83 – 3.71 (m, 9H), 

2.64 (t, J = 6.5 Hz, 2H), 2.47 (t, J = 6.6 Hz, 2H), 2.13 (s, 3H); 13C NMR (101 MHz, 

CDCl3) δ 206.4, 172.5, 137.9, 137.8, 135.8, 135.7, 128.5 (3C), 128.4 (3C), 128.3 (2C), 

128.0 (3C), 127.9 (2C), 127.8 (4C), 127.7 (3C), 127.6, 77.7, 77.6, 77.2, 73.7, 72.4, 

72.3, 72.2, 69.2, 69.1 (2C), 66.8, 63.7, 37.8, 29.8, 27.8; 31P NMR (162 MHz, CDCl3) δ 

-0.33, -0.61, -0.64, -0.72; HRMS (ESI) calcd for C111H119O24P3Na [M+Na]+ 1951.7202; 

found: 1951.7176. 

 

Delevulinated-D-ribitol-phosphate trimer (13) 

 

To a solution of compound 12 (190.2 mg, 98 µmol) in DCM (2 ml) was added a mixture 

of pyridine (0.24 ml) and acetic acid (0.16 ml) followed by the addition of hydrazine 

hydrate (10 µl, 0.197 mmol) at room temperature. After stirring for 2 h, the reaction 

mixture was quenched with acetone and diluted with ethyl acetate. The organic layer 

was then washed with saturated aqueous NaHCO3 solution, washed with brine, dried 

over Na2SO4, filtered and concentrated. The residue was purified by column 

chromatography (30% acetone in hexanes) to give compound 13 (176.3 mg, 96 µmol, 

98%) as colorless oil. 

[α]
25
D  = -2.46o (c = 1.20, CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.02 – 6.49 (m, 65H), 

5.04 – 4.81 (m, 8H), 4.68 – 4.06 (m, 29H), 3.86 – 3.53 (m, 11H); 13C NMR (101 MHz, 

CDCl3) δ 138.0, 137.9, 137.8, 136.0, 135.9, 128.7, 128.6 (3C), 128.5 (3C), 128.4, 128.2 

(2C), 128.1 (2C), 128.0 (3C), 127.9 (2C), 127.8 (4C), 78.9, 78.8, 78.3, 77.4, 74.1, 73.9, 

72.6, 72.5, 72.1, 69.3 (4C), 69.2, 67.0, 61.2; 31P NMR (162 MHz, CDCl3) δ -0.33, -0.38, 
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-0.54, -0.64, -0.72; HRMS (ESI) calcd for C106H114O22P3 [M+H]+ 1831.7015; found: 

1831.6918. 

 

D-Ribitol-5-phosphate trimer (1) 

 

Excess amount of 10% Pd-C (100 mg) was added to a solution of compound 13 

(145 mg, 79 µmol) in a mixture of EtOAc/MeOH/H2O (5/2/1, 5.6 ml), and the reaction 

mixture was stirred under hydrogen atmosphere at room temperature for 36 hours. 

Then the mixture was filtered to give compound 1 (51.9 mg, 79 µmol, quant.) as 

colorless oil. 

[α]
25
D  = 6.27o (c = 3.82, H2O); 1H NMR (400 MHz, D2O) δ 4.27 – 4.11 (m, 1H), 3.96 – 

3.67 (m, 10H), 3.66 – 3.48 (m, 7H), 3.48 – 3.37 (m, 3H) ; 13C NMR (101 MHz, D2O) δ 

77.6, 72.0, 71.9, 71.8, 71.4, 71.3, 70.8, 70.7, 70.6, 70.5, 70.4, 66.7, 62.2, 62.1, 60.4; 

31P NMR (162 MHz, D2O) δ 0.85, 0.23, -0.65; HRMS (ESI) calcd for C15H35O22P3Na 

[M+Na]+ 683.0731; found: 683.0733. 
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NMR Spectra 

1H-NMR, 400 MHz, CDCl3 

 

13C-NMR, 101 MHz, CDCl3 

 

1H-NMR, 400 MHz, CDCl3 
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13C-NMR, 101 MHz, CDCl3 

 

 

HSQC, 400 MHz, CDCl3 
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1H-NMR, 400 MHz, CDCl3 

 

 

13C-NMR, 101 MHz, CDCl3 
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31P-NMR, 162 MHz, CDCl3 

 

 

1H-NMR, 400 MHz, CDCl3 
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13C-NMR, 101 MHz, CDCl3 

 

 

HSQC, 400 MHz, CDCl3 
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31P-NMR, 162 MHz, CDCl3 

 

 

1H-NMR, 400 MHz, CDCl3 
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13C-NMR, 101 MHz, CDCl3 

 

 

HSQC, 400 MHz, CDCl3 
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31P-NMR, 162 MHz, CDCl3 

 

 

1H-NMR, 400 MHz, CDCl3 
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13C-NMR, 101 MHz, CDCl3 

 

 

 

31P-NMR, 162 MHz, CDCl3 
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1H-NMR, 400 MHz, CDCl3 

 

13C-NMR, 101 MHz, CDCl3 



Chapter 4 

149 
 

 

31P-NMR, 162 MHz, CDCl3 

 

 

1H-NMR, 400 MHz, CDCl3 
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13C-NMR, 101 MHz, CDCl3 

 

 

31P-NMR, 162 MHz, CDCl3 
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1H-NMR, 400 MHz, CDCl3 

 

 

13C-NMR, 101 MHz, CDCl3 
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31P-NMR, 162 MHz, CDCl3 

 

 

1H-NMR, 400 MHz, D2O 
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13C-NMR, 101 MHz, D2O 

 

 

31P-NMR, 162 MHz, D2O 
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Synthesis of 6RboP-(CH2)6NH2 

 

 

Supplementary Fig. 3 | Synthesis of 6RboP-(CH2)6NH2. a) DCI, ACN, 8; CSO; 3% 

TCA in DCM; b) DCI, ACN, 9; CSO; 3% TCA in DCM; c) NH3 (30-33% aqueous 

solution); dioxane; d) Pd black, H2, AcOH, H2O/dioxane.  

 

General information 

All chemicals (Acros, Fluka, Merck, Sigma-Aldrich, etc.) were used as received and 

reactions were carried out dry, under an argon atmosphere, at ambient temperature, 

unless stated otherwise. Column chromatography was performed on Screening 

Devices silica gel 60 (0.040-0.063 mm). TLC analysis was conducted on HPTLC 

aluminium sheets (Merck, silica gel 60, F245). Compounds were visualized by UV 

absorption (245 nm), by spraying with 20% H2SO4 in ethanol or with a solution of 

(NH4)6Mo7O24·4H2O 25 g/l and (NH4)4Ce(SO4)4·2H2O 10 g/l, in 10% aqueous H2SO4 

followed by charring at +/- 140 oC. Some unsaturated compounds were visualized by 

spraying with a solution of KMnO4 (2%) and K2CO3 (1%) in water. Optical rotation 

measurements ([α]D20) were performed on a Propol automated polarimeter (Sodium D-

line, λ = 589 nm) with a concentration of 10 mg/ml (c = 1), unless stated otherwise. 

Infrared spectra were recorded on a Shimadzu FT-IR 8300. 1H, 13C and 31P NMR 
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spectra were recorded with a Bruker AV 400 (400, 101 and 162 MHz respectively), a 

Bruker AV 500 (500 and 202 MHz respectively) or a Bruker DMX 600 (600 and 151 

MHz respectively). NMR spectra were recorded in CDCl3 with chemical shift (δ) relative 

to tetramethylsilane, unless stated otherwise. High resolution mass spectra were 

recorded by direct injection (2 µl of a 2 µM solution in water/acetonitrile; 50/50; v/v and 

0.1% formic acid) on a mass spectrometer (Thermo Finnigan LTQ Orbitrap) equipped 

with an electrospray ion source in positive mode (source voltage 3.5 kV, sheath gas 

flow 10, capillary temperature 250 oC) with resolution R = 60000 at m/z 400 (mass 

range m/z = 150-2000) and dioctylphthalate (m/z = 391.28428) as a lock mass. The 

high resolution mass spectrometer was calibrated prior to measurements with a 

calibration mixture (Thermo Finnigan). 

Phosphoramidite coupling, oxidation, and detritylation. The starting alcohol was 

coevaporated 2 times with toluene before being dissolved in acetonitrile (ACN, 0.15 

M). 4,5-dicyanoimidazole (DCI, 1.6-2.4 eq; 0.25 M in ACN) was added and the mixture 

was stirred over freshly activated molecular sieves under an argon atmosphere for 20 

min. Then phosphoramidite (1.3-2.0 eq; 0.20 M) was added and the mixture was stirred 

at RT until total conversion of the starting material (15 - 45 min). Subsequently, (10-

camphorsulfonyl)oxaziridine (CSO, 2.0 eq; 0.5 M in ACN) was added and the stirring 

was continued for 15 min. The mixture was diluted with DCM and washed with a 1:1 

solution of saturated NaCl/NaHCO3. The water layer was extracted 3 times with DCM 

and the combined organic layers were dried over Na2SO4, filtered, and concentrated 

in vacuo. The crude product was dissolved in DCM, TCA was added (5 eq; 0.18 M in 

DCM), and the mixture was stirred at RT. After 40 – 60 min an aqueous solution of 

methanol (1:1) was added, stirred further 30-40 min, and diluted with DCM. The 

organic layer was washed with NaCl/NaHCO3 solution (1:1), the water layer was 

extracted 3 times with DCM, and the combined organic layers were dried over Na2SO4, 

filtered and concentrated in vacuo. The crude product was further purified by either 

flash chromatography (DCM/acetone) or size exclusion chromatography (sephadex 

LH-20, MeOH/DCM, 1:1). 

