
 

 

 

Universitätsklinik für Thorax-, Herz- und Gefäßchirurgie 

Thorax-, Herz- und Gefäßchirurgie 

 

 

 

Absorbable Zinc-based alloy for craniomaxillofacial 
osteosynthesis implants 

 

 
Thesis submitted as requirement to fulfill the degree 

Doctor of Philosophy (Ph.D.) 

 

 
at the 

Faculty of Medicine 
Eberhard Karls University 

Tübingen 
 
 

by 
 

Li, Ping 
 

2020 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dean:    Professor Dr. I. B. Autenrieth 

First reviewer:  Professor Dr. J. Geis-Gerstorfer 
Second reviewer:  Professor Dr. K. Schenke-Layland 
 
 
Date of oral examination: 19.12.2019 

 



 

 

 

Table of Contents 
 

1. Introduction .................................................................................................. 1 

1.1. Craniomaxillofacial osteosynthesis implants ............................................ 1 

1.2. Absorbable osteosynthesis materials ....................................................... 3 

1.3. Limitations at Zn-based CMF osteosynthesis implants ............................ 6 

1.4. Objectives ................................................................................................ 9 

2. Study I: Mechanical characteristics, in vitro degradation, cytotoxicity, and 

antibacterial evaluation of Zn-4.0Ag alloy as a biodegradable material ..... 11 

2.1. Introduction ............................................................................................ 11 

2.2. Materials and methods ........................................................................... 13 

2.3. Results and discussion .......................................................................... 18 

2.4. Conclusions............................................................................................ 30 

3. Study II: Selection of extraction medium influences cytotoxicity of Zinc and 

its alloys ..................................................................................................... 32 

3.1. Introduction ............................................................................................ 32 

3.2. Materials and methods ........................................................................... 35 

3.3. Results ................................................................................................... 41 

3.4. Discussion .............................................................................................. 48 

3.5. Conclusions............................................................................................ 55 

4. Study III: Response of human periosteal cells to degradation products of 

zinc and its alloy ......................................................................................... 56 

4.1. Introduction ............................................................................................ 57 

4.2. Materials and methods ........................................................................... 59 

4.3. Results ................................................................................................... 65 

4.4. Discussion .............................................................................................. 74 

4.5. Conclusions............................................................................................ 79 

5. Discussion .................................................................................................. 81 

5.1. Evaluation of cytotoxicity ........................................................................ 81 

5.2. Determination of degradation behavior .................................................. 84 

5.3. Investigation of biofunctionality features ................................................ 87 



 

 

 

6. Summary .................................................................................................... 91 

7. German summary ...................................................................................... 92 

8. Bibliography ............................................................................................... 93 

9. Declaration of contribution of others ........................................................ 107 

Acknowledgements ........................................................................................ 110 

Curriculum vitae ............................................................................................. 111 

  



1. Introduction 

1 

 

1. Introduction 

1.1. Craniomaxillofacial osteosynthesis implants 

1.1.1. Osteosynthesis implants for craniomaxillofacial applications 

Bone fracture is a significant challenge for health, affecting hundreds of millions 

of people worldwide. At least tens of millions of fractures occur worldwide 

annually, at which approximately 20% of cases were treated with rigid internal 

fixation with osteosynthesis implants, such as plates, screws and meshes [1, 2]. 

The demand for osteosynthesis implants is closely linked to the increasing cases 

of bone fractures caused by accidents or sports injuries [3, 4]. 

For bone fracture treatment, the principle of osteosynthesis is the anatomical 

repair and its functional restoration. Osteosynthesis implants are widely used for 

bone fixation, to fix and support the bone fragments and induce tissue 

remodelling and healing [1, 2]. Craniomaxillofacial (CMF) osteosynthesis 

implants, mainly including mini-plates, mini-screws and meshes, are frequently 

used in craniomaxillofacial surgery, such as internal fixation of fractures, 

orthognathic surgery and osteotomies [5, 6]. To achieve the function, the basic 

requirements of osteosynthesis materials have to meet are excellent 

biocompatibility and biomechanical properties, resistance to pressure load and 

deformation. 

1.1.2. Main issues of bioinert implants 

To date, bioinert osteosynthesis implants are commonly manufactured from 

titanium (Ti) and its alloys mainly due to excellent biocompatibility and superior 

strength [7, 8]. Nonetheless, bioinert materials are facing several disadvantages 

and issues for osteosynthesis applications. 

Firstly, the strength mismatch between bone and metallic implant might cause 

stress shielding, leading to re-fracture especially in osteoporotic patients [9]. As 

listed in Table 1.1, the inhomogeneous stress transfer can be attributed to the 

higher Young’s modulus of metallic materials (i.e. Ti, 316L SS and Co-Cr-Mo alloy) 

compared with that of the cortical bone, which also affects new bone growth and 
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remodeling [10, 11]. Furthermore, several adverse side effects and postoperative 

complications for bioinert materials have been documented after long-term 

observation, such as the release of toxic metallic ions and particles, foreign body 

host response, interference with diagnostic imaging, metal hypersensitivity and 

thermal conductivity [12-14]. In addition, the clinical use of bioinert osteosynthesis 

implants is restricted for pediatric cases because they can lead to the possibility 

of growth disturbance [5]. Finally, the additional surgery to remove these implants 

may lead to postoperative complications and potential risks, including infection, 

re-fracture, neurovascular injury, etc. [15, 16]. Therefore, to overcome the 

disadvantages above, the development and investigation of novel absorbable 

materials have gained increasing attention. 

Table 1.1. Mechanical properties of bone tissue and osteosynthesis materials. 

Tissue/Materials 
YS 

(MPa) 
UTS 

(MPa) 
Elongation 

(%) 
Modulus 
(GPa) 

Ref. 

Cortical bone - 164-240 1.0-2.1 7-30 [2, 8] 
Bioinert matatials 
As-rolled pure Ti  483 550 15 114 [17] 
As cast Ti-6Al-4V  834 937 19 114 [18] 
316L SS 190 490 40 193 [19] 

Co-Cr-Mo alloy 
500-
1500 

900-
1540 

- 240 [8] 

Bioresorbable polymer 

PGA - 
60.0-
99.7 

1.5-20 - [20] 

PLA - 48-53 30-240 1.9-2.4 [8, 21] 
Absorbable metals 
As-cast pure Mg 20 86 13 41 [8, 19] 
WE43 195.2 280.6 10.3 - [22] 
Annealed pure Fe 140 205 25.5 - [23] 
As-cast pure Zn 10 18 0.3  [24] 
As-rolled pure Zn 28 45 5.6 - [24] 
As-extruded pure Zn 32 61 3.5  [24] 
Minimum requirements of 
orthopedic implant 

230 300 15-18 7-30 [24, 25] 
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1.2. Absorbable osteosynthesis materials 

1.2.1. Bioresorbable polymers 

Currently, absorbable CMF osteosynthesis implants fabricated from polymeric 

materials, mainly polyglycolic acid (PGA) and polylactic acid (PLA) or their 

copolymers, have been used in the craniomaxillofacial surgery [5]. These 

polymers come from the poly (α-hydroxy acids) (HOCHR-COOH) family. The 

clinical application of biodegradable polymers as osteosynthesis implants was 

early reported in maxillofacial surgery in the 1970s [26, 27]. To date, 

bioresorbable polymeric osteosynthesis implants, such as mini-plates and screws, 

are used mainly in pediatric patients or in non-loading areas with 

craniomaxillofacial bone fracture, mainly because the bioresorbable materials do 

not hinder the facial growth [27]. Nonetheless, current polymeric materials are 

still considered insufficient for most routine clinical applications. 

In fact, principal limitations of polymeric osteosynthesis implants mainly include 

the poor mechanical strength, acidic degradation products and foreign body 

reactions, etc. [5, 27]. As shown in Table 1.1, it has been observed that the 

mechanical properties of bioresorbable polymers are significantly lower than 

those of metallic materials, indicating that the polymeric implants are insufficient 

for loading applications  [2]. Additionally, the ideal degradation process of 

implants demands that the degradation products can completely disappear in vivo 

and are replaced by the respective tissues. However, previous studies reported 

that polymeric implants might not completely be replaced by the bone tissue [28, 

29]. More importantly, a multicenter randomized controlled trial showed that the 

performance of biodegradable polymeric implants is inferior compared with that 

of titanium implants, causing high removal rates [30]. These disadvantages 

impede the wide application of polymeric osteosynthesis implants. 

1.2.2. Absorbable metals 

The term of absorbable metals (also named biodegradable metals) refers to 

metals that degrade safely within the body, mainly including magnesium (Mg), 

iron (Fe) zinc (Zn) and their alloys [7, 8, 19, 23, 31]. The generalized degradation 

mechanism is through a corrosion process in the specific physiological 
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environment. As depicted in Figure 1.1, an absorbable metal contact with human 

body fluid can trigger the anodic reaction. Simultaneously, the generated 

electrons can be consumed by the cathodic reaction, corresponding to the water 

reduction for Mg-based alloys and the dissolved oxygen reduction for Zn-based 

alloys and Fe-based alloys. A degradation product layer (Metal(OH)n) is formed 

on the surface through the reaction with the release of metal ions and hydroxide. 

With progressing degradation time, phosphate- and carbonate- based apatite can 

be further deposited onto the Metal(OH)n layer. In a physiological environment, 

the high concentration of chloride ions causes the breakdown of the degradation 

layers and accelerates the degradation process. According to the size of 

degradation particles, macrophages and/or fibrous tissue might enclose these 

degradation particles until the metal is completely degraded [7, 23]. 

  
Figure 1.1. Schematic diagram of the degradation mechanism of absorbable metals 
(own image). 

1.2.2.1. Magnesium-based osteosynthesis implants 

To date, research on the development of absorbable CMF osteosynthesis metals 
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has focused mostly on pure Mg and its alloys as a result of the excellent 

biocompatibility and mechanical properties [7, 8, 32]. As the main degradation 

product released from Mg-based alloys, the Mg ion is an essential mineral in the 

human body [7]. The elastic modulus of pure Mg is close to that of human cortical 

bone, probably preventing stress shielding, as shown in Table 1.1 [8, 19]. In fact, 

Mg-based osteosynthesis implants have been first proposed in 1900 [33]. 

However, lack of optimized corrosion behavior leads to rapid degradation of Mg-

based implants along with extensive subcutaneous gas cavities, causing local 

swelling and pain, which limited widely application until much later [33]. Recently, 

the corrosion resistance of Mg and its alloys could be increased by refinement 

technology. Although commercially available Mg-based osteosynthesis system 

has been approved, large-scale controlled clinical pilot trials of Mg alloys are still 

under way [34]. For the CMF applications reported, magnesium-based alloy 

osteosynthesis implants have been used in craniomaxillofacial surgery [35, 36]. 

Nevertheless, the intrinsic corrosion characteristics of Mg and its alloys provoke 

water reduction in a physiological environment (Figure 1.1), probably leading to 

the extensive accumulation of hydrogen. Accordingly, subcutaneous gas cavities 

might cause wound healing disorders. 

1.2.2.2. Iron-based osteosynthesis implants 

Pure Fe and its alloys exhibit high mechanical strength, as listed in Table 1.1 [23]. 

Importantly, ionic Fe is a human essential element and the main component of 

metallic proteins [37]. An early study reported the results of iron-based stents 

implanted into descending aortas of rabbits. No local and systemic toxicity was 

observed, suggesting an excellent biocompatibility [38]. Nevertheless, pure Fe 

and its alloys implanted into the femur of rats demonstrated that the implants 

degrade too slowly. Degradation products are observed for a long time in healed 

tissue, indicating that Fe-based osteosynthesis implants might be questionable 

[39]. Herein, numerous studies focused on accelerating the Fe/Fe alloy 

degradation process [40-42]. 

1.2.2.3. Zinc-based osteosynthesis implants 

Recently, Zn-based alloys have been considered as osteosynthesis materials 
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mainly due to the excellent in vivo biocompatibility, suitable mechanical properties 

and appropriate degradation behavior [43-47], Admittedly, ionic Zn has been 

described as the ‘calcium of the twenty-first century’ due to its significant 

functional roles in physiological and biological systems [48]. Also, Zn ions have a 

dual mode of action on bone formation and resorption through stimulating 

osteoblastogenesis and suppressing osteoclastogenesis [49]. In principle, Zn has 

a moderate corrosion behavior between those of Mg and Fe because the 

standard corrosion potential of Zn (-0.76 VSCE) is between Mg (-2.37 VSCE) and 

Fe (−0.44 VSCE) [23, 50, 51]. Importantly, a recent study reported that pure Zn 

stent was implanted into rabbit abdominal aorta for one-year, and Zn exhibited 

steady degradation behavior and its degradation products might be safely 

metabolized [52]. Similarly, Zn-based alloy pins implanted in mouse distal femurs 

can promote new bone formation [53]. Therefore, these advantages make Zn 

alloys potential materials as CMF osteosynthesis implants. 

1.3. Limitations at Zn-based CMF osteosynthesis implants 

1.3.1. Ideal criteria for CMF osteosynthesis materials 

Biocompatibility, biomechanics, biodegradability and biofunctionalization must be 

taken into consideration for the ideal osteosynthesis materials, as illustrated in 

Figure 1.2. Without a doubt, biocompatibility is an essential prerequisite for 

implant materials on cellular as well as tissue level. For bone applications, 

potential materials need to have sufficient strength to maintain mechanical 

support in the reconstruction process. For a biodegradable material, the 

candidate should degrade safely within the body and gradually lose its 

mechanical integrity while the bone tissue is regenerated. Ideally, released 

degradation products not only induce bone tissue formation but also prevent 

bacterial infection. 
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Figure 1.2. Key properties for ideal craniomaxillofacial osteosynthesis materials (own 
image). 

Considering the defined ideal criteria, Zn is not without its issues. Herein, Zn and 

its alloys as CMF osteosynthesis materials have been questionable, mainly 

including inconsistent biocompatibility results, relatively low mechanical 

properties, uncertain degradation behavior and ambiguous biofunctionalization. 

1.3.2. Biocompatibility 

Excellent biocompatibility is an essential prerequisite of Zn-based materials for 

clinical applications. Numerous previous studies demonstrated that pure Zn and 

its alloys implanted in vivo indicated no obvious local and systemic toxicity, the 

implantation sites included abdominal aorta [52, 54-63], subcutaneous [64-66] 

and bony environment [45, 53]. For the in vitro evaluation, the standardized 

cytotoxicity test, which evaluates the ability of a biomaterial to destroy living cells, 

is used to predict and screen the Zn biocompatibility. In these tests, an extract 

test is most frequently used to assess the toxicity of released degradation 

products [67]. Nevertheless, there are conflicting reports on the cytotoxicity 

results of Zn and its alloys. Obvious toxic effects of Zn and Zn-based alloys were 

observed in undiluted extracts [24, 68]. Thus, the inconsistent results between in 

vivo and in vitro biocompatibility tests can interfere with the fast development of 

novel Zn and its alloys. 
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1.3.3. Biomechanics 

Accurate mechanical property requirements specific for CMF osteosynthesis 

implants are still lacking, due to the diversity of clinical cases. Whereas, as a 

reference for craniomaxillofacial implants, absorbable orthopedic implants need 

to possess the minimum mechanical requirements of yield strength > 230 MPa, 

tensile strength > 300 MPa, and an elongation > 15-18% [24, 25]. As shown in 

Table 1.1, mechanical strength of pure Zn is lower than that of metallic implants 

and part of polymeric implants. It is indicated that relatively poor mechanical 

properties of Zn are insufficient to the biomechanics requirements of CMF 

osteosynthesis implants. Therefore, the first step of development and research 

of materials is to improve the mechanical strength of pure Zn, in order to meet 

the requirement of clinical application. In our previous work, a Zn-4Ag alloy and 

a Zn-2Ag-1.8Au-0.2V (wt%) alloy with high mechanical properties was developed 

and fabricated, which is sufficient for most clinical applications [69]. 

1.3.4. Biodegradability 

Biodegradability is a critical criterion for CMF osteosynthesis implants, which 

directly affects mechanical strength and even biocompatibility. An appropriate 

degradation behavior of implants determines the maintenance of mechanical 

integrity, and degradation products can directly influence the bone healing and 

remodeling [8, 23]. On the one hand, although previous outstanding studies have 

been performed to investigate the degradation mechanism of Zn in vivo, several 

aspects are not yet completely understood. For example, for osteosynthesis 

applications, it is uncertain whether the in vivo degradation rates of Zn-based 

alloys are suitable for the ideal degradation rates, e.g. 0.5 mm/year mentioned by 

[24]. On the other hand, buffered salt solutions like Hank's balanced salt solution 

have been most commonly used in previous in vitro corrosion tests, which can 

mimic in vivo physiological environment to only some extent. The influence of 

organic components such as serum on degradation behavior of Zn and its alloys 

remain obscure. 

1.3.5. Biofunctionalization 

Post-operative infection rates are up to 6.8% after CMF osteosynthesis 
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implantation [70]. Antibacterial properties of osteosynthesis implant materials 

could prevent post-operative infections. Theoretically, some metal ions such as 

Ag, Cu and Zn have been considered as antibacterial agents [71, 72]. Previous 

studies demonstrated that Zn-based alloys had effective antibacterial activity 

towards Staphylococcus aureus (S. aureus) [73, 74]. Nevertheless, an intraoral 

surgical approach is the increasing trend for treatment in maxillofacial trauma, 

indicating an increase in the risk with oral bacteria [75]. In other words, the 

antibacterial properties of a craniomaxillofacial biomaterial must be effective 

against related microorganisms. For most transcutaneous surgery, the organisms 

most likely to cause infection are S. aureus from the skin. However, for transoral 

maxillofacial surgery, the most microorganisms include Streptococci, anaerobic 

Gram-positive cocci and anaerobic Gram-negative rods [76]. Herein, considering 

Zn-based alloys as CMF osteosynthesis materials, the antibacterial properties 

should be evaluated by the related microorganisms, such as Streptococcus 

gordonii. 

Osteoinductivity refers to materials promoting the new bone formation. For 

physiological function, Zn ions play a significant role in bone formation, and they 

can not only stimulate bone growth and mineralization but preserve bone mass 

as well [77]. Admittedly, zinc-containing biomaterials such as zinc-based ceramic 

biomaterials also exhibited effects to promote new bone formation. The 

osteoinductivity of released Zn ions might be attributed to the inhibition of 

osteoclasts as well as the stimulation of osteoblastic differentiation [48, 49]. In 

addition, previous studies reported that Zn-based implants can induce new bone 

formation in vivo, implying the osteoinductivity of Zn-based alloys [53, 63]. 

Nonetheless, it is noteworthy to further investigate the effect of Zn degradation 

products on the adjacent cellular response, such as periosteal cells. 

1.4. Objectives 

Pure Zn provides principally an excellent biocompatibility and suitable 

degradation behavior observed in previous studies. Nevertheless, the 

mechanical properties of pure Zn are insufficient for osteosynthesis applications. 

Previously, we tested a newly developed Zn-4wt%Ag alloy with high strength [69]. 
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Therefore, the main objectives of the cumulative thesis include: 

1. To evaluate in vitro degradation behavior, cytotoxicity and antibacterial 

properties of a novel Zn-4wt%Ag alloy with high strength (Study I). 

2. To explore the effect of fetal bovine serum (FBS) on initial in vitro degradation 

behavior and the related cytotoxicity of Zn and its alloys (Study II). 

3. To investigate the influence of the degradation products of Zn and Zn-4Ag 

alloy on cytotoxicity and osteoinduction of human periosteal cells (Study III). 
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2. Study I: Mechanical characteristics, in vitro degradation, cytotoxicity, 
and antibacterial evaluation of Zn-4.0Ag alloy as a biodegradable 
material 

The part is a reprint of the following publication: 

Ping Li, Christine Schille, Ernst Schweizer, Frank Rupp, Alexander Heiss, Claudia 

Legner, Ulrich E. Klotz, Jürgen Geis-Gerstorfer, Lutz Scheideler. Mechanical 

characteristics, in vitro degradation, cytotoxicity, and antibacterial evaluation of 

Zn-4.0 Ag alloy as a biodegradable material. International journal of molecular 

sciences, (2018) 19(3), 755. 

Abstract: 

Zn-based biodegradable metallic materials have been regarded as new potential 

biomaterials for use as biodegradable implants, mainly because of the ideal 

degradation rate compared with those of Mg-based alloys and Fe-based alloys. 

In this study, we developed and investigated a novel Zn-4 wt% Ag alloy as a 

potential biodegradable metal. A thermomechanical treatment was applied to 

refine the microstructure and, consequently, to improve the mechanical 

properties, compared to pure Zn. The yield strength (YS), ultimate tensile strength 

(UTS) and elongation of the Zn-4Ag alloy are 157 MPa, 261 MPa, and 37%, 

respectively. The corrosion rate of Zn-4Ag calculated from released Zn ions in 

DMEM extracts is approximately 10.75 ± 0.16 μg cm-2 day-1, which is higher than 

that of pure Zn. In vitro cytotoxicity tests showed that the Zn-4Ag alloy exhibits 

acceptable toxicity to L929 and Saos-2 cells, and could effectively inhibit initial 

bacteria adhesion. This study shows that the Zn-4Ag exhibits excellent 

mechanical properties, predictable degradation behavior, acceptable 

biocompatibility, and effective antibacterial properties, which make it a candidate 

biodegradable material. 

2.1. Introduction 

Biodegradable metals (BMs) are regarded as the next revolutionary metallic 

biomaterials and have become a potential alternative to permanent biomaterials 

during the last decade [23, 51, 78]. Magnesium, iron, zinc and their related alloys 
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have been intensively investigated for their potential as BMs. However, the rapid 

corrosion rate accompanied by the accumulation of hydrogen in physiological 

environment impedes the clinical application of Mg-based alloys [79, 80]. Fe-

based alloys, on the contrary, exhibit relatively slow degradation rates and 

excellent mechanical properties, but superior corrosion resistance may impede 

the desired replacement by newly formed tissue [81, 82]. 

