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Abstract  

 

Heavy metal hyperaccumulation is a rare trait found in few plant species that inhabit 

metal contaminated soils. Two non-mutually exclusive hypotheses were proposed to 

explain the adaptive value of metal hyperaccumulation in plants: the elemental 

defense hypothesis suggests that metal hyperaccumulation functions as defense 

against herbivores, while the elemental allelopathy hypothesis suggests that metal 

hyperaccumulation acts to inhibit the growth of neighbors. In my doctoral research, I 

studied the role of these two biotic interactions, herbivory and competition, in selecting 

for metal hyperaccumulation and in its induction. My thesis comprises of the three 

experimental chapters that aimed to study these questions in the model 

hyperaccumulating species Arabidopsis halleri.  

The first study of my thesis (chapter 2) was the first study to compare the 

predictions of both the elemental defense and elemental allelopathy hypotheses. 

These predictions were compared between populations from both metalliferous and 

non-metalliferous soils of A. halleri.  A. halleri plants were grown in soils with metals 

(such as, cadmium (Cd) and zinc (Zn)) or without metal and their leaves were used to 

examine the elemental defense hypothesis in a feeding experiment with a specialist 

herbivore. Leaves from the same plants were then used to examine the elemental 

allelopathy hypothesis in a set of leaf-leachate experiments that tested their effect on 

seed germination and seedling establishment of species co-occurring with A. halleri. 

The feeding experiment and field-survey results suggest that Cd accumulation in A. 

halleri leaves could provide it with defense against herbivores. Moreover, results of 

the leaf-leachate experiments reveal that Cd accumulation had no effects on seed 
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germination of neighboring species but inhibited seedling establishment, particularly 

of neighboring plant species originating from non-metalliferous soils. These results 

suggest, for the first time, that both the need for herbivore defense and neighbor 

inhibition could jointly select for metal hyperaccumulation in plants. Moreover, they 

offer first evidence that metal hyperaccumulation could provide a selective advantage 

particularly in non-metalliferous soils, where neighboring plants probably lack metal 

tolerance. 

The second and third studies of my thesis (chapters 3, 4) aimed to explore the 

unstudied hypothesis that herbivory and competition might induce the uptake and 

foraging for heavy metals in A. halleri. Plants can exhibit foraging behaviors in 

response to resource heterogeneity and demand. However, biotic stressors might also 

affect these foraging decisions, such as herbivory and competition, which could alter 

the demand for particular resources, for example those required for herbivore 

resistance and competitive offense i.e. allelopathy. To study this hypothesis, I first 

examined the effect of simulated herbivory on clonal foraging and metal uptake in A. 

halleri (chapter 3). In this experiment, two connected ramets were grown in either a 

high-metal or a low-metal pot. Herbivory was simulated using jasmonic acid and 

pierced holes with water as a control. Secondly, I examined the effect of simulated 

competition on root foraging and uptake of heavy metals in A. halleri (chapter 4). In 

this experiment, A. halleri plants originating from both metalliferous and non-

metalliferous soils were grown in a “split-root” setup with one root in a high-metal pot 

and the other in a low-metal one. The plants were then assigned to either simulated 

light competition or control no-competition treatments, using vertical green or clear 

plastic filters, respectively. The results of the first experiment (chapter 3) revealed that 

herbivory can induce both metal hyperaccumulation and sharing among ramets, 
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particularly in ramets originating from populations of non-metalliferous soils. This 

result therefore suggests, for the first time, that clonal foraging for metal in plants can 

be induced by herbivory. In contrast, in the second experiment (chapter 4) simulated 

competition did not induce greater root allocation into the high-metal pots, regardless 

of A. halleri’s origin. However, simulated light competition did result in enhanced metal 

uptake by A. halleri, particularly in the less metal-tolerant plants originating from non-

metalliferous soils. This result therefore suggests, for the first time, that metal uptake 

in plants can be induced by competition. Together, the results of both experiments 

open a novel facet in the study of decision-making in plants, implying that their foraging 

and nutrient uptake decisions can be a complex process in which not only resource 

distribution is evaluated but also its relative demand and alteration by environmental 

stressors. Interestingly, this induced uptake was displayed only for Cd and not Zn, in 

the case of herbivory, while for competition this induced uptake was displayed for Zn 

and not Cd, demonstrating separate uptake pathways and preferential resource 

selection, which is influenced by these biotic stressors. These results therefore 

highlight a new research avenue of prey selection in plants. 
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Abstract (German Version) 

 

Schwermetall-Hyperakkumulation ist eine seltene Eigenschaft in Pflanzen, die in mit 

Metall kontaminierten Böden wachsen. Um den adaptiven Wert der 

Metallhyperakkumulation in Pflanzen zu erklären, wurden zwei sich nicht gegenseitig 

ausschließende Hypothesen aufgestellt: Die Elemental defense hypothesis besagt, 

dass Metallhyperakkumulation als Abwehr gegen Herbivore fungiert, während die 

Elemental allelopathy hypothesis besagt, dass Metallhyperakkumulation vor allem der 

Hemmung des Wachstums benachbarter Pflanzen dient. In meiner Doktorarbeit 

untersuchte ich die Rolle der beiden biotischen Interaktionen Herbivorie und 

Konkurrenz auf die Selektion und Induktion von Metallhyperakkumulation in Pflanzen. 

Meine Dissertation besteht aus drei experimentellen Studien (Kapitel 2, 3, 4), in 

welchen ich die Untersuchungen dieser Fragestellungen in der Metall-

hyperakkumulierenden Art Arabidopsis halleri darlege. 

Die erste Untersuchung meiner Doktorarbeit (Kapitel 2) ist eine Studie, in der 

die Vorhersagen sowohl der Elemental defense hypothesis als auch der Elemental 

allelopathy hypothesis verglichen wurden. Populationen von A. halleri, gezüchtet 

sowohl in metallhaltigen als auch in nicht metallhaltigen Böden, wurden verglichen. 

Dafür wurden A. halleri-Pflanzen in Böden mit Metallen (wie Cadmium (Cd) und Zink 

(Zn)) und ohne Metall angezogen. Die Blätter dieser Pflanzen wurden verwendet, um 

die Elemental defense hypothesis in einem Fütterungsexperiment mit einem 

spezialisierten Pflanzenfresser zu untersuchen. Blätter derselben Pflanzen wurden 

zur Untersuchung der Elemental allelopathy hypothesis verwendet. In einer Reihe von 

Versuchen, wurde der Effekt von Blattextrakten auf die Samenkeimung und 
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Etablierung der Keimlinge von solchen Arten getestet, welche häufig zusammen mit 

A. halleri auftreten. Die Ergebnisse des Fütterungsexperimentes legen nahe, dass die 

Akkumulation von Cadmium in den Blättern von A. halleri eine Abwehr gegen 

Pflanzenfresser darstellt. Darüber hinaus zeigen die Ergebnisse der Experimente mit 

den Blattextrakten, dass die Cd-Akkumulation keine Auswirkungen auf die 

Samenkeimung benachbarter Arten hatte, jedoch die Etablierung von Keimlingen 

behinderte. Dies gilt insbesondere für solche Nachbarn, welche aus nichtmetallischen 

Böden stammten. Diese Ergebnisse legen zum ersten Mal nahe, dass sowohl die 

Notwendigkeit der Herbivore-Abwehr als auch die Hemmung von Nachbarn, 

ausschlaggebend für die Selektion von Metallhyperakkumulation in Pflanzen sein 

könnte. Des Weiteren liefern unsere Ergebnisse erste Hinweise darauf, dass die 

Hyperakkumulation von Metallen einen selektiven Vorteil bieten kann, insbesondere 

in nicht metallhaltigen Böden, wo benachbarte Pflanzen möglicherweise keine 

Metalltoleranz besitzen. 

Das dritte und vierte Kapitel meiner Dissertation behandelt die bisher nicht 

untersuchte Hypothese, dass Herbivorie und Konkurrenz die aktive Suche nach und 

Aufnahme von Schwermetallen in A. halleri induzieren können. Als Reaktion auf 

Ressourcenheterogenität und Nachfrage, können Pflanzen ein aktives Suchverhalten 

nach Nährstoffen (‚Foraging‘) aufweisen. Jedoch nehmen vermutlich auch biotische 

Stressoren wie Herbivorie und Konkurrenz Einfluss auf Entscheidungen bei der 

Nahrungssuche. Dies kann die Nachfrage nach bestimmten Ressourcen verändern, 

beispielsweise den Ressourcen, die für die Resistenz gegen Pflanzenfresser und im 

Konkurrenzkampf erforderlich sind, d. h. Allelopathie.  

Um diese Hypothese zu studieren, untersuchte ich zuerst die Wirkung eines 

simulierten Befalls durch Pflanzenfresser auf die klonale Nahrungssuche und die 
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Metallaufnahme von A. halleri (Kapitel 3). In diesem Experiment wurden zwei 

miteinander verbundene Rameten jeweils in einem Topf mit höher Metallkonzentration 

und einem Topf mit niedriger Metallkonzentration angezogen. Schädlingsbefall wurde 

mit Jasmonsäure und in die Blätter gestanzten Löchern simuliert, als Kontrollmedium 

wurde Wasser genutzt.  

Zweitens untersuchte ich die Auswirkung des simulierten Wettbewerbs auf die 

Wurzelausbreitung und die Aufnahme von Schwermetallen in A. halleri (Kapitel 4). In 

diesem Experiment wurden A. halleri-Pflanzen, die sowohl aus metallhaltigen als auch 

aus nichtmetallhaltigen Böden stammten, in einer Split-root-Kultur (die Wurzeln einer 

Pflanze werden hier auf zwei Töpfe aufgeteilt) mit einer Wurzel in einem Topf mit 

metallhaltigem Boden und einem Topf mit metallarmem Boden gezüchtet. Die 

Pflanzen wurden dann entweder einem simulierten Konkurrenzkampf um Licht oder 

einer Kontrollbehandlung ohne Konkurrenz, unter Verwendung von vertikalen grünen 

bzw. klaren Kunststofffiltern, zugeordnet. Die Ergebnisse des ersten Experiments 

(Kapitel 3) haben gezeigt, dass Herbivorie sowohl eine Hyperakkumulation von 

Metallen als auch das Teilen von Schwermetallen zwischen miteinander verbundenen 

Rameten hervorrufen kann, vor allem in Populationen die aus nichtmetallhaltigen 

Böden stammten. Dieses Ergebnis legt daher zum ersten Mal nahe, dass die klonale 

Suche nach Metall in Pflanzen durch Herbivorie hervorgerufen werden kann. Im 

Gegensatz dazu führte simulierte Konkurrenz im zweiten Experiment (Kapitel 4), 

unabhängig von der Herkunft von A. halleri, nicht zu einer vermehrten Platzierung von 

Wurzeln in Töpfen mit metallhaltigen Böden.  

Die simulierte Konkurrenz um Licht führte jedoch zu einer vermehrten 

Metallaufnahme von A. halleri, insbesondere in den weniger metalltoleranten 

Pflanzen, die aus nicht metallhaltigen Böden stammen. Dieses Ergebnis legt daher 
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zum ersten Mal nahe, dass die Metallaufnahme in Pflanzen durch Konkurrenz 

herbeigeführt werden kann. Zusammengenommen eröffnen die Ergebnisse beider 

Experimente eine neue Facette in der Untersuchung der Entscheidungsfindung in 

Pflanzen, welche darauf hindeutet, dass ihre Entscheidungen über die 

Nahrungssuche und Nährstoffaufnahme ein komplexer Prozess sein können, bei dem 

nicht nur die Ressourcenverteilung, sondern auch deren relativer Bedarf und 

Veränderungen durch Umweltstressoren eine Rolle spielen könnten.  

Interessanterweise zeigte sich diese induzierte Aufnahme nur für das Element 

Cd und nicht für Zn, im Experiment mit Befall durch Pflanzenschädlingen. Im 

Experiment mit simulierter Konkurrenz war die induzierte Aufnahme für Zn und nicht 

für Cd maßgebend. Dies zeigt, dass getrennte Aufnahmewege und eine bevorzugte 

Ressourcenauswahl, die durch diese biotischen Stressoren beeinflusst werden, 

bestehen.  

Diese Ergebnisse zeigen eine neue Forschungsrichtung, Beuteauswahl (‚Prey 

selection‘) in Pflanzen, auf. 
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Chapter 1 

General Introduction  

 

1.1 Heavy metals in the environment 

Over the last decade, the content of heavy metals in the soils has gradually increased 

due to the growth of the global economy. The main causes of this increase in the 

heavy metals concentration are anthropogenic activities (see below), which have 

resulted in the degradation of the environment (Han et al., 2002; Sayyed & Sayadi, 

2011; Jean-Philippe et al., 2012; Sayadi & Rezaei, 2014).  

Heavy metals are elements with a specific gravity of over 5 g/cm3 and have an 

atomic mass of over twenty amu (Rascio & Navari-Izzo, 2011). Only 1% of the earth’s 

crust constitutes of heavy metals (Alloway, 1995). The main source of heavy metal 

inputs to the soil is through the natural process of weathering of the mineral rocks. For 

example, zinc sulphite and wurtzite rocks are the major sources of zinc (Zn) release 

in soil (Lindsay, 1972). In addition, a wide variety of anthropogenic sources can 

contribute to heavy metal pollution in the soils such as disposing of high metal wastes 

in improperly protected landfills, leaded gasoline and lead based paints, application of 

fertilizers, pesticides, animal manure, atmospheric deposition compost, metal mining 

and coal combustion residues (Pollard et al., 2002).  

Heavy metals that are harmful to plants, animals and human health, consist of 

arsenic (As), lead (Pb), mercury (Hg), selenium (Se) and cadmium (Cd); they are also 

termed non-essential elements (Alloway, 1995). However, a few heavy metals are 

essential in small quantities for normal growth of fauna and flora. For instance, crops 

and livestock require manganese (Mn), Zn and copper (Cu) for normal growth and 
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productivity (Alloway, 1995). Nevertheless, excess concentrations of these heavy 

metals may lead to poisoning in both plants and animals (Rascio & Navari-Izzo, 2011). 

Despite of this, few plants can survive and reproduce on metal contaminated soils due 

to the evolution of metal tolerance.   

1.2 Metal tolerance in plants  

Most of the plant species growing in metal contaminated soils can tolerate heavy metal 

concentrations, which are highly toxic to other plants (Baker & Proctor, 1990; Baker et 

al., 1994; Pollard & Baker, 1997). Tolerance is achieved in these plants by excluding 

the uptake of metals into the roots and preventing metal translocation to aerial organs 

(Krämer, 2010). However, if the heavy metals do enter the plant they are retained in 

the root tissues, where they are detoxified by chelation with various ligands, such as 

phytochelatins, or are sequestered into vacuoles (Hall, 2002; Hasan et al., 2009). This 

significantly minimizes translocation to the leaves whose cells remain sensitive to the 

phytotoxic effects (Pandey & Sharma, 2002; Rahman et al., 2005; Marschner & 

Marschner, 2012). An example of such plants are Silene uniflora Roth 

(Caryophyllaceae) (Baker, 1978), Agrostis stolonifera L. (Poaceae) (Baker, 1978), and 

woody plants such as Pinus radiate D.Don (Pinaceae) (West, 1979), Salix 

(Salicaceae) and Populus (Salicaceae) species (Baker, 1978). In addition to heavy 

metal tolerance, one of the most extraordinary traits known in the plant kingdom is the 

ability of very few plant species to hyperaccumulate heavy metals in their above 

ground biomass. 

1.3 Metal hyperaccumulating plants 

Plants that can accumulate more than 1000 μg g-1 Ni, 10000 μg g-1 Zn, or 100 Cd μg 

g-1 (Baker, 1978) in their aboveground biomass are defined as metal 
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hyperaccumulating plants. They accumulate metals in the shoot in concentrations that 

are toxic to most other plants (Baker & Proctor, 1990; Baker et al., 1994; Pollard & 

Baker, 1997). Metal hyperaccumulation is an intriguing trait, since the photosynthetic 

organs are one of the major targets of metal phytotoxicity in plants, typically resulting 

in severe symptoms such as wilting, chlorosis, necrosis, abnormal development and 

reduced growth (Pandey & Sharma, 2002; Rahman et al., 2005; Marschner & 

Marschner, 2012). 