Deprotection. The oligomer was dissolved in a 1:1 solution of NH3 (30-33% aqueous 

solution) and dioxane (1.2-2.4 mM) and stirred overnight. The mixture was 

concentrated in vacuo and loaded on a Dowex Na+ cation-exchange resin (50WX4-

200, stored on 0.5 M NaOH, flushed with H2O and MeOH before use) column and 
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flushed with water/dioxane (1:1). The fractions were then concentrated in vacuo, 

dissolved in water/dioxane (2 ml per 10 µmol) and 4 drops of glacial AcOH were added. 

After purging the mixture with argon Pd black was added (32-59 mg), and the mixture 

was treated with hydrogen gas for 3 days, filtered over celite, and concentrated in 

vacuo. The crude product was purified by size-exclusion chromatography (Toyopearl 

HW-40) and the fractions were concentrated. The pure compound was dissolved in 

MilliQ H2O, eluted through a Dowex Na+ cation-exchange resin column, and 

lyophilized. 

 

2,3,4-Tri-O-benzyl-1-O-(4,4'-dimethoxytrityl)-D-ribitol (14) 

 

5-O-Allyl-Tri-O-benzyl-1-O-(4,4'-dimetoxytrityl)-D-ribitol  (4.56 g; 5.96 mmol) was 

dissolved in THF (30.0 ml; 0.20 M) and the solution was degassed with argon. 

Ir(COD)(Ph2MeP)2PF6  (50 mg; 1 mol%)  was added and the solution was degassed 

with argon. Then the red solution was purged with H2 until the color became yellow (~7 

seconds) and hereafter the solution was degassed with argon to remove traces of H2 

from the solution and the reaction was stirred under argon atmosphere until the 

isomerization was complete according to TLC analysis. Then the solution was diluted 

with THF (30.0 ml) and aq. sat. NaHCO3 (30.0 ml) followed by the addition of I2 (2.27 

g; 8.94 mmol; 1.5 eq). The mixture was stirred +/- 30 minutes and was then quenched 

by the addition of aq. sat. NaS2O3. The mixture was diluted with EtOAc and washed 

with aq. sat. NaCl / aq. sat. NaHCO3 (1:1) (v/v). Column chromatography (1% TEA in 

pentane 100 to 4:6 EtOAc: pentane) yielded the title compound in 79% yield ( 3.42 g; 

4.72 mmol). 

1H NMR (400 MHz, CD3CN) δ= 2.78 - 2.80 (m, 1H, O-H), 3.27 - 3.34 (m, 2H, CH2-

Rbo), 3.62 - 3.68 (m, 2H, CH-Rbo, CHH-Rbo), 3.72 - 3.79 (m, 7H, CHH-Rbo, 2 x 

OCH3), 3.89 - 3.96 (m, 2H, 2 x CH-Rbo), 4.47 (d, 1H, J= 11.6 Hz, CH2 Bn), 4.54 (d, 

1H, J= 11.2 Hz, CH2 Bn), 4.62 (d, 1H, J=12.0 Hz, CH2 Bn), 4.67 (d, 1H, J= 11.6 Hz, 

CH2 Bn), 4.75 (d, 1H, J= 11.6 Hz, CH2 Bn), 6.77 (dd, 4H, J= 9.2 Hz, 2.8 Hz, H-arom), 

OH

OBnOBn

DMTrO

OBn

14
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7.15 - 7.34 (m, 24H, H-arom); 13C NMR (101 MHz, CD3CN) δ= 55.8 (CH3O), 61.8, 64.7 

(CH2-Rbo), 72.6, 73.3, 74.3 (CH2-Bn), 79.7, 79.8, 80.8 (CH-Rbo), 86.8 (Cq-DMT), 

113.9 (CH-arom), 127.6, 128.3, 128.4, 128.7, 128.8, 129.0, 129.2, 129.2, 129.3, 131.0, 

131.0 (CH-arom), 137.1, 137.1, 139.6, 139.8, 139.9, 146.4, 159.5 (Cq-arom). 

HRMS: C47H48O7+Na+requires 747.3298, found 747.3308 

 

2-Cyanoethyl [2,3,4-tri-O-benzyl-5-O-(4,4'-dimeth- oxytrityl)-1-D-ribityl] N,N-

diisopropylphosphoramidite  (16) 

 

Compound 14 (1.77 g; 2.44 mmol) was co evaporated with toluene twice and was then 

dissolved in DCM (24 ml; 0.1 M), DIPEA was added (0.64 ml; 1.5 eq) and the mixture 

was stirred over activated molecular sieves for +/- 20 minutes. 2-Cyanoethyl N,N 

diisopropylchlorophosphoramidite (0.65 ml; 1.2 eq) was added and the mixture was 

stirred until TLC showed complete conversion of the starting material. The reaction 

was then quenched with water and diluted with DCM. The organic layer was washed 

with aq. sat. NaHCO3/NaCl (1:1) (v/v). The organic layer was dried over Na2SO4, 

filtrated and concentrated in vacuo. Column chromatoghraphy (1% TEA in pentane to 

2:8 EtOAc:pentane) of the crude afforded phosphoramidite 16 in 79% yield (1.79 g; 

1.94 mmol). 1H NMR (400 MHz, CD3CN) δ= 1.12 - 1.22 (m, 12H, 4x CH3-

isopropylamine), 2.50 - 2.59 (m, 2H, CH2-cyanoethyl), 3.28 -3.35 (m, 2H, CH2-Rbo), 

3.58 - 3.69 (m, 2H, CH-isopropylamine), 3.72 - 4.16 (12H, 2x CH-Rbo, CH2-Rbo, 2x 

CH3O, CH2 cyanoethyl), 4.49 (d, 1H, J= 11.6 Hz, CH2-Bn), 4.56 (dd, 1H, J= 10.8 Hz, 

J= 4.0 Hz, CH2-Bn), 4.58 - 4.75 (m, 4H, CH2-Bn), 6.77 - 6.79 (m, 4H, H-arom), 7.16 - 

7.46 (m, 24H, H-arom); 13C NMR (101 MHz, CD3CN) δ= 21.0, 21.0 (CH2 cyanoethyl), 

24.9, 25.0, 25.0, 25.1 (CH3 isopropylamine), 43.7, 43.8, 43.9, 43.9 (CH 

isopropylamine), 55.8 (CH3O), 59.2, 59.3, 59.4, 59.5 (CH2 cyanoethyl), 63.7, 63.9, 

64.8, 64.8 (CH2 Rbo), 73.0, 73.3, 74.2, 74.2 (CH2 Bn), 79.6, 79.7, 79.8, 80.0, 80.1, 80.1 

(CH Rbo), 86.8 (Cq DMT), 113.8 (CH-arom), 127.6, 127.7, 128.3, 128.4, 128.6, 128.6, 

128.7, 128.8, 128.8, 129.0, 129.1, 129.2, 129.3, 130.0, 131.0, 131.0 (CH-arom), 137.1, 
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137.1, 139.6, 139.7, 139.8, 139.9, 146.4, 159.5 (Cq-arom); 31P NMR (162 MHz, 

CD3CN) δ= 148.9, 149.0.  

 

D-ribitol phosphate monomer (18-I) 

 

According to the general procedure above, compound 14 was coupled with compound 

15(Hogendorf et al., 2010) and was synthesized in 85% yield (0.486 g; 0.616 mmol).  

1H NMR (400 MHz, CD3CN) δ= 1.21 -1.32 (m, 4H, CH2-hexylspacer), 1.35 - 1.45 (m, 

2H, CH2-hexylspacer), 1.56 - 1.61 (m, 2H, CH2-hexylspacer), 2.67 - 2.70 (m, 2H, CH2 

cyanoethyl), 3.06 (q, 2H, J= 6.8 Hz, CH2-N hexylspacer), 3.69 (dd, 1H, J= 10.8 Hz, J= 

6.4 Hz, CHH-Rbo), 3.75 (q, 1H, J= 4.4 Hz, CH-Rbo), 3.79 (dd, 1H, J= 10.8 Hz, J= 3.6 

Hz, CHH-Rbo), 3.92 (t, 1H, J= 4.8 Hz, CH-Rbo), 3.95 - 4.01 (m, 3H, CH-Rbo, CH2-O 

hexylspacer), 4.04 - 4.12 (m, 2H, CH2 cyanoethyl), 4.19 - 4.25 (m, 1H, CHH-Rbo), 4.35 

- 4.41 (m, 1H, CHH-Rbo), 4.60 - 4.73 (m, 6H, CH2-Bn), 5.04 (s, 2H, CH2-Cbz), 5.71 

(bs, 1H, N-H), 7.27 - 7.39 (m, 20H, H-arom); 13C NMR (101 MHz, CD3CN) δ= 20.2, 

20.2, 20.2, 20.3 (CH2 cyanoethyl), 25.7, 26.8, 30.4, 30.8, 30.8 (CH2-hexylspacer), 41.4 

(CH2-N hexylspacer), 61.6 (CH2-Rbo),  63.1, 63.1 (CH2 cyanoethyl), 66.6 (CH2 Cbz), 

68.1, 68.1 (CH2 Rbo), 68.9, 69.0 (CH2-O hexylspacer), 72.8, 72.9, 74.5 (CH2 Bn), 78.9, 

79.0, 79.1, 79.1, 79.2, 80.6 (CH-Rbo), 128.5, 128.6, 128.6, 128.6, 128.6, 128.8, 128.8, 

128.9, 128.9, 129.3, 129.4 (CH-arom), 139.4, 139.6, 139.8 (Cq-arom), 157.4 (C=O); 

31P NMR (162 MHz, CD3CN) δ= -0.2, -0.2. 

