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1. Introduction 

1.1 General introduction to the eye 

The organ of vision is situated in the orbita and composed of the eye ball, accessory 

visual structures, protecting parts such as muscles, blood vessels and nerves. The eye is 

vascularised by the arteria and vena ophtalmica. The optical nerve, which is the second 

cranial nerve, leads from the eye ball to the area striata of the brain. At the chiasma 

opticum, nasal fibres of the retina cross to the other side. The eye lid protects the eye 

ball and distributes the tear film that is manly produced by the lacrimal gland. The 

drainage of the tear film is enabled through the canaliculi lacrimales in the medial 

corner of the eye. Outer skeletal muscles enable the movement of the eye ball in each 

direction. The inner smooth muscles are responsible for accommodation and 

pupillomotorics. 

The eyeball is surrounded by a tissue composed of three layers. The outer layer is called 

tunica fibrosa and can be divided into sclera and cornea. The sclera covers the biggest 

part of the eye ball and the outer muscles insert here. The cornea is situated where light 

falls into the eye. The middle layer, named tunica vasculosa or uvea, is divided into 

three parts: choroidea, ciliary body and iris. The choroidea contains vessels that supply 

oxygen and nutrients to the layers that are situated nearby. Towards the front of the eye, 

the ciliary body is located. This enables accommodation of the eye by moving the lens 

and produces the aqueous humor. The last part is the iris, which is coloured and 

regulates the width of the pupil. The most inner layer, the tunica interna, can be divided 

into the retina and pigment epithelium. The retina is composed of nine cell layers. The 

first layer, that is located at the outer part of the eye ball, is the layer containing the 

sensory cells, namely rods and cones. There are 120 million rods that are responsible 

for scotopic vision by weak illumination and 6 million cones for photopic vision. In the 

other layers, neurons of the visual pathway are located that enable synaptic contact 

beneath each other and enable the first processing of the incoming signals. On the retina 

there are several special landmarks. Firstly, the blind spot is the place in the back of the 

eye ball where the optic nerve leaves the eye. Here, no sensory cells are located and no 

visual perception is possible. In contrast, the most sensitive place, the macula lutea area 

and in particular its centre, the fovea, can be found at the intersection of the back of the 
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eye ball and the orbita axis. At this point only cones are situated, causing it to be the 

place with the highest visual acuity and sharpest view. 

The inner structure of the eye ball can be divided into anterior and posterior chamber. 

They are separated by the iris and communicate over the pupil. The posterior chamber 

contains the lens and the vitreous body. Through the ciliary body the lens is able to 

change its shape, thereby enabling sharp vision. The aqueous humor is produced by the 

ciliary body and flows from the posterior chamber through the pupil into the anterior 

chamber. The anterior chamber reaches from the back of the cornea to the iris. In the 

angel between iris and cornea the aqueous humor is drained to the Schlemm’s canal 

(Schlote et al., 2004). 
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1.2 Glaucoma 

The most common blinding illnesses of the visual system are cataract, glaucoma and 

age-related macular degeneration (Pascolini and Mariotti, 2012). All can harm vision 

seriously and greatly reduce life quality. Cataract and age-related macular degeneration 

will be shortly discussed before introducing glaucoma. 

Cataract is the most frequent cause of blindness worldwide and characterised by an 

increased opacity of the lens. Sharp vision is reduced and the perception of contrasts 

hindered. Cataract especially occurs in elderly, but also earlier and congenital forms 

exist. The disease is not treatable with topical drug application but only by surgery. 

After removal of the clouded lens, an artificial lens can be inserted and thus the cataract 

is treated efficiently (West, 2007) (Schlote et al., 2004). 

Age-related macular degeneration leads to a progressive loss of central vision. Thereby, 

extracellular degradation products accumulate and cause dysfunction of the retinal 

pigmented epithelial cells and the photoreceptors. This leads to atrophy of pigment 

epithelia and photoreceptors, the so-called dry or non-exudative form or to choroidal 

neovascularisation, representing the wet or exudative form. Therapy generally aims 

only to slow down disease progression as causal treatment does not exist up to now. 

However, for dry age-related macular degeneration, there is no therapy. The wet form is 

most commonly treated by anti-vascular endothelial growth factors that are applied 

intravitreally supressing abnormal growth of blood vessels as well as laser coagulation 

or photodynamic therapy (Zajac-Pytrus et al., 2015) (Schlote et al., 2004). 

Glaucoma is the second leading cause of blindness worldwide after cataract. In contrast 

to cataract, blindness caused by glaucoma is irreversible which makes it even more 

important to treat before permanent damage is done or if this is not possible anymore, to 

preserve the remaining vision. In general, glaucoma is treated by applying topical drugs 

with pressure lowering effects or by pressure lowering surgery when drops do not 

provide adequate pressure control. Surgery, however, is associated with certain risky 

and has a tendency for failure. Worldwide, 64.3 million people are affected by the 

disease, with a prevalence of up to 3.54% for people aged 40-80 years. In Europe, 6.77 

million people (2.93%) are affected. In contrast, Asians and Africans are more likely to 

develop glaucoma and as such the prevalence in these regions is much higher than in 
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Europe. It is expected that in 2040 there will be 112 million people suffering from 

glaucoma, from which 7.85 million will be living in Europe (Tham et al., 2014). 

Glaucoma is a group of diseases that leads to damage of the optic nerve and thereby 

results in loss of the visual field. It is often accompanied with an elevated intraocular 

pressure (IOP), although there is also a normal tension glaucoma variant. There are 

several types of glaucoma. First, one differentiates between primary and secondary 

glaucoma. The latter is the result of another (eye) disease or can be a side effect of 

medical treatment. Two subtypes of primary glaucoma are known, namely the primary 

open angle glaucoma and the primary angle closure glaucoma (Weinreb et al., 2014). 

This classification relates to the pathophysiology underlying the disease and becomes 

better understandable when having a closer look at the aqueous humor flow of the eye. 

In a healthy eye the aqueous humor is produced by the ciliary processes and flows 

through the pupil from the posterior chamber to the anterior chamber. There, most of it 

is absorbed by the trabecular meshwork, Schlemm’s canal, collector channels and 

episcleral venous system. Also part of the aqueous humor is evacuated from the eye via 

the uveoscleral pathway. 

Primary open angle glaucoma is caused by obstruction of the trabecular meshwork and 

leads to a chronic and progressive increase in IOP, which is most often only noted by 

the patient when vision problems appear. On the other hand, blockage of the uveoscleral 

pathway and the iridocorneal angle result in primary closed angle glaucoma, which can 

lead to a sudden increase in IOP and painful glaucoma attacks. Both types lead to 

decreased aqueous humor drainage, hence to an increase in IOP which in turn leads to 

retinal ganglion cell death. Retinal ganglion cells and their axons constitute the third 

neuron and form the optic nerve. The death of retinal ganglion cells lead to reduced 

vision and a typical form of glaucomatous optic disc cupping (Weinreb et al., 2014). 

Criteria for diagnosis of primary open angle glaucoma are the typical optic nerve 

damage, corresponding visual field scotomas and temporary increased IOP. The IOP of 

a healthy eye generally ranges between 10 and 21 mmHg (BVA and DOG, 2006) 

(Schlote et al., 2004). 
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The loss of vision starts slowly and is often compensated by the other eye, if this is not 

affected too. Because of this and since the disease is painless most of the times the 

effects often remain unnoticed for a long time, especially for primary open angle 

glaucoma. Most patients describe their loss in vision as having a blurred vision or 

missing spots. One out of four patients does not notice a loss of vision at all (Crabb et 

al., 2013). Nevertheless, the loss of vision in glaucoma is progressive and if kept 

untreated often leads to blindness (Peters et al., 2013). 

 

1.2.1 Glaucoma treatment 

Disease treatment of glaucoma generally aims to lower the IOP, thereby minimizing the 

risk of (further) damage to vision and improving the quality of life of patients. This is 

the only proven protective factor against further visual field loss, optic nerve damage 

and thus the progression of glaucoma (Boland et al., 2013) (Leske et al., 2003). Patients 

receiving IOP lowering medication are less likely to show a progression of the disease 

compared to untreated patients and symptoms occur later (Maier et al., 2005) (Heijl et 

al., 2002). These studies further underline the fact that treatment is essential to prevent 

progression of the disease. 

To control the IOP in people suffering from glaucoma, both pharmaceutical as well as 

surgical approaches exist, either aiming at decreasing production of aqueous humor or 

increasing the outflow through the uveoscleral pathway. 

Glaucoma treatment with surgical interventions 

Surgical interventions are considered as second line therapy and especially employed 

when topical medication does not have the desired IOP lowering effect, severe side 

effects appear or the patient is unable to adhere to the prescribed dropping scheme. 

Here, several approaches exist. Some of the most common types of glaucoma surgery 

are described in the following: 

Laser trabeculoplasty results in an increased outflow of aqueous humor. Laser ciliary 

body ablation destroys parts of the ciliary body that normally produces the aqueous 

humor. In most cases, this intervention can only reduce the number of additional topical 

treatments. Aside from laser mediated treatment, also surgical interventions are an 
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option. For non-penetrating surgical intervention as sclerectomy and viscocanalostomy, 

drainage can be enabled via the conjunctiva, a naturally occurring membrane, which 

also restricts the outflow (Crawley et al., 2012). Penetrating surgery such as 

trabeculectomy or the installation of an aqueous shunt drain the aqueous humor from 

the eye to a bleb of conjunctival tissue (Weinreb et al., 2014). The surgery effect in 

general is time limited and decreases over time. 84% of patients without medical 

glaucoma treatment reach IOP values below 21 mmHg (Edmunds et al., 2001). 

However, clinical failure of trabeculotomy and aqueous shunts was experienced at 

around 10% per year (Minckler et al., 2008). 

Topical glaucoma treatment 

Despite surgical possibilities, generally eye drops are prescribed for treatment as they 

present a noninvasive, self-administrable therapy option for which the patient does not 

need any medical assistance. 

Different classes of drugs are available for topical glaucoma treatment. Reduction of 

IOP can be achieved by either decreased production or increased outflow of aqueous 

humor. Decreased production of aqueous humor can be achieved by pharmacological 

modification of adrenoreceptors, carbonic anhydrase and adenosine triphosphatases that 

are located in the aqueous humor producing tissues. Increased outflow of aqueous 

humor results from modification of adrenorecptors and prostanoid receptors. These are 

situated on the trabecular meshwork and the ciliary body (Crawley et al., 2012). 

There are five major classes of anti-glaucoma drugs that should be mentioned: 

Prostaglandins, β-blockers, carbonic anhydrase inhibitors, parasympathomimetics and 

α2-selective agonists. In the following each class will be presented shortly together with 

IOP lowering effects and side effects (van der Valk et al., 2005) (van der Valk et al., 

2009). 

Prostaglandins are today’s first line drugs for glaucoma treatment. Examples are 

bimatoprost, latanoprost and travoprost. Especially the fact that they are dosed only 

once a day makes them today’s first-line medication. The IOP reduction is around 25-

32% and achieved by increasing the outflow via the trabecular such as uveoscleral 
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pathway (Bahler et al., 2008). Possible side effects range from conjunctival hyperemia, 

increased growth of eye lashes, anterior uveitis to upper lid ptosis (Alm et al., 2008). 

The class of β-blockers can be divided into non-selective (e.g. timolol) and selective β1-

blockers (e.g. betaxolol) that are dosed twice a day and reduce IOP by 17-28%. Both 

decrease the production of aqueous humor (Volotinen et al., 2011). Timolol bears some 

quite important side effects such as bradycardia, nocturnal arterial hypotension and 

bronchospasm (Pratt et al., 2015) (Kirwan et al., 2002) (Hayreh et al., 1999). 

Carbonic anhydrase inhibitors can be applied as topic formulations (e.g. brinzolamide) 

two to three times a day and decrease the aqueous humor production. As side effects of 

brinzolamide discomfort, blurred vision and headache can be experienced (Sall, 2000). 

Next to topical carbonic anhydrase inhibitors, also systemic formulations exist (e.g. 

methacetolamide) which may lead to more severe side effects (Schuman, 2000). 

Pilocarpine is a parasympathomimetic that is used since the 19
th

 century. It leads to 

miosis and increases the outflow of aqueous humor. Possible side effects are 

accommodative blur and atypical band keratopathy (Wu et al., 2011) 

Brimonidine is an example for an α2-adrenergic agonists and decreases the IOP around 

14-21% by both lowering the aqueous production and increasing the outflow through 

the uveoscleral pathway (Greenfield et al., 1997) (Toris et al., 1995). The dosing 

scheme is twice a day and current side effects are burning, stinging, blurred vision, dry 

mouth and fatigue (Derick et al., 1997). 

When ranking the presented drugs regarding their ability to lower IOP (peak), the 

following order is presented: bimatoprost, latanoprost, travoprost, brimonidine, timolol, 

dorzolamid, betaxolol, brinzoloamid. Regarding this ranking and the absolute numbers 

of the IOP reduction ability (peak), brimonidine reveals better results as timolol. 

However, no statistically difference between brimonidine and timolol was found (van 

der Valk et al., 2009). 

So far only single drug formulations have been presented. However, especially in recent 

years a wide range of fixed combinations have been launched. Here the achieved levels 

of IOP reduction compared to the single drugs vary between formulations (Sall et al., 
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2003) (Webers et al., 2010). When two or more drugs are applied, side effects of all are 

possible. Nevertheless, the patient only needs to drop fixed combinations once, which 

will positively influence the compliance. 

Brimonidine for glaucoma treatment 

As brimonidine is a very well established drug and possesses several advantages over 

other options, a closer look will be taken at this drug. It achieves an IOP reduction 

comparable to most other anti-glaucoma drugs (van der Valk et al., 2005). For example, 

when compared to latanoprost applied once a day, brimonidine dosed twice daily is 

more effective in reaching a targeted IOP (85% vs 65%) (DuBiner et al., 2001). 

However, there are also reviews contradicting these findings and reporting that 

latanoprost has a significant higher ability to reduce IOP than brimonidine (Fung et al., 

2007). Furthermore, in a direct comparison between brimonidine and timolol, both 

dropped twice a day, the prior drug revealed more side effects but resulted in less visual 

field loss (Krupin et al., 2011). Also, as adjunctive therapy to β-blockers or 

timolol/dorzolamide, latanoprost and brimonidine achieve comparable results. 

However, side effects are slightly more often reported in latonoprost-treated patients 

(Akman et al., 2004) (Simmons and Earl, 2002). 

As outlined above, brimonidine reduces the IOP by both lowering the aqueous 

production and increasing the outflow through the uveoscleral pathway (Greenfield et 

al., 1997) (Toris et al., 1995). However, when applying the drug in long-term treatment, 

the IOP reduction is mainly due to the increased outflow. The decreasing effect on the 

production of aqueous humor drops after a certain time of treatment. This may be due to 

a new steady state regarding the by brimonidine evoked vasoconstriction or a loss of 

sensibility of α2-adrenergic receptors (Toris et al., 1999). Side effects reported can be 

explained easily when bearing in mind that brimonidine is a sympathomimetic drug 

with affinity to the α2-adrenoceptor. Effects on the central nervous system are sedation 

and hypotonia, influences on the peripheral function include vasoconstriction. 

Experienced side effects upon the use of topical brimonidine include stinging, burning, 

dry mouth, blurred vision and fatigue. These effects are more pronounced with higher 

concentrations of brimonidine (Derick et al., 1997). Finally, the drug is contraindicated 

for use in children and infants below the age of two years. Side effects are frequent at 
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that age. Brimonidine in children might cause sleepiness and lethargy, beside the 

already mentioned possible side effects. These side effects are caused by the fact that 

brimonidine is able to pass the blood-brain barrier and thus can cause effects on the 

central nervous system (Al-Shahwan et al., 2005) (Enyedi and Freedman, 2001). Next 

to the use in ophthalmology, brimonidine is also used as a gel to treat rosacea, a 

dermatological disease. 

Next to the IOP lowering effect, brimonidine was shown to have a neuroprotective 

effect. This is independent of the IOP lowering ability and is significantly larger than 

the effects found for latanoprost (Hernandez et al., 2008) (Ahmed et al., 2001). 

Unfortunately, real proof for neuroprotection has only been shown in animal models 

and the effects in human still needs to be confirmed. Nevertheless, with current 

developments in delivery vehicles that allow an increased bioavailability at the retina, 

there is good hope that these effects might soon be measureable in primates. 

Comparison of surgical and topical treatment 

Surgical approaches are especially envisaged for patients without the desired IOP 

lowering effect for topical application, who suffer from side effects or are unable to 

adhere to the dropping scheme. In general, topical treatment and surgical approaches 

achieve comparable results in long term effects. However, surgery has a 3% higher 

chance leading to blindness after 10 years. Patients are mainly concerned about the long 

time outcome and not about the mode to achieve this, even if topical treatment often 

includes a lifelong need of medication (Bhargava et al., 2006). Next to non-invasivity 

this is one reason why topical formulations are first line therapy. 