In comparison with Mg and Fe, the standard corrosion potential of Zn (−0.762 

VSCE) is between Fe (−0.440 VSCE) and Mg (−2.372 VSCE) [23, 50, 51]. Bowen et 

al. [55] reported the biocompatibility and degradation of zinc wires implanted into 

the abdominal aorta of rats, and zinc wires exhibited moderate degradation rates 

in vivo for up to 6.5 months. Moreover, zinc is one of the essential nutrients in the 

human body, where it influences various normal physiological processes [83, 84]. 

Additionally, considering bio-safety, the recommended allowances for zinc 

element are estimated at 15 mg day-1 [23]. Besides its excellent corrosion and 

biocompatibility properties, Zn is also one of only a few metals with high magnetic 

resonance imaging compatibility, which is superior to that of Mg alloys and Fe 

alloys. The magnetic (volume) susceptibility of Zn, Mg and Fe are −15.7 × 106, 

+11.7 × 106 and +0.2 × 106, respectively [85]. Therefore, these advantages make 

Zn-based alloys promising candidates for a new generation of BMs, especially 

for use as osteosynthesis materials and cardiovascular stents [43, 55]. 

Regarding the clinical requirements, the application of pure Zn in BMs is limited 

because of its weak strength, plasticity, and hardness. It has been investigated 

that the tensile strength of pure Zn is from 10 MPa to 110 MPa, the elongation is 

0.32% to 36%, and the Vickers hardness is 38 HV1 to 39 HV1, being insufficient 

mechanical properties for most clinical applications [43, 86]. Thus, biodegradable 

Zn-based alloys with superior mechanical properties should be developed to 

meet the clinical requirements. Improvements in mechanical properties may be 

achieved by adding alloying elements and/or appropriate thermomechanical 

treatment such as extrusion, rolling, forging, annealing and so forth [87, 88]. In 

BMs, the biocompatibility of alloying elements must be carefully considered. In 

this work, Ag is proposed as an alloying element in Zn-based alloys, which could 

improve mechanical properties. According to the phase diagram (Figure 2.1) up 
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to 6 weight% Ag is solvable in Zn at temperatures of about 400 °C. As the 

solubility decreases upon cooling, ε-AgZn3 precipitates form. Thus, dislocations 

are pinned by the precipitates resulting in improved hardness and strength 

(precipitation hardening). Zn-Ag binary alloys have been investigated and Ag has 

been proven to effectively improve the mechanical properties efficiently [89]. 

Moreover, the Ag ion shows antibacterial functions and has already been used 

as alloying element [90]. Adding Ag has shown promising antibacterial properties 

in Mg-based alloys while preserving the biocompatibility [90]. 

 
Figure 2.1. (a) Calculated Zn-Ag phase diagram using the Themo-Calc software and the 
SNOB-3 database. (b) Detail of the phase diagram (a) manifesting that up to 6 wt% Ag 
can be solved in Zn. Upon cooling the composition enters the two-phase area, i.e. 
precipitations of ε-AgZn3 in the Zn matrix occur. As this effect is generally accompanied 
by an increase in strength, it referred to as precipitation hardening. 

In this study, the aim was to develop and investigate a Zn-4wt%Ag alloy as a 

novel biodegradable metal. The Zn-4Ag alloy was prepared, and 

thermomechanical treatment was applied to refine the microstructure and 

improve the mechanical properties. The microstructure, mechanical properties 

and corrosion behavior of the Zn-4Ag alloy were investigated. Furthermore, the 

cytotoxicity and antibacterial properties were also evaluated. 

2.2. Materials and methods  

2.2.1. Materials preparation  
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Alloys were prepared from high purity elements (> 99.9%) by induction melting 

(Indutherm VC 500 D, Germany) under 1 bar Argon in a graphite crucible. An 

oxide scavenger (Zincrex D85, Feuerungsbau Mutschler GmbH, Germany) was 

employed to clear the melt. The melt (750 °C) was cast into a cylindrical graphite 

mold of 15 mm diameter. During solidification the mold was vibrated resulting in 

a reduction in grain size from approximately 200 µm to about one tenth this size. 

All casting rods were homogenized at 300 °C for 1 h in a furnace under Ar 

protective gas and then left in the furnace for cooling. The moderate cooling rate 

allowed phase separation and grain growth which proved to be advantageous for 

the subsequent hot working. The rods were first machined to diameter of 10 mm 

and then swaged to 3 mm diameter wires. As the rods proved to be too brittle for 

swaging at room temperature, rods and tool were preheated to 200 °C. 

Subsequently, the wires were annealed at 390 °C for 15 minutes, quenched in 

water and finally precipitation hardened in an oil bath for 10 minutes at 100 °C. 

An inductively coupled plasma optical emission spectrometry (ICP-OES) analysis 

of the alloy confirmed composition.  

For the corrosion tests and the biological tests, small plates with a dimension of 

(7 × 7 × 0.5) mm3 were prepared analogously to the wires by casting into a 

rectangular graphite mold with a thickness of 10 mm, homogenization at 300 °C 

for 1 h, hot rolling at 200 °C, annealing at 390 °C for 15 minutes and finally cutting. 

Samples were ground with SIC paper of P1200 (Buehler-Wirtz, Düsseldorf, 

Germany) using a grinding machine (Meta Serv, Buehler-Wirtz, Düsseldorf, 

Germany) and ultrasonically cleaned (Sonorex super RK102H, Bandelin, Berlin, 

Germany) with absolute ethanol for 10 min. Each side of the specimens was 

further sterilized by ultraviolet-radiation for at least 1 h in a sterile workbench 

(Lamin Air HB2472, Heraeus, Hanau, Germany) for corrosion test, cytotoxicity 

and antibacterial evaluation. 

2.2.2. Microstructure observation and mechanical characteristic test 

Metallographic cross sections of each processing step were prepared, etched 

with 2% Nital, a mixture of EtOH and HNO3, and routinely subjected to a light 

microscopic investigation (Zeiss Axioplan 2, Germany). Vickers hardness 
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(diamond pyramid hardness), here denoted as HV1, was measured on 

metallographically polished cross sections using a load of 1 kg. Hardness is 

generally proportional to ultimate tensile strength (UTS) values, but it does not 

provide information about the ductility of alloy. 3 mm wires were subjected to 

tensile testing according to DIN EN ISO 10002-1 in a Zwick Z100HT universal 

testing machine (Zwick, GmbH, Germany) at a room temperature. The strain was 

measured until fracture using a strain gauge on a starting length of 15 mm. The 

testing speed was 1.5 mm/min until the yield strength was surpassed and then 

increased to a strain controlled strain rate of 0.0025 s-1. The values for 0.2% yield 

strength (YS0.2), ultimate tensile strength (UTS) and elongation (εf) were 

determined. 

Prior to an investigation in the scanning electron microscope (SEM), all cross 

sections were subjected to an broad argon ion beam polishing procedure (BIB, 

sample rotation, 3° incident angle, 6 kV, 2.2 mA, 15 cycles: 2 min beam on, 15 

min rest) using a Bal-Tec RES 101 (now Leica Microsystems GmbH, Germany). 

The SEM investigations were conducted with a Zeiss Auriga 60 (Carl Zeiss 

Microscopy GmbH, Germany) equipped with a field emission gun and a 80 mm2 

SDD EDX-Detector (X-Max 80, Oxford Instruments, UK). 

A Bruker D8 GADDS diffractometer (Bruker AXS GmbH, Germany) equipped with 

a Våntec-500 2D detector (Bruker AXS) was employed for X-ray diffraction (XRD) 

based phase analysis. The x-ray beam (λ(Cu Kα) = 1.54 Å) was adjusted using a 

Göbel mirror and a 1 mm collimator. Acquired diffraction rings were translated (by 

integration) to 1 dimensional diffraction pattern using the GADDS and MERGE 

software packages. Pattern analysis relied on the software DIFFRAC.EVA 2 

(Bruker) and the database (ICDD-PDF-2). 

2.2.3. Extracts preparation  

The extracts of Zn-4Ag alloy and pure Zn were prepared in DMEM (Dulbecco's 

modified Eagle medium; Gibco-Life Technologies, Gaithersburg, MD, USA) 

containing 10% fetal calf serum (FCS; PAA Lab, GmbH, Linz, Austria), 1% 200 

mM L-glutamine (PAA Labor GmbH, Linz, Austria), and 1% penicillin 10 mg/ml 

(Gibco-Life Technologies, Darmstadt, Germany) and McCoy's 5A (Sigma-Aldrich 
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Chemie GmbH, Steinheim, Germany) supplemented with 15% FCS , 1% 200 mM 

L-glutamine and 1% penicillin 10 mg/ml at 37 °C in 5% CO2 for 24 h. The ratio of 

surface area (cm2) to solution volume (ml) was set to 3 cm2 ml-1 for all samples, 

according to ISO 10993-12:2012 [91]. Thereafter, series of dilution of the extracts 

were performed with four extract concentrations, namely 10% extracts (dilution 

factor 1 : 10), 16.7% extracts (dilution factor 1 : 6), 33.3% extracts (dilution factor 

1 : 3) and 100% extracts, according to the recommendation in Ref [92]. The 

extracts were further used for corrosion rate determination and cytotoxicity 

evaluation. 

2.2.4. Corrosion rate determination 

The estimated corrosion rates were calculated from released ions in the extracts 

according to the previous studies [93-95]. An ICP-OES (Optima 4300 DV, Perkin 

Elmer, Rodgau, Germany) was employed to detect released Zn and Ag ions in 

the extracts. Measured extracts were diluted triple prior to the measurement. 

Released Zn and Ag ions were measured at 2 different wavelengths with three-

time repetition. The corrosion rate was calculated from released Zn ions using 

the following formula, according to the Ref [96]: 

Corrosion rate (μg cm-2 day-1) = (C × V) / (S × T) (1) 

where C is the released Zn ions concentration in μg/ml, V is the solution volume 

in ml, S is the sample surface area in cm2, T is the incubation time in days. The 

surface morphology and chemical composition of the corrosion products on the 

surfaces after immersion were also observed using a scanning electron 

microscope equipped with an energy dispersive X-ray spectrometer (SEM-EDX; 

LEO 1430, Zeiss, Oberkochen, Germany). 

2.2.5. Cytotoxicity tests 

The cytotoxicity evaluation of Zn-4Ag was performed via extract test, according 

to ISO 10993–5: 2009 [97]. L929 fibroblasts (Mouse fibroblast cell line, DSMZ 

GmbH, Braunschweig, Germany) and Saos-2 osteoblasts (Human primary 

osteosarcoma cell line, DSMZ GmbH, Braunschweig, Germany) were used. 

Cytotoxicity was tested for two biological endpoints: metabolic activity (Roche 
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Cell Proliferation Kit II, XTT assay) and cell proliferation (Roche cell proliferation 

ELISA, BrdU assay). Ti-6Al-4V alloy (Camlog, Wimsheim, Germany) was used 

as negative control. L929 fibroblasts were cultured in 24 ml DMEM medium and 

Saos-2 osteoblasts were cultured in 10 ml McCoy's 5A. Both cell types were 

grown in 75 cm2 culture flasks (Costar, Corning, Tewksbury, MA, USA) at 37 °C 

in a humidified atmosphere of 5% CO2. 

For the tests, L929 fibroblasts and Saos-2 osteoblasts were seeded in 96-well 

plates (200 μl/well) at a cell density of 1 × 104 cells per well and pre-incubated 

overnight. Thereafter, 150 μl of the respective extract dilutions replaced the cell 

medium (4 parallel wells per dilution). After 24 h incubation with these extracts, 

50 μl XTT reagent was added to each well for 2 h. Subsequently, the formazan 

formation was determined photometrically using an ELISA Reader (Biotek, Bad 

Friedrichshall, Germany) at the wavelengths of 450/620 nm. Proliferative activity 

of L929 and Saos-2 was determined in the logarithmic growth phase between 24 

h and 48 h after seeding by BrdU assay. 15 μl BrdU labeling reagent were added 

to each well 24 h after seeding. Additional cell cultures without BrdU-label were 

used as background controls. Culture medium without cells containing BrdU and 

Anti-BrdU-POD was used as blank controls. Afterwards, the cells were fixed, and 

Anti-BrdU-POD was added according to manufacturer's instructions. The 

absorbance of the samples was measured using an ELISA Reader at 450/690 

nm. 

2.2.6. Antibacterial effect evaluation 

For determining bacterial adhesion, Zn-4Ag samples were inoculated with 

Streptococcus gordonii strain DL1 (S. gordonii) and adhering bacteria were 

determined using a crystal violet staining assay (0.5% crystal violet in 20% 

methanol) and a green fluorescent nucleic acid stain (Live/Dead BacLight 

Bacterial Viability Kit, Invitrogen, L13152, USA). Bacteria were grown as a 

stationary suspension culture in Schaedler medium (Beckton Dickinson GmbH, 

Heidelberg, Germany) overnight at 37 °C. Thereafter, 4 ml S. gordonii suspension 

were added to each sample in 6-well plates and cultivated for 12 h at 37 °C. After 

incubation for 12 h, S. gordonii suspension was carefully removed and samples 
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were immersed in 3 ml crystal violet solution for 20 min. After staining, the 

samples were rinsed 3 times with deionized water. Subsequently, the samples 

were observed and photo-documented under a photomacroscope (Wild M 400, 

Wild, Heerbrugg, Switzerland) equipped with a remote control DSLR (Nikon 550D, 

Japan). For live/dead test, the samples were rinsed two times with Hanks' salt 

solution (Biochrom AG, Germany). Live/dead staining was used to evaluate the 

live/dead state of bacteria on the surface, following the manufacturer's 

instructions. The biofilm formation and adherent bacteria were examined with a 

fluorescence microscope (Optiphot-2, Nikon, Tokyo, Japan) equipped with a 

remote control DSLR. Ti-6Al-4V samples were selected as a reference. 

2.2.7. Statistical methods 

The inhibition of metabolic activity of the cells (XTT) was determined in three 

independent experiments, and the proliferation tests (BrdU-incorporation) were 

performed twice. The combined results of the respective cytotoxicity tests are 

given as mean values ± standard deviation. Statistical significance of differences 

between groups was tested by Student's t-test. Differences of p-values < 0.05 

were considered statistically significant. 

2.3. Results and discussion  

2.3.1. Microstructure and mechanical properties 

The evolution of microstructure was investigated by light and scanning electron 

microscopy. A heat treatment (homogenization, 300 °C for 1h) induced a 

transformation of the dendritic as-cast microstructure (Figure 2.2a) to large 

globular grains. After the thermomechanical treatment, i.e. swaging, annealing 

(390 °C for 15 min) and quenching, bright grains corresponding to the ε-AgZn3 

phase are visible (Figure 2.2b). Subsequent precipitation hardening (100 °C for 

10 min) led only to slightly larger grains but did not further affect the 

microstructure (Figure 2.2c). 
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Figure 2.2. Optical micrograph of (a) the as-cast Zn-4Ag dendritic microstructure. (b) 
Longitudinal sections after thermomechanical treatment (homogenization, swaging and 
solution annealing) and after (c) precipitation hardening showing globular grains. Large 
ε-AgZn3 grains (bright) can be identified on the cross sections. 

Table 2.1. Assessment of mechanical properties by tensile testing and Vickers hardness 
tests. 

Alloy / processing 

Mechanical Properties 

References 
Yield 
Strength  

(YS0.2) 
(MPa) 

Ultimate 

Tensile 

Strength 

(UTS) (MPa) 

Elongation to 
failure (%) 

Hardness 
(HV1) 

Zn-4Ag* 157 261 37 73 In this study 

Zn-4Ag** 149 215 24 82 In this study 

WE43 / extruded 195 280 10 - [98] 

Zn / cast 10 18 0.32 38 [51] 

Zn / extruded 35 60 3.5 - [51] 

Zn / hot rolled 30-110 50-140 5.8-36 39 [51] 

Zn-2.5Ag / extruded 147 203 35 - [89, 99] 

Zn-5Ag / extruded 205 253 36 - [89, 99] 

Zn-7Ag / extruded 236 287 32 - [89] 

* Thermomechanical treatment; ** Additional precipitation hardening. While the aspired 
precipitation hardening essentially resulted only in a slight increase in hardness, yield 
strength and ultimate tensile tended to decrease. This is due to the fact that that 
precipitates had formed beforehand (see next paragraphs). 

Concerning thermomechanical treatment and precipitation hardening, the 

resulting mechanical properties are compiled in Table 2.1. A minor modification 

of the Mg alloy WE43 is already used for bioresorbable stents. The material 
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exhibits reasonable mechanical properties, but the corrosion rate is high, a 

controversial issue among experts [100]. Bowen et al. [54] investigated the 

qualification of metallic zinc for bioresorbable stents. They concluded that the 

comparably slow corrosion rate and the low toxicity of the resulting products make 

zinc a promising candidate for bioresorbable stents. However, the authors 

acknowledge the insufficient mechanical properties of pure zinc, exluding a 

straight-forward application, and discuss putative additives. A recent publication 

shows that the addition of Ag results in considerably improved mechanical 

properties [89], which is in good agreement with the data presented here. Zn-4Ag 

shows good mechanical properties. Subsequent precipitation hardening (100 °C 

for 10 min) did not improve the mechanical properties. While the hardness slightly 

increases, YS und UTS both slightly decrease. This minor loss of strength is 

probably due to grain growth. Nevertheless, a sufficiently large window between 

YS (157 MPa) and UTS (261 MPa) as well as an elongation of 37% represents 

an excellent starting point for future material developments. 

The missing aging effect of this heat treatment might be explained by the fact that 

the precipitates predominantly had formed beforehand. XRD analysis of the 

thermomechanically treated state confirmed the presence of the two expected 

phases, Zn and ε-AgZn3 (Figure 2.3). 

A micrograph acquired by surface sensitive secondary electron (SE) imaging at 

an accelerating voltage of 6 kV is shown in Figure 2.4a. Despite the gentle BIB 

polishing procedure, the surface is characterized by a certain grain orientation 

dependent topography and surface roughness, respectively. Submicron sized, 

Ag enriched ε-AgZn3 particles were identified along the Zn grain boundaries by 

EDX mapping (Figure 2.4a, blue colouring). Nucleation and growth of the ε-AgZn3 

particles led on the other hand to a Ag depleted zone. Moreover, small 

precipitates inside the Zn grains were detected by backscatter electron imaging 

(BSE) at 20 kV (Figure 2.4b). 
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Figure 2.3. XRD pattern (black) of Zn-4Ag after thermomechanical treatment. The 
phases Zn (03-065-3358, blue) and ε-AgZn3 (00-025-1325, orange) were identified. 

 
Figure 2.4. SEM investigation of the microstructure after thermomechanical treatment. 
(a) For the sake of resolution, SE imaging of the BIB polished surface as well as the 
corresponding EDX analysis were performed at 6 kV. The overlay shows that ε-AgZn3 
particles have formed along the grain boundaries while the proximity is Ag depleted. (b) 
20 kV BSE imaging revealed the presence of ε-AgZn3 precipitates within the Zn grains. 

2.3.2. Corrosion properties 

In this study, corrosion rates of Zn-4Ag alloy and pure Zn were calculated from 

released Zn ions in the cell medium extracts (Figure 2.5), which correspond to 
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the cytotoxicity of the Zn-4Ag alloy and pure Zn. The cell media used, DMEM and 

McCoy's 5A, consist both of inorganic ions and organic components with 

concentrations equal to those in human plasma, as shown in Table 2.2. The use 

of extraction media with concentrations of buffering agents and glucose similar to 

those of human plasma is critical for predicting in vivo corrosion rate [101]. In 

these tests using cell culture medium instead of simple salt solutions, the extract 

conditions are more closely related to the physiological environment in the body, 

although extraction time is only for 24 h. However, in vitro corrosion rates from 

long-term immersion tests in simulated body fluid should be further investigated. 

 
Figure 2.5. Corrosion rates of pure Zn and Zn-4Ag in DMEM and McCoy's 5A calculated 
from released Zn ions.  

As shown in Figure 2.5, corrosion rates of Zn-4Ag in DMEM and McCoy's 5A 

were (10.75 ± 0.16) μg cm-2 day-1 and (3.80 ± 0.14) μg cm-2 day-1, respectively, 

which is higher than the counterpart of pure Zn, (6.85 ± 0.02) μg cm-2 day-1 and 

(2.89 ± 0.08) μg cm-2 day-1. It is clearly evident that higher corrosion rates in 

DMEM in comparison to McCoy's 5A were also observed. The difference can be 

ascribed to the different composition of DMEM and McCoy's 5A. One reason 

could be the higher (15%) concentration of FCS which was used in McCoy's 5A. 

It is known that the proteins in FCS can decrease corrosion rates, which was also 

observed in the case of Mg alloys [102]. 
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Table 2.2. Composition of the blood plasma, DMEM and McCoy's 5A [101, 103, 104] . 

 Blood plasma DMEM McCoy’s 5A 

Inorganic ions (mmol l-1) 

Na 142 127.3 141.0 

K 5.0 5.3 5.4 

Mg 1.5 0.8 0.8 

Cl 103.0 90.8 117.2 

Ca 2.5 1.8 1.2 

HPO4 1.0 0.9 4.2 

SO4 0.5 0.8 0.8 

HCO3 27.0 44.1 26.2 

Organic components 

Protein (g l-1) 63-80 - - 

Glucose (mmol l-1) 3.6-5.2 4.5 16.6 

Amino acids (g l-1) Variable 1.6 0.4 

Concentrations of buffering 
agents (mmol l-1) 43.5-45.5 70 30.4 

In most previous studies, in vivo corrosion rates of Zn alloys were estimated by 

in vitro long-term immersion tests and electrochemical tests [51, 103]. However, 

standardized in vitro methods for the corrosion rate determination which are able 

to mimic the degradation behavior of Zn alloys in the complex body physiologic 

environment are still lacking. In this study, the in vitro corrosion rate determination 

of Zn alloys was estimated from released Zn ions in DMEM for 24 h, as reported 

in previous studies [93-95]. Kubásek et al. [93] reported the corrosion rate of Zn-

0.8Mg in DMEM was (13.4 ± 0.3) μg cm-2 day-1. This value is close to the 

calculated value of (10.75 ± 0.16) μg cm-2 day-1 in our present study. Jablonská 

et al. [94] reported a corrosion rate of Zn-1.5Mg calculated by released ions in 

extracts of (52 ± 10) μg cm-2 day−1 for an untreated control under a CO2 

atmosphere, which is higher than the corrosion rate of Zn-4Ag in our study. The 

difference could be attributed to a different surface to volume ratio in the two 

studies and the fact that in the study of Jablonská et al. the solid corrosion 

products were dissolved by addition of ultrapure HNO3 prior to determination of 

the released ions. 
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In our study, adding Ag as alloying element to pure-Zn clearly increased the 

corrosion rate of the Zn-Ag binary alloy, which is consistent with previous findings 

[89]. Sikora-Jasinska et al. [89] reported that the corrosion rates of Zn-2.5Ag, Zn-

5.0Ag and Zn-7.0Ag alloys are from 79 to 84 μm year−1 in Hanks' modified 

solution, which is higher in comparison to pure Zn. This might be related to the 

formation of the ε-AgZn3 phase, inducing micro-galvanic corrosion, which finally 

leads to a decreased corrosion resistance of Zn-Ag alloys. 