Only less than 0.2% of all angiosperm species are known to hyperaccumulate 

heavy metals (Pollard et al., 2002; Verbruggen et al., 2009; Krämer, 2010; van der Ent 

et al., 2013). Species from over 40 plant families have been reported to 

hyperaccumulate heavy metal, but hyperaccumulation is most prevalent in the 

Brassicaceae family (Krämer, 2010). Most of these metal hyperaccumulating species 

are constrained to contaminated soils (Boyd & Martens, 1998; Boyd, 2007). However, 

a few species can also be found in non-metalliferous soils, where they have also been 

shown to be able to hyperaccumulate heavy metals (Rascio & Navari-Izzo, 2011). For 

example, in the model hyperaccumulating species, Arabidopsis halleri (L.) O´Kane & 

Al-Shehbaz and Thlaspi caerulescens J.Presl & C.Presl (Brassicaceae), metal 

hyperaccumulation is a trait found in populations inhabiting both types of soils (Rascio 

& Navari-Izzo, 2011).  

The origin of metal hyperaccumulation is still being discussed (Pollard et al., 

2002; Macnair, 2003; Verbruggen et al., 2009). Specifically, it is not yet clear if the trait 

evolved in plants from metalliferous soils and then these ecotypes migrated to non-

metalliferous soils or vice versa. However, there is some indication favoring the latter 

hypothesis. For instance, A. halleri is believed to have colonized metalliferous sites 

from nearby populations of non-metalliferous sites, as metalliferous soils of 
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anthropogenic origin are rather recent (Pauwels et al., 2005; Stein et al., 2016). This 

hypothesis has been supported by a regional-scale population genetic study (Pauwels 

et al., 2005). 

  Metal hyperaccumulation is highly variable between populations of A. halleri 

(Krämer, 2010). While both metalliferous and non-metalliferous ecotypes of A. halleri 

can hyperaccumulate Zn and Cd (Bert et al., 2002; Gruntman et al., 2016), they 

nevertheless differ in their ability of metal tolerance for these metals. Ecotypes from 

metalliferous soils have enhanced metal tolerance in comparison to ecotypes from 

non-metalliferous soils, while the latter have been shown to pay a cost of growing in 

metalliferous soils with a decline in their biomass (Bert et al., 2000; Pauwels et al., 

2006; Gruntman et al., 2016). In contrast, in a few cases, ecotypes from non-

metalliferous soils have been shown to accumulate higher concentrations of metals in 

their leaves compared to ecotypes from metalliferous soils (Bert et al., 2000; Bert et 

al., 2002; Stein et al., 2016). Similar findings for metal hyperaccumulation and metal 

tolerance have been observed for T. caerulescens originating from metalliferous and 

non-metalliferous soils (Meerts & van Isacker, 1997). Furthermore, it is still not clear 

whether metal hyperaccumulation has a greater selective advantage in plants 

originating from metalliferous vs. non-metalliferous soils. 

Over the last decade, considerable progress has been made in understanding 

the physiological and molecular mechanisms of metal hyperaccumulation in plants 

(see reviews by Pollard et al., 2002; Macnair, 2003; Verbruggen et al., 2009). 

However, a clear evolutionary explanation and biological significance of the metal 

hyperaccumulation trait is still lacking. To explain the selective advantage of this trait, 

the two main hypotheses that have been suggested are defense against pathogens 

and herbivory, termed “elemental defense hypothesis” (Boyd & Martens, 1998) and 
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usage of metals as allelochemicals, termed “elemental allelopathy hypothesis” (Boyd, 

2004).  

Of the two suggested hypotheses, the one that has been most commonly 

studied is the elemental defense hypothesis (Boyd & Martens, 1998). This hypothesis 

suggests that hyperaccumulation of heavy metals is selected as a defense strategy 

against pathogens and herbivores (Noret et al., 2005; Jhee et al., 2006; Boyd, 2012; 

Kazemi-Dinan et al., 2015a; Plaza et al., 2015). It has been shown that herbivores 

such as locusts, slugs, caterpillars and aphids may have a preference for leaves with 

lower heavy metal content (Noret et al., 2005; Jhee et al., 2006; Boyd, 2012; Kazemi-

Dinan et al., 2015a). However, Deroceras caruanae (Pollonera, 1891) snails have 

been shown not to be deterred by Zn accumulation in A. halleri (Huitson & Macnair 

2003) nor by Se accumulation in Brassica juncea (L.) Czern. (Brassicaceae) (Hanson 

et al., 2004). Additionally, insect strains that originate from metalliferous soils may be 

locally adapted and resistant to the detrimental effects caused by consumption of 

metal hyperaccumulators (Van Ooik & Rantala 2010). These results suggest that the 

defensive effects of metal hyperaccumulation may not be universal, hence the 

selective advantage of metal hyperaccumulation as a defense against herbivores may 

differ depending on the metal hyperaccumulator species and the type of herbivores 

studied (Pollard & Baker, 1997; Huitson & Macnair, 2003).  

An alternative hypothesis proposed to explain metal hyperaccumulation is the 

“interference hypothesis”, which was also referred to as the “elemental allelopathy 

hypothesis” (Boyd, 2004). This hypothesis suggests that metal hyperaccumulating 

plants might enrich the soil surface with high metal concentration under their canopies 

through senescence of contaminated leaves. This will lead to a leaf litter with 

increased metal concentrations that may prevent the establishment of less metal 
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tolerant species and reduce competition from neighboring species (Boyd, 2004). For 

example, higher Ni levels have been measured in the soil surface under the canopy 

of the Ni hyperaccumulator Niemeyera acuminata (Pierre ex Baill.) T.D.Penn. 

(Sapotaceae) compared to under that of non-hyperaccumulator species (Boyd & 

Jaffré, 2001). Surprisingly however, there are very few experimental studies that have 

tested the elemental allelopathy hypothesis, and those that did so do not have 

adequate verification yet (Zhang et al., 2007; El Mehdawi et al., 2011, 2012). For 

example, El Mehdawi et al., (2011) found that the soil around the Se 

hyperaccumulators Astragalus bisulcatus (Hook.) A. Gray (Fabaceae) and Stanleya 

pinnata (Pursh) Britton (Brassicaceae) was highly enriched with Se, suppressing the 

germination and growth of the non-metal tolerant plant Arabidopsis thaliana (L.) 

Heynh. (Brassicaceae). However, this study did not clarify if Se enrichment was indeed 

caused by the plants or plants were growing in high Se concentrations.  

In varying hyperaccumulating species, the elemental defense hypothesis or the 

elemental allelopathy hypothesis have been examined only separately. Nevertheless, 

these hypotheses are not likely to be mutually exclusive as both the need for herbivore 

defense and neighbor inhibition could jointly select for the hyperaccumulation of 

metals in plants. Therefore, the two hypotheses should be tested together. In addition, 

a greater insight on the evolution of metal hyperaccumulation could be gained by 

studying these hypotheses in metal hyperaccumulating species that occur in both non-

metalliferous and metalliferous soils. However, to the best of my knowledge, no study 

has so far compared the predictions of either the elemental defense or the elemental 

allelopathy hypothesis between metal hyperaccumulators from both metalliferous and 

non-metalliferous soils.  
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1.4 Foraging for heavy metals in plants  

Plants are not organisms that simply endure the restrictions that their environment 

forces on them. They have complex methods to sense and integrate environmental 

signals, which allow them to respond to temporal and spatial changes in the 

environment. One of the best studied responses of plants is the resource foraging 

behavior they exhibit in spatially heterogeneous environments (Hodge, 2004, 2006, 

2009; Kembel & Cahill, 2005; Cahill & McNickle, 2011; Mcnickle et al., 2016). The two 

best studied foraging responses in plants are root foraging and clonal foraging. Root 

foraging is the ability of a plant to change its root morphology to enhance the uptake 

of resources under patchy distribution of soil nutrients (Robinson, 1996; Tibbett, 2000; 

Hodge, 2004, 2006, 2009; Kembel & Cahill, 2005; Cahill & McNickle, 2011; Tian & 

Doerner, 2013; Mcnickle et al., 2016). Foraging by clonal plants is the optimal 

placement of daughter ramets in resource rich patches as well as the division of labor 

among ramets that grow in patches of varying qualities (Pitelka & Ashmun, 1985; C. 

Marshall, 1990; Alpert & Stuefer, 1997). 

Foraging responses have been mostly studied with respect to nutritional 

resources, such as light, water, or nutrients that are required for growth, reproduction, 

or the maintenance of physiological processes (Kembel & Cahill, 2005; Cahill & 

McNickle, 2011). In contrast, metal hyperaccumulating plants have also been shown 

to forage for heavy metals (Haines, 2002; Dechamps et al., 2008a), which are toxic 

for most plants (Krämer, 2010). For example, Dechamps et al., (2008) showed that 

the metal hyperaccumulator N. caerulescens could change its root placement patterns 

in response to heterogeneity of metal concentrations in the soil. 

Interestingly, a number of studies have shown that foraging in plants can be 

mediated by both the heterogeneity of resources (Cahill & McNickle, 2011; Tian & 
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Doerner, 2013) and the demand for a particular resource (Ruffel et al., 2011). 

However, despite the overwhelming importance of biotic interactions in general, and 

enemies in particular, for determining demand and supply of resources for plants, the 

role of biotic interactions for inducing and modulating foraging decisions in plants has 

been seldom studied. 

1.5 Impact of biotic interactions on foraging for heavy metals 

Plant herbivore interactions are an important interface for understanding ecosystem 

function and community dynamics, since they are the link between food webs and 

primary productions. To cope with herbivore pressure, plants have evolved a plethora 

of different chemical and mechanical defenses (Wittstock & Gershenzon, 2002). Plant 

defense traits can be either constitutive or induced. Constitutive defense traits are 

always expressed in plants, while induced defense traits are only expressed after an 

initial attack (Wittstock & Gershenzon, 2002).  

Herbivore attacks have been known to induce varying physiological and 

morphological responses in plants. For example, the production of chemical defense 

compounds such as secondary metabolites (Herms & Mattson, 1992; Chen, 2008; 

Howe & Jander, 2008; Agarwal, 2011; Johnson, 2011; Nabity et al., 2013; Pieterse et 

al., 2013; Wasternack & Hause, 2013; Karbon & Myers, 2016; Mason et al., 2016), or 

changes in resource allocation from reserves to growing meristems (Traw & 

Bergelson, 2003; Boughton et al., 2005; Chen, 2008; Rasmann et al., 2009; Agarwal, 

2011; Johnson, 2011). Hence, herbivore damage might also affect the foraging 

decisions of plants for a particular resistance compound necessary for defense. Plants 

that are known to hyperaccumulate heavy metals could exhibit such an intriguing 

behavior as mentioned above, since they hyperaccumulate heavy metals to serve as 

herbivore defense (Noret et al., 2005; Jhee et al., 2006; Boyd, 2012; Kazemi-Dinan et 
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al., 2015a; Plaza et al., 2015). Specifically, herbivory may induce the uptake of heavy 

metals, influence root and clonal foraging as well as clonal sharing of heavy metals 

among ramets of a clonal plant, such as A. halleri. However, to the best of my 

knowledge, this hypothesis has not been tested so far. 

Plant-plant competition for resources, such as light, nutrients, and water, is 

another important factor determining the structure of plant communities (Goldberg & 

Fleetwood, 1987; Goldberg & Landa, 1991; Goldberg & Barton, 1992; Tilman, 1994). 

Plants can respond to competition in numerous physiological or morphological 

changes (Hutchings & de Kroon, 1994; Robinson, 1996; Hodge, 2004; Kembel & 

Cahill, 2005). In addition, competition has also been shown to affect the foraging 

responses of plants for nutrients (Cahill et al., 2010). 

A few studies have shown that the production of allelochemicals can be induced 

by competition from neighboring plants (Pomilio et al., 2000; Rasher & Hay, 2014; 

Zhang et al., 2017). This suggests that competition might also induce changes in the 

foraging responses of plants for non-nutrient chemicals. This could be possible in 

plants that use certain non-nutrient resources as allelochemicals. An example for such 

plants are the metal hyperaccumulating species which hyperaccumulate heavy metals 

in excessive concentrations to provide plants with allelopathic abilities (El Mehdawi et 

al., 2011a; El Mehdawi & Pilon-Smits, 2012). Unfortunately, the idea that competition 

may affect root foraging responses for chemicals, which plants may require to inhibit 

the growth of their competitors (i.e., allelochemicals), is so far completely unexplored. 

1.6 Arabidopsis halleri as a model species 

In this thesis the study species used was A. halleri, a stoloniferous, self-incompatible, 

perennial, clonal herb, which is distributed in Europe and eastern Asia (Clauss & Koch, 

2006). This plant is highly variable in flower color, leaf morphology, and the degree of 
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development of stolons (Al-Shehbaz & O’Kane, 2002). As mentioned above, A. halleri 

can be found in both non-metalliferous and metalliferous soils, and plants from both 

origins have the property of metal hyperaccumulation (Krämer, 2010). In addition, A. 

halleri is an attractive genetic model species to study metal hyperaccumulation due to 

its physiological, morphological and genetic characteristics (Pollard et al., 2002; 

Assunção et al., 2003; Macnair, 2003; Peer et al., 2003, 2006). Namely, it has 

accessible natural populations, a diploid genome, self-compatibility and a well-

developed genetics map. In addition, A. halleri has accessible natural populations and 

many of these populations have been mapped, with GPS coordinates known. An 

additional advantage is that it is closely related to the universal plant genetic model, 

A. thaliana. Hence, A. halleri serves as a highly appropriate metal hyperaccumulator 

model species to study the questions proposed in this thesis. 

1.7 Thesis objectives and outline 

This dissertation is a comprehensive attempt to investigate the role of biotic 

interactions in determining metal hyperaccumulation in A. halleri. In chapter 2 The role 

of biotic interactions in determining metal hyperaccumulation, I jointly tested the 

elemental defense and elemental allelopathy hypotheses, as both herbivory and 

competition, should simultaneously select for the hyperaccumulation of metals in 

plants. Additionally, I tested the hypothesis that herbivory or competition as selection 

pressures for metal hyperaccumulation, differ between metalliferous and non-

metalliferous soils, by comparing the predictions of the two hypotheses across 

populations originating from metalliferous vs. non-metalliferous soils. Here I predicted 

that metal hyperaccumulation is likely to be selected for herbivory to a greater extent 

in both soils. Whereas, in the case of competition metal hyperaccumulation is likely 

selected to a greater extent in non-contaminated soils, where neighbors should have 
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a low heavy-metal tolerance. I did this by means of greenhouse experiments and field 

observations. In chapter 3 Herbivory and induced foraging responses in metal 

hyperaccumulating plants and 4 Competition and induced foraging responses 

in metal hyperaccumulating plants, I studied the way biotic stressors might induce 

the uptake and foraging for heavy metals in A. halleri. Namely, in chapter 3, I examined 

the hypothesis that simulated herbivore damage can induce increased metal uptake 

as well as increased metal sharing between ramets. In the chapter 4, I examined the 

hypothesis that foraging for heavy metals can be induced by competition. Additionally, 

in chapters 3 and 4, I tested the hypothesis that foraging and induced uptake of heavy 

metals in response to herbivory and competition would differ between A. halleri 

populations originating from metalliferous and non-metalliferous soils. I predicted that 

plants from non-metalliferous soils, which are less metal tolerant (Gruntman et al., 

2016), would exhibit greater responsiveness to competition and herbivory in their 

metal foraging and accumulation, compared to plants from metalliferous populations, 

which have higher tolerance to heavy metals and can therefore accumulate them 

constitutively with or without competition and herbivory. 