 HRMS: C43H53N2O10P+H+
 requires 789,3516, found 789.3527 

D-ribitol phosphate dimer (18-II) 

 

According to the general procedure above, compound the title compound was 

synthesized in 74% yield (0.494 g; 0.374 mmol). 1H NMR (400 MHz, CD3CN) δ= 1.21 
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- 1.27 (m, 4H, CH2-hexylspacer), 1.40 - 1.43 (m, 2H, CH2-hexylspacer), 1.56 - 1.61 (m, 

2H, CH2-hexylspacer), 2.55 - 2.61 (m, 2H, CH2 cyanoethyl), 2.63 - 2.70 (m, 2H, CH2 

cyanoethyl), 3.06 (q, 2H, J= 6.4 Hz, CH2-N hexylspacer), 3.65 - 3.80 (m, 3H, CH-Rbo, 

CH2-Rbo), 3.87 - 4.13 (m, 12H, 6 x CH-Rbo, 2 x CH2 cyanoethyl, CH2-O hexylspacer), 

4.17 - 4.43 (m, 6H, 3 x CH2-Rbo), 4.55 - 4.70 (m, 12H, 6 x CH2-Bn), 5.05 (s, 2H, CH2-

Cbz), 5.73 (bs, 1H, N-H), 7.26 - 7.36 (m, 35H, H-arom); 13C NMR (101 MHz, CD3CN) 

δ; 20.0, 20.1, 20.1, 20.2, 20.2, 20.2 (CH2 cyanoethyl), 25.7, 26.8, 30.4, 30.7, 30.8 (CH2 

hexylspacer), 41.4 (CH2-N hexylspacer), 61.5 (CH2-Rbo), 63.1, 63.1, 63.1, 63.2 (CH2 

cyanoethyl), 66.6 (CH2-Cbz), 67.5, 67.7, 68.2, 68.3, 68.3 (CH2-Rbo), 68.9, 69.0 (CH2-

O hexylspacer), 72.7, 72.9, 73.0, 73.0, 73.1, 73.1, 74.5 (CH2-Bn), 78.3, 78.6, 78.8, 

78.9, 79.0, 79.0, 79.1, 79.1, 80.5, 80.6 (CH-Rbo), 128.4, 128.5, 128.6, 128.6, 128.7, 

128.8, 128.9, 128.9, 129.3, 129.3, 129.4 (CH-arom), 138.5, 139.1, 139.2, 139.3, 139.5, 

139.7 (Cq-arom), 157.3 (C=O); 31P NMR (162 MHz, CD3CN) δ= 0.2, -0.0, -0.2, -0.2  

HRMS: C72H85N3O17P2+H+ requires 1326,5432, found 1326.5441 

 

D-ribitol phosphate trimer (18-III) 

 

According to the general procedure above, the title compound was synthesized in 88% 

yield (0.532 g; 0.285 mmol). 

 1H NMR (400 MHz, CD3CN) δ= 1.27 (m, 4H, CH2-hexylspacer), 1.40 - 1.42 (m, 2H, 

CH2-hexylspacer), 1.56 - 1.61 (m, 2H, CH2-hexylspacer), 2.53 - 2.59 (m, 4H, CH2 

cyanoethyl), 2.63 - 2.68 (m, 2H, CH2 cyanoethyl), 3.06 (q, 1H, J= 6.4 Hz, CH2-N 

hexylspacer), 3.67 - 3.78 (m, 3H, CH-Rbo, CH2-Rbo), 3.84 - 4.10 (m, 17H, 9 x CH-

Rbo, 3 x CH2 cyanoethyl, CH2-O hexylspacer), 4.20 - 4.39 (m, 10H, 5 x CH2-Rbo), 4.53 

- 4.59 (m, 18H, 9 x CH2-Bn), 5.04 (s, 2H, CH2-Cbz), 5.72 (bs, 1H, N-H), 7.25 - 7.35 (m, 

50H, H-arom); 13C NMR (101 MHz, CD3CN) δ; 20.1, 20.1, 20.2, 20.2 (CH2 cyanoethyl), 

25.7, 26.8, 30.4, 30.7, 30.8 (CH2 hexylspacer), 41.4 (CH2-N hexylspacer), 61.5 (CH2-

Rbo), 63.1, 63.1, 63.2, 63.2 (CH2 cyanoethyl), 66.6 (CH2 Cbz), 67.5, 67.7, 67.7, 67.8, 

68.2 (CH2-Rbo), 68.9, 69.0 (CH2-O hexylspacer), 72.7, 72.9, 73.0, 73.0, 73.1, 74.5, 
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74.5, 74.6 (CH2 Bn), 78.3, 78.6, 78.8, 78.9, 79.0, 79.1, 80.5 (CH-Rbo), 128.4, 128.5, 

128.6, 128.7, 128.7, 128.8, 128.9, 128.9, 129.3, 129.3, 129.4 (CH-arom), 139.1, 139.3, 

139.5, 139.7 (Cq-arom), 157.1; 31P NMR (162 MHz, CD3CN) δ= 0.2, 0.2, -0.0, -0.1, -

0.1, -0.2, -0.2.              

HRMS: C101H117N4O24P3+Na+ requires 1885,7168, found 1885.7172 

 

D-ribitol phosphate tetramer (18-IV) 

 

According to the general procedure above, the title compound was synthesized in 80% 

yield (0.522 g; 0.217 mmol). 

1H NMR (400 MHz, CD3CN) δ= 1.27 (m, 4H, CH2-hexylspacer), 1.40 - 1.41 (m, 2H, 

CH2-hexylspacer), 1.58 - 1.59 (m, 2H, CH2-hexylspacer), 2.52 - 2.59 (m, 8H, 4 x CH2-

cyanoethyl), 3.06 (q, 2H, J= 6.4 Hz, CH2-N hexylspacer), 3.67 - 3.79 (m, 3H, CH-Rbo, 

CH2-Rbo), 3.84 - 4.13 (m, 22H, 12 x CH-Rbo, CH2-O hexylspacer, 4 x CH2 cyanoethyl), 

4.17 - 4.40 (m, 14H, 7 x CH2-Rbo), 4.50 - 4.69 (m, 24H, 12 x CH2-Bn), 5.05 (s, 2H, 

CH2-Cbz), 5.72 (bs, 1H, N-H), 7.25 - 7.35 (m, 65H, H-arom); 13C NMR (101 MHz, 

CD3CN) δ; 20.1, 20.2, 20.2 (CH2 cyanoethyl), 25.7, 26.8, 30.4, 30.7, 30.8 (CH2 

hexylspacer), 41.4 (CH2-N hexylspacer), 61.5 (CH2-Rbo), 63.1, 63.1, 63.2 (CH2 

cyanoethyl), 66.6 (CH2-Cbz), 67.5, 67.7, 67.8, 68.3 (CH2-Rbo), 68.9, 69.0 (CH2-O 

hexylspacer), 72.7, 73.0, 73.1, 73.1, 74.5, 74.5, 74.6 (CH2-Bn), 78.3, 78.6, 78.9, 78.9, 

79.0, 79.1, 80.6 (CH-Rbo), 128.4, 128.6, 128.6, 128.7, 128.8, 128.9, 128.9, 129.3, 

129.3, 129.4 (CH-arom), 139.1, 139.2, 139.3, 139.5, 139.7 (Cq-arom), 158.0 (C=O); 

31P NMR (162 MHz, CD3CN) δ= 0.2, 0.2, 0.2, -0.0, -0.1, -0.1, -0.2, -0.2.  

HRMS: C101H117N4O24P3+2H+ requires 2401.9343, found 2401.9241. 
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D-ribitol phosphate pentamer (18-V) 

 

According to the general procedure above, the title compound was synthesized in 76% 

yield (0.136 g; 46.0 μmol). 

1H NMR (400 MHz, CD3CN) δ= 1.27 (m, 4H, CH2-hexylspacer), 1.40 - 1.41 (m, 2H, 

CH2-hexylspacer), 1.56 - 1.59 (m, 2H, CH2-hexylspacer), 2.54 - 2.59 (m, 8H, 4 x CH2-

cyanoethyl), 2.64 - 2.70 (m, 2H, CH2-cyanoethyl), 3.06 (q, 2H, J= 6.4 Hz, CH2-N 

hexylspacer), 3.66 - 3.78 (m, 3H, CH-Rbo, CH2-Rbo), 3.84 - 4.13 (m, 27H, 15 x CH-

Rbo, CH2-O hexylspacer, 5 x CH2 cyanoethyl), 4.16 - 4.39 (m, 30H, 15 x CH2-Bn), 5.04 

(s, 2H, CH2-Cbz), 5.7 (bs, 1H, N-H), 7.26 - 7.34 (m, 80H, H-arom); 13C NMR (101 MHz, 

CD3CN) δ; 20.1, 20.1 (CH2 cyanoethyl), 25.7, 26.8, 30.4, 30.7, 30.8 (CH2 hexylspacer), 

41.4 (CH2-N hexylspacer), 61.5 (CH2-Rbo), 63.1, 63.1, 63.2 (CH2 cyanoethyl), 66.6 

(CH2 Cbz), 67.5, 67.7, 68.3 (CH2-Rbo), 68.9, 69.0 (CH2-O hexylspacer), 72.7, 72.9, 

73.0, 73.1 74.5, 74.5, 74.6 (CH2-Bn), 78.3, 78.6, 78.8, 79.1, 80.6 (CH-Rbo), 128.4, 

128.6, 128.6, 128.7, 128.8, 128.9, 128.9, 129.3, 129.3, 129.4 (CH-arom), 139.1, 139.2, 

139.3, 139.5 (Cq-arom), 157.5 (C=O); 31P NMR (162 MHz, CD3CN) δ= 0.2, 0.2, 0.2, -

0.1, -0.1, -0.2, -0.2, -0.2. 

HRMS: C159H181N6O38P5 +2H+
 requires 2939.1260, found 2939.1348. 

 

D-ribitol phosphate hexamer (18) 

 

According to the general procedure above, the title compound was synthesized in 91% 

yield (0.117 g; 33.7 μmol).  