 
Figure 2.6. The SEM-EDX analysis of the Zn-4Ag alloy after immersion in DMEM / 
McCoy's 5A for 24 h: (a) SEM images of Zn-4Ag alloy in DMEM (magnification 1000×), 
(b) EDX result of the degradation products in (a), (c) SEM images of Zn-4Ag alloy in 
McCoy's 5A (magnification 1000×), (d) EDX result of the degradation products in (c). 

Figure 2.6 shows the surface morphologies detected by SEM and the EDX 

analyses of corrosion products on the surface of Zn-Ag alloy after immersion for 

24 h. The degradation products of Zn-4Ag were mainly similar as those of pure 

Zn. Only a small amount of white degradation products were distributed on the 

surface, and round particles formed on the surface were observed at high 
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magnification (Figure 2.6a and Figure 2.6c), which is consistent with previous 

studies [89, 105]. The EDX analysis (Figure 2.6b and Figure 2.6d) shows that 

these degradation products of Zn-4Ag alloy were mainly composed of Zn, O, P, 

C and Cl, suggesting that these particles could be mainly composed of 

hydroxides, phosphate, carbonate compounds and chloride salt formation, as 

reported in previous studies [43, 88, 106]. 

2.3.3. Cytocompatibility 

Table 2.3 shows the mean Zn ion concentration after incubation of pure Zn and 

Zn-4Ag alloy in DMEM / McCoy's 5A to correlate the ion concentrations to the 

results of the cytotoxicity tests (Figure 2.7 and Figure 2.8). Analysis of the mean 

Zn ion concentration revealed that the highest concentration was determined for 

Zn-4Ag alloy of 100% extract in DMEM with 493.4 μM. Furthermore, the mean 

Zn ion concentration in DMEM extracts is higher than the counterpart in McCoy's 

5A. In addition, the mean Ag ion concentration in Zn-4Ag extracts was below the 

detection limit of the instrument, indicating a very limited release of Ag element 

into cell medium, although some Ag ions may be bound in the corrosion products. 

Table 2.3. The mean Zn ion concentration in pure Zn and Zn-4Ag alloy extracts. 

Cell medium Samples 

Zn ion concentration (μmol/l) 

100% 

extracts 

33.3% 

extracts 

16.7% 

extracts 

10% 

extracts 

DMEM 
Pure Zn 314.4 107.4 55.5 34.7 

Zn-4Ag 493.4 167.2 85.4 52.6 

McCoy’s 5A 
Pure Zn 132.8 51.5 31.1 22.9 

Zn-4Ag 174.4 65.4 38.0 27.0 
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Figure 2.7. Effect of different concentrations of Zn-4Ag alloy and pure Zn extracts on the 
cell metabolic activity of L929 and Saos-2 determined by XTT assay. Ti-6Al-4V alloy was 
used as negative control and was set to 100%. Means of three independent experiments 
are shown with respective standard deviations. 

Figure 2.7 shows the metabolic activity of L929 and Saos-2, respectively, cultured 

in 100%, 33.3%, 16.7% and 10% extracts of Zn-4Ag for 24 h; pure Zn served as 

a control. According to ISO 10993-5: 2009, a decrease of cell viability higher than 

30% is considered as a toxic effect. For the Zn-4Ag alloy, L929 cells and Saos-2 

cells cultured in 100% Zn-4Ag extracts showed a much lower metabolic activity, 

below 40% of the control. Thus, these undiluted extracts possess clearly 

cytotoxicity. In the 33% Zn-4Ag extract, the cell viability of Saos-2 already 

approached 100%. L929 cells, on the contrary, reached approximately 40%. For 

10% and 16.7% diluted extracts of Zn-4Ag, the metabolic activities of L929 cells 

and Saos-2 cells were always reaching 100%, and there was no statistically 

significant difference between Zn and Zn-4Ag groups (p > 0.05). Therefore, the 

Zn-4Ag alloy tested showed a certain degree of toxicity for L929 cells and Saos-

2 cells based on the cytotoxicity results in our test systems. 
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Figure 2.8. Influence of different concentrations of Zn-4Ag alloy and pure Zn extracts on 
the cell proliferation of L929 and Saos-2 determined by BrdU assay. Ti-6Al-4V alloy was 
used as negative control and was set to 100%. Means of two independent experiments 
are shown with respective standard deviations. 

Figure 2.8 shows the cell proliferation of L929 cells and Saos-2 cells cultured in 

100%, 33.3%, 16.7% and 10% extracts of Zn-4Ag and pure-Zn for 24 h 

determined by BrdU incorporation. In vitro cytotoxicity can be easily evaluated 

with tetrazolium-salt-based assays. However, XTT assay and Cell Counting Kit-

8 (CCK-8; Dojindo Molecular Technologies, Kumamoto, Japan) in our preliminary 

experiments were influenced by the degradation products of Zn-based alloys , for 

reasons which are probably similar to Mg-based alloys [107]. In contrast to the 

tetrazolium-salt-based XTT-assay, the BrdU incorporation is a direct measure for 

proliferative activity. An additional advantage is that the BrdU assay is not prone 

to the interference of the released Zn ions with tetrazolium-based assays [107] . 

In 100% extracts of Zn-4Ag alloy and pure Zn, both cell types showed an almost 

total inhibition at proliferation ability, which was different compared to the results 

of the metabolic activity. In different diluted extracts of Zn-4Ag alloy and pure Zn, 

the proliferation activities of L929 and Saos-2 exhibited similar results as with the 

metabolic activities. 

As a potential biodegradable material, the biocompatibility of the degradable Zn-

4Ag alloy should be considered. In fact, the significance of Zn in human nutrition 
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has been widely acknowledged. Zn is the second most abundant transition metal 

in the human body and an essential element for numerous biological functions 

[108, 109]. The recommended intake for an adult is estimated at 15 mg day−1 [23, 

51]. Also, the human tolerance level silver is estimated from 0.4 μg day−1 to 27 

μg day−1 [110]. The effects evaluated by the extract test for the biodegradable 

Zn-based alloy is mainly attributed to the released corrosion products during the 

degradation process. In this study, a considerable released Zn ion concentration 

in extracts was found, while the Ag ion concentration was below the detection 

limit, indicating that the Zn ion concentration mainly determined the toxicity of the 

Zn-4Ag alloy. As far as systemic toxicity is concerned, the daily released Zn ions 

of the Zn-4Ag alloy are far below the above-allowed value. With the Zn ion 

concentration decreased in the diluted extracts, the cytotoxic effect also 

decreased, which is consistent with several studies [111, 112]. It is worth noting 

that significant differences in Zn ion concentrations were determined between 

both cell media under the same extraction conditions, which is obviously 

related to the different composition of the media.  

Concerning cell sensitivity to zinc, Kubásek et al. [93] reported the Zn2+ safety 

concentrations for L929 and U-2 OS cell being 80 μM and 120 μM, respectively. 

In this present work, results similar to the above study were found. The mean Zn 

ion concentrations in 100% Zn-4Ag extract of DMEM and McCoy's 5A were 493.4 

μM and 174.4 μM, respectively. These values are higher than the safety 

concentrations. In our study, metabolic activity, determined by XTT assay, was 

less decreased by cytotoxic effects of the experimental alloy than proliferation 

determined by BrdU assay. This may be caused by the fact that metabolic activity 

of the cells is less sensitive to the cytotoxic action of the released Zn ions. 

However, interference of these ions with tetrazolium salts in the XTT assay may 

contribute this effect. 

For extract tests, most studies have found that only diluted extracts of 

biodegradable Zn-based alloys exhibited good cell viability [50, 88, 93], although 

even undiluted extracts have shown no cell toxicity in few studies [87, 113]. The 

difference observed might be caused by different cell lines and different 

experimental Zn-based alloys. It is already been discussed that the current ISO 
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10993 standards for in vitro cytotoxicity tests (10993-5: 2009 and 10993-12: 2012) 

have only limited value for the evaluation of biodegradable metallic materials [91, 

97]. Wang et al. [92] suggested that a maximal tenfold dilution (10% extracts) to 

a minimal sixfold dilution (16.7% extracts) of extracts for in vitro cytotoxicity tests 

were recommended for screening potential Mg-based alloys. According to this 

suggestion, the Zn-4Ag alloy in this study would have no potential cytotoxicity, 

according to the results of the 10% and 16.7% extracts. However, it is critical to 

perform in vivo systematic toxicity evaluation in future studies. 

2.4.4 Antibacterial evaluation 

The antibacterial properties of Zn-4Ag alloy to inhibit biofilm formation and initial 

bacterial adhesion was evaluated by crystal violet staining and live/dead staining, 

as shown in Figure 2.9 After 12 h incubation with S. gordonii, the surface of the 

Ti-6Al-4V alloy showed an intense violet staining and green fluorescence (Figure 

2.9a and Figure 2.9b), respectively, which means a high level of biofilm formation 

and a significant amount of adherent S. gordonii. In comparison, Zn-4Ag alloy 

presented point-like violet staining and a thin layer of green fluorescent vital 

bacterial chains (Figure 2.9c and Figure 2.9d), indicating the inhibition of initial S. 

gordonii adhesion and less biofilm formation compared with the Ti-6Al-4V alloy. 

Postoperative infection is a common complication in surgical implants, and the 

infection rate ranges from 1% to 4.5% for dental implant surgery [114]. The 

postoperative infection not only leads to implants failure but also delays tissue 

remodeling. In the present work, Zn-4Ag alloy could effectively inhibit bacterial 

adhesion and biofilm formation in comparison to Ti-6Al-4V alloy, indicating a good 

antibacterial effect. It is well known that Zn and Ag ions possess excellent 

antibacterial functions, and especially Ag has been used as effective antimicrobial 

agents incorporated into all kinds of biomaterials, such as metals, polymers, 

ceramics and glasses [115, 116]. The exact mechanism of Zn and Ag action on 

bacteria has not been completely understood but may probably include 

interference with electron transport binding to DNA and interaction with the 

membrane [115, 117]. Hu et al. [118] reported that Zn-incorporated TiO2 coatings 

on titanium by plasma electrolytic oxidation could greatly inhibit the growth of both 
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Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Moreover, the 

antibacterial effects of Ag ions in biodegradable Mg-Ag alloys have also been 

studied. Increased Ag addition (from 2% to 6%) showed a 74% to 79% reduction 

of bacterial viability and a 50% to 75% reduction of adherent bacteria [90]. 

Therefore, the novel developed Zn-4Ag alloy could prevent or at least diminish 

postoperative infection. 

 
Figure 2.9. Biofilm formation and initial bacterial adhesion on Ti-6Al-4V alloy (a,b) and 
Zn-4Ag alloy (c,d) after incubation with S. gordonii for 12 h. a and c by crystal violet 
staining (magnification 32×); b and d by live/dead staining (magnification 400×). 

2.4. Conclusions 

A Zn-4Ag alloy was developed as a novel biodegradable Zn-based alloy, and 

thermal treatment was applied to improve its mechanical properties and to refine 

the microstructure. The in vitro degradation behavior, cytotoxicity and 

antibacterial evaluation were also investigated. Based on the limitations of the in 

vitro study, the following conclusions can be drawn: 
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1. After thermomechanical treatment, the yield strength (YS), ultimate tensile 

strength (UTS) and elongation of the alloy are 157 MPa, 261 MPa and 37%, 

respectively, rendering this alloy a promising material for bioresorbable stents. 

Future alloy development will focus on the optimization of the microstructure 

in order to ensure a safe application. 

2. The corrosion rate of Zn-4Ag calculated from released Zn ions in DMEM 

extract was approximately (10.75 ± 0.16) μg cm-2 day-1, which is higher than 

the that of pure Zn. 

3. A cytotoxic effect decreasing viability and proliferation of L929 and Saos-2 

cells was observed, but only in the undiluted extracts of the Zn-4Ag alloy. 

However, this finding should not be overestimated, since the suitability of the 

used ISO 10993-5 standard method has to be discussed for degradable 

materials, according to each application. 

4. In vitro antibacterial evaluation showed the Zn-4Ag alloy has the potential to 

inhibit initial S. gordonii adhesion. 

Therefore, the biodegradable Zn-4Ag alloy exhibits excellent mechanical 

properties, predictable degradation behavior, acceptable cytotoxicity and 

effective antibacterial property in vitro, which make it a promising candidate for 

biodegradable implants. It should be investigated by further in vitro and in vivo 

studies.  
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3. Study II: Selection of extraction medium influences cytotoxicity of Zinc 
and its alloys 

The part is a reprint of the following publication: 

Ping Li, Christine Schille, Ernst Schweizer, Evi Kimmerle-Müller, Frank Rupp, 

Alexander Heiss, Claudia Legner, Ulrich E. Klotz, Jürgen Geis-Gerstorfer, Lutz 

Scheideler. Selection of extraction medium influences cytotoxicity of zinc and its 

alloys. Acta Biomaterialia (2019) DOI: 10.1016/j.actbio.2019.03.013 

Abstract: 

Zinc (Zn) alloys have been considered as promising absorbable metals, mainly 

due to their moderate degradation rates ranging between magnesium alloys and 

iron alloys. The degradation behavior depends on the specific physiological 

environment. Released metallic ions and corrosion products directly influence 

biocompatibility. The initial contact of orthopedic implants or vascular stents after 

implantation will be with blood. In this study, fetal bovine serum (FBS) was used 

as a model system of blood components. We investigated the influence of FBS 

on in vitro degradation behavior and cytotoxicity of pure Zn, and Zn-4Ag and Zn-

2Ag-1.8Au-0.2 V (wt%) alloys. The initial degradation rates in FBS were assessed 

and compared with the degradation and toxicity in four other common 

physiological model systems: DMEM cell culture medium ± FBS and McCoy's 5A 

medium ± FBS. Test samples in pure FBS showed the highest initial degradation 

rates, and accordingly, FBS supplemented media accelerated the degradation 

process as well. Moreover, an extract test according to ISO 10993-5 and -12 with 

L929 and Saos-2 cells was performed to investigate the role of FBS in the 

extraction medium. The cytotoxic effects observed in the tests were correlated 

with FBS-mediated Zn2+ release. These findings have significant implications 

regarding the selection of appropriate media for in vitro degradation and 

cytotoxicity evaluation of Zn and its alloys. 

3.1. Introduction 

Absorbable metals (also named biodegradable metals) refer to metals or their 
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alloys that degrade safely within the body [19, 51, 77, 119]. Three major metals, 

such as magnesium (Mg), iron (Fe), zinc (Zn), have been considered for medical 

applications. To date, Zn and its alloys have been proposed as promising metallic 

biomaterials due to their degradation behavior. Compared with Mg and Fe, the 

intrinsic standard corrosion potential of Zn (−0.76 VSCE), which determines the 

corrosion rate, is between Mg (−2.37 VSCE) and Fe (−0.44 VSCE) [3]. Nevertheless, 

pure Zn possesses relatively poor mechanical properties, which are insufficient 

for the majority of clinical applications. Zn-based alloys with superior strength 

have been fabricated by adding alloying elements, further improvements have 

been achieved by thermomechanical treatment [1, 2]. The mechanical properties 

of both Zn alloys investigated in this study roughly meet the generally 

acknowledged minimal requirements for implant materials, i.e. UTS > 250 MPa 

and elongation > 15%. Most importantly, previous in vivo studies found that the 

degradation products of pure Zn can be tolerated and metabolized, indicating that 

pure Zn can exhibit excellent biocompatibility [52, 57]. From the perspective of 

metallic biomaterials, the degradation behavior of alloys in the body affects their 

mechanical integrity and even directly influences biocompatibility and bioactivity 

via degradation products [13, 23]. Thus, it is critical to investigate the degradation 

behavior of Zn and Zn alloys in the specific physiological environment or the 

desired implantation site. 

For absorbable Zn alloys, proposed clinical applications mainly include 

cardiovascular stents and osteosynthesis materials [43, 53, 73, 119]. The local 

degradation environment for cardiovascular stents will be the bloodstream, and 

they will be in contact with the human blood until a neointima, a hyperplastic 

region of the vascular wall having histological characteristics of both intima and 

normal artery cells, has formed on the surfaces [19]. In addition, the ambient 

conditions of osteosynthesis materials are physically and chemically much more 

complicated and hard to predict. Nevertheless, the initial local environment after 

implantation will be a blood-filled cavity, mainly comprising a mixture of blood and 

interstitial fluid [102]. Thus, the initial contact both of stents and orthopedic 

implants after implantation will be with blood. However, the composition of human 

blood is much more complex compared to the artificial standard salt solutions 
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used in corrosion tests. In our previous studies, the initial degradation behavior 

of absorbable Mg alloys in whole human blood has been investigated. It is self-

evident and has been confirmed in several studies that simulated body fluids, 

such as phosphate-buffered saline (PBS), are insufficient to mimic the in vivo 

degradation behavior of Mg alloys in in vitro test systems [80, 120]. Except for the 

ionic component, the significant difference is that the blood contains large 

amounts of serum proteins compared to the standard salt solutions. These 

proteins will come into direct contact with implants in the initial stage and influence 

the degradation behavior. Fetal bovine serum (FBS) representing the cell and 

coagulation factor depleted fraction of fetal blood, is readily available in controlled 

quality. Therefore, FBS was widely employed to investigate the degradation 

behavior and cytotoxicity of Mg alloys in previous studies [102, 121]. However, 

the effect of FBS on Zn degradation behavior is widely unexplored. 

It is noteworthy that obvious cytotoxic effects of absorbable Zn alloys have been 

observed in extract tests based on the current ISO standards for cytotoxicity 

testing (ISO 10993-5 and 10993-12) [73, 74, 93, 122-124]. However, the excellent 

biocompatibility of pure Zn and Zn alloys observed in in vivo studies is 

indisputable [52, 53, 57]. The general discrepancy between in vitro and in vivo 

biocompatibility tests might limit the relevance of in vitro tests. Routinely, an 

extract test with a cell medium is used to investigate the cytocompatibility related 

to degradation products released from test materials. One of the advantages is 

that the extraction vehicle can be chosen to mimic the specific human body fluids. 

It can be assumed that the degradation behavior of alloys in the different 

extraction vehicles directly influences the results of cytotoxicity [67]. Previously, 

we reported that a high concentration of serum used in the extraction vehicle for 

Mg alloys, as a roughly blood-like environment, significantly affects the results of 

cytotoxicity in the extract test. This might be explained by the “protective” 

phenomenon of serum components forming a protective layer on Mg alloys, 

increasing corrosion resistance, and thus reducing the cytotoxicity of Mg alloys 

[102]. However, the influence of FBS on cytotoxicity of Zn alloys is not yet well 

understood. 
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In this study, the first objective was to investigate the role of FBS in the initial 

degradation behavior of pure Zn and its alloys using an immersion test under cell 

culture conditions. The second objective was to compare the influence of different 

extraction media with and without FBS on the cytotoxicity of pure Zn and its alloys. 

3.2. Materials and methods 

3.2.1. Sample preparation 

Two zinc-based alloys, a Zn-4Ag and a Zn-2Ag-1.8Au-0.2V (wt%) (denoted as 

Zn-Ag-Au-V) alloys were investigated. Details of the fabrication and 

characteristics of the alloys have been described in previous studies [69, 122]. 

The age hardened 0.5 mm thick sheets of Zn alloys were cut into the dimension 

of 30 mm × 10 mm. Likewise, pure Zn sheets were cut into 30 mm × 10 mm × 1 

mm in size. The entire surface of the samples was mechanically ground with 

silicon carbide abrasive papers up to grit 600 (CarbiMet P1200, Buehler, 

Düsseldorf, Germany) using a manual polisher (Metaserv, Buehler, Düsseldorf, 

Germany), immediately followed by ultrasonic cleaning in absolute ethanol in an 

ultrasonic water bath (Sonorex K102H, Bandelin, Berlin, Germany) for 10 min. 

Prior to tests, all specimens were further disinfected with ultraviolet (UV) radiation 

for 1 h in a workbench (Lamin Air HB2472, Heraeus Instruments Co., Hanau, 

Germany). To avoid interference of the native oxidation layer of pure Zn and Zn 

alloys, the procedure of polishing, cleaning and disinfection was performed within 

6 hours prior to all tests. 

3.2.2. Immersion test 

To correlate between initial degradation behavior and cytotoxicity, we used an 

extraction method adapted from previously established procedures [74, 93, 122]. 