Chapter 2           

The role of biotic interactions in determining metal 

hyperaccumulation in plants 

 

1.1 Abstract 

Heavy metal hyperaccumulation (MH) is a rare trait found in few plant species that 

inhabit metal contaminated soils. Two non-mutually exclusive hypotheses were 

proposed to explain the adaptive value of MH in plants: the elemental defense 

hypothesis suggests that MH functions as defense against herbivores, while the 

elemental allelopathy hypothesis suggests that MH acts to inhibit the growth of 

neighbors. Here, we present the first study to compare the predictions of both 

hypotheses between populations from both metalliferous and non-metalliferous soils 

of the metal hyperaccumulator Arabidopsis halleri, which has been shown to 

hyperaccumulate cadmium (Cd). A. halleri plants were grown in soils with or without 

Cd and their leaves were used to examine the elemental defense hypothesis in a 

feeding experiment with a specialist herbivore. Leaves from the same plants were then 

used to examine the elemental allelopathy hypothesis in a set of leaf-leachate 

experiments that tested their effect on seed germination and seedling establishment 

of species co-occurring with A. halleri. Finally, a field survey in several A. halleri 

populations was conducted to learn if herbivore load differs between A. halleri and 

neighbors from metalliferous vs. non-metalliferous soils. The feeding experiment and 

field-survey results suggest that Cd accumulation in A. halleri leaves could provide it 

with defense against herbivores. Results of the leaf-leachate experiments reveal that 

Cd accumulation had no effects on seed germination of neighboring species but 



13 

 

inhibited seedling establishment, particularly of plant species originating from non-

metalliferous soils. Our result suggests that both the need for herbivore defense and 

neighbor inhibition could jointly select for MH in plants and offer first evidence that MH 

could provide a selective advantage particularly in non-metalliferous soils, where 

neighboring plants probably lack metal tolerance.  

1.2 Introduction 

Heavy metal hyperaccumulation is a rare trait found in some plant species that inhabit 

metalliferous soils, i.e. soils with high contents of metals. Metal hyperaccumulating 

plants can accumulate heavy metals, such as cadmium (Cd) and zinc (Zn) at 

concentrations 100 -1000 fold higher than those found in other species, which are far 

beyond lethal doses for most other plants in their above-ground organs (Boyd & Jhee, 

2005; Boyd, 2007; Mohtadi et al., 2012). It is thus not surprising that this trait has 

attracted many studies in plant physiology and ecology alike. Interestingly, while some 

metal hyperaccumulating species are restricted to contaminated soils (Boyd & 

Martens, 1998; Boyd, 2007), few species can also be found in non-metalliferous soils, 

where they have also been shown to hyperaccumulate heavy metals (Rascio & Navari-

Izzo, 2011), and in some cases even at higher concentrations compared to plants from 

contaminated soils (Bert et al., 2000; Bert et al., 2002; Stein et al., 2016). 

Several hypotheses have been suggested to explain the evolution of metal 

hyperaccumulation (Boyd & Martens, 1998). Of these, one of the most commonly 

studied hypotheses is the “elemental defense hypothesis” (Boyd & Martens, 1998), 

which suggests that hyperaccumulation of heavy metals is selected for as a defense 

strategy against pathogens and herbivores (Noret et al., 2005; Jhee et al., 2006; Boyd, 

2012; Kazemi-Dinan et al., 2015a; Plaza et al., 2015). While a few studies provide 

support for the elemental defense hypothesis (Noret et al., 2005; Jhee et al., 2006; 
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Boyd, 2012; Kazemi-Dinan et al., 2015a), others have found contradicting results 

(Martens & Boyd, 2002; Boyd & Jhee, 2005).  

Another hypothesis suggested to explain metal hyperaccumulation is the 

“elemental allelopathy hypothesis”, which proposes that hyperaccumulation evolved 

as a strategy to reduce competition from neighboring species via release of heavy 

metals (Boyd, 2004). Allelopathy, which is the inhibition of neighbors via the release 

of toxic chemicals, has usually been studied in the context of organic compounds 

(Morris et al., 2009), but the concept can also apply to the release of inorganic 

elements by metal hyperaccumulators (El Mehdawi et al., 2011a,b). Such elemental 

allelopathy can be achieved either by the decomposition of leaf litter or by the 

extraction of elements from leaves through rain water, both of which can result in 

enrichment of the soil in toxic compounds (El Mehdawi et al., 2011a). Unlike the 

elemental defense hypothesis, there are very few studies that tested the elemental 

allelopathy hypothesis, and those that did so had contradictory results (Zhang et al., 

2007; El Mehdawi et al., 2011a, 2012). For example, El Mehdawi et al. (2011a) found 

that the soil around the Se hyperaccumulators Astragalus bisulcatus and Stanleya 

pinnata was highly enriched with Se, suppressing the germination and growth of the 

metal-intolerant plant Arabidopsis thaliana. However, cause and effect of this Se 

enrichment was not tested, i.e. the study did not clarify if Se enrichment was indeed 

produced by the plants or if the plants grew more in patches with high Se. In contrast, 

Zhang et al. (2007) showed that the nickel (Ni) hyperaccumulator, Alyssum murale 

Waldst. & Kit. can increase Ni concentration in its surrounding soil, but this increase 

had no effect on neighboring plant germination. Yet, this study was conducted on 

metalliferous soils, where neighboring plants are likely to be metal tolerant. Therefore, 

metal hyperaccumulation is likely to offer a greater selective advantage in non-
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metalliferous soils, where neighboring plants were not exposed to heavy metals. 

However, to the best of our knowledge, none of the previous studies has compared 

the elemental allelopathic effects across populations from metalliferous and non-

metalliferous soils, or compared the responses of neighbors from these different 

environments. 

The elemental defense hypothesis and the elemental allelopathy hypothesis 

have been examined separately in varying hyperaccumulating species, and the latter 

was, as explained above, not fully explored. However, these hypotheses are not likely 

to be mutually exclusive, as both the need for herbivore defense and neighbor 

inhibition, could jointly select for the hyperaccumulation of metals in plants. Therefore, 

the two hypotheses should be tested jointly. Moreover, we suggest that metal 

hyperaccumulation is likely to be selected to a greater extent in non-contaminated 

soils, where neighbors should have low heavy-metal tolerance. Here, we therefore 

suggest that an appropriate examination of the two key hypotheses proposed to 

explain metal hyperaccumulation in plants should not only study its effects on 

herbivores and neighbors simultaneously, but also compare these effects between 

metal hyperaccumulators from metalliferous vs. non-metalliferous soils, as well as the 

response of neighbors from these origins. Our study was designed to fill these gaps. 

In this study, we offer a comprehensive test of both the elemental defense and 

elemental allelopathy hypotheses with the metal hyperaccumulating plant A. halleri. 

We compared the predictions of the two hypotheses across populations originating 

from both metalliferous and non-metalliferous soils using several interrelated 

experiments and observations. First, we compared the capacity of metal 

hyperaccumulation between metalliferous and non-metalliferous populations by 

cultivating them in soils with or without Cd. Using the same plants, we then studied 
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both the elemental defense and elemental allelopathy hypothesis. The first was 

examined in a feeding experiment with a specialist herbivore, using leaves of plants 

from the cultivation. The latter was examined in a set of leaf-leachate experiments that 

tested their effect on both the germination and establishment of seedlings of 

neighboring species co-occurring with A. halleri. Finally, we conducted a field survey 

in several A. halleri populations in order to learn if herbivore load differs between A. 

halleri and neighbors from metalliferous vs. non-metalliferous soils. 

1.3 Material and Methods 

Plant and soil collection 

In this study, we focus on the model metal hyperaccumulating plant A. halleri. This 

perennial species occurs at a number of metal contaminated and non-contaminated 

sites, mostly across Europe (Bert et al., 2002). Interestingly, both ecotypes of this 

species have the property of metal hyperaccumulation (Bert et al., 2002). A. halleri 

individuals for all the experiments were collected in January 2014 from four 

metalliferous and four non-metalliferous sites within Germany (Table 1). Twenty 

individuals were collected per site in a haphazard manner with a minimum distance of 

2 m and a maximum distance of 150 m between individuals, to ensure they belonged 

to different genets. The collected individuals were planted in 1 L pots filled with 

standard potting soil (Topferde, Einheitserde, Gebr. Patzer GmbH & Co. KG, 

Kreutztal, Germany) and placed in a greenhouse at Tübingen University, Germany. In 

order to avoid maternal effects due to metal remains in plant tissues, the plants were 

clonally propagated for four generations prior to the beginning of the experiment for 

which new cuttings were obtained from the propagated clones. 
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The soil used in the experiments was collected from the same metalliferous and 

non-metalliferous sites where A. halleri was sampled (Table 2-1), at a depth of 30 cm 

from three different locations within each site. All soils from the same habitats 

(metalliferous or non-metalliferous) were mixed, sieved (2 mm mesh size) and steam-

sterilized for 2.5 h at 80 °C to destroy the seed bank and remove potential pathogens 

in the soil. Metal content analyses conducted in a parallel study (Gruntman et al., 

2016) confirmed our assumption that Cd content was markedly greater for 

metalliferous soils compared to non-metalliferous soils (3.04 vs. 0.71 µg g-1 dry soil, 

respectively). Therefore, these soils are hereafter referred to as high-Cd or low-Cd 

soils, respectively. 

 

Table 2-1 Source populations of A. halleri used in all the experiment. 

 

 

 

 

 

 

 

 

Cd accumulation experiment 

This experiment was performed in order to learn whether A. halleri ecotypes from 

metalliferous vs. non-metalliferous soils differ in their Cd accumulation. Two newly 

grown ramets of A. halleri were selected and severed from each of the ten randomly 

Ecotype Population Latitude Longitude 

Non-

metalliferous Blaibach 49°09.830N 012°47.759E 

 Fort Fun 51°18.264N 010°18.004E 

 Geroldsgrün 50°23.323N 011°34.148E 

 Wehbach 50°48.498N 007°50.563E 

Metalliferous Clausthal Zellerfeld 51°48.088N 010°18.111E 

 Lautenthal 51°51.453N 010°18.004E 

 Vienenburg 51°57.294N 010°34.082E 

 Wulmeringshauen 51°18.383N 008°29.112E 
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selected mother plants per population. Before each ramet was transferred to the 

experiment, they were grown in water-filled containers in the greenhouse to induce 

root formation. After two weeks, each of the ramets were transplanted into a pot with 

either high-Cd or low-Cd soils, to obtain contrasting Cd leaf concentrations. The 

experimental setup consisted of 160 pots [2 Soil types (high-Cd, low-Cd) × 2 A. halleri 

ecotypes (metalliferous, non-metalliferous) × 4 populations × 10 individuals]. The 

plants were grown for six months in a greenhouse (24 °C, 16:8 h, light:dark) with 

constant irrigation. 

After six months, 6 - 8 leaves per plant were harvested and analyzed for their 

Cd content. The leaf extracts were prepared with the same methodology described in 

Gruntman et al., (2016) and analyzed with ICP-OES technique for Cd quantification 

(Stein et al., 2016). The same plant individuals were used in this experiment and were 

then used in the following herbivore feeding experiment, seed germination 

experiments and seedling growth experiments. However, Zn accumulation in A. halleri 

leaves did not differ between ecotypes or soil treatments (Table A1; Fig A1, see in the 

appendix). 

Elemental defense 

Herbivore feeding experiment 

In order to investigate the elemental defense hypothesis, a no-choice feeding 

experiment was performed to test whether Cd accumulation deters consumption by a 

leaf herbivore. Caterpillars of Pieris brassicae (Linnaeus, 1758), a model specialist 

herbivore of Brassicaceae species (Pollard & Baker, 1997), was used in this 

experiment. Eggs of P. brassicae were obtained from the laboratory of entomology at 

Wageningen University. The caterpillars were reared on cabbage (Brassica oleracea 

L.), at 20 °C and a 16:8 h, light:dark cycle. 
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In October, 2016, one randomly selected leaf from each A. halleri ramet grown 

in the different Cd treatments (see above in Cd accumulation) was collected, cut to 

a 2 cm2 piece and placed in a Petri dish (5 cm diameter) on moistened filter paper. 

One 4-7 days old P. brassicae larva (3rd instar) was placed in each of these Petri 

dishes for a period of 48 h. The caterpillars were not starved before the experiment, 

as starvation could decrease food preference (Bernays & Chapman, 1978). These 

experiments were conducted in a greenhouse (24 °C, 16:8 h, light:dark) with 10 

replicates for each treatment resulting in 160 Petri dishes [2 Soil types (high-Cd, low-

Cd) × 2 A. halleri ecotypes (metalliferous, non-metalliferous) × 4 populations × 10 

individuals]. At the end of the experiment, the remaining leaves were photographed 

and the percentage of leaf area consumed was quantified using the software Adobe 

Photoshop (CC 14.0). 

 

Field herbivory survey 

In order to learn if A. halleri plants are more susceptible to herbivory in metalliferous 

vs. non-metalliferous soils, a field herbivory survey of A. halleri and its neighboring 

species was performed. The survey was carried out between August and September 

2016 at the same four metalliferous and four non-metalliferous sites used for the plant 

and soil collection (Table 2-1). In each population, damage by leaf-chewing herbivores 

was measured in 25 paired samples of an A. halleri individual and its closest 

neighboring plant species found at a radius of not more than 30 cm. The pairs were 

sampled along a transect with a distance of 3 m between each pair. Herbivore damage 

was estimated as percentage of leaf damage, which was quantified by collecting six 

leaves along two perpendicular axes on the plant with a distance of 3 cm between 

each leaf. The leaves were then placed on a paper sheet and photographed with a 
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digital camera and the images were then used to estimate damaged leaf area per plant 

with Adobe Photoshop (CC version). If the leaves were damaged along the edges, 

approximate leaf edges were added to the image. 

Elemental allelopathy 

Seed germination experiments 

In order to investigate the elemental allelopathy hypothesis, two germination 

experiments were performed, to test whether Cd leaf leachates inhibit the germination 

of seeds in neighbor species. In August 2016, fresh leaves from each A. halleri ramet 

grown in the high or low-Cd treatments (see above in Cd accumulation) were 

harvested for leachate preparation. Leachates were prepared by soaking the crushed 

leaves in water for 72 h (a tissue-to-volume ratio of 0.1 g/mL) and subsequently 

filtering the liquid through a vacuum pump to remove any solid particles. The leachates 

were stored in 4 °C and analyzed with ICP-OES technique for Cd quantification. 

However, Zn quantity in the leachates from A. halleri leaves did not differ between 

ecotypes (Table A2; Fig A2, see in the appendix). 

The first experiment used commercial seeds of five species, which co-occur 

with A. halleri, particularly in non-metalliferous soils: Knautia arvensis (L.) Coult. 

(Dipsacaceae), Trifolium repens L. and Lotus corniculatus L. (Fabaceae), Potentilla 

erecta (L.) Raeusch. (Rosaceae), and Pimpinella saxifrage L. (Umbelliferae) (Rieger-

Hofmann GmbH, Blaufelden). In September 2016, the seeds were sown in 5-cm 

diameter Petri dishes with filter paper (16 seeds of the same species per dish). The 

seeds were treated with either high or low-Cd A. halleri leachates (10 mL per watering) 

from both ecotypes. The Petri dishes were placed in the greenhouse at a temperature 

of 23 °C. The germination success of the seeds was estimated by recording the 

germination fraction after two weeks. Seeds were considered to be germinated upon 
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radicle emergence. This experimental setup resulted in a total of 800 Petri dishes [2 

A. halleri ecotypes (metalliferous and non-metalliferous soil) × 4 populations × 10 A. 

halleri individuals × 2 soil types (high-Cd, low-Cd) × 5 species]. 

The second germination experiment tested for differences among sites in 

susceptibility of plants to elemental allelopathy and used seeds collected from the 

metalliferous and non-metalliferous sites where A. halleri was sampled (Table 1). In 

August 2016, five neighboring species were sampled per site, though most species 

were not found in both metalliferous and non-metalliferous soils (25 species in total, 

see Table A3 in the appendix), with five mother plants as seed source per species. 

The germination experiment took place in November 2016 using the same 

experimental setup as in the first germination experiment, which resulted in 4000 Petri 

dishes [2 A. halleri ecotypes (metalliferous and non-metalliferous soil) × 4 populations 

× 5 A. halleri individuals × 2 soil types (high-Cd, low-Cd) 2 ecotypes of neighbor 

species × 5 neighboring species × 5 neighbor individuals]. However, during the 

experiment, seeds of 12 neighboring species did not germinate under either leachate 

treatments and were therefore excluded from the analyses.  

 

Seedling growth experiments 

In addition to seed germination, we also studied the effect of Cd on the seedling growth 

as its negative effects could differ between phenological stages (Vivanco et al., 2004; 

Fernandez et al., 2013; Linhart et al., 2015).  