Difficulties in topical treatment of eye diseases 

Despite the prevalent use of eye drops, this application form is burdened with several 

problems. Firstly, after application of the topical treatment the major part of the eye 

drop is cleared away from the cornea and never reaches the targeted tissue (Amrite et 

al., 2008). The bioavailability is only 1 to 5% for hydrophobic drugs and below 0.5% 

for hydrophilic substances. This is caused by the architecture of the cornea, the 

clearance by tear flow and eye movements (Zhang et al., 2004). Due to this poor 

bioavailability and effectiveness, it is necessary to administer eye drops at high 

concentrations and with a high frequency. The frequent need of application results in a 
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poor compliance, as patients increasingly disobey the doctor’s advice at higher dosing 

regimens. Some authors mention the high frequency of drop application as one of the 

main reasons for poor compliance and concluded that monotherapy has a strongly 

beneficial effect. Hence, a lower dropping frequency and simpler dropping scheme are 

easier to handle for patients and improve the effect of the therapy. (Dietlein et al., 2016) 

(Hermann et al., 2011) (Tsai, 2009) (Tsai, 2006). Indeed, this is also the major reason 

why prostaglandins are currently the first line treatment option for glaucoma. Next to 

this, there are drug associated problems. The need of highly concentrated eye drops also 

causes side effects ranging from simple local reactions to more serious allergic reactions 

(Osborne et al., 2005) (Bowman et al., 2004). Finally, the handling and administration 

of eye drops is difficult due to motoric disabilities or reduced vision of many patients. 

Some even need to rely on other people to give them their medication (Tsai et al., 2007) 

(Winfield et al., 1990). For an ideal (topic) treatment, the frequency and concentration 

of topical treatment should be as low as possible and should require in the best only one 

drug. However, due to the inefficiency of eye drops, this ideal treatment is still far 

away.  
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1.3 Improving topical treatment 

To enhance the efficacy of glaucoma treatment, different improvements of eye drops 

have been investigated. One way to improve the uptake of drug is to extend the time of 

contact to the cornea. Different application forms such as emulsions, suspensions or 

ointments are available. The latter often cause blurred vision and irritation. Also altered 

viscosity can improve the bioavailability. One example to achieve this is hyaluronic 

acid. It is a polysaccharide that expresses a three dimensional structure and is able to 

bind water. Next to its use as additive to drug containing solutions, there are also anti-

glaucoma drug containing hyaluronan complexes improving the bioavailability 

(Battistini et al., 2017). Hyaluronic acid is also used in treatment of the dry eye disease. 

Although it is relatively well tolerated, solutions with increased viscosity cause blurred 

vision and as a consequence result in a decreased compliance (Baranowski et al., 2014). 

Furthermore, substances that increase the permeability of the cornea have been used in 

the past to increase the therapeutic effects. However, most of them are toxic, like 

benzalkonium chloride (de Jong et al., 1994), and in recent years there has been a 

tendency to remove them from formulations. Moreover, non-invasive sustained release 

devices, in-situ gelling systems and implants have been developed. They all release the 

drug over a prolonged period of time and acts as depot. The focus of side effects here is 

especially the foreign body sensation (Baranowski et al., 2014). Blurred vision, 

increased tearing and foreign body sensation reduces compliance and hence, the aim of 

a better therapy is not reached. 

 

1.3.1 Nanoparticles in medicine 

One novel and very promising approach to solve the before mentioned problems in 

topical treatment is the use of nanoparticles (NPs). NPs are defined as objects that are 

sized between 1 and 100 nm. They are employed in many aspects of daily life, such as 

in toothpaste or disinfectants. For the production of NPs, a vast amount of materials and 

assembly mechanisms are available, opening a large variety of possibilities for diseases 

treatment. Many materials come into consideration for the synthesis of NPs. Roughly 

they can be divided in two groups: inorganic and organic materials. Examples for 

inorganic materials are metal oxides, gold and silver (Austin et al., 2015). Organic 
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materials are carbon based compounds and include most polymers, proteins and DNA. 

Additionally, NPs can also be fabricated from a combination of materials. NPs of 

various shapes can be realized such as simple geometric forms or more complex ones 

like wires, tubes, monolayers or micelles (Ju-Nam and Lead, 2008). In medicine, NPs 

can be used for diagnosis, drug and gene delivery and tissue targeting. A main field of 

research and application is the diagnosis and treatment of cancer (Murthy, 2007) 

(Salata, 2004). 

In ophthalmology NPs are applied to treat various diseases, e.g. diabetic macular 

oedema or glaucoma. Many NP carrier systems have been reported to be successful in 

animals’ experiments. Diclofenac, a nonsteroidal anti-inflammatory drug, has been 

successfully assessed with solid lipid NPs and has shown higher intraocular 

concentrations than commercial drug after injection in the eyes of rabbits (Abrishami et 

al., 2016). Albumin carriers loaded with ganciclovir, an anti-viral drug, revealed to be 

safe NPs after intravitreal application in rats (Merodio et al., 2002). In humans, γ-

cyclodextrin NPs loaded with dexamethasone have been successfully assessed for the 

therapy of diabetic macular oedema. Compared to triamcinolone that is injected into the 

eye, this new approach that is applied as topical treatment revealed comparable results 

(Johannesson et al., 2014). First promising approaches were done to employ these NP 

also to other diseases like macular oedema and vitritis (Shulman et al., 2015). For 

glaucoma different approaches to improve therapy by using NPs or nanotechnology 

exist. Brinzolamide was successfully established as a formulation with nanocrystals and 

its IOP lowering effect in rats proven (Tuomela et al., 2014). Brimonidine tartrate 

loaded in for example poly (ethacrylate, methylmetacrylate and chlorotrimethyl 

ammonioethyl methacrylate) NPs revealed IOP reduction in glaucomatous rabbit eyes 

superior to that of conventional eye drops (Bhagav et al., 2011). 

 

1.3.2 DNA nanoparticle and their use in medicine 

Especially inorganic materials bear the problem that they may accumulate in the body 

as they are not biodegradable and can cause toxic effects (Austin et al., 2015). Whereas 

organic materials, like DNA, is biodegradable and in the best made of substances 

known to the human body. Thus, DNA is a very attractive material due to its excellent 
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biocompatibility. The assembly procedure of DNA based NPs are relatively simple as 

only a heat gradient is needed to hybridize the NPs in the desired shape (Smith, 2006). 

For manufacturing of NPs, various possibilities exist. DNA can be used in its pristine 

form or with modifications. Pristine DNA is able to load drug via intercalation. This is 

in the same time the easiest possibility to load drug into DNA as no further modification 

e.g. with lipids or aptamers is needed. Regarding the characteristics of brimonidine as 

an example, one can assume that this drug can be successfully loaded in DNA NPs 

(Figure 1). 

 

Figure 1: Chemical structure of brimonidine. Due to ring structures containing double bounds, brimonidine 

has a planar structure, which promotes effective loading into the DNA NPs. 

(https://commons.wikimedia.org/w/index.php?curid=3880893 (last accessed 16.5.2017, 8:08; public domain)) 

 

Brimonidine has a planar structure that is very well suitable for intercalation with DNA. 

This planar structure is due to the polycyclic nature of the molecule. In addition, its 

structure is also related to the structure of nucleobases. For these reasons, it is expected 

that brimonidine can easily interact with double stranded DNA, which leads to 

successful and effective loading into the investigated dsU4T NPs. 

Next to this, NP can be made of modified DNA. For example, when modifying the 

DNA with a gold binding moiety, they can be linked to gold nanorods and loaded with 

an intercalating chemotherapeutic agent, for example doxorubicin. Upon irradiation, the 

structure is heated, which causes the DNA to denaturate and thereby the drug is 

released. These hybrid NPs have been shown to be effective in drug delivery to a 

targeted tumor (Xiao et al., 2012). 

Also, the functionalization of DNA with alkyl chains is possible. Hereby amphiphilic 

molecules are created where part of the molecule is hydrophobic and part is hydrophilic. 

Due to microphase separation, these materials assemble into micellar structures in an 



25 

aqueous surrounding. Here, the hydrophobic part comprised of the lipid modification 

forms a soft core, whereas the hydrophilic DNA is sticking out of the micelle and 

forming the shell (Rösler et al., 2012) (Anaya et al., 2010). It was found, that DNA 

chains with twelve nucleotides whereof four are modified with an alkyl chain adhere 

best to the ocular surface among the tested entities. The NP were found to adhere to the 

cornea of rats for at least four hours (de Vries et al., 2018) (Herrmann, A., De Vries, J. 

W., Spitzer, M. S., & Schnichels, S. O. inventors; 2015, Means and methods for ocular 

drug delivery, International publication number: WO 2015/041520 Al, 26.3.2015). For 

the drug loading into those DNA NPs various possibilities exist (Figure 2). 

 

 

Figure 2: Formation of NPs from lipid modified DNA in aqueous environment. Several loading possibilities are 

given in a second step. Drugs can be loaded into the hydrophobic soft core (A), by covalent attachment to the 

complementary strand (B) or by elongating the complementary strand with an aptamer that binds specifically 

to the drug of interest (C) Figure (modified from original): (de Vries, 2015)(The figure is used with kind 

permission of Dr. Jan Willem de Vries), Patent: (Herrmann, A., De Vries, J. W., Spitzer, M. S., & Schnichels, 

S. O. inventors; 2015, Means and methods for ocular drug delivery, International publication number: WO 

2015/041520 Al, 26.3.2015). 
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Firstly, it is possible to load drugs that are poorly water soluble into the hydrophobic 

core of the NPs. With this kind of medication, incorporation in the hydrophobic core of 

the NPs is favourable due to the minimized interactions with water. However, this 

method is limited to hydrophobic drugs and cannot be employed for the large number of 

hydrophilic drugs, such as antibiotics. Additionally, the release properties of the drug 

cannot be influenced. 

An alternative loading method is based on the covalent attachment of the drug to the 

complementary sequence to the NP. However, the required chemical alteration of the 

drug to bind it covalently to the NP might influence the pharmaceutical activity and 

tolerance drastically. In addition, controlled cleavage of the bond between carrier and 

the drug is troublesome. 

For controlled drug loading and release, the NP can be functionalized with an aptamer 

by elongating the complementary DNA sequence. Aptamers are small pieces of DNA or 

RNA that are able to bind a drug specifically. One possibility to select those aptamers is 

the systematic evolution of ligands by exponential enrichment (SELEX). Here, a library 

of oligonucleotides is exposed to the immobilised target drug. After washing, the bound 

sequences are amplified using PCR. With the gained sequences, the procedure is 

repeated with more and more stringent washing conditions until only the strongest 

binding sequences are selected (Ellington and Szostak, 1990). Binding between the 

aptamer and the drug is based on non-covalent interaction such as hydrogen binding and 

van der Waals forces. Hence, no chemical modification of the drug is needed. This 

method does not only allow for facile loading, but also the release profile can be 

adjusted by altering the affinity. As aptamers can be developed for any target molecule, 

this NP can be modified to bind any desired drug. 

Previously, those DNA NPs were conjugated with two antibiotics: kanamycin and 

neomycin B. The loading of the antibiotics was achieved with the second here presented 

loading possibilities by elongation of the DNA strand at the 3’ end of the 

complementary strand. For those loaded NPs, a prolonged adherence could be shown 

towards rat cornea for at least 30 minutes as well as human cornea epithelium. The 

residence time of the antibiotic was estimated to be ten times longer than without the 

use of NP. No toxic effects were found in cell culture. The antibiotic activity of the drug 
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loaded NPs was tested on porcine cornea epithelium and bacteria growth was inhibited 

effectively (de Vries et al., 2018) (Herrmann, A., De Vries, J. W., Spitzer, M. S., & 

Schnichels, S. O. inventors; 2015, Means and methods for ocular drug delivery, 

International publication number: WO 2015/041520 Al, 26.3.2015). 

In this thesis, DNA NPs were functionalized with brimonidine with the aim for an 

improved glaucoma treatment.  



28 

1.4 Thesis overview and motivation 

One way to improve the therapeutic problems outlined before (chapter 1.2.1) is to 

enhance the drug delivery of topically applied ocular medication. In previous 

investigations the DNA NPs described before (chapter 1.3.2) showed a high affinity to 

the corneal tissue and for this reason would make an ideal candidate as vehicle for 

ocular drug delivery. In this thesis the use of lipid modified DNA NPs for the 

application of brimonidine will be investigated. Brimonidine is not used as first choice 

for glaucoma treatment by many physicians anymore as it needs to be administered 

repeatedly per day. In the same time it exhibits several advantages compared to other 

drugs. When loaded in NPs the drug is released over a prolonged period of time. Thus, 

the NPs serve as sort of depot. Because of the resulting higher availability and the 

longer exposure time, the dropping frequency and drug concentration could be 

decreased. This in turn results in less local and systemic side effects and an improved 

patient compliance. This is why, the use of lipid-DNA NPs as ocular drug delivery 

platform offers the opportunity to greatly enhance the treatment of glaucoma. 

In this thesis initially the loading of brimonidine into DNA NPs will be established. For 

this the loading of the drug via two methods will be investigated. First the compound 

will be incorporated in the core through hydrophobic interaction. Secondly, also the 

functionalization through the use of aptamers will be explored. As an integral part of 

both loading methods, also the release of brimonidine from the NPs is studied. In a next 

step the adherence time of NP to the cornea will be tested in-vitro and in-vivo. 

Afterwards a safety evaluation of the newly developed NPs is performed. To this extent 

the toxicity of the NPs will be screened in cell culture experiments on primary corneal 

epithelial and in an in-vivo assay on rat eyes. Finally, the stability of the NPs under 

different conditions is elucidated. These facts will be the groundwork for further studies 

to enable the formulation of DNA NP containing eye drops for human use. 
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2. Materials and methods 

Materials were purchased by commercial suppliers and used as received if not otherwise 

noted. 

 

2.1. Material 

2.1.1 Material 

 15 ml falcon tube, Falcon, Corning Inc., USA 

 96 well black plate, Falcon, BD Biosciences, USA 

 Eppendorf tubes (different sizes, plastic or glass), Eppendorf AG, Germany 

 

2.1.2 Chemicals and solutions 

 brimonidine, Sigma Aldrich, USA 

 brimonidine tartrate, Sigma-Aldrich, USA 

 Caspase-Glo 3/7 buffer and Substrate, Promega, USA 

 CellTiter 96® Aqueous One Solution Cell Proliferation Assay, Promega, USA 

 CnT-Prime epithelial cell culture Medium, CELLnTEC, Switzerland 

 crystal violet solution, Sigma Aldrich, USA 

 DAPI (4`6-diamidine-2`phenylinodole dihydrochloride), Sigma Aldrich, USA 

 dimethyl sulfoxide, Merck, Germany 

 DNAse, Sigma Aldrich, USA 

 Dulbecco’s Modified Eagle Medium F-12 Nutrient Mixture (Harn), Thermo Fisher 

Science, USA 

 fetal bovine serum, Thermo Fisher Science, USA 

 FluorSave, Calbiochem Germany 

 hydrochloric acid, Merck, Germany 

 liquid nitrogen, WestfalenGas, Germany 

 PBS (phosphate buffered saline), Thermo Scientific, USA 

 penicillin/ streptomycin, Sigma Aldrich, USA 

 PFA (paraformaldehyde), Merck, Germany 
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 Poly (I:C), Sigma Aldrich, USA 

 SDS (sodium dodecyl sulfate) Roth, Germany 

 sodium chloride, Sigma Aldrich, Germany 

 SYBR Green, Thermo Fisher Scientific, Germany 

 Tissue-Tek O.C.T., Sakura Finetek, Netherlands 

 TRIS (Tris-(hydroxymethyl)-aminomethan)-base, Sigma Aldrich, Germany 

 TUNEL In-Situ Cell Death Detection Kit, Roche, Germany 

 Tween 20, Serva, Germany 

 

2.1.3 DNA 

 Aptamer sequences, Neoventures Biotechnology Inc., Canada 

 DNA compounds, biomers, Germany 

 synthesized by a chemist in the group 

 

2.1.4 Animals and eyes 

 Adult female Lister Hooded or Brown Norway rats, Charles River, Germany 

 Pig eyes, abattoir, Gärtringen, Germany 

 

2.1.5 Machines and software 

 Cryostat: Leica CM 1900, Germany 

 DNAMAN, Version 5.2.9, Lynnon LLC., San Ramon, USA 

 Fluorescent microscope: Axioplane2 imaging®, Zeiss, Germany with Openlab 

software, Improvision, Germany 

 Fluorophotometer: Fluorotron 
TM

 Master, Ocumetrics, Langley, USA 

 Incubator: Heraeus bad 6220, Thermo scientific, USA 

 JMP 13.0.0, SAS, USA 

 Luminometer, BioTek, Synergy HT, Germany 

 Magnetic stirrer: IKA COMBIMAG RCT, Germany 
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 Microplate Reader, BioTek, Synergy HT, Germany 

 Rotary evaporator: Vacuum Concentrator BA-VC-300 H, Saur, Germany 

 Shaker: Thermomixer comfort, Eppendorf, Germany 

 Shimadzu VP series HPLC, Shimadzu, Japan with a PDA (photo diode array) 

detector and equipped with a Jupiter C4 4.6x250mm, 90 Å column 

 Spectrophotometer: Ultrospec 1000, Pharmacia Biotech, Sweden 

 Glass slides, Superfrost plus, R. Langenbrinck, Germany 

 Rubber rings, Hornbach, Germany 

 Semi-permeable membrane with a molecular weight cut-off (MWCO) of 1000 Da, 

Spectrum Laboratories, USA 
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2.2 Nanoparticles 

The here used NPs are composed of lipid-modified DNA strands. These DNA strands 

were synthesized from nucleotides and lipid-modified nucleotides, namely dodec-1-

ynyluracil, which is the nucleobase uracil that was elongated with twelve C atoms. 