1H NMR (400 MHz, CD3CN) δ= 1.26 - 1.28 (m, 4H, CH2-hexylspacer), 1.41 (m, 2H, 

CH2-hexylspacer), 1.55 - 1.59 (m, 2H, CH2-hexylspacer), 2.53 - 2.58 (m, 10H, 5x CH2-
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cyanoethyl), 2.63 - 2.69 (m, 2H, CH2-cyanoethyl), 3.05 (q, 2H, J= 6.4 Hz, CH2-N 

hexylspacer), 3.69 - 3.77 (m, 3H, CH-Rbo, CH2-Rbo), 3.83 -4.09 (m, 32H, 18x CH-

Rbo, CH2-O hexylspacer, 6x CH2 cyanoethyl), 4.16 - 4.32 (m, 22H, 11x CH2-Rbo), 4.48 

- 4.68 (m, 36H, 18x CH2-Bn), 5.04 (s, 2H, CH2-Cbz), 5.70 (bs, 1H, N-H), 7.28 - 7.34 

(m, 95H, H-arom); 13C NMR (101 MHz, CD3CN) δ; 20.1, 20.1, 20.1, 20.2, 20.2, 20.3 

(CH2 cyanoethyl), 25.7, 26.8, 30.4, 30.7, 30.8 (CH2 hexylspacer), 41.4 (CH2-N 

hexylspacer), 61.5 (CH2-Rbo), 63.1, 63.1, 63.2, 63.2, 63.3 (CH2-cyanoethyl), 66.6 

(CH2-Cbz), 67.7 - 67.9 (CH2-Rbo), 68.9, 69.0 (CH2-O hexylspacer), 72.7, 72.9, 73.0, 

73.1, 74.5, 74.5, 74.6 (CH2-Bn), 78.3, 78.6, 78.6, 78.9, 78.9, 80.6 (CH-Rbo), 128.4, 

128.4, 128.6, 128.6, 128.7, 128.8, 128.9, 128.9, 129.2, 129.3, 129.3, 129.4 (CH-arom), 

139.1, 139.2, 139.2, 139.3 (Cq-arom), 156.0 (C=O); 31P NMR (162 MHz, CD3CN) δ= 

0.2, 0.2, 0.2, -0.1, -0.1, -0.2, -0.2.  

HRMS: [C188H213N7O45P6 +2H]2+
 requires 1739.1622, found 1739.1575 

 

 

6RboP-(CH2)6NH2 

 

According to the general procedure described above, hexamer 6 was synthesized and 

deprotected affording the target compound in 87% yield (22.5 mg; 14.7 µmol). 

1H NMR (600 MHz, D2O) δ= 1.40 - 1.41 (m, 4H, CH2-hexylspacer), 1.62 - 1.67 (m, 4H, 

CH2-hexylspacer), 2.98 (t, 2H, J= 7.2 Hz, CH2-N hexylspacer), 3.62 (dd, 1H, J= 12.0 

Hz, J= 7.2 Hz, CH2), 3.73 (t, 1H, J= 6.0 Hz, CH-ribitol), 3.77 - 3.90 (m, 7H, CH/CH2-

ribitol, CH2-O hexylspacer), 3.90 - 4.01 (m, 22H, CH/CH2-ribitol), 4.02 - 4.07 (m, 11H, 

CH/CH2-ribitol); 13 C NMR (151 MHz, D2O) δ= 25.4, 26.0, 27.5 (3x CH2- hexylspacer), 

30.3 (d, J= 7.6 Hz, CH2- hexylspacer), 40.3 (CH2-N hexylspacer), 63.2 (CH2-ribitol), 

67.0 - 67.4 (5x CH2 ribitol/CH2-O hexylspacer), 71.7 - 73.0 (8x CH-ribitol); 31P NMR 

(162 MHz D2O) δ= 1.6, 1.8, 1.8. 
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NMR Spectra  

14, 1H-NMR, 400 MHz, CDCl3 
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14, 13C-NMR, 101 MHz, CDCl3 
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16, 1H-NMR, 400 MHz, CDCl3 
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16, 13C-NMR, 101 MHz, CDCl3 
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16, 31P-NMR, 162 MHz, CDCl3 

 

18-I, 1H-NMR, 400 MHz, CDCl3 

 

18-I, 13C-NMR, 101 MHz, CDCl3 
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18-I, 31P-NMR, 162 MHz, CDCl3 
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18-II, 1H-NMR, 400 MHz, CDCl3 

 

18-II, 13C-NMR, 101 MHz, CDCl3 
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18-II, 31P-NMR, 162 MHz, CDCl3 
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18-III, 1H-NMR, 400 MHz, CDCl3 
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18-III, 13C-NMR, 101 MHz, CDCl3 
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18-III, 31P-NMR, 162 MHz, CDCl3 

 

18-IV, 1H-NMR, 400 MHz, CDCl3 

 

18-IV, 13C-NMR, 101 MHz, CDCl3 
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18-IV, 31P-NMR, 162 MHz, CDCl3 

 

18-V, 1H-NMR, 400 MHz, CDCl3 

 

18-V, 13C-NMR, 101 MHz, CDCl3 
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18-V, 31P-NMR, 162 MHz, CDCl3 

 

18, 1H-NMR, 400 MHz, CDCl3 

 

18, 13C-NMR, 101 MHz, CDCl3 
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18, 31P-NMR, 162 MHz, CDCl3 

 

6Rbo-(CH2)6-NH2, 1H-NMR, 400 MHz, D2O 

 

6Rbo-(CH2)6-NH2, 13C-NMR, 101 MHz, D2O 
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6Rbo-(CH2)6-NH2, 31P-NMR, 162 MHz, D2O 
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General discussion 

Glycosylation for WTA as important modulator of phage and immune-

interaction 

 

Wall teichoic acids (WTA) are crucial cell surface polymers and key mediators of 

horizontal gene transfer, host colonization and immune modulation. In recent years, it 

became apparent that the modification of WTA by distinct sugar residues has 

tremendous influence on these processes. Understanding and pharmaceutically 

manipulating the WTA glycosylation state of multiresistant Staphylococcus aureus 

might render bacteria susceptible to antimicrobial therapies again. The identification of 

the prophage-encoded WTA glycosyltransferase TarP (Gerlach et al., 2018) further 

extends the complexity of WTA modulation and the resulting physiological implications 

(Figure 3). 

  

Alternative WTA glycosylation by the prophage-encoded 

glycosyltransferase TarP 

Prophages are unique accessory genetic entities that represent a two-edged sword to 

the bacterial host. On one hand, they act as potential lethal viral predator that lyse and 

destroy the bacterial cell upon induction by stress. On the other hand, they allow the 

rapid acquisition of potentially beneficial genes by phage mediated HGT. By ensuring 

the fitness of the host cell prophages thrive along with their hosts. Phages and 

prophages are often grouped according to their integrase proteins (Goerke et al., 

2009). The specificity of integrase genes directs the integration site of the prophage 

(Groth and Calos, 2004). Staphylococcal prophages are organized in modules that 

undergo frequent recombination (Xia and Wolz, 2014). Beneficial prophage-encoded 

accessory factors encompass virulence genes such as the staphylococcal complement 

inhibitory protein (Scin) (Rooijakkers et al., 2005), chemotaxis inhibitory protein (Chips) 

(de Haas et al., 2004) and staphylokinase (Sak) (Bokarewa et al., 2006). The 

corresponding genes are usually organized in the so-called immune evasion clusters 

(IEC) and are prolific in β-converting Sa3int phages, which insert into the β-hemolysin 
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gene hlb (van Wamel et al., 2006). Further phage-associated virulence factors are the 

colonization factor SasX (Li et al., 2012), exfoliative toxin A (ETA) (Yamaguchi et al., 

2000), enterotoxins (Argudin et al., 2010), or the bi-component leucotoxin, PVL (Spaan 

et al., 2017). In many cases (IEC, PVL, ETA) these virulence factors are encoded in 

the lysis module of the prophage and show increased expression upon phage 

induction. This increase of virulence factor expression is caused by read-trough 

transcription of latent upstream phage genes and increased copy numbers of the 

excised prophage (Goerke et al., 2006a; Sumby and Waldor, 2003). 

The recent identification of the prophage-encoded WTA glycosyltransferase TarP 

provides a novel perspective on the accessory genetic repertoire of S. aureus (Gerlach 

et al., 2018) (Figure 2). The ability of prophages to alter the host cell wall has never 

been reported for staphylococci before. However, alteration of the cell envelope has 

been observed by prophages of Gram-negative bacteria such as Salmonella 

Typhimurium (Kintz et al., 2015) and Shigella flexneri (Mavris et al., 1997) where 

prophages are able to alter the lipopolysaccharide (LPS) of the host. The tarP gene 

was identified with very high sequential identity in three different prophage-integrase 

groups (Sa1int, Sa3int, and Sa9int). In each prophage, it is located upstream of the 

integrase accompanied by a conserved open reading frame in between, termed orfXP, 

whose physiological role remains to be elucidated. Interestingly, tarP and orfXP reside 

upstream of the int gene where usually genes for the excicionase xis or for the excision-

associated factor OrfC, which is frequent in Sa3 phages, are found (Carroll et al., 1995; 

Iandolo et al., 2002). In contrast to xis or orfC, which can be located in the opposite 

orientation of int, tarP and orfXP are encoded in all identified case on the same strand 

as the int gene. This speaks for coexpression of the genes as members of the integrase 

module. The location of tarP in the integrase module contrasts the common location of 

virulence factors in the lysis module and could result in a different expression pattern, 

for example by alternative sigma factors (Kato et al., 2011). 
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Figure 2: Modification of RboP WTA. C1-3 of ribitol-phosphate repeats (R1-R3) are derivatized with 

D-alanyl residues by the Dlt system (DltABCD) or with GlcNAc by TarS (β-1,4-GlcNAc), TarP (β-1,3-

GlcNAc), or TarM (α-1,4-GlcNAc). 