Two seedling growth experiments were performed. The first experiment used 

commercial seeds (see above in the seed germination experiment). In May 2017, 

forty seedlings per species were transplanted into a germination-tray cell (24 cm3 

volume). Once every week, seedlings were treated with leachates from leaves of A. 
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halleri that grew in either high or low-Cd soil (10 mL per watering). The trays were 

placed in the greenhouse at 25 – 35 °C. After 28 days, seedling performance was 

measured as above-ground biomass, which was determined by harvesting and drying 

the plants at 70 °C for 48 h. This experimental setup resulted in a total of 200 seedling 

cells [2 A. halleri ecotypes × 10 individuals × 2 soil types × 5 species]. 

The second germination experiment used seeds of neighboring species 

collected in the field (see above in the seed germination experiment). The 

experiment took place in June 2017 using the same experimental setup as in the first 

seedling experiment, which resulted in 800 seedling cells [2 A. halleri ecotypes × 2 

soil types × 2 ecotypes of neighbor species × 5 species × 5 neighbor individuals]. 

During the experiment, 54 individuals in total from different treatments did not survive 

for more than three days and were therefore excluded from the analyses. However, 

survival did not differ between ecotypes or treatments (Table A4, see in the appendix). 

Data analysis 

For the Cd accumulation experiment, a generalized linear mixed model (GLMM) was 

used to examine the effect of A. halleri ecotype (metalliferous vs. non-metalliferous), 

soil type (low-Cd vs. high-Cd) and their interactions as fixed factors on Cd 

accumulation in A. halleri leaves. Population was included in the model as a random 

factor. For this test, we also used genotype nested within population as an additional 

random factor. However, the model that does not consider genotype had the better 

error distribution and lower AIC values, hence the random term was excluded from the 

final model. The analysis was carried out with a normal distribution with an identity link 

function. 
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For the herbivore feeding experiment, a GLMM was used to examine the 

effect of A. halleri ecotype (metalliferous vs. non-metalliferous), soil type (low-Cd vs. 

high-Cd) and their interactions as fixed factors on the percentage of leaf eaten by P. 

brassicae. Population was included as a random factor. Here as well, considering 

genotype nested within population as an additional random factor resulted in a worse 

error distribution and higher AIC values. Similarly, for the field herbivory survey, a 

GLMM was used to examine the effects of site (metalliferous vs. non-metalliferous 

soils), plant type (A. halleri vs. neighbors), and their interactions as fixed factors on 

the percentage of herbivore damage. Population was included as a random factor. All 

analyses were carried with a normal distribution with an identity link function. 

For the seed germination experiments, a GLMM was used to examine the 

effect of A. halleri ecotype (metalliferous vs. non-metalliferous), soil types, ecotype of 

neighbors and their interactions as fixed factors on the germination success of 

commercial or field-collected seeds, measured as percentage of germination per petri 

dish. Population and neighbor species identity were included as random factors. For 

this test, we also used genotype nested within population as an additional random 

factor. However, the model without it had the best error distribution and lower AIC 

values, hence the random term was excluded from the final model.  

Similarly, for the seedling growth experiments, a GLMM was used to examine 

the effect of A. halleri ecotype, soil type, ecotype of neighbors and their interactions 

as fixed factors on seedling growth of commercial and field-collected seeds, measured 

as their above-ground biomass. Neighbor species were included as random factors. 

All analyses were carried with a normal distribution with a log link function.  

Additionally, to study differences in Cd content between leaf leachates of A. 

halleri ecotype from the two ecotypes, a GLM was used to examine the effect of A. 
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halleri ecotype (metalliferous vs. non-metalliferous), soil types, and their interactions 

as fixed factors on Cd concentration in the leachates. The analysis was carried out 

with a normal probability distribution with an identity link function.  

For all analyses, differences between treatment groups were analyzed using 

post hoc pairwise comparisons using false discovery rate correction (Benjamini & 

Hochberg, 1995). IBM SPSS Statistics 22 was used for all the statistical analyses.  

1.4 Results 

Cd accumulation  

When growing in high-Cd pots, A. halleri ramets accumulated Cd in their leaves to 

concentrations exceeding the threshold for Cd hyperaccumulation (100 ppm) (Table 

2-2, soil type; Fig 2-1). However, there was no difference in leaf Cd accumulation 

between A. halleri ramets from metalliferous and non-metalliferous soils (Table 2-2, 

ecotype; Fig. 2-1). 

 



25 

 

 

Figure 2-1 Cd concentration (means ± SE) in the leaves of A. halleri ramets originating 

from non-metalliferous (non-metal) and metalliferous (metal) soils, growing in high and 

low-Cd pots. Different letters indicate statistically significant pairwise comparisons 

(Pairwise Post-Hoc test with false discovery rate correction). 

 

 

Table 2-2 Results of GLMMs used to test for the effects of soil types (low vs. high-Cd 

pot) and A. halleri ecotype (metalliferous vs. non-metalliferous soils) on Cd 

accumulation in A. halleri leaves. Population was used as a random factor. Significant 

values are indicated in bold. F is for the fixed effects and Wald Z for the random factor. 
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Fixed effects 
Cd concentrations in leaves (ppm) 

df1 df2 F P 

Soil type (S) 1 153 142.962 0.001 
Ecotype (E) 1 153 0.645 0.423 
S × E 1 153 0.088 0.768 

Random effects df1 Wald Z P 

Population 7 8.746 0.001 
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Elemental defense 

Herbivore feeding experiment and field herbivory survey 

In the feeding experiment, P. brassicae caterpillars consumed a higher percentage of 

leaves from A. halleri ramets that grew in low vs. high-Cd pots (Table 2-3, soil type; 

Fig 2-2A). This effect was similar for leaves of A. halleri ramets originating from 

metalliferous vs. non-metalliferous soils (Table 2-3, ecotype; Fig 2-2A). 

In the field survey, in both the metalliferous and non-metalliferous sites, 

individuals of neighboring plant species incurred higher herbivore damage compared 

to A. halleri individuals (Table 2-3, plant type; Fig 2-2B). Moreover, herbivore damage 

was lower in A. halleri individuals from the metalliferous compared to the non-

metalliferous sites (Fig 2-2B), but there was no difference in herbivore damage 

between neighbors from metalliferous and non-metalliferous soils (Table 2-3, site × 

plant type; Fig 2-2B).  

 

 

Figure 2-2 (A) Percentage of leaf area eaten by P. brassicae (means ± SE) of A. 

halleri originating from non-metalliferous (non-metal) and metalliferous soils (metal), 

growing in high and low-Cd pots. (B) Percentage of leaf herbivore damage (means ± 

SE) of A. halleri and neighbor species in sites of non-metalliferous (non-metal) and 

metalliferous (metal) soils. Different letters indicate statistically significant pairwise 

comparisons (Pairwise Post-Hoc test with false discovery rate correction). 
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Table 2-3 Results of GLMMs used to test for the effects of ecotype of A. halleri 

(metalliferous vs. non-metalliferous soils) and soil types (low vs. high-Cd pots) on the 

percentage of leaf eaten by P. brassicae in the herbivore feeding experiment, as 

well as the effects of site (metalliferous vs. non-metalliferous soils) and plant type (A. 

halleri vs. neighbors) on the leaf herbivore damage of A. halleri and neighbor species 

in the field herbivory survey. Population was used as a random factor. Significant 

values are indicated in bold. F is for the fixed effects and Wald Z for the random factor.    

 

 

Elemental allelopathy 

Seed germination experiments 

Leaf leachates of A. halleri ramets that grew in high-Cd pots had a greater Cd content 

compared to low-Cd pots (Table 2-4; Fig 2-3). Additionally, Cd content was higher in 

leachates of A. halleri originating from non-metalliferous compared to metalliferous 

soils (Table 2-4; Fig 2-3). 

Fixed effects 

Leaf eaten (%)  Herbivore damage (%) 

df1 df2 F P Fixed effects df1 df2 F P 

Ecotype (E) 1 153 0.0015 0.904 Site (S) 1 396 146.53 0.001 

Soil type (S) 1 153 84.442 0.001 Plant type (P) 1 396 52.457 0.001 

E × S 1 153 0.088 0.768 S × P 1 396 34.391 0.001 

Random effect df1 Wald Z P 
Random 
effect 

df1        Wald Z P 

Population 7 8.746 0.001 Population 7 14.071 0.001 
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Figure 2-3 Cd concentration (means ± SE) in leaf leachates of A. halleri originating 

from non-metalliferous and metalliferous soils and growing in high vs. low-Cd pots. 

Different letters indicate statistically significant pairwise comparisons (Pairwise Post-

Hoc test with false discovery rate correction). 

 

 

Table 2-4 Results of a GLMs used to test for the effects of A. halleri ecotypes 

(metalliferous vs. non-metalliferous soils), and soil types (low vs. high-Cd pots) on Cd 

content in leaf leachates of A. halleri. Significant values are indicated in bold. 

 

 

The germination of neither commercial nor field-collected seeds was inhibited 

more by leaf leachates from A. halleri ramets that grew in high vs. low-Cd pots (Table 

2-5, soil type; Fig 2-4A). However, there was a greater negative effect of A. halleri from 
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non-metalliferous soil on the commercial seed germination (Table 2-5, A. halleri 

ecotypes; Fig 2-4A), but not on the germination of field-collected seeds (Table 2-5; Fig 

2-4B). 

 

 

Figure 2-4 Percentage of seed germination of commercial species (A) and field-

collected neighbor species (B) (means ± SE) after watering with leachates of A. halleri 

ramets originating from non-metalliferous (non-metal) and metalliferous soils (metal), 

which grew on high and low-Cd pots. Different letters indicate statistically significant 

pairwise comparisons (Pairwise Post-Hoc test with false discovery rate correction). 

 

Seedling growth experiments 

Leaf leachates from A. halleri plants that grew in high-Cd pots had a greater negative 

effect on the biomass of seedlings compared to plants that grew on low-Cd pots for 

both the seedlings of commercial species (Table 2-5, soil type; Fig 2-5A) and field-

collected species (Table 2-5, soil type; Fig 2-5B). Moreover, this negative effect was 

higher for A. halleri from non-metalliferous compared to metalliferous soils, for both 

the commercial species (Table 2-5, ecotype × soil type; Fig 2-5A) and the field 

collected species (Fig 2-5B; Table 2-5). At the same time, for seedlings of the field-

collected species, neighbors originating from non-metalliferous soils were more 
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negatively affected by leachates from high-Cd pots compared to neighbors from 

metalliferous soils (Table 2-5, neighbor ecotype × soil type; Fig 2-5B). 

 

 

Figure 2-5 Above-ground biomass of commercial species (A) and field-collected 

neighbor species (B) (means ± SE) as a result of watering with leachates of A. halleri 

ramet originating from non-metalliferous (non-metal) and metalliferous soils (metal), 

while growing on high and low-Cd pots. Different letters indicate statistically significant 

pairwise comparisons (Pairwise Post-Hoc test with false discovery rate correction).
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Table 2-5 Results of GLMMs used to test the effects of A. halleri ecotypes (metalliferous vs. non-metalliferous soils), neighbor 

ecotypes (metalliferous vs. non-metalliferous soils) and soil types (low vs. high-Cd pots) on percentage of germination and seedling 

biomass of commercial and field-collected species in the seed germination and seedling growth experiments. Species and population 

were used as random factors. Significant values are indicated in bold and na indicates values not applicable for the particular model.

Fixed Factors 

Seed germination (%) Seedling biomass (mg) 

Commercial species  Field-collected species  Commercial species  Field-collected species  

df1 df2 F P df1 df2 F P df1 df2 F P df1 df2 F P 

A. halleri ecotype (E) 1 2388 8.527 0.004 1 2708 0.479 0.489 1 736 7.291 0.007 1 562 10.794 0.001 

Soil type (S) 1 2388 2.284 0.131 1 2708 2.051 0.152 1 736 336.226 0.001 1 562 23.354 0.001 

Neighbor ecotype (N) na na na na 1 2708 1.342 0.247 na na na na 1 562 8.282 0.004 

E×S 1 2388 0.241 0.623 1 2708 0.673 0.412 1 736 48.374 0.001 1 562 4.134 0.042 

E×N na na na na 1 2708 0.098 0.754 na na na na 1 562 3.086 0.079 

S×N na na na na 1 2708 0.003 0.958 na na na na 1 562 6.854 0.009 

E×S×N na na na na 1 2708 0.396 0.529 na na na na 1 562 3.260 0.072 

Random effects df1 Wald Z P df1 Wald Z P df1 Wald Z P df1 Wald Z P 

Population 7 1.77 0.077 7 0.622 0.534 na na na na na na 

Species 4 0.667 0.505 17 0.031 0.009 4 0.001 0.331 17 2.432 0.015 



1.5  Discussion 

In this study, we tested two non-mutually exclusive hypotheses to explain heavy metal 

hyperaccumulation in plants, i.e. the elemental defense and the elemental allelopathy 

hypotheses. Our results with the metal hyperaccumulator A. halleri support our 

predictions that both the need for herbivore defense and neighbor inhibition could 

jointly select for hyperaccumulation of metals in plants. Interestingly, our results also 

reveal that these selection pressures differ between populations growing in 

metalliferous and non-metalliferous soils, as neighboring plants from metalliferous 

soils were more tolerant to the allelopathic effects of Cd leachates compared to 

neighbors from non-metalliferous soils. 

Our findings also show clear evidence that Cd accumulation in the leaves of A. 

halleri can deter feeding by a specialist herbivore. This result was also supported by 

the findings of our field survey, which show that at both metalliferous and non-

metalliferous soils, neighboring species incurred higher herbivore damage compared 

to A. halleri individuals. Although Cd content in the leaves of A. halleri and its neighbor 

species was not quantified in this field study, the greater herbivore protection in A. 

halleri leaves might be attributed to hyperaccumulation of Cd at both the origins. 

Interestingly, former studies have also shown that even A. halleri growing in non-

metalliferous habitat can accumulate Cd at concentrations above the threshold for Cd 

hyperaccumulators from soils which have very low concentration of metals (Kazemi-

Dinan et al., 2015b; Stein et al., 2016; Stolpe et al., 2017b). Our results might therefore 

provide support for the notion that metal hyperaccumulation could be selected for as 

herbivore protection also in uncontaminated soils. However, these results call for 

further field studies, which will correlate the quantity of heavy metals accumulated by 



33 

 

metal hyperaccumulating plants with the herbivore damage they incur, both in 

metalliferous and non-metalliferous soils.  

Our results provide evidence in support of the elemental allelopathy hypothesis, 

which suggests that next to defense, the adaptive value of metal hyperaccumulation 

is the inhibition of neighbors via release of inorganic elements such as Cd and Zn. 

(Zhang et al., 2005, 2007; El Mehdawi et al., 2011a; El Mehdawi & Pilon-Smits, 2012). 

In our study, leaf leachates from A. halleri ramets that grew in high-Cd pots had a 

higher inhibitory effect on the growth of heterospecific neighbors, irrespective of their 

origin. Moreover, this greater negative effect was higher for A. halleri ramets 

originating from non-metalliferous than metalliferous soils, particularly for commercial 

seedlings. To the best of our knowledge, this is the first study to demonstrate 

differences in elemental allelopathy between population inhabiting metalliferous and 

non-metalliferous soils. Interestingly, the difference in allelopathic effect between the 

two ecotypes of A. halleri were due to higher concentration of Cd in the leachates of 

plants from non-metalliferous compared to metalliferous soils. However, these 

differences could be attributed to different mechanisms of Cd sequestration that might 

be employed by these ecotypes. For example, in a previous study with A. halleri from 

the same populations, metalliferous populations had a higher Cd tolerance compared 

to non-metalliferous populations (Gruntman et al., 2016), suggesting that Cd 

sequestration in the cells might be more efficient in metalliferous populations. 

Similarly, Meyer et al., (2015) found that in non-metalliferous populations of A. halleri, 

drastic modifications of the shoot cell wall occurs due to high Cd toxicity, and 

suggested that in these populations, Cd might not be sequestered in specific 

compartments such as vacuoles but stored in spaces outside the plasma membrane 

(apoplast) (Isaure et al., 2015; Meyer et al., 2015). Here, we suggest that perhaps due 



34 

 

to different detoxification strategies in the metalliferous vs. non-metalliferous origin of 

A. halleri, Cd might be more readily extractable, and hence more readily leached from 

leaves in non-metalliferous populations as confirmed in the leachate analysis of our 

study.  