Synthesis was followed by purification with reverse phase chromatography and purity 

verification using MALDI-TOF mass spectrometry. 

The NP is called U4T-12 and its sequence is UUUUGCGGATTC (5’  3’). The name 

is composed by the number of modified nucleotides (four), the location of the 

modification (T for 5’ end) and total length of the strand (twelve nucleotides). U 

represents the modified nucleotides. 33% of the nucleotides are modified, which was 

found to be the best ratio between modified and non-modified nucleotides. Through the 

modification, the DNA strand has a hydrophobic as well as a hydrophilic part. This is 

why the strand self-assemble to spherical structures, so called micelles, in aqueous 

environment (de Vries et al., 2018). These micelles are here named nanoparticle, which 

will also be the further used term. 

2.2.1 Preparation of nanoparticles 

To prepare NP with a final concentration of DNA compounds of 100 µM or 500 µM, 

lipid DNA stocks were diluted with buffer to obtain a final composition of 50 mM NaCl 

and 0.2 x TAE buffer (8 mM Tris-Acetate, 0.2 mM EDTA, 4 mM NaCl, 2.4 mM 

MgCl2, pH 8.0) in ultrapure water. This solution was thermocycled at 85°C for 30 min, 

followed by a decrease of temperature of -1 °C every two minutes until a level of 21 °C 

was reached. The sequences of used DNA entities are given (Table 1). From these basic 

entities, different NPs were prepared (Table 2). 

 

Table 1: Sequence details of the DNA entities U4T, cU4T and T4T. U represents the lipid modified nucleotide 

which is the hydrophobic entity (Anaya et al., 2010) 

name sequence (5’  3’) 

U4T UUUUGCGGATTC 

cU4T GAATCCGCAAAA 

T4T TTTTGCGGATTC 
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Table 2: Details of used NP and DNA controls without aptamer modification. The abbreviation, as well as the 

full description and the used entities are given. 

name details used entities 

ssU4T single stranded NP U4T 

dsU4T double stranded NP U4T + cU4T 

dsT4T double stranded DNA controls without lipid modification 

and thus not forming NPs 

T4T + cU4T 

 

Aside from hydrophobic loading in the NPs, also aptameric binding was performed for 

brimonidine. To this extent, a DNA aptamer was developed using the SELEX method. 

For SELEX, a library of oligonucleotides is exposed to the immobilized target drug. 

After washing, the sequences with the highest binding affinity to the target are 

amplified using PCR. With the gained sequences, the procedure is repeated with more 

and more stringent washing conditions until only the strongest binding sequences are 

selected (Ellington and Szostak, 1990). The resulting aptamer sequence of this process 

was named Bra3, is 40 nucleotides long and exhibits a stem-loop structure (Figure 3). 

Several shortened DNA sequences were deduced from Bra3 by logic design and tested 

for their binding affinity to brimonidine (Chapter 2.2.5). The shortened aptamers were 

called Bra3.1 and Bra3.2 and their sequence details (Table 3) and secondary structures 

(Figure 4) are given below. Compared to Bra3, they are truncated at the 5’-end or both 

ends to investigate in the important regions for brimonidine binding such as the 

possibility to shorten the aptamer and thus save costs. For binding to the NPs, the 

aptameric sequence was elongated on the 3’-end with the cU4T sequence. All figures of 

secondary structures were made with DNAMAN. DNAMAN was used for prediction of 

the approximated secondary structure of the aptamers, as the exact determination via 

crystolography would have taken around one year. 
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Figure 3: Secondary structure of the brimonidine binding aptamer Bra3. 

 

Table 3: Nucleotide sequences of the three investigated aptamers. Bra3.1 and 3.2 represent shortened versions 

of Bra3. The different colours represent parts of the secondary structure of Bra3: green – double stranded 

part, yellow – small closed loop, blue – big open loop. 

name sequence (5’  3’) 

Bra3  ACGTGGCACTACTTGGTACTAGTGTCGCGATGCCATGCTAC 

Bra3.1        GTGGCACTACTTGGTACTAGTGTCGCGATGCCA 

Bra3.2                               ACTTGGTACTAGTGTCGCGATGCCATGCTAC 

 

 

Figure 4: Secondary structure of the aptamers Bra 3.1 and Bra 3.2 as shortened versions of Bra3. 

 

For visualization of the NPs under the fluorescence microscope (chapter 3.3.2 and 

3.4.2) or the fluorophotometer (chapter 3.3.1), the NPs were labeled with the dye 

Atto488. The dye was bound either to cU4T or the 5’ end of the cU4T-Bra3.1 DNA 

aptamer. 
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2.2.2 Preparation of brimonidine 

Brimonidine is a hydrophobic agent and thus poorly water soluble. In current drugs 

brimonidine is formulated as its water soluble salt, brimonidine tartrate. For loading into 

the NPs, pristine brimonidine was used. 

Therefore, dry brimonidine was dissolved in pure dimethyl sulfoxide to obtain a stock 

solution of 25 mM. Therefrom defined amounts were aliquoted in 0.5 ml Eppendorf 

tubes for small scale and in 2 ml glass vials for larger scale. Both quantities were then 

placed in a rotary evaporator to remove the solvent and obtain a drug pellet. 

 

2.2.3 Loading of brimonidine in nanoparticles 

NPs and brimonidine were prepared as described before (chapter 2.2.1 and 2.2.2). The 

NP containing solution was then added on the brimonidine pellet and incubated (Figure 

5). Incubation was performed on a shaker with 750 rpm at 21 °C with protection from 

light. 

 

Figure 5: Schematic representation of loading of brimonidine into NP solution. NPs are prepared by 

combining in water solved DNA entities which are then thermocycled to enable the formation of NPs. 

Brimonidine in organic solvent is dried down to achieve a pellet. The NP solution is then added to the pellet 

and the two of them incubated over time. (Figure composed from Cliparts: http://www.clker.com (last 

accessed 15.5.17 8:00; public domain))  
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For loading investigation, samples were taken from the supernatant of the loading 

sample (n=3-5) every 12 hours for 96 hours (chapter 3.1.1) or 48 hours (chapter 3.2.2). 

The loaded amount of brimonidine was determined by measuring the absorption of 

these diluted samples. Dilution was necessary due to technical conditions; the 

absorption maximum would have been exceeded otherwise. Absorption was measured 

with a spectrophotometer at 260 nm, which is the absorption maximum of brimonidine. 

To set the spectrophotometer to 0, the same buffer as for DNA samples preparation was 

used. 

Hydrophobic loading of brimonidine in nanoparticles 

To establish hydrophobic loading of brimonidine in NPs, different concentrations of 

DNA (100 and 500 µM) and brimonidine (1000 and 5000 µM) were investigated. As 

DNA entities single and double stranded NPs were used. Unloaded NPs samples, as 

well as buffer served as controls. Incubation was performed overnight or samples taken 

every 12 hours for 96 hours to determine the loading over time. 

Brimonidine loading in aptamer functionalized nanoparticles 

For the loading experiment into aptamer functionalized NPs, DNA concentrations for 

those NPs were taken to be 500 µM, whereas brimonidine concentration was 4.5 mM. 

The amount of loaded brimonidine was determined as described in the paragraphs above 

using absorption measurements. 

Loading of samples for further experiments 

For release experiments (Chapter 3.1.2 and 3.2.3) loading time of brimonidine was 48 

hours. After this time, the supernatant was taken off and corresponding samples were 

combined (e.g. supernatant from loading sample dsU4T 1-3 were combined). Before 

continuing the following experiments, the concentration was determined by absorption 

measurement. For some experiments, these samples were subsequently co-formulated 

with brimonidine tartrate to adjust samples to 5 mM of brimonidine in total. To obtain 

this, solid brimonidine tartrate was diluted in ultrapure water to get a stock solution of 

25 mM. Incubation time was fixed to 48 hours for loading. 



37 

Statistical analysis 

For data presentation, the average (n=3-5) - after deducing the reference values - as well 

as the standard deviation (+/-) were depicted. Statistical analysis was conducted using 

JMP 13. The data was evaluated with the ANOVA test followed by the Tukey-Kramer 

post-hoc test. Significance was defined as p < 0.05. The p-values were annotated in the 

diagrams: ***/###/+++ - p < 0.001; **/##/++ - p < 0.01; */#/+ - p < 0.05; * compared 

to the depending buffer control, # compared to the depending sample with the same 

brimonidine feed concentration but different NP concentration, + compared to the 

depending sample with the same NP concentration but different brimonidine feed 

concentration. 

 

2.2.4 Release of brimonidine from loaded samples 

For release experiments a two compartment device was constructed that allowed the 

measurement of released brimonidine from loaded NPs. The two compartments were 

separated from each other by a semi-permeable membrane with a molecular weight cut-

off (MWCO) of 1000 Da. This membrane is permeable for brimonidine and non-

permeable for DNA. The smaller compartment was filled with 90 µl of sample solution 

and covered with the membrane and closed. This compartment was then placed in a 15 

ml falcon tube (represented in the figure as Eppendorf tube), filled with 1.5 ml of 0.2x 

TAE buffer. This set up was then placed on a shaker and agitated at 750 rpm at 21°C. 

The NPs also liberate brimonidine without shaking. To achieve consistent release 

conditions and to increase the speed of the brimonidine liberation, the samples were 

stirred. The released amount of brimonidine was determined by absorption 

measurement of the solution in the falcon tube. Measurements were done at 260 nm. A 

schematic representation of this set up is given (Figure 6). 
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Figure 6: Schematic representation of the release experiment. After decanting the solution with loaded NPs 

into the device, this is covered with the semi-permeable membrane. The covered device is placed in 1.5 ml of 

TAE buffer and incubated on a shaker. The release of brimonidine is measured in the buffer solution over 

time. (Figure composed from Cliparts: http://www.clker.com (last accessed 15.5.17 8:11; public domain)). 

 

Measurements were done every 15 minutes for 1.5 hours, followed by every 30 minutes 

for 2.5 hours, or overnight. To evaluate the released amount of brimonidine, the OD of 

buffer was measured at time point 0 and deduced from the following measurements. 

To analyze the effect of different concentrations of brimonidine in the release 

compartment, two different approaches were chosen. For the first set, the supernatant 

from the loading samples was taken for the release experiment without any 

modification. The results from this approach are thus named “non-adjusted”. For the 

other set, called “adjusted”, the concentration of the supernatant from loading samples 

was determined and then adjusted to be the same everywhere by dilution with 0.2x TAE 

buffer. 

To analyse the results, the mean (n=3) and the standard deviation (+/-) of samples for 

absolute values as well as relative values were compared for different set ups. For 

relative values the absorption measured after overnight shaking were set as 100%.  
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2.2.5 Binding verification between brimonidine and aptamers 

To verify the binding between brimonidine and the designed aptamer sequences, a 

fluorescence based binding assay with SYBR Green was employed. SYBR Green binds 

unspecific to double stranded DNA. In its bound conformation it emits green light (529 

nm) when excited with blue light (495 nm). SYBR Green also binds to single stranded 

DNA, but to a less strong extend than to double stranded DNA. Unbound and bound to 

single stranded DNA, SYBR Green shows little fluorescence. As soon as a target 

molecule, e.g. brimonidine, binds to the double stranded DNA, the aptameric structure 

and the SYBR Green fluorescence is altered. Hence, SYBR Green is removed or 

incorporated and the fluorescent signal decreases or increases, respectively. 

Consequently, SYBR Green can be used to determine the interaction between aptamer 

and the analyte (Sarpong and Datta, 2012) (McKeague et al., 2014). 

DNA samples were prepared to achieve a final concentration of 100 nM in the wells. 

SYBR Green was diluted in ultrapure water to a final concentration of 1x. After 

combining DNA samples, SYBR Green, 0.26x TAE and 65 mM NaCl the mixture was 

plated out in a 96 well black plate and the fluorescence was measured as a reference. 

After addition of defined amounts of brimonidine (final concentration of 1 µM; 0.5 µM; 

0.25 µM and 0.125 µM), fluorescence intensity was determined after incubation of 40 

minutes. To analyze the results, fluorescence (t = 40 min) were deduced from references 

and the averages (n=3, controls n=4) for different concentrations depicted and 

compared. The standard deviations (+/-) are given. For statistical analysis, a linear 

regression line was drawn. Its formula and coefficient of determination are given in the 

graphs.  
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2.3 Evaluation of adherence time of brimonidine nanoparticles 

2.3.1 In-vitro determination of adherence time of brimonidine nanoparticles on pig 

eyes 

To evaluate the adherence-time of functionalized DNA NP to the pig cornea, the NPs 

were labelled with Atto488 that is bound to the 5’ end of the cU4T-Bra3.1 DNA 

aptamer. Like this NPs can be visualized with a fluorescence microscope or a 

fluorophotometer. 

Pig eyes were obtained from a local abattoir. Before using them for the experiment, they 

were cleaned by carefully cutting the muscles and surrounding connective tissues. After 

washing the eyes in PBS, they were allowed to adjust to room temperature. The eye was 

placed on a bulbus holder and a pre-scan was done with a fluorophotometer. 50 µl of 

NP solution (20 µM) were incubated five minutes with the help of rubber rings to 

maintain the solution on the cornea. The fluorescence signal at the cornea was 

determined immediately after the incubation time. This was repeated after 5, 15 and 30 

minutes; one, two and four hours. In between the measurements, the eyes were kept in 

PBS buffer to simulate blinking. dsU4T NPs as well as cUT-Bra3.1 NPs were compared 

to the fluorophore Atto488. The fluorescent signal was integrated and depicted 

relatively to the instant signal in a graph. 

2.3.2 In-vivo determination of adherence time of brimonidine nanoparticles on rat 

eyes 

The same method to visualize NP by labelling them with a fluorophore as for the in-

vitro experiment was used. The NPs were diluted in 0.2x TAE, NaCl 20 mM and MgCl2 

4 mM to obtain a DNA concentration of 20 µM. 

Two adult female Lister Hooded rats per time point were administered one drop of the 

prepared NP or control solution and sacrificed after 15, 30 or 60 minutes. The rats were 

treated according to the German animal protection law (AK1/15 to S. Schnichels). For 

eye drop application, the solution was filled in dropping devices as they are used for 

application of eye drops in humans. The volume of the drop was approximately 30 µl. 

The conscious rats were shortly fixed with a towel for administration of the eye drops 

and neither hindered from blinking during the drop application nor afterwards. Animals 
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were sacrificed after 15, 30 or 60 minutes post application with carbon dioxide 

inhalation. 

The enucleated eyes were frozen in Tissue-Tek O.C.T. using liquid nitrogen. The eyes 

were cut into slides of 12 µm on a cryostat and transferred onto glass slides. Until 

further use the slides were stored at -28°C. 

For visualisation of all corneal cells, a DAPI staining was done. DAPI (4`6-diamidine-

2`phenylinodole dihydrochloride) binds to double stranded DNA and stains all cells 

with a cell body. For the staining, several solutions needed to be prepared. 4% 

paraformaldehyde was prepared by dissolving 40 g paraformaldehyde in PBS 

(phosphate buffered saline) and stirred at 50°C over night. If not used directly, it was 

stored in small portions at -28°C. TBS 10x was obtained by dissolving 60.75 g tris base 

and 87.66 g sodium chloride in 900 ml of ultrapure water. This solution was then 

titrated to pH 7.6 by addition of hydrochloric acid (25%) and filled up to one liter with 

ultrapure water. For the experiment, this stock solution was diluted ten times with 

ultrapure water. 

For the DAPI staining slides were embedded in ice cold methanol for 10 minutes. After 

washing with TBS, 0.2 µg/ml DAPI was incubated on the slides for 1 minute. 

Following multiple washing steps with TBS and ultrapure water, the slides were after 

short drying embedded with FluorSave. 

The eyes with fluorescently labeled and thus detectable nanoparticles were evaluated 

manually under the fluorescence microscope. The ratio between eyes with detectable 

NPs and the total number of examined eyes was determined. 
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2.4 Safety evaluation of DNA-nanoparticles using in-vitro and in-vivo assays 

2.4.1 Safety evaluation of DNA-nanoparticles using an in-vitro cell culture assay 

Primary cornea epithelium cells from pig eyes (local abattoir) were cultivated in a 1:1 

mixture of CnT-Prime epithelial cell culture Medium and Dulbecco’s Modified Eagle 

Medium F-12 Nutrient Mixture (Harn) supplemented with 10% fetal bovine serum and 

1% penicillin and 1% streptomycin. The cells were seeded at 30.000 cells/ well in a 96-

well plate having a surface of 0.32 cm
2
. 48 hours after seeding, samples were added to 

achieve a final concentration of 500 µM for each tested sample. The tested entities were 

with brimonidine loaded NPs made of double stranded DNA as well as NPs 

functionalized with U4T-Bra3.1. Additionally, brimonidine tartrate alone was tested. 

