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1 INTRODUCTION 

1.1 Malaria burden 

Despite the tremendous progress in the fight against malaria over the past decade, the 

disease remains one of the most important infectious diseases. It was responsible for 

about 219 million cases and more than 435 000 deaths in 2017 worldwide (1).  

Due to the improved access to malaria interventions between 2001 and 2013, a large 

decline in the overall mortality rate of about 47% has been achieved. Particularly, in 

African children under five years of age, the mortality rate was reduced by 58%. During 

the same period, global malaria incidence was reduced by 30%.  

Based on this success, in the “Global technical strategy for malaria 2016 – 2030”, 

World Health Organization (WHO) has set goals of at least a 40% reduction in malaria 

mortality rates and case incidence between 2015 and 2020. However, over the last 

years, the decline in malaria burden has stalled (Figure 1). 

 

Figure 1. Malaria incidence (https://www.who.int/gho/malaria/epidemic/cases/en/) 

(with permission). 



2 
 

One possible explanation for the halted decline in malaria incidence is climate change 

(2). As discussed in the Roll Back Malaria’s Action and Investment to Defeat Malaria, 

2016 – 2030, change in temperature and rainfall may create new habitat for mosquitoes 

in several regions and could result in prolonging transmission season or increase the 

prevalence of vector, on the other side, drought could shorten transmission season and 

remove the vector’s habitat in some malaria-endemic areas. However, exposing these 

new regions and populations to malaria may result in higher incidence and death rates 

due to low acquired-immune level against malaria and lack of treatment.  

Another explanation involves the drug resistance of both vector and parasite. Since 

2000, a great reduction in malaria mortality and morbidity rate has been linked with an 

extension on access to the two core vector control interventions: insecticide-treated bed 

nets and indoor residual spraying, particularly in sub-Saharan Africa. However, these 

achievements have been threatened by the rise of resistance to insecticides in malaria 

vector population worldwide. If neglected, insecticide resistance could result in a 

substantial increase in malaria incidence and death rate.  

The emergence of drug and insecticide resistance is additionally constituted by some 

biological challenges including the high complexity of natural Plasmodium infection 

and diversity of malaria vectors. The former has been a major challenge for the 

development of new tools for malaria control and eradication e.g. vaccines and new 

antimalarial drugs. 

Gabon is located in Equatorial Africa where malaria is highly endemic. In rural Gabon, 

as reported in our recent study, there were about 74% of the screened individuals 

carrying Plasmodium parasites, and 66% of these carriers were infected with P. 

falciparum. In addition, the high prevalence of anti-malarial drug resistance especially 

chloroquine resistance (CQR) is often documented (3).  

1.2 Species and life cycle 

1.2.1 Human Plasmodium 

There are up to around 156 identified species of Plasmodium (4). Five of those are 

transmitted between humans and cause malaria: Plasmodium falciparum, P. vivax, P. 

malariae, P. ovale curtisi and P. ovale walikeri. P. falciparum is responsible for most 

cases and almost all deaths, especially in children under five years of age in Africa. P. 
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knowlesi is the sixth human malaria parasite. It causes a zoonotic disease that occurs 

only in Southeast Asia, where Macaca fascicularis and Macaca nemestrina, the main 

hosts, live.  

1.2.2 Life cycle 

 

Figure 2. Life cycle of Plasmodium spp. Source: CDC - DPDx/ Alexander J. da Silva, 

PhD; Melanie Moser (with permission). 

The unique and complex life cycle of the malaria parasite occurs within two hosts: 

mosquitoes and humans (Figure 2). Genetic recombination and meiosis happen after 

fertilization when the gametocytes are taken up during the blood meal of a female 

mosquito, developing into male and female gametes then mate and form a zygote. 

Plasmodium parasites are haploid except for the short diploid period (zygote) in the 

mosquito midgut. This unique trait allows the molecular approaches which target single-

copy nuclear genes for identifying the malaria parasite since each genotype will 

represent a variant (so-called “strain”). Recombination may generate new variants that 

help parasite evade host immunity. For every Plasmodium species, recombination 
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events occur only when a mosquito carries multiple parasite strains. As a consequence, 

recombination rates are directly associated with frequencies of multiple infections and 

transmission intensity. 

1.3 Natural P. falciparum infection 

1.3.1 Genetic complexity of P. falciparum infection 

1.3.1.1 Circulating parasite in peripheral blood (PB) 

In malaria-endemic regions, individuals are infected repeatedly, and often by multiple 

parasite strains. The number of circulating parasite strains may vary between different 

malaria episodes and within the same patient. Most of the reported multiplicity of 

infection (MOI) was often greater than one. Multiple-strain infection can be a result of 

multiple infectious bites or a single bite from a mosquito infected with multiple parasite 

variants. In addition, MOI of the same parasite population could be different due to the 

sensitivity of genotyping approaches (5). MOI was found to associate with seasonal 

transmission intensity, the manifestation of the disease in pregnant women (6) and the 

risk of treatment failure (7,8). There was evidence suggesting the existence of some 

parasite genotypes that relate to the severity of malaria (9,10). 

The multiplicity of malaria infection can complicate the identification of the individual 

strain. Minor strains can be suppressed by the major ones through resource competition 

(11), while the density of each parasite strain may change over the course of infection or 

even after treatment.  

A high diversity of parasite populations may intensify difficulties in the development of 

malaria vaccines. Often, the vaccine protective efficacy is stronger against homologous 

than heterologous controlled human malaria infections (CHMI) (12) or matched 

genotype than mismatched genotypes in natural infections (13). In addition, the concept 

of parasite “strain-specific efficacy” suggests those whole sporozoite vaccines – a new 

generation of vaccine candidates – may have better efficacy against natural infection if 

able to cover multiple parasite strains.  

1.3.1.2 Sequestering P. falciparum in human tissue 

Most knowledge on the in vivo behavior has been gathered by the investigation of 

circulating Plasmodium in the peripheral blood. In contrast, little is known about this 

parasite when they are in human tissues including the bone marrow parenchyma.  
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There is evidence that the human bone marrow (BM) is a preferable place for 

sequestration and gametocyte maturation of P. falciparum.  

Mature asexual P. falciparum stages (pigmented trophozoites and schizonts) and 

immature gametocytes are typically not found in peripheral blood (14). Smalley et al. in 

1981 have shown that in P. falciparum-infected children, the density of immature 

gametocytes on bone marrow smears was greater than that on peripheral blood smears 

(15), however, their distribution in each compartment of bone marrow (intra- or extra-

vascular) was not reported. 

Later, post-mortem histological evidence has revealed the presence of malaria parasites 

in extravascular compartments of different human tissues including spleen, heart, lung, 

gut, brain and bone marrow (16,17). It was shown that only a small proportion of 

mature gametocytes were in the extravascular compartment, the majority being in 

intravascular spaces (18). Asexual, immature parasites were detected in human 

autopsies in both intra- and extra-vascular compartments. Extravascular sequestration is 

suggested to be crucial for gametocytogenesis and transmission of Plasmodium to the 

mosquito (19).  

In addition, analysis of sequestering parasite by molecular technologies like polymerase 

chain reaction (PCR) has rarely been done (20), especially for bone marrow samples; 

although such investigations may help in understanding the pathogenesis of the severe 

forms of malaria, particularly anemia and severe anemia. 

1.3.2 Diverse disease manifestation 

1.3.2.1 Asymptomatic parasitemia 

Asymptomatic parasitemia is defined as the presence of Plasmodium parasites (asexual 

forms) in circulation of the infected individual without any associated symptoms (21). 

In highly endemic areas, asymptomatic parasitemia occur mostly in adults, consist an 

important proportion of the overall prevalence of infection (3) and is considered as the 

most important infectious reservoir.  

1.3.2.2 Uncomplicated malaria 

In contrast with asymptomatic parasitemia, in uncomplicated malaria, the presence of 

parasitemia in circulation of infected individual is accompanied by malaria-associated 
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symptoms without signs of severity or of any vital organ dysfunction. This is the most 

common manifestation of malaria in endemic region and is often observed in children. 

1.3.2.3 Severe malaria 

Most malaria attributable deaths and severe disease are caused by P. falciparum. Other 

non-falciparum species were also found to cause severe malaria and the co-infection of 

different Plasmodium species could lead to more severe hematological impairment (22). 

1.3.2.3.1 Symptoms defining severe falciparum malaria 

Severe falciparum malaria is defined when a patient is infected with P. falciparum with 

the presence of one of the signs of severity or vital organ dysfunction. Severe 

falciparum occurs mostly in children under 5 years of age and often in some following 

forms: cerebral malaria (CM), metabolic acidosis, severe anemia, hypoglycemia, 

pulmonary and renal dysfunction (23). 

1.3.2.3.2 Severe malarial anemia 

Anemia is defined as a hemoglobin (Hb) concentration of lower than 10.9 g/dL (1). 

Using WHO’s classification guideline, between 2015 and 2017, among children aged 

under 5 years, the overall prevalence of mild, moderate, severe and any anemia was 25, 

33, 3 and 61%, respectively compared to 21, 50, 8 and 79% in group of children who 

tested positive for malaria by RDT. In tropical regions, not only by malaria, anemia is 

often caused by other concomitant reasons including other infections (sepsis, intestinal 

helminthic infection, schistosomiasis), nutritional deficiencies, hemoglobinopathies 

(thalassemia and sickle cell disease) or other red blood cell abnormalities like glucose 6 

phosphate dehydrogenase (G6PD) deficiency (24,25). Anemic children are at a higher 

risk of developing severe disease including severe malaria. 

In other forms of severe malaria e.g. cerebral malaria (CM), metabolic acidosis, renal 

failure, accumulation and sequestration of parasites in the microvasculature which 

results in microvascular obstruction and tissue hypoxia is considered the main 

pathophysiological mechanism. However, the role of malaria parasite in the 

pathogenesis of anemia is controversial. 

Research efforts in understanding the pathogenesis of malarial anemia have suggested 

the multifactorial relation between SMA and increased red blood cell (RBC) destruction 

as well as impaired RBC production. The mechanisms of removing RBCs from the 
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circulation system involves the destruction of RBCs, by a filtration mechanism in the 

spleen, and phagocytosis. Apparently, parasite-induced destruction of parasitized RBC 

contributes to the reduction in RBC count, however, parasitemia alone is often not 

correlated with anemia severity, while the lysis of un-parasitized RBC was 

demonstrated to be the main contributor to rapid hematological impairment (26). 

In peripheral blood, the association between severity of malaria (especially SMA) and 

structure as well as the diversity of the P. falciparum population has been described 

repeatedly. However, little is known about their local role, e.g. in bone marrow, and it is 

not clear whether the population structure of P. falciparum in bone marrow is associated 

with the disease pathogenesis. 

1.4 Diagnosis  

1.4.1 Malaria diagnosis  

The outcome of malaria – especially P. falciparum malaria – relies crucially on a timely 

and reliable diagnosis that determines treatment and management. To achieve that, 

microscopy of thick blood smears and/or malaria rapid diagnostic test (RDT) have been 

recommended (21,27). Although TBSs are still considered the standard diagnostic tool, 

malaria RDTs have been used routinely in many field sites as well as in clinical 

practice, particularly where microscopy is not available (27–29). In Sub-Saharan Africa, 

RDTs have been increasingly used to test for malaria, from 40% of the tests were 

performed using RDTs in 2010 to an estimated 75% in 2017 (1). 

The expansion in the use of RDT has resulted in an increase in sales of RDTs in Africa 

from 240 million in 2015 to 276 million in 2017 (1,29). The availability and common 

use are making RDTs more attractive to research that aims to explore other utilities of 

this tool e.g. a source of DNA for PCR and other molecular assays.  

1.4.2 Sample for diagnosis and studying malaria parasite 

In addition to the selection of the adequate method, the rate of success in making 

diagnosis and genotyping malaria parasites in therapeutic studies might be improved by 

standardizing blood sampling and storage conditions.  

Sample collection in field trials is often done by field workers, therefore, the material 

should be available in remote regions, collection procedure should be technically easy 
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and shipment should be at ambient condition. It is also of crucial importance to prevent 

samples from contamination and degradation of molecular material. 