Prophages can be regarded as genomic modules that allow rapid acquisition of 

accessory gene sets. These prophage-associated factors are often meditators of 

virulence (Bae et al., 2006) or host jumps by allowing rapid ecological niche adaptation 

(Lowder et al., 2009). Additionally, tarP is frequently found in human as well as porcine 

isolates (Gerlach et al., 2018). Moreover, each ecological niche is represented by 

unique tarP-carrying prophages (Gerlach et al., 2018). tarP–encoding Sa3int phages 

are found exclusively in human hospital-associated MRSA (HA-MRSA) of CC5, and 

Sa1int or Sa9int phages in livestock-associated MRSA lineages (LA-MRSA) of CC5 

and CC398. This strong correlation of integrase group and S. aureus clades might be 

caused by several factors. Sa3int phages are the most prevalent S. aureus phages 

(Goerke et al., 2006b; Verkaik et al., 2011). The tarP phage ΦN315 additionally 

encodes the IEC cluster (Kuroda et al., 2001) and is frequent in the hospital 

environment. The identification of tarP as a factor of adaptive immune evasion 

(Gerlach et al., 2018) together with the described immune modulatory function of the 

IEC cluster might contribute to the chronic persistence and attenuated virulence often 

associated with HA-MRSA isolates (Li et al., 2009). The β-converting phage ΦN315 
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has not been observed in LA-MRSA isolates. Instead, tarP localizes in LA-MRSA on 

Sa1int or Sa9int prophages, which are frequent phage groups among CC398 MRSA 

(Kraushaar et al., 2017). The general absence of Sa3int phages in LA-MRSA is a 

frequently reported phenomenon (Kraushaar et al., 2017). For instance, McCarthy et 

al. observed missing lysogenization of CC398 LA-MRSA by Sa3int phages in a piglet 

model (McCarthy et al., 2014). Sa3int phages insert into the hlb gene coding for the 

S. aureus β-hemolysin, thereby disrupting the function of the gene (van Wamel et al., 

2006). Although some CC398 appear to have a mutated integration side, they can still 

be lysogenized by Sa3int phages (Kraushaar et al., 2017). It remains unclear why 

porcine LA-MRSA depend on the functional expression of the β-hemolysin toxin, as 

there is no significant effect on immune evasion or hemolysis of host blood in pigs 

(Jung et al., 2017). However, the presence of tarP on not Sa3int-phages in LA-MRSA 

of CC5 and CC398 supports this observation. Additionally, TarP could mediate not yet 

elucidated functions that may allow colonization of pig or livestock facilities. Examples 

for possible functions could encompass resistance to disinfection agents or antibiotics 

frequently used in livestock facilities, as well as interaction with pig-specific cellular 

receptors. 

A major group of aggressive MRSA that are prevalent in communities of healthy 

humans, are categorized as community associated (CA) MRSA (DeLeo et al., 2010). 

The alternative genome-encoded glycosyltransferase tarM is present in many of the 

major clonal lineages of CA-MRSA such as ST8, ST30 and ST1 (Winstel et al., 2014), 

whereas it is absent in major lineages of HA-MRSA (CC5) and LA-MRSA (CC5 and 

CC398) (Li et al., 2015). Of note, tarP-prophages appear to be prolific in tarM-missing 

lineages. The cause for a lack of tarP-prophages in tarM-encoding bacterial lineages 

are not understood yet. Reasons could range from receptor specificities of tarP phages 

that are not compatible with TarM-modified WTA to restriction barriers that prevent 

HGT between tarM and tarP encoding lineages. McCarthy et al. reported that the 

presence of S. aureus phages correlates strongly with certain clonal linages. S. aureus 

phages do not show inter-lineage dissemination, which appears to be caused by 

lineage-specific restriction modifications (Corvaglia et al., 2010; Roberts et al., 2013; 

Waldron and Lindsay, 2006).  
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Figure 3: Variation and physiological implications of different WTA glycosylation patterns. 

Besides the tar cluster encoding the gene for RboP-WTA including the β-1,4-GlcNAc transferase 

gene tarS many lineages encode the accessory α-1,4-GlcNAc transferase tarM. The presence of 

tarM usually leads to a α-1,4-GlcNAcylation dominant over the TarS product. Putative deletion events 

of tarM in certain S. aureus lineages lead to lineages expressing only the standard TarS 

glycosylation. TarM- and TarS-WTA have both been implicated in the adherence to epithelial cells, 

nasal colonization, and are crucial for siphophage adsorption. TarS-WTA strains of lineages CC5 

and CC398 have been observed to acquire prophages encoding the alternative glycosyltransferase 

TarP. tarP is located upstream of the phage integrase gene and mediates a dominant β-1,3-

GlcNAcylation. Both accessory glycosylations attached by TarM or TarS lead to reduced deposition 

of serum IgG directed against WTA and confer resistance to infection by 44AHJD-like podophages. 

The evolutionary origins of TarP are not understood yet. The glycosyltransferase 

domain of TarP shows very high similarity to the domain of TarS. This might speak for 

the fact that tarP has been derived from tarS by a possible gene duplication event. A 
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hypothetical progenitor prophage could have integrated a duplicated TarS-like gene, 

The enzymatic specificity of the glycosyltransferase domain changed possibly by slow 

evolutionary processes such as amino acid exchanges. Contrastingly, TarP and TarS 

display a different architecture of their trimerization domains (Table 1). This hints at a 

single replacement event of the trimerization domain during an evolutionary transition 

from TarS to TarP. Another plausible hypothesis would be that TarP was acquired via 

HGT. TarP shows 70% amino acid identity to glycosyltransferases that have been 

found in S. xylosus and S. equorum (Gerlach, unpublished), which would support this 

hypothesis.  

 

Alternative glycosylation renders WTA inaccessible to 

podophages but permits HGT via siphophages 

The constant arms race between virus and bacterial host has led to a variety of phage 

resistance mechanisms that interfere at different stages of the phage replication cycle 

(Goldfarb et al., 2015; Kronheim et al., 2018; Labrie et al., 2010; Ofir et al., 2018). WTA 

is the receptor of S. aureus phages (Xia et al., 2011). Its accessibility and composition 

are crucial for the phage adsorption process. Allowing the adsorption of phages and 

injection of viral DNA is a delicate trade-off, as discussed above. The entry of viral DNA 

would lead to phage replication, lysis and viral predation of the whole bacterial 

community. On the other hand, foreign DNA taken up by transduction events might 

provide significant fitness advantages that ensure the survival of the cell and daughter 

cells, as well. 

Transducing S. aureus phages are believed to belong to the class of temperate 

Siphoviridae (Xia and Wolz, 2014). Lytic phages of the class Myoviridae and 

Podoviridae seem to present mainly predatory features without benefits to the bacterial 

host. Whereas Myoviridae show a broad receptor compatibility, podovirus require 

specific receptor configurations. Podoviruses are an isolated family among S. aureus, 

tailed-phages, i. e. Caudovirales (Deghorain and Van Melderen, 2012). Podoviruses 

share a unique morphology with a very short, non-flexible, non-contractile tail. Their 

genome is rather short with around 20 kb (Kwan et al., 2005). Recently, there have 
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been new insights into the receptor binding requirements of podophages. Li et al. 

demonstrated that the glycosyltransferase TarM protects S. aureus from adsorption 

and subsequently infection by podophages P68, 66, and 44AHJD (also termed phage 

44) by attaching α-1,4-GlcNAc residues to WTA (Li et al., 2015). Glycosylation by TarM 

interfered with the proper receptor configuration, β-1,4-GlcNAc, conferred by TarS. 

Phages P68, 66 and 44AHJD used in the study are grouped into the same proposed 

genus, termed 44AHJD-like (Lavigne et al., 2008), and show identical receptor 

prerequisites. The prophage-encoded glycosyltransferase TarP attaching a β-1,3-

GlcNAc pattern leads to resistance to 44AHJD-like phages, as well (Gerlach et al., 

2018). Thus, 44AHJD-like podophages are constricted to the glycosylation pattern 

conferred by the housekeeping glycosyltransferase TarS.  

There seems to be two different groups of podovirus receptor specificity. Besides 

podophages belonging to the 44AHJD-like genus (subgroup I) other podophages of S. 

aureus, such as S22-1, have been reported to utilize β-1,4-GlcNAcylated as well as α-

1,4-GlcNAcylated WTA (subgroup II) (Glowacka-Rutkowska et al., 2018; Uchiyama et 

al., 2017). Differences in the receptor binding protein (RBP) are likely the cause for 

different receptor interaction profiles. The RBP of subgroup II podophages shows 

similarities to the RBP of siphovirus 11, ORF45 (Uchiyama et al., 2017). Evolution of 

RBPs that allow attachment to non-TarS-WTA appears to be the more successful 

strategy for podoviruses. However, the fact that subgroup I podoviruses can be 

isolated from the surroundings implies that there might be other intricacies to the 

infection mechanism of these viruses. Interestingly, it has been demonstrated for 

Gram-negative podoviruses that further factors such as temperature are crucial for 

DNA release from phages (Broeker et al., 2018). In general, RBPs represent an 

interesting diagnostic tool for S. aureus detection or targeting, as demonstrated for the 

RBP of Phage 11 (Idelevich et al., 2014). 

Temperate Siphoviridae show in general a broader host range utilizing TarM- 

GlcNAcylated as well as TarS-GlcNAcylated WTA (Brown et al., 2012; Li et al., 2016). 

The recently described β-1,3-GlcNAc pattern catalyzed by TarP allowed only reduced 

infection by Φ11, a well-studied representative of serogroup B phages (Gerlach et al., 

2018). The SaPI transferability of Φ11-based SaPI particles was significantly 

diminished in TarP-expressing clinical isolate N315, accordingly. Yet, TarP-expressing 

strains are still susceptible to HGT by siphoviruses. One of the corner stones of the 
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success of S. aureus as a pathogen is the rapid adaptability to environmental stress 

that is based on extensive HGT between S. aureus strains (Chen et al., 2018; Lindsay 

and Holden, 2004). Though restriction barriers guide the flow of genetic information to 

a certain degree (McCarthy and Lindsay, 2012). To participate in HGT S. aureus 

strains have to render their receptor accessible to siphovirus, the main vectors of HGT 

(Winstel et al., 2013). A drastic alteration to the phage receptor would cut off individual 

strains from beneficial HGT. Only few strains, such as ED133 and Lowenstein, are 

reported to have lost their capability to glycosylate their WTA (Lee et al., 2015; Winstel 

et al., 2014). TarP modification lead to a reduced uptake efficiency of phage DNA but 

is not as a drastic receptor remodelling such as the GroP-WTA of S. aureus lineage 

ST395, which enables HGT with coagulase-negative staphylococci.  