Staurosporine and Poly (I:C) served as controls. After four hours of incubation (37°C, 

5% CO2, 95% humidity) cells were washed three times and once more incubated for 24 

hours. Thereafter, the toxicity was evaluated with the following assays. 

Evaluation of apoptosis induction using the Caspase-Glo 3/7 Assay 

To determine the activity of caspase 3/7 which is among other part of the apoptosis 

pathway, Caspase-Glo 3/7 buffer and substrate was combined and 100 µl were directly 

supplemented to the culture well. After one hour of incubation at room temperature, the 

luminescence was measured with a luminometer. The average (n=5) as well as the 

standard deviation were depicted for analysis of the results. 

Evaluation of cell viability (MTS Viability Assay) 

Per well, 20 µl of CellTiter 96® Aqueous One Solution Cell Proliferation Assay was 

added directly to the culture wells. After 90 minutes of incubation at room temperature, 

absorption was measured at 490 and 690 nm with a Microplate Reader. For results 

analysis, the difference between the two wavelength were deduced from each other and 

the average as well as the standard deviation depicted (n=5). 

Evaluation of cell amount using the crystal violet staining 

Following the MTS Viability Assay, solution was removed from the wells and cells 

were fixed with 100 µl of 4% PFA for 15 min. After washing, 100 µl of crystal violet 

solution was added to each well and incubated on the cells for 30 minutes at room 

temperature. Following three steps of washing, 100 µl of 1% SDS was added. 
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Absorption was determined after one hour of incubation at a wave length of 595 nm. 

The average (n=5) as well as the standard deviation were depicted for analysis of the 

results. 

Statistical analysis 

For data presentation, the average (n=5) as well as the standard deviation (+/-) were 

depicted. Statistical analysis was conducted using JMP 13. The data was evaluated with 

the ANOVA test followed by the Tukey-Kramer post-hoc test. Significance was defined 

as p < 0.05.The p-values were annotated in the diagrams: *** - p < 0.001; ** - p < 0.01; 

* - p < 0.05 compared to the depending brimonidine control. 

 

2.4.2 In-vivo safety evaluation of DNA-nanoparticle using an in-vivo rat eye assay 

Beside the in-vitro model, toxicity was evaluated with an in-vivo model. Living rats 

were administered eye drops containing different formulations. Adult female Brown 

Norway rats were purchased from Charles River. Animals were treated according to the 

German animal protection law (AK1/15 to Schnichels). For this experiment with 

brimonidine loaded dsU4T and loaded U4T + cU4T-Bra3.1 as well as brimonidine 

tartrate were tested on their apoptic effects. Thereby a NP concentration of 500 µM was 

used. Buffer solution served as control. Rats were given one single drop. For each tested 

NP or buffer, two rats were given eye drops. The conscious rats were neither hindered 

from blinking during the drop application nor afterwards and euthanized 24 hours after 

the application with carbon dioxide inhalation. The eyes were enucleated, frozen and cut 

as described in chapter 2.3.2. 

For visualization of the toxic effects on rat eyes, the slides were stained with two 

different assays: TUNEL In-Situ Cell Death Detection Kit and DAPI staining. TUNEL 

is the abbreviation for terminal deoxynucleotidyl transferase dUTP nick end labeling. It 

stains double strand breaks as they occur in apoptosis and thus marks cells suffering 

from toxic effects. DAPI (4`6-diamidine-2`phenylinodole dihydrochloride) binds to 

double stranded DNA and stains all cells with a cell body. Solutions were prepared as 

described in chapter 2.3.2. For TBST, TBS 1x was supplemented with 0.1% Tween 20. 
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After defrosting the slides from the freezer, cells were fixed with 4% paraformaldehyde 

for 20 minutes at room temperature. After this, the slides were washed for 30 minutes 

with TBS 1x. Thereafter, cells were permeabilized for two minutes with 1g/l sodium 

citrate and 10% of Triton x-100 in ultrapure water. The slides were then stained using a 

TUNEL In-Situ Cell Death Detection Kit following the manufacturer’s instruction. 50 

µl of enzyme solution were combined directly after unfreezing them with 500 µl of 

label solution and applied to the slides. One slide was treated with DNAse for ten 

minutes as positive control; one slide was supplemented with label-solution only as 

negative control. All slides were incubated for one hour in the incubator (37°C, 5% 

CO2, 95% humidity). After three times of five minutes washing in TBST 1x, slides were 

incubated - expect the DAPI negative control - for five minutes with 1 µg/ml of DAPI 

in PBS. Finally, the slides were washed two times five minutes in TBST followed by 

one washing step of five minutes in ultrapure water. The slides were after short drying 

embedded with FluorSave. Images were taken with a fluorescent microscope. Per 

condition, four eyes were obtained. From each eye, four slides were stained and from 

each slide five pictures taken. From these pictures, the total amount of epithelium cells 

and the apoptosis positive cells were counted and correlated to each other. 

Statistical analysis 

For data presentation, the mean (n=4) as well as the standard deviation (+/-) were 

depicted. Statistical analysis was conducted using JMP 13. The data was evaluated with 

the ANOVA test followed by the Tukey-Kramer post-hoc test. Significance was defined 

as p < 0.05.   
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2.5 Stability evaluation of U4T with HPLC 

For analysis of NP stability, samples were stored under different conditions: at room 

temperature with cycled light (day and night light cycle), at room temperature in the 

dark and at 4 °C, also protected from light. Stored U4T had a concentration of 100 µM. 

Over one year in four weeks interval, three aliquots of each condition were taken and 

stored at -80°C until HPLC (high-performance liquid chromatography) analysis. HPLC 

is a widely used chromatography technic to separate components of a mixture due to 

polarity. The separation takes place on the stationary phase (HPLC column) with the 

help of a mobile phase (eluent). After the separation, the single components are detected 

with different detectors, e.g. UV or fluorescence. The results are depicted as elugram. 

An elugram is made of peaks, each peak representing a separated component. The area 

under a peak is proportional to the amount of the substance. The area can be related to 

the calibration line for the wanted substance and the amount can be calculated 

therefrom. A small peak or more exactly a smaller area under the peak is equal to a 

smaller amount of substance. HPLC is used here to detect deterioration of U4T. When 

deterioration occurs, degradation products accumulate and the peak representing U4T 

changes its appearance. Additionally, a second (or more peaks) representing the 

degradation products of U4T increase. 

Analysis was done with HPLC using reversed phase chromatography. A Shimadzu VP 

series HPLC with a PDA (photo diode array) detector and equipped with a Jupiter C4 

4.6x250mm, 90 Å column, was used. A linear gradient 0-100% of buffer B in 25 min 

was applied. Buffer A: 100 mM TEAT (triethylammonium acetate buffer) pH 8 in 

water, 5% acetonitrile; Buffer B: TEAT 100 mM in 95% isopropanol. For DNA 

monitoring the wavelength of 254 nm was used. For each run, 20 µl were injected in the 

column. The elugram is given from 21 to 27 minutes for comparison of the used 

samples. 
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3. Results 

3.1 Establishing hydrophobic loading of brimonidine in nanoparticles 

Brimonidine loaded DNA based NPs may be an elegant way to improve topical 

treatment of glaucoma. As a first step in establishing those NPs, drug loading has to be 

set up. For this several strategies can be employed. As introduced before, hydrophobic 

interactions, covalent binding or elongation with aptamers can be used for the 

functionalization of the NPs. The following paragraphs will deal with the loading and 

the release of brimonidine using hydrophobic interactions. 

 

3.1.1 Loading of brimonidine in nanoparticles with hydrophobic interaction 

To establish hydrophobic loading, two parameters were investigated. First, a 

comparison of loading efficiency in two different NPs was made between single 

stranded DNA NPs (ssU4T) and double stranded DNA NPs (dsU4T). The vehicles 

comprised of ssU4T are formed from a single entity, whereas the dsU4T NPs consist of 

ssU4T NPs that are fully hybridized with the complementary sequence. The second 

investigated parameter was the ratio of NPs concentration to the amount of brimonidine, 

which was optimized to load the largest quantity of drug into the NPs. To this end, two 

concentrations of NPs were used and the starting concentration of brimonidine was 

varied (feed concentration). 

To investigate the loading behaviour of the two NPs, ssU4T and dsU4T were prepared 

at concentrations of 100 and 500 µM. Dried brimonidine pellets were prepared to obtain 

a concentration of 1000 and 5000 µM. The loading behaviour of the two NPs was then 

tested by combining the NP solution with the brimonidine pellets and measuring the 

absorption after incubation of the samples overnight. As control the buffer solution 

without any NP was included. 

The more brimonidine is dissolved in a solution, the higher the absorption. In a NP 

solution brimonidine can be dissolved in the buffer and loaded in the NPs. Thus, the 

total brimonidine concentration in a NP solution is higher than in buffer resulting in a 

higher absorption. 
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Figure 7: Analysis of solved brimonidine containing NPs in dependency of DNA concentration and 

brimonidine feed concentration. The used NP as well as the brimonidine feed concentrations are given. 

Samples were loaded overnight. Higher feed concentrations of brimonidine and higher concentration of NP 

are advantageous to load higher amounts of brimonidine. Remark: Buffer controls that are presented for the 

100 µM as well as the 500 µM NP group are the same. Statistics: n=3, mean and standard deviation are given, 

*** - p < 0.001; **/## - p< 0.01; */+ - p<0.05; */**/*** compared to the depending buffer control, for # and + 

depending samples are marked in the graph. 

 

For a NP concentration of 100 µM a higher loading of brimonidine was observed with 

increasing feed concentration (ssU4T: 1000 µM: 19.08 OD vs. 5000 µM: 21.67 OD; 

dsU4T: 1000 µM: 20.37 OD vs 5000 µM: 22.72 OD) (Figure 7). The control with only 

buffer (1000 µM: 7.61 OD, 5000 µM: 9.02 OD) showed a saturated solvation 

behaviour. For 1000 µM of feed concentration, dsU4T loaded significantly more 

brimonidine than buffer (p = 0.023). The loading for 5000 µM was significantly higher 

than buffer for both ssU4T (p = 0.024) and dsU4T (p = 0.012). 
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The loading of 500 µM NPs increased with the feed concentration (ssU4T: 1000 µM: 

18.05 OD vs. 5000 µM: 29.05 OD; dsU4T 1000 µM: 28.80 OD vs. 5000 µM 37.53 

OD). For 1000 µM of feed concentration, ssU4T did not loaded significantly more 

brimonidine than buffer (p = 0.106). All other samples loaded significantly more 

brimonidine than buffer (for all p ≤ 0.001). 

The experiment revealed that the loading of brimonidine increased with increasing feed 

concentration. Significant differences were observed between the 500 µM of ssU4T 

samples (1000 µM of brimonidine: 18.05 vs. 5000 µM: 29.05, p < 0.05). Furthermore, 

loading was more efficient for higher concentrations of NPs. This fact was significant 

for the dsU4T samples loaded with 5000 µM of brimonidine (100 µM of NP: 22.72 vs. 

500 µM: 37.53, p < 0.01). 

It can be concluded, that higher concentrations of NP as well as of brimonidine feed 

concentration and the use of dsU4T was advantageous for loading higher amounts of 

brimonidine into the NPs. 

In the next step, the loading through hydrophobic interaction was investigated over 

time. dsU4T NPs were selected as the best carrier. It was used at 500 µM and loaded 

with 5000 µM of brimonidine. The absorption of these samples was measured every 12 

hours for 96 hours. Buffer only served as control. 
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Figure 8: Analysis of solved brimonidine in solution containing dsU4T NPs over time. Buffer samples served as 

control. Brimonidine feed concentration was fixed to 5000 µM, the NP concentration was 500 µM. The 

absorption was measured after the given time points. dsU4T loaded significantly more brimonidine than 

buffer. Loading increased over time and reached a plateau after 48 hours. Statistics: n=4, mean and standard 

deviation are given, *** - p< 0.001; ** p<0.01 compared to the buffer control. 

 

The amount of loaded drug increased over a period of 48 hours and reached a plateau 

hereafter (Figure 9). As expected, the dsU4T showed significantly more loading than 

buffer control (t = 96 hours: dsU4T: 61.25 OD, buffer: 13.82 OD, p < 0.001). For these 

samples the speed of loading also slowed down after 48 hours and a plateau was 

reached similarly as found for the NPs. 

After determining the optimal loading conditions, in all following experiments the NPs 

were formulated at 500 µM and incubated with brimonidine for 48 hours unless 

otherwise noted.  
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3.1.2 Release of brimonidine from hydrophobic loaded nanoparticles 

After proving the successful loading of brimonidine in DNA NPs, in the next step the 

release of the drug from the NPs was investigated. The release was quantified and 

studied over time. 

To measure the release, devices were constructed that contain two compartments which 

are separated by a semi-permeable membrane (Figure 9). The pore size of this 

membrane was chosen so that the NPs cannot diffuse through, but the smaller molecule 

brimonidine is able to travel between the two compartments. The NPs were loaded in 

the top compartment of the device, whereas the bottom compartment contained a large 

excess of buffer. Due to the applied concentration gradient, the brimonidine diffused 

through the membrane into the buffer. To determine the release from the NPs, the 

amount of drug in the bottom compartment was followed over time by absorption 

measurement. 

 

Figure 9: Schematic representation of the release experiment. On the left hand, solution containing 

brimonidine loaded NPs is filled in the devices and this device then placed in a larger excess of buffer. Over 

time, brimonidine passed the semi-permeable membrane, whereas the NPs did not. Light grey dots represent 

brimonidine in solution. (Figure composed from Cliparts: http://www.clker.com (last accessed 15.5.17 8:11; 

public domain)). 

 

For the release of brimonidine two formulations were analysed. First, the drug liberation 

from the NPs as obtained directly after performing brimonidine loading. However, to 

reach the current clinical concentrations of brimonidine, the loaded NPs had to be 

supplemented with water soluble brimonidine-tartrate (second formulation). In contrast 

to pristine brimonidine, this compound is water soluble due to the charged nature of the 

tartrate. For this reason high concentrations in an aqueous environment can be obtained. 
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Release of brimonidine from loaded nanoparticles over time 

First the proper design of the release device was confirmed. After placing NP solution 

without brimonidine loaded in the release device the absorption was measured in the 

bottom compartment over time and no NPs were detected. 

In a first experiment the release properties of loaded NPs at a concentration of 500 µM 

were studied. The diffusion of brimonidine from loaded ssU4T, dsU4T and buffer 

(control) was tested. Additionally, another control was included, dsT4T. This is a 

pristine DNA strand that is double stranded with the same sequence as U4T, however, 

has no lipid modified nucleotides and thus cannot form NPs. It serves as comparison to 

the dsU4T NPs and functions to see the influence of brimonidine loading into the 

hydrophobic core of the NP and via interactions in the double stranded oligonucleotide. 

The same concentration of DNA as for ssU4T and dsU4T was used for dsT4T. For the 

loading brimonidine feed concentrations of 1000 and 5000 µM were used. Before 

starting the experiment, samples were loaded by combining the NP solution with the 

brimonidine pellet, as described in section 2.2.3 (Figure 5). 

Afterwards, the release of brimonidine from the NPs loaded with different feed 

concentrations over time was determined. 
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Figure 10: Comparison of brimonidine release from samples loaded with different brimonidine feed 

concentrations. Brimonidine feed concentration were 1000µM and 5000 µM. Both sets were prepared with 500 

µM of DNA and loading was performed for 48 hours. dsT4T and especially dsU4T released more upon a 

higher loading concentration of brimonidine. Statistics: Mean and standard deviation are given. 

 

It is visible that a higher feeding concentration did not influence the release of 

brimonidine from ssU4T (1000 µM brimonidine feed concentration: 0.286 vs. 5000 

µM: 0.282) (Figure 10). The release from buffer is 1.2x higher when loaded with the 

higher feed concentration (1000 µM: 0.101 vs. 5000 µM: 0.121). The same applies to 

dsT4T which released 1.3x more (1000 µM: 0.290 vs. 5000 µM: 0.380). In contrast, 
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dsU4T released 1.5x more when loaded with more brimonidine (1000 µM: 0.298 vs. 

5000 µM: 0.459) as a result from the higher loading observed at higher feed 

concentrations. Hence, for dsU4T it is advantageous to use a higher feeding 

concentration in regard to the released amount. For the rest of the samples the influence 

was small. As such, it can be concluded that better loading and consequently a bigger 

amount of released brimonidine is achieved by employing a higher feeding 

concentration. Further experiments will be performed using 5000 µM of brimonidine 

feed concentration. 

The released amount is dependent on the loaded amount of brimonidine. This is also 

due to the fact that the speed of diffusion is dependent on the concentration gradient, a 

faster release can thus be observed upon higher loading. To determine the release rate 

independent of the difference in loaded amount, the samples were diluted to obtain the 

same brimonidine concentration and thus the same concentration gradient in each 

sample. For that purpose, first the loaded brimonidine amount of the samples was 

determined using absorption measurement. The samples were then diluted with TAE 

buffer in order to achieve the same amount of brimonidine in each solution. To this end 

ssU4T was diluted 1:4, dsU4T 1:6, buffer 1:0.33 and dsT4T 1:5.45. These diluted 

samples with the same amount of brimonidine were named “adjusted samples” 

subsequently. Undiluted samples, as directly obtained from the loading samples and 

with different brimonidine concentrations were called “non-adjusted”.  