The immersion tests were performed with a ratio of surface area to extraction 

medium volume of 3.0 cm2/mL, according to ISO 10993-12: 2012 [91]. All 

samples in the media were processed in parallel using standard 6-well culture 

plates (Cellstar; Cat# 657160; Greiner Bio-One, Frickenhausen, Germany) under 

standard cell culture conditions (95% relative humidity, 37 °C and 5% CO2) for 24 

± 1 h. 
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To further investigate the effect of FBS on degradation of Zn and Zn alloys, five 

different extraction media were prepared as follows: heat-inactivated fetal bovine 

serum (FBS; Cat# 10500-064; South American origin; Life Technologies Co., 

Grand Island, USA), Dulbecco's modified Eagle medium (DMEM; Cat# 21063-

029; Life Technologies Co. Paisley, UK), DMEM supplemented with 10% FBS, 

McCoy's 5A (Cat# M8403; Sigma-Aldrich Chemie GmbH, Steinheim, Germany) 

and McCoy's 5A supplemented with 15% FBS, respectively. For comparison with 

human extracellular fluid, the compositions of DMEM, McCoy's 5A and FBS are 

presented in Table 3.1 [101, 104, 125, 126]. Additionally, the composition of fetal 

bovine serum, as provided by Life Technologies Co., is listed in Table 3.2. 

Table 3.1. Main composition of DMEM, McCoy's 5A and FBS, compared to the human 
extracellular fluid 

* Data are given from the Ref in [101]; n.m., not mentioned in the reference literature. 

Composition 
Human extracellular fluid 

DMEM McCoy’s 5A FBS Blood 
plasma Interstitial fluid 

Inorganic ions (mM)  
Na+ 142.0 139.0 127.3 141.0 137.0 
K+ 4.2 4.0 5.3 5.4 11.2 
Mg2+ 0.8 0.7 0.8 0.8 n.m. 
Ca2+ 1.3 1.2 1.8 1.2 3.4 
Cl- 106.0 108.0 90.8 117.2 103.0 
SO42- 0.5 0.5 0.8 0.8 n.m. 
HPO42- 2.0 2.0 0.9 4.2 n.m. 
HCO3- 24.0 28.3 44.1 26.2 n.m. 
Organic components  
Protein 1.2 (mM) 0.2 (mM) - - 38.0 (g/L) 
Glucose (mM) 5.6 5.6 4.5 16.6 6.9 
Amino acids 2.0 (mM) 2.0 (mM) 1.6 (g/l) 0.4 (g/l) n.m. 
Concentrations of buffering agents (mM)  
HCO3- 24.0 28.3 44.1 26.2 n.m. 
HPO42- 2.0 2.0 0.9 4.2 n.m. 
HPr 16.0-18.0* - - - n.m. 
Tris-HCl - - 25.0 - n.m. 
Total 42.0-44.0 30.3 70.0 30.4 n.m. 
Reference [101, 125] [125] [101] [104] [126] 
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Table 3.2. The main composition of fetal bovine serum* 

Component Units Mean Range Component Units Mean Range 

Total Protein g/dL 4.2 4.0-4.3 Globulin (total) g/dL 1.3 1.1-1.5 

pH units 7.3 6.7-7.3 Alkaline Phosphatase U/L 262 2-319 

Osmolality mosm/kg 314 290-335 GG-Transpeptidase U/L 5.0 0-7.0 

Glucose mg/dL 130 107-144 SGOT U/L 60.4 28-161 

Hemoglobin mg/dL 14.2 5.8-23.0 Lactate 
Dehydrogenase U/L 559 262-

1010 

Bilirubin mg/dL 0.2 0.1-0.4 Cholesterol mg/dL 34.2 19-54 

Uric Acid mg/dL 3.2 2.6-3.5 Low Density 
Lipoprotein mg/dL 2.8 0-7.0 

Urea Nitrogen mg/dL 14.4 15-18 High Density 
Lipoprotein mg/dL 6.5 5.0-9.0 

Creatinine mg/dL 3.1 2.8-3.3 Triglycerides mg/dL 219.5 73-1720 

Sodium meq/L 134 131-137 Growth Hormone ng/mL 131 126-138 

Potassium meq/L 15.1 12.9-
14.2 Insulin uIU/mL 4.3 2.9-5.5 

Calcium  mg/dL 14.6 14.3-
15.0 Estradiol pg/mL 13.8 11.2-

17.5 

Chloride meq/L 104.9 102-108  Progesterone ng/mL 0.03 0.01-
0.06 

Phosphorus 
(inorg.) mg/dL 11.2 10.0-

14.0 Testosterone ng/mL 0.40 0.38-
0.45 

Iron (total) ug/dL 195 189-204 T4 (Thyroxine) ug/dL 14.8 13.9-
15.8 

Albumin g/dL 2.6 1.3-2.9 T3 ng/mL 1.2 0.9-1.4 
* Data are provided from the Life Technologies Corporation. 

3.2.3. Determination of degradation behavior 

The initial degradation rate was calculated by the concentrations of released 

metallic ions in the different media. For each respective measurement, six 

specimens of each sample were immersed in the different media, respectively. 

After incubation for 24 h, the pH value of the extracts was measured at room 

temperature using a 766 Calimatic pH-meter (Knick, Berlin, Germany). After that, 

the extracts were diluted with deionized water to a final volume of 10 mL. 

Subsequently, released metallic ion concentrations (Zn2+, Ag2+, Au2+ and V2+) 

were determined by using an inductively coupled plasma optical emission 

spectrometer (ICP-OES, Perkin-Elmer Optima 4300 DV, Rodgau, Germany). 

Three-time repetitions for each element were performed at two different 

wavelengths. Based on released metallic ion concentrations, the degradation rate 

(DR) was expressed as μg cm-2 day-1 using the following Eq. (1): 
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Degradation rate = ((Ctest - Cblank) × V)/(S × T) (1) 

Here, Ctest (μg/mL) is the released metallic ion concentration in the extraction 

media, Cblank (μg/mL) is the mean metallic ion concentration in the original media, 

V (mL) is the measured solution volume, S (cm2) is the specimen surface area, 

and T (day) is the incubation time. Afterward, a LEO 1430 scanning electron 

microscope (SEM) equipped with an energy dispersive X-ray (EDX) spectrometer 

(Carl Zeiss GmbH, Oberkochen, Germany) was used to detect the surface 

morphology of the samples and to analyze the chemical composition of the 

corrosion products after extracts preparation. 

3.2.4. Cytotoxicity test 

According to ISO 10993-5: 2009, an extract test was performed for cytotoxicity 

evaluation. A mouse fibroblast cell line (L929) and a human osteosarcoma cell 

line (Saos-2) were used [97]. Cytotoxicity evaluation was performed via two 

assays: cell viability and morphology were qualitatively analyzed by live/dead 

fluorescence staining with fluorescein diacetate (FDA) and ethidium bromide (EB), 

and cell metabolic activity was quantitatively analyzed by Cell Counting Kit-8 

(CCK-8). Ti-6Al-4V disks were used as negative control, and pure Cu foils were 

used as positive control. 

3.2.4.1. Cell culture and extract preparation 

L929 fibroblasts (DSMZ GmbH, Braunschweig, Germany) were cultured in 24 mL 

DMEM containing 10% FBS, 1% GlutaMAX (Cat# 35050-038; Life Technologies 

Co. Paisley, UK) and 1% penicillin/streptomycin (Cat# 15140-122; Life 

Technologies Co., Grand Island, USA). Saos-2 osteoblasts (DSMZ GmbH, 

Braunschweig, Germany) were cultured in 10 mL McCoy's 5A supplemented with 

15% FBS, 1% GlutaMAX and 1% penicillin/streptomycin. Both cells were gown 

in 75 cm2 cell culture flasks (Cat# 430641U; Corning Co., Tewksbury, USA) under 

standard cell culture conditions, and cells were passaged after reaching 

approximately 80% confluency. 

To further investigate the role of FBS in extract tests of Zn and its alloys, four 

different extraction vehicles were respectively prepared: DMEM, DMEM + 10% 
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FBS, McCoy's 5A and McCoy's 5A + 15% FBS, as described in Section 3.2.2. 

Before transferring to cell cultures, all alloy extracts of unsupplemented DMEM 

and McCoy's 5A were supplemented with FBS to provide comparable culture 

conditions (FBS-supplemented media) in all groups. Figure 3.1 illustrates the 

procedure of DMEM extract preparation in a schematic diagram. 10% FBS was 

added to the DMEM extracts (without FBS) prior to incubation of the cells with the 

extracts for 24 h. To maintain the same dilution factor in the corresponding, FBS-

supplemented extraction medium (DMEM + 10% FBS), the same amount of liquid 

in form of DMEM + 10% FBS was added to these extracts. The extracts of 

McCoy´s 5A medium were prepared likewise, using the same procedure. The 

extracts of McCoy's 5A were supplemented with 15% FBS. Afterward, the metallic 

ion concentration detected by ICP-OES were further calculated. 

 
Figure 3.1. Schematic diagram showing the experimental set-up for the investigation of 
the effect of FBS on extract test results. On the onset of the test, the extraction vehicles 
were chosen: pure DMEM and DMEM medium containing 10% FBS. After incubation for 
24 h, the extracts of pure DMEM were supplemented 10% FBS. For maintaining the 
same dilution factor, the extracts of DMEM medium were diluted 0.9-fold with fresh 
DMEM medium. 

3.2.4.2. Live/dead fluorescence staining 

The cell morphology and viability of L929 and Saos-2 cultured in sample extracts 
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were qualitatively evaluated by live/dead fluorescence staining, using Hank's 

balanced salt solution (HBSS, Biochrom AG, Berlin, Germany) containing 25 

μg/mL FDA and 1.25 μg/mL EB (Sigma-Aldrich Chemie GmbH, Taufkirchen, 

Germany). L929 fibroblasts and Saos-2 osteoblasts were respectively inoculated 

in 12-well culture plates (Costar; Cat# 3512, Corning Costar Co., NY, USA). The 

cell seeding density was set to 3 × 104 cells/cm2. L929 suspension and Saos-2 

suspension were adjusted to a density of 5 × 104 cells/mL, and then 2.4 mL of 

the suspensions were respectively seeded to each well and pre-cultivated 

overnight. Cell media were then replaced with the respective sample extracts. 

After 24 h the L929 and Saos-2 morphologies cultured in the different extracts 

were observed and photographed using a CK2 inverted microscope (Olympus, 

Tokyo, Japan) equipped with a 550D DSLR camera (Canon, Tokyo, Japan). 

Subsequently, sample extracts were removed, and the cells were gently rinsed 

with HBSS. Afterward, 1.5 mL staining solution was added to each test well and 

samples were stained for 10 min in darkness. After rinsing with HBSS, the cells 

were observed with an Optiphot-2 fluorescence microscope (Nikon, Tokyo, Japan) 

equipped with a 550D DSLR camera. Representative areas of the cell layer were 

photographed to document the amount of living and dead cells, stained by FDA 

and EB into green and red, respectively. 

3.2.4.3. Cell counting kit-8 assay 

The inhibition of the metabolic activity of L929 and Saos-2 cells in different 

sample extracts was quantitatively analyzed using the CCK-8 assay (Dojindo 

Laboratories Co., Kumamoto, Japan). Corresponding to the experiments with 

live/dead fluorescence staining, the cell seeding density was also set to 3 × 104 

cells/cm2. For tests, 200 μL of L929 and Saos-2 suspensions (5 × 104 cells/mL) 

were respectively seeded in 96-well culture plates (Cellstar; Cat# 655180; 

Greiner Bio-One, Frichenhausen, Germany) and cultured overnight. 

Subsequently, the cell medium was replaced by 150 μL sample extracts. After 

incubation for 24 h, extracts were replaced by 100 μL fresh medium without FBS 

to avoid interference of Zn alloy degradation products and serum with the 

tetrazolium-based assay. Afterward, 10 μL of CCK-8 reagent was added to each 
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test well and the cultures were incubated for 2 h, following manufacturer's 

instructions. The optical density (OD) was measured at 450 nm in a Tecan F50 

microplate ELISA reader (Tecan Austria GmbH, Grödig, Austria). To calculate 

relative metabolic activity compared to the negative control, the following formula 

was used: 

Relative metabolic activity (%) = ((ODtest-ODblank)/(ODnegative-ODblank)) × 100% (2) 

Here, ODtest is the mean OD value of the test groups, and ODnegative is the mean 

OD value of the negative control, ODblank is the mean OD values of the cell culture 

media with the CCK-8 reagent. As described ISO 10993-5: 2009 [25], a cytotoxic 

effect was defined as a metabolic activity of cells subjected to extracts of test 

materials below 70% of the negative control. 

3.2.5. Statistical analysis 

All data were tested for normal distribution by Shapiro-Wilk normality test and 

homogeneous variance by Levene test. Data sets with abnormal distribution 

(non-parametric data sets) were analyzed using the Kruskal-Wallis test followed 

by the Nemenyi post hoc test. Parametric data sets were analyzed using one-

way analysis of variance (ANOVA) with extraction medium as an independent 

factor, followed by the Tukey highest significant difference post hoc test. 

Parametric data sets with heterogeneous variance were analyzed using one-way 

ANOVA (homogeneous variance not assumed) followed by the Games-Howell 

post hoc test. Statistical analyses were analyzed using SPSS version 22.0 

software (IBM, Armonk, USA) and statistical significance was considered at P-

value < 0.05. 

3.3. Results 

3.3.1. Degradation properties 

To determine the effect of FBS on the initial degradation rate, samples were 

immersed in different media under cell culture conditions for 24 h. The initial 

degradation rate was assessed by metallic ion release detected by ICP-OES, as 

shown in Figure 3.2. Due to other metallic ion concentrations (Ag2+, Au2+ and V2+) 

being below the detection limit (< 50 μg/L), only Zn ion concentration in the 
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different media was quantified. According to the measurement of Zn ion release, 

all samples immersed in FBS showed the highest degradation rates. A 

comparison of degradation rates in media with and without FBS supplement 

confirmed the corrosion-promoting effect of FBS: the degradation rates of all 

samples in DMEM + 10% FBS (or McCoy's 5A + 15% FBS) respectively were 

higher than their counterparts in unsupplemented DMEM (or McCoy's 5A). 

ANOVA (without homogeneous variance) confirmed the statistically significant 

difference in the degradation rate. Games-Howell post hoc pairwise comparisons 

confirmed a significantly higher degradation rate (p < 0.05) for Zn-4Ag (16.29 ± 

6.28 μg cm-2 day-1) and Zn-Ag-Au-V (16.10 ± 5.88 μg cm-2 day-1) in DMEM + 10% 

FBS in comparison to Zn-4Ag (2.99 ± 0.68 μg cm-2 day-1) and Zn-Ag-Au-V (3.70 

± 0.57 μg cm-2 day-1) in unsupplemented DMEM. Likewise, post hoc pairwise 

comparisons showed that the degradation rates were significantly increased (p < 

0.05) for Zn-4Ag (9.01 ± 5.21 μg cm-2 day-1) and Zn-Ag-Au-V (6.72 ± 3.05 μg cm-

2 day-1) in McCoy's 5A + 15% FBS, compared to their counterparts of Zn-4Ag 

(0.18 ± 0.07 μg cm-2 day-1) and Zn-Ag-Au-V (0.23 ± 0.14 μg cm-2 day-1) in 

unsupplemented McCoy's 5A, respectively. As predicted, the initial degradation 

rates of Zn alloys in DMEM and McCoy's 5A were increased by supplementation 

with FBS in this test setup. 

 
Figure 3.2. Initial degradation rates of pure Zn, Zn-4Ag and Zn-Ag-Au-V alloys calculated 
from released Zn ion concentration in different media under cell culture conditions for 24 
h. Values are mean ± SD, n = 6; Significant differences are marked by asterisks 
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(significance level *p < 0.05, ***p < 0.001). 

Figure 3.3 demonstrates the SEM-EDX analysis of the surface morphology and 

elemental composition analysis of pure Zn and Zn alloys after immersion in 

different media. Visible to the naked eye, inhomogeneous thin degradation layers 

were formed on the surfaces of samples after immersion. SEM micrographs 

showed no obvious corrosion layers covering the whole surfaces, only a small 

amount of irregular tiny degradation particles distributed on the surfaces was 

detected. EDX analysis revealed the presence of the elements Zn, O, C, Cl, Ca, 

P and S in these degradation particles. 

 
Figure 3.3. The SEM-EDX analysis of pure Zn and Zn alloys after immersion in different 
media under cell culture conditions for 24 h. Representative SEM images of degradation 
products on the surfaces (scale bar = 50 μm). The EDX spectrum (inset red line) 
indicates the elemental composition of degradation products, corresponding to points 
marked with a yellow arrow (energy range between 0.0 keV and 5.0 keV). 

3.3.2. Analysis of alloy extracts 

Table 3.3 illustrates the pH values of sample extracts after 24 h. The pH value of 

all extracts stayed in the range of 8.0-8.5, no dramatic changes were observed. 

Although pH values of McCoy's 5A media were higher than of DMEM media, the 

pH tended in the opposite direction, indicating more hydroxide ion release in the 

DMEM-based media. Prior to the cytotoxicity test, sample extracts were further 

prepared as described in Section 3.2.4.1. The mean Zn ion concentration of 

sample extracts is summarized in Table 3.3. ANOVA (without homogeneous 
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variance) was employed to confirm statistically significant differences. 

Specifically, post hoc pairwise comparisons indicated statistically higher Zn ion 

concentrations in the extracts of DMEM + 10% FBS for Zn-4Ag (688.21 ± 264.87 

μM) and Zn-Ag-Au-V (679.89 ± 248.17 μM) when compared with the DMEM-

extracts of Zn-4Ag (129.19 ± 28.69 μM) and Zn-Ag-Au-V (159.11 ± 23.89 μM) (p 

< 0.05). In addition, ANOVA confirmed statistically significant differences of Zn 

alloys in the extracts of McCoy's 5A with or without FBS. Post hoc pairwise 

comparisons showed that the Zn ion concentrations in the extracts of McCoy's 

5A + 15% FBS for Zn-4Ag (365.03 ± 207.63 μM) and Zn-Ag-Au-V (273.96 ± 

121.37 μM) were significantly higher than their counterparts in the extracts of 

McCoy's 5A for Zn-4Ag (11.49 ± 2.87 μM) and Zn-Ag-Au-V (13.46 ± 5.63 μM) (p 

< 0.05). Nevertheless, the Kruskal-Wallis showed no statistically significant 

differences for the Zn ion release from pure Zn in media with or without FBS (p > 

0.05). Still, the overall tendency clearly indicated that the Zn ion concentration 

was increased by the presence of FBS in the extraction media. 

Table 3.3. The pH value and released Zn ion concentration of sample extracts. 

 DMEM DMEM + 10% FBS McCoy’s 5A 
McCoy’s 5A+ 
15% FBS 

pH value 

Initial 7.69 7.66 8.20 8.15 

Pure Zn 8.12 ± 0.09 8.08 ± 0.03 8.38 ± 0.02 8.23 ± 0.01 

Zn-4Ag 8.17 ± 0.03 8.13 ± 0.01 8.50 ± 0.05 8.33 ± 0.02 

Zn-Ag-Au-V 8.21 ± 0.03 8.16 ± 0.01 8.49 ± 0.01 8.38 ± 0.02 

Zn ion concentration (μM) 

Pure Zn 134.27 ± 14.30a 267.98 ± 153.04a 17.55 ± 7.19A 102.75 ± 16.21A 

Zn-4Ag 129.19 ± 28.69a 688.21 ± 264.87b 11.49 ± 2.87A 365.03 ± 207.63B 

Zn-Ag-Au-V 159.11 ± 23.89a 679.89 ± 248.17b 13.46 ± 5.63A 273.96 ± 121.37B 

Different superscript letters within a row indicate statistical significance of Zn ion concentration 
between media with and without FBS (p < 0.05) 

3.3.3. Cell morphology and viability 

To investigate the effect of FBS on cytotoxicity, cell morphologies of L929 and 
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Saos-2 cultured in the specified extracts for 24 h were documented by light 

microscope. Exemplary images of the respective cultures are shown in Figure 

3.4. The cell morphology of L929 cultured in DMEM extracts with FBS exhibited 

an irregular circular shape, and a fraction of the cells was floating in the extracts, 

which is consistent with the positive (toxic) control group. Although some L929 

cells were also suspended in the DMEM extracts without FBS, another part of the 

cells was adhering. These cells showed a spindle shape and clear cellular 

outlines, which was obviously different from the corresponding cultures in DMEM 

extracts with FBS. Furthermore, the optical images of Saos-2 osteoblasts 

incubated in McCoy's 5A extracts without FBS showed predominantly regular 

shaped morphologies with intact outlines, which is in agreement with the negative 

control group. In contrast, most Saos-2 osteoblasts in the McCoy's 5A extracts 

with FBS tended to lose their attachment resulting in a spherical shape, similar to 

the positive control group. 

 
Figure 3.4. Representative optical images of L929 fibroblasts incubated with sample 
extracts of DMEM and DMEM + 10% FBS, and Saos-2 osteoblasts incubated with 
sample extracts of McCoy's 5A and McCoy's 5A + 15% FBS for 24 h (magnification 160×; 
scale bar = 200 μm). Ti-6Al-4V alloy was used as negative control and pure Cu foil as 
positive control. 

Figure 3.5 shows live/dead fluorescence microscopy images of L929 fibroblasts 

and Saos-2 osteoblasts after incubation with the different extracts for 24 h. The 
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L929 fibroblasts were nonviable in the DMEM extracts with FBS, indicated by 

almost total red staining, comparable with the positive control. On the contrary, 

some green fluorescent L929 cells existed in the extracts without FBS, indicating 

that part of the cells survived. Thus, it can be inferred that cell viability inversely 

correlates with FBS supplementation. In addition, Saos-2 osteoblasts in the 

extracts of McCoy's 5A without FBS appeared more viable and spread. Although 

the density of living osteoblasts in these groups was slightly less than the density 

in the negative control group, dead cells were rarely observed. Regarding the 

extracts supplemented with FBS, the results of the Saos-2 cells corresponded to 

those observed with L929 cells, i.e. the cell viability was notably decreased. Again, 

according to the qualitative analysis based on fluorescence images, the presence 

of FBS in the extraction media inversely correlates with the viability of both cell 

lines used in this study. 

 
Figure 3.5. Representative fluorescence microscopy images of L929 fibroblasts 
incubated with sample extracts of DMEM and DMEM + 10% FBS, and Saos-2 
osteoblasts incubated with sample extracts of McCoy's 5A and McCoy's 5A + 15% FBS 
for 24 h. Ti-6Al-4V alloy was used as negative control and pure Cu as positive control. 
Cells were stained by live/dead fluorescence staining using FDA & EB, where the green 
fluorescence represents live cells stained by FDA and the red fluorescence represents 
dead cells stained by EB (magnification 100×; scale bar = 250 μm). 