 

Glycosylation alters the immunostimulatory potential of WTA 

Recognition of conserved microbial structures, so called PAMPs or MAMPS 

(pathogen-associated molecular patterns, microbe-associated molecular pattern), is a 

central feature of each immune system. MAMPs can encompass very diverse 

biochemical structures, ranging from nucleic acids over peptides and liposaccharide 

structures to carbohydrates. These molecular structures are recognized by pattern-

recognition receptors (PRRs) (Kumar et al., 2013). PRRs can be categorized into Toll-

like receptors (TLR), RIG-I-like receptors (RLS), NOD-like receptors (NLRs), and C-

type lectin-like receptors (CLRs). These innate immune receptors are crucial for the 

activation of specific biochemical pathways, which usually result in the activation of 

transcription factors such as NF-κB (Mahla et al., 2013). 

PAMPs of S. aureus consist of various proteinaceous and carbohydrate structures. 

Formylated peptides activate formylated peptide receptors (Kretschmer et al., 2010), 

whereas lipoproteins activate TLR2/6 (Aliprantis et al., 1999; Stoll et al., 2005) via a 

vesicle-dependent mechanism (Schlatterer et al., 2018; Wang et al., 2018). 

Carbohydrate-based MAMPs of S. aureus are peptidoglycan and teichoic acids. 

Peptidogylcan is recognized by cytosolic NOD receptors after degradation of 

phagocytosed cell wall entities (Caruso et al., 2014). LTA has been shown to interact 

with the macrophage receptors CRIg (Zeng et al., 2016) and the immune inhibitory 
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PRR PirB (Nakayama et al., 2012). So far, no direct interaction of WTA or LTA with 

TLRs or NLRs has been described (Hashimoto et al., 2006). WTA is also not able to 

stimulate neutrophil chemotaxis like other S. aureus MAMPs (Weidenmaier et al., 

2010). Mannose-binding lectin (MBL) is the main CLRs described to interact with WTA 

directly via the GlcNAc modification. Since LTA is only glycosylated with GlcNAc under 

certain conditions (Kho and Meredith, 2018), it is most likely not a binding target for 

MBL. Another CRL recognizing WTA directly is langerin, which is expressed on 

Langerhans cells, dendritic cells located in the epidermis . Langerin shows a strong 

preference for β-GlcNAcylated WTA, yet the implications for diseases like atopic 

dermatitis are not understood (van Dalen et al., 2019). It would also be of interest 

wether S. aureus lineages with α-glycosylation show increased prevalence in atopic 

dermatitis patients. 

Strikingly, WTA is apparently strongly recognized by the adaptive immune system by 

IgGs (Jung et al., 2012; Lehar et al., 2015). Recognition by IgG leads to opsonization 

and phagocytosis, or complement activation (Nimmerjahn and Ravetch, 2008). How 

WTA-specific IgGs are generated is poorly understood. Recent publications indicate 

that the glycosylation-pattern of WTA is crucial for recognition by serum antibodies 

(Gerlach et al., 2018; Kurokawa et al., 2016). The enzymatic product of TarS, β-1,4-

GlcNAc-WTA, shows strong recognition by serum IgG. IgG recognition is considerably 

attenuated as soon as the alternative glycosyltransferases TarM or TarP derivatize 

WTA with their respective glycopattern (Figure 2, 3), which leads to reduced 

opsonization and phagocytosis. The different levels of IgG might reflect varying 

immunogenicity of glycosylated WTA. Gerlach et al. demonstrated that repeated 

injection of TarS-glycosylated WTA led to higher generation of serum IgG in mice than 

TarP-glycosylated WTA (Gerlach et al., 2018). Whether TarM-glycosylated WTA 

shows attenuated immunogenicity in a similar manner has yet to be demonstrated. 

The immunogenicity of carbohydrates appears to be an understudied topic. Previous 

research could partially illuminate the pathways of carbohydrate degradation and 

presentation by antigen-presenting cells (Avci et al., 2013). For the development of an 

IgG1 response T cells are crucial to enable class switching of IgG-producing B cells. 

WTA is able to stimulate T-cells directly by MHC class II of antigen presenting cells 

(Wanner et al., 2017; Weidenmaier et al., 2010). Mice deficient of CD4+ T cells do not 

form abscesses upon WTA injection in contrast to mice that are not deficient in CD4+ 
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T cells (Weidenmaier et al., 2010). It is unclear to what degree WTA glycosylation 

modulates the stimulation of T cells and antigen presenting cells. Most experiments on 

T-cell activation so far have been performed with WTA from TarS and TarM expressing 

strains of CC8 (Wanner et al., 2017; Weidenmaier et al., 2010) but without regarding 

different WTA glycosylation motifs. According to the current model zwitterionic 

polysaccharide are taken up by antigen presenting cells and modified chemically by 

reactive nitrogen and oxygen species in an endosomal compartment (Duan et al., 

2008). Subsequently, the processed zwitterionic polysaccharides are loaded onto 

MHC class II (Cobb et al., 2004) where they are presented to CD4+ T cells. 

Glycosylation by TarP at C3 of RboP could reduce or alter the processing or insertion 

of WTA into MHC class II. 

Another possible, albeit speculative, hypothesis could be that MHC class II 

presentation of WTA occurs in complex with proteinaceous factors similar to the well-

described glycoconjugates, which are used in vaccines (Hutter and Lepenies, 2015). 

WTA is covalently attached topeptidoglycan which itself linked to several proteins. This 

protein-peptidogylcan-WTA complex could be loaded into the MHC class II complex 

by anchoring it via the respective protein residue. 

However, there is no described case of IgG class switching induced by zwitterionic 

polysaccharides. Vaccination with purified WTA leads to the generation of anti-WTA 

specific IgG in mice (Nakayama et al., 2012; Takahashi et al., 2013) with differences 

depending on the glycosylation state (Gerlach et al., 2018). However, it is unclear 

whether MHC class II presentation of WTA directly leads to B-cell class switching and 

production of the observed WTA-specific antibodies. Remarkably, WTA-specific 

antibodies seem to be to a large extend of the IgG2 subclass (Rob van Dalen, personal 

communication). IgG2 is the main response to bacterial polysaccharides and low IgG2 

serum levels are associated with chronic bacterial infections (Kuijpers et al., 1992), 

however other IgG subclasses also have been reported to recognized carbohydrate 

antigens (von Gunten et al., 2009). IgG2 is believed to be a T-cell independent IgG 

subclass, which rises the questions how these antibodies and their different WTA 

specificities are generated on the molecular level. IgG2 antibodies have been 

described to lead to poor opsonization of targeted bacteria (Vidarsson et al., 2014). 

Contrastingly, anti-WTA antibodies are considerably opsogenic (Gerlach et al., 2018; 

Kurokawa et al., 2013). It will require further in-depth molecular and immunological 
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approaches to elucidate the generation and origin of WTA-targeting antibodies in 

serum. Glycosylation by the alternative glycosyltransferases TarM and TarP 

represents apparently a way to attenuate the default immunogenic potential of TarS-

WTA. As TarS-glycosylated WTA shows increased immunogenicity, it could be one of 

the reasons why coagulase-negative commensals expressing β-1,4-GlcNAc WTA 

such as S. xylosus and S. equorum (Li et al., 2015) show strongly reduced 

pathogenicity.  

Moreover, a recent work by Mistretta et al. showed that some S. aureus isolates appear 

to alter its glycosylation pattern under salt stress and more importantly in a mice 

infection model from α-1,4- or β-1,3- GlcNAc to β-1,4-GlcNAc (Mistretta et al., 2019). 

This increase in TarS-WTA resembles the upregulation of the tarS gene in the 

presence of the beta-lactam antibiotic oxacillin (Brown et al., 2012) and hints at a 

certain regulation of WTA glycosylation. However, the underlying regulons are not 

identified yet and might be strain-dependent. Presentation of TarS-WTA in an infection 

would certainly lead to increased phagocytosis. Whether uptake by phagocytes 

presents an advantageous strategy of S. aureus to utilize phagocytes as Trojan horses 

for dissemination and formation of new abscesses is up for discussion (Thwaites and 

Gant, 2011). 

S. aureus capsular polysaccharides possess zwitterionic properties and CP8 can 

stimulate, similarly to WTA, T cells via antigen-presenting cells (Tzianabos et al., 

2001). The role of capsular polysaccharide (CPS) in virulence is less understood. 

Since CPS competes with WTA for the same precursors such as lipid II or the 

peptidoglycan attachment side, N-acetyl muramic acid, CPS could modulate or mask 

the presentation of WTA on the cell surface. CPS is described to attenuate 

opsonophagocytosis (Nanra et al., 2013), but it is not known whether this is facilitated 

by shielding of the WTA epitope. Masking effects of CPS on clumping factor binding 

protein and protein A have been described, as well (Risley et al., 2007). In a similar 

manner, CPS attenuates TLR2 activation via interference with lipoproteins (Hilmi et al., 

2014).  

 

WTA glycosylation is catalyzed by unique trimeric proteins 
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In the recent years, significant steps have been made in understanding the structural 

organization and substrate interaction of WTA-modifying glycosyltransferases. 