For several reasons, the results will be directly presented as relative release (Figure 11). 

Although absolute values give good insight in the quantity of released brimonidine, 

relative presentation makes comparison between samples easier. Also, relative values 

give a better understanding about the slope and speed of drug release. A slower release 

is an advantage here with regard to longer adhering NPs to the cornea and thus sort of a 

depot effect. In the meantime, a slower release could also implement a disadvantage if 

the adherence time is not long enough for the drug to be released. As NPs are expected 

to well adhere to the corneal surface, a slower release is considered favourable. 
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Figure 11: Relative release of brimonidine over time with non-adjusted and adjusted amounts of brimonidine 

in the release devices. The measurement 28 hours after initiation was set as 100%. Brimonidine feeding 

concentration was kept at 5000 µM, DNA concentration at 500 µM and loading time overnight. Buffer released 

brimonidine fastest, ssU4T and dsU4T the slowest. Differences between non-adjusted and adjusted sets are 

negligible. Statistics: Mean and standard deviation are given. 

 

For both relative values of non-adjusted and adjusted experiments (Figure 11), it is 

visible, that buffer reached faster values that were over all higher than the other samples 

(e.g. non-adjusted (t = 240 minutes): ssU4T: 39.1% vs. buffer 51.5%, relation: buffer 

was 1.32x higher than ssU4T, slope is steeper for buffer). This indicated that diffusion 

of brimonidine from the buffer sample is fastest. dsT4T released the drug slower than 

buffer samples for both sets (non-adjusted: 0.95x less vs. adjusted: 0.91x less than 



55 

buffer, both: flatter slope). dsU4T (non-adjusted: 44.4% vs. adjusted: 43.5%, both flat 

slope) and ssU4T (non-adjusted 39.1% vs. adjusted: 41.6%, both flat slope) released 

slowest. Both achieved lower values than buffer (non-adjusted 51.5%, adjusted: 52.1%) 

and dsT4T (non-adjusted 49.0%, adjusted 47.3%). This indicated that the ssU4T and 

dsU4T NPs have stronger binding with brimonidine and can be considered as best 

performing samples. 

When comparing non-adjusted (Figure 11 “Non-adjusted”) and adjusted (Figure 11 

“Adjusted”) values, all samples reached analogue amounts regarding the percentage of 

released brimonidine (relation non-adjusted to adjusted (t = 240 minutes): ssU4T: 0.94x, 

dsU4T 1.02x, dsT4T: 1.04x, buffer: 0.99x). For all samples the influence of adjusting 

the amount of brimonidine seems to be negligible as the achieved relative values and 

thus the slope are comparable at the same time points for non-adjusted and adjusted 

sets. 

 

Release from brimonidine-tartrate co-formulated and brimonidine loaded 

nanoparticles over time 

To be able to compare commercially available brimonidine eye drops and the here 

developed formulation containing NPs in future in-vivo experiments, it is necessary to 

adjust the amount of brimonidine in solution to match the commercial one. To this end, 

the commercial active ingredient, brimonidine tartrate, needs to be added to the NP 

solution. This is due to the limited loading capacity of the NPs which does not reach the 

commercial concentration level. To prove that the release properties are unaffected 

when using a co-formulation with brimonidine-tartrate, the liberation of brimonidine 

from NPs was investigated after co-formulation. 

For this purpose the amount of brimonidine in loaded NPs was determined by 

absorption measurement and brimonidine-tartrate added to adjust the total amount of 

brimonidine in solution to 5 mM (“non-adjusted set”). For this release experiment, a 

second set of samples was chosen to investigate the effects of having the same amounts 

of brimonidine loaded in NPs in the release samples (“adjusted set”). For this adjusted 

set, dsU4T samples with 1085 µM of loaded brimonidine were diluted 1:4.6 and buffer 
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sample 1:1.64 in order to achieve a brimonidine concentration of 235 µM for both 

samples. As the concentration of loaded brimonidine was then the same for both 

samples, the same amount of brimonidine tartrate (36.9 µl of a 25 mM brimonidine 

tartrate stock solution) was added to them to achieve a total amount of brimonidine in 

solution of 5 mM. A schematic representation of these samples can be seen below 

(Figure 12). The release rates of both sets were measured and compared. 

 

 

Figure 12: Schematic representation of the two sets of samples with brimonidine tartrate co-formulation. The 

height of the bars represents the concentration. For non-adjusted samples, brimonidine tartrate (BriTar) was 

added to reach 5mM of final brimonidine concentration in solution. For adjusted samples, the samples were 

diluted in order to achieve the same concentration of brimonidine. Then, the same amount of brimonidine 

tartrate was added. Legend: grey – brimonidine loaded in NPs, dark grey – brimonidine in buffer control, 

light grey – brimonidine tartrate added to reach 5 mM final concentration. 

 

As dsU4T was found to be the NP with the best loading and releasing properties, it will 

be the only tested NP. The loaded buffer samples served as control. Only relative 

representation for the results will be shown as this is a more comprehensive way to 

compare the two sets. The overnight released amount is set as 100%. 
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Figure 13: Relative release from brimonidine loaded dsU4T and buffer with additional co-formulation of 

brimonidine tartrate over time. The amount of brimonidine in the release devices was non-adjusted or 

adjusted to each other. For both sets, loading conditions were 500µM of DNA, 5000µM of brimonidine and 44 

hours of loading. The released amount over night was set as 100%. Non-adjusted and adjusted sets reached 

comparable relative values after 390 minutes. dsU4T released brimonidine faster for the adjusted set. 

Statistics: Mean values and standard deviation are given. 

 

In both experiments the buffer showed less retaining behaviour of release than dsU4T 

(steeper slope) (Figure 13). When comparing the adjusted samples, it can be seen, that 

both samples resembled each other more in release behaviour than they do for non-

adjusted samples (released brimonidine after 240 min: adjusted: dsU4T: 93.5%, buffer 

96.2%; non-adjusted: dsU4T: 80.1%, buffer: 93.9%). For adjusted samples both buffer 
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and dsU4T released almost 100% of the complete brimonidine amount in 380 minutes. 

When using, as done for the adjusted set, higher amounts of brimonidine tartrate (16% 

more brimonidine tartrate, adjusted: adjusted 0.923 µmol, non- adjusted: 0.795 µmol) 

and less of loaded NP (62.2% less loaded NPs, adjusted: 0.062 µmol, non-adjusted: 

0.164 µmol), the release was faster and the retaining effect of NP decreased. This is 

expected, as less NPs were present in solution.  
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3.2 Brimonidine loading in aptamer functionalized DNA nanoparticles 

The next step in establishing the use of NPs in eye drops was the evaluation of using 

aptamers for binding of the drug of interest. To establish the aptameric loading of 

brimonidine in the NPs, an aptamer binding this drug was first developed using the 

SELEX (systematic evolution of ligands by exponential enrichment) method. Thereby, 

the aptamer was chosen from a library of oligonucleotides by selecting the sequence 

with the highest binding affinity to brimonidine. Afterwards, two DNA sequences were 

deduced from this by logic design and tested for their binding affinity to brimonidine. 

 
Figure 14: Secondary structure of the brimonidine binding aptamer Bra3. The 3’-end is marked. 

 

The full length sequence of the brimonidine binding aptamer, called Bra3, contains 40 

nucleotides and exhibits a stem-loop structure (Figure 14). Additionally, the 3’-end 

contains 12 nucleotides that do not seem to exhibit any secondary structure. In order to 

investigate the structural properties needed for binding of brimonidine, two shortened 

sequences were designed from the Bra3 aptamer. These were either truncated at the 5’-

end or at both. The shortened versions, called Bra3.1 and Bra3.2, were also investigated 

for their binding properties towards brimonidine. The sequence details of Bra3 as well 

as the shortened aptamers are given below (Table 4). Their secondary structures are also 

shown (Figure 15). 
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Table 4: Nucleotide sequences of the three investigated aptamers. Bra3.1 and 3.2 represent shortened versions 

of Bra3. The different colours represent parts of the secondary structure of Bra3: green – double stranded 

part, yellow – small closed loop, blue – nucleotides at the 3’ end without any special structure. 

name sequence (5’  3’) 

Bra3  ACGTGGCACTACTTGGTACTAGTGTCGCGATGCCATGCTAC 

Bra3.1        GTGGCACTACTTGGTACTAGTGTCGCGATGCCA 

Bra3.2                               ACTTGGTACTAGTGTCGCGATGCCATGCTAC 

 

 

Figure 15: Secondary structures of the aptamers Bra3.1 and Bra3.2 as shortened versions of Bra3. The 3’-end 

of the aptamers are marked. 

 

For validation of brimonidine binding of the three aptamers, first their affinity to the 

drug was determined. The best sequences were then selected and the loading of 

brimonidine into NPs with aptamers established. Finally, also the release from these 

NPs was investigated. 

 

3.2.1 Validation of aptamer binding towards brimonidine 

To evaluate the affinity of brimonidine to the designed aptamer sequences, a 

fluorescence based binding assay was employed. SYBR Green binds non-specifically to 

double stranded DNA. In its bound conformation it emits green light (529 nm) when 

exited with blue light (495 nm). Unbound and bound to single stranded DNA SYBR 

Green shows little fluorescence. As soon as a target molecule, e.g. brimonidine, binds to 

the double stranded DNA, the aptameric structure and the SYBR Green fluorescence is 
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altered. Hence, SYBR Green is removed or incorporated and the fluorescent signal 

decreases or increases, respectively. Consequently, SYBR Green can be used to 

determine the interaction between aptamer and analyte (Sarpong and Datta, 2012, 

McKeague et al., 2014). To analyse this effect, the fluorescence intensity was measured 

before and after addition of different amounts of brimonidine to the aptamer solution. 

As a first step it needed to be shown that the full length and the shortened aptamers bind 

to brimonidine. The DNA aptamers at 100 nM were incubated with SYBR Green and 

brimonidine and the fluorescence measured. The results are presented as changes in 

RFU (relative fluorescence unit, in %) whereas the samples without drug addition is 

used as reference (Figure 16). 
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Figure 16: Changes of fluorescence (RFU, in %) in dependency of applied brimonidine concentration (0.125, 

0.25, 0.5 and 1 µM) for different aptamers: Bra3, Bra3.1 and Bra3.2. Measurement (n=3) was performed 40 

min after application of brimonidine. A general dependency between the applied brimonidine and changes of 

the measured fluorescence could be seen. Mean values, standard deviation, a linear regression line, its formula 

as well as the coefficient of determination are given. 
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There is in general a dependency visible between brimonidine concentration and 

measured fluorescence (Figure 16). Higher brimonidine concentration result in lower 

relative RFU values (linear regression lines: Bra3: y= -0.1979x – 0.0271, R
2
= 0.9626, 

Bra3.1: y= -0.1196x – 0.0876, R
2
= 0.3547, Bra3.2: y= -0.1315x – 0.043, R

2
= 0.8483). 

Although standard deviations are rather high, the binding behaviour between 

brimonidine and the aptamers could be shown. 

In a next step the aptamers were elongated with the complementary sequence of U4T to 

enable the binding to U4T and thus the formation of functionalized NPs. Each aptamer 

(apt) was tested and compared with cU4T-apt only, U4T + cU4T-apt and T4T + cU4T-

apt (Figure 17). 

 

Figure 17: Scheme of the tested species: cU4T-apt, U4T + cU4T-apt and T4T + cU4T-apt. Each species 

containing an aptamer (apt) is elongated with the complementary strand of U4T to enable the formation of 

NPs. 

 

cU4T-apt, U4T + cU4T-apt and T4T + cU4T-apt were tested for all aptamers. As 

representative example Bra3.1 is shown (Figure 18). For the comparison of the different 

aptamers, U4T + cU4T-apt is given for all aptamers (Figure 19). 
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Figure 18: Aptamer Bra3.1. Changes of RFU (%) in dependency of the applied brimonidine concentration 

(0.125, 0.25, 0.5 and 1 µM) for the species cU4T-Bra3.1, U4T + cU4T-Bra3.1 and T4T + cU4T-Bra3.1. With 

increasing concentrations of brimonidine, the measured fluorescence increased. n=3, mean values, standard 

deviation, a linear regression line and its formula as well as the coefficient of determination are given.  
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Figure 19: Comparison of three tested aptamers. Changes of RFU (%) in dependency of the applied 

brimonidine concentration (0.125, 0.25, 0.5 and 1µM) for the species U4T + cU4T-Bra3, U4T + cU4T-Bra3.1 

and U4T + cU4T-Bra3.2. With increasing concentrations of brimonidine, the fluorescence increased. n=3, 

mean values, standard deviation, a linear regression line and its formula as well as the coefficient of 

determination are given. 
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When comparing cU4T-apt only, U4T + cU4T-apt and T4T + cU4T-apt for all tested 

species, it can be observed that for all samples there were clear properties. There was a 

tendency towards an increased fluorescence for increased brimonidine concentration. 

For Bra3.1 this tendency was clearest (cU4T-Bra3.1: y= 0.1128x + 0.0021, R
2
= 0.9127, 

U4T + cU4T-Bra3.1: y= 0.1103x – 0.1188, R
2
= 0.9501, T4T + cU4T-Bra3.1: y= 

0.1813x – 0.0593, R
2
= 0.9534) (Figure 19). For the aptamer Bra3 this increase in 

fluorescence with increasing brimonidine concentration could be experienced too. The 

Bra3.2 aptamer did not show binding behaviour for the samples of cU4T-Bra3.2 only 

(data not shown). 

It could be seen in a first set of experiments that the aptamers Bra3, Bra3.1 and Bra3.2 

showed a concentration binding behaviour between aptamer and brimonidine. In more 

detailed experiments functionalized NPs with Bra3 and Bra3.1 also revealed a binding 

behaviour of brimonidine. 

 

3.2.2 Loading of brimonidine in nanoparticle with bound aptamers 

In a next step the loading of brimonidine into aptamer functionalized NPs was 

investigated. Three aptamers were tested and compared with each other regarding their 

ability to load brimonidine and their loading behaviour over time. 

In a first experiment NPs functionalized with the aptamers Bra3, Bra3.1 and 3.2 were 

tested. dsU4T served as comparison as it revealed to be the best performing 

hydrophobic NP (section 3.1.1). After combining dried brimonidine and NP solution, 

the absorption of the resulting solution was measured with a spectrophotometer every 

12 hours for 48 hours to determine the loading over time. 
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Figure 20: Loading of brimonidine in different with aptamer functionalized NPs, as well as a dsU4T and a 

buffer control over a time period of 48 hours. Except the aptamer Bra3.2 all samples reveal logarithmic 

loading behaviour. 

 

Table 5: Mean and standard deviation of loading of brimonidine in different with aptamer functionalized NPs, 

as well as a dsU4T and a buffer control over a time period of 48 hours. Values are given in OD.  

Sample 12 hours 24 hours 36 hours 48 hours 

U4T + cU4T-Bra3 47.27±37.14 82.47±33.65 102.87±16.58 119.80±24.06 

U4T + cU4T-Bra3.1 11.60±6.26 54.12±2.32 75.20±10.4 79.60±10.42 

U4T + cU4T-Bra3.2 32.00±20.79 49.20±6.61 42.80±15.94 43.07±10.51 

dsU4T 26.93±8.13 37.87±11.68 52.67±6.13 51.87±7.71 

Buffer 7.37±0.51 10.98±0.30 11.8±0.05 13.17±0.20 
 

Loading of brimonidine in functionalized NPs showed logarithmic behaviour for the 

aptamers Bra3, 3.1 and dsU4T (Figure 20) (Table 5). With ongoing time, OD and hence 

the loading of brimonidine increased (U4T + cU4T-Bra3: 12 h: 47.27 OD, 24 h: 82.47 

OD, 36 h: 102.87 OD, 48 h: 119.8 OD; U4T + cU4T-Bra3.1: 12 h:11.6 OD, 24 h: 54.13 

OD, 36 h: 75.2 OD, 48 h: 79.2 OD; dsU4T: 12 h: 26.93 OD, 24 h: 37.87 OD, 36 h: 

52.87 OD, 48 h: 51.87 OD), on the other hand the speed of loading decreased. In this 

case the NPs functionalized with aptamer Bra3.2 was an exception as the loading even 

decreased slightly after 24 hours (12 h: 32 OD, 24 h: 49.2 OD, 36 h: 42.8 OD, 48 h: 

43.07 OD). Additionally, after completion of the experiment, NPs with Bra3.2 exhibited 
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a gel-like behaviour, which hindered sample handling and measurements. Bra3 is 

loading the highest drug amount (119.8 OD), followed by Bra3.1 (79.6 OD) and dsU4T 

(51.87 OD). Loading for all samples is multiple times higher than for the buffer control 

(13.17 OD, U4T + cU4T-Bra3: 9.1 x, U4T + cU4T-Bra3.1: 6,04 x, U4T + cU4T-

Bra3.2: 3.27 x, dsU4T: 3.94 x). Furthermore, it seems that the loading is reaching a 

plateau phase after 36 hours, this can be especially seen for Bra3.1 and dsU4T. For the 

hydrophobic NP loading experiment, this plateau was reached after 48 hours. 