The molecular material for PCR is usually recovered from venous blood, blood spotted 

on filter paper (FP) (30) or thick blood smears (TBS) (27,31). Venous whole blood 

sampling is able to serve multiple tasks, including RNA and DNA extraction. It is 

proven that whole blood samples produce higher quality and quantity of DNA and are 

easy to handle for DNA extraction. However, venous blood sampling is invasive, 

requires professional training, special storage and shipping conditions and may result in 

noticeably lower diagnostic sensitivity compared to capillary blood (27,32). In addition, 

collection tubes must be treated with anticoagulants which can inhibit PCR reactions.  

TBS is not commonly used as a source of DNA for molecular assays since the quality of 

DNA recovered from TBSs is often lower compared to that from filter paper and fresh 

blood (33). 

Capillary blood samples can be collected by finger prick and are used for the 

preparation of TBSs, filter paper and RDTs. Capillary blood sampling is often the 

method of choice for withdrawing blood from children and when only a small amount 

of sample is required. This approach is simple and considerably less invasive. 

Since 1995, whole blood spots on filter paper has been most commonly used as a source 

of DNA for PCR in clinical trials (34). Filter paper can be shipped and stored at room 

temperature and some materials facilitate the extraction process. The quality of 

extracted DNA changes according to the filter paper types and extraction procedures.  

Similar performance was observed between some filter papers commonly used in 

Plasmodium detection by PCR (35,36).  

PCR has been successfully performed using DNA recovered from RDTs (37–40) and 

the amplification success rate was comparable to that of filter paper (41). However, 

validation of the use of RDTs has been limited to some types of molecular approaches, 

mostly aimed at detecting parasite and genotyping some common drug-related mutant 

genes. The use of RDTs as a source of DNA for assessing and monitoring the diversity 

of parasite population (e.g. msp genotyping) is nevertheless uncommon (27). 

Therefore, validation of the performance of RDTs as a source of DNA for different 

molecular assays and optimization of the extraction method for the ease of use is of 

importance (27). 



9 
 

1.5 Current molecular methods for genotyping malaria parasite  

1.5.1 Genetic markers  

1.5.1.1 Merozoite surface proteins 

Research efforts in the 80s and 90s have suggested that the merozoite surface antigens 

(MSAs) p190 (later known as MSA1), 513 (MSA2) together with the glutamate-rich 

protein (GLURP) are polymorphic. Analysis of DNA sequences of laboratory strains 

and field samples has demonstrated that gene coding MSA1 and MSA2 can be divided 

into blocks that are variable or conserve (42). Due to the polymorphism in length,  the 

variable regions of genes coding MSA1 (block 2, on chromosome 9), MSA2 (block 3, 

on chromosome 2), and GLURP (R2 region, on chromosome 10) were considered the 

most useful markers for PCRs aim at genotyping P. falciparum (43) as later 

recommended by WHO (44). This method was considered a standard in many clinical 

trials conducted between 1995 and 2005 (34). While the assessment of MOI is generally 

based on the genotyping result of one of the three markers, the distinction of parasite 

strains may rely on two or even all three markers. In recommended protocols (44), msp2 

was considered the primary marker for genotyping P. falciparum followed by glurp; 

msp1 was only used when these two markers were not able to differentiate parasite 

strains. The reason for this less common use of msp1 as the primary marker could be 

that the identified polymorphic locus was short (often shorter than 500 bp) and the size 

change is often too small to be analyzed by gel electrophoresis. Later, by using capillary 

electrophoresis (CE), msp1 and msp2 genes were demonstrated to have the same high 

polymorphism and could be alternatively used as the primary marker for PCR-based 

genotyping assays and the use of glurp could be considered if the distinction is failed 

with msp1 and msp2 (45).  

1.5.1.2 Single nucleotide polymorphisms (SNPs) 

In humans, single nucleotide polymorphism (SNP) barcoding has been proposed as an 

alternative to short tandem repeats for kinship testing.  

In malaria research, the first molecular SNP “barcode” for genotyping P. falciparum has 

been introduced by Daniels et al in 2008. It encompasses 24 bi-allelic chromosomal 

SNPs distributed across 14 chromosomes of the P. falciparum genome and was used as 

a fingerprint of the parasite genome (46). This methodology in combination with high-
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resolution melt analysis requires a small amount of sample, is comparatively 

inexpensive and was capable of identifying polyclonal infections (47).  

The abovementioned nuclear SNP barcode has some limitations including the lack of 

geographical specificity. In 2014, another molecular barcode has been explored 

comprising SNPs distributed in extra-nuclear genomes of the mitochondria and 

apicoplast organelles of P. falciparum (48). The barcode was chosen from analyzing the 

reference genome of P. falciparum strain 3D7 together with raw sequences data from 

711 P. falciparum isolates collected from five geographic regions. A further analysis 

has resulted in a minimal barcode that is comprised of five mitochondrial and 18 

apicoplast SNPs and showed high predictive accuracy in tracing the geographic origin 

of the parasite. Later, another barcode consisting of 42 nuclear SNPs was explored for 

genotyping P. vivax (49).  

1.5.1.3 Microsatellite 

Hundreds of microsatellites or simple sequence repeats have been described and used 

for studying population structure in malaria research. Selected microsatellites that are 

not under immune selection are often used. Since their individual size is the multiple of 

the known repeat unit, genotyping results can be better compared across different 

samples and laboratories. The size of the microsatellites is often measured by capillary 

electrophoresis on sequencers, and their diversity in length could serve to estimate 

population structure.  

Microsatellite typing in malaria research often involves PCR amplification of several 

microsatellites. With the limited number of variants at each locus, the discriminatory 

power of this genotyping approach is low if only one or two microsatellites are used; 

measuring a high number of microsatellites, on the other hand, complicates the 

genotyping process. 

1.5.1.4 Other length polymorphic markers 

Additional markers, such as polymorphisms in csp, ama and trap genes have been used 

in malaria research (50–52). However, their use in general strain distinction analyses is 

uncommon due to low polymorphism in length. 
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1.5.2 Technical approaches for genotyping malaria parasite 

1.5.2.1 Conventional-PCR-based methods 

Due to their ease of use, low cost, modest hardware requirements and, genotyping 

approaches based on conventional PCR are still commonly used in malaria-endemic 

areas. The target genes of these genotyping approaches shall be polymorphic to 

maximize the discriminatory power. Often length polymorphisms are chosen and the 

size of the last PCR product is analyzed directly or after being fragmented by a 

restriction enzyme on either agarose gel or capillary electrophoresis system. 

1.5.2.1.1 Size analysis by Agarose gel electrophoresis 

Following the amplification step by PCR, agarose gel electrophoresis is the most 

popular method for the size analysis of the PCR products, mostly because of its low cost 

(27). However, this conventional approach is limited by the low resolution and may not 

provide accurate discrimination of alleles especially in endemic regions where high 

MOI can lead to i) missed detection of minor alleles due to low parasite density, and/or 

ii) misinterpretation since small differences in the length between alleles may be 

misclassified by gel electrophoresis.  

1.5.2.1.2 Size analysis by capillary electrophoresis 

a. On a sequencer 

An alternative technique for fragment size analysis is CE on DNA sequencers. When 

used for genotyping a length polymorphic marker, the targeted gene will be amplified 

by PCR using one pair of fluorescence dye-labeled oligonucleotide primers. Final PCR 

products (amplicons) then undergo the fragment separation process by CE and the 

fluorescence signal will be detected by a laser. The fragment size (in base pair) is 

estimated based on their migration time in relation to the standard calibrator. When used 

for allelic typing (e.g. microsatellites), different fragments can be detected 

simultaneously by the use of primers labeled with distinct dyes. CE has provided a more 

accurate estimation of allele size than gel electrophoresis (53). This can improve the 

accuracy of discrimination between recrudescence and new infection and thereby refine 

the study of drug efficacy in clinical trials especially when conducted in high endemic 

areas (54). However, relying upon sequencer and fluorescent-labelled primers is costly, 

demanding and difficult to be used in field sites. 
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b. The QIAxcel Advanced System (Qiagen) 

The QIAxcel Advanced System (Qiagen) is one of the commercialized CE systems, 

manufactured to replace the conventional gel-based sizing analysis of DNA, RNA, and 

proteins. It consists of 12 independent capillaries. The system is designed for the sizing 

analysis of a batch of 96 samples on a plate each run with a resolution of 3–5 bp. The 

PCR product could be analyzed directly in an automated system to avoid hands-in 

procedures and cross-contamination. In addition, the preparation procedure could be 

simplified followed by a decreased cost due to the normal PCR condition which does 

not require florescence-dye labeled primers. In an analysis, the size of the target product 

is estimated based on their migration time in relation to that of a size marker and an 

alignment marker (which can be pre-calibrated) using built-in software.  

1.5.2.2 SNP barcoding assays 

To the time of this thesis, a set of primers and probes for genotyping 24 polymorphic 

SNPs of P. falciparum (see 1.5.2.1) using allelic discrimination (AD) assay is 

commercially available. This multiplexed, end-point assay has two primer/probe pairs in 

each reaction, that allows for the detection of the two possible variants at each SNP. In 

an AD assay, a unique pair of fluorescent dyes (FAM and HEX/VIC) was used to label 

24 pairs of TaqMan

 

MGB probes that target 24 SNP positions. One fluorescent dye-

labelled probe is a perfect match to one allele and the other is a perfect match for the 

other allele. During the PCR, the fluorescence dye will emit after being cleaved from 

the matched probe by the polymerase, the emission will be detected and measured 

(Figure 3). 

 

Figure 3. Illustration of AD assay. Source: Applied Biosystem's Allelic Discrimination 

Assay Getting Started Guide for the 7900HT System (55)(with permission). 
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The results are visualized on a scatter plot based on the intensity of the fluorescence 

signals of the two dyes which were measured at the plateau phase of the amplification. 

The barcode has been used in some studies and the robustness was compared with 

conventional (msp gene-based) methods (47,56). The overall performance of the entire 

barcode is not superior to the conventional msp genotyping approach, mostly due to the 

low polymorphism of some SNPs in the studied regions. Minimal but regionally 

specific barcode with a smaller number of SNPs has been shown to potentially simplify 

the genotyping procedure (56). Therefore, validation and optimization of a specific 

barcode for the ease of use in the study area are of particular interest. 

1.5.2.3 Next generation sequencing 

Next-generation sequencing (NGS) has been used for the analysis of the diversity of 

malaria infection in some trials (57). NGS-based genotyping is able to detect and 

analyze minor alleles hence often results in higher MOI of P. falciparum compared to 

the conventional method (5). Despite the excellent resolution, NGS is not recommended 

for use in the field settings due to some limitations: mostly, cost and complicated 

preparation and analysis procedures. 

1.5.2.4 Other genotyping approaches 

Some other alternative approaches have been used for genotyping Plasmodium in order 

to distinguish recrudescence from new infection: Southern blotting of paired PCR 

products (58), single-strand conformation polymorphism (SSCP) (59). However, these 

methods are not widely used and less standardized (44).  

1.6 The implementation of parasite genotyping  

1.6.1 Determination of drug efficacy in therapeutic trials 

In drug trials which aim to assess the efficacy of antimalarial treatments for 

uncomplicated malaria, the estimation of efficacy relies crucially on the level of 

recurrent parasitemia that occurs as result of a recrudescence or a new infection. “New 

infection” and “recrudescence” are commonly referred to as a difference of parasite 

strains detected from the pre-treatment sample and recurrent sample. Briefly, a ‘new 

infection’ is a recurrence of parasitemia after clearance (by treatment), of which, all 

detected alleles are different from those in the admission sample, on the other side, in 
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‘recrudescence’, at least one common allele at each locus is detected from both samples. 

“Recrudescence” is often considered treatment failure due to drug resistance.  

However, it is not possible to clinically or morphologically (e.g. by microscopy) 

distinguish a recrudescence from a new infection. To make this distinction, molecular 

genotyping techniques are the method of choice, in order to determine whether a sample 

from admission and recurrent infections carry identical or different parasite strains. 