3.3.4. Relative metabolic activity 
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To quantitatively determine the effect of FBS on cytotoxicity, an extract test was 

performed, measuring the relative metabolic activity of L929 and Saos-2 in 

different extracts for 24 h in comparison to the negative control, as shown in 

Figure 3.6. The results of the extract test showed that L929 fibroblasts exposed 

to the FBS-containing extracts from all samples displayed an extremely low 

relative metabolic activity (almost 0% of the negative control). The Kruskal-Wallis 

test confirmed statistically significant differences in the relative metabolic activity. 

Post hoc pairwise comparisons showed that L929 viability in all extracts without 

FBS was statistically increased compared to the respective counterparts with 

FBS (p < 0.001). Interestingly, L929 in the DMEM extracts without FBS of pure 

Zn had a relative mean metabolic activity above 70% of the control (less than 30% 

inhibition), which is considered as non-cytotoxic according to ISO 10993-5: 2009. 

Furthermore, Saos-2 osteoblasts cultured in the extraction media without FBS 

exhibited a relatively high metabolic activity of above 70% for all materials tested. 

In contrast, obvious reductions of those values (below 40% of the control) were 

observed for the extraction medium with FBS. The Kruskal-Wallis test followed 

by the Nemenyi post hoc test indicated generally significantly different relative 

metabolic activities for Saos-2 cells in extraction media with and without FBS (p 

< 0.001), respectively. Hence, the effect of FBS on cytotoxicity determined by 

relative metabolic activity is consistent with the results of the live/dead 

fluorescence staining. 

 
Figure 3.6. Box-and-whisker plot of relative metabolic activity of (a) L929 fibroblasts and 
(b) Saos-2 osteoblasts after 24 h incubation with extracts, determined by CCK-8 assay. 
Ti-6Al-4V alloy was used as negative control and set to 100%. Dashed lines represent 
70% of control, which is a cut-off line between toxic and nontoxic effects. The data of five 
independent experiments are shown as the box-and-whisker plot (maximum, 75th, 50th, 
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and 25th percentiles and minimum) and black dots for each measurement (n = 20); 
Significant differences are marked by asterisks (Significance level *** p < 0.001). 

3.4. Discussion 

3.4.1. Initial degradation behavior 

A standardized in vitro approach for biocorrosion studies for absorbable metallic 

implant materials like Zn alloys is still lacking. Standard corrosion experiments in 

buffered salt solutions like PBS or artificial saliva do not correspond to the clinical 

situation. Absorbable Mg- or Zn-based alloys are proposed as materials for 

orthopedic implants or stents. These implants are inserted either into a blood-

filled implant site or the blood system itself. The initial postoperative environment, 

affecting the corrosion behavior of these implants, therefore is blood. In the 

present study, to mimic the initial implantation environment, FBS has been 

chosen as an in vitro model of blood. In this model, the influence of FBS on the 

initial degradation behavior of pure zinc, Zn-4Ag and Zn-Ag-Au-V was 

investigated in an immersion test model performed under cell culture conditions, 

i. e. in cell culture media at 37 °C in an incubator. It has already been shown that 

the degradation behavior of Mg alloys under cell culture conditions is closer to 

the physiological environment [127, 128]. Based on the previous studies, the 

immersion test in this study was performed with cell culture medium as extraction 

vehicle, to enable the correlation between degradation behavior and cytotoxicity 

evaluation [93, 94, 122]. 

Considering the degradation mechanism, the degradation behavior of pure Zn in 

the body is intrinsically determined by a corrosion process that generally 

proceeds via an electrochemical reaction [23]. Generally, physiological body 

fluids exhibit a neutral to slightly alkaline pH (i.e., human interstitial fluid, or blood 

plasma, etc.), except for some partly acidic environments (i.e., gastric juice, or 

urine, etc.). Pure Zn has the tendency to be passivated in the nearly neutral 

physiological environment (pH value of human plasma: 7.35-7.45), according to 

the Pourbaix diagram. Thus, the initial degradation reactions were involved in the 

following anodic dissolution of the metal and the cathodic reduction of oxygen, as 

shown in from Eq. (3) to Eq. (5) [51, 77, 119]: 
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Anodic reaction: 2Zn → 2Zn2+ + 4e- (3) 

Cathodic reaction: 2H2O + O2 + 4e- → 4OH- (4) 

Zn(OH)2 formation reaction: 2Zn + 2H2O + O2→ 2Zn(OH)2 (5) 

In our experiments, pure Zn and Zn alloys are immersed in different extraction 

media. Initially, the interaction between the electrolyte-containing aqueous media 

and the Zn surfaces causes Zn2+ and OH- release based on the Eq. (3) and Eq. 

(4). Moreover, some corrosion particles on the Zn surface were formed, and EDX 

analysis revealed the presence of several elements such as Zn, C, O, Cl, Ca, P 

and S. It can be assumed that these elements found in the degradation particles 

derive mainly from chemical reactions with components of the different media, as 

listed in Table 3.1. Thus, these degradation particles might be mainly composed 

of zinc carbonates, zinc hydroxides and zinc phosphates, as reported in previous 

studies [89, 106, 129]. 

According to the determined degradation rates, it is obvious that FBS accelerates 

the initial degradation of pure Zn, Zn-4Ag and Zn-Ag-Au-V alloys. However, the 

underlying mechanisms of FBS mediated acceleration of Zn alloy degradation 

are unclear due to the complex nature of the interactions. Usually, apart from the 

corrosion properties of the alloy itself, the degradation rate mainly depends on 

the composition of the media used in the different in vitro tests [103, 127]. The 

factors influencing the degradation behavior are not only the inorganic ingredients 

but also the buffering system and organic components. As listed in Table 3.2, the 

composition of FBS is complex and variable, because serum is derived from 

individuals and differently processed. In fact, FBS is a mixture of various 

physiological components and contains serum proteins, polypeptides, fats, 

growth factors, hormones and required nutrients, etc. [130]. Serum proteins, as 

one of the main constituents, are in the range from 32 g/L to 70 g/L, with bovine 

serum albumin (BSA) being the major fraction and amounting from 20 g/L to 36 

g/L [126]. Törne et al. [131] demonstrated that rapid protein adsorption on Zn 

surfaces immersed in whole blood prevents the initial passivation of the surface 

by a protective zinc-phosphate layer, leading to an increased initial corrosion rate. 

Thus, one of the assumptions for this study was that the initial degradation rate 
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of the tested alloys might be influenced by serum protein. 

To our knowledge, only few studies have investigated the interaction between 

FBS and the corrosion behavior of Zn and its alloys. In most previous studies, 

FBS has been used to provide serum protein in simulated body fluids to 

investigate corrosion behavior of metals, such as Mg alloys [121, 132, 133]. 

Nonetheless, studies of the influence of the FBS on corrosion behavior of Mg 

alloys have also produced diverging results, and the corrosion mechanisms are 

not fully understood. For pure Mg, Yamamoto et al. [132] reported additional FBS 

might form a diffusion barrier on the surface of pure Mg, which decreases the 

degradation rate of pure Mg. Meanwhile, Liu et al. [133] also demonstrated that 

bovine serum albumin might elicit a 'protective effect' decreasing corrosion of the 

AZ91 magnesium alloy. Nevertheless, the effect of proteins on the corrosion of 

Mg alloys might depend on the surface characteristics of the samples or alloy 

composition. Gu et al. [134] found that the corrosion rate of a Mg-Ca alloy 

increased in DMEM with FBS whereas the AZ91 alloy showed the opposite 

tendency. Also, Johnson et al.[121] reported that the degradation rate of a Mg-Y 

alloy with an oxidized surface was reduced in the presence of FBS, but the 

degradation rate of the same alloy without an oxidized surface was increased by 

FBS. These varying trends imply that the influence of proteins on corrosion is 

more complicated than the simplistic adsorption hypothesis model. Importantly, 

for in vitro biodegradation tests of Zn alloys, the addition of FBS in the solution is 

essential to bridge the gap between simple ionic solutions and the more 

complicated physiological fluids in the body. However, the mechanisms of FBS 

on the degradation behavior of Zn alloys are still not fully understood and require 

further basic studies. 

3.4.2. Cytotoxicity evaluation 

As a potential candidate for biomaterials, biocompatibility and feasibility of 

different Zn alloys have been investigated by several previous studies [19, 51, 77, 

119]. However, the correlation between in vitro and in vivo biocompatibility results 

is poor. Specifically, the biocompatibility evaluation of Zn alloys in most previous 

studies exhibits an obvious toxic effect for the original undiluted extracts in 
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standardized cytotoxicity tests according to ISO standards 10993-5 and -12. The 

significant difference can be attributed to the fact that the current ISO standards 

were originally designed for screening the biocompatibility of non-absorbable 

materials. Due to the simplicity and feasibility of the experimental methodology, 

and to the worldwide acceptance of these harmonized standards by regulatory 

authorities, these standards were most commonly adopted for screening novel 

absorbable alloys [67, 135]. Considering the basic principles of the extract test, 

cytotoxicity was influenced by degradation products released from alloys via 

extraction with different extraction vehicles. Thus, the results were directly 

affected by three main factors: alloy properties, cell lines used and extraction 

conditions. 

In this study, one of the objectives was a comparison of the presence or absence 

of FBS in the extraction medium on the results of extract testing of Zn and Zn 

alloys. According to the analysis of alloy extracts (Table 3.3), the main 

degradation product released from the alloys was free Zn2+ ions in the mediaDue 

to buffering agents in the media, no dramatic changes of pH value were detected, 

and pH values stayed in the range of 8.0-8.5, implying that hydroxide ion release 

is limited. The previous study demonstrated no obvious decrease in cell viability 

of L929 cells when pH < 9 in the cell medium [136]. That means released Zn2+ 

ions in the extracts are mainly responsible for the observed toxic effect. In this 

study, cytotoxicity was assessed using different assays based on qualitative 

evaluation of cell viability and morphology, and quantitative measurement of cell 

metabolic activity. Qualitative and quantitative results proved to correlate very 

well. As shown in Figure 3.6, when media with FBS were used as extraction 

vehicle, mean relative metabolic activities below 70% were found for the Zn alloys, 

indicating more than 30% inhibition, which is the threshold for obvious cytotoxic 

effects in the abovementioned ISO standards. This indicates that the released 

Zn2+ concentration is beyond the cellular tolerance limit of L929 and Saos-2. For 

instance, in extracts of McCoy's 5A with FBS, the Zn ion concentration of Zn-4Ag 

and Zn-Ag-Au-V was 365.03 ± 207.63 μM and 273. 96 ± 121.37 μM, respectively. 

A comparison with the literature revealed that the range of Zn ion concentration 

in these extracts was far beyond most cellular tolerance limits, e.g., for L929 
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fibroblasts (< 80 μM) [93], human primary osteosarcoma cells U-2 OS (< 120 μM) 

[93], primary human coronary artery endothelial cells (< 100 μM) [137] and 

vascular smooth muscle cells (< 80 μM) [138]. The Ag concentration in the 

extracts was under the detection limit of OCP (approx. 0.5 µM). This is about 

factor 10 under the reported tolerance limit, indicating that Ag does not contribute 

to the toxic effects observed here [139]. 

The metabolic activity of both cell types tested was less decreased when media 

without FBS were used as extraction vehicle. For Saos-2 osteoblasts cultured in 

the extracts of McCoy's 5A without FBS, no obvious cytotoxic effects were 

observed for all test samples because all relative metabolic activities in the 

cultures were exceeding 70%. This finding corresponds also to the fact that the 

Zn2+ ion concentrations of Zn-4Ag (11.49 ± 2.87 μM) and Zn-Ag-Au-V (13.46 ± 

5.63 μM) in McCoy's 5A were lower than the maximum safe concentrations of 

Zn2+ for the Saos-2 osteoblasts. 

The results for the metabolic activity of L929 in the extracts of DMEM without FBS 

differed, especially for the Zn-4Ag and Zn-Ag-Au-V alloy, as shown in Figure 3.6a. 

One possible explanation can be that the Zn ion concentration in the extracts of 

DMEM with Zn-4Ag (129.19 ± 28.69 μM) and Zn-Ag-Au-V (159.11 ± 23.89 μM) is 

not much higher than the reported cellular tolerance of L929 for the Zn ion 

concentration (< 80 μM) [93]. 

Indeed, few studies have reported the absence of cytotoxic effects in original 

undiluted extracts of Zn-based alloys used in extract tests, as summarized in 

Table 3.4 [53, 87, 88, 113, 140-143]. Interestingly, the studies by Li et al. [53] 

have found no obvious cytotoxicity for ECV304 and MG63 cells in original extracts 

of Zn-1Mg, Zn-1Ca and Zn-1Sr alloys. Similarly, Xiao et al. [144] investigated the 

cytotoxicity of a Zn-0.05Mg alloy with an extract test and demonstrated 

cytotoxicity of Zn-0.05Mg extracts was in Grade 0 and Grade 1, indicating no or 

weak cytotoxic effects. It is worthwhile to note that the above studies used serum-

free cell culture media as an extraction medium, without explaining why an 

extraction medium without serum was chosen. In contrast, Kubásek et al. [93] 

investigated the cytotoxicity of a Zn-0.8Mg alloy and demonstrated an obvious 
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toxic effect for L929 fibroblasts and U-2 OS osteoblasts with the original extracts 

of the Zn-0.8Mg alloy, when cell media containing 5% FBS were used as an 

extraction medium. Likewise, previous work by Jablonská et al. [94] has 

demonstrated that the extracts prepared from untreated Zn-1.5Mg caused 

obvious cytotoxicity in L929 cells. Apart from the different alloys and cell lines, 

these discrepancies are probably explained by the fact that the cytotoxicity of Zn-

Mg alloys was increased by the presence of FBS in the extraction medium, which 

is principally in agreement with our results Another reason for the differing 

outcomes in several investigations are the different surface to volume ratios used 

in the extraction tests. In our study we used 3 cm2 / ml, which results in a more 

than twofold higher concentrated extract compared to 1.25 cm2 / ml as used in 

other studies. 

A critical issue regarding the extract test is the choice of an appropriate extraction 

vehicle. The current ISO standard for cytotoxicity testing (10993-5:2009) 

suggests three types of extraction vehicles, namely a) culture medium with serum, 

b) physiological salt solution or c) other suitable media. Culture medium with 

serum is explicitly recommended because it is able to extract polar and non-polar 

components as well and promotes cell culture viability. The standard also 

demands that the solvent selected as the extraction vehicle should simulate the 

conditions during clinical application as good as possible [97]. In general, the 

incubation of test surfaces with serum containing culture medium instantly leads 

to the formation of a layer consisting mainly of albumin and fibronectin. The layer 

acts as an diffusion barrier at the material interface, limiting the release of 

possible toxic components [135]. Likewise, as pointed out in our previous study 

concerning a biocompatibility screening of Mg alloys, this serum protein layer will 

also be formed after implantation and thus mimics the initial physiological 

situation in vivo to a certain extent [102]. Obviously, using an extraction medium 

with FBS can mimic the complex changes of the implant environment in the long-

term clinical situation only to a limited extent. For instance, osseous implants 

come into contact with serum due to the injury set by the implantation and 

subsequent blood coagulation, but serum is not the long-term physiological 

environment of these implants in vivo. For absorbable osseous implants 
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consisting of Zn alloys, therefore, developing a suitable extraction vehicle for a 

long-term extraction test simulating clinical conditions is still an issue which 

should be further investigated to better predict and evaluate biocompatibility. 

Table 3.4. Summary of the absence of cytotoxic effect in original undiluted extracts of 
absorbable Zn-based alloys used in extract test according to ISO 10993-5 and -12. 

*Rodent vascular smooth muscle cells (VSMC), human umbilical vein endothelial cells (ECV304), human 
osteosarcoma cells (MG63), murine fibroblast cells (L929), human osteosarcoma cells (Saos-2), human 
endothelium-derived cells (EA.hy926) and murine calvarial preosteoblasts (MC3T3-E1). 
**Relative cell viability (%) presents cell viability in original alloy extracts after incubation for 24 h, 

Alloys (wt%) Cell 
lines* 

Extract conditions 

Relative cell viability (%)** Ref. 

Medium SA:V 
(cm2/mL) 

Time 
(h) 

Zn-1Mg 
Zn-1Ca  
Zn-1Sr 

VSMC, 
ECV304, 
MG63 

Serum-free 
cell culture 
medium 

1.25 72 h 

ECV304 in all alloys 
extracts: > 80%a 
VSMC in all alloys extracts: 
60-80%a 
MG63 in all alloys extract: 
100-120% a 

[53] 

As-cast Zn–
1.2Mg MG63 Cell 

medium 1.25 72 h MG63 in as-cast Zn–1.2Mg 
extracts: 80-90%b [88] 

Zn-0.05Mg L929 
Serum-free 
DMEM 
medium 

1.25 72 h L929 in the extracts: > 85% [140] 

Zn-1Mg 
Zn-1Mg-0.5Ca Saos-2 DMEM with 

FBS 1.25 24 h 
Saos-2 in Zn-1Mg and Zn-
1Mg-0.5Ca extracts: > 
100% 

[141] 

Zn–1Mg–Ca 
Zn–1Mg–1Sr 
Zn–1Ca–1Sr 

MG63 n.m. n.m. n.m. MG63 in all alloys 
extracts: > 100% [87] 

Zn-3Cu-0.5Mg 
Zn-3Cu-1Mg 

EA.hy92
6 DMEM 1.25 72 h 

EA.hy926 in Zn-3Cu-0.5Mg 
and Zn-3Cu-1Mg extracts: 
80-100% 

[142] 

Zn-0.5Al 
Zn-0.5Al-0.1Mg 
Zn-0.5Al-0.3Mg 
Zn-0.5Al-0.5Mg 

MC3T3-
E1 n.m. n.m. n.m. MC3T3-E1 in all alloys 

extracts: 80-110%c [113] 

Zn-0.5Al-0.5Mg 
Zn-0.5Al-
0.5Mg-XBi 
where X = 0.1, 
0.3, 0.5 

MC3T3-
E1 n.m. 1.25 24 MC3T3-E1 in all alloys 

extracts: 80-110%d [143] 
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compared to negative control. 
n.m., not mentioned in the reference literature. 
a Data gathered from the figure (Figure 5) in the literature [53]. 
b Data gathered from the figure (Figure 6a) in the literature [88]. 
c Data gathered from the figure (Figure 4e) after incubation for 2 days in the literature [113]. 
d Data gathered from the figure (Figure 10) after incubation for 2 days in the literature [143]. 

3.5. Conclusions 

In this study, the degradation rates of pure Zn, Zn-4Ag and Zn-Ag-Au-V alloys 

were evaluated in FBS, DMEM, McCoy's 5A, DMEM + 10% FBS, and in McCoy's 

5A + 15% FBS, respectively. The results demonstrate that the degradation rates 

of the test samples were affected by the composition of the media. Samples 

extracted in FBS showed the highest initial degradation rates, and 

supplementation of DMEM or McCoy's 5A with FBS notably accelerated the initial 

degradation process. Analysis of the released Zn ion concentration in the extracts 

showed that the decreased cytotoxicity observed in the extract media without 

FBS was obviously caused by the lower concentration of released Zn ions in 

these extracts. Therefore, besides tests with salt solutions, as used in standard 

corrosion tests, the influence of the serum components on the corrosion 

mechanism of Zn alloys should be further investigated. Likewise, selecting an 

appropriate extraction medium for cytotoxicity evaluation of Zn alloys should still 

be further studied based on the current standards. 
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4. Study III: Response of human periosteal cells to degradation products 
of zinc and its alloy 

The part is a reprint of the following manuscript: 

Ping Li, Jingtao Dai, Ernst Schweizer, Frank Rupp, Alexander Heiss, Ulrich E. 

Klotz, Jürgen Geis-Gerstorfer, Lutz Scheideler, Dorothea Alexander. Response 

of human periosteal cells to degradation products of zinc and its alloy. Materials 

Science and Engineering: C, manuscript under revision. 

Abstract: 

Zinc (Zn) and its alloys are proposed as promising resorbable materials for 

osteosynthesis implants. Detailed studies should be undertaken to clarify their 

properties in terms of degradability, biocompatibility and osteoinductivity. 

Degradation products of Zn alloys might affect directly adjacent cellular and tissue 

responses. Periosteal stem cells are responsible for participating in 

intramembranous ossification in fracture healing. The present study aims at 

examining possible effects emanating from Zn or Zn-4Ag (wt%) alloy degradation 

products on cell viability and osteogenic differentiation of a human immortalized 

cranial periosteal cell line (TAg cells). Therefore, a modified extraction method 

was used to investigate the degradation behavior of Zn and Zn-4Ag alloys under 

cell culture conditions. Compared with pure Zn, Zn-4Ag alloy showed almost 

fourfold higher degradation rates under cell culture conditions, while the 

associated degradation products had no adverse effects on cell viability. 

Osteogenic induction of TAg cells revealed that high concentration extracts 

significantly reduced calcium deposition of TAg cells, while low concentration 

extracts enhanced calcium deposition, indicating a dose-dependent effect of Zn 

ions. Our results indicate that the observed cytotoxicity effects were determined 

by the released degradation products of Zn and Zn-4Ag alloys, rather than by 

degradation rates calculated by weight loss. Extracellular Zn ion concentration 

determined the effect of osteogenic differentiation of TAg cells. These findings 

provide significant implications and guidance for the development of Zn-based 

alloys with an optimized degradation behavior for Zn-based osteosynthesis 



4. Study III 

57 

 

implants. 