These experiments proofed that NPs functionalized with Bra3 and Bra3.1 aptamers 

showed good drug loading properties. In contrast, the Bra3.2 aptamer showed poor 

binding and loading behaviour and resulted in inconsistent gel formation. 

Furthermore, the relation between synthesis costs of the aptamers and their loading 

ability was drawn (Table 6). A higher loading per € is advantageous.  

Table 6: Relation between the loaded amount in the different NPs and their production costs. 

aptamer 

Loaded amount of 

brimonidine after 48 

hours (in µM) 

Production costs (per 

10 µmol of NP) (€) 

Loading per € 

(µM/€) 

U4T-Bra3 6246 2750 2.27 

U4T-Bra3.1 4150 2118 1.96 

U4T-Bra3.2 2245 1938 1.16 

dsU4T 2704 322 8.40 

 

Regarding not only the absolute production costs (in €) but the relative loading per € of 

production cost (in µM/€), dsU4T loads more brimonidine than the aptamers per € 

(dsU4T: 8.40 µM/€ vs. aptamers 1.16 - 2.27 µM/€), thus dsU4T is cheaper than the 

aptamers. Beyond the aptamers, U4T-Bra3 is the aptamer with the lowest (2.27 µM/€) 

and U4T-Bra3.2 the one with the highest costs regarding the loading per € (1.16 µM/€). 

Additionally, the loading abilities of U4T-Bra3 and U4T-Bra3.1 were multiple times 

higher than U4T-Bra3.2 (U4T-Bra3: 2.78 x, U4T-Bra3.1: 1.85 x). This and its gel 

formation behaviour are the reasons why U4T-Bra3.2 was left out of consideration from 

here on. 
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3.2.3 Release of brimonidine from aptamer nanoparticles 

To prove and quantify the ability of functionalized NPs to release the loaded drug, the 

release over time was determined in a similar fashion as described for hydrophobic NPs 

(chapter 2.2.4 and 3.1.2). To this end, the release of the loaded U4T + c4T-Bra3, U4T + 

cU4T-Bra3.1, dsU4T NPs and the loaded buffer control were investigated. The dsU4T 

NPs loaded with brimonidine using hydrophobic interactions served as a comparison as 

they revealed good release in the hydrophobic NP experiments (chapter 3.1.2). Non-

adjusted and adjusted amounts of brimonidine were studied in the same set up as for 

previous release experiments (chapter 3.1.2) (Figure 21). 

 

Figure 21: Absolute release of brimonidine from NPs (non-adjusted) over time. The compared entities are the 

functionalized NPs with Bra3 and Bra3.1 aptamers, as well as hydrophobically loaded dsU4T. Buffer served as 

control. Bra3.1 showed highest, dsU4T and Bra3 comparable absolute release. Statistics: n=3, mean values and 

standard deviation are given. 

 

The dsU4T NPs released a comparable or even slightly higher amount of brimonidine 

than the Bra3 functionalized NPs (t = 240 min: dsU4T: 0.723 OD vs. U4T + cU4T-

Bra3: 0.657 OD). In contrast, the release from NPs containing U4T + cU4T-Bra3.1 

aptamers (U4T + cU4T-Bra3.1: 1.055 OD) was approximately 1.5 times higher than the 

release of U4T + cU4T-Bra3 and dsU4T. The relative release of sets with adjusted and 

non-adjusted amounts of brimonidine in the release devices is shown below (Figure 22). 
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Figure 22: Relative release of brimonidine over time from with DNA aptamer functionalized NPs as well as 

dsU4T and a buffer control. Non-adjusted and adjusted set up are presented. The released amount over night 

was set as 100%. NPs with and without aptameric modification released brimonidine slower than buffer. 

Statistics: n=3, mean values and standard deviation are given. 

 

For non-adjusted samples the buffer control released brimonidine fastest (t = 240 min: 

94.0%) (Figure 22 “Non-adjusted”), followed by dsU4T (83.7%). Both aptamer 

functionalized NPs released the drug at the same speed (U4T + cU4T-Bra3: 77.2%, 

U4T + cU4T-Bra3.1: 72.2%, similar slope) but slower than buffer and dsU4T. This is 

an advantage when employing longer adhering NPs which can serve as drug depot. For 

adjusted amounts all DNA samples (U4T + cU4T-Bra3: 88.7%, U4T + cU4T-Bra3.1: 
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88.1%, dsU4T: 85.3%, similar slope) show similar behaviour, with the buffer sample 

releasing brimonidine slightly faster (90.6%, steeper slope) (Figure 24). 

It could be proven, that there is an advantage of using DNA functionalized NPs for the 

release of brimonidine. Both aptamers showed beneficial effects in retaining the drug 

that will be of use when applying the NPs as eye drops. Given the higher absolute 

release and the slower release rate of the U4T-Bra3.1 NPs, their comparable loading, 

but lower cost of fabrication, this NP was selected for further experiments and will be 

used for further adherence and safety evaluation. 
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3.3 Evaluation of adherence time of brimonidine nanoparticles 

Normal eye drops are cleared rapidly from the ocular surface by blinking and tearing 

that occurs directly after administration (Zhang et al., 2004). One advantage of the lipid 

NPs is their prolonged adherence time to the cornea (de Vries et al., 2018). They serve 

as depot, thereby resulting in a higher bioavailability of the drug. To proof the 

prolonged adherence, the adherence was evaluated with fluorescently labelled NP in-

vitro on pig eyes as well as in-vivo towards rat cornea. 

Previously, de Vries et al. found DNA nanoparticles with lipid modification to adhere 

up to four hours to rat cornea, NP with aptameric modification and loaded with 

kanamycin and neomycin up to one hour. Based on this paper, the incubation time was 

chosen (de Vries et al., 2018). 
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3.3.1 In-vitro evaluation of adherence time of brimonidine nanoparticles on pig 

eyes 

For the in-vitro quantification on pig eyes, the fluorescently labelled NPs were 

administered to enucleated pig eyes and placed in buffer to simulate blinking. The 

fluorescence of NP adhering on the cornea was determined with a fluorophotometer 

(Ocumetrics, Langley, USA) instantly, after 5, 15, 30 minutes, one, two and four hours. 

 

Figure 23: Ex-vivo evaluation of NP adherence to pig eyes up to four hours. U4T + cU4T-Bra3.1 and dsU4T 

NPs were tested. The fluorophore Atto488 served as control. Statistics: * compared to Atto488, + comparison 

between the two entities of NPs. ***/+++ p<0.001, **/++ p<0.01, */+ p< 0.05. 

 

The control (pristine Atto488) was cleared away rapidly from the corneal surface and no 

longer detectable five minutes after application (0%). In contrast to this, NPs could be 

detected up to four hours (4 h: dsU4T: 26%, aptamer: 8%). Thereby, U4T + cU4T-

Bra3.1 revealed a less adhering potential towards the cornea. After four hours, the 

amount of U4T + cU4T-Bra3.1 that was still detectable was 1/3 of the dsU4T samples. 

Both dsU4T and U4T + cU4T-Bra3.1 samples showed a slightly decreasing level of 

NPs between 15 minutes (dsU4T: 33%, U4T + cU4T-Bra3.1: 17%) and four hours after 

application.  
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3.3.2 In-vivo evaluation of adherence time of brimonidine nanoparticle on rat eyes 

After proofing the prolonged residence time of NPs in-vitro, the adherence time was 

also evaluated in an in-vivo model. The Atto488 fluorescently labelled U4T + cU4T-

Bra3.1 NPs were applied to living rats. The animals were euthanized at the designated 

time points and the adherence determined 15, 30 and 60 minutes after application. 

 

Figure 24: Representative micrographs of adherence evaluation of U4T-Bra3.1 NPs (green) to rat cornea 

(blue) at different time points: (A) 15 min), (B) 30 min, (C) 60 min. 

 

Table 7: Evaluation of adherence time of U4T-Bra3.1 NP to rat cornea. Per time point four eyes were 

investigated. The ratio of positive eyes (with NP) to all eyes is given for the investigated time points. 

Time points Positive eyes of all investigated eyes 

15 minutes 4/4 

30 minutes 2/4 

60 minutes 1/4 

 

The NPs adhered well to rat cornea (Figure 24, Table 7). 15 minutes after application of 

the eye drop, all investigated eyes showed the presences of NPs (4/4 eyes). However, 

after 60 minutes, only on one eye NPs were found (1/4 eyes). As expected, the amount 

of eyes in which NPs were found decreased over time.  
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3.4 Safety evaluation of DNA nanoparticles using in-vitro and in-vivo assays 

Before using DNA NPs in the treatment of ocular diseases, toxicity must be excluded to 

prevent side effects that may harm the patient. For this reasons, biosafety was examined 

using in-vitro cell culture methods and in-vivo application on rat eyes. 

 

3.4.1 Safety evaluation of DNA nanoparticles using an in-vitro cell culture assay 

To evaluate the biocompatibility of DNA NPs, in-vitro cultivated primary cornea 

epithelium cells from pig eyes were supplemented with different DNA formulations. 

Following an incubation time of four hours, cell amount, viability as well as apoptosis 

rate were evaluated. The results were then compared to the corresponding commercial 

brimonidine tartrate concentration, to evaluate the biosafety compared to the approved 

drug. Staurosporine and Polyinosinic-polycytidylic acid (Poly I:C) served as controls. 

Staurosporine is a commonly used inductor of apoptosis (Kruman et al., 1998). Poly 

(I:C) is a synthetic dsRNA and leads to an activation of inflammation response, among 

others through the activation of toll-like receptors (Field et al., 1967) (Matsumoto and 

Seya, 2008). 

 

Figure 25: Cell amount of cultivated primary cornea epithelium cells after supplementation of different agents. 

The results are presented in fold. The brimonidine sample was set to 1. Samples with concentrations of 500 µM 

are given. Supplementation of loaded dsU4T and U4T + cU4T-Bra3.1 samples did not led to a significantly 

difference regarding the cell amount. Statistics: Mean values and standard deviation are given. Abbreviation: 

aptU4T - U4T + cU4T-Bra3.1. 

The cell amount (Figure 25) was not significantly influenced by the applied NP (loaded 

dsU4T: 0.87x, p=0.34; unloaded U4T + cU4T-Bra3.1: 1.09x, p=0.29). 
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Figure 26: Viability of cultivated primary cornea epithelium cells after supplementation of different agents. 

The results are presented in fold. Samples with concentrations of 500 µM are given. The brimonidine sample 

was set to 1. Supplementation led for both samples to an increased viability. The viability of U4T + cU4T-

Bra3.1 is higher than for dsU4T. Statistics: Mean values and standard deviation are given. p < 0.001 is shown 

with ***, p<0.01 with ** - each compared to the depending brimonidine control. Abbreviation: aptU4T - U4T 

+ cU4T-Bra3.1. 

 

Regarding the viability of epithelium cells (Figure 26), both NP samples revealed 

significantly higher results than brimonidine. U4T + cU4T-Bra3.1 treated samples (in 

the graphs given as “aptU4T”) (3.65x, p<0.001) showed higher viability than dsU4T 

samples (1.97x, p<0.01). 

 

Figure 27: Apoptosis (caspase 3/7 activity) of cultivated primary cornea epithelium cells after supplementation 

of different agents. The results are presented in fold. The brimonidine sample was set to 1. Samples with 

concentrations of 500 µM are given as well as the death control. Both samples led to increased apoptosis 

induction. The death control showed much higher levels of apoptosis induction than the NP samples. Statistics: 

Mean values and standard deviation are given. p < 0.001 is shown with ***, p<0.05 with * - each compared to 

the depending brimonidine control. Abbreviation: aptU4T - U4T + cU4T-Bra3.1. 
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The level of caspase 3/7 activity (apoptosis induction) (Figure 27) was significantly 

elevated both for samples. dsU4T containing samples (3.11x, p<0.001) reached higher 

levels than aptamer modified NPs (1.47x, p<0.05). Here, it needs to be taken into 

account that none of the samples reached the level of apoptosis induction of the death 

control (staurosporine, 17.38x). 

In general, it can be stated, that the cell amount was not influenced significantly. Cell 

viability is higher for the NP than for brimonidine supplemented samples. Apoptosis 

induction was increased for NP samples, but in a much smaller way than for the death 

control. U4T+ cU4T-Bra3.1 had a less negative impact on primary epithelium cells than 

dsU4T. 
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3.4.2 Safety evaluation of DNA nanoparticles using an in-vivo rat eye assay 

Despite the good indication that cell culture studies give, they do not represent a 

complex living organism. Therefore, biocompatibility was also evaluated in-vivo. To 

this extend, eye drops were administered to living rats using different with brimonidine 

loaded formulations. The rats were not hindered from blinking during the application or 

afterwards and euthanized 24 hours thereafter. Apoptotic effects on corneal cells were 

determined using the terminal deoxynucleotidyl transferase dUTP nick end labeling In-

Situ Cell Death Detection assay (TUNEL) (Figure 28). TUNEL positive cells as well as 

the total number of epithelium cells were counted manually (Figure 29). 

 

 

Figure 28: Representative micrographs of each investigated condition for safety evaluation of DNA-

nanoparticles on rat eyes. Eye drops were administered  as single drop to living rats. After euthanizing them, 

the eyes were cut und stained with DAPI (blue) and TUNEL (positive cells in green). 



79 

 

Figure 29: Mean values of the counted TUNEL-positive cells per epithelium cells in the in-vivo safety 

evaluation on rat eyes. After cutting and staining the eyes with TUNEL, TUNEL positive cells as well as 

epithelium cells were counted manually and the ratio depicted. Brimonidine treated eyes showed the highest 

number of TUNEL-positive cells. dsU4T and U4T + cU4T-Bra3.1 (given as “aptU4T”) caused less TUNEL 

positive cells than brimonidine. Statistics: Mean values and standard deviation are given. Abbreviation: 

aptU4T = U4T + cU4T-Bra3.1. 

 

Several observations can be made when comparing the average of apoptotic cells for 

different eye drops (Figure 29). Brimonidine revealed the highest number of TUNEL-

positive cells per epithelium cells (c/c) (0.032 c/c). All samples caused less TUNEL 

positive cells than brimonidine. Comparing the different NP entities, dsU4T (0.021 c/c, 

p=0.35) revealed lower amounts of TUNEL positive cells than U4T + cU4T-Bra3.1 

(0.024 c/c, p=0.67).  
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3.5 Stability evaluation of U4T under different storage conditions over time 

The stability of carriers that are used for drug delivery is an important parameter. The 

used vehicle must be stable over time. Also, it needs to be clarified which conditions 

storage for storage are favourable. 

For this reason, single stranded U4T was stored at 4 °C in the dark, at room temperature 

in the dark and at room temperature with light cycle (but protected from direct sunlight). 

NPs were used in the concentration of 100 µM. Of each sample, three aliquots were 

taken every month. These were then analysed with HPLC. 

Generally it can be said, that the peak eluting around 23 minutes retention time (“peak 

1”) represented the U4T. Expected degradation products such as free nucleobases would 

elute after a shorter retention time. At later elution volume a smaller peak at 25 minutes 

(“peak 2”) can be seen. This second smaller peak, eluting at 25 minutes increased 

proportionally with a decrease of U4T peak intensity. This effect was most pronounced 

for samples stored at roomtempertaure without protection from light. 

 

 

Figure 30: Comparison of HPLC analysis of U4T samples stored at different conditions for 12 months.  
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The U4T NPs stored at 4 °C in the dark showed the least degradation (Figure 30). For 

sample stored at roomtemperature with protection from light the degradation was 

minimal, whereas the degradation was much more pronounced for samples without 

protection from light, indicating the decay was due to light. 

Samples were most stable at 4 °C (maximum: peak 1: 0 month: 470.1 mAU, 12 months: 

461.4 mAU; peak 2: 0 month: 40.3 mAU, 12 months: 42.9 mAU), followed by samples 

stored at room temperature and protected from light (peak 1: 0 month: 470.1 mAU, 12 

months: 453.3 mAU; peak 2: 0 month: 40.3 mAU, 12 months: 56.6 mAU) and most 

instable at room temperature without light protection/ cycled light (peak 1: 0 month: 

470.1 mAU, 12 months: 370.4 mAU; peak 2: 0 month: 40.3 mAU, 12 months: 79.2 

mAU) (Figure 30). After one year, samples with protection from light still gave 

comparable signals to the starting reference (4°C: 98.1% of the starting reference, room 

temperature with protection from light: 96.4%, room temperature without protection 

from light: 78.8%). From this it can be concluded that the NPs can be stored at 

temperatures between 4 °C and room temperature under the protection of light. 
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4. Discussion 

For several good reasons topical treatment is the first line therapy of glaucoma. 

Nevertheless, the efficiency of this approach is compromised by some difficulties. 