Misclassification of recurrent infections (“recrudescence” or “new infection”) could 

possibly lead to imprecise estimation of drug efficacy and delayed curative treatment. 

Therefore, the World Health Organization has recommended the use of molecular 

genotyping techniques for all antimalarial drug efficacy trials in highly endemic 

settings. 

1.6.2 Assessment of complexity of infection 

Several parasite and host factors have been described to associate with malaria 

virulence, including parasite species, level of immunity and efficacy of treatment. 

Within-host diversity of the infecting parasite population and the polymorphism pattern 

of some genes have been described to associate with the clinical outcome of malaria 

(9,10,60). In addition, MOI was proposed as a secondary measurement to assess the 

outcome of intervention trials (61). 

Besides the importance of distinguishing parasite strains, diversity of parasite 

population – often represented by MOI, has also been commonly studied. Assessment of 

MOI relies upon the sensitivity of the methodology used, may vary between different 

laboratory settings and is difficult in complex infection, especially in infection with low 

overall parasite density, or infection where the density of a minor strain is low. In 

addition, compilation and/or comparison of genotyping outcomes between sites or 

within a site at different time points is often compromised by the use of non-validated 

methods. 

Therefore, it is of importance to establish, validate and standardize the genotyping 

approaches that are reproducible, cost-effective, field deployable, simple to perform and 

able to provide genotyping results in order to detect parasite strains with low density 

and help to assess MOI with high accuracy. 
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1.6.3 Documentation of drug resistance 

Antimalarial drug resistance has been described mostly for P. falciparum and P. vivax. 

P. falciparum has been reported to develop resistance to nearly all current antimalarials 

drugs especially chloroquine. 

Resistance to chloroquine (CQ) of Plasmodium was first documented in the Greater 

Mekong region after World War II and quickly spread to Africa. The spread of CQ 

resistance was followed by a deplorable treatment failure rate worldwide and has 

contributed to a frightening increase in malaria mortality in the second half of the 20th 

century. At their intra-erythrocytic stage, P. falciparum parasites take up hemoglobin 

and host cytoplasm to grow and replicate. Hemoglobin digestion happens in an acidic 

digestive vacuole and releases toxic hematin that – if accumulated – may cause parasite 

death. CQ is proposed to kill the parasite by interfering with the excretion of hematin 

which results in the accumulation of this toxic product inside the parasite (62). 

Examination of CQ-sensitive and resistant clones have localized the CQ resistance 

determinant to the P. falciparum chloroquine resistance transporter (Pfcrt) gene on 

chromosome 7. Four out of 10 described point mutations happen from locus 72 to 76 of 

Pfcrt gene, namely C72S, M74I, N75E, K76T are common in P. falciparum populations 

in Africa (63). Some point mutations are often found to happen together and the most 

frequently observed response haplotypes in Africa are CVMNK (the wild type or CQ 

sensitive), SVIET (CQR) and SVMNT (CQR). The haplotype SVMNT and other point 

mutations are very rarely observed in this region (3). 

Artemisinin-based combination therapies (ACTs) has become the replacement for CQ 

as the first-line treatment for uncomplicated malaria. Although ACTs remain the most 

effective treatment, resistance against artemisinin derivatives and partner drugs have 

been documented. Artemisinin resistance is associate with delayed parasite clearance 

and usually does not lead to complete treatment failure. Resistance to the partner drug is 

more frequent and may require a change in regimen. However, in most of the cases, 

patients can still be cured with ACTs (64). 

The mechanism that maintains the high prevalence of CQ-resistant haplotypes and other 

drugs is not well understood. Therefore, regularly monitoring drug resistance is of 

importance (65). 
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2 OBJECTIVE 

Against this background, my thesis was aimed to assess the performance on a large 

scale of archived RDTs as a source of DNA for molecular assays that aim at detection, 

estimation of parasite diversity, and characterization of chloroquine resistance of P. 

falciparum in asymptomatic parasitemia and uncomplicated malaria. The current 

prevalence of CQ-resistant haplotypes in Gabon was correspondingly reported.  

In order to enhance the resolution and robustness of parasite genotyping, this thesis was 

focused on establishing molecular tools including i) msp1-gene-targeted PCRs followed 

by the sizing analysis on an automated and affordable CE system, and ii) a minimal 

SNP barcode for discrimination of parasite strains for the use in drug trials in Gabon. 

As an exploratory objective, in this thesis, I utilized the msp1-gene-targeted genotyping 

method to assess the diversity of P. falciparum parasite populations in peripheral blood 

and bone marrow of anemic malaria patients and the association between parasite 

diversity and severity of malarial anemia. 
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3 METHODS 

3.1 Declaration of ethical approval 

The study entitled “Characterization of population genetic diversity and molecular 

genotypes of drug-resistant Plasmodium falciparum using samples from routine Rapid 

diagnostic tests in Gabon” was approved by the scientific review committee and the 

Institutional Ethics Committee (CEI) of CERMEL. 

The archived RDTs were mainly collected from a clinical trial (NCT03201770) named 

“Phase IIIb/IV Cohort Event Monitoring Study To Evaluate, In Real Life Setting, The 

Safety And Tolerability In Malaria Patients Of The Fixed-Dose Artemisinin-Based 

Combination Therapy Pyramax®” which was approved by the Institutional Ethics 

Committee of CERMEL and the National Ethics Committee for research of Gabon – 

Comité National d'Ethique pour la Recherche (CNER). 

The ethics committees of the International Foundation for the Albert Schweitzer 

Hospital in Lambaréné and the ethics committees of the University of Münster and the 

University of Tübingen, Germany have approved the study entitled “A longitudinal 

study comparing age-matched triplets to investigate the etiology of severe anemia in 

children with Plasmodium falciparum malaria in Lambaréné, Gabon”. Bone marrow 

and peripheral blood samples collected for the study were used for this thesis. 

3.2 Study sites and sample collection 

3.2.1 Study site 

Clinical samples were collected in Lambaréné – Gabon. In vitro cultured P. falciparum 

parasites were reared at the Institute of Tropical Medicine – University of Tübingen – 

Germany. DNA extraction for RDT samples and filter paper, Pfcrt genotyping PCR was 

done in Lambaréné – Gabon. All other laboratory procedures were performed at the 

Institute for Tropical Medicine in Tübingen. An aliquot of the extracted DNA from 

RDTs was transported to Tübingen, another half was kept at -200C at CERMEL. 

3.2.2 Standard calibrator 

The preparation of the standard calibrator was described in detail else where (27). In 

brief, a field sample (with TBS parasitemia of P. falciparum of 6 840 000 p/mL) 

obtained from a malaria patient was ten-fold serially diluted with malaria-free group O+ 
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blood (lowest parasitemia 68 p/ml). Five µl of each dilution (6 dilutions) was spotted on 

new RDTs (SD BIOLINE Malaria Ag P.f/Pan) and 10µl was spotted on each circle of 

filter papers (Whatman ™ 903 Protein Saver Card). All 6 RDTs and filter papers (6 

circles) were kept at ambient temperature overnight before DNA extraction (27). 

3.2.3 Archived RDT collection  

As a part of the screening process of an ongoing drug trial (NCT03201770) and routine 

clinical activities, RDTs were collected and stored from June 2017 to July 2018. The 

full panel of inclusion and exclusion criteria could be retrieved from the trial registry 

NCT03201770 (27). 

Three different types of RDTs – all WHO prequalified – were used: VIKIA® Malaria 

Ag Pf/Pan (IMAccess, Lyon, France), Paracheck Pf® (Orchid Biomedical Systems, 

Goa, India) and SD BIOLINE Malaria Ag P.f/Pan (Standard Diagnostics Inc, Hagal-

Dong, Korea). The general lower limit of detection of these three types of RDT is ≤200 

parasites/µl, according to manufacturers’ specifications. Archived positive RDT 

cassettes were allowed to dry then stored at ambient temperature in a sealed pouch, until 

further use (27).  

During the study time from June 2017 to July 2018, a total of 1008 used RDT cassettes 

have been collected, RDTs that had both demographic data and positive readable test 

lines (with P. falciparum) were used for further investigations (27). 

3.2.4 Sample preparation for barcoding assay 

Samples for validation of the SNP barcoding assays were taken from the P. falciparum 

in vitro culture. Briefly, six P. falciparum laboratory strains were cultured: 3D7, HB3, 

Dd2, 7G8, D10, and W2. Parasites were gathered at the ring stage (parasitemia of the 

culture was approximately 3.5% and consists of >95% ring form, quantified by 

microscopy and fluorescence-activated cell sorting – FACS) and used for the assays. 

For the lower limit of detection assays (LLODs), two P. falciparum strains 3D7 and 

Dd2 were used. The templates’ DNA concentrations were measured using the Nanodrop 

spectrophotometer, each sample was measured five times and the mean concentration 

was used to generate the sample’s serial dilution. A serial dilution of a DNA mix (of 

3D7 and Dd2) was prepared (material extracted from culture is devoid from human 

DNA) as shown in Table 13. 
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To assess the utility of the SNP barcoding assays in distinguishing recrudescence and 

new infections: seven pairs of samples were taken from a drug efficacy trial conducted 

in Lambaréné – Gabon (NCT02198807), each pair had one sample collected on 

admission (visit Day 0, before treatment) and the other was collected at day of 

recurrence (Day X). 

3.2.5 Bone marrow and blood collection – SMA study 

A total of 91 children were recruited into this study after all inclusion and exclusion 

criteria had been full-filled, briefly:  

Inclusion criteria: 

• Written or witnessed informed consent by parent/guardian  

• Infection with P. falciparum. 

• Parasitemia > 1,000 parasites/µL 

• Age 1 year to 6 years 

• Plasma iron >10µmol/L 

• Leukocytes <12,000/µL 

- MCV ≥ 70fL in children aged 1-2 years 

- MCV ≥ 73fL in children aged 2-4 years 

- MCV ≥ 75fL in children aged 5-6 years 

• MCH between 28 and 34pg 

• HbAA or HbAS 

• Residency within 100km 

Additional entry criteria for group SMA: 

• Severe normochromic normocytic anemia with Hb ≤ 5g/dL and Hct ≤ 15% 

Additional entry criteria for group MMA: 

• Age matched (± 6 months) to a child from SMA group 

• Hb > 5g/dL and < 10g/dL 

• Thrombocytes > 30,000/µL 

• Lactate < 3mM 

• Blood glucose > 50mg/dL 

• No signs of complicated malaria 

Additional entry criteria for group MMW: 
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• Age matched (± 6 months) to a child from SMA group 

• Hb ≥ 10g/dL 

• Thrombocytes > 50,000/µµL 

• Lactate < 3mM 

• Blood glucose > 50mg/dL 

• Hemozoin-containing neutrophils < 2% 

• Parasitemia of between 1,000 and 100,000 parasites/µL, no schizonts 

• No hospitalization due to malaria in patient history 

• No malaria treatment as measured by Wilson&Edeson test (for chloroquine and 

quinine) and Lignin-Test (for sulfonamides) 

Exclusion Criteria: 

• Sickle cell anemia  

• Malnutrition (body size and body mass index below 80th percentile) 

• Blood transfusion within the past month 

• Signs of complicated malaria (other than anemia or hyperparasitemia): cerebral 

malaria, renal or pulmonary dysfunction. 

• Known filarial (Loa loa, Mansonella perstans), bacterial or viral infection (HIV, 

HBV, HCV, Parvovirus B19) 

• Other severe diseases, including malignant disease, renal, hepatic or pulmonary 

dysfunction not due to malaria 

• External or internal bleeding. 

Patients were enrolled and classified into three groups based on the peripheral 

Hemoglobin (Hb) concentrations at the admission visits. All patients were hospitalized 

and were treated with quinine and clindamycin (standard regimen at the time at the 

Albert Schweitzer Hospital) (66). 

Blood transfusion and other supportive treatment were upon study clinician’s judgment. 

The active follow-up period was two months (treatment period day 0 to day 4, control 

visits on day 14, day 28 and day 56) and was prolonged for 2 more months (from the 

last infection) in case of recurrent parasitemia.  