In addition to comparing the allelopathic effects of Cd leachates of A. halleri 

plants from metalliferous vs. non-metalliferous soils, this study also compared the way 

neighbors from these two origins could be differently affected by allelopathy. Our 

results reveal that Cd leachates had a greater inhibitory effect on the growth of 

neighbors originating from non-metalliferous compared to metalliferous soils. These 

results provide first evidence for the idea that the selective advantage of elemental 

allelopathy could be greater in non-metalliferous soils, where neighboring plants are 

not tolerant to metals, whereas the selective advantage is weaker in metalliferous 

soils, as neighboring plants are likely to be tolerant to metal (Dechamps et al., 2007, 

2008b). Thus, the plants from non-metalliferous habitats have a higher release of 

metals in leachates and also previous studies have shown plants from non-

metalliferous populations accumulate Cd more effectively (Bert et al., 2002; Stein et 

al., 2016), providing plants from non-metalliferous soils with a greater selection 

advantage for metal hyperaccumulation. These results therefore highlight the 

importance of incorporating both the origin of the focal species as well as its neighbors 

when studying the selection pressures that might be involved in the evolution of 

particular trait.  

In our study, the allelopathic effects could only be detected on seedling growth 

but not on seed germination. Seed germination and seedling establishment are the 

main plant phenological stages usually affected by allelochemicals (Vivanco et al., 

2004; Fernandez et al., 2013; Linhart et al., 2015). The lack of inhibition of seed 
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germination in our study could be due to a potential protection provided by the seed 

coats of the studied species (Mohamed-Yasseen et al., 1994). The seed coat is the 

seed’s primary defense against adverse environmental conditions, and provides 

protection from mechanical stress, microorganism’s invasion, fluctuating temperatures 

and chemicals (Mohamed-yasseen et al., 1994). This is also true for the studies that 

have investigated the elemental allelopathy hypothesis for metal hyperaccumulators, 

which have mostly looked at the inhibition of seed germination (Zhang et al., 2005, 

2007). The use of this life stage might therefore explain the fact that only a single study 

found support for elemental allelopathy (El Mehdawi et al., 2011a). Hence, the results 

of our study indicate that allelopathy experiments should include seedling growth, in 

addition to germination, as different phenological stages might have different 

sensitivity to heavy metals. 

In contrast to the aforementioned leachate effects, our findings reveal no 

differences in Cd accumulation between A. halleri originating from metalliferous and 

non-metalliferous soils. This result suggests that despite the possible different 

selection pressures between these habitats, as shown in our elemental allelopathy 

experiments, they do not translate to differences in metal hyperaccumulation. In 

contrast, some previous studies have shown that plants from non-metalliferous soils 

indeed accumulate more Cd than metalliferous soils (Bert et al., 2002; Stein et al., 

2016). These differences between studies could be a result of difference in the 

populations used in the studies, as well as, due to the duration of the experiment. For 

instance, in former studies plants were grown for a maximum period of six weeks in 

metal amended soils, compared to six months in this study. Interestingly, Bert et al., 

(2000) showed that a non-metalliferous population of A. halleri exhibited higher Zn 

transport rate than a metalliferous population, suggesting that in long-term 
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experiments, differences in metal accumulation between ecotypes might diminish, as 

shown in our study with Cd. This notion could also be supported by a former study 

whose duration was 14 weeks and revealed no differences in Zn accumulation 

between A. halleri populations from different ecotypes (Macnair, 2002). 

In summary, this study is the first to show that both the need for herbivore 

defense and neighbor inhibition could jointly select for metal hyperaccumulation in 

plants, and potentially to a greater extent in non-metalliferous soils, where neighboring 

plants have not developed adaptions to heavy metals. Interestingly, plants from non-

metalliferous soils release more Cd in their leachates providing it with greater selective 

advantage against neighbors that are not tolerant to heavy metals. These results 

emphasize the importance of including different origins and populations of both the 

target species and its neighboring plant species when studying the ecological role of 

metal hyperaccumulation. Moreover, our results emphasize that the same secondary 

compound can have multiple functions such as allelopathy and protection from 

herbivores, which should increase the selection pressure for the production or uptake 

of the respective substances. 

 

 

 

 

 

 



Chapter 3  

Herbivory and induced foraging responses in plants  

 

3.1 Abstract 

 

Plants can exhibit foraging behaviors in response to resource heterogeneity and 

demand. However, environmental stressors might also affect these foraging decisions, 

such as herbivory, which could alter the demand for particular resources, such as 

those required for herbivore resistance. In this study, we examined the effect of 

simulated herbivory on clonal foraging in the metal hyperaccumulating plant 

Arabidopsis halleri, which has been shown to use heavy metals as herbivore-

resistance compounds. In this experiment, two connected ramets were grown in either 

a high-Cadmium (Cd) or a low-Cd pot. In both the experiments, herbivory was 

simulated using jasmonic acid (or water as a control) and pierced holes. The results 

of the experiment reveal that herbivory can induce both metal hyperaccumulation and 

sharing among ramtes, particularly in ramets originating from populations of non-

metalliferous soils. These results suggest that foraging in plants can be viewed as part 

of an array of induced resistance to herbivory, with which plants can actively look for 

resistance compounds whose demand increases following herbivory. 
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3.2 Introduction 

 

Plants in natural ecosystems are faced with spatial and temporal heterogeneity of 

resources. In response to such resource heterogeneity plants have been shown to 

exhibit foraging behaviors, i.e. the selective placement and proliferation of resource-

acquiring organs within resource-rich patches (Hutchings & de Kroon, 1994; de Kroon 

& Hutchings, 1995; Stuefer, 1996; Hutchings, 1999; Haines, 2002; Cahill & McNickle, 

2011; Tian & Doerner, 2013; Belter & Cahill, 2015). The two most studied types of 

foraging behavior in plants are root foraging patterns displayed in response to patchy 

distribution of soil nutrients (Cahill & McNickle, 2011; Tian & Doerner, 2013; Belter & 

Cahill, 2015), and foraging by clonal plants, which exhibit active placement of daughter 

ramets in rich patches (Hutchings & de Kroon, 1994; de Kroon & Hutchings, 1995; 

Hutchings, 1999). In addition, clonal plants may maximize their performance by 

division of labor among ramets that grow in patches of varying resource availability 

and by sharing of different resources taken up by individual ramets (Pitelka & Ashmun, 

1985; Alpert, 1997). 

Foraging strategies of plants can be affected not only by heterogeneity of 

resources but also by their demand. For example, Ruffel et al. (2011), have shown 

that demand for nitrate in Arabidopsis thaliana promoted root growth into nitrate-rich 

patches in heterogeneous soil. In addition to resource distribution and demand, 

foraging responses in plants have also been shown to be altered by varying non-

resource cues (Cahill & McNickle, 2011). For example, plants have been shown to 

adjust their root morphology in response to neighboring plants through competition or 

avoidance (Gersani et al., 2001; Hodge, 2004; Cahill et al., 2010). Other studies have 

shown that plants can exhibit altered root placement towards mutualists such as 
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mycorrhizae (Hodge & Fitter, 2010) and away from enemies such as pathogens or 

parasites (Stevens et al., 2007).  

The ability of plants to alter their foraging patterns in response to both resource 

demand and multiple environmental cues suggests that foraging for particular 

resources might be adjusted according to certain environmental stressors that alter 

the demand for certain resources. For example, herbivore attacks are known to induce 

varying physiological and morphological responses in plants, such as the production 

of secondary metabolites (Herms & Mattson, 1992; Chen, 2008; Howe & Jander, 2008; 

Agarwal, 2011; Johnson, 2011; Nabity et al., 2013; Pieterse et al., 2013; Wasternack 

& Hause, 2013; Karbon & Myers, 2016; Mason et al., 2016), or changes in resource 

allocation from reserves to growing meristems (Traw & Bergelson, 2003; Boughton et 

al., 2005; Chen, 2008; Rasmann et al., 2009; Agarwal, 2011; Johnson, 2011). 

Herbivore damage might therefore increase the demand for certain resources that are 

required for the production of resistance compounds and hence affect the foraging 

decisions of plants. However, to the best of our knowledge, this hypothesis has not 

been tested so far.  

In this study, we examined the effect of herbivory on the foraging decisions of 

a plant that can hyperaccumulate large concentrations of heavy metals in their shoots 

and leafs. The most common hypothesis associated with such hyperaccumulation of 

heavy metals in plants is the elemental defense hypothesis, according to which plants 

use these heavy metals as a defense mechanism against herbivores or pathogens 

(Martens & Boyd, 1994, 2002; Coleman et al., 2005; Boyd, 2007; Fones et al., 2010; 

Cheruiyot et al., 2013; Cappa & Pilon-Smits, 2014; Kazemi-Dinan et al., 2014, 2015a; 

Plaza et al., 2015). Several studies provide support for this hypothesis (Martens & 

Boyd, 1994; Jhee et al., 2005; Noret et al., 2005; Kazemi-Dinan et al., 2014) and also 
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the previous chapter of the thesis (Mohiley et al., unpublished, see chapter 2). 

Moreover, in a recent study, Plaza et al. (2015), demonstrated that metal 

hyperaccumulation in Arabidopsis halleri can also be induced by herbivory.  

Metal hyperaccumulating plants have been shown to forage for heavy metals 

(Dechamps et al., 2008; Haines, 2002). For example, Dechamps et al. (2008), showed 

that the hyperaccumulator Thlaspi caerulescens could change its root placement 

patterns in response to heterogeneity in metals. However, no previous study has 

examined the way foraging for heavy metals in these plants, via clonal foraging, might 

be affected by herbivory. Here, we present an experiment in which we studied the way 

foraging for heavy metals might be induced by herbivory in the metal 

hyperaccumulating, clonal plant A. halleri. In this experiment, we asked if simulated 

herbivore damage can induce increased metal uptake as well as increased metal 

sharing between ramets.  

In this study, we additionally differentiated between Cadmium (Cd)-tolerant 

plants and plants for which Cd is more harmful in order to evaluate differences in their 

foraging decisions. Specifically, we asked if foraging in response to herbivory differs 

between plants originating from metalliferous vs. non-metalliferous soils. A. halleri 

from both these origins have been shown to hyperaccumulate Cd (Mohiley et al., 

unpublished, see chapter 2). However, our own previous study with the same 

genotypes used in this study showed that A. halleri originating from non-metalliferous 

soils are less tolerant to high concentrations of Cd in their tissues and show markedly 

reduced growth when grown in Cd-rich soils (Gruntman et al., 2016). 
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3.3 Materials and Methods  

Plant and soil  

A. halleri individuals for the experiment were collected in December 2013 from four 

metalliferous sites (i.e. abandoned mining areas) and four non-metalliferous sites 

within Germany (Table 3-1). These individuals were also used in a previous 

experiment that showed low Cd tolerance of plants from non-metalliferous soils 

(Gruntman et al., 2016). Twenty individuals were collected per site in an arbitrary 

manner. However, we applied some stratification and ensured a minimum distance of 

2 m and a maximum distance of 150 m between individuals, to make sure they 

belonged to different genets. In December 2013, collected individuals were planted in 

1 L pots filled with potting soil (Topferde, Einheitserde, Gebr. Patzer GmbH & Co. KG, 

Kreutztal, Germany) and placed in a greenhouse at Tübingen University, Germany. In 

order to avoid maternal effects due to metal remains in plant tissues, the plants were 

clonally propagated for two generations until the beginning of each experiment for 

which new cuttings were obtained from the propagated clones. 

The soil used in the experiment was a non-contaminated soil obtained from a 

site near Tübingen (provider: Bischoff GmbH & Co. KG, Hirschau, Germany). The soil 

was sieved (2 mm mesh size) and autoclaved for 20 min at 120 ºC and half of it was 

artificially contaminated with 100 ppm Cd by adding CdCl2 (99 %, Sigma-Aldrich 

Chemie GmbH, Germany) solution to the soil. 

Clonal-foraging experiment 

In April 2015, connected ramet pairs of A. halleri with a stolon length of 2.5 - 4 cm 

were selected and cut off from each of the same eight mother plants per population. 
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Ramet pairs were grown in paired 0.05 L pots with one ramet in a low-Cd (non-

contaminated) pot and the other in a high-Cd pot (100 ppm Cd), (Fig 3-1A). One month 

after the beginning of the experiment, when leaves reached a length of 2 cm, the 

paired ramets were randomly assigned to a control (no-herbivory) treatment or one of 

two simulated herbivory treatments, which were applied on the ramet in either the 

high-Cd (local induction) or low-Cd pot (remote induction; Fig 3-1A, B). Herbivory was 

simulated by both mechanical stimulation and by using jasmonic acid (JA) (Fig 3-1A) 

(van Kleunen et al., 2004). 1mM JA was used and the solution was prepared by mixing 

250 mg of JA (Sigma-Aldrich Chemie GmbH, Germany) with 1 mL of ethanol and 250 

mL of demineralized water, after which 2.5 mL Triton X-100 (0.1 %) were added (van 

Kleunen et al., 2004). 300 µL of the solution were applied using a pipette on one leaf 

per ramet after piercing in it six holes using a toothpick. During the experiment, 

herbivory application was done six times in total. The experimental setup consisted of 

192 pot pairs [3 herbivory treatments × 2 plant origins (metalliferous, non-

metalliferous) × 4 populations × 8 individuals]. However, during the experiment, 30 

ramet pairs died and in 14 others, one ramet died, and these ramet pairs were 

therefore excluded from the analyses.  

As the resource flow between ramets might be unidirectional from older to 

younger ramets (Eliabeth et al., 1992), the position of the two paired ramets was 

alternated between replicates so that in half of the pairs the mother ramets were 

assigned to the high-Cd pot, while in the other half the daughter ramets were. The 

paired pots were placed in the greenhouse. Each pot was placed within a separate 

plastic dish (6 mm) to allow for their individual watering. The plants were harvested 

after four months in August 2015. To learn whether simulated herbivory changed 

allocation of shoot biomass between low or high-Cd pots within each ramet pairs, was 
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measured as shoot biomass of each ramet, which was determined by harvesting and 

drying the plants at 60 °C for 48 h.  

Leaves from six plants per treatment from the experiment were analyzed for metal 

concentration. Leaf extracts were prepared with the same methodology as in an own 

previous experiment (Gruntman et al., 2016) and analyzed with ICP-OES technique 

for metal quantification (Stein et al., 2016). We chose to study the foraging behavior 

with respect to Cd in this experiment as previous studies have shown that even though 

both Cd and Zinc (Zn) accumulation by A. halleri can act as herbivore defense. 

However, Cd has a much greater potency as a defense compound and requires 

smaller quantities to be effective (Kazemi-Dinan et al., 2014) and the previous chapter 

of the thesis suggests that Cd is more effective than Zn in protecting plants (Mohiley 

et al., unpublished, see chapter 2). In addition, Zn accumulation in A. halleri leaves did 

not differ between ecotypes, pots and herbivore treatments and their interactions (Fig 

A3; Table A5, see in the appendix).  
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Table 3-1 Source population of A. halleri used in the experiment 

 

Figure 3-1. Clonal foraging experiment. Schematic illustration of the experimental setup (A) 

with a picture depicting two connected A. halleri ramets growing in separate pots (B). 

 

Origin Population     Latitude Longitude 

Non-Metalliferous  Blaibach 49°09.830N 012°47.759E 

 Fort Fun 51°18.264N 010°18.004E 

 Geroldsgrün 50°23.323N 011°34.148E 

 Wehbach 50°48.498N 007°50.563E 

Metalliferous  Clausthal Zellerfeld 51°48.088N 010°18.111E 

 Lautenthal 51°51.453N 010°18.004E 

 Vienenburg 51°57.294N 010°34.082E 

 Wulmeringshauen 51°18.383N 008°29.112E 
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Data analysis 

A GLMM was used to examine the effect of herbivory and origin on the foraging 

decisions of A. halleri, between high vs. low-Cd pots with shoot biomass and 

accumulated leaf Cd concentration as response variables, and herbivory, origin, soil 

type and their interactions as fixed factors, and population as a random factor. Effect 

on shoot biomass were analyzed using a normal probability distribution with a log link 

function, while leaf accumulated Cd concentration within ramet pairs was analyzed 

using a gamma probability distribution with an identity link function. For all the analyses 

of differences between the treatments were analyzed using post hoc pairwise 

comparisons using Benjamini & Hochberg correction. IBM SPSS Statistics 22 was 

used for all the statistical analyses. 