4.1. Introduction 

Absorbable zinc (Zn) and its alloys have been considered as potential materials 

for osteosynthesis implants [43-47]. Indeed, Zn-based alloys can address main 

drawbacks of current osteosynthesis materials, such as non-degradability issues 

caused by bioinert implants [13], low strength of polymeric implants [5], and 

unsuitable degradation behavior of magnesium-based or iron-based implants 

[145]. Most notable is the fact that Zn-based materials possess biocompatible, 

biodegradable, osteoinductive and antibacterial properties [48, 63]. The ionic zinc, 

as the main degradation product of Zn-containing chemical bonds or biomaterials, 

is one of the essential elements in the human body since it represents the metallic 

part of numerous proteins [48]. Moreover, the ionic zinc possesses superior 

osteoinduction and promotes new bone formation [49]. Nonetheless, pure Zn 

exhibits relatively low strength, insufficient for the most clinical requirements. By 

adding alloying elements, mainly including Mg, Cu, Ag, Ca, Sr, Al, Li and Mn, etc., 

to pure Zn mechanical strength can be enhanced substantially [145]. Previous 

studies reported that the Zn-Ag alloy exhibits superior mechanical properties 

compared with those of pure Zn [62, 89, 122]. Additionally, Zn-Ag based stents 

implanted into porcine iliofemoral arteries showed excellent biocompatibility and 

constant degradation behavior [62]. Meanwhile, incorporation of Ag ions into 

implants is beneficial for antibacterial properties and does not interfere or even 

disturb the process of bone regeneration [49]. However, it is not trivial to 

investigate the correlation between the degradation behavior within specific 

physiological environments and the impact of the resulting degradation products 

on biocompatibility. 

As potential osteosynthesis materials, the degradation products of Zn and its 

alloys not only directly participate in the adjacent cellular reaction but affect bone 

tissue regeneration as well. In general, bone fracture healing consists of a 

complex series of physiological responses, and the exact mechanism of the 

respective cells mediating bone healing is still unknown [146]. Admittedly, 

periosteal stem cells play an important role in callus formation and participate in 
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intramembranous bone formation in the bone healing process [147, 148]. 

Compared to other skeletal stem cells, periosteal stem cells can directly form 

bone tissue via the intramembranous pathway, and are also capable to induce 

endochondral ossification after trauma [148]. For bone regeneration therapies in 

the oral and maxillofacial surgery, jaw periosteal cells could represent the most 

suitable stem cell source. In previous and present works, we characterized this 

cell type in detail and optimized culturing conditions to advance step by step 

towards clinical use [149-152]. Zn-based alloys pins (Zn-1Mg, -1Ca, -1Sr) 

implanted into a non-fracture femora cavity induced new bone formation 

emanating from periosteum, indicating that zinc might induce periosteum-

mediated new bone formation [53]. Although the osteoinductive properties of Zn 

ions and Zn-containing biomaterials have been reported previously, the effect of 

degradation products of Zn and its alloys on cellular response of periosteal 

osteoprogenitor cells remains obscure. 

Biocompatibility of implant materials mainly depends on their degradation 

behavior in the body. Nevertheless, the suitability of current in vitro 

cytocompatibility tests for absorbable metallic materials has been controversially 

discussed [135, 153]. According to the ISO standards, a direct contact test is 

suggested to evaluate the cell response directly on the material interface. 

Obviously, for absorbable Mg and Zn alloys, various tested cells were not able to 

grow on the in vitro dynamic interface for long-term periods [154, 155]. In general, 

an extract test should investigate possible effects of degradation products of 

materials caused by the cell culture medium on cellular response [67, 156]. In 

most studies, performed tests cover only the initial degradation stage [67, 157, 

158]. Previously, we reported about a developed extraction method which 

correlates between initial degradation behavior and cytotoxicity of Zn and its 

alloys. The results indicated that cytotoxicity of Zn and its alloys is influenced by 

released Zn ion concentrations [122, 156]. In fact, during the degradation process 

of Zn and its alloys, various Zn degradation products, soluble (i.e., Zn2+ and OH-) 

or complex insoluble products (i.e., zinc phosphate) are produced, synergistically 

participating to the physiological response in vivo [44, 45, 52]. Herein, the 

influence of the long-term degradation products of Zn and its alloys on 
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cytocompatibility should be further investigated. 

In our study, a modified extraction method was used to investigate the 

degradation behavior of pure Zn and Zn-4.0 wt% Ag alloy (Zn-4Ag) under cell 

culture conditions. The paper also focuses on the effect of associated 

degradation products on cellular function of human immortalized cranial 

periosteal cells (TAg cells). The use of TAg cells was chosen due to their genetic 

and phenotypic similarity to the primary cells from which they derive. The 

immortalized cells seem to possess a higher osteogenic capacity compared to 

the parental cells, as reported previously [159]. Thus, our study is a 

comprehensive investigation of (i) the in vitro degradation behavior of Zn and Zn-

4Ag under cell culture conditions; (ii) the effects of associated degradation 

products on cell viability and osteogenic differentiation of TAg cells; (iii) the 

respective effects of pH and Zn ion concentrations on TAg cell response and (iv) 

the establishment of a modified extraction method to correlate in vitro long-term 

degradation behavior with the cellular response, offering a suitable screening 

method for the testing of absorbable Zn-based alloys. 

4.2. Materials and methods 

4.2.1. Materials preparation 

A Zn-4Ag (wt%) alloy was fabricated via conventional casting followed by a series 

of thermochemical treatments and pure Zn was prepared as a control, as 

described previously [122]. Subsequently, the ingots of Zn and Zn-4Ag were cut 

into 1.5 mm thick sheets. The as-produced pure Zn and Zn-4Ag sheets were cut 

into 23 mm × 8 mm × 1.5 mm in size. Prior to all tests, samples were ground with 

SiC abrasive paper up to grit 600 (CarbiMet P1200, Buehler, Germany), 

ultrasonically cleaned for 10 min in absolute ethanol, individually weighted with 

sensitivity of 0.1 mg, and immediately disinfected under ultraviolet radiation for 1 

h each side (Lamin Air HB2472, Heraeus, Germany). 

4.2.2. Experimental design 

To correlate between in vitro degradation behavior and cytocompatibility, we 

modified an extraction method (as illustrated in Figure 4.1) based on previously 
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established methods [93, 94, 122, 156]. In order to collect extract medium, Zn 

and Zn-4Ag sheets were incubated in DMEM/F-12 for 28 days under continuous 

medium change. Every other day, extract medium was collected and added to 

TAg cells in different concentrations (100%, 50%, 25%, 10%, 5% and 2% extracts, 

respectively). Cytocompatibility was evaluated at different time points: cell 

metabolic activity at day 2, 6 and 12, gene expression pattern at day 14 and 

osteogenic potential at day 21 and 28. Additionally, Zn extracts were analyzed in 

terms of metallic ion concentration, pH values and insoluble products. At the end 

of the experiment (day 28), surface characterization after immersion test was 

analyzed and degradation rates were calculated by weight loss. 

 
Figure 4.1. Draft of the experimental procedure with a time line (day) of performed 
experiments. Samples were incubated in DMEM/F-12 for 28 days. Sample media were 
exchanged every 48 h (plus signs) and the old ones were used for TAg cell cultivation at 
different concentrations. Extraction media were additionally used for the analysis of ion 
concentrations, pH values and the insoluble products. In order to visualize surface 
degradation of the samples, scanning electron microscopy (SEM) and element analysis 
(EDX) were performed at day 28. Cytocompatibility of Zn/Zn-4Ag alloys was assessed 
in terms of cell viability (cell counting kit-8 (CCK-8) at day 2, 6 and 12, orange arrows), 
gene expression (qPCR, at day 14, blue arrows) and osteogenic potential of TAg cells 
(Alizarin Red staining, ARS, at day 21 and 28, red arrows). 

4.2.3. In vitro degradation test 

All samples were immersed in pure Dulbecco's modified Eagle's medium/nutrient 

mixture F-12 (DMEM/F12; Life Technologies, Paisley, UK) and incubated under 
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standard cell culture conditions (37 °C, 95% rel. humidity, 5% CO2 and 20% O2) 

for 28 days. The surface area to medium volume ratio was set to 1.25 cm2/mL, 

according to ISO 10993-12: 2012 [91]. The media were refreshed every 48 h to 

simulate a semi-static immersion test. For analysis of sample extracts, pH values 

were recorded at each time point, and released metallic ion concentrations (Zn2+ 

and Ag2+) were detected by an inductively coupled plasma atomic emission 

spectroscopy (ICP-OES; Optima 4300DV, Germany). To determine the insoluble 

products, the extracts at 28 days immersion were collected and centrifuged at 

170 g for 5 min. The visible insoluble products were analyzed by using a scanning 

electron microscope (SEM) equipped with an energy dispersive X-ray (EDX) 

spectrometer at 10 kV (LEO 1430, Carl Zeiss GmbH, Germany). 

At the end of the immersion period, the degradation products on the sample 

surfaces were removed by incubation in 250 g/L glycine (NH2CH2COOH) for 10 

min, according to ISO 8407: 2009 [160]. Afterwards, the degradation rates were 

calculated by weight loss and expressed as μm/year, according to ASTM G31-

12a [161]. Degradation rate (DR) was calculated as DR = (8.76 × 107 × W) / (A × 

D × T), namely, W is the weight loss (g); A is the surface area (cm2); D is the 

density (g/cm3) and T is the immersion time (h). In addition, surface morphologies 

and chemical composition after immersion and removal of degradation products 

were analyzed by SEM-EDX. 

4.2.4. Cytocompatibility test 

4.2.4.1. Cell culture and extract preparation 

A human SV40 T-antigen immortalized cranial periosteal cell line (TAg cells) as 

described previously was used for cytocompatibility evaluation [159]. TAg cells 

were cultured in complete DMEM/F-12 supplemented with 10% fetal bovine 

serum (FBS, Sigma-Aldrich, Germany), 1% penicillin/streptomycin (P/S, Lonza, 

Switzerland), 1% amphotericin B (Biochrom, Germany), 0.25 mg/mL 

immortalization maintenance dose of G418 (Biochrom, Germany). TAg cells were 

cultured in either normal (Co) or osteogenically induced conditions (Ob) 

throughout the experiments. Osteogenic medium of TAg cells contained 

complete DMEM/F-12 medium supplemented with 100 μM L-ascorbic acid 2-
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phosphate, 4 μM dexamethasone and 10 mM β-glycerophosphate (Sigma-

Aldrich, Germany). 

To further correlate between degradation and cytocompatibility, the respective 48 

h extracts were used as cell culture media supplement, as described in Section 

4.2.3. Prior to transferring to cell culture, all extracts were further supplemented 

with 10% FBS, 1% P/S, 1% amphotericin B and 0.25 mg/mL G418-BC to adjust 

TAg cell culture conditions. For evaluation of the osteogenic potential, extracts 

were added to the normal and osteogenic medium, respectively. The original 

extracts under both conditions were diluted by the respective complete media to 

different concentrations (50%, 25%, 10%, 5% and 2% extracts, respectively). 

4.2.4.2. Cell counting kit-8 assay 

Cell counting kit-8 (CCK-8) assay was used to evaluate a potential inhibition of 

metabolic activities of TAg cells cultured under normal and osteogenic conditions 

containing sample extracts, according to ISO 10993-5: 2009 [97]. TAg cells were 

seeded in 96-well culture plates at a density of 3 × 103 cells cm-2. After 24 h, the 

medium was removed and replenished by gradient sample extracts containing 

normal and osteogenic medium, and respective normal and osteogenic media 

were used as the negative controls, respectively. After incubation for 2, 6, and 12 

days, sample extracts were replaced by 100 μL fresh DMEM/F-12 and 10 μL 

CCK-8 reagent (Dojindo Laboratories, Japan) was added to each well. After 

incubation for 2 h, optical density was measured by a microplate reader (Tecan, 

Austria) at a wavelength of 450 nm and relative metabolic activities were 

calculated, as described before [156]. 

4.2.4.3. Alizarin red staining 

TAg cells were seeded in 6-well culture plates at a density of 3 × 103 cells cm-2 

and pre-cultivated overnight. TAg cells were induced osteogenically for 28 days 

in the presence of 48 h sample extracts. After osteogenic induction for 21 and 28 

days, TAg cells were fixed with 4% formalin for 20 min. After washing with DPBS, 

cell monolayers were stained with alizarin dye solution (40 mM, Sigma-Aldrich, 

Germany) for 20 min and washed 4 times with deionized water. A colorimetric 

assay was carried out to quantitate the calcium phosphate precipitates according 
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to the instructions of the manufacturer (Osteogenesis Quantitation Kit, Merck 

Millipore, Germany). Briefly, Alizarin red dyes were dissolved from the 

monolayers over a period of 30 min by the addition of 10% acetic acid solution. 

The monolayers were detached from the well bottom by scraping. The samples 

were vortexed for 30 s and heated at 85 °C for 10 min, cooled on ice for 5 min, 

and then centrifuged at 20.000 g for 20 min. After neutralization of the 

supernatants by adding 10% ammonium hydroxide, quantification of calcium 

precipitates was performed using an ELx800 plate reader (BioTek Instruments 

GmbH, Germany) at a wavelength of 405 nm. 

4.2.4.4. Gene expression analysis 

RNA isolation from TAg cells was carried out at day 14 of osteogenic stimulation 

in the presence of Zn extracts, according to the manufacturer's instructions using 

the NucleoSpin RNA kit (Macherey-Nagel, Germany). The isolated RNA was 

photometrically measured and quantified (GE Healthcare, Germany). cDNA 

synthesis was performed using 200 ng of RNA and the SuperScript VILO kit 

(Invitrogen, USA), according to the manufacturer's instructions. The real-time 

LightCycler System (Roche Diagnostics, Germany) was used to quantify mRNA 

levels of Runt-related transcription factor-2 (RUNX2), alkaline phosphatase (ALP), 

osteocalcin (OCN) and the alpha-1 chain of type I collagen (COL1A1), 

respectively. The DNA Master Sybr Green 1 (Roche Diagnostics, Germany) and 

the commercial primer kits (Search LC, Germany) were used for 40 cycles of PCR 

amplification. Transcript levels of target genes were normalized to those of the 

housekeeping gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH, 

Serach LC, Germany). Calculated ratios in control groups were set as 1 (control) 

and induction indices in relation to this control were calculated. 

4.2.5. Effects of alkaline pH values and different Zn ion concentration on cell 

viability 

To evaluate the effect of alkaline media conditions induced by Zn degradation on 

cell viability, TAg cells were seeded in 96-well culture plates at a density of 3 × 

103 cells cm-2 and pre-cultivated overnight. Subsequently, the medium was 

replaced by normal complete DMEM/F-12 (Co) and osteogenic complete medium 
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DMEM/F-12 (Ob) of pH values intentionally adjusted to 8, 9, 10, 11 and 12, and 

the normal culture media as a negative control. After incubation for 24 h, the 

relative metabolic activities were determined by CCK-8 assay, as described 

above. 

To identify which Zn ion concentration modulated cell viability and osteogenic 

differentiation of TAg cells, separate experiments evaluating the effects of 

different concentrations of extracellular Zn ions were carried out. The normal 

complete DMEM/F-12 (Co) and osteogenic complete DMEM/F-12 (Ob) were 

adjusted to the respective Zn ion concentration gradient (2-100 μM) using a ZnCl2 

solution (Sigma-Aldrich, Germany). Cell culture media without supplemented Zn 

solution was used as a negative control. TAg cells were seeded in 96-well plates 

at a density of 3 × 103 cells cm-2 for 24 h. Subsequently, the medium was replaced 

by media containing various Zn ion concentrations and refreshed every other day. 

The relative cell metabolic activities were analyzed at day 2, 6, and 12, 

respectively, as described above. After initial testing of various Zn concentrations 

on cell vitalities, typical low (2 μM) and typical high (40 μM) Zn ion concentrations 

were further used to investigate a potential influence on the osteogenic 

differentiation of TAg cells. Mineral deposition and osteogenesis-related gene 

expression were analyzed using qPCR as described above. 

4.2.6. Statistical analysis 

All data were presented as mean and corresponding standard deviations. All 

assays were repeated at least three times to ensure reproducibility. Where 

applicable, all data sets were first analyzed concerning their normal distributions 

by the Shapiro-Wilk test. For comparisons between two groups, a Student's t-test 

was performed. Mann-Whitney U-tests were analyzed if normality tests failed. For 

comparisons of three or more groups, parametric data sets were analyzed by 

one-way analysis of variance (ANOVA), followed by Tukey's multiple 

comparisons test. Non-parametric data sets were analyzed by the Kruskal-Wallis 

test followed by Dunn's multiple comparisons test. Statistical analyses were 

analyzed using GraphPad PRISM (vision 6.01, GraphPad Software, Inc., San 

Diego, US). A P-value < 0.05 was considered as statistically significant. 
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4.3. Results 

4.3.1. In vitro degradation behavior of Zn and Zn-4Ag sheets 

In vitro degradation behavior was evaluated in DMEM/F-12 under cell culture 

conditions for 28 days. The degradation rates of Zn and Zn-4Ag alloy calculated 

by weight loss were 4.80 ± 0.82 μm/year and 17.38 ± 0.78 μm/year, respectively. 

A Student's t-test was used to confirm the statistically significant difference 

between both groups (p < 0.001). As already macroscopically visible, all samples 

showed after the respective immersion period a dark blackish surface without 

obvious bulk degradation products. Furthermore, the surface morphology and 

chemical composition of Zn and Zn-4Ag sheets after immersion for 28 days are 

shown in Figure 4.2. The degradation precipitations dispersed on sample 

surfaces are visible under two different magnifications. Compared with Zn-4Ag 

surfaces, less structures of white appearance were formed on Zn surfaces. SEM 

images at higher magnification showed that some tiny degradation particles were 

distributed on the surfaces but no obvious thick degradation layers covering the 

whole surfaces were visible. As shown in Figure 4.2e, EDX analysis indicated 

that Zn, C, O and P were identified as elemental composition of degradation 

products on the surfaces. Additionally, Figure 4.3 illustrates sample surfaces after 

removal of the degradation products. The surfaces of Zn and Zn-4Ag showed a 

relatively uniform degradation morphology, without extensive localized corrosion 

spots. 
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Figure 4.2. Representative SEM-EDX analysis of samples after immersion in DMEM/F-
12 for 28 days. SEM images showing (a,b) pure Zn and (c,d) Zn-4Ag alloy. The spots 
highlighted as red rectangles are shown in a higher magnification in b and d. (e) 
Representative EDX results from spots arrowed with yellow letters A/B and C/D in (b) 
and (d). 

 
Figure 4.3. Representative SEM images of pure Zn and Zn-4Ag alloy after removal of 
degradation products. SEM images showing (a,b) pure Zn and (c,d) Zn-4Ag alloy. The 
red rectangles correspond to the magnified degradation morphologies of (b) pure Zn and 
(d) Zn-4Ag alloy. 

4.3.2. Analysis of sample extracts during the 28-day period of immersion 

Figure 4.4 shows the metallic ion release of pure Zn and Zn-4Ag alloy in DMEM/F-

12 as well as the pH values of the respective extracts for the 28 day period of 

immersion. According to ICP-OES measurements, only Zn ions released from the 

Zn-4Ag sheets could be detected in DMEM/F-12. Released Ag ion concentrations 

were shown to be under the detection limit (< 50 μg/L). At all analyzed time points, 

the mean Zn ion release from samples was below 6.5 μg/mL (approximately 100 

μM). The tendency of Zn ion release was generally consistent between pure Zn 

and Zn-4Ag alloy (Figure 4.4a). As a simple calculation, the cumulative Zn ion 

release amount of pure Zn (81.7 ± 1.87 μg/mL) was slightly, but significantly 

higher than that of Zn-4Ag (79.1 ± 0.99 μg/mL) for the 28 day-period of immersion 
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(p = 0.015), independent of degradation rates calculated by weight loss. The 

evolution of pH values during immersion is illustrated in Figure 4.4b. Pure Zn and 

Zn-4Ag showed a similar trend of pH changes during immersion in DMEM/F-12. 

A rapid increase in pH values was detected at initial time points, thereafter 

constantly decreasing pH values were measured. All mean pH values measured 

were in the range from 8.4 to 8.9, so all pH changes were below 0.8 compared to 

the respective initial values. At the end of the 28-day period, mean pH values of 

8.42 and of 8.47 were measured for Zn-4Ag and Zn sheets respectively. 

 
Figure 4.4. Analysis of sample extracts during the 28 day-period of immersion. (a) Zn 
ion release (µg/mL and µM respectively) of pure Zn and Zn-4Ag in DMEM/F-12. (b) 
Evaluation of pH values. 

To further analyze the degradation products, the solid degradation particles in the 

extracts were analyzed by SEM-EDX. As shown in Figure 4.5a, a precipitation of 

insoluble degradation granules could be observed in Zn-4Ag extracts only after 

centrifugation. The SEM image shows that crystal-like degradation granules are 

visible (Figure 4.5b). The corresponding EDX spectrum revealed that the 

degradation granules of Zn-4Ag were mainly composed of Zn, O, C and Cl. 
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Figure 4.5. Analysis of degradation granules in Zn and Zn-4Ag alloys extracts after a 28 
day period of immersion. (a) Precipitates of degradation granules in Zn-4Ag extracts 
(indicated by the yellow circle) after centrifugation. (b) SEM images of the degradation 
granules marked with yellow letters. (c) The EDX spectrum indicates the elemental 
composition of spots marked with yellow letters in b. 

4.3.3. Examination of TAg cell functions after exposure to Zn and Zn-4Ag extracts 

Figure 4.6 shows the relative metabolic activity of TAg cells after exposure to 

various concentrations of Zn and Zn-4Ag extracts under normal and osteogenic 

conditions for 12 days. An inhibition of cell metabolic activity below 70%, 

compared to the negative control, was regarded as a cytotoxic effect, according 

to ISO 10993-5: 2009 [97]. Herein, TAg cells exposed to Zn or Zn-4Ag extracts 

exhibited relative metabolic activities above 70%, indicating that no cytotoxic 

effects are emanating from Zn extracts in all concentrations tested. In contrast, in 

the presence of low concentrated Zn-4Ag extracts (i.e., 25%, 10% and 5%), a 

significant increase in metabolic activities of TAg cells under normal and 

osteogenic conditions was observed at day 2 compared to the controls (p < 0.05). 