Blood sampling: From each patient, 5 ml of heparinized blood and 1 ml of EDTA 

treated blood was obtained directly before antimalarial treatment and blood transfusion. 
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500 µL of blood was stored at -80°C in glycerolyte (1.3 mL of glycerolyte was added to 

1000 µL blood). 

Bone marrow aspirations used for this work were taken on admission (Day 0) and on 

day 56. Bone marrow was aspired from the posterior iliac spine either under local 

anesthesia or under midazolam/pethidine anesthesia. Informed consent for the procedure 

was taken separately and study participation was independent of the willingness to 

undergo bone marrow puncture. 2mL of bone marrow was aspired (1mL to EDTA-

coated tube, 1mL to the heparinized tube) and frozen at -80oC together with glycerolyte 

(500 µL blood + 700 µL glycerolyte). 

Positive controls (P. falciparum strain 3D7 for 18S RT-PCR, strain 3D7 for msp1/K1, 

strain Dd2 for msp1/MAD20 and strain 7G8 for msp1/RO33) were prepared using 

cultured parasite. We used malaria parasite-free blood as negative controls for 

molecular assays. 

3.3 Nucleic acids extraction 

3.3.1 RDT and filter paper preparation 

3.3.1.1 Archived RDTs 

RDT cassettes were opened individually using scissors and forceps. After each sample, 

scissors and forceps were sterilized in alcohol 100% and DNA AWAY™ solution 

(Molecular BioProducts, San Diego, USA.) (27) then allowed to dry at room 

temperature before working with other RDTs. 

The test strip (nitrocellulose part) was taken out from the case and any plastic cover on 

the strip was stripped off (27). The part of the test strip (see Figure 4) which contains 

DNA was dissected and used for DNA extraction (67). DNA was eluted in 50 µl.  
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3.3.1.2 Filter paper 

The DNA extraction was done using a half of each circle (containing approximately 5µl 

of the sample) of filter paper (27). Elution volume was 50 µl. 

3.3.2 Peripheral blood and bone marrow samples  

For both peripheral blood and bone marrow samples, DNA extraction was done using 

the QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Germany) following the 

manufacturer’s instruction for blood (27). Fifty µL of PBS 1X was added to each 

sample before adding proteinase K and starting extraction. The elution volume was 100 

µl.  

3.3.3 Nucleic acids extraction protocol 

Nucleic acid extraction from cultured parasites, RDTs, and dried blood spots was 

performed using QIAamp DNA Blood Mini Kit (Cat No: 51106) (27) following 

manufacturer’s instruction.  

The common extraction procedure was as follow: 

- Add protease from the QIAamp DNA Blood Mini Kit (the amount depends on 

the type of sample, mentioned below) 

- Transfer sample (amount depends on the type of sample) to a 2 mL Eppendorf 

tube 

- Add lysis buffer AL (amount depends on the type of sample) and mix by 

vortexing for 15 seconds 

Figure 4. Illustration of RDT preparation for DNA extraction. 
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- Spin tubes shortly to remove drops from the inside of the cap 

- Incubate at 56°C for 10 minutes while shaking 

- Spin tubes shortly to remove drops from inside of the cap 

- Add 100% Ethanol (similar to the volume of buffer AL) and mix by vortexing 

for 15 seconds 

- Spin tubes shortly to remove drops from inside of the cap 

- Load lysate to a QIAamp Mini spin column without wetting the rim and 

centrifuge at 6000x g (8000 rpm) for 1 min. (Repeat this step until all lysate are 

applied to column) 

- Place the column in a clean 2 mL collection tube 

- Add 500 µL wash buffer AW1, without wetting the rim and centrifuge at 

6000xg (8000 rpm) for 1 minute 

- Place the column in a clean 2 ml collection tube 

- Add 500µL wash buffer AW2, without wetting the rim and centrifuge at full 

speed (17000xg) for 3 mins. 

- Place the spin column in a clean collection tube and centrifuge at full speed 

(17000xg) for 1 min to remove all wash buffer residues from the column. 

- Place the spin column in a sterile, DNase/RNase-free certified 1.5 mL Tube 

- Add 100µL (50µL for RDT and filter paper) pre-warm DNAase-free water 

directly to the filter of the spin column. 

- Incubate for 3-5 min at room temperature and centrifuge for 2 min at 6000xg 

(8000rpm) to elute total NAs. 

Table 1. Volume of samples and reagents used for extraction according to the type of 

sample. 
 

Sample volume (µL) Protease (µL) Buffer Al (µL) 

Parasite culture 200 20 200 

RDT 5 20 200 

Filter paper 5 20 200 

Blood in glycerolyte 150 (+ 50 µL of 1x PBS) 20 200 

Bone marrow in glycerolyte 150 (+ 50 µL of 1x PBS) 20 200 
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3.4 Real-time PCR for quantification of malaria parasite (18S RT-PCR) 

Malaria parasite detection and quantification were done using a Taqman probe-based 

Pan-Plasmodium Real-time PCR that targets a highly conserved region of 18S rRNA as 

described elsewhere (27,68) with a modification: reverse transcriptase was not used. 

Primers and probes sequences used for the assay are described in Table 4.  

Reaction mixes was made using TaqMan™ RNA-to-CT™ 1-Step Kit (Thermo Fisher 

Scientific, Foster City, CA, USA) following the manufacturer’s instructions for non-RT 

PCR.  

Table 2. Master mix preparation for 18S Pan-Plasmodium quantitative real-time 

PCR. 

Reagent component Volume 
Final 

concentration 

TaqMan® RT-PCR Mix (2X) 5 µl 1x 

PLU3 TaqMan Probe (10µM) 0.15 µl 150nM 

PLU3 Forward Primer (10µM)   0.4 µl 400nM 

PLU3 Reverse Primer (10µM) 0.4 µl 400nM 

Total Nucleic acids 2.5 µl  

Nuclease-free H₂O 1.55 µl  

Final volume per reaction  10 µl  

 

After the preparation, on a robotic pipetting system (QIAgility, Qiagen, Germany, Cat 

No./ID: 9001532), master mix was loaded into each well of a 384-well PCR plate 

together with DNA extracted from samples (in triplicate), one positive control (P. 

falciparum NF54) and one non-template control (in duplicate for both negative and 

positive controls). PCR was done on a LightCycler 480 Instrument II (Roche, Basel, 

Switzerland) with the following thermal conditions: 
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Quantification analysis was done with LightCycler® 480 SW v1.5.1 software. 

Successful amplification was defined as a Ct-value of lower than 40. 

3.5 Nested PCR for identification of Pfcrt mutations 

Nested PCR was used to genotype codons 72 – 76 of the Pfcrt gene, primers, and probes 

sequences are given in Table 4.  

To improve the sensitivity, Pfcrt gene was pre-amplified by conventional PCR as 

follows (27): 20µl of total reaction volume was made by adding 2.5µl of the template to 

17.5µl of a master mix containing: 1x PCR buffer, 0.4µM of each primer, 0.25 mM 

dNTPs, 1U of Taq polymerase (Qiagen, Hilden, Germany). The PCR was done on a 

MyCycler (BioRad, Germany) with the following thermal conditions: 94oC for 5 

minutes followed by 25 cycles of 94oC for 30 seconds, 55oC for 30 seconds and 72oC 

for 30 seconds, final annealing at 72oC for 10 minutes.  

The product of the pre-amplification PCR was used as the template for the nested 

multiplex Real-time PCR on a LightCycler 480 Instrument II using SensiMix™ II Probe 

Kit (Bioline GmbH., Germany) (27) following the manufacturer’s instructions. 

Sequences of primers and Pfcrt haplotypes specific probes are given in Table 4. Each 

sample was analyzed in duplicate. DNA of P. falciparum parasites of strains NF54, 

Dd2, and 7G8 were prepared from culture and used as positive controls for genotyping 

three haplotypes CVMNK, CVVIET, and SVNMT, respectively.  

3.6 msp1 genotyping 

3.6.1 Amplification of msp1 gene by conventional PCR 

Msp1 genes were genotyped by nested PCR using previously published pairs of primers 

(45).  

The conserved region of the msp1 gene was amplified in the primary PCR with a total 

volume of the reaction of 20µl consisting of 5µl of template, 15µl of master mix (which 

Table 3. Cycling conditions for 18S real-time PCR. 

Cycles Temp. Time Step 

1 96°C 10 min Polymerase activation 

45 95°C 
62°C 

15 sec 
1 min 

Denaturation 
Annealing/Extension/Acquiring 

1 40°C 10 sec Cooling 
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contains 1x AmpliTaq Gold buffer, 1.5mM MgCl2, 0.25mM dNTPs, 1 U of AmpliTaq 

Polymerase and 250nM each primer). The PCR was performed using a MyCycler 

(BioRad, Germany) with the following thermal condition (27): 10 minutes at 94oC 

followed by 35 cycles of 94oC in 15 seconds, 58oC for 30 seconds, 72oC for 1 minute 

and 72oC for 10 minutes for the final extension. 

Nested PCR (27) amplified block 2 of the msp1 gene using 3 pairs of primers specific 

for 3 families of the msp1 gene: K1, MAD20, and RO33 (sequences of primers are in 

Table 4). Three nested PCR reaction mixes were made with the total volume of 20µl 

containing 2.5µl of template, other reagents were added at the same concentration as 

used in the primary PCR. Except for the annealing temperature was at 61oC, thermal 

conditions of the nested PCRs were similar to that of the primary PCR. P. falciparum 

strains NF54, Dd2, and 7G8 were used as positive controls for K1, MAD20, and RO33 

families of the msp1 gene, respectively. 

3.6.2 Amplicon sizing using capillary electrophoresis. 

Amplicon sizing by capillary gel electrophoresis was done on a QIAxcel Advance 

system (QIAGEN, Hilden, Germany) (27) according to the manufacturer’s instructions 

for the OM400 protocol. Each batch has 88 samples and 8 controls (7 positive controls 

and 1 non-template control). 

Materials: 

- QIAxcel DNA High Resolution Kits (catalog number: 929002).  

- QX DNA Size Marker 50–800 bp (50µl) v2.0 (Qiagen, cat.no. 929561) and,  

- QX Alignment Marker 15bp/1kb (Qiagen, cat. No. 929521).  

Amplicon size was analyzed by software QIAxcel ScreenGel v1.5.0 as described 

elsewhere (27). Data were analyzed and reported when positive controls were positive 

with a single peak (NF54: 241±3 bp, Dd2: 205±3 bp and 7G8: 153±3 bp).  A peak was 

defined as a countable allele when it was greater than 100 bp and contributed more than 

10% of total peak height. Within one sample, multiple peaks with less than 6 bp 

differences were considered as one allele and the average size was calculated and used 

for further analyses. 
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Table 4. Primer and probe sequences (27). 

msp1 

Primary PCR 
A AAGCTTTAGAAGATGCAGTATTGAC 

B ATTCATTAATTTCTTCATATCCATC 

Nested PCR 

K1 
Fwd AAATGAAGAAGAAATTACTACAAAAGGTGC 

Rev GCTTGCATCAGCTGGAGGGCTTGCACCAGA 

MAD20 
Fwd AAATGAAGGAACAAGTGGAACAGCTGTTAC 

Rev ATCTGAAGGATTTGTACGTCTTGAATTACC 

RO33 
Fwd TAAAGGATGGAGCAAATACTCAAGTTGTTG 

Rev CATCTGAAGGATTTGCAGCACCTGGAGATC 

Pfcrt 
 

Pre-amplification 
Fwd TGGTAAATGTGCTCATGTGTTT 

Rev AGTTTCGGATGTTACAAAACTATAGT 

RT-PCR 
Fwd TGGCTCACGTTTAGGTGGAGGTTCTTG 

Rev ACTGAACAGGCATCTAACATGGATATAGC 

Probes 

CVMNK TGTGTAATGAATAAAATTTTTGCTAA 

CVIET TGTGTAATTGAAACAATTTTTGCTAA 

SVMNT AGTGTAATGAATACAATTTTTGCTAA 

18S 

PCR 

PLU3 Forward GCTCTTTCTTGATTTCTTGGATG 

PLU3 Reverse AGCAGGTTAAGATCTCGTTCG 

PLU3 Probe VIC-ATGGCCGTTTTTAGTTCGTG-NFQ-MGB 

Red-highlighted letters represent the mutation points 

Fwd: forward primer 

Rev: reverse primer 
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3.7 Dual-probe endpoint genotyping (SNP barcoding assays) 

Primers and probe sequences used for this barcoding assays can be retrieved elsewhere 

(46). 