Glycosyltransferases can be classed into over 90 distinct families by comparing their 

amino acid sequence similarities (Lairson et al., 2008). Despite this abundance, there 

exist only two general protein folds, GT-A and GT-B, for nucleotide sugar-dependent 

glycosyltransferases. Both folds integrate two β/α/β domains of the Rossmann-like 

folds, which are typical for nucleotide-binding proteins (Rao and Rossmann, 1973). A 

third family of glycosyltransferases, GT-C, consists of membrane proteins that utilize 

lipid phosphate-linked sugar donors (Liu and Mushegian, 2003). The structures of all 

major WTA glycosyltransferases, TarS, TarM, and TarP, of S. aureus have been 

determined. TarS and TarP are GT-A glycosyltransferases (Gerlach et al., 2018; 

Sobhanifar et al., 2016) and show the signature DXD motif often found in GT-A 

glycosyltransferases (Lairson et al., 2008). In both crystal structures the DXD motif 

complexes divalent ions. TarM by contrast shows a GT-B fold (Koc et al., 2015; 

Sobhanifar et al., 2016) and no obvious metal binding side, as it is common for GT-B 

type enzymes. The enzymatic mechanism by which glycosyltransferases operate is 

either an inverting SN2-like, direct replacement mechanism, as in TarS and TarP, or a 

retaining SN1-like mechanism as in TarM.  

In summary, all identified WTA glycosyltransferases of S. aureus belong to the GT-A 

and GT-B family. Interestingly, in Listeria monocytogenes a GT-C type WTA 

glycosyltransferase has been described (Rismondo et al., 2018), which shows 

similarities to the inducible S. aureus LTA glycosyltransferase YfhO (Kho and Meredith, 

2018).  

The common feature of the genome-encoded S. aureus glycosyltransferases TarM 

and TarS is their homo trimeric superstructure (Caveney et al., 2018), which is also 

shared by the prophage-encoded glycosyltransferase TarP (Gerlach et al., 2018). 

Trimerization is facilitated by a unique domain that is fundamentally distinct in all three 

enzymes. The trimerization domain of TarM belongs to the domain of unknown function 

family (DUF) 1975 (Finn et al., 2014), consisting of a long antiparallel β-sheet. This 

interface domain can also be found in the GlcNAc-transferase GtfA (Shi et al., 2014), 

which is responsible for modification of serine-rich repeats in the Gram-positive 

bacterium Streptococcus pneumoniae. Contrastingly, the DUF1975 of GtfA fulfills a 

different enzymatic purpose than the DUF of TarM by binding the substrate and 
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interacting with the glycosyltransferase GtfB. TarS forms a ternary complex by a 

“hanging-basket” fold (Sobhanifar et al., 2016). The tandem C-terminal trimerization 

domain resembles the carbohydrate binding module (CBM) from pullulunase (Xu et al., 

2014). Although TarP shows high similarity to TarS in the N-terminal 

glycosyltransferase domain, it is lacking its CBM-like trimerization domain. Instead, 

TarP features a short α-helical C-terminal domain, which facilitates the multimerization 

of the monomers. These three biochemical diverse trimerization domains that lead to 

the same physiological outcome resemble an interesting example of convergent 

evolution. By selective mutagenesis of the trimerization domain, mutation G117R for 

TarM (Sobhanifar et al., 2015), I332E for TarP (Gerlach et al., 2018), and truncated 

TarS variant 1-349 (Sobhanifar et al., 2016), monomeric variants of all three enzymes 

have been generated. Strikingly they do not show a decrease in in vitro enzymatic 

activity. Thus, it appears that trimerization might be of importance for in vivo 

functionality. WTA glycosyltransferases possibly interact with other enzymes of the 

WTA biosynthesis machinery such as the RboP polymerase TarL or the transporter 

TagGH. The described trimerization domains might facilitate these interactions or 

integrate other regulatory signals. 

 

Table 1: Epidemiological and biochemical overview of RboP-WTA 

glycosyltransferases in S. aureus 

Enzyme TarS TarM TarP 

Genetic location Core genome (tar-

gene cluster) 

Core genome Prophages (lineage 

dependent) 

Enzymatic product β-1,4-GlcNAc-ribitol α-1,4-GlcNAc-ribitol β-1,3-GlcNAc-ribitol 

Glycosyltransferase 

family 

GT-A GT-B GT-A 

Trimerization domain Tandem CBM DUF1975- mainly 

antiparallel β-sheets 

α-helical domain 

Associated S. aureus 

clonal complexes 

All besides CC395 CC1, CC8, CC30 CC5, CC398 
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Conclusion: therapeutic targeting of WTA glycosyltransferases 

The constant hazard from multi-resistant bacteria to human communities and little 

prospect of new antibiotics requires the development of new anti-infectives and novel 

approaches for controlling bacterial pathogens (Brown and Wright, 2016; Tacconelli et 

al., 2018; Weidenmaier et al., 2003). WTA is a component of the S. aureus cell wall 

and mediator of virulence. Thus, it lends itself as target to the development of novel 

anti-infectiva (Brown et al., 2013; Swoboda et al., 2010). Alternative strategies for 

controlling MRSA could encompass potentiators of antibiotics, so called syncretic 

antibiotic combinations (Tyers and Wright, 2019). Recently, WTA has emerged as one 

of the key mediators of S. aureus virulence and immune interaction. WTA glycosylation 

appears to govern and fine-tune these processes. 

By identifying glycosyltransferase inhibitors (Gloster and Vocadlo, 2012) and 

investigating novel approaches in drug discovery (Gao et al., 2019) a selective 

modulation of the S. aureus WTA glycosylation state could be achieved. The 

availability of the protein structures of TarM, TarS, and TarP should support drug-

design and in silico inhibitor screenings. 

WTA is an essential prerequisite for full expression of resistance to PBP2a-conferred 

β-lactam resistance (Campbell et al., 2011; Park et al., 1974). Eventually it was shown 

that presence of β-1,4-GlcNAc modification of WTA is the essential resistance 

determinant (Brown et al., 2012). Attachment of β-GlcNAc residues to the C3 of RboP 

by TarP lead to expression of β-lactam resistance, as well (Gerlach et al., 2018). Thus, 

β-GlcNAcylation by either TarS or TarP appears to be sufficient for β-lactam 

resistance. A potential β-GlcNAc transferase inhibitor could accordingly act as β-

lactam-antibiotic potentiator, which would render MRSA susceptible to clinically used 

antibiotics such as oxacillin. Due to a similar biochemical architecture of the substrate 

binding cavity of TarS and TarP a development of a bi-valent inhibitor for both β-

GlcNAc transferases could be feasible. Human serum antibodies appear to target 

TarS-modified WTA preferentially over the TarP or TarM product leading to increased 

phagocytosis of TarS-WTA expressing strains. Selective targeting of the alternative 

glycosyltransferases TarM and TarP would render MRSA more susceptible to the 

human immune system. It remains debatable how effective natural human anti-WTA 

IgG are in protection against S. aureus infections (Missiakas, 2019). Lehar et al. 
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described that prophylactic administration of anti-WTA IgG in mice did not protect them 

from an intravenous S. aureus infection (Lehar et al., 2015), whereas other researchers 

found evidence for protection by anti-WTA-antibodies against MRSA infections 

(Takahashi et al., 2013). 

Inhibition of the alternative glycosyltransferases, TarM and TarP, could render MRSA 

additionally susceptible to 44AHJD-like podovirus, which might be administered as 

therapeutic agents. In the age of failing antibiotics phage therapy is an often considered 

alternative medical approach (Gordillo Altamirano and Barr, 2019; Kortright et al., 

2019). Nevertheless, instead of sensitizing MRSA to 44AHJD-like podoviruses, lytic 

phages with a broader host spectrum such as phage K appear to be more promising. 

However, the use of polyvalent Myoviridae might also harm commensal staphylococci. 

Hence, cost and benefits should be weighted before administration. 

An alternative strategy of combatting S. aureus infections are vaccines consisting of 

selected S. aureus antigens or antibodies directed against S. aureus epitopes 

(Missiakas and Schneewind, 2016). Early approaches targeted S. aureus CPS, a 

decision that was likely influenced by the success of CPS-based vaccines against 

Streptococcus pneumoniae and other pathogens (Black et al., 2000). Coupling of 

carbohydrates to immunogenic carrier proteins allows carbohydrate-recognizing B 

cells to activate T cells that are specific for the CPS carrier protein. This activation is 

considered to lead to B-cell differentiation and Ig class switch (Rappuoli and De 

Gregorio, 2011). The vaccine StaphVAX is composed of type 5 and type 8 CPS 

conjugated to a carrier protein (Fattom et al., 2004). However, StaphVAX failed to 

protect at-risk patients from S. aureus bacteremia (Shinefield et al., 2002) or nasal 

colonization (Creech et al., 2009). Contributing to this failure might be the fact that 

many critical S. aureus clones, among them USA300, do not express CPS (Boyle-

Vavra et al., 2015). This would be in agreement with the observation from Verkaik et 

al. that maternal anti-S. aureus antibodies do not protect from nasal colonization of 

infants (Verkaik et al., 2010). Other strategies focused on proteinaceous S. aureus 

antigens such as the iron acquisition factor IsdB (Torres et al., 2006). A therapeutic 

efficacy of an IsdB vaccine could not been demonstrated (Fowler et al., 2013). 

WTA would lend itself as promising antigen to be included in an anti-S. aureus vaccine. 

WTA, like CPS, shows intrinsic immunogenicity, which is a rare feature of 
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carbohydrates. Additionally WTA is more essential than CPS to S. aureus virulence, 

which is underlined by absence of CPS in the major North American clone USA300 

(Boyle-Vavra et al., 2015). Recent advances in glycochemistry allow the synthesis of 

WTA-like oligosaccharides (Driguez et al., 2017; Gerlach et al., 2018) that could be 

used as antigens. In a patent application, Driguez et al. have been able to couple 

synthetic and isolated WTA to carrier proteins and elicit a robust IgG response in mice 

(Driguez et al., 2017). Interestingly, it was observed that TarS-modified WTA coupled 

to a carrier protein led to higher cross reactivity against the TarM- or TarP-epitope than 

vice-versa. This points to different levels of immunogenicity of GlcNAc modifications, 

as well. Creation of an effective S. aureus vaccine is a long-sought therapeutic goal. 