With increased culture time, there were no significant increases or decreases in 

metabolic activities of TAg cells, independent of various Zn extract concentrations 

at day 12 (p > 0.05). Notably, significant differences were detected only in TAg 
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cells cultured in the presence of Zn-4Ag extracts. 

 
Figure 4.6. Relative metabolic activities of TAg cells cultured in the presence of Zn and 
Zn-4Ag extracts for up to 12 days, determined by CCK-8 assay. (a, b) cell vitalities in the 
presence of pure Zn extracts of various concentration, (c,d) cell vitalities in the presence 
of Zn-4Ag extracts of various concentration under normal conditions (a, c) and under 
osteogenic conditions (b, d). The DMEM/F-12 complete media (normal and osteogenic) 
were considered as the negative controls and set to 100%. * represent p < 0.05 when 
compared to the negative control. 

For the analysis of a potential influence of Zn/Zn-4Ag extracts on osteogenic 

differentiation of TAg cells, one typical low (2%) and one typical high (50%) 

concentration of sample extracts was used. Figure 4.7a displays Alizarin red 

staining of TAg cells cultured in the presence of sample extracts in order to 

evaluate their osteogenic potential. Only weak Alizarin red staining was observed 

in TAg cell monolayers treated with 50% of sample extracts at day 21 and 28. In 

contrast, TAg cells cultivated in the presence of low concentrated (2%) sample 

extracts exhibited much stronger Alizarin red staining, indicating pronounced 

formation of calcium phosphate nodules (Figure 4.7b). For quantification of TAg 

cell mineralization, the ratio of Ca concentration in the extract-treated cultures 

was related to that determined in the control (TAg cells cultivated in the absence 

of Zn extracts) as illustrated in Figure 4.7 c and d. Significance tests were 

calculated by comparing Ca ratios of osteogenically induced TAg cells in the 

presence of extracts with those of cells in the absence of sample extracts. The 
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Kruskal-Wallis test showed significant differences at day 21. Dunn's multiple 

comparisons tests showed significantly higher Ca concentrations in the 

osteogenic control (ratio of 2.39 ± 0.44) compared with those cells cultivated in 

the presence of 50% Zn extracts (ratio of 1.13 ± 0.58; p < 0.001) and 50% Zn-

4Ag extracts (0.77 ± 0.27; p < 0.001). Nevertheless, no significant differences 

were detected when comparing the Ca ratio of osteogenic control (without Zn 

extracts) with those from cells cultivated in the presence of 2% Zn (ratio of 2.10 

± 0.29; p > 0.05) or 2% Zn-4Ag extracts (ratio of 1.96 ± 0.91; p > 0.05), 

respectively. By comparing Ca ratios in TAg cells cultivated under 2% and 50% 

of sample extracts, significant differences were obtained (p < 0.05). In addition, 

ANOVA was used to confirm statistically significant differences of Ca ratios at day 

28. Notably, post hoc pairwise comparisons showed significantly higher Ca 

concentrations in TAg cells cultivated in the presence of 2% Zn-4Ag (ratio of 3.23 

± 0.77) and 2% Zn (ratio of 2.63 ± 0.65) extracts compared with those of 

osteogenic control (ratio of 1.59 ± 0.23). Similarly, as already shown for Ca 

quantification after 21 days, significantly higher Ca ratios in TAg cells cultivated 

in the presence of 2% Zn extracts were detected compared to cells cultured in 

the presence of 50% Zn-4Ag extracts. 
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Figure 4.7. Detection of TAg cell mineralization exposed to Zn and Zn-4Ag extracts. (a) 
Alizarin red staining of TAg cells cultured in the presence of sample extracts under 
osteogenic conditions for 21 and 28 days. (b) Representative microscopic images of 
differentiated TAg cells cultured in the presence of sample extracts for 21 and 28 days 
(magnification 4×; scale bar = 500 μm). Quantification of calcium precipitates is shown 
at day 21 (c) and day 28 (d). The ratio of Ca concentration (osteogenic/normal culture 
condition) was quantitatively analyzed by dissolving the Alizarin dye from TAg cell 
monolayers. Statistical differences were calculated compared to the osteogenic control 
without extracts. * p < 0.05, *** p < 0.001. 

 
Figure 4.8. Quantitative gene expression of osteogenically induced TAg cells exposed 
to sample extracts for 14 days. Gene levels of osteogenically induced TAg cells in the 
absence of Zn extracts were set as 1 and induction indices in relation to this control were 
calculated. Relative expression of (a) Runt-related transcription factor-2 (RUNX2), (b) 
Alkaline phosphatase (ALP), (c) Osteocalcin (OCN) and (d) Alpha-1 chain of type I 
collagen (COL1A1) are illustrated. * p < 0.05, ** p < 0.01.and *** p < 0.001. 

Figure 4.8 shows gene expression levels of RUNX2, ALP, OCN and COL1A1 in 

osteogenically induced TAg cells at day 14 of immersion with or without Zn 

extracts. Statistically significant differences of COL1A1 expression were 

confirmed by ANOVA. Post hoc pairwise comparisons showed a significantly 

lower COL1A1 expression in osteogenically induced TAg cells in the presence of 

50% Zn-4Ag (p < 0.05) and 50% Zn (p < 0.05) extracts compared to the 
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osteogenic control (without extracts). By comparing COL1A1 expression in cells 

cultivated in the presence of 2% Zn (1.03 ± 0.14) and 2% Zn-4Ag (1.08 ± 0.15) 

extracts to that in cells cultured in the presence of 50% extracts of Zn (0.59 ± 

0.11, p < 0.05) and Zn-4Ag (0.52 ± 0.11, p = 0.014), significant differences were 

obtained. In addition, RUNX2, ALP and OCN expression was shown to be 

significantly decreased in TAg cells cultured in the presence of 50% Zn and for 

ALP also in the presence of 50% Zn-4Ag extracts (p < 0.05). Herein, the above 

results coincide with the result that high concentrations of Zn and Zn-4Ag extracts 

(50%) significantly reduced calcium deposition of TAg cells. 

4.3.4. Effects of different pH values and Zn ion concentrations on TAg cell viability 

Figure 4.9 shows the results of the relative metabolic activities of TAg cells after 

24 h incubation with the normal and osteogenic media adjusted to different pH 

values. For pH values below 9, no impact on TAg cell viabilities was detected (p > 

0.05). In contrast, when pH values reached 10, for both media conditions the 

relative metabolic cell activities were significantly decreased compared to the 

control (p < 0.05). 

 
Figure 4.9. Relative metabolic activities of TAg cells after a 24 h incubation period in 
normal and osteogenic media of various alkaline pH values. The original media were 
used as negative controls (N.C.). Undifferentiated TAg cells were denoted as Co, and 
osteogenically induced cells as Ob. * and # represent p < 0.05 when compared to the 
respective negative controls cultured under normal and osteogenic medium, respectively. 

In Figure 4.10, metabolic activities of TAg cells are plotted as a function of Zn ion 
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concentration (2-100 μM) under normal and osteogenic conditions. At day 2 of 

incubation (Figure 4.10a), low Zn ion concentrations (5-20 μM) significantly 

increased relative metabolic activities of TAg cells (p < 0.05) under both culture 

conditions. Zinc concentrations of 40-60 µM led to significantly higher cell 

activities only under normal conditions. If a Zn concentration of 100 μM was 

chosen, for both media conditions cell activities were significantly decreased 

compared to the control (p < 0.05). At day 6 of incubation, only Zn concentrations 

of 40 µM under normal conditions increased metabolic activity. At day 12 of 

incubation, TAg cell viabilities were almost comparable under normal and 

osteogenic conditions (p > 0.05). As already observed for day 2 and 6, Zn 

concentrations of 100 µM showed clearly cytotoxic effects. 

 
Figure 4.10. Relative metabolic activities of TAg cells treated with different Zn ion 
concentrations determined by CCK-8 assay. (a) 2 days of incubation, (b) 6 days of 
incubation and (c) 12 days of incubation. The original media served as negative controls 
(N.C.). * and # represent p < 0.05 when compared to the respective negative controls 
cultured under normal and osteogenic medium, respectively. Undifferentiated TAg cells 
were denoted as Co, and osteogenically induced cells as Ob. 

To identify whether Zn ions in the medium influence the osteogenic differentiation 
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of TAg cells, one typical low (2 μM) and one typical high (40 μM) Zn ion 

concentration were used. As shown in Figure 4.11a, the effect of Zn ion 

concentration on osteogenic differentiation was assessed by Alizarin red staining. 

A Zn concentration of 2 μM led to a clearly stronger Alizarin red staining 

compared to the staining of TAg monolayers which were incubated constantly 

with 40 µM Zn ions for 21 and 28 days. Almost no staining was observed at this 

Zn concentration. After 28 days, TAg cells cultured in 2 μM Zn ion media showed 

significantly higher Ca concentration than those in control and 40 μM Zn ion 

media (p < 0.001). In addition, TAg cells cultured in 2 μM Zn ion was statistically 

higher mineralization than that in control media at day 28 (p < 0.001). 

 
Figure 4.11. Mineralization of TAg cells treated with 2 μM and 40 μM Zn ion 
concentration. (a) Alizarin red staining of TAg cells under osteogenic conditions for 21 
and 28 days. (b) Quantification of calcium precipitates after osteogenic induction for 21 
and 28 days. The ratio of Ca concentration (osteogenically induced: untreated cells) was 
quantitatively analyzed by dissolving the Alizarin dye from cell monolayers, *** p < 0.001. 

4.4. Discussion 

4.4.1. In vitro assays for testing of absorbable metals for implants 

The ideal in vitro tests should simulate in vivo conditions to the utmost, in order 

to accurately predict the in vivo performance of implants. To date, in vitro assays 

for the evaluation of degradation behavior and cytocompatibility of absorbable 

metals have been controversially discussed, since both aspects were considered 

independently [128, 145, 162]. To overcome this shortcoming, the aim of our work 

was to develop a modified test design in order to be able to consider and analyze 

in vitro degradation behavior and cytocompatibility at the same time. 
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The aspect of the in vitro degradation behavior under cell culture conditions was 

performed based on previously published methods [163, 164]. It has been shown 

that the composition of cell culture medium is close to that of human extracellular 

fluids [101, 163, 164]. Additionally, DMEM was recommended as appropriate fluid 

to obtain a comparable in vivo degradation behavior of Zn [165]. Herein, 

DMEM/F-12 has been selected, whose main constituents were compared with 

human extracellular fluids (Table 4.1). Previous studies on the degradation 

behavior of Mg alloys under cell culture conditions (37 °C, 95% rel. humidity, 5% 

CO2 and 20% O2) reported on comparable conditions to physiological 

environments [127, 128] . The main reason was attributed to the fact that the 

bicarbonate buffer system in the medium requires triggering by active CO2, 

regulating pH values of the degradation medium, which is similar to the 

physiological conditions [166]. 

Table 4.1. Main composition of human extracellular fluids and the used medium. 

Composition 
Human extracellular fluid 

DMEM/F-12 [167] 
Blood plasma [101, 125] Interstitial fluid [125] 

Inorganic ions (mM) 

Na+ 142.0 139.0 150.6 
K+ 4.2 4.0 4.2 
Mg2+ 0.8 0.7 0.7 
Ca2+ 1.3 1.2 1.1 
Cl- 106.0 108.0 126.1 
SO42- 0.5 0.5 0.4 
HPO42- 2.0 2.0 0.5 
HCO3- 24.0 28.3 29.0 
Organic components 
Protein 1.2 (mM) 0.2 (mM) - 
Glucose (mM) 5.6 5.6 17.5 
Amino acids 2.0 (mM) 2.0 (mM) 1.3 (g/L) 
Concentrations of buffering agents (mM) 
HCO3- 24.0 28.3 29.0 
HPO42- 2.0 2.0 0.5 
Tris-HCl - - - 
Human protein 16.0-18.0 [101] - - 
Total 42.0-44.0 30.3 29.5 
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Standardized cytocompatibility evaluation tests for absorbable metals based on 

the ISO 10993-5 and -12 standards are not satisfactory based on the fact that 

they were developed for intentionally bioinert materials, neglecting the properties 

of absorbable materials [67, 145]. Attempts to improve the efficacy of in vitro 

evaluation methods for absorbable Mg-based and Zn-based metals, including the 

dilution of extracts [92, 168], the selection of extraction medium [102, 156], and 

the surface pretreatment [94, 169], have been reported. Considering the 

degradation properties of Zn and its alloys, various degradation products during 

long-term degradation process all participate in tissue healing in vivo [44, 45, 52]. 

Thus, in our test model, sample extracts were repeatedly collected during the 

degradation process and given to cultivated cells for cytocompatibility evaluation. 

4.4.2. Degradation behavior under cell culture conditions 

The in vitro degradation behavior of pure Zn and Zn-4Ag alloys in DMEM/F-12 

was analyzed under common cell culture conditions. According to our results, the 

following degradation mechanism in DMEM/F-12 can be proposed. Immersion in 

DMEM/F-12 (slightly alkaline solutions, pH value: 8.06) leads to anodic and 

cathodic reactions as described by Eq (1) and Eq (2), respectively [145]. With the 

dissolution of Zn, a rapid increase in Zn ion concentration and pH value can be 

detected in DMEM/F-12 (Figure 4.4). According to the Pourbaix diagram, Zn 

trends to be passivated in slightly alkaline solutions, while the chemical reactions 

as described in Eq (3) and Eq (4) take place. The accumulation of zincite (ZnO) 

and zinc hydroxide (Zn(OH)2) on the surfaces tends to form the passivation layers 

[156, 165]. On the other hand, the released Zn ions can spontaneously react with 

phosphate ions and carbonate ions contained in DMEM/F-12 to form Zn 

phosphate (Zn3(PO4)2·4H2O) and Zn carbonate (ZnCO3) [145, 165]. According to 

our EDX analysis, we detected the elements Zn, O, C and P on sample surfaces, 

as expected (Figure 4.2). 

Anodic reaction: Zn (s) → Zn2+ (aq) + 2e- (1) 

Cathodic reaction: 2H2O + O2 + 4e- → 4OH- (2) 

Zn(OH)2 formation reaction: Zn2++ 2OH- → Zn(OH)2 (3) 
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ZnO formation reaction: Zn2++ 2OH- → ZnO + H2O (4) 

Generally, the formation of Zn degradation layers can retard the degradation 

process [145, 170]. However, no obvious decrease in Zn ion release could be 

detected by ICP-OES measurements (Figure 4.4). It can be assumed that some 

organic components contained in DMEM/F-12 can interfere with the surface 

passivation, probably similar to the effect of protein adsorption on Zn surfaces 

[131]. Further on, more complex degradation products, such as hydrozincite 

(Zn5(CO3)2(OH)6) and simonkolleite (Zn5(OH)8Cl2·H2O) can be formed on the 

surfaces, as previously reported [145]. The formed degradation layers can be 

dissolved by chloride ion attack and transformed into zinc chloride salts, as 

confirmed by our EDX analysis from Zn-4Ag degradation granules, as illustrated 

in Figure 4.5. 

Our results revealed significantly higher degradation rates of Zn-4Ag alloys 

compared to those of pure Zn, probably due to the occurrence of a secondary 

phase (ε-AgZn3) within the microstructure [122]. A recent study reported on 

micro-galvanic effect between the Zn matrix and the secondary ε-AgZn3 phase , 

leading to high degradation rates [89]. Notably, the cumulative Zn ion release of 

pure Zn was significantly higher than that of Zn-4Ag alloy, which is inconsistent 

with our obtained degradation rates. We postulate that a fraction of free Zn ions 

released from Zn-4Ag surfaces rapidly binds to zinc degradation granules, which 

is not the case with those of pure Zn. As a consequence, a higher formation of 

degradation granules was observed in Zn-4Ag extracts (Figure 4.5). Thus, 

released Zn ion concentration in the sample extracts is not directly related to the 

degradation rates determined in our test. 

4.4.3. Assessment of cytocompatibility of Zn and Zn-4Ag alloys using 

immortalized periosteal cells 

Viabilities of TAg cells cultured in the presence of Zn and Zn-4Ag alloy extracts 

for up to 12 days were shown to be unaffected, indicating no obvious cell cytotoxic 

effects (Figure 4.6). Zn ion concentrations analyzed in all extracts were below 90 

μM after supplementation with 10% FBS (Figure 4.4a), indicating cell tolerance 
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for this concentration. This is in accordance with the tolerance level determined 

for TAg cells in this study by testing different extracellular Zn ion concentration 

between 2-100 μM, adjusted by the addition of a ZnCl2 solution (Figure 4.10). A 

significant improvement of TAg cell viabilities was achieved by low concentrations 

of either Zn-4Ag extracts or Zn ions at day 2 of examination (Figure 4.6 and Figure 

4.10). This result coincides with findings from previous studies describing the 

activation of vascular muscle or endothelial cell viabilities in the presence of low 

Zn ion concentrations [137, 138]. Ag ion concentration in the extracts from Zn-

4Ag alloys was under the detection limit of ICP-OES (< 0.5 μM). This Ag ion 

concentration remained under the previously reported cell tolerance limit (approx. 

4.25 μM), indicating that limited Ag ion release does not cause the toxic effects 

[139]. Due to the buffering effect of the DMEM/F-12 medium, pH values in all 

extracts were below 8.9 (Figure 4.4b). Under pH 9, we did not detect any 

significant decrease of metabolic activities of TAg cells (Figure 4.9). 

In our study, we detected fourfold higher degradation rates of Zn-4Ag alloys, but 

no higher cytotoxic effects emerged from them as compared to those of pure Zn. 

This finding contradicts the conclusion that cytotoxicity of Zn and its alloys is 

consistent with the variation of degradation rates [171, 172]. We postulate that 

during degradation of Zn-4Ag, free Zn ions were bound to degradation granules, 

leading to relatively low Zn ion concentrations in the analyzed extracts (Figure 

4.4). Therefore, we conclude that cytotoxicity of Zn and its alloys is mainly 

determined by available Zn ions. Previously, studies have reported on obvious 

cytotoxicity of undiluted extracts of Zn and its alloys towards bone-related cells 

[45, 122, 173]. DMEM/F-12 medium without FBS was chosen for the generation 

of Zn extracts. The presence of FBS in the extraction medium can increase Zn 

ion release, leading to additional cytotoxicity [156]. 

Periosteum derived mesenchymal stromal cells can differentiate into multiple cell 

lineages and play a critical role in bone regeneration [148, 149, 174]. We explored 

potential effects of long-term Zn degradation products on the mineralization 

potential of TAg cells considering the potential application of Zn-based alloys as 

suitable osteosynthesis materials. Our results showed that extracts of low 
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concentrations promote the osteogenic differentiation of TAg cells, in contrast to 

high concentrated extracts, indicating a dose-dependent effect (Figure 4.7). 

Similar effects on the mineralization potential of TAg cells were detected by using 

Zn ion concentrations of 2 μM and 40 μM in osteogenic media (Figure 4.11). In 

coincidence, other studies reported on osteogenic induction caused by Zn ion 

release from Zn-containing biomaterials [175, 176]. Zn-mediated cellular 

response seems to involve GPR39/ZnR and TRPM7 receptors for Zn-entry into 

MSCs, thus triggering the intracellular cAMP and PKA pathway, leading to the 

activation of MAPK [177]. Our qPCR data revealed no obvious increase in 

RUNX2, ALP and OCN gene expression at day 14, when TAg cells were cultured 

in the presence of low concentrated extracts (Figure 4.8) in comparison to TAg 

cells without extract supplementation. On the other hand, we observed a 

significant decrease in gene expression of the osteogenesis-relevant genes in 

the presence of high concentrated Zn extracts. A delayed osseointegration of 

pure Zn, characterized by less new bone formation directly on Zn surfaces, was 

observed in in vivo studies, which might be caused by the local accumulation of 

excessive Zn ion concentrations [45, 63]. Our data also verify the in vivo 

performances of Zn-based implants, indicating that the Zn ion concentration 

should be controlled in order to not disturb the bone tissue healing process. 

Nevertheless, the mechanisms of Zn modulated osteogenesis are still not fully 

understood and should be further investigated. 

4.5. Conclusions 

A modified extraction method was established for better correlation of Zn/Zn-4Ag 

alloy degradation behavior and cytocompatibility. Both Zn and Zn-4Ag exhibited 

predictable in vitro degradation behavior under cell culture conditions. Compared 

with pure Zn, a Zn-4Ag alloy with higher degradation rates seemed to exhibit no 

adverse cytotoxic effects on TAg cells. Concerning the degradation behavior, Zn 

ion concentrations in the extracts were not related to the calculated degradation 

rates of samples. This discrepancy is probably caused by formation of insoluble 

precipitates of degradation products, leading to a decreased concentration of free 

Zn ions in the extracts. This implies that cytotoxicity cannot be predicted by 
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calculated degradation rates, determined by e. g. sample weight loss, since it is 

correlated with released free ions rather than with degradation rates. In addition, 

osteogenic differentiation of TAg cells was significantly induced in the presence 

of low concentrated Zn extracts and significantly inhibited after supplementation 

of medium with high concentrated Zn extracts. Therefore, optimized Zn-based 

implants should produce low Zn ion concentrations in the local tissue to avoid 

interference with new bone formation. 
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5. Discussion 

The development of absorbable Zn-based CMF osteosynthesis implants requires 

a multidisciplinary approach to evaluate material properties and biological 

response. In our previous study, a novel Zn-4Ag alloy with improved mechanical 

properties was fabricated and developed [69]. Herein, this thesis highlighted the 

major material properties related to cytotoxicity, degradation behavior, 

antibacterial properties and osteoinductivity of Zn-based alloys as CMF 

osteosynthesis implants. 

5.1. Evaluation of cytotoxicity 

Predicting biocompatibility is of primary significance when assessing and 

screening the candidate implant materials. The in vitro standardized cytotoxicity 

test is a rapid, simple, sensitive method to determine whether a novel biomaterial 

does perform physiologically at a cellular level, without the release of any toxic 

substances [67, 135]. The cytotoxicity evaluation of Zn and its alloys is mainly 

performed by two methods, namely a direct contact test and an extract test, based 

on the current ISO standards. 