Table 5. Barcoding assays. Minor and major alleles were determined in the original 

work (46). 
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1 Pf_01_000130573 
 

C/T C  T  C  
2 Pf_01_000539044 

 
A/G A  G  G 

3 Pf_02_000842803 
 

T/C T  C  C 
4 Pf_04_000282592 

 
T/C T  C  T 

5 Pf_05_000931601 
 

G/C G  C  C 
6 Pf_06_000145472 rs45343635 C/G C  G  C 
7 Pf_06_000937750 

 
A/G A  G  G 

8 Pf_07_000277104 rs45339742 A/G A  G  G 
9 Pf_07_000490877 rs45343970 A/T A  T  A 
10 Pf_07_000545046 rs45338103 C/T C  T  C 
11 Pf_07_000657939 rs45403113 T/C T  C  T 
12 Pf_07_000671839 

 
A/G A  G  G 

13 Pf_07_000683772 rs45339189 C/T C  T  C 
14 Pf_07_000792356 rs45341962 A/C A  C  A 
15 Pf_07_001415182 rs45403212 C/A C  A  C 
16 Pf_08_000613716 rs45405749 C/A C  A  C 
17 Pf_09_000634010 rs45408065 C/T C  T  C 
18 Pf_10_000082376 rs45409692 A/T A  T  A 
19 Pf_10_001403751 rs45410415 A/C A  C  A 
20 Pf_11_000117114 rs45415497 G/A G  A  G 
21 Pf_11_000406215 

 
A/C A  C  A 

22 Pf_13_000158614 rs45422484 C/T C  T  T 
23 Pf_13_001429265 

 
G/T G  T  T 

24 Pf_14_000755729 
 

G/T G  T  G 
 

Master mixes was prepared following the instruction of the manufacturer for the 

TaqMan Universal PCR Master Mix (Applied Biosystems Catalog number 4364343). 
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Table 6. Master mix preparation for barcoding PCR. 

Component Volume for 1 reaction 

2x TaqMan Master Mix 2.5 µL 

20x Assay Working Stock 0.25 µL 

Template 2.25 µL 

Total volume per well 5 µL 

 

3.7.1 Preparation of the reaction plate. 

The DNA concentration of each sample and positive control were measured by 

NanoDrop Spectrophotometer. DNA was diluted to a similar concentration (1 ng/µl) 

across all samples before mixing with the prepared master mix on a 96-well PCR plate 

(LightCycler® 480 Multi-well Plate 96, white, Cat # 04729692001). 

3.7.2 Perform a PCR plate read  

Table 7. Cycling conditions for barcoding PCR. 

Step Temp Time No of Cycles 

Polymerase activation 95oC 10 minutes 1 

Denaturation 95oC 15 seconds 
40 

Annealing/extension 60oC 1 minute 

Cooling 40oC 30 seconds Hold 

Acquisition format as dual probe: VIC/HEX (excitation – detection: 533 – 580nm) and 

FAM (excitation – detection: 465 – 510nm). 

All of the PCR assays was done on a Light Cycler 480 Instrument II PCR system. The 

End-point genotyping result was analyzed and visualized using the built-in software 

LightCycler® 480 SW, version 1.5.1. 

3.8 Statistical analysis 

R software (version 3.5.1) was used to analyze all the data mentioned in this thesis and 

95% confidence intervals were given where possible. A two-sided p-value of <0.05 was 

considered statistically significant. 
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3.8.1 For work on RDTs (27)  

Cycle threshold (Ct) values were used in absolute quantification analyses to extrapolate 

parasitemia of the samples. The extrapolation was made in relation to Ct-values of a set 

of standard calibrators using linear regression analysis (with an assumption that equal 

amounts of blood (5 µl) were spotted on each RDT and calibrators).  

Positive PCR results were considered as negative (0 parasites/ml) if Ct values >40 and 

excluded from the analysis. Comparison of Ct-values of two serial dilutions: RDT and 

filter paper was done using a paired T-test. 

Individuals were stratified into three groups according to their age: (i) children <5 years 

(ii) children between 5 to 18 years and (iii) adults >18 years old and three groups based 

on their residence: Lambaréné (semi-urban), Fougamou (semi-urban) and surrounding 

rural areas (radius approximately 10km). 

The MOI was calculated for individuals and the population. For an individual, MOI is 

the sum of the number of alleles detected by msp1 genotyping (including 3 gene 

families): 

 

MOI = number of K1 allele + number of MAD20 allele + number of RO33 allele 

 

Population MOI was the mean MOI of all individuals and calculated by dividing the 

total of individual MOI by and the total number of PCR positivity. Sample with MOI = 

1 was considered as a monoclonal infection the other positive samples were considered 

as polyclonal infections. 

MOI parameters were displayed as mean numbers, but while comparing MOI between 

age or location groups, the non-parametric Kruskal-Wallis H and Wilcoxon rank-sum 

tests were used. The decadic logarithm (Log10) of parasite densities were compared 

between age groups using these tests.  

Linear and logistic regression models were used as shown in Table 8. In all models, 

location as an independent variable was defined based on different population density: 

rural areas, Fougamou and Lambaréné. The relation between age and Log10 

transformed parasite density was analyzed by a linear regression model.  
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Table 8. Regression models used. 

Test Dependent variable Independent variables 

Poisson regression model MOI age, location 

Binomial regression model CQ resistance age, location 

PCR success storage duration 

Linear regression model Log10 parasitemia age 

 

3.8.2 For SNP barcoding assays 

Minor allele frequency was calculated for each SNP as previously described (49). In 

brief, each allele found in a polymorphic genotype was considered to contribute a half 

of an allele found in a monomorphic genotype. Allele frequency was calculated for each 

SNP using allele counts. 

A new infection is defined when the parasite genotype at day X (day of recurrence) has 

at least 1 distinct SNP compared to the genotype of day 0 (admission). Therefore, only 

monomorphic SNP result was used to distinguish parasite genotypes. 

3.8.3 For work on SMA samples 

The recruitment process allocated patients into three groups based on Hb concentration, 

but in data analysis, patients were classified as severe malarial anemia (SMA) if RBC < 

2.8 Mio/ml, and moderate malarial anemia (MM) if RBC >2.8 Mio/ml regardless of Hb 

concentration. 
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4 RESULTS 

4.1 Performance of RDTs as source of DNA for molecular assays 

4.1.1 Demographic details of uncomplicated malaria and asymptomatic P. 

falciparum parasitemia 

A total of 669 positive RDTs were collected from uncomplicated malaria and 

asymptomatic P. falciparum parasitemia including 332 (50%) female. The median age 

was 8 years (Interquartile Range - IQR: 4-15). 185/669 (28%) were children aged under 

5 years, 346 (52%) between 5 and 18 years and 138 (21%) aged >18 years. 125 (18.7%) 

samples were collected from Lambaréné and from rural areas, 122 (18%) were from 

Fougamou and 422 (63%) from other rural areas Table 11. The mean storage duration 

was 113.2 days (range: 9 – 231 days).  

4.1.2 Success rates of different PCRs using DNA extracted from RDTs 

Using positive RDTs as a source of DNA for 18S quantification real-time PCR, Pfcrt 

PCR, and msp1 genotyping PCR, RDTs produced 96.6%, 87.4%, and 88.5% 

amplification success rates, respectively (Table 9). Longer storage duration of RDTs 

did not change the amplification success rate of 18S PCR notably. 

Table 9. Proportion of positivity of molecular assays using DNA extracted from RDTs 

(27).  
 

Time of sample storage 
 

<1 month 

(N = 138) 

1-3 months 

(N = 57) 

3-6 months 

(N = 361) 

>6 months 

(N = 113) 

Total 

(N = 669) 

Assay 
     

18S PCR 135(97.8%) 52(91.2%) 353(97.8%) 106(93.8%) 646(96.6%) 

Pfcrt PCR 120(87%) 49(86%) 314(87%) 102(90.3%) 585(87.4%) 

msp1 PCR 112(81.2%) 52(91.2%) 322(89.2%) 106(93.8%) 592(88.5%) 

N: sample size 
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Table 10. Lower limit of detection of PCR protocols using DNA extracted from RDT. 

Parasitemia (p/mL) 18S RT-PCR Pfcrt  PCR msp1 PCR RDT 
6840000 + + + + 
684000 + + + + 
68400 + + + + 
6840 + - + - 
684 + - - - 
68 + - - - 

 

4.1.3 For quantification of parasite density by 18S PCR 

4.1.3.1 RDTs versus FP 

Two serial DNA dilutions were made from 6 RDTs and 6 circles of filter paper.  

Absolute quantitative real-time PCR targeting 18S genes were run in triplicates. Ct-

values were used to analyze the performance of these two DNA sources. All samples of 

these series including the lowest parasitemia (68 parasites/ml) were positive. Ct-values 

of two groups of samples RDT and filter paper were similar (Figure 5). 
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Figure 5. Comparison of the performance of RDTs and FPs as source of DNA for 

quantitative real-time PCR. A: The correlation between Ct-values and peripheral 

parasitemia: RDT (red) and filter paper (blue). The PCRs were performed for each 

sample in triplicate and the means of Ct-values were represented by these dots. The 

straight lines visualized the linearity between the mean Ct-values and decadic logarithm 

transformation of parasitemia of the RDT group (red, adjusted R2: 0.9944) and FP 

group (blue, adjusted R2: 0.9892) (27). B: The Bland Altman plot visualized the 

agreement between the Ct-values of PCRs which were performed using two types of 

samples, red line: mean of differences, blue lines: 95% confidence intervals of the 

differences. The positive difference between the Ct values of the RDT group and the FP 

group implied that the DNA load extracted from RDT was lower than that from the FP, 

but the difference was not significant. 

4.1.3.2 Parasitemia in uncomplicated malaria and asymptomatic P. falciparum 

parasitemia 

Extrapolated parasitemia from Ct values of PCRs (using the linear model mentioned in 

4.1.3.1) was excluded from analysis if lower than 1 p/mL. Parasitemia in the group of 

children aged <5 years (geometric mean: 3548 parasites/mL (95% CI: 2188 – 4677)) 

was significantly higher than that in the other two age groups: 5 to 18 years and >18 

years, with geometric mean of parasitemia of 1259 (95% CI: 891 – 1698) and 776 (95% 

CI: 457 – 1318) parasites/mL, respectively (Figure 6).  

A B 
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Figure 6. Parasitemia in different age groups of uncomplicated malaria and 

asymptomatic P. falciparum parasitemia. The significance levels: significant (***: 

<0.001, ****: <0.0001) and nonsignificant (ns) (27). 

 

4.1.4 For assessment of diversity of P. falciparum 

4.1.4.1 Capillary electrophoresis and visualization of allele size by QIAxcel 

Figure 7. An example of the msp1 genotyping result. Graphs 1,2 and 3 represent CE 

results of msp1 families RO33, MAD20, and K1, respectively. Each peak (except the 

ones with the sizes of 15bp and 1000bp – which are size markers) shown in this graph 

represents one single allele (strain). MOI of the sample was 5.    
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4.1.4.2 MOI in association with age and region 

The highest individual MOI was 11. The MOI of the population was: 2.6 (95% CI: 2.5 -

2.8). The MOI was higher in groups of ages <5 years (2.8 (95% CI: 2.6-3.1)) and 5 to 

18 years (2.7 (95% CI: 2.5-2.9)) than in group of ages >18 years (2.1 (95% CI: 1.9-

2.4)). MOI for samples from Lambaréné was 2.0 (95% CI: 1.8-2.3), significantly lower 

than Fougamou 2.8 (95% CI: 2.5- 3.1) and rural areas 2.8 (95% CI: 2.6- 2.9) (Figure 8). 