These are especially pronounced as treatment is intensive, both in drug concentration as 

well as the application frequency, leading to poor compliance and bad treatment 

efficacy. This is why the ideal topical treatment would consist of a monotherapy with 

low doses of medicament. This would increase compliance and reduce side effects 

(Tsai, 2009) (Hermann et al., 2011). 

Several methods for improvement of eye drop efficiency have been investigated in the 

past. These include increasing the uptake through longer contact times, improved drug 

permeability or by employing non-invasive sustained release devices (Baranowski et al., 

2014). However, these approaches generally cause side effects which in turn lead to 

reduced therapy efficacy. 

Nanoparticles (NP) are widely used in medicine (Murthy, 2007) (Zhang et al., 2011). 

Some experimental approaches already exist for the treatment of glaucoma in rats and 

rabbits (Tuomela et al., 2014) (Bhagav et al., 2011). In the here presented work lipid 

chain modified DNA NPs are used that have previously been described (de Vries et al., 

2018) (Anaya et al., 2010) and patented (Herrmann, A., De Vries, J. W., Spitzer, M. S., 

& Schnichels, S. O. inventors; 2015, Means and methods for ocular drug delivery, 

International publication number: WO 2015/041520 Al, 26.3.2015). These NP could be 

one way to both decrease the concentration and thus side effects and reduce the 

frequency of administration, with the aim to improve glaucoma treatment. 

In this thesis, NPs with lipid chain modifications were successfully loaded with the 

glaucoma medicament brimonidine in two different ways and their adherence time to rat 

cornea, safety and stability investigated.  
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4.1 Nanoparticles employing hydrophobic interaction 

The NPs consisting of DNA strands with lipid modifications can be used as drug 

carriers and loaded in different ways (Figure 2). As outlined in the introduction, one 

mechanism for loading is to employ hydrophobic interaction between the core of the NP 

and the medication. In this chapter, the drug loading ability was assessed for NPs made 

of both single stranded (ssU4T) and double stranded DNA (dsU4T) and their release 

properties were compared. 

 

4.1.1 Loading of brimonidine in nanoparticles employing hydrophobic interaction 

First, the loading capacity of single and double stranded DNA NPs was investigated. It 

could be shown that ssU4T was able to bring 3.22 x more brimonidine into solution 

than the buffer control, confirming the hydrophobic loading of the drug into the NPs. 

Also, the dsU4T NPs have shown to be even more effective in solubilisation than its 

single stranded counterpart (1.29 x), indicating that there is interaction between 

brimonidine and the double stranded structure. Loading of brimonidine was found to be 

more effective with higher feed concentrations of brimonidine and NPs. 

From the obtained loading results and the characteristics of brimonidine (Figure 1), it 

can be concluded that brimonidine is not only loaded into the hydrophobic core of NP, 

consisting of lipid chains, but that the drug also intercalates in the double stranded 

DNA. However, it is difficult to quantify the contribution of the different types of 

loading as double stranded NPs also have a different structure and as such the 

hydrophobic core is different from the single stranded NPs. 

Furthermore, a plateau of loaded drug was reached for buffer and dsU4T after 48 hours. 

It can be concluded, that the use of higher concentrations of NP as well as higher 

feeding concentrations of brimonidine resulted in higher solubilisation of brimonidine. 

The use of dsU4T can be considered beneficial over ssU4T and the optimal loading is 

considered as 48 hours. 
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4.1.2 Release of brimonidine from hydrophobic loaded nanoparticles 

For the release experiment, a control was added to investigate the influence of the lipid 

modification of the DNA polymers on the ability to release the loaded drug. Here, a 

pristine double stranded DNA sequence was used (dsT4T), which does not bear any 

modification. This is why it also does not form NPs. 

Regarding the absolute amounts of released brimonidine it was obvious, that ssU4T did 

not release more brimonidine when loaded with a higher feed concentration. This did 

not apply for double stranded entities, which released more brimonidine when the feed 

concentration was increased. Comparing double stranded NPs with the pristine double 

stranded DNA control, it became clear that with the help of the hydrophobic core, more 

brimonidine can be loaded and released. These results support the conclusion that the 

use of ds DNA NPs is advantageous. 

A slower release of brimonidine from the NPs implements the need of a long adhering 

period of the NP to the corneal surface. Otherwise, less brimonidine is released 

referable to the slower release. Here, excellent adherence of the NPs was shown for one 

hour and an increased adherence for up to four hours (Chapter 3.3.1 and 3.3.2). The 

pristine molecules which served as controls did not adhere for longer than five minutes 

(Figure 23, Figure 24, Table 7). Literature research found adherence of 30 minutes to 

one hour (de Vries et al., 2018) (Chaiyasan et al., 2013). In regard to this, the here found 

adherence can be seen as a long period of time for the release. Thus, a slower release of 

brimonidine from the NPs is considered as an advantage as the longer adhering NPs will 

thereby increase the bioavailability. 

Thereby, the longer adhering NPs serve as a drug depot and are able to release the drug 

over prolonged periods of time. It could be shown, that the buffer control released 

brimonidine fastest and resulted in the highest diffusion. This indicated no interaction of 

the drug with the buffer. In addition, the dsT4T control released the drug slightly slower 

than buffer, indicating only weak interactions between the pristine double stranded 

DNA and brimonidine. Even if ssU4T achieved slightly better results regarding the 

retaining release than dsU4T, though the differences were small. It can be concluded 

that also for the release properties there is a distinct advantage in the use of the 

investigated DNA NPs. 
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To understand which part of the NP is the one that bears the bigger influence on 

retaining behaviour, one needs to visualize the different NP structures (Figure 31). 

ssU4T expresses a lipid core, but no double stranded DNA; dsU4T has a lipid core and 

double stranded DNA; dsT4T no lipid core, but double stranded DNA. Ranking the 

entities from best to less retaining NP, the following order can be seen: ssU4T, dsU4T 

and dsT4T; indicating that interaction between ssU4T and dsU4T to brimonidine is 

more pronounced than to dsT4T. This leads to the conclusion that the core has a higher 

influence on the retaining behaviour than double stranded DNA. 

 

Figure 31: Structure of ssU4T, dsU4T and dsT4T in aqueous surrounding. 

 

The influence of adjusting the amount of brimonidine into the samples revealed similar 

results for all samples expect buffer. It released up to the same amount regarding the 

relative endpoint but in an apparently less retaining behaviour. For the non-adjusted 

samples, a plateau is reached after 120 minutes. To adjust samples and the containing 

amount of brimonidine to each other, the triple amount of loaded buffer sample was 

taken for the adjusted set up. This is why, a more increased amount of totally released 

brimonidine can be set free and up to 250 minutes, no plateau is reached leading to a 

relative presentation of values that seems to be more retaining. This is the only sample 

that revealed an effect of adjusting the amount of brimonidine. The effect on DNA 

containing samples is negligible. Regarding both absolute and relative release, it can be 

said that dsU4T 500 µM with 5000 µM brimonidine feed concentration is the best 

performing NP. 
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Analysis of brimonidine tartrate coformulated dsU4T and buffer samples revealed a an 

influence of the coformulation on the release behaviour. As expected, the absolute 

release was much higher. In agreement with earlier release measurements, dsU4T 

showed higher drug retention compared to buffer. The release was faster for adjusted 

samples of dsU4T and the retaining effect decreased when using higher amounts of 

brimonidine tartrate and less of loaded NP. Strikingly, almost 100% of the total amount 

of brimonidine is released within the first 380 min and around 95% in the first 240 min. 

At this time point, samples without addition of brimonidine tartrate only released 40-

50%. This indicates that the coformulation did have influence on the release properties 

and presumably weakened the interaction of the loaded brimonidine with the NPs. 

When using increased relatively higher amounts of brimonidine tartrate and less loaded 

NP, release is faster and the retaining effect of NP decreased. This fact needs to be kept 

in mind for further studies in which coformulation is needed for direct comparison. 
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4.1.3 Findings in the context of current research results 

In literature, brimonidine was shown to be successfully loaded and released from 

nanosponges made of modified δ-valerolactone. The NPs were used to improve the 

ability of brimonidine to cross the optic nerve sheets. It was found that the use of these 

NPs restrained the diffusion, enabling a depot effect. Compared to pristine brimonidine, 

the release was slower and more prolonged. With this approach the authors hope to be 

able to decrease the drug concentration (Grove et al., 2014). These two facts were also 

seen with the here established DNA NPs. As the release is delayed due to interactions 

with the DNA NPs, the bioavailability of the brimonidine is improved and the necessary 

drug concentration can be decreased. 

Regarding the release from brimonidine loaded NPs, comparable results have been 

published. In one investigation, three lipid NPs containing docetaxel were studied and 

shown to almost immediately release 45% of the loaded drug. One of the tested carriers 

released up to 85% of the loaded drug in a period of eight hours. The other two 

docetaxel NPs showed no further release after the initially burst. Here, 100% was 

defined as all detectable drug – loaded in NPs and released - in mouse plasma and was 

determined by chromatography (Feng et al., 2011). There are several striking 

differences from the here used measuring methods and experimental setup. As such, the 

results are not directly comparable. However, the release of 40-50% after four hours 

found for our NPs is similar to what was measured in the paper. It could even be said 

that our NPs are performing slightly better, with regard to the sustained release without 

initial burst and to their improved depot effect.  
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4.2 Brimonidine loading in aptamer functionalized DNA nanoparticles 

To load brimonidine in NPs, several strategies can be employed. This gives more 

alternatives and results in higher chances to succeed in employing the envisaged NPs as 

potent drug delivery vehicles. Possibilities to load NP are hydrophobic interaction, 

covalent binding or the use of aptamers (Figure 5). 

Aptamers in general represent a very elegant method to recognise structures and more 

specifically load drug into NPs. This strategy is not limited to small drug molecules and 

is employed in a vast number of applications. For example, they can be used as potent 

drug delivery systems in oncological treatment. Thereby, the aptamer serves as 

molecule that recognises pathological cells and delivers the drug that is linked to the 

aptamer (Jiang et al., 2015). In another approach, the specific interaction of the aptamer 

with the target is used for the loading of drugs in NPs. Like this, almost any drug can be 

loaded into the NP, and it can be in addition to loading with hydrophobic interaction 

into the hydrophobic core and with intercalation into the double stranded part of the 

NPs. The use of aptamers is thus a very elegant possibility to load even more drug into 

the NPs. 

 

4.2.1 Validation of aptamer binding towards brimonidine 

All three aptamers – the original and the two shortened ones - were tested on their 

binding behaviour towards brimonidine with a fluorescence based binding assay with 

SYBR Green. 

All aptamer sequences showed good binding behaviour of brimonidine (Figure 16). 

Furthermore, binding experiments were also done with elongated aptamers. For that 

purpose, cU4T was linked to the 3' end of the aptamer enabling the hybridizing onto the 

NPs. 

All samples with elongated aptamers showed an increasing fluorescence with increasing 

brimonidine concentrations (Figure 18 and Figure 19). This effect was most pronounced 

in the samples of Bra3.1 and Bra3 aptamers. The brimonidine dependant increase was in 

contrast to what was observed for the pristine aptamers, where the signal decreased with 

increasing target concentration. Although it is difficult to explain such differences, both 
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have been observed in literature (Sarpong and Datta, 2012) (Zipper et al., 2004). To 

obtain a better understanding about these irregularities, further experiments would be 

needed. However, this is outside the scope of this thesis. 

When looking at the results of brimonidine binding to the aptamers and comparing this 

with the secondary structure of the aptamers, insight in the important parts for binding 

can be obtained. The two aptamers with good binding characteristics, Bra3 and Bra3.1, 

exhibit a stem-loop structure flanked by a single stranded sequence. When comparing 

the structure of the good binders with Bra3.2, it becomes evident that the stem-loop 

structure plays an important role in binding. Bra3.2 does not express the stem-loop 

structure as Bra3 and Bra3.1 (Figure 32). 

 

 

Figure 32: Secondary structure of aptamers. The unshortened aptamer Bra3 is depictured, such as the 

shortened versions, Bra3.1 and Bra3.2. 

 

Both pristine as well as elongated aptamers showed a concentration dependant change 

in relative RFU and thus it can be concluded that no impairment of the elongation can 

be seen. For all the samples successful binding of brimonidine to the aptamer 

functionalized NPs was proven. Bra3 and Bra3.1 are considered the best binding 

aptamers.  
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4.2.2 Loading of brimonidine in nanoparticles with bound aptamers 

Bra3 loaded most drug compared to the other samples, followed by Bra3.1 (66% of 

Bra3) and dsU4T (36% of Bra3) (Figure 20). Loading for these samples showed a 

logarithmic behaviour. The buffer control resulted in much lower solubilisation (11% of 

Bra3), whereas the aptamer Bra3.2 did not show logarithmic loading and the values 

were around the same height than dsU4T. Strikingly, when finishing the experiment, the 

supernatant of the Bra3.2 sample was like a gel. This hindered proper handling of the 

sample and could be the reason why the loading and measurements were unreliable. 

Regarding the structure of the used aptamers (Figure 32), it strikes that Bra3.2 is the 

only one with a less complex secondary structure and thus other binding options. All 

other aptamers express a stem-loop structure. This could be the reason why Bra3.2 

formed more easily a gel than the other aptamers. 

Results for dsU4T are comparable with the earlier obtained loading (chapter 3.1.1). In 

the initial experiments a plateau is reached after 48 hours at an optical density (OD) of 

around 50. Here, dsU4T samples showed a similar behaviour, but the plateau was 

reached after 36 hours, also around OD 50. This could be due to higher room 

temperature for the aptamer experiment. Temperature differences reached around 10 °C. 

For these reasons and for standardisation loading was performed for 48 hours in further 

experiments and temperature was fixed to 21°C. 

Drawing a conclusion between loading and loading per production costs, dsU4T was the 

cheapest NP, but loaded only a small absolute amount of brimonidine. Beyond the 

aptamers, U4T-Bra3 and U4T-Bra3.1 showed good results. U4T-Bra3.2 was the NP 

with the highest costs and the lowest absolute loading abilities and thus was left out of 

consideration from this point on. 

 

4.2.3 Release of brimonidine from nanoparticle with bound aptamers 

Relative analysis of results revealed that both aptamer samples released in about the 

same speed, with slightly better properties being attributed to the Bra3.1 aptamer. The 

dsU4T NPs liberated the drug faster. Looking at adjusted amounts of brimonidine in the 



91 

release devices, the differences are very small and all DNA samples set the drug free in 

about the same speed. Only the buffer control liberated the drug faster. 

Compared to the release experiment with hydrophobic interaction, dsU4T and buffer set 

more drug free regarding the absolute and relative values after four hours. dsU4T 

reached relative release values of around 85% for the aptamer experiment, but only 

around 45% for the hydrophobic experiment. This is most likely due to the room 

temperature which varied by a difference of 10°C. 

As temperature influenced the release, consequently the ocular temperature needs to be 

considered. Ocular surface temperature is around 34 °C and thus lower than the normal 

body core temperature (Konieczka et al., 2018). Compared to the aptamer experiment, 

the ocular temperature did not differ much from the room temperature. As seen before, a 

higher temperature led to a higher release in the same time, so an even slightly faster 

release in-vivo at 34°C may be expected. For a quantitative statement, more 

experiments would be needed. Most realistic would be in-vivo experiments with the 

ocular surface temperature of 34°C as they will be conducted as logical following step 

on the way of establishing the drug carrier for clinical use. 

It can be concluded, that there is an advantage of using aptamer functionalized NP 

compared to hydrophobically loaded ones. Both Bra3 and Bra3.1 NPs showed 

beneficial behaviour in retaining the drug. Due to the better binding, loading and release 

properties of Bra3.1 aptamer functionalized NPs, it was decided to use this design for 

further testing.  

 

4.2.4 Findings in the context of current research results 

As seen for the hydrophobic loading, the incorporation of brimonidine via aptameric 

interactions achieves equal or superior results. In one study, lipid NPs containing 

docetaxel showed an immediate release of 45% of the loaded drug. Only a single NP 

released more and achieved up to 85% delivery (Feng et al., 2011). The DNA NPs with 

aptamers reached up to 85 - 90%. However, as mentioned (chapter 4.1.3), the 

experimental set up is different. Nevertheless, it can be said that DNA NPs achieved 

comparable or superior results. 
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Aptamers are widely used for targeted drug delivery. Aptamers can serve as recognition 

unit and deliver the drugs or carrier to the targeted structure, e.g. cancer cells (Salata, 

2004). One example for that kind of use of aptamers is the delivery of doxorubicin to 

retinoblastoma cells. To this end two aptamers were linked together, one side for 

recognition of the retinoblastoma cells, the other expressing a stem-loop structure which 

is able to load doxorubicin. In this study, it could be shown that the release from 

aptamers was around half of the release of the free drug in the same time. Release from 

aptamers was thus slower and the aptamer chimers could be considered as drug depot. 

The aptamer chimers released 37% of all drug in four hours (Subramanian et al., 2012). 

Due to different presentations of cumulative release in this study and the relative release 

to the amount that was set free after 28 hours, direct comparison is difficult. When 

looking at the retention of the drug in aptamer NPs and buffer, the NP liberated between 

70 – 75%, whereas buffer released 95% of the drug. This would indicate that the 

aptamer chimer exhibited more retaining effects than DNA NPs. 