The in vitro direct contact test might be limited for Zn-based alloys due to the 

rapid surface change during the degradation process of Zn-based alloys. 

Considering most physiological conditions, cells have no chance to directly grow 

on the original surface of implants (without any protein adsorption and initial 

degradation layer formation) [68]. Previous studies have demonstrated that 

osteoblasts can grow directly on the degraded interface of Zn alloy [94] and on a 

gelatin modified Zn surface [178]. Notably, the comparison of results between in 

vivo and in vitro results have shown that the initial degradation layers formed on 

pure Zn in vivo, especially the zinc phosphate layer, can significantly enhance its 

biocompatibility [68]. Herein, we focused on extract tests to evaluate the 

cytotoxicity of Zn and its alloys in the thesis. 

In study I, the cytotoxicity of a novel Zn-4Ag alloy was evaluated with L929 and 

Saos-2 cells. The results indicated obvious toxic effects in the original extracts 

while the toxic effect was decreased in the diluted extracts (10% and 16.7%), as 
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shown in Figure 2.7 and Figure 2.8. The possible reason is the fact that the 

released Zn ion concentration in the original extracts is far beyond the cellular 

tolerance level for Zn ions, while L929 and Saos-2 cells can survive in the diluted 

extracts due to the decreased Zn ion concentration. Nevertheless, these 

cytotoxicity results should not be overestimated. The current ISO standard is 

derived from the evaluation of bioinert materials, such as titanium and ceramic, 

without consideration of the degradability of bioresorbable materials [67, 135]. 

Thereby, the use of the extract test for evaluating cytotoxicity of absorbable 

metals has been controversially discussed. 

In study II, we further explored the extraction conditions of an extract tests for Zn 

and its alloys. Different extraction media were compared. The outcomes revealed 

that relative metabolic activities of L929 cells and Saos-2 cells were significantly 

decreased in the extraction media containing fetal bovine serum (Figure 3.6), 

indicating an FBS-mediated cytotoxic effect. The probable explanation is that 

FBS significantly increases Zn ion release (Table 3.3), leading to Zn ion 

concentrations beyond cellular tolerance. Coincidentally, serum-free cell culture 

media were used as extraction vehicle in some previous studies, and no obvious 

cytotoxic effects in the original extracts of Zn alloys were observed as well [53, 

144] (Table 3.4). These results verify our finding of the FBS-mediated cytotoxic 

effect. Thus, our results can provide significant information for choosing an 

appropriate extraction medium to optimize the extract test. 

In study III, we modified an extraction method to correlate the degradation rate 

and related cytotoxicity. The results showed that the degradation rate of Zn-4Ag 

was almost four-fold higher than that of pure Zn under cell culture conditions. 

However, the relative cytotoxic effects were not significantly increased (Figure 

4.6). This can be explained by the finding that the released free Zn ion 

concentration in the extracts was not significantly different between pure Zn and 

the Zn-4Ag alloy (Figure 4.4). We assume that part of the free Zn ions was bound 

to degradation particles during the Zn-4Ag degradation process, leading to 

relatively low free Zn ion concentrations released from the Zn-4Ag alloy (Figure 

4.5). The result effectively denies the previous conclusion that cytotoxicity of Zn-
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based alloys is consistent with the variation of degradation rates [171, 172]. 

Therefore, we can conclude that cytotoxicity was determined by the released free 

Zn ions, not directly correlated with the degradation rate calculated by weight loss. 

Table 5.1. Summary of cytotoxicity evaluation of Zn-based alloys with bone-related cell 
lines. 

Samples 
Incubation 

time, d 
Key findings Ref. 

Murine osteoblast precursor cells (MC3T3-E1) 
Zn 

Zn-HA composite 
1, 2 and 4 

Zn-HA composite had better cell viability 

compare with the cytotoxic effect of pure Zn 
[44] 

Zn-0.5Al 

Zn-0.5Al-0.1Mg 

Zn-0.5Al-0.3Mg 

Zn-0.5Al-0.5Mg (C) 

2 and 7 
Zn-0.5Al-0.5Mg alloy exhibited higher cell 

viability compared with the Zn-0.5Al alloy. 
[113] 

Zn-0.5Al-0.5Mg 

Zn-0.5Al-0.5Mg-XBi 

where X = 0.1, 0.3, 0.5 

(C) 

2 and 7 

All alloys extracts showed no cytotoxicity while 

cell viability decreased with increasing Bi 

content 

[143] 

Pure Zn with ZnP, ZnO 

and Zn(OH)2 layers 
3 

ZnP had highly biocompatible, which might be 

the key controlling biocompatibility of Zn 
[68] 

Human osteosarcoma cells and osteoblasts (including MG63, U-2 OS, HOS, NHOst and Saos-2) 

Zn and Zn-4Ag 1 

Zn-4Ag had obvious toxicity effect in the original 

extracts while cytotoxicity decreased with 

diluted 

Study I 

Zn, Zn-4Ag 

and Zn-2Ag-1.8Au-0.2V 
1 FBS-mediated cytotoxic effect Study II 

Zn (SLM) and Zn-xMg 

(x=1,2,3,4) 
1, 3 and 5 

SLM Zn induced cytotoxicity for MG63 in 100% 

ectracts, but Zn-xMg had good cytocompatibility 
[172] 

Zn-0.8Mg (E) 1 
Alloy was cytotoxic effects to U-2 OS in 100% 

extracts but non-cytotoxic in 50% dilution. 
[93] 

Zn-1.2Mg (C,E) 3 As-cast Zn–1.2Mg had no toxicity to MG63 [88] 

Zn-1.5Mg (E) 1 Pretreatment improved cytocompatibility [94] 

Zn-1Mg, Zn-1Ca, Zn-1Sr 

(HR) 
1, 3 and 5 

Extracts had good viability using serum-free 

media 
[53] 

Zn–1Mg–Ca, Zn–1Mg–

1Sr 

Zn–1Ca–1Sr (C, HR) 

1, 3 and 5 
Cell viability and morphology of MG63 showed 

excellent cytocompatiblity 
[87] 

Zn-1Mg, Zn-1Mg-0.5Ca 

(C) 
1 and 2 Saos-2 cells tolerated 100% sample extracts [141] 

Zn-3Mg (C) 1, 3 and 7 
Sample extracts showed cytotoxicity after 1 day, 

while cell viability was improved at 3 day 
[111] 
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Human mesenchymal stem cells (including BMSCs and TAg cells) 

Zn and Zn-4Ag 2, 6 and 12 
Cytotoxicity of TAg cells mainly determined by 

degradation products  
Study III 

Pure Zn (W) 1, 3 and 5 

No cytotoxicity was detected in the 50% 

extracts, and confluent cell densities on Zn was 

observed 

[63] 

Pure Zn pretreated by 

serum (W) 
1, 7 and 14 

hMSC proliferation on Zn was increased after 1 

and 7 days while was decreased after 14 days 

compared with AZ31 

[177] 

The metallurgy techniques are indicated as follows: C: casting, E: hot extrusion, HR: hot rolling SLM, 
selective laser melting, W: commercial wrought product. 

For cytotoxicity evaluation, the proper choice of bone-related cell lines is deemed 

crucial to provide significant information on the applicability of the respective 

osteosynthesis implants. Table 5.1 lists the cytotoxicity results of Zn-based alloys 

using different bone-related cell lines, according to previous studies and our 

results. In study III, we first reported cytotoxicity results of Zn-4Ag alloys with 

human periosteal cells and found that no obvious toxicity effects. However, there 

are conflicting reports on the cytotoxicity of Zn and based alloys. These 

discrepancies can be explained by the different in vitro test methodologies, such 

as alloy systems, cell lines, exposure time, pretreatment, extract concentration, 

extraction medium etc. In summary, the current standardized cytotoxicity test 

should be further optimized to better evaluate and predict in vivo biocompatibility. 

5.2. Determination of degradation behavior 

Biodegradation behavior of absorbable Zn and its alloys not only influences the 

maintenance of mechanical strength but determines biocompatibility as well. 

Current standardized tests for evaluating in vitro degradation behavior are still 

lacking. In the thesis, the degradation behavior was investigated using an 

immersion test model (an extraction model with cell culture medium) under cell 

culture conditions, (37 °C, 5% CO2, 20% O2 and 95% rel. humidity). Numerous 

previous studies on Mg degradation have been demonstrated the in vitro 

degradation test under cell culture conditions is closer to the physiological 

environments [127, 128]. 

In study I, a novel Zn-4Ag alloy was performed to estimate the in vitro initial 

degradation rate through detecting the concentration of released metallic ions in 
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the cell culture medium. As shown in Figure 2.5, we observed higher degradation 

rates in DMEM medium than in McCoy’s medium, suggesting that the Zn 

degradation behavior is influenced by different components of the media. One 

main reason can be that the high concentration of HPO42- in McCoy’s medium 

formed a zinc-phosphate layer (passivation layer), inhibiting the initial 

degradation rates, as depicted in Figure 5.1. In addition, the initial degradation 

particles on the surfaces were detected by SEM (Figure 2.6). The EDX analysis 

indicates the products containing Zn, O, C, P and Cl derive mainly from chemical 

reactions with components of the cell culture media, probably composed of 

hydroxides, phosphate, carbonate compounds [43, 88, 106]. 

 
Figure 5.1. Schematic diagram of the degradation mechanism of Zn and its alloys under 
cell culture conditions (own image). 

In study II, we further investigate the effect of FBS on the initial degradation 

process under cell culture conditions. According to the results of ICP-OES, FBS 

can significantly increase the initial Zn ion released from pure Zn and its alloys 

(Figure 3.2). It can be hypothesized that serum protein interferes with the 

passivation layer formation (Zn-P layer), leading to increased Zn ion release, as 
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shown in Figure 5.1. Similarly, rapid protein adsorption on surfaces can prevent 

the initial passivation layer and increase the degradation rate when pure Zn is 

immersed in whole blood [131]. On the contrary, Liu et al. [179] reported that the 

Zn degradation process had three stages in artificial plasma. At the initial 24 h 

stage, Zn degradation can be retarded by the rapid albumin absorption on the 

surface. After 3 days, the degradation rate of Zn is increased mainly due to metal 

matrix dissolution. Whereas, the complex accumulation on the surface can 

decrease the degradation process again after 7 days. Additionally, a previous 

study also reported that the rapid protein adsorption on Zn surfaces can 

exacerbate the localized corrosion [165]. The conflicting results above can be 

found to reveal the complexity of the corrosion mechanisms. Hence, the effect of 

organic components on Zn degradation should be further explored. 

In study III, a Zn-4Ag alloy was immersed in the DMEM/F-12 under cell culture 

conditions for 28 days. A consensus is widely recognized that a long-term 

immersion test under cell culture conditions closely mimics the physiological 

environment [163-165]. Firstly, our results indicated an inconsistency between 

degradation rates calculated by weight loss and free metallic ion release detected 

by ICP-OES (Figure 4.4). This can be attributed to the formation of degradation 

particles in the extracts, leading to metallic ions bound to the particles (Figure 

4.5). In other words, the approach to estimate the degradation rates by detecting 

metallic ion release might be not suitable for a long-term degradation test. 

Moreover, the degradation rates of Zn-4Ag alloy (17.38 ± 0.78 μm/year) in the 

DMEM/F-12 is higher than that of pure Zn (4.80 ± 0.82 μm/year) caused by the 

micro-galvanic effect [89, 122]. Whereas, the degradation rates in DMEM/F-12 

are slightly lower than those in the standard salt solutions such as SBF and HBBS, 

as shown in the Figure 5.2 a. Additionally, Liu et al. [165] proposed that the Zn 

degradation process can be retarded in DMEM compared to that in SBF and 

HBBS, due to the synergy effect of both organic components and insoluble salt 

formation on the Zn surface. 
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Figure 5.2. Reported degradation rates of Zn and Zn alloys. (a) In vitro degradation rates 
calculated from immersion test with different solutions: cell culture medium (CCM), 
simulated body fluid (SBF) and Hank's Balanced Salt Solution (HBSS). (b) In degradation 
rates in the different implantation sites. The metallurgy techniques are indicated as 
follows: C: casting, E: hot extrusion, W: commercial wrought product and HR: hot rolling. 
Most data gathered from the literature [24]. 

Though the specific degradation rates of CMF implants should depend on the 

clinical application, mechanical integrity needs to be maintained for at least 3-6 

months. Also, the implants should be fully degraded within 2 years to avoid the 

interference of bone remodeling. Thereby, the suggested optimal degradation 

rate is 500 μm/year [24]. In the thesis, the in vitro degradation rate of the Zn-4Ag 

alloy was approximately 20 μm/year, which is probably insufficient for the 

requirements of CMF osteosynthesis implants. As shown in Figure 5.2 b, most 

previous in vivo studies reported that pure Zn and Zn-based alloys implanted in 

different sites showed relatively slow degradation rates, all below 500 μm/year. 

Consequently, it is required to adjust the degradation rates of Zn-based 

osteosynthesis implants in further studies. 

5.3. Investigation of biofunctionality features 

5.3.1. Antibacterial properties of a Zn-4Ag alloy 

Antibacterial properties of CMF osteosynthesis implants can prevent post-
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operative infections. An intraoral surgical approach is the main trend for 

management of maxillofacial trauma. For transoral maxillofacial surgery, the 

infection risk with oral bacteria is increased [76]. Admittedly, the antibacterial 

properties should be effective against the related microorganisms. A previous 

study reported that salivary microbial species mainly include Streptococcus, 

Rothia, Fusobacterium, Haemophilus, Prevotella, and Neisseria [180]. In that, S. 

gordonii plays a critical role in initial colonization through creating a biofilm for 

adhesion of other colonizers in the oral environment [181]. Therefore, we used S. 

gordonii to evaluate the antibacterial properties of a Zn-4Ag alloy potentially used 

for CMF osteosynthesis implants. 

In study I, the Zn-4Ag surface exhibited effective inhibition of initial S. gordonii 

adhesion and biofilm formation compared to the Ti-6Al-4V surface (Figure 2.9). 

Nonetheless, the potential antibacterial mechanism of Zn-4Ag is not completely 

understood and might be explained by several aspects as follows. Firstly, the 

released Zn ions from the Zn-4Ag alloy might potentially interact with S. gordonii 

on the surface. A previous study reported that Zn ions can alter charge balance, 

leading to cell deformation and bacteriolysis [182]. In principle, all zinc-based 

biodegradable materials possess potential antibacterial properties [48]. Secondly, 

the limited Ag ion release from a Zn-4Ag alloy might be useful for the inhibition of 

S. gordonii adhesion. Although Ag is considered as an effective antibacterial 

agent, the exact mechanism is still not completely understood. The effect is 

probably related to interaction with the cell membrane and interference with 

electron transport binding to DNA [183]. Additionally, released Ag ions can 

interact with DNA to promote pyrimidine dimerization via the photodynamic 

reaction, probably inhibiting DNA replication [184]. Finally, the antibacterial effect 

might be contributed by the cathodic reaction of Zn-4Ag in the medium, increasing 

hydroxide ion release on the surfaces (pH value increased). It has been reported 

that a magnesium alloy (AZ91) exhibited the in vitro antimicrobial properties 

mainly owing to the rapid degradation process, increasing in pH value in the 

culture medium. Nevertheless, the antibacterial effect is obviously diminished in 

vivo due to the buffering effect of body fluids [185]. Hence, the exact antibacterial 

mechanism of the Zn-4Ag alloy should be further investigated. 
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5.3.2. Osteoinductivity of Zn and Zn-4Ag alloy 

As an ideal osteosynthesis material, osteoinductivity can promote new bone 

formation, leading to shortening at the healing time. During the degradation 

process of Zn-based implants, the released Zn degradation products directly 

affect periosteal reaction and participate in tissue regeneration. Undoubtedly, 

periosteal stem cells not only can directly form bone tissue via the 

intramembranous pathway but induce endochondral ossification after trauma as 

well [147, 148]. Thus, we investigated the effect of degradation products of Zn 

and Zn-4Ag on the osteogenesis of a human immortalized cranial periosteal cell 

line (TAg cells). 

In study III, our key finding is that a high concentration of Zn degradation products 

can significantly inhibit the osteogenesis while a low concentration induces the 

osteogenic differentiation of TAg cells, indicating a dose-dependent effect (Figure 

4.7). Also, we used the related concentration of ZnCl2 to verify the dose-

dependent effect, suggesting that low Zn ion concentrations (2 μM) can induce 

osteogenesis but the osteogenesis inhibition by high Zn ion concentrations (40 

μM). Previously, Li et. al [53] reported that Zn-based pins (Zn-1Mg, -1Ca, -1Sr) 

implanted into a femur cavity can induce new bone formation under the 

periosteum, probably implying that zinc ions can promote periosteum-mediated 

bone formation. Similarly, an in vitro study demonstrated that the Zn-mediated 

cellular response seems to involve GPR39/ZnR and TRPM7 receptors for Zn-

entry into MSCs, thus triggering the intracellular cAMP and PKA pathway, leading 

to the activation of MAPK [177]. Admittedly, numerous studies substantiated that 

osteogenic induction can be caused by a low concentration of Zn ion release from 

Zn-containing biomaterials [175, 176]. Nevertheless, a phenomenon of delayed 

osseointegration around pure Zn implants was observed, probably caused by the 

local accumulation of excessive Zn ion concentrations [45, 63]. Thus, our results 

indicate that an appropriate Zn2+ release is essential for cellular reaction and 

function. Although the underlying in vivo mechanism remains unknown, 

controlling initial Zn2+ release should be of outstanding significance to improve 

biocompatibility, osteoinductivity and even osteointegration ability of Zn-based 
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alloys as osteosynthesis implants.



6. Summary 

91 

 

6. Summary 

The thesis focuses on in vitro evaluation of a Zn-4Ag alloy as a potential 

biomaterial for CMF osteosynthesis implants, mainly including cytotoxicity, 

degradation behavior, antibacterial properties and osteoinductivity. 

Concerning the cytotoxicity test, obvious cytotoxic effects were observed in the 

original extracts. Nonetheless, we further demonstrated that the toxic effects were 

influenced by the presence of fetal bovine serum in the extraction medium mainly 

due to the FBS-mediated rapid Zn ion release. Moreover, the cytotoxicity is 

mainly determined by the degradation products released from Zn and a Zn-4Ag 

alloy rather than by their degradation rates. 

The degradation behavior of Zn and Zn-4Ag alloy was evaluated under cell 

culture conditions. According to the calculation of weight loss, the degradation 

rate of Zn-4Ag in the DMEM/F-12 was approximately 17.38 ± 0.78 μm/year, which 

is significantly higher than that of pure Zn (4.80 ± 0.82 μm/year). In addition, our 

results indicated that FBS can accelerate the initial degradation process of Zn 

and Zn alloys. 

The antibacterial evaluation showed that the Zn-4Ag alloy has the potential to 

inhibit biofilm formation of S. gordonii. Additionally, a modified extraction method 

revealed a dose-dependent effect on the osteogenic differentiation of human 

periosteal cells. Specifically, high concentration of sample extracts significantly 

reduced calcium deposition, while a low concentration can induce calcium 

deposition. 

In summary, the thesis indicates that Zn-4Ag possessed predictable cytotoxicity, 

relatively slow in vitro degradation behavior, effective antibacterial properties and 

potential osteoinduction capability, and thus could be a potential material for CMF 

osteosynthesis implants. However, further systematic studies are required. 

 



7. Germany summary 

92 

 

7. German summary 

Die Arbeit konzentriert sich auf die In-vitro-Bewertung einer Zn-4Ag-Legierung 

als potentiellas Biomaterial für CMF-Osteosyntheseimplantate verwendet wird. 

Unters Dabei geht es hauptsächlich um Zytotoxizität, Abbauverhalten, 

antibakterielle Eigenschaften und Osteoinduktivität. 

Für den Zytotoxizitätstest wurden in den ursprünglichen Extrakten offensichtliche 

zytotoxische Wirkungen beobachtet. Wir konnten jedoch weiterhin nachweisen, 

dass die toxischen Effekte durch das Vorhandensein von fötalem Rinderserum 

im Extraktionsmedium beeinflusst wurden, was hauptsächlich auf die durch FBS 

vermittelte schnelle Freisetzung von Zn-Ionen zurückzuführen ist. Darüber 

hinaus wird die Zytotoxizität hauptsächlich durch die Abbauprodukte bestimmt, 

die aus Zn und der Zn-4Ag-Legierung freigesetzt werden, und nicht durch deren 

Abbauraten. 

Das Abbauverhalten von Zn und Zn-4Ag-Legierung wurde unter 

Zellkulturbedingungen evaluiert. Gemäß der Berechnung des Gewichtsverlusts 

betrug die Abbaurate von Zn-4Ag im DMEM / F-12 ungefähr 17,38 ± 0,78 μm/Jahr, 

was signifikant höher ist als die von reinem Zn (4,80 ± 0,82 μm/Jahr). Zusätzlich 

zeigten unsere Ergebnisse, dass FBS den anfänglichen Abbauprozess von Zn 

und Zn-Legierungen beschleunigen kann. 

Die antibakterielle Bewertung zeigte, dass die Zn-4Ag-Legierung das Potenzial 

besitzt, die Biofilmbildung von S. gordonii zu hemmen. Zusätzlich zeigte eine 

modifizierte Extraktionsmethode einen dosisabhängigen Effekt auf die osteogene 

Differenzierung menschlicher Periostzellen. Insbesondere die hohe 

Konzentration an Probenextrakten verringerte die Kalziumablagerung signifikant, 

während eine niedrige Konzentration eine Kalziumablagerung induzieren kann. 

Zusammenfassend lässt sich sagen, dass Zn-4Ag eine vorhersagbare 

Zytotoxizität, ein relativ langsames Abbauverhalten in vitro, wirksame 

antibakterielle Eigenschaften und eine potenzielle Osteoinduktionsfähigkeit 

aufweist, und somit ein potenzielles Material für CMF-Osteosyntheseimplantate 

sein könnte. Weitere systematische Studien sind jedoch erforderlich.
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