Poisson regression model confirmed the significant adverse association of both age and 

location and MOI (age: β = -0.0046, p-values = 0.019 and location: β =-0.314, p = 

0.0004) . 

The prevalence of monoclonal infection observed in LA was lower than that in the 

regions (df = 2, p-value = 0.004). 

 

Figure 8. MOI across studied regions (A) and age groups (B)(27). MOI was displayed 

as the number of alleles per individual in y-axis. Box plots were shown with medians 

and interquartile ranges (IQR). In order to avoid overlapping, each number of alleles 

per individual (countable number) was visualized by a  jitter point. The significance 

levels were: significant (***: <0.001, ****: <0.0001) and nonsignificant (ns). RR: 

rural areas, FGM: Fougamou, LA: Lambaréné. 
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4.1.4.3 Prevalence of msp1 alleles in uncomplicated malaria and asymptomatic P. 

falciparum parasitemia 

Five hundred ninety five samples were positive with msp1 genotyping PCR, the 

prevalence of three msp1 gene families were K1: 75% (n=446); MAD20: 47% (n=275); 

and RO33 51% (n=305).  

A total of 27.5% (n=163) of the msp1 PCR positive isolates were monoclonal infections 

(Table 11). msp1/K1 alleles were found in the major proportion of monoclonal 

infections, whereas msp1/ K1 + RO33 and K1 + Ro33 + MAD20 alleles were more 

commonly observed in polyclonal infections (Table 11). The allele sizes for each of the 

families of the msp1 gene were 133 - 374 bp (K1), 133 - 311 bp (MAD20) and 111 - 

258 bp (RO33) (Figure 15). There was no specific allele for any age group or region.  

 

Table 11. msp1 PCR positivity and the distribution of msp1 genotypes in 

uncomplicated and P. falciparum asymptomatic infection across geographic regions 

(27). 
 

FGM LA RR Total 

N (%) 122(18.2) 125 (18.7) 422 (61.3) 669 

msp1 PCR positivity (%) 111 (18.7) 107 (18.1) 374 (63.2) 592 

Monoclonal infection 24 (21.6) 43 (40.2) 96 (25.7) 163 (27.5) 

Polyclonal infection 87(78.4) 64 (59.8) 278 (74.3) 429 (72.5) 

K1 only 18 40 88 146 

MAD20 only 10 15 31 56 

RO33 only 11 14 39 64 

K1 + MAD20 14 10 61 85 

K1 + RO33 24 17 66 107 

MAD20 + RO33 8 4 14 26 

K1 + MAD20 + RO33 26 7 75 108 

 

4.1.5 For genotyping CQ-resistant P. falciparum  

The overall prevalence of CQR genotypes in the study population was 78.5%. 

Prevalence of CQ sensitive genotypes in the group of children aged <5 years was 26%, 
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followed by 48% of CVIET genotype (CQR) and 27% of mixed infection with sensitive 

and CQR genotypes Table 12. The prevalence of these genotypes (sensitive, CVIET 

and mixed strains) in other two age groups was: 18.8%, 44.2%, and 37%, for the group 

aged from 5 to 18 years, and 22.6%, 47.0%, and 30.4% for adults, respectively (Figure 

9).  

The prevalence of CQ resistant genotypes was not significantly different between three 

age groups (p-value = 0.2). The prevalence of CQR genotypes in Lambaréné (65.7%) 

was lower compared to that of the rural areas (Fougamou and other rural areas – 81.3%) 

(p-value = 0.0017) Table 12. Logistic regression analysis showed an association 

between living in Lambaréné and lower prevalence of CQR genotypes of P falciparum 

(β = - 0.809,  p-value = 0.011 after correction for age). 

 

Table 12. Prevalence of Pfcrt haplotypes, age distribution and msp1 genotyping result 

across regions (27). 

  FGM LA RR Total 

N (%) 122(18.2) 125 (18.7) 422 (61.3) 669 

Age     

≤ 5 years (%) 23 (18.8) 24 (19.2) 138 (32.7) 185 (27.7) 

≥ 5 to 18 years (%) 80 (65.6) 58 (46.4) 208 (49.3) 346 (51.7) 

Adults (>18 years) (%) 19 (15.6) 43 (34.4) 76 (18.0) 138 (20.6) 

Pfcrt-PCR positivity (%) 109 (18.6) 108 (18.5) 368 (62.9) 585 

CQ sensitive (CVMNK) only (%) 21(19.3) 37(34.3) 68(18.5) 126 (21.6) 

CQ resistance 1 (CVIET) only (%) 43 (39.4) 50(46.3) 174(47.3) 267(45.6) 

CQ resistance 2 (SVMNT) (%) 0 0 0 0 

Mix (R and S) (%) 45(41.3) 21(19.4) 126(34.2) 192(32.8) 

 

Regional prevalence of CQ resistance (by summing up the prevalence of resistance and 

mix infection) was 65.7% in LA and 81.3% in rural areas (including FGM and other 

rural areas). R: chloroquine resistance; S: chloroquine-sensitive; FGM: Fougamou; LA: 

Lambaréné; RR: rural regions, CQ: chloroquine 
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Figure 9. The prevalence of Pfcrt haplotypes was similar between age groups. Mix 

infections: infected by both sensitive and resistant genotypes of P. falciparum. SVMNT 

haplotype was absent in this population (27). 

4.2 Performance of the barcoding assays 

4.2.1 Validation of the SNP barcoding assays 

The 24-SNPs barcoding assays successfully genotyped 6 in vitro cultured well-

defined laboratory P. falciparum strains: 3D7, Dd2, HB3, 7G8, W2, D10. The 

fluorescence signal was automatically analyzed by the software and visualized in a 

scatter plot, followed by manual allele calling. 
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Figure 10. An example of the genotyping result of P. falciparum strain 3D7 together 

with a non-template control and a field sample. A scatter plot was generated by the 

built-in software using the protocol of end-point analysis. The signal intensity of two 

florescent dyes was measured and plotted; green dots represent major alleles only 

which were labeled with VIC dye (in y-axis, with florescence excitation 533nm and 

detection 580nm), blue dots for minor alleles only which were labelled with FAM 

florescence (x-axis, excitation: 465nm and detection: 510nm) and red dots represent 

both alleles. 

For monoclonal samples (e.g. cultured lab strains), distinct clusters were shown in 

the scatter plot (as green and blue dots only), and allele calling is determined visually 

from the plot. 

A total of 8 field isolates collected from Gabon were genotyped to estimate the 

complexity of infection. Three out of eight (37.5%) samples were monoclonal whereas 

5 out of 8 (62.5%) samples were polyclonal. Sample J12 appeared to be the most 

complex infection since 10 out of 24 SNPs were polymorphic. 

4.2.2 Limit of detection of minor strain in mixed infection 

The assay for SNP C/T on chromosome 13 at position 000158614 was done for the 

serial dilutions of a mix of two parasite strains: 3D7 and Dd2. All 7 dilutions were 

genotyped.  
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Figure 11. The plot of 1 SNP genotyping of serial samples created by mixing DNA of 

2 P. falciparum lab strains (3D7 and Dd2) with different ratios. The location of red 

dots on the scatter plot reflex the mixing ratio of two parasite strains 3D7 (allele C) and 

Dd2 (allele T). NTC: non-template control. 

Table 13. Concentration of parasite DNA in the serial dilution and sensitivity of assay 

Pf_13_000158614. SNP gen: SNP genotyping result. 

Name of sample A-2 A-1 A1 A2 A3 A4 A5 A6 A7 A8 A9 

3D7/Dd2 DNA ratio 16:1 10:1 8:1 4:1 2:1 1:1 1:2 1:4 1:8 1:10 1:16 

Concentration 

(ng/µL) 

3D7 9.4 9.1 8.9 8.0 6.7 5.0 3.3 2.0 1.1 0.9 0.6 

Dd2 0.6 0.9 1.1 2.0 3.3 5.0 6.7 8.0 8.9 9.1 9.4 

SNP gen for 3D7 (C) + + + + + + + + + NA NA 

SNP gen for Dd2 (T) NA NA + + + + + + + + + 

 

Genotyping results of the samples with mixing ratios greater than 8:1 and smaller than 

1:8 showed that minor alleles cannot be reliably discriminated when they contribute less 

than ~12.5% of the major alleles density in the same sample.  

4.2.3 Discrimination between recrudescence and new infection 

Seven pairs of samples collected from a drug efficacy trial in Gabon were successfully 

genotyped. There were 6 out of 7 (85.7%) samples classified as new infections, 1 out of 

7 (14.3%) was not classifiable due to the too high complexity of both samples (Day 0 

8:1 

4:1 
2:1 

1:1 

1:2 
1:4 

1:8 

Assay: 
Pf_13_000158614 

(C/T) 

NTC 

VIC 
Allele: C  

FAM 
Allele: T 
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and Day X). SNP 15 was excluded from our analysis since all of the PCR results were 

negative.  

4.2.4 Establishment of a minimal SNP barcode 

Table 14. Genotyping result of 21 samples at 9 SNP loci. Minor allele freq: Minor 

allele frequency.  

SNP 5 6 7 9 10 11 13 14 22 

  

Allele variants G/C C/G A/G A/T C/T T/C C/T A/C C/T 
F078_SCR C C A A U T C A C 
F079_D42 C C G A C T C A C 
F079_SCR C G U A C T C C T 
F080_D35 U C A A C U   C C 
F080_SCR G C G T T T   A T 
F081_D35 C C G A C T T C C 
F081_SCR U G G T C U   C T 
F090_D63 U U G A C C   C C 
F090_SCR C C A U C T C A T 
F095_D42 G C A U T T T A C 
F095_SCR G C A T C T C C C 
F098_D63 C G A A T T C A T 
F098_SCR C C U T C T C C U 

J11 G G A T T C C C C 
J12* U C U T U C C A T 
J13 C G G T U U   C C 
J14 G C A T T C T A C 
J20 G C A T C C C A T 
J23 G C G T T C T A T 
J25* U U U A C T C C T 
J3S G G A T U T C A C 

Minor allele freq 0.5 0.341 0.432 0.432 0.386 0.364 0.263 0.477 0.455 24-SNPs 
barcode Amp success rate (%) 100 100 100 100 100 100 86.4 100 100 

Uniqueness calling 90.50% 90.50% 

 

Amp success rate: amplification success rate. *: samples with non-unique SNP barcode. 

A: Adenine; C: Cytosine; G: Guanine; T: Thymine; U: mix of two alleles; blanks: 

amplification failed. Sample F078_D42 was excluded from this analysis due to the 

negative result at 5/9 SNPs. 

A compiled analysis using the sample from all experiments showed the minor allele 

frequency (MAF) of the 24 SNPs ranged from 0.02 to 0.5. 

Based on MAF (>0.25) and amplification success rate (>80%), 9 assays number 5, 6, 7, 

9, 10, 11, 13, 14, 22 were selected for a minimal barcode. The minimal barcode showed 

similar discriminatory power to the 24-SNPs barcode (Table 14). 
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4.3 P. falciparum in peripheral blood and bone marrow of anemic malaria 

4.3.1 Parasitemia  

4.3.1.1 Between BM and PB 

A total of 91 thick blood smears (TBS) made from peripheral blood samples were read. 

The mean of log10 transformed parasitemia was: 4.35 (95% CI: 4.20, 4.50). 

Ct values from PCR using bone marrow samples are significantly lower than those 

using peripheral blood samples ([Paired t.test] p-value < 0.0001). 

 

 

 

 

 

 

 

 

 

Figure 12. Bland Altman plot visualizes the agreement of the Ct-values of PCR using 

peripheral blood (PB) and bone marrow (BM). The green lines represent 95% 

confidence intervals. Y-axis: the difference between Ct-values of PCR using PB samples 

and BM samples from the same patient. The blue line represents the mean of the 

differences. The difference in Ct values between PB and BM samples was negative in 

100% severe malarial anemia cases whereas in the group of non- and mild anemia, the 

positive differences were observed in some samples. 
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Figure 13. The correlation between the Ct-values of qPCR and TBS results. Y-axis 

represents the average Ct-values of triplicate PCR. 