3.4 Results 

The shoot biomass allocation differed between A. halleri plants from the two origins 

between low and high-Cd pot in response to simulated herbivory (soil type × origin 

effect: F = 4.5751, P = 0.025, Table 3-2; Fig 3-2A). Particularly, pairs from non-

metalliferous soils changed their shoot biomass allocation patterns due to simulated 

herbivory as hypothesized: under control conditions they allocated more shoot 

biomass to ramets in the low-Cd pot, but under simulated herbivory, particularly when 

herbivory was applied on the low-Cd pot, similar biomass was allocated to the high 

and low-Cd pot (Table 3-2; Fig 3-2A). However, pairs originating from metalliferous 

soils did not show any preference in biomass allocation between the high vs. low-Cd 

pots, regardless of the herbivory treatment (Fig 3-2A). 

As for the biomass, specifically, ramet pairs from non-metalliferous soils 

exhibited increased Cd accumulation under the two simulated herbivory treatments 
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compared to control conditions, whereas pairs that originated from metalliferous soils 

showed high Cd concentration irrespective of the herbivory treatment (Table 3-2, 

origin × herbivory effect; Fig 3-2B). Moreover, A. halleri from non-metalliferous soils 

exhibited high Cd sharing between ramets found in the low and high-Cd pots, while 

plants from metalliferous soils restricted Cd allocation to ramets in the high-Cd pots 

(Table 3-2, origin × pot effect; Fig 3-2B), but increased Cd sharing when herbivory was 

simulated, and in particular when simulated on the low-Cd pot (Fig 3-2B). 
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Figure 3-2 Responses (means ± SE) of ramet pairs of A. halleri originating from non-

metalliferous and metalliferous soils, growing in high and low-Cd pots on (A) shoot 

biomass and (B) Cd accumulation in the leaves. Different letters indicate statistically 

significant pairwise comparisons (Pairwise Post-Hoc test with Benjamini & Hochberg 

correction 33). 
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Table 3-2 Effects of simulated herbivory (control vs. simulated herbivory), soil types 

(low vs. high-Cd pot) and A. halleri ecotype (metalliferous vs. non-metalliferous soils) 

on shoot biomass and Cd accumulation in A. halleri leaves. Population was used as a 

random factor. Significant values are indicated in bold. F is for the fixed effects and 

Wald Z for the random factor. 

 

 

 

 

 

 

 

 

  Shoot biomass   Cd accumulation in the leafs 

Fixed 

Factors 
df F P df F P 

Simulated 

herbivory (H)  
2 0.198 0.820 2 4.547 0.012 

Origin (O)  1 0.099 0.101 1 0.554 0.457 

Soil type (S)  1 1.480 0.820 1 3.630 0.058 

H×O  2 1.743 0.177 2 4.937 0.008 

S×H  2 3.736 0.025 2 1.881 0.155 

S×O  1 4.575 0.033 1 6.019 0.015 

H×O×S  2 0.551 0.577 2 1.475 0.231 

Variance df Wald Z P  df Wald Z P 

Population 7 11.038 0.001  7 13.515 0.001 
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3.5 Discussion 

 

Our study provides first support for the idea that foraging and resource uptake in plants 

can be induced by herbivory. Intriguingly, A. halleri plants did not forage for a ‘positive’ 

resource that enhances their growth but for a substance whose uptake would, without 

herbivory, be avoided. Specifically, plants from non-metalliferous soils, which we have 

shown to be sensitive to Cd (Gruntman et al., 2016), allocated their shoot biomass 

away from Cd and suppressed its uptake under control conditions but enhanced it 

when exposed to herbivory. Moreover, plants from metalliferous soils, which are more 

tolerant to Cd, enhanced sharing of Cd between ramets when exposed to herbivory, 

and in particular when herbivory was simulated on ramets growing in clean soil.  

Plants have been shown to forage for resources, such as light, nutrients and 

water by placing their organs in high-resource patches (de Kroon & Schieving, 1991; 

de Kroon & Hutchings, 1995; Stuefer, 1996; Hutchings, 1999; Cahill & McNickle, 2011; 

Belter & Cahill, 2015) and particularly when these resources are in short demand 

(Hutchings, 1999; Ruffel et al., 2011). Here we show that when such demand for 

certain resources is altered by environmental factors, such as herbivory, it can 

accordingly change the foraging decisions of plants. However, in our study system the 

potential resistance agent, Cd, is a non-nutrient resource and hence its increased 

demand due to herbivory is easier to manipulate compared to other resources such 

as nitrogen, which are essential for plants for production of both secondary and 

primary metabolites. Generalization of our results and their relevance to other, more 

complex, systems of herbivore-induced foraging response should thus be further 

studied. In that respect, our study system may provide a simpler approach to 

demonstrate herbivore-induced foraging as proof-of-concept.   
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Our finding supports the elemental defense hypothesis, which asserts that 

metal hyperaccumulation has evolved as a resistance mechanism against herbivores 

(Martens & Boyd, 1994; Jhee et al., 2005; Noret et al., 2005; Kazemi-Dinan et al., 

2014). Previous studies and also the previous chapter of the thesis (Mohiley et al., 

unpublished, see chapter 2) with A. halleri have supported this hypothesis, showing 

that metal hyperaccumulation deters the herbivores feeding preference (Kazemi-

Dinan et al., 2014, 2015; Plaza et al., 2015; Huitson & Macnair, 2003) or could 

intoxicate herbivores (Poschenrieder et al., 2006). In this study, A. halleri ramets from 

both origins displayed a similar trend of increased Cd sharing among ramets under 

simulated herbivory. However, our results also reveal that, simulated herbivory 

induced increased Cd accumulation mostly in A. halleri ramets that originated from 

non-metalliferous soils. In particular, while plants from metalliferous soils exhibited 

constitutively high Cd accumulation, plants from non-metalliferous soils showed high 

Cd accumulation only following simulated herbivory. These differences in Cd 

accumulation between origins might imply that Cd can serve as constitutive vs. 

induced resistance in ramets from metalliferous vs. non-metalliferous soils, 

respectively. The potential use of Cd as induced, rather than constitutive herbivore 

resistance suggest that plants from non-metalliferous origin might incur a cost by Cd 

accumulation. This cost could be either the toxicity of Cd, to which plants from non-

metalliferous soils are less tolerant (Meyer et al., 2015; Gruntman et al., 2016), or an 

allocation cost due to the active uptake of Cd. 

The results of this experiment reveal that connected ramets of A. halleri plants 

can serve as a pathway for the sharing of defense compounds in response to 

herbivory. Similar observations of transfer of systemic resistance compounds via 

stolons was observed by Gómez & Stuefer, (2006) in Trifolium repens. Here, we show 
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that clonal integration can also facilitate sharing of non-essential elements such as 

Cd. In clonal plants, the transport of non-essential elements can occur from source to 

sink.  However, the flow also depends upon ramet age such that most phloem-based 

resources move from older ramet to younger ramet (C. Marshall, 1990). In contrast, in 

our study the placement of older or younger ramet in the high or low-Cd pots did not 

have an effect on the sharing of Cd through stolon’s, suggesting that A. halleri can 

transport Cd in both directions and according to its demand. 

In conclusion, the results of this study provide initial support for the idea that 

foraging for resources can be induced by herbivore pressure. This support was found 

at the inter-ramet level and sharing among ramets. These results imply that foraging 

decisions in plants can be a complex process in which not only resource distribution 

is evaluated but also their demand and its alteration by environmental stressors. 

Specifically, our results suggest that foraging in plants can be viewed as part of an 

array of induced resistance to herbivore load, with which plants can actively look for 

resistance compounds whose demand increases following herbivory.  

 



Chapter 4       

Competition and induced foraging responses in a metal 

hyperaccumulating plant 

4.1 Abstract 

Plants can respond to competition in a myriad of physiological or morphological 

changes. Competition has also been shown to affect the root foraging decisions of 

plants. However, a completely unexplored idea is that competition might also affect 

plants foraging for specific chemicals required inhibiting the growth of their 

competitors. In this study, we examined the effect of simulated competition on root 

foraging and uptake of heavy metals in the metal hyperaccumulating plant Arabidopsis 

halleri, whose metal accumulation has been shown to provide allelopathic ability. A. 

halleri plants originating from both metalliferous and non-metalliferous soils were 

grown in a “split-root” setup with one root in a high-metal pot and the other in a low-

metal one. The plants were then assigned to either simulated light competition or 

control no-competition treatments, using vertical green or clear plastic filters, 

respectively. In contrast to our predictions, simulated competition did not induce 

greater root allocation into the high-metal pots, regardless of A. halleri’s origin. 

However, simulated light competition did result in enhanced metal uptake by A. halleri, 

particularly in the less metal-tolerant plants, originating from non-metalliferous soils. 

Interestingly, this induced uptake was displayed only for Zinc and not Cadmium, 

demonstrating separate uptake pathways and preferential resource selection. 
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4.2 Introduction 

Plant-plant competition for above and belowground resources, such as light, nutrients, 

and water is a key factor determining the structure of plant communities as well as the 

evolution of plant traits and life histories (Goldberg & Fleetwood, 1987; Wilson & 

Tilman, 1991; Goldberg & Barton, 1992; Tilman, 1994). Plants can respond to 

competition in a myriad of physiological or morphological changes (Hutchings & de 

Kroon, 1994; Robinson, 1996; Hodge, 2004; Kembel & Cahill, 2005). For example, in 

response to belowground competition, plants have been shown to change their root 

placement, to either avoid competition by growing away from neighboring roots, or to 

engage in competitive interactions by aggregating near neighboring roots (Schenk et 

al., 1999; Schenk, 2006; Cahill & McNickle, 2011). In addition, competition can have 

direct consequences on the way plants forage for resources. For instance, competition 

has been shown to increase root growth in nutrient-rich patches (Hodge, 2004; Kembel 

& Cahill, 2005; Cahill et al., 2010) or reduce it when neighboring species are 

competitively dominant (Mommer et al., 2012). However, a completely unexplored 

idea is that competition could not only affect root foraging for nutrient-rich patches but 

also affect their foraging for particular chemicals that plants may require under 

competition (McNickle et al., 2009), for example to inhibit the growth of their 

competitors (i.e., allelochemicals). 

Few studies have shown that allelochemical production could be induced due 

to competition from neighboring plants (Pomilio et al., 2000; Rasher & Hay, 2014; 

Zhang et al., 2017). This suggests that competition might also induce changes in the 

foraging responses of plants for particular chemicals. This could be particularly likely 

in plants that use certain non-nutrient resources as allelochemicals because metal, is 

a non-nutrient resource and hence its increased demand due to competition is easier 
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to manipulate compared to other resources such as nitrogen, which are essential for 

plants for production of both secondary and primary metabolites. An example for such 

plants are metal hyperaccumulating species which accumulate heavy metals in 

excessive concentrations (Krämer, 2010). This trait has been found to be important as 

herbivore defense (Kazemi-Dinan et al., 2014; Plaza et al., 2015) and/or provide plants 

with allelopathic abilities (Mohiley et al., unpublished, see chapter 2). For example, 

allelopathic effects could be conveyed by concentrating the heavy metals in the leaves 

and inhibit seedling growth of neighboring species when the metal-enriched leaves 

are shed (El Mehdawi et al., 2011a, 2012). 

Interestingly, metal hyperaccumulating plants have been revealed to forage for 

heavy metals (Haines, 2002; Dechamps et al., 2008a). For example, Dechamps et al., 

(2008) showed that the metal hyperaccumulator Thlaspi caerulescens could change 

its root placement patterns in response to heterogeneity in metals. Moreover, results 

of a previous study revealed that herbivore attacks can induce foraging response for 

heavy metals as well as enhanced metal hyperaccumulation in the metal 

hyperaccumulating plant Arabidopsis halleri (Mohiley et al., unpublished, see chapter 

3). In a previous study, we also showed that allelopathy can be provided by metal 

hyperaccumulation (Mohiley et al., unpublished, see chapter 2). It is therefore likely 

that these plants might also increase their foraging for heavy metals when they face 

competition. However, to the best of our knowledge, this hypothesis has not been 

tested so far. 

In this study, we examined the hypothesis that foraging for heavy metals can 

be induced by competition. We used an experimental setup with the metal 

hyperaccumulating plant A. halleri and simulated light competition, using vertical 

transparent or green plastic filters. These filters provide a realistic simulation of light 
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competition as they reduce both photosynthetically active radiation (PAR) and the ratio 

of red to far-red light (R:FR) in the treatments (Leeflang et al., 1998; Weijschede et al., 

2006) without the problem of confounding competition treatments with neighbor 

identity. We asked if simulated competition could induce root foraging for heavy metals 

as well as increased metal uptake. Additionally, we tested if these foraging responses 

to competition would differ between plants originating from either metalliferous or non-

metalliferous soils. We predicted that plants from metalliferous soils, which have 

higher tolerance to heavy metals and can therefore accumulate them constitutively 

(Gruntman et al., 2016), would exhibit lower responsiveness to competition in their 

metal foraging and accumulation, compared to plants from non-metalliferous soils. 

Moreover, in metalliferous soils competition is relatively low and the few competing 

species are also likely to be metal tolerant (Mohiley et al., unpublished, see chapter 2) 

and hence the selection pressure for allelopathy using heavy metals is rather low.  

4.3 Material and Methods 

Plant and soil collection 

Twenty individuals of A. halleri were collected per site in an arbitrary manner but 

constrained by a minimum distance of 2 m and a maximum distance of 150 m between 

individuals, from four metalliferous and four non-metalliferous sites within Germany 

(Table 4-1). The collected individuals were planted in 1 L pots filled with potting soil 

(Topferde, Einheitserde, Gebr. Patzer GmbH & Co. KG, Kreutztal, Germany) and 

placed in a greenhouse at Tübingen University, Germany. The plants were clonally 

propagated for five generations in potting soil (Topferde, Einheitserde, Gebr. Patzer 

GmbH & Co. KG, Kreutztal, Germany) until the beginning of the experiment for which 
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new cuttings were obtained from the propagated clones, this in order to avoid maternal 

effects due to possible metal remains in plant tissues. 

The soil used in the experiment was collected from the same metalliferous and 

non-metalliferous sites where A. halleri was sampled (Table 4-1), at a depth of 30 cm 

from four different locations within each site. All soils from the same ecotypes 

(metalliferous or non-metalliferous) were mixed, sieved (2 mm mesh size) and steam-

sterilized for 2.5 h at 80 °C. The metal content analyses confirmed our assumption 

and Cadmium (Cd) and Zinc (Zn) content was markedly greater for metalliferous vs. 

non-metalliferous soils (Cd: 27.009 vs. 0.8399 ppm; Zn: 5908 vs. 143.21 ppm, 

respectively), and these soils are hereafter referred to as high or low-metal soils 

respectively. 

 

 

 

 

 

 

 

 

 

Experiment 

In May 2016, newly grown ramets of A. halleri were selected and severed from eight 

mother plants per population and each ramet was grown in water-filled containers in 

the greenhouse to induce root formation. After two weeks, the ramets produced 6 - 10 

Table 4-1 Source populations of A. halleri used in the experiment.  

Ecotype Population Latitude Longitude 

Non-metalliferous Blaibach 49°09.830N 012°47.759E 

 Fort Fun 51°18.264N 010°18.004E 

 Geroldsgrün 50°23.323N 011°34.148E 

 Wehbach 50°48.498N 007°50.563E 

Metalliferous Clausthal Zellerfeld 51°48.088N 010°18.111E 

 Lautenthal 51°51.453N 010°18.004E 

 Vienenburg 51°57.294N 010°34.082E 

 Wulmeringshauen 51°18.383N 008°29.112E 
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roots, out of which all except two similarly-sized roots where cut off. Each ramet was 

then grown in a split-root setup of paired 0.05 L pots with one root in a high-metal pot 

(with soil from metalliferous sites) and the other in a low-metal pot (with soil from non-

metalliferous sites) (Fig 4-1). Ramets were then assigned to either a control, no light-

competition, treatment using transparent clear plastic filters (130 clear, Lee filters, CA, 

USA), or a simulated light-competition treatment using transparent green plastic filters 

(Fig 4-1). The transparent green plastic filters simulate vegetative shade in light 

transmission levels and R:FR ratios (122 Fern green, Lee filters, CA, USA) 

(Weijschede et al., 2006; Gruntman et al., 2017). The filters were set around the plants 

following transplantation of ramets; and the pots were placed on benches in a 

greenhouse, at a minimum distance of 30 cm between pots, to avoid shading effects 

among neighboring plants. The experimental setup consisted of 128 pot pairs [2 

competition treatments × 2 plant ecotypes (metalliferous, non-metalliferous) × 4 

populations × 8 individuals]. 