To reach the aim of increased and prolonged drug delivery, other modes than topical 

administration of eye drops have been investigated, e.g. using in-situ gels. One 

workgroup established the use of hydrogels loaded with brimonidine and timolol and 

found that the combination of both drugs loaded into hydrogel was superior to timolol 

loaded alone into hydrogel. To investigate into the release a similar set up to the here 

used one was employed. The release from brimonidine as well as timolol loaded 

hydrogels reached around 70 % after four hours, whereas it is not clarified which value 

was set as 100% (Dubey and Prabhu, 2014). Presuming that the relative release is 

represented in a comparable way, the DNA NPs reached slightly lower levels of drug 

that was set free after four hours and thus showed a more retaining behaviour than the 

hydrogel. However, the major advantage of using DNA NPs is that they can be 

administered as eye drops. Hydrogels have a higher viscosity, which may lead to a 

(longer lasting) blurred vision and foreign body sensation. This is not the case for eye 

drops containing DNA NPs. 

  



93 

4.3 Evaluation of adherence time of brimonidine nanoparticles 

Commercial available eye drops are cleared away from the eye rapidly. Different 

methods have been tested and are employed to prolong the adherence time of the 

formulations and drug to the corneal surface (Baranowski et al., 2014). 

The in-vitro evaluation on pig eyes showed the superiority of DNA NP to the pure 

fluorophore. Thereby, the U4T + cU4T-Bra3.1 samples (t = 4 hours: 8%) achieved 

inferior relative levels than dsU4T (26%). This is most likely due to the larger size and a 

more complex structure of loaded NP which might influence the binding of the NP to 

the cornea. However, the increased adherence time was proven up to four hours after 

application. The in-vivo evaluation revealed an adherence of U4T + cU4T-Bra3.1 NPs 

to rat cornea, with a decrease of positive eyes over time. Nevertheless, 60 minutes after 

application there were still NPs detectable. The in-vivo experiment was conducted up to 

60 minutes in order to use a smaller number of animals. 

Chitosan-dextran sulfate NPs were tested upon their potential of adherence to the 

cornea. Fluorescent NPs were applied in an ex-vivo experiment to porcine cornea and 

then washed with a continual stream of buffer to imitate blinking. After 60 minutes, 

NPs could be detected (Chaiyasan et al., 2013). The finding concerning the adherence 

time to the cornea are in agreement with the here found results where NPs were still 

detectable after 60 minutes. Even if the used NPs and the experimental set up are 

completely different, this gives an idea which period of adherence time other NPs are 

able to achieve. 

U4T was found previously on rat cornea up to four hours. The with aptamers 

functionalized and with kanamycin and neomycin loaded NPs adhered to rat cornea for 

at least two hours (de Vries et al., 2018) (Herrmann, A., De Vries, J. W., Spitzer, M. S., 

& Schnichels, S. O. inventors; 2015, Means and methods for ocular drug delivery, 

International publication number: WO 2015/041520 Al, 26.3.2015). The here found 

results are in agreement with the ones of the experiments of de Vries et al. 
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4.4 Safety evaluation of DNA nanoparticles using different in-vitro and in-

vivo assays 

For safety evaluation, the effects of administration of different DNA NPs were studied 

in-vitro using primary cornea epithelium cells and in-vivo in rats. 

 

4.4.1 Safety evaluation of DNA nanoparticles using an in-vitro cell culture assay 

Both applied samples, dsU4T and U4T + cU4T-Bra3.1 did not show a significantly 

different quantity regarding the cell amount (Figure 25). For marketing authorisations 

(DIN ISO 10993-5) a decrease of viability over 30% is considered as cytotoxic. 

According to this and the fact that both samples showed even increased levels of 

viability (Figure 26), dsU4T and U4T + cU4T-Bra3.1 would be considered safe. The 

increased viability is explainable regarding the simultaneously increased levels of 

caspase 3/7 activity (apoptosis induction) (Figure 27) when bearing in mind that the 

level of caspase 3/7 activity was much smaller for the NP samples (dsU4T: 3.11x, U4T 

+ cU4T-Bra3.1: 1.47x) than for the death control (staurosporine: 17,38x). Comparing 

dsU4T and U4T + cU4T-Bra3.1 with each other, U4T + cU4T-Bra3.1 is the less 

harmful NP as the cell amount and viability was higher and the apoptosis induction 

lower than for dsU4T. 

Regarding all results it can be stated that dsU4T and U4T + cU4T-Bra3.1 can be 

considered as not harmful whereas U4T + cU4T-Bra3.1 is the best performing sample. 

 

4.4.2 Safety evaluation of DNA nanoparticle using an in-vivo rat eye assay 

None of the tested DNA NP expressed a significant higher apoptosis rate than the 

brimonidine control (=brimonidine tartrate). dsU4T showed less apoptic cells than U4T 

+ cU4T-Bra3.1. 

The in-vitro experiment found that U4T + cU4T-Bra3.1 resulted in better effects than 

application of dsU4T. When having a closer look on the apoptosis induction, in-vitro 

and in-vivo findings are not in complete agreement with each other. The concentration 

of the starting samples is the same. In-vitro cells were incubated for four hours in 500 
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µM of samples. In-vivo only one drop was applied. As seen in the adherence 

experiment (chapter 3.3.1), most of the sample is cleared away rapidly from the cornea. 

So, cells in-vitro were exposed relatively longer to a higher concentration and so these 

small differences can be explained. Furthermore, in-vivo experiments are more 

meaningful than in-vitro experiments as they represent a complex living organism and 

more realistic conditions. For these reasons attention should be turned towards the in-

vivo findings. 

 

4.4.3 Findings in the context of current research results 

One example of already mentioned NPs for which a safety profile was evaluated, is a 

lipid NPs loaded with docetaxel (chapter 4.1.3). These NPs were found to achieve 

superior results as the free drug regarding the release and showed lower toxicity than 

free docetaxel. Toxicity was evaluated using an in-vitro model of human prostate cancer 

cells with the help of an MTT assay that assesses the viability. However, here the lipid 

chain length had an important influence on the toxicity. The longer the lipid chain, the 

lower the toxicity (Feng et al., 2011). The finding that the free drug is more toxic than 

the loaded one goes along with this paper. Looking at the results of the biosafety of 

dsU4T and the NPs with aptamer modification, it is difficult to state that the length of 

the DNA or of the alkyl chain has any influence on the safety profile. However, as the 

biocompatibility is also dependant on the length of the lipid chain for the lipid NP, it 

would be interesting to investigate this for DNA NPs as well. 

A paper giving exact numbers on toxic effects and not only a statement about 

expression of toxic/ nontoxic effects is the study about hydrogels made from polyacrylic 

or polyitaconic acid NPs. Both NP have been shown to be able to bind to human cornea 

and achieve sustained release of brimonidine. Viability of cells after incubation with the 

formulations was tested using tryptan blue and it could be shown that poyacrylic acid 

did not cause any impact on viability after 30 minutes in-vitro. However, this is in 

contrast to the results found for polyitaconic acid, for which viability decreased by 90% 

in the same time period (De et al., 2004). For the here presented NPs, dsU4T revealed 

an increase of viability which was 97% and U4T + cU4T-Bra3.1 even 265% higher than 

the one of brimonidine after four hours of incubation which was assessed with the MTS 
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assay. MTS measures the glycolysis rate, a direct factor of viability. In contrast, trypan 

blue determines viability indirectly, as the method is based on the integrity of the cell 

membrane. For this reason comparison is difficult as indirect measurements can be false 

negative as well as false positive. Additionally, the trypan blue assay is evaluated 

manually, a further source of possible errors (Strober, 2015). For in-vivo experiments, 

irritation was most often evaluated by visual examination and parameters like 

hyperaemia, corneal and conjunctival aspects and slit-lamp examination (Bhagav et al., 

2011) (Dubey and Prabhu, 2014) (Natarajan et al., 2012). Hence, comparison and 

classification of the here presented data is difficult. Nevertheless, the found results do 

not implement a decreased biosafety implicating that the here presented NPs could be 

considered as safe for further studies. 

DNA NPs for antibiotics, namely kanamycin and neomycin, have been evaluated on 

their cytotoxic potential. No significant toxic effects regarding cell amount, viability 

and apoptosis induction were found for the antibiotic NPs (de Vries et al., 2018) 

(Herrmann, A., De Vries, J. W., Spitzer, M. S., & Schnichels, S. O. inventors; 2015, 

Means and methods for ocular drug delivery, International publication number: WO 

2015/041520 Al, 26.3.2015) . The experiments were conducted with some small 

differences. First of all, the NP were prepared at 20 µM. Incubation time for the NPs 

was 24 hours and the tested cells were RGC-5, 661W and ARPE-19 cell lines. These 

cell lines are derived from retinal cells and of rodent or human origin. Here, primary 

epithelium cells from pig cornea were used for the reason that the toxic impact on the 

cornea was examined. The findings are in agreement with the brimonidine experiments.  
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4.5 Stability evaluation of U4T under different storage conditions over time 

Stability is a crucial aspect in establishing a new drug delivery platform. When a carrier 

undergoes fast degradation under specific conditions, storage becomes difficult. Also, 

fast degradation results in the accumulation of unknown products, which might impose 

side effects. 

As can be seen in the HPLC results (chapter 3.5, Figure 30), storage at 4 °C with 

protection from light is favourable for the stability of U4T. Degradation found for 

samples stored at room temperature with protection from light is also small. Changes 

that were detected in HPLC are mostly an increase in the second peak, which is most 

likely due to the accumulating of hydrophobic material. Such material elutes at higher 

concentrations of organic buffer and can be formed due to minor degradations of DNA 

nucleotides or to changes in aggregation of U4T. Degradation of DNA would implicate 

that other degradation products, like free nucleobases, should be observed, which was 

not the case. Light seems to enhance this process and is not favoured for storage of the 

NPs. In conclusion, U4T is stable when stored with protection from light, lower 

temperature can be an advantage too. 

In the study of Bhagav et al., brimonidine was loaded into NPs made of copolymers of 

methacrylacid and methylmethacrylate. The degradation behaviour of these NPs was 

investigated over time. It could be shown that the NP formed aggregates at room 

temperature and the physical and chemical characteristics were modified after six month 

of storage. This was not experienced for storage at 4°C or -20°C. Unfortunately, there 

are no numbers given on the amount of degradation and it is not specified whether 

samples were stored with or without protection from light (Bhagav et al., 2011). The 

aggregation and degradation behaviour found in the paper are in agreement with the 

observed changes for the slightly increased degradation for higher storage temperature 

in this study. So, storage at -20°C would also indicate that even lower degradation is 

possible for the used NPs. Nevertheless, the effect seen for protection from light is 

much more pronounced than the difference from room temperature to 4°C. 
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4.6 Conclusion 

The here presented NPs represent an elegant way to load and release more brimonidine 

in a solution than without. Thereby the NP with the aptamer modification U4T + cU4T-

Bra3.1 showed the most promising results. The adherence was shown in-vitro up to four 

hours and in-vivo up to one hour. This is an immense improvement compared to the 

pure drug and thus the NP can serve as drug depot. The safety towards primary 

epithelium cells as well as towards rat cornea was evaluated. In-vivo none of the 

samples expressed significantly higher apoptosis rates than brimonidine tartrate, as it is 

currently used in humans. The least degradation of U4T + cU4T-Bra3.1 was shown for 

samples stored with protection from light, lower temperatures can be an additional 

advantage. Degradations after 12 months of storage were small. 

These facts represent the groundwork for further studies to enable the formulation of 

DNA NPs containing eye drops for human use. For that aim, in a next step, studies 

regarding the ability of with brimonidine loaded NPs to decrease the intraocular 

pressure are needed. Additionally, a long-time in-vivo safety evaluation and a stability 

study of U4T + cU4T-Bra3.1 needs to conducted. Some of the mentioned experiments 

are already under investigation and further studies are still coming. In total, this is a 

very promising approach in aiming for an improved glaucoma treatment. Furthermore, 

these lipid-modified NPs are not limited to one drug and could open up many more 

possibilities which might improve treatment in various medical fields. 
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5. Summary 

Nanoparticles (NP) are a widely used way to improve treatment in medicine and 

ophthalmology. Various materials are available. One very elegant is DNA. Lately, a NP 

made of DNA with lipid modification was presented (de Vries et al., 2018) and patented 

(Herrmann, A., De Vries, J. W., Spitzer, M. S., & Schnichels, S. O. inventors; Means 

and methods for ocular drug delivery, International publication number: WO 

2015/041520 Al, 26.3.2015). This NP was here evaluated for brimonidine with the aim 

of an improved glaucoma treatment. 

Two different ways of loading DNA NPs were established. Loading of brimonidine 

using hydrophobic interaction benefits from both higher DNA and brimonidine feed 

concentration as well as the use of dsU4T. The same applies for the release. Finally, 

using brimonidine tartrate for co-formulation of the loaded NPs revealed an influence 

on the release behaviour. The second possibility to load NPs is the use of different 

aptamers. Here, U4T + cU4T-Bra3.1 performed best regarding binding, loading and 

release. It is advantageous for retained release of the drug and thus for the use as a depot 

when applied as eye drops. The in-vitro safety evaluation showed no harmful effects of 

the tested entities. In-vivo none of the samples expressed higher levels of apoptosis rate 

than brimonidine tartrate as it is currently used in humans. Regarding the efficacy of the 

developed carrier, the adhesion of aptamer functionalized NP could be shown in-vitro 

up to at least four hours and in-vivo up to at least one hour. Finally, the stability of U4T 

samples was tested. Especially light enhanced degradation and should be avoided in 

future applications. 

It could be shown that the use of loaded DNA NPs is advantageous for binding, loading 

and release of brimonidine. Two different loading strategies were successfully 

established and the safety and stability of the carrier was confirmed. The efficacy of the 

NPs was tested and showed promising results for future applications. 

The next steps in evaluating with brimonidine loaded NPs for more effective glaucoma 

treatment will be the in-vivo testing of those NPs, the evaluation of stability of U4T + 

cU4T-Bra3.1 as well as a long-term safety study.  
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5.1 Zusammenfassung 

Nanopartikel (NP) stellen eine weitverbreitete Methode dar, um Behandlungen in der 

Medizin und Augenheilkunde zu verbessern. Dazu stehen verschiedenste Materialien 

zur Verfügung. Eine sehr elegante Möglichkeit ist die Verwendung von DNA. Vor 

kurzem wurde ein DNA NP mit Lipidmodifikationen vorgestellt (de Vries et al., 2018) 

und patentiert (Herrmann, A., De Vries, J. W., Spitzer, M. S., & Schnichels, S. O. 

Erfinder; Means and methods for ocular drug delivery, Internationale Patent Nummer: 

WO 2015/041520 Al, 26.3.2015). Diese NP wurden mit dem Ziel einer verbesserten 

Glaukombehandlung in der vorliegenden Arbeit mit Brimonidin evaluiert. 

Zwei verschiedene Wege zur Beladung von DNA NP wurden evaluiert. Die Aufnahme 

von Brimondin in NP mittels hydrophober Interaktion profitiert von höheren 

Anfangskonzentrationen von DNA und Brimonidin sowie der Verwendung von dsU4T. 

Das gleiche konnte für die Freisetzung des Medikaments aus den beladenen NP gezeigt 

werden. Außerdem zeigte die Nutzung von Brimonidintartrat zur Koformulierung der 

beladenen NP Auswirkungen auf das Freisetzungsverhalten. Die zweite Möglichkeit NP 

zu beladen ist die Verwendung von Aptameren. Hier wies U4T + cU4T-Bra3.1 

hinsichtlich Bindeverhalten, Beladung und Freisetzung die besten Ergebnisse auf. Es 

zeigte sich vorteilhaft für eine verzögerte Freisetzung des Medikaments und damit in 

der Anwendung als Depot in der Verwendung als Augentropfen. Die in-vitro 

Sicherheitsbeurteilung zeigte für keine der getesteten Proben schädliche Einflüsse. In-

vivo wies keine der DNA Proben eine höhere Induktion von Apoptose als 

Brimonidintartrat auf, wie es aktuell am Menschen eingesetzt wird. Die Effektivität 

konnte mit Adhäsionen von in-vitro bis zu mindestens vier und in-vivo bis zu einer 

Stunde bestätigt werden. Abschließend wurden U4T Proben auf ihre Stabilität getestet. 

Vor allem Licht beschleunigte die Zersetzung und sollte in zukünftigen Anwendungen 

vermieden werden. 

Es konnte gezeigt werden, dass der Gebrauch von beladenen DNA NP vorteilhaft für 

Bindung, Beladung und Freisetzung von Brimonidin ist. Zwei verschiedene 

Beladungsstrategien wurden erfolgreich evaluiert, sowie Sicherheit und Stabilität der 

Carrier bestätigt. Die Effektivität der NP zeigte vielversprechende Ergebnisse für 

zukünftige Anwendungen. Die nächsten Schritte in der Etablierung von mit Brimonidin 

beladenen NP für eine effektivere Glaukomtherapie werden die in-vivo Testung dieser 

NP, Stabilitätsstudien von U4T + cU4T-Bra3.1, sowie Langzeitsicherheitsstudien sein.  
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