The multitude of S. aureus-produced immune modulatory factors, among them WTA 

and toxins further complicates this quest. Thus, additional study of the immune 

modulation capabilities of surface polysaccharide is mandatory. 
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REPLYING TO R. van Dalen et al. Nature https://doi.org/10.1038/s41586-019-1416-8 

(2019) 

Recently, we described (Gerlach et al., 2018) that the shift of an N-acetylglucosamine 

(GlcNAc) group from the C4 to the C3 atom of the ribitol-phosphate (RboP)-repeating 

unit of the wall teichoic acid (WTA) of Staphylococcus aureus strongly reduced the 

capacity of mice to mount a protective IgG response. This finding was consistent with 

the low levels of IgG directed against the altered WTA that were found in human sera 

(Gerlach et al., 2018). The unusual glycosylation pattern of WTA was introduced by 

the enzyme TarP, which is expressed by prophages that are found in many major 

methicillin-resistant S. aureus lineages and we found that this unusual glycosylation 

pattern of WTA increases the capacity of this pathogen to evade recognition by the 

adaptive immune system. In the accompanying Comment (van Dalen et al., 2019), van 

Dalen et al. provide new experimental data, highlight a recent patent application that 

uses TarP-modified, protein-conjugated WTA as a vaccine antigen against S. aureus 

(Driguez et al., 2017) and conclude that TarP-modified WTA (TarP–WTA), conjugated 

to a suitable carrier protein, should remain on the list of promising vaccine candidates. 

Glycopolymers—such as lipopolysaccharides (in Gram-negative bacteria), teichoic 

acids (in Gram-positive bacteria) or capsular polysaccharides—dominate the 

molecular composition of bacterial surfaces and are promising antigens for protective 

immune responses, because glycopolymers are composed of highly repetitive and 

largely invariant glycoepitopes (Hutter and Lepenies, 2015) that are often species or 

strain-specific. However, glycopolymers are generally difficult to target by adaptive 

immune responses, because only under certain circumstances can antigen-presenting 

cells effectively present such polymers and this has important consequences for the 

responses of B and T cells. Glycopolymers are potent antigens when covalently 

conjugated to carrier proteins that facilitate their presentation, for example, in vaccines 

directed against Haemophilus influenceae, Neisseria meningitidis, Streptococcus 

pneumoniae or Salmonella typhi (Rappuoli, 2018). Furthermore, some bacterial 

glycopolymers can be presented in major histocompatibility complex (MHC) class II 

molecules and stimulate lymphocytes without conjugation to carrier proteins. These 

include the capsular polysaccharides of Bacteroides fragilis, S. aureus and S. 

pneumonia (Kalka-Moll et al., 2002), and WTA of S. aureus (Wanner et al., 2017; 

Weidenmaier et al., 2010). However, the capacity to present native, unconjugated 
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glycopolymers depends on certain structural features of these molecules that include 

zwitterionic properties6. The exact structural requirements and molecular mechanisms 

that are necessary for MHC class II presentation remain poorly understood. 

We appreciate the contribution of van Dalen et al. (van Dalen et al., 2019) and agree 

with most of the points made in the Comment. The described experimental set-up is 

based on IgG that binds either to beads or to enzyme-linked immunosorbent assay 

(ELISA) plates that are coated with semi-synthetic WTA. The study demonstrates that 

TarP–WTA is bound by IgG from human sera at a much lower level than TarS–WTA. 

The observed differences are in fact similar to those found in our previously published 

paper using whole bacterial cells (Gerlach et al., 2018), thereby supporting our 

findings. The assay system of van Dalen et al. (van Dalen et al., 2019) enables the 

quantification of IgG–WTA binding in the absence of other S. aureus antigens, with a 

much lower amount of background binding. However, we do not fully agree with all of 

the conclusions that were drawn by van Dalen et al. (van Dalen et al., 2019). 

First, van Dalen et al. (van Dalen et al., 2019) conclude based on the fact that TarP–

WTA binds to much lower, but still reasonable, amounts of human serum IgG that 

TarP–WTA must be immunogenic in humans, which is in contrast to our previous 

findings1 that native, unconjugated TarP–WTA was not or only weakly immunogenic 

in mice. It should be noted that van Dalen et al. (van Dalen et al., 2019) showed that 

several monoclonal antibodies directed against WTA, modified by the housekeeping 

glycosyltransferase TarS (Brown et al., 2012) (TarS–WTA; Fig. 1), cross-reacted with 

TarP-WTA. Thus, the comparatively low level of TarP–WTA binding by antibodies from 

human serum could be due to limited cross-reactivity of human antibodies, which use 

TarS–WTA as their major antigen, and it does not necessarily mean that native TarP–

WTA is immunogenic in humans. 
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Fig. 1: Structure of S. aureus WTA and its variation by different GlcNAc transferases.  The three 

identified RboP WTA variants generated by the glycosyltransferases TarS, TarP and TarM are 

shown. ManNAc, N-acetylmannosamine. 

Second, van Dalen et al. (van Dalen et al., 2019) suggest that the selection of our 

human serum samples may have biased the results, because we used, in one 

of the IgG-binding experiments, human IgG that was enriched for binding to 

WTA from an S. aureus strain that lacked tarP. We would like to emphasize that 

we also showed five other non-enriched human serum preparations, which were 

pooled or from individual donors, all of which consistently showed the characteristic 

difference in IgG binding to TarP–WTA compared to TarS–WTA, albeit with the 

expected individual variation1. As outlined above, the relative differences in binding of 

human serum IgG to TarP–WTA and TarS–WTA are quite similar in both the study 

described by van Dalen et al. (van Dalen et al., 2019) and our previous study (Gerlach 

et al., 2018). 

van Dalen et al. (van Dalen et al., 2019) also highlighted the recent patent filed by 

Driguez and colleagues (Driguez et al., 2017), in which the authors analysed the 

immunogenic potential of unconjugated and conjugated WTA variants. The 

study described in the patent (Driguez et al., 2017) reported that after conjugation 

with a carrier protein, a robust IgG response was elicited by vaccination of mice 

https://www.nature.com/articles/s41586-019-1417-7#ref-CR1
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with synthetic TarP–WTA or TarS–WTA oligomers. By contrast, neither of the 

two types of WTA provoked an IgG response as unconjugated molecules, which 

partly contradicts the results of our previous study, in which we show that native 

TarS–WTA, but not TarP–WTA, has strong immunogenicity (Gerlach et al., 2018). 

It should be noted that the unconjugated TarS–WTA and TarP–WTA preparations used 

in the study described in the patent were devoid of D-alanine residues, which introduce 

positive charges into the otherwise negatively charged repeating units of WTA 

(Peschel et al., 1999). Accordingly, 1H-NMR data of the isolated WTA showed no 

presence of D-alanine residues (Driguez et al., 2017). Consequently, the WTA 

molecules were not zwitterionic and had probably lost the capacity to be presented 

by MHC class II molecules and to activate lymphocytes. By contrast, our WTA 

preparations had maintained the D-alanine esters as confirmed by NMR 

analysis , which may have been the reason for the observed immunogenicity of 

unconjugated TarS–WTA. 

Lastly, we are excited about the findings of van Dalen et al. (van Dalen et al., 

2019) using S. aureus WTA modified by the alternative glycosyltransferase TarM, 

which modifies RboP-repeating units with GlcNAc in the α configuration (Xia et al., 

2010) (rather than TarS or TarP, which mediated modifications in the β configuration 

(Gerlach et al., 2018) (Fig. 1)). TarM–WTA showed even weaker binding by human 

serum antibodies than TarP–WTA, suggesting that TarM, which is found in a 

number of clonal lineages of S. aureus, may have an even stronger influence 

on the immune evasion abilities of S. aureus than TarP. 

In conclusion, the findings described by van Dalen et al. (van Dalen et al., 2019) and 

in our previous study (Gerlach et al., 2018) are highly congruent, although using 

different serum preparations and different experimental strategies. The focus on 

results from the recent patent of Driguez et al. (Driguez et al., 2017) demonstrates that 

even TarP–WTA can be a potent antigen for a protective vaccine when conjugated 

to a suitable carrier protein. We therefore agree that glycosylated WTA should 

not be discarded as a vaccine antigen, because it is highly abundant at the 

bacterial surface and could be a suitable target for opsonic antibodies. The 

discovery of TarP and its influence on immune recognition adds another 

https://www.nature.com/articles/s41586-019-1417-7#Fig1
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important pathogenicity factor to the virulence factor arsenal of S. aureus and it 

underscores the importance of adaptive immunity and the evasion of the 

adaptive immune system by S. aureus during infections with this pathogen. 

D.G., Y.G., T.S. and A.P. contributed to drafting and reviewing the data, and 

wrote the Reply. The other authors of the original study (Gerlach et al., 2018) were 

not involved in the preparation of this Reply. 
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Chapter 2: Structural and Enzymatic Analysis of TarM 

Glycosyltransferase from Staphylococcus aureus Reveals an 

Oligomeric Protein Specific for the Glycosylation of Wall 

Teichoic Acid 

For this publication, I generated the bacterial strains and plasmids (pRB474 or 

pBAD201) encoding the following TarM mutants: K136S, N138Q, N180W, 

V159Y/C164R, K136S/ V159Y/C164R. Furthermore, I created Figure 1, and performed 

and established the assays portrayed in Figure 5A and E. 

 

Chapter 3: An accessory wall teichoic acid 

glycosyltransferase protects Staphylococcus aureus from the 

lytic activity of Podoviridae 

I performed the experiment depicted in Figure 1b and I contributed to the data in 

depicted in Supplementary Figure S1 and S2. The mutant S. aureus RN4220 ΔsrtA 

was generated by me. 

 

Chapter 4: Methicillin-resistant Staphylococcus aureus alters 

cell wall glycosylation to evade immunity 

I created all S. aureus mutants for this publication at times with technical support from 
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