The plants were harvested after ten weeks from the onset of the experiment, 

following which measurement of responses of A. halleri to simulated light competition 

were performed. These measurements included plant height, plant shoot and root 

biomass. Shoot biomass was measured following oven drying the plants in 60 ˚C for 

three days. The roots were washed, and their biomass was similarly measured. 

To learn whether Cd and Zn accumulation in the leaves of A. halleri ramets was 

affected by simulated light competition, leaves of the ramet were harvested and 

analyzed for their Cd and Zn content. The leaf extracts were prepared with the same 

methodology described in Gruntman et al., (2016) and analyzed with ICP-OES 

technique for Cd and Zn quantification (Stein et al., 2016). 
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Data analysis 

A generalized linear mixed model (GLMM) was used to examine the effect of 

A. halleri ecotype (metalliferous vs. non-metalliferous) and simulated light competition 

(clear vs. green filters) and their interactions as fixed factors on shoot biomass and 

height of A. halleri. Genotype nested within population and population were included 

in the model as random factors. The analysis was carried out with a normal probability 

distribution with a log link function. Similarly, a GLMM was used to examine the effects 

of ecotype (metalliferous vs. non-metalliferous soils), simulated light competition (clear 

vs. green filters) and soil type (low vs. high Cd metals) and their interactions as fixed 

factors on root biomass of A. halleri. Genotype nested within population and population 

were included in the model as random factors. The analysis was carried out with a 

normal probability distribution with an identity link function. A GLMM was also used to 

Figure 4-1 Schematic illustration of the experimental setup depicting A. halleri 

growing in a split-root design in paired pots, with or without simulated light 

competition. 
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examine the effects of ecotype (metalliferous vs. non-metalliferous soils) and 

simulated light competition (clear vs. green filters) and their interactions as fixed 

factors on the root to shoot biomass ratio of A. halleri. Genotype nested within 

population and population were included in the model as random factors. The analysis 

was carried out with a normal probability distribution with an identity link function. 

Finally, a GLMM was used to examine the effects of ecotype (metalliferous vs. non-

metalliferous soils), and simulated light competition (clear vs. green filters) on Cd and 

Zn accumulation in leaves of A. halleri. Genotype nested within population and 

population were included in the model as random factors. The analyses were carried 

out with a normal probability distribution with an identity link function and a log link 

function for the Cd and Zn accumulation, respectively. For all analyses, differences 

between treatment groups were analyzed using post hoc pairwise comparisons using 

the false discovery rate correction (Benjamini & Hochberg, 1995). IBM SPSS Statistics 

22 was used for all the statistical analyses. 

4.4 Results 

Overall, there was no effect of simulated competition or ecotype of A. halleri on their 

shoot biomass. However, A. halleri plants from metalliferous and non-metalliferous 

soils differed in their response to the simulated competition (ecotype × competition, 

Table 4-2; Fig 4-2A). Specifically, shoot biomass of the metalliferous ecotype was not 

affected by simulated competition, while that of the non-metalliferous ecotype 

increased under competition (Fig 4-2A). Moreover, the simulated competition 

treatment had a negative effect on the height of A. halleri (Table 4-2), which was 

particularly pronounced for the metalliferous ecotype (ecotype × competition, Table 4-

2; Fig 4-2B).  
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Figure 4-2 Responses (means ± SE) of A. halleri from non-metalliferous and 

metalliferous soils to light competition in (A) shoot biomass, (B) height (C) root 

biomass in response to high and low-metal pots and (D) ratio of root to shoot biomass. 

Different letters indicate statistically significant pairwise comparisons (pairwise post-

hoc test with the false discovery rate correction (Benjamini & Hochberg, 1995). 

 

In contrast to shoot biomass, there was an overall positive effect of simulated 

competition on root biomass (Table 4-2; Fig 4-2C). However, there was no difference 

in root allocation between the low or high-metal pots or between A. halleri plants from 

metalliferous and non-metalliferous soils (Table 4-2; Fig 4-2C). Moreover, root to shoot 

ratio was affected neither by simulated competition nor by A. halleri ecotype (Table 4-

2; Fig4- 2D).  
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 The accumulation of Cd in the leaves of A. halleri was not affected by simulated 

competition. However, plants from non-metalliferous soils accumulated higher 

concentration of Cd compared to plants from metalliferous soils, irrespective of the 

simulated competition treatment (Table 4-2; Fig 4-3A). In contrast to Cd, the 

accumulation of Zn by A. halleri increased under simulated competition (Table 4-2; Fig 

4-3B). Interestingly, the post-hoc test revealed a trend of greater Zn accumulation in 

response to competition in plants from non-metalliferous compared to metalliferous 

populations (Fig 4-3B). 

 

 

Figure 4-3 Responses (means ± SE) of A. halleri from non-metalliferous and 

metalliferous soils to light competition and high and low-metal pots in (A) Cd and (B) 

Zn accumulation. Different letters indicate statistically significant pairwise comparisons 

(pairwise post-hoc test with the false discovery rate correction (Benjamini & Hochberg, 

1995). 
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Table 4-2 The effects of ecotype (metalliferous vs. non-metalliferous soils) and simulated competition (clear vs. green filters) on shoot 

biomass, height, root biomass and root to shoot biomass ratio of A. halleri as well as Cd and Zn accumulation in A. halleri leaves. 

For root biomass, also shown is the effect of soil type (low vs. high-Cd pots). Genotype nested within population and population were 

used as random factors. Effect of soil type is shown only for root biomass. Significant values are indicated in bold. F is for fixed effects 

and Wald Z for random factors. 

Fixed effects 

Shoot biomass 
(mg) 

Height (cm) 
Root biomass 

(mg) 
Root to shoot 

ratio 
Cd accumulation 

(ppm) 
Zn accumulation 

(ppm) 

df F P df F P df F P df F P df F P df F P 

Ecotype (E) 1 0.341 0.561 1 0.044 0.834 1 0.674 0.413 1 0.118 0.732 1 3.973 0.049 1 0.009 0.925 

Competition (C) 1 0.002 0.962 1 21.327 0.001 1 15.330 0.001 1 1.178 0.280 1 0.363 0.609 1 6.600 0.012 

Soil type (S)       1 0.430 0.513          

E × C 1 5.577 0.020 1 4.772 0.032 1 0.021 0.885 1 0.469 0.495 1 0.006 0.939 1 0.672 0.414 
E × S       1 0.016 0.899          
C × S        1 0.685 0.409          

E × S× C        1 0.539 0.464          

Variance df Wald Z P df Wald Z P df Wald Z P df Wald Z P df Wald Z P df Wald Z P 

Genotype 
(population) 

7 3.271 0.001 7 6.080 0.001 7 3.614 0.001 7 0.477 0.633 7 3.614 0.001 7 1.471 0.141 

Population 7 0.265 0.791 7 1.429 0.153 7 2.377 0.017 7 0.512 0.534 7 0.276 0.789 7 0.447 0.655 

 



 

4.5 Discussion 

In this study, we tested the idea that foraging and uptake of chemicals in plants can 

be induced by competition. Specifically, we studied the foraging responses of the 

metal hyperaccumulating plant A. halleri for heavy metals, which can be used as 

allelochemicals that inhibit the growth of neighboring plants (Mohiley et al., 

unpublished, see chapter 2). In contrast to our predictions, our findings did not support 

the notion that increased root proliferation for heavy metals could be induced by 

simulated light competition, showing that plants did not allocate more roots into high-

metal pots, regardless of their origin. However, our results do provide support for the 

prediction that metal uptake in A. halleri can be enhanced under simulated light 

competition, even without enhanced root proliferation. Intriguingly, this induced uptake 

was displayed only for Zn and not Cd, demonstrating separate uptake pathways and 

preferential resource selection.  

A few former studies have shown that allelopathy, similarly to herbivory, might 

be, not only a constitutive trait, but also an induced response to competition (Pomilio 

et al., 2000; Rasher & Hay, 2014; Zhang et al., 2017). For example, Pomilio et al. 

(2000), showed that competition could increase the production of secondary 

metabolites used as allelochemicals in Avena sativa L.. Similarly, the results of this 

study demonstrate that competition can induce increased Zn accumulation in the 

metal hyperaccumulator A. halleri. Even though Zn is a micronutrient, it can be toxic 

at high concentrations above a threshold of 100-300 ppm (Krämer, 2010), which has 

been found in this experiment in the leaves of A. halleri under simulated competition. 

Although the allelopathic potential of Zn accumulation in the leaves of A. halleri was 

not quantified in this study, the greater Zn uptake might provide it with allelopathic 
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ability. For example, results of a previous study with the same A. halleri genotypes 

used in this experiment reveal that leaf leachates of plants that grew in pots containing 

high levels of metal had a higher inhibitory effect on the growth of both seedlings of 

commercial species and field-collected neighbor species (Mohiley et al. unpublished, 

chapter 2 of the thesis). Furthermore, few former studies have supported the elemental 

allelopathy hypothesis, which suggests that the adaptive value of metal 

hyperaccumulation is the inhibition of neighbors via release of inorganic elements 

such as Se, Cd and Zn (Zhang et al., 2005, 2007; El Mehdawi et al., 2011a; El 

Mehdawi & Pilon-Smits, 2012). The results of this study therefore suggest that these 

plants might increase the uptake of heavy metals to be used as allelochemicals in 

response to competition.  

Intriguingly, simulated light competition induced the uptake of Zn rather than 

Cd, even though both heavy metals were found in high quantities in the high-metal 

pots. This difference between induced uptake of Zn and Cd suggests that A. halleri 

may be capable of preferentially capturing specific resources that are required for 

particular needs. Zn and Cd were found to have similar uptake pathways in A. halleri 

as well as overlapping QTLs for their accumulation (Küpper et al., 2000; Zhao et al., 

2004; Krämer, 2010; Ueno et al., 2010). However, our results suggest that despite 

these shared pathways, A. halleri can still discriminate between these heavy metals. 

A. halleri might prefer Zn uptake over Cd due to its lower toxicity (Krämer, 2010). This 

could be particularly true for A. halleri plants from non-metalliferous populations, which 

have been found to have lower heavy metal tolerance (Bert et al., 2002; Gruntman et 

al., 2016). This notion can be supported by the fact that individuals from these 

populations exhibited greater response to competition in their Zn accumulation 

compared to plants from metalliferous populations. For instance, specific populations 
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of the metal hyperaccumulator N. caerulescens have been suggested to employ 

different transporters for Zn and Cd in the root cells (Lombi et al., 2001). A similar 

mechanism might therefore also exist in the root cells of A. halleri, which might help in 

discriminating between Cd and Zn uptake. Although such a mechanism is yet to be 

identified, the idea that plants might be capable of preferentially selecting for specific 

resources has been previously suggested by McNickle et al., (2009), who compared 

this potential ability to the well-documented prey selection behavior in animals (Krebs 

& Davies, 1987; Stephens, 2008; Werner et al., 2016). While such prey selection in 

plants has not been documented previously, the results of our study might provide 

initial evidence for the ability of plants to selectively uptake specific and potentially 

toxic resources even if the uptake pathways for co-occurring substances are very 

similar. 

The most frequently observed plastic response of plants to light competition is 

shade avoidance, which consists of enhanced elongation of the stem or petioles, thus 

allowing plants to position their leaves in favorable light conditions (Uber et al., 2003; 

Vandenbussche et al., 2005; Valladares & Niinemets, 2008). Interestingly A. halleri 

did not exhibit shoot elongation under competition, but rather a decrease, particularly 

for plants originating from metalliferous soils. This might suggest that A. halleri plants 

from metalliferous soils, where vegetation is sparse and light competition is low, are 

poor competitors for light and might refrain from allocating resources to vertical growth 

(Gruntman et al., 2017). 

Very few studies have examined below-ground responses to above-ground 

competition cues. Most of these studies have found reduced root allocation (Maliakal 

et al., 1196; Aerts et al., 1991; Houghland E., 1993; Cowan & Reekie, 2008) or no 

effect on root allocation under lower light levels due to above-ground competition 
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(Brenda, B et al., 1998; Pattison et al., 1998; Stuefer & Huber, 1998). In contrast, in 

our study, plants from both origins increased the overall root biomass under 

competition. However, the root to shoot biomass ratio did not increase under 

competition, suggesting that here too, light competition had no effect on relative 

investment in roots. In addition, previous studies have shown that greater resource 

uptake corresponds to higher root allocation (Campbell et al., 1991; Farley et al., 1999; 

Rajaniemi, 2007). In contrast, our results demonstrate that root allocation is not always 

an indication of resource uptake (Einsmann et al., 1999), because A. halleri plants 

showed greater Zn uptake without increased root allocation to high metal pots. 

In this study, A. halleri plants originating from non-metalliferous soils 

accumulated more Cd in their leaves than plants from metalliferous soils, irrespective 

of the competition treatment. This is in line with previous studies which have shown 

that A. halleri plants from non-metalliferous soils accumulate more Cd than plants from 

metalliferous soils (Bert et al., 2000; Stein et al., 2016). Interestingly, Bert et al. (2000) 

showed that A. halleri plants from non-metalliferous soils exhibited faster Zn transport 

rates than plants from metalliferous soils, suggesting that maybe in experiments of 

longer duration this difference in accumulation between ecotypes disappears. Indeed, 

in a parallel study conducted with similar genotypes, we found there was no difference 

between origins in Cd accumulation (Mohiley et al., unpublished, see chapter 2 of the 

thesis). 

In conclusion, the results of this study suggest support for the idea that 

competition might induce the uptake of heavy metals, whose demand can increase 

following competition. Furthermore, these results demonstrate that root allocation is 

not always an indication of uptake. Interestingly, our results also provide initial support 
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for the idea that plants might be able to exhibit preferential uptake of particular 

resources, thus highlighting a new research avenue of prey selection in plants. 



Chapter 5  

General discussion 

 

This dissertation was aimed to investigate the role of biotic interactions in 

determining metal hyperaccumulation in A. halleri. First, in chapter 2 The role of biotic 

interactions in determining metal hyperaccumulation, I found that Cd 

accumulation in the leaves of A. halleri can deter feeding by a specialist herbivore. 

Hence, this chapter’s results support the elemental defense hypothesis and the role 

of herbivory in determining metal hyperaccumulation. I then asked if herbivory could 

influence the foraging decisions of these metal hyperaccumulating plants for heavy 

metals as defense compounds (chapter 3 Herbivory and induced foraging 

responses in metal hyperaccumulating plants). The results of this chapter support 

the hypothesis that foraging in these plants can indeed be induced by herbivory. 

Specifically, plants with lower tolerance from non-metalliferous soils, which avoided 

Cd uptake under control conditions, greatly enhanced the uptake and sharing of Cd 

when exposed to herbivory. 

In chapter 2, I also found that leaf leachates from A. halleri ramets growing in 

high-Cd pots had a higher inhibitory effect on the growth of both seedlings of 

commercial species and field-collected neighbor species. Hence, the results of this 

chapter support the elemental allelopathy hypothesis and the role of competition in 

determining metal hyperaccumulation. However, in contrast to seedling-growth, leaf 

leachates had no effect on seed germination, thus suggesting that the seed coat might 

provide protection against heavy metals. Moreover, the results of this chapter also 

supported the prediction that Cd accumulation had a greater inhibitory effect on the 



69 

 

growth of neighbors originating from non-metalliferous, compared to metalliferous 

soils, suggesting that metal hyperaccumulation could provide a selective advantage 

particularly in non-metalliferous soils, where neighboring plants probably lack metal 

tolerance. Finally, I asked if competition, like herbivory, could also influence the 

foraging and uptake of allelochemicals (chapter 4 Competition and induced 

foraging responses in metal hyperaccumulating plants). However, this study did 

not provide support for this notion as simulated light competition did not enhance root 

proliferation in metal-rich pots. Nevertheless, the results of this chapter do provide 

support for the prediction that metal uptake in A. halleri leaves can be enhanced under 

simulated light competition, even without enhanced root proliferation. Intriguingly, 

induced uptake was displayed only for Zn and not Cd, demonstrating separate uptake 

pathways and preferential resource selection.  