There are significant correlations of Ct values and microscopic parasitemia. With bone 

marrow samples: p-value = 0.00032, Adjusted R2: 0.2355 and peripheral blood 

samples: p-value < 0.0001, adjusted R2: 0.5759 (Figure 13). 

The results from a binomial regression model showed that anemia was independent of 

parasitemia assessed by PCR using bone marrow samples as well as peripheral 

microscopic TBS results.  

4.3.1.2 Between SMA and MM 

Peripheral parasitemia between SMA group (Log10 parasitemia = 4.34 (95% CI: 4.07, 

4.61)) and MM group were similar (Log10 parasitemia = 4.35 (95% CI: 4.19, 4.52)), p-

value = 0.93. 

4.3.2 Multiplicity of infection 

4.3.2.1 Different MOI between BM and PB of the same patient 

MOI of the parasite populations in bone marrow was 3.06 (95% CL: 2.69, 3.44) and in 

peripheral blood was 3.11 (95% CL: 2.70, 3.51). There was no difference observed 

between MOI of the parasite population in these two compartments, the result was 

confirmed by a binomial regression model.  



45 
 

The difference in the number of alleles was observed in 8/47 pairs (17%) of the sample 

(from 08 patients).  

 

Figure 14. Agreement of genotyping result using bone marrow samples (MOI_BM) 

and peripheral blood samples (MOI_PB). X-axis: average MOI of 2 types of samples 

from the same patients, y-axis: the difference between MOI of 2 types of samples. 

Flower patterns: represent the number of identical results. 

In 8/8 pairs of samples, the discordant alleles (the one detected in 1 type of sample but 

was not detected in the other type sample) were minor alleles. 

4.3.2.2 MOI was not a predictor of anemia and blood transfusion 

MOI of the group of SMA was 3.12 (95%CI: 2.54, 3.70), and was not different from 

that of the MM group 3.10 (95%CI: 2.55, 3.65), p-value = 0.57 (Wilcoxon test) 

MOI of the group of patients with blood transfusion was 2.88 (95% CI: 2.33, 3.44) and 

was not different from that of the group without blood transfusion (3.17 (95% CI: 2.67, 

3.66)), p-value = 0.72. The result was also confirmed by a binomial regression model. 
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4.3.3 msp1 allele prevalence in MM and SMA 

 
Figure 15. The distribution of allele size among the groups of patients with SMA and 

MM. There was no msp1 allele that is specific for any of the level of severity of anemia. 

 

Table 15. Combination of msp1 genotypes in anemic malaria cases. 
 

Anemia  
Mild (N = 30) Severe (N = 17)  

BM (%) PB(%) BM(%) PB(%) 
K1 only 13 (44) 14 (47) 2 (12) 3 (18) 
MAD20 only 3 (10) 3 (10) 0 0 
RO33 only 1 (3) 1 (3) 2 (12) 2 (12) 
K1 + MAD20 7 (23) 7 (23) 5 (29) 3 (18) 
K1 + RO33 3 (10) 3 (10) 5 (29) 5 (29) 
MAD + RO33 0 0 0 0 
K1 + MAD20 + RO33 3 (10) 2 (7) 3 (18) 4 (23) 
Total 30 (100) 30 (100) 17 (100) 17 (100) 
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5 DISCUSSION 

5.1 RDTs are excellent source of DNA for large scale investigational studies 

Archived RDTs are a reliable source of DNA for Realtime PCR and the amplification 

success rate is comparable to that achieved from filter paper (27,41). PCR using DNA 

extracted from both sources could detect Plasmodium parasites at as low density as 68 

parasites/mL. The yield of DNA recovered may vary among different designs of RDT. 

Lower DNA yield was reported for RDT types that have a plastic cover on top of the 

nitrocellulose strip (40). The limit of detection and success rate of molecular assays 

using DNA extracted from RDT also rely on the extraction methodology (41) and, 

better result was achieved by using commercialized column-based kits. Besides, 

absolute quantification of malaria parasites using archived RDT samples is possible, 

which expands the contribution of RDT to the success of field studies. However, the 

accuracy of the quantification process can be influenced by the ununiformed blood 

volume spotted on RDT (69). The extrapolated parasitemia in this work, therefore, 

served only the analyses with the assumption that blood volumes on every RDT were 

identical (both on the field RDT and controls). The storage duration (within 6 months at 

room ambient) of archived RDTs did not interfere with either DNA quality or the 

amplification success rate (27).  

The sensitivity and specificity of quantitative real-time PCR which targets 18S genes 

(especially multiple copy genes as the approach used in this thesis) were demonstrated 

to be higher compared to that of other conventional methods. Additionally, parasite 

density in uncomplicated and asymptomatic P. falciparum parasitemia is usually low 

and is often undetectable by microscopy. Therefore, the amplification success rates of 

msp1 genotyping PCR and Pfcrt (single-copy gene) genotyping PCR are often relatively 

lower than that of our 18S-targeted real-time PCR.  

RDTs are used to detect parasite-specific antigens (hrp2, lactate dehydrogenase and 

aldolase) which were demonstrated to circulate in human blood even after parasites are 

removed, therefore, RDT may still show a positive result in some transient infections 

for days after parasite clearance. That reason, together with the absence of negative 

RTD in the analyses may explain the amplification failure rates observed in this work. 
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In line with results from previously published work, we demonstrated that being able to 

provide a diagnosis in minutes and serve as a source of DNA for molecular testing, 

malaria RDTs could potentially represent the key of large scale retrospective analyses of 

parasite populations (27).  

5.2 The pattern of parasitemia in study populations in Gabon 

Age and exposure to malaria parasites are described as two major factors that define the 

risk of developing parasitemia and illness. Both age and exposure to malaria were found 

to induce and regulate the host immunity to malaria. When analyzing the effect of each 

factor independently on the immune response to the first malaria episode between 

children and naïve adults, the result surprisingly showed that the effect of age alone was 

small, and the main determinant was malaria exposure (70). Often, these two factors 

correlate, especially in malaria-endemic regions, therefore, higher parasitemia is 

observed in children more often than in adults (71). 

In children aged from 9 months to 5 years, results from TBS has revealed that, except 

for immature gametocytes density and prevalence, asexual and matured parasite density 

in bone marrow samples and peripheral blood was similar (15). Since TBS from bone 

marrow samples were not made in this study, we analyzed Ct-values from the qPCR 

results to compare the DNA load between samples. The extrapolation from Ct-values to 

parasitemia in bone marrow might result in an imprecise estimation because most of the 

mature parasites e.g. trophozoites and schizonts are accumulated in bone marrow (15), 

each of them contains often more than one genome. By PCR, the parasite DNA 

concentration (regardless of the stage of the parasite, represented by Ct-values) in 

peripheral blood was revealed to be slightly higher than that in bone marrow samples 

(Figure 12).  

The comparison might be additionally biased due to the fluctuation of peripheral 

parasitemia. In fact, parasites at mature stages and gametocytes were found in bone 

marrow while absent in the periphery as described in a case report (72). In our study, the 

number of asexual parasite count in TBS partly but significantly correlates with the Ct-

values from PCR using peripheral blood as well as bone marrow samples.  

In line with results from the previous study which emphasized the role of lysis of non-

parasitized RBC in the pathogenesis of malarial anemia (26), in this study population, 

peripheral parasitemia (from TBS reading) and Ct-values of PCR using bone marrow 
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samples are not predictors of severity of anemia. That implies that admission 

parasitemia is a poor predictor of malarial anemia and, suggests to further look into the 

other characteristics of the infection e.g. parasite diversity. 

5.3 msp1 genotyping revealed high diversity of P. falciparum parasite in Gabon 

5.3.1 Automated CE enhances the resolution of conventional-PCR-based 

genotyping. 

Approaches used to estimate the diversity of the malaria parasite populations are still 

basing on conventional PCR, and the ones targeting the length-polymorphic genes have 

been commonly used. The performance of these approaches relies mainly on the 

resolution of the sizing system and could be enhanced by using capillary electrophoresis 

(27).  

Our study was the first in Lambaréné – a field site of numbers of malaria-related trials – 

to use QIAxcel Advanced System – the high resolution, automated capillary gel 

electrophoresis to analyze the population genetic diversity of P. falciparum (27). This 

system provides a high discriminatory power (three base-pairs difference) and is able to 

detect up to 11 alleles in one infection. Such an automated system allows for sizing 

analysis of batches of 96 samples in one run. The outcome could be used for different 

analyses in order to characterize the malaria parasite, including the length of the 

amplicons, identification of major and minor alleles, and the relative proportion of each 

allele. Despite a lower resolution of this system compared to that of sequencers when 

genotyping short tandem repeats (microsatellites) (73,74), this system could be a part of 

a field-deployable approach for genotyping other marker genes (like msp genes) with 

higher accuracy compared to conventional gel electrophoresis. 

5.3.2 Parasite diversity in uncomplicated malaria and asymptomatic P. 

falciparum parasitemia 

P. falciparum merozoite surface protein 1 (MSP1) involves the invasion process of 

these parasites into the human erythrocytes. Studying the polymorphism and the 

fluctuation in the diversity of this important gene in malaria-endemic areas may help 

understanding selection pressure. Indeed, patterns of the multiplicity of malaria 

infections were shown across age groups and geographic regions, thus, a high 

polymorphism of the msp1 gene in the studied population has been recorded (27).  
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The population MOI was 2.6 (2.0 for Lambaréné and 2.8 for Fougamou and rural areas), 

which is in line with results from recent reports (75). That implies the decrease in the 

complexity of malaria infection as compared to what was observed in 2000 (76) – 

before ACTs became the first-line therapy.  

Immunity against malaria is acquired after exposure to P. falciparum parasites, 

therefore, it relates to transmission intensity and age of individuals. As a result, parasite 

diversity is often lower in adults than in children. After correction for the effect of age, 

the result showed a significant correlation of difference in the geographic location on 

MOI. In regions with higher economic status, it is possible that drug pressures can cause 

fluctuation of parasite clones in patients, results in disappearance or reappearance of 

some parasite strains (76).  

The MSP1, particularly transcription of msp1/K1 and MAD20 gene families have been 

highlighted as potential targets for P. falciparum vaccine development (77). In this 

study, the prevalence of msp1/K1 was predominant, followed by msp1/RO33 and 

msp1/MAD20 families. However, there were no specific alleles for any region or age. 

This result is in line with that from other studies conducted in different lab settings and 

geographic regions (76,78). P. falciparum allele size of around 240 bp was the most 

prevalent (26.7%), that size is similar to the length of the msp1 gene of strain NF54 (241 

bp) – which is the parasite strain used in some clinical trials in Lambaréné (27).  

5.3.3 P. falciparum diversity in BM and PB of patients with malarial anemia 

At the population level, similar to what is observed in the placenta and umbilical cord 

blood (20), MOI of the parasite in bone marrow is similar to that in peripheral blood.  

In severe malaria patients, a higher prevalence of msp1/MAD20 alleles (10) or msp1/K1 

alleles (9) was observed. In our study, the prevalence of P. falciparum msp1/K1 and 

msp1/K20 alleles in monoclonal infections was higher in mild and non-anemic malaria 

group. There was no association between the prevalence of other alleles and anemia. In 

addition, there is no specific allele size for severe malarial anemia. Prevalence of msp1 

alleles in the population and their contribution to the severe form of malaria may change 

over time due to selection pressure. Causing mild and asymptomatic malaria may be a 

useful strategy for the malaria parasite to improve fitness costs since mild and 

asymptomatic malaria cases are demonstrated to be the main source of transmission. 

The difference in the prevalence of some alleles of msp1 genes in this study population 
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over time (our result compared with the result of Kun et al 1998) may reflect the 

ongoing change within the parasite population which is probably due to selection 

pressure. The finding highlighted the need for the frequent monitoring of malaria 

parasite in endemic regions. 