In the following section, I will discuss a few additional facets and open questions 

that arise from the results of this thesis. 

5.1 Impact of biotic interactions on metal hyperaccumulation 

Plants have clearly evolved sophisticated means of coping with the myriad of selection 

pressures with which they are faced. The two main biotic selective pressures on plants 

are herbivores and competitors. To cope with herbivore pressure, plants have evolved 

a plethora of different defenses, including the use of chemical resistance compounds 

(Wittstock & Gershenzon, 2002). Similarly, plants can respond to competition in 

numerous physiological or morphological changes, as well as the use of 

allelochemical compounds that inhibit the growth of neighbors (Pomilio et al., 2000; 

Rasher & Hay, 2014; Zhang et al., 2017). Nevertheless, these selective pressures are 

not likely to be mutually exclusive as both the need for herbivore defense and neighbor 

inhibition could jointly select for the same chemical. However, very few studies have 
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focused on the possibility, of a chemical compound being the result of selection, for 

more than one function in plants (Qin et al., 2013; Zheng et al., 2015). For instance, 

glucosionaltes in Brassica oleracea were shown to be selected for as a defense 

against herbivores and as allelochemicals for reducing competition from neighbors 

(Qin et al., 2013; Zheng et al., 2015). In line with this finding, the results of this thesis 

suggest that both the need for herbivore defense (chapter 2, 3) and neighbor inhibition 

via allelopathic effects (chapter 3, 4) could jointly select for the hyperaccumulation of 

metals in A. halleri. Hence, the results of this study highlight the need to combine 

different biotic stressors such as competition and herbivory in a single study, to 

investigate, if multiple selection pressures can select for the use or production of the 

same compounds. 

5.2 Impact of biotic stressors on prey selection  

While the results of this thesis confirmed that both herbivory and competition can 

select for metal hyperaccumulation (chapter 2), they also revealed that these different 

stressors can induce the uptake of different metals. Specifically, herbivory enhanced 

the uptake and sharing of Cd rather than Zn (chapter 3), while simulated light 

competition induced the uptake of Zn more than Cd (chapter 4). This was exhibited 

despite the fact, that in both experiments, both heavy metals were found in high 

quantities in the high-metal pots. This difference between induced uptake of Zn and 

Cd suggests that A. halleri may be capable of preferentially capturing specific 

resources that are required for particular needs. Zn and Cd were found to have similar 

uptake pathways in A. halleri as well as overlapping QTL for their accumulation 

(Küpper et al., 2000; Zhao et al., 2004; Krämer, 2010; Ueno et al., 2010). However, 

our results suggest that despite these shared pathways, A. halleri can still discriminate 

between Zn and Cd uptake in response to the two types of biotic stressors. This 



71 

 

intriguing pattern has not been documented so far and the causes for such 

discrimination are still unclear.  

While a few studies provide support for the negative effects of Zn accumulation 

on herbivores (Noret et al., 2005; Jhee et al., 2006; Boyd, 2012; Kazemi-Dinan et al., 

2015a), others have found contradicting results (Martens & Boyd, 2002; Boyd & Jhee, 

2005). In contrast, the few studies that have tested the effect of Cd accumulation on 

herbivores, show that it can deter them (Jiang et al., 2013; Plaza et al., 2015; Stolpe 

et al., 2017a). This might suggest that Cd can deter herbivores more efficiently than 

Zn and might explain the choice for Cd exhibited under simulated herbivory. In addition 

to herbivory, enhanced concentration of Zn in an artificial media has been shown to 

reduce the germination rates of a variety of species (Bottoms, 2001). In contrast, 

Morris et al. (2006) found that soil with elevated Zn concentrations collected from 

around Zn‐rich soils of Rhaponticum repens (L.) Hidalgo did not decrease the 

germination rate of several species. However, to best of my knowledge none of the 

previous studies has tested for the allelopathic effects of Cd accumulation. Hence, it 

is still not clear why and how A. halleri can discriminate between Zn and Cd uptake in 

response to the two type biotic stressors.  

The idea that plants might be capable of preferentially selecting for specific 

resources has been previously suggested by McNickle et al. (2009), who compared 

this potential ability to the well-documented prey selection behavior in animals (Krebs 

& Davies, 1987; Stephens, 2008; Werner et al., 2016). While such prey selection in 

plants has not been documented previously, the results of this thesis might provide 

initial evidence for the ability of plants to selectively uptake a specific and potentially 

toxic resource due to biotic stressors. However, further studies are needed to test the 

hypothesis if plants could select between different resources. 
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5.3 Differences in induced metal accumulation between 

populations    

Interestingly, this thesis' results suggest that metal hyperaccumulation can serve as a 

constitutive resistance in plants from metalliferous soils, while for plants in non-

metalliferous soils it can serve as an induced resistance. However, this was shown 

not only for simulated herbivory (chapter 3) but also for simulated light competition 

(chapter 4). The potential use of heavy metals as induced rather than constitutive 

herbivore resistance and competitive offense could suggest that plants from non-

metalliferous origin might incur a cost by metal accumulation. Indeed, previous studies 

have shown that plants from these populations are less tolerant to heavy metals 

(Meyer et al., 2015; Gruntman et al., 2016), suggesting that they choose to uptake 

these harmful compounds only when their benefits outweigh their costs. Interestingly, 

Stein et al., (2016) have shown that A. halleri can accumulate metals to high levels 

even in soils with low metal content, supporting the potential use of metals as 

herbivore resistance and competitive offense compounds, even in non-metalliferous 

soils. Furthermore, this thesis' results suggest that plants from non-metalliferous soils 

are better foragers for heavy metals (chapter 3). Therefore, metal accumulation can 

provide A. halleri from non-metalliferous soils an adaptive value in soils where metal 

is sparse, to use as a defense against herbivores (chapter 3) and reduce competition 

via use of metals as an allelochemical in soils where neighbors are intolerant to metal 

(chapter 2, 3). 
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5.4 Differences in Cd and Zn accumulation between 

populations 

Zn accumulation in A. halleri under control conditions did not differ between 

populations originating from metalliferous and non-metalliferous soils across chapters 

of the thesis (chapters 2-4). This result is in line with former studies, which state that 

Zn content in the leaves does not differ much among populations (Huitson & Macnair, 

2003; Macnair, 2003; Krämer, 2010). However, in contrast to Zn accumulation, Cd 

accumulation varied across the different chapters of the thesis. For example, in 

chapter 4 plants from non-metalliferous soils accumulated more Cd in their leaves than 

plants from metalliferous soils, irrespective of the competition treatment. Similarly, 

previous studies have shown that A. halleri plants from non-metalliferous soils 

accumulate more Cd than plants from metalliferous soils (Bert et al., 2000; Stein et al., 

2016). In contrast, in chapter 2, Cd accumulation did not differ between origins. These 

differences between experiments could be due to their duration. Specifically, in most 

former studies, as well as in chapter 4 of this thesis, plants were grown for a maximum 

period of six weeks in metal amended soils, compared to the six months in chapter 2 

of this thesis. This is in line with Bert et al. (2000), who showed that a non-metalliferous 

population of A. halleri exhibited higher Zn transport rate than a metalliferous 

population. Therefore, in long-term experiments, differences in metal accumulation 

between ecotypes might diminish because the plants might be reaching their threshold 

for maximum Cd accumulation (Cosio et al., 2005). For example, this threshold can 

be due to some physiological constraints such as available space in the plasma 

membrane of the cell, where the metals are normally sequestered in the leaves (Cosio 

et al., 2005; Meyer et al., 2015). This notion could also be supported by a former study 

whose duration was 14 weeks and revealed no differences in Zn accumulation 
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between A. halleri populations from different ecotypes (Macnair, 2002). Therefore, if 

this is the case then the differences between populations might not be in their capacity 

to accumulate metals, but rather in the rate at which they accumulate them. Hence, 

future studies with metal hyperaccumulators should consider the duration of the 

experiment and the dynamic nature of heavy metal accumulation in plant leaves. 

Additionally, future studies should examine the possible physiological constraint for 

the threshold of metal accumulation in the leaves of metal hyperaccumulators.  

5.5 Conclusion  

In summary, this thesis is the first to show that both the need for herbivore defense 

and neighbor competition could jointly select for metal hyperaccumulation in plants. 

This selection might be potentially greater in non-metalliferous soils where neighboring 

plants have not developed adaptions to heavy metals. Interestingly, plants from non-

metalliferous soils release more Cd in their leachates providing it with greater 

advantage against neighbors who are not tolerant to heavy metals. Additionally, the 

results of this thesis provide initial proof for the idea that foraging and uptake for 

resources can be induced by biotic pressure. Particularly, for herbivory the support 

was found at the inter-ramet level and sharing among ramets for a heavy metal. 

Moreover, the results of this thesis suggest that competition might also induce the 

uptake of heavy metals. However, the response to herbivory and competition differed 

between A. halleri origins. These results emphasize the importance of including 

different origins and populations of both the target species and its neighboring plant 

species when studying the ecological role of metal hyperaccumulation. Moreover, 

these results indicate that the same secondary compound can have multiple functions 

such as allelopathy and protection from herbivores, which should increase the 

selection pressure for the production or uptake of the respective substances. Finally, 
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the results of this thesis open a new avenue for the study of decision-making in plants, 

implying that their foraging and nutrient uptake decisions can be a complex process 

in which not only resource distribution is evaluated but also its relative demand and 

alteration by environmental stressors. 
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Appendix  

 

 

Figure A1. Zinc concentration (means ± SE) in the leaves of A. halleri ramets 

originating from non-metalliferous (non-metal) and metalliferous (metal) soils, growing 

in high and low-Cd pots. 
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Table A1. Results of GLMMs used to test for the effects of soil types (low vs. high-Cd 

pot) and A. halleri ecotype (metalliferous vs. non-metalliferous soils) on Zn 

accumulation in A. halleri leaves. Population was used as a random factor. F is for the 

fixed effects and Wald Z for the random factor (generalized linear mixed model carried 

out with a normal probability distribution with a log link function). 

 

 

 

 

 

 

  

Fixed effects 

Zn concentrations in leaves (ppm) 

df F P 

Soil type (S) 1 1.309 0.254 

Ecotype (E) 1 0.051 0.822 

S × E 1 1.314 0.254 

Random effects df Wald Z P 

Population 7 8.485 0.001 
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Figure A2. Zinc concentration (means ± SE) in leaf leachates of A. halleri originating 

from non-metalliferous and metalliferous soils and growing in high vs. low-Cd pots. 

Different letters indicate statistically significant pairwise comparisons (Pairwise Post-

Hoc test with false discovery rate correction). 

 

Table A2. Results of a GLMs used to test for the effects of A. halleri ecotypes 

(metalliferous vs. non-metalliferous soils), and soil types (low vs. high-Cd pots) on Zn 

content in leaf leachates of A. halleri. Significant values are indicated in bold. 

(Generalized linear model carried out with a normal probability distribution with a log 

link function). 
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Cadmium concentration in leachates 

(ppm) 

Fixed Factors df  χ2 P 

A. halleri ecotypes (E) 1 3.747 0.065 

Soil type (S) 1 29.167 0.001 

E×S 1 0.330 0.571 



92 

 

Table A3. Neighbor plant species and their source populations collected in the field 

and used in the seed germination experiment (for detailed location of the populations 

see Table 1 in the main text). Species nomenclature is according to  (The plant list). 

Asterisks indicates species also used in the commercial seed experiments. 

Species  Populations Ecotypes 

Agrostis capillaris L. Wehbach Non-metalliferous 

Alopecurus pratensis L.  Lautenthal, Vieneburg Metalliferous  

Brachypodium pinnatum 
(L.) P.Beauv. 

Geroldsgrun, Wehbach Non-metalliferous 

Bromus erectus Huds. Clausthal Zellerfeld, Vienenburg Metalliferous  

Bromus hordeaceus L. Wulmeringshausen Metalliferous  

Centaurea segetum Hill Clausthal Zellerfeld Metalliferous  

Cerastium arvense L.  Lautenthal Metalliferous  

Festuca gigantea (L.) Vill. Lautenthal, Vienenberg Metalliferous  

Festuca pratensis Huds.  Lautenthal, Vienenberg Metalliferous  

Festuca pratensis  Geroldsgrün Non-metalliferous 

Festuca rupicola Heuff. Clausthal Zellerfeld, Wulmeringshausen Metalliferous  

Holcus lanatus L. Geroldsgrün Non-metalliferous 

Impatiens glandulifera 
Royle 

Wehbach, Fortfun Non-metalliferous 

Impatiens glandulifera Clausthal Zellerfeld Metalliferous  

Lotus corniculatus L.* Wehbach Non-metalliferous 

Juncus effusus L. Fortfun, Geroldsgrün Non-metalliferous 

Knautia arvensis (L.) 
Coult.* 

Vieneburg Metalliferous  

Knautia arvensis* Wehbach Non-metalliferous 

Koeleria glauca (Spreng.) 
DC. 

Blaibach Non-metalliferous 

Pimpinella saxifrage L.*  Geroldsgrun Non-metalliferous 

Plantago lanceolata L. Clausthal Zellerfeld, Lautenthal Metalliferous  

Plantago lanceolata Fortfun Non-metalliferous 

Plantago media L. Wulmeringshausen Metalliferous  

Potentilla erecta (L.) 
Raeusch.* 

Blaibach, Wehbach Non-metalliferous 

Silene vulgaris (Moench) 
Garcke 

Wulmeringshausen Metalliferous  

Trifolium arvense L. Fortfun Non-metalliferous 

Trifolium repens L.* Blaibach, Fortfun Non-metalliferous 

Trisetum flavescens (L.) 
P.Beauv. 

Blaibach Non-metalliferous 

Viola arvensis Murray  Blaibach Non-metalliferous 
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Table A4. Results of GLMMs used to test for the effects of A. halleri ecotypes 

(metalliferous vs. non-metalliferous soils), neighbor ecotypes (metalliferous vs. non-

metalliferous soils) and soil types (low vs. high-Cd pots) on survival of field collected 

seedling (generalized linear mixed model carried out with a binomial probability 

distribution with a logit link function). Species were used as random factors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Survival of seedlings 

Fixed Factors df F P 

A. halleri ecotypes (E) 1 0.003 0.957 

Soil type (S) 1 0.006 0.939 

Neighbor ecotype (N) 1 3.106 0.079 

E×S 1 0.008 0.927 

E×N 1 0.110 0.740 

S×N 1 2.252 0.134 

E×S×N 1 0.087 0.768 

Variance df Wald Z P 

Species 17 0.566 0.571 
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Figure A3. Zinc accumulation (means ± SE) in the leaves of A. halleri ramet pairs 

originating from non-metalliferous and metalliferous soils in response to simulated 

herbivory (control vs. local and remote induction) and low vs. high-Cd pots.  
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Table A5. Results of GLMMs used to investigate the effects of simulated herbivory 

(control vs. local and remote induction), pot (low vs. high-Cd) and A. halleri origin 

(metalliferous vs. non-metalliferous soils) on Zn accumulation in leaves of A. halleri. 

Population and genotype nested within population were used as random factors. F is 

for the fixed effects and Wald Z for the random factor. (Generalized linear mixed model 

carried out with a normal probability distribution with a log link function). 

 

  Cd accumulation (ppm) 

Fixed Factors df F P 

Simulated herbivory (H)  2 2.474 0.623 

Origin (O)  1 0.486 0.487 

Pot (P) 1 0.001 0.994 

H×O  2 3.847 0.023 

H×P  2 0.127 0.881 

O×P  1 0.009 0.994 

H×O×P  2 0.005 0.995 

Variance  df Wald Z P 

Population  7 3.245 0.049 

Genotype (Population) 7 1.973 0.119 
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