In a significant proportion of patients (17%), the number of parasite strains identified in 

the bone marrow differs from that in peripheral blood. The difference in the observed 

MOI between peripheral blood and bone marrow might be the result of the within-host 

competition (11) – in which, resource competition may lead to the suppression of some 

minor parasite strains – or the interaction between parasite and host’s immunity. 

The limitations of this analysis were: first, the small sample size since the initial study 

design was not for this purpose and second, the effect of the geographic factor was not 

corrected as in the work with uncomplicated malaria and asymptomatic P. falciparum 

parasitemia we have demonstrated that the difference in MOI could also be observed in 

different regions and age groups. 

5.4 A minimal SNP barcode for genotyping P. falciparum in Gabon 

The primary goal of this work was to validate the established SNP “barcode” for 

genotyping P. falciparum in our lab setting and optimize the barcode to a number of 

SNPs that are specific for the malaria parasite in our studied area and allow high 

throughput.  

Regardless of the genotyping method, the distinction between new infections and 

recrudescence remains difficult, especially in highly complex infections. Although 

minor strain which consists of a negligible proportion of total parasite load should not 

affect the treatment outcome, the definition or the cut-off values by which the minor 

strains are defined is still not well characterized. It depends on the techniques used and 

the author’s preference. The most general cut-off is around 20% for conventional 

methods (79) (parasite strain consists lower than 20% of the overall parasite load should 

be considered negligible) or could be 10% for more advanced methods (80). With SNP 

barcoding assay, the genotyping result of samples that contain 1 or 2 parasites strains 

was displayed in colors in a scatter plot, therefore the interpretation can be done with 

bare eyes. However, in poly-genomic infections, where the difference in parasite density 

between major and minor alleles is large (minor alleles density are less than ~12.5% of 

the overall parasite load), the identification of alleles becomes more complicated. One 
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drawback of this genotyping approach is the genotype calling process for complex 

infections (when both minor and major alleles are detected in the greater number of 

SNP) since the rearrangement and estimation of all the SNP result relies (if exists) on 

analyses that use many assumptions (81).  

The entire barcode was developed using sequence data from 18 isolates collected from 

different endemic regions, 5 out of these 18 were from Africa (82). The barcode is 

robust when using 24 most polymorphic SNPs that are able to distinguish parasites with 

high predictive accuracy. However, using all 24 SNPs for the work in one geographic 

region is not necessary. To this point, a smaller but powerful barcode is of our interest. 

Here, we described a minimal barcode consisting of 9 SNPs that showed a similar 

discriminatory power to that of the entire 24-SNPs barcode. The amplification success 

rate was shown to be different between the SNP assays, even when applied to the same 

sample, therefore the sensitivity of the whole barcode assays should not be represented 

by the lower limit of detection of any of the 24 SNP assays. In addition, besides the 

ability to give results after a one-step-PCR and without using any sizing or imaging 

analysis, the SNP barcoding assays were shown to have comparable performance in 

distinguishing parasite strains to msp method (56). More important, minimizing the 

number of SNP assays can reduce the cost of this method (56).  

Another possible application of this method could be to differentiate parasite clones 

used to test the efficacy of vaccine candidates against heterozygous challenges since 

identified strains could be distinguished by using one or two SNPs. 

This work had some limitations. First, the number of samples used to validate and 

analyze the discriminatory power of the barcode was small. Second, the number of SNP 

of the minimal barcode remains unsatisfactorily high (9 SNPs). Therefore, validating 

the barcode assay using a bigger number of samples will potentially result in a better 

selection of SNP assays.  

5.5 Prevalence of CQ-resistant haplotypes in Gabon remains high 

In Gabon, chloroquine has been replaced by artemisinin-based combination therapies 

(ACTs) in 2005, these drug combinations became the first-line regimens for the 

treatment of uncomplicated malaria since then. Before this change, the prevalence of the 

CQ resistance-related genotypes was close to 100%. A few years after the change in 

national guidelines, several studies have documented a regional reduction in the 
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prevalence of CQ-resistant alleles (83,84). Another study has documented a low 

prevalence of the CQ-susceptible wild-type haplotype CVMNK in samples collected 

during 2011 –  2014 (85). A recent study conducted in rural Gabon has concluded a 

high (89%) overall prevalence of CQR genotypes (3). Although the use of amodiaquine 

was connected with the persistence of a high prevalence of CQR genotypes, strong 

evidence is scarce.  

The prevalence of CQ-resistant haplotypes in Lambaréné was found to be lower than 

that in Fougamou and rural areas. The prevalence of CQ-resistant haplotypes is 

independent of age. All of the isolates carry CQ-resistant haplotype CVIET (triple 

mutation at codons 74, 75 and 76), haplotype SVMNT (double mutation at codons 72 

and 76) was not found (27). These findings highlight the necessity of further 

investigations to better understand the mechanism behind the persistence of CQ 

resistance. 

5.6 Conclusion 

Rapid diagnostic tests are the multifunctional tool for field studies on P. falciparum. 

Besides the great contribution to the success of treatment and management of malaria 

by giving the prompt diagnosis, RDTs are also a good source of DNA for molecular 

assays that aim at genotyping malaria parasites and possibly parasite quantification. The 

resolution of the conventional msp1-gene-targeted PCR-based genotyping method was 

enhanced by CE on an affordable and automated system. The minimal but specific SNP 

“barcoding” assays for discrimination of  P. falciparum strains from Gabon has been 

established. Using these tools, high diversity and prevalence of CQ-resistant haplotypes 

of P. falciparum are observed in Lambaréné – Gabon, and proximity. Additionally, the 

parasite population structure has been shown to be different across age groups, 

geographical regions and occasionally between peripheral blood and bone marrow of 

one individual, however, the association between parasite diversity and severity of 

malarial anemia was not found.  
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SUMMARY 

Understanding the population structure of malaria parasites and the host-parasite 

interaction is of fundamental interest and may help in the development of improved 

anti-malarial interventions. This thesis contributes to the improvement of procedures 

and methods for the characterization of the malaria parasite and reports current 

epidemiological characteristics of Plasmodium falciparum populations in Lambaréné, 

Gabon.  

The result of this thesis encourages the use of rapid diagnostic tests (RDT) not only as a 

diagnostic tool but also as a source of DNA that can be subsequently used for molecular 

assays to assess parasite diversity, species distribution,  and genetic polymorphisms 

(e.g. mutations associated with drug resistance) as well as diagnostic performance of 

RDTs on large scale. In addition, performance and resolution of a genotyping method 

based on size polymorphisms of the msp1 gene, by using conventional polymerase 

chain reaction (PCR) followed by automated capillary electrophoresis (CE) (QIAxcel 

system, Qiagen) has been improved. Furthermore, in order to overcome the 

comparatively low sensitivity of conventional PCR, a barcoding assay with 9 single 

nucleotide polymorphisms (SNPs) for genotyping of low-density P. falciparum 

infection by Taqman-probe-based end-point PCR was adapted from a published 

method. The alternative use of these two approaches will help to improve the accuracy 

of parasite genotyping, covering different types of samples, applications, and lab 

settings. 

The improved techniques were applied in two case scenarios: i) an epidemiological 

survey and ii) to assess parasite population structure in different compartments of the 

body.  

It was observed that in Lambaréné and surroundings, the multiplicity of infection (MOI) 

and prevalence of chloroquine-resistance-associated mutations remain high; 

particularly, in the most rural areas and despite a change in malaria control 

recommendations, including withdrawal of chloroquine from the market. Decreasing 

MOIs in central areas of Lambaréné may be the result of urbanization and its effect on 

transmission intensity and spread of drug resistance, which results in less diverse 

malaria parasite populations.  
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Within its human host, malaria parasite population structure in both severely anemic 

and control patients was shown to be similar between bone marrow and peripheral 

blood. If the differences observed in some patients is of pathophysiological importance 

remains to be further investigated.  

My thesis highlights the crucial role of adequate genotyping approaches in the 

development of malaria eradication tools, identifies a commonly available source of 

DNA for retrospective studies and suggests an improvement in the guidelines for 

sample collection and molecular analyses for studying malaria in endemic regions.  
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ZUSAMMENFASSUNG 

Zur Entwicklung und Verbesserung der Behandlung von Malaria ist es von großem 

Interesse die Populationsstruktur des Parasiten und die Wirt-Parasit Mechanismen zu 

verstehen. Diese Dissertation trägt dazu bei, bisherige Methoden zur Charakterisierung 

des Malariaparasiten zu verbessern und anzuwenden um aktuelle epidemiologischen 

Daten zu Plasmodium falciparum Populationen in Lambaréné, Gabun zu gewinnen.  

Die Ergebnisse dieser Arbeit zeigen, dass diagnostische Schnelltests (RDT) nicht nur 

zur unmittelbaren Diagnose, sondern auch als eine Quelle zur Isolierung von DNA 

geeignet sind. Diese kann für die Untersuchung der Verteilung unterschiedlicher 

Parasitenspezies und -stämme mittels molekularbiologischer Verfahren genutzt werden. 

Des Weiteren können die diagnostische Leistungsfähigkeit von RDTs und genetische 

Polymorphismen, wie z.B. Mutationen zu Resistenzen analysiert werden. Außerdem 

konnte die Methode der Genotypisierung des msp1 Gens anhand von 

Größenpolymorphismen verbessert werden. Dazu wurde eine konventionelle 

Polymerase Ketten Reaktion (PCR) durchgeführt und das PCR-Produkt anschließend 

mittels automatisierter Kapillarelektrophorese (QIAxcel System Qiagen) aufgetrennt. 

Um Detektionsprobleme durch die verhältnismäßig geringe Sensitivität der 

konventionellen PCR zu überwinden wurde ein Barcode-Assay mit 9 SNPs (single 

nucleotide polymorphism) zur Genotypisierung von Proben mit geringer P. falciparum-

Parasitämie auf Basis eines kommerziell erhältlichen Assays entwickelt und dessen 

Leistungsfähigkeit überprüft. Die so verbesserte Methodik erhöht die Genauigkeit der 

Genotypisierung, auch bei unterschiedlichen Arten von Probenmaterial, Anwendungen 

und Laborvoraussetzungen. Die im Rahmen der Dissertation etablierten Techniken 

wurden an zwei verschiedenen Kohorten angewendet: 1) Im Rahmen einer 

epidemiologischen Studie und 2) zur Untersuchung der Struktur von 

Parasitenpopulationen in verschiedenen Kompartimenten des Körpers.  

In Lambaréné und Umgebung ist die beobachtete Multiplizität der Infektion (MOI) und 

das Auftreten von mit Chloroquinresistenz assoziierten Mutationen immer noch hoch; 

insbesondere in den ländlichen Gegenden und trotz der aktuellen Empfehlungen zur 

Malariakontrolle, die unter anderem die Anwendung von Chloroquin verbieten. Die 

Reduktion der Anzahl von Mehrfachinfektionen in städtischen Gebieten Lambarénés, 

können das Ergebnis von Urbanisierung sein, die einen Effekte auf 
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Übertragungsintensität und Verbreitung von Resistenzbildung haben und mit der 

Abnahme der Diversität von Infektionen assoziiert ist.  

Die Untersuchung von zwei Kompartimenten (peripheres Blut und Knochenmark) des 

menschlichen Wirts zeigte, dass die Struktur der Parasitenpopulationen ähnlich ist und 

sich in anämischen nicht wesentlich von  Kontrollpatienten unterscheidet. Ob die 

Unterschiede, die in einzelnen Patienten beobachtet wurden, von pathophysiologischer 

Relevanz sind wird in weitergehenden Arbeiten untersucht werden.           

Meine Arbeit stellt die Wichtigkeit adäquater, gut etablierter und validierter Methoden 

zur Genotypisierung von Malariaparasiten dar und zeigt neue Quellen zur Gewinnung 

von DNA für retrospektive Studien auf. Dies ist entscheidend für die Entwicklung neuer 

Interventionen zur Kontrolle der Malaria. Außerdem lassen sich anhand der Arbeit 

Verbesserung zu den bisherigen Empfehlungen zur Probengewinnung und der 

molekularen Analyse zur Untersuchung von Malaria in endemischen Gebieten ableiten